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. . . Geometry is the knowledge of the
eternally existent.

Plato, “Republic”, 527.





Foreword

Geometric intuition is central to many areas of statistics and probabilistic arguments.
This is particularly true in the areas covered by this book, namely stochastic
geometry, random fields and random geometric graphs. Nevertheless, intuition
must be followed with rigorous arguments if it is to become part of the general
literature of probability and statistics. Many such arguments in this area deviate from
traditional statistics, requiring special (and often beautiful) tools outside a working
statistician’s usual toolbox.

Professor Spodarev assembled a very impressive cast of instructors for a
workshop in Söllerhaus in September 2009 in order to further the literature in this
area and to introduce the topics to participating graduate students. I previously had
the pleasure of hosting several of the contributors of this volume at workshop at
BIRS in February 2009 on Random Fields and Stochastic Geometry and am certain
the workshop in Söllerhaus was a tremendous success.

The success of the workshop is further evidenced from this volume of lecture
notes. Professor Spodarev has managed to produce a volume that combines both
introductory material and current research in these notes. This book will be a useful
reference for myself in this area, as well as to all researchers with an interest in
stochastic geometry.

Stanford, CA Jonathan Taylor
March 2012
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Preface

This volume is an attempt to write a textbook providing a modern introduction
to stochastic geometry, spatial statistics, the theory of random fields and related
topics. It has been made out of selected contributions to the Summer Academy on
Stochastic Geometry, Spatial Statistics and Random Fields

http://www.uni-ulm.de/summeracademy09

which took place during 13–26 Sep 2009 at Söllerhaus, an Alpine conference centre
of the University of Stuttgart and RWTH Aachen, in the village Hirschegg (Austria).
It was organized by the Institute of Stochastics of Ulm University in cooperation
with the Chair of Probability Theory of Lomonosov Moscow State University. In
contrast with previous schools on this subject (Sandbjerg 2000, Martina Franca
2004, Sandbjerg 2007), this summer academy concentrated on the asymptotic theory
of random sets, fields and geometric graphs. At the same time, it provided an
introduction to more classical subjects of stochastic geometry and spatial statistics,
giving (post)graduate students an opportunity to start their own research within
a couple of weeks. The summer academy hosted 38 young participants from
13 countries (Australia, Austria, Denmark, Germany, France, Mongolia, Russia,
Romania, Sweden, Switzerland, UK, USA and Vietnam). Twelve experts gave
lectures on various domains of geometry, probability theory and mathematical
statistics. Moreover, students and young researchers had the possibility to give their
own short talks.

As it was pointed out above, this volume is focused on the asymptotic methods
in the theory of random geometric objects (point patterns, sets, graphs, trees,
tessellations and functions). It reflects advances in this domain made within the last
two decades. This especially concerns the limit theorems for random tessellations,
random polytopes, finite point processes and random fields.

The book is organized as follows. The first chapter provides an introduction
to the theory of random closed sets (RACS). It starts with the foundations of
geometric probability (Buffon needle problem, Bertrand’s paradox) and continues
with the classical theory of random sets by Matheron. Then it gives laws of
large numbers and limit theorems for Minkowski sums and unions of independent

ix
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x Preface

identically distributed (i.i.d.) RACS. Chapter 2 provides basics of the classical
integral geometry and its applications to stereology, a part of spatial stochastics
which deals with the reconstruction of the higher-dimensional properties of geo-
metric objects from lower-dimensional sections. In Chap. 3, principal classes of
spatial point processes (Poisson-driven point processes, finite point processes) are
introduced. Their simulation and statistical inference techniques (partially using the
Markov Chain Monte Carlo (MCMC) methods) are discussed as well. Chapter 4
provides an account of the theory of marked point processes and the asymptotic
statistics for them in growing domains. Ergodicity, mixing and m-dependence
properties of marked point processes are studied in detail. Random tessellation
models are the matter of Chap. 5. There, Poisson-driven tessellations as well as
Cox processes on them and hierarchical networks constructed on their basis are
considered. Scaling limits for some characteristics of these networks are found.
Applications to telecommunication networks are also discussed. Distribution tail
asymptotics and limit theorems for the characteristics of the (large) typical cell of
Poisson hyperplane and Poisson–Voronoi tessellations are given in Chap. 6. The
shape of large cells of hyperplane tessellations as well as limit theorems for some
geometric functionals of convex hulls of a large number of i.i.d. points within a
convex body and of random polyhedra are dealt with in Chap. 7. Weak laws of
large numbers and central limit theorems for functionals of finite point patterns are
discussed in Chap. 8. Additionally, their applications to various topics ranging from
optimization to sequential packings of convex bodies are touched upon. Chapter 9
surveys the elementary theory of random functions with the focus on random fields.
Basic classes of random field models as well as an account of the correlation theory,
statistical inference and simulation techniques are provided. Special attention is paid
to infinitely divisible random functions. Dependence concepts for random fields
(such as mixing, association, .BL; �/-dependence) as well as central limit theorems
for weakly dependent random fields are the subject of Chap. 10. They are applied to
establish the limiting behaviour of the volume of excursion sets of weakly dependent
stationary random fields. Chapter 11 focuses on almost sure limit theorems for
partial sums (or increments) of random fields on N

d such as laws of large numbers,
laws of single or iterated logarithm and others. In the final chapter, the geometry
of large rooted plane random trees with nearest neighbour interaction is studied. A
law of large numbers, a large deviation principle for the branching type statistics
and scaling limits of the tree are considered. Connections of these results with the
solutions of some partial differential equations are discussed as well. Some of the
chapters are written in a more formal and rigorous way than others which reflects
the personal taste and style of the authors.

The topics of this volume are (almost) self-contained. Thus, we recommend
Chaps. 1, 2 and 7 for the first acquaintance with the theory of random sets. A reader
interested in the (asymptotic theory of) point processes might start reading with
Chap. 3 and continue with Chaps. 4, 5 and 8 following the references to Chap. 1
if needed. Readers with an interest in tessellations and random polytopes might
additionally read Chaps. 2, 6 and 7. To get a concise introduction to random fields
and limit theorems for them, one could read Chaps. 9–11 occasionally following the



Preface xi

references to earlier chapters. For random graphs and trees, Chaps. 8 and 12 are a
good starting point.

All in all, the authors hope that the present volume will be helpful to graduates
and PhD students in mathematics to get a first glance of the geometry of random
objects and its asymptotical methods. Written in the spirit of a textbook (with a
significant number of proofs and exercises for active reading), it might be also
instrumental to lecturers in preparing their own lecture courses on this subject.

Söllerhaus at Hirschegg Evgeny Spodarev
September 2011
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Chapter 1
Foundations of Stochastic Geometry and Theory
of Random Sets

Ilya Molchanov

Abstract The first section of this chapter starts with the Buffon problem, which
is one of the oldest in stochastic geometry, and then continues with the definition
of measures on the space of lines. The second section defines random closed
sets and related measurability issues, explains how to characterize distributions of
random closed sets by means of capacity functionals and introduces the concept of
a selection. Based on this concept, the third section starts with the definition of the
expectation and proves its convexifying effect that is related to the Lyapunov theo-
rem for ranges of vector-valued measures. Finally, the strong law of large numbers
for Minkowski sums of random sets is proved and the corresponding limit theorem
is formulated. The chapter is concluded by a discussion of the union-scheme for
random closed sets and a characterization of the corresponding stable laws.

1.1 Geometric Probability and Origins of Stochastic
Geometry

In this section we introduce basic notions of stochastic geometry: random points,
lines, and random polytopes.

1.1.1 Random Points and the Buffon Problem

The first concepts of geometric probabilities usually appear at the very beginning of
university probability courses. One of the very first problem of this type is the meet-
ing problem: two persons come to meet at an agreed place, so that their arrival times
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2 I. Molchanov

are randomly chosen within some time interval Œ0; T 
 and each person is supposed
to wait for the other for some time t . The relevant probability space can be described
as the square Œ0; T 
2, where the two arrivals are described as a uniformly distributed
point .x1; x2/. The two persons meet exactly in case jx1�x2j � t , which singles out
the “favourable” partA of the square. The probability that .x1; x2/ 2 A is then given
by the ratio of the areas ofA and the whole square, so the answer is 1�.T �t/2=T 2.

Note that the whole question become pointless if T is not given, indeed it is
not possible to sample a point according to the Lebesgue measure on the plane,
since the whole measure is infinite. This situation quite often appears when defining
measure on families of geometric objects—the whole measure is infinite and one
has to restrict it to a subset of finite measure. What is particularly important is that
the measure defined on the whole space satisfies some invariance conditions, e.g.
like the Lebesgue measure which is motion invariant.

This simple example already shows the first principles: a point is chosen from
some setW , an event corresponds to the fact that this point x belongs to some subset
A. Finally, the probability of this event is calculated as the ratio of the measures of
A andW . If all points are equally likely andW is a subset of Rd , then one takes the
ratio of the Lebesgue measures of A and W . If the point is equally likely chosen on
the sphere, the ratio of the surface measures appears.

In general, a random point � inW �R
d can be defined by takingW with its Borel

	-algebra as the probability space, where the probability measure is the Lebesgue
measure �d normalized by its value �d .W /. This model defines a random point
whose positions are equally likely, in other words, � is uniformly distributed on W .
Such a construction clearly fails if W has infinite Lebesgue measure.

Several random points can be used to construct more complicated geometric
objects. For instance two points determine a segment, which brings us to the
famous problem formulated by Buffon in 1777 and published under the title “Essai
d’arithmétique morale”. The Buffon problem was originally formulated as finding
the probability that a rod thrown on a parquet floor crosses one of the parallel lines
formed by the parquet.

A possible approach to its solution starts with a parametrization of a segment
using its (say lower) end-point � and the angle � it makes with the (say) x-axis. The
parquet is a grid of lines formed by orthogonal to x-axis parallel lines with distance
D between them. Throwing such a segment (of length L) at random means that all
its positions are equally likely, i.e. � is uniformly distributed on Œ0; �/ and the first
coordinate �1 of � D .�1; �2/ is uniformly distributed on Œ0;D
. The fact whether
or not the segment intersects one of the lines does not depend on the value of the
second coordinate �2, and so it can be ignored. Then we need to identify the subset
of the rectangle Œ0;D/ � Œ0; �/ (or its closure) such that the segments parametrized
by its points hit the line, find the Lebesgue measure of this set and divide it by �D,
which results at

P.crossing/ D 2

�

Z �=2

0

L sin ˛

D
d˛ D 2L

�D

if L � D, the case of a short needle, see Fig. 1.1.



1 Foundations 3

α

ξ

D

Fig. 1.1 Position of a random segment with respect to the line grid

Exercise 1.1. Find the crossing probability for the case of a long needle, i.e. for
L > D.

An alternative very nice solution of the Buffon problem was suggested by Barbier
in 1860, who argued as follows. Assume that our needle is a (piecewise linear) curve
being a union of a finite number of line segments. Let pk, k � 0, be the probability
of exactly k crossings between the needle and the grid. Let E.x/ be the expected
number of crossings by a segment of length x. Then E.xC y/ D E.x/CE.y/ for
all x; y > 0. Since E.�/ is a monotone function, E.x/ D cx. By approximating a
circle with polygons, we see that the expected number of crossings by the circle is
proportional to its boundary length. Since the circle of diameterD produces exactly
two crossings, we obtain 2 D c�D, and thus c D 2=�D. Assume that the needle
(being again a line segment) is short, i.e. L � D. Then p2 D p3 D � � � D 0, so
that the expected number of crossings equals the probability of a crossing. Thus the
segment of length L � D crossed the grid with probability cL D 2L=�D.

The Buffon problem deals with a random object taking value from the family
of segments such that all sampled objects are equally likely. Such definitions
however require a careful consideration, which is shown by the following Bertrand’s
paradox. Consider the (say unit) disk on the plane with the aim to define a random
chord in this disk. First, it is possible to define a random chord by joining two points
uniformly distributed on the circle (Fig. 1.2a). Second, it is possible to choose a
uniform direction on Œ0; �/ and then draw an orthogonal chord, which intersects the
chosen direction at a point uniformly distributed on Œ�1; 1
 (Fig. 1.2b). Finally, it is
possible to take a uniform direction on Œ0; 2�/ and draw an orthogonal chord to it
with distance to the origin uniformly distributed on Œ0; 1
 (Fig. 1.2c). It is easy to
calculate the probability that the chord length exceeds

p
3. It equals 1=3, 1=2 and

1=4 respectively in each of the three definitions formulated above.

1.1.2 Random Lines

For simplicity consider random lines on the plane, noticing that similar arguments
and constructions apply to define random affine subspaces of Euclidean spaces
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Ö3 Ö3

Ö3

2π ¤ 3

π ¤ 41/2

a b c

Fig. 1.2 Three possibilities for the choice of a random chord in the unit disk

p

qp

Fig. 1.3 Parametrization of the line on the plane

with general dimensions. A common idea that is used to define random geometric
objects is to parametrize them by one or more real numbers. If these real numbers
become random, one obtains a random geometric object. A line on the plane can be
parametrized by its signed distance p to the origin and the direction of the normal
vector � 2 Œ0; �/.

A set of lines then is a subset of the parameter space Œ0; �/ � R, see Fig. 1.3.
Measurable sets of lines are exactly those which correspond to Borel sets in the
parameter space. Each measure on the strip Œ0; �/ � R defines a measure on the
family of lines. The most important case appears when the measure on the family of
lines is defined as the image of the Lebesgue measure on Œ0; �/ �R or proportional
to the Lebesgue measure. The resulting measure has density written as �dp d� for
a constant � > 0.

Let us show that the obtained measure on the family of lines is motion-invariant.
The line parametrized as .�; p/ has equation x cos � C y sin � � p D 0. A rigid
motion transforms the coordinates as

(
x0 D x cos˛ � y sin ˛ C a

y0 D x sin ˛ C y cos˛ C b ;

so that the transformed line has equation

x cos.� � ˛/C y sin.� � ˛/ � .p � a cos � � b sin �/ D 0 :



1 Foundations 5

Thus, the rigid motion corresponds to the following transformation on the parameter
space: (

� 7! .� � ˛/ ;
p 7! .p � a cos � � b sin �/ ;

and it remains to notice that the Lebesgue measure on Œ0; �/ � R is invariant with
respect to this transformation.

Often it is useful to consider the measure on the space of lines with density
dpR.d�/, where R is a certain measure on Œ0; �/ which controls the directional
distribution for lines. The obtained measure is then translation (but not necessarily
rotation) invariant.

The total measure of all lines is clearly infinite. In order to obtain some interesting
results we need to calculate some integrals with respect to the measure on the family
of lines. Denote this family as E21 , noticing that in general Edk denotes the family of
affine k-planes in R

d . A number of interesting quantities can be written as integrals

Z
E21
f .E/�.dE/

with respect to the introduced measure �.dE/ D dp d� on E21 . For instance f .E/
can be the indicator of the event that a line E hits a given set or can represent the
length of the intersection of a line with a given set, etc.

Let K be a convex set on the plane. Consider the functional

'.K/ D
Z

E21
�.K \E/�.dE/ ;

where �.K\E/ is one ifK\E ¤ ; and zero otherwise. The value of ' determines
the measure of all lines that intersect the setK . More general functionals of this type
are considered in Sect. 2.1.1. The functional ' is monotone inK , is motion invariant
and also continuous and additive on convex sets, meaning that

'.K [M/C '.K \M/ D '.K/C '.M/

for all convex compact sets K and M such that K [ M is also convex. Note that
the Lebesgue measure satisfies these properties in a much stronger form, namely for
all measurable sets. Relaxing the condition to the family of convex sets enriches the
family of such functionals '. The Hadwiger theorem from convex geometry (see
Theorem 2.1) establishes that all such functionals can be written as non-negative
linear combinations of so-called intrinsic volumes. In the planar case, the intrinsic
volumes are proportional to the areaA.K/, perimeterU.K/ and the Euler–Poincaré
characteristic �.K/. The latter is one if convex K is non-empty and is zero if K is
empty. Thus

'.K/ D c1A.K/C c2U.K/C c3�.K/ :
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Noticing that ' is homogeneous of degree one, while the area is homogeneous of
degree two and �.�/ is homogeneous of degree zero (cf. Sect. 2.1.1 for the definition
of homogeneity), we immediately obtain that c1 D c3 D 0, i.e. '.K/ is proportional
to the perimeter of K . If we take the unit ball instead of K then

'.K/ D
Z 2�

0

Z 1

0

dp d� D 2� ;

while U.K/ D 2� . Thus c2 D 1 and

Z
E21
�.K \ E/�.dE/ D U.K/ : (1.1)

In other words, the measure of all lines that hit K equals the perimeter of K . If
K � K0 then one arrives at the following result

P.line hits K j line hits K0/ D U.K/

U.K0/
:

Exercise 1.2. Show that
Z

E21
L.K \ E/�.dE/ D �A.K/ ; (1.2)

where L.E/ is the length of intersection of K and line E , see also [451] for
further reading on integral and convex geometry in view of applications in geometric
probability.

Exercise 1.3. Show that the probability that two lines intersecting K cross at a
point fromK is given by 2�A.K/U.K/�2. Hint: calculate

R
E21

R
E21
�.K \E1 \E2/�.dE1/�.dE2/�R

E21
�.K \E/�.dE/

�2

using also the result of the previous exercise. The isoperimetric inequality U.K/2 �
4�A.K/ with the equality achieved for discs K implies that the above probability
takes the largest value 1=2 forK being a disc.

1.1.3 Sets Constructed from Random Points

A finite set f�1; : : : ; �ng of random points (not necessarily uniformly distributed) in
a subset of Rd or in the whole space can be used to construct a random polytope.
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We will see in the following lecture that such polytopes can be described as random
sets.

Over the last 50 years substantial attention has been devoted to the studies
of geometric characteristics for the polytope Pn defined as the convex hull of
f�1; : : : ; �ng. In such studies the points are often assumed to have a uniform
distribution in a convex set K . Then Pn, n � 1, is a non-decreasing sequence of
polytopes that converges toK as n ! 1. Much more interesting (and complicated)
questions concern limit theorems for various geometric functionals defined on Pn,
e.g. for the Lebesgue measure, surface area or the number of vertices, see Chap. 7.

Another typical example of a set constructed from random points is a random
closed ball B�.�/ of radius � centred at � 2 R

d . Numerous examples appear from
solutions of inequalities, e.g. of the type fx 2 R

d W g1.x/ � �1; : : : ; gn.x/ �
�ng. Further examples of random sets (called tessellations) can be produced from
collection of random lines, see Chaps. 5 and 6.

1.2 Distributions of Random Sets

The purpose of this section is to introduce basic ideas from the theory of random
sets with emphasis on their distributions and measurability issues.

1.2.1 Definition of a Random Closed Set

The concept of a random set was mentioned for the first time together with the
mathematical foundations of probability theory. Kolmogorov wrote in 1933 in his
book on foundations of probability theory:

Let G be a measurable region of the plane whose shape depends on chance; in other words,
let us assign to every elementary event � of a field of probability a definite measurable plane
region G. We shall denote by J the area of the region G and by P.x; y/ the probability that
the point .x; y/ belongs to the region G. Then

E.J / D
“

P.x; y/ dx dy :

The formal definition of random sets appeared much later, namely in 1974
when Kendall published a paper [292] on foundations of random sets and in 1975
when Matheron [345] laid out the modern approach to this theory. The current
state of the art of the random sets theory is described in [363], where all results
mentioned below can be found together with references to the original papers and
various generalizations. Applications and statistical issues for random closed sets
are presented in [366, 489, 494]. It is common to work with closed random sets,
which can be naturally defined as maps from the probability space .˝;A;P/ to the
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family F of closed sets in R
d (or more general topological space E). One often

speaks about set-valued maps from˝ to R
d .

These maps should also satisfy certain measurability conditions, which should be
carefully chosen. Indeed, too strict measurability conditions unnecessarily restrict
the possible examples of random sets. On the other hand, too weak measurability
conditions do not ensure that important functionals of a random set become random
variables.

Definition 1.1. A map X W ˝ 7! F is said to be a random closed set if f! W
X.!/ \K ¤ ;g is a measurable event for each K from the family Kd of compact
subsets of Rd .

In other words, a random closed set is a random element with values in the space
F equipped with the 	-algebra 	F generated by the families of sets

fF 2 F W F \K ¤ ;g

with K 2 Kd . A random compact set is a random closed set which almost surely
takes compact values. Similarly one defines a random convex set.

From Definition 1.1 it is easily seen that a random singletonX D f�g is a random
closed set. The support points of a point process (see Sect. 4.1.1) also constitute a
random closed set. If �t is an almost surely continuous stochastic process indexed
by t 2 R

d , then its excursion set Au.�;R
d / D ft W �t � ug is a random closed set.

Indeed,
fAu.�;R

d /\K ¤ ;g D fsup
t2K

�t � ug

is a measurable event. It is possible to prove directly from the definition that a
random disk with random centre and random radius is a random closed set. More
economical ways to check the measurability conditions will be explained later on.

If X is a random closed set, then 1.x 2 X/ is a random variable. Moreover,
1.x 2 X/, x 2 R

d , is a random field on R
d (see Sect. 9.1), which takes values zero

or one. On the contrary, each two-valued random field gives rise to a (possibly non-
closed) random set. However, random fields method cannot always help to handle
random sets. For instance, let X D f�g be a random singleton with non-atomically
distributed �. Then the corresponding indicator random field is non-separable and is
not distinguishable from the random field that always vanishes. Indeed, the finite-
dimensional distributions of the indicator field miss the mere existence of a random
singleton with non-atomic distribution.

It is easy to check that the norm

kXk D supfkxk W x 2 Xg;

depicted in Fig. 1.4a is a (possibly infinite) random variable. For this, one should
note that the event fkXk < rg corresponds to the fact that X misses the compact set
fx W r � kxk � ng for all sufficiently large natural numbers n. Another important
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x x||x||

u

hx(u)

a b

Fig. 1.4 The norm kXk and the support function hX.u/ of X

random variable associated with X is its support function

hX.u/ D sup
x2X

hx; ui ;

i.e. the supremum of the scalar products of x 2 X and the argument u 2 R
d , see

Fig. 1.4b.
The distance


.a;X/ D inff
.a; x/ W x 2 Xg
from a 2 R

d to the nearest point x 2 X is a random variable, since 
.a;X/ > t iff
the closed ball of radius t centred at a does not hit X .

Furthermore, if � is a locally finite measure, then �.X/ is a random variable.
Indeed, Fubini’s theorem applies to the integral of 1.x 2 X/ with respect to �.dx/
and leads to

E.�.X//D E
Z

1.x 2 X/�.dx/D
Z

E.1.x 2 X//�.dx/D
Z

P.x 2 X/�.dx/ :

The fact that the expected value of �.X/ for a locally finite � equals the integral
of the probability P.x 2 X/ is known under the name of the Robbins theorem
formulated by Kolmogorov in 1933 and then independently by Robbins in 1944–
1945. It should be noted that this fact does not hold for a general measure �. For
instance, if X is a singleton with an absolutely continuous distribution and � is the
counting measure, then E.�.X// D 1, while P.x 2 X/ vanishes identically. Note
that limit theorems for the measure �.X \ W / with growing W can be deduced
from limit theorems for random fields, see Sect. 10.3.

Exercise 1.4. Find an expression for E.�.X/n/ for a locally finite measure �.

Exercise 1.5 (more difficult). Show that the Hausdorff dimension of a random
closed set is a random variable.
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1.2.2 Capacity Functional and the Choquet Theorem

Before discussing the construction of distributions for random closed sets recall
that the distribution of a random variable � is defined by its cumulative distribution
function F.x/ D P.� � x/ which is characterized by normalization conditions
(F.�1/ D 0 and F.C1/ D 1), the right-continuity and monotonicity properties.
These three properties are still required (in a slightly modified form) for distributions
of random vectors and they also appear as characteristic properties for distributions
of random closed sets.

Definition 1.2. The capacity functional of a random closed set X is defined as

T .K/ D P.X \K ¤ ;/ ; K 2 Kd :

The capacity functional is therefore defined on a family of compact sets. Since
events fX \K ¤ ;g, K 2 Kd , generate the 	-algebra on the family of closed sets,
it is easy to see that T uniquely determines the distribution of X . For instance, T
is a restriction of a Borel probability measure on Kd iff X is a singleton. A closely
related functional is the avoidance functional Q.K/ D 1 � T .K/ that gives the
probability that X misses compact set K . The capacity functional can be properly
extended to a functional on all (even non-measurable!) subsets of Rd , see [363, p. 9].

Exercise 1.6. Find a random closed set whose capacity functional is the restriction
on Kd of a sub-probability measure, i.e. T is a measure with total mass less than or
equal to one.

Another uniqueness issue is related to the concept of a point process from
Sect. 4.1.1. Namely, a simple point process ' can be viewed as the random closed
set X of its support points. Since

P.X \K D ;/ D P.'.K/ D 0/ ;

the distribution of a simple point process is identically determined by its avoidance
probabilities (i.e. probabilities that a given compact set contains no point of the
process). Indeed, by the Choquet theorem these avoidance probabilities determine
the distribution of the random closed set X and so ' as well. For instance, a random
closed set with the capacity functional

T .K/ D 1 � e��.K/ ; K 2 Kd ;

with � being a locally finite measure on R
d is exactly the Poisson process with

intensity measure �, i.e. it is a point process which fulfills the three conditions in
Definition 3.4 of Sect. 3.1.2.

Exercise 1.7. Find out which random closed set on R
d has the capacity functional

T .K/ D 1 � e��d .K/˛ ;

where �d is the Lebesgue measure and ˛ 2 .0; 1/ (easy for ˛ D 1).
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It remains to identify the properties of a functional T .K/ defined on a family
of compact sets that guarantee the existence of a random closed set X having T as
its capacity functional. This is done in the following Choquet theorem formulated
in the current form by Matheron and proved in a slightly different formulation by
Kendall.

Theorem 1.1 (Choquet–Kendall–Matheron). A functional T W Kd 7! Œ0; 1
 defi-
ned on the family of compact subsets of a locally compact second countable
Hausdorff space E is the capacity functional of a random closed set X in E iff
T .;/ D 0 and

1. T is upper semicontinuous, i.e. T .Kn/ # T .K/ whenever Kn # K as n ! 1
with K;Kn, n � 1, being compact sets, i.e. KnC1 � Kn, K D \1

nD1Kn.
2. T is completely alternating, i.e. the following successive differences

�K1T .K/ D T .K/� T .K [K1/ ;

�Kn � � ��K1T .K/ D �Kn�1 � � ��K1T .K/

��Kn�1 � � ��K1T .K [Kn/ ; n � 2 :

are all non-positive for all compact sets K;K1; : : : ; Kn.

The Euclidean space R
d is a locally compact second countable Hausdorff space,

so that the Choquet theorem applies there.
There are three standard proofs of this theorem, see [363]. One derives it from

the first principles of extension of measures from algebras to 	-algebras. For this,
one notices that the events of the form fX\V D ;; X\W1 ¤ ;; : : : ; X\Wk ¤ ;g
form an algebra, where V;W1; : : : ;Wk are obtained by taking finite unions of open
and compact sets and k � 0. The probabilities of these events are given by

�W1T .V / D P.X \ V ¤ ;/� P.X \ .V [W1/ ¤ ;/
D �P.X \W1 ¤ ;; X \ V D ;/ :

and further by induction

��Wk � � ��W1T .V / D P.X \ V D ;; X \Wi ¤ ;; i D 1; : : : ; k/ ;

so that non-positivity of the successive differences corresponds to the non-negativity
of the probabilities.

An alternative proof relies on powerful techniques of harmonic analysis on
semigroups [62] by noticing that the complete alternative condition is related
to the positive definiteness property on the semigroup of compact sets with the
union operation. In a sense, the avoidance functional Q.K/ on the family of
compact sets with union operation plays the same role as the function P.� > t/
for random variables considered on real numbers with maximum operation and the
characteristic function considered as a function on the real line with conventional
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addition. Finally, the lattice theoretic proof applies also in the case of non-Hausdorff
space E , see [384].

Exercise 1.8. Identify a random closed set whose capacity functional is given by

T .K/ D sup
x2K

f .x/

for an upper semicontinuous function f with values in Œ0; 1
.

Since T determines uniquely the distribution of X , properties of X can be
expressed as properties of T . For instance, X is stationary (i.e. X C a coincides
in distribution with X for all translations a) iff the capacity functional of X is
translation invariant.

Exercise 1.9. Prove that a random closed set is convex iff its capacity functional
satisfies

T .K1 [K2/C T .K1 \K2/ D T .K1/C T .K2/

for all convex compact sets K1 andK2 such that K1 [K2 is also convex.

1.2.3 Selections and Measurability Issues

A random point � is said to be a selection of random set X if � 2 X almost
surely. In order to emphasize the fact that � is measurable itself, one often calls
it a measurable selection. A possibly empty random set clearly does not have a
selection. Otherwise, the fundamental selection theorem establishes the existence
of a selection of a random closed set under rather weak conditions. It is formulated
below for random closed sets in R

d .

Theorem 1.2 (Fundamental Selection Theorem [113]). If X W ˝ 7! F is an
almost surely non-empty random closed set in R

d , then X has a (measurable)
selection.

Since the family of selections depends on the underlying 	-algebra, two iden-
tically distributed random closed sets might have different families of selections.
However, it is known that the weak closures of the families of selections coincide if
the random closed sets are identically distributed.

The following result by Himmelberg establishes equivalences of several measur-
ability concepts. It is formulated in a somewhat restrictive form for Polish (complete
separable metric) spaces. For any X W ˝ 7! F , define X�.B/ D f! 2 ˝ W
X.!/\ B ¤ ;g, where B is a subset of E .

Theorem 1.3 (Fundamental Measurability Theorem [246]). Let E be a Polish
space endowed with metric 
 and let X W ˝ 7! F be a function defined on a
complete probability space .˝;A;P/ with values being non-empty closed subsets
of E . Then the following statements are equivalent.
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1. X�.B/ 2 A for every Borel set B � E .
2. X�.F / 2 A for every F 2 F .
3. X�.G/ 2 A for every open set G � E (in this case X is said to be Effros

measurable).
4. The distance function 
.y;X/ D inff
.y; x/ W x 2 Xg is a random variable for

each y 2 E .
5. There exists a sequence f�n; n � 1g of measurable selections of X such that

X D clf�n; n � 1g :
6. The graph of X

graph.X/ D f.!; x/ 2 ˝ � E W x 2 X.!/g
is measurable in the product 	-algebra of A and the Borel 	-algebra on E .

Note that compact sets do not appear in the Fundamental Measurability Theorem.
IfE D R

d (or more generally if E is locally compact), then all above measurability
conditions are equivalent to X�.K/ 2 A for all compact sets K .

Exercise 1.10. Let X be regular closed, i.e. suppose X almost surely coincides
with the closure of its interior. Show that all measurability properties of X are
equivalent to fx 2 Xg 2 A for all x 2 E .

In particular, Statement 5 of Theorem 1.3 means that X can be obtained as
the closure of a countable family of random singletons, known as the Castaign
representation of X . This is a useful way to extend concepts defined for points to
their analogues for random sets.

The most common distance on the family Kd of compact sets is the Hausdorff
distance defined as


H .K;L/ D inffr > 0 W K � Lr; L � Krg ;

where Kr denotes the closed r-neighbourhood of K , i.e. the set of all points within
distance r from K . This definition can be extended to not necessarily compact K
and L, so that it no longer remains a metric but takes finite values if both K and L
are bounded.

The fundamental measurability theorem helps to establish measurability of set-
theoretic operations with random sets.

Theorem 1.4 (Measurability of set-theoretic operations [363, Theorem 1.2.25]).
If X is a random closed set in a Polish space E , then the following multifunctions
are random closed sets:

1. the closed convex hull of X ;
2. ˛X if ˛ is a random variable;
3. the closed complement to X , the closure of the interior of X , and @X , the

boundary of X .
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If X and Y are two random closed sets, then

1. X [ Y and X \ Y are random closed sets;
2. the closure of X ˚ Y D fx C y W x 2 X; y 2 Y g is a random closed set (if E

is a Banach space);
3. if bothX and Y are bounded, then the Hausdorff distance 
H .X; Y / is a random

variable.

If fXn; n � 1g is a sequence of random closed sets, then

5. cl.[n�1Xn/ and \n�1Xn are random closed sets;
6. lim supn!1Xn and lim infn!1Xn are random closed sets.

1.3 Limit Theorems for Random Sets

This section deals with limit theorems for Minkowski sums and unions of random
sets.

1.3.1 Expectation of a Random Set

The space of closed sets is not linear, which causes substantial difficulties in defining
the expectation for a random set. One way described below is to represent a random
set using a family of its selections.

Let X be a random closed set in R
d . If X possesses at least one integrable

selection then X is called integrable. For instance, if X is almost surely non-empty
compact and its norm kXk is integrable (in this case X is said to be integrably
bounded) then all selections ofX are integrable and so X is integrable too. Later on
we usually assume that X is integrably bounded.

Definition 1.3. The (selection or Aumann) expectation EX of an integrable random
closed set X is closure of the family of all expectations for its integrable selections.

If X is an integrably bounded subset of R
d , then the expectations of all its

selections form a closed set and there is no need to take an additional closure. The
so defined expectation depends on the probability space where X is defined. For
instance, the deterministic set X D f0; 1g defined on the trivial probability space
f;;˝g has expectation EX D f0; 1g, since it has only two trivial (deterministic)
selections. However, if X is defined on a non-atomic probability space, then its
selections are � D 1.A/ for all events A � ˝ , so that E� D P.A/ and the range of
possible values for E� constitutes the whole interval Œ0; 1
.

The following result shows that the expectation of a random compact set defined
on a non-atomic probability space is a convex set whose support function equals the
expected support function of X , i.e. the expectation convexifies random compact
sets.
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Theorem 1.5. If an integrably bounded X is defined on a non-atomic probability
space, then EX is a convex set and

hEX.u/ D EhX.u/ ; u 2 R
d : (1.3)

Proof. The convexity of the Aumann expectation can be derived from the Lyapunov
theorem which says that the range of any non-atomic vector-valued measure is a
convex set (to see this in the one-dimensional case note that real-valued measures
do not have gaps in the ranges of their values). Let �1 and �2 be two integrable
selections of X . Define the vector-valued measure

�.A/ D E.�11.A/; �21.Ac//

for all measurable events A. The closure of its range is convex, �.;/ D .0; 0/ and
�.˝/ D .E�1;E�2/. Let ˛ 2 .0; 1/. Thus, there exists an event A such that

k˛E�i � E.�i1.A//k < "=2 ; i D 1; 2 :

Define the selection
� D �11.A/C �21.Ac/:

Then
k˛E�1 C .1 � ˛/E�2 � E�k < "

for arbitrary " > 0, whence EX is convex.
Now establish the relationship to support functions. Let x 2 EX . Then there

exists a sequence �n of selections such that E�n ! x as n ! 1. Furthermore

hfxg.u/ D lim
n!1hE�n; ui D lim

n!1 Eh�n; ui � EhX.u/ ;

and hence hX.u/ D supx2X hfxg.u/ � EhX.u/. Finally, for each unit vector u and
" > 0 define a half-space as

Y" D fx W hx; ui � hX.u/� "g :

Then Y" \X is a non-empty random closed set, which has a selection �", such that

hf�"g.u/ � hX.u/� " :

Taking the expectation confirms that hEX.u/ � EhX.u/. ut
The convexifying effect of the selection expectation limits its applications in such

areas like image analysis, where it is sometimes essential to come up with averaging
scheme for images, see [363, Sect. 2.2] for a collection of further definitions of
expectations. However, it appears very naturally in the law of large numbers for
random closed sets as described in the following section.
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Example 1.1. Let X D B�.�/ be the closed ball of radius � > 0 centred at � 2 R
d ,

where both � and � are integrable. Then its expectation is the ball of radius E�
centred at E�.

Exercise 1.11. Show that EX D fag is a singleton iff X is a random singleton
itself, i.e. X D f�g.

Exercise 1.12. Assume that X is isotropic, i.e. X coincides in distribution with its
arbitrary rotation around the origin. Identify EX .

1.3.2 Law of Large Numbers and the Limit Theorem
for Minkowski Sums

Recall that the Minkowski sum of two compact sets K and L is defined as

K ˚ L D fx C y W x 2 K; y 2 Lg :

In particularKr is the Minkowski sum of K and the closed ball of radius r , centred
at the origin. The same definition applies if one of the summands is compact and
the other is closed. However if the both summands are closed (and not necessarily
compact), then the sum is not always closed and one typically inserts the closure in
the definition.

Support functions linearize the Minkowski sum, i.e.

h˛K.u/ D ˛hK.u/;

hK˚L.u/ D hK.u/C hL.u/ ; u 2 R
d

for convex compact sets K and L. The homogeneity property of support functions
makes it possible to define them only on the unit sphere S

d�1 in R
d . Then the

uniform metric for support functions on the sphere turns into the Hausdorff distance
between compact sets. Namely


H .K;L/ D sup
u2Sd�1

jhK.u/� hL.u/j

and also

kKk D 
H .K; fog/ D sup
u2Sd�1

jhK.u/j :

Consider a sequence of i.i.d. random compact sets X1;X2; : : : all distributed as a
random compact set X . It should be noted that the mere existence of such sequence
implies that the probability space is non-atomic.
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Theorem 1.6 (Law of large numbers for random sets [17]). If X;X1;X2; : : : are
i.i.d. integrably bounded random compact sets and Sn D X1 ˚ � � � ˚Xn, n � 1, are
their Minkowski sums, then


H .n
�1Sn;EX/

a.s.��! 0 as n ! 1 :

Proof. Let us prove the result assuming that X is almost surely convex. Then

h.n�1Sn; u/ D 1

n

nX
iD1

h.Xi ; u/
a.s.�! Eh.X; u/ D h.EX; u/

by a strong law of large numbers in a Banach space specialized for the space
of continuous functions on the unit ball with the uniform metric, see [372]. The
uniform metric on this space corresponds to the Hausdorff metric on convex
compact sets, whence the strong law of large numbers holds.

In order to get rid of the convexity assumption we rely on the following result
known as Shapley–Folkman–Starr Theorem. If K1; : : : ; Kn are compact subsets of
R
d and n � 1, then


H .K1 ˚ � � � ˚Kn; conv.K1 ˚ � � � ˚Kn// �
p
d max
1�i�n kKik :

Note that the number of summands does not appear in the factor on the right-hand
side. For instance, if K1 D � � � D Kn D K , then one obtains that the distance
between the sum of n copies of K and the sum of n copies of the convex hull of K
is at most

p
dkKk.

A not necessarily convex X can be replaced by its convex hull conv.X/, so that
it remains to show that

n�1
H .X1˚� � �˚Xn; conv.X1˚� � �˚Xn// �
p
d

n
max
1�i�n kXik a.s.�! 0 as n ! 1 :

The latter follows from the integrable boundedness of X . Indeed, then we have
nP.kXk > n/ ! 0 as n ! 1, and

P. max
iD1;:::;n kXik � nx/ D 1 � .1� P.kXk � nx//n ! 0 :

The proof is complete. ut
Numerous generalizations of the above strong law of large numbers deal with

random subsets of Banach spaces and possibly unbounded random closed sets in
the Euclidean space, see [363].

The formulation of the central limit theorem is complicated by the fact that
random sets with expectation o are necessarily singletons. Furthermore, it is not
possible to define Minkowski subtraction as the opposite operation to the addition.
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For instance, it is not possible to find a set that being added to a ball produces
a triangle. Therefore, its not possible in general to normalize successive sums of
random compact sets.

Note that the classical limit theorem may be (a bit weaker) formulated as
the convergence of the normalized distance between the empirical mean and the
expectation to the absolute value of a normally distributed random variable.

In order to formulate a limit theorem for random closed sets we need to define a
centred Gaussian random field �.u/ on the unit sphere Sd�1 in R

d which shares the
covariance structure with the random closed set X , i.e.

E.�.u/�.v// D cov.hX.u/; hX.v// ; u; v 2 S
d�1 :

Since the support function of a compact set is Lipschitz, it is possible to show that
the random field � has a continuous modification.

Theorem 1.7 (Central Limit Theorem [508]). Let X1;X2; : : : be i.i.d. copies of
a random closed set X in R

d such that EkXk2 < 1. Then
p
n
H .n

�1Sn;EX/
converges in distribution as n ! 1 to supfj�.u/j W u 2 S

d�1g.

Proof. For convex random sets the result follows from the central limit theorem
for continuous random functions on the unit sphere, see [15, Corollary 7.17]. The
general non-convex case is proved by an application of the Shapley–Folkman–Starr
Theorem. ut

It is not clear how to interpret geometrically the limit �.u/, u 2 S
d�1, in the

central limit theorem for random sets. It is possible to define Gaussian random sets
as those whose support function is a Gaussian process on S

d�1. All such sets have
however degenerate distributions. Namely, X is a Gaussian random set iff X D
�CM , where � is a Gaussian random vector in R

d andM is a deterministic convex
compact set. This is seen by noticing that the so-called Steiner point

s.X/ D 1

�d

Z
Sd�1

h.X; u/ u du

is a Gaussian random vector that a.s. belongs to X , where �d is the volume of
the d -dimensional unit ball. Thus, M DX � � with � D s.X/ has Gaussian non-
negative support function, which is then necessarily degenerate, so that M is
deterministic.

1.3.3 Unions of Random Sets

While the arithmetic summation scheme for random variables gives rise to the
Gaussian distribution in the limit, the maximum of random variables gives rise
to extreme value distributions. Along the same limit, the Minkowski summation
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scheme for random sets being singletons reduces to the classical limit theorem
for sums of random vectors, while taking unions of random sets generalizes
the maximum (or minimum) scheme for random variables. Notice that if Xi D
.�1; �i 
, i D 1; 2 : : :, then

X1 [ � � � [ Xn D .�1;max.�1; : : : ; �n/
 :

LetX;X1;X2; : : : be a sequence of i.i.d. random closed sets in R
d and let an > 0,

n � 1, be a sequence of non-negative normalizing constants. The weak convergence
of the random set

Zn D an.X1 [ � � � [Xn/
to a random closed set Z is defined by specializing the general concept of weak
convergence of probability measures for the space F of closed sets. In particular, a
necessary and sufficient condition for this is the convergence of capacity functionals
on sets K such that Z touches the boundary of K with probability zero, i.e.

P.Z \K ¤ ;; Z \ Int.K/ D ;/ D 0;

where Int.K/ denotes the interior ofK . The capacity functional of the setZn is easy
to find as

TZn.K/ D 1 � .1 � TX.a
�1
n K//

n :

Various convergence results for unions of random sets can be found in [363,
Chap. 4].

Here we shall discuss properties of random sets that can appear in the limit.
In more general triangular array schemes of building the n-fold union the limits
are union-infinitely-divisible, while in the above described scheme the limit Z is
necessarily union-stable, see [363, Sect. 2.3].

Definition 1.4. A random closed set is said to be union-infinitely divisible if Z
coincides in distribution with the union of i.i.d. random closed sets Z11; : : : ; Znn
for each n � 2.
A random closed set Z is said to be union-stable if Z coincides in distribution with
a�1
n .Z1 [ � � � [ Zn/ for each n � 2 with normalizing constants an > 0, where
Z1; : : : ; Zn are i.i.d. copies of Z.

Exercise 1.13. Assume thatZ coincides in distribution with the union of its n i.i.d.
copies for some n � 2. Show that such Z is necessarily deterministic.

For the following it is essential to single out the deterministic part of a random
set. A point x is said to be a fixed point of X if x 2 X with probability one. The set
of fixed points is denoted by FX . For instance, if X D .�1; �
 with exponentially
distributed �, then FX D .�1; 0
, while FX is empty if � is normally distributed.

Theorem 1.8 ([363, Theorem 4.1.6]). A random closed set X is union-infinitely-
divisible iff there exists a completely alternating upper semicontinuous functional
 W Kd ! Œ0;1
 such that
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T .K/ D 1 � e� .K/ ; K 2 Kd ;

and  .K/ < 1 wheneverK \ FX D ;.

Example 1.2. Let X be the Poisson point process with intensity measure �. Then
T .K/ D 1 � e��.K/ and X is union-infinitely-divisible. Indeed, X equals in
distribution the union of n i.i.d. Poisson processes, each with intensity measure
n�1�.

The functional  shares nearly the same properties as T apart from the fact that
the values of  are no longer required to lie in Œ0; 1
. The functional  defines a
locally finite measure � on F , such that �.fF 2 F W F \K ¤ ;g/ D  .K/. The
measure � defines a Poisson process on F such that the “points” of this process are
actually closed sets. ThenX is the union of the sets from the support of this Poisson
process on F with intensity measure �.

Theorem 1.9 ([363, Theorem 4.1.12]). A random closed set is union-stable iff
its capacity functional admits representation T .K/ D 1 � e� .K/ with  being
homogeneous, i.e.

 .sK/ D s˛ .K/ ; K 2 Kd ; K \ FX D ; ;

for some ˛ ¤ 0 and all s > 0, and also FX D sFX for all s > 0.

The proof of the above theorem relies on solving some functional equations for
capacity functionals of random sets, quite similar to the corresponding character-
ization of max-stable random variables. The major complication stems from the
fact that for any random variable � the equivalence of the distributions of � and c�
immediately implies that c D 1. This is however not the case for random sets, e.g.
the set of zeros for the standard Brownian motion X D ft � 0 W W.t/ D 0g,
coincides in distribution with cX for each c > 0. Another example of such is a
randomly rotated cone in R

d . The key step in the proof of Theorem 1.9 aims to
show that the union-stability property rules out all such self-similar random sets.

Exercise 1.14. Let X D .�1; �
 in R. Prove that all distributions of � that
correspond to union-stableX are exactly extreme value distributions of Fréchet and
Weibull type.

If X is a Poisson process, then its union-stability property implies that the
intensity measure of the process is homogeneous, i.e. �.sA/ D s˛�.A/ for all
A 2 B.Rd / and s > 0.



Chapter 2
Introduction into Integral Geometry
and Stereology

Markus Kiderlen

Abstract This chapter is a self-contained introduction into integral geometry
and its applications in stereology. The most important integral geometric tools
for stereological applications are kinematic formulae and results of Blaschke–
Petkantschin type. Therefore, Crofton’s formula and the principal kinematic formula
for polyconvex sets are stated and shown using Hadwiger’s characterization of
the intrinsic volumes. Then, the linear Blaschke–Petkantschin formula is proved
together with certain variants for flats containing a given direction (vertical flats) or
contained in an isotropic subspace. The proofs are exclusively based on invariance
arguments and an axiomatic description of the intrinsic volumes.

These tools are then applied in model-based stereology leading to unbiased
estimators of specific intrinsic volumes of stationary random sets from observations
in a compact window or a lower dimensional flat. Also, Miles-formulae for
stationary and isotropic Boolean models with convex particles are derived. In
design-based stereology, Crofton’s formula leads to unbiased estimators of intrinsic
volumes from isotropic uniform random flats. To estimate the Euler characteristic,
which cannot be estimated using Crofton’s formula, the disector design is presented.
Finally we discuss design-unbiased estimation of intrinsic volumes from vertical
and from isotropic sections.

2.1 Integral Geometric Foundations of Stereology

In the early 1960s stereology was a collection of mathematical methods to extract
spatial information of a material of interest from sections. Modern stereology
may be considered as “sampling inference for geometrical objects” ([31, Chap. 5]
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and [142, pp. 56–57]) thus emphasizing the two main columns stereology rests
upon: sampling theory and geometry. In this section, we shall discuss two of the
most important geometric concepts for stereology: kinematic integral formulae and
results of Blaschke–Petkantschin type. The proofs are exclusively based on invari-
ance arguments and an axiomatic description of the intrinsic volumes. Section 2.2
is then devoted to stereology and describes in detail, how geometric identities lead
to unbiased estimation procedures. The influence from sampling theory will also be
mentioned in that later section.

2.1.1 Intrinsic Volumes and Kinematic Integral Formula

We start which a deliberately vague question of how to sample a set K�R
d .

In order to avoid possibly costly measurements on the whole of K , we sample
K with a “randomly moved” sampling window M �R

d and consider only the
part of K that is inside the moved window. To fix ideas, we assume that K and
M are elements of the family Kd

conv of convex bodies (compact convex subsets)
in R

d , that the (orientation preserving) motion is the composition of a translation
with a random vector � 2 R

d and a random rotation 
 2 SO (special orthogonal
group). Assume further that f W Kd

conv ! R is a functional which gives, for each
observation, the measured value (think of the volume). What is the expected value
of f .K \ 
.M C �//?

To make this question meaningful, we have to specify the distributions of 

and �. One natural condition would be that the distribution of K \ 
.M C �/ is
independent of the location and orientation of M . In particular, this implies that 

should be right invariant: 
ıR and 
 have the same distribution for any deterministic
R 2 SO. The space SO, identified with the family of all orthonormal matrices
in R

d�d with determinant 1 and endowed with the induced topology, becomes
a compact topological group. The theory of invariant measures [451, Chap. 13]
implies that there is a unique right invariant probability measure on SO, which
we denote by �. This measure, also called normalized Haar measure, has even
stronger invariance properties: it is inversion invariant in the sense that 
 and 
�1
have the same distribution. Together with the right invariance, this implies that �
is also left invariant in the obvious sense. The measure � is therefore the natural
measure on SO, its role being comparable to the one of the Lebesgue measure �d
on R

d . We shall therefore just write dR D �.dR/ when integrating with respect to
this measure. The matrix corresponding to the random rotation 
 can be constructed
explicitly by applying the Gram–Schmidt orthonormalization algorithm to a d -tuple
(�1; : : : ; �d ) formed by random i.i.d. uniform vectors in the unit sphere S

d�1. Note
that the vectors �1; : : : ; �d are almost surely linearly independent.

Similar considerations for the random translation vector � lead to the contradic-
tory requirement that the distribution of � should be a multiple of the Lebesgue
measure �d on R

d . This was already pointed out in Chap. 1; see the first paragraph
on page 2. In contrast to SO, the group R

d is only locally compact but not compact.
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We therefore have to modify our original question. In view of applications we
assume that the moved window hits a fixed reference set A 2 Kd

conv, which contains
K . Using the invariant measures defined above we then have

E.f .K \ 
.M C �/// D
R

SO

R
Rd
f .K \ R.M C x// dx dRR

SO

R
Rd

1.A\ R.M C x/ ¤ ;/ dx dR
; (2.1)

where we assumed f .;/ D 0. Numerator and denominator of this expression are
of the same form and we first consider the special case of the denominator with
M D Br.o/, r > 0, and A D K 2 Kd

conv:

Z
SO

Z
Rd

1.K \ R.Br.o/C x/ ¤ ;/ dx dR D �d .K ˚ Br.o//:

By a fundamental result in convex geometry [451, Sect. 14.2], this volume is a
polynomial of degree at most d in r > 0, usually written as

�d .K ˚ Br.o// D
dX
jD0

rd�j �d�j Vj .K/; (2.2)

where �j denotes the volume of the j -dimensional unit ball. This result is the Steiner
formula. It defines important functionals, the intrinsic volumes V0; : : : ; Vd . They
include the volume Vd .K/ D �d .K/, the surface area 2Vd�1.K/ of the boundary
of K (when intK ¤ ;) and the trivial functional V0.K/ D 1.K ¤ ;/, also called
Euler characteristic �.K/. The Steiner formula implies

Z
SO

Z
Rd

V0.K \ R.Br.o/C x// dx dR D
dX
jD0

rd�j �d�j Vj .K/:

Already in this special case with M being a ball, the intrinsic volumes play an
essential role to express kinematic integrals explicitly. We shall soon see that this
even holds true when V0 is replaced by a function f W Kd

conv ! R satisfying some
natural properties. To do so, we first clarify the basic properties of Vj .

It is easily seen from the Steiner formula that Vj W Kd
conv ! R is invariant

under rigid motions and is homogeneous of degree j . Here, we call a function
f W Kd

conv ! R

1. Invariant under rigid motions if f .R.K C x// D f .K/ for all K 2 Kd
conv,

R 2 SO, and x 2 R
d .

2. Homogeneous of degree j if f .˛K/ D ˛j f .K/ for all K 2 Kd
conv, ˛ � 0.

Using convexity properties, Vj can be shown to be additive and monotone (with
respect to set inclusion). Here f W Kd

conv ! R is
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3. Additive if f .;/ D 0 and

f .K [M/ D f .K/C f .M/� f .K \M/

for K;M 2 Kd
conv with K [M 2 Kd

conv (implyingK \M ¤ ;).
4. Monotone if f .K/ � f .M/ for all K;M 2 Kd

conv, K � M .

Exercise 2.1. Use the Steiner formula to show that

Vj .Br.o// D
 
d

j

!
�d

�d�j
rj

holds for j D 0; : : : ; d .

Exercise 2.2. Show that ifK 2 Kd
conv is contained in a k-dimensional subspaceL0,

then Vj .K/ D 0 for j > k and Vk.K/ is the k-dimensional volume of K .

Hint. Due to rotation invariance we may assume that L0 is spanned by the first k
vectors of the standard basis of Rd . Then Fubini’s theorem implies

�k.K/�d�krd�k � �d .K ˚ Br.o// � �k .K ˚ .B".o/ \ L0// �d�krd�k

for all 0 � r � ".

Exercise 2.3. Show that the invariance under rigid motions and the homogeneity
property of the intrinsic volumes are immediate consequences of the Steiner
formula.

Already a selection of the above defined properties is sufficient to character-
ize intrinsic volumes axiomatically. This is the content of Hadwiger’s famous
characterization theorem; see [220], where a corresponding result is also shown
with a continuity assumption replacing monotonicity. A simplified proof (for the
characterization based on continuity) can be found in [301], see also [24] or [302].

Theorem 2.1 (Hadwiger). Suppose f W Kd
conv ! R is additive, motion invariant

and monotone. Then there exist c0; : : : ; cd � 0 with

f D
dX
jD0

cj Vj :

This shows that the intrinsic volumes are essentially the only functionals that share
some natural properties with the volume. We shall use this result without proof.
It implies in particular, that under the named assumptions on f , we only have to
consider the numerator of (2.1) for f D Vj . In view of Hadwiger’s characterization
the following result gives a complete answer to our original question for a large
class of measurement functions f .
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Theorem 2.2 (Principal kinematic formula). Let j 2 f0; : : : ; d g and K;M 2
Kd

conv. Then

Z
SO

Z
Rd

Vj .K \ R.M C x// dx dR D
dX

kDj
c
k;d�kCj
j;d Vk.K/Vd�kCj .M/;

where the constants are given (form D 2) by

cr1;:::;rms1;:::;sm
D

mY
iD1

ri Š�ri
si Š�si

; m 2 N: (2.3)

In certain cases the formula remains valid even when the rotation integral is omitted.
This is trivially true for M D Br.o/, but also for j D d and j D d � 1.

Proof. We denote the left hand side of the principal kinematic formula by f .K;M/.
The functional f .K;M/ is symmetric in K andM due to the invariance properties
of �d , � and Vj . The homogeneity of Vj and a substitution yield

f .˛K; ˛M/ D ˛dCj f .K;M/; ˛ > 0:

As f .K; �/ is additive, motion invariant and monotone, Hadwiger’s characterization
theorem implies the existence of constants c0.K/; : : : ; cd .K/ � 0 (depending on
K) with f .K; �/ D Pd

kD0 ck.K/Vk. Hence, for ˛ > 0,

dX
kD0

ck.K/Vk.M/˛k D
dX
kD0

ck.K/Vk.˛M/ D f .K; ˛M/

D ˛dCj f
�
1

˛
K;M

�
D ˛dCj f

�
M;

1

˛
K

�

D
dX
kD0

ck.M/Vk.K/˛
d�kCj :

Comparison of the coefficients of these polynomials yields ck.M/ D 0 for k < j

and that ck.M/ is proportional to Vd�kCj .M/ for k � j . This gives the principal
kinematic formula with unknown constants. The constants are then determined
by appropriate choices for K and M , for which the integrals can be calculated
explicitly; see also the comment after Theorem 2.4. ut
This solves our original question for f D Vj . Formula (2.1) now gives

E.Vj .K \ 
.M C �/// D
Pd

kDj c
k;d�kCj
j;d Vk.K/Vd�kCj .M/Pd

kD0 c
k;d�k
0;d Vk.A/Vd�k.M/

if (
; �) has its natural distribution on f.R; x/ W R.M C x/ \A ¤ ;g.
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Exercise 2.4. Show the following general basic integral formula using Fubini’s
theorem. If � is a 	-finite measure on B.Rd / then

Z
Rd

�.A \ .B C x//dx D �.A/�d .B/

for all A;B 2 B.Rd /.
Conclude that the special case j Dd of Theorem 2.2 holds even when the

rotation integral is omitted.

As invariant integration like in Theorem 2.2 does always lead to functionals in
the linear span of V0; : : : ; Vd , an iterated version for k C 1 convex bodies can be
shown by induction.

Theorem 2.3 (Iterated principal kinematic formula). Let j 2 f0; : : : ; d g, k � 1,
andK0; : : : ; Kk 2 Kd

conv. Then

Z
SO

Z
Rd

� � �
Z

SO

Z
Rd

Vj .K0 \R1.K1 C x1/ \ : : : \ Rk.Kk C xk//

� dx1 dR1 � � � dxk dRk

D
dX

m0;:::;mkDj
m0C:::CmkDkdCj

c
m0;:::;mk
j;d;:::;d Vm0.K0/ � � �Vmk.Kk/

with constants given by (2.3).
For j Dd and j Dd � 1 the rotation integrals on the left hand side can be

omitted.

Theorem 2.2 has a counterpart where M is replaced by an affine subspace. For
k 2 f0; : : : ; d g let Ldk be the Grassmannian of all k-dimensional linear subspaces of
R
d . The image measure of � on SO under R 7! RL0, L0 2 Ldk fixed, is a rotation

invariant probability measure on Ldk , and integration with respect to it is denoted by
dL. It is the only rotation invariant distribution on Ldk . Similarly, let Edk be the space
of all (affine) k-dimensional flats in R

d . The elementsE 2 Edk are called k-flats and
can be parametrized in the formE D R.L0Cx/ withR 2 SO, x 2 L?

0 , and a fixed
space L0 2 Ldk . The function .R; x/ 7! R.L0 C x/ on SO �L?

0 maps the measure
� ˝ �d�k to a motion invariant measure on Edk . Integration with this measure is
denoted by dE . Up to a factor, this is the only motion invariant measure on Edk .

We shall later need families of subspaces containing or contained in a given space
L 2 Ldk , 0 � k � d :

LLr D
(

fM 2 Ldr W M � Lg; if 0 � r � k;

fM 2 Ldr W M � Lg; if k < r � d:

Again, there is a uniquely determined invariant probability measure on LLr . We shall
write dM when integrating with respect to it; the domain of integration will always
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be clear from the context. For r � k existence and uniqueness of this probability
measure follow from identifying L with R

k . For r > k, this measure is obtained as
image of

R
LL?

r�k\.�/ dM underM 7! M˚L. An invariance argument also shows that

Z
Ld
k

Z
LL
r

f .L;M/ dM dL D
Z

Ld
r

Z
LM
k

f .L;M/ dLdM (2.4)

holds for any measurable f W f.L;M/ 2 Ldk � Ldr W M 2 LLr g ! Œ0;1/. The
corresponding family of incident flats will only be needed for 0 � r � k � d and
is defined as the space

EEr D fF 2 Edr W F � Eg
of all r-flats contained in a fixed k-flat E . Integration with respect to the invariant
measure on this space will again be denoted by dF and can be derived by identifying
E with R

k as in the linear case.
We can now state the announced counterpart of Theorem 2.2 with M replaced

by a k-flat.

Theorem 2.4 (Crofton formula). For 0 � j � k < d andK 2 Kd
conv we have

Z
Edk
Vj .K \E/ dE D c

k;d�kCj
j;d Vd�kCj .K/

with ck;d�kCj
j;d given by (2.3).

This follows (apart from the value of the constant) directly from Hadwiger’s charac-
terization theorem, as the left hand side is additive, motion invariant, monotone and
homogeneous of degree d � k C j . The constant is derived by setting K D B1.o/.
Particular formulae for the planar case (d D 2) are given in (1.1) and (1.2). That the
same constants also appear in the principal kinematic formula is not coincidental,
but a consequence of a deeper connection between the principal kinematic formula
and Crofton integrals: Hadwiger [220] showed a general kinematic formula, where
the intrinsic volume Vj in the principal kinematic formula is replaced by an additive
continuous functional f on Kd

conv and the right hand side involves Crofton-type
integrals with f as functional. In particular, this shows that the constants in the
principal kinematic formula are the same as in corresponding Crofton formulae,
facilitating their calculation.

Exercise 2.5 (more difficult). Show that the Crofton formula can directly be
derived from the principal kinematic formula by letting M be a ball Br.o/ \ L0
in a q-dimensional space L0, dividing both sides of the principal kinematic formula
by Vq.M/ and taking the limit r ! 1.

The results for Vj can be extended to polyconvex sets, i.e. sets in

R D fK � R
d W 9m 2 N; K1; : : : ; Km 2 Kd

conv with K D
m[
iD1

Ki g:
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In fact, additivity suggests how to define Vj .K [M/ for two convex bodiesK , M ,
which not necessarily satisfy K [ M 2 Kd

conv. Induction then allows extension
of Vj on R. That such an extension is well-defined (it does not depend on the
representation of K 2 R as a union of convex bodies) follows from a result of
Groemer [205, p. 408]. We denote the extension of Vj on R again by Vj . Using
induction on m, additivity implies the inclusion–exclusion principle

Vj .K1 [ : : : [Km/ D
mX
rD1
.�1/rC1

X
1�i1<:::<ir�m

Vj .Ki1 \ : : : \Kir /

for all m2N and K1; : : : ; Km 2 R. This principle in particular implies that Theo-
rems 2.2–2.4 remain valid with the convexity assumption replaced by the assump-
tion that all occurring sets are polyconvex.

There are numerous generalizations of the principal kinematic formula and the
Crofton formula. Local versions exist, where the intrinsic volumes are replaced
by support measures (generalized curvature measures). When the averaging with
respect to rotations is omitted, one obtains translative integral formulae; see [450].
For instance, the principal kinematic formula in its translative form still allows on
the right hand side for a sum of d � j C 1 summands distinguishable by their
homogeneity properties, but these summands depend on the relative position of K
and M . Iterated versions of the principal translative formula exist, but in contrast
to Theorem 2.3 new functionals appear when the number of convex bodies is
increased; see [511], where a translative formula of Crofton-type and for half-spaces
is derived as well. Integral geometric formulae for convex cylinders can be seen
as joint generalizations of the principal kinematic formula and Crofton’s formula.
Details can be found in [451].

We discussed integral geometric formulae for polyconvex sets. However, they
are valid for considerably larger set classes. Already Federer [171] showed that
the principal kinematic formula holds for sets of positive reach. Zähle [527] and
Rother and Zähle [426] extended kinematic integral formulae to even larger set
classes containing the class of so-called UPR-sets. A set is an element of UPR if
it can be written as locally finite union of sets of positive reach such that any finite
nonempty intersection of them has again positive reach. The mentioned results even
hold locally, that is, for curvature measures.

Crofton’s formula allows to derive mean values like in (2.1), where the moved
convex body is replaced by a k-flat. A random k-flatE intersecting a given reference
set A 2 B.Rd / with the natural distribution

P.E 2 �/ D
R
.�/ 1.E 0 \ A ¤ ;/ dE 0
R
Edk

1.E 0 \A ¤ ;/ dE 0 (2.5)

is called an IUR (isotropic uniform random) k-flat hittingA. ForK 2 R withK�A,
Crofton’s formula for an IUR k-flat hitting A 2 R gives the mean value
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E.Vj .K \E// D c
k;d�kCj
j;d Vd�kCj .K/

ck;d�k
0;d Vd�k.A/

(2.6)

for 0 � j � k < d . Hence, up to a known multiplicative constant depending on
A, the random variable Vj .K \ E/ is an unbiased estimator of Vd�kCj .K/. The
relations (2.6) are sometimes called fundamental stereological formulae. We shall
discuss them and related stereological results in more detail in Sect. 2.2.

It is not difficult to construct an IUR k-flat E hitting a compact set A. For k D 0

the flat E is a point, uniformly distributed in A. For k > 0 choose an r > 0 with
A � Br.o/ and a linear space L0 2 Ldk . If 
 2 SO is a random rotation with
distribution � and � is independent of 
with the uniform distribution onBr.o/\L?

0 ,
then E D 
.L0 C �/ is an IUR k-flat hitting Br.o/. Conditioning on the event
E \ A ¤ ; yields an IUR k-flat hitting A. The construction of an IUR k-flat can
be simplified when k D 1 (IUR line) or k D d � 1 (IUR hyperplane). To obtain
an IUR line in Br.o/ one can choose a uniform vector � 2 S

d�1 and, given �, a
uniform point � 2 Br.o/ \ �?. The line E parallel to � passing through � then is
an IUR line hitting Br.o/. In a similar way, an IUR hyperplane can be constructed
by representing it by one of its normals and its closest point to o. For d D 2 and
d D 3, which are the most important cases in applications, the construction of the
random rotation 
 can thus be avoided.

It should be noted that an IUR k-flat hitting B1.o/ cannot be obtained by
choosing k C 1 i.i.d. uniform points in B1.o/ and considering their affine hull H .
Although H has almost surely dimension k, its distribution is not coinciding with
the natural distribution of E in (2.5). The k-flat H is called point weighted k-flat,
and its (non-constant) density with respect to

R
.�/ 1.E \ B1.o/ ¤ ;/ dE can be

calculated explicitly using the affine Blaschke–Petkantschin formula. As formulae
of Blaschke–Petkantschin type play an important role in stereology, we discuss them
in detail in the next section.

2.1.2 Blaschke–Petkantschin Formulae

Suppose we have to integrate a function of q-tuples .x1; : : : ; xq/ of points in R
d

with respect to the product measure .�d /q . In several applications computations
can be simplified by first integrating over all q-tuples of points in a q-dimensional
linear subspace L (with respect to �qq ) and subsequently integrating over all linear
subspaces with respect to the Haar measure

R
Ld
q\.�/ dL. The case q D 1, d D 2

corresponds to the well-known integration in the plane using polar coordinates. The
Jacobian appearing in the general transformation formula turns out to be a power of

rq.x1; : : : ; xq/ D �q.Œ0; x1
˚ : : :˚ Œ0; xq
/;
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where Œ0; x1
˚ : : :˚ Œ0; xq
 is the parallelepiped spanned by the vectors x1; : : : ; xq .
To simplify notation, we shall just write dx for integration with respect to Lebesgue
measure in R

k, as the appropriate dimension k can be read off from the domain of
integration under the integral sign.

Theorem 2.5 (Linear Blaschke–Petkantschin formula). Let q 2 f1; : : : ; d g and
f W .Rd /q ! Œ0;1/ be measurable. Then

Z
.Rd /q

f .x/ dx D bdq

Z
Ld
q

Z
Lq
f .x/rd�q

q .x/ dx dL;

with
bdq D !d�qC1 � � �!d

!1 � � �!q ;

where !j D j�j denotes the surface area of the unit ball in R
j .

For the proof, which is by induction on q, we use a generalization of the polar
coordinate formula.

Lemma 2.1. Let r 2 f0; : : : ; d � 1g, L0 2 Ldr be fixed and f W Rd ! Œ0;1/ be
measurable. Then

Z
Rd

f .x/ dx D !d�r
2

Z
LL0
rC1

Z
M

f .x/d.x;L0/
d�r�1 dx dM;

where d.x;L0/ is the distance between x and L0.

Proof. Let L0.u/ D fL0 C ˛u W ˛ � 0g be the positive hull of L0 and u. Then
Fubini’s theorem and spherical coordinates (in L?

o ) yield

Z
Rd

f .z/ d z D
Z
L0

Z
L?

0

f .x C y/ dy dx

D
Z
L0

Z 1

0

Z
Sd�1\L?

0

f .x C ˛u/˛d�r�1 du d˛ dx

D
Z
Sd�1\L?

0

Z
L0.u/

f .x/d.x;L0/
d�r�1 dx du

D !d�r
2

Z
LL0
rC1

Z
M

f .x/d.x;L0/
d�r�1 dx dM:

This concludes the proof of Lemma 2.1. ut
We now prove Theorem 2.5. Amazingly, this can be achieved by a relatively

simple induction on q and a suitable use of spherical coordinates in subspaces of Rd .
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Proof (of Theorem 2.5). For q D 1 the assertion reduces to Lemma 2.1 with r D 0.
We assume now that the assertion is true for some q 2 N and all dimensions d , and
use the fact that

rqC1.x1; : : : ; xqC1/ D rq.x1; : : : ; xq/d.xqC1; L/; (2.7)

if x1; : : : ; xq 2 L, L 2 Ldq . Fubini’s theorem, the induction hypothesis and
Lemma 2.1 with r D q give

I WD
Z
.Rd /qC1

f .z/ d z D
Z
Rd

Z
.Rd /q

f .x; y/ dx dy

D bdq

Z
Rd

Z
Ld
q

Z
Lq
f .x; y/rd�q

q .x/ dx dLdy

D bdq

Z
Ld
q

Z
Lq

Z
Rd

f .x; y/ dyrd�q
q .x/ dx dL

D bdq
!d�q
2

Z
Ld
q

Z
Lq

Z
LL
qC1

Z
M

f .x; y/d.y;L/d�q�1 dy dMrd�q
q .x/ dx dL

D bdq
!d�q
2

Z
Ld
qC1

Z
M

Z
LM
q

Z
Lq
f .x; y/d.y;L/d�q�1rd�q

q .x/ dx dLdy dM;

where the integrals over q and .q C 1/-dimensional subspaces may be inter-
changed due to (2.4). From (2.7) and an application of the induction hypothe-
sis for a q-fold integral over the .q C 1/-dimensional space M with function
f .�; y/rqC1.�; y/d�q�1, we get

I D bdq
!d�q
2

Z
Ld
qC1

Z
M

Z
LM
q

Z
Lq
f .x; y/rqC1.x; y/d�q�1rq.x/ dx dLdy dM

D bdq!d�q
2b.qC1/q

Z
Ld
qC1

Z
M

Z
Mq

f .x; y/rqC1.x; y/d�q�1 dx dy dM

D bd.qC1/
Z

Ld
qC1

Z
MqC1

f .z/rqC1.z/d�q�1 d zdM:

This concludes the proof. ut
There are many formulae of Blaschke–Petkantschin type in the literature. Fol-

lowing [451, Sect. 7.2] we can describe their common feature: Instead of integrating
q-tuples of geometric objects (usually points or flats) directly, a “pivot” is associated
to this tuple (usually span or intersection) and integration of the q-tuple is first
restricted to one pivot, followed by an integration over all possible pivots. For
integrations the natural measures are used, and a Jacobian comes in. In Theorem 2.5,
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the pivot is the linear space (almost everywhere) spanned by the q points x1; : : : ; xq .
As an affine subspace of dimension q is spanned by qC1 affine independent points,
a similar formula for affine q-flats is to be expected.

Theorem 2.6 (Affine Blaschke–Petkantschin formula). Let q 2 f1; : : : ; d g and
assume that f W .Rd /qC1 ! Œ0;1/ is measurable. Then

Z
.Rd /qC1

f .x/dx D bdq.qŠ/
d�q

Z
Edq

Z
EqC1

f .x/�d�q
q .x/dxdE;

where bdq is the constant defined in Theorem 2.5, and

�q.x0; : : : ; xq/ D .qŠ/�1rq.x1 � x0; : : : ; xq � x0/

is the q-dimensional volume of convfx0; : : : ; xqg.

The affine Blaschke–Petkantschin formula can be directly derived from Theo-
rem 2.5; see [451, Theorem 7.2.7].

Exercise 2.6. Show Crofton’s chord formula in the plane and in three-dimensional
space using the affine Blaschke–Petkantschin formula: For d D 2; 3 we have

Z
Ed1
V dC1
1 .K \E/dE D 3

�
V 2
d .K/

for any convex bodyK � R
d .

Hint. Show that if s is a line segment of length ` in R
d , then

Z
s2
�i
1.x/d�2.x/ D `2Ci

3i

for i D 1; 2.

Exercise 2.7. Let H be a point weighted line in the plane. (Recall that H is the
affine hull of two i.i.d. uniform points in B1.o/.) Show that the distribution of H
has a non-constant density with respect to the distribution (2.5). Conclude that H
cannot be an IUR line hitting B1.o/.

We give an example of another Blaschke–Petkantschin formula, where there is
only one initial geometric element, namely an affine k-flat. The pivot is a linear
space of dimension r > k containing it.

Theorem 2.7. Let 1 � k < r � d � 1 and let f W Edk ! Œ0;1/ be measurable.
Then Z

Edk
f .E/ dE D !d�k

!r�k

Z
Ld
r

Z
ELk
f .E/d.o;E/d�r dE dL:
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Proof. If L 2 Ldk is fixed, the restriction of the measure

Z
LL
r

Z
Sd�1\L?\M

1.u 2 .�// du dM

on S
d�1 \L? is invariant with respect to all rotations of L? (leaving L fixed), and

must thus be a multiple of
R
Sd�1\L?

1.u 2 .�// du. The factor is !r�k=!d�k .
Hence, integrating Z 1

0

f .˛.�/C L/˛d�k�1 d˛

with respect to this measure, and using spherical coordinates in L? gives

!r�k
!d�k

Z
L?

f .x C L/ dx D
Z

LL
r

Z
Sd�1\L?\M

Z 1

0

f .˛u C L/˛d�k�1 d˛ du dM:

A back-transformation of spherical coordinates appearing on the right in the .r�k/-
dimensional space L? \M yields

!r�k
!d�k

Z
L?

f .x C L/ dx D
Z

LL
r

Z
L?\M

f .x C L/ kxkd�r dx dM:

Integration with respect to L 2 Ldk leads to

Z
Edk
f .E/ dE D !d�k

!r�k

Z
Ld
k

Z
LL
r

Z
L?\M

f .x C L/ kxkd�r dx dM dL

D !d�k
!r�k

Z
Ld
r

Z
LM
k

Z
L?\M

f .x C L/d.o; x C L/d�r dx dLdM

D !d�k
!r�k

Z
Ld
r

Z
EMk
f .E/d.o;E/d�r dE dM;

where (2.4) was used. This completes the proof. ut
We also notice an example of a Blaschke–Petkantschin formula, where the pivot
is spanned by an initial geometric element and a fixed subspace. We only consider
initial geometric elements and fixed subspaces of dimension one here, although ver-
sions for higher dimensional planes (and q-fold integrals, q > 1) exist. The Jacobian
appearing in the following relation is a power of the generalized determinant ŒL;L0

of two subspacesL and L0. In the special case we consider here,L and L0 are lines
and ŒL;L0
 D sin.†.L;L0// depends only on the angle †.L;L0/ between them.
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Lemma 2.2. Let L0 2 Ld1 be a fixed line. Then

Z
Ld
1

f .L/ dL D !2!d�1
!1!d

Z
LL0
2

Z
LM
1

f .L/ŒL;L0

d�2 dLdM

holds for any measurable f W Ld1 ! Œ0;1/.

Proof. An invariance argument implies

Z
Rd

f .spanfxg/1.kxk � 1/ dx D �d

Z
Ld
1

f .L/ dL;

where spanfxg is the line containing x and o. Using this and Lemma 2.1 twice, first
with r D 1 in R

d and then with r D 0 in M , we get

Z
Ld
1

f .L/ dL D ��1
d

Z
Rd

f .spanfxg/1.kxk � 1/ dx

D !d�1
2�d

Z
LL0
2

Z
M

f .spanfxg/1.kxk � 1/d.x;L0/
d�2 dx dM

D !2!d�1
4�d

Z
LL0
2

Z
LM
1

f .L/

Z
L

1.kxk�1/d.x;L0/d�2kxkdx dLdM:

The innermost integral is

ŒL;L0

d�2

Z
L\B1.o/

kxkd�1 dx D 2

d
ŒL;L0


d�2;

and the claim follows. ut
An affine version of Lemma 2.2 is obtained by replacing f .L/ by

R
L?

f .xCL/ dx,
where now f is a nonnegative measurable function on Ed1 . Lemma 2.2 and Fubini’s
theorem then imply

Z
Ed1
f .E/ dE D !2!d�1

!1!d

Z
LL0
2

Z
M?

Z
EMCx
1

f .E/ŒE;L0

d�2 dE dx dM; (2.8)

where ŒE;L0
 WD ŒL;L0
, if L 2 Ld1 is parallel to E 2 Ed1 .
The idea to base proofs of Blaschke–Petkantschin formulae on invariance

arguments is due to Miles [360]. We followed mainly the presentation of his and
Petkantschin’s [404] results in [451, Sect. 7.2]. Santaló’s monograph [433] is a
general reference for Blaschke–Petkantschin formulae. His proofs use differential
forms.
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2.2 Stereology

The purpose of this section is to give an introduction into stereology with a special
emphasis on the usefulness of integral geometric tools. Stereology (gr.: “stereos”
meaning solid) is a sub-area of stochastic geometry and spatial statistics dealing
with the estimation of geometric characteristics (like volume, area, perimeter or
particle number) of a structure from samples. Typically samples are sections with or
projections onto flats, intersections with full-dimensional test sets or combinations
of those.

2.2.1 Motivation

Unlike tomography, stereology does not aim for a full-dimensional reconstruction
of the geometry of the structure, but rather tries to assess certain key properties.
This is what makes stereology extremely efficient and explains its widespread use
in many applied sciences. As estimation is based on samples of the structure, one has
to assure that these samples are in a certain sense representative for the structure as
a whole—at least concerning the geometric characteristics of interest. Stereologists
therefore assume that the structure is “statistically homogeneous”, a property that
only was vaguely defined in the early literature. The former East German stochastics
school of J. Mecke, D. Stoyan and collaborators (see [489] and the references
therein) made this concept rigorous by considering the structure Z�R

d as a
random closed set which is stationary (i.e. the distribution of Z C x is independent
of x 2 R

d ). Some authors prefer to call such random sets homogeneous rather than
stationary. Often it was also assumed that Z is isotropic (the distribution of RZ
is independent of R 2 SO). As (weak) model assumptions on Z are needed, this
approach is called the model-based approach. Besides the monograph of Schneider
and Weil [451] on stochastic geometry and integral geometry, the classical book
of Stoyan et al. [489] is recommended as reference for the model-based approach.
The stationarity assumption in the classical model-based approach is appropriate
in many applications in geology, metallurgy and materials science. It is, however,
often hard to check in other disciplines and certainly inappropriate in anatomy and
soil science. In these cases the design-based approach has to be used, where the
structure of interest is considered deterministic, and the selection of the sample is
done in a controlled randomized way.

The Australian statisticians R.E. Miles and P.J. Davy [141, 142, 361] made this
rigorous by pointing out the strong analogy between stereology and sample surveys.
Sample surveys (think of opinion polls) infer properties of the whole population
(for example the total number of citizens voting for the democratic party) from a
randomized sample of the population. In a simplified stereological situation, where
a feature of interest K is contained in a reference set A, the space A corresponds to
the total population, the intersection with a set L corresponds to a sample, and K
corresponds to the subpopulation of interest to us (Fig. 2.1).
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A

L

K

Fig. 2.1 Analogy between survey sampling and stereology: the feature of interest K is contained
in a reference set A. The intersection with the line L corresponds to taking a sample

This analogy is more than a formal one and allows among other things to transfer
variance reducing methods like systematic random sampling, unequal probability
sampling and stratification to stereology. Concerning design-based stereology, Bad-
deley and Jensen’s monograph [31] includes also recent developments. We return to
design-based stereology in a later section, and start with model-based methods.

2.2.2 Model-Based Stereology

In model-based stereology we assume that the structure of interest Z�R
d is a

stationary random closed set (see Definition 1.1). We want to use integral geometric
formulae from Sect. 2.1.1, which we only have shown for polyconvex sets. The
assumption that Z is stationary and polyconvex is not suitable, as a stationary set
Z ¤ ; is known to be almost surely unbounded [451, Theorem 2.4.4]. Instead we
assume that Z is almost surely locally polyconvex, i.e. Z \K is polyconvex for all
K 2 Kd

conv, almost surely. We denote by N.Z \K/ the minimal number of convex
bodies that is needed to representZ \K as their union and assume the integrability
condition

E
�
2N.Z\Œ0;1
d /� < 1: (2.9)

Following [451, p. 397] we call a random set Z � R
d a standard random set if

(a) Z is stationary
(b) Z is a.s. locally polyconvex
(c) Z satisfies (2.9)

The class of standard random sets forms the most basic family of random sets
which is flexible enough to model real-world structures reasonably. To define mean
intrinsic volumes per unit volume, one might consider E.Vj .Z \ W //=�d.W / for
an observation window W 2 Kd

conv with �d .W / > 0. But this definition is inapt, as
can already be seen in the special case j D d � 1 corresponding to surface area
estimation: in addition to the surface area of @Z in W also the surface area of @W
in Z is contributing, leading to an overestimation of the mean surface area per unit
volume. In order to eliminate such boundary effects one defines
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V j .Z/ D lim
r!1

E.Vj .Z \ rW //

�d .rW /
;

whereW 2 Kd
conv, �d .W / > 0 as before. If Z is a standard random set then V j .Z/

exists and is independent ofW . It is called the j -th specific intrinsic volume ofZ. It
is shown in [512] that corresponding specific '-values of Z exist whenever ' is an
additive, translation invariant functional on R satisfying a certain boundedness con-
dition. Specific intrinsic volumes can also be defined as Lebesgue densities of aver-
age curvature measures of Z; see for example [451, Corollary 9.4.1] and the refer-
ences therein. As intrinsic volumes are also called quermass integrals, one finds the
notion quermass densities for the specific intrinsic volumes in the earlier literature.

Exercise 2.8. Let Z be a standard random set. Use Fubini’s theorem and the
stationarity of Z to show that

V d .Z/ D P.x 2 Z/ D P.o 2 Z/
for all x 2 R

d .

IfZ is stationary and isotropic, the principal kinematic formula holds for V j .Z/.

Theorem 2.8. LetZ be an isotropic standard random set, and j 2 f0; : : : ; d g. Then

E.Vj .Z \W // D
dX

kDj
c
k;d�kCj
j;d V k.Z/Vd�kCj .W /; W 2 Kd

conv:

If W is a ball, j D d or j D d � 1, the isotropy assumption can be dropped.

Proof. LetZ be defined on the abstract probability space .˝;A;P/. FixW 2 Kd
conv

and r > 0. It can be shown that f W Rd �˝ ! R which maps .x; !/ to Vj ..Z.!/\
W /\ .Br.o/C x// is measurable, and that the integrability condition (2.9) implies
integrability of f with respect to �d ˝ P. This will allow us to use Fubini’s theorem
later in the proof. The motion invariance of Vj and stationarity and isotropy of Z
imply

E.Vj ..Z \W /\ .Br.o/C x/// D E.Vj ..RZ C x/ \W \ .RBr.o/C x///

D E.Vj ..Z \ Br.o//\ R�1.W � x///
for x 2R

d , R 2 SO. Fubini’s theorem and the invariance properties of �d and �
imply

E
Z

SO

Z
Rd

Vj ..Z \W / \R.Br.o/C x// dx dR

D E
Z

SO

Z
Rd

Vj ..Z \ Br.o// \R.W C x// dx dR;



38 M. Kiderlen

so the sets W and Br.o/ can be interchanged. The principal kinematic formula,
applied on both sides, yields

dX
kDj

c
k;d�kCj
j;d EVk.Z \W /Vd�kCj .Br.o//

D
dX

kDj
c
k;d�kCj
j;d EVk.Z \ Br.o//Vd�kCj .W /:

Now we divide both sides by �d .Br.o// and let r tend to infinity. As

Vd�kCj .Br.o//
�d .Br.o//

D rj�k Vd�kCj .B1.o//
�d

;

the claim follows. In the cases where the principal kinematic formula holds even
without averaging over all rotations, isotropy is not needed in the above proof. ut
Theorem 2.8 shows that

E

0
B@
V0.Z \W /

:::

Vd .Z \W /

1
CA D A �

0
B@
V 0.Z/
:::

V d .Z/

1
CA

with a triangular matrix A 2 R
.dC1/�.dC1/, which is regular if �d .W / > 0. Hence

A�1
 
V0.Z\W /

:::
Vd .Z\W /

!
is an unbiased estimator of

 
V 0.Z/:::
V d .Z/

!
and can be determined from

observations of Z in the full-dimensional windowW alone.

Exercise 2.9. An isotropic standard random set Z � R
2 is observed in a square

W of side length one: Z \ W is connected, has area 1=2 and perimeter 5. The
complementary set R2 n .Z \ W / is also connected. Find unbiased estimators for
the three specific intrinsic volumes.

Hint. Use that the Euler–Poincaré characteristic V0.Z \ W / is the number of
connected components minus the number of “holes”. (“Holes” are the bounded
connected components of the complement.)

If E is a k-flat, and Z is a standard random set in R
d , then Z \ E is a standard

random set in E (in particular, stationarity refers to invariance of PZ\E under all
translations in E). If Z is isotropic, then Z \E is isotropic in E .

Theorem 2.9 (Crofton’s formula for random sets). If Z is an isotropic standard
random set and E 2 Edk with 0 � j � k < d , then

V j .Z \E/ D c
k;d�kCj
j;d V d�kCj .Z/:
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Theorem 2.9 follows readily from Theorem 2.8. Due to stationarity one may assume
o 2 E . Then set W D Br.o/ \ E in the principal kinematic formula for random
sets, divide by �k.W / and let r tend to infinity.

Exercise 2.10. Let Z be a standard random set in R
3. Depending on the choice

of the index j and the section dimension k, Theorem 2.9 yields three formulae to
estimate the specific volume V 3.Z/ of Z, two formulae to estimate the specific
surface area 2V 2.Z/, and one relation to estimate the specific integrated mean
curvature V 1.Z/. Determine the constants in all these cases. Notice also that the
specific Euler–Poincaré characteristic cannot be estimated using Crofton’s formula.

The concept of standard random sets is not suited for simulation purposes, as it
cannot be described by a finite number of parameters. To obtain more accessible
random sets, germ-grain models are employed. If ' D fx1; x2; : : :g is a stationary
point process in R

d and K0;K1; : : : are i.i.d. nonempty compact random sets,
independent of ', the random set

Z D
1[
iD1
.xi CKi/

is called a stationary germ-grain model. The points of ' are considered as germs
to which the grains Ki are attached. The set K0 is called the typical grain and its
distribution will be denoted by Q. IfK0 is almost surely convex,Z is called a germ-
grain model with convex grains. We shall always assume convexity. To assure that
Z is a.s. closed, a condition on Q is required. We assume throughout

V j .K0/ D E.Vj .K0// < 1 for all j D 0; : : : ; d:

This condition is equivalent to saying that the mean number of grains xi CKi that
hit any bounded window is finite.

We shall consider stationary germ-grain models for which the underlying point
process is a Poisson point process, 'D˘� (cf. Sect. 3.1.2). They are called
stationary Boolean models.

It can be shown that any stationary Boolean model with convex grains is a
standard random set. The iterated principal kinematic formula implies a wonderful
result for the specific intrinsic volumes of Boolean models.

Theorem 2.10. Let Z be a Boolean model in R
d with convex typical grain K0,

based on a stationary Poisson point process ˘� with intensity �. Then

V d .Z/ D 1 � e��V d .K0/ (2.10)

and
V d�1.Z/ D �V d�1.K0/e��V d .K0/:

If j 2 f0; : : : ; d � 2g and K0 is isotropic we have
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V j .Z/D�e��V d .K0/

2
664V j .K0/ � cdj

d�jX
sD2

.�1/s
sŠ

�s�1

d�1X
m1;:::;msDjC1

m1C:::CmsD.s�1/dCj

sY
iD1

c
mi
d V mi .K0/

3
775 :

The constants appearing in the previous theorem are again given by (2.3). Note that
they are slightly different from the incorrect constants in [451, Theorem 9.1.4].

Proof (Sketch). To avoid technicalities we assume that K0 is almost surely
contained in a ballBı.o/ for some fixed ı > 0. ThenZ\W D S1

iD1Œ.�iCKi/\W 

only depends on the Poisson process ˘� D f�1; �2; : : :g in the bounded window
W ı D W ˚ Bı.o/. The number of points of ˘� \ W ı is Poisson distributed with
parameter �Vd .W ı/, and, given this number is n, the n points of ˘� \W ı are i.i.d.
uniform in W ı. If these points are denoted by �1; : : : ; �n, the inclusion–exclusion
principle gives

E
�
Vj .Z \W /

ˇ̌ j˘� \W ıj D n
�

D E

 
Vj

 
n[
iD1
Œ.�i CKi/\W 


! ˇ̌
ˇ j˘� \W ıj D n

!

D
nX

mD1
.�1/mC1 X

1�i1<:::<im�n

˚i1;:::;im.j /

Vd .W ı/m

with

˚i1;:::;im.j / D EKi1 ;:::;Kim

Z
W ı

� � �
Z
W ı

Vj .W \ .Ki1 C xi1/ \ : : : \ .Kim C xim//

dxi1 � � � dxim
D EK1;:::;Km

Z
Rd

� � �
Z
Rd

Vj .W \ .K1 C x1/ \ : : : \ .Km C xm//

dx1 � � � dxm:
Here we used that K1;K2; : : : are i.i.d., and contained in Bı.o/. Hence

E.Vj .Z \W // D
1X
nD1

.�Vd .W
ı//n

nŠ
e��Vd .W ı/

nX
mD1

.�1/mC1
 
n

m

!
˚1;:::;m.j /

Vd .W ı/m

D e��Vd .W ı/

1X
mD1

.�1/mC1

mŠ
˚1;:::;m.j /Vd .W

ı/�m
1X
nDm

.�Vd.W
ı//n

.n �m/Š

D
1X
mD1

.�1/mC1

mŠ
�m˚1;:::;m.j /:
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For j D d and j D d�1, the iterated principal kinematic formula without the aver-
age over all rotations can be applied to simplify˚1;:::;m.j /. For the volume, we have

˚1;:::;m.d/ D EK1;:::;KmVd .W /Vd .K1/ � � �Vd .Km/ D Vd .W /.V d .K0//
m;

and for half the surface area we get

˚1;:::;m.d � 1/ D Vd�1.W /.V d .K0//
m CmVd.W /V d�1.K0/.V d .K0//

m�1:

Thus

E.Vd .Z \W // D
1X
mD1

.�1/mC1

mŠ
.�V d .K0//

mVd .W / D Vd .W /
�
1 � e��V d .K0/

�

and

E.Vd�1.Z \W // D Vd�1.W /
�
1 � e��V d .K0/

�

C Vd .W /�V d�1.K0/e��V d .K0/:

Replacing W by rW , dividing by �d .rW / and letting r tend to infinity yields the
claim for j D d and j D d � 1. For j < d � 1, isotropy ofK0 implies that

˚i1;:::;im.j / D EK1;:::;Km

Z
SO

Z
Rd

� � �
Z

SO

Z
Rd

Vj .W \ R1.K1 C x1/\ : : : \ Rm.Km C xm// dx1 dR1 � � � dxmdRm:

The claim then follows in a similar way as before by applying the iterated
principal kinematic formula and sorting the resulting expressions according to
their homogeneity. In the final result s is the number of terms with homogeneity
smaller than d . This concludes the sketch of the proof. ut
Specialized to two dimensions, the formulae in Theorem 2.10 read

V 2.Z/ D 1 � e��V 2.K0/ (specific area)

2V 1.Z/ D 2�V 1.K0/ � e��V 2.K0/ (specific perimeter)

V 0.Z/ D e��V 2.K0/
�
� � 1

�
.�V 1.K0//

2

�
(specific Euler characteristics)

The last relation requires isotropy. If all the quantities on the left side are known,
these relations can be used to determine the mean intrinsic volumes of K0 and the
intensity � of˘�. Hence, measurement (estimation) of the specific intrinsic volumes
allows to estimate V 2.K0/, V 1.K0/ and �, which determine all the parameters of Z
if Q is a suitable distribution with at most two real parameters.
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Based on translative integral formulae, Theorem 2.8 is generalized to curvature
measures of standard random sets that are not necessarily isotropic in [509]. In [510]
Theorem 2.10 is generalized to stationary Boolean models that are not necessarily
isotropic. It is shown that at least for small dimensions (d � 4), the underlying
intensity is still determined by the Boolean model, but an estimation procedure
would require more than just the measurement of the specific intrinsic volumes.

Exercise 2.11. One summary statistic that is often used to analyze stationary
random sets Z is the spherical contact distribution function

HZ.r/ D P.
.o;Z/ � r jo 62 Z/;

r � 0. Recall that the distance 
.o;Z/ D inffjz�oj W z 2 Zg ofZ from the origin is
measurable due to Theorem 1.3 in Chap. 1. HenceHZ is the cumulative distribution
function of the random variable 
.o;Z/ conditioned on the event o 62 Z. Show the
following:

(a) HZ.r/ D 1 � P.o 62 Z ˚ Br.o//

P.o 62 Z/ .

(b) IfZ is a stationary Boolean model with typical convex grainK0 and underlying
intensity � then

HZ.r/ D 1 � exp

0
@��

d�1X
jD0

�d�jEVj .K0/r
d�j

1
A :

Hint. Start with (a) and use Exercise 2.8 and formula (2.10) for the two Boolean
modelsZ and Z ˚ Br.o/.

2.2.3 Design-Based Stereology

We now turn to design-based stereology, where the structure of interest is assumed
to be a deterministic set, and the sampling is randomized in a suitable way. We have
already derived the set of fundamental stereological formulae (2.6) from Crofton’s
formula, where the set K 2 R was sampled by IUR k-flats. Recall that if K is
contained in the compact reference set A, and E is an IUR k-flat hitting A, then

"
c
k;d�k
0;d

c
k;d�kCj
j;d

Vd�k.A/
#
Vj .K \ E/ (2.11)

is an unbiased estimator for Vd�kCj .K/ for 0 � j � k < d . This shows that Vm.K/
can unbiasedly be estimated from k-dimensional sections if m � d � k. For m <

d �k, unbiased estimation of Vm.K/ from IUR k-flat sections is impossible: IfK is
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E

E
e

Fig. 2.2 The disector technique: only the two shaded particles are counted

a set of dimensionm < d � k (meaning that its affine hull is a flat of dimensionm)
then Vm.K/ > 0, butK\E D ; almost surely. In particular, the Euler-characteristic
V0.K/ cannot be estimated from IUR sections. Therefore, the disector technique has
been suggested in [484]. The basic idea is to work with hyperplanes and to replace
the sectioning flat by a pair of parallel (d � 1)-flats .E;E"/ of distance " > 0 apart.
The flats must be randomized, but averaging with respect to rotations is not required,
so it is enough to choose E as an FUR (fixed orientation uniform) k-flat hitting A
with k D d � 1. An FUR k-flat E hitting A is obtained by uniformly translating a
fixed subspace L0 2 Ldk with a translation vector in x 2 L?

0 such that E D L0 C x

hits A. In other words, E has distribution

P.E 2 �/ D c.A/�1
Z
AjL?

0

1.L0 C x 2 �/ dx;

where c.A/ D �d�k.AjL?
0 / is the .d � k/-dimensional content of the orthogonal

projection AjL?
0 of A on L?

0 . To describe the disector let E be an FUR .d � 1/-flat
hitting A, parallel to some deterministic L0 2 Ldd�1, and let E" D E C "u, where
u 2 L?

0 is a unit vector (Fig. 2.2).
To fix ideas let K be a union of m disjoint convex particles K1; : : : ; Km. Let

NE;E" be the number of particles that hit E , but not E". Then V0.K/ D m is the
number of particles and can be estimated unbiasedly by

bV 0 D c.A/

"
NE;E"

if, almost surely, none of the particles is located between E and E", that is, if the
projected height of Ki on a line orthogonal to E is at least " for all i D 1; : : : ; m.
If the approximate size of the particles is known, this can be achieved choosing "
small enough. The unbiasedness follows from

"E.bV 0/ D
mX
iD1

Z 1

�1
1..L0 C tu/\Ki ¤ ;/1..L0 C .t C "/u/\Ki D ;/ dt D m";

as the integrand is one exactly on an interval of length ". In applications NE;E"
is often approximated by a comparison of K \ E and K \ E" using a priori
information on the particles. However, strictly speaking, this estimator requires
more information than just these intersections. To decide whether two profiles in
E and E" originate from the same particle, the part of K between E and E"
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must be known. In a typical biological application, this is achieved using confocal
microscopy. By continuously moving the focal plain from E" to E , one obtains
NE;E" by counting all particles that come into focus during this process. The method
can be extended to sets K in more general set classes, but then, tangent points
between the planes with normal u have to be counted according to whether they
are convex, concave or of saddle type.

Exercise 2.12. This example combines the model-based approach with design-
based methods. Let X be a random convex body in the plane.

Assume that X is almost surely contained in B1.o/, and that E is an IUR line
hitting B1.o/ that is stochastically independent of X .

(a) Find an unbiased estimator of EV2.X/ depending only on X \E .
(b) Use Exercise 2.6 to determine an unbiased estimator of EV 2

2 .X/ depending only
on X \E .

We return to the fundamental stereological formulae and discuss possible
improvements. For illustration we restrict ourselves to perimeter estimation of
K 2 R from linear sections (k D 1) in the plane (d D 2). By (2.11) with j D 0 the
random number

OV1 D 2V1.A/V0.K \E/ (2.12)

is an unbiased estimator of the perimeter 2V1.K/ of K � A 2 R, if E 2 L21 is
IUR hitting A. To reduce the variance, one could repeat the measurements with
n i.i.d. random lines E and consider the arithmetic mean of the corresponding
estimates (2.12). However, the variance reduction is generally only of order 1=n,
as the estimates are uncorrelated. It may happen that some of the sampling lines
are close to one another, and the corresponding section counts are therefore very
similar and contain redundant information. It would be desirable to work with
section counts that are negatively correlated. In classical survey sampling one uses
systematic random sampling in such situations: sampling from a linearly ordered
population of units can generally be improved by choosing every m-th unit in both
directions from a randomly selected starting unit, m > 1. This way, units that are
close to one another (and tend to be similar) are not in the same sample. This
concept, transferred to the random translation of E � R

2 leads to sampling with
a IUR grid of lines of distance h > 0 apart:

G D f�? C .� Cmh/� W m 2 Zg;

where � is uniform in S
1, and � is independent of � and uniform in Œ0; h
. It is not

difficult to show that

E.V0.K \G// D 1

h

Z
E21
V0.K \ E/ dE D 2

�h
V1.K/; K 2 R;
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where we used Crofton’s formula. Hence �hV0.K \ G/ is an unbiased estimator
for the perimeter of K . This estimator is called Steinhaus estimator and does not
involve any reference set A. Similar variance reduction procedures are possible in
the case of sampling with k-flats in R

d .
The assumption of IUR section planes is sometimes too strong: it is either

impracticable or not desired to use fully randomized sections. For instance, when
analyzing sections of the skin in biology it is natural to use planar sections parallel
to a fixed axis, the normal of the skin surface. This way, different layers of tissue in
the section can be distinguished more easily. The common axis is usually thought
to be the vertical direction, and the samples are therefore called vertical sections.
We restrict considerations to planar vertical sections in three-dimensional space to
avoid technicalities.

Let L0 2 L31 be the vertical axis and A a bounded Borel set in R
3. A random

2-flat H in R
3 is called a VUR (vertical uniform random) 2-flat hitting A if it has

the natural distribution on

fE 2 E32 W E \A ¤ ;; E is parallel to L0g:

Explicitly, P.H 2 �/ coincides up to a normalizing constant with

Z
LL0
2

Z
AjL?

1.LC x 2 �/ dx dL:

For A 2 Kd
conv the normalizing constant is �=.2V1.AjL?

0 //. This can be seen as
follows: the convexity of A implies that

1AjL?

.x/ D V0.A \ .x C L// D V0..AjL?
0 / \ .x C L//

for all L 2 LL02 , x 2 L?. The definition of the invariant distribution on LL02 , and
Crofton’s formula (applied in L?

0 ) yield

Z
LL0
2

Z
AjL?

dx dL D
Z

L
L?

0
1

Z
.L0CL/?

V0..AjL?
0 / \ .x C L// dx dL

D
Z

E
L?

0
1

V0..AjL?
0 /\ E/dE D 2

�
V1.AjL?

0 /:

As vertical flats all contain the vertical axis, they are surely not IUR, so Crofton’s
formula cannot be applied directly. The key idea is to choose a random line E inH
in such a way that E is IUR in R

3 and apply Crofton’s formula to E . GivenH , this
random line E will have a density with respect to the natural measure on EH1 , and
this density can be determined using Blaschke–Petkantschin formulae.

Let K 2 R be contained in the reference set A 2 Kd
conv, and fix a vertical axis

L0 2 L31. From (2.8) with d D 3, f .E/ D V0.K \E/1.E\A ¤ ;/, and Crofton’s
formula
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Z
LL0
2

Z
AjL?

Z
ELCx
1

V0.K \ E/ŒE;L0
 dE dx dL

D 2

�

Z
E31
V0.K \E/ dE D 1

�
V2.K/:

Hence, if H is a VUR 2-flat hitting A with vertical axis L0,

W.K;H/ D
Z

EH1
V0.K \E/ŒE;L0
 dE (2.13)

is an unbiased estimator for 1=.2V1.AjL?
0 //V2.K/. Instead of using a single VUR

2-flat hitting A, one often applies a randomized stack of serial vertical sections

V D f�? C .� Cmt/� W m 2 Zg;

where t > 0 is the distance between neighboring flats, � is uniformly distributed in
the circle S2 \L?

0 , and � is independent of � and uniform in Œ0; t 
. Then

.2�t/W.K; V / D .2�t/
X
m2Z

W.K; �? C .� Cmt/�/ (2.14)

is an unbiased estimator of the surface area 2V2.K/ of K .
There are several possibilities to measure or estimate the quantity W.K;H/

in (2.13), which only depends on K through the section K \ H . If the boundary
of K \H has a piecewise differentiable parametrization,W.K;H/ can be written
as a curve integral along this boundary; see [31, p. 181]. Alternatively, a modified
Steinhaus estimator in the planeH can be used. Construct a random grid of lines in
H of distance h > 0 apart:

GH D f.�? \H/C .� Cmh/� W m 2 Zg:

Here � has uniform distribution on the unit circle in the linear space parallel to H ,
and � is independent of � and uniform in Œ0; h
. The value of V0.K\GH/ is obtained
by counting the number of line segments in the intersection of GH with the profile
K \H . This count has to be sine-weighted in accordance with (2.13):

hV0.K \GH/Œ�
? \H;L0
 (2.15)

is an unbiased estimator forW.K;H/. Using this estimator in each of the planes of
V in (2.14) therefore leads to an unbiased estimator of the surface area of K .

The subsequent weighting in (2.15) with the sine function can be avoided by
using a non-uniform orientation distribution for GH . More precisely, if � is chosen
with density .�=2/Œ�? \ H;L0
 with respect to the uniform distribution then no
numerical weighting factor is required and .2h=�/V0.K \ GH/ is an unbiased



2 Introduction into Integral Geometry and Stereology 47

Fig. 2.3 Cycloid curve � together with a “vertical” arrow of length 2

estimator for W.K;H/. In applications, in order to obtain estimators of (2.13), one
usually counts the number of intersections of E with the boundary of K . In fact,
under the assumption that K doesn’t contain any lower dimensional parts (K is the
topological closure of its interior), we have

j@K \ Ej D 2V0.K \ E/

almost everywhere. The randomization of the orientation of the test system can be
omitted altogether, if lines are replaced by appropriate curves whose orientation
distribution (this is the distribution of the tangent in a uniformly chosen point on
the curve) has a sine-weighted density with respect to the uniform distribution. The
cycloid, a curve traced by a point on the rim of a rolling wheel, is such a curve, if
it is appropriately oriented with respect to the vertical axis L0. This is illustrated in
Fig. 2.3, where the cycloid � has parametric equation x D t � sin t; y D 1 � cos t ,
0 � t � � , and curve length 4. If the direction of the arrow in this figure is aligned
with the direction of L0, then this curve has an orientation distribution with uniform
density .�=2/Œ�; L0
. To estimate W.K;H/ for a given H using the cycloid curve
� � H in Fig. 2.3, a compact reference set A in H can be chosen that contains
the set fx 2 H W .x C �/ \ K \ H ¤ ;g of all translation vectors such that the
translation of � meetsK \H . If � is uniform random in A, it can be shown that

V2.A/

4�
j@K \ .� C �/j

is an unbiased estimator for W.K;H/. This can then, again, be substituted
into (2.14) to obtain an unbiased estimator of the surface area of K .

In applications, one prefers to work with a stationary systematic grid of cycloid
curves; see [30], where also the practical sampling procedures are explained.
Vertical section designs in general dimensions are developed in [28].

The last stereological concept that we shall discuss here is the so-called local
design. It is again motivated by applications: When sampling a biological cell
it is convenient to consider only sections of the cell with planes through a
given reference point, which usually is the cell nucleus or the nucleolus. For a
mathematical description we assume that the reference point is the origin. The
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branch of stereology dealing with inference onK 2 R from sectionsK\L,L 2 Ldr ,
1 � r � d � 1, is called local stereology. Like in the case of vertical sections,
Crofton’s formula cannot be applied directly, but only after a sub-sampling in L
with a suitably weighted affine plane. Theorem 2.7 and Crofton’s formula imply for
0 � j � k < r � d � 1

Z
Ld
r

Z
ELk
Vj .K \E/d.E; o/d�r dE dL

D !r�k
!d�k

Z
Edk
Vj .K \E/ dE D !r�k

!d�k
c
k;d�kCj
j;d Vd�kCj .K/:

Stereologically this can be interpreted as follows: Let K 2 R be contained in some
reference set A. In order to focus on the essentials, we assume that A D Bs.o/ is
a ball with radius s > 0. Let L 2 Ldr be an isotropic random plane. Given L, let
E 2 ELk ; k < r; be a random flat in L with density proportional to 1.E \ Bs.o/ ¤
;/ d.E; o/d�r with respect to the invariant measure on ELk . Then cVj .K \E/ is an
unbiased estimator for Vd�kCj .K/, where the constant is given by

c D
 
r

k

!
!d�k
!r�k

c
j;r�k;d
0;r;d�kCj

�r

�k
sr�k:

Note that .K \ L/ \ E D K \ E , so the estimator depends on K only through
K \L. The intrinsic volume Vm.K/ can be estimated from r-dimensional isotropic
sections with the above formula only if m > d � r . That there cannot exist any
unbiased estimation procedure form � d � r is clear: for anm-dimensional ballK
contained in am-dimensional linear subspace, we haveK\E D fog almost surely,
so the radius of K is almost surely invisible in the sections.

The monograph [140] is an excellent introduction to local stereology, focusing on
formulae for k-dimensional Hausdorff measures instead of intrinsic volumes. Such
relations are based on generalized Blaschke–Petkantschin formulae for Hausdorff
measures. A local stereological formula for the intrinsic volumes, as presented here,
is a relatively recent development taken from [19, 208] based on ideas in [137].

Exercise 2.13. This exercise parallels Exercise 2.12 in a local stereological setting.
Assume that the random convex bodyX �R

3 is almost surely contained inB1.o/.

(a) Using Crofton’s chord formula (Exercise 2.6) show that

Z
L3
2

Z
EL1
V 4
1 .X \ E/d.E; o/ dE dL D 3

�2
V 2
3 .X/:

(b) Use this to derive an unbiased estimator of EV 2
3 .X/.



Chapter 3
Spatial Point Patterns: Models and Statistics

Adrian Baddeley

Abstract This chapter gives a brief introduction to spatial point processes, with a
view to applications. The three sections focus on the construction of point process
models, the simulation of point processes, and statistical inference. For further
background, we recommend [Daley et al., Probability and its applications (New
York). Springer, New York, 2003/2008; Diggle, Statistical analysis of spatial point
patterns, 2nd edn. Hodder Arnold, London, 2003; Illian et al., Statistical analysis and
modelling of spatial point patterns. Wiley, Chichester, 2008; Møller et al., Statistical
inference and simulation for spatial point processes. Chapman & Hall, Boca Raton,
2004].

Introduction

Spatial point patterns—data which take the form of a pattern of points in space—
are encountered in many fields of research. Currently there is particular interest
in point pattern analysis in radioastronomy (Fig. 3.1), epidemiology (Fig. 3.2a) and
prospective geology (Fig. 3.2b).

Under suitable conditions, a point pattern dataset can be modelled and analysed
as a realization of a spatial point process. The main goals of point process analysis
are to

1. Formulate “realistic” stochastic models for spatial point patterns
2. Analyse, predict or simulate the behaviour of the model
3. Fit models to data

These three goals will be treated in three successive sections.
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Fig. 3.1 Sky positions of 4,215 galaxies observed in a radioastronomical survey [161]

a b

Fig. 3.2 Examples of point pattern data. (a) Locations of cases of cancer of the lung (plus) and
larynx (filled circle), and a pollution source (oplus), in a region of England [153]. (b) Gold deposits
(circle), geological faults (lines) and rock type (grey shading) in a region of Western Australia [507]

3.1 Models

In this section we cover some basic notions of point processes (Sect. 3.1.1), intro-
duce the Poisson process (Sect. 3.1.2), discuss models constructed from Poisson
processes (Sect. 3.1.4), and introduce finite Gibbs point processes (Sect. 3.1.5).

3.1.1 Point Processes

In one dimensional time, a point process represents the successive instants of time
at which events occur, such as the clicks of a Geiger counter or the arrivals of
customers at a bank. A point process in time can be characterized and analysed
using several different quantities. One can use the arrival times T1 < T2 < : : :

at which the events occur (Fig. 3.3a), or the waiting times Si DTi � Ti�1 between
successive arrivals (Fig. 3.3b). Alternatively one can use the counting process Nt DP

i 1.Ti � t / illustrated in Fig. 3.4, or the interval counts N.a; b
 D Nb �Na.
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T1 T2 T3 T4

a

S1 S2 S3 S4

b

Fig. 3.3 Arrival times (a) and waiting times (b) for a point process in one dimensional time

t

N(t)

Fig. 3.4 The counting process Nt for a point process in one-dimensional time

For example, the homogeneous Poisson process with intensity parameter � in
Œ0;1/ has

1. Poisson counts:Nt 	 Pois.�t/ and N.a; b
 	 Pois.�.b � a//.
2. Independent increments: if the intervals .a1; b1
; : : : ; .am; bm
 are disjoint then
N.a1; b1
; : : : ; N.am; bm
 are independent.

3. Independent exponential waiting times: S1; S2; : : : are i.i.d. Exp.�/ variables.

In higher dimensional Euclidean space R
d for d > 1, some of these quantities

are less useful than others. We typically define a point process using the counts

N.B/ D number of points falling in B

for bounded sets B � R
d .

Definition 3.1. Let S be a complete, separable metric space. Let N be the set of
all nonnegative integer valued measures � on S such that �.K/ < 1 for every
compactK 
 S. Define N to be the smallest 	-field on N containing f� W �.K/ D
ng for every compact K 
 S and every integer n � 0. A point process � on S is a
random element of .N ;N/.
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Fig. 3.5 Realization of a binomial process

Thus �.K/ is a random variable for every compactK 
 S.

Example 3.1. LetX1; : : : ; Xn be independent, identically distributed (i.i.d.) random
points in R

d , uniformly distributed in a bounded set W � R
d . For any Borel set

B � R
d , let

�.B/ D
nX
iD1

1.Xi 2 B/

be the number of random points that fall in B . For each realisation of .X1; : : : ; Xn/
it is clear thatB 7! �.B/ is a nonnegative integer valued measure, and that�.B/ �
n < 1 for all B , so that � is an element of N . Furthermore, for each compact set
K , 1.Xi 2 K/ is a random variable for each i , so that �.K/ is a random variable.
Thus � defines a point process on R

d (Fig. 3.5).

Exercise 3.1. The point process in the previous Example is often called the
“binomial process”. Why?

Definition 3.2. A point process � is simple if

P.�.fsg/ � 1 for all s 2 S/ D 1:

Exercise 3.2. Prove that the binomial process (Exercise 3.1) is simple. (Hint: prove
P.Xi D Xj / D 0 for i ¤ j .)

A simple point process can be regarded as a locally-finite random set. Hence there
are many connections between point process theory and stochastic geometry. One
of the interesting connections is that the distribution of a point process is completely
determined by its vacancy probabilities V.K/ D P.�.K/ D 0/, i.e. the probability
that there are no random points in K , for all compact sets K .
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a b c d

Fig. 3.6 Four realizations of the Poisson point process

3.1.2 Poisson Processes

Homogeneous Poisson Process

Definition 3.3. The homogeneous Poisson point process ˘� on R
d with intensity

� > 0 (Fig. 3.6) is characterized by the properties

1. ˘�.B/ has a Poisson distribution, for all bounded Borel B � R
d ;

2. E˘�.B/ D ��d .B/, for all bounded Borel B � R
d ;

3. ˘�.B1/; : : : ;˘�.Bm/ are independent when B1; : : : ; Bm are disjoint bounded
Borel sets.

A pivotal property is the following distributional relation.

Lemma 3.1. If � 	 Pois.�/ and .� j � D n/ 	 Binom.n; p/ then � 	 Pois.p�/,
�� � 	 Pois..1� p/�/ and � and � � � are independent.

Exercise 3.3. Prove Lemma 3.1.

In one dimension, the homogeneous Poisson process has conditionally uniform
arrivals: givenNt D n, the arrival times in Œ0; t 


T1 < T2 < : : : < Tn < t

are (the order statistics of) n i.i.d. uniform random variables in Œ0; t 
. Similarly in
higher dimensions we have the following property.

Lemma 3.2 (Conditional property of Poisson process). For the homogeneous
Poisson process on R

d with intensity � > 0, given the event f˘�.B/Dng where
B � R

d , the restriction of˘� to B has the same distribution as a binomial process
(n i.i.d. random points uniformly distributed in B).

In one dimension, the arrival time of the first event in a Poisson process is
exponentially distributed. Similarly in higher dimensions (Fig. 3.7):

Lemma 3.3 (Exponential waiting times of Poisson process). Let ˘� be a homo-
geneous Poisson process in R

2 with intensity �. Let R be the distance from the
origin o to the nearest point of ˘�. Then �R2 has an exponential distribution with
parameter �.
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Fig. 3.7 Distance from the origin (plus) to the nearest point of a Poisson process (filled circle)

To prove this, observe that R > r iff there are no points of ˘� in Br.o/. Thus R
has distribution function

F.r/ D P.R � r/ D 1 � P.R > r/ D 1 � P.N.Br.o// D 0/

D 1 � expf���d .Br .o//g D 1 � expf���r2g:

This implies that the area of the disc BR.o/ is exponentially distributed.
Similar properties hold for other “waiting sets” [358, 370].

General Poisson Process

There is a more general version of the Poisson process, which has a spatially-varying
density of points.

Definition 3.4. Suppose � is a measure on .Rd ;B.Rd // such that �.K/ < 1 for
all compact K � R

d and �.fxg/ D 0 for all x 2 R
d . A Poisson point process ˘

on R
d with intensity measure� (Fig. 3.8) is characterized by the properties

1. ˘.B/ has a Poisson distribution, for all bounded Borel B � R
d ;

2. E˘.B/ D �.B/, for all bounded Borel B � R
d ;

3. ˘.B1/; : : : ; ˘.Bm/ are independent when B1; : : : ; Bm are disjoint bounded
Borel sets.

This definition embraces the homogeneous Poisson process of intensity � > 0

when we take �.�/ D ��d .�/.
Exercise 3.4. Show that the vacancy probabilities P.�.K/D 0/ of an inhomo-
geneous Poisson point process in R

d , if known for all compact sets K�R
d ,

completely determine the intensity measure �.

Transformation of a Poisson Process

Suppose˘ is a Poisson process in R
d with intensity measure�. Let T W Rd ! R

k

be a continuous mapping. Consider the point process T˘ obtained applying T to
each point of ˘ , sketched in Fig. 3.9a.
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Fig. 3.8 Realization of an inhomogeneous Poisson process with intensity proportional to a
Gaussian density on the plane

a b

Fig. 3.9 (a) Transformation of a Poisson point process by a mapping. (b) Image of a measure

For any measure � on R
d we can define a measure T� on R

k by

.T�/.B/ D �.T �1.B//

for all Borel B 
 R
k . See Fig. 3.9b.

Theorem 3.1. Suppose˘ is a Poisson process in R
d with intensity measure�. Let

T W Rd ! R
k be a continuous mapping such that .T�/.K/ < 1 for all compact

sets K � R
k , and .T�/.fxg/ D 0 for all x 2 R

k . Then the image of ˘ under T is
a Poisson process on R

k with intensity measure T�.

Example 3.2 (Waiting times). Let˘� be a homogeneous Poisson process in R
2 with

intensity �. Let T .x/ D kxk2. We have �.T �1.Œ0; s
// D �.Bp
s.o// D ��s < 1

for all 0 < s < 1. So T˘� is a Poisson process on Œ0;1/ with intensity
measure �� . Let Rk D distance from o to the k-th nearest point of ˘�. Then
R21;R

2
2 � R21;R

2
3 � R22; : : : are i.i.d. exponential random variables with rate �� .

See Fig. 3.10.

Exercise 3.5. In Example 3.2, find the distribution of R2k for each k and use it to
verify that ˘�.Br.o// has a Poisson distribution.
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Fig. 3.10 The consecutive nearest neighbours of the origin in a Poisson point process. The areas
of the rings are independent and exponentially distributed

Rd

M

Fig. 3.11 Projection of a marked Poisson point process to an unmarked Poisson point process

Projection

Consider the projection T .x1; x2/ D x1 from R
2 to R. Let ˘� be a homogeneous

Poisson point process in R
2 with intensity �. The projection of ˘� is not a point

process (in our sense) because the number of points projected onto a compact
interval Œa; b
 is infinite:

.T .˘�//.Œa; b
/ D ˘�.T
�1.Œa; b
// D ˘�.Œa; b
 � R/ D 1 a.s.

Independent Marking

Consider a homogeneous Poisson process ˘� in R
d � Œ0; a
 with intensity �. This

can be viewed as a marked point process of points xi in R
d with marksmi in Œ0; a
,

see Sect. 4.1 for more details on marked point processes. The projection of˘� onto
R
d is a bona fide Poisson process with intensity �a (Fig. 3.11).
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Thinning

Let ˘� be a homogeneous Poisson point process in R
d with intensity �. Suppose

we randomly delete or retain each point of˘�, with retention probability p for each
point, independently of other points. The process˘p� of retained points is a Poisson
process with intensity measure p�.

Exercise 3.6. Prove this, using Lemma 3.1.

Conditioning

The conditional probability distribution of a point process � , given that an event
A occurs, is generally different from the original distribution of � . This is another
way to construct new point process models.

However, for a Poisson process � , the independence properties often imply that
the conditional distribution of � is another Poisson process. For example, a Poisson
process� with intensity function �, conditioned on the event that there are no points
of � in B � R

d , is a Poisson process with intensity �.u/1.u 62 B/.
A related concept is the Palm distributionPx of� at a location x 2 R

d . Roughly
speaking, Px is the conditional distribution of � , given that there is a point of �
at the location x. For a Poisson process, Slivnyak’s Theorem states that the Palm
distributionPx of � is equal to the distribution of � [fxg, that is, the same Poisson
process with the point x added. See [265, 281].

3.1.3 Intensity

For a point process in one-dimensional time, the average rate at which points occur,
i.e. the expected number of points per unit time, is called the “intensity” of the
process. For example, the intensity of the point process of clicks of a Geiger counter
is a measure of radioactivity. This concept of intensity can be defined for general
point processes.

Definition 3.5. Let � be a point process in a complete separable metric space S.
Suppose that the expected number of points in any compact set K� S is finite,
E�.K/ < 1. Then there exists a measure �� , called the intensity measure of � ,
such that

��.B/ D E�.B/

for all Borel sets B .

For the homogeneous Poisson process ˘� on R
d with intensity parameter �,

the intensity measure is �˘�.B/D��d .B/ for all Borel B , by property 2 of
Definition 3.3.
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For the general Poisson process ˘ on R
d , the intensity measure � as described

in Definition 3.4 coincides with the intensity measure �˘ defined above, i.e.
�˘.B/ D E˘.B/ D �.B/, by property 2 of Definition 3.4.

Example 3.3. For the binomial point process (Exercise 3.1),

E�.B/ D E
X
i

1.Xi 2 B/

D
X
i

E1.Xi 2 B/

D
X
i

P.Xi 2 B/

D nP.X1 2 B/ D n
�d .B \W /
�d .W /

where �d is Lebesgue measure in R
d .

Definition 3.6. A point process � in R
d has intensity function � if

��.B/ D E�.B/ D
Z
B

�.u/ du

for all Borel sets B 
 R
d .

For example, the homogeneous Poisson process with intensity parameter � > 0

has intensity function �.u/ � �.
Note that a point process need not have an intensity function, since the measure

�� need not be absolutely continuous with respect to Lebesgue measure.

Exercise 3.7. Find the intensity function of the binomial process (Example 3.1).

Similarly one may define the second moment intensity �2, if it exists, to satisfy

EŒ�.A/�.B/
 D
Z
A

Z
B

�2.u; v/ du dv

for disjoint bounded Borel sets A;B � R
d .

3.1.4 Poisson-Driven Processes

The Poisson process is a plausible model for many natural processes. It is also
easy to analyse and simulate. Hence, the Poisson process is a convenient basis for
building new point process models.
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regular random clustered

Fig. 3.12 Classical trichotomy between regular (negatively associated), random (Poisson) and
clustered (positively associated) point processes

Fig. 3.13 Six realizations of a Cox process with driving measure �D� �d where � is an
exponential random variable with mean 50

A basic objective is to be able to construct models which are either clustered
(positively associated) or regular (negatively associated) relative to a Poisson
process. See Fig. 3.12.

Cox Process

A Cox process is “a Poisson process whose intensity measure is random” (Fig. 3.13).

Definition 3.7. Let � be a random locally-finite measure on R
d . Conditional on

� D �, let � be a Poisson point process with intensity measure �. Then � is called
a Cox process with driving random measure�.

A Cox process � is not ergodic (unless the distribution of� is degenerate and �
is Poisson). A single realization of � , observed in an arbitrarily large region, cannot
be distinguished from a realization of a Poisson process. If multiple realizations can
be observed (e.g. multiple point patterns) then the Cox model may be identifiable.
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For any Cox process, we obtain by conditioning

E�.B/ D E.E.�.B/ j �// D E�.B/ (3.1)

var�.B/ D var.E.�.B/ j �//C E.var.�.B/ j �//
D var�.B/C E�.B/ (3.2)

P.�.B/ D 0/ D E.P.�.B/ D 0 j �//
D E expf��.B/g (3.3)

Thus a Cox process is always “overdispersed” in the sense that var�.B/ � E�.B/.
Further progress is limited without a specific model for �.

Definition 3.8. Let � be a positive real random variable with finite expectation.
Conditional on � D � , let � be a homogeneous Poisson process with intensity � .
Then � is called a “mixed Poisson process” with driving intensity � .

Exercise 3.8. Find the intensity of the mixed Poisson process with driving intensity
� that is exponential with mean �.

Definition 3.9. Let � be the measure with density �.u/D e�.u/, where � is a
Gaussian random function on R

d . Then � is a “log-Gaussian Cox process”.

Moments can be obtained using properties of the lognormal distribution of e�.u/.
If � is stationary with mean � and covariance function

cov.�.u/; �.v// D c.u � v/

then � has the intensity m1.u/ � expf� C c.0/=2g and second moment intensity
m2.u; v/ D expf2�C c.0/C c.u � v/g.

Exercise 3.9. Verify these calculations using only the characteristic function of the
normal distribution.

Poisson Cluster Processes

Definition 3.10. Suppose we can define, for any x 2 R
d , the distribution of a point

process �x containing a.s. finitely many points, P.�x.Rd / < 1/ D 1. Let ˘ be a
Poisson process in R

d . Given˘ , let

� D
[
xi2˘

˚i

be the superposition of independent point processes ˚i where ˚i 	 �xi . Then �
is called the Poisson cluster process with parent process ˘ and cluster mechanism
f�x; x 2 R

d g (Fig. 3.14).
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1
Φ2

Φ3
Φ4

Π

Ψ

Φ

Fig. 3.14 Schematic construction of a Poisson cluster process

a b c

Fig. 3.15 Construction of Matérn cluster process. (a) Poisson process of parent points. (b) Each
parent gives rise to a cluster of offspring lying in a disc of radius r around the parent. (c) Offspring
points only

Fig. 3.16 Realization of modified Thomas process

The Matérn cluster process is the case where the typical cluster �x consists
of N 	 Pois.�/ i.i.d. random points uniformly distributed in the disc Br.x/

(Fig. 3.15).
The modified Thomas process is the case where the cluster �x is a Poisson process

with intensity (Fig. 3.16)
�.u/ D �'.u � x/ (3.4)

where ' is the probability density of the isotropic Gaussian distribution with
mean o and covariance matrix ˙ D diag.	2; 	2; : : : ; 	2/. Equivalently there are
N 	 Pois.�/ points, each point generated as Yi Dx C Ei where E1;E2; : : : are
i.i.d. isotropic Gaussian.

Definition 3.11. A Poisson cluster process in which the cluster mechanism �x is a
finite Poisson process with intensity �x , is called a Neyman–Scott process.
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a b

Fig. 3.17 Construction of Matérn thinning Model I. (a) Poisson process. (b) After deletion of any
points that have close neighbours

Matérn’s cluster process and the modified Thomas process are both Neyman–
Scott processes. A Neyman–Scott process is also a Cox process, with driving
random measure � D P

x2˘ �x .

Theorem 3.2 (Cluster formula [11, 349, 489]). Suppose � is a Poisson cluster
process whose cluster mechanism is equivariant under translations, �x � x C �o.
Then the Palm distribution Px of � is

Px D P � Cx (3.5)

where P is the distribution of � and

Cx.A/ D
E
�P

zi2�o 1.�o C .x � zi / 2 A/
�

E.�o.Rd //
(3.6)

is the finite Palm distribution of the cluster mechanism.

This allows detailed analysis of some properties of � , including its K-function,
see Sect. 4.2.1. Thus, Poisson cluster processes are useful in constructing tractable
models for clustered (positively associated) point processes.

Dependent Thinning

If the points of a Poisson process are randomly deleted or retained independently of
each other, the result is a Poisson process. To get more interesting behaviour we can
thin the points in a dependent fashion.

Definition 3.12 (Matérn Model I). Matérn’s thinning Model I is constructed by
generating a uniform Poisson point process ˘1, then deleting any point of ˘1 that
lies closer than r units to another point of ˘1 (Fig. 3.17).

Definition 3.13 (Matérn Model II). Matérn’s thinning Model II is constructed by
the following steps (Fig. 3.18):
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a b

Fig. 3.18 Construction of Matérn thinning Model II. (a) Poisson process. (b) After deletion of
any points that have close neighbours that are older

Fig. 3.19 Realization of simple sequential inhibition

1. Generate a uniform Poisson point process˘1.
2. Associate with each point xi of ˘1 a random “birth time” ti .
3. Delete any point xi that lies closer than r units to another point xj with earlier

birth time tj < ti .

Iterative Constructions

To obtain regular point patterns with higher densities, one can use iterative
constructions.

Definition 3.14. To perform simple sequential inhibition in a bounded domain
W �R

d , we start with an empty configuration x D ;. When the state is x D
fx1; : : : ; xng, compute

A.x/ D fu 2 W W ku � xik > r for all ig:

If �d .A.x// D 0, we terminate and return x. Otherwise, we generate a random point
u uniformly distributed in A.x/, and add the point u into x. This process is repeated
until it terminates (Fig. 3.19).
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3.1.5 Finite Point Processes

Probability Densities for Point Processes

In most branches of statistical science, we formulate a statistical model by writing
down its likelihood (probability density). It would be desirable to be able to
formulate models for spatial point pattern data using probability densities. However,
it is not possible to handle point processes on the infinite Euclidean space Rd using
probability densities.

Example 3.4. Let ˘� denote the homogeneous Poisson process with intensity
� > 0 on R

2. Let A be the event that the limiting average density of points is
equal to 5:

A D f� 2 N W �.BR.o//
�R2

! 5 as R ! 1g
By the Strong Law of Large Numbers, P.˘5 2 A/ D 1 but P.˘1 2 A/ D 0. Hence
the distributions of ˘5 and ˘1 are mutually singular. Consequently, ˘5 does not
have a probability density with respect to ˘1.

To ensure that probability densities are available, we need to avoid point
processes with an infinite number of points.

Finite Point Processes

Definition 3.15. A point process � on a space S with �.S/ < 1 a.s. is called a
finite point process.

One example is the binomial process consisting of n i.i.d. random points
uniformly distributed in a bounded set W � R

d .
Another example is the Poisson process on R

d with an intensity measure � that
is totally finite, �.Rd / < 1 . The total number of points˘.Rd / 	 Pois.�.Rd // is
finite a.s.

The distribution of a finite point process can be specified by giving the probability
distribution of N D �.S/, and given N D n, the conditional joint distribution of
the n points.

Example 3.5. Consider a Poisson process on R
d with intensity measure � that is

totally finite (�.Rd / < 1). This is equivalent to choosing a random number K 	
Pois.�.Rd //, then given K D k, generating k i.i.d. random points with common
distributionQ.B/ D �.B/=�.Rd /.

Space of Realizations

Realizations of a finite point process � belong to the space

N f D f� 2 N W �.S/ < 1g
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of totally finite, simple, counting measures on S, called the (Carter–Prenter)
exponential space of S. This may be decomposed into subspaces according to the
total number of points:

N f D N0 [ N1 [ N2 [ : : :

where for each k D 0; 1; 2; : : :

Nk D f� 2 N W �.S/ D kg

is the set of all counting measures with total mass k, that is, effectively the set of
all configurations of k points. The space Nk can be represented more explicitly by
introducing the space of ordered k-tuples

SŠk D f.x1; : : : ; xk/ W xi 2 S; xi ¤ xj for all i ¤ j g:

Define a mapping Ik W SŠk ! Nk by

Ik.x1; : : : ; xk/ D ıx1 C : : :C ıxk :

This gives
Nk � SŠk= 	

where 	 is the equivalence relation under permutation, i.e.

.x1; : : : ; xk/ 	 .y1; : : : ; yk/ , fx1; : : : ; xkg D fy1; : : : ; ykg:

Point Process Distributions

Using the exponential space representation, we can give explicit formulae for point
process distributions.

Example 3.6 (Distribution of the binomial process). Fix n > 0 and let X1; : : : ; Xn
be i.i.d. random points uniformly distributed in W � R

d . Set � D In.X1; : : : ; Xn/.
The distribution of � is the probability measure P� on N defined by

P�.A/ D P.In.X1; : : : ; Xn/ 2 A/

D 1

�d .W /n

Z
W

: : :

Z
W

1.In.x1; : : : ; xn/ 2 A/dx1 : : : dxn:

Example 3.7 (Distribution of the finite Poisson process). Let ˘ be the Poisson
process on R

d with totally finite intensity measure �. We know that ˘.Rd / 	
Pois.�.Rd // and that, given˘.Rd / D n, the distribution of˘ is that of a binomial
process of n points i.i.d. with common distributionQ.B/ D �.B/=�.Rd /. Thus
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P˘.A/ D
nX

nD0
P.˘.Rd / D n/P.In.X1; : : : ; Xn/ 2 A/

D
1X
nD0

e��.Rd /�.˘/n

nŠ

Z
Rd

: : :

Z
Rd

1.In.x1; : : : ; xn/2A/dQ.x1/ : : : dQ.xn/

D e��.Rd /
1X
nD0

1

nŠ

Z
Rd

: : :

Z
Rd

1.In.x1; : : : ; xn/ 2 A/d�.x1/ : : : d�.xn/:

The term for n D 0 in the sum should be interpreted as 1.0 2 A/ (where 0 is the
zero measure, corresponding to an empty configuration).

Point Process Densities

Henceforth we fix a measure � on S to serve as the reference measure. Typically
� is Lebesgue measure restricted to a bounded set W in R

d . Let �� denote the
distribution of the Poisson process with intensity measure �.

Definition 3.16. Let f W N f !RC be a measurable function for which the
equality

R
N f .x/d��.x/ D 1 holds. Define

P.A/ D
Z
A

f .x/d��.x/:

for any event A 2 N. Then P is a point process distribution. The function f is said
to be the probability density of the point process with distribution P.

For a point process � with probability density f we have

P.� 2 A/ D e��.S/
1X
nD0

1

nŠ

Z
S
: : :

Z
S

1.In.x1; : : : ; xn/ 2 A/

f .In.x1; : : : ; xn//d�.x1/ : : : d�.xn/

for any event A 2 N, and

Eg.�/ D e��.S/
1X
nD0

1

nŠ

Z
S
: : :

Z
S
g.In.x1; : : : ; xn//

f .In.x1; : : : ; xn//d�.x1/ : : : d�.xn/

for any integrable function g W N ! RC. We can also rewrite these identities as

P.� 2 A/ D E.f .˘/1A.˘//; Eg.�/ D E.g.˘/f .˘//

where˘ is the Poisson process with intensity measure �.
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For some elementary point processes, it is possible to determine the probability
density directly.

Example 3.8 (Density of the uniform Poisson process). Let S be a bounded set
W �R

d and take the reference measure � to be Lebesgue measure. Let ˇ > 0.
Set

f .x/ D ˛ ˇjxj

where ˛ is a normalizing constant and jxj D number of points in x. Then for any
event A

P.A/ D ˛e��d .W /
1X
nD0

1

nŠ

Z
W

: : :

Z
W

1.In.x1; : : : ; xn/ 2 A/ˇndx1 : : : dxn:

But this is the distribution of the Poisson process with intensity ˇ. The normalizing
constant must be ˛ D e.1�ˇ/�d .W /. Thus, the uniform Poisson process with intensity
ˇ has probability density

f .x/ D ˇjxje.1�ˇ/�d .W /:

Exercise 3.10. Find the probability density of the binomial process (Example 3.1)
consisting of n i.i.d. random points uniformly distributed in W .

Example 3.9 (Density of an inhomogeneous Poisson process). The finite Poisson
point process in W with intensity function �.u/, u 2 W has probability density

f .x/ D ˛

jxjY
iD1

�.xi /

where

˛ D exp

�Z
W

.1 � �.u//du

	
:

Exercise 3.11. Verify that (3.9) is indeed the probability density of the Poisson
process with intensity function �.u/.

Hard Core Process

Fix r > 0 and W � R
d . Let

Hn D f.x1; : : : ; xn/ 2 W Šn W kxi � xj k � r for all i ¤ j g

and

H D
1[
nD0

In.Hn/:
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Fig. 3.20 Realization of the hard core process with ˇ D 200 and r D 0:07 in the unit square

Thus H is the subset of N consisting of all point patterns x with the property that
every pair of distinct points in x is at least r units apart.

Definition 3.17. Suppose H has positive probability under the unit rate Poisson
process. Define the probability density

f .x/ D ˛ˇn1.x 2 H/

where ˛ is the normalizing constant and ˇ > 0 is a parameter. A point process with
this density is called a hard core process.

Lemma 3.4. A hard core process is equivalent to a Poisson process of rate ˇ
conditioned on the event that there are no pairs of points closer than r units apart
(Fig. 3.20).

Proof. First suppose ˇ D 1. Then the hard core process satisfies, for any event
A 2 N,

P.A/ D E.f .˘1/1.˘1 2 A// D ˛E.1.˘1 2 H/1.˘1 2 A// D ˛P.˘1 2 H \A/:

It follows that ˛ D 1=P.˘1 2 H/ and hence

P.A/ D P.˘1 2 A j ˘1 2 H/;

that is, P is the conditional distribution of the unit rate Poisson process ˘1 given
that ˘1 2 H . For general ˇ the result follows by a similar argument. ut

Conditional Intensity

Definition 3.18. Consider a finite point process � in a compact set W � R
d . The

(Papangelou) conditional intensity ˇ�.u; �/ of � at locations u 2 W , if it exists, is
the stochastic process which satisfies

E
X
x2�

g.x; � n x/ D
Z
W

E.ˇ�.u; �/g.u; �//du (3.7)

for all measurable functions g such that either side exists.
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Equation (3.7) is usually known as the Georgii–Nguyen–Zessin formula [183,
281, 383].

Suppose � has probability density f .x/ (with respect to the uniform Poisson
process ˘1 with intensity 1 on W ). Then the expectation of any integrable function
h.�/ may be written explicitly as an integral over N f . Applying this to both sides
of (3.7), we get

E.f .˘1/
X
x2˘1

g.x;˘1 n x// D
Z
W

E.ˇ�.u; ˘1/f .˘1/g.u; ˘1//du:

If we write
h.x; �/ D f .� [ fxg/g.x; �/;

then

E.f .˘1/
X
x2˘1

g.x;˘1 n x// D E.
X
x2˘1

h.x;˘1 n x// D
Z
W

E.h.u; �//du;

where the last expression follows since the conditional intensity of˘1 is identically
equal to 1 on W . Thus we get

Z
W

E.ˇ�.u; ˘1/f .˘1/g.u; ˘1//du D
Z
W

E.f .˘1 [ fug/g.u; ˘1//du

for all integrable functions g. It follows that

ˇ�.u; ˘1/f .˘1/ D f .˘1 [ u/

almost surely, for almost all u 2 W . Thus we have obtained the following result.

Lemma 3.5. Let f be the probability density of a finite point process � in a
bounded regionW of R

d . Assume that

f .x/ > 0H)f .y/ > 0 for all y � x:

Then the conditional intensity of � exists and equals

ˇ�.u; x/ D f .x [ u/

f .x/

almost everywhere.

Example 3.10 (Conditional intensity of homogeneous Poisson process). The uni-
form Poisson process on W with intensity ˇ has density

f .x/ D ˛ˇjxj
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where ˛ is a certain normalizing constant. Applying Lemma 3.5 we get

ˇ�.u; x/ D ˇ

for u 2 W .

Example 3.11 (Conditional intensity of Hard Core process). The probability den-
sity of the hard core process

f .x/ D ˛ˇjxj1.x 2 H/

yields
ˇ�.u; x/ D ˇ1.x [ u 2 H/:

Lemma 3.6. The probability density of a finite point process is completely deter-
mined by its conditional intensity.

Proof. Invert the relationship, starting with the empty configuration ; and adding
one point at a time:

f .fx1; : : : ; xng/ D f .;/f .fx1g/
f .;/

f .fx1; x2g/
f .fx1g/ � : : : � f .fx1; : : : ; xng/

f .fx1; : : : ; xn�1g/
D f .;/ˇ�.x1;;/ˇ�.x2; fx1g/ � : : : � ˇ�.xn; fx1; : : : ; xn�1g/:

If the values of ˇ� are known, then this determines f up to a constant f .;/, which
is then determined by the normalization of f . ut
Lemma 3.7. For a finite point process � in W with conditional intensity ˇ�.u; x/,
the intensity function is

�.u/ D E.ˇ�.u; �// (3.8)

almost everywhere.

Proof. For B � W take g.u/ D 1.u 2 B/ in formula (3.7) to get

E�.B/ D
Z
B

E.ˇ�.u; �//du:

But the left side is the integral of �.u/ over B so the result follows. ut
Exercise 3.12. For a hard core process� (Definition 3.17) use Lemma 3.7 to prove
that the mean number of points is related to the mean uncovered area:

Ej� j D ˇEA.�/

where A.x/ D R
W

1.u [ x 2 H/ du.
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Modelling with Conditional Intensity

It is often convenient to formulate a point process model in terms of its conditional
intensity ˇ�.u; x/, rather than its probability density f .x/.

The conditional intensity has a natural interpretation (in terms of conditional pro-
bability) which may be easier to understand than the density. Using the conditional
intensity also eliminates the normalizing constant needed for the probability density.

However, we are not free to choose the functional form of ˇ�.u; x/ at will. It
must satisfy certain consistency relations.

Finite Gibbs Models

Definition 3.19. A finite Gibbs process is a finite point process � with probability
density f .x/ of the form

f .x/ D expfV0 C
X
x2x

V1.x/C
X

fx;yg	x

V2.x; y/C : : :g (3.9)

where Vk W Nk ! R [ f�1g is called the potential of order k.

Gibbs models arise in statistical physics, where logf .x/ may be interpreted as
the potential energy of the configuration x. The term �V1.u/ can be interpreted as
the energy required to create a single point at a location u. The term �V2.u; v/ can
be interpreted as the energy required to overcome a force between the points u and v.

Example 3.12 (Hard core process, Gibbs form). Given parameters ˇ; r > 0, define
V1.u/ D logˇ,

V2.u; v/ D
(
0 if ku � vk > r
�1 if ku � vk � r

and Vk � 0 for all k � 3. Then
P

fx;yg	x V2.x; y/ is equal to zero if all pairs of
points in x are at least r units apart, and otherwise this sum is equal to �1. Taking
expf�1g D 0, we find

f .x/ D ˛ˇjxj1.x 2 H/
whereH is the hard core constraint set, and ˛ D expfV0g is a normalizing constant.
This is the probability density of the hard core process.

Lemma 3.8. Let f be the probability density of a finite point process � in a
bounded regionW in R

d . Suppose that f is hereditary, i.e.

f .x/ > 0 H) f .y/ > 0 for all y � x:

Then f can be expressed in the Gibbs form (3.9).
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Proof. This is a consequence of the Möbius inversion formula (the “inclusion–
exclusion principle”), see Lemma 9.2. The functionsVk can be obtained explicitly as

V0 D logf .;/
V1.u/ D logf .fug/� logf .;/

V2.u; v/ D logf .fu; vg/� logf .fug/� logf .fvg/C logf .;/

and in general
Vk.x/ D

X
y
x

.�1/jxj�jyj logf .y/:

Then (3.9) can be verified by induction on jxj. ut
Exercise 3.13. Complete the proof.

Any process with hereditary density f also has a conditional intensity,

ˇ�.u; x/ D exp

8<
:V1.u/C

X
x2�

V2.u; x/C
X

fx;yg	�
V3.u; x; y/C : : :

9=
; (3.10)

Hence, the following gives the most general form of a conditional intensity:

Theorem 3.3. A function ˇ�.u; x/ is the conditional intensity of some finite point
process � iff it can be expressed in the form (3.10).

Exercise 3.14. Prove Theorem 3.3.

Example 3.13 (Strauss process). For parameters ˇ > 0, 0 � � � 1 and r > 0,
suppose

V1.u/ D logˇ

V2.u; v/ D . log � / 1.ku � vk � r/:

This defines a finite point process called the Strauss process with conditional
intensity

ˇ�.u; x/ D ˇ�t.u;x/

and probability density
f .x/ D ˛ ˇjxj�s.x/

where
t.u; x/ D

X
x2x

1.ku � xk � r/

is the number of points of x which are close to u, and

s.x/ D
X
x;y2x

1.kx � yk � r/
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a b

Fig. 3.21 Realizations of the Strauss process with interaction parameter � D 0:2 (a) and � D 0:5

(b) in the unit square, both having activity ˇ D 200 and interaction range r D 0:07

is the number of pairs of close points in x. The normalizing constant ˛ is not
available in closed form.

When � D 1, the Strauss process reduces to the Poisson process with intensity ˇ.
When � D 0, we have

ˇ�.u; x/ D 1.ku � xk > r for all x 2 x/

and
f .x/ D ˛ˇjxj1.x 2 H/

so we get the hard core process. For 0 < � < 1, the Strauss process has “soft
inhibition” between neighbouring pairs of points (Fig. 3.21).

For � > 1 the Strauss density is not integrable, so it does not give a well-defined
point process.

The intensity function of the Strauss process is, applying equation (3.8),

ˇ.u/ D E.ˇ�.u; �// D E.ˇ� t.u;�// � ˇ

It is not easy to evaluate ˇ.u/ explicitly as a function of ˇ; �; r .

Exercise 3.15. Verify that the Strauss density is not integrable when � > 1.

Pairwise Interaction Processes

More generally we could consider a pairwise interaction model of the form

f .x/ D ˛

jxjY
iD1

b.xi /
Y
i<j

c.xi ; xj / (3.11)

where b.u/; u 2 W is the activity function and c.u; v/ is the pair interaction. For
simplicity, take c.u; v/ D c.ku � vk/ (Fig. 3.22). Pairwise interaction models are
very common in statistical physics as models for particle systems.

Pairwise interaction processes usually exhibit “regularity” or “inhibition”
between points. For example, the Strauss density is
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Fig. 3.22 Realizations of two pairwise interaction processes with the pair interaction function c
shown at right

f .x/ D ˛ˇjxj�s.x/

where
s.x/ D

X
i<j

1.kxi � xj k < r/

is the number of r-close pairs in x. We cannot allow � > 1 since f is not integrable
in that case. Thus the Strauss process is only a model for inhibition. Note that

s.x/ D 1

2

X
i

t .xi ; x/

where
t.xi ; x/ D s.x/� s.x n fxig/ D

X
j¤i

1.kxj � xik < r/

is the number of r-close neighbours of xi . Thus the Strauss density can be rewritten

f .x/ D ˛ˇjxj
jxjY
iD1

�
1
2 t.xi ;x/:
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a b

Fig. 3.23 Realizations of the Geyer saturation process with � D 1:6 (a) and � D 0:625 (b)

One way to obtain a “clustered” (positively associated) point process is to modify
the expression above so that the contribution from each point xi is bounded.

Definition 3.20 (Geyer saturation process). Define the saturation process [186]
to have density

f .x/ D ˛ˇjxj
jxjY
iD1

� minfsI t .u;x/g

where ˛ is the normalizing constant, ˇ > 0 the activity parameter, � � 0 the
interaction parameter, and s the “saturation” parameter.

The Geyer saturation density is integrable for all values of � . This density has
infinite order of interaction. If � < 1 the process is inhibited, while if � > 1 it
is clustered (Fig. 3.23).

Definition 3.21 (Area-interaction or Widom–Rowlinson model). This process
[32, 516] has density

f .x/ D ˛ˇjxj expf�V.x/g
where ˛ is the normalizing constant and V.x/ D �d .U.x// is the area or volume of

U.x/ D W \
jxj[
iD1

Br.xi /:

Since V.x/ � �d .W /, the density is integrable for all values of � 2 R. For � D 0

the process is Poisson. For � < 0 it is a regular (negatively associated) process, and
for � > 0 a clustered (positively associated) process. The interpoint interactions in
this process are very “mild” in the sense that its realizations look very similar to a
Poisson process (Fig. 3.24).

By the inclusion–exclusion formula

V.x/ D
X
i

V .fxi g/�
X
i<j

V .fxi ; xj g/C : : :C .�1/nV .x/
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a b

Fig. 3.24 Area-interaction process. (a) The dilation set U.x/. (b) Simulated realization

so that the area-interaction process has interaction potentials of all orders—it has
infinite order.

3.2 Simulation

D.G. Kendall told his students that we only really understand a stochastic process
when we know how to simulate it. Stochastic simulation also has many practical
applications in probability, statistical inference and optimization.

In this section, we cover some basic simulation principles (Sect. 3.2.1), discuss
methods for simulating a Poisson process (Sect. 3.2.2) and simulating Poisson-
driven processes (Sect. 3.2.3), then discuss elementary Markov Chain Monte Carlo
methods (Sect. 3.2.4).

3.2.1 Basic Simulation Principles

Assume we have a supply of independent, identically distributed (i.i.d.) random
variables �1; �2; : : :which are uniformly distributed in Œ0; 1
, written �i 	 UnifŒ0; 1
.

In practice these would be supplied by a computer’s random number generator
(RNG). The RNG is a deterministic algorithm designed to imitate i.i.d. uniform
random variables. The theory of RNG’s will not be discussed here.

Our aim is to generate a random variable � (or stochastic process) with a desired
probability distribution, using the variables �i .

Three basic simulation principles are transformation, rejection and margin-
alization.

Transformation

If � 	 UnifŒ0; 1
 and we set � D a C .b � a/� where a < b, it is intuitively clear
that � is uniformly distributed in Œa; b
.
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A

+

+

Fig. 3.25 Image of a distribution under a transformation

Exercise 3.16. Prove that � 	 UnifŒa; b
.

Definition 3.22. Let � be a random element in some space X , and T W X ! Y a
measurable mapping. Let � D T .�/. The distribution of � is given by

P.� 2 A/ D P.T .�/ 2 A/ D P.� 2 T �1.A//

where T �1.A/ D fx 2 X W T .x/ 2 Ag for all measurable A 
 Y (Fig. 3.25).

Lemma 3.9 (Probability integral transformation). Let � be a real random vari-
able with cumulative distribution function (c.d.f.) F.x/ D P.� � x/: Define the
right-continuous quantile function

F�1.u/ D minfx W F.x/ � ug:

Then:

1. Let � be uniformly distributed on Œ0; 1
. Then �DF�1.�/ has the same distribu-
tion as �.

2. If F�1 is continuous, then � D F.�/ is uniformly distributed on Œ0; 1
.

Typically, property 1 is used to simulate random variables, while property 2 is
used to test whether observed data conform to a specified model (Fig. 3.26).

Proof (in absolutely continuous case). Assume F 0.x/ D f .x/ > 0 for all x. Then
F is a strictly increasing, continuous function, and F�1 is its strictly increasing,
continuous inverse function: F.F �1.u// � u and F�1.F.x// � x.

1. Let � D F�1.�/. Then for x 2 R

P.� � x/ D P.F�1.�/ � x/D P.F.F�1.�// � F.x//D P.� � F.x//DF.x/:

Thus, � has the same distribution as �.
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Fig. 3.26 The probability integral transformation for N.0; 1/
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Fig. 3.27 Probability integral transformation for the exponential distribution

2. Let � D F.�/. Then for v 2 .0; 1/

P.� � v/ D P.F.�/ � v/ D P.F�1.F.�// � F�1.v//

D P.� � F�1.v// D F.F�1.v// D v:

Thus, � is uniformly distributed. ut
Example 3.14 (Exponential distribution). Let � have density f .x/ D � expf��xg
for x > 0, and zero otherwise, where � > 0 is the parameter. Then F.x/ D
1 � expf��xg for x > 0, and zero otherwise. Hence F �1.u/ D � log.1 � u/=�
(Fig. 3.27). If � 	 UnifŒ0; 1
 then � D � log.1 � �/=� has the same distribution as
�. Since 1 � � 	 UnifŒ0; 1
 we could also take � D � log.�/=�.
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Example 3.15 (Biased coin flip). Suppose we want � to take the values 1 and 0 with
probabilities p and 1 � p respectively. Then

F.x/ D

8̂
<̂
ˆ̂:
0 if x < 0

1 � p if 0 � x < 1

1 if x � 1:

The inverse is

F �1.u/ D
(
0 if u < 1 � p

1 if u � 1 � p

for 0 < u < 1. If � 	 UnifŒ0; 1
 then � D F�1.�/ D 1.� � 1 � p/ D 1.1� � � p/

has the same distribution as �. Since 1 � � 	 UnifŒ0; 1
 we could also take � D
1.� � p/.

Example 3.16 (Poisson random variable). To generate a realization ofN 	 Pois.�/,
first generate �	 UnifŒ0; 1
, then find

N D minfn W � �
nX

kD0
e�� �k

kŠ
g

Lemma 3.10 (Change-of-variables). Let � be a random element of Rd , d � 1

with probability density function f .x/; x 2R
d . Let T WRd !R

d be a differentiable
transformation such that, at any x 2 R

d , the derivativeDT.x/ is nonsingular. Then
the random vector � DT .�/ has probability density

g.y/ D
X

x2T�1.y/

f .x/
detDT.x/

:

Example 3.17 (Box–Muller device). Let � D .�1; �2/
> where �1; �2 are i.i.d.

normalN.0; 1/, with joint density

f .x1; x2/ D 1

2�
exp

�
�1
2
.x21 C x22/

	
:

Since the density is invariant under rotation, consider the polar transformation
T .x1; x2/ D .x21 C x22 ; arctan.x2=x1//, which is one-to-one and has the Jacobian
detDT.x/ � 2. The transformed variables � D �21 C �22 and � D arctan.�2=�1/
have joint density

g.t; y/ D f .T �1.t; y//
2

D 1

2
f .

p
t cosy;

p
t sin y/ D 1

2�

1

2
expf�t=2g
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Fig. 3.28 (a) Uniformly random point. (b) Generating a uniformly random point in a box

Thus � and � are independent; � has an exponential distribution with parameter 1=2,
and � is uniform on Œ0; 2�/. Applying the inverse transformation, when �1; �2 are
i.i.d. uniform Œ0; 1


� D cos.2��1/
p�2 log.�2/

has a standard normalN.0; 1/ distribution (Box–Muller device [82]).

Uniform Random Points

Definition 3.23. Let A � R
d be a measurable set with volume 0 < �d .A/ < 1.

A uniformly random (UR) point in A is a random point X 2 R
d with probability

density

f .x/ D 1.x 2 A/
�d .A/

:

Equivalently, for any measurable B � R
d

P.X 2 B/ D
Z
B

f .x/dx D �d .A\ B/

�d .A/
:

Example 3.18 (Uniform random point in a box). If X1; : : : ; Xd are independent
random variables such that Xi 	 UnifŒai ; bi 
, then the random point

X D .X1; : : : ; Xd /

is a uniformly random point in the parallelepiped (Fig. 3.28)

A D
dY
iD1
Œai ; bi 
:
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+
+

Fig. 3.29 Affine maps preserve the uniform distribution

Example 3.19 (Uniform random point in disc). Let X be a uniformly random point
in the disc Br.o/ of radius r centred at the origin in R

2. Consider the polar
coordinates

R D
q
X2
1 CX2

2 ; � D arctan.X2=X1/ :

By elementary geometry, R2 and � are independent and uniformly distributed on
Œ0; r2
 and Œ0; 2�
 respectively. Thus, if �1; �2 are i.i.d. UnifŒ0; 1
 and we set

X1 D r
p
�1 cos.2��2/ X2 D r

p
�1 sin.2��2/

then X D .X1;X2/
> is a uniformly random point in Br.o/.

Lemma 3.11 (Uniformity under affine maps). Let T W R
d ! R

d be a linear
transformation with nonzero determinant det.T / D ı. Then �d .T .B// D ı�d .B/

for all compact B � R
d . If X is a uniformly random point in A � R

d , then T .X/ is
a uniformly random point in T .A/ (Fig. 3.29).

Exercise 3.17. Write an algorithm to generate uniformly random points inside an
ellipse in R

2.

Uniformity in Non-Euclidean Spaces

The following is how not to choose your next holiday destination:

1. Choose a random longitude � 	 UnifŒ�180; 180

2. Independently choose a random latitude ' 	 UnifŒ�90; 90

When the results are plotted on the globe (Fig. 3.30), they show a clear preference
for locations near the poles.

This procedure is equivalent to projecting the globe onto a flat map in which
the latitude lines are equally spaced (Fig. 3.31) and selecting points uniformly at
random on the flat atlas. There is a higher probability of selecting a destination in
Greenland than in Australia, although Australia is five times larger than Greenland.

This paradox arises because, in a general space S, the probability density of a
random element X must always be defined relative to an agreed reference measure
�, through

P.X 2 A/ D
Z
A

f .x/d�.x/:
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Fig. 3.30 How not to choose the next holiday destination
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Fig. 3.31 Flat atlas projection

A random element X is uniformly distributed if it has constant density with respect
to �. The choice of reference measure � then affects the definition of uniform
distribution. This issue is frequently important in stochastic geometry.

On the unit sphere S
2 in R

3, the usual reference measure � is spherical area.
For the (longitude, latitude) coordinate system T W Œ��; �/ � Œ��=2; �=2
 ! S

2

defined by
T .�; '/ D .cos � cos'; sin � cos'; sin '/

we have Z
A

h.x/d�.x/ D
Z
T�1.A/

h.T .�; '// cos'd�d':

or in terms of differential elements, “d� D cos'd�d'”. Hence the following
algorithm generates uniform random points on the globe in the usual sense.

Algorithm 3.1 (Uniform random point on a sphere). To generate a uniform
random point on the earth (Fig. 3.32),
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Fig. 3.32 Uniformly random points on the earth
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Fig. 3.33 Equal-area (cylindrical) projection

1. Choose a random longitude � 	 UnifŒ�180; 180

2. Independently choose a random latitude ' with probability density proportional

to j cos.'/j
To achieve the second step we can take ' D arcsin.�/ where � 	 UnifŒ�1; 1
.

This procedure is equivalent to projecting the globe using an equal-area projec-
tion (Fig. 3.33) and selecting a uniformly random point in the projected atlas.

Exercise 3.18. Let � D arcsin.�/ where �	 UnifŒ�1; 1
. Prove that � has probabi-
lity density proportional to cos.x/ on .��=2; �=2/.

Rejection

Algorithm 3.2 (Rejection). Suppose we wish to generate a realization of a random
variable X (in some space) conditional on X 2 A, whereA is a subset of the possible
outcomes of X. Assume P.X 2 A/ > 0.
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X in A ? return Xgenerate X

NO

YES

START

Fig. 3.34 Flowchart for the rejection algorithm

1. Generate a realization X of X.
2. If X 2 A, terminate and return X .
3. Otherwise go to step 1.

To understand the validity of the rejection algorithm (Fig. 3.34), let X1;X2; : : : be
i.i.d. with the same distribution as X. The events Bn D fXn 2 Ag are independent
and have probability p D P.X 2 A/ > 0. Hence the algorithm termination time

N D minfn W Xn 2 Ag
has a geometric .p/ distribution P.N D n/ D .1 � p/n�1p. The algorithm output
XN is well defined and has distribution

P.XN 2 C/ D
X
n

P.XN 2 C j N D n/P.N D n/

D
X
n

P.Xn 2 C j N D n/P.N D n/

D
X
n

P.Xn 2 C j Xn 2 AI Xi 62 A; i < n/P.N D n/

D
X
n

P.Xn 2 C j Xn 2 A/P.N D n/ by independence

D
X
n

P.X 2 C j X 2 A/P.N D n/

D P.X 2 C j X 2 A/;

the desired conditional distribution.

Example 3.20 (Uniform random point in any region). To generate a random point
X uniformly distributed inside an irregular region B � R

d ,

1. Enclose B in a simpler set C � B .
2. Using the rejection method, generate i.i.d. random points uniformly in C until a

point falls in B .

See Fig. 3.35.
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Fig. 3.35 Rejection method for generating uniformly random points in an irregular region B

Lemma 3.12 (Conditional property of uniform distribution). Suppose X is
uniformly distributed in A � R

d with �d .A/ < 1. Let B � A. The conditional
distribution of X given X 2 B is uniform in B .

Proof. For any measurable C � R
d

P.X 2 C j X 2 B/ D P.X 2 C \ B/

P.X 2 B/ D �d .C \ B \ A/=�d.A/

�d .B \ A/=�d.A/
D �d.C \ B/

�d .B/
:

The proof is complete. ut
In summary, the rejection algorithm is simple, adaptable and generic, but may

be slow. The transformation technique is fast, and has a fixed computation time, but
may be complicated to implement, and is specific to one model.

Marginalization

Let � be a real random variable with probability density f . Suppose f .x/ � M for
all x. Consider the subgraph

A D f.x; y/ W 0 � y � f .x/g:

Let .X1;X2/> be a uniformly random point in A. The joint density of .X1;X2/> is
g.x1; x2/ D 1.0 � x2 � f .x1// since A has unit area. The marginal density of X1
is

h.x1/ D
Z M

0

1.x2 � f .x1//dx2 D f .x1/;

that is, X1 has probability density f (Fig. 3.36).

Algorithm 3.3 (Marginalization). Suppose f is a probability density on Œa; b

with supx2Œa;b
 f .x/ < M .

1. Generate � 	 UnifŒa; b
.
2. Independently generate � 	 Œ0;M 
.
3. If � < f .�/=M , terminate and return the value �. Otherwise, go to step 1.
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Fig. 3.36 Marginalization principle. (a) Uniformly random points in the subgraph of a density f .
(b) Projections onto the x-axis have density f
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Fig. 3.37 Importance sampling

It is easy to check (following previous proofs) that this algorithm terminates in
finite time and returns a random variable with density f .

Importance Sampling

We wish to generate X with a complicated probability density f . Let g be another
probability density, that is easier to simulate, such that f .x/ � Mg.x/ for all x
(Fig. 3.37).

Algorithm 3.4 (Importance sampling). Let f and g be probability densities and
M < 1 such that f .x/ � Mg.x/ for all x.

1. Generate Y with density g.
2. Independently generate � 	 UnifŒ0;M 
.
3. If � � f .Y/=g.Y/, set X D Y and exit. Otherwise, go to step 1.
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Given Y let � D �g.Y/. The pair .Y; �/ is uniformly distributed in the subgraph
of Mg. This point falls in the subgraph of f if � � f .Y/, equivalently if � �
f .Y/=g.Y/. This is the rejection algorithm.

3.2.2 Simulating the Poisson Process

To simulate the homogeneous Poisson process in one dimension, we may use any
of the properties described in Sect. 3.1.

Algorithm 3.5 (Poisson simulation using waiting times). To simulate a realiza-
tion of a homogeneous Poisson process in Œ0; a
:

1. Generate i.i.d. waiting times S1; S2; : : : from the Exp.�/-distribution.
2. Compute arrival times Tn D Pn

iD1 Si .
3. Return the set of arrival times Tn that satisfy Tn < a.

The homogeneous Poisson process in Œ0;1/ has conditionally uniform arrivals:
given Nt D n, the arrival times in Œ0; t 


T1 < T2 < : : : < Tn < t

are (the order statistics of) n i.i.d. uniform random variables in Œ0; t 
.

Algorithm 3.6 (Poisson simulation using conditional property). To simulate a
realization of a homogeneous Poisson process in Œ0; a
:

1. Generate N 	 Pois.�a/.
2. Given N D n, generate n i.i.d. variables �1; : : : ; �n 	 UnifŒ0; a
.
3. Sort f�1; : : : ; �ng to obtain the arrival times.

For the homogeneous Poisson process on R
d , given ˘�.B/ D n, the restriction

of ˘� to B has the same distribution as a binomial process (n i.i.d. random points
uniformly distributed in B).

These properties can be used directly to simulate the Poisson process in R
d with

constant intensity � > 0 (Fig. 3.38).

Algorithm 3.7 (Poisson simulation in R
d using conditional property). To simu-

late a realization of a homogeneous Poisson process in R
d :

1. Divide Rd into unit hypercubesQk , k D 1; 2; : : :

2. Generate i.i.d. random variablesNk 	 Pois.�/.
3. Given Nk D nk , generate nk i.i.d. random points uniformly distributed in Qk .

To appreciate the validity of the latter algorithm, see the explicit construction of
Poisson processes in Sect. 4.1.1.

Remark 3.1. To generate a realization of a Poisson process ˘� with constant
intensity � inside an irregular region B �R

d , it is easiest to generate a Poisson
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Fig. 3.38 Direct simulation of Poisson point process
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Fig. 3.39 Rejection method for simulating Poisson points in an arbitrary domain B

process � with intensity � in a simpler set C �B , and take˘� D � \B , i.e. retain
only the points of � that fall in B . Thus it is computationally easier to generate a
Poisson random number of random points, than to generate a single random point
(Fig. 3.39).

Transformations of Poisson Process

Lemma 3.13. Let˘ be a Poisson point process in R
d , d � 1with intensity function

�.u/; u 2 R
d . Let T W R

d ! R
d be a differentiable transformation with

nonsingular derivative. Then � D T .˘/ is a Poisson process with intensity

�.y/ D
X

x2T�1.y/

�.x/
j detDT.x/j :

Here DT denotes the differential of T , and j detDT j is the Jacobian (Fig. 3.40).

Example 3.21 (Polar coordinates). Let ˘� be a homogeneous Poisson process in
R
2 with intensity �. The transformation

T .x1; x2/ D .x21 C x22 ; arctan.x2=x1//



3 Spatial Point Patterns: Models and Statistics 89

+
++

++
+
++

Fig. 3.40 Affine transformations preserve the homogeneous Poisson process up to a constant
factor

Fig. 3.41 Polar simulation of a Poisson process

has Jacobian 2. So � D T .˘�/ is a homogeneous Poisson process in .0;1/ �
Œ0; 2�/ with intensity �=2. Projecting onto the first coordinate gives a homogeneous
Poisson process with intensity �=2 � 2� D �� .

Algorithm 3.8 (Polar simulation of a Poisson process). We may simulate a Pois-
son process by taking the points Xn D .

p
Tn cos �n;

p
Tn sin �n/ where T1; T2; : : :

are the arrival times of a homogeneous Poisson process in .0;1/ with intensity �� ,
and �1; �2; : : : are i.i.d. UnifŒ0; 2�/ (Fig. 3.41).

Example 3.22 (Transformation to uniformity). In one dimension, let ˘ be a Pois-
son point process in Œ0; a
 with rate (intensity) function �.u/, 0 � u � a. Let

T .v/ D
Z v

0

�.u/du:

Then T .˘/ is a Poisson process with rate 1 on Œ0; T .a/
. Conversely if � is a unit
rate Poisson process on Œ0; T .a/
 then T �1.�/ is a Poisson process with intensity
�.u/ on Œ0; a
, where T �1.t/ D minfv W T .v/ � tg. This is often used for checking
goodness-of-fit.

Thinning

Let ˘� be a homogeneous Poisson point process in R
d with intensity �. Suppose

we randomly delete or retain each point of˘�, with retention probability p for each
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a b c

Fig. 3.42 Lewis–Shedler simulation of inhomogeneous Poisson process. (a) Uniform Poisson
points. (b) Contours of desired intensity. (c) thinned points constituting the inhomogeneous Poisson
process

point, independently of other points. The process � of retained points is a Poisson
process with intensity measure p�.

To define the thinning procedure, we construct the marked point process �
obtained by attaching to each point xi of ˘� a random mark �i 	 UnifŒ0; 1

independently of other points and other marks. A point xi is then retained if �i < p
and thinned otherwise. When ˘� is a homogeneous Poisson process of intensity �
in R

2, the marked process� is homogeneous Poisson with intensity � in R
2� Œ0; 1
.

Consider the restriction � \A of � to the set A D R
2 � Œ0; p
. Project � \A onto

R
2. This is the process of retained points. It is Poisson with intensity p�.

Example 3.23 (Independent thinning). Let˘ be a Poisson point process in R
d with

intensity function �.u/, u 2 R
d . Suppose we randomly delete or retain each point of

˘ , a point xi being retained with probability p.xi / independently of other points,
where p is a measurable function. The process � of retained points is a Poisson
process with intensity function �.u/ D p.u/�.u/.

Exercise 3.19. In Example 3.23, prove that � is Poisson with intensity function �.

Algorithm 3.9 (Lewis–Shedler algorithm for Poisson process). We want to gen-
erate a realization of the Poisson process with intensity function � in R

d . Assume
�.x/ � M for all x 2 R

d (Fig. 3.42).

1. Generate a homogeneous Poisson process with intensityM .
2. Apply independent thinning, with retention probability function

p.x/ D �.x/=M:

3.2.3 Simulating Poisson-Driven Processes

Point processes that are defined by modifying the Poisson process are relatively
straightforward to simulate.
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Fig. 3.43 Simulation of Matérn cluster process when cluster size is bounded. (a) Poisson parent
points in dilated window. (b) Generation of offspring. (c) Offspring restricted to original window

Algorithm 3.10 (Cox process). To simulate a Cox process

1. Generate a realization of the random intensity measure�.
2. Given �, generate � according to a Poisson process with intensity �.

Let � be a stationary Poisson cluster process formed by a homogeneous Poisson
parent process ˘� of intensity � and a translation-equivariant cluster mechanism
�x � �o C x. To simulate a realization of � inside a bounded window W , we may
need to consider parents xi 2 ˘� that lie outside W as well as inside.

Algorithm 3.11 (Poisson cluster process with bounded clusters). If �o � Br.o/

a.s. where r is fixed, then

1. Generate a realization x of the homogeneous Poisson process of intensity � in
W ˚ Br.o/.

2. For each xi 2 x generate a realization of �xi .
3. Set

y D W \
[
i

�xi :

See Fig. 3.43.

If the clusters are unbounded, consider the marked point process consisting of
parent points xi marked by �xi . We need to thin this process, retaining only those
.xi ; �xi / such that �xi \W ¤ ;, to obtain a marked process � . This is the process
of clusters that intersect W . It must be a finite marked point process. We then use
any of the preceding tricks to generate the finite process � .

For example, consider a modification of Matérn’s cluster model in which the
cluster consists of N 	 Pois.�/ i.i.d. random points uniformly distributed in a disc
of random radiusR where R has probability density 
.

To simulate this process inside a bounded W , first assume without loss of
generality thatW D Bs.o/. Construct the marked point process consisting of parent
points xi marked by cluster radii Rxi . This is a homogeneous Poisson marked point
process with point intensity � and i.i.d. marks with probability density 
.
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For a given r , we have Br.x/ \ W ¤ ; iff x 2 BsCr .o/. The thinned marked
process (obtained by retaining only those .x; r/ such thatBr.x/\W ¤ ;) is Poisson
with intensity �.x; r/ D �
.r/ if x 2 BsCr .o/ and 0 otherwise.

The expected number of retained points is

EN D
Z
R2

Z 1

0

�.x; r/dxdr D �E.�.s CR/2/ D ��.s2 C 2sERC ER2/:

Algorithm 3.12 (Unbounded Matérn cluster process).

1. Generate N 	 Pois.�/ where � D ��.s2 C 2sER C ER2/.
2. Given N D n, generate n i.i.d. values Ri from the distribution with density
g.r/ D ��.s C r/2=�.

3. Given R1; : : : ; Rn, generate independent random points x1; : : : ; xn such that xi
is uniformly random in BsCRi .o/.

4. Generate Ni 	 Pois.�/ and given Ni D ni , generate ni i.i.d. uniform random
points in BRi .xi /.

5. Combine all random points generated in step 4 and retain those which fall in W .

An alternative technique is described in [86].

3.2.4 Markov Chain Monte Carlo

Next we want to generate simulated realizations of Gibbs point processes, such as
the hard-core process.

Algorithm 3.13 (Hard core process, rejection method).

1. Generate a realization x of the Poisson point process with intensity ˇ in W .
2. If kxi � xj k > r for all i ¤ j , exit and return the point pattern x. Otherwise, go

to step 1.

This brute force method will take a very long time. An alternative approach is
Markov Chain simulation. This may be explained by an analogy with card-shuffling.
The easiest way to randomize a deck of playing cards is to shuffle them: starting
from any ordering of the cards (effectively a permutation of the integers 1–52), we
apply a sequence of random shuffles. The successive states of the deck after each
shuffle, X0;X1; : : : constitute a Markov chain. After enough random shuffles, the
deck is randomised.

Definition 3.24. Recall that a (discrete-time) Markov chain is a sequence of
random elements X0;X1;X2; : : : in a finite or countable set X such that

P.XnC1 D xnC1 j Xn D xn;Xn�1 D xn�1; : : : ; X0 D x0/

D P.XnC1 D xnC1 j Xn D xn/
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for all xnC1; : : : ; x0 2 X . It is time-homogeneous if

P.XnC1 D y j Xn D x/ D P.X1 D y j X0 D x/ D p.x; y/; x; y 2 X :

An equilibrium distribution for the chain is a probability distribution � D .�.x/;
x 2 X / such that X

x

�.x/p.x; y/ D �.y/ for all y 2 X :

If the chain is “irreducible” and “aperiodic”, then the chain converges in distribution
to � from any initial state. See [168, 203, 291].

Definition 3.25 (Detailed balance). A chain is in detailed balance [291] with a
probability distribution � if

�.x/p.x; y/ D �.y/p.y; x/ for all x; y 2 X :

Detailed balance implies that � is an equilibrium distribution of the chain, since

X
x

�.x/p.x; y/ D
X

x

�.y/p.y; x/ D �.y/
X

x

p.y; x/ D �.y/:

Now suppose we want to construct a Markov chain fXng which has a given
equilibrium distribution � . This can be achieved by constructing .p.x; y// to satisfy
detailed balance with �.

Example 3.24. On the state space X D f0; 1g consider the distribution �.0/ D 1
3
,

�.1/ D 2
3
. For detailed balance we require

�.0/p.0; 1/ D �.1/p.1; 0/

implying
p.0; 1/ D 2p.1; 0/:

The transition probability matrix can be



1 � 2s 2s

s 1 � s
�

for any 0 < s < 1
2
.

Example 3.25 (Poisson distribution). Let �n D e���n=nŠ. Let us try to construct
a chain with steps of ˙1 only (called a birth-and-death process). Thus we assume
pn;m D 0 unless jm�nj D 1. Detailed balance requires �npn;nC1 D �nC1pnC1;n so
that

pn;nC1
pnC1;n

D e���nC1=.nC 1/Š

e���n=nŠ
D �

nC 1
:
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To achieve this, we set

pn;nC1 D 1

2
min

�
1;

�

nC 1

	
; pnC1;n D 1

2
min

�
1;
nC 1

�

	

i.e.

pn;nC1 D 1

2
min

�
1;

�

nC 1

	
; pn;n�1 D 1

2
min

n
1;
n

�

o
; pn;n D 1�pn;nC1�pn;n�1:

Then detailed balance is satisfied.

On countable state spaces there is the possibility of “escaping to infinity”,
P.Xn D x/ ! 0 as n ! 1 for each fixed x. This does not occur if the sufficient
condition 1X

nD1

p01p12 : : : pn�1;n
pn;n�1 : : : p21p10

< 1

is satisfied. To verify this condition in the present case we note that pn;nC1=pnC1;n D
�=.nC1/ < 1=2when n > �=2. Thus the series above is dominated by a geometric
series. The Markov chain with these transition probabilities converges in distribution
to Pois.�/ from any initial state.

Preserving Detailed Balance

Note that detailed balance is an equation relating the transition probabilities of pairs
of mutually inverse transitions. We can modify the transition probabilities and still
preserve detailed balance, so long as we modify pairs of transition probabilities.

Example 3.26. We may modify Example 3.25 to add the possibility of visiting 0
from any state. We re-set the values of pn;0 and p0;n (where n > 1) so that

p0;n

pn;0
D �n

�0
D �n

nŠ

Then the chain is still in detailed balance with Pois.�/.

Definition 3.26 (Proposal-acceptance). In a proposal-acceptance algorithm,
when the current state is Xn D x,

1. we generate a random state y with probability q.x; y/ and “propose” jumping to
state y.

2. with probability a.x; y/ the proposal is “accepted” and XnC1 D y. Otherwise the
proposal is “rejected” and XnC1 D x.

This is a Markov chain with transition probabilities p.x; y/ D q.x; y/a.x; y/.
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Metropolis-Hastings

A proposal-acceptance algorithm is in detailed balance with a distribution � if

�.x/q.x; y/a.x; y/ D �.y/q.y; x/a.y; x/

Equivalently
a.x; y/
a.y; x/

D �.y/q.y; x/
�.x/q.x; y/

One way to achieve this is to choose

a.x; y/ D min

�
1;

�.y/q.y; x/
�.x/q.x; y/

	

With these acceptance probabilities, the algorithm is called a Metropolis-Hastings
algorithm [355].

Exercise 3.20. Derive the Metropolis-Hastings acceptance probabilities when the
target distribution � is the Poisson distribution with mean � and the proposal
mechanism is the symmetric random walk on the nonnegative integers, i.e. pn;nC1 D
pn;n�1 D 1=2 for n > 0 and p0;1 D 1.

Spatial Birth-and-Death Processes

Definition 3.27. A spatial birth-and-death process (in discrete time) is a time-
homogeneous Markov chain Xn, n D 0; 1; 2; : : : in N in which the only possible
transitions are

1. “births” x 7! x [ fug where u 2 S;
2. “deaths” x 7! x n fxi g for some i .

A (discrete time) spatial birth-and-death process is characterized by its death
probabilities

D.x; xi / D P.X1 D x n fxig j X0 D x/

and birth measure

B.x; A/ D P.X1 D x [ fug; u 2 A j X0 D x/; A 2 N:

Often we represent the birth measure by its birth density b.x; u/ such that

B.x; A/ D
Z
W

b.x; u/1.x [ fug 2 A/du:

For a spatial birth-and-death process with death probabilities D.x; xi / and birth
density b.x; u/, the transition kernel is
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Px.A/ D P.X1 2 A j X0 D x/

D
jxjX
iD1

D.x; xi /1.x n fxig 2 A/C
Z
W

b.x; u/1.x [ fug 2 A/ du

for A 2 N with x 62 A, where jxj D number of points in x.

Example 3.27. Consider the following algorithm:

1. Start with an empty point pattern x D ;.
2. When the current state x containsm points,

(a) With probability dm choose one of the existing points at random with equal
probability 1=m and delete it from x (“death”).

(b) With probability bm generate a new random point U uniformly distributed in
W and add it to x (“birth”).

(c) Otherwise (probability 1 � dm � bm) do not change state.

3. Go to step 2.

Let Xn be the state of the algorithm at time n D 0; 1; 2; : : :. Then fXng is a spatial
birth-and-death process with death probabilitiesD.x; xi / D dm=m and birth density
b.x; u/ D bm=�d .W / wherem D jxj.
Lemma 3.14. In Example 3.27, assume .dm/; .bm/ satisfy bm=dm D �=.m C 1/

where � D ˇ�d .W /. Then Xn converges in distribution as n ! 1 to a Poisson
point process with intensity ˇ.

Proof. The number of points Yn D jXnj follows a time-homogeneous Markov chain
on the nonnegative integers, with transition probabilities

pm;mC1 D bm

pm;m�1 D dm

pm;m D 1 � bm � dm
which converges in distribution to Pois.�/. Given Yn D m, the state X.t/ consists
of m i.i.d. uniform random points. By the conditional property of the Poisson
process, Xn converges in distribution as n ! 1 to a Poisson point process with
intensity ˇ. ut
Definition 3.28 (Detailed balance in continuous state space). For a chain in a
continuous state space X , the detailed balance condition is

Z
A

Px.B/d�.x/ D
Z
B

Px.A/d�.x/ (3.12)

for all measurable A;B � X . It suffices to assume A \ B D ;.
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Theorem 3.4 (Detailed balance for spatial birth–death process). Let fXn W n D
0; 1; 2; : : :g be a spatial birth-and-death process on a compact W � R

d with death
probabilitiesD.x; xi / and birth density b.x; u/. Let � be the distribution of a finite
point process on W with density f .x/ with respect to the unit rate Poisson process.
Then fXngn is in detailed balance with � iff

f .x/ b.x; u/ D f .x [ fug/D.x [ fug; u/ (3.13)

for almost all x 2 N f and u 2 W .

Proof. Assume (3.13) holds. Define for A;B 2 N with A \ B D ;
hA;B.x; u/ D f .x [ fug/D.x [ fug; u/1.x [ fug 2 A; x 2 B/

D f .x/ b.x; u/1.x [ fug 2 A; x 2 B/:
Observe that

f .x/1.x 2 A/
jxjX
iD1

D.x; xi /1.x n fxi g 2 B/ D
jxjX
iD1

hA;B.x n fxi g; xi /

f .x/1.x 2 A/
Z
W

b.x; u/1.x [ fug 2 B/du D
Z
W

hB;A.x; u/du:

Thus we have
Z
A

Px.B/d�.x/ D E.f .˘1/1.˘1 2 A/P˘1.B//

D E

0
@j˘1jX
iD1

hA;B.˘1 n fzi g; zi /C
Z
W

hB;A.˘1; u/du

1
A

where˘1 D fzi g denotes the unit rate Poisson process.
But by the GNZ formula for ˘1,

E

0
@j˘1jX
iD1

h.˘1 n fzig; zi /
1
A D E

�Z
W

h.˘1; u/du

�

Hence

Z
A

Px.B/d�.x/ D E

0
@j˘1jX
iD1

hA;B.˘1 n fzi g; zi /C
Z
W

hB;A.˘1; u/du

1
A

D E
�Z

W

hA;B.˘1; u/du

�
C
Z
W

hB;A.˘1; u/du


is symmetric in A;B . So detailed balance (3.12) holds.
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Conversely, suppose (3.12) holds. Let A;B 2 N be such that A� Nn and
B � NnC1 for some n � 0. The only transitions from A to B are births, so for
x 2 A

Px.B/ D
Z
W

b.x; u/1.x [ fug 2 B/ du

while for x 2 B
Px.A/ D

X
xi2x

D.x; xi /1.x n fxig 2 A/:

Substituting into (3.12) and applying the Radon–Nikodým theorem yields (3.13).
ut

In Example 3.27 and Lemma 3.14,D.x; xi / D dm=m and b.x; u/ D bm=�d .W /

satisfy
b.x; u/

D.x [ fug; u/ D bm=�d.W /

dmC1=.mC 1/
D ˇ�d .W /.mC 1/

.mC 1/�d .W /
D ˇ

The probability density of the Poisson process of rate ˇ is f .x/D˛ˇjxj where ˛ D
expf.1�ˇ/�d .W /g. Thus f .x [ fug/=f .x/ D ˇ. Hence detailed balance applies.

Simulation of Hard-Core Process

Suppose we want to simulate a hard-core process with hard core diameter r in a
regionW . The hard core process is a Poisson process conditioned on the event

H D fx 2 N f W kxi � xj k > r for all i ¤ j g:

To construct a spatial birth-and-death process that is in detailed balance with the
hard core process, we simply modify the previous process by forbidding transitions
out of H .

Algorithm 3.14 (Hard-core spatial-birth-and-death).

1. Start with an empty point pattern x D ;.
2. When the current state x containsm points,

(a) With probability 1 � dm � bm do nothing.
(b) With probability dm choose one of the existing points at random and delete it

from x.
(c) With probability bm generate a new random point U uniformly distributed in

W . If kU � xik > r for all i , then add U to the configuration, x WD x [ fU g.
Otherwise leave the current configuration unchanged.

3. Go to step 2.

Algorithm 3.15 (Metropolis–Hastings for Gibbs point process). For any finite
Gibbs process with density f .x/ the following algorithm is in detailed balance:
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1. Start in any initial state x for which f .x/ > 0
2. When the current state is x,

(a) With probabilityp, propose a death: select one of the points xi 2 x with equal
probability, and propose deleting xi . Accept with probability

a.x; x n fxi g/ D min

�
1;
.1 � p/jxjf .x n fxi g/

p�d .W /f .x/

	

(b) Otherwise (with probability 1 � p) propose a birth: generate a uniformly
random point u in W and propose adding it. Accept with probability

a.x; x [ fug/ D min

�
1;

p�d .W /f .x [ fug/
.1 � p/.jxj C 1/f .x/

	

Under additional conditions (e.g. that f .x [ fug/=f .x/ < B < 1 for all x; u) the
algorithm converges in distribution to f from any initial state. See [369, Chap. 7].

Continuous Time

This may be easier to understand in continuous time. A spatial birth–death process in
continuous time is a Markov process fX.t/; t � 0g whose trajectories are piecewise
constant (“pure jump process”) with

P.X.t C h/ 2 A j X.t/ D x/ D 1.x 2 A/CQx.A/hC o.h/; h # 0

where the rate measure Qx is

Qx.A/ D
jxjX
iD1

D.x; xi /1.x n fxi g 2 A/C
Z
W

b.x; u/1.x [ fug 2 A/du:

The quantitiesD.x; xi / and b.x; u/ are rates which may take any nonnegative value.

Definition 3.29 (Detailed balance for spatial birth–death process). A continu-
ous time spatial birth–death process is in detailed equilibrium with a point process
density f iff

f .x/b.x; u/ D f .x [ fug/D.x [ fug; u/:
This is now easier to satisfy, becauseD.x; xi / is not required to be a probability.

Example 3.28 (Gibbs sampler). We may take

D.x; xi / D 1

b.x; u/ D �.u; x/ D f .x [ fug/
f .x/
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A simple interpretation is that each existing point has an exponentially distributed
lifetime with mean 1, independent of other points, after which it is deleted; and new
points u are added at rate �.u; x/ where x is the current state.

3.3 Inference

This section discusses statistical inference for point process models. It covers
maximum likelihood (Sect. 3.3.1), Markov Chain Monte Carlo maximum likelihood
(Sect. 3.3.2), fitting models using summary statistics (Sect. 3.3.3) and estimating
equations and maximum pseudolikelihood (Sect. 3.3.4).

3.3.1 Maximum Likelihood

General Definitions

Suppose that we observe a point pattern x in a window W . We wish to fit a finite
point process model which has probability density f .x/ D f .xI �/ depending on a
vector parameter � 2 � 
 R

k . Define the likelihood

L.�/ D f .xI �/:

The maximum likelihood estimate (MLE) of � is

O� D argmax�L.�/:

Under regularity conditions, O� is the root of the score

U.�/ D @

@�
logL.�/:

If �0 denotes the true value, then [134, p. 107 ff.] the score satisfies

E�0.U.�0// D 0; I.�0/ D var�0.U.�0// D E
�

� @

@�
U.�0/

�
;

where I.�/ is the Fisher information. Note that the classical theory under which the
MLE is optimal, is based on i.i.d. observations, and does not automatically apply
here.
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Maximum Likelihood for Poisson Processes

For Poisson point processes, maximum likelihood estimation is outlined in [317].

Example 3.29 (MLE for homogeneous Poisson). For the homogeneous Poisson
process in W with intensity �,

f .xI�/ D �jxj expf.1� �/�d .W /g:

The score is

U.�/ D jxj
�

� �d .W /

so the MLE is
O� D jxj

�d .W /
:

Example 3.30 (MLE for inhomogeneous Poisson). For the inhomogeneous Poisson
process in W with intensity function ��.u/, u 2 W depending on � , the density is

f .xI �/ D
2
4 jxjY
iD1

�� .xi /

3
5 exp

�Z
W

.1 � ��.u//d
	
:

Assuming ��.u/ is differentiable with respect to � , the score is

U.�/ D
jxjX
iD1

@

@�
log��.xi /�

Z
W

@

@�
��.u/du:

Exercise 3.21. Let V �W and consider the inhomogeneous Poisson process with
different constant intensities in V and W n V , i.e. with intensity function

�.u/ D
�
�1 if u 2 V
�2 if u 2 W n V

Find the MLE of .�1; �2/.

Example 3.31. Assume �.u/D �Z.u/ where Z.u/ is a nonnegative real-valued
covariate. Then

f .xI �/ D � jxj Y
i

Z.xi / exp

�Z
W

.1 � �Z.u//du

	

and

U.�/ D jxj log � �
Z
W

Z.u/du
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Fig. 3.44 Analysis of Chorley–Ribble data. (a) Original data. (b) Kernel smoothed estimate of
lung cancer incidence

so
O� D jxjR

W
Z.u/du

:

The model above is particularly relevant to epidemiological studies where it
represents the hypothesis of constant relative risk. Figure 3.44 shows the original
data from the Chorley–Ribble dataset (Fig. 3.2 and [153]), and a kernel-smoothed
estimate of lung cancer incidence which serves as a surrogate for the spatially-
varying intensity of the susceptible population.

Example 3.32 (Loglinear Poisson). Consider the loglinear intensity model

��.u/ D expf� TZ.u/g (3.14)

where Z W W !R
k is a vector-valued spatial covariate function. Then the log-

likelihood is concave, and the score

U.�/ D
jxjX
iD1

Z.xi / �
Z
W

Z.u/ expf� TZ.u/gdu

has a unique root provided
P

i Z.xi / ¤ 0. The Fisher information matrix is

I.�/ D
Z
W

Z.u/Z.u/T expf� TZ.u/gdu:

Under regularity and positivity conditions, O� is consistent and asymptotically
normal with variance I.�/�1 in a limiting scenario where W % R

d . See [317].

The maximum likelihood estimator O� for (3.14) does not have a simple analytic
form. Several numerical algorithms exist for computing O� approximately [5,25,64].
In each technique, the domain W is divided into disjoint subsets Q1; : : : ;Qm
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Fig. 3.45 Simulated inhomogeneous Poisson data

and the numbers nj DN.x \ Qj / of points in each subset are counted. Then the
point process likelihood is approximated by the likelihood of a Poisson loglinear
regression, which can be maximised using standard software.

Figure 3.45 shows a simulated realization of the inhomogeneous Poisson process
with intensity function

�.x; y/ D eˇ0Cˇ1xCˇ2y2

where .ˇ0; ˇ1; ˇ2/ D .3; 3; 2/. The algorithm above was applied using a 100 � 100
grid of squares, yielding the approximate MLE of .2:7; 3:2; 2:1/.

Maximum Likelihood for Gibbs Processes

For Gibbs point processes, maximum likelihood estimation is generally intractable.

Example 3.33. Consider a Gibbs process with density of the loglinear form

f .xI �/ D ˛.�/ exp.� TV.x// (3.15)

where V.x/ is a statistic and ˛.�/ is the normalizing constant given by

˛.�/�1 D E0.expf� TV.X/g/

where E0 denotes expectation with respect to the unit rate Poisson process on W .

In Example 3.33, the score is

U.�/ D V.x/C @

@�
log˛.�/ D V.x/�

@
@�

E0.expf� TV.X/g/
E0.expf� TV.X/g/

D V.x/� E0.V .X/ expf� TV.X/g/
E0.expf� TV.X/g/ D V.x/� E� .V .X//
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and Fisher information
I.�/ D var� .V .X//

where E� , var� denote expectation and variance with respect to f .�I �/.
Unfortunately, ˛.�/, M.�/D E� .V .X// and I.�/ are usually intractable func-

tions of � .

Example 3.34 (Strauss process). The Strauss process has density

f .xIˇ; �/ D ˛ˇjxj�s.x/ D ˛ expfjxj logˇ C s.x/ log�g

where s.x/D P
i<j 1.kxi � xj k < r/ is the number of pairs of points that are

closer than r units apart.
We see that evaluating ˛ is equivalent to evaluating the characteristic function of

.jXj; s.X// for a unit rate Poisson process. Evaluating M.�/ and I.�/ requires the
mean and variance of .jXj; s.X// for the Strauss process.

3.3.2 MCMC Maximum Likelihood

Continuing with the loglinear Gibbs model (Example 3.33), another strategy is
to estimate the functions ˛.�/�1, M.�/D E� .V .X// and I.�/D var� .V .X// by
simulation. Three simple strategies are described below.

Simulation from Poisson

Using

˛.�/�1 D E0.expf� TV.X/g/; M.�/ D E0.V .X/ expf� TV.X/g/
E0.expf� TV.X/g/

we could generate K simulated point patterns X.1/; : : : ; X.K/ from the unit rate
Poisson process, and take the sample moments

Ǫ .�/�1 D 1

K

KX
kD1

expf� TV.X.k//g; OM.�/ D
P

k V .X
.k// expf� TV.X.k//gP

k expf� TV.X.k//g
(3.16)

and take OI .�/ to be the corresponding sample variance.

Algorithm 3.16 (MLE using massive simulation from Poisson).

1. Generate a huge number of simulations from the unit rate Poisson process;
2. Compute estimates of the functions ˛.�/, M.�/ and I.�/ using (3.16);
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Fig. 3.46 Approximate MLE by simulation from Poisson. (a) Data pattern: Realization of Strauss
process. (b) Bivariate scatter plot of .jXj; s.X// for 1,000 simulated realizations of Poisson process.
Large dot shows observed value of .jXj; s.X// for data

3. Approximate the likelihood (3.15) using the estimate of ˛.�/, and/or approxi-
mate the score function using the estimate of M.�/, and maximize the approxi-
mate likelihood numerically.

Example 3.35. The left panel of Fig. 3.46 shows synthetic data, a simulated realiza-
tion of the Strauss process with ˇ D 100, � D 0:7, r D 0:05 in unit square.

The right panel shows a bivariate scatter plot of .jXj; s.X// for 1,000 simulated
realizations of the Poisson process with intensity � D 100 in the unit square. The
large dot shows the observed value of .jXj; s.X// for the data.

An approximation to ˛.�/ was obtained using (3.16). This was substituted into
(3.15) to obtain an approximate likelihood function, which was then maximised to
obtain the approximate MLE Ǒ D 132, O� D 0:60.

The main difficulty with this method is that it becomes very inaccurate when the
observed value V.x/ is not near the centre of the cloud of simulated values V.X.k//.

Simulation from Target Distribution

Alternatively, we could simulate K times from the target distribution f .�I �/ using
a current estimate of � , use the estimator

OM.�/ D 1

K

X
k

V .X.k//

and estimate I.�/ by the analogous sample variance.

Algorithm 3.17. MLE using simulation from current estimate

1. Choose a sensible initial estimate �0.
2. When the current estimate is �n, generate simulations from f .�; �n/ and compute

the sample estimates OM.�n/ and OI .�n/ of M.�n/ and I.�n/, respectively.
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3. Take one step of the Newton–Raphson algorithm [290],

�nC1 D �n � OI .�n/�1 OM.�n/:

4. Go to step 2 (unless convergence has occurred).

Importance Sampling

For two values � , � the corresponding densities f .�; �/, f .�; �/ are related by

f .x; �/ D e.���/>V.x/f .x; �/
E�.e.���/>V.X//

(3.17)

For a reference value �we could generateK simulated point patternsX.1/; : : : ; X.K/

from f .�; �/, and take

Ǫ .�/�1 D 1

K

KX
kD1

expf.� � �/TV.X.k//g

OM.�/ D
P

k V .X
.k// expf.� � �/TV.X.k//gP

k expf.� � �/TV.X.k//g

Similarly for I.�/. These are known as the “importance sampling” estimates.

Algorithm 3.18 (MLE using importance sampling). Set up a grid consisting of
values �1; : : : ; �M in the parameter space. For eachm generate a substantial number
of simulated realizations from f .�; �m/.
1. Choose a sensible initial estimate �0.
2. When the current estimate is �n, find the grid value �m that is closest to �n, and

use it to compute the importance-sampling estimates of M.�n/ and I.�n/.
3. Take one step of the Newton–Raphson algorithm,

�nC1 D �n � OI .�n/�1 OM.�n/:

4. Go to step 2 (unless convergence has occurred).

3.3.3 Fitting Models Using Summary Statistics

Summary Statistics

When investigating a spatial point pattern dataset x D fx1; : : : ; xng in a domainW ,
it is often useful to begin by computing various summary statistics.
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Fig. 3.47 Summarizing interpoint interaction with the K function. Top row: examples of point
pattern datasets showing (from left to right) regular, random, and clustered patterns. Bottom row:
corresponding empirical K functions

One important example is the empirical K-function, essentially a renormalised
empirical distribution of the distances between all pairs of points in x:

OK.r/ D 1

O�2�.W /
X
i

X
j¤i

e.xi ; xj ; r/1.kxi � xj k � r/; r � 0; (3.18)

where typically O�2 D n.n � 1/=�.W /2, and e.u; v; r/ is an edge correction term,
depending on the choice of technique.

The empiricalK-function is a useful exploratory tool for distinguishing between
different types of spatial pattern. See Fig. 3.47.

If x is a realisation of a stationary point process� , then OK.r/ is an approximately
unbiased estimator of the (“theoretical”) K-function of � , defined in Sect. 4.2.1,
formula (4.14).

Model-Fitting

Summary statistics such as the K-function, are normally used for exploratory data
analysis. Summary statistics can also be used for inference, especially for parameter
estimation:

1. From the point pattern data, compute the estimate OK.r/ of the K function.
2. For each possible value of � , determine the K-function of the model,K�.r/.
3. Select the value of � for which K� is closest to OK . For example, choose



108 A. Baddeley

0.00 0.05 0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

0.20

r
K

(r
)

empirical
model
Poisson

Fig. 3.48 Minimum contrast estimation. (a) Subset of Strauss’s redwood data. (b) Minimum
contrast fit of Thomas model using K function

O� D argmin
Z R

0

j OK.r/ �K�.r/jpdr

This is called the “method of minimum contrast” [152, 406].

Minimum Contrast for Poisson Cluster Processes

For a Poisson cluster process, the “cluster formula” (3.5) yields an expression for
the K-function.

Example 3.36 (Minimum contrast for Thomas process). For the modified Thomas
process with parent intensity �, with a Pois.�/ number of offspring at Gaussian
locations with standard deviation 	 , the intensity is � D �� and the K-function is
[265, p. 375 ff.]

K.r/ D �r2 C 1

�

�
1 � exp

�
� r2

4	2

�	
:

We can estimate the parameters �; 	 by minimum contrast (Fig. 3.48), then estimate
� by O� D O�= O� where O� is the usual estimate of intensity, see e.g. Example 3.29.

Monte Carlo Minimum Contrast

For a general point process model with parameter � , we do not know K� in closed
form. It can usually be estimated by simulation. Hence the discrepancy

D.�/ D
Z R

0

j OK.r/ �K�.r/jpdr

can be estimated by simulation, requiring a separate suite of simulations for each � .
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3.3.4 Estimating Equations and Maximum Pseudolikelihood

Score Equation

Under regularity conditions, the MLE is the solution of the score equation

U.� I x/ D 0

where U.� I x/ D @
@�

logf .xI �/. Study of the asymptotic behaviour of O� depends
on properties of the score function U . In particular the special property

E� .U.� I X// D 0

is essential in proving that the MLE is consistent and asymptotically normal [134,
p. 107ff.].

Estimating Equations

More generally we may consider an estimator Q� that is the solution of an estimating
equation

g.� I x/ D 0

where g is some estimating function that we choose. If g has the analogous property

E� .g.� I X// D 0

we say that g is an unbiased estimating function. Note that this terminology does
not mean that Q� is unbiased.

Takacs–Fiksel Estimators

For a point process model depending on parameter � , let ��.u; x/ be its conditional
intensity. The GNZ formula states

E

 X
i

h.xi ; x n fxi g/
!

D E
�Z

h.u; x/��.u; x/du

�

for “any” function h. Hence

g.� I x/ D
X
i

h.xi ; x n fxi g/�
Z
h.u; x/��.u; x/du

is an unbiased estimating function, for any choice of h. This approach to estimation
is called the Takacs–Fiksel method.
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Example 3.37. For h � 1 we get the unbiased estimating function

g.� I x/ D jxj �
Z
W

��.u; x/du

which matches the observed number of points jxj to a quantity that estimates the
expected number of points if the model is true.

Example 3.38. For h.u; x/D t.u; x/D P
i 1.ku � xik < r/, the estimating func-

tion is

g.� I x/ D 2s.x/�
Z
W

t.u; x/��.u; x/du:

Note that s.x/ is closely related to OK.r/, so this is analogous to the minimum
contrast method.

If ��.uI x/ is easily computable (e.g. pairwise interaction models), then the Takacs–
Fiksel estimating function

g.� I x/ D
X
i

h.xi ; x n fxi g/�
Z
h.u; x/��.u; x/du

will be easily computable, for suitable choices of h. Hence it will be relatively easy
to find Q� . However it is unclear which functions h we should choose.

Maximum Pseudolikelihood

Recall that the likelihood of a Poisson process with intensity function ��.u/ is

f .xI �/ D
2
4 jxjY
iD1

�� .xi /

3
5 exp

�Z
W

.1 � ��.u//du

	
:

For non-Poisson processes, Besag [65, 66] proposed replacing the likelihood by the
following.

Definition 3.30. For a point process model with (Papangelou) conditional intensity
��.uI x/ depending on a parameter � , the pseudolikelihood function is

PL.�/ D
jxjY
iD1

�� .xi I x/ exp

�
�
Z
W

��.uI x/du

	
:

The maximum pseudolikelihood estimate (MPLE) is

L� D argmaxPL.�/

Up to a constant factor, the pseudolikelihood is identical to the likelihood if the
model is Poisson, and approximately equal to the likelihood if the model is close to
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Poisson. The pseudolikelihood is not a likelihood, in general (and is used only as a
function of �) but is supported by “deep statistical intuition”.

Example 3.39. Consider a loglinear Gibbs model

f .xI �/ D ˛.�/ expf� TV.x/g:
The conditional intensity is

��.u; x/ D f .x [ fug/
f .x/

D expf� TT .u; x/g

where T .u; x/ D V.x [ fug/� V.x/. Then

log PL.�/ D
X
i

� TT .xi ; x/�
Z
W

expf� TT .u; x/gdu:

The “pseudoscore” is

PU.�/ D @log PL.�/

@�

D
X
i

T .xi ; x/�
Z
W

T .u; x/ expf� TT .u; x/gdu

D
X
i

T .xi ; x/�
Z
W

T .u; x/��.u; x/du:

This is also the Takacs–Fiksel estimating function based on T .u; x/.

Exercise 3.22. Write down the pseudolikelihood and pseudoscore of the Strauss
process (Example 3.34). Simplify them as far as possible.

Clyde and Strauss [127] and Baddeley and Turner [26] proposed algorithms for
maximising the pseudolikelihood, in which the window W is divided into disjoint
subsets Q1; : : : ;Qm, the numbers nj DN.x \ Qj / of points in each subset are
counted, and the pseudolikelihood is approximated by the likelihood of a Poisson
loglinear regression, which can be maximised using standard software.

Example 3.40. Figure 3.49 is a simulated realization of the Strauss process with
ˇ D 100, � D 0:7, r D 0:05 in unit square. The Strauss parameters were fitted by
MLE and MPLE yielding the following results.

Method ˇ � Time taken

True 100 0.70
MLE 132 0.60 5 s per 1,000 samples
MPLE 102 0.68 0.1 s
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Fig. 3.49 Simulated realization of Strauss process

Time-Invariance Estimating Equations

It remains to understand why (in a more fundamental sense) maximum pseudolike-
lihood works. For this, we recall that in Sect. 3.2, we saw that a Gibbs point process
X can be represented as the equilibrium distribution of a spatial birth-and-death
process fYn; n D 0; 1; 2; : : :g.

Consider a time-homogeneous Markov chain fYn; n D 0; 1; 2; : : :g on a finite
state space, with transition probability matrix P and equilibrium distribution
vector � . The generator is the matrix ADP � I where I is the identity matrix.
An important fact is

�A D 0

because
�A D �.P � I / D �P � �I D � � � D 0:

Definition 3.31. Let fYn; n D 0; 1; 2; : : :g be a time-homogeneous Markov chain
with states in X . Let F be a suitable class of functions S W X ! R

k . The generator
of the chain is the operator A on F defined by

.AS/.x/ D E.S.Y1/ j Y0 D x/� S.x/

for all x 2 X .

Thus .AS/.x/ is the expected change in the value of the function S occurring in
one step of the chain, starting from state x.

Lemma 3.15. Let fYn; n D 0; 1; 2; : : :g be a time-homogeneous Markov chain
with states in X which has equilibrium distribution � . Let A be its generator. If
X is a random element of X with distribution �, then for any S 2 F

E..AS/.X// D 0: (3.19)

Proof. Let fY�
ng be a version of the chain which starts in state X, i.e. Y�

0 D X. Since
X is drawn from the equilibrium distribution �, the distribution of Y�

1 is also � .
Hence



3 Spatial Point Patterns: Models and Statistics 113

E..AS/.X// D E.E.S.Y�
1 / j Y0 D X/� S.X// D E.S.Y�

1 // � E.S.X// D 0:

The proof is complete. ut
Definition 3.32. Consider a model for a point process X with distribution ��

governed by a parameter � . For each � let .Y.�/
n ; n D 0; 1; 2; : : :/ be a spatial birth-

and-death process whose equilibrium distribution is �� . Let A� be the generator.
Then for any S 2 F

g.�; x/ D .A�S/.x/ (3.20)

is an unbiased estimating equation for � called the time-invariance estimating
equation [29].

More specifically, let the birth–death process have death probabilities D.x; xi /
and birth density b.x; u/. Then the generator is

.AS/.x/ D
X
i

D.x; xi /T .xi ; x/�
Z
W

b.x; u/T .u; x/du

where for any integrable function of point patterns S.x/ we define

T .u; x/ D S.x [ fug/� S.x n fug/:

In particular if X is the point process with density f .xI �/ / expf�S.x/g and we
choose .Yt / to be the Gibbs sampler

D.x; xi / D 1; b.x; u/ D ��.u; x/

we obtain

.AS/.x/ D
X
i

T .xi ; x/�
Z
W

T .u; x/��.x; u/du (3.21)

equal to the pseudoscore.
That is, maximum pseudolikelihood and other estimation methods are (math-

ematically) associated with MCMC samplers through time-invariance estimation.
The following table summarises some of the main examples, where “canonical”
refers to the canonical sufficient statistic V in an exponential family (Example 3.39).

Sampler Y Statistic S Time-invariance estimator

Gibbs sampler Canonical Maximum pseudolikelihood
i.i.d. sampler Canonical Maximum likelihood
i.i.d. sampler K-function Minimum contrast

See [29] for details.
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Literature and Software

For further technical background, we recommend [140, 154, 369]. Recent surveys
of statistical methodology for point patterns are [180,265]. Software for performing
the simulations and data analysis is available [27] along with detailed notes [23].



Chapter 4
Asymptotic Methods in Statistics of Random
Point Processes

Lothar Heinrich

Abstract First we put together basic definitions and fundamental facts and results
from the theory of (un)marked point processes defined on Euclidean spaces R

d .
We introduce the notion random marked point process together with the concept of
Palm distributions in a rigorous way followed by the definitions of factorial moment
and cumulant measures and characteristics related with them. In the second part
we define a variety of estimators of second-order characteristics and other so-called
summary statistics of stationary point processes based on observations on a “convex
averaging sequence” of windows fWn; n 2 Ng. Although all these (mostly edge-
corrected) estimators make sense for fixed bounded windows our main issue is to
study their behaviour whenWn grows unboundedly as n ! 1. The first problem of
large-domain statistics is to find conditions ensuring strong or at least mean-square
consistency as n ! 1 under ergodicity or other mild mixing conditions put on the
underlying point process. The third part contains weak convergence results obtained
by exhausting strong mixing conditions or even m-dependence of spatial random
fields generated by Poisson-based point processes. To illustrate the usefulness
of asymptotic methods we give two Kolmogorov–Smirnov-type tests based on
K-functions to check complete spatial randomness of a given point pattern in R

d .

4.1 Marked Point Processes: An Introduction

First we present a rigorous definition of the marked point process on Euclidean
spaces with marks in some Polish space and formulate an existence theorem for
marked point processes based on their finite-dimensional distributions. Further,
all essential notions and tools of point process theory such as factorial moment
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and cumulant measures with their densities and reduced versions as well as the
machinery of Palm distributions in the marked and unmarked case are considered
in detail.

4.1.1 Marked Point Processes: Definitions and Basic Facts

Point processes are mathematical models for irregular point patterns formed by
randomly scattered points in some locally compact Hausdorff space. Throughout
this chapter, this space will be the Euclidean space R

d of dimension d 2 N. In
many applications to each point Xi of the pattern a further random element Mi ,
called mark, can be assigned which carries additional information and may take
values in a rather general mark space M equipped with an appropriate 	-algebra
M. For example, for d D 1, the Xi ’s could be arrival times of customers and the
Mi ’s their sojourn times in a queueing system and, for d D 2, one can interpret the
Xi ’s as locations of trees in a forest with the associated random vectors Mi of stem
diameter, stem height and distance to the nearest-neighbour tree. In this way we
are led to the notion of a (random) marked point process which can be adequately
modeled as random counting measure �M.�/ on Cartesian products B � L, which
gives the total number of points in a bounded subsetB of Rd whose marks belong to
a set of marksL 
 M. To be precise, we need some further notation. Let NM denote
the set of locally finite counting measures  .�/ on the measurable product space
.Rd � M; B.Rd / ˝ M/, i.e.  2 NM is a 	-additive set function on B.Rd /˝ M
taking on non-negative integer values such that  .B � M/ < 1 for any bounded
Borel set B 2 B.Rd /. We then define NM to be the smallest 	-algebra containing
all sets f 2 NM W  .B � L/ D ng for n 2 N [ f0g, any bounded B 2 B.Rd /
and L 2 M. Finally, let .˝;F ;P/ be a hypothetical probability space on which all
subsequent random elements will be defined.

Definition 4.1. A .F ;NM/-measurable mapping

�M j .˝;F ;P/ 7! .NM;NM/; ˝ 3 ! 7! �M.!; �/ 2 NM

is said to be a (random) marked point process (briefly: MPP) on R
d with mark space

.M;M/. In other words, a MPP �M.�/ (! will be mostly suppressed) is a random
locally finite counting measure on .Rd � M;B.Rd /˝ M/.

The probability measure PM.A/ D P.f! 2 ˝ W �M.!; �/ 2 Ag/ for A 2 NM

induced on .NM;NM/ is called the distribution of �M—briefly expressed by �M 	
PM. Here and in what follows we put�.�/ D �M.��M/ to denote the corresponding
unmarked point process and write in general � 	 P to indicate point processes
without marks. One often uses the notation

�M D
X
i�1

ı.Xi ;Mi / or � D
X
i�1

ıXi ; (4.1)
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where ıx.A/ D 1 for x 2 A and ıx.A/ D 0 for x … A (Dirac measure).
Note that due to the local finiteness of �M there are at most countably many
atoms but each atom occurs with random (P-a.s. finite) multiplicity. The indexing
in (4.1) does not need to be unique and the Xi ’s occur in the sums according to
their multiplicity. In accordance with the general theory of random processes our
next result formulates an analogue to Kolmogorov’s extension theorem stating the
existence of a probability space .˝;F ;P/ in Definition 4.1 in case of Polish mark
spaces M given the family of finite-dimensional distributions P.�M.B1 � L1/ D
n1; : : : ; �M.Bk � Lk/ D nk/.

Theorem 4.1. Let M be a Polish space equipped with the corresponding Borel-
	-algebra B.M/ generated by a family M0 of subsets in M such that S D˚ d�
iD1Œai ; bi / � L W �1 < ai � bi < 1 ; L 2 M0

�
is a semi-ring which generates

the ring of bounded Borel sets in R
d � M and each bounded Borel set X � R

d � M
can be covered by a finite sequence S1; : : : ; Sm 2 S.

For any finite sequence of pairwise disjoint B1 �L1; : : : ; Bk �Lk 2 S define the
distribution

pn1;:::;nk .B1 �L1; : : : ; Bk �Lk/ for n1; : : : ; nk D 0; 1; 2; : : :

of a k-dimensional random vector with non-negative integer-valued components.
Then there exists a unique probability measure PM on the measurable space

.NM;NM/ with finite-dimensional distributions

PM.f 2 NM W  .Bj � Lj / D nj ; j D 1; : : : ; kg/ D pn1;:::;nk .B1 � L1; : : : ; Bk � Lk/

for n1; : : : ; nk 2 N [ f0g and any k 2 N , if the following conditions for the
family of probabilities pn1;:::;nk .B1 � L1; : : : ; Bk �Lk/ are satisfied:

1. Symmetry:

pn1;:::;nk .B1 � L1; : : : ; Bk � Lk/ D pn�.1/;:::;n�.k/ .B�.1/ � L�.1/; : : : ; B�.k/ � L�.k//

for any permutation � W f1; : : : ; kg 7! f1; : : : ; kg ,
2. Consistency:

1X
nD0

pn1;:::;nk�1;n.B1 � L1; : : : ; Bk�1 � Lk�1; Bk � Lk/

D pn1;:::;nk�1
.B1 � L1; : : : ; Bk�1 �Lk�1/ ;

3. Additivity: If Bj � Lj [ � � � [ Bk � Lk 2 S , then
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X
njC���CnkDn
nj ;:::;nk�0

pn1;:::nj�1;nj ;:::;nk .B1 �L1; : : : ; Bj�1 �Lj�1; Bj �Lj ; : : : ; Bk � Lk/

D pn1;:::;nj�1;n.B1 �L1; : : : ; Bj�1 �Lj�1; .Bj �Lj [ � � � [ Bk � Lk//

for j D 1; : : : ; k.
4. Continuity: For any sequence of pairwise disjoint sets B.n/

j � L.n/j 2 S for j D
1; : : : ; kn with kn " 1 satisfying

Skn
jD1.B

.n/
j �L.n/j / # ; , it holds p0;:::;0.B

.n/
1 �

L
.n/
1 ; : : : ; B

.n/

kn
� L.n/kn / " 1 as n ! 1 .

If M D fmg consists of a single (or at most finitely many) element(s), then the
latter condition can be replaced by

lim
n!1 p0.

j�1�
iD1Œai ; bi / � Œxj � 1

n
; xj / � d�

iDjC1Œai ; bi / � fmg/ D 1

for all .x1; : : : ; xd /
> 2 R

d and � 1 < ai < bi < 1 ; i D 1; : : : ; d :

This allows a canonical choice of the probability space .˝;F ;P/ mapping �M :

˝ WD NM; F WD NM; P WD PM;  7! �M. ; �/ WD  .�/ (identical mapping) :

Remark 4.1. There exists a metric � in the set NM such that the metric space
.NM; �/ is separable and complete whose Borel-	-algebra B.NM/ coincides with
NM . This allows to introduce the notion of weak convergence of MPP’s in the usual
way, see [69].

To prove Theorem 4.1 one has only to reformulate the proof of a corresponding
result for (unmarked) PP’s on Polish spaces in [346]. Readers interested in more
background of and a rigouros introduction to the theory of marked and unmarked
PP’s are referred to the two-volume monograph [140]. Less technical approaches
combined with statistics of point processes are presented in [265, 489] and in the
survey papers [22, 488]. In the following we reduce the rigour and in particular
measurability questions will be not considered.

An advantage of the counting measure approach to point processes (in contrast
to modelling with discrete random closed sets) consists in catching random multi-
plicities of the point or atoms which is important in several fields of application.
For example, the description of batch arrivals in queueing systems or of end-points
of edges in planar random tessellations requires multiplicities of points. On the
other hand, for quite a few point processes in particular for the upmost occurring
in stochastic geometry it is natural to assume that at most one point occurs in any
x 2 R

d , more precisely

PM. f 2 NM W  .fxg � M/ � 1; 8 x 2 R
d g / D 1 :
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MPP’s �M 	 PM satisfying the later condition are called simple. In view of (4.1)
we get supp.�M/ D f.Xi ;Mi/ W i 2 Ng for the support set of a simple MPP
�M which motivates the somewhat loose writing �M D f.Xi ;Mi / W i 2 Ng . By
the P-a.s. local boundedness of the counting measure �M its support set has no
accumulation point in R

d and can therefore be considered as a discrete random
closed set. The characterization of distributions of random closed sets � by the
family of hitting probabilities P.� \K ¤ ;/ for any compact set K � R

d leads to
the following pendant to Theorem 4.1:

Theorem 4.2. Let �M 	 PM be a simple MPP on R
d with Polish mark space M.

Then the distribution PM is completely determined by the void probabilities

P.�M.X/ D 0/ D PM. f 2 NM W  .X/ D 0 g /

for all compact X � R
d � M .

For the sake of simplicity we shall consider only simple MPP’s after the introductory
Sect. 4.1.1.

The simplest numerical characteristic of a MPP �M 	 PM describes the mean
number of points in bounded sets B 2 B.Rd / having marks in an arbitrary set
L 2 B.M/. In this way we obtain the intensity measure �M (on B.Rd / ˝ B.M/)
defined by

�M.B �L/ D E
�X
i�1

1. .Xi ;Mi/ 2 B � L/
�

D
Z

NM

 .B � L/PM.d / (4.2)

provided that �.B/ WD �M.B � M/ < 1 for any bounded B 2 B.Rd / expressing
the local finiteness of �M. By Theorem 4.1 we are now in a position to define
the marked Poisson process �M 	 ˘�M with a given locally finite intensity
measure�M:

Definition 4.2. A marked Poisson process �M 	 ˘�M (more precisely its distribu-
tion) is completely determined by the following two conditions:

1. �M.B1 �L1/; : : : ; �M.Bk �Lk/ are mutually independent random variables for
pairwise disjoint Bj � Lj 2 B.Rd / � B.M/ with bounded Bj for j D 1; : : : ; k

and k 2 N.
2. �M.B � L/ is Poisson distributed with mean �M.B � L/ for any B � L 2

B.Rd / � B.M/ with bounded B .

Remark 4.2. Since �M.B � L/ � �.B/ there exists (by the Radon–Nikodym
theorem and disintegration arguments) a family fQx

M; x 2 R
d g of (regular)

conditional distributions on .M;B.M// such that�M.B�L/ D R
Rd
Qx

M.L/�.dx/ ,
which justifies the interpretation Qx

M.L/ D P.Mi 2 L j Xi D x /. It turns out
that �M 	 ˘�M can be obtained from an unmarked Poisson process � 	 ˘�

with intensity measure � by location-dependent, independent marking, that is, to
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each atom Xi of � located in x 2 R
d the mark Mi is assigned according to the

probability law Qx
M independent of the location of all other atoms of � and also

independent of all other marks even those assigned to further atoms located in x (if
�.fxg/ > 1/.
Remark 4.3. A marked Poisson process �M 	 ˘�M is simple iff the intensity
measure�.�/ is diffuse, i.e. �M.fxg � M/ D 0 for all x 2 R

d , see [346].

Remark 4.4. The conditions (1) and (2) in the above definition of �M 	 ˘�M can
be expressed equivalently by means of the characteristic function of the random
vector .�M.B1 � L1/; : : : ; �M.Bk � Lk// as follows: For any k 2 N, any pairwise
disjoint B1 �L1; : : : ; Bk � Lk 2 B.Rd / � B.M/ and all u1; : : : ; uk 2 R

d

E expf i
kX

jD1
uj �M.Bj � Lj / g D

kY
jD1

expf�M.Bj � Lj / . ei uj � 1 /g : (4.3)

Next, we give an elementary explicit construction of an unmarked Poisson pro-
cess� 	 ˘� with locally finite intensity measure�.�/ , see [102]. This construction
is also the basis for simulations of Poisson processes in bounded Borel sets.

Let fKm; m 2 Ng be a partition of Rd into bounded Borel sets. Consider an array
of independent random variables f�m;Xmj gm;j2N defined on .˝;F ;P/ such that �m
and Xmj take values in ZC and R

d respectively, namely,

1. �m is Poisson distributed with mean�.Km/ (briefly �m 	 Pois.�.Km//).

2. P.Xmj 2 C/ D
(
�.C \Km/=�.Km/; �.Km/ ¤ 0;

0; otherwise
for any C 2 B.Rd / .

Here Y 	 Pois.0/means that Y � 0. Clearly, P.Xmj 2 C/ D P.Xmj 2 C\Km/

for m; j 2 N. Note that the random variables Xmj are uniformly distributed on Km

if �.Km/ is a multiple of �d .Km/ .
For any B 2 B.Rd / andm 2 N put

�m.B/ WD
�mX
jD1

1.Xmj 2 B/ and �.B/ WD
1X
mD1

�m.B/ : (4.4)

Obviously, �m.B/ is a random variable for each m 2 N and any B 2 B.Rd /
such that

P. 0 � �m.B/ � �m < 1 / D 1 for any B 2 B.Rd / ; m 2 N :

Moreover, it turns out that �.�/ is a locally finite random counting measure.

Theorem 4.3. Let � be a locally finite measure on .Rd ;B.Rd //. For any par-
tition of R

d into bounded Borel sets Km, m 2 N, the family of non-negative,
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integer-valued random variables f�.B/; B 2 B.Rd /g introduced in (4.4) defines
an unmarked Poisson process with intensity measure �.�/ .

Proof. For any m; k 2 N consider pairwise disjoint Borel sets B1; : : : ; Bk � Km.
Then �.Br/ D �m.Br / for r D 1; : : : ; k and it follows that

E expfi.u1 �m.B1/C : : :C uk �m.Bk//g

D
1X
nD0

E
�

exp
n
i

nX
jD1

�
u1 1.Xmj 2 B1/C : : :C uk 1.Xmj 2 Bk/

�o
1.�m D n/

�

D
1X
nD0

'n.u1; : : : ; uk/
�.Km/

n

nŠ
e��.Km/; (4.5)

where u1; : : : ; uk 2 R
1 and 'n.u1; : : : ; uk/ is the characteristic function of the

random vector Yn D .Yn1; : : : ; Ynk/ with components Ynr D Pn
jD1 1.Xmj 2 Br/

for r D 1; : : : ; k.
By setting Yn0 D Pn

jD1 1.Xmj 2 B0/ for B0 D Km n [n
rD1Br we get a multi-

nomially distributed random vector .Yn0; Yn1; : : : ; Ynk/ with success probabilities
pr D P.Xmj 2 Br/ D �.Br/=�.Km/, r D 0; 1; : : : ; k , i.e.,

P.Yn0 D l0; Yn1 D l1; : : : ; Ynk D lk/ D nŠ

l0Š l1Š : : : lkŠ
p
l0
0 p

l1
1 : : : p

lk
k

for l0; l1; : : : ; lk � 0 and
Pk

rD0 lr D n. Hence, �n.u0; u1; : : : ; uk/ D . p0 ei u0 C
p1 ei u1 C : : : C pk ei uk /n; u0; : : : ; uk 2 R

1 is the characteristic function of
.Yn0; Yn1; : : : ; Ynk/ and we obtain

'n.u1; : : : ; uk/ D �n.0; u1; : : : ; uk/ D . p0 C p1 ei u1 C : : :C pk ei uk /n:

Using (4.5) and the latter relation together with p0 D 1 � p1 � : : : � pk we may
write

E expfi
kX
rD1

ur �m.Br /g D e��.Km/
1X
nD0

1

nŠ
Œ�.Km/.p0 C p1 ei u1 C : : :C pk ei uk / 
n

D expf�.Km/.p1.eiu1 � 1/C : : :C pk.e
iuk � 1//g

D
kY
rD1

expf�.Br /.eiur � 1/g :

This, however, is just (4.3) (rewritten for the unmarked case) for pairwise disjoint
Borel sets B1; : : : ; Bk � Km .
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Now, consider pairwise disjoint bounded B1; : : : ; Bk 2 B.Rd / for k 2 N so that

.�.B1/; : : : ; �.Bk// D
1X
mD1

.�m.B1 \Km/; : : : ; �m.Bk \Km// :

Obviously, .�m.B1\Km/; : : : ; �m.Bk\Km//m2N forms a sequence of independent
random vectors with independent components as we have proved above. Since
�.Br/ D P1

mD1 �m.Br \Km/ and the summands are nonnegative, it follows that

E�.Br / D
1X
mD1

E�m.Br \Km/ D
1X
mD1

�.Br \Km/ D �.Br/ < 1

implying P. �.Br/ < 1 / D 1 for r D 1; : : : ; k; and

� nX
mD1

�m.B1 \Km/; : : : ;

nX
mD1

�m.Bk \Km/
�

P�a:s:�!
n!1 .�.B1/; : : : ; �.Bk// :

Since, for each fixed n 2 N, the sums at the left-hand side of the latter relation are
mutually independent, it follows that the limits �.B1/; : : : ; �.Bk/ are independent
as well. Finally, in view of the fact that

nX
mD1

�m.Br \Km/ 	 Pois
� nX
mD1

�.Br \Km/
�

we conclude that �.Br/ 	 Pois.�.Br// for r D 1; : : : ; k, which completes the
proof of Theorem 4.3. ut

Next, we introduce the translation- and rotation operator Tx resp. RO j NM 7!
NM by

.Tx /.B �L/ WD  . .B C x/ �L/ resp. .RO /.B � L/ WD  .O B � L/

for  2 NM ; x 2 R
d and O 2 SOd D group of orthogonal d � d -matrices with

determinant equal to 1. Then the MPP �M 	 PM is said to be (strictly) stationary or
homogeneous if, for all x 2 R

d and bounded Borel sets B1; : : : ; Bk ,

Tx �M
dD �M ” .�M..Bj C x/ � Lj //kjD1

dD .�M.Bj � Lj //kjD1 ; k 2 N ;

and isotropic if, for all O 2 SOd and bounded Borel sets B1; : : : ; Bk ,

RO �M
dD �M ” .�M.OBj � Lj //kjD1

dD .�M.Bj � Lj //kjD1 ; k 2 N :

A MPP is said to be motion-invariant if it is both stationary and isotropic.
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The stationarity of �M 	 PM implies the shift-invariance of the locally finite
measure�M..�/ �L/ for any fixed L 2 B.M/ provided the intensity

� WD E�M.Œ0; 1

d � M/

of the unmarked point process � 	 P exists. This entails that the intensity measure
�M.B �L/ is a multiple of the Lebesgue-measure �d .B/ which can be rewritten as

�M.B � L/ D � �d .B/Q
o
M.L/ for B 2 B.Rd /; L 2 B.M/ ; (4.6)

where Qo
M is called the distribution of the typical mark or plainly the mark

distribution.

4.1.2 Higher-Order Moment Measures and Palm Distributions

From now on we suppose that the MPP �M D P
i�1 ı.Xi ;Mi / 	 PM is simple. Under

the additional assumption E..�M.B � M//k/ < 1 for some integer k � 2 and
any bounded Borel set B � R

d we define the factorial moment measure ˛.k/M on
B..Rd � M/k/ by

˛
.k/

M .
k�

jD1.Bj � Lj // WD E
� X¤

i1;:::;ik�1

kY
jD1

1..Xij ;Mij / 2 Bj � Lj /
�

which is dominated by the kth-order factorial moment measure

˛.k/.
k�

jD1Bj / D ˛
.k/

M .
k�

jD1.Bj � M//

of the unmarked simple point process � D P
i�1 ıXi 	 P . Note that the sum

P¤
stretches over pairwise distinct indices indicated under the sum sign. If the sum is
taken over all k-tuples of indices we get the (ordinary) kth-order moment measure.

For any fixed L1; : : : ; Lk 2 B.M/ we obtain as Radon–Nikodym derivative
a family of distributions Q

x1;:::;xk
M .L1 � � � � � Lk/ (for ˛.k/-almost every

.x1; : : : ; xk/
> 2 .Rd /k) satisfying

˛
.k/

M .
k�

jD1.Bj � Lj // D
Z

B1

� � �
Z

Bk

Q
x1;:::;xk
M .

k�
jD1Lj / ˛

.k/.d.x1; : : : ; xk// ;

where the integrand is interpreted as (regular) conditional distribution

Q
x1;:::;xk
M .

k�
jD1Lj / D P.M1 2 L1; : : : ;Mk 2 Lk j X1 D x1; : : : ; Xk D xk/ :
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Definition 4.3. The stochastic kernel Qx1;:::;xk
M .A/ (which is defined to be B.Rdk/-

measurable in .x1; : : : ; xk/> 2 .Rd /k and a probability measure in A 2 B.Mk/) is
called kth-order or k-point Palm mark distribution of the MPP �M 	 PM.

If �M 	 PM is stationary then the factorial moment measures ˛.k/M as well as ˛.k/

are invariant under diagonal shifts, i.e.,

˛
.k/

M

� k�
jD1. .Bj C x/ � Lj /

� D ˛
.k/

M

� k�
jD1. Bj � Lj /

�
for all x 2 R

d ;

which in turn implies Qx1Cx;:::;xkCx
M .A/ D Q

x1;:::;xk
M .A/ for all x 2 R

d . By
disintegration with respect to the Lebesgue-measure �d (see [140, Vol. II] for
the more details) we can introduce so-called reduced kth-order factorial moment
measures ˛.k/M;red and ˛.k/red by

˛
.k/

M

� k�
jD1. Bj �Lj /

� D �

Z

B1

˛
.k/

M;red

�
L1 � k�

jD2 ..Bj � x/ �Lj /
�
dx ;

where � > 0 stands for the intensity of � 	 P which already occurred in (4.6).

Putting ˛.k/red
� k�
jD2 Bj

� D ˛
.k/

M;red

�
M � k�

jD2 ..Bj � x/� M/
�

we obtain an analogous

relation between ˛.k/ and ˛.k/red for the unmarked PP � 	 P . Rewriting this relation
as integrals over indicator functions we are led by algebraic induction to

Z

.Rd /k

f .x1; x2; : : : ; xk/˛
.k/
�
d.x1; x2; : : : ; xk/

�

D �

Z

Rd

Z

.Rd /k�1

f .x1; x2 C x1; : : : ; xk C x1/˛
.k/

red

�
d.x2; : : : ; xk/

�
dx1 :

for any non-negative B.Rdk/-measurable function f W .Rd /k 7! R
1. Setting

f .x1; x2; : : : ; xk/ D 1.x1 2 B/ 1..x2 � x1; : : : ; xk � x1/ 2 C/ for an arbitrary
bounded set C 2 B.Rd.k�1// and any B 2 B.Rd / with �d .B/ D 1, for example
B D Œ0; 1
d , we arrive at the formula

˛
.k/

red
. C /

D 1

�

Z

.Rd /k

1.x1 2 B/ 1..x2 � x1; : : : ; xk � x1/ 2 C/˛.k/�d.x1; x2; : : : ; xk/� (4.7)

which again confirms that ˛.k/red is a locally-finite measure on .Rd.k�1/;B.Rd.k�1///.
Below it will be shown that ˛.k/red coincides with the .k�1/st-order factorial moment
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measure with respect to the reduced Palm distribution. It should be mentioned that
both factorial moment measures ˛.k/ and ˛.k/red are symmetric in their components

and the reduction is possible in any component of ˛.k/ yielding ˛.k/red .�C/ D
˛
.k/

red .C / . Furthermore, the above reduction and therefore the definition of ˛.k/red
needs only the diagonal shift-invariance of ˛.k/ (and of the intensity measure �)
and not the shift-invariance of the finite-dimensional distributions of all orders and
even not of the kth order.

This fact gives rise to consider weaker notions of kth-order (moment) stationar-
ity, see Sect. 4.2.1 for k D 2 .

A rather technical, but useful tool in expressing and studying dependences
between distant parts of a stationary point pattern is based on so-called (factorial)
cumulant measures of both marked and unmarked PP’s. The origins of these
characteristics can be traced back up to the beginning of the systematic study of
random processes, random fields and particle configurations in statistical mechanics.
In probability theory cumulants of random variables or vectors are defined by
logarithmic derivatives of the corresponding moment-generating or characteristic
functions. Along this line cumulant measures of point processes are defined by
mixed higher-order partial derivatives of the logarithm of the probability generating
functional of the point process, see [140, Chap. 9]. This approach is the background
of the following

Definition 4.4. For any fixed L1; : : : ; Lk 2 B.M/ and bounded B1; : : : ; Bk 2
B.Rd / we define the kth-order factorial cumulant measure �.k/M of the MPP �M 	
PM by

�
.k/

M

� k�
jD1.Bj �Lj /

� WD
kX

jD1
.�1/j�1.j � 1/Š

X
K1[���[Kj
Df1;:::;kg

jY
rD1

˛
.jKr j/
M

� �
s2Kr

.Bs � Ls/
�
;

where the sum
P

K1[���[KjDf1;:::;kg is taken over all partitions of the set f1; : : : ; kg
into j non-empty sets K1; : : : ; Kj and jKr j denotes the cardinality of Kr .

In general, �.k/M is a locally finite signed measure on B..Rd � M/k/ which in case

of a stationary MPP �M 	 PM can also be reduced in analogy to ˛.k/M which leads
to

�
.k/

M

� k�
jD1.Bj � Lj /

� D �

Z

B1

�
.k/

M;red

�
L1 � k�

jD2 ..Bj � x/ � Lj /
�
dx

By setting in the latter formulaL1 D : : : D Lk D M we obtain the corresponding
relationship between the kth-order factorial cumulant measure �.k/ and the reduced
kth-order factorial cumulant measure �.k/red of the unmarked point process � 	 P .
In the special case k D 2 we have
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�
.2/

M .B1 � L1 � B2 �L2/ D ˛
.2/

M .B1� L1� B2� L2/��M.B1� L1/�M.B2� L2/

�
.2/

M;red .L1 � B2 �L2/ D ˛
.2/

M;red .L1 � B2 � L2/� �Qo
M.L1/Q

o
M.L2/ �d .B2/ :

Finally, if in addition ˛.k/ is absolutely continuous with respect to the Lebesgue
measure �dk then the kth-order product density 
.k/ W R

d.k�1/ 7! Œ0;1
 and the
kth-order cumulant density c.k/ W Rd.k�1/ 7! Œ�1;1
 exist such that

˛
.k/

red .C / D
Z

C


.k/.x/ dx and �.k/red .C / D
Z

C

c.k/.x/ dx for C 2 B.Rd.k�1// :

The interpretation of 
.k/ as density of k-point subsets of stationary point
configurations is as follows:

P.�.dx1/ D 1; : : : ; �.dxk�1/ D 1 j�.fog/ D 1/ D 
.k/.x1; : : : ; xk�1/ dx1 � � � dxk�1 :

and in a similar way c.2/.x/ dx D P.�.dx/ D 1 j �.fog/ D 1/ � P.�.dx/ D 1/

for any x ¤ o.
Note that in statistical physics 
.k/.x1; : : : ; xk�1/ and c.k/.x1; : : : ; xk�1/ are

frequently used under the name kth-order correlation function resp. kth-order
truncated correlation function.

In some cases under slight additional assumptions the knowledge of the (fac-
torial) moment—or cumulant measures and their densities of any order determine
the distribution of point processes uniquely. So far this moment problem for point
processes is not completely solved. Another longstanding question which is still
unanswered to the best of the author’s knowledge is: Which properties of a locally-
finite measure on .Rdk;B.Rdk// are sufficient and necessary for being a kth-order
(factorial) moment measure of some unmarked point process � 	 P ?

In the simplest case of a Poisson process with given intensity measure we have
the following characterization:

Theorem 4.4. A MPP �M 	 PM with intensity measure �M is a marked Poisson
process, i.e. PM D ˘�M , iff

˛
.k/

M D �M � � � � ��M or equivalently �.k/M � 0 for any k � 2 :

For stationary unmarked PP’s with intensity � this means 
.k/.x/ D �k�1 or
equivalently c.k/.x/ � 0 for all x 2 R

d.k�1/ and any k � 2 .
If the marks are real-valued it is natural to consider the higher-order mixed

moments and mixed cumulants between marks conditional on their locations. For
a MPP with mark space M D R and k-point Palm mark distribution Qx1;:::;xk

M let
us define
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mp1;:::;pk .x1; : : : ; xk/ D
Z

Rk

m
p1
1 � � �mpk

k Q
x1;:::;xk
M .d.m1; : : : ; mk// for p1; : : : ; pk 2N :

For stationary MPP the function cmm.x/ D m1;1.o; x/ for x ¤ o has been
introduced by D. Stoyan in 1984 in order to describe spatial correlations of marks
by means of the mark correlation function kmm.r/ D cmm.x/=�

2 for kxk D r > 0 ,
where � D R

R1
mQo

M.dm/ denotes the mean value of the typical mark, see [265,
Chap. 5.3], for more details on the use and [438] for a thorough discussion of
this function. Kernel-type estimators of the function cmm.x/ and their asymptotic
properties including consistency and asymptotic normality have been studied in
[233] by imposing total variation conditions on higher-order reduced cumulant
measures �.k/M;red .

Finally, we give a short introduction to general Palm distributions of (marked)
point processes. We first consider a simple stationary unmarked point process
� 	 P with positive and finite intensity � D E�.Œ0; 1
d /. Let us define the
product measure �Š on .Rd � N ;B.Rd /˝ N/ by

�Š.B � A/ D 1

�

Z

N

X
x2s. /

1.x 2 B/ 1.Tx � ıo 2 A/ P.d /

for bounded B 2 B.Rd / and A 2 N , where the exclamation mark indicates that
the atom of Tx in the origin, i.e., the atom of  in x 2 R

d , is removed from each
counting measure  2 N ; s. / is shorthand for the support
supp. / D fx 2 R

d W  .fxg/ > 0g.
By the stationarity of � , that is P ı Tx D P for any x 2 R

d combined with
standard arguments from measure theory it is easily seen that

1. �Š. .B C x/ � A / D �Š. B � A / for any x 2 R
d .

2. Po Š.A/ WD �Š. Œ0; 1
d � A / for A 2 N is a probability measure on .N ;N/ .

which is concentrated on the subset N o D f 2 N W  .fog/ D 0g of counting
measures having no atom in the origin o and called the reduced Palm distribution of
� 	 P . As an immediate consequence of (1) and (2) we obtain the factorization

�Š.B � A/ D �d .B/ P
o Š.A/ for any fixed B � A 2 B.Rd / � N

which in turn implies, by algebraic induction, the Campbell–Mecke formula—also
known as refined Campbell theorem

Z

N

Z

Rd

f .x; Tx � ıo/  .dx/P.d / D �

Z

Rd

Z

N o

f .x;  /P o Š.d / dx (4.8)

for any non-negative B.Rd / ˝ N-measurable function f W R
d � N 7! R

1 . This
formula connects the stationary distribution P and the reduced Palm distribution
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Po Š in a one-to-one correspondence. Po Š.A/ can be interpreted (justified in a
rigorous sense by limit theorems, see [346]) as probability that � � ıo 2 A

conditional on the null event �.fog/ > 0 . Loosely speaking, Po Š describes the
stationary point pattern by an observer sitting in a “typical atom” shifted in the
origin.

To describe the distributional properties of stationary PP’s it is often more
effective to use Po Š rather than P , for example in case of recurrent, semi-Markov-
or infinitely divisible PP’s, see for example [346].

A crucial result in this direction is Slivnyak’s characterization of homogeneous
Poisson processes:

Theorem 4.5. A stationary (unmarked) PP � 	 P on R
d with intensity 0 < � <

1 is a Poisson process, i.e. P D ˘� iff P D Po Š .

As announced above we apply (4.8) to prove that, for any k � 2 , the kth-
order reduced factorial moment measure ˛.k/red is nothing else but the .k� 1/st-order
factorial moment measure w.r.t the reduced Palm distribution, formally written:

Z

.Rd /k�1

f .x2; : : : ; xk/ ˛
.k/

red .d.x2; : : : ; xk// D
Z

N o

X¤

x2;:::;xk2s. /
f .x2; : : : ; xk/ P

o Š.d /

for any non-negative Borel-measurable function f on R
d.k�1/ . For notational ease

we check this only for k D 2. From (4.7) and the very definition of ˛.2/ we get for
bounded B;C 2 B.Rd / with �d .B/ D 1 that

˛
.2/

red .C / D 1

�

Z

N

X¤

x;y2s. /
1.x 2 B/ 1.y � x 2 C/P.d / (4.9)

D 1

�

Z

N

X
x2s. /

1.x 2 B/ .Tx � ıo/.C /P.d / D
Z

N o

 .C /P o Š.d / :

Quite similarly, we can define reduced Palm distributions Po Š
L for simple

stationary MPP’s with respect to any fixed mark set L 2 M with Qo
M.L/ > 0.

For this we have to replace � by �M.Œ0; 1

d � L/ D �Qo

M.L/ which leads to the
following extension of (4.8):

�Qo
M.L/

Z

Rd

Z

N o
L

f .x; /P o ŠL .d /dx D
Z

NM

Z

Rd�L
f .x; Tx � ı.o;m// .d.x;m//PM.d /

for any non-negative, measurable function f on R
d � N , where N o

L D f 2 NM W
 .fog �L/ D 0g .

To include mark setsL and, in particular single marksm, withQo
M-measure zero,

we make use of the Radon–Nikodym derivative of the so-called reduced Campbell
measure C Š

M defined by
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C ŠM.B � L � A/ D
Z

NM

Z

Rd�M

1..x;m/ 2 B � L/1. � ı.x;m/ 2 A/ .d.x;m//PM.d /

with respect to the intensity measure �M.B � L/ D � �d .B/Q
o
M.L/. The

corresponding Radon–Nikodym density Px Š
m .A/ is called the reduced Palm dis-

tribution of �M 	 PM with respect to .x;m/ and can be heuristically interpreted
as conditional probability that � � ı.x;m/ 2 A given a marked point at x with
mark m. This interpretation remains also valid for non-stationary MPP’s and can
even be generalized in an appropriate way to k-point reduced Palm distributions
Px1;:::;xk Š
m1;:::;mk

.A/ of A 2 NM with respect to .x1;m1/; : : : ; .xk;mk/ with pairwise
distinct x1; : : : ; xk .

In the stationary case we get Px1;x2:::;xk Š
m1;:::;mk

.A/ D P
x1�xj ;:::;o;:::;xk�xj Š
m1;:::;mj ;:::;mk .T�xj A/ for

each j D 1; : : : ; k (due to the intrinsic symmetry), which, for k D 1, yields the
Campbell–Mecke-type formula

E
�X
i�1

f .Xi ;Mi ; TXi � � ı.o;Mi //
�

D
Z

NM

Z

Rd�M

f .x;m; Tx � ı.o;m// .d.x;m//PM.d /

D �

Z

Rd

Z

M

Z

NM

f .x;m;  /P o Šm .d /Q
o
M.dm/dx (4.10)

for any non-negative measurable function f on R
d � M � NM . Furthermore, this

formula can be extended for k � 2 to the following relationship involving the
k-point reduced Palm distribution, k-point Palm mark distribution and the k-order
reduced factorial moment measure introduced at the beginning of Sect. 4.1.2:

E
� X¤

i1;i2;:::;ik�1
fk.Xi1 ;Mi1 ;Xi2;Mi2 ; : : : ;Xik ;Mik ;TXi1 � � ı.o;Mi1 /

�
kX

jD2
ı.Xij ;Mij /

/
�

D �

Z

.Rd�M/k

Z

NM

fk.x1;m1; x2;m2; : : : ; xk;mk;  /P
o;x2;:::;xk Š
m1;m2;:::;mk

.d /

�˛.k/M;red .d.m1; x2;m2; : : : ; xk;mk// dx1

D �

Z

Rd

Z

Rd.k�1/

Z

Mk

Z

NM

fk.x1;m1; x2;m2; : : : ; xk;mk;  /P
o;x2;:::;xk Š
m1;m2;:::;mk

.d /

�Qo;x2;:::;xk
M .d.m1;m2; : : : ; mk// ˛

.k/

red .d.x2; : : : ; xk// dx1

for any non-negative measurable function fk on .Rd � M/k � NM .
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4.1.3 Different Types of Marking and Some Examples

In the following we distinguish three types of MPP’s �M 	 PM by the dependences
between marks at distinct points in R

d , by interactions between separated parts of
the point pattern and, last but not least, by cross correlations between the whole point
pattern and the whole mark field. In the most general case, only the family of k-point
Palm mark distributions seems to be appropriate to describe such complicated
structure of dependences.

1. Independently Marked (Stationary) Point Processes

Given an unmarked (not necessarily stationary) PP � D P
i�1 ıXi 	 P on R

d

and a stochastic kernel Q.x;L/ ; x 2 R
d ; L 2 B.M/ we assign to an atom Xi

located at x the markMi 	 Q.x; �/ independently of � �ıXi and of any other mark
Mj ; j ¤ i . The resulting MPP �M D P

i�1 ı.Xi ;Mi / is said to be derived from
� by location-dependent independent marking. We obtain for the intensity measure
and the k-point Palm mark distribution

�M.B � L/ D
Z

B

Q.x;L/�.dx/ resp. Qx1;:::;xk
M

� k�
iD1Li

� D
kY
iD1

Q.xi ; Li /; k � 1;

where� denotes the intensity measure of � .
Note that the MPP�M 	PM is stationary iff �	 P is stationary and independent

of an i.i.d. sequence of marks fMi; i � 1g with a common distribution Q.�/—the
(mark) distribution of the typical mark M0 .

2. Geostatistically or Weakly Independently Marked Point Processes

Let unmarked PP � D P
i�1 ıXi 	 P on R

d be stochastically independent of
a random field fM.x/; x 2 R

d g taking values in the measurable mark space
.M;B.M//. To each atom Xi we assign the mark Mi D M.Xi/ for i � 1. In
this way the k-point Palm mark distribution coincide with the finite-dimensional
distributions of the mark field, that is,

Q
x1;:::;xk
M .L1 � � � � �Lk/ D P.M.x1/ 2 L1; : : : ;M.xk/ 2 Lk/ for all k 2 N :

Note that the MPP �M 	 PM is stationary iff both the point process � 	 P and
the random field are (strictly) stationary. In case of real-valued marks (stationary)
Gaussian random fields M.x/ with some covariance function, see Definition 9.10,
or shot-noise fields Mg.x/ D P

i�1 g.x � �i / with some response function
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g W R
d 7! R

1 and a (stationary Poisson) point process f�i ; i � 1g chosen indepen-
dently of � (see Sect. 9.2.5 for more details) are suitable examples for mark fields.

3. General Dependently Marked Point Processes

In this case the locations Xi of the marked atoms and their associated marks Mi

may depend on each other and, in addition, there are intrinsic interactions within the
point field fXig as well as within the mark field fMig . This means that the k-point
Palm mark distribution Qx1;:::;xk

M must be considered as an conditional distribution,
in particular,Qo;x

M .L � M/ does not coincide with Qo
M.L/ .

Examples

1. Germ-Grain Processes: Germ-Grain Models

A stationary independently MPP �M D f.Xi ; �i / ; i � 1g on R
d with mark space

M D Kd (= space of all non-empty compact sets in R
d equipped with the Hausdorff

metric) is called germ-grain process or particle process driven by the PP � D
fXi; i � 1g of germs and the typical grain �0 	 Q . The associated random set
� D S

i�1.�i C Xi/ is called germ-grain model. Note that in general � need not
to be closed (P-a.s.). The condition

X
i�1

P.�0 \ .K �Xi/ ¤ ;/ < 1 P � a:s: for all K 2 K (4.11)

is sufficient to ensure the P-a.s.-closedness of � , see [229]. The most important
and best studied germ-grain model is the Poisson-grain model (also called Boolean
model) driven by a Poisson process� 	 ˘� of germs fXi; i � 1g , see for example
[366, 489] for more details.

2. Poisson-Cluster Processes

If the typical grain �0 D fY1; : : : ; YN0g is a P-a.s. finite random point set satisfy-
ing (4.11) then the discrete random closed set� D S

i�1fY .i/1 CXi; : : : ; Y
.i/
Ni

CXig
coincides with the support of a random locally finite counting measure �cl and is
called a cluster point process with the PP �c D fXi; i � 1g of cluster centres
and the typical cluster fY1; : : : ; YN0g. Factorial moment and cumulant measures
of any order can be expressed in terms of the corresponding measures of � and
the finite PP

PN0
iD1 ıYi , see for example [227]. In case of a (stationary) Poisson

cluster centre process �c we get a (stationary) Poisson-cluster process �cl, see
Sect. 3.1.4 for more details. In particular, if � 	 ˘�c�d and the random number
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N0 with probability generating function g0.z/ is independent of the i.i.d. sequence
of random vectors Y1; Y2; : : : in R

d with common density function f we obtain
a so-called Neyman–Scott process �cl with intensity �cl D �c EN0 , second-order
product density 
.2/.x/ D c.2/.x/C�cl and its kth-order cumulant density for k � 2

takes on the form

c.k/.x1; : : : ; xk�1/ D g
.k/
0 .1/

EN0

Z

Rd

f .y/ f .y C x1/ � � �f .y C xk�1/ dy : (4.12)

Compare Definition 3.11 for its special case.

3. Doubly Stochastic Poisson Processes

Now, let � be a (stationary) random measure on R
d , see for example [140]

for details. The new unmarked PP �� 	 P� defined by the finite-dimensional
distributions

P.��.B1/ D n1; : : : ; ��.Bk/ D nk/ D E
� kY
iD1

�ni .Bi /

ni Š
e��.Bi /

�

for any disjoint bounded B1; : : : ; Bk 2 B0.Rd / and any n1; : : : ; nk 2 N [ f0g,
is called doubly stochastic Poisson (or Cox) process with driving measure �.�/,
compare Definition 3.7. In the special case �.�/ D � �d ..�/ \ �/ , where � is a
(stationary) random closed set, for example a Boolean model, the (stationary) PP��
(called interrupted Poisson process) is considered as a Poisson process restricted on
the (hidden) realizations of� . The factorial moment and cumulant measures of ��
are expressible in terms of the corresponding measures of random driving measure
� , see for example [289].

4.2 Point Process Statistics in Large Domains

Statistics of stationary point processes is mostly based on a single observation
of some point pattern in a sufficiently large domain which is assumed to extend
unboundedly in all directions. We demonstrate this concept of asymptotic spatial
statistics for several second-order characteristics of point processes including
different types of K-functions, product densities and the pair correlation function.
Variants of Brillinger-type mixing are considered to obtain consistency and asymp-
totic normality of the estimators.

The philosophy of large-domain spatial statistics is as follows: Let there be
given a single realization of a random point pattern or a more general random
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set in a sufficiently large sampling window Wn � R
d , which is thought to

expand in all directions as n ! 1 . Further, we assume that there is an adequate
model describing the spatial random structure whose distribution is at least shift-
invariant (stationary) and sometimes additionally even isotropic. Then only using
the information drawn from the available observation in Wn we define empirical
counterparts (estimators) of those parameters and non-parametric characteristics
which reflect essential properties of our model. To study the asymptotic behaviour
of the estimators such as weak or strong consistency and the existence of limit
distributions (after suitable centering and scaling) we let Wn increase unboundedly
which requires additional weak dependence conditions. Throughout we assume that
fWn; n 2 Ng is a convex averaging sequence, that is,

1. Wn is bounded, compact, convex andWn 
 WnC1 for n 2 N.

2. r.Wn/ WD supfr > 0 W Br.x/ 
 Wn for some x 2 Wng " 1 .

The second property means that Wn expands unboundedly in all directions and
is equivalent to �d�1.@Wn/=�d.Wn/ �!

n!1 0 as immediate consequence of the

geometric inequality

1

r.Wn/
� �d�1.@Wn/

�d .Wn/
� d

r.Wn/
; (4.13)

see [237].

Exercise 4.1. Show that

�d .Wn n .Wn 
 Br.o/// D
rZ

0

�d�1.@.Wn 
 Bs.o/// ds � r �d�1.@Wn/

for 0 � r � r.Wn/ from which, together with �d .Wn 
 Br.Wn/.o// D 0, the l.h.s.
of (4.13) immediately follows. The r.h.s. of (4.13) results from an inequality by
J.M. Wills, see [519].

From the mathematical view point it is sometimes more convenient to consider
rectangles Wn D �d

iD1Œ0; a
.n/
i 
 with a.n/i " 1 for i D 1; : : : ; d or blown up sets

Wn D nW , where W � R
d is a fixed convex body containing the origin o as inner

point.

4.2.1 Empirical K -Functions and Other Summary Statistics
of Stationary PP’s

Second-order statistical analysis of spatial point patterns is perhaps the most
important branch in point process statistics comparable with the spectral density
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estimation in time series analysis. We assume that the simple unmarked PP � DP
i�1 ıXi has finite second moments, i.e. E�2.B/ < 1 for all boundedB 2 B.Rd /,

and is strictly or at least weakly stationary.
Weak (or second-order) stationarity of an unmarked PP � 	 P requires only the

shift-invariance of the first- and second-order moment measures, i.e. �.B1 C x/ D
�.B1/ and ˛.2/..B1 C x/ � .B2 C x// D ˛.2/.B1 � B2/ for any bounded B1;B2 2
B.Rd // and all x 2 R

d . Obviously, strictly stationary point processes having
finite second moments are weakly stationary. Further note that the reduced second
factorial moment measure ˛.2/red .�/ is well-defined also under weak stationarity but
it can not be expressed as first-order moment measure w.r.t. Po Š as in (4.9), see
[140] for more details. In what follows we assume strict stationarity. By applying
the Palm and reduction machinery sketched in Sect. 4.1.2 we can describe the
first and second moment properties by the intensity � D E�.Œ0; 1
d / and the
reduced second factorial moment measure ˛.2/red .�/ defined by (4.7) for k D 2

resp. (4.9) as first moment measure with respect to the Palm distribution PoŠ in
case of strict stationarity. If � is additionally strictly or at least weakly isotropic, i.e.
RO˛

.2/

red D ˛
.2/

red forO 2 SOd , then it suffices to know the function ˛.2/red .Br.o// for
r � 0 . In [424] B. Ripley introduced the K-function

K.r/ WD 1

�
˛
.2/

red

�
Br.o/

� D 1

�2
E
�X
i�1

1.Xi 2 Œ0; 1
d / �.Br.Xi/ n fXig/
�

(4.14)

for r � 0 as basic summary characteristic for the second-order analysis of motion-
invariant PP’s, see also [22] or [265, Chap. 4.3] for more details and historical
background. From (4.9) we see that �K.r/ coincides with conditional expectation
E.�

�
Br.fog/ n fog� j �.fog/ D 1 / giving the mean number of points within

the Euclidean distance r from the typical point (which is not counted). If � is a
homogeneous Poisson process with intensity � , then, by Slivnyak’s theorem (see
Theorem 4.5 in Sect. 4.1.2), ˛.2/red .�/ D E�.�/ D � �d .�/ and hence we get

K.r/ D !d r
d with !d WD �d .B1.o// D �d=2

�
�
d
2

C 1
� : (4.15)

For better visualization of the Poisson property by a linear function the so-

called L-function L.r/ WD �
K.r/=!d

�1=d
is sometimes preferred instead of the

K-function. Both the K- and L-function represent the same information, but they
cannot completely characterize the distribution of a (motion-invariant) PP. In other
words, there are different point processes having the same K-function. Further
note that an explicit description of the family of K-functions does not exist so
far. Nevertheless, the K-function and its empirical variants, see below, are used
to check point process hypotheses when the K-function of the null hypothesis is
known (or generated by simulation on a finite interval Œ0; r0
 ), see Sect. 3.3.3 and
Figs. 3.47–3.48.
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In particular, the simple parabola-shape of the K-function (4.15) facilitates to
check the property of complete spatial randomness (briefly CSR) of a given point
pattern. Lemma 3.12 shows the connection between CSR and the Poisson property
shows the following

It contains the interpretation of the Poisson point process in statistical mechanics
as particle configuration, for example molecules in “ideal gases”, modelled as grand
canonical ensemble, where neither attraction nor repulsion forces between particles
occur. Lemma 3.12 also reveals an easy way to simulate homogeneous Poisson
processes in bounded domains, see Algorithm 3.6 in Sect. 3.2.2.

Since the K-function is also used to analyze (second-order) stationary, non-
isotropic PP’s we introduce two generalized versions of Ripley’sK-function (4.14).
First, the Euclidean d -ball Br.o/ in (4.14) is replaced by r B , where B � R

d is
a compact, convex, centrally symmetric set containing o as inner point. Such set
B is called structuring element in image analysis and coincides with the unit ball
fx 2 R

d W NB.x/ � 1g generated by a unique norm NB.�/ on R
d . Let KB.r/

denote the analogue to (4.14) which equals �d .B/ rd if � 	 ˘��d . In case of a
Neyman–Scott process we obtain from (4.12) that

KB.r/ D �d .B/ r
d C EN0.N0 � 1/

�c .EN0/2

Z

r B

fs.x/ dx with fs.x/ D
Z

Rd

f .y/ f .y C x/ dy :

A second generalization of (4.14) is the multiparameter K-function, see [231],
defined by

K.r1; : : : ; rd / WD 1

�
˛
.2/

red

� d�
kD1Œ�rk; rk


�
for r1; : : : ; rd � 0 ;

which contains the same information as the centrally symmetric measure ˛.2/red .�/ .
For stationary Poisson processes we get

K.r1; : : : ; rd / D �d
� d�
kD1Œ�rk; rk


� D 2d r1 � : : : � rd for r1; : : : ; rd � 0 :

We next define three slightly different non-parametric estimators of the function
�2 KB.r/ (briefly called empirical K-functions):

�
1�2KB

�
n;1
.r/ WD 1

�d .Wn/

X
i�1

1.Xi 2 Wn/ .� � ıXi /.r B CXi/ ;

�
1�2KB

�
n;2
.r/ WD 1

�d .Wn/

X¤

i;j�1
1.Xi 2 Wn/ 1.Xj 2 Wn/ 1.NB.Xj � Xi/ 2 Œ0; r
/ ;

�
1�2KB

�
n;3
.r/ WD

X¤

i;j�1

1.Xi 2 Wn/ 1.Xj 2 Wn/ 1.NB.Xj � Xi/ 2 Œ0; r
/
�d ..Wn �Xi/\ .Wn �Xj // :
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Each of these empirical processes is non-decreasing, right-continuous, and
piecewise constant with jumps of magnitude 1=�d.Wn/ (for i D 1; 2) at random
positions NB.Xj � Xi/ arranged in order of size for i ¤ j . Quite analogously, by
substituting the indicators of the events fNB.Xj � Xi/ 2 Œ0; r
g by the indicators
of fXj � Xi 2 �d

kD1Œ�rk; rk
g we obtain the multivariate empirical processes�
b�2K

�
n;i
.r1; : : : ; rd / for i D 1; 2; 3 as empirical counterparts of �2 K.r1; : : : ; rd /.

By (4.8) resp. (4.9),
�
1�2KB

�
n;1
.r/ is easily seen to be an unbiased estimator for

�2 KB.r/ but it ignores the edge effect problem, that is, we need information from
the dilated sampling window Wn ˚ r0 B to calculate this estimator for 0 � r � r0 .
If this information is not available then one has to reduce the original window to
the eroded setWn 
 r0 B which is known as minus sampling. The second estimator
needs only the positions of points within Wn , however, its bias disappears only
asymptotically, i.e.

E
�
1�2KB

�
n;2
.r/ D �

Z

r B

�d .Wn \ .Wn � x//
�d .Wn/

˛
.2/

red .dx/ �!
n!1 �2 KB.r/ : (4.16)

Finally,
�
1�2KB

�
n;3
.r/ is a so-called edge-corrected or Horvitz–Thompson-type

estimator which also needs only the points located withinWn. The pairs .Xi ; Xj / 2
Wn �Wn are weighted according to the length and direction of the difference vector

Xj � Xi providing the unbiasedness of the estimator E
�
1�2KB

�
n;3
.r/.

Exercise 4.2. Show (4.16) by applying the inequality (4.13) and prove

E
�
1�2KB

�
n;3
.r/ D �2 KB.r/

by means of (4.8) resp. (4.9).

For further details and more sophisticated edge corrections we refer to [265,385,
489] and references therein.

Before regarding consistency properties of the empirical K-functions we have a
short look at the estimation of the simplest summary characteristic—the intensity
�—and its powers �k given by

b�n WD �.Wn/

�d .Wn/
and .b�k/n WD

k�1Y
jD0

�.Wn/� j

�d .Wn/
(4.17)

for any fixed integer k � 2 . A simple application of the Campbell formula (4.6)
(or (4.8)) and the definition of the kth-order factorial moment measure yields

Eb�n D � and E.b�k/n D ˛.k/.Wn � � � � �Wn/

�kd .Wn/
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which shows the unbiasedness ofb�n for any stationary PP, whereas .b�k/n for k � 2

is unbiased only for the Poisson process � 	 ˘��d .

Exercise 4.3. For a stationary Poisson process � 	 ˘��d show that

˛.k/.B1 � � � � � Bk/ D �k �d .B1/ � � � �d .Bk/

for any (not necessarily disjoint) bounded sets B1; : : : ; Bk 2 B.Rd /.

The decomposition ˛.2/.Wn �Wn/ D �.2/.Wn �Wn/C�2 �2d .Wn/ and reduction

reveal the asymptotic unbiasedness of .b�2/n

E.b�2/n D �2 C �

�2d .Wn/

Z

Wn

�
.2/

red .Wn � x/ dx �!
n!1 �2

provided that the total variation k �.2/red kTV is finite. This motivates the assumption

of bounded total variation of the reduced factorial cumulant measure �
.k/

red .�/
for some k � 2 to express short-range correlation of the point process. To be
precise, we rewrite the locally finite (in general not finite) signed measure �.k/red .�/
on
�
R
d.k�1/;B.Rd.k�1//

�
as difference of the positive and negative part �.k/C

red .�/
resp. �.k/�

red .�/ (Jordan decomposition) and define the corresponding total variation

measure
ˇ̌
�
.k/

red

ˇ̌
.�/ as a sum of the positive and negative part:

�
.k/

red .�/ D �
.k/C
red .�/� �

.k/�
red .�/ and

ˇ̌
�
.k/

red

ˇ̌
.�/ WD �

.k/C
red .�/C �

.k/�
red .�/ :

Note that the locally finite measures �.k/Cred .�/ and �
.k/�
red .�/ are concentrated

on two disjoint Borel sets HC resp. H� with HC [ H� D R
d.k�1/ (Hahn

decomposition) which leads to the total variation of �.k/red .�/ :

k �.k/red kTV WD ˇ̌
�
.k/

red

ˇ̌
.Rd.k�1// D �

.k/C
red .HC/C �

.k/�
red .H�/ D

Z

Rd.k�1/

j c.k/.x/ j d x ;

where c.k/ W R
d.k�1/ 7! Œ�1;1
 is the kth-order cumulant density, if it exists.

Definition 4.5. A stationary PP � 	 P on R
d satisfying E�k.Œ0; 1
d / < 1 for

some integer k � 2 is said to be Bk-mixing if k �.j /red kTV < 1 for j D 2; : : : ; k.
A B1-mixing stationary PP is called Brillinger-mixing or briefly B-mixing.

Example 4.1. From (4.12) it is easily seen that a Neyman–Scott process is
Bk-mixing iff ENk

0 < 1 without restrictions on f . This remains true for any
Poisson-cluster process. Moreover, a general cluster process is Bk-mixing if the PP
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�c of cluster centres is Bk-mixing and the typical cluster size N0 has a finite kth
moment, see [227] for details and further examples like Cox processes.

Proposition 4.1. For any Bk-mixing stationary PP we have E.b�k/n �!
n!1 �k for

k � 2 .

We next state the mean-square consistency of the above-defined empirical
K-functions under mild conditions. Furthermore, it can be shown that a possible
weak Gaussian limit (after centering with mean and scaling with

p
�d .Wn/) is for

each of the estimators of �2 KB.r/ the same.

Theorem 4.6. Let � 	 P be a B4-mixing stationary PP with intensity �. Then

E
��
1�2KB

�
n;i
.r/ � �2 KB.r/

�2 �!
n!1 0 for i D 1; 2; 3

�d .Wn/ var
� �

1�2KB

�
n;1
.r/ � �

1�2KB

�
n;i
.r/

�
�!
n!1 0 for i D 2; 3 :

In other words, the boundary effects are asymptotically neglectable which can be
considered as a general rule of thumb in large domain statistics.

Finally, we mention that also higher-order reduced moment measures can be
estimated in quite the same way, see for example [274, 289]. Further second-
order summary characteristics and their empirical counterparts (called summary
statistics) such as the second-order product density 
.2/.x/, the pair correlation
function g.r/ and the asymptotic variance 	2 WD limn!1 �d .Wn/E.b�n � �/2 ,
see (4.17), are briefly discussed in Sect. 4.2.3. Summary statistics are used in all
branches of statistics to summarize data sets—in our case data from point patterns
or from realizations of random sets—to describe the underlying models by a small
number of parametric and non-parametric estimates. Further summary character-
istics frequently used in point process statistics are the empty space function (or
contact distribution function) F , the nearest-neighbour distance functionG and the
J -function defined for a stationary PP � D P

i�1 ıXi 	 P by

F.r/ D P.�.Br.o// > 0/ D P.f 2 N W  .Br .o// > 0g/ ;

G.r/ D Po Š.f 2 N o W  .Br .o// > 0g/ and J.r/ D .1 �G.r//=.1 � F.r// :

F is the distribution function of the distance dist.x; �/ from a fixed point x 2 R
d

to the nearest atom of� , whereasG is the distribution function of the corresponding
distance from a typical atom of � to the nearest other atom of � . Unbiased non-
parametric estimators of F.r/ and �G.r/ are

bF n.r/ D �d .
S
i�1 Br.Xi/ \Wn/

�d .Wn/
; .b�G/n.r/ D

X
Xi2Wn

1.dist.Xi ; � � ıXi /2 Œ0; r
/
�d .Wn/

:
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The empirical J -function bJ n.r/ is defined as ratiob�n bF n.r/=.b�G /n.r/ . To avoid
boundary effects we replace Wn by Wn 
 Br.o/ for 0 � r � diam.Wn/=2 , if the
point pattern is observable only insideWn . In case of � 	 ˘��d Slivnyak’s theorem
yields F.r/ D G.r/ D 1 � expf��!d rd g so that J.r/ � 1. This fact can be used
for testing CSR just by regarding the plot of the empirical version bJ n.r/ in some
interval Œ0; r0
 .

4.2.2 The Role of Ergodicity and Mixing in Point
Process Statistics

The assumption of (strict) stationarity of a point process or random closed set
under consideration is frequently accompanied by the requirement of ergodicity.
It is beyond the scope of this survey to capture the full depth of this notion. We
only say that ergodicity is always connected with a group of measure preserving
transformations acting on the probability space. In our situation we take quite
naturally the group of translations fTx W x 2 R

d g as defined in Sect. 4.1.1 on the
space of (marked) locally-finite counting measures or the corresponding shifts on
the space of closed sets in R

d . To be precise, we define besides ergodicity also the
somewhat stronger condition of mixing for stationary (unmarked) PP’s:

Definition 4.6. A (strictly) stationary PP � 	 P is said to be ergodic resp.
mixing if

1

�d .Wn/

Z

Wn

P.TxY1 \ Y2/ dx �!
n!1

P.Y1/ P.Y2/ resp. P.Tx Y1 \ Y2/ �!
kxk!1

P.Y1/ P.Y2/

for any Y1; Y2 2 N.

Loosely speaking, mixing means that two events becomes nearly independent when
they occur over parts of R

d being separated by a great distance and ergodicity
weakens this distributional property in the sense of Cesaro limits. In physics
and engineering one says that an ergodic stochastic process allows to detect its
distribution after very long time of observation which carries over to spatial ergodic
processes when the observation window expands unboundedly in all directions.
This interpretation is rigorously formulated by ergodic theorems which state the
P-a.s. convergence of spatial means to expectations with respect to the underlying
distribution. The following ergodic theorem by X.X. Nguyen and H. Zessin [382] is
of particular importance in the theory as well as in statistics of stationary PP’s.

Theorem 4.7. Let � 	 P be a stationary ergodic PP on R
d with intensity � , and

let g W N 7! Œ0;1
 be .N;B.Rd //-measurable such that
R
N o g. /P

o Š.d / <

1 . Then
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1

�d .Wn/

Z

Wn

g.Tx � ıo/  .dx/ �!
n!1�

Z

N o

g. /P o Š.d /

for P -almost every  2 N .

This result can be applied to prove strong consistency for many estimators,
in particular, for various empirical Palm characteristics. In the special cases (a)
g. / � 1 and (b) g. / D  .r B/ we obtain strong consistency of the intensity

estimator (4.17) and
�
1�2KB

�
n;1
.r/ for any r � 0 , which implies even uniformly

strong consistency:

b�n P�a:s:�!
n!1 � and sup

0�r�R
ˇ̌ �
1�2KB

�
n;1
.r/ � �2 KB.r/

ˇ̌ P�a:s:�!
n!1 0 :

We mention just one asymptotic relationship which requires mixing instead of
ergodicity, namely the generalized version of Blackwell’s renewal theorem. If the
stationary second-order PP � 	 P is mixing, then, for any bounded B 2 B.Rd /
satisfying �d .@B/ D 0 , it holds

˛
.2/

red .B C x/ �!
kxk!1

� �d.B/;

see [140]. Note that a renewal process is just mixing if the length of the typical
renewal interval has a non-arithmetic distribution and thus, the latter result (applied
to an bounded interval B D Œa; b
) contains the mentioned classical result from
renewal theory. For related results concerning the weak convergence of the shifted
Palm distribution Po Š.Tx.�// to the stationary distribution P.�/ as kxk ! 1 we
refer the reader to [140, 346].

4.2.3 Kernel-Type Estimators for Product Densities and the
Asymptotic Variance of Stationary Point Processes

The Lebesgue density 
.2/.x/ of ˛.2/red .�/—introduced in Sect. 4.1.2 as second-order
product density—and, if � 	 P is motion-invariant, the pair correlation function
g.r/ defined by

g.r/ D 
.2/.x/

�
for kxk D r > 0 or equivalently g.r/ D 1

d !d rd�1
dK.r/

dr

are very popular second-order characteristics besides the cumulative K-function.
Note that g.r/ is understood as derivative (existing for �1-almost every r � 0)
of an absolutely continuous K-function (4.14). Since the numerical differentiation
of the empirical versions of K.r/ as well as of the multiparameter K-function
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K.r1; : : : ; rd / leads to density estimators of minor quality, the most statisticians
prefer the established method of kernel estimation in analogy to probability density
functions. The corresponding edge-corrected kernel estimators for � 
.2/.x/ and
�2 g.r/ are

2. � 
.2/ /n.x/ D 1

bdn

X¤

i;j�1

1.Xi 2 Wn/ 1.Xj 2 Wn/
�d ..Wn �Xi / \ .Wn �Xj // kd

�Xj �Xi � x

bn

�

resp.

1. �2 g /n.r/ D 1

d !d r
d�1 bn

X¤

i;j�1

1.Xi 2 Wn/ 1.Xj 2 Wn/
�d ..Wn �Xi /\ .Wn �Xj //

k1

�kXj �Xik � r
bn

�
;

where the kernel function kd j R
d 7! R is integrable (and mostly symmetric,

bounded with bounded support) such that
R
Rd
kd .x/ dx D 1 and the sequence of

bandwidths is chosen such that bn # 0 and bdn �d .Wn/ �!
n!1 1. These conditions

imply the pointwise asymptotic unbiasedness of the kernel estimators, namely

E 2. � 
.2/ /n.x/ �!
n!1� 
.2/.x/ and E1. �2 g /n.r/ �!

n!1�2 g.r/

at any continuity point x ¤ o of 
.2/ resp. at any continuity point r > 0 of g , see
e.g. [232–234, 275]. Under some further additional conditions one can show that

bdn �d .Wn/ var 2. � 
.2/ /n.x/ �!
n!1�
.2/.x/

Z

Rd

k2d .x/ dx

and also central limit theorems (briefly CLT’s) and optimal bandwidths can be
derived, see for example [232] for an application to testing point process models.
Furthermore, various asymptotic results for higher-order kernel-type product den-
sity estimators (among them rates of convergence, P-a.s. convergence) have been
obtained under stronger mixing assumptions, see [234, 275].

Finally, we regard a kernel-type estimator of the limit

	2 D lim
n!1 �d .Wn/ var

�b�n�

which exists for all B2-mixing stationary PP’s. The following estimator has been
studied in [238]:

.b	2/n WDb�n C
X¤

i;j�1

1.Xi 2 Wn/ 1.Xj 2 Wn/w. .Xj �Xi /=cn /

�d ..Wn �Xi / \ .Wn �Xj //
� cdn .

b�2/n
Z

Rd

w.x/ dx;
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where cn WD bn .�d .Wn//
1=d and w W R

d 7! R
1 is a non-negative, symmetric,

bounded function with bounded support satisfying limx!o w.x/ D w.o/ D 1 .

Theorem 4.8. For a B4-mixing stationary PP the estimator .b	2/n is asymptotically
unbiased and mean-square consistent if bn �!

n!1 0 , cn=r.Wn/ �!
n!1 0 , cn �!

n!1 1 ,

and bn cn �!
n!1 0 . If the PP is even B-mixing, then

p
�d .Wn/

�b�n � �
�
=	 is

asymptotically N.0; 1/-distributed, where 	 can be replaced by the square root of

.b	2/n .

In this way one can construct an asymptotic confidence interval which covers the
intensity � with given probability 1 � ˛ .

4.3 Mixing and m-Dependence in Random Point Processes

Large domain statistics requires weak dependence assumptions of the observed
spatial process to derive properties of the estimators and to construct asymptotic
tests for checking statistical hypotheses. We formulate and apply a spatial ergodic
theorem. The notion of m-dependence plays an important role to prove limits
theorems for Poisson-driven models demonstrated in particular for the Boolean
model and statistics taken from Poisson procesess. We consider also some examples
which exhibit appropriate spatial versions of the ˛- and ˇ-mixing condition.

4.3.1 Poisson-Based Spatial Processes and m-Dependence

Definition 4.7. A family of random variables f�.t/; t 2 Z
d g defined on .˝;F ;P/

is calledm-dependent (d -dimensional) random field for somem 2 N if for any finite
U; V � Z

d the random vectors .�.u//u2U and .�.v//v2V are independent whenever
max
1�i�d j ui � vi j > m for all u D .u1; : : : ; ud /> 2 U and v D .v1; : : : ; vd /> 2 V ,

see also Sect. 10.1.2.

For d D 1 we use the term “sequence” instead of “field” and in what follows
we shall fix the dimension d � 1 . In particular, in the theory of limit theorems
for sums of random fields the particular case of m-dependent random variables
indexed by a subset of Z

d plays an important role because most of the classical
limit theorems known for sums of independent random variables remain valid with
obvious modifications for m-dependent sequences and fields. This includes also a
number of refined results such as Berry–Esseen bounds and asymptotic expansions
of the remainder term in the CLT, see [226], or Donsker’s invariance principle and
functional CLT’s for empirical m-dependent processes with càdlàg-trajectories, see
for example [69].
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In stochastic geometry and point process statistics, m-dependent random fields
appear in connection with models which are defined by independently marked
Poisson processes. We discuss here two examples which exhibit the main idea.
This approach has been successfully applied to derive CLT’s for functionals of
Poisson-cluster processes and Poisson-grain models, see for example [227, 236].
For notational ease, let Wn D �d

iD1Œ0; a
.n/
i / be a rectangle with large enough edges

a
.n/
1 ; : : : ; a

.n/

d .

Example 4.2. Let � D S
i�1. �i C Xi / be a Boolean model generated by the

stationary Poisson process � 	 ˘��d and a bounded typical grain satisfying �0 

Œ�r; r
d P-a.s. for some fixed r > 0 . We are interested in the asymptotic behaviour
of the random d -volume Sn D �d .� \ Wn/ which is closely connected with the
empirical volume fractionbpn D Sn=�d.Wn/.

Example 4.3. We consider the random sum

Sn.r/ D
X
i�1

1.Xi 2 Wn/
�
� � ıXi

�
.r B CXi/

which coincides up to the scaling factor 1=�d.Wn/ with the empirical K-function�
1�2KB

�
n;1
.r/. We are able to derive the Gaussian limit distribution using the CLT

for m-dependent field provided that � 	 ˘��d . For simplicity assume that B 

Œ�1; 1
d .

In both cases take the smallest number ri � r such that the ratio v.n/i D
a
.n/
i =2ri is an integer for i D 1; : : : ; d and decompose Wn into blocks Et with
t D .t1; : : : ; td /

> as follows:

Wn D
[
t2Vn

Et ; Et D d�
iD1


2ri ti ; 2ri .ti C 1/

�
; Vn D d�

iD1 f1; : : : ; v.n/i g :

Then we may write Sn D P
t2Vn

�.t/ and Sn.r/ D P
t2Vn

�r .t/ with the random

variables

�.t/ D �d .� \ Et/ and �r .t/ D
X
i�1

1.Xi 2 Et/
�
� � ıXi

�
.r B CXi/; t 2 Vn ;

forming a stationary 1-dependent random field due to the independence properties
of the stationary Poisson process � and the fact that grains f�i ; i � 1g are i.i.d.
and independent of � . By the same arguments we get an i.i.d. sequence of random
marked counting measures

�t D
X
i�1

1.Xi 2 Et/ ı.Xi ;�i / for t 2 Zd
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and, in addition, the �.t/’s admit a representation �.t/ D f .�y ; jt � yj � 1/ in

terms of a measurable function f W .N 0
M/

3d 7! R
1 , where N 0

M denotes the space of
locally-finite marked counting measures on �d

iD1Œ0; 2ri /� K. In this way f�.t/; t 2
Vng becomes a two-dependent random field with block representation, see [199,
226] for details. This representation of the field by functions of finite blocks of
independent random elements allows to check simple conditions that imply explicit
bounds of the remainder terms of asymptotic expansions in the CLT for Sn and
Sn.r/ as well.

The CLT for (stationary) m-dependent random fields, see for example [69] or
references in [226], combined with jVnj D �d .Wn/=.2 r/

d and p D E�d .� \
Œ0; 1/d / yields

p
�d .Wn/

�bpn � p
� H)
n!1N.0; 	2p/ with 	2p D .1 � p/2

Z

Rd

�
e�E�d .�0\.�0�x// � 1� dx:

If the compact typical grain �0 is not strictly bounded, then we first replace �0
by the truncated grain �0 \ Œ�r; r
d and apply the above CLT to the corresponding
truncated Boolean model �.r/. In a second step we show that the ratio

var
�
�d ..� n�.r// \Wn

�
=�d.Wn/

becomes arbitrarily small uniformly in n 2 N as r grows large provided that
E�2d .�0/ < 1 . Finally, Slutsky’s theorem completes the proof of the CLT in the
general case.

In Example 4.3 we immediately obtain the normal convergence

p
�d .Wn/

� �
1�2KB

�
n;1
.r/ � �2 KB.r/

� H)
n!1N.0; 	2B.r// (4.18)

with 	2B.r/ D 2 � �d.B/ r
d
�
1C2 � �d.B/ rd

�
, see also [274] for related CLT’s for

B-mixing stationary PP’s. Using the block representation of the random variables
�r .t/, t 2 Vn , and the some results in [226], see also references therein, we obtain
the optimal Berry–Esseen bound

sup
x2R1

ˇ̌
ˇP
�p

�d .Wn/
� �
1�2KB

�
n;1
.r/ � �2 KB.r/

� � x
� � ˚

� x

	B.r/

� ˇ̌ˇ � c.�;B; r/p
�d .Wn/

;

where ˚.x/ WD P.N.0; 1/ � x/ ; x 2 R
1 , denotes the standard normal distribution

function.
Moreover, for the random sum

bSn.r/ D �d .Wn/
�
1�2KB

�
n;2
.r/ D

X
i�1

1.Xi 2 Wn/
�
� � ıXi

��
.r B CXi/ \Wn

�
;
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which equals twice the number of pairs of points having NB -distance less than
or equal to r , a local CLT with asymptotic expansion can be proved by methods
developed in [199, 226]:

�
1C jxn.k; r/j3

�p
�d .Wn/

ˇ̌
ˇ 1
2

q
var bSn.r/P.bSn.r/ D 2 k/� 'n

�
xn.k; r/

� ˇ̌ˇ �!
n!1 0

for any k D 0; 1; 2; : : : , where xn.k; r/ D �
2 k � EbSn.r/ �=� var bSn.r/ �1=2 and

'n. x / D 1p
2 �

e�x2=2
 
1C . x3 � 3 x / E

�bSn.r/� EbSn.r/ �3
6

p
2 �

�
var bSn.r/ �3=2

!
:

4.3.2 Strong Mixing and Absolute Regularity
for Spatial Processes

The quantitative assessment of (weak) dependence between parts of spatial pro-
cesses (e.g. random fields, point processes, random closed sets) over disjoint subsets
of R

d is based on mixing coefficients. These quantities provide uniform bounds
of the dependence between 	-algebras generated by the spatial process over these
disjoint set which include rates of decay when the distance between these subsets
increases. These mixing coefficients permit to derive covariance estimates of the
random variables measurable with respect to these 	-algebras. This in turn is
essential in proving asymptotic normality for sums of these random fields defined
over .˝;F ;P/ . Here we shall briefly discuss two of the most relevant mixing
coefficients, see also Sect. 10.1.2.

Definition 4.8. For any two sub-	-algebras A; B � F the ˛-mixing (or strong)
coefficient ˛.A; B/ and the ˇ-mixing (or absolute regularity) coefficient ˇ.A; B/
are defined by

˛.A;B/ WD sup
A2A;B2B

j P.A\ B/� P.A/P.B/ j ;

ˇ.A;B/ WD E sup
B2B

j P.B j A/ � P.B/ j D sup
C2A˝B

j PA˝B.C /� .PA � PB/.C / j ;

where A ˝ B is the product 	-algebra generated by A and B and PA � PB denotes
the product measure of the corresponding marginal distributions.

The inequality 2 ˛.A;B/ � ˇ.A;B/ is immediately seen from the above definition,
see [83] for an all-embracing discussion of mixing coefficients. As already men-
tioned the covariance cov.�; �/ can be bounded by means of these mixing coefficient
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with respect to the 	-algebras A D 	.�/ and B D 	.�/ generated by the random
variables � and �, respectively. Such covariance bounds are known for long time and
can be found in many papers and textbooks on limit theorems for sums of weakly
dependent random variables. If �; � are real-valued and p ; q 2 Œ1;1
 such that
p�1 C q�1 � 1 , then the inequality

j covf�; �g j � C .Ej�jp /1=p .Ej�jq /1=q � 2 ˛.	.�/; 	.�// �1�1=p�1=q

holds which has been first proved by Yu.A. Davydov [146] with some positive
constant C .� 10/ . Recently, by improving the approximation technique used in
[146], the author and M. Nolde could prove that C D 2 is possible, see also [423]
for a different approach. A corresponding estimate with ˇ.	.�/; 	.�// rather than
˛.	.�/; 	.�// on the right-hand side goes back to K. Yoshihara [522], see also [236]
for this and further references.

Let us consider a Voronoi-tessellation V.�/ D S
i�1 @Ci.�/ generated by a

simple stationary PP � D P
i�1 ıXi , where @Ci .�/ denotes the boundary of the

cell Ci.�/ formed by all point in R
d which are closest to the atomXi , i.e. Ci.�/ D

fx 2 R
d W kx�Xik < kx�Xjk; j ¤ ig , and let denote by A� .F / resp. AV.�/.F /

the 	-algebra generated by the PP � restricted to F � R
d resp. the 	-algebra

generated by the random closed set V.�/ \ F . With the notation Fa D Œ�a; a
d
and� D b=4 the estimate

ˇ
�
AV.�/.Fa/;AV.�/.F

c
aCb/

� � ˇ
�
A� .FaC�/;A� .F

c
aC3�/

�CR.a; b/ (4.19)

has been obtained in [230], whereR.a; b/ is a finite sum of certain void probabilities
of the PP � decaying to zero at some rate (depending on a) as b ! 1 . A similar
estimate of ˇ

�
A�.Fa/;A�.F

c
aCb/

�
could be derived in [236] for stationary grain-

germ models � D S
i�1.�i C Xi/ in terms of a suitable ˇ-mixing coefficient of

the generating stationary PP � 	 P with intensity � and the distribution function
D.x/ D P.diam.�0/ � x/ of the diameter of the typical grain �0 :

ˇ
�
A�.Fa/;A�.F

c
aCb/

� � ˇ
�
A� .FaC�/;A� .F

c
aC3�/

�

C �d 2dC1 h� 1C a

�

�d�1 C
�
3C a

�

�d�1i 1Z

�

xd dD.x/

(4.20)

Note that ˇ
�
A� .FaC�/;A� .F

c
aC3�/

� D 0 in (4.19) and (4.20) if � 	 ˘��d , i.e. for
the Poisson–Voronoi tessellation and for Boolean models. Furthermore, there exist
precise estimates of this ˇ-mixing coefficient for Poisson-cluster and Cox processes
and some classes of dependently thinned Poisson processes. We only mention that
both of the previous estimates can be reformulated with slight modifications in terms
of ˛-mixing coefficients.
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In [236] a CLT for geometric functionals of ˇ-mixing random closed sets has
been proved. The conditions of this CLT can be expressed more explicitly for germ-
grain models due to (4.20). CLT’s for stationary random fields put assumptions
on mixing rates derived from mixing coefficients between specific 	-algebras, see
[267] in the case of PP’s. An application of ˛-mixing to study empirical functionals
of geostatistically marked point processes can be found in [392]. Besides the
frequently used CLT of E. Bolthausen [74] the following CLT (first proved and
applied in [230]) presents a meaningful alternative to verify asymptotic normality
of estimators in stochastic-geometric models.

Let � D f�.t/; t 2 Vng be a stationary random field with index set Vn D ft 2
Z
d W .Œ0; 1/d C t/ � Wng, where fWn ; n 2 Ng is a convex averaging sequence in

R
d implying jVnj=�d .Wn/ �!

n!1 1 . Further, A� .F / denotes the 	-algebra generated

by the random variables f�.t/; t 2 F \ Z
d g and Sn D P

t2Vn �.t/ .

Theorem 4.9. Assume that there are two functions ˇ�
� and ˇ��

� on N such that

ˇ
�
A�.Fp/;A� .F

c
pCq/

� �

8̂
<
:̂

ˇ�
� .q/ for p D 1; q 2 N

pd�1 ˇ��
� .q/ for p 2 N; q D 1; : : : ; p :

If, for some ı > 0 ,

Ej �.o/ j2Cı < 1;

1X
rD1

rd�1 �ˇ�
� .r/

�ı=.2Cı/
< 1 and r2d�1 ˇ��

� .r/�!
r!10 ;

then the asymptotic variance �2 D lim
n!1 var Sn=�d .Wn/ D P

t2Zd cov.�.o/; �.t//

exists and the normal convergence .�d .Wn//
�1=2 �Sn � jVnj E�.o/

� H)
n!1N.0; �2/

holds.

Note that the assertion of Theorem 4.9 remains valid if the slightly weaker
˛-mixing coefficient is used, see [235] and references therein.

On the other hand, there are situations which require the stronger ˇ-mixing
coefficient. For example,� 	 P can be shown to be Bk-mixing for any fixed k � 2

if E�.Œ0; 1
d /kCı < 1 and

Z 1

1

r.k�1/d�1 �ˇ�.r/�ı=.kCı/
dr < 1

for some ı > 0 , where the ˇ-mixing coefficient ˇ� W Œ1;1/ ! Œ0; 1
 is defined as a

non-increasing function such that ˇ�.r/ � �
minf1; r

a
g�d�1

ˇ
�
A� .Fa/;A� .F

c
aCr /

�
for all a; r � 1 . This implies that � 	 P is Brillinger-mixing if ˇ�.r/ � e�g.r/
with g W Œ1;1/ ! Œ0;1
 satisfying g.r/= log.r/ �!

r!1 1 .
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4.3.3 Testing CSR Based on Empirical K-Functions

Let
�
1�2KB

�
n
.r/ be any of the empirical K-functions

�
1�2KB

�
n;i
.r/ , i D 1; 2; 3;

introduced and discussed in the above Sect. 4.2.1. Below we formulate two func-
tional CLT’s for the corresponding centered and scaled empirical process on the
interval Œ0; R
 when � D fXi; i � 1g is a stationary Poisson process. We
distinguish between the cases of known intensity � and estimated intensityb�n which
leads to two distinct zero mean Gauss–Markov limit processes (in the sense of
weak convergence in the Skorokhod-space DŒ0; R
, see [69]). For both limits the
distribution function of the maximal deviation over Œ0; R
 can be calculated. This
fact can be used to establish a Kolmogorov–Smirnov-type test for checking the null
hypothesis of CSR via testing the suitably scaled maximal deviation of the empirical

K-functions from �2 �d .B/ r
d resp. .b�2/n �d .B/ rd , see (4.17). For the details of

the proofs (in the particular case B D B1.o/ ) and some extensions (among them, a
Cramér-von Mises-type test for K-functions) the reader is referred to [228].

Theorem 4.10. Let the stationary Poisson process � 	 ˘��d with intensity � > 0

be observed in window Wn D �d
iD1Œ0; a

.n/
i 
 with unboundedly increasing edges.

Then

�n.r/ WD
p
�d .Wn/=�

� �
1�2KB

�
n
.r/� �2 �d .B/ r

d
�

H)
n!1 �.r/

dD W
�
L.r/

�
1� L.r/

(4.21)

�n.r/ WD
q
�d .Wn/=b�n

� �
1�2KB

�
n
.r/ � .b�2/n �d .B/ rd

�
H)
n!1 �.r/

dD W.2�d .B/ r
d /

for 0 � r � R , where H)
n!1 stands for weak convergence in the Skorokhod-space

DŒ0; R
 . Both weak limits �.r/ and �.r/ for r 2 Œ0; R
 are Gaussian diffusion
processes with zero means and covariance functions

E�.s/�.t/ D 2 � �d.B/ s
d
�
1C 2 � �d.B/ t

d
�

and E�.s/�.t/ D 2 �d.B/ s
d

for 0 � s � t � R . In (4.21) ;
dD means stochastic equivalence, W D

fW.t/; t � 0g denotes the one-dimensional standard Wiener process and L.r/ D
2 � �d.B/ r

d=. 1C 2 � �d.B/ r
d /.

Corollary 4.1. The continuous mapping theorem, see [69], applied to (4.21)
implies that

max
0�r�R j�n.r/j H)

n!1 max
0�t�L

jW.t/j
1 � t

	 FL and
max
0�r�R j�n.r/j
p
2 �d .B/R

d
H)
n!1 max

0�t�1 jW.t/j 	 G ;
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where L D L.R/ .< 1 / and

1 � FL.x/ D 2
�
1 � ˚

�
x.1 �L/=pL��

C2
1X
nD1

.�1/nC1e2nx2
�
˚
�
x.2nC 1 �L/=pL� �˚�x.2n � 1 �L/=pL��

and 1 �G.x/ D 4
�
1 � ˚.x/

�C 4
1P
nD1
.�1/n� 1 � ˚. .2nC 1/x /

�
.

Remark 4.5. The relevant quantiles of FL and G are known. Obviously, testing
the CSR-property via checking the goodness-of-fit of the K-function seems to be
easier when � is unknown. The convergence of the finite-dimensional distributions
of f�n.�/; n 2 Ng follows from the CLT for m-dependent fields and the tightness
in DŒ0; R
 is seen by an exact bound of the mixed fourth-order moment of two
consecutive increments. The convergence of the finite-dimensional distributions of
f�n.�/; n 2 Ng follows by applying a variant of Stein’s method to an asymptotically
degenerate U -statistic, see [228, 231]

In [231] an analogous test of CSR based on the multivariate K-function
K.r1; ::; rd / D 2d r1 � : : : � rd and its empirical counterpart in case of a Poisson
process has been developed. We only sketch the main result in the case of unknown
intensity �. In [231] the case of known � is also treated in detail.

Let the assumptions of Theorem 4.10 be satisfied. Setting

�
b�2 K

�
n
.r/ WD 1

�d .Wn/

X
j�1

1.Xj 2 Wn/
�
� � ıXj

��
.
d�
iD1Œ�ri ; ri 
CXj /\Wn

�

for r D .r1; : : : ; rd /
T 2 Œ0;1/d , and

�n.r/ WD
s
�d .Wn/

b�n
� �

b�2 K
�
n
.r/� .b�2/n 2d

dY
iD1

ri

�

we obtain a sequence f�n.r/; r 2 Œ0; R
d g of empirical processes belonging to
the Skorokhod-space D.Œ0; R
d / of d -parameter càdlàg-processes that converges

weakly to a Gaussian random field f�.r/; r 2 Œ0; R
d g dD fp2dC1 Wd .r/; r 2
Œ0; R
d g , where fWd.r/; r 2 Œ0;1/d g denotes the d -dimensional standard
Wiener sheet with mean value function EWd.r/ D 0 and covariance function
EWd.s/Wd .t/ D Qd

iD1. si ^ ti / for s D .s1; : : : ; sd /
> , t D .t1; : : : ; td /

> . Hence,
by the continuous mapping theorem it follows that

max
r2Œ0;R
d

j �n.r/ j H)
n!1 max

r2Œ0;R
d
j �.r/ j dD

p
2dC1 Rd max

r2Œ0;1
d
jWd.r/ j :
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The ˛-quantiles of the distribution function

G2.x/ D P.jW2.r1; r2/j � x ; 8 .r1; r2/ 2 Œ0; 1
2/

can be determined only approximately via large-scale simulations of the planar
Wiener sheet. In this way we found m0:95 D 2:1165, m0:99 D 2:7105, and
m0:995 D 2:9313 , where G2.m˛/ D ˛ .



Chapter 5
Random Tessellations and Cox Processes

Florian Voss, Catherine Gloaguen, and Volker Schmidt

Abstract We consider random tessellations T in R
2 and Cox point processes

whose driving measure is concentrated on the edges of T. In particular, we discuss
several classes of Poisson-type tessellations which can describe for example the
infrastructure of telecommunication networks, whereas the Cox processes on their
edges can describe the locations of network components. An important quantity
associated with stationary point processes is their typical Voronoi cell Z. Since the
distribution of Z is usually unknown, we discuss algorithms for its Monte Carlo
simulation. They are used to compute the distribution of the typical Euclidean (i.e.
direct) connection length Do between pairs of network components. We show that
Do converges in distribution to a Weibull distribution if the network is scaled and
network components are simultaneously thinned in an appropriate way. We also
consider the typical shortest path length Co to connect network components along
the edges of the underlying tessellation. In particular, we explain how scaling limits
and analytical approximation formulae can be derived for the distribution of Co.

5.1 Random Tessellations

In the section we introduce the notion of random tessellations in R
2, where we

show that they can be regarded as marked point processes as well as random closed
sets, and we discuss some mean-value formulae of stationary random tessellations.
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Furthermore, we introduce simple tessellation models of Poisson type like Poisson–
Voronoi, Poisson–Delaunay and Poisson line tessellations. Confer Chap. 6 for
tessellations in arbitrary dimension d � 2.

5.1.1 Deterministic Tessellations

Intuitively speaking, a tessellation is a subdivision of R
2 into a sequence of

convex polygons. However, a tessellation can also be identified with the segment
system consisting of the boundaries of these polygons. Because of these different
viewpoints, random tessellations introduced later on in Sect. 5.1.2 are flexible
models which can be applied in many different fields of science.

We start with the definition of deterministic planar tessellations. A tessellation �
in R

2 is a countable family fBngn�1 of convex bodies Bn fulfilling the conditions
VBn ¤ ; for all n, VBn\ VBm D ; for all n ¤ m,

S
n�1 Bn D R

2 and
P

n�1 1.Bn\C ¤
;/ < 1 for any C 2 K2, where VA denotes the interior of the set A � R

2, and K2 is
the family of compact sets in R

2. The sets Bn are called the cells of the tessellation
� and are bounded polygons in R

2. In the following, we use the notation T for the
family of all tessellations in R

2. Note that we can identify a tessellation � with the
segment system �.1/ D [1

nD1@Bn constructed from the boundaries of the cells of
� . Thus, a tessellation can be identified with a closed subset of R2 and hence we
can regard T as a subset of the family G of all closed subsets of R2. We use this
connection in order to define the 	-algebra T on T as the trace-	-algebra of B.G/
in T.

With each cell Bn of � we can associate some “marker point” in the following
way. Consider a mapping ˛ W K2nf;g ! R

2 which satisfies

˛.K C x/ D ˛.K/C x for all K 2 K2, K 6D ; and x 2 R
2; (5.1)

where ˛.K/ is called the nucleus of K and can be for example the center of gravity
of K .

There are various ways to generate tessellations based on sets of points and lines.
Particular models are Voronoi tessellations and Delaunay tessellations as well as
line tessellations, namely introduced in the following.

Let x D fx1; x2; : : : g � R
2 be a locally finite set with conv.x/ D R

2, where
conv.x/ denotes the convex hull of the family x. Then the Voronoi tessellation �
induced by x is defined by the nearest-neighbour principle, i.e., the cells Bn of � are
given by

Bn D fx 2 R
2 W jx � xnj � jx � xmj for all m 6D ng : (5.2)

Note that Bn D T
m 6Dn H.xn; xm/, i.e. the cell Bn can be represented as intersection

of the half-planes H.xn; xm/ D fx 2 R
2 W jx � xnj � jx � xmjg for m 6D n,

where the half-planesH.xn; xm/ are also called bisectors. Since x is locally finite it
is clear that the cells of � have non-empty interior. Moreover, their union covers R2

and two different cells can only intersect at their boundaries. Using conv.x/ D R
2,
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a b c

Fig. 5.1 Different types of tessellation models. (a) Voronoi tessellation. (b) Delaunay tessellation
(red). (c) Line tessellation

it can be shown that the cells are convex polygons which are bounded and locally
finite, see Exercise 5.1 below. Thus, the family � D f�ng constructed in this way is
indeed a tessellation. A Voronoi tessellation together with the generating point set
is displayed in Fig. 5.1a.

Exercise 5.1. Let x D fx1; x2; : : : g � R
2 be a locally finite set with conv.x/ D

R
2. Show that the Voronoi cells �n given in (5.2) are convex polygons which are

bounded and locally finite.

Now assume that four cocircular points do not exist in x, i.e., we assume that
there are no pairwise different points xi ; xj ; xk; xl 2 x which are located on a circle.
In this case, the Delaunay tessellation � 0 induced by x can be generated uniquely
as the dual tessellation of the Voronoi tessellation � which is induced by x. The
cells of � 0 are triangles which are constructed in the following way. Three points
xi ; xj ; xk 2 x form a triangle of � 0 if the corresponding Voronoi cells Bi ; Bj and
Bk have a common intersection point. This rule is equivalent to the empty circle
criterion: three points of x are the vertices of a triangle of � 0 iff the circumcircle
of these three points does not contain other points of x. It can be shown that the
resulting sequence of triangles forms a tessellation in R

2. In Fig. 5.1b a Delaunay
tessellation is displayed together with its generating points and the dual Voronoi
tessellation.

Exercise 5.2. Let x D fx1; x2; : : : g � R
2 be a locally finite set with conv.x/ D

R
2 and assume that there are no pairwise different points xi ; xj ; xk; xl 2 x which

are located on a circle. Show that the construction rule described above leads to a
sequence of triangles which has the properties of a tessellation in R

2.

Consider a set ` D f`1; `2; : : : g of lines in R
2 and let pi 2R

2 denote the
orthogonal projection of o onto `i , where it is assumed that conv.fp1; p2; : : : g/ D
R
2. Furthermore, we assume that jfi W `i \B 6D ;gj < 1 for all B 2 K2. Then, in a

natural way, we can generate a tessellation with respect to the intersecting lines of `.
Recall that we can identify a tessellation � with the edge set �.1/ D [1

nD1@�n given
by the union of the cell boundaries. Thus, we define the line tessellation � induced
by ` via the edge set �.1/ D [1

iD1`i formed by the union of the lines `1; `2; : : : . If



154 F. Voss et al.

the family ` fulfills the assumptions above, then it is ensured that the resulting cells
possess the properties of a tessellation of R2, see also Fig. 5.1c.

5.1.2 Random Tessellations

Usually, a random tessellation in R
2 is defined as a measurable mapping T W ˝ !

T, i.e. as a sequence T D f�ng of random convex bodies �n such that P.f�ng 2
T/ D 1. Notice that there are various ways to look at tessellations. In particular,
they can be viewed as marked point processes and random closed sets. Each of
these different points of view leads to new characteristics that can be associated
with a tessellation. The tessellation T is said to be stationary and isotropic if TxT D
fTx�ng dD T for all x 2 R

2 and #RT D f#R�ng dD T for all rotations #R around the
origin, respectively.

5.1.2.1 Random Tessellations as Marked Point Processes

It is often convenient to represent a random tessellation TD f�ng as a marked point
process with an appropriate mark space. Note that we can associate various point
processes with T, for example the point processes of cell nuclei, vertices and edge
midpoints. If these point processes are marked with suitable marks, then we can
identify T with the corresponding marked point process.

We first consider the point process of cell nuclei marked with the cells. Let
˛ W K2nf;g ! R

2 be a mapping such that (5.1) holds. Let Po denote the family
of all convex and compact polygons A with their nucleus ˛.A/ at the origin. Then
Po � G is an element of B.G/ and we can define the 	-algebra B.Po/D B.G/\Po.
Furthermore, the random tessellation T D f�ng can be identified with the marked
point process f.˛.�n/;�o

n /g, where �o
n D �n � ˛.�n/ is the n-th cell shifted to

the origin. If T is stationary, then f.˛.�n/;�o
n/g is also stationary and we denote

its intensity by �.2/, where we always assume that 0 < �.2/ < 1. The typical
mark Z W ˝ ! Po of f.˛.�n/;�o

n /g is a random polygon distributed according to
the Palm mark distribution of f.˛.�n/;�o

n /g as defined in formula (4.6). We call the
random polygonZ the typical cell of the tessellation T, see also Sects. 6.1.2 and 7.2.

Another possibility to represent T by a marked point process is the following.
Consider the point process of vertices fVng of T. For each vertex Vn we define the
edge star En as the union of all edges of T emanating from Vn. Thus,Eo

n D En�Vn
is an element of the family Lo of finite segment systems containing the origin. Since
Lo 2 B.G/ we can consider the 	-algebra B.Lo/ D B.G/ \ Lo on Lo. Hence,
we can represent the random tessellation T by the marked point process f.Vn; Eo

n/g
with mark space Lo. If T is stationary, then f.Vn; Eo

n/g is stationary and its intensity
is denoted by �.0/, where we assume that 0 < �.0/ < 1. The typical edge star
Eo W ˝ ! Lo of T is defined as a random segment system distributed according to
the Palm mark distribution of f.Vn; Eo

n/g.
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The random tessellation T can also be represented by the marked point process
of edge midpoints f.Yn; Son/g, where each midpoint Yn is marked with the centered
version Son D Sn � Yn 2 Lo of the edge Sn corresponding to Yn. If T is stationary,
then it is easy to see that f.Yn; Son/g is stationary. The intensity of edge midpoints is
denoted by �.1/, where we again assume that 0 < �.1/ < 1. The typical edge
So W ˝ ! Lo is defined as the typical mark of the stationary marked point
process f.Yn; Son/g.

5.1.2.2 Random Tessellations as Random Closed Sets

In the preceding section random tessellations have been represented as marked point
processes. Alternatively, random tessellations can be regarded as random closed
sets, see Sect. 1.2 for their definition and basic properties. Recall that deterministic
tessellations can be identified with their edge sets. Thus, in the random setting,
we can identify a random tessellation T D f�ng with the corresponding random
closed set of its edges which is defined by T.1/ D [1

nD1@�n. If T is stationary and
isotropic, then the random closed set T.1/ is stationary and isotropic, respectively.
Since, almost surely, T.1/ is a locally finite system of line segments, we can consider
the 1-dimensional Hausdorff measure �1 on T.1/. Furthermore, if T is stationary,
then it is not difficult to see that the mapping B 7! E�1.B \ T.1// is a (	-additive)
measure on B.R2/, which is invariant with respect to translations. Thus, by Haar’s
lemma, we get that E�1.B \T.1// D ��2.B/ for any B 2 B.R2/ and some constant
� which is called the length intensity of T.1/. As for the intensities �.0/; �.1/ and �.2/

regarded above, we always assume that 0 < � < 1.

5.1.2.3 Mean-Value Formulae

We now discuss mean-value formulae for stationary tessellations. These are rela-
tionships connecting the intensities of vertices �.0/, edge midpoints �.1/ and cell
nuclei �.2/, the length intensity � D E�1.T.1/ \ Œ0; 1/2/, the expected area E�2.Z/,
perimeter E�1.@Z/ and number of vertices E�0.Z/ of the typical cell Z, the
expected length of the typical edge E�1.So/, and the expected length E�1.Eo/ and
number of edges E�0.Eo/ of the typical edge star Eo. It turns out that all these
characteristics can be expressed by for example the three parameters�.0/; �.2/ and � .

Theorem 5.1. It holds that

�.1/ D �.0/ C �.2/; E�0.Eo/ D 2C 2
�.2/

�.0/
; E�1.Eo/ D 2

�.1/

�.0/
E�1.So/;

E�0.Z/ D 2C 2
�.0/

�.2/
; E�2.Z/ D 1

�.2/
; E�1.@Z/ D 2

�.1/

�.2/
E�1.So/;

� D �.1/E�1.So/ D �.2/

2
E�1.@Z/; 3 � E�0.Z/;E�0.Eo/ � 6 :
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Proof. We show how some of the formulae stated above can be proven using
Campbell’s theorem for stationary marked point processes; see formula (4.10). For
example, consider the marked point process f.Yn; Son/g of edge midpoints Yn marked
with the centered edges Son . Then, formula (4.10) yields

� D E�1.T.1/ \ Œ0; 1/2/ D E
1X
nD1

�1..S
o
n C Yn/\ Œ0; 1/2/

D �.1/
Z
R2

E �1.S
o \ Œ0; 1/2 � x/„ ƒ‚ …

D R
So

1.y 2 Œ0; 1/2 � x/ �1.dy/
�2.dx/

D �.1/E
Z
So

Z
R2

1.x 2 Œ0; 1/2 � y/ �2.dx/ �1.dy/ D �.1/E�1.So/ ;

thus � D �.1/E�1.So/. Furthermore,

�.2/E�2.Z/ D �.2/E
Z
R2

1.�x 2 Z/ �2.dx/

D E
X

.˛.�n/;�on /2T
1.�˛.�n/ 2 �o

n/„ ƒ‚ …
D 1.o 2 �n/

D 1 ;

which yields E�2.Z/ D 1=�.2/. The other statements can be proven similarly. For a
complete proof of Theorem 5.1, see for example [133, 350]. ut
Exercise 5.3. Show that

�.1/ D �.0/ C �.2/; E�0.Eo/ D 2C 2
�.2/

�.0/
; E�1.Eo/ D 2

�.1/

�.0/
E�1.So/:

5.1.3 Tessellation Models of Poisson Type

In this section we consider several tessellation models of Poisson type, like Poisson–
Voronoi, Poisson–Delaunay and Poisson line tessellations. They are based on planar
or linear Poisson point processes.

5.1.3.1 Poisson–Voronoi Tessellation

In Sect. 5.1.1 the notion of a deterministic Voronoi tessellation has been introduced
for a certain class of locally finite point sets. Since almost every realization of a
stationary point process� D fXng with P.�.R2/ D 1/ D 1 is a locally finite point
set such that conv.�/ D R

2, we can regard the random Voronoi tessellation f�ng
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a b

Fig. 5.2 Realization of a PVT and its typical cell. (a) Realization of a PVT. (b) Typical cell of PVT

with respect to the point process fXng. Thus, in accordance with (5.2), the cells �n
are defined as the random closed sets�n D fx 2 R

2 W jx�Xnj � jx�Xmj 8m 6D ng.
We call T D f�ng the Voronoi tessellation induced by � . Note that we can consider
the pointXn as nucleus of the cell�n. If the underlying point process� is stationary,
then the Voronoi tessellation induced by � is also stationary, see also Exercise 5.4.
In particular, if � D ˘� is a stationary Poisson process with intensity � > 0,
then we call the induced Voronoi tessellation a Poisson–Voronoi tessellation (PVT).
Realizations of PVT are shown in Figs. 5.2 and 5.3a. Note that �0.En/ D 3 for all
n 2 N, �2 D �, and the intensities �.0/; �.1/ and � can be computed in the following
way.

Theorem 5.2. Let T be a PVT induced by a Poisson process with intensity �. Then

�.0/ D 2�; �.1/ D 3�; �.2/ D �; � D 2
p
� :

Proof. Applying Theorem 5.1 with �.2/ D � and E�0.Eo/ D 3 yields �.0/ D 2�,
�.1/ D 3�, and�.2/ D �. For the proof of � D 2

p
� see for example [451, Chap. 10].

ut
Consider the random Voronoi tessellation T induced by any stationary (not neces-
sarily Poisson) point process � . Then, the distribution of the typical cell of T is
given by the distribution of the Voronoi cell at o with respect to the Palm version �o

of � . In particular, due to Slivnyak’s theorem for stationary Poisson processes (see
for example Theorem 4.5), we get that the typical cell of a PVT is obtained as the
Voronoi cell at o with respect to the point process˘o

� D ˘� [ fog, see Fig. 5.2b.

5.1.3.2 Poisson–Delaunay Tessellation

In the same way as in Sect. 5.1.1 for deterministic Voronoi tessellations, we
can construct the dual Delaunay tessellation corresponding to a random Voronoi
tessellation. If, almost surely, the underlying point process � is locally finite, where
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a b c

Fig. 5.3 Realizations of tessellation models of Poisson type. (a) PVT; (b) PDT; (c) PLT

conv.�/ D R
2 and no four points of � are cocircular, then the random Delaunay

tessellation T induced by � is well-defined. Furthermore, T is stationary if � is
stationary, see also Exercise 5.4. In particular, if � D ˘� is a stationary Poisson
process with intensity � > 0, we can generate the Delaunay tessellation T D f�ng
of � as the dual tessellation of the PVT induced by � , where T is called a Poisson–
Delaunay tessellation (PDT). In Fig. 5.3b a realization of a PDT is shown.

Theorem 5.3. Let T be a PDT induced by a Poisson process with intensity �. Then

�.0/ D �; �.1/ D 3�; �.2/ D 2�; � D 32

3�

p
� :

Proof. Since �.0/ D � and E�0.Z/ D 3 we get with Theorem 5.1 that �.1/ D
3�; �.2/ D 2�. For the proof of � D 32

3�

p
� see for example [451, Chap. 10]. ut

If TD f�ng is a PDT induced by the stationary Poisson process˘�, then the vertices
of T are given by the points of˘�. Moreover, due to Slivnyak’s theorem, the random
Delaunay tessellation To with respect to the Palm version˘o

� of ˘� is given by the
dual Delaunay tessellations corresponding to the Voronoi tessellations induced by
˘o
� D ˘� [ fog. Thus, the union of edges of To emanating from o can be regarded

as the typical edge star Eo of T.

Exercise 5.4. Assume that T is a random Voronoi tessellation or a random
Delaunay tessellation which is induced by some point process� D fX1;X2; : : : g �
R
2 such that with probability 1 it holds that conv.�/ D R

2 and there are no pairwise
different points Xi;Xj ;Xk;Xl 2 X which are located on a circle. Show that T is
stationary and isotropic if X is stationary and isotropic, respectively.

5.1.3.3 Poisson Line Tessellation

Consider a stationary Poisson process fRng on the real line R with (linear)
intensity e� > 0. Each point Rn is independently marked with a random angle
˚n 	 UnifŒ0; �/. Then we can identify each pair .Ri ; ˚i / with the line
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`.Rn;˚n/ D f.x; y/ 2 R
2 W x cos˚n C y sin˚n D Rng:

The resulting stationary random closed set
S
n�1 `.Rn;˚n/ is called a Poisson line

process with intensitye� . It can be regarded as the edge set T.1/ D S
n�1 `.Rn;˚n/ of a

stationary isotropic tessellation T which is called a Poisson line tessellation (PLT).
A realization of a PLT is displayed in Fig. 5.3c.

Theorem 5.4. Let T be a PLT induced by a Poisson line process with intensitye� .
Then

� De�; �.0/ D 1

�
�2; �.1/ D 2

�
�2; �.2/ D 1

�
�2:

Proof. Note that � D E�1.B1.o/ \ S
n�1 `.Rn;˚n//=� does not depend on the

distribution of ˚1;˚2; : : : , where Br.x/D fy 2 R
2 W jx � yj � rg denotes the

ball with midpoint x 2 R
2 and radius r > 0. Thus,

� D E�1.B1.o/ \
[
n�1

`.Rn;0//=� D E�1.Œ0; 1/2 \
[
n�1

`.Rn;0// De� :

Theorem 5.1 with E�0.Eo/ D 4 yields �.0/ D �.2/ and �.1/ D 2�.0/. Furthermore, it
holds that E�1.So/ D �=�.1/ D �=.2�/, see for example [489]. Thus �.1/ D 2

�
�2.

ut
Exercise 5.5. Show that E�1.So/ D �=�.1/ D �=.2�/.

5.2 Cox Processes

The notion of Cox processes, which is closely related with the notion of random
measures (called driving measures), has already been mentioned in Sects. 3.1
and 4.1.

In this section we concentrate on stationary Cox processes and on stationary
random driving measures associated with this class of point processes, as well as
on their Palm distributions. Particular emphasis is put on the case that the driving
measure of a Cox process fXng is concentrated on the edge set T.1/ of a stationary
tessellation T, i.e., we assume that P.Xn 2 T.1/ for all n 2 N/ D 1.

5.2.1 Cox Processes and Random Measures

Let M D M.R2/ denote the set of all locally finite measures on B.R2/. On M we
define the 	-algebra M D M.R2/ as the smallest 	-algebra such that the mappings
� 7! �.B/ are .M;B.R2//-measurable for all B 2 B0.R2/. Thus, we obtain the
measurable space .M;M/. The shift operator Tx W M ! M on M is defined in



160 F. Voss et al.

the same way as for counting measures, i.e. Tx�.B/ D �.BC x/ for all B 2 B.R2/
and x 2 R

2, and we define the rotation operator #R W M ! M by #R�.B/ D
�.#�1

R B/ D �.#R�1B/ for all rotations R W R2 ! R
2 around the origin.

A measurable mapping � W ˝ ! M from some probability space .˝;A;P/
into the measurable space .M;M/ is then called random measure on B.R2/. The

random measure � is called stationary if Tx�
dD � for all x 2 R

2. In this case
E�.B/ D ��2.B/ for B 2 B.R2/, where � � 0 is some constant which is called
the intensity of �. Notice that � D E�.Œ0; 1
2/. If 0 < � < 1, we define the Palm
distribution of � as the probability measure P0

� W M ! Œ0; 1
 given by

P0
�.A/ D 1

�
E
�Z

Œ0;1
2
1.Tx� 2 A/�.dx/

�
; A 2 M : (5.3)

Assume now that a random measure � is given. Recall that the Cox process �
with random driving measure � is then defined by

P.�.B1/ D k1; : : : ; �.Bn/ D kn/ D E

 
nY
iD1

�.Bi /
ki e��.Bi /

ki Š

!
(5.4)

for any k1; : : : ; kn 2 N0 and pairwise disjoint B1; : : : ; Bn 2 B0.R2/, see also
Sects. 3.1.4 and 4.1.3.

Now we summarize some basic properties of Cox processes. The following result
is an immediate consequence of (4.13).

Theorem 5.5. Let � be a Cox process with random driving measure �. Then �
is stationary (resp. isotropic) iff � is stationary (resp. isotropic). If � is stationary,
then its intensity is equal to the intensity � of �.

Exercise 5.6. Provide a proof of Theorem 5.5.

Classical examples of Cox processes are the Neyman–Scott process and the
modulated Poisson process [173].

Recall that the Palm version �o D � [ fog of a stationary Poisson process �
is obtained by adding the origin o to � , compare Theorem 4.5. This property of
Poisson processes can be generalized to get the following result, which is called
Slivnyak’s theorem for Cox processes. Namely, the Palm distribution Po

� of a
stationary Cox process � with random driving measure � can be characterized as
follows, see for example [489, p. 156].

Theorem 5.6. Let � be a Cox process with stationary driving measure �. Then
Po
� .A/ D P.e� [ fog 2 A/ for all A 2 N, where e� is a Cox process with random

driving measure �o distributed according to the Palm distribution Po
� of �.

Thus, to simulate the Palm version �o of a stationary Cox process � , we can use a
two-step procedure. First, we generate a realization �o of �o. Afterwards, adding a
point at the origin o, we simulate a Poisson process with intensity measure �o.
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a b

Fig. 5.4 Realizations of Cox processes on PDT and PVT. (a) PDT; (b) PVT

5.2.2 Cox Processes on the Edges of Random Tessellations

In this section, we introduce a class of Cox processes � whose random driving
measures � are concentrated on the edge sets of random tessellations. Let T be a
stationary random tessellation with length intensity � D E�1.Œ0; 1
2 \T.1// and, for
some �` > 0, define the random measure� W B.R2/ ! Œ0;1
 by

�.B/ D �`�1.B \ T.1// ; B 2 B.R2/ : (5.5)

Notice that � is stationary. Its intensity is given by

� D �`E�1.Œ0; 1/2 \ T.1// D �`� : (5.6)

Let � be a Cox process whose random driving measure� is given by (5.5). Then, a
direct application of Theorem 5.5 yields that � is stationary with intensity � given
in (5.6). Furthermore, � is isotropic if T is isotropic. Realizations of � can be
generated by simulating first T and then simulating Poisson processes with (linear)
intensity �` on each segment of T.1/. In Fig. 5.4 realizations of Cox processes on
T.1/ are shown for T being a PDT and PVT, respectively.

Recall that in Theorem 5.6 the Palm distribution of stationary Cox processes
is characterized, which is uniquely determined by the Palm version �o of the
stationary driving measure �. For Cox processes on the edge set of stationary
tessellations, the result of Theorem 5.6 can be specified in the following way.

Theorem 5.7. Let � be the stationary random measure given in formula (5.5).
Then �o.B/ D �`�1.B \eT.1// for each B 2 B.R2/, where the tessellation eT is
distributed according to the Palm distributionPo

T.1/
with respect to the 1-dimensional

Hausdorff measure on T.1/.
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Proof. Let � 2 T be an arbitrary tessellation. Then we can identify the measure �
given by �. � / D �`�1. � \�.1// with � , writing �� . It is easy to see that �Tx� D Tx��
for all x 2 R

2. Furthermore, using the definition of the Palm distribution Po
� of �

given in (5.3), we get for each A 2 M that
Po
�.A/ D ��1 R

M
R
Œ0;1
2

1.Tx� 2 A/ �.dx/P�.d�/, i.e.

Po
�.A/ D 1

�

Z
T

Z
Œ0;1
2\�.1/

1.Tx�� 2 A/ �1.dx/ PT.d�/DPo
T.1/
.f� 2 T W �� 2 Ag/ ;

where the latter equality immediately follows from the definition of the Palm
distribution Po

T.1/
since � D E�1.T.1/ \ Œ0; 1/2/. This means that the distributions of

�o and �eT . � / D �`�1. � \eT.1// are equal. ut
Note that eT can be viewed as the random tessellation T under the condition that
o 2 T.1/. Thus, under Po

T.1/
, there is an edge eS of eT through o with probability 1.

However, the distributions ofeS and the typical edge So do not coincide. This can be
seen as follows. Assume that h W Lo ! Œ0;1/ is a translation-invariant measurable
function and let S.x/ denote the segment of T.1/ through x for x 2 T.1/. Then,

Eh.eS/ D 1

�
E
Z
T.1/\Œ0;1/2

h.S.x/ � x/ �1.dx/

D 1

�
E

X
.Yi ;S

o
i /2T

h.Soi /

Z
Si

1.x 2 Œ0; 1/2/ �1.dx/

D �.1/

�
Eh.So/

Z
R2

Z
So

1.x 2 Œ0; 1/2 � y/ �1.dx/ �2.dy/ D E�1.So/h.So/
E�1.So/

;

where we used the refined Campbell theorem for stationary marked point processes
(formula (4.10)) and the mean-value formulae given in Theorem 5.1. Thus, the
distribution ofeS can be represented as a length-weighted distribution of So.

For Cox processes on the edges of random tessellations the following scaling
invariance can be observed. Let T be a stationary random tessellation with length
intensity 1. Then we define the scaled tessellation T� as the random tessellation

whose edge set is given by T.1/� D 1
�
T.1/. Thus, the length intensity of T� is � since

E�1.T
.1/
� \ Œ0; 1/2/ D E�1.T.1/ \ Œ0; �/2/=� D � due to the homogeneity of the

Hausdorff measure �1, see also Sect. 2.1.1.
Now let � D fXng be a Cox process on T� with linear intensity �` and let

� 0 D fX 0
ng be a Cox process on T� 0 whose linear intensity is given by �0̀ . Moreover,

assume that the intensity quotients � D �=�` and �0 D � 0=�0̀ are equal, i.e., � D �0.
Then we get for any C 2 K2 that



5 Random Tessellations and Cox Processes 163

P.�.C / D 0/ D E exp
n
�`�1.C \ T.1/� /

o

D E exp

�
�`�

0

�
�1
� �
� 0C \ T.1/� 0

�	

D P
�
� 0� �

� 0C
� D 0

�
D P

��� 0

�
� 0�.C / D 0

�
;

where the scaled point process � 0

�
� 0 is defined by � 0

�
� 0 D f � 0

�
X 0
ng. Since the

distribution of a point process � is uniquely determined by its void probabilities

P.�.C / D 0/, C 2 K2, we have that �
dD � 0

�
� 0. Thus, for a given tessellation

type T, the intensity quotient � defines the Cox process � on the scaled tessellation
T� with linear intensity �` uniquely up to a certain scaling. We therefore call � the
scaling factor of � . For numerical results it is therefore sufficient to focus on single
parameter pairs � and �` for each value of �. For other parameters with the same
scaling factor � the corresponding results can then be obtained by a suitable scaling.

5.3 Cox–Voronoi Tessellations

In this section we consider Voronoi tessellations induced by stationary Cox point
processes. The typical cell of these so-called Cox–Voronoi tessellations can describe
for example the typical serving zone of telecommunication networks. Unfortunately,
its distribution is not known analytically. Even for the typical cell of PVT it is hard
to obtain closed analytical expressions for the distribution of cell characteristics like
the perimeter, the number of vertices, or the area. On the other hand, it is often
possible to develop simulation algorithms for the typical Voronoi cell, which can
be used to determine the distribution of cell characteristics approximatively. We
discuss such simulation algorithms for two examples of Voronoi tessellations. To
begin with, in Sect. 5.3.1, we first consider the case of the typical Poisson–Voronoi
cell. Then, in Sect. 5.3.2, we show how the typical cell of a Cox–Voronoi tessellation
T� can be simulated if the random driving measure of the underlying Cox process
� is concentrated on the edge set of a certain stationary tessellation T, where we
assume that T is a PLT, see Fig. 5.6a.

In the ergodic case, the distribution of the typical cell can be obtained as the limit
of empirical distributions of cells observed in a sequence of unboundedly increasing
sampling windows, see Theorem 4.7. Thus, in order to approximate the distribution
of the typical cell, we can simulate the random tessellation in a large sampling
window W , considering spatial averages of those cells whose associated points
belong to W . Alternatively, we can approximate this distribution by simulating
independent copies of the typical cell and by taking sample means instead of spatial
averages.

Note that there are several advantages of the latter approach. If we simulate the
tessellation in a large sampling window, then the cells are correlated and there are
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edge effects which may be significant if W is not large enough. On the other hand,
for large W , runtime and memory problems occur. However, these problems can
be avoided if independent copies of the typical cell are simulated locally, but the
challenge is then to develop such simulation algorithms. Recall that the typical
Voronoi cell Z� of any stationary point process � can be (locally) represented as
Z� D \n2NH.o;Xo

n/, where �o D fXo
ng is the Palm version of � . Thus, suitable

simulation algorithms for the points of �o have to be developed.

5.3.1 Local Simulation of the Typical Poisson–Voronoi Cell

Recall that due to Slivnyak’s theorem, the typical cell of a PVT can be regarded as
the Voronoi cell at the origin with respect to �o D � [ fog, where � D fXng
is the underlying stationary Poisson process. Thus, we can place a point at o,
simulate further points Xn of � radially and then construct the typical cell Z� D
\n2NH.o;Xn/ as intersection of the bisectorsH.o;Xn/ for n � 1.

More precisely, we simulate the points X1;X2; : : : successively, with increasing
distance to the origin, until a bounded Voronoi cell at o can be constructed by the
simulated points. We call this cell the initial cell. Afterwards, we check for each
newly simulated point if the initial cell is influenced by points with larger distances
from o than the latest generated point. If this is not the case, we stop the algorithm.
Otherwise we simulate a further point. This local simulation algorithm of the typical
Poisson–Voronoi cell is summarized below. The main steps of the algorithm are
visualized in Fig. 5.5.

1. Put �o D fog.
2. Simulate random variablesV1; V2; : : : and�1;�2; : : : as in Algorithm 3.8, where
V1; V2; : : : are the arrival times of a homogeneous Poisson process in .0;1/

with intensity �� , and �1;�2; : : : are independent and uniformly distributed on
Œ0; 2�/.

3. Compute the points X1; : : : ; Xn by Xn D .
p
Vn cos�n;

p
Vn sin�n/ and add

them to �o until a (compact) initial cell Z� at o can be constructed from �o.
4. If

p
Vn � rmax D 2maxfjvi jg, were fvig is the set of vertices of Z� , then stop,

else add further points to �o and update Z� .

When implementing this simulation algorithm we have to take into account
some technical details. First, a rule for constructing the initial cell has to be
implemented. If for some n� 3 the pointsX1; : : : ; Xn have been generated, then we
can use a simple cone criterion in order to check if a bounded Voronoi cell can be
constructed around o by these points which says if the intersection of the bisectors
H.o;X1/; : : : ;H.o;Xn/ is bounded. Once the initial cell Z� has been generated,
points of �o outside the ball Brmax .o/ cannot influence the typical cell anymore
since the bisector between o and any x 2 Brmax .o/c does not intersectZ� . Thus, the
simulation stops if

p
Vn � rmax.
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a b c

d e f

Fig. 5.5 Simulation of the typical cell of PVT. (a) Origin (black) and radially simulated points
X1;X2; X3 (gray). Initial cell incomplete. (b) Initial cell Z� around o is constructed using the
radially simulated points X1; : : : ; X7. (c) Point X8 is simulated radially and Z� is cut by the
bisectorH.o;X8/. (d) Point X9 is simulated radially and Z� is cut byH.o;X9/. (e) Further points
Xn are simulated radially until jXnj � rmax . (f) Realization of the typical cell Z� of PVT

5.3.2 Cox Processes on the Edges of PLT

We now consider Cox processes � D fXng whose random driving measure � is
concentrated on the edges of a stationary random tessellation T, where we assume
that� is given by (5.5). In particular, the typical cell Z� of the Voronoi tessellation
T� D f��;ng induced by � will be investigated. Recall that T� can be identified
with the marked point process f.Xn;�o

�;n/g, where �o
�;n D ��;n � Xn denotes the

centered version of the Voronoi cell ��;n at Xn with respect to � , see Fig. 5.6.
If the Cox process� models the locations of network components in telecommu-

nication networks, then��;n can be regarded as the area of influence of the network
component atXn, where��;n is called the serving zone ofXn. Thus, the typical cell
Z� of T� is an important characteristic in global econometric analysis and planning
of telecommunication networks, because various cost functionals of hierarchical
network models can be represented as expectations of functionals of Z� , see also
Sect. 5.4.

Suitable simulation algorithms for the points of the Palm version �o of � have
to be developed in order to locally simulate the typical cell Z� of the Cox–Voronoi
tessellation T� . However, in contrast to the situation discussed in Sect. 5.3.1, we
do not simulate the points of �o radially, at least not at once, when considering
Cox processes on PDT, PLT and PVT, respectively. But we simulate the points
of the Poisson process radially which induces the Palm version of the underlying
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a b

Fig. 5.6 Realizations of T� for Cox processes on PLT and PVT. (a) PLT; (b) PVT

tessellation (regarded as random Hausdorff measure), alternatingly with the points
of the (linear) Poisson processes on the edges of this tessellation. As an example,
we show how this can be done for Cox processes on PLT.

5.3.2.1 Palm Version of PLT

Let � be a stationary Cox process with linear intensity �` on a stationary PLT T
with length intensity � . Note that due to Theorems 5.6 and 5.7 it holds that �o De� [ fog, where e� is a Cox process on the Palm version eT of T regarded as the
random Hausdorff measure �1. � \ T.1// on T.1/. Thus, in a first step, T has to be
simulated according to its Palm distribution with respect to �1. � \ T.1//, i.e., under
the condition that o 2 T.1/. It turns out that the edge seteT.1/ of this conditional PLT
can be constructed just by adding an isotropic line through o to T.1/.

Theorem 5.8. Let T.1/ be the edge set of a stationary PLT with intensity � and let
`.˚/ be a line through the origin with random direction ˚ 	 UnifŒ0; �/ which is

independent of T.1/. TheneT.1/ dD T.1/ [ `.˚/.

Proof. Since the distribution of a random closed set is uniquely determined by its
capacity functional (see Definition 1.2 of Sect. 1.2.2), we show that the capacity
functionals ofeT.1/ and T.1/[`.˚/ coincide. With the notation T.1/ D S

n�1 `.Rn;˚n/
introduced in Sect. 5.1.3.3, the definition of the Palm distribution of stationary
random measures (see (5.3)) gives that for each C 2 K2

P.eT.1/ \ C 6D ;/ D 1

��
E
Z
T.1/\B1.o/

1.
[
n�1
.`.Rn;˚n/ � x/ \ C 6D ;/ �1.dx/ :

Note that the number N of lines of a Poisson line process which intersect a convex
compact setW � R

2 is Poi.�/-distributed with � D ��1.@W /=� and, givenN D k,
these k lines `1; : : : ; `k are independent and isotropic uniform random (IUR), see
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Sect. 2.1.1. Thus, for W D BR.C/C1.o/, where R.C / D supx2C fjxjg, we get

P.eT.1/ \ C 6D ;/

D
1X
kD0

P.N D k/

��

kX
iD1

E

 Z
`i\B1.o/

1.
k[
iD1
.`i � x/ \ C 6D ;/�1.dx/ j N D k

!

D 1

��

1X
kD0

e���k

kŠ
k E

 Z
`1\B1.o/

1.
k[
iD1
.`i � x/ \ C 6D ;/�1.dx/ j N D k

!

D �

��

1X
kD0

e���k

kŠ
E

 Z
`1\B1.o/

1.
kC1[
iD1
.`i � x/ \ C 6D ;/�1.dx/ j N D k C 1

!
:

Since the lines `1; `2; : : : ; `kC1 are independent and IUR, we can consider `1
separately, where the remaining `2; : : : ; `kC1 still are independent of each other,
IUR, and independent of `1. This gives

P.eT.1/ \ C 6D ;/ D �

��
P
�
.T.1/ [ `.˚// \ C 6D ;� E�1.`1 \ B1.o//

D P
��
T.1/ [ `.˚/

� \ C 6D ;� ;
where in the last equality we used that E�1.`1 \ B1.o// D �2=�1.@W /, see for
example Sect. 2.1.1, formula (2.5). ut

5.3.2.2 Local Simulation of the Typical Cox–Voronoi Cell

Using Theorem 5.8, we are able to briefly describe the main idea of an algorithm
for local simulation of the typical cell Z� of the Voronoi tessellation T� D f��;ng
induced by the Cox process � on PLT.

We first put a line `.˚/ with direction ˚ 	 UnifŒ0; �/ through the origin
o and then, on both half-lines of `.˚/ seen from o, we simulate the nearest
points to o of a Poisson process with intensity �`. Next, we simulate independent
random variables ˚1 and R1 .D Y1/ with ˚1 	 UnifŒ0; 2�/ and R1 	 Exp.2�/
and construct the line `.R1;˚1/ D f.x; y/ 2 R

2 W x cos˚1 C y sin˚1 D R1g.
Note that `.R1;˚1/ is the closest line to the origin of a Poisson line process with
length intensity � . Then, on `.R1;˚1/, we simulate points of a Poisson process with
intensity �`. In the next step, we simulate independent random variables ˚2 and
Y2 with ˚2 	 UnifŒ0; 2�/ and Y2 	 Exp.2�/ constructing the line `.R2;˚2/ D
f.x; y/ 2 R

2 W x cos˚2 C y sin˚nDR2g, where R2 D R1 C Y2, and so on.
In this way, similar to the algorithm discussed in Sect. 5.3.1, we simulate points

of �o in a neighbourhood of the origin until a bounded Voronoi cell at o can be
constructed by the simulated points. Afterwards, we check for each newly simulated
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point if this initial cell is influenced by points with larger distances from o than the
latest generated point. If this is not the case, we stop the algorithm. Otherwise we
continue to alternatingly simulate lines and points on them respectively. For further
technical details of the simulation algorithm we refer to [189].

Similar algorithms can be constructed for local simulation of the typical Voronoi
cell of stationary Cox processes on PVT and PDT, respectively, see [174, 498].

5.4 Typical Connection Lengths in Hierarchical Network
Models

We now consider two Cox processes simultaneously. The leading measures of
either one or both of these Cox processes are concentrated on the edge set of
a stationary tessellation, where we assume that the Cox processes are jointly
stationary. We discuss representation formulae which have been derived in [498] for
the distribution function and density of the typical Euclidean (i.e. direct) connection
length Do between certain pairs of points, chosen at random, one from each of
the Cox processes. Furthermore, the typical shortest path length Co is considered
which is needed to connect such pairs of points along the edges of the underlying
tessellation. A useful tool in investigating these characteristics is Neveu’s exchange
formula (see for example [377]) for jointly stationary marked point processes,
which is stated in Sect. 5.4.1. Then, in Sect. 5.4.2, we give a motivation of our
investigations, where we explain how the results can be applied for example in
econometric analysis and planning of hierarchical telecommunication networks.

5.4.1 Neveu’s Exchange Formula

Let �.1/ D f.X.1/
n ;M

.1/
n /g and �.2/ D f.X.2/

n ;M
.2/
n /g be jointly stationary marked

point processes with mark spaces M1 and M2, respectively, and let NM1;M2 D
NM1 � NM2 denote the product space of the families of simple and locally finite
counting measures with marks in M1 and M2, respectively, equipped with product-
	-algebra NM1 ˝ NM2 . We then put � D .� .1/; � .2// which can be regarded as
a random element of NM1;M2 . Let �1 and �2 denote the intensities of �.1/ and
�.2/, respectively, and assume that the shift operator Tx is defined by Tx� D
.Tx�

.1/; Tx�
.2// for x 2 R

2. Thus, Tx shifts the points of both �.1/ and �.2/

by �x 2R
2. Note that Tx�

dD � for each x 2 R
2 since �.1/ and �.2/ are jointly

stationary. The Palm distributions P .i/

� ; i D 1; 2 on NM1 ˝ NM2 ˝ B.Mi / with
respect to the i -th component of � are probability measures defined by

P
.i/

� .A �G/ D 1

�i
Ejfn W X.i/

n 2 Œ0; 1/2;M .i/
n 2 G; T

X
.i/
n
� 2 Agj (5.7)
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forA 2 NM1 ˝NM2 andG 2 B.Mi /. In particular, forA 2 NMi ; G 2 B.Mi /, we get
P
.1/

� .A�NM2 �G/ D Po
�.1/
.A�G/ if i D 1, andP .2/

� .NM1�A�G/ D Po
�.2/
.A�G/

if i D 2, where Po
�.1/

and Po
�.2/

are the ordinary Palm distributions of the marked
point processes �.1/ and �.2/, respectively.

Note that we also use the notation Po
�.i/

for the Palm distribution P .i/

� of the

vector .� .1/; � .2// in order to emphasize the dependence on �.i/ for i D 1; 2. With
the definitions and notation introduced above, and writing  D . .1/;  .2// for the
elements of NM1;M2 , Neveu’s exchange formula can be stated as follows, see for
example [339].

Theorem 5.9. For any measurable f W R2 � M1 � M2 � NM1;M2 ! Œ0;1/, it holds
that

�1

Z
NM1;M2�M1

Z
R2�M2

f .x;m1;m2; Tx /  
.2/.d.x;m2// P

.1/

� .d. ;m1//

D �2

Z
NM1;M2�M2

Z
R2�M1

f .�x;m1;m2;  /  
.1/.d.x;m1// P

.2/

� .d. ;m2// :

Exercise 5.7. Provide a proof of Theorem 5.9.

Neveu’s exchange formula given in Theorem 5.9 allows to express the (con-
ditional) distribution of functionals of a vector .� .1/; � .2// of jointly stationary
point processes, seen from the perspective of the Palm distribution Po

�.1/
, by the

distribution of the same functional under Po
�.2/

. This means that we can switch

from the joint distribution of .� .1/; � .2// conditioned on o 2 f�.1/
n g to the joint

distribution of .� .1/; � .2// conditioned on o 2 f�.2/
n g.

5.4.2 Hierarchical Network Models

Models from stochastic geometry have been used since more than 10 years in order
to describe and analyze telecommunication networks, see for example [21,221,533].
However, the infrastructure of the network, like road systems or railways, has been
included into the model rather seldom.

In this section we introduce spatial stochastic models for telecommunication
networks with two hierarchy levels which take the underlying infrastructure of
the network into account. In particular, we model the network infrastructure, for
example road systems or railways, by the edge set T.1/ of a stationary tessellation
T with (length) intensity � D E�1.T.1/ \ Œ0; 1
2/ > 0. The locations of both high
and low level components (HLC, LLC) of the network are modelled by stationary
point processes �H D fHng and �L D fLng, respectively, where �H is assumed
to be a Cox process on T.1/ whose random driving measure is given by (5.5), with
linear intensity �` > 0 and (planar) intensity � D �`� . Regarding the point process
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Fig. 5.7 Cox process �H on PDT with serving zones (black) and direct connection lengths
(dashed) for �L Poisson (left) and Cox (right)

�L we distinguish between two different scenarios. On the one hand, we consider
the case that �L is a stationary (planar) Poisson process with intensity �0 which is
independent of T and �H . On the other hand, we assume that �L is a Cox process
whose random driving measure is concentrated on the same edge set T.1/ as �H

and given by (5.5), but now with linear intensity �0̀ . Furthermore, we assume that
�L is conditionally independent of �H given T. Thus, in the latter case, the planar
intensity �0 of �L is given by �0 D �0̀ � .

5.4.2.1 Typical Serving Zone

Each LLC of the network is connected with one of the HLC, i.e., each point Ln
of �L is linked to some point Hn of �H . In order to specify this connection rule,
so-called serving zones are considered, which are domains associated to each HLC
such that the serving zones of distinct HLC do not overlap, but their union covers
the whole region considered. Then a LLC is linked to that HLC in whose serving
zone it is located. In the following, we assume that the serving zones of HLC are
given by the cells of the stationary Voronoi tessellation TH D f�H;ng induced by
�H . Thus, the pointLn is linked to the pointHj iffLn 2 ��H ;j , i.e., all LLC inside
��H ;j are linked toHj , see Fig. 5.7. The typical cellZH of TH is called the typical
serving zone.

However, note that more complex models for (not necessarily convex) serving
zones can be considered as well, like Laguerre tessellations [324] or aggregated
Voronoi tessellations [491].

Furthermore, we define the stationary marked point process �H
S Df.Hn; S

o
H;n/g,

where the marks are given by SoH;n D .T.1/ \ �H;n/ �Hn. Thus, each point Hn of
�H is marked with the segment system contained inside its serving zone. If �L is a
Cox process on T, then the point Ln of �L is connected to Hj iff Ln 2 SoH;j CHj .
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a b

Fig. 5.8 Euclidean distances and shortest paths along the edge system. (a) PVT (b) PLT

It is easy to see that �H
S is a stationary marked point process with intensity � whose

mark space is given by the family of finite segment systems Lo which contain the
origin. In particular, the typical mark SoH W ˝ ! Lo of �H

S is a random segment
system which contains the origin, where SoH is called the typical segment system
within the typical serving zone Zo

H , see also Sect. 5.3.2.

5.4.2.2 Typical Connection Lengths

So far, we introduced the four modelling components T, �L, �H
S and TH . They can

be used in order to define the stationary marked point process �L
D D f.Ln;Dn/g,

whereDn D jLn �Hj j is the Euclidean distance between Ln andHj provided that
Ln 2 �H;j . We are then interested in the distribution of the typical mark Do of �L

D

which we call the typical direct connection length or, briefly, the typical Euclidean
distance.

Realizations of the distancesDn for two different models of �L are displayed in
Fig. 5.7, where the underlying tessellation T is a PDT; see also Fig. 5.8. Note that
realizations of the marked point process �L

D can be constructed from realizations of
�L and �H

S if �L is a Cox process and from realizations of �L and TH if �L is a
Poisson process. Hence, instead of �L

D , we can consider the vectors � D .�L; �H
S /

and � D .�L;T�H /, respectively, together with the Palm distribution Po
�L

of � with
respect to the first component �L introduced in (5.7).

Suppose now that .�Lo ;e�H
S / and .�Lo;Tf�H /, respectively, are distributed

according to the Palm distribution Po
�L

, where we use the notation e�H D feHng,
e�H
S D f.eHn;eSoH;n/g andeT.1/ D S

n�1
�eSoH;nCeHn

�
. ThenDo can be regarded as the

distance from o to the point eHn of e�H in whose serving zone o is located. Note that
�Lo nfog is a stationary Poisson process resp. a Cox process oneT if �L is a Poisson
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process resp. a Cox process on T. In the same way we regard the vectors .f�L;

�Ho

S / and .f�L;ToH / which are distributed according to the Palm distributions Po

�HS

and Po
TH

, respectively. Here we denote with To.1/ the edge set of �H
S

o
. On the one

hand, if �L is a Cox process on T, then f�L is a (non-stationary) Cox process on
To.1/ with linear intensity �0̀ , which is conditionally independent of�Ho

givenT0.1/.
On the other hand, if �L is a stationary Poisson process which is independent of T

and �H , then f�L dD �L.
If �L is a Cox process on T, then besides �L

D D f.Ln;Dn/g, we consider the
point process �L

C D f.Ln; Cn/g, where Cn is the shortest path length fromLn toHj

along the edges of T, provided that Ln 2 ��H ;j , see Fig. 5.8. We are interested in
the distribution of the typical shortest path length, i.e., the typical mark Co of �L

C .

5.4.3 Distributional Properties of Do and C o

We show that the distribution function and density of the typical (direct) connection
length Do can be expressed as expectations of functionals of the typical serving
zone and its typical segment system. Furthermore, the density of the typical shortest
path length Co is considered.

Applying Neveu’s exchange formula stated in Theorem 5.9 we can represent the
distribution function of Do in terms of the typical Voronoi cell Zo

H of �H if �L is
a planar Poisson process, and in terms of the typical segment system So

�H
if �L is a

Cox process on T.1/. This shows that the distribution of Do is uniquely determined
by TH and �H

S , respectively.

5.4.3.1 Distribution Function of Do

Note that the representation formulae stated in Theorem 5.10 below do not depend
on �L at all. The random closed sets Zo

H \Bx.o/ and SoH \Bx.o/ occurring on the
right-hand sides of (5.8) and (5.9) are illustrated in Fig. 5.9.

Theorem 5.10. (i) If �L is a planar Poisson process that is independent of T and
�H , then the distribution function FDo W Œ0;1/ ! Œ0; 1
 of Do is given by

FDo.x/ D �` � E �2.Zo
H \ Bx.o// ; x � 0 ; (5.8)

where �2.Zo
H\Bx.o// denotes the area ofZo

H intersected with the ballBx.o/ � R
2.

(ii) If �L is a Cox processes on T.1/ which is conditionally independent of �H given
T, then the distribution function ofDo is given by

FDo.x/ D �` E �1.SoH \ Bx.o// ; x � 0 : (5.9)



5 Random Tessellations and Cox Processes 173

a b

Fig. 5.9 Typical serving zone and its typical segment system intersected byBx.o/. (a)Zo
H\Bx.o/

(blue). (b) SoH \ Bx.o/ (black)

Proof. Let us first assume that �L is a planar Poisson process with intensity �0
and regard the vector � D .�L

D;TH/ as a random element of NŒ0;1/;Po , where
the definition of Po and NŒ0;1/;Po has been introduced in Sects. 5.1.2.1 and 5.4.1,

respectively. Furthermore, we use the notation .�Lo

D ;Tf�H / and .f�L
D;T

o
�H
/ intro-

duced in Sect. 5.4.2.2 for the Palm versions of � distributed according to Po

�LD
and

P0
TH

, respectively. For some measurable function h W Œ0;1/ ! Œ0;1/ we consider
f W R2 � Œ0;1/ � Po � NŒ0;1/;Po ! Œ0;1/ defined by

f .x;m;�; / D
(
h.m/; if o 2 � C x,

0; otherwise.

Then, applying Theorem 5.9, we get

Eh.Do/ D
Z

NŒ0;1/;Po

Z
R2�Po

f .x;�;m; / .2/.d.x;�// P 0

�LD
.d. ;m//

D �

�0

Z
NŒ0;1/;Po

Z
R2�Œ0;1/

f .�x;�;m; Tx / .1/.d.x;m// P 0
TH
.d. ;�//

D �

�0

Z
NŒ0;1/;Po

Z
R2�Œ0;1/

h.jxj/1.x 2 �/ .1/.d.x;m//P 0
TH
.d. ;�//

D �

�0 E

0
B@E

0
B@ X
e�Ln2ZoH

h.jf�L
nj/ j Zo

H

1
CA
1
CA :

Since �L and�H are independent, we get that ToH and f�L are also independent and

in addition that f�L dD �L. Thus, given ZH , we get that f�L is a stationary Poisson
process of intensity �0. Using Campbell’s formula (see formula (4.10)), we obtain
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E

0
@ X
eLn2ZoH

h.jeLnj/ j Zo
H

1
A D �0

Z
ZH

h.juj/ �2.du/

which yields for h.juj/ D 1.juj 2 Œ0; x
/ that

FDo.x/ D E 1.Do 2 Œ0; x
/ D �E �2.Zo
H \ Bx.o//:

On the other hand, if �L is a Cox process on T.1/, then we regard the vector
�D .�L

D; �
H
S / as a random element of NŒ0;1/;Lo . Recall that we use the notation

.�Lo

D ;e�H
S / and .f�L

D;�
Ho

S / for the Palm versions of � with respect to the
Palm distributions Po

�LD
and Po

�HS
, respectively. Similarly as above, an appropriate

application of Neveu’s exchange formula stated in Theorem 5.9 yields

Eh.Do/ D �

�0 E

0
@E

0
@ X
eLn2SoH

h.jeLnj/ j SoH

1
A
1
A :

Note that f�L is independent of �Ho

S under Po

�HS
given SoH . Furthermore, �0 D �0̀ �

and f�L\SoH is a Cox process whose random intensity measure is given by �0̀ �1.B\
SoH/ for B 2 B.R2/. Thus, Campbell’s formula (see formula (4.10)) yields

E

0
@ X
eLn2SoH

h.jeLnj/ j SoH

1
A D �0̀

Z
SoH

h.juj/ �1.du/

and, for h.juj/ D 1.juj 2 Œ0; x
/, formula (5.9) follows. ut

5.4.3.2 Probability Density of Do

Using Theorem 5.10 we can derive analogous representation formulae for the
probability density ofDo.

Theorem 5.11. (i) If �L is a planar Poisson process, which is independent of T
and �H , then the probability density fDo W Œ0;1/ ! Œ0;1/ of Do is given by

fDo.x/ D �` � E �1.ZH \ @Bx.o// ; x � 0 ; (5.10)

where �1.ZH \ @Bx.o// denotes the curve length of the circle @Bx.o/ inside ZH .
(ii) If �L is a Cox processes on T.1/ which is conditionally independent of �H

given T, then the probability density ofDo is given by
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fDo.x/ D �` E
�XNo

x

iD1
1

sin ˛oi

�
; x � 0 ; (5.11)

where No
x D jSoH \ @Bx.o/j is the number of intersection points of the segment

system SoH with @Bx.o/ and ˛o1; : : : ; ˛
o
No
x

are the angles at the corresponding
intersection points between their tangents to @Bx.o/ and the intersecting segments.

Proof. Assuming that �L is a Poisson process and using the polar decomposition
of the two-dimensional Lebesgue measure, we get from (5.8) that

FDo.x/ D �`� E
Z
R2

1.y 2 ZH \ Bx.o// �2.dy/

D �`� E
Z x

0

Z 2�

0

r1..r cos t; r sin t/ 2 ZH/ dt dr

D
Z x

0

�`�E�1.ZH \ @Br .o// dr ;

i.e., (5.10) is shown. If �L is a Cox process on T.1/, then we get from (5.9) that

FDo.x/ D �` E �1.SoH \ Bx.o//

D �` E
Z 1

0

No
yX

iD1

1

sin ˛oi
1.y 2 Œ0; x
/ dy

D
Z x

0

�` E
�XNo

y

iD1
1

sin ˛oi

�
dy ;

decomposing the Hausdorff measure �1 similarly as in the proof of (5.10). ut

5.4.3.3 Representation Formulae for C o

Theorem 5.12. Let �L be a Cox processes on T.1/ which is conditionally indepen-
dent of �H given T. Then, for any measurable function h W R ! Œ0;1/ it holds
that

Eh.C o/ D �`E
Z
SoH

h.c.y// �1.dy/ ; (5.12)

where c.y/ is the shortest path length from y to o along the edges of the Palm
version �Ho

S of �H
S and SoH is the (typical) segment system of �Ho

S centered at o.

Proof. It is similar to the proof of Theorem 5.10. Note that formula (5.12) can be
written as

Eh.C o/ D �`E
NX
iD1

Z c.Bi /

c.Ai /

h.u/ du ;
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where the segment system SoH is decomposed into line segments S1; : : : ; SN with
endpoints A1;B1; : : : ; AN ;BN such that SoH D SN

iD1 Si , �1.Si \ Sj / D 0 for
i 6D j , and c.Ai / < c.Bi / D C.Ai /C �1.Si /. Furthermore, putting h.x/ D 1.x 2
B/ for any Borel set B � R, we get that P.C o 2 B/ D R

B �` E
PN

iD1 1.u 2
Œc.Ai /; c.Bi // du. Thus, the following formulae for the probability density fCo WR
! Œ0;1/ of Co are obtained:

fCo.x/ D
�
2�` if x D 0,
�` E

PN
iD1 1.x 2 Œc.Ai /; c.Bi // if x > 0.

(5.13)

The proof is complete. ut

5.5 Scaling Limits

In this section we assume that �L is a Cox process on T.1/ with random driving
measure given by (5.5). We investigate the asymptotic behaviour of the distributions
of the typical connection lengths Do and Co as the parameters of the stochastic
network model introduced in Sect. 5.4.2 tend to some extremal values. The resulting
limit theorems for the distributions of Do and Co can be used in order to derive
parametric approximation formulae for the distribution of Co, see Sect. 5.6.

5.5.1 Asymptotic Behaviour of Do

We consider the asymptotic behaviour of the distribution of Do D Do.�; �`/ if the
scaling factor � D �=�` introduced in Sect. 5.2.2 tends to 1, where we assume that
� ! 1 and �` ! 0 such that �`� D � is fixed. This means that the planar intensity
� of �H is constant, but the edge set of T� gets unboundedly dense as � ! 1; see
Fig. 5.10 for realizations of the network model for small and large values of �. In
particular, we show that Do converges in distribution to the (random) Euclidean
distance � from the origin to the nearest point of a stationary Poisson process in R

2

with intensity �.

Theorem 5.13. Let T be ergodic and � 	 Wei.��; 2/ for some � > 0. If � ! 1,
where � ! 1 and �` ! 0 such that � D ��`, then

Do.�; �`/
d�! � : (5.14)

In the proof of Theorem 5.13 given below, we use two classical results regarding
weak convergence of point processes, which are stated separately in Sect. 5.5.1.1.
For further details on weak convergence of point processes, see for example [140,
282, 346].
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a b

Fig. 5.10 Realizations of the network model for extreme values of �. (a) � D 1; (b) � D 1; 000

5.5.1.1 Weak Convergence of Point Processes

A sequence of point processes �.1/; � .2/; : : : in R
2 is said to converge weakly to a

point process � in R
2 iff

lim
m!1 P.� .m/.B1/ D i1; : : : ; �

.m/.Bk/ D ik/ D P.�.B1/ D i1; : : : ; �.Bk/ D ik/

for any k � 1, i1; : : : ; ik � 0 and for any continuity sets B1; : : : ; Bk 2 B0.R2/ of
� , where B 2 B.R2/ is called a continuity set of � if P.�.@B/ > 0/ D 0. If the
sequence �.1/; � .2/; : : : converges weakly to � , we briefly write �.m/ H) � .

Now let � D fXng be an arbitrary ergodic point process in R
2 with intensity

� 2 .0;1/. Then the following limit theorem for independently thinned and
appropriately re-scaled versions of � can be shown. For each p 2 .0; 1/, let �.p/

denote the point process which is obtained from � by an independent thinning,
where each point Xn of � survives with probability p and is removed with
probability 1 � p independently of the other points of � . Furthermore, assume

that �
.p/

is a re-scaled version of the thinned process �.p/, which is defined by

�
.p/
.B/D�

.p/
.B=

p
p/ for each B 2 B.R2/. Thus, for each p 2 .0; 1/, the

point processes �
.p/

and � are both stationary with the same intensity � since

E�
.p/
.Œ0; 1/2/ D E�.p/.Œ0; 1=

p
p/2/ D �.

Theorem 5.14. Let˘� be a stationary Poisson process in R
2 with intensity �. Then,

�
.p/ H) ˘� as p ! 0: (5.15)

Proof. See for example [140, Sect. 11.3] or [346, Theorem 7.3.1]. ut
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Intuitively, the statement of Theorem 5.14 can be explained as follows. The
dependence between the points of � in two sets A;B 2 B0.R2/ decreases with
increasing distance between A and B . Thus, if the point process is thinned
independently only points far away of each other survive with high probability
which in the limit yields a point process with complete spatial randomness, that
is a Poisson process.

The following continuity property with respect to weak convergence of Palm
distributions of stationary point processes holds.

Theorem 5.15. Let � , �.1/; � .2/; : : : be stationary point processes in R
2 with

intensity �. If �.m/ H) � as m ! 1, then the Palm versions �.1/o; � .2/o; : : :

of �.1/; � .2/; : : : converge weakly to the Palm version �o of � , i.e.,

�.m/o H) �o as m ! 1: (5.16)

Proof. See for example [346, Proposition 10.3.6]. ut

5.5.1.2 Proof of Theorem 5.13

We now are able to prove Theorem 5.13 using the auxiliary results stated above,
where we first show that the Cox process �H on T.1/ converges weakly to a
stationary Poisson process with intensity � if � ! 1 provided that �`� D � is
constant. This result is then used in order to investigate the asymptotic behaviour
of the typical Euclidean distance Do D jeH0j, where eH0 denotes that point ofe�H D feHng which is closest to the origin (see Sect. 5.4.2.2).

Lemma 5.1. If � D �=�` ! 1, where �`� D � for some constant � 2 .0;1/,
then �H H) ˘�, where ˘� is a stationary Poisson process in R

2 with intensity �.

Proof. For each � > 1, let �H D �H.�/ be the Cox process on the scaled version
T� of T with linear intensity �`, where �` D �=� for some constant � 2 .0;1/.
Then the Cox process �H.�/ can be obtained from �H.1/ by an independent
thinning with survival probabilityp D 1=� followed by a re-scaling with the scaling

factor
p
1=� , i.e., �H.�/

dD �H.1/.p/. Furthermore, the Cox process �H.1/ is
ergodic since the underlying tessellation T and hence the random intensity measure
of�H.1/ is ergodic. Thus we can apply Theorem 5.14 which yields�H.�/ H) ˘�

as � ! 1. ut
Lemma 5.2. Let � 	 Wei.��; 2/ for some � > 0. Then Do d�! � as � ! 1
provided that � ! 1 and �` ! 0 such that �`� D �.

Proof. Assume that �Ho D�Ho
.�/ is the Palm version of the stationary point

process �H D�H.�/. Then the distribution of ˘� [ fog is equal to the Palm
distribution of ˘� due to Slivnyak’s theorem. Thus, Lemma 5.1 and Theorem 5.15
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yield that
�Ho

.�/ H) ˘� [ fog (5.17)

if � ! 1 and �` ! 0 with �`� D �. Since both �L and �H are Cox processes on

T.1/� conditionally independent given T� , we get that e�H [fog and the Palm version
�Ho

of�H have the same distributions. This is a consequence of Slivnyak’ theorem
for stationary Cox processes, see Theorem 5.6. Thus, using (5.17), for each r > 0

we get

lim
�!1 P.je�H

0j > r/ D lim
�!1 P.e�H.Br.o// D 0/

D lim
�!1 P..e�H [ fog/.Br.o// D 1/

D lim
�!1 P.�Ho

.Br.o// D 1/

D P..˘� [ fog/.Br.o// D 1/

D P.˘�.Br.o// D 0/ :

Hence, lim�!1 P.je�H
0j > r/ D P.˘�.Br .o// D 0/ D expf���r2g for each

r > 0, which shows that Do D je�H
0j d�! � 	 Wei.��; 2/. ut

5.5.2 Asymptotic Behaviour of C o

The results presented in the preceding section can be extended to further cost
functionals of the stochastic network model introduced in Sect. 5.4.2. For instance, if
T is isotropic, mixing and E�21.@Z/ < 1, where �21.@Z/ denotes the circumference
of the typical cell Z of T, then it can be shown that

Co d�! a� (5.18)

as � D �=�` ! 1 provided that � D ��` is fixed. Here, � 	 Wei.��; 2/ and
a 2 Œ1;1/ is some constant which depends on type of the underlying tessellation T.
In the proof of (5.18), the result of Theorem 5.13 is used. This is then combined with
fact that under the additional conditions on T mentioned above, one can show that
Co � aDo converges in probability to 0. Moreover, it can be shown that

Co d�! � 0 (5.19)

as � D �=�` ! 0, where �` is fixed and � 0 	 Exp.2�`/. For further details, see
[500].
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5.6 Monte Carlo Methods and Parametric Approximations

The representation formulae (5.8)–(5.10) can easily be used to obtain simulation-
based approximations for the distribution function and probability density of Do,
see Sect. 5.6.1. These estimates can be computed based on samples of ZH and
SoH which are generated by Monte Carlo simulation, using algorithms like those
discussed in Sect. 5.3.2.2. Note that we do not have to simulate any points of �L.

Similarly, we can use formula (5.13) to get a Monte Carlo estimator for the
density of Co. However, note that the density formula (5.11) for Do is not suitable
in this context, because it would lead to an estimator which is numerically instable.

Moreover, the scaling limits for Co stated in (5.18) and (5.19) can be used in
order to determine parametric approximation formulae for the density of Co, which
are surprisingly accurate for a wide range of (non-extremal) model parameters, see
Sect. 5.6.2.

5.6.1 Simulation-Based Estimators

Assume that ZH;1; : : : ; ZH;n and SoH;1; : : : ; S
o
H;n are n independent copies of ZH

and SoH , respectively. If �L is a stationary Poisson process in R
2, then we can

use (5.8) and (5.10) to define the estimators for FDo.x/ and fDo.x/ by

bFDo.xIn/ D �` �

n

Xn

iD1 �2.ZH;i \ Bx.o// (5.20)

and
bf Do.xIn/ D �` �

n

Xn

iD1 �1.ZH;i \ @Bx.o// ; (5.21)

respectively. If �L is a Cox process on T.1/, then we can use (5.9) to define an
estimator for FDo.x/ by

bFDo.xIn/ D �`

n

Xn

iD1 �1.S
o
H;i \ Bx.o// : (5.22)

Similarly, using formula (5.13), we can define an estimator for fCo.x/ by

bf Co.xIn/ D �`

n

Xn

jD1
XNj

iD1 1.x 2 Œc.A.j /i /; c.B
.j /
i // ; (5.23)

where the independent copies SoH;1; : : : ; S
o
H;n of SoH are decomposed into the line

segments S.j /1 ; : : : ; S
.j /
Nj

with endpointsA.j /1 ; B
.j /
1 ; : : : ; A

.j /
Nj
; B

.j /
Nj

. It is not difficult
to see that the estimators given in (5.20)–(5.23) are unbiased and in addition
strongly consistent for fixed x � 0. However, if �L is a Cox process, then it
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Fig. 5.11 Estimated density of Do if �L is a stationary Poisson process in R
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Fig. 5.12 Estimated density of Do if �L is a Cox process on T.1/

is not recommended to construct an estimator bf Do.xIn/ for fDo.x/ based on
(5.11) by just omitting the expectation in (5.11). This estimator is numerically
unstable since infinitely small angles can occur. In this case, it is better to first
compute the distribution function bFDo.xIn/ using formula (5.22) and afterwards
considering difference quotients obtained from this estimated distribution function
as estimator bf Do.xIn/ for fDo.x/, see [499]. Some examples of estimated densities
are shown in Figs. 5.11 and 5.12, together with the corresponding (scaling) limit
as �D �=�` ! 1 with �`� .D�/ fixed., i.e. the density of the Wei.��; 2/-
distribution.

5.6.2 Parametric Approximation Formulae

For practical applications it is useful to have parametric approximation formulae for
the distribution of Co, where the parameters depend on the model type of T and the
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Fig. 5.13 (a) Typical serving zone for �D 1; 000 and (b) parametric density of Co for PVT fitted
to infrastructure data (solid line), compared with histogram of connection lengths estimated from
real network data, showing that the assumption of direct physical connections (dashed line) is
incorrect

scaling factor �. Therefore, the problem arises to fit suitable classes of parametric
densities to the densities of Co which have been computed by the simulation-
based algorithm discussed in Sect. 5.6.1. In [190] truncated Weibull distributions
were used for this purpose since the scaling limits for the distribution of Co, i.e.
the exponential and Weibull distributions mentioned in Sect. 5.5.2, belong to this
parametric family. It turned out that the fitted densities approximate the estimated
densities surprisingly well for different types of T and for a wide range of �.
These parametric densities can be used in order to efficiently analyze and plan
telecommunication networks. In a first step, a suitable tessellation model has to be
fitted to real infrastructure data. Afterwards, the scaling factor � must be estimated
computing length intensity of the infrastructure and the number of HLC in the
network per unit area. Then the distribution of the typical shortest path length Co is
directly available via the parametric densities in order to analyze connection lengths
of existing or planned telecommunication networks. In Fig. 5.13 the parametric
density chosen in this way is compared to a histogram of connection lengths of
real network data of Paris. One can see that there is a quite good fit, see [190] for
details and further results.



Chapter 6
Asymptotic Methods for Random Tessellations

Pierre Calka

Abstract In this chapter, we are interested in two classical examples of random
tessellations which are the Poisson hyperplane tessellation and Poisson–Voronoi
tessellation. The first section introduces the main definitions, the application of an
ergodic theorem and the construction of the so-called typical cell as the natural
object for a statistical study of the tessellation. We investigate a few asymptotic
properties of the typical cell by estimating the distribution tails of some of its
geometric characteristics (inradius, volume, fundamental frequency). In the second
section, we focus on the particular situation where the inradius of the typical cell is
large. We start with precise distributional properties of the circumscribed radius that
we use afterwards to provide quantitative information about the closeness of the cell
to a ball. We conclude with limit theorems for the number of hyperfaces when the
inradius goes to infinity.

6.1 Random Tessellations: Distribution Estimates

This section is devoted to the introduction of the main notions related to random
tessellations and to some examples of distribution tail estimates. In the first
subsection, we define the two main examples of random tessellations, namely the
Poisson hyperplane tessellation and the Poisson–Voronoi tessellation. The next
subsection is restricted to the stationary tessellations for which it is possible to
construct a statistical object called typical cell Z via several techniques (ergodicity,
Palm measures, explicit realizations). Having isolated the cell Z, i.e. a random
polyhedron which represents a cell “picked at random” in the whole tessellation,
we can investigate its geometric characteristics. In the last subsection, we present
techniques for estimating their distribution tails.
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This section is not intended to provide the most general definitions and results.
Rather, it is aimed at emphasizing some basic examples. Quite often, we shall
consider the particular case of the plane. A more exhaustive study of random
tessellations can be found in the books [368, 386, 451, 489] as well as the surveys
[108, 252].

6.1.1 Definitions

Definition 6.1 (Convex tessellation). A convex tessellation is a locally finite
collection f�ngn2N of convex polyhedra of Rd such that [n2N�n D R

d and �n
and �m have disjoint interiors if n ¤ m. Each �n is called a cell of the tessellation.

The set T of convex tessellations is endowed with the 	-algebra generated by the
sets

ff�ngn2N W Œ[n2N@�n
 \K D ;g
whereK is any compact set of Rd .

Definition 6.2 (Random convex tessellation). A random convex tessellation is a
random variable with values in T.

Remark 6.1. We can equivalently identify a tessellation f�ngn2N with its skeleton
[n2N@�n which is a random closed set of Rd .

Definition 6.3 (Stationarity, isotropy). A random convex tessellation is stationary
(resp. isotropic) if its skeleton is a translation-invariant (resp. rotation-invariant)
random closed set.

We describe below the two classical constructions of random convex tessellations,
namely the hyperplane tessellation and the Voronoi tessellation. In the rest of
the section, we shall only consider these two particular examples even though
many more can be found in the literature (Laguerre tessellations [324], iterated
tessellations [340], Johnson–Mehl tessellations [367], crack STIT tessellations
[376], etc.).

Definition 6.4 (Hyperplane tessellation). Let� be a point process which does not
contain the origin almost surely. For every x 2 � , we define its polar hyperplane as
Hx D fy 2 R

d W hy � x; xi D 0g. The associated hyperplane tessellation is the set
of the closure of all connected components of Rd n [x2�Hx .

We focus on the particular case where � is a Poisson point process. The next
proposition provides criteria for stationarity and isotropy.

Proposition 6.1 (Stationarity of Poisson hyperplane tessellations). Let � D ˘�

be a Poisson point process of intensity measure �.
The associated hyperplane tessellation is stationary iff � can be written in

function of spherical coordinates .u; t/ 2 S
d�1 � RC as
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�.du; dt/ D � dt'.du/ (6.1)

where ' is a probability measure on S
d�1.

It is additionally isotropic iff ' is the uniform measure 	d�1 on S
d�1.

A so-called Poisson hyperplane tessellation (Poisson line tessellation in dimension
two) is a hyperplane tessellation generated by a Poisson point process but it is quite
often implied in the literature that it is also stationary and isotropic. Up to rescaling,
we will assume in the rest of the chapter that its intensity � is equal to one (Fig. 6.1).

Exercise 6.1. Verify that a stationary and isotropic Poisson hyperplane tessel-
lation satisfies the following property with probability one: for 0� k�d , each
k-dimensional face of a cell is the intersection of exactly .d � k/ hyperplanesHx ,
x 2 ˘�, and is included in exactly 2d�k cells.

This tessellation has been introduced for studying trajectories in bubble chambers
by S.A. Goudsmit in [200] in 1945. It has been used in numerous applied works
since then. For instance, R.E. Miles describes it as a possible model for the fibrous
structure of sheets of paper [356, 357].

Definition 6.5 (Voronoi tessellation). Let � be a point process. For every x 2 � ,
we define the cell associated with x as

Z.xj�/ D fy 2 R
d W ky � xk � ky � x0k 8x0 2 �; x0 ¤ xg:

The associated Voronoi tessellation is the set fZ.xj�/gx2� .

Proposition 6.2 (Stationarity of Voronoi tessellations). The Voronoi tessellation
associated with a point process � is stationary iff � is stationary.

A so-called Poisson–Voronoi tessellation is a Voronoi tessellation generated by a
homogeneous Poisson point process. Up to rescaling, we will assume in the rest of
the chapter that its intensity is equal to one.

Exercise 6.2. Show that a Poisson–Voronoi tessellation is normal with probability
one, i.e. every k-dimensional face of a cell, 0 � k � d , is included in exactly
d � k C 1 cells.

This tessellation has been introduced in a deterministic context by R. Descartes
in 1644 as a description of the structure of the universe (see also the more recent
work [514]). It has been developed since then for many applications, for example in
telecommunications [21, 173], image analysis [162] and molecular biology [185].

We face the whole population of cells in a random tessellation. How to study
them? One can provide two possible answers:

1. Either you isolate one particular cell.
2. Or you try conversely to do a statistical study over all the cells by taking means.

An easy way to fix a cell consists in considering the one containing the origin.
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a b

Fig. 6.1 Realizations of the isotropic and stationary Poisson line tessellation (a) and the planar
stationary Poisson–Voronoi tessellation (b) in the unit square

Definition 6.6 (Zero-cell). If o 62 [n2N@�n a.s., then the zero-cell (denoted byZ0)
is the cell containing the origin. In the case of an isotropic and stationary Poisson
hyperplane tessellation, it is called the Crofton cell.

The second point above will be developed in the next section. It is intuitively clear
that it will be possible to show the convergence of means over all cells only if the
tessellation is translation-invariant.

6.1.2 Empirical Means and Typical Cell

This section is restricted to the stationary Poisson–Voronoi and Poisson hyperplane
tessellations. We aim at taking means of certain characteristics over all the cells of
the tessellation. But of course, we have to restrict the mean to a finite number of
these cells due to technical reasons. A natural idea is to consider those contained in
or intersecting a fixed window, for example the ball BR.o/, then take the limit when
the size of the window goes to infinity. Such an argument requires the use of an
ergodic theorem and the first part of the section will be devoted to prepare and show
an ergodic result specialized to our set-up. In the second part of the section, we use
it to define the notion of the typical cell and we investigate several equivalent ways
of defining it.

6.1.2.1 Ergodic Theorem for Tessellations

The first step is to realize the measurable space .˝;F/ as .N ;N/ where N is the set
of locally finite sets of Rd andN is the 	-algebra generated by the functions #.�\A/,
whereA is any bounded Borel set. We define the shift Ta W N �! N as the operation
over the points needed to translate the tessellation by a vector a 2 R

d . In other
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words, for every locally finite set fxngn2N, the underlying tessellation generated by
Ta.fxngn2N/ is the translate by a of the initial tessellation generated by fxngn2N.

Proposition 6.3 (Explicit shifts). For a Voronoi tessellation, Ta is the function
which associates to every locally finite set fxngn2N 2 N the set fxn C agn2N.

For a hyperplane tessellation, Ta is the function which associates to every locally
finite set fxngn2N 2 N (which does not contain the origin) the set
fxn C hxn=kxnk; aixn=kxnkgn2N.

Proof. In the Voronoi case, the translation of the skeleton is equivalent with the
translation of the nuclei which generate the tessellation.

In the case of a hyperplane tessellation, the translation of a fixed hyperplane
preserves its orientation but modifies the distance from the origin. To prove the
proposition, it suffices to notice that a polar hyperplane Hx is sent by a translation
of vector a to Hy with y D x C hu; aiu where u D x

kxk . ut
Proposition 6.4 (Ergodicity of the shifts). In both cases, Ta preserves the mea-
sure P (i.e. the distribution of the Poisson point process) and is ergodic.

Sketch of proof. Saying that Ta preserves the measure is another way of expressing
the stationarity of the tessellation.

To show ergodicity, it is sufficient to prove that fTa W a2R
d g is mixing

(cf. Definition 4.6), i.e. that for any bounded Borel sets A;B and k; l 2 N, we
have as jaj ! 1

P.#.�\A/ D kI #.Ta.�/\B/ D l/ ! P.#.�\A/ D k/P.#.�\B/ D l/: (6.2)

In the Voronoi case, for jaj large enough, the two events f#.˚ \ A/ D kg and
f#.Ta.˚/ \ B/ D lg are independent since A \ .B � a/ D ;. Consequently, the
two sides of (6.2) are equal.

In the hyperplane case, the same occurs as soon as B is included in a set

fx 2 R
d W jhx; aij � "kxkkakg

for some " > 0. Otherwise, we approximate B with a sequence of Borel subsets
which satisfy this condition. ut
In the next theorem, the main application of ergodicity for tessellations is derived.

Theorem 6.1 (Ergodic theorem for tessellations). Let NR be the number of cells
which are included in the ball BR.o/. Let h W Kd

conv ! R be a measurable, bounded
and translation-invariant function over the set Kd

conv of convex and compact sets
of Rd . Then almost surely,

lim
R!1

1

NR

X
�	BR.o/

h.�/ D 1

E.�d .Z0/�1/
E
�
h.Z0/

�d .Z0/

�
: (6.3)
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Proof. The proof is done in three steps: use of Wiener’s continuous ergodic theorem,
then rewriting the mean of h over cells included in BR.o/ as the sum of an integral
and the rest, finally proving that the rest is negligible.

Step 1. The main ingredient is Wiener’s ergodic theorem applied to the ergodic
shifts fSx W x 2 R

d g. We have almost surely

lim
R!1

1

�d .BR.o//

Z
BR.o/

h.Z0.T�x!//
�d .Z0.T�x!//

dx D E
�
h.Z0/

�d .Z0/

�
:

This can be roughly interpreted by saying that the mean in space (in the left-hand
side) for a fixed sample ! is asymptotically close to the mean with respect to the
probability law P.

Step 2. We have for almost every ! 2 ˝ that

1

�d .BR.o//

Z
BR.o/

h.Z0.T�x!//
�d .Z0.T�x!//

dx D 1

�d .BR.o//

X
�	BR.o/

h.�/C Rest.R/

(6.4)
where

Rest.R/ D 1

�d .BR.o//

X
� W�\@BR.o/¤;

�d .� \ BR.o//
�d .�/

h.�/:

In particular, if we defineN 0
R as the number of cells which intersect the boundary

of the ball BR.o/, then there is a positive constant K depending only on h such
that

jRest.R/j � K
N 0
R

�d .BR.o//
:

We observe that in order to get (6.3), it is enough to prove that the rest goes to 0.
Indeed, when h � 1, the equality (6.4) will provide that

NR

�d .BR.o//
D 1

�d .BR.o//

Z
BR.o/

1

�d .Z0.T�x!//
dx�Rest.R/ ! E.�d .Z0/�1/:

Step 3. We have to show that Rest.R/ goes to 0, that is what R. Cowan calls the
insignificance of edge effects [132, 133]. In the sequel, we use his argument to
show it and for sake of simplicity, we only consider the particular case of the
two-dimensional Voronoi tessellation. Nevertheless, the method can be extended
to any dimension by showing by induction that the number of k-faces hitting the
boundary of the ball is negligible for every 0 � k � d .

Here, in the two-dimensional case, let us fix " > 0 and consider R > ". Let us
denote by VR the number of vertices of the tessellation in BR.o/ and by LR the sum
of the edge lengths inside BR.o/. A direct use of Wiener’s theorem applied to the
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functionals V" and L" on the sets BR�".o/ and BRC".o/ shows that the quantities
VR=�d .BR.o// and LR=�d.BR.o// tend almost surely to constants.

We recall that a Voronoi tessellation is normal which means in particular that a
fixed edge (resp. vertex) is contained in exactly two (resp. three) cells.

If a cell intersects the boundary of BR.o/, then we are in one of the three
following cases:

1. No edge of the cell intersects BRC".o/ n BR.o/.
2. Some edges but no vertex of the cell intersect BRC".o/ n BR.o/.
3. At least one vertex of the cell is in BRC".o/ n BR.o/.
The first case is satisfied by at most one cell, the second case by at most 2

"
.LRC" �

LR/ cells and the last one by at most 3.SRC" � SR/. Consequently, we get when
R ! 1

N 0
R

V2.BR.o//
� 1

V2.BR.o//
C 2

LRC" � LR

V2.BR.o//
C 3

VRC" � VR
V2.BR.o//

�! 0;

which completes the proof. ut
Exercise 6.3. Show a similar result for a Johnson–Mehl tessellation (defined in
[367]).

Remark 6.2. The statement of Theorem 6.1 still holds if condition “h bounded” is
replaced with E.jh.Z0/jp/<1 for a fixed p>1 (see for example [196, Lemma 4]).

Remark 6.3. When using this ergodic theorem for tessellations in practice, it is
needed to have also an associated central limit theorem. Such second-order results
have been proved for some particular functionals in the Voronoi case [20] and for the
Poisson line tessellation [389] in dimension two. Recently, a more general central
limit result for hyperplane tessellations has been derived from the use of U-statistics
in [239].

The limit in the convergence (6.3) suggests the next definition for the typical cell,
i.e. a cell which represents an “average individual” from the whole population.

Definition 6.7 (Typical cell 1). The typical cell Z is defined as a random variable
with values in Kd

conv and such that for every translation-invariant measurable and
bounded function h W Kd

conv ! R, we have

E.h.Z// D 1

E.�d .Z0/�1/
E
�
h.Z0/

�d .Z0/

�
:

Remark 6.4. Taking for h any indicator function of geometric events (for example
fthe cell is a triangleg, fthe area of the cell is greater than 2g, etc.), we can define via
the equality above the distribution of any geometric characteristic of the typical cell.

Remark 6.5. One should keep in mind that the typical cell Z is not distributed as
the zero-cellZ0. Indeed, the distribution ofZ has a density proportional to ��1

2 with
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respect to the distribution of Z0. In particular, since it has to contain the origin, Z0
is larger than Z. This is a d -dimensional generalization of the famous bus paradox
in renewal theory which states that at your arrival at a bus stop, the time interval
between the last bus you missed and the first bus you’ll get is actually bigger than
the typical waiting time between two buses. Moreover, it has been proved in the case
of a Poisson hyperplane tessellation that Z and Z0 can be coupled in such a way
that Z � Z0 almost surely (see [352] and Proposition 6.6 below).

Looking at Definition 6.7, we observe that it requires to know either the distribution
of Z0 or the limit of the ergodic means in order to get the typical cell. The next
definition is an alternative way of seeing the typical cell without the use of any
convergence result. It is based on the theory of Palm measures [323, 348]. For sake
of simplicity, it is only written in the case of the Poisson–Voronoi tessellation but it
can be extended easily to any stationary Poisson hyperplane tessellation.

Definition 6.8 (Typical cell 2 (Poisson–Voronoi tessellation)). The typical cellZ
is defined as a random variable with values in Kd

conv such that for every bounded and
measurable function h W Kd

conv ! R and every Borel set B with 0 < �d .B/ < 1,
we have

E.h.Z// D 1

�d .B/
E

 X
x2B\˘

h.Z.xj˘/ � x/

!
: (6.5)

This second definition is still an intermediary and rather unsatisfying one but via the
use of Slivnyak–Mecke formula for Poisson point processes (see Theorem 4.5), it
provides a way of realizing the typical cell Z.

Exercise 6.4. Verify that the relation (6.5) does not depend on B .

Proposition 6.5 (Typical cell 3 (Poisson–Voronoi tessellation)). The typical cell
Z is equal in distribution to the set Z.o/ D Z.oj˘ [ fog/, i.e. the Voronoi cell
associated with a nucleus at the origin when this nucleus is added to the original
Poisson point process.

Remark 6.6. The cell Z.o/ defined above is not a particular cell isolated from
the original tessellation. It is a cell extracted from a different Voronoi tessellation
but which has the right properties of a cell “picked at random” in the original
tessellation. For any x 2˘ , we define the bisecting hyperplane of Œo; x
 as the
hyperplane containing the midpoint x=2 and orthogonal to x. SinceZ.o/ is bounded
by portions of bisecting hyperplanes of segments Œo; x
, x 2˘ , we remark that
Z.o/ can be alternatively seen as the zero-cell of a (non-stationary) Poisson
hyperplane tessellation associated with the homogeneous Poisson point process up
to a multiplicative constant.

The Poisson–Voronoi tessellation is not the only tessellation such that the associated
typical cell can be realized in an elementary way. There exist indeed several
ways of realizing the typical cell of a stationary and isotropic Poisson hyperplane
tessellation. We present below one of the possible constructions of Z, which offers
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the advantage of satisfying Z � Z0 almost surely. It is based on a work [106]
which is an extension in any dimension of an original idea in dimension two due to
R.E. Miles [359] (Fig. 6.2).

Proposition 6.6 (Typical cell 3 (Poisson hyperplane tessellation)). The radius
Rm of the largest ball included in the typical cell Z is an exponential variable of
parameter the area of the unit sphere. Moreover, conditionally on Rm, the typical
cell Z is equal in distribution to the intersection of the two independent following
random sets:

(i) a random simplex with inscribed ball BRm.o/ such that the vector .u0; : : : ; ud /
of the d C 1 normal unit-vectors is independent of Rm and has a density
proportional to the volume of the simplex spanned by u0; : : : ; ud .

(ii) the zero-cell of an isotropic Poisson hyperplane tessellation outside BRm.o/
of intensity measure �.du; dt/D 1.BRm.o/

c/ dt d	d�1.u/ (in spherical
coordinates).

Exercise 6.5. When d D 2, let us denote by ˛; ˇ; � the angles between u0 and
u1, u1 and u2, u2 and u0 respectively. Write the explicit density in (i) in function of
˛, ˇ and � .

Exercise 6.6. We replace each hyperplaneHx from a Poisson hyperplane tessella-
tion by a "-thickened hyperplane H."/

x D fy 2 R
d W d.y;Hx/ � "g where " > 0

is fixed. Show that the distribution of the typical cell remains unchanged, i.e. is the
same as for " D 0.

We conclude this subsection with a very basic example of calculation of a mean
value: it is well-known that in dimension two, the mean number of vertices of the
typical cell is 4 for an isotropic Poisson line tessellation and 6 for a Poisson–Voronoi
tessellation. We give below a small heuristic justification of this fact: for a Poisson
line tessellation, each vertex is in four cells exactly and there are as many cells as
vertices (each vertex is the highest point of exactly one cell) whereas in the Voronoi
case, each vertex is in three cells exactly and there are twice more vertices than cells
(each vertex is either the highest point or the lowest point of exactly one cell).

In the next subsection, we estimate the distribution tails of some geometric
characteristics of the typical cell.

6.1.3 Examples of Distribution Tail Estimates

Example 6.1 (Poisson hyperplane tessellation, Crofton cell, inradius). We consider
a stationary and isotropic Poisson hyperplane tessellation, i.e. with an intensity
measure equal to �.du; dt/ D dt d	d�1.u/ in spherical coordinates (note that the
constant � appearing in (6.1) is chosen equal to one).

Let us denote byRm the radius of the largest ball included in the Crofton cell and
centered at the origin. Since it has to be centered at the origin, the ball BRm.o/ is not
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a b

Fig. 6.2 Realizations of the typical cells of the stationary and isotropic Poisson line tessellation
(a) and the homogeneous planar Poisson–Voronoi tessellation (b)

the real inball of the Crofton cell. Nevertheless, we shall omit that fact and call Rm
the inradius in the rest of the chapter.

For every r > 0, we have

P.Rm � r/ D P.˘ \ Br.o/ D ;/

D exp

�
�
Z r

0

Z
Sd�1

dt d	d�1.u/
	

D e�d�d r

where �d is the Lebesgue measure of the d -dimensional unit-ball. We can remark
that it is the same distribution as the real inradius of the typical cell, i.e. the radius
of the largest ball included in the typical cell with unfixed center (see [106,356] and
Proposition 6.6 above).

This result can be extended by showing that for every deterministic convex setK
containing the origin, the probability P.K � Z0/ is equal to expf� d

2
�dV1.K/g

where V1.K/ is the mean width of K . In dimension two, the probability reduces to
expf�P.K/g where P.K/ is the perimeter of K .

Example 6.2 (Poisson–Voronoi tessellation, typical cell, inradius). We consider a
homogeneous Poisson–Voronoi tessellation of intensity one in the rest of the section.

We realize its typical cell as Z.o/ D Z.oj˘ [ fog/ (see Proposition 6.5). We
consider the radiusRm of the largest ball included inZ.o/ and centered at the origin.
We call it inradius with the same abuse of language as in the previous example. The
radiusRm is larger than r iff for every x, kxk D r , x is in Z.o/, i.e. Br.x/ does not
intersect the Poisson point process˘ . In other words, for every r > 0, we have

P.Rm � r/ D P

0
@˘ \

[
xWkxkDr

Br .x/ D ;
1
A

D P.˘ \ B2r .o/ D ;/ D e�2d �d rd : (6.6)
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In general, for a deterministic convex set K containing the origin, we define
the Voronoi flower F.K/D S

x2K Bkxk.x/ (Fig. 6.3). We can show the following
equality:

P.K � Z.o// D expf��d.F.K//g:

Exercise 6.7. Verify that for any compact subset A of Rd , the Voronoi flowers of
A and of its convex hull coincide.

Example 6.3 (Poisson–Voronoi tessellation, typical cell, volume). The next propo-
sition comes from a work due to E.N. Gilbert [187].

Proposition 6.7 (E.N. Gilbert [187]). For every t > 0, we have

e�2d t � P.�d .Z/ � t/ � t � 1

et�1 � 1 :

Proof. Lower bound: It suffices to notice that �d .Z/� �d .BRm.o// and apply
(6.6).

Upper bound: Using Markov’s inequality, we get for every ˛; t � 0

P.�d .Z/ � t/ � .e˛t � 1/�1.E.e˛�d .Z// � 1/: (6.7)

Let us consider now the quantity f .˛/ D E
�R

Z.o/ e˛�dkxkd dx
�

. On one hand, we

can show by Fubini’s theorem that for every ˛ < 1,

f .˛/ D
Z
Rd

e˛�d kxkdP.x 2 Z.o// dx D
Z
Rd

e.˛�1/�d kxkd dx D 1

1 � ˛ : (6.8)

On the other hand, when comparingZ.o/ with the ball centered at the origin and of
same volume, we use an isoperimetric inequality to get a lower bound for the same
quantity:

f .˛/ � E

 Z
B
.�d .Z.o//=�d /

1=d .o/

e˛�d kxkd dx
!

D 1

˛
E.e˛�d .Z//: (6.9)

Combining (6.7), (6.8) with (6.9), we obtain that for every t > 0,

P.�d .Z/ � t/ � .e˛t � 1/�1
˛

1 � ˛

and it remains to optimize the inequality in ˛ by taking ˛ D t�1
t

. ut
Exercise 6.8. Show the isoperimetric inequality used above.

Remark 6.7. It has been proved since then (see Theorem 7.10 and [259]) that the
lower bound provides the right logarithmic equivalent, i.e.
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Fig. 6.3 Example of the Voronoi flower of a convex polygon

lim
t!1

1

t
log P.�d .Z/ � t/ D �2d :

In other words, distribution tails of the volumes of both the typical cell Z and
its inball have an analogous asymptotic behaviour. This is due to D.G. Kendall’s
conjecture (see the foreword of the book [489]) which was historically written for
the two-dimensional Crofton cell. Indeed, it roughly states that cells with a large
volume must be approximately spherical. After a first proof by I.N. Kovalenko
[312], this conjecture has been rigorously reformulated and extended in many
directions by D. Hug, M. Reitzner and R. Schneider (see Theorems 7.9 and 7.11
as well as [255, 256]).

Example 6.4 (Poisson–Voronoi tessellation, typical cell, fundamental frequency in
dimension two). This last more exotic example is motivated by the famous question
due to Kac [279] back in 1966: “Can one hear the shape of a drum?”. In other words,
let us consider the Laplacian equation on Z.o/ with a Dirichlet condition on the
boundary, that is (

�f.x/ D ��f .x/; if x 2 Z.o/,
f .x/ D 0; if x 2 @Z.o/.

It has been proved that the eigenvalues satisfy

0 < �1 � �2 � � � � � �n � � � � < 1:

Is it possible to recover the shape of Z.o/ by knowing only its spectrum? In
particular,�1 is called the fundamental frequency ofZ.o/. It is a decreasing function
of the convex set considered. When the volume of the domain is fixed, Faber–
Krahn’s inequality [40] says that it is minimal iff the domain is a ball. In such a
case, we have �1 D j 20 =r

2 where r is the radius of the ball and j0 is the first positive
zero of the Bessel function J0 [80].

The next theorem which comes from a collaboration with A. Goldman [198]
provides an estimate for the distribution function of �1 in the two-dimensional case.
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Theorem 6.2 (Fundamental frequency of the typical Poisson–Voronoi cell). Let
�1 denote the fundamental frequency of the inball of Z.o/. Then when d D 2, we
have

lim
t!0

t � log P.�1 � t/ D lim
t!0

t � log P.�1 � t/ D �4�j 20 :

Remark 6.8. The larger Z.o/ is, the smaller is �1. When evaluating the probability
of the event f�1 � tg for small t , the contribution comes from the largest cells
Z.o/. Consequently, the fact that the distribution functions for small �1 and small�1
have roughly the same behaviour is a new contribution for justifying D.G. Kendall’s
conjecture.

Remark 6.9. An analogous result holds for the Crofton cell of a Poisson line
tessellation in the plane [196].

Sketch of proof.

Step 1. By a Tauberian argument (see [172], Vol. 2, Chap. 13, pages 442–448), we
only have to investigate the behaviour of the Laplace transform E.e�t�1 / when t
goes to infinity.

Step 2. We get a lower bound by using the monotonicity of the fundamental
frequency (�1 � �1) and the explicit distribution of �1 D j 20 =R

2
m.

Step 3. In order to get an upper bound, we observe that almost surely

e�t�1 � '.t/ D
X
n�1

e�t�n

where ' is called the spectral function of Z.o/. It is known that the spectral
function of a domain is connected to the probability that a two-dimensional
Brownian bridge stays in that domain (see for example [279]). More precisely,
we denote by W the trajectory of a standard two-dimensional Brownian bridge
between 0 and 1 (i.e. a planar Brownian motion starting at 0 and conditioned on
being at 0 at time 1) and independent from the point process. We have

'.t/ D 1

4�t

Z
Z.o/

PW .x C p
2tW � Z.o// dx

where PW denotes the probability with respect to the Brownian bridge W . We
then take the expectation of the equality above with respect to the point process
and we get the Laplace transform of the area of the Voronoi flower of the convex
hull of W . We conclude by using results related to the geometry of the two-
dimensional Brownian bridge [197]. ut

Exercise 6.9. In the case of the Crofton cell, express '.t/ in function of the Laplace
transform of the mean width of W .
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6.2 Asymptotic Results for Zero-Cells with Large Inradius

In this section, we shall focus on the example of the Poisson–Voronoi typical cell,
but the reader should keep in mind that the results discussed below can be extended
to the Crofton cell and more generally to zero-cells of certain isotropic hyperplane
tessellations (see [108, Sect. 3]). This section is devoted to the asymptotic behaviour
of the typical cell, under the condition that it has large inradius. Though it may
seem at first sight a very artificial and restrictive choice, we shall see that it falls
in the more general context of D.G. Kendall’s conjecture and that this particular
conditioning allows us to obtain very precise estimations for the geometry of the
cell.

In the first subsection, we are interested in the distribution tail of a particular
geometric characteristic that we did not consider before, the so-called circumscribed
radius. We deduce from the general techniques involved an asymptotic result for
the joint distribution of the two radii. In the second subsection, we make the
convergence of the cell to the spherical shape more precise by showing limit
theorems for some of its characteristics when the inradius goes to infinity. In this
section, two fundamental models from stochastic geometry will be introduced as
tools for understanding the geometry of the typical cell: random coverings of the
circle/sphere and random polytopes generated as convex hulls of Poisson point
processes in the ball.

6.2.1 Circumscribed Radius

We consider a homogeneous Poisson–Voronoi tessellation of intensity one and we
realize its typical cell asZ.o/ according to Proposition 6.5. With the same misuse of
language as for the inradius, we define the circumscribed radius RM of the typical
cell Z.o/ as the radius of the smallest ball containing Z.o/ and centered at the
origin. We first propose a basic way of estimating its distribution and we proceed
with a more precise calculation through a technique based on coverings of the sphere
which provides satisfying results essentially in dimension two.

6.2.1.1 Estimation of the Distribution Tail

For the sake of simplicity, the following argument is written only in dimension two
and comes from an intermediary result of a work due to S. Foss and S. Zuyev [176].
We observe that RM is larger than r > 0 iff there exists x, kxk D r , which is
in Z.o/, i.e. such that Bkxk.x/ does not intersect the Poisson point process ˘ .
Compared to the event fRm � rg, the only difference is that “there exists x” is
replacing “for every x” (see Example 2 of Sect. 6.1.3).
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In order to evaluate this probability, the idea is to discretize the boundary of the
circle and consider a deterministic sequence of balls Bkzkk.zk/, 0 � k � .n � 1/,
n 2 N n f0g with zk D r.cos.2�k=n/; sin.2�k=n//. We call the intersection of
two consecutive such disks a petal. If RM � r , then one of these n petals has to be
empty. We can calculate the area of a petal and conclude that for every r > 0, we
have

P.RM � r/ � n expf�r2.� � sin.2�=n/� .2�=n//g: (6.10)

In particular, when we look at the chord length in one fixed direction, i.e. the length
lu of the largest segment emanating from the origin in the direction u and contained
in Z.o/, we have directly for every r > 0,

P.lu � r/ D expf��r2g;

which seems to provide the same logarithmic equivalent as the estimation (6.10)
when n goes to infinity. This statement will be reinforced in the next section.

6.2.1.2 Calculation and New Estimation

This section and the next one present ideas and results contained in [107, 108]. The
distribution of RM can be calculated explicitly: let us recall that Z.o/ can be seen
as the intersection of half-spaces delimited by random bisecting hyperplanes and
containing the origin. We then haveRM � r (r > 0) iff the half-spaces do not cover
the sphere @Br .o/. Of course, only the hyperplanes which are at a distance less than
r are necessary and their number is finite and Poisson distributed. The trace of a
half-space on the sphere is a spherical cap with a (normalized) angular diameter
˛ which is obviously less than 1=2 and which has an explicit distribution. Indeed,
˛ can be written in function of the distance L from the origin to the hyperplane
via the formula ˛ D arccos.L=r/=� . Moreover, the obtained spherical caps are
independent. For any probability measure � on Œ0; 1=2
 and n2N, we denote by
P.�; n/ the probability to cover the unit-sphere with n i.i.d. isotropic spherical
caps such that their normalized angular diameters are � distributed. Following this
reasoning, the next proposition connects the distribution tail of RM with some
covering probabilities P.�; n/ (Fig. 6.4).

Proposition 6.8 (Rewriting of the distribution tail of RM ). For every r > 0, we
have

P.RM � r/ D e�2d �d rd
1X
nD0

.2d�d r
d /n

nŠ
.1 � P.�; n// (6.11)

where � is a probability measure on Œ0; 1=2
 with the density

f�.�/ D d� sin.��/ cosd�1.��/; � 2 Œ0; 1=2
:
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Fig. 6.4 Covering of the circle of radius r when RM � r

Exercise 6.10. Verify the calculation of � and do the same when the Poisson–
Voronoi typical cell is replaced by the Crofton cell of a Poisson hyperplane
tessellation.

The main question is now to evaluate the covering probability P.�; n/. In the two-
dimensional case, it is known explicitly [475] so the preceding proposition provides
in fact the exact calculation of the distribution tail ofRM . Unfortunately, the formula
forP.�; n/ when � is a continuous measure is not easy to handle but in the particular
case where � is simply a Dirac measure at a 2 Œ0; 1
 (i.e. all circular arcs have a
fixed length equal to a), then it has been proved by W.L. Stevens [485] with very
elementary arguments that for every n 2 N

�, we have

P.ıa; n/ D
nX

kD0
.�1/k

 
n

k

!
.1 � ka/n�1C (6.12)

where xC D max.x; 0/ for every x 2R. In particular, it implies the following
relation for every a 2 Œ0; 1


lim
n!1

1 � P.ıa; n/
n.1 � a/n�1 D 1:

Exercise 6.11. Calculate P..1 � p/ı0 C pıa; n/ for a; p 2 Œ0; 1
; n 2 N
�

In higher dimensions, no closed formula is currently available for P.�; n/. The case
where � D ıa with a > 1=2 has been solved recently [103], otherwise bounds do
exist in the particular case of a deterministic radius of the spherical caps [188,222].

In dimension two, we can use Proposition 6.8 in order to derive an estimation of
the distribution tail which is better than (6.10).
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Theorem 6.3 (Distribution tail estimate of RM in dimension two). For a
sufficiently large r , we have

2�r2e��r2 � P.RM � r/ � 4�r2e��r2 : (6.13)

Sketch of proof. When using (6.11), we have to estimate P.�; n/, with � chosen
as in Proposition 6.8, but possibly without considering a too complicated explicit
formula. In particular, since the asymptotic equivalent (6.12) for P.ıa; n/ seems to
be quite simple, we aim at replacing the covering probabilityP.�; n/with a covering
probability P.ıa; n/ where a is equal to 1=4, i.e. the mean of �.

The problem is reduced to the investigation under which conditions we can
compare two different covering probabilities P.�1; n/ and P.�2; n/ where �1; �2
are two probability measures on Œ0; 1
. We recall that �1 and �2 are said to be
ordered according to the convex order, i.e. �1 �conv �2, if hf;�1i � hf;�2i
for every convex function f W Œ0; 1
 ! R [374] (where hf;�1i D R

fd�1).
In particular, Jensen’s inequality says that ıa �conv � and we can easily prove
that ��conv

1
2
.ı0 C ı2a/. The next proposition shows how the convex ordering of

distributions implies the ordering of the underlying covering probabilities.

Proposition 6.9 (Ordering of covering probabilities). If �1 �conv �2, then for
every n 2 N, P.�1; n/ � P.�2; n/.

Exercise 6.12. Find a heuristic proof of Proposition 6.9.

Thanks to this proposition and the remark above, we can write

P.ı1=4; n/ � P.�; n/ � P..ı0 C ı1=2/=2; n/;

then insert the two bounds in the equality (6.11) and evaluate them with Stevens’
formula (6.12). ut
Remark 6.10. Numerical estimates of P.RM � r/ with the formula (6.11) indicate
that P.RM � r/ should be asymptotically equivalent to the upper bound of (6.13).

6.2.1.3 Distribution Conditionally on the Inradius

Why should we be interested in the behaviour of the typical cell when conditioned
on the value of its inradius?

First, it is one of the rare examples of conditioning of the typical cell which can
be made completely explicit. Indeed, conditionally on fRm � rg, any point x of the
Poisson point process is at distance larger than 2r from o so the typical cell Z.o/
is equal in distribution to the zero-cell associated with the bisecting hyperplanes of
the segments Œo; x
 where x is any point of a homogeneous Poisson point process in
B2r.o/

c .
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Conditionally on fRm D rg, the distribution of Z.o/ is obtained as previously,
but with an extra-bisecting hyperplane generated by a deterministic point x0 at
distance 2r .

The second reason for investigating this particular conditioning is that a large
inradius implies a large typical cell. In other words, having Rm large is a particular
case of the general setting of D.G. Kendall’s conjecture (see Remark 6.7). But we
can be more precise about how the typical cell is converging to the spherical shape.
Indeed, the boundary of the polyhedron is included in an annulus between the two
radii Rm and RM and so the order of decreasing of the difference RM � Rm will
provide a satisfying way of measuring the closeness of Z.o/ to a sphere. The next
theorem provides a result in this direction.

Theorem 6.4 (Asymptotic joint distribution of .Rm;RM/). There exists a con-
stant c > 0 such that for every d�1

dC1 < ı < 1, we have

P.RM � r C rı j Rm D r/ D O.expf�crˇg/; r ! 1; (6.14)

where ˇ D 1
2
Œ.d � 1/C ı.d C 1/
.

Sketch of proof in dimension two. The joint distribution of the couple .Rm;RM /
can be obtained explicitly via the same method as in Proposition 6.8. Indeed, the
quantity P.RM � rCs j Rm D r/ can be rewritten as the probability of not covering
the unit-sphere with random i.i.d. and uniform spherical caps. The only difference
lies in the common distribution of the angular diameters of the caps which will now
depend upon r since bisecting hyperplanes have to be at least at distance r from the
origin. In dimension two, the covering probability can be estimated with an upper-
bound due to L. Shepp [470], which implies the estimation (6.14).

Unfortunately, the method does not hold in higher dimensions because of the
lack of information about random coverings of the sphere. Nevertheless, a different
approach will be explained in the next section in order to extend (6.14) to d � 3.

ut
Exercise 6.13. For d D 2, estimate the minimal number of sides of the Poisson–
Voronoi typical cell conditioned on fRm D rg.

Remark 6.11. This roughly means that the boundary of the cell is included in an
annulus centered at the origin and of thickness of order R�.d�1/=.dC1/

m . The next
problem would be to describe the shape of the polyhedron inside this annulus. For
instance, in dimension two, a regular polygon which would be exactly “inscribed” in
an annulus of thickness R�1=3

m would have about R2=3m sides. Is it the same growth
rate as the number of sides of the typical cell? The next section will be devoted to
this problem. In particular, we shall see that indeed, this quantity behaves roughly
as if the typical cell would be a deterministic regular polygon.
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6.2.2 Limit Theorems for the Number of Hyperfaces

This section is based on arguments and results which come from a collaboration
with T. Schreiber and are developed in [108–110]. When the inradius goes to
infinity, the shape of the typical Poisson–Voronoi cell becomes spherical. In
particular its boundary is contained in an annulus with a thickness going to zero
and thus we aim at being more specific about the evolution of the geometry of the
cell whenRm is large. For the sake of simplicity, we focus essentially on a particular
quantity, which is the number of hyperfaces, but our methods can be generalized to
investigate other characteristics, as emphasized in the final remarks.

6.2.2.1 Connection with Random Convex Hulls in the Ball

We start with the following observation: in the literature, there are more limit
theorems available for random polytopes constructed as convex hulls of a Poisson
point process than for typical cells of stationary tessellations (cf. Sects. 7.1
and 8.4.2). Models of random convex hulls have been probably considered as
more natural objects to be constructed and studied. Our aim is first to connect our
model of typical Poisson–Voronoi cell with a classical model of a random convex
hull in the ball and then work on this possible link between the two in order to
extend what is known about random polytopes and solve our current problem.

Conditionally on fRm � rg, the rescaled typical cell 1
r
Z.o/ is equal in distribution

to the zero-cell of a hyperplane tessellation generated by a Poisson point process
of intensity measure .2r/d1.x 2B1.o/c/ �d .dx/ [109]. In other words, via this
scaling we fix the inradius of the polyhedron whereas the intensity of the underlying
hyperplane process outside of the inball is now the quantity which goes to infinity.

The key idea is then to apply a geometric transformation to 1
r
Z.o/ in order to get

a random convex hull inside the unit-ballB1.o/. Let us indeed consider the inversion
I defined by

I.x/ D x

kxk2 ; x 2 R
d n fog:

In the following lines, we investigate the action of I on points, hyperplanes
and the cell itself. The Poisson point process of intensity measure .2r/d1.x …
B1.o// �d .dx/ is sent by I to a new Poisson point process Yr of intensity measure
.2r/d1.x 2B1.o// 1

kxk2d �d .dx/. The hyperplanes are sent to spheres containing the
origin and included in the unit ball, i.e. spheres @Bkxk=2.x=2/ where x belongs to
the new Poisson point process Yr in B1.o/. The boundary of the rescaled typical
cell 1

r
Z.o/ is sent to the boundary of a certain Voronoi flower, i.e. the union of balls

Bkxk=2.x=2/ where x belongs to Yr . In particular, the number of hyperfaces of the
typical cell Z.o/ remains unchanged after rescaling and can also be seen through
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the action of the inversion I as the number of portions of spheres on the boundary
of the Voronoi flower in B1.o/, that is the number of extreme points of the convex
hull of the process Yr . Indeed, it can be verified that the ball Bkxk=2.x=2/ intersects
the boundary of the Voronoi flower of Yr iff there exists a support hyperplane of the
convex hull of Yr which contains x.

6.2.2.2 Results

Let Nr be a random variable distributed as the number of hyperfaces of the typical
cell Z.o/ conditioned on fRm D rg.

We are now ready to derive limit theorems for the behaviour of Nr when r goes
to infinity:

Theorem 6.5 (Limit theorems for the number of hyperfaces). There exists a
constant a > 0 (known explicitly) depending only on d such that

ar� d.d�1/
dC1 Nr ! 1 in L1 and a.s. as r ! 1:

Moreover, the number Nr satisfies a central limit theorem when r ! 1 as well as
a moderate-deviation result: for every " > 0,

lim inf
r!1

1

log.r/
log

�
� log

�
P
� ˇ̌
ˇ̌ Nr
ENr

� 1
ˇ̌
ˇ̌ � "

	��
� d � 1
3d C 5

:

Sketch of proof. The first two steps are devoted to proving the results for the
number eNr of hyperfaces of Z.o/ conditioned on fRm � rg. In the last step, we
explain how to adapt the arguments for the number Nr .

Step 1. We use the action of the inversion I to rewrite Nr as the number of
vertices of the convex hull of the Poisson point process Yr of intensity measure
.2r/d1.x 2 B1.o//

1

kxk2d �d .dx/ in the unit ball. Limit theorems for the number
of extreme points of a homogeneous set of points in the ball are classically known
in the literature: indeed, a first law of large numbers has been established in [421]
and generalized in [418]. A central limit theorem has been proved in [419] and
extended by a precise variance estimate in [459]. Finally, a moderate deviations-
type result has been provided in [110,502] (see also Sects. 7.1 and 8.4.2 for more
details).

Step 2. The only problem here is that we are not in the classical setting of all
these previous works since the process Yr is not homogeneous. Nevertheless,
it can be overcome by emphasizing two points: first, when kxk is close to
one, the intensity measure of Yr is close to .2r/d �d .dx/ and secondly, with
high probability, only the points near the boundary of the unit sphere will be
useful to construct the convex hull. Indeed, for any Poisson point process of
intensity measure �f .kxk/ �d .dx/ with f W .0; 1/ ! RC a function such that
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limt!1 f .t/ D 1, it can be stated that the associated convex hull K� satisfies the
following: there exist constants c; c0 > 0 such that for every ˛ 2 .0; 2

dC1 /, we
have

P.B1�c��˛ .o/ 6
 K�/ D O.expf�c0�1�˛.dC1/=2g/: (6.15)

The asymptotic result (6.15) roughly means that all extreme points are near
S
d�1 and included in an annulus of thickness ��2=.dC1/. It can be shown in

the following way: we consider a deterministic covering of an annulus B1.o/ n
B1���˛ .o/ with a polynomial number of full spherical caps. When the Poisson
point process intersects each of these caps, its convex hull contains B1�c��˛ .o/

where c > 0 is a constant. Moreover, an estimation of the probability that at
least one of the caps fails to meet the point process provides the right-hand side
of (6.15).
To conclude, the estimation (6.15) allows us to apply the classical limit theory of
random convex hulls in the ball even if the point process Yr is not homogeneous.

Step 3. We recall that the difference between the constructions of Z.o/ con-
ditioned either on fRm � rg or on fRm D rg is only an extra deterministic
hyperplane at distance r from the origin. After the use of a rescaling and of
the inversion I , we obtain that eNr (obtained with conditioning on fRm � rg) is
the number of extreme points of Yr whereas Nr (obtained with conditioning on
fRm D rg) is the number of extreme points of Yr[fx0g where x0 is a deterministic
point on S

d�1. A supplementary extreme point on S
d�1 can “erase” some of the

extreme points of Yr but it can be verified that it will not subtract more than
the number of extreme points contained in a d -dimensional polyhedron. Now
the growth of extreme points of random convex hulls in a polytope has been
shown to be logarithmic so we can consider that the effect of the extra point x0 is
negligible (see in particular [48,49,375] about limit theorems for random convex
hulls in a fixed polytope). Consequently, results proved for eNr in Steps 1–2 hold
for Nr as well. ut

Remark 6.12. Up to now, the bounds on the conditional distribution of the cir-
cumscribed radius (6.14) was only proved in dimension two through techniques
involving covering probabilities of the circle. Now applying the action of the
inversion I once again, we deduce from (6.15) the generalization of the asymptotic
result (6.14) to higher dimensions.

Remark 6.13. The same type of limit theorems occurs for the Lebesgue measure
of the region between the typical cell and its inball. Indeed, after application of I ,
this volume is equal to the �-measure of the complementary of the Voronoi flower
of the Poisson point process in the unit ball, where � is the image of the Lebesgue
measure under I . Limit theorems for this quantity have been obtained in [455,456].

In a recent paper [111], this work is extended in several directions, including
variance estimates and a functional central limit result for the volume of the typical
cell. Moreover [111] contains an extreme value-type convergence for RM which
adds to (6.14) by providing a three-terms expansion of .RM � r/ conditionally
on fRm � rg, when r goes to infinity. More precisely, it is proved that there
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exist explicit constants c1; c2; c3 > 0 (depending only on the dimension) such that
conditionally on fRm � rg, the quantity

2
3dC1
2 �d�1
d C 1

r
d�1
2 .RM � r/

dC1
2 � c1 log.r/ � c2 log.log.r// � c3

converges in distribution to the Gumbel law when r ! 1.



Chapter 7
Random Polytopes

Daniel Hug

Abstract Random polytopes arise naturally as convex hulls of random points
selected according to a given distribution. In a dual way, they can be derived as
intersections of random halfspaces. Still another route to random polytopes is via
the consideration of special cells and faces associated with random mosaics. The
study of random polytopes is based on the fruitful interplay between geometric and
probabilistic methods. This survey describes some of the geometric concepts and
arguments that have been developed and applied in the context of random polytopes.
Among these are duality arguments, geometric inequalities and stability results for
various geometric functionals, associated bodies and zonoids as well as methods of
integral geometry. Particular emphasis is given to results on the shape of large cells
in random tessellations, as suggested in Kendall’s problem.

7.1 Random Polytopes

In this chapter, we consider a particular class of set-valued random variables which
are denoted as random polytopes. Such random sets usually arise by the application
of fundamental geometric operations to basic (random) geometric objects such as
(random) points or hyperplanes. The best known example of a random polytope is
obtained by taking the convex hull of n random points in Euclidean space. A brief
outline of this most common model and of typical problems considered in this
context is provided in the introductory Sect. 7.1.1. In Sect. 7.1.2 we describe some
new geometric techniques for determining asymptotic mean values of geometric
functionals of random polytopes. Then variance estimates and consequences for
limit results are briefly discussed in Sect. 7.1.3. Related questions and methods for

D. Hug (�)
Karlsruhe Institute of Technology, Karlsruhe, Germany
e-mail: daniel.hug@kit.edu

E. Spodarev (ed.), Stochastic Geometry, Spatial Statistics and Random Fields,
Lecture Notes in Mathematics 2068, DOI 10.1007/978-3-642-33305-7 7,
© Springer-Verlag Berlin Heidelberg 2013

205



206 D. Hug

a dual model involving random hyperplanes are described in Sect. 7.1.4. A different
view on random polytopes is provided in Sect. 7.2. Here random polytopes are
derived in various ways from random tessellations such as hyperplane tessellations
or Voronoi tessellations. For such random polytopes we explore the effect of large
size on the shape of typical cells and faces.

7.1.1 Introduction

Random polytopes are basic geometric objects that arise as the result of some
random experiment. This experiment may consist in choosing randomly n points
in the whole space or in a fixed subdomain according to a given distribution. The
convex hull of these points then yields a random polytope. There exist various other
definitions of random polytopes, but this definition provides the best known and
most extensively studied class of models. The study of random polytopes naturally
connects geometry and probability theory and, therefore, recent investigations make
use of tools from both disciplines. Moreover, random polytopes are also related and
have applications to other fields such as the average case analysis of algorithms,
computational complexity theory, optimization theory [158, 178, 179, 529], error
correction in signal processing [157], extreme value theory [322, 347], random
matrices [335] and asymptotic geometric analysis [10, 139, 303–305]. Various
aspects of random polytopes are also discussed in the surveys [420, 447] and in
[43, 44].

In order to be more specific, let K � R
d be a convex body (a compact, convex

set with nonempty interior) of unit volume. Let X1; : : : ; Xn be independent and
uniformly distributed random points in K . The convex hull of X1; : : : ; Xn is a
random polytope which is denoted by Kn. In dimension d D 2 and for special
bodies K such as a square, a circle or a triangle, it is indeed possible to determine
explicitly the mean number of vertices of K4, Ef0.K4/, or the average area of K3,
EA.K3/. But already in dimension d D 3 and for a simplex K , the calculation of
the mean volume of Kn is a formidable task which was finally accomplished by
Buchta and Reitzner [90]. Since no explicit results can be expected for mean values
or even distributions of functionals of random polytopes for an arbitrary convex
bodyK in general dimensions, one is interested in sharp estimates, i.e. the solution
of extremal problems with respect toK (cf. [451, Sect. 8.6]), or in asymptotic results
as the number n of points increases. As an example of the former problem, one may
ask for the minimum of EVd .Kn/ among all convex bodies K of unit volume. It is
known that the minimum is attained precisely if K is an ellipsoid; see [204, 224].
It has been conjectured that EVd .Kn/ is maximal if K is a simplex, but despite
substantial progress due to Bárány and Buchta [45], this is still an unresolved
problem. In fact, it is known that a solution to this problem will also resolve the
slicing problem (hyperplane conjecture) [362]. Asymptotic results for geometric
functionals of random polytopes as the number of random points goes to infinity
will be discussed in some detail subsequently.
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In the second part of this contribution, we consider random tessellations and
certain random polytopes which can be associated with random tessellations. These
random polytopes are obtained by selecting specific cells of the tessellation. The cell
containing the origin or some kind of average cell are two common choices that will
be considered. Lower-dimensional random polytopes that are derived from a given
random tessellation by selecting a typical face provide another important choice. We
describe the asymptotic or limit shape of certain random polytopes associated with
random tessellations given the size of these polytopes is large. For the determination
of limit shapes, geometric results and constructions for these convex bodies turn out
to be crucial.

7.1.2 Asymptotic Mean Values

Our basic setting is d -dimensional Euclidean space R
d with scalar product h�; �i

and induced norm k � k. A convex body is a compact convex set with nonempty
interior. The set of all convex bodies in R

d is denoted by Kd
conv. For simplicity, in

the following we often assume that K 2 Kd
conv has unit volume. The extension

to the general case is straightforward. Let X1; : : : ; Xn, n 2 N, be independent
random points which are uniformly distributed in a convex body K 2 Kd

conv
with unit volume, that is P.Xi 2 A/ D Hd .A \ K/ for all A 2 B.Rd / and
i 2 f1; : : : ; ng. Here we write Hs for the s-dimensional Hausdorff measure in
R
d . From such a sample of n random points, we obtain a random polytope Kn

(see Fig. 7.1) which is defined as the convex hull Kn WD conv.X1; : : : ; Xn/ of
X1; : : : ; Xn. The convexity of K ensures that Kn � K . It is also clear that as n
increases, the random polytopeKn should approximateK with increasing precision.
The degree of approximation can be quantified by evaluating suitable functionals of
convex bodies at K and Kn, respectively. An important functional in this respect
is the volume Vd (or d -dimensional Hausdorff measure), since it is continuous,
isometry invariant (i.e. invariant with respect to rigid motions) and increasing with
respect to set inclusion. Whereas the volume is defined for arbitrary measurable
sets, there are other functionals of convex bodies that share all these properties.
These are the intrinsic volumes Vi , i D 0; : : : ; d , which are distinguished among all
additive functionals on Kd

conv by also being continuous (respectively, monotone) and
isometry invariant. The intrinsic volumes naturally arise as coefficients of the Steiner
formula, cf. (2.2). Other functionals of convex bodies that are natural to consider are
the diameter or the (Hausdorff, Banach–Mazur, symmetric difference) distance of a
convex body to some fixed convex body. Since our focus is on random polytopes,
the number fi of i -dimensional faces of a polytope or the total edge length are other
functionals on which random polytopes can be evaluated.

The prototype of a result comparing the volumes of K (which is 1) and Kn is
stated in the following theorem on the asymptotic behaviour of the expected value
EVd .Kn/ as n ! 1. It shows that the speed of convergence to Vd .K/ is at least of
order n�2=.dC1/. The result also explains how geometric properties of K determine
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K

Kn

Fig. 7.1 Convex hull of random points

the speed of convergence. In this case, the relevant geometric quantity is based on
the generalized Gauss curvature function x 7! Hd�1.x/ with x 2 @K (the boundary
of K). We do not indicate in our notation the dependence on K , if K is clear from
the context. For a convex bodyK with a twice continuously differentiable boundary,
the Gauss curvature of K at x 2 @K is the product of the principal curvatures of K
at x (see [445, Sect. 2.5]). For a general convex body, the Gauss curvature is still
defined for Hd�1-almost all boundary points in Aleksandrov’s sense. We explain
this notion more carefully. It is a basic fact in convex geometry that Hd�1-almost
all boundary points y ofK are smooth in the sense that there exists a unique support
plane H of K through y (see [445, p. 73]). (The nonsmooth boundary points may
still form a dense subset of the boundary.) If y is a smooth boundary point ofK , then
there exists a neighbourhood U of y and a nonnegative convex function f defined
onH such that @K\U is the graph of f jU\H . In particular, we have f .y/ D 0 and
df .y/ D 0. A much deeper fact, which is a version of Aleksandrov’s theorem on
the second order differentiability of a convex set (or function, resp.) states that for
Hd�1-almost all smooth y 2 @K the corresponding function f even has a second
order Taylor expansion at y in the sense that

f .y C h/ D 1

2
q.h; h/C o.khk2/;

where h 2 u? (the orthogonal complement of u), u is the unique exterior unit normal
of K at y and q is a symmetric bilinear form on u? which may be denoted by
d2f .y/. The principal curvatures ofK at y are then defined as the eigenvalues of q
(or rather of the associated symmetric linear map from u? to itself) and the Gauss
curvature Hd�1.y/ is defined as the product of these d � 1 principal curvatures.
Further details and proofs can be found in [445, Notes for Sect. 1.5] and [206, The-
orem 2.9 and Lemma 5.2]. A boundary point y as described above is usually called
a point of second order differentiability or simply a normal boundary point of K .

Theorem 7.1. For an arbitrary convex bodyK 2 Kd
conv with Vd .K/ D 1, it holds

lim
n!1 .Vd .K/� EVd .Kn// n

2
dC1 D cd �˝d.K/;
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where

˝d.K/ WD
Z
@K

Hd�1.x/
1

dC1 Hd�1.dx/

and cd is an explicitly known constant.

Since the constant is independent of K , it can be determined for a ball.
The required calculations can be carried out explicitly by methods of integral
geometry (such as the affine Blaschke–Petkantschin formula; cf. Sect. 2.1.2 and
[451, Theorem 7.2.7]), and thus one obtains

cd WD .d 2 C d C 2/.d2 C 1/

2.d C 3/ � .d C 1/Š
� �

�
d2 C 1

d C 1

�
�
�
d C 1

�d�1

�2=.dC1/
;

where �n denotes the volume of the n-dimensional unit ball. The functional˝d on
convex bodies is known as the affine surface area. It has been extensively studied in
the last two decades as an important affine invariant in convex geometry; see, e.g.
[250,251,337] and the literature cited therein. One of the features that distinguishes
the affine surface area from the intrinsic volumes is that it is affine invariant and zero
for polytopes and therefore not a continuous functional (though, it is still upper-
semicontinuous).

Exercise 7.1. 1. Restate Theorem 7.1 without the assumption Vd .K/ D 1 and
deduce the general result from the given special case by a scaling argument.

2. Give a proof of Theorem 7.1 in the case where K is a ball and d D 2, and
determine the constant c2 explicitly.

Theorem 7.1 was proved by Rényi and Sulanke [421] in the plane (d D 2) for
convex bodies with sufficiently smooth boundaries (three times differentiable) and
everywhere positive Gauss curvature. Later it was generalized to higher dimensions
(Wieacker considered the unit ball [517]) and established under relaxed smoothness
assumptions by Bárány [42]. Affentranger [2] explored the convex hull of random
points in the unit ball, but for more general rotation invariant distributions and a
larger class of functionals. In the form given here, the result was first stated by
Schütt [461]. However, one lemma in the paper by Schütt seems to require that K
has a unique tangent plane at each boundary point, i.e. K is smooth (of class C1).
Below we outline a modification and extension of the approach by Schütt which
was developed to prove a more general result and which works for arbitrary convex
bodies (see [75] for further comments).

Writing f0.Kn/, the number of vertices of Kn, as a sum of indicator functions,

f0.Kn/ D
nX
iD1

1.Xi … conv.X1; : : : ; Xi�1; XiC1; : : : ; Xn//;
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we obtain Efron’s identity

Ef0.Kn/ D n � EVd .K nKn�1/: (7.1)

Exercise 7.2. Carry out the details of the derivation of Efron’s identity.

From (7.1) and Theorem 7.1 we deduce an interesting corollary.

Corollary 7.1. For an arbitrary convex bodyK 2 Kd
conv with Vd .K/ D 1, we have

lim
n!1 Ef0.Kn/n

� d�1
dC1 D cd �˝d.K/:

Equation (7.1) explains why the constants in Theorem 7.1 and Corollary 7.1 are
the same.

The following results concerning the asymptotic behaviour of various functionals
of random polytopes complement the picture. Recall that for a polytopeP in R

d we
denote by fi .P /, i 2 f0; : : : ; d � 1g, the number of i -dimensional faces of P .

1. For a convex body K of class C2C (twice differentiable boundary and positive
Gauss curvature), we have

lim
n!1 Efi .Kn/n

� d�1
dC1 D ci �˝d.K/

with a constant ci which is independent of K and i 2 f0; : : : ; d � 1g (here and
below we assume again that Vd .K/ D 1).

2. For a polytope P � R
d , the convergence in limit results is of a different order

compared to the case of a smooth convex body. This is shown by

lim
n!1 .Vd .P / � EVd .Pn//

n

logd�1 n
D Qc � T .P /;

lim
n!1 Efi .Pn/

1

logd�1 n
D Oci � T .P /;

where T is a geometric-combinatorial functional on polytopes, Qc, Oci are constants
independent of P , and i 2 f0; : : : ; d � 1g. More explicitly, for a polytope P a
tower (or flag) is a sequence F0 � F1 � : : : � Fd�1 of faces Fi of P of
dimension i and T .P / is the number of all such towers (flags) ofP . These results
have been proved in full generality in [45]. It is again an easy exercise to deduce
the result for the volume functional from the one for the number of vertices, and
vice versa, by applying Efron’s identity.

3. For an arbitrary convex bodyK 2 Kd
conv, we have

c1 � logd�1 n
n

� Vd .K/� EVd .Kn/ � c2 � n� 2
dC1
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with constants 0 < c1 < c2 < 1 which may depend on K but not on n. The
order of these estimates is optimal in general. It is known that there exist convex
bodies for which the sequence V.K/ � EV.Kn/, n 2 N, oscillates between
these two bounds infinitely often. The upper bound follows from the statement of
Theorem 7.1, but it was first deduced by the powerful “cap covering technique”
which was explored in depth by Bárány and Larman; see for instance [47] and
the contribution by Bárány in [43].

We now explain an extension of Theorem 7.1 which was obtained in [75]. Let
% be a probability density with respect to Lebesgue measure on K 2 Kd

conv (if
not stated otherwise, speaking of densities we consider densities with respect to
Lebesgue measure). The random points X1; : : : ; Xn are assumed to be independent
and distributed according to

P.Xi 2 A/ D
Z
A

%.x/Hd .dx/;

where A 2 B.Rd / with A � K . We assume that % is positive and continuous on
@K . Moreover, let � W K ! R be an integrable function which is continuous on @K .
In order to indicate the dependence of the expected value and of the probability on
the choice of %, we use a corresponding index.

Theorem 7.2. With the preceding notation, we have

n
2

dC1 E%

Z
KnKn

�.x/Hd .dx/����!
n!1 cd

Z
@K

%.x/
�2
dC1 �.x/Hd�1.x/

1
dC1 Hd�1.dx/:

(7.2)

The special case where % and � are constant functions yields the statement of
Theorem 7.1. For this reason, the constant here is the same as the one in that previous
theorem. It is remarkable that the right-hand side of (7.2) only depends on the values
of % and � on @K . The fact that Theorem 7.2 allows us to choose � appropriately is
crucial for the derivation of the subsequent corollary and for the investigation of a
dual model of random polytopes determined by random half-spaces, which will be
considered below.

A straightforward generalization of Efron’s identity, in the present setting, is

E%f0.Kn/ D n � E%

Z
KnKn�1

%.x/Hd .dx/; (7.3)

which yields the following consequence of Theorem 7.2.

Corollary 7.2. For K 2 Kd
conv and for a probability density function % on K which

is continuous and positive at each point of @K , we have

lim
n!1n� d�1

dC1 E%f0.Kn/ D cd

Z
@K

%.x/
d�1
dC1 Hd�1.x/

1
dC1 Hd�1.dx/:
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Exercise 7.3. Verify relation (7.3) and then deduce Corollary 7.2.

Let us give the idea of the proof of Theorem 7.2. Details can be found in [75].
The starting point is the relation

E%

Z
KnKn

�.x/Hd .dx/ D
Z
K

P%.x 62 Kn/�.x/Hd .dx/; (7.4)

which is an immediate consequence of Fubini’s theorem. For the proof of
Theorem 7.2, it can be assumed that o 2 Int.K/. (It is an instructive exercise to
deduce the general case by using the translation invariance of Hausdorff measures.)
The asymptotic behaviour, as n ! 1, of the right-hand side of (7.4) is determined
by points x 2 K which are sufficiently close to the boundary ofK . In order to make
this statement precise, we introduce scaled copies K.t/ WD .1 � t/K , t 2 .0; 1/, of
K and define yt WD .1 � t/y for y 2 @K , see Fig. 7.2. The cap G.y; t/ is defined
below.

Then it can be shown that

lim
n!1n

2
dC1

Z
K.n

�

1
dC1 /

P%.x 62 Kn/�.x/Hd .dx/ D 0: (7.5)

This auxiliary result is based on a geometric estimate of P%.x 62 Kn/, which states
that if t > 0 is sufficiently small and y 2 @K , then

P%.yt … Kn/ � �0

�
1 � �1r.y/

d�1
2 t

dC1
2

�n
;

where r.y/ is the radius of the largest ball which contains y and is contained in K ,
and �0; �1 are constants independent of y; t and n.

Exercise 7.4. 1. Describe the boundary points y of a polytope for which r.y/ > 0.
2. Prove that r.y/ > 0 for Hd�1 almost all y 2 @K . A short proof can be based on

the fact (mentioned before) that almost all boundary points are normal boundary
points.

Moreover, the proof of (7.5) makes essential use of the following disintegration
result. In order to state it, let u.y/, for y 2 @K , denote an exterior unit normal of
K at y. Such an exterior unit normal is uniquely determined for Hd�1-almost all
boundary points of K .

Lemma 7.1. If ı > 0 is sufficiently small, 0 � t0 � t1 < ı and h W K ! Œ0;1
 is
a measurable function, then

Z
K.t0/nK.t1/

h.x/Hd .dx/ D
Z
@K

Z t1

t0

.1 � t/d�1hy; u.y/ih.yt/ dt Hd�1.dy/:
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o

K

Kt

yt

y
G(y,t)

Fig. 7.2 Convex body K with scaled copy K.t/ and cap G.y; t/

This follows by a straightforward application of the area formula, see [75].
Applying the disintegration result again and using Lebesgue’s dominated conver-
gence result, we finally get

lim
n!1n

2
dC1 � E%

Z
KnKn

�.x/Hd .dx/ D
Z
@K

�.y/J%.y/Hd�1.dy/;

where

J%.y/ D lim
n!1

Z n�1=.dC1/

0

n
2

dC1 hy; u.y/i P%.yt 62 Kn/ dt

for Hd�1-almost all y 2 @K . It is now clear that it is sufficient to determine
J%.y/ for a normal boundary point y. For this we distinguish two cases. In the case
Hd�1.y/ D 0, it can be shown by a direct estimate that J%.y/D 0. The main case
is Hd�1.y/ > 0. The assumption of positive Gauss curvature yields some control
over the boundary of K in a neighbourhood of y, in particular it admits a local
second order approximation of @K be osculating paraboloids. For the corresponding
analysis, the basic strategy is to show that it is sufficient to consider a small cap
G.y; t/ (see Fig. 7.2) of K at y 2 @K whose bounding hyperplane passes through
yt . More precisely, we proceed as follows. First, we reparametrize yt as Qys , in
terms of the probability content s D R

G.y;t/
%.x/Hd .dx/ of the cap G.y; t/. This

transformation leads to

J%.y/ D .d C 1/�
d�1
dC1 .�d�1%.y//�

2
dC1 Hd�1.y/

1
dC1

� lim
n!1

Z n�1=2

0

n
2

dC1 P%. Qys 62 Kn/ s
� d�1
dC1 ds:

It is then another crucial step in the proof to show that the remaining integral
asymptotically is independent of the particular convex bodyK , and thus the limit of
the integral is the same as for a Euclidean ball. To achieve this, the integral is first
approximated, up to a prescribed error of order " > 0, by replacing P%. Qys 62 Kn/

by the probability of an event that depends only on a small cap of K at y and on a
small number of random points. For this final step in the proof, it is essential that
the boundary of K near the normal boundary point y can be suitably approximated
by the osculating paraboloid of K at y. In a very rough sense, the proof boils down
to reducing the assertion for a general convex body to the case of the Euclidean ball
for which it is well known.
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It is natural to explore the asymptotic behaviour of not just the volume functional
of a random polytope but of more general intrinsic volumes Vi.Kn/ as n ! 1.
A first result in general dimensions, which concerns the case of the mean width,
was obtained by Schneider and Wieacker [452] and later generalized by Böröczky
et al. [76]. The mean width of a convex body K 2 Kd

conv is proportional to the
first intrinsic volume of K , i.e. W.K/ D 2�d�1

d�d
V1.K/. More explicitly, it can be

described in terms of an average of the support function hK of K (cf. Chap. 1)

W.K/ D 2

d�d

Z
Sd�1

hK.u/Hd�1.du/ D 1

d�d

Z
Sd�1

.hK.u/C hK.�u//Hd�1.du/:

Now we consider again independent and uniformly distributed random points in a
convex body K with Vd .K/ D 1. A major difference in the statement of the next
result as compared to the case of the volume functional is the occurrence of an
additional assumption on K . We say that a ball rolls freely inside K if for each
boundary point y 2 @K there is a ball of fixed radius r > 0 which contains y and
is contained in K . In other words, we have r.y/ � r for all y 2 @K . This condition
is equivalent to requiring thatK is the Minkowski sum of a ball and another convex
body. In particular, all boundary points are smooth points (in fact, the normal map
is even Lipschitz).

Theorem 7.3. Let K 2 Kd
conv be a convex body in which a ball rolls freely. Then

lim
n!1n

2
dC1 .V1.K/� EV1.Kn// D cd

Z
@K

Hd�1.x/
dC2
dC1 Hd�1.dx/;

where cd is a constant which is explicitly known.

It was shown by the example of a convex body K that is smooth and of class
C1C except for one point that the assumption of a rolling ball cannot be completely
removed. In fact, K is constructed in such a way that in a neighbourhood of the
origin the graph of the function f .x/ WD kxk1C1=.3d/, x 2 R

d�1, is part of the
boundary, so that o is the critical boundary point of K . See Example 2.1 in [76] for
further details.

However, the general bounds

c1 � n� 2
dC1 � V1.K/� EV1.Kn/ � c2 � n� 1

d ;

where c1; c2 are positive constants possibly depending on K , are provided by
Schneider [443].

A result for all intrinsic volumes was finally established in [77]. In addition to
the Gauss curvature, the limit involves the i -th (normalized) elementary symmetric
functionHi.x/ of the (generalized) principal curvatures of the convex bodyK at its
boundary points x 2 @K . See [445, Sect. 2.5, (2.5.5)] for an introduction to these
curvature functions in the framework of convex sets.
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Theorem 7.4. Let K � R
d be a convex body with Vd .K/ D 1 in which a ball rolls

freely, and let j 2 f2; : : : ; d � 1g. Then

lim
n!1n

2
dC1

�
Vj .K/� EVj .Kn/

� D cd;j

Z
@K

Hd�1.x/
1

dC1 Hd�j .x/Hd�1.dx/

with a constant cd;j > 0 which is independent ofK .

As before it is an easy exercise to remove the assumption Vd .K/ D 1 in the
statement of the theorem (cf. [77]). The proof is based on an integral geometric
representation of the intrinsic volumes as average projection volumes, that is

Vj .K/ D
�
d
j

�
�d

�j �d�j

Z
˛dj

Vj .KjL/ �j .dL/;

where ˛dj is the Grassmannian of all j -dimensional linear subspaces of Rd , �j is

the (unique) rotation invariant (Haar) probability measure on ˛dj , and, for L 2 ˛dj ,
KjL denotes the orthogonal projection of K to L. Here, Vj .KjL/ is just the
j -dimensional volume (Lebesgue measure) of KjL.

7.1.3 Variance Estimates and Limit Results

The results described so far concern mean values and therefore first order properties
of random polytopes. Methods of integral geometry are a natural and appropriate
tool in this context. Good estimates or even exact results for higher moments have
been out of reach until very recently. Here we mention just two surprising results
and methods that have been discovered within the last decade.

The first is a far reaching generalization of Efron’s identity. It relates the kth
moment of the volume Vd .Kn/ to moments of the number of vertices f0.KnCk/.
In particular, it thus follows that E.Vd .Kn//

k is determined by the distribution of
f0.KnCk/. Since the result follows from an unexpectedly simple double counting
argument, we indicate the approach.

Let X1; : : : ; XnCk be independent and uniformly distributed random points in
K . It is sufficient to consider a realization of mutually different points, since this
situation is available almost surely. Let Pn;k denote the number of k-element subsets
of fX1; : : : ; XnCkg contained in the convex hull of the other n points. Clearly,Pn;k is
equal to the number of possibilities of choosing k elements from fX1; : : : ; XnCkg n
f0.conv.X1; : : : ; XnCk//, that is from the set of those points which are not vertices,
and therefore we get
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EPn;k D E

 
nC k � f0.conv.X1; ; : : : ; XnCk//

k

!
:

On the other hand, by symmetry we easily deduce that

EPn;k D
 
nC k

k

!
P.X1; : : : ; Xk 2 conv.XkC1; : : : ; XnCk//

D
 
nC k

k

!
E.Vd .Kn//

k=.Vd.K//
k:

A comparison of the right-hand sides of these two equations leads to the following
result due to Buchta [89].

Theorem 7.5. Let K 2 Kd
conv be a convex body, and let n; k 2 N. Then

E.Vd .Kn//
k

.Vd .K//k
D E

 
kY
iD1

�
1 � f0.KnCk/

nC i

�!
: (7.6)

Equation (7.6) can be inverted so that P.f0.Kn/ D k/ is expressed in terms of
the moments of the form E.Vd .Kj /

n�j /, j D d C 1; : : : ; k, whenever n � d C 1

and k 2 f1; : : : ; ng. Buchta discusses several consequences for the determination of
variances that can be deduced from his relation.

The second example is a method for estimating variances of geometric function-
als of random polytopes. This new method which was first discovered by Reitzner
[418] is based on the classical Efron–Stein jackknife inequality from statistics (see
[165]). It can be described as follows. Let Y1; Y2; : : : be a sequence of independent
and identically distributed random vectors. Let S DS.Y1; : : : ; Yn/ be a real symmet-
ric function of the first n of these vectors, put Si D S.Y1; : : : ; Yi�1; YiC1; : : : ; YnC1/,
i 2 f1; : : : ; n C 1g, as well as S.�/ D 1

nC1
PnC1

iD1 Si . The Efron–Stein jackknife
inequality then states that

varS � E
nC1X
iD1
.Si � S.�//2 D .nC 1/E.SnC1 � S.�//2: (7.7)

Moreover, it is clear that the right-hand side is not decreased if S.�/ is replaced by
any other function of Y1; : : : ; YnC1.

In a geometric framework, this can be used to show that if f is a functional
on convex polytopes (such as volume or number of vertices) and X1;X2; : : : are
independent and identically distributed random points in K , then

varf .Kn/ � .nC 1/E .f .KnC1/ � f .Kn//
2 :
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To obtain this, we use SnC1 D f .conv.X1; : : : ; Xn// D f .Kn/ and replace S.�/
by f .KnC1/ in (7.7). Thus an estimate of the variance follows from an estimate of
the cost for adding one further point. Combining integral geometric arguments and
geometric estimates, Reitzner thus managed to establish the upper bounds

varVd .Kn/ � c1.K/ � n� dC3
dC1 ; varf0.Kn/ � c2.K/ � n d�1

dC1 ;

which later were complemented by lower bounds of the same order with respect to
n (see [419] and, for K D B1.o/, formulae (8.68)–(8.70) in Sect. 8.4.2). The upper
bound of the variance can now be used to obtain an almost sure convergence result.
In fact, let X1;X2; : : : be independent and identically distributed random points in
K with Vd .K/ D 1. Chebyshev’s inequality and the variance bound then yield that

p.n; �/ WDP
�
j.Vd .K/� Vd .Kn// � E.Vd .K/� Vd .Kn//j � n 2

dC1 � �
�

�c1.K/ � ��2 � n� d�1
dC1 :

For nk WD k4, k 2N, the sum
P

k�1 n
� d�1
dC1

k is finite and therefore also
P

k�1 p.nk; �/.
Hence an application of the Borel–Cantelli theorem together with Theorem 7.1 show
that �

Vd .K/� Vd .Knk /
�
n

2
dC1

k ! cd �˝.K/
with probability 1 as k ! 1. Since the volume functional is monotone, we have

.Vd .K/ � Vd .Knk // n
2

dC1

k�1 � .Vd .K/ � Vd .Kn// n
2

dC1 � .Vd .K/ � Vd .Knk�1 // n
2

dC1

k

for nk�1 � n � nk . Using that nkC1=nk ! 1 as k ! 1, we finally obtain that

.Vd .K/� Vd .Kn// n
2

dC1 ! cd �˝.K/

with probability 1 as n ! 1. Clearly, the constant cd here must be the same as in
Theorem 7.1. Since the number of vertices of the convex hull does not necessarily
increase if one point is added, the corresponding argument for f0 is more delicate. A
general convergence result along with various estimates and refinements was finally
obtained by Vu [503] who thus completed the investigation in [418].

The Efron–Stein method can also be used for studying the asymptotic behaviour
in different models of random polytopes. An important example is provided by
Gaussian polytopes Pn which arise as convex hulls of a Gaussian sample, that is
of independent random points X1; : : : ; Xn that follow a d -dimensional standard
normal distribution with mean zero and covariance matrix 1

2
Id . The asymptotics

of the mean values Efi .Pn/ and EVi .Pn/ have been investigated by Raynaud [414],
and by Baryshnikov and Vitale [58], where the latter is based on previous work by
Affentranger and Schneider [4]. A direct approach exhibiting the asymptotics of
mean values of these and other functionals of Gaussian polytopes is developed in
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[253, 254]. There it is shown that, for i 2 f0; : : : ; d � 1g,

fi .Pn/.logn/�.d�1/=2 ! 2dp
d

 
d

i C 1

!
ˇi;d�1�.d�1/=2

in probability as n ! 1. Here the constant ˇi;d�1 is the internal angle of a regular
.d � 1/-simplex at one of its i -dimensional faces.

An important tool for the proof is the variance estimate

varfi .Pn/ � c0
d � .logn/.d�1/=2

which again is based on the Efron–Stein method, applied to a functional which
counts the number of facets of Pn that can be seen from a random point X not
contained in Pn. Another ingredient in the proof are new integral formulae of
Blaschke–Petkantschin type. These are also the right tools for showing that

varVi .Pn/ � c00
d � .logn/.i�3/=2

for i 2 f1; : : : ; d g. From this, one finally deduces that

Vi.Pn/.logn/�i=2 !
 
d

i

!
�d

�d�i

with probability 1 as n ! 1.
More recently, Bárány and Vu [50] obtained central limit theorems for various

functionals of Gaussian polytopes. Previously, Hueter [249] had already established
a central limit theorem for the number of vertices of Pn. The recent results are
based on new techniques for proving central limit theorems involving geometric
functionals of random polytopes that were initiated by Vu [502,503] and developed
further, e.g. in [48, 49].

7.1.4 Random Polyhedral Sets

In this subsection, we consider a model of a random polytope which is dual to the
classical model of the convex hull of a sample of random points. Instead of points,
now the basic ingredients are random hyperplanes, and convex hulls are replaced by
intersections of halfspaces bounded by hyperplanes and containing the origin (cf.
Fig. 7.3). For a more specific and formal description, let again K 2 Kd

conv be given.
We fix a point in the interior ofK , for the sake of simplicity we take the origin, hence
o 2 Int.K/. The parallel body of K of radius 1 is K1 WD K ˚ B1.o/. Let H denote
the space of hyperplanes (with its usual topology) in R

d , and let HK be the subset of
hyperplanes meetingK1 but not the interior ofK . ForH 2 HK , the closed halfspace
bounded byH that containsK is denoted byH�. Let � denote the motion invariant
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(n)K
oK

Fig. 7.3 Construction of a random polyhedral set

Borel measure on H, normalized so that �.fH 2 H W H \ M 6D ;g/ is the mean
width W.M/ of M , forM 2 Kd

conv. Let 2�K be the restriction of � to HK . Since

�.HK/ D W.K ˚ B1.o//�W.K/ D W.B1.o// D 2;

the measure�K is a probability measure. For n 2 N, letH1; : : : ;Hn be independent
random hyperplanes in R

d , i.e. independent H-valued random variables on some
probability space .˝;A;P/, each with distribution �K . The possibly unbounded
intersection

K.n/ WD
n\
iD1

H�
i

of the halfspaces H�
i is a random polyhedral set. Subsequently, we shall describe

the asymptotic behaviour of the expected value EW.K.n/ \ K1/. The intersection
with K1 is taken, since K.n/ is unbounded with positive probability. Instead
of EW.K.n/ \K1/, we could consider E1W.K.n//, the conditional expectation
of W.K.n// under the condition that K.n/ � K1. Since EW.K.n/ \ K1/ D
E1W.K.n// C O.�n/ with � 2 .0; 1/, there is no difference in the asymptotic
behaviour of both quantities, as n ! 1. We also remark that, for the asymptotic
results, the parallel bodyK1 could be replaced by any other convex body containing
K in its interior; this would only affect some normalization constants. At first
thought, one is inclined to believe that a random hyperplane with uniform distri-
bution � corresponds to a random point with uniform distribution in K . However,
the precise connection, which is described below, is more subtle. Subsequently,
hyperplanes are written in the formH.u; t/ WD fx 2 R

d W hx; ui D tg, u 2 R
d n fog

and t 2 R. More generally, we now consider random hyperplanes with distribution

�q WD
Z
Sd�1

Z 1

0

1fH.u; t/ 2 �gq.t; u/ dt 	.du/; (7.8)

where 	 is the rotation invariant probability distribution on S
d�1 and q W

Œ0;1/ � S
d�1 ! Œ0;1/ is a measurable function which
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1. is concentrated on DK WD f.t; u/ 2 Œ0;1/ � S
d�1 W h.K; u/ � t � h.K1; u/g,

2. is positive and continuous at each point .h.K; u/; u/ with u 2 S
d�1,

3. and satisfies �q.HK/ D 1.

Probabilities and expectations with respect to �q are denoted by P�q and E�q ,
respectively.

In order to obtain results concerning random polyhedral sets, it is appropriate
to use the duality between points and hyperplanes, and between convex hulls and
intersections of halfspaces. It turns out that in this way also volume and mean width
can be related to each other. This rough idea of duality is specified by introducing
the polar set A� of a given nonempty set A � R

d . It is defined by

A� WD fx 2 R
d W hx; yi � 1 for all y 2 Ag:

In the particular case whenK 2 Kd
conv with o 2 Int.K/, we getK� 2 Kd

conv and also
o 2 Int.K�/. Since the realizations of our random polyhedral set are unbounded
with positive probability, a definition of the polar of an arbitrary set is needed.

Exercise 7.5. 1. Show that the formation of the polar set is inclusion reversing and
always yields a closed set.

2. Determine the polar set of a ball of radius r with centre at the origin.

With a given function q related to the convex body K as described above, we
now associate a density % on K� by

%.x/ WD
(
!�1
d q

�kxk�1; kxk�1x
� kxk�.dC1/; x 2 K� n .K1/

�;
0; x 2 .K1/

�;
(7.9)

where !d WD Hd�1.Sd�1/. The density % is defined in such a way that the
distribution of the random polyhedral set K.n/, based on K;�q , is equal to the
distribution of the random polyhedral set ..K�/n/� which is obtained as the polar
set of the random polytope .K�/n, based on K�; %, where % is defined by (7.9); see
[75, Proposition 5.1]. For points x1; : : : ; xn 2 K� n .K1/

�, we have

1.conv.x1; : : : ; xn/
� � K1/.W.conv.x1; : : : ; xn/

�/�W.K//

D 2 � 1.conv.x1; : : : ; xn/
� � K1/

Z
K�nconv.x1;:::;xn/

�.x/Hd .dx/;

where

�.x/ WD
(
!�1
d kxk�.dC1/; x 2 K� n .K1/

�;
0; x 2 .K1/

�:

To justify this relation, we need some preparation. For a convex body L 2 Kd
conv

with o 2 Int.L/, we define the radial function of L by


.L; u/ D maxft � 0 W tu 2 Lg; u 2 S
d�1:
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Instead of hL.u/ we also write h.L; u/ for the support function of L.

Exercise 7.6. Show that for a convex body L 2 Kd
conv with o 2 Int.L/ we have

h.L; u/ D 
.L�; u/ for u 2 S
d�1. (See [451, p. 43, Remark 1.7.7])

Now assume that x1; : : : ; xn 2 K�n.K1/
� are such that conv.x1; : : : ; xn/

� � K1.
Then o 2 Int.conv.x1; : : : ; xn// and we can conclude that

W.conv.x1; : : : ; xn/
�/ �W.K/

D 2

d�d

Z
Sd�1

h.conv.x1; : : : ; xn/
�; u/� h.K; u/Hd�1.du/

D 2

d�d

Z
Sd�1


.conv.x1; : : : ; xn/; u/�1 � 
.K�; u/�1 Hd�1.du/

D 2

Z
Sd�1

Z 
.K�;u/


.conv.x1;:::;xn/;u/
�.tu/td�1 dt Hd�1.du/

D 2

Z
K�nconv.x1;:::;xn/

�.x/Hd .dx/:

It is now apparent how Theorem 7.2 can be applied to get

lim
n!1n

2
dC1

�
E�qW.K

.n/ \K1/�W.K/
�

D 2 � lim
n!1n

2
dC1 � E%;K�

Z
K�n.K�/n

�.x/Hd .dx/

D 2 cd

Z
@K�

%.x/�
2

dC1 �.x/Hd�1.K�; x/
1

dC1 Hd�1.dx/

D 2 cd !d
� d�1
dC1

Z
@K�

Qq.x/� 2
dC1 kxk�dC1Hd�1.K�; x/

1
dC1 Hd�1.dx/;

where Qq.x/ WD q.kxk�1; kxk�1x/. The integral thus obtained extends over @K�
and involves the Gauss curvature Hd�1.K�; �/ of the polar body K� of K . By the
subsequent lemma, the last integral can be transformed into an integral over @K
which only involves the Gauss curvature Hd�1.K; �/ of the original body K . Here
h.K; �/ denotes the support function of K and 	K.x/ is the exterior unit normal of
K at a smooth boundary point x (recall that almost all boundary points are smooth).

Lemma 7.2. Let K 2 Kd
conv with o 2 Int.K/. If f W Œ0;1/ � S

d�1 ! Œ0;1/ is a
measurable function and Qf .x/ WD f

�kxk�1; kxk�1x
�
, x 2 @K�, then
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Z
@K�

Qf .x/kxk�dC1Hd�1.K�; x/
1

dC1 Hd�1.dx/

D
Z
@K

f .h.K; 	K.x//; 	K.x//Hd�1.K; x/
d

dC1 Hd�1.dx/:

Thus we finally arrive at the following theorem which is established in [75].

Theorem 7.6. Let K 2 Kd
conv with o 2 Int.K/, and let q W Œ0;1/� S

d�1 ! Œ0;1/

be as described above. Then

lim
n!1n

2
dC1

�
E�qW.K

.n/ \K1/ �W.K/�

D 2 cd !d
� d�1
dC1

Z
@K

q.h.K; 	K.x//; 	K.x//
� 2
dC1 Hd�1.K; x/

d
dC1 Hd�1.dx/:

Observe that in the special case q � 1 the integral on the right-hand side
simplifies considerably. A similar reasoning also implies our next result for the
average number of facets of a random polyhedral set.

Theorem 7.7. Let K 2 Kd
conv with o 2 Int.K/, and let q W Œ0;1/� S

d�1 ! Œ0;1/

be as described above. Then

lim
n!1n� d�1

dC1 � E�qfd�1.K.n//

D cd !d
� d�1
dC1

Z
@K

q.h.K; 	K.x//; 	K.x//
d�1
dC1 Hd�1.K; x/

d
dC1 Hd�1.dx/:

As for the volume of a random polytope, there are general estimates for the mean
width of a random polyhedral set containing a given convex bodyK ,

c1 � logd�1 n
n

� EW.K.n//�W.K/ � c2 � n� 2
dC1 ; (7.10)

where c1; c2 are positive constants, possibly depending on K . These estimates were
recently obtained in [79].

Exercise 7.7. Show that the upper bound in (7.10) is implied by Theorem 7.6.

Böröczky and Schneider provide further precise results on the asymptotic
behaviour of random polyhedral sets containing a simple polytope, in the case of
the mean width functional and the number of i -dimensional faces. The method
described here can also be used to improve results for the volume of random
polyhedral sets previously obtained by Kaltenbach [284].
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7.2 From Random Polytopes to Random Mosaics

In the previous section, random polytopes were obtained by a rather direct con-
struction. Now we consider random polytopes that arise as special cells in random
tessellations. Each realization of such a random tessellation is a countable collection
of polytopes.

Let G denote the class of nonempty closed subsets of Rd . A tessellation of Rd

is a locally finite collection of convex polytopes which cover Rd and have mutually
disjoint interiors. It will be convenient to consider a random tessellation as a particle
process X such that X.!/ is a tessellation of R

d for P-almost all ! 2 ˝ , see
Sect. 5.1.2. In addition to the cells, we are also interested in the k-dimensional faces
of the cells, for k D 0; : : : ; d . The collection of all these cells leads to the process
X.k/ of k-faces of the given tessellation. In particular, we have X.d/ D X . As an
overall assumption, we require the intensity measures �.k/ WD EX.k/ to be locally
finite. IfX is stationary, then�.k/ is a translation invariant measure. In this case, we
introduce a centre function (such as the centre of mass), that is a map c W Kd

conv !
R
d which is translation covariant in the sense that c.K C x/ D c.K/ C x for all

K 2 Kd
conv and x 2 R

d . Then we define the class of centred bodies K0
conv WD fK 2

Kd
conv W c.K/ D og and obtain a representation

�.k/ D �.k/
Z

K0
conv

Z
Rd

1.x CK 2 �/Hd .dx/P.k/0 .dK/; (7.11)

where �.k/ is called the intensity of X.k/ and P.k/0 is a probability measure which is
called the distribution of the typical k-face ofX . Instead of �.d/ we also write � and
similarly for P.d/0 and P0.

Exercise 7.8. Derive the decomposition (7.11) from the fact that the intensity
measure�.k/ is translation invariant and locally finite (see Sect. 4.1 in [451]).

A description of these quantities in terms of a spatial average is provided by

�.k/P.k/0 D lim
r!1

1

Vd .Br.o//
E
X

K2X.k/
1.K � c.K/ 2 �/1.K � Br.o//; (7.12)

where Br.o/ denotes a ball of radius r with centre at the origin. For an introduction
to these notions and for further details, we refer to the monograph by Schneider
and Weil [451]. In particular, the representation (7.12) can be deduced from [451,
Theorem 4.1.3].

The typical cell Z of a stationary random tessellation X is a random polytope
with distribution P0, the typical k-face Z.k/ is a random k-dimensional polytope
with distribution P.k/0 . In addition to these random polytopes obtained by a spatial
average, the zero cellZ0 is the cell containing the origin (by stationarity, it is unique
almost surely). A basic relation between zero cell and typical cell is
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Ef .Z0/ D E.f .Z/Vd .Z//
EVd .Z/

; � D .EVd .Z//�1; (7.13)

which holds for any translation invariant, measurable function f W Kd
conv ! Œ0;1


(see also Sect. 6.1.2). This relation describes the fact that the distribution of the zero
cell is (up to translations) equal to the volume weighted distribution of the typical
cell.

Exercise 7.9. Apply Campbell’s theorem to

X
K2X

f .K/1fo 2 Int.K/g

in order to deduce (7.13); see also [451, Theorem 10.4.3, p. 493].

As a nontrivial consequence, we obtain that

EV k
d .Z0/ � EV k

d .Z/;

which describes in a quantitative way that the zero cell is stochastically larger than
the typical cell. This and a more general statement are provided in [451, Theorems
10.4.2 and 10.4.3]. Relation (7.12) obviously implies that

P.Z.k/ 2 �/ D lim
r!1

E
P

K2X.k/ 1.K � c.K/ 2 �/1.K � Br.o//

E
P

K2X.k/ 1.K � Br.o//
:

In view of (7.13), we get

P.Z0 � c.Z0/ 2 �/ D E Œ1.Z � c.Z/ 2 �/Vd .Z/

EVd .Z/

:

If we apply [451, Theorem 4.1.3] to the numerator and to the denominator with
the translation invariant functionals '1.K/ D 1.K � c.K/ 2 �/Vd .K/ and resp.
'2.K/ D Vd .K/, then we obtain

P.Z0 � c.Z0/ 2 �/ D lim
r!1

E
P

K2X 1.K � c.K/ 2 �/1.K � Br.o//Vd.K/

E
P

K2X 1.K � Br.o//Vd.K/
:

This discussion also suggests to introduce a volume-weighted typical k-face Z.k/
0 in

such a way that

P.Z.k/
0 � c.Z

.k/
0 / 2 �/ D lim

r!1
E
P

K2X.k/ 1.K � c.K/ 2 �/1.K � Br.o//Vk.K/

E
P

K2X.k/ 1.K � Br.o//Vk.K/
:

This can indeed be justified, and an extension of (7.13) for k-faces can be obtained.
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There exist very few general relations between the intensities of the k-faces of a
stationary random tessellation. A quite general result is the Euler-type relation

dX
iD0
.�1/i�.i/ D 0:

A more detailed discussion of these random polytopes by means of Palm theory
is provided in the recent contributions by Baumstark and Last [59, 60], Schneider
[442, 448] and in [261–263].

7.2.1 Hyperplane Tessellations

A prominent example of a tessellation is generated by a random system of
hyperplanes. Let X be a hyperplane process, that is a point process in G.Rd / which
is concentrated on the set H of hyperplanes in R

d . It can be written in the form

X D
X
H2X

ıH D
X
i�1

ıHi :

The intensity measure � D EX is again assumed to be a locally finite measure
on H. If X is stationary, then � is translation invariant, and therefore can be
decomposed in the form

� D �

Z
Sd�1

Z
R

1.H.u; t/ 2 �/ dt '.du/:

The measure ' can be chosen as an even probability measure on B.Sd�1/. We call
� the intensity and ' the direction distribution of X . If X is also isotropic, then �
is rotation invariant and therefore ' is normalized spherical Lebesgue measure.

For a stationary random hyperplane tessellation, a remarkable result by J. Mecke
[351] states that, for k D 0; : : : ; d ,

�.k/ D
 
d

k

!
�.0/; Efk.Z/ D 2d�k

 
d

k

!
:

In particular, there are no assumptions on the underlying direction distribution.
Despite the similarities between typical and zero cell, a corresponding result
for the zero cell only holds under a Poisson assumption. Moreover, there is an
essential dependence on the direction distribution ' of the given stationary Poisson
hyperplane tessellation X with intensity �. In order to express this dependence, we
introduce the associated zonoid ZX of X via its support function
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hZX .u/ D �

2

Z
Sd�1

jhu; vij '.dv/; u 2 R
d :

Clearly, X is isotropic iff ' is rotation invariant, which is tantamount to ZX being
a Euclidean ball. Recall that the radial function of a convex body K containing the
origin in its interior is 
.K; u/ D maxf� � 0 W �u 2 Kg, u 2 R

d . Hence we
have 
.K; �/ D hK�.�/�1. Let HŒo;ru
 denote the set of all hyperplanes hitting the
segment Œo; ru
. Using the definition of the zero cell, the Poisson assumption, the
decomposition of the intensity measure of X and the definition of the associated
zonoid, we get

P.
.Z0; u/ � r/ D 1 � expf�EX.HŒo;ru
/g D 1 � expf�2rhZX .u/g:

This finally leads to

EVd .Z0/ D 1

d

Z
Sd�1

E
.Z0; u/d Hd�1.du/

D 1

d

Z
Sd�1

d Š

2d
hZX .u/

�d Hd�1.du/

D 2�dd ŠVd .Z�
X/:

On the other hand, by the Slivnyak–Mecke formula [451, Corollary 3.2.3], we have

Ef0.Z0/ D 1

dŠ
E

X
.H1;:::;Hd /2Xd

¤

card.Z0 \H1 \ : : : \Hd/

D 1

dŠ

Z
H
: : :

Z
H

E card.Z0 \H1 \ : : :\Hd /�.dH1/ � � ��.dHd /

D �d

dŠ

Z
Sd�1

: : :

Z
Sd�1

Z 1

�1
: : :

Z 1

�1
E card.Z0 \H.u1; t1/\ : : :\H.ud ; td //

� dt1 : : : dtd '.du1/ � � �'.dud /;

where Xd
¤ denotes the set of ordered d -tuples of pairwise distinct hyperplanes

from the hyperplane process X . Note that the integral does not change its value
if we assume in addition that these hyperplanes have linearly independent normal
vectors. Next we carry out a transformation in the d -fold inner integral. For this
we can assume that u1; : : : ; ud are linearly independent. Then the transformation
T W .t1; : : : ; td / 7! x with fxg D H.u1; t1/\: : :\H.ud ; td / is injective with inverse
T �1.x/ D .hx; u1i; : : : ; hx; ud i/ and Jacobian JT �1.x/ D j det.u1; : : : ; ud /j.
Hence we get
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Ef0.Z0/ D �d

d Š
EVd .Z0/

Z
Sd�1

: : :

Z
Sd�1

j det.u1; : : : ; ud /j '.du1/ : : : '.ud /:

By Schneider and Weil [451, (14.35)], we also have a formula for the volume of a
zonoid in terms of its generating measure, i.e.

Vd .ZX/ D �d

d Š

Z
Sd�1

: : :

Z
Sd�1

j det.u1; : : : ; ud /j '.du1/ : : : '.ud /:

Altogether, we thus arrive at

Ef0.Z0/ D dŠ

2d
Vd .ZX/Vd .Z

�
X/:

Now we are in the position to apply to fundamental geometric inequalities. If Z is
an arbitrary centred zonoid, then the Blaschke–Santaló inequality yields that

Vd .Z/Vd .Z
�/ � �2d (7.14)

with equality iff Z is an ellipsoid (see [445, p. 421]). The Mahler inequality for
zonoids states that

4d

d Š
� Vd .Z/Vd .Z

�/ (7.15)

with equality iff Z is an affine cube (parallelepiped) (see [445, p. 427]). It should
be observed that the volume product Vd .K/Vd.K�/ for centred convex bodies is
a fundamental affine invariant that has been studied intensively. As an immediate
consequence of the preceding purely geometric inequalities, we obtain the next
theorem. Here a hyperplane mosaic X is called a parallel mosaic if there are
d linearly independent vectors such that for almost all realizations of X each
hyperplaneH of X is orthogonal to one of these vectors.

Theorem 7.8. Let X be a stationary Poisson hyperplane tessellation with intensity
� and direction distribution '. Then

2d � Ef0.Z0/ � 2�dd Š�2d ;

where equality holds on the left iff X is a parallel mosaic, and equality holds on the
right iff up to a linear transformation X is isotropic.

This uniqueness result has recently been strengthened in the form of two stability
results in [78]. There it was shown in a precise quantitative form that X must be
close to a parallel mosaic if Ef0.Z0/ is close to 2d . A similar stability statement has
been proved for the upper bound in Theorem 7.8. The crucial ingredients for these
improvements are stability versions of the geometric inequalities (7.14) and (7.15)
and a stability result for the cosine transform. Extensions of the uniqueness
assertions to lower-dimensional faces are explored by Schneider [449].
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Next we consider the shape of large cells in Poisson hyperplane tessellations.
One motivation is provided by a conjecture due to D.K. Kendall from the 1940s
asking whether the conditional law for the shape of the zero cell of a stationary
isotropic Poisson line process in the plane, given its area, converges weakly, as the
area converges to infinity, to the degenerate law concentrated at the circular shape.
While the statement of this conjecture is rather vague, we are interested in

1. Providing a rigorous framework for treating the problem.
2. Extensions to higher dimensions, with line processes replaced by hyperplane

processes.
3. Understanding the situation of non-isotropic hyperplane tessellations.
4. Explicit, quantitative estimates—not just limit results.
5. Asymptotic distributions of basic functionals such as Vd .Z0/.

Before we describe in more detail a solution of Kendall’s problem, we ask for
the shape of a convex body K of given volume such that the inclusion probability
P.K � Z0/ is maximal. First, we observe that

P.K � Z0/ D exp

�
�2�

Z
Sd�1

hK.u/ '.du/

	
:

In order to rewrite the right-hand side in geometric terms, we use Minkowski’s
theorem, which yields the existence of a centrally symmetric convex body BX 2
Kd

conv such that the surface area measure of BX equals �'; cf. [445, p. 392]. The
central symmetry ofBX follows, since ' is an even measure. The convex bodyBX is
called the Blaschke body ofX . Then up to the sign the expression in the exponential
function is just 2dV.BXŒd � 1
;K/, that is a multiple of a certain mixed volume
(cf. [445, (5.1.18) and (5.3.7)]). By Minkowski’s inequality (see [445, p. 317]), we
know that the latter can be estimated from below such that we obtain

P.K � Z0/ � exp
n
�2dV.BX/ d�1

d V .K/
1
d

o
:

Equality holds iff K and BX are homothetic. Hence the inclusion probability is
maximized by bodies having the same shape as the Blaschke body of X .

A similar conclusion is available for the typical cell. This was established in
[263] by using an idea of R. Miles. The crucial step in the proof consists in showing
that, for a convex body C 2 Kd

conv,

P.Z contains a translate of C/ D expf�2dV.BXŒd � 1
; C /g:

The need to compare the shapes of two convex bodies in a quantitative way has
led to different deviation measures. One version of such a measure is

#.K;B/ WD min

�
t

s
� 1 W sB � K C z � tB for some z 2 R

d ; s; t > 0

	
;
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for K;B 2 Kd
conv with nonempty interiors and o 2 Int.B/, another one is the

Banach–Mazur distance for centrally symmetric convex bodies or norms (cf. [206,
p. 207]. Clearly, we have #.K;B/ D 0 iff K;B are homothetic.

The following theorem provides a generalized resolution of Kendall’s conjecture,
which was obtained in [256].

Theorem 7.9. Let X be a stationary Poisson hyperplane tessellation with intensity
� and Blaschke body BX . Then there are positive constants c0 D c0.BX/ and c"
such that the following is true: If " 2 .0; 1/ and a � 1, then

P.#.Z0; BX/ � " j Vd .Z0/ � a/ � c" � expf�c0"dC1a
1
d �g:

The preceding result does not only yield a limit result but provides explicit
estimates for fixed parameters � and a. The conditional probability is defined in
an elementary way. But it should be observed that the probability of the event
Vd .Z0/ > a is decreasing exponentially fast as a ! 1. As a simple consequence
we deduce that

lim
a!1 P.#.Z0; BX/ � " j Vd .Z0/ � a/ D 0:

To state a weak convergence result, we introduce the factor space S WD Kd
conv= 	,

whereK 	 L means thatK and L are homothetic convex bodies. Note that 	 is an
equivalence relation. Hence, if we define the classes ŒK
 WD fL 2 Kd

conv W K 	 Lg,
K 2 Kd

conv, the set S of all such classes then yields a decomposition of Kd
conv. Let

sH W Kd
conv ! S, K 7! ŒK
, denote the canonical projection. Then, as a ! 1, we

have
P.sH .Z0/ 2 � j Vd .Z0/ � a/ ! ısH .BX /;

in the sense of the weak convergence of measures. Further details are provided in
[256, p. 1144] and a more general framework is depicted in [259, Sect. 4].

For the proof of Theorem 7.9, one writes

P.#.Z0; BX/ � " j Vd .Z0/ � a/ D P.#.Z0; BX/ � "; Vd .Z0/ � a/

P.Vd.Z0/ � a/
:

The basic aim is to estimate the numerator from above and the denominator from
below. This is easy for the denominator, but it turns out that the estimation of the
numerator requires first a more general estimate for

P.#.Z0; BX/ � "; Vd .Z0/ 2 Œa; a.1C h/
/

for a (sufficiently small) h > 0. Hence, a corresponding more general expression
has to be treated in the denominator as well. On the geometric side, this analysis
uses stability results for Minkowski’s inequality and results on the approximation of
a convex body by polytopes having few vertices.
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A modification of the proof for Theorem 7.9 also leads to the following result,
which generalizes a result by Goldman [197] who treated the two-dimensional and
isotropic case by completely different methods.

Theorem 7.10. Under the preceding assumptions, we have

lim
a!1 a� 1

d log P.Vd .Z0/ � a/ D �2dVd .BX/ d�1
d �:

The above results have been generalized subsequently in an axiomatic frame-
work. Here “axiomatic” means that the functionals and distances involved in the
statement of results can be chosen quite generally and are subject only to certain
natural requirements (axioms) as indicated below. In particular, the following
directions have been explored in [259]:

1. Instead of the volume functional, quite general size functionals have been
considered. These include the intrinsic volumes, the inradius, the thickness,
and the minimal width, as particular examples. The class of admissible size
functionals is only restricted by a couple of natural conditions such as continuity,
homogeneity and monotonicity.

2. Along with more general size functionals various deviation measures turn out to
be useful which measure the deviation of shapes. Again an axiomatic treatment
is possible which admits a general class of deviation measures to be considered.
In particular, these deviation measures should be continuous, nonnegative,
homogeneous of degree zero and they should allow to identify certain extremal
shapes.

3. Abstract isoperimetric inequalities and corresponding stability results are con-
sidered in this general context.

4. The analysis can be extended to not necessarily stationary Poisson hyperplane
processes. Thus Poisson–Voronoi tessellations can be studied as well; see [255,
259]. Poisson–Delaunay tessellations can be treated more directly, but also in a
very general framework (see [257, 258]).

5. In the same spirit, results for the typical cell are obtained in [256, 260].

Very recently, results for lower-dimensional typical faces have been established.
We describe the framework and selected results in Sect. 7.2.3.

7.2.2 Poisson–Voronoi Mosaics

In this subsection, we briefly introduce Voronoi tessellations which are induced by
a Poisson point process and discuss Kendall’s problem in this framework. For this
purpose, we adjust our notation and denote by eX a stationary Poisson point process
in R

d with intensity �. The induced random Voronoi tessellation X WD V.eX/ WD
fC.x j eX/ W x 2 eXg is called Poisson–Voronoi tessellation, compare Sect. 5.1.3.1
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Fig. 7.4 Realization of a three-dimensional Poisson–Voronoi tessellation (Courtesy of Claudia
Redenbach)

and Definition 6.5. See Fig. 7.4 for a realization in R
3. Here C.x j eX/ is the cell

with nucleus x. As before, the process of k-faces of V.eX/ is denoted byX.k/. SinceeX is stationary, so are X.k/, k D 0; : : : ; d . The intensity of X.k/ is denoted by �.k/.
Let B � R

d be a Borel set with volume 1. Then the distribution of the typical
cell Z of X is given by

P.Z 2 �/ D 1

�
� E
X
x2eX

1.C.x j eX/ � x 2 �/1.x 2 B/:

Slivnyak’s theorem shows thatZ
dDC.o j eX [ fog/, and thereforeZ

dDZ0.Y /, where
Y is the hyperplane process defined by

Y WD ˚
H
�kxk�1x; 2�1kxk� W x 2 eX n fog� :

The intensity measure of Y is then given by

EY.�/ D 2d�

Z
Sd�1

Z 1

0

1.H.u; t/ 2 �/td�1 dt Hd�1.du/I (7.16)

see, for instance, [255].

Exercise 7.10. Derive the representation (7.16) of the intensity measure of the non-
stationary Poisson hyperplane process Y .

To estimate the size of the typical cell Z of X , we use the intrinsic volumes
V1; : : : ; Vd or the centred inradius Rm. For K 2 Kd

conv with o 2 K , the latter is
defined by Rm.K/ WD maxfr � 0 W Br.o/ � Kg. The centred circumradius RM is
defined similarly by RM.K/ WD minfr � 0 W K � Br.o/g. Now the deviation from
spherical shape can be measured in terms of

# WD RM �Rm
RM CRm

:
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The following result for Poisson–Voronoi tessellations (see [255]) is in the spirit of
Kendall’s problem.

Theorem 7.11. Let X be the Poisson–Voronoi tessellation derived from a station-
ary Poisson point process eX with intensity � in R

d . Let k 2 f1; : : : ; d g. Then there
is a constant c0 D c0.d/ such that the following is true: If " 2 .0; 1/ and a � 1,
then

P.#.Z/ � " j Vk.Z/ � a/ � c � exp
˚�c0".dC3/=2ad=k�

�
and

P.#.Z/ � " j Rm.Z/ � a/ � c � exp
˚�c0".dC1/=2ad�

�
;

where c D c.d; "/.

Further results for Poisson hyperplane tessellations and the functionals consid-
ered in Theorem 7.11 are contained in [255]. Related work is due to Kovalenko
[312], who considered the two-dimensional case and the area functional, Calka
[107], Calka and Schreiber [109, 110] and Baumstark and Last [59]. Since a
generalization of the result by Calka will be given subsequently, we provide the
result from [107] for comparison.

Theorem 7.12. For a planar Poisson–Voronoi tessellation derived from a Poisson
point process in the plane of intensity 1, there are constants c0; c > 0 such that, for
0 < ˛ < 1=3,

P .RM .Z/ � r C r�˛ j Rm.Z/ D r/ � c � expf�c0r.1�3˛/=2g;

as r ! 1.

It is easy to see that P.Rm.Z/ � r/ D expf�4�r2g. For the conditional
probability P.RM.Z/ � r C s j Rm.Z/ D r/ Calka obtains a series representation.
The derivation is based on probabilities for the coverage of a circle by random
independent and identically distributed arcs. However, the method seems to be
restricted to the planar case.

7.2.3 The Shape of Typical Faces

In this section, we describe some of the recent results which were obtained
for the distribution of typical faces of Poisson hyperplane and Poisson–Voronoi
tessellations. Since various distributional properties of the k-faces of a tessella-
tion depend on the direction of the faces, we define the direction D.F / of a
k-dimensional convex set F as the linear subspace parallel to it. Moreover, we write
˛dk for the Grassmann space of k-dimensional linear subspace of Rd . Speaking of
distributional properties it should be kept in mind that faces of a given direction
may appear with probability zero. Therefore we introduce the condition that the
direction is in a small neighbourhood of a fixed direction, or we consider the
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Fig. 7.5 Realization of a three-dimensional Poisson hyperplane tessellation (Courtesy of Claudia
Redenbach)

regular conditional probability distribution of the (weighted) typical k-face under
the hypothesis that its direction is a given subspace.

We start with a stationary Poisson hyperplane process X with intensity � and
direction distribution '. A realization in R

3 showing the edges and faces of the
induced cells of the hyperplane process is provided in Fig. 7.5.

The intersection process of X of order d � k is a stationary process of k-flats
obtained by intersecting any d�k of the hyperplanes ofX for which the intersection
is k-dimensional. Let Qd�k be the directional distribution of this intersection
process. It is known (cf. [451, Sect. 4.4]) that

�d�kQd�k.A/ D �d�k

.d � k/Š

Z
.Sd�1/d�k

1.u?
1 \ : : : \ u?

d�k 2 A/

�rd�k.u1; : : : ; ud�k/ 'd�k.d.u1; : : : ; ud�k//;

where A 2 B.˛dk /, u? is the orthogonal complement of u and rd�k.u1; : : : ; ud�k/
is the volume of the parallelepiped spanned by u1; : : : ; ud�k . Then the distribution
of the volume-weighted typical k-face of X satisfies

P.Z.k/
0 2 A/ D

Z
˛dk

P.Z0 \ L 2 A/Qd�k.dL/; A 2 B.˛dk /; (7.17)

which was established by Schneider [448]. Thus, if L is a random k-subspace,
independent of X , with distribution Qd�k , then Z.k/

0 and Z0 \ L are equal in
distribution.

For a fixed k-dimensional linear subspaceL, we also consider the section process
X \ L, which is obtained by intersecting all hyperplanes of X with the fixed
subspace L. Then X \ L is a stationary Poisson process of .k � 1/-flats in L
(hence hyperplanes in L); see [451, Sect. 4.4]. It should also be observed that in
the preceding formula (7.17), Z0 \ L can be replaced by Z0.X \ L/, where the
latter denotes the zero cell of the hyperplane process X \ L with respect to L.
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The important relation (7.17) was recently complemented in [263] by a corre-
sponding relation for the distribution of the typical k-face of X ,

P.Z.k/ 2 A/ D
Z
˛dk

P.Z.X \ L/ 2 A/Rd�k.dL/; (7.18)

where the directional distribution Rd�k of Z.k/ is given by

Rd�k.A/ D Vd�k.ZX/�
d

k

�
Vd .ZX/

Z
A

Vk.ZX jL/Qd�k.dL/

and ZX is the zonoid associated with the hyperplane process X and defined by

hZX .u/ D �

2

Z
Sd�1

jhu; vij '.dv/; u 2 S
d�1:

The directional distributions ofZ.k/ andZ.k/
0 are mutually absolutely continuous

measures. From these results, one can deduce that the regular conditional distribu-
tions of the volume-weighted typical face Z.k/

0 and resp. of the typical face Z.k/.
given the direction of that typical face is equal to L, can be expressed in terms of
the section process X \ L, that is

P.Z.k/
0 2 A j D.Z.k/

0 / D L/ D P.Z0.X \L/ 2 A/;
P.Z.k/ 2 A j D.Z.k// D L/ D P.Z.X \L/ 2 A/;

for Qd�k-almost all L 2 ˛dk . Here Z.X \L/ denotes the typical cell of the Poisson
hyperplane process X \ L in L.

Exercise 7.11. Deduce the preceding two relations from (7.17) and (7.18).

In order to extend some of the preceding results to typical k-faces of X , we
consider the Blaschke body BX\L of the section process X \ L, where L 2 ˛dk
is chosen from the support of Qd�k , i.e. L 2 supp.Qd�k/. The Blaschke body can
also be defined as the origin symmetric convex body in L whose area measure with
respect to L is given by

SL.BX\L; !/ D �

Z
Sd�1nL?

1
�

ujL
kujLk 2 !

�
kujLk'.du/;

for Borel subsets ! � S
d�1 \ L.

In the following results taken from [261,263], the Blaschke body BX\L controls
the shape of large (weighted) typical k-faces, under the condition that L is the
direction of the face.
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Theorem 7.13. Let X be a stationary Poisson hyperplane process with intensity �
and direction distribution '. Let k 2 f1; : : : ; d � 1g. For each L 2 ˛dk , let CL �
L be a convex body with Vk.CL/ D 1. Then, for Qd�k-almost all L 2 ˛dk , the
conditional probability that the typical k-faceZ.k/ contains a translate ofCL, under
the hypothesis that D.Z.k// D L, is at most

expf�2kVk.BX\L/1�
1
k g; (7.19)

and it is equal to this value iff CL is homothetic to BX\L.

For a > 0 and Qd�k-almost all L 2 ˛dk , let

P.Z.k/
0 2 � j Vk.Z.k/

0 / � a; D.Z
.k/
0 / D L/

denote the regular conditional probability distribution of Z.k/
0 under the hypothesis

that Vk.Z
.k/
0 / � a and D.Z.k/

0 / D L.

Theorem 7.14. Let X be a stationary Poisson hyperplane process with intensity �
and direction distribution '. Let " 2 .0; 1/ and a � 1. There exist positive constants
c0 D c0.'/ and c D c.'; "/ such that

P.#.Z.k/
0 ; BX\L/ � " j Vk.Z.k/

0 / � a; D.Z
.k/
0 / D L/ � c � expf�c0"kC1a1=kg;

for Qd�k-almost all L 2 ˛dk .

The conditional probability in the next theorem, which is taken from [261], is
defined in an elementary way.

Theorem 7.15. Let X be a stationary Poisson hyperplane process with intensity
� and direction distribution '. Let " 2 .0; 1/ and a � 1. Let L 2 ˛dk be in the
support of Qd�k. There exist a constant c > 0 and a neighbourhood N.L/ of L,
both depending only on ' and ", and a constant c0 D c0.'/ > 0 such that

P.#.Z.k/
0 ; BX\L/ � " j Vk.Z.k/

0 / � a; D.Z
.k/
0 / 2 N.L// � c � expf�c0"kC1a1=kg:

The proof requires, in particular, to estimate the deviation of the Blaschke
bodies BX\L and BX\U for different k-dimensional subspaces L and U of R

d .
One ingredient of the proof is a geometric stability estimate for Minkowski’s
uniqueness theorem which had been provided previously. Roughly speaking, for
a given even and non-degenerate Borel measure on the unit sphere there exists
a unique symmetric convex body having this measure as its area measure. In a
stability version of this result it is shown in a quantitative form that the Hausdorff
distance of two symmetric convex bodies must be small if the Prohorov distance of
the associated area measures is small. We refer to [261] for a detailed argument and
further references.
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Finally, we turn again to Poisson–Voronoi tessellations and state an exten-
sion of a result by Calka [107] mentioned before, to general dimensions and
typical k-faces. Let eX be again a stationary Poisson point process in R

d with
intensity �. The associated Poisson–Voronoi tessellation is X D V.eX/. In
order to explore the asymptotic behaviour of the typical k-face Z.k/ of X ,
some preparations are needed. As a first step, we introduce and describe the k-
faces F of an admissible point set � � R

d , and then the generalized nucleus
and the k-co-radius of F with respect to �. In a second step, we start with a
Poisson point process (equivalently, the resulting Poisson–Voronoi tessellation)
and consider the joint distribution of the typical k-face Z.k/ and the typical
k-co-radius R.k/ of eX with respect to a suitable centre function. For all this we
need some more notation.

Let � � R
d be a locally finite set in general position (admissible set) whose

convex hull equals the whole space. By ‘general position’ we mean that any p C 1

points of � are not contained in a .p � 1/-dimensional plane, for p D 1; : : : ; d , and
that no d C 2 points of � lie on some sphere.

Exercise 7.12. Show that the realizations of a stationary Poisson point process
almost surely are admissible sets.

Let k 2 f0; : : : ; d g, and choose d � k C 1 points x0; : : : ; xd�k 2 �. Then,

1. let Bd�k.x0; : : : ; xd�k/ be the unique .d � k/-ball which contains x0; : : : ; xd�k
in its boundary;

2. let z.x0; : : : ; xd�k/ denote the centre of this ball;
3. let E.x0; : : : ; xd�k/ be the k-flat through z.x0; : : : ; xd�k/ which is orthogonal to

the linear subspace D.Bd�k.x0; : : : ; xd�k// parallel to Bd�k.x0; : : : ; xd�k/.

The set

S.x0; : : : ; xd�k I �/ WD fy 2 E.x0; : : : ; xd�k/ W Int.Bky�x0k.y// \ � D ;g

is nonempty iff F D S.x0; : : : ; xd�k I �/ is a k-face of the Voronoi mosaic derived
from �. Moreover, each k-face of the Voronoi mosaic is obtained in this way.
We call z.x0; : : : ; xd�k/ DW z.F; �/ the generalized nucleus of F , the radius of
Bd�k.x0; : : : ; xd�k/ is called the co-radiusR.F; �/ of F . The co-radius of the face
F is equal to the distance of the affine hull of F from the nuclei of the neighbouring
cells of F . The latter are just the cells whose intersection is equal to F . It should
be observed that the generalized nucleus of a k-face need not be contained in that
face if k < d ; see Fig. 7.6. This fact is the reason why the investigation of lower-
dimensional faces is much more involved than the case k D d of cells and requires
new ideas.

Now the typical k-face and the typical k-co-radius of the Voronoi tessellation
V.eX/, associated with a stationary Poisson point process eX in R

d with intensity �,
can be introduced by means of Palm distributions. We do not give the details of
the construction here, but just describe the result. For the joint distribution of the
typical k-faceZ.k/ and of the typical k-co-radiusR.k/ of the given Poisson–Voronoi
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x0

x1z

F

Fig. 7.6 Example for d D 2 and k D 1: the generalized nucleus z D z.x0; x1/ of a face does not
necessarily lie in that face. The midpoint z of the segment Œx0; x1
 does not lie on the associated
face F , since the size of F is limited by neighbouring edges

tessellation X , both with respect to the generalized nucleus as centre function, one
thus obtains that

P.Z.k/ 2 A; R.k/ 2 I /

D 1

�.k/
E
X

F2X.k/
1A.F � z.F; eX// 1I .R.F; eX// 1B.z.F; eX//;

where A 2 B.Kd
conv/, I 2 B.Œ0;1// and B 2 B.Rd / with �d .B/ D 1. This

was rigorously derived in [262, Sect. 2], but the relationship thus obtained also
describes the intuitive meaning of both, typical k-face and typical k-co-radius, with
respect to the generalized nucleus as centre function. Applying integral geometric
transformations of Blaschke–Petkantschin type (in fact a combination of the affine
Blaschke–Petkantschin formula and an integral formula involving spheres) and the
Slivnyak–Mecke theorem, we can describe the joint distribution by

P.Z.k/ 2 A; R.k/ 2 I /

D C.d; k/
�d�kC1

�.k/

Z
I

Z
˛dd�k

P.Z.L; r I eX/ 2 A/�d�k.dL/ rd.d�k/�1 dr;

where

C.d; k/ WD 1

.d � k C 1/Š
!d�k
dC1!kC1

�.d�k/d�2
�.d�kC1/.d�1/

and Z.L; r I �/ is defined by

Z.L; r I �/ D
�
y 2 L? W Bop

kyk2Cr2.y/ \ � D ;
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for any admissible set �; here Bo
t .y/ denotes an open ball centred at y with radius t

and �d�k is the Haar probability measure on ˛dd�k . It can be shown that Z.L; r I eX/
is almost surely a random polytope or the empty set. This explicit description of
the joint distribution is a crucial ingredient in the proof of the following result from
[262].

Theorem 7.16. Let eX be a stationary Poisson point process in R
d with intensity �.

Let r � 1, let k 2 f1; : : : ; d g, and choose ˛ with

0 < ˛ < 2d�k�1
kC1 ; so that ˇ WD d � .1C ˛/kC1

2
> 0:

Then there exist constants c1 D c1.d; �/ and c2 D c2.d/ such that

P.RM.Z.k// > r C r�˛ j Rm.Z.k// � r/ � c1 � expf�c2�rˇg:

Observe that the theorem implies that if rB.k/ � Z.k/, then

B.k/ � r�1Z.k/ � .1C r�1�˛/B.k/

with overwhelming probability, where B.k/ is a k-dimensional unit ball centred at
the origin o.

In the special case d D k D 2, we obtain a variant of the result by Calka, since
then 0 < ˛ < 1=3 and ˇ D .1 � 3˛/=2.



Chapter 8
Limit Theorems in Discrete Stochastic Geometry

Joseph Yukich

Abstract We survey two general methods for establishing limit theorems for
functionals in discrete stochastic geometry. The functionals are linear statistics
with the general representation

P
x2X �.x;X /, where X is finite and where the

interactions of x with respect to X , given by �.x;X /, are spatially correlated.
We focus on subadditive methods and stabilization methods as a way to obtain
weak laws of large numbers, variance asymptotics, and central limit theorems for
normalized and re-scaled versions of

Pn
iD1 �.�i ; f�j gnjD1/, where �j , j � 1, are

i.i.d. random variables. The general theory is applied to deduce the limit theory for
functionals arising in Euclidean combinatorial optimization, convex hulls of i.i.d.
samples, random sequential packing, and dimension estimation.

8.1 Introduction

This overview surveys two general methods for establishing limit theorems, includ-
ing weak laws of large numbers, variance asymptotics, and central limit theorems,
for functionals of large random geometric structures. By geometric structures, we
mean for example networks arising in computational geometry, graphs arising in
Euclidean optimization problems, models for random sequential packing, germ-
grain models, and the convex hull of high density point sets. Such diverse structures
share only the common feature that they are defined in terms of random points
belonging to Euclidean space R

d . The points are often the realization of i.i.d.
random variables, but they could also be the realization of Poisson point processes
or even Gibbs point processes. There is scope here for generalization to functionals
of point processes in more general spaces, including manifolds and general metric
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spaces, but for ease of exposition we shall usually restrict attention to point
processes in R

d . As such, this introductory overview makes few demands involving
prior familiarity with the literature.

Our goals are to provide an accessible survey of asymptotic methods involving
(a) subadditivity and (b) stabilization and to illustrate the applicability of these
methods to problems in discrete stochastic geometry. The treatment of subadditivity
parallels that in [524].

8.1.1 Functionals of Interest

Functionals of geometric structures are often formulated as linear statistics on finite
point sets X of Rd , that is to say consist of sums represented as

H.X / WD H�.X / WD
X
x2X

�.x;X /; (8.1)

where the function �, defined on all pairs .x;X /, x 2 X , represents the interaction
of x with respect to input X .

The focus of this chapter is to develop the large n limit theory for the normalized
sums

n�1H�.f�i gniD1/; (8.2)

where �i ; i � 1; are i.i.d. with values in Œ0; 1
d . We seek mean and variance
asymptotics for (8.2) as well as central limit theorems for n�1=2.H�.f�i gniD1/ �
EH�.f�igniD1//, as n ! 1. In nearly all problems of interest, the values of �.x;X /
and �.y;X /, x ¤ y, are not unrelated but, loosely speaking, become more related
as the Euclidean distance kx � yk becomes smaller. This “spatial dependency” is
the chief source of difficulty when developing the limit theory for H� on random
point sets.

Typical questions motivating this survey, which may be framed in terms of the
linear statistics (8.1), include the following:

1. Given i.i.d. points �1; : : : :; �n in the unit cube Œ0; 1
d , what is the asymptotic
length of the shortest tour through �1; : : : :; �n? To see that this question fits into
the framework of (8.1), it suffices to let �.x;X / be one half the sum of the lengths
of edges incident to x in the shortest tour on X . H�.X / is the length of the
shortest tour through X .

2. Given i.i.d. points �1; : : : :�n in the unit volume d -dimensional ball, what is the
asymptotic distribution of the number of k-dimensional faces, k 2 f0; 1; : : : ;
d �1g; in the random polytope given by the convex hull of �1; : : : :; �n? To fit
this question into the framework of (8.1), we let �k.x;X / be zero if x is not a
vertex in the convex hull of X and otherwise we let it be the product of .kC1/�1
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and the number of k-dimensional faces containing x. H�k .X / is the number of
k-faces in the convex hull of X .

3. Open balls B1; : : : ; Bn of volume n�1 arrive sequentially and uniformly at
random in Œ0; 1
d . The first ball B1 is packed, and recursively for i D 2; 3; : : :,
the i -th ball Bi is packed iff Bi does not overlap any ball in B1; : : : ; Bi�1 which
has already been packed. If not packed, the i -th ball is discarded. The process
continues until no more balls can be packed. As n ! 1, what is the asymptotic
distribution of the number of balls which are packed in Œ0; 1
d ? To fit this into
the set-up of (8.1), we let �.x;X / be equal to one or zero depending on whether
the ball with center at x 2 X is accepted or not. H�.X / is the total number of
accepted balls.

When X is the realization of a growing point set of random variables, the large
scale asymptotic analysis of the sums (8.1) is sometimes handled by M -dependent
methods, ergodic theory, or mixing methods; see for example Chap. 10. However,
these classical methods, when applicable, may not give explicit asymptotics in terms
of the underlying interaction and point densities, they may not yield second order
results, or they may not easily yield rates of convergence. Our goal is to provide an
abridged treatment of two alternate methods suited to the asymptotic theory of the
sums (a) subadditivity and stabilization.

Subadditive methods lean heavily on the self-similarity of the unit cube, but to
obtain distributional results, variance asymptotics, and explicit limiting constants
in laws of large numbers, one needs tools going beyond subadditivity. When the
spatial dependency may be localized, in a sense to be made precise, then this
localization yields distributional and second order results, and it also shows that the
large scale macroscopic behaviour of H� on random point sets, for example laws
of large numbers and central limit theorems, is governed by the local interactions
involving �.

The subadditive approach, described in detail in the monographs [482, 524],
yields a.s. laws of large numbers for problems in Euclidean combinatorial opti-
mization, including the length of minimal spanning trees, minimal matchings,
and shortest tours on random point sets. Formal definitions of these archetypical
problems are given below. Subadditive methods also yield the a.s. limit theory of
problems in computational geometry, including the total edge length of nearest
neighbour graphs, the Voronoi and Delaunay graphs, the sphere of influence graph,
as well as graphs arising in minimal triangulations and the k-means problem. The
approach based on stabilization, originating in Penrose and Yukich [398] and further
developed in [57, 395, 396, 400, 402], is useful in proving laws of large numbers,
central limit theorems, and variance asymptotics for many of these functionals;
as such it provides closed form expressions for the limiting constants arising in
the mean and variance asymptotics. This approach has been used to study linear
statistics arising in random packing [400], convex hulls [459], ballistic deposition
models [57, 400], quantization [460, 525], loss networks [460], high-dimensional
spacings [56], distributed inference in random networks [12], and geometric graphs
in Euclidean combinatorial optimization [398, 399].
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8.1.2 Examples

Letting input X WD fx1; : : : ; xng be a finite point set in R
d , functionals and graphs

of interest include:

1. Traveling salesman functional (TSP). A closed tour on X or closed Hamiltonian
tour is a closed path traversing each vertex in X exactly once. Let TSP.X / be the
length of the shortest closed tour T on X . Thus

TSP.X / WD min
T

X
e2T

jej; (8.3)

where the minimum is over all tours T on X and where jej denotes the Euclidean
edge length of the edge e. Thus,

TSP.X / WD min
	

(
kx	.n/ � x	.1/k C

n�1X
iD1

kx	.i/ � x	.iC1/k
)
;

where the minimum is taken over all permutations 	 of the integers 1; 2; : : : ; n
and where k � k denotes the Euclidean norm.

2. Minimum spanning tree (MST). Let MST.X / be the length of the shortest
spanning tree on X , namely

MST.X / WD min
T

X
e2T

jej; (8.4)

where the minimum is over all spanning trees T on X .
3. Minimal matching (MM). The minimal matching on X has length given by

MM.X / WD min
	

n=2X
iD1

kx	.2i�1/ � x	.2i/k; (8.5)

where the minimum is over all permutations of the integers 1; 2; : : : ; n. If n has
odd parity, then the minimal matching on X is the minimum of the minimal
matchings on the n distinct subsets of X of size n � 1.

4. k-nearest neighbours graph. Let k 2 N. The k-nearest neighbours (undirected)
graph on X , here denoted GN .k;X /, is the graph with vertex set X obtained by
including fx; yg as an edge whenever y is one of the k nearest neighbours of
x and/or x is one of the k nearest neighbours of y. The k-nearest neighbours

(directed) graph on X , denoted
�!
GN .k;X /, is the graph with vertex set X
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obtained by placing an edge between each point and its k nearest neighbours.
Let NN.k;X / denote the total edge length of GN.k;X /, i.e.,

NN.k;X / WD
X

e2GN .k;X /

jej; (8.6)

with a similar definition for the total edge length of
�!
GN.k;X /.

5. Steiner minimal spanning tree. Consider the problem of finding the graph of
shortest length which connects the vertices of X . Such a graph is a tree, known
as the Steiner minimal spanning tree, and it may include vertices other than those
in X . If not, the graph coincides with the minimal spanning tree graph. The total
edge length of the Steiner minimal spanning tree on X is

ST.X / WD min
S

X
e2S

jej; (8.7)

where the minimum ranges over all connected graphs S on X .
6. Minimal semi-matching. A semi-matching on X is a graph in which all vertices

have degree 2, with the understanding that an isolated edge between two vertices
represents two copies of that edge. The graph thus contains tours with an
odd number of edges as well as isolated edges. The minimal semi-matching
functional on X is

SM.X / WD min
SM

X
e2SM

jej; (8.8)

where the minimum ranges over all semi-matchings SM on X .
7. k-TSP functional. Fix k 2 N. Let C be a collection of k sub-tours on points of

X , each sub-tour containing a distinguished shared vertex x0 and such that each
x 2 X belongs to exactly one sub-tour. T .kI C;X / is the sum of the combined
lengths of the k sub-tours in C. The k-TSP functional is the infimum

T .kI X / WD inf
C
T .kI C;X /: (8.9)

Power-weighted edge versions of these functionals are found in [524]. For
example, MST .p/.X / is the length of the shortest spanning tree on X with pth
power weighted edges, namely

MST.p/.X / WD min
T

X
e2T

jejp; (8.10)

where the minimum is over all spanning trees T on X .
To allow for power weighted edges, we henceforth let the interaction � depend

on a parameter p 2 .0;1/ and we will write �.�; �/ WD �p.�; �/. We henceforth work
in this context, but to lighten the notation we shall suppress mention of p.
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8.2 Subadditivity

This section gives an introductory account of asymptotic methods based on the
subadditivity of the functionals H� defined at (8.1). It culminates with a general
umbrella theorem providing an a.s. law of large numbers forH� .

8.2.1 Subadditive Functionals

Let xn 2 R; n � 1; satisfy the “subadditive inequality”

xmCn � xm C xn for all m; n 2 N: (8.11)

Subadditive sequences are nearly additive in the sense that they satisfy the subaddi-
tive limit theorem, namely limn!1 xn=n D ˛ where ˛ WD inffxm=m W m � 1g 2
Œ�1;1/: This classic result, proved in Hille [245], may be viewed as a limit result
about subadditive functions indexed by intervals.

For certain choices of the interaction �, the functionalsH� defined at (8.1) satisfy
geometric subadditivity over rectangles and, as we will see, consequently satisfy a
subadditive limit theorem analogous to the classic one just mentioned.

Let R WD R.d/ denote the collection of d -dimensional rectangles in R
d . Recall

that �.�; �/ WD �p.�; �/ depends on the parameter p. WriteH�.X ; R/ forH�.X \R/,
R 2 R. Say that H� is geometrically subadditive, or simply subadditive, if there
is a constant c1 WD c1.p/ < 1 such that for all R 2 R, all partitions of R into
rectangles R1 and R2, and all finite point sets X we have

H�.X ; R/ � H�.X ; R1/CH�.X ; R2/C c1.diam.R//p: (8.12)

Unlike scalar subadditivity (8.11), the relation (8.12) carries an error term.
Classic optimization problems as well as certain functionals of Euclidean graphs,

satisfy geometric subadditivity (8.12). For example, the length of the minimal
spanning tree defined at (8.4) satisfies (8.12) when p is set to 1, which may be
seen as follows. Put MST.X ; R/ to be the length of the minimal spanning tree on
X \ R. Given a finite set X and a rectangle R WD R1 [ R2, let Ti denote the
minimal spanning tree on X \ Ri , 1 � i � 2. Tie together the two spanning trees
T1 and T2 with an edge having a length bounded by the sum of the diameters of the
rectangles R1 and R2. Performing this operation generates a feasible spanning tree
on X at a total cost bounded by MST.X ; R1/C MST.X ; R2/ C diam.R/. Putting
p D 1, (8.12) follows by minimality.

Exercise 8.1. Using edge deletion and insertion techniques, show that the TSP
functional (8.3), minimal matching functional (8.5), and nearest neighbour
functionals (8.6) satisfy geometric subadditivity (8.12) with p D 1.



8 Limit Theorems in Discrete Stochastic Geometry 245

8.2.2 Superadditive Functionals

If geometric functionalsH� were to simultaneously satisfy a superadditive relation
analogous to (8.12), then the resulting “near additivity” of H� would lead directly
to laws of large numbers. This is too much to expect. On the other hand, many
geometric functionalsH�.�; R/ admit a “dual” version—one which essentially treats
the boundary of the rectangleR as a single point, that is to say edges on the boundary
@R have zero length or “zero cost”. This boundary version, introduced in [415] and
used in [416, 417] and here denoted H�

B.�; R/; closely approximates H�.�; R/ in a
sense to be made precise (see (8.18) below) and is superadditive without any error
term. More exactly, the boundary versionH�

B.�; R/ satisfies

H
�
B.X ; R/ � H

�
B.X \ R1;R1/CH

�
B.X \R2;R2/: (8.13)

Boundary functionals are defined on a case-by-case basis. For example, the
boundary minimal spanning tree functional is defined as follows. For all rectangles
R 2 R and finite sets X � R put

MSTB.X ; R/ WD min

 
MST.X ; R/; inf

X
i

MST.Xi [ fai g/
!
;

where the infimum ranges over all partitions .Xi /i�1 of X and all sequences of
points .ai /i�1 belonging to @R. When MSTB.X ; R/ ¤ MST.X ; R/ the graph
realizing the boundary functional MSTB.X ; R/ may be thought of as a collection
of small trees connected via the boundary @R into a single large tree, where the
connections on @R incur no cost. See Fig. 8.1. It is a simple matter to see that
the boundary MST functional satisfies subadditivity (8.12) with pD 1 and is also
superadditive (8.13). Later we will see that the boundary MST functional closely
approximates the standard MST functional.

Exercise 8.2. Show that the TSP (8.3), minimal matching (8.5), and nearest
neighbour functionals (8.6) have boundary versions which are superadditive (8.13).

8.2.3 Subadditive and Superadditive Euclidean Functionals

Recall that �.�; �/ WD �p.�; �/. The following conditions endow the functionalH�.�; �/
with a Euclidean structure:

H�.X ; R/ D H�.X C y;R C y/ (8.14)

for all y 2 R
d , R 2 R, X � R and
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Fig. 8.1 The boundary MST graph; edges on boundary have zero cost

H�.˛X ; ˛R/ D ˛pH�.X ; R/ (8.15)

for all ˛ > 0, R 2 R and X � R. By ˛B we understand the set f˛x; x 2 Bg
and by y C X we mean fy C x W x 2 X g. Conditions (8.14) and (8.15)
express the translation invariance and homogeneity of order p of H� , respectively.
Homogeneity (8.15) is satisfied whenever the interaction � is itself homogeneous of
order p, that is to say whenever

�.˛x; ˛X / D ˛p�.x;X /; ˛ > 0: (8.16)

Functionals satisfying translation invariance and homogeneity of order 1 include
the total edge length of graphs, including those defined at (8.3)–(8.9).

Exercise 8.3. Show that the TSP functional (8.3), MST functional (8.4), and
minimal matching functional (8.5) are homogeneous of order 1 and are thus
subadditive Euclidean functionals.

Definition 8.1. Let H�.;; R/D 0 for all R 2 R and suppose H� satisfies geomet-
ric subadditivity (8.12), translation invariance (8.14), and homogeneity of order
p (8.15). ThenH� is a subadditive Euclidean functional.

If a functional H�.X ; R/; .X ; R/ 2 N � R, is superadditive over rectangles
and has a Euclidean structure over N � R, where N is the collection of locally
finite point sets in R

d , then we say that H� is a superadditive Euclidean functional,
formally defined as follows:

Definition 8.2. Let H�.;; R/ D 0 for all R 2 R and suppose H� satisfies (8.14)
and (8.15). If H� satisfies

H�.X ; R/ � H�.X \ R1;R1/CH�.X \ R2;R2/; (8.17)

wheneverR 2 R is partitioned into rectanglesR1 andR2 thenH� is a superadditive
Euclidean functional.
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It may be shown that the functionals TSP, MST and MM are subadditive
Euclidean functionals and that they admit dual boundary versions which are
superadditive Euclidean functionals; see Chap. 2 of [524].

Pointwise Close Property

To be useful in establishing asymptotics, dual boundary functionals must closely
approximate the corresponding functional. The following closeness condition is
sufficient for these purposes. Recall that we suppress the dependence of � on p,
writing �.�; �/ WD �p.�; �/.
Definition 8.3. Say that H� WD H�p and the boundary version H�

B WD H
�p
B ; p 2

.0;1/; are pointwise close if for all finite subsets X � Œ0; 1
d we have

jH�.X ; Œ0; 1
d / �H�
B.X ; Œ0; 1
d /j D o

�
.card.X //.d�p/=d � : (8.18)

The TSP, MST, MM and nearest neighbour functionals all admit respective
boundary versions which are pointwise close in the sense of (8.18); see Lemma 3.7
of [524]. See [524] for description of other functionals having boundary versions
which are pointwise close in the sense of (8.18).

Growth Bounds

Iteration of geometric subadditivity (8.12) leads to growth bounds on subad-
ditive Euclidean functionals H� , namely for all p 2 .0; d/ there is a constant
c2 WD c2.�p; d/ such that for all rectangles R2 R and all X �R; X 2 N ; we have

H�.X ; R/ � c2.diam.R//p.card X /.d�p/=d : (8.19)

Smooth of Order p

Subadditivity (8.12) and growth bounds (8.19) by themselves do not provide enough
structure to yield the limit theory for Euclidean functionals; one also needs to control
the oscillations of these functionals as points are added or deleted. Some functionals,
such as TSP, necessarily increase with increasing argument size, whereas others,
such as MST, do not have this property. A useful continuity condition goes as
follows.

Definition 8.4. A Euclidean functionalH� WD H�p ; p 2 .0;1/; is smooth of order
p if there is a finite constant c3 WD c3.�p; d/ such that for all finite sets X1;X2 �
Œ0; 1
d we have

jH�.X1 [ X2/�H�.X1/j � c3.card.X2//
.d�p/=d : (8.20)
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8.2.4 Examples of Functionals Satisfying Smoothness (8.20)

1. Let TSP be as in (8.3). For all finite sets X1 and X2 � Œ0; 1
d we have

TSP.X1/ � TSP.X1 [ X2/ � TSP.X1/C TSP.X2/C cdiam.Œ0; 1
d /;

where the first inequality follows by monotonicity and the second by subadditiv-
ity (8.12). By (8.19) we have TSP.X2/ � c2

p
d.card X2/

.d�1/=d and since clearly
cdiam.Œ0; 1
d / � cd1=2.card.X2/

.d�1/=d , it follows that the TSP is smooth of
order 1.

2. Let MST be as in (8.4). Subadditivity (8.12) and the growth bounds (8.19) imply
that for all finite sets X1;X2 � Œ0; 1
d we have MST.X1 [ X2/ � MST.X1/ C
.c1

p
dCc2

p
d.card X2/

.d�1/=d � MST.X1/Cc.card X2/
.d�1/=d . It follows that

the MST is smooth of order 1 once we show the reverse inequality

MST.X1 [ X2/ � MST.X1/� c.card X2/
.d�1/=d : (8.21)

To show (8.21) let T denote the graph of the minimal spanning tree on X1 [ X2.
Remove the edges in T which contain a vertex in X2. Since each vertex has
bounded degree, say D, this generates a subgraph T1 � T which has at most
D � card X2 components. Choose one vertex from each component and form the
minimal spanning tree T2 on these vertices. By the growth bounds (8.19), the
edge length of T2 is bounded by c.D �card X2/

.d�1/=d . Since the union of the trees
T1 and T2 is a feasible spanning tree on X1, it follows that

MST.X1/ �
X

e2T1[T2

jej � MST.X1 [ X2/C c.D � card X2/
.d�1/=d :

Thus smoothness (8.20) holds for the MST functional.

It may be shown that a modification of the Steiner functional (8.7) is smooth of
order 1 (see Chap. 10 of [524]). Smoothness is a common property of geometric
functionals, as indicated in the next exercise.

Exercise 8.4. Show that the minimal matching functional MM defined at (8.5) is
smooth of order 1. Likewise, show that the semi-matching, nearest neighbour, and
k-TSP functionals are smooth of order 1. Hints; see Chap. 3.3 of [524]),
Sects. 8.2, 8.3 and 8.4 of [524], respectively.

The functionals TSP, MST and MM defined at (8.3)–(8.5) are thus smooth
subadditive Euclidean functionals which are pointwise close to a canonical bound-
ary functional. The functionals (8.6)–(8.9) satisfy the same properties. Now we give
some limit theorems for such functionals.
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8.2.5 Laws of Large Numbers for Superadditive Euclidean
Functionals

We state a basic law of large numbers for Euclidean functionals on i.i.d. uniform
random variables U1; : : : ; Un in Œ0; 1
d . Recall that a sequence of random variables
�n converges completely, here denoted c.c., to a limit random variable �, if for all
" > 0, we have

P1
nD1 P.j�n � �j > "/ < 1.

Theorem 8.1. Let p 2 Œ1; d /. If H�
B WD H

�p
B is a smooth superadditive Euclidean

functional of order p on R
d , then

lim
n!1n.p�d/=dH�

B.U1; : : : ; Un/ D ˛.H
�
B ; d/ c:c:; (8.22)

where ˛.H�
B ; d/ is a positive constant. If H� WD H�p is a subadditive Euclidean

functional which is pointwise close to H�
B WD H

�p
B as in (8.18), then

lim
n!1n.p�d/=dH�.U1; : : : ; Un/ D ˛.H

�
B; d/ c:c: (8.23)

Remarks.

1. In practice, Theorem 8.1 involves taking H�
B WDH

�p
B to be a boundary version

of H� WDH�p , but it is conceivable that there are functionals H
�p
B which

satisfy the conditions of Theorem 8.1 and which are not boundary versions. By
considering boundary functionals, Theorem 8.1 gives laws of large numbers for
the functionals (8.3)–(8.9); see [524] for details.

2. Smooth subadditive Euclidean functionals which are point-wise close to smooth
superadditive Euclidean functionals are “nearly additive” and consequently
satisfy Donsker–Varadhan-style large deviation principles, as shown in [463].

3. The papers [242,295] provide further accounts of the limit theory for subadditive
Euclidean functionals.

Proof of Theorem 8.1. We only prove a mean version of (8.22), namely

lim
n!1n.p�d/=dELpB.U1; : : : ; Un/ D ˛.L

p
B; d/; (8.24)

referring the reader to [524] for a complete proof. To prove (8.24), we will follow the
proof of Theorem 4.1 of [524]. Fix 1 � p < d and set '.n/ WD ELpB.U1; : : : ; Un/.
The number of points from the sample .U1; : : : ; Un/ belonging to a given subcube
of Œ0; 1
d of volume m�d is a binomial random variable Binom.n;m�d / with
parameters n and m�d . Superadditivity of LpB , homogeneity (8.15), smooth-
ness (8.20), and Jensen’s inequality in this order yield
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'.n/ � m�p X
i�md

'.Binom.n;m�d //

� m�p X
i�md

�
'.nm�d / � c3E.j Binom.n;m�d /� nm�d j.d�p/=d /

�

� m�p X
i�md

�
'.nm�d / � c3.nm�d /.d�p/=2d � :

Simplifying, we get

'.n/ � md�p'.nm�d / � c3m.d�p/=2n.d�p/=2d :

Dividing by n.d�p/=d and replacing n by nmd yields the homogenized relation

'.nmd/

.nmd/.d�p/=d � '.n/

n.d�p/=d � c3

n.d�p/=2d : (8.25)

Set ˛ WD ˛.L
p
B; d/ WD lim supn!1 '.n/=n.d�p/=d and note that ˛ � c3 by the

assumed smoothness. For all � > 0, choose no such that for all n � no we
have c3=n.d�p/=2d � � and '.no/=n

.d�p/=d
o � ˛ � �: Thus, for all m D 1; 2; : : : it

follows that
'.nom

d /

.nomd /.d�p/=d � ˛ � 2�:

To now obtain (8.24) we use the smoothness of L and an interpolation argument.
For an arbitrary integer k � 1 find the unique integerm such that

nom
d < k � no.mC 1/d :

Then jnomd � kj � Cnom
d�1 and by smoothness (8.20) we therefore obtain

'.k/

k.d�p/=d � '.nom
d /

.no.mC 1/d /.d�p/=d � .Cnom
d�1/.d�p/=d

.mC 1/d�p n.d�p/=d
o

� .˛ � 2�/. m

mC 1
/d�p � .Cnom

d�1/.d�p/=d

.mC 1/d�p n.d�p/=d
o

:

Since the last term in the above goes to zero as m goes to infinity, it follows that

lim inf
k!1 k.p�d/=d '.k/ � ˛ � 2�:

Now let � tend to zero to see that the liminf and the limsup of the sequence
'.k/=k.d�p/=d ; k � 1; coincide, that is
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lim
k!1 k.p�d/=d '.k/ D ˛:

We have thus shown limn!1 n.p�d/=dELpB.U1; : : : ; Un/ D ˛ as desired. This
completes the proof of (8.24). ut

8.2.6 Rates of Convergence of Euclidean Functionals

Recall that we write �.�; �/ WD �p.�; �/. If a subadditive Euclidean functional H� is
close in mean (cf. Definition 3.9 in [524]) to the associated superadditive Euclidean
functionalH�

B , namely if

jEH�.U1; : : : ; Un/� EH�
B.U1; : : : ; Un/j D o.n.d�p/=d /; (8.26)

where we recall that Ui are i.i.d. uniform on Œ0; 1
d , then we may upper bound
jEH�.U1; : : : ; Un/� ˛.H

�
B; d/n

.d�p/=d j, thus yielding rates of convergence of

n.p�d/=dEH�.U1; : : : ; Un/

to its mean. Since the TSP, MST, and MM functionals satisfy closeness in mean
.p ¤ d � 1; d � 3/ the following theorem immediately provides rates of conver-
gence for our prototypical examples.

Theorem 8.2 (Rates of convergence of means). Let H� and H�
B be subadditive

and superadditive Euclidean functionals, respectively, satisfying the close in mean
approximation (8.26). If H� is smooth of order p 2 Œ1; d / as defined at (8.20), then
for d � 2 and for ˛.H�

B; d/ as at (8.22), we have

jEH�.U1; : : : ; Un/� ˛.H
�
B; d/n

.d�p/=d j � c
�
n.d�p/=2d _ n.d�p�1/=d � : (8.27)

For a complete proof of Theorem 8.2, we refer to [524]. Koo and Lee [309] give
conditions under which Theorem 8.2 can be improved.

8.2.7 General Umbrella Theorem for Euclidean Functionals

Here is the main result of this section. Let �1; : : : ; �n be i.i.d. random variables with
values in Œ0; 1
d ; d � 2; and put Xn WD f�igniD1.
Theorem 8.3 (Umbrella theorem for Euclidean functionals). Let H� and H�

B

be subadditive and superadditive Euclidean functionals, respectively, both smooth
of order p 2 Œ1; d /. Assume thatH� andH�

B are close in mean (8.26). Then
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lim
n!1n.p�d/=dH�.Xn/ D ˛.H

�
B ; d/

Z
Œ0;1
d

�.x/.d�p/=d dx c:c:; (8.28)

where � is the density of the absolutely continuous part of the law of �1.

Remarks.

1. The above theorem captures the limit behavior of the total edge length of the
functionals described in Sect. 8.1.1, hence the term “umbrella”. Indeed, the
TSP functional satisfies the conditions of Theorem 8.3 and we thus recover as
a corollary the Beardwood–Halton–Hammersley theorem [61]. See [524] for
details.

2. Umbrella theorems for Euclidean functionals satisfying monotonicity and other
assumptions not involving boundary functionals appear in Theorem 2 of [481].
Theorem 8.3 has its origins in [415, 416].

3. Theorem 8.3 is used by Baltz et al. [39] to analyze asymptotics for the multiple
vehicle routing problem; Costa and Hero [130] show asymptotics similar to
Theorem 8.3 for the MST on suitably regular Riemannian manifolds and they
apply their results to estimation of Rényi entropy and manifold dimension. Costa
and Hero [131], using the theory of subadditive and superadditive Euclidean
functionals, obtain asymptotics for the total edge length of k-nearest neighbour
graphs on manifolds. The paper [242] provides further applications to imaging
and clustering.

4. If the �i fail to have a density then the right-hand side of (8.28) vanishes. On the
other hand, Hölder’s inequality shows that the right-hand side of (8.28) is largest
when � is uniform on Œ0; 1
d .

5. See Chap. 7 of [524] for extensions of Theorem 8.3 to functionals of random
variables on unbounded domains.

Proof (Sketch of proof of Theorem 8.3). The Azuma–Hoeffding concentration
inequality shows that it is enough to prove convergence of means in (8.28).
Smoothness then shows that it is enough to prove convergence of n.p�d/=dEH�.Xn/

for the so-called blocked distributions, i.e. those whose absolutely continuous part
is a linear combination of indicators over congruent sub-cubes forming a partition
of Œ0; 1
d . To establish convergence for the blocked distributions, one combines
Theorem 8.1 with the subadditive and superadditive relations. We refer to [524]
for complete details of these standard methods. ut

The limit (8.28) exhibits the asymptotic dependency of the total edge length of
graphs on the underlying point density �. Still, (8.28) is unsatisfying in that we don’t
have a closed form expression for the constant ˛.H�

B ; d/. Stabilization methods,

described below, are used to explicitly identify ˛.H�
B ; d/.
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8.3 Stabilization

Subadditive methods yield a.s. limit theory for the functionals H� defined at (8.1)
but they do not express the macroscopic behaviour of H� in terms of the local
interactions described by �. Stabilization methods overcome this limitation, they
yield second order and distributional results, and they also provide limit results for
the empirical measures X

x2X
�.x;X /ıx; (8.29)

where ıx is the point mass at x. The empirical measure (8.29) has total mass given
by H� .

We will often assume that the interaction or “score” function �, defined on pairs
.x;X /, with X locally finite in R

d , is translation invariant, i.e., for all y 2 R
d we

have �.x C y;X C y/ D �.x;X /: When x 2 R
d n X , we abbreviate notation and

write �.x;X / instead of �.x;X [ fxg/.
When X is random the range of spatial dependence of � at x 2 X is random and

the purpose of stabilization is to quantify this range in a way useful for asymptotic
analysis. There are several notions of stabilization, with the simplest being that of
stabilization of � with respect to a rate � homogeneous Poisson point process ˘�

on R
d , defined as follows. Let Br.x/ denote the Euclidean ball centered at x with

radius r and let o denote a point at the origin of Rd .

8.3.1 Homogeneous Stabilization

We say that a translation invariant � is homogeneously stabilizing if for all � and
almost all realizations˘� there exists R WD R.˘�/ < 1 such that

�.o; .˘� \ BR.o//[ A/ D �.o;˘� \ BR.o// (8.30)

for all locally finite A � R
d n BR.o/. Thus the value of � at o is unaffected by

changes in the configuration outside BR.o/. The random range of dependency given
by R depends on the realization of ˘� . When � is homogeneously stabilizing we
may write

�.o;˘�/ D lim
r!1 �.o;˘� \ Br.o//:

Examples of homogeneously stabilizing functionals.

1. Nearest neighbour distances. Recalling (8.6), consider the nearest neighbour
graph GN .1;X / on the point set X and let �.x;X / denote one half the sum
of the lengths of edges in GN.1;X / which are incident to x. Thus H�.X / is
the sum of edge lengths in GN .1;X /. Partition R

2 into six congruent cones
Ki ; 1 � i � 6, having apex at the origin of R

2 and for all 1 � i � 6, put
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Ri to be the distance between the origin and the nearest point in ˘� \ Ki . We
assert that R WD 2max1�i�6 Ri is a radius of stabilization, i.e., points in Bc

2R.o/

do not change the value of �.o;˘�/. Indeed, edges in GN .1;˘�/ incident to the
origin are not changed by the addition of points in Bc

2R.o/. Such points will be
closer to at least one point in ˘� \ BR.o/ than to the origin and so will not
connect to the origin. Also, edges between points in ˘� \ BR.o/ and the origin
will not be affected by the insertion of points in Bc

2R.o/.
2. Voronoi graphs. Consider the graph of the Voronoi tessellation of X and let
�.x;X / be one half the sum of the lengths of the edges in the Voronoi cell C.x/
around x. The Voronoi flower around x, or fundamental region, is the union of
those balls having as center a vertex of C.x/ and exactly two points of X on their
boundary and no points of X inside. Then it may be shown (see Zuyev [532]) that
the geometry of C.x/ is completely determined by the Voronoi flower and thus
the radius of a ball centered at x containing the Voronoi flower qualifies as a
stabilization radius.

3. Minimal spanning trees. Let X � R
d ; d � 2; be locally finite. Given a > 0,

let Ga.X / be the graph with vertex set X and with edge set ffx; yg W jx �
yj < ag: Let GMST.X / be the graph with vertex set X obtained by including
each edge fx; yg such that x and y lie in different components of Gjx�yj.X /
and at least one of the components is finite. When X is finite, then GMST.X /
is the minimal spanning tree graph on X , with total edge length MST.X /, as
in (8.4). Let �.x;X / be one half the sum of the lengths of the edges in GMST.X /
which are incident to x. Then � is homogeneously stabilizing, which follows
from arguments involving the uniqueness of the infinite component in continuum
percolation [401].

Given X � R
d and a > 0, recall that aX WD fax W x 2 X g. For all � > 0 define

the � re-scaled version of � by

��.x;X / WD �.�1=dx; �1=dX /: (8.31)

Re-scaling is natural when considering point sets in compact sets K having
cardinality roughly �; dilation by �1=d means that unit volume subsets of �1=dK
host on the average one point.

It is useful to consider point processes on R
d more general than the homogeneous

Poisson point processes. In what follows, let �1; : : : ; �n be i.i.d., with a distribution
which is absolutely continuous with respect to Lebesgue measure on R

d , with
density � having supportK . For all � > 0, let˘�� denote a Poisson point process in
R
d with intensity measure ��.x/ dx. We shall assume throughout that � is bounded

with supremum denoted k�k1.
Homogeneous stabilization is an example of “point stabilization” [457] in that �

is required to stabilize around a given point x 2 R
d with respect to homogeneously

distributed Poisson points ˘� . A related “point stabilization” requires that the
re-scaled ��; � 2 Œ1;1/; stabilize around x, but now with respect to ˘�� uniformly
in � 2 Œ1;1/. This goes as follows.
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8.3.2 Stabilization with Respect to the Probability Density �

� is stabilizing with respect to the probability density � and the subset K of R
d if

for all � 2 Œ1;1/ and all x 2 K , there exists almost surely a R WD R.x; �/ < 1
(a radius of stabilization for �� at x) such that for all locally finite A � .Rd n
B��1=dR.x//, we have

�� .x; Œ˘�� \ B��1=d R.x/
 [ A/ D �� .x;˘�� \ B��1=dR.x// : (8.32)

If the tail probability �.t/ defined for t > 0 by �.t/ WD sup��1; x2K P.R.x; �/ > t/
satisfies lim supt!1 t�1 log �.t/ < 0 then we say that � is exponentially stabilizing
with respect to � and K .

Roughly speaking,R WD R.x; �/ is a radius of stabilization if for all � 2 Œ1;1/,
the value of ��.x;˘��/ is unaffected by changes in point configurations outside
B��1=dR.x/. In most examples of interest, methods showing that functionals �
homogeneously stabilize are easily modified to show stabilization of � with respect
to densities �. While it is straightforward to determine conditions under which the
interaction function � from examples 1 and 2 stabilizes exponentially fast, it is not
known whether the interaction � from example 3 stabilizes exponentially fast.

Exercise 8.5. Show that the interaction function � from examples 1 and 2 stabilizes
exponentially fast when � is bounded away from zero on its support K , assumed
compact and convex.

We may weaken homogeneous stabilization by requiring that the point sets
A in (8.30) belong to the homogeneous Poisson point process ˘� . This weaker
version of stabilization, called localization, is used in [111,459] to establish variance
asymptotics and central limit theorems for functionals of convex hulls of random
samples in the unit ball. Given r > 0, let �r .x;X / WD �.x;X \ Br.x//.

Say that OR WD OR.x;˘� / is a radius of localization for � at x with respect to ˘�

if almost surely �.x;˘� / D �
OR.x;˘� / and for all s > OR we have �s.x;˘�/ D

�
OR.x;˘� /.

8.3.3 A Weak Law of Large Numbers for Stabilizing
Functionals

Recall that˘�� is the Poisson point process on R
d with intensity measure ��.x/dx.

It is easy to show that �1=d .˘�� � x0/ converges to ˘�.x0/ as � ! 1, where
convergence is in the sense of weak convergence of point processes. If �.�; �/ is a
functional defined on R

d � N , where we recall that N is the space of locally finite
point sets in R

d , one might hope that � is continuous on the pairs .o; �1=d .˘���x0//
in the sense that �.o; �1=d .˘�� � x0// converges in distribution to �.o;˘�.x0// as
� ! 1. This turns out to be the case whenever � is homogeneously stabilizing as
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in (8.30). This is the content of the next lemma; for a complete proof see Sect. 3 of
[395]. Recall that almost every x 2 R

d is a Lebesgue point of �, that is to say for
almost all x 2 R

d we have that "�d R
B".x/

j�.y/ � �.x/j dy tends to zero as " tends
to zero.

Lemma 8.1. Let x0 be a Lebesgue point for �. If � is homogeneously stabilizing as
in (8.30), then as � ! 1

��.x0;˘��/
d�! �.o;˘�.x0//: (8.33)

Proof (Sketch). We have ��.x0;˘��/ D �.o; �1=d .˘�� � x0// by translation
invariance of �. By the stabilization of �, it may be shown [394] that .o;˘�.x0//

is a continuity point for � with respect to the product topology on R
d � N , when

the space of locally finite point sets N in R
d is equipped with the metric

d.X1;X2/ WD .maxfk 2 N W X1 \ Bk.o/ D X2 \ Bk.o/g/�1:

The result follows by the weak convergence �1=d .˘�� � x0/
d�! ˘�.x0/ and the

continuous mapping theorem (Theorem 2.7 of [69]). ut
Recall that Xn WD f�igniD1, where �1; : : : ; �n are i.i.d. with density �. Limit

theorems for the sums
P

x2˘�� ��.x;˘��/ as well as for the weighted empirical
measures

�� WD �
�

� WD
X
x2˘��

��.x;˘��/ıx and 
n WD 
�n WD
nX
iD1

�n.�i ;Xn/ı�i (8.34)

naturally require moment conditions on the summands, thus motivating the next
definition.

Definition 8.5. � has a moment of order p > 0 (with respect to � andK) if

sup
��1; x2K;A2K

EŒj��.x;˘�� [ A/jp
 < 1; (8.35)

where A ranges over all finite subsets ofK .

Exercise 8.6. Show that the interaction function � from Examples 1 and 2 has
moments of all orders when � is bounded away from zero on its support.

Let B.K/ denote the class of all bounded f W K ! R and for all measures � on
R
d let hf;�i WD R

fd�. Put N� WD � � E�. For all f 2 B.K/ we have by Palm
theory for the Poisson process (see e.g Theorem 1.6 in [394]) that

EŒhf;��i
 D �

Z
K

f .x/EŒ��.x;˘��/
�.x/ dx: (8.36)
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If (8.35) holds for some p > 1, then uniform integrability and Lemma 8.1 show that
for all Lebesgue points x of � one has E��.x;˘��/ ! E�.o;˘�.x// as � ! 1.
The set of points failing to be Lebesgue points has measure zero and so when the
moment condition (8.35) holds for some p > 1, the bounded convergence theorem
gives

lim
�!1��1EŒhf;��i
 D

Z
K

f .x/EŒ�.o;˘�.x//
�.x/ dx:

This simple convergence of means EŒhf;��i
 is now upgraded to convergence in
Lq , q D 1 or 2.

Theorem 8.4. Put qD 1 or 2. Let � be a homogeneously stabilizing (8.30) trans-
lation invariant functional satisfying the moment condition (8.35) for some p > q.
Then for all f 2 B.K/ we have

lim
n!1n�1hf; 
ni D lim

�!1��1hf;��i D
Z
K

f .x/EŒ�.o;˘�.x//
�.x/ dx in Lq:

(8.37)

If � is homogeneous of order p as defined at (8.16), then for all ˛ 2 .0;1/

and � 2 .0;1/ we have ˘˛�
dD ˛�1=d˘� ; see for example the mapping theorem

on p. 18 of [298]. Consequently, if � is homogeneous of order p, it follows that
E�.o;˘�.x// D �.x/�p=dE�.o;˘1/; whence the following weak law of large
numbers.

Corollary 8.1. Put qD 1 or 2. Let � be a homogeneously stabilizing (8.30)
translation invariant functional satisfying the moment condition (8.35) for some
p > q. If � is homogeneous of order p as at (8.16), then for all f 2 B.K/ we have

lim
n!1n�1hf; 
ni D lim

�!1��1hf;��i D EŒ�.o;˘1/


Z
K

f .x/�.x/.d�p/=d dx
(8.38)

where the convergence is in the Lq sense.

Remarks.

1. The proofs of the above laws of large numbers are given in [394, 401].
2. The closed form limit (8.38) links the macroscopic limit behaviour of the point

measures 
n and �� with (i) the local interaction of � at a point at the origin
inserted into the point process˘1 and (ii) the underlying point density �.

3. Going back to the minimal spanning tree at (8.4), the limiting constant
˛.MSTB; d/ can be found by putting � in (8.38) to be �MST, letting f � 1

in (8.38), and consequently deducing that ˛.MSTB; d/D EŒ�MST.o;˘1/
; where
�MST.x;X / is one half the sum of the lengths of the edges in the graph
GMST.X [ fxg/ incident to x.

4. Donsker–Varadhan-style large deviation principles for stabilizing functionals are
proved in [460] whereas moderate deviations for bounded stabilizing functionals
are proved in [55].
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8.3.4 Variance Asymptotics and Central Limit Theorems
for Stabilizing Functionals

Asymptotic distribution results for hf;��i and hf; 
ni, f 2 B.K/; as � and n tend
to infinity respectively, require additional notation. For all � > 0, put

V �.�/ WD EŒ�.o;˘� /
2


C �

Z
Rd

fEŒ�.o;˘� [ fzg/�.z; ˘� [ o/
 � .EŒ�.o;˘� /
/
2g d z (8.39)

and

��.�/ WD EŒ�.o;˘� /
C �

Z
Rd

fEŒ�.o;˘� [ fzg/� EŒ�.o;˘�/
g d z: (8.40)

The scalars V �.�/, � > 0; should be interpreted as mean pair correlation functions
for the functional � on homogenous Poisson points˘� . By the translation invariance
of �, the scalars ��.�/; � > 0; satisfy

��.�/ D EŒ�.o;˘� /
C E

2
4 X
x2˘�[fzg

�.x;˘� [ fzg/�
X
x2˘�

�.x;˘� /

3
5 ;

which suggests that ��.�/ may be viewed as the expected “add-one cost” forP
x2˘� �.x;˘� / when the point set ˘� is augmented to ˘� [ fzg.
By extending Lemma 8.1 to an analogous result giving the weak convergence of

the joint distribution of ��.x;˘��/ and ��.x C ��1=d z; ˘��/ for all pairs of points
x and z in R

d , we may show for exponentially stabilizing � and for bounded K
that ��1 varŒhf;��i
 converges as � ! 1 to a weighted average of the mean pair
correlation functions.

Furthermore, recalling that�� WD ���EŒ��
, and by using either Stein’s method
[395, 402] or the cumulant method [57], we may establish variance asymptotics
and asymptotic normality of hf; ��1=2��i; f 2 B.K/, as shown by the next result,
proved in [57, 395, 402].

Theorem 8.5 (Variance asymptotics and CLT for Poisson input). Assume that
� is Lebesgue-almost everywhere continuous. Let � be a homogeneously stabiliz-
ing (8.30) translation invariant functional satisfying the moment condition (8.35)
for some p > 2. Suppose further that K is bounded and that � is exponentially
stabilizing with respect to � andK as in (8.32). Then for all f 2 B.K/ we have

lim
�!1��1 varŒhf;��i
 D 	2.f / WD

Z
K

f .x/2V �.�.x//�.x/ dx < 1 (8.41)
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as well as convergence of the finite-dimensional distributions

.hf1; ��1=2��i; : : : ; hfk; ��1=2��i/;

f1; : : : ; fk 2 B.K/; to those of a mean zero Gaussian field with covariance kernel

.f; g/ 7!
Z
K

f .x/g.x/V �.�.x//�.x/ dx: (8.42)

Extensions of Theorem 8.5

1. For an extension of Theorem 8.5 to manifolds, see [403]; for extensions to
functionals of Gibbs point processes, see [460]. Theorems 8.4 and 8.5 also extend
to treat functionals of point sets having i.i.d. marks [57, 395].

2. Rates of convergence. Suppose k�k1 < 1. Suppose that � is exponentially sta-
bilizing and satisfies the moments condition (8.35) for some p>3. If 	2.f / > 0
for f 2 B.K/, then there exists a finite constant c depending on d; �, �, p and f ,
such that for all � � 2,

sup
t2R

ˇ̌
ˇ̌
ˇP
"

hf;��i � EŒhf;��i
p
varŒhf;��i


� t

#
� P.N.0; 1/ � t/

ˇ̌
ˇ̌
ˇ � c.log�/3d��1=2:

(8.43)
For details, see Corollary 2.1 in [402]. For rates of convergence in the multivari-
ate central limit theorem, see [397].

3. Translation invariance. For ease of exposition, Theorems and 8.4 and 8.5 assume
translation invariance of �. This assumption may be removed (see [57,394,395]),
provided that we put ��.x;X / WD �.x; xC�1=d .�xCX // and provided that we
replace V �.�/ and��.�/ defined at (8.39) and (8.40) respectively, by

V �.x; �/ WD EŒ�.x;˘�/
2


C �

Z
Rd

fEŒ�.x;˘� [ fzg/�.x;�z C .˘� [ o//
 � .EŒ�.x;˘�/
/
2g d z

(8.44)

and

��.x; �/ WD EŒ�.x;˘� /
C �

Z
Rd

fEŒ�.x;˘� [ fzg/� EŒ�.x;˘� /
g d z: (8.45)

4. The moment condition (8.35) may be weakened to one requiring only that A
range over subsets of K having at most one element; see [395].
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Proof of Variance Asymptotics (8.41)

The proof of (8.41) depends in part on the following generalization of Lemma 8.1,
a proof of which appears in [395].

Lemma 8.2. Let x be a Lebesgue point for �. If � is homogeneously stabilizing as
in (8.30), then for all z 2 R

d , we have as � ! 1

.��.x;˘��/; ��.x C ��1=d z; ˘��//
d�! .�.o;˘�.x//; �.z; ˘�.x///: (8.46)

Given Lemma 8.2 we sketch a proof of the variance convergence (8.41). For
simplicity we assume that f is a.e. continuous. By Palm theory for the Poisson
process ˘�� we have

��1 varŒhf;��i


D �

Z
K

Z
K

f .x/f .y/fEŒ��.x;˘�� [ fyg/��.y;˘�� [ fxg/


� EŒ��.x;˘��/
EŒ��.y;˘��/
g�.x/�.y/ dx dy

C
Z
K

f .x/2EŒ�2�.x;˘��/
�.x/ dx: (8.47)

Putting y D x C ��1=d z in the right-hand side in (8.47) reduces the double
integral to

Z
K

Z
��1=d xC�1=dK

f .x/f .x C ��1=d z/f: : :g�.x/�.x C ��1=d z/d zdx (8.48)

where

f: : :g WD ˚
EŒ��.x;˘�� [ fx C ��1=d zg/��.x C ��1=d z; ˘�� [ fxg/


�EŒ��.x;˘��/
EŒ��.x C ��1=d z; ˘��/

�

is the two point correlation function for ��.
The moment condition and Lemma 8.2 imply for all Lebesgue points x 2 K

that the two point correlation function for �� converges to the two point correlation
function for � as � ! 1. Moreover, by exponential stabilization, the integrand
in (8.48) is dominated by an integrable function of z over Rd (see Lemma 4.2 of
[395]). The double integral in (8.47) thus converges to

Z
K

Z
Rd

f .x/2 � EŒ�.o;˘�.x/ [ fzg/�.z; ˘�.x/ [ o/


� .E�.o;˘�.x///
2�.x/2 d zdx (8.49)
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by dominated convergence, the continuity of f , and the assumed moment bounds.
By Theorem 8.4, the assumed moment bounds, and dominated convergence, the

single integral in (8.47) converges to

Z
K

f .x/2EŒ�2.o;˘�.x//
�.x/ dx: (8.50)

Combining (8.49) and (8.50) and using the definition of V � , we obtain the variance
asymptotics (8.41) for continuous test functionsf . To show convergence for general
f 2 B.K/ we refer to [395].

8.3.5 Proof of Asymptotic Normality in Theorem 8.5; Method
of Cumulants

Now we sketch a proof of the central limit theorem part of Theorem 8.5. There are
three distinct approaches to proving the central limit theorem:

1. Stein’s method, in particular consequences of Stein’s method for dependency
graphs of random variables, as given by [120]. This approach, spelled out in
[402], gives the rates of convergence to the normal law in (8.43).

2. Methods based on martingale differences are applicable when � is the uniform
density and when the functionalH� satisfies a stabilization criteria involving the
insertion of single point into the sample; see [295, 398] for details.

3. The method of cumulants may be used [57] to show that the k-th order cumulants
ck� of ��1=2hf;��i; k � 3; vanish in the limit as � ! 1. This method makes
use of the standard fact that if the cumulants ck of a random variable � vanish for
all k � 3, then � has a normal distribution. This approach assumes additionally
that � has moments of all orders, i.e. (8.35) holds for all p � 1.

Here we describe the third method, which, when suitably modified yields
moderate deviation principles [55] as well as limit theory for functionals over Gibbs
point processes [460].

To show vanishing of cumulants of order three and higher, we follow the proof
of Theorem 2.4 in section five of [57] and take the opportunity to correct a mistake
in the exposition, which also carried over to [55], and which was first noticed by
Mathew Penrose. We assume the test functions f belong to the class C.K/ of
continuous functions on K and we will show for all continuous test functions f
on K , that

hf; ��1=2��i
d�! N.0; 	2.f //; (8.51)

where 	2.f / is at (8.41). The convergence of the finite-dimensional distribu-
tions (8.42) follows by standard methods involving the Cramér–Wold device.

We first recall the formal definition of cumulants. PutK WD Œ0; 1
d for simplicity.
Write
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E exp
�
��1=2h�f;��i

�

D exp
�
��1=2hf;E��i

�
E exp

�
��1=2h�f;��i

�
(8.52)

D exp
�
��1=2hf;E��i

� "
1C

1X
kD1

��k=2

kŠ
h.�f /k;Mk

� i
#
;

where f k W Rdk ! R; k D 1; 2; : : : is given by f k.v1; : : : ; vk/ D f .v1/ � � � f .vk/;
and vi 2 K; 1 � i � k. Mk

� WD Mk
�� is a measure on R

dk , the k-th moment
measure (Chap. 9.5 of [140]), and has the property that

hf k;Mk
� i D

Z
Kk

E

"
kY
iD1

��.xi ;˘��/

#
kY
iD1

f .xi /�.xi / d.�
1=dxi /:

In general Mk
� is not continuous with respect to Lebesgue measure on Kk, but

rather it is continuous with respect to sums of Lebesgue measures on the diagonal
subspaces ofKk , where two or more coordinates coincide.

In Sect. 5 of [57], the moment and cumulant measures considered there are
with respect to the centered functional �, whereas they should be with respect
to the non-centered functional �. This requires corrections to the notation, which
we provide here, but since higher order cumulants for centered and non-centered
measures coincide, it does not change the arguments of [57], which we include for
completeness and which go as follows.

We have

dMk
� .v1; : : : ; vk/ D m�.v1; : : : ; vk/

kY
iD1

�.vi / d.�
1=dvi /;

wherem�.v1; : : : ; vk/ is given by mixed moment

m�.v1; : : : ; vk/ WD E

"
kY
iD1

��.vi I˘�� [ fvj gkjD1/
#
: (8.53)

Due to the behaviour of Mk
� on the diagonal subspaces we make the standing

assumption that if the differential d.�1=d1 v1/ � � � d.�1=d1 vk/ involves repetition of
certain coordinates, then it collapses into the corresponding lower order differential
in which each coordinate occurs only once. For each k 2 N, by the assumed moment
bounds (8.35), the mixed moment on the right hand side of (8.53) is bounded
uniformly in � by a constant c.�; k/. Likewise, the k-th summand in (8.52) is finite.

For all i D 1; 2; : : : we let Ki denote the i -th copy ofK . For any subset T of the
positive integers, we let
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KT WD
Y
i2T

Ki :

If jT j D l , then for all � � 1, by MT
� we mean a copy of the l-th moment measure

on the l-fold product space KT
� . MT

� is equal to Ml
� as defined above.

When the series (8.52) is convergent, the logarithm of the Laplace functional
gives

log

"
1C

1X
kD1

1

kŠ
��k=2h.�f /k;Mk

� i
#

D
1X
lD1

1

lŠ
��l=2h.�f /l ; cl�iI (8.54)

the signed measures cl� are cumulant measures. Regardless of the validity of (8.52),
the existence of all cumulants cl�, l D 1; 2; : : : follows from the existence of all
moments in view of the representation

cl� D
X

T1;:::;Tp

.�1/p�1.p � 1/ŠM
T1
� � � �MTp

� ;

where T1; : : : ; Tp ranges over all unordered partitions of the set 1; : : : ; l (see p. 30
of [341]). The first cumulant measure coincides with the expectation measure and
the second cumulant measure coincides with the variance measure.

We follow the proof of Theorem 2.4 of [57], with these small changes: (a)
replace the centered functional � with the non-centered � (b) correspondingly, let all
cumulants cl�; l D 1; 2; : : : be the cumulant measures for the non-centered moment
measures Mk

� , kD 1; 2; : : :. Since c1� coincides with the expectation measure,
Theorem 8.4 gives for all f 2 C.K/

lim
�!1��1hf; c1�i D lim

�!1��1EŒhf;���i
 D
Z
K

f .x/EŒ�.o;˘�.x//
�.x/dx:

We already know from the variance convergence that

lim
�!1��1hf 2; c2�i D lim

�!1��1 varŒhf;����i
 D
Z
K

f .x/2V �.�.x//�.x/dx:

Thus, to prove (8.51), it will be enough to show for all k � 3 and all f 2 C.K/ that
��k=2hf k; ck�i ! 0 as � ! 1. This will be done in Lemma 8.4 below, but first we
recall some terminology from [57].

A cluster measure US;T
� onKS �KT for non-empty S; T � f1; 2; : : :g is defined

by
U
S;T
� .B �D/ D MS[T

� .B �D/ �MS
� .B/M

T
� .D/

for all Borel B and D in KS andKT , respectively.
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Let S1; S2 be a partition of S and let T1; T2 be a partition of T . A product of a
cluster measure US1;T1

� onKS1 �KT1 with products of moment measuresM jS2j and
M jT2j on KS2 �KT2 will be called a .S; T / semi-cluster measure.

For each non-trivial partition .S; T / of f1; : : : ; kg the k-th cumulant ck is
represented as

ck D
X

.S1;T1/;.S2;T2/

˛..S1; T1/; .S2; T2//U
S1;T1M jS2jM jT2j; (8.55)

where the sum ranges over partitions of f1; : : : ; kg consisting of pairings .S1; T1/,
.S2; T2/, where S1; S2 �S and T1; T2 �T , and where ˛..S1; T1/; .S2; T2// are
integer valued pre-factors. In other words, for any non-trivial partition .S; T /

of f1; : : : ; kg, ck is a linear combination of .S; T / semi-cluster measures; see
Lemma 5.1 of [57].

The following bound is critical for showing that ��k=2hf; ck�i ! 0 for k � 3 as
� ! 1: This lemma appears as Lemma 5.2 in [57].

Lemma 8.3. If � is exponentially stabilizing as in (8.32), then the functions m�

cluster exponentially, that is there are positive constants aj;l and cj;l such that
uniformly

jm�.x1; : : : xj ; y1; : : : ; yl /�m�.x1; : : : ; xj /m�.y1; : : : ; yl /j � aj;l exp.�cj;l ı�1=d /;

where ı WD min1�i�j;1�p�l jxi � ypj is the separation between the sets fxi gjiD1 and
fypglpD1 of points in K .

The constants aj;l , while independent of �, may grow quickly in j and l , but
this will not affect the decay of the cumulant measures in the scale parameter �.
The next lemma provides the desired decay of the cumulant measures; we provide
a proof which is slightly different from that given for Lemma 5.3 of [57].

Lemma 8.4. For all f 2C.K/ and kD 2; 3; : : :we have��1hf k; ck�i 2O�kf kk1
�
:

Proof. We need to estimate

Z
Kk

f .v1/ : : : f .vk/ dc
k
�.v1; : : : ; vk/:

We will modify the arguments in [57]. Given v WD .v1; : : : ; vk/ 2 Kk, let Dk.v/ WD
Dk.v1; : : : ; vk/ WD maxi�k.kv1 � vik C : : : C kvk � vik/ be the l1 diameter for v.
Let �.k/ be the collection of all partitions of f1; : : : ; kg into exactly two subsets S
and T . For all such partitions consider the subset 	.S; T / of KS � KT having the
property that v 2 	.S; T / implies d.x.v/; y.v// � Dk.v/=k2; where x.v/ and y.v/
are the projections of v onto KS and KT , respectively, and where d.x.v/; y.v// is
the minimal Euclidean distance between pairs of points from x.v/ and y.v/. It is
easy to see that for every v WD .v1; : : : ; vk/ 2 Kk, there is a splitting of v, say
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x WD x.v/ and y WD y.v/, such that d.x; y/ � Dk.v/=k2; if this were not the case
then a simple argument shows that, given v WD .v1; : : : ; vk/ the distance between any
pair of constituent components must be strictly less than Dk.v/=k, contradicting
the definition of Dk . It follows that Kk is the union of the sets 	.S; T /; .S; T / 2
�.k/. The key to the proof of Lemma 8.4 is to evaluate the cumulant ck� over each
	.S; T / 2 �.k/, that is to write hf; ck�i as a finite sum of integrals

hf; ck�i D
X

	.S;T /2�.k/

Z
	.S;T /

f .v1/ � � � f .vk/ dck�.v1; : : : ; vk/;

then appeal to the representation (8.55) to write the cumulant measure
dck�.v1; : : : ; vk/ on each 	.S; T / as a linear combination of .S; T / semi-cluster
measures, and finally to appeal to Lemma 8.3 to control the constituent cluster
measures US1;T1 by an exponentially decaying function of �1=dDk.v/ WD
�1=dDk.v1; : : : ; vk/.

Given 	.S; T /, S1 � S and T1 � T , this goes as follows. Let x 2 KS and
y 2 KT denote elements of KS and KT , respectively; likewise we let Qx and Qy
denote elements of KS1 and KT1 , respectively. Let Qxc denote the complement of Qx
with respect to x and likewise with Qyc . The integral of f against one of the .S; T /
semi-cluster measures in (8.55), induced by the partitions .S1; S2/ and .T1; T2/ of S
and T respectively, has the form

Z
	.S;T /

f .v1/ � � �f .vk/ d
�
M

jS2j
� . Qxc/U iCj

� . Qx; Qy/M jT2j
� . Qyc/

�
:

Letting u�. Qx; Qy/ WD m�. Qx; Qy/ �m�. Qx/m�. Qy/, the above equals

Z
	.S;T /

f .v1/ � � �f .vk/m�. Qxc/u�. Qx; Qy/m�. Qyc/
kY
iD1

�.vi / d.�
1=dvi /: (8.56)

We use Lemma 8.3 to control u�. Qx; Qy/ WD m�. Qx; Qy/ � m�. Qx/m�. Qy/, we bound
f and � by their respective sup norms, we bound each mixed moment by c.�; k/,
and we use 	.S; T / � Kk to show that

Z
	.S;T /

f .v1/ � � � f .vk/ d
�
M

jS2j
� . Qxc/U iCj

� . Qx; Qy/M jT2j
� . Qyc/

�

� D.k/c.�; k/2kf kk
1

k�kk
1

Z
Kk

exp.�c�1=dDk.v/=k
2/ d.�1=d v1/ � � � d.�1=d vk/:

Letting zi WD �1=dvi the above bound becomes



266 J. Yukich

�D.k/c.�; k/2kf kk
1

k�kk
1

Z
.�1=dK/k

exp.�cDk.z/=k
2/ d z1 � � � d zk

� �D.k/c.�; k/2kf kk
1

k�kk
1

Z
.Rd /k�1

exp.�cDk.0; z1; : : : ; zk�1/=k
2/ d z1 � � � d zk

where we use the translation invariance ofDk.�/. Upon a further change of variable
w WD z=k we have

Z
	.S;T /

f .v1/ � � � f .vk/ d
�
M

jS2j
�
. Qxc/U iCj

�
. Qx; Qy/M jT2j

�
. Qyc/

�

�� QD.k/c.�; k/2kf kk
1

k�kk
1

Z
.Rd /k�1

exp.� cDk.0;w1; : : : ;wk�1//dw1 � � �dwk�1:

Finally, since Dk.0;w1; : : : ;wk�1/ � kw1k C : : :C kwk�1k we obtain

Z
	.S;T /

f .v1/ � � �f .vk/d
�
M

jS2j
� . Qxc/U iCj

� . Qx; Qy/M jT2j
� . Qyc/

�

� � QD.k/c.�; k/2kf kk1k�kk1
�Z

Rd

exp.�kwk/ dw

�k�1
D O.�/

as desired. ut

8.3.6 Central Limit Theorem for Functionals of Binomial
Input

To obtain central limit theorems for functionals over binomial input Xn WD f�igniD1
we need some more definitions. For all functionals � and � 2 .0;1/, recall the “add
one cost” ��.�/ defined at (8.40). For all j D 1; 2; : : :, let Sj be the collection of
all subsets of Rd of cardinality at most j .

Definition 8.6. Say that � has a moment of order p > 0 (with respect to binomial
input Xn) if

sup
n�1;x2Rd ;D2S3

sup
.n=2/�m�.3n=2/

EŒj�n.x;Xm [ D/jp
 < 1: (8.57)

Definition 8.7. � is binomially exponentially stabilizing for � if for all x 2R
d ,

��1, and D � S2 almost surely there exists R WD R�;n.x;D/ < 1 such that for all
finite A � .Rd n B��1=d R.x//, we have

�� .x; .ŒXn [ D
 \ B��1=dR.x// [ A/ D �� .x; ŒXn [ D
 \ B��1=dR.x// ; (8.58)
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and moreover there is an " > 0 such that the tail probability �".t/ defined for t > 0
by

�".t/ WD sup
��1; n2N\..1�"/�;.1C"/�/

sup
x2Rd ; D	S2

P.R�;n.x;D/ > t/

satisfies lim supt!1 t�1 log �".t/ < 0:

If � is homogeneously stabilizing then in most examples of interest, similar
methods can be used to show that � is binomially exponentially stabilizing whenever
� is bounded away from zero.

Exercise 8.7. Show that the interaction function � from Examples 1 and 2 is
binomially exponentially stabilizing whenever � is bounded away from zero on its
support, assumed compact and convex.

Theorem 8.6 (CLT for binomial input). Assume that � is Lebesgue-almost every-
where continuous. Let � be a homogeneously stabilizing (8.30) translation invariant
functional satisfying the moment conditions (8.35) and (8.57) for some p > 2.
Suppose further that K is bounded and that � is exponentially stabilizing with
respect to � andK as in (8.32) and binomially exponentially stabilizing with respect
to � andK as in (8.58). Then for all f 2 B.K/ we have

lim
n!1

n�1 varŒhf; 
ni
 D �2.f /

WD
Z
K

f .x/2V �.�.x//�.x/ dx �
�Z

K

f .x/��.�.x//�.x/dx

�2

(8.59)

as well as convergence of the finite-dimensional distributions

.hf1; n�1=2
ni; : : : ; hfk; n�1=2
ni/;

f1; : : : ; fk 2 B.K/; to a mean zero Gaussian field with covariance kernel

.f; g/ 7!
Z
K

f .x/g.x/V �.�.x//�.x/ dx

�
Z
K

f .x/��.�.x//�.x/ dx

Z
K

g.x/��.�.x//�.x/ dx: (8.60)

Proof. We sketch the proof, borrowing heavily from coupling arguments appearing
in the complete proofs given in [57, 395, 398]. Fix f 2 B.K/. Put Hn WD hf; 
ni,
H 0
n WD hf;�ni, where �n is defined at (8.34) and assume that ˘n� is coupled to Xn

by setting˘n� D SN.n/
iD1 �i , whereN.n/ is an independent Poisson random variable

with mean n. Put

˛ WD ˛.f / WD
Z
K

f .x/��.�.x//�.x/ dx:
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Conditioning on the random variable N WD N.n/ and using that N is concentrated
around its mean, it can be shown that as n ! 1 we have

EŒ.n�1=2.H 0
n �Hn � .N.n/� n/˛//2
 ! 0: (8.61)

The arguments are long and technical (cf. Sect. 5 of [395], Sect. 4 of [398]).
Let 	2.f / be as at (8.41) and let �2.f / be as at (8.59), so that �2.f / D 	2

.f /� ˛2:

By Theorem 8.5 we have as n ! 1 that n�1 varŒH 0
n
 ! 	2.f / and n�1=2.H 0

n�
EH 0

n/
d�! N.0; 	2.f //. We now deduce Theorem 8.6, following verbatim by now

standard arguments (see for example p. 1020 of [398], p. 251 of [57]), included here
for sake of completeness.

To prove convergence of n�1 varŒHn
, we use the identity

n�1=2H 0
n D n�1=2HnCn�1=2.N.n/�n/˛Cn�1=2ŒH 0

n�Hn�.N.n/�n/˛
: (8.62)

The variance of the third term on the right-hand side of (8.62) goes to zero by (8.61),
whereas the second term has variance ˛2 and is independent of the first term. It
follows that with 	2.f / defined at (8.41), we have

	2.f / D lim
n!1n�1 varŒH 0

n
 D lim
n!1n�1 varŒHn
C ˛2;

so that 	2.f / � ˛2 and n�1 varŒHn
 ! �2.f /. This gives (8.59).
Now to prove Theorem 8.6 we argue as follows. By Theorem 8.5, we have

n�1=2.H 0
n � EH 0

n/
d�! N.0; 	2.f //: Together with (8.61), this yields

n�1=2ŒHn � EH 0
n C .N.n/ � n/˛
 d�! N.0; 	2.f //:

However, since n�1=2.N.n/�n/˛ is independent ofHn and is asymptotically normal
with mean zero and variance ˛2, it follows by considering characteristic functions
that

n�1=2.Hn � EH 0
n/

d�! N.0; 	2.f /� ˛2/: (8.63)

By (8.61), the expectation of n�1=2.H 0
n � Hn � .N.n/ � n/˛/ tends to zero, so

in (8.63) we can replace EH 0
n by EHn, which gives us

n�1=2.Hn � EHn/
d�! N.0; �2.f //:

To obtain convergence of finite-dimensional distributions (8.60) we use the
Cramér–Wold device.

ut
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8.4 Applications

Consider a linear statistic H�.X / of a large geometric structure on X . If we
are interested in the limit behavior of H� on random point sets, then the results
of the previous section suggest checking whether the interaction function � is
stabilizing. Verifying the stabilization of � is sometimes non-trivial and may
involve discretization methods. Here we describe four non-trivial statistics H� for
which one may show stabilization/localization of �. Our list is non-exhaustive and
primarily focusses on the problems described in Sect. 8.1.1.

8.4.1 Random Packing

Given d 2 N and � � 1, let �1;�; �2;�; : : : be a sequence of independent random
d -vectors uniformly distributed on the cube Q� WD Œ0; �1=d /d . Let �i ; i � 1; be
i.i.d. time marks, independent of �i ; i � 1, and uniformly distributed on Œ0; 1
.
Equip each vector �i with the time mark �i and re-order the indices so that �i
are increasing. Let S be a fixed bounded closed convex set in R

d with non-empty
interior (i.e., a “solid”) with centroid at the origin o of Rd (for example, the unit
ball), and for i 2 N, let Si;� be the translate of S having centroid at �i;� and arrival
time �i . Thus S� WD .Si;�/i�1 is an infinite sequence of solids sequentially arriving
at uniform random positions in Q� at arrival times �i ; i � 1 (the centroids lie in Q�

but the solids themselves need not lie wholly inside Q�).
Let the first solid S1;� be packed (i.e., accepted), and recursively for i D 2; 3; : : :,

let the i -th solid Si;� be packed if it does not overlap any solid in fS1;�; : : : ; Si�1;�g
which has already been packed. If not packed, the i -th solid is discarded. This
process, known as random sequential adsorption (RSA) with infinite input, is
irreversible and terminates when it is not possible to accept additional solids.
At termination, we say that the sequence of solids S� jams Q� or saturates Q�.
The number of solids accepted in Q� at termination is denoted by the jamming
numberN� WD N�;d WD N�;d .S�/.

There is a large literature of experimental results concerning the jamming
numbers, but a limited collection of rigorous mathematical results, especially in
d � 2. The short range interactions of arriving particles lead to complicated long
range spatial dependence between the status of particles. Dvoretzky and Robbins
[163] show in d D 1 that the jamming numbersN�;1 are asymptotically normal.

By writing the jamming number as a linear statistic involving a stabilizing
interaction � on marked point sets, and recalling Remark 1 following Theorem 8.5,
one may establish [458] thatN�;d are asymptotically normal for all d � 1. This puts
the experimental results and Monte Carlo simulations of Quintanilla and Torquato
[410] and Torquato (Chap. 11.4 of [494]) on rigorous footing.

Theorem 8.7. Let S� and N� WD N�.S�/ be as above. There are constants � WD
�.S; d/ 2 .0;1/ and 	2 WD 	2.S; d/ 2 .0;1/ such that as � ! 1 we have
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ˇ̌
��1EN� � �ˇ̌ D O.��1=d / (8.64)

and ��1 varŒN�
 ! 	2 with

sup
t2R

ˇ̌
ˇ̌
ˇP
 
N� � EN�p

varŒN�

� t

!
� P.N.0; 1/ � t/

ˇ̌
ˇ̌
ˇ D O..log�/3d��1=2/: (8.65)

To prove this, one could enumerate the arriving solids in S�, by .xi ; ti /, where
xi 2 R

d is the spatial coordinate of the i -th solid and ti 2 Œ0;1/ is its temporal
coordinate, i.e. the arrival time. Furthermore, letting X WD f.xi ; ti /g1

iD1 be a marked
point process, one could set �..x; t/;X / to be one or zero depending on whether the
solid with center at x 2 S� is accepted or not; H�.X / is the total number of solids
accepted. Thus � is defined on elements of the marked point process X . A natural
way to prove Theorem 8.7 would then be to show that � satisfies the conditions of
Theorem 8.5. The moment conditions (8.35) are clearly satisfied as � is bounded
by 1. To show stabilization it turns out that it is easier to discretize as follows.

For any A � R
d ; let AC WD A � RC. Let �.X ; A/ be the number of solids

with centers in X \ A which are packed according to the packing rules. Abusing
notation, let ˘ denote a homogeneous Poisson point process in R

d � RC with
intensity dx �ds, with dx denoting Lebesgue measure on R

d and ds denoting
Lebesgue measure on RC. Abusing the terminology at (8.30), � is homogeneously
stabilizing since it may be shown that almost surely there exists R < 1 (a radius of
homogeneous stabilization for �) such that for all X � .Rd n BR/C we have

�..˘ \ .BR/C/[ X ;Q1/ D �.˘ \ .BR/C;Q1/: (8.66)

Since � is homogeneously stabilizing it follows that the limit

�.˘; i CQ1/ WD lim
r!1 � .˘ \ .Br.i//C; i CQ1/

exists almost surely for all i 2 Z
d . The random variables .�.˘; i CQ1/; i 2 Z

d /

form a stationary random field. It may be shown that the tail probability forR decays
exponentially fast.

Given �, for all � > 0, all X�R
d�RC, and all BorelA � R

d we let ��.X ; A/ WD
�.�1=dX ; �1=dA/: Let ˘�, � � 1, denote a homogeneous Poisson point process in
R
d � RC with intensity measure �dx � ds. Define the random measure ��� on R

d

by
�
�

�. � / WD ��.˘� \Q1; �/ (8.67)

and the centered version �
�

� WD�
�

� � EŒ���
. Modification of the stabilization
methods of Sect. 8.3 then yield Theorem 8.7; this is spelled out in [458].

For companion results for RSA packing with finite input per unit volume we refer
to [400].
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8.4.2 Convex Hulls

Let K � R
d be a compact convex body with non-empty interior and having a C3

boundary of positive Gaussian curvature x 7! Hd�1.x/, with x 2 @K . Letting ˘�

be a Poisson point process in R
d of intensity � we let K� be the convex hull of

K \˘�.
The random polytopeK�, together with the analogous polytope Kn obtained by

considering n i.i.d. uniformly distributed points in B1.o/, are well-studied objects
in stochastic geometry, with a long history originating with the work of Rényi and
Sulanke [421]. See the surveys of Affentranger [3], Buchta [88], Gruber [207],
Schneider [444, 446], and Weil and Wieacker [513], together with Chap. 8.2 in
Schneider and Weil [451]. See the overview in Sect. 7.1.

Functionals of K� of interest include its volume, here denoted Vd .K�/ and the
number of k-dimensional faces ofK�, here denoted fk.K�/; k 2 f0; 1; : : : ; d � 1g.
Note that f0.K�/ is the number of vertices ofK�: The k-th intrinsic volumes of K�

are denoted by Vk.K�/; k 2 f1; : : : ; d � 1g.
As seen in Sect. 7.1, we have for all d � 2 and all k 2 f0; : : : ; d � 1g that there

are constantsDk;d such that

lim
�!1��.d�1/=.dC1/Efk.K�/ D Dk;d

Z
@K

Hd�1.x/1=.dC1/dx:

and one may wonder whether there exist similar asymptotics for limiting variances.
This is indeed the case, which may be seen as follows.

Define the functional �.x;X / to be one or zero, depending on whether x 2 X is a
vertex in the convex hull of X . WhenKDB1.o/ the unit ball in R

d , by reformulat-
ing functionals of convex hulls in terms of functionals of re-scaled parabolic growth
processes in space and time, it may be shown that � is exponentially localizing [111].
The arguments are non-trivial and we refer to [111] for details. Taking into account
the proper scaling in space-time, a modification of Theorem 8.5 yields variance
asymptotics for Vd .K�/, namely

lim
�!1�.dC3/=.dC1/ varŒVd .K�/
 D 	2V ; (8.68)

where 	2V 2 .0;1/ is a constant. This adds to Reitzner’s central limit theorem
(Theorem 1 of [419]), his variance approximation varŒVd .K�/
 � ��.dC3/=.dC1/
(Theorem 3 and Lemma 1 of [419]), and Hsing [248], which is confined to d D 2.
The stabilization methods of Theorem 8.5 yield a central limit theorem for Vd .K�/.

Let k 2 f0; 1; : : : ; d � 1g. Consider the functional �k.x;X /, defined to be zero
if x is not a vertex in the convex hull of X and otherwise defined to be the product
of .k C 1/�1 and the number of k-dimensional faces containing x. Consideration
of the parabolic growth processes and the stabilization of �k in the context of such
processes (cf. [111]) yield variance asymptotics and a central limit theorem for the
number of k-dimensional faces of K�, yielding for all k 2 f0; 1; : : : ; d � 1g
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lim
�!1��.d�1/=.dC1/ varŒfk.K�/
 D 	2fk ; (8.69)

where 	2fk 2 .0;1/ is given as a closed form expression described in terms of
paraboloid growth processes. For the case k D 0, this is proved in [459], whereas
[111] handles the cases k > 0. This adds to Reitzner (Lemma 2 of [419]), whose
breakthrough paper showed varŒfk.K�/
 � �.d�1/=.dC1/.

Theorem 8.5 also yields variance asymptotics for the intrinsic volumes Vk.K�/

of K� for all k 2 f1; : : : ; d � 1g, namely

lim
�!1�.dC3/=.dC1/ varŒVk.K�/
 D 	2Vk ; (8.70)

where again 	2Vk is explicitly described in terms of paraboloid growth processes.
This adds to Bárány et al. (Theorem 1 of [46]), which shows varŒVk.Kn/
 �
n�.dC3/=.dC1/.

8.4.3 Intrinsic Dimension of High Dimensional Data Sets

Given a finite set of samples taken from a multivariate distribution in R
d , a fun-

damental problem in learning theory involves determining the intrinsic dimension
of the sample [156, 299, 427, 492]. Multidimensional data ostensibly belonging to a
high-dimensional space R

d often are concentrated on a smooth submanifold M or
hypersurface with intrinsic dimensionm, wherem<d . The problem of determining
the intrinsic dimension of a data set is of fundamental interest in machine learning,
signal processing, and statistics and it can also be handled via analysis of the
sums (8.1).

Discerning the intrinsic dimension m allows one to reduce dimension with
minimal loss of information and to consequently avoid difficulties associated
with the “curse of dimensionality”. When the data structure is linear there are
several methods available for dimensionality reduction, including principal com-
ponent analysis and multidimensional scaling, but for non-linear data structures,
mathematically rigorous dimensionality reduction is more difficult. One approach
to dimension estimation, inspired by Levina and Bickel [328] uses probabilistic
methods involving the k-nearest neighbour graph GN .k;X / defined in Sect. 8.1.2.

For all k D 3; 4; : : :, the Levina and Bickel estimator of the dimension of a data
cloud X � M, is given by

Omk.X / WD .card.X //�1
X
x2X

�k.x;X /;

where for all x 2 X we have
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�k.x;X / WD .k � 2/
0
@k�1X
jD1

log
Dk.x/

Dj .x/

1
A

�1

;

where Dj .x/ WD Dj .x;X /; 1 � j � k, are the distances between x and its j -th
nearest neighbour in X . We also define for all 
 > 0 the functionals

�k;
.x;X / WD .k � 2/

0
@k�1X
jD1

log
Dk.x/

Dj .x/

1
A

�1

1.Dk.x/ < 
/

and we put
Omk;
.X / WD .card.X //�1

X
x2X

�k;
.x;X /:

Let f�i gniD1 be i.i.d. random variables with values in a submanifold M and
put Xn WD f�igniD1. Levina and Bickel [328] argue that Omk.Xn/ approximates the
intrinsic dimension of Xn, i.e., the dimension of M. Indeed, Omk is an unbiased
estimator when the underlying sample is a homogeneous Poisson point process on
R
m, as seen by the next exercise.

Exercise 8.8. Recall that ˘1 is a homogeneous Poisson point process on R
m of

intensity 1. Conditional on Dk , the collection f.Dj .o;˘1/
Dk.o;˘1/

/mgk�1
jD1 is a sample from a

UnifŒ0; 1
-distribution. Deduce that

E�k.o;˘1/ D m.k � 2/E

0
@k�1X
jD1

log.1=Uj /

1
A

�1

D m:

Subject to regularity conditions on M and the density �, the papers [403, 526]
substantiate the arguments of Levina and Bickel and show (a) consistency of the
dimension estimator Omk.Xn/ and (b) a central limit theorem for Omk;
.Xn/, 
 fixed
and small, together with a rate of convergence. This goes as follows.

For all � > 0, recall that ˘� is a homogeneous Poisson point process on R
m of

intensity � . Recalling the notation (8.39) and (8.40), we put

V �k .�;m/ WD EŒ�k.o;˘�/
2


C �

Z
Rm



EŒ�k.o;˘� [ fug/�k.u; ˘� [ o/
 � .EŒ�k.o;˘�/
/

2
�
du

(8.71)

and

ı�k .�;m/ WD EŒ�k.o;˘�/
C �

Z
Rm

EŒ�k.o;˘� [ fug/� �k.o;˘�/
 du: (8.72)
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We put ı�k .m/ WD ı�k .1;m/: Let ˘�� be the collection f�1; : : : ; �N.�/g, where
�i are i.i.d. with density � and N.�/ is an independent Poisson random variable
with parameter �. Thus˘�� is a Poisson point process on M with intensity ��. By
extending Theorems 8.4 and 8.5 to C1 submanifolds M as in [403], we obtain the
following limit theory for the Levina and Bickel estimator.

Theorem 8.8. Let � be bounded away from zero and infinity on M. We have for all
k � 4

lim
�!1 j Omk.˘��/�mj D lim

n!1 j Omk.Xn/�mj D 0; (8.73)

where m D dim.M/ and where the convergence holds in probability. If � is a.e.
continuous then there exists 
1 > 0 such that if 
 2 .0; 
1/ and k � 7, then

lim
n!1n varŒ Omk;
.Xn/
 D 	2k .m/ WD m2

k � 3
� .ı�k .m//2 (8.74)

and as n ! 1,

n1=2. Omk;
.Xn/� E Omk;
.Xn//
d�! N.0; 	2k .m//: (8.75)

Remark. Theorem 8.8 adds to Chatterjee [116], who does not provide variance
asymptotics (8.74) and who considers convergence rates with respect to the weaker
Kantorovich–Wasserstein distance. Bickel and Yan (Theorems 1 and 3 of Sect. 4 of
[67]) establish a central limit theorem for Omk.Xn/ for linear M.

8.4.4 Clique Counts, Vietoris–Rips Complex

A central problem in data analysis involves discerning and counting clusters.
Geometric graphs and the Vietoris–Rips complex play a central role and both are
amenable to asymptotic analysis via stabilization techniques. The Vietoris–Rips
complex is studied in connection with the statistical analysis of high-dimensional
data sets [118], manifold reconstruction [119], and it has also received attention
amongst topologists in connection with clustering and connectivity questions of data
sets [112].

If X � R
d is finite and ˇ > 0, then the Vietoris–Rips complex Rˇ.X / is the

abstract simplicial complex whose k-simplices (cliques of order k C 1) correspond
to unordered .k C 1/ tuples of points of X which are pairwise within Euclidean
distance ˇ of each other. Thus, if there is a subset S of X of size k C 1 with all
points of S distant at most ˇ from each other, then S is a k-simplex in the complex.

Given Rˇ.X / and k 2N, letNˇ

k .X / be the cardinality of k-simplices in Rˇ.X /.
Let �ˇk .x;X / be the product of .k C 1/�1 and the cardinality of k-simplices

containing x in Rˇ.X /. Thus Nˇ

k .X / D P
x2X �

ˇ

k .x;X /. The value of �ˇk .x;X /
depends only on points distant at most ˇ from x, showing that ˇ is a radius of
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stabilization for �ˇk and thus �ˇk is trivially exponentially stabilizing (8.32) and
binomially exponentially stabilizing (8.58).

The next scaling result, which holds for C1 submanifolds M, links the large
scale behavior of the clique count with the density � of the underlying point set.
Let �i be i.i.d. with density � on the manifold M. Put Xn WD f�i gniD1: Let ˘� be a
homogeneous Poisson point process on R

m of constant intensity � , dx the volume

measure on M, and let V �
ˇ

k and ı�
ˇ

k be defined as in (8.39) and (8.40), respectively,
with � replaced by �ˇk . It is shown in [403] that a generalization of Theorems 8.4
and 8.6 to binomial input on manifolds yields:

Theorem 8.9. Let � be bounded on M; dim M D m: For all k 2 N and all ˇ > 0
we have

lim
n!1n�1N ˇ

k .n
1=mXn/ D

Z
M

EŒ�ˇk .o;˘�.x//
�.x/ dx in L2: (8.76)

If � is a.e. continuous and bounded away from zero on its support, assumed to be a
compact subset of M, then

lim
n!1n�1 varŒN ˇ

k .n
1=mXn/


D 	2k .m/ WD
Z

M
V �

ˇ

k .�.x//�.x/ dx �
�Z

M
ı�

ˇ

k .�.x//�.x/ dx

�2
(8.77)

and, as n ! 1

n�1=2.N ˇ

k .n
1=mXn/� ENˇ

k .n
1=mXn//

d�! N.0; 	2k .m//: (8.78)

This result extends Proposition 3.1, Theorems 3.13 and 3.17 of [394]. For more
details and for further simplification of the limits (8.76) and (8.77) we refer to [403].



Chapter 9
Introduction to Random Fields

Alexander Bulinski and Evgeny Spodarev

Abstract This chapter gives preliminaries on random fields necessary for under-
standing of the next two chapters on limit theorems. Basic classes of random
fields (Gaussian, stable, infinitely divisible, Markov and Gibbs fields, etc.) are
considered. Correlation theory of stationary random functions as well as elementary
nonparametric statistics and an overview of simulation techniques are discussed in
more detail.

9.1 Random Functions

Let .˝;A;P/ be a probability space and .S;B/ be a measurable space (i.e. we
consider an arbitrary set S endowed with a sigma-algebra B). We always assume
that ˝ ¤ ; and S ¤ ;.

Definition 9.1. A random element � W ˝ ! S is an AjB-measurable mapping
(one writes � 2 AjB), that is,

��1.B/ WD f! 2 ˝ W �.!/ 2 Bg 2 A for all B 2 B: (9.1)

If � is a random element, then for a given ! 2 ˝ , the value �.!/ is called a
realization of �.

We say that the sigma-algebra B consisting of some subsets of S is generated by
a system M of subsets of S if B is the intersection of all 	-algebras (of subsets of S )
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containing M [ fSg. One uses the notation B D 	fMg. For topological (or metric)
space S one usually takes B D B.S/where B.S/ is the Borel 	-algebra. Recall that
B.S/ is generated by all open subsets of S .

If S DR
n and B D B.Rn/where n2N, then random element � is called a random

variable when n D 1 and a random vector when n > 1. One also says that � is a
random variable with values in a state-space S (endowed with 	-algebra B) if (9.1)
holds.

Exercise 9.1. Let .˝;A/ and .S;B/ be measurable spaces and B D 	fMg with
M being a family of subsets of S . Prove that a mapping � W ˝!S is AjB-
measurable iff ��1.C / 2 A for any C 2 M.

Example 9.1 (Point process). Let N be the set of all locally finite simple point
patterns 'D fxi g1

iD1 � R
d , cf. Sect. 3.1.1. It means '.B/ WD j' \ Bj<1 for

any bounded set B 2 B.Rd / (one writes B 2 B0.Rd /) where jAj stands for the
cardinality of A and we assume that xi ¤ xj for i ¤ j . Let N be the minimal
	-algebra generated in N by all sets of the form f' 2 N W '.B/ D kg for k 2 ZC
and B 2 B0.Rd /. Take .S;B/ D .N ;N/. The point process � W ˝ ! N is
an AjN-measurable random element. Another possibility to define � is to use a
random counting measure

�.!;B/ D
1X
iD1

ıxi .!/.B/; ! 2 ˝; B 2 B0.Rd /; (9.2)

where ıx is the Dirac measure concentrated at a point x and a point process fxi .!/g
can be viewed as a support of this measure, see Sect. 4.1.1 (Fig. 9.1).

Example 9.2 (Random closed sets). Let F be the family of all closed sets in R
d .

Introduce 	-algebra F generated by the classes of sets FB D fA 2 F W A\B ¤ ;g
whereB � R

d is any compact. The random closed set (RACS) is a random element
X W ˝ ! F , X 2 AjF, cf. Sect. 1.2.1. In particular one can take X D [1

iD1Br.xi /
for fixed r > 0. Here Br.x/ is a closed ball in R

d of radius r > 0, centered at x,
and fxi g1

iD1 is a point process (xi D xi .!/). This corresponds to the special case of
the so called germ-grain models, cf. Example 1 of Sect. 4.1.3.

Now we consider a general definition of random functions.

Definition 9.2. Let T be an arbitrary index set and .St ;Bt /t2T a collection of
measurable spaces. A family � D f�.t/; t 2 T g of random elements �.t/ W ˝ ! St
defined on a probability space .˝;A;P/ and AjBt -measurable for each t 2 T is
called a random function (associated with .St ;Bt /t2T ).

In other words, � D �.!; t/ is defined on ˝ � T , �.!; t/ 2 St for any ! 2 ˝

and t 2 T , moreover, �.�; t/ 2 AjBt for each t 2 T . Usually .St ;Bt / D .S;B/ for
any t 2 T . The argument ! is traditionally omitted and one writes �.t/ instead of
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Fig. 9.1 A realization of a homogeneous Poisson point process with intensity � D 0:0001 (left),
� D 0:01 (middle) and a germ-grain model of equal discs based on a homogeneous Poisson point
process with intensity � D 0:0001

�.!; t/. A random function � D f�.t/; t 2 T g is called a stochastic process1 if T �
R and a random field if T � R

d where d > 1. If T D fx 2 R
d W ai � xi � bi ; i D

1; : : : ; d g (where ai < bi , i D 1; : : : ; d ), T D R
d or T D R

dC D Œ0;1/d , then
� D f�.t/; t 2 T g is called a random field .or process/ with continuous parameter
.time/. Whenever T D Z

d , T D Z
dC or T D N

d one calls � a random field .or
process/ with discrete parameter .time/.

In fact a random function � D f�.t/; t 2 T g can be viewed as a random element
with values in some functional space endowed with specified 	-algebra. Set ST DQ
t2T St , i.e. we consider the Cartesian product of spaces St , t 2 T . Thus x 2 ST

is a function such that x.t/ 2 St for each t 2 T . Introduce, for t 2 T and Bt 2 Bt ,
the elementary cylinder in ST as follows

CT .Bt / WD fx 2 ST W x.t/ 2 Bt g:

This set contains all functions x 2 ST that go through the “gate” Bt (see Fig. 9.2).

Definition 9.3. A cylindric 	-algebra BT is a 	-algebra generated in ST by the
collection of all elementary cylinders. One writes BT D N

t2T Bt and if Bt D B for
all t 2 T then one uses the notation BT .

Exercise 9.2. A family � D f�.t/; t 2 T g is a random function defined on a
probability space .˝;A;P/ and associated with a collection of measurable spaces
.St ;Bt /t2T iff, for ! 2 ˝ , the mapping ! 7�! �.!; �/ is AjBT -measurable. Hint:
use Exercise 9.1.

For any fixed ! 2 ˝ , the function �.!; t/, t 2 T , is called a trajectory of �.
Thus in view of Exercise 9.2 the trajectory is a realization of the random element �
with values in a space .ST ;BT /.

1The notation T comes from “time”, since for random processes t 2 T is often interpreted as the
time parameter.
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t

Bt

T

Fig. 9.2 Trajectories going through a “gate” Bt

Definition 9.4. Let .S;B/ be a measurable space and � W ˝!S a random
element defined on a probability space .˝;A;P/. The distribution (or law) of �
is a probability measure P� on .S;B/ such that P�.B/ D P.��1.B//, B 2 B.

Alternatively the notation Law.�/ or P��1 can be used.

Lemma 9.1. Any probability measure � on .S;B/ can be considered as a distribu-
tion of some random element �.

Proof. Take ˝ D S , A D B, P D � and set �.!/ D ! for ! 2 ˝ . ut
Recall the following basic concept.

Definition 9.5. Let .St ;Bt /t2T be a collection of measurable spaces. A family � D
f�.t/; t 2 T g consists of independent random elements �.t/ W ˝ ! St defined on
a probability space .˝;A;P/ if, for any n 2 N, ft1; : : : ; tng � T , Bk 2 Btk where
k D 1; : : : ; n, one has

P.�.t1/ 2 B1; : : : ; �.tn/ 2 Bn/ D
nY

kD1
P.�.tk/ 2 Bk/: (9.3)

Otherwise one says that � consists of dependent random elements.

Independence of �.t/, t 2 T , is equivalent to the statement that 	-algebras At WD
f.�.t//�1.Bt /g are independent. For the sake of simplicity we assume that a single
random element forms an “independent family” of random elements. We use the
standard notation fC1; : : : ; Cng WD \n

kD1Ck in (9.3) for events Ck D f�.tk/ 2 Bkg.
Let us consider the problem of existence of random functions with some prede-

fined properties. We start with the following result, see for example [283, p. 93].

Theorem 9.1 (Lomnicki, Ulam). Let .St ;Bt /t2T be an arbitrary family of measur-
able spaces and �t be a probability measure on .St ;Bt / for every t 2 T . Then there
exists a random function � D f�.t/; t 2 T g (associated with .St ;Bt /t2T ) defined on
a probability space .˝;A;P/ and such that
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1. � consists of independent random elements,
2. P�.t/ D �t on .St ;Bt / for each t 2 T .

Many useful classes of random functions are constructed on the basis of
independent random elements, see Examples in Sect. 9.2.

Exercise 9.3. Let � D f�.t/; t 2 T g be a random function defined on .˝;A;P/
and associated with a family of measurable spaces .St ;Bt /t2T . For any finite set
ft1; : : : ; tng � T consider a column vector � D .�.t1/; : : : ; �.tn//

> where > stands
for transposition. Prove that � is an AjBt1;:::;tn -measurable random element with
values in the space St1;:::;tn WD St1 � : : : � Stn endowed with 	-algebra Bt1;:::;tn
generated by “rectangles” B1 � : : : � Bn where Bk 2 Btk , k D 1; : : : ; n. Hint:
use Exercise 9.1.

Taking into account the last exercise we can give

Definition 9.6. Let � D f�.t/; t 2 T g be a random function defined on .˝;A;P/
and associated with a family of measurable spaces .St ;Bt /t2T . For n 2 N and
ft1; : : : ; tng � T we call the finite-dimensional distribution of a random function �
the law Pt1;:::;tn of the random vector .�.t1/; : : : ; �.tn//> on .St1;:::;tn ;Bt1;:::;tn /. Thus

Pt1;:::;tn .C / D P..�.t1/; : : : ; �.tn//> 2 C/; C 2 Bt1;:::;tn :

In particular for C D Bt1 � : : : � Btn where Bk 2 Btk , k D 1; : : : ; n, we have

Pt1;:::;tn .B1 � : : : �Bn/ D P.�.t1/ 2 B1; : : : ; �.tn/ 2 Bn/: (9.4)

Theorem 9.1 shows that one can construct a random function (consisting of
independent random elements) with finite-dimensional distributions Pt1;:::;tn for
which expressions in (9.4) are determined by (9.3). We also mention in passing the
important Ionescu–Tulcea Theorem (see for example [472, p. 249]) permitting to
define a sequence of random elements .Xn/n2N taking values in arbitrary measurable
spaces .Sn;Bn/ and having the finite-dimensional distributions specified by means
of probability kernels.

Under wide conditions, one can also ensure the existence of a family of depen-
dent random elements. Observe that the finite-dimensional distributions Pt1;:::;tn of a
random function � D f�.t/; t 2 T g associated with a family of measurable spaces
.St ;Bt /t2T possess (in nontrivial case jT j > 1) the important properties listed in

Exercise 9.4. Show that for any integer n � 2, ft1; : : : ; tng � T , Bk 2 Btk ,
k D 1; : : : ; n, and an arbitrary permutation .i1; : : : ; in/ of .1; : : : ; n/ the consistency
conditions are satisfied:

Pt1;:::;tn .B1 � : : : � Bn/ D Pti1�:::�tin .Bi1 � : : : �Bin/; (9.5)

Pt1;:::;tn .B1 � : : : � Bn�1 � Stn/ D Pt1;:::;tn�1 .B1; : : : ; Bn�1/: (9.6)
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To formulate the fundamental theorem on the existence of a random function with
given finite-dimensional distributions, we restrict ourselves to the case of .St ;Bt / D
.Rm;B.Rm// for some m 2 N. A more general version of Theorem 9.2 (for the
so-called Borel spaces) can be found, e.g., in [102, p. 26] and [283, p. 92].

Theorem 9.2 (Kolmogorov). Let probability measures Pt1;:::;tn be given on spaces
.Rm� : : :�R

m;B.Rm/˝ : : :˝B.Rm// for any ft1; : : : ; tng � T and n 2 N. Assume
that they satisfy the consistency conditions. Then there exists a random function
� D f�.t/; t 2 T g defined on a probability space .˝;A;P/ and such that its finite-
dimensional distributions coincide with Pt1;:::;tn .

Note that Theorem 9.2 provides the necessary and sufficient conditions for
existence of a random function (defined on an arbitrary T and taking values in
a Euclidean space for each t 2 T ) with given finite-dimensional distributions.
Moreover, in this case it can be convenient to verify the consistency conditions by
means of the characteristic functions of probability measures on Euclidean spaces.
Recall that for any n 2 N and ft1; : : : ; tng � T , the characteristic function of
the random vector �t1;:::;tn D .�.t1/; : : : ; �.tn//

> (or, equivalently, of the finite-
dimensional distribution Pt1;:::;tn of �) is

't1;:::;tn .�/ D E expfi h�; �t1;:::;tnig; � D .�1; : : : ; �n/
> 2 R

mn; i 2 D �1; (9.7)

h�; �i being a scalar product in R
mn.

Exercise 9.5. Let 't1;:::;tn .�1; : : : ; �n/ be the characteristic function of the proba-
bility measure Pt1;:::;tn on .Rmn;B.Rmn// where ft1; : : : ; tng � T and �k 2R

m,
k D 1; : : : ; n. Prove that consistency conditions (9.5) and (9.6) are equivalent to
the following ones: given integer n � 2, for each � D .�1; : : : ; �n/

> 2 R
mn and any

permutation .i1; : : : ; in/ of .1; : : : ; n/ one has

'ti1 ;:::;tin .�i1; : : : ; �in/ D 't1;:::;tn .�1; : : : ; �n/;

't1;:::;tn .�1; : : : ; �n�1; o/ D 't1;:::;tn�1 .�1; : : : ; �n�1/; o D .0; : : : ; 0/> 2 R
m:

Let .S;B/ be a measurable space where S is a group with addition operation.
Assume that �A D f�x W x 2 Ag 2 B for any A 2 B. This holds, for instance, if
B D B.Rd /.

Definition 9.7. One says that a measure � on .S;B/ is symmetric if �.�A/ D
�.A/ for all A 2 B. A random element � with values in S is symmetric if P� is
symmetric. In other words, P�� D P� .

Exercise 9.6. Prove that a real-valued random function � D f�.t/; t 2 T g is
symmetric iff all its finite-dimensional distributions are symmetric.

Let T be a metric space. For Sect. 9.7.4, we need the following
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Definition 9.8. Let � D f�.t/; t 2 T g be a real-valued random function such that
Ej�.t/jp < 1 for all t 2 T and some p � 1. One says that � is Lp-continuous

if �.s/
Lp�! �.t/ as s ! t for each t 2 T , i.e., Ej�.s/ � �.t/jp ! 0. It is called

Lp-separable if there exists a countable subset T0 � T such that for any t 2 T one

can find a sequence .tn/ � T0 with �.tn/
Lp�! �.t/ as n ! 1.

Remark 9.1. If T is a separable metric space and � is Lp-continuous, then � is
Lp-separable.

9.2 Some Basic Examples

In general the construction of a random function involving the Kolmogorov theorem
is not easy. Instead one can employ, for example, the representations of the form
�.t/ D g.t; �1; �2; : : :/, t 2 T , where g is an appropriately measurable function and
�1; �2; : : : are random elements already known to exist.

9.2.1 White Noise

Definition 9.9. A random function �D f�.t/; t 2 T g defined on .˝;A;P/ is called
white noise if �.t/, t 2 T , are independent and identically distributed (i.i.d.) random
variables.

The white noise exists due to Theorem 9.1. Alternatively, one can easily verify
consistency conditions, as all finite-dimensional distributions are products of the
marginal distributions, and apply Theorem 9.2. Note that white noise is employed
to model noise in images, such as salt-and-pepper noise (�.t/ 	 Ber.p/, t 2 T )
for binary images or Gaussian white noise (�.t/ 	 N.0; 	2/, 	2 > 0) for greyscale
images, see for example [520, pp. 16–17].

9.2.2 Gaussian Random Functions

The famous simple (but important) example of a random function with finite-
dimensional distributions given explicitly is that of a Gaussian one.

Definition 9.10. A real-valued random function � D f�.t/; t 2 T g is called
Gaussian if all its finite-dimensional distributions Pt1;:::;tn are Gaussian, i.e. for
any n 2 N and ft1; : : : ; tng � T the distribution of the random vector �t1;:::;tn D
.�.t1/; : : : ; �.tn//

> is normal law in R
n with mean �t1;:::;tn and covariance matrix

˙t1;:::;tn . In other words, �� 	 N.�� ;˙�/ where � D .t1; : : : ; tn/
>. Here we use the
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vector � instead of indices t1; : : : ; tn. This means (see (9.7) with m D 1) that the
characteristic function of �� is provided by formula

'�.�/ D exp

�
ih�;�� i � 1

2
h˙��; �i

	
; � 2 R

n; i 2 D �1: (9.8)

One can verify that �� D .E�.t1/; : : : ;E�.tn//> and˙� D .cov.�.ti /; �.tj ///ni;jD1:
If ˙� is nondegenerate, then P� has the density

f�.x/ D 1

.2�/n=2
p

det˙�

exp

�
�1
2
.x � ��/

>˙�1
� .x � �� /

	
; x 2 R

n: (9.9)

Exercise 9.7. Show that � is a Gaussian vector in R
n iff for any nonrandom vector

c 2 R
n the random variable hc; �i is normally distributed.

As an example, we mention a Gaussian field with generalized Cauchy covariance
recently studied in [333]. It is a translation invariant (i.e., stationary, see Sect. 9.5)
Gaussian field � D f�.t/; t 2 R

d g with zero mean (E �.t/ D 0, t 2 R
d ) and

covariance C.t/ D E .�.o/�.t// given by

C.t/ D .1C k tk˛2 /�ˇ; t 2 R
d ; (9.10)

where ˛ 2 .0; 2
, ˇ > 0 and k � k2 is the Euclidean norm in R
d . Note that

(9.10) has the same functional form as the characteristic function of the generalized
multivariate Linnik distribution first studied in [13]; � becomes a Gaussian field
with usual Cauchy covariance when ˛ D 2 and ˇ D 1.

Gaussian random functions are widely used in applications ranging from mod-
elling the microstructure of surfaces in material science (for example the surfaces
of metal or paper, see Fig. 9.3) to models of fluctuations of cosmic microwave
background radiation (see Fig. 9.4, [271]).

In a way similar to (9.8) we can introduce a Gaussian random field with values in
R
m. In this case, the distribution of �t1;:::;tn is nm-dimensional Gaussian. A random

field � D f�.t/; t 2 T g where �.t/ takes values in C is called Gaussian complex-
valued if � D f.Re �.t/; Im �.t//>; t 2 T g is a Gaussian field with values
in R

2, i.e. the vector .Re �.t1/; Im �.t1/; : : : ;Re �.tn/; Im �.tn//
> has the normal

distribution in R
2n for any n 2 N and ft1; : : : ; tng � T .

9.2.3 Lognormal and �2 Random Functions

A random function � D f�.t/; t 2 T g is called lognormal if �.t/ D e�.t/ where � D
f�.t/; t 2 T g is a Gaussian random field. A random function � D f�.t/; t 2 T g is
called �2 if �.t/ D k�.t/k22, t 2 T , where � D f�.t/; t 2 T g is a Gaussian random
field with values in R

n such that �.t/ 	 N.o; I/, t 2 T , I denotes the .n�n/-identity
matrix. Evidently, �.t/ is �2n-distributed for all t 2 T .
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Fig. 9.3 Paper surface (left) and simulated Gaussian random field (right) based on the estimated
data (courtesy of Voith Paper, Heidenheim) E�.t/ D 126, cov.�.0/; �.t// D 491 expf�k tk2=56g

Fig. 9.4 Fluctuations of cosmic microwave background (CMB) radiation (measured in 10�6 K)
around the mean value of 2:725K. The image covers the whole sky with 5 years of WMAP
(Wilkinson Microwave Anisotropy Probe, 2007) data (courtesy of H. Janzer)

9.2.4 Cosine Fields

Let � be a random variable uniformly distributed on Œ0; 1
. Consider a random field
� D f�.t/; t 2 R

d g where �.t/ D p
2 cos.2�� C ht; �i/, � being an R

d -valued
random vector independent of �, d � 1. Each realization of � is a cosine wave
surface.

Exercise 9.8. Let �1; �2; : : : be independent cosine waves. Find the weak limits for
finite-dimensional distributions of the fields f 1p

n

Pn
kD1 �k.t/; t 2 R

d g as n ! 1.

9.2.5 Shot-Noise Random Fields and Moving Averages

Let ˘� D fxi g be a homogeneous Poisson point process with intensity � > 0 (see
Sect. 3.1.2). Introduce a shot-noise field

�.t/ D
X
xi2˘�

g.t � xi /; t 2 R
d ; (9.11)
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Fig. 9.5 Construction of a shot-noise process in R

(see Fig. 9.5 and Fig. 9.6 (left)) where the series converges in L1.˝;A;P/ and
g W Rd ! R is a deterministic response function such that

Z
Rd

jg.x/j dx < 1: (9.12)

Exercise 9.9. Show that � in (9.11) is a well-defined random field. Prove that
E�.t/2 < 1 for any t 2 R

d if

Z
Rd

g2.x/ dx < 1: (9.13)

A large class of response functions can be constructed as follows. Take g.x/ D
K.kxk2=a/ where the kernel K W R ! RC is a probability density function with
compact support supp K , i.e. the closure of the set fx 2 R W K.x/ > 0g. For
instance, one can take for K the Epanechnikov kernel (Fig. 9.7)

K.x/ D 3

4
.1 � x2/1.x 2 Œ�1; 1
/; x 2 R;

or the bisquare kernel

K.x/ D 15

16
.1 � x2/21.x 2 Œ�1; 1
/; x 2 R:

However, kernels with unbounded support such as the Gaussian kernel

K.x/ D 1p
2�

e�x2=2; x 2 R;

can be used as well.
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Fig. 9.6 Examples of simulated realizations of a shot-noise random field (left), Gaussian white
noise (middle) and a Gaussian random field with a non-trivial covariance function (right)

Fig. 9.7 Epanechnikov kernel (left), bisquare kernel (middle) and Gaussian kernel (right)

Exercise 9.10. Let � be a shot-noise field (9.11). Show that the characteristic
function of �t1;:::;tn D .�.t1/; : : : ; �.tn//

>, t1; : : : ; tn 2 R
d , n 2 N is given by

'�t1;:::;tn .s/ D exp

�
�

Z
Rd

.eihs;gt1;:::;tn .u/i � 1/ du

	
; s 2 R

n;

where gt1;:::;tn .u/ D .g.t1 � u/; : : : ; g.tn � u//>.

Definition by formula (9.11) extends to comprise random response functions (see
for example [96, pp. 39–43] or [343, p. 31]) and (non-homogeneous)point processes
fxi g more general than ˘�. Note that a shot-noise field (9.11) can be written as a
stochastic integral

�.t/ D
Z
Rd

g.t � x/˘�.dx/; t 2 R
d ;

where ˘�.�/ is interpreted as a random Poisson counting measure defined in (9.2)
(see [489, Chap. 7]). Therefore it is a special case of moving averages:

�.t/ D
Z
E

g.t; x/�.dx/; t 2 T: (9.14)
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Here �.�/ is a random independently scattered measure on a measurable space
.E; E/, i.e., for each n 2 N and any pairwise disjoint B1; : : : ; Bn 2 E , the random
variables �.B1/; : : : ; �.Bn/ are independent, and g W T �E ! R is a deterministic
function. In general � can take the value 1. Thus we only consider B1; : : : ; Bn
with �.Bi / < 1 a.s., i D 1; : : : ; n. The integral in (9.14) is understood to converge
(for certain functions g) in probability if the measure � is infinitely divisible; for
more details see Sect. 9.7.3. In particular, one can use the Gaussian white noise
measure � in (9.14), that is, an independently scattered random measure defined on
.E; E/ D .Rd ;B.Rd // and such that �.B/ 	 N.o; �d .B// for B 2 Bo.Rd / where
�d .B/ denotes the Lebesgue measure (or volume) of B .

Moving averages (MA-processes) with discrete parameter space T D Z are
widely used in econometrics, see for example [81, 87, 277]. The case of T D Z

d ,
d > 1, is considered, for example in [391]; see also references therein.

9.2.6 Random Cluster Measures

Let f�; �i ; i 2 Ng be a family of i.i.d. random measures defined on .Rd ;B.Rd //
and independent of a Poisson spatial process ˘� D fxi g with intensity measure �
in R

d . Introduce a random cluster measure

X.!;B/ WD
X
i

�i .!;B C xi .!//; ! 2 ˝; B 2 B.Rd /; (9.15)

taking values in RC. Thus we have a random function defined on a set T D B.Rd /.
Due to the explicit construction of the process ˘� (see Theorem 4.3) we can
consider (9.15) as the convenient notation for the following series

1X
mD1

�mX
jD1

�mj .!;B C �mj /; ! 2 ˝; B 2 B.Rd / : (9.16)

Here�mj are independent copies of�which are independent of the array of random
vectors .�m; �mj /m;j2N used in (4.4) to construct˘�. Cluster random measures find
various applications in astronomy, ecology, etc., see for example [325]. Simulation
problems of such measures are discussed for example in [86].

9.2.7 Stable Random Functions

Definition 9.11. A nondegenerate random vector � D .�1; : : : ; �n/
> taking values

in R
n is called stable if for any k 2 N there are some c.k/ � 0 and d.k/ 2 R

n such
that



9 Introduction to Random Fields 289

Law.�1 C : : :C �k/ D Law.c.k/�C d.k//

where �1; : : : ; �k are independent copies of �.

In this case c.k/D k1=˛ for some ˛ 2 .0; 2
, see for example [432, Corol-
lary 2.1.3]. Then vector � D .�1; : : : ; �n/

> is said to have an ˛-stable distribution.
It is known (see for example [432, Theorem 2.3.1]) that � is an ˛-stable random
vector, 0 < ˛ < 2, iff its characteristic function '�.s/ D E expfihs; �ig, s 2 R

n,
has the form

'�.s/ D exp

�
ihb; si �

Z
Sn�1

jhs; uij˛ .1 � i sgn.hs; ui/~n.˛; s; u// � .du/

	

where Sn�1 is the unit sphere in R
n, b 2 R

n, � (the spectral measure of �) is a finite
measure on B.Sn�1/ and

~n.˛; s; u/ D
(

tan �˛
2
; ˛ ¤ 1;

� 2
�

log jhs; uij; ˛ D 1:

The pair .b; � / is unique. For ˛ > 1, the distribution of � is centered if b D 0.
For ˛ 2 .0; 2/ the distribution of � is symmetric iff there exists a unique symmetric
measure � on S

n�1 such that

'�.s/ D exp

�
�
Z
Sn�1

jhs; uij˛� .du/

	
; s 2 R

n;

see [432, Theorem 2.4.3]. For nD 1, � is an ˛-stable random variable with
characteristic function '�.s/ D exp fibs � 	˛ jsj˛ .1 � iˇ sgn.s/~1.˛; s//g and

~1.˛; s/ D
(

tan �˛
2
; ˛ ¤ 1;

� 2
�

log jsj; ˛ D 1:

Here 	 > 0, ˇ 2 Œ�1; 1
, b 2 R are the parameters of scale, skewness and shift,
respectively. For short, one writes � 2 S˛.	; ˇ; b/. A geometric approach to the
study of stable laws is given in recent papers [143–145, 364, 365].

Exercise 9.11. Show that 2-stable distributions (i.e. ˛ D 2) are Gaussian.

A random function � D f�.t/; t 2 T g is called ˛-stable if all its finite-
dimensional distributions are ˛-stable. Applications of such random functions range
from physics to finance and insurance; see for example [287, 411, 496]. Since
˛-stable laws are heavy-tailed and thus have finite absolute moments of order
p < ˛, their variance does not exist (here we exclude the Gaussian case ˛ D 2).
This explains the fact that they are often used to model random phenomena with
very irregular trajectories (in time and/or in space) and very high volatility such as
stock prices, (total) claim amounts in insurance portfolios with dangerous risks, etc.
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For various aspects of the theory of ˛-stable random functions we refer to
[432, 496]. Apart from ˛-stability, other notions of stability (e.g., max-stability and
operator-stability) can be used to generate further classes of stable random fields,
see for example [68, 217–219, 278, 422, 439, 486, 487, 506].

9.2.8 Random Fields Related to Random Closed Sets

Let X be a random closed set in R
d (cf. Chap. 1.2.1). Put �.t/ D g.X \ .W � t//,

t 2 R
d , whereW 2 B0.Rd / is a scanning observation window and g W B0.Rd / ! R

is a measurable geometric functional, W 
 t D fs � t; s 2 W g. Then � D
f�.t/; t 2 R

d g is a random field describing the geometric properties of X . For
instance, one can take W D Br.0/, g.�/ D �d .�/. Then �.t/ is the volume of a
part of X observed within the r-neighbourhood of t 2 R

d . For random sets X with
realizations belonging to a certain class of sets (say, to an extended convex ring, see
for example [451, p. 12]), other choices of g are possible, such as intrinsic volumes
(Minkowski functionals) or their linear combinations (e.g., Wills functional). In the
latter case, g is defined on the convex ring of subsets of Rd and not on the whole
B0.Rd /.

9.3 Markov and Gibbs Random Fields

This section deals with a class of random fields on finite graphs which are widely
used in applications, for instance, in image processing. These are Markov or Gibbs
fields that allow for a complex dependence structure between neighbouring nodes
of the graph. After defining the Markov property of random fields on graphs, energy
and potential are introduced which are essential to Gibbs fields. Some basic results
such as the Averintsev–Clifford–Hammersley Theorem are given. An example of
Gaussian Markov fields is considered in more detail.

9.3.1 Preliminaries

There are different approaches to adjusting the techniques of conditional probabili-
ties to random fields. It was developed for stochastic processes and is indispensible,
e.g., for the theory of Markov processes and martingales (submartingales, etc.).
The latter have important applications, say, in stochastic calculus and financial
mathematics. The multiindex generalizations of martingales are considered, e.g. in
[296].

Extensions of the Markov property to the multiparameter case coming from
statistical physics were studied intensively starting from 1960s. It is worthwhile
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to mention the powerful Dobrushin–Lanford–Ruelle construction of probability
measures on a space of configurations (on a functional space) using the family
of conditional distributions subject to the corresponding consistency conditions.
This is a special interesting branch of the modern probability theory leading to the
mathematical study of Gibbs random fields with numerous applications in statistical
physics, see, for example [184]. As an elementary introduction to this topic we
provide a simple proof of the classical Averintsev–Clifford–Hammersley Theorem2

clarifying the relationship between Markov and Gibbs random fields.
Let G D .V;E/ be a finite undirected graph with the set of vertices (nodes or

sites) V and the set of edges E. We say that two vertices are neighbours if there
exists an edge e 2 E which connects them (the case jVj D 1 is trivial, jVj stands for
the cardinality of the set of vertices V). For nonempty set A � V let its boundary be

@A D fall vertices v 2 V n A that have a neighbour in Ag:

Thus @V D ;. It is convenient to put @; D V. Obviously @A D [t2A @ftg n A (see
Fig. 9.8 for examples).

Let � D f�.t/; t 2 Vg be a random field defined on a probability space .˝;A;P/
such that each random variable �.t/ takes values in a finite or countable set S .
Further on we assume that �.t/ 2 A j B where B D 2S , i.e. B is the collection of
all subsets of S (equivalently f�.t/ D xg 2 A for any x 2 S and each t 2 V).

Definition 9.12. A random field � D f�.t/; t 2 Vg is called Markov
.corresponding to the graph G/ if for each t 2 V and arbitraryx D fxt ; t 2Vg 2SV

one has

P.�.t/ D xt j�.s/D xs for s 2 V n ftg/
D P.�.t/ D xt j�.s/D xs for s 2 @ftg/ (9.17)

whenever P.�.s/ D xs for s 2 V n ftg/ ¤ 0.

Thus, to calculate the left-hand side of (9.17) one can specify the values of the
field � only in the neighbourhood of the site t . For x D fxt ; t 2 Vg 2 SV and
nonempty T � V, set xT WD fxt ; t 2 T g 2 ST . If � D f�.t/; t 2 Vg is a random
field then we write �T WD f�.t/; t 2 T g and �T D xT means �.t/ D x.t/ for
each t 2T when T ¤ ;. We put f�T D xT g D ˝ if T D ;. Thus for @ftg D ;
relation (9.17) implies that �.t/ is independent of f�.s/; s 2 Vn ftgg. Moreover, for
V D ftg, a single random variable �.t/ can be viewed as a Markov random field.

Formula (9.17) can be written in a more convenient form, namely,

P.�.t/ D xt j �Vnftg D xVnftg/ D P.�.t/ D xt j �@ftg D x@ftg/: (9.18)

2The important contributions of other researchers to establishing this result are discussed in [520,
pp. 69–70].
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a b

Fig. 9.8 (a) @ftg D fs1; s2; s3; s4; s5g, @fsg D ;; (b) @fug D ft1; t2g, @fvg D ft3; t4; t5g,
@fwg D ft6; t7; t8; t9g

For a Markov random field � introduce the local characteristic �t .x/ as the right-
hand side of (9.18). A family f�t .x/gt2V) is called the local specification.

Assume that 	f�T g D f;;˝g if T D ;.

Exercise 9.12. Show that (9.18) is equivalent to the following relation:

E.f .�.t// j �Vnftg/ D E.f .�.t// j �@ftg/ (9.19)

for any bounded function f W S ! R.

Exercise 9.13. Let GA D .A;EA/ be a subgraph of G D .V;E/, i.e. A � V and
EA consists of edges belonging to E and connecting the vertices ofA only. Prove the
following statement: if � D f�.t/; t 2 Vg is a Markov random field corresponding
to G and @A D ; then �A D f�.t/; t 2 Ag is a Markov random field corresponding
to GA.

Exercise 9.14. Let �D f�.t/; t 2Vg be a Markov random field .corresponding to
a graph G/ and M D ft 2 V W @ftg D ;g. Show that �M D f�.t/; t 2M g is a
collection of independent random variables and �M is independent of the family
�VnM .

Exercise 9.15. Let � D f�.t/; t 2 Vg be a Markov random field .corresponding
to a graph G/ defined on a probability space .˝;A;P/. Let f�.s/; s 2Ug be a
family of independent random variables taking values in S and defined on the
same probability space. Assume also that f�.t/; t 2 Vg and f�.s/; s 2Ug are
independent. Prove that f�.t/; t 2 V [ Ug is a Markov random field corresponding
to the enlarged graph .V [ U;E/, that is, we add the vertices U as singletons to the
collection V and do not introduce the new edges.

Exercise 9.16. Let G D .V;E/ and QG D .V; QE/ be graphs with the same sets of
vertices but different sets of edges. Let � D f�.t/; t 2 Vg be a Markov random field
corresponding to G. Is � a Markov random field corresponding to QG?

Remark 9.2. One uses also the system of neighbourhoods Ut for t 2 V (such that
t … Ut and if s 2 Ut then t 2 Us) to define a Markov field, see, for example [84,520].
Namely, the analogue of (9.18) is employed with @ftg replaced by Ut . Evidently we
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obtain an equivalent definition if we introduce the graph such that s is a neighbour of
t iff s 2 Ut . Any field �D f�.t/; t 2 Vg is Markovian when Ut D V for each t 2 V.
However, interesting (e.g., for modelling) Markov fields are those with relatively
small neighbourhoods for each site.

Any element ! 2SV will be called a configuration. Let � be a random field
defined on some probability space and such that Law.�/ D Q on .SV;A/. Introduce
Q�.s; !/ WD !.s/ for s 2 V and ! 2 SV (i.e. Q� is the identical map on SV), then
Law. Q�/ D Law.�/ D Q. Thus the study of the random field � and the configurations
is in a sense equivalent.

9.3.2 Energy and Potential

Let the energy E W SV ! R be an arbitrary function.

Definition 9.13. A Gibbs measure (or Gibbs state) P is defined on a space .SV;A/
as follows: P.;/ D 0 and

P.B/ D 1

Z

X
!2B

expf�E.!/g; B 2 A; B ¤ ;; (9.20)

where the normalizer (partition function)

Z D
X
!2SV

expf�E.!/g (9.21)

is assumed finite.3

Note that in 1902 Gibbs introduced the probability distribution on the configura-
tion space SV by formula

PT.!/ D 1

ZT
exp

�
�E.!/

T

	
(9.22)

where T > 0 is the temperature, E is the energy of configuration ! and ZT is the
normalizing constant. To simplify the notation we omit T in (9.20), that is we set
the energy to be 1

TE. One also writes the HamiltonianH instead of E.
Let Q be a probability measure on .SV;A/. Introduce the entropy

H.Q/ WD �
X
!2SV

Q.!/ logQ.!/

3Clearly Z is finite if S is a finite set.
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and mean energy E.E;Q/ WD P
!2SV E.!/Q.!/, where 0 log 0 WD 0. If S is

countable we assume that the series are absolutely convergent.

Exercise 9.17 (Gibbs variational principle). Show that the free energy
E.E;Q/� H.Q/ satisfies the inequality

E.E;Q/ � H.Q/ � � logZ

with equality achieved only forQDP where P andZ are given in (9.20) and (9.21),
respectively.

Usually the energy is described by means of the potential function expressing the
interaction in subsystems.

Definition 9.14. A potential is a real-valued function VA.!/ defined for all A � V

and ! 2 SV, such that V;.�/ D 0. The energy of a configuration ! is given by

E.!/ WD
X
A	V

VA.!/ (9.23)

where “�” always denotes non-strict inclusion.

Thus the Gibbs measure corresponding to energy E is defined by means of its
potential. To see that arbitrary energy can be represented according to (9.23) with
appropriate potential we use (as in [201]) the following well-known result.

Lemma 9.2 (Möbius formula). Let f and g be two functions defined on all
subsets of a finite set C . Then the following formulae are equivalent:

f .A/ D
X
B	A

.�1/jAnBjg.B/ for all A � C; (9.24)

g.A/ D
X
B	A

f .B/ for all A � C: (9.25)

Proof. Let (9.24) hold. The change of the order of summation leads to the relations

X
B�A

f .B/ D
X
B�A

X
D�B

.�1/jBnDjg.D/ D
X
D�A

g.D/
X

BWD�B�A

.�1/jBnDj

D
X
D�A

g.D/
X

F�AnD

.�1/jF j D
X
D�A

g.D/

jAnDjX
kD0

 
jA nDj
k

!
.�1/k D g.A/

as
Pm

kD0
�
m

k

�
.�1/k D .1 � 1/m D 0 for m2N and

�
0

0

�
.�1/0 D 1 (in the case

D D A).
We used F WD BnD and took into account that there exist

�jAnDj
k

�
sets F � AnD

such that jF j D k for k D 0; : : : ; jA nDj, see Fig. 9.9.
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D F

B
A

Fig. 9.9 Illustration to the proof of Lemma 9.2 (F D B nD, jF j D k)

In the same manner (9.25) implies (9.24). ut
Now we turn to (9.23). Fix an arbitrary element o 2 S and introduce the vacuum

configuration o D f!.t/; t 2 Vg 2 SV such that !.t/ D o for all t 2V. For a set
B � V and ! 2 SV define (see Fig. 9.10) the configuration !B letting

!B.t/ D
(
!.t/; t 2 B;
o; t 2 V n B: (9.26)

In particular !V D ! and !; D o.
Notice that if we take ECc in (9.20) instead of E for constant c, then the measure

P will be the same (the new normalizing factor ecZ arises instead of Z). Therefore
w.l.g. we can assume that E.o/ D 0, that is, “the energy of the vacuum state is zero”.
Now introduce the canonical potential4

VA.!/ WD
X
B	A

.�1/jAnBjE.!B/: (9.27)

Corollary 9.1. Let E W SV ! R be a function such that E.o/ D 0 where o 2 SV.
Then, for the canonical potential defined by (9.27), relation (9.23) holds.

Proof. For each (fixed) ! 2SV consider the set function g.B/ WD E.!B/ where
B 2 A. Note that V;.!/ D .�1/0E.!;/ D E.o/ D 0. As !V D ! we come to
(9.23) by virtue of Lemma 9.2. ut
Lemma 9.3. A probability measure P on a space .SV;A/ can be viewed as the
Gibbs measure corresponding to some .canonical/ potential iff

P.A/ > 0 for any A 2 A; A ¤ ;: (9.28)

Proof. The necessity is obvious. To prove the sufficiency introduce

E.!/ WD � log
P.f!g/
P.o/

; ! 2 SV: (9.29)

4Note that the canonical potential depends on o 2 S .
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a b

w
B

s
t

w

s
t

o

uÎV\B

w(t)w(t)

Fig. 9.10 Visualization of the configurations ! and !B , B D fs; t;wg

Corollary 9.1 yields (9.20) with potential given by (9.27). Clearly Z D 1=P.o/. ut
One says that probability measure P is strictly positive if (9.28) holds.

Definition 9.15. A set A � V with jAj > 1 is called a clique5 when a subgraph
GA induced by A is complete, i.e. any two distinct vertices of A are neighbours, see
Fig. 9.11. It is convenient to say that any singleton ftg � V is a clique. The nearest
neighbour potential is defined by the relation

VA.!/ D 0 for all ! if A is not a clique. (9.30)

Obviously if the vertices s and t are neighbours then fs; tg is a clique.

Example 9.3 (Ising model). In 1925 Ising introduced the model to describe the
phenomenon of phase transition in ferromagnetic materials. In Ising’s finite model

V D Z
2
m D f.i; j / 2 Z

2 \ Œ1;m
2g;

sites s; t are neighbours if the Euclidean distance between them is equal to 1, the
state space S D f�1; 1g where ˙1 is the orientation of the spin (intrinsic magnetic
moment) at a given site. The non-zero values of the potential are given by the
formula

Vftg.!/ D �H
k
!.t/; Vhs;ti.!/ D �J

k
!.s/!.t/

where k is the Boltzmann constant,H is the external magnetic field, J is the energy
of an elementary magnetic dipole and here hs; ti is the two-element clique formed
by sites s and t . Thus

E.!/ D �J
k

X
hs;ti

!.s/!.t/ � H

k

X
t2V

!.t/;

and we obtain the Gibbs measure using (9.22).

5Because in ordinary language a clique is a group of people who know and favour each other.
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t3

t2
t4

t11

t5

t6

t7

t9

t8

t10t12

t1

Fig. 9.11 A D ft2; t3; t12g, B D ft7; t8; t9; t10g, C D ft6g are the cliques, D D ft3; t4; t5; t11g is
not a clique

Definition 9.16. The events B and C are conditionally independent given eventD
with P.D/ > 0 if

P.B \ C j D/ D P.B j D/P.C j D/; (9.31)

i.e. B and C are independent in the space .˝;A;PD/ where PD is the conditional
probability givenD.

Exercise 9.18 ([84, p. 10]). Show that, for eventsB;C;D such that P.B\D/ > 0,
(9.31) is equivalent to the relation

P.C j B \D/ D P.C j D/:

We shall apply the simple but useful result established in [84, p. 12].

Lemma 9.4. Let ˛; ˇ; � be three discrete random variables .or vectors/ taking
values in finite or countable spaces F;H;K respectively. Assume that for any
a 2 F , b 2 H and c 2 K one has P.ˇ D b; � D c/ > 0 and

P.˛ D a j ˇ D b; � D c/ D g.a; b/:

Then for all a 2 F and b 2 H

P.˛ D a j ˇ D b/ D g.a; b/: (9.32)

Proof. Obviously for any a 2 F and b 2 H

P.˛ D a; ˇ D b/ D
X
c2K

P.˛ D a; ˇ D b; � D c/

D
X
c2K

P.˛ D a j ˇ D b; � D c/P.ˇ D b; � D c/

D g.a; b/
X
c2K

P.ˇ D b; � D c/ D g.a; b/P.ˇ D b/:
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Observe that P.ˇ D b/ D P
c2K P.ˇ D b; � D c/ > 0. Hence (9.32) holds. The

proof is complete. ut

9.3.3 Averintsev–Clifford–Hammersley Theorem

We start with auxiliary results.

Lemma 9.5. Let G D .V;E/ be a finite graph. Let P be a Gibbs measure defined
on .SV;A/, and the canonical potential corresponding to an energy E (and some
element o 2 S ) be that of the nearest neighbour. Then P D P� where the Markov
random field � D f�.t/; t 2 Vg corresponds to G .P� is the law of � on .SV;A//.

Proof. Note that if B � A � V then .!A/B D !B in view of (9.26). Consequently
due to (9.27) for the canonical potential VA.!/ one has

VA.!/ D VA.!A/; ! 2 SV; A � V: (9.33)

Therefore for any A � V, given configurations ! and �, we obtain

VA.!/ D VA.�/ if !.t/ D �.t/; t 2 A: (9.34)

Consider the probability space .SV;A;P/ and let the random field � be identical
mapping of SV (�.s; !/ WD !.s/ for s 2 V, ! 2 SV). Then P� D P. Fix any t 2 V

and introduce U D V n ftg. Consider ! D f!.s/; s 2 Vg 2 SV where !.t/ D xt
and !.s/ D xs for s 2 U. Let M D fA � V W A is a clique and t … Ag and
N D fA � V W A is a clique and t 2 Ag, see Fig. 9.12.

Taking into account (9.20), (9.23) and (9.30) the left-hand side L of (9.17) can
be written as follows

P.!/P
�2SV

W �UD!U
P.�/

D expf�PA2M VA.!A/g expf�PA2N VA.!A/gP
�2SV

W �UD!U
expf�PA2M VA.�A/g expf�PA2N VA.�A/g :

If �.u/ D !.u/ for u 2 U and A 2 M then A � U and �A D !A. Thus,

L D expf�PA2N VA.!A/gP
�2SVW �UD!U expf�PA2N VA.�A/g

D expf�PA2N VA.!A/gP
z2S expf�PA2N VA.!Az /g

(9.35)

where !z.t/ D z and !z.u/ D !.u/ for all u 2 U. Let @ftg ¤ ;. Note that if A is
a clique containing ftg then any vertex s 2 A n ftg is a neighbour of t . Therefore
A � ftg [ @ftg if A 2 N . Hence the right-hand side of (9.35) does not depend on
!Vn.ftg[@ftg/. Set ˛ D �.t/, ˇ D �@ftg and � D �Vn.ftg [ @ftg/ and note that
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t3

t2

t4

S

t5

t6

t7

t8

t
t1

Fig. 9.12 The clique A D ft1; t2; t3; t4g 2 M and the clique C D ft; t6; t7g 2 N ,
C 	 @ftg D ft5; t6; t7; t8g

L D P.˛ D !.t/ j ˇ D !@ftg; � D !Vn.ftg [ @ftg//:

Now Lemma 9.4 leads to the desired relation (9.18). In case of @ftg D ; we have
fˇ D !@ftgg D ˝ (or one can assume that in Lemma 9.4 the random variable ˇ
takes values in a setH consisting of a single element) and the reasoning is the same
as before. The proof is complete. ut

Lemma 9.6. Let � D f�.t/; t 2 Vg be a Markov random field corresponding to a
finite graph G D .V;E/ and such that values of �.t/ belong to a finite or countable
set S for each t 2 V. Assume that the measure P WD P� is strictly positive. Then P

is a Gibbs measure corresponding to the nearest neighbour canonical potential.

Proof. The case jVj D 1 is trivial. So we consider jVj � 2. Let E.!/ and VA.!/ be
defined according to (9.27) and (9.29), respectively (with any fixed o 2 S ). In view
of Lemma 9.3 we only need to verify that the canonical potential for energy E is a
nearest neighbour one, i.e. (9.30) holds. If A is not a clique then there exist s; t 2 A
such that they are not neighbours. Introduce C D A n fs; tg. Then (9.27) reads

VA.!/ D
X
B	A

.�1/jAnBjE.!B/

D
X
D	C

.�1/jCnDj.E.!D[fs;tg/� E.!D[fsg/� E.!D[ftg/C E.!D//:

To complete the proof of the Lemma it suffices to show that for each D � C one
has

E.!D[fs;tg/� E.!D[fsg/� E.!D[ftg/C E.!D/ D 0:

In view of (9.29) the last relation is tantamount to

P.!D[fs;tg/
P.!D[fsg/

D P.!D[ftg/
P.!D/

: (9.36)

Set M D f�D D !D; �T D oT g where T D .C n D/ [ .V n A/ (Fig. 9.13). Then
(9.36) can be rewritten in the equivalent form
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C\D
D

\A

s

t

Fig. 9.13 A D C [ fs; tg, T D .C nD/[ .V n A/

P.�.t/ D !.t/; �.s/ D !.s/;M/

P.�.t/ D o; �.s/ D !.s/;M/
D P.�.t/ D !.t/; �.s/ D o;M/

P.�.t/ D o; �.s/ D o;M/
: (9.37)

Due to the Markov property and strict positivity of P� the left-hand side of (9.37) is
equal to the following expression

P.�.t/ D !.t/j�@ftg D �@ftg/P.�.s/ D !.s/;M/

P.�.t/ D oj�@ftg D �@ftg/P.�.s/ D !.s/;M/
D P.�.t/ D !.t/ j �@ftg D �@ftg/

P.�.t/ D o j �@ftg D �@ftg/

where �.u/ D !.u/ for u 2 D [ fs; tg and �.u/ D o for u 2 T . Analogously the
right-hand side of (9.37) has the form

P.�.t/ D !.t/ j �@ftg D �@ftg/
P.�.t/ D o j �@ftg D �@ftg/

where �.u/ D !.u/ for u 2 D [ ftg and �.u/ D o for u 2 T [ fsg.
Note that � D � on V n fsg. Thus f�@ftg D �@ftgg D f�@ftg D �@ftgg as s … @ftg.

The proof is complete. ut
Thus Lemmas 9.5 and 9.6 imply

Theorem 9.3 (Averintsev, Clifford and Hammersley). Let G D .V;E/ be a
finite graph. Let P be a probability measure on the space .SV;A/, A contains all
subsets of SV and a set S is finite or countable. Then the following statements are
equivalent:

1. P D P� where � D f�.t/; t 2 Vg is a Markov random field corresponding to the
graph G and having strictly positive law,

2. P is the Gibbs measure on .SV;A/ corresponding to the nearest neighbour
canonical potential.

Exercise 9.19. Let � D f�.t/; t 2 Vg be a random field .corresponding to a
finite graph G/. Prove that it is Markov with strictly positive law iff, for any
x D fxt ; t 2 V g 2 SV and each T � V, the following relation holds

P.�T D xT j �VnT D xVnT / D P.�T D xT j �@T D x@T /:
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Exercise 9.20. Give an example of the Markov random field which is not the Gibbs
one. Give an example of the Gibbs random field which is not the Markov one.

Remark 9.3. Exercises 9.18 and 9.19 show that the random field � D f�.t/; t 2 Vg
with strictly positive law is Markov iff, for any x D fxt ; t 2 Vg 2 SV and each
T � V, the events f�T D xT g and f�Vn.T [ @T / D xVn.T [ @T /g are conditionally
independent given f�@T D x@T g.

9.3.4 Gaussian Markov Random Fields

To illustrate possible generalizations of the Markov random fields defined on a finite
graph and taking non discrete values, we discuss some elementary facts related to
Gaussian Markov fields.

Let �; � be random vectors with values in R
k and R

m, respectively, such that there
exists the joint density6 p�;� and the density p� of � is strictly positive (i.e., one can
find such version of the density). Then it is possible to introduce the conditional
density p�j� by formula

p�j�.z j y/ WD p�;�.z; y/

p�.y/
; z 2 R

k; y 2 R
m: (9.38)

Definition 9.17. Let �; �; � be random vectors .with values in R
n, Rm and R

k ,
respectively/ having joint density p�;�;� and such that the density of � is strictly
positive. Then � and � are conditionally independent given � (one writes � ? � j �)
if for all values x; y; z one has

p�;�j�.x; z j y/ D p� j�.x j y/p�j�.z j y/: (9.39)

The following result can be viewed as a counterpart of Lemma 9.4.

Lemma 9.7. The relation � ? � j � is equivalent to the factorization condition:

p�;�;�.x; z; y/ D f .x; y/g.z; y/ (9.40)

for some nonnegative functions f; g and all values of x; y; z whenever p� is strictly
positive.

Proof. Obviously (9.39) yields (9.40) as p�;�;�.x; z; y/ D p�;�j�.x; z j y/p�.y/ in
view of (9.38) where instead of � we use now the vector .�; �/.

Let (9.40) hold. Taking into account strict positivity of p� we see that (9.39) is
equivalent to the following relation (for all x; y; z)

6All densities are considered with respect to the corresponding Lebesgue measures.
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p�;�;�.x; z; y/p�.y/ D p�;�.x; y/p�;�.z; y/: (9.41)

Using the formula for marginal densities of random vectors we have

p�;�.x; y/ D
Z
Rk

p�;�;�.x; z; y/d z; p�;�.z; y/ D
Z
Rn

p�;�;�.x; z; y/dx;

p�.y/ D
Z
RkCn

p�;�;�.x; z; y/dxd z:

Applying (9.40) and the Fubini theorem one infers that (9.41) is satisfied. The proof
is complete. ut

Let G D .V;E/ be a finite labeled graph, i.e. we enumerate the points of V to
have the collection ft1; : : : ; tN g. Moreover, we can identify ti with i for i D 1; : : : ; n

and now instead of a random field � D f�.t/; t 2 Vg it is convenient to consider
the random vector � D .�1; : : : ; �n/

> where �i WD �.ti /. Assume that � 	 N.a; C /

where the covariance matrix C is positive definite (C > 0). Then there exists the
precision matrix Q D C�1 and the vector � has a density p� which is provided by
formula (9.9). It is easily seen that QT D Q and Q > 0. Note that any such matrix
Q D .Qij / produces a matrix C D Q�1 which can be considered as the covariance
matrix of a Gaussian vector �. For a set A � f1; : : : ; ng introduce ��A as a vector �
without components belonging toA. Thus ��i D .�1; : : : ; �i�1; �iC1; : : : ; �n/> when
1 < i < n .��1 D .�2; : : : ; �n/

> and ��n D .�1; : : : ; �n�1/>/. The similar notation
x�A will be used for a nonrandom vector x 2 R

n and A � f1; : : : ; ng.

Theorem 9.4 ([430, p. 21]). Let � 	 N.a; C / where C > 0. Then for
i; j 2 f1; : : : ; ng, i ¤ j , one has

�i ? �j j ��fi;j g ” Qij D 0:

Proof. Let Qij D 0. Then obviously

p�.x/ D cn.Q/ exp

(
�1
2

nX
kD1

nX
kD1

Qkm.xk � ak/.xm � am/
)

D f .x�fig/g.x�fj g/

with explicit formulae for f and g, here x 2 R
n and cn.Q/ D .2�/�n=2.detQ/1=2.

Therefore Lemma 9.7 implies the conditional independence of �i and �j given
��fi;j g.

Assume that �i ? �j j ��fi;j g. Then employment of Lemma 9.7 leads to the
relation

exp
˚�Qij .xi � ai /.xj � aj /

� D h.x�fig/r.x�fj g/

for some positive functions h and r . Consequently taking logarithm of both sides of
the last relation one can easily show that Qij D 0. The proof is complete. ut
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(a) Pairwise (b) Local (c) Global

Fig. 9.14 �A ? �B j �D . (a) A D f1g, B D f3g, D D V
�f1;3g D f2; 4; 5; 6g,

(b) A D f1g, B D f3; 4; 5g, D D @f1g D f2; 6g, (c) A D f1g, B D f3; 4g, D D f2; 5; 6g

Exercise 9.21. Assume that � D .�1; : : : ; �n/
> is a Gaussian random vector and

sets I; J � f1; : : : ; ng are disjoint. Prove that �I and �J are independent iff
cov.�i ; �j / D 0 for all i 2 I and j 2 J .

Consider a Gaussian random field � D f�t ; t 2 Vg defined on a finite set V D
ft1; : : : ; tng. We suppose w.l.g. that V D f1; : : : ; ng. Let .�1; : : : ; �n/ 	 N.a; C /

with C > 0. Put Q D C�1 and introduce the graph G D .V;E/ where the vertices
i and j are neighbours if Qij ¤ 0. Recall that a path from i to j .i; j 2 V/ is a
collection i1; : : : ; im of distinct vertices .m � 2/ such that hik; ikC1i 2 E (i.e. ik and
ikC1 are neighbours for k D 1; : : : ; m � 1) and i1 D i , im D j . Let D � V. One
says that disjoint sets A;B � V nD are separated by D if there is no path starting
at a point of A and coming to a point of B without passing throughD (i.e. any path
i1; : : : ; im from a site i1 2 A to a site im 2 B contains a site belonging to D). The
following result explains that the graph G introduced above is the appropriate tool to
describe the conditional dependence structure of the components of a nondegenerate
Gaussian vector or random field (cf. Exercise 9.21).

Theorem 9.5 ([478]). Let � and G be a Gaussian random field and a graph
introduced above. Then the following statements hold.

1. Pairwise Markov property:

�i ? �j j ��fi;j g if i ¤ j; hi; j i … E:

2. Local Markov property:

�i ? ��fig[@fig j �@fig for each i 2 V:

3. Global Markov property:
�A ? �B j �D

for all nonempty sets A;B � V such that D separates them, see Fig. 9.14.

The Gaussian Markov random fields play an important role in various applica-
tions. In this regard we refer to the monograph [430].



304 A. Bulinski and E. Spodarev

9.3.5 Final Remarks

It should be noted that the deep theory of Gibbs measures begins when the set
of sites V is infinite. In this case one cannot use the simple formula (9.20).
The interesting effect of the existence of different measures with given family of
local specifications is interpreted in terms of phase transitions known in statistical
physics. We recommend to start with a simple example of phase transition con-
sidered in [310, Chap. 22], see also [84, 184, 202, 297]. Note in passing that critical
phenomena depend essentially on the temperature T (i.e., whether T < Tc or T > Tc
for specified threshold Tc). Markov random fields are used in image processing and
texture analysis, see, for example [330]. We refer to [225] where the random field is
defined on the subset D of a plane divided by several regions D1; : : : ;DN . In that
paper the authors propose the (non-Gibbs Markov random field) model where the
mutual location of these regions and distances dist.Di ;Dj / play an essential role
in dependence structure. There are various generalizations of the Markov property,
see for example [429]. Gaussian Markov random fields are studied in [430] where
the applications to geostatistics are provided. The region based hidden Markov
random field (RBHMRF) model is used to encode the characteristics of different
brain regions into a probabilistic framework for brain MR image segmentation, see
[121]. The statistical analysis of Markov random fields and related models can be
found e.g. in [177, 373].

9.4 Moments and Covariance

Let � D f�.t/; t 2 T g be a real-valued random function.

Definition 9.18. The .mixed/ moment

�.j1;:::;jn/.t1; : : : ; tn/ WD E.�j1.t1/ � : : : � �jn.tn//;

provided that this expectation is finite. Here j1; : : : ; jn 2 N, t1; : : : ; tn 2 T and
n 2 N.

Exercise 9.22. Show that �.j1;:::;jn/.t1; : : : ; tn/ exists if Ej�.t/jj < 1 for all t 2 T
and j D j1 C : : :C jn.

Introduce now

1. Mean value function �.t/ D �.1/.t/ D E.�.t//, t 2 T .
2. Covariance function

C.s; t/ D cov.�.s/; �.t// D �.1;1/.s; t/ � �.1/.s/�.1/.t/; s; t 2 T:
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Obviously the covariance function is symmetric, i.e. C.s; t/ D C.t; s/ for all
s; t 2 T and C.t; t/ D var �.t/, t 2 T .

Definition 9.19. A function C W T � T ! C is called positive semi-definite if for
any n 2 N, tk 2 T and zk 2 C (k D 1; : : : ; n) one has

nX
k;mD1

C.tk; tm/zkzm � 0: (9.42)

Here zm means the complex conjugate of zm.

Exercise 9.23. Prove that covariance function C of a real-valued random field � D
f�.t/; t 2 T g with a finite second moment is positive semi-definite.

Note that (contrary to the covariance function properties) arbitrary real-valued
function f .t/, t 2 T , can be considered as a mean value function of some random
function � D f�.t/; t 2 T g (e.g., the Gaussian white noise plus f ). It shows the
(deterministic) trend of the random function �. The correlation coefficient

R.s; t/ D C.s; t/p
C.s; s/C.t; t/

is sometimes called the correlation function of �. Clearly, it is well defined if
var �.s/ > 0 and var �.t/ > 0. For such s; t 2 T we have jR.s; t/j � 1 by the
Cauchy–Schwarz inequality.

Exercise 9.24. Give an example of a function that is not positive semi-definite.

Exercise 9.25. Let � W T ! R be an arbitrary function and C W T � T ! R be a
positive semi-definite symmetric function. Show that there exists a random function
� W ˝ � T ! R such that its mean value function and covariance function are �.�/
and C.�; �/, respectively. Hint: use a Gaussian random function.

Exercise 9.26. Give an example of two different random functions � and � with
E�.t/ D E�.t/ and E.�.s/�.t// D E.�.s/�.t// for all s; t 2 T .

Exercise 9.27. Show that there exists such random function � D f�.t/; t 2 T g
that any collection of its mixed moments does not determine the distribution of � in
.ST ;BT / uniquely.

Let f�.t/; t 2 T g be a real-valued random function such that Ej�.t/jk < 1 for
some k 2 N and all t 2 T . For any s; t 2 T consider the increment �.t/� �.s/. The
function �k.s; t/ WD E.�.t/ � �.s//k is called the mean increment of order k 2 N.
In particular,

�.s; t/ WD 1

2
�2.s; t/ D 1

2
E.�.t/ � �.s//2

is called the variogram of �. Variograms are frequently used in geostatistics.
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Exercise 9.28. Verify that the following relationship holds

�.s; t/ D C.s; s/C C.t; t/

2
� C.s; t/C 1

2
.�.s/� �.t//2; s; t 2 T: (9.43)

Notice that cumulants, i.e. the coefficients of the Taylor expansion at the origin
for the logarithm of characteristic function of the vector .�.t1/; : : : ; �.tn//> (under
appropriate moment conditions), are also useful tools to study random functions. For
the relationship between moments and cumulants see for example [472, pp. 289–
293]. A recent application of cumulants in geostatistics can be found in [155].

To finish this section, we introduce the covariance function for complex-valued
process � D f�.t/; t 2 T g with arbitrary index set T . Let Ej�.t/j2 < 1 for any
t 2 T . Put

C.s; t/ WD E.�.s/ � E�.s//.�.t/ � E�.t//; s; t 2 T: (9.44)

Then C.s; t/ D C.t; s/ and (9.42) holds.

9.5 Stationarity, Isotropy and Scaling Invariance

In this section, we introduce the notions of spatial homogeneity of the distribution
of random functions. Let the index set T be a linear vector space7 with addition “+”,
subtraction “�” and multiplication “�” of vectors by real numbers.

Definition 9.20. A random function �D f�.t/; t 2 T g is called .strictly/ stationary
if for any n 2 N and h; t1; : : : ; tn 2 T one has

Law.�.t1/; : : : ; �.tn// D Law.�.t1 C h/; : : : ; �.tn C h//;

i.e. all finite-dimensional distributions of � are invariant under shifts in T .

Definition 9.21. A (complex-valued) random function � D f�.t/; t 2 T g is called
wide sense stationary if Ej�.t/j2 < 1 for each t 2 T ,

�.t/ � � and C.s; t/ D C.s C h; t C h/; h; s; t 2 T;

where � is a constant and C appeared in (9.44).

One writes C.t/ WD C.t; 0/ where t 2 T and 0 is the zero in T . Therefore,
C.s; t/ D C.s � t/ for s; t 2 T . Note that both definitions of stationarity do not
imply each other. It is clear that if � is strictly stationary with Ej�.t/j2 < 1, t 2 T ,
then it is stationary in the wide sense.

7For the sake of simplicity, we do not consider the case when T is a subset of a linear vector space.
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Definition 9.22. A random function � D f�.t/; t 2 T g is intrinsically stationary
of order two if its mean increments �i.s; t/, s; t 2 T , exist up to the order 2, and for
all s; t; h 2 T

�1.s; t/ D 0; �2.s; t/ D �2.s C h; t C h/:

It is clear that intrinsic stationarity of order two (which is often used in practice)
is a little bit more general than stationarity in the wide sense, because we require
the existence of moments of increments of � and not of �.t/ itself. However, this
distinction is of superficial nature, as most random functions which are of practical
interest are wide sense stationary (and hence intrinsically stationary of order two).

The notion of isotropy can be introduced in the strict or wide sense as the notion
of stationarity. To define it we assume that T D R

d , d � 2. It is often required that
isotropic processes are also stationary. However, we shall not do it (Fig. 9.15).

Definition 9.23. A random field � D f�.t/; t 2 R
d g is called isotropic in the strict

sense or in the wide sense if for any n 2 N, t1; : : : ; tn 2 R
d and A 2 SO one has

Law.�.At1/; : : : ; �.Atn// D Law.�.t1/; : : : ; �.tn//

or
�.At/ D �.t/; C.As;At/ D C.s; t/; s; t 2 R

d ;

respectively.

Further on we suppose that � D f�.t/; t 2 T g is a centered complex-valued
random function (i.e. E�.t/ D o, t 2 T ) defined on a linear space T . If � is not
centered, one can consider the random function � D f�.t/ D �.t/ � �.t/; t 2 T g.
Sometimes we shall assume that � is wide sense stationary. In this case its covariance
functionC.h/ D Ef�.t/�.tCh/g, h 2 T , posseses the following obvious properties:

C.0/ D var.�.h// � 0; C.h/ D C.�h/ and jC.h/j � C.0/ for any h 2 T:

Exercise 9.29. Let � D f�.t/; t 2 R
d g be a shot-noise field introduced in (9.11)

with response function g satisfying (9.12) and (9.13). Prove that for any s; t 2 R
d

1. E�.t/ D �
R
Rd
g.t � z/ d z

2. cov.�.s/; �.t// D �
R
Rd
g.t � z/g.s � z/ d z.

Hint: use the Campbell–Mecke formula, cf. Sect. 4.1.2, [489, pp. 36–39] and [451,
Theorems 3.1.2 and 3.1.3].

Let us define operator scaling stable random fields according to [68]. Consider a
real .d � d/-matrix A whose eigenvalues have positive real parts.

Definition 9.24. A real-valued random field f�.t/; t 2 R
d g is called operator

scaling for A andH > 0 if for any c > 0

Lawf�.cAt/; t 2 R
d g D LawfcH �.t/; t 2 R

d g;
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Fig. 9.15 Two typical realizations of Gaussian isotropic non-stationary random fields with
covariance function from [441, Example 16]. Courtesy of M. Schlather

that is, all finite-dimensional distributions of these fields coincide. As usual we
suppose cA D expfA log cg with expfBg D P1

kD0 B
k

kŠ
for a matrix B .

These fields can be seen as anisotropic generalizations of self-similar random
fields. Let us recall that a real-valued random field f�.t/; t 2 R

d g is said to be
H -self-similar with H > 0 if for any c > 0

Lawf�.ct/; t 2 R
d g D LawfcH �.t/; t 2 R

d g:

Then a H -self-similar field is also an operator scaling field for the identity matrix
A D Id of size d � d .

Numerous natural phenomena have been shown to be self-similar. For instance,
self-similar random fields are used to model persistent phenomena in internet traffic,
hydrology, geophysics or financial markets, see for example [432,497,518]. A very
important class of such fields is given by Gaussian random fields and especially by
fractional Brownian fields.

The fractional Brownian field �H where H 2 .0; 1/ is the so-called Hurst
parameter, is H -self-similar and has stationary increments, i.e.

Lawf�H .t C h/ � �H .h/; t 2 R
d g D Lawf�H .t/; t 2 R

d g; h 2 R
d :

It is an isotropic generalization of the fractional Brownian motion introduced in
[308] and studied in [342]. A robust method to simultaneously estimate the Hurst
parameter in each scaling direction (for anisotropic stationary scalar random fields
with spatial long memory) by means of a local Whittle estimator is given in [209]. It
is shown that this estimator is consistent and asymptotically normal under specified
conditions.

A weaker self-similarity property known as local self-similarity was studied in
[293].
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Definition 9.25. Let ˛ 2 .0; 2
. A centered stationary Gaussian field is locally self-
similar (lss) of order ˛=2 if its covariance satisfies

C.h/ D A � Bkhk˛2
�
1CO.khkı2/

�
; khk2 ! 0

for some positive constants A, B and ı.

This class includes the centered Gaussian field with covariance function
C.t/ D expf�ˇk tk˛2 g, t 2 R

d (˛ 2 .0; 2
 and ˇ > 0), which has the same
functional form as the characteristic function of the multivariate symmetric stable
distribution (see [311]).

Exercise 9.30. Show that the Gaussian random field with generalized Cauchy
covariance introduced in Sect. 9.2.2 is not self-similar, but locally self-similar of
order ˛=2 with A D 1, B D ˇ and ı D ˛.

A nice property of ˛=2-lss fields is that their fractal dimension is determined by
˛ (see [333, Proposition 2.6]).

9.6 Positive Semi-definite Functions

Which function can be a covariance function of a stationary continuous (in mean
square sense) random field? The answer to this question yields the famous Bochner–
Khinchin Theorem: it must be positive semi-definite. In this section we provide
some criteria for positive semi-definiteness as well as principles of construction of
new covariance structures out of known “building blocks”.

9.6.1 General Results

To formulate the important results for stationary random fields we recall the
following concept.

Definition 9.26. Let T be an Abelian group (with addition). A function f W T ! C

is positive semi-definite if C.s; t/ D f .s � t/, s; t 2 T satisfies (9.42).

The following classical result was established (for d D 1) in 1932–1934 indepen-
dently by Bochner and Khinchin.

Theorem 9.6 (Bochner–Khinchin). A function f W R
d ! C, continuous at the

origin o 2 R
d , is positive semi-definite iff it can be represented as the characteristic

function of a finite measure �f on R
d , that is,

f .t/ D '�f .t/ D
Z
Rd

expfi ht; xig�f .dx/; t 2 R
d ; i 2 D �1: (9.45)
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Definition 9.27. The measure �f appearing in (9.45) is called a spectral measure
of f . If �f has a density h with respect to the Lebesgue measure on R

d then h is
called the spectral density of f .

Remark 9.4. A function f satisfying (9.45) is real-valued iff the measure �f is
symmetric.

Indeed, function f is real-valued iff f .t/ D f .t/ for all t 2 R
d . We have

f .t/ D f .�t/ D
Z
Rd

eiht;�xi�f .dx/ D
Z
Rd

eiht;xi�f .�dx/; t 2 R
d :

Using the one to one correspondence between finite measures and their characteris-
tic functions and in view of (9.45) the relation �f .A/ D �f .�A/ is equivalent to
the symmetry property of f .

Note also that any semi-definite function f W Rd ! C which is continuous at
the origin o 2 R

d is automatically continuous on R
d in view of (9.45).

The next theorem characterizes all measurable positive semi-definite functions.

Theorem 9.7 (Riesz, [435, p. 81]). A function f W R
d ! C is positive semi-

definite and measurable iff f D fc C f0 where fc W Rd ! C and f0 W Rd ! C

are some positive semi-definite functions such that fc is continuous on R
d .and

hence the Bochner–Khinchin theorem can be applied/ and f0 equals zero almost
everywhere on R

d with respect to the Lebesgue measure.

Remark 9.5. The discontinuous semi-definite function f0 widely used in applica-
tions is the so-called nugget effect function: f0.t/ D a1.t D 0/ where a > 0. This
function is a covariance function of a white noise random field with variance a > 0.
It is employed in geostatistics to model the discontinuity at zero of the variogram
of the data. This allows to consider random field models with L2-discontinuous
realizations.

The full description of the positive semi-definite functions defined on T D Zd

is provided by the following result proved for d D 1 by Herglotz [241].

Theorem 9.8. A function f W Z
d ! C is positive semi-definite iff there exists a

finite .spectral/ measure �f on .Œ��; �
d ;B.Œ��; �
d // such that

f .t/ D
Z
Œ��;�
d

expfi ht; xig�f .dx/; t 2 Z
d :

Exercise 9.31. Show that the function f0.t/ D a, t 2 Z
d , is positive semi-definite

for any a � 0. Find the corresponding spectral measure.

In general, it is not so easy to verify the conditions of Theorem 9.6. Because of
that, we give sufficient conditions for positive semi-definiteness.
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Theorem 9.9 (Pólya–Askey, [18]). A function f .t/ D g.k tk2/ defined for t 2 R
d

is positive semi-definite if g W RC ! R satisfies the conditions:

1. g is continuous on RC,
2. g.0/ D 1,
3. limt!1 g.t/ D 0,
4. .�1/kg.k/.t/ is convex for k D Œd=2
 (Œa
 stands for the integer part of a).

Theorem 9.10 (Gneiting, [191]). If d � 2 then the previous theorem holds with
replacement of condition 4 by the following one

.�1/kC1 d k

dtk
g0.

p
t/ is convex for k D



d � 2

2

�
:

9.6.2 Isotropic Case

Following [437, 440], consider covariance functions of stationary isotropic random
fields with index space R

d . They have the form C.x; y/ D C0.kx � yk2/ where
x; y 2 R

d .
The characterization result below can be obtained by passing to polar coordinates

in Bochner’s theorem.

Theorem 9.11 (Schoenberg, [453]). A function f W Rd ! R, d � 2, continuous
and rotation-invariant, is positive semi-definite iff f .t/ D f0.k tk2/, t 2 R

d , with
f0 W RC ! R being equal to

f0.s/ D �

�
d

2

��
2

s

�� Z 1

0

r�� J�.rs/�.dr/; s � 0; (9.46)

where � is a finite measure on Œ0;1/, � D d=2� 1 and

J�.r/ D
1X
jD0

.�1/j
j Š� .� C j C 1/

� r
2

��C2j
; r � 0;

is the Bessel function of the first kind of order � � �1=2.

Example 9.4. Let us give Schoenberg’s representation of a covariance func-
tion C of a wide-sense stationary isotropic random field for d D 3. Since

J1=2.r/D
q

2
�r

sin.r/, r 2 RC, we get

C.x; y/ D C0.kx � yk2/ D
Z 1

0

sin.sr/

sr
�.dr/

ˇ̌
ˇ
sDkx�yk2

from (9.46) because

C0.s/ D � .3=2/

Z 1

0

r
2

sr

r
2

�sr
sin.sr/�.dr/ D

Z 1

0

sin.sr/

sr
�.dr/:
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For isotropic measurable positive semi-definite functions, a stronger version of
the Riesz theorem is available:

Theorem 9.12 ([194]). If f is a rotation-invariant, measurable positive semi-
definite function f W Rd ! C, d � 2, then

f .t/ D fc.t/C a � 1.t D 0/

where a � 0 and fc is positive semi-definite and continuous.

It follows from Theorem 9.12 that measurable isotropic covariance functions are
discontinuous at most at the origin.

9.6.3 Construction of Positive Semi-definite Functions

Theorem 9.13. Let fk W Rd ! C be positive semi-definite functions and ak � 0

for k 2 N. The function f W R
d ! C is positive semi-definite if the following

operations are used.

1. Scaling: f .t/ D f1.at/, a 2 R, t 2 R
d .

2. Linear combination: f .t/ D Pn
kD1 akfk.t/, t 2 R

d .
3. Multiplication: f .t/ D Qn

kD1 fk.t/, t 2 R
d .

4. Pointwise limit: f .t/ D limk!1 fk.t/, t 2 R
d , whenever the limit exists.

5. Convolution: f .t/ D R
Rd
f1.t � y/ Nf2.y/ dy, t 2 R

d , if additionally f1 and f2
are continuous and the integral exists.

Proof. 1. This follows directly from Definition 9.26.
2. Consider a random field �.t/ D Pn

kD1
p
ak�k.t/ where �1; : : : ; �n are indepen-

dent stationary random fields with covariance functions f1; : : : ; fn, respectively.
Then � has the covariance function

Pn
kD1 akfk .

3. Analogous to item 2, construct a random field �.t/ D �1.t/ � : : : � �n.t/ where
�1; : : : ; �n are independent stationary random fields with covariance functions
f1; : : : ; fn, respectively. Then � hat the covariance function

Qn
kD1 fk .

4. This follows directly from Definition 9.26.
5. See [435]. ut
Theorem 9.14. Let .E;B/ be a measurable space endowed with a finite measure�
and fC�; � 2 Eg be a family of positive semi-definite functions C� W Rd �R

d ! C.
The functionC W Rd �R

d ! C is positive semi-definite if it is constructed by means
of the following operations.

1. Substitution: C.s; t/ D C�.g.s/; g.t// for any mapping g W R
d ! R

d and
� 2 E .

2. Kernel approach:C.s; t/ D hg.s/; g.t/iL where L is a Hilbert space over C with
scalar product h�; �iL and g W Rd ! L is an arbitrary mapping.
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3. Integration: C.s; t/ D R
E C�.s; t/�.d�/ where C�.s; t/ is a �-integrable

function with respect to � 2 E . In particular, this holds for C.s; t/ DP1
�D0 a�C�.s; t/ whenever E D ZC and this series absolutely converges.

4. Scale mixtures: C.s; t/ D R1
0 C�.ys; yt/�.dy/ for some � 2 E and finite

measure � on Œ0;1/ if this integral exists and is finite for s; t 2 R
d .

Proof. 1. This statement follows immediately from Definition 9.26.
2. By Definition 9.26, for any n 2 N, zi 2 C, ti 2 R

d and i D 1; : : : ; n we have

nX
i;jD1

C.ti ; tj /zi Nzj D
*

nX
iD1

g.ti /zi ;
nX

jD1
g.tj /zj

+

L

D
�����

nX
iD1

g.ti /zi

�����
2

L

� 0 :

3. This follows from Theorem 9.13, 4, since
R
E
C�.s; t/�.d�/ is a limit of its

integral sums. Each of these sums is a linear combination of positive semi-
definite functions C�i .s; t/, i D 1; : : : ; n, which is positive semi-definite by
Theorem 9.13, 2. The same reasoning is true for series expansions.

4. For any y 2 Œ0;1/, C�.ys; yt/ is positive semi-definite by case 1. Then case 3
is used. ut
Apart from Theorems 9.13 and 9.14, several other methods to construct positive

semi-definite functions can be found in the literature. One of the easiest ways is, e.g.,
by means of specifying their spectral densities. For more sophisticated methods, see
for example [14].

Remark 9.6. 1. Let L be a Hilbert space over C with scalar product h�; �iL. Assume
that L consists of functions f W T ! C. A function K W T � T ! C is a
reproducing kernel of L if K.t; �/ 2 L for all t 2 T and hf;K.t; �/iL D f .t/ for
all f 2 L, t 2 T . By Aronszajn’s Theorem [16], K is a reproducing kernel of
a Hilbert space L iff it is positive semi-definite, i.e. K is a covariance function.
In particular, reproducing kernel Hilbert spaces are used to obtain new (series)
representations of random functions, see for example [1, Chap. 3].

2. Covariance functions for space-time random fields � D f�.x; t/; x 2 R
d ; t 2 Rg

can be constructed by formula

C..x; s/; .y; t// D C1.x; y/C C2.s; t/; x; y 2 R
d ; s; t 2 R;

where C1 is a space covariance and C2 is a time covariance component. The same
holds for

C..x; s/; .y; t// D C1.x; y/ � C2.s; t/; x; y 2 R
d ; s; t 2 R

(the so-called separable space-time models). For more complex construction
methods we refer to [192, 193, 344].

3. By means of Theorem 9.14, (3), functions like eC.s;t/, coshC.s; t/ etc. of
a positive semi-definite function C are also positive semi-definite as they
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can be represented by Taylor series with positive coefficients, e.g., eC.s;t/ DP1
nD0

.C.s;t //n

nŠ
, s; t 2 R

d .

9.7 Infinitely Divisible Random Functions

In this section, we introduce infinitely divisible random functions as integrals of
non-random kernels with respect to independently scattered infinitely divisible
random measures. It will be clear that they form a generalization of the class of
moving averages introduced on page 285. In Sect. 9.7.4, it will be shown that a
large class of random functions can be represented in this way. This is the so-called
spectral representation of infinitely divisible random functions, first proven in [413].

9.7.1 Infinitely Divisible Distributions

We recall some classical notions and results concerning the infinite divisibility of
random variables and vectors.

Definition 9.28. 1. The probability measure � on .Rm;B.Rm// is infinitely divisi-
ble if for any n 2 N there exists a probability measure�n on the same space such
that � D �n � � � � � �n (n-fold), where � stands for convolution.

2. A random vector � with values in R
m is infinitely divisible if its distribution P� is

an infinitely divisible probability measure. If � is infinitely divisible then for all
n there exist i.i.d. random vectors �ni , i D 1; : : : ; n, such that

�
dD �n1 C : : :C �nn: (9.47)

Hence, the characteristic function '�.s/ of � satisfies the relation

'�.s/ D .'n.s//
n (9.48)

where 'n is the characteristic function of �n1.

Formulae (9.47) and (9.48) provide equivalent definitions of an infinitely divisi-
ble random vector.

Infinitely divisible laws form an important class because they arise as limit
distributions for sums of independent random elements, see for example [530,
Chap. 5]. Many widely used distributions are infinitely divisible, e.g., (for m D 1)
degenerate, Gaussian, Gamma, Poisson, Cauchy, ˛-stable, geometric, negative
binomial, etc.

Exercise 9.32. Give an example of a random variable which is not infinitely
divisible.
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Recall the Lévy representation of the characteristic function '� of an infinitely
divisible random variable �:

'�.s/ D exp

�
ias � 	2s2

2
C
Z
R

�
eisx � 1 � is�.x/

�
H.dx/

	
(9.49)

where a 2 R, 	2 � 0,
�.x/ D x1.jxj � 1/; (9.50)

and H is a Lévy measure, i.e. a measure on .R;B.R// satisfying H.f0g/ D 0

and
R
R

minf1; x2gH.dx/ < 1. Analogous definitions and representation can be
given, e.g., for � with values in real separable Hilbert spaces (see [413]). Notice that
alongside with function � in (9.50), other truncation functions can be used, see for
example [473, pp. 196–197].

The triplet (a; 	2;H) specifies the properties of �. For instance, Ej�jp < 1 for
p > 0 iff Z

jxj>1
jxjpH.dx/ < 1:

Infinitely divisible distributions play a crucial role in the theory of Lévy pro-
cesses, see their definition in Example 9.7, case 4. Namely, the distribution of their
increments is infinitely divisible, see for example [436, p. 32]. Lévy processes form
a wide class of random functions describing many phenomena in econometrics,
insurance, finance and physics, see for example [53, Parts IV and V], [129] and
[454, Chaps. 6, 7, 10].

Definition 9.29. A (real-valued) function � D f�.t/; t 2 T g is infinitely divisible
if all its finite-dimensional distributions are infinitely divisible.

In order to construct a class of infinitely divisible moving averages we need to
introduce integration with respect to infinitely divisible random measures.

9.7.2 Infinitely Divisible Random Measures

Let .E; E/ be a measurable space. One can also use any ı-ring of subsets of a set E
instead of E but we shall not go into these details.

Definition 9.30. � is called a Lévy basis on .E; E/ if � D f�.A/; A 2 Eg is a set-
indexed infinitely divisible random function defined on .˝;A;P/with the following
properties.

1. �.�/ is a random signed measure on .E; E/, i.e. for all pairwise disjoint sets
An 2 E , n 2 N, it holds �.

S1
iD1 Ai / D P1

iD1 �.Ai / P-almost surely.
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2. � is independently scattered, i.e. �.A1/; �.A2/; : : : are independent random
variables for pairwise disjoint An 2 E , n 2 N.

If � is a measure (i.e. � is 	-additive and �.A/ � 0 for all A 2 E) then the Lévy
basis � is called non-negative.

The terminology “Lévy basis” was introduced by Barndorff–Nielsen, see [54].
Before it was called “infinitely divisible independently scattered random measure”.

Since for any A 2 E the random variable �.A/ is infinitely divisible, its
characteristic function '�.A/ has the Lévy representation

log'�.A/.s/ D isa.A/ � s2

2
	2.A/

C
Z
R

�
eisx � 1� is�.x/

�
HA.dx/; s 2 R: (9.51)

Set H.A;B/ D HA.B/, A 2 E , B 2 B.R/. It can be shown (see [413,
Proposition 2.1 and Lemma 2.3]) that

1. a.�/ is a signed measure on .E; E/.
2. 	2.�/ is a measure on .E; E/.
3. H.�; �/ can be extended to have a measure on E ˝ B.R/.

Introduce the control measure �c of � on .E; E/ by way of

�c.A/ D kakT V .A/C 	2.A/C
Z
R

minf1; x2gH.A; dx/ (9.52)

where kakT V is the total variation of a measure a. Then a; 	2 and H are absolutely
continuous with respect to �c and have the respective densities

1. a.dy/=�c.dy/ D Qa.y/.
2. 	2.dy/=�c.dy/ D Q	2.y/.
3. H.dy;B/=�c.dy/ D h.y;B/ where h.y; �/ is the Lévy measure for fixed y 2 E

and B 2 B.R/.

Denoting the cumulant function log'�.s/ of a random variable � by K�.s/ we get

K�.A/.s/ D
Z
A

K Q�.y/.s/�c.dy/; A 2 E ; s 2 R;

where the spot variable Q�.y/ is an infinitely divisible random variable with
cumulant function

K Q�.y/.s/ D is Qa.y/ � s2

2
Q	2.y/C

Z
R

�
eisx � 1 � is�.x/� h.y; dx/; y 2 E:

One says that . Qa; Q	2; h/ is a characteristic triplet of � with respect to control
measure �c .
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Exercise 9.33. Show that

1. If E. Q�.y// and var. Q�.y// exist then

E. Q�.y// D Qa.y/C
Z
RnŒ�1;1


x h.y; dx/; var. Q�.y// D Q	2.y/C
Z
R

x2 h.y; dx/:

2. If .E; E/ D .Rd ;B.Rd //, Qa.y/ � Qa, Q	2 � Q	2, h.y; dx/ D h.dx/ do not depend
on y 2 R

d and �c.dy/ D �d .dy/, then � is strictly stationary, i.e. all its finite-
dimensional distributions are translation-invariant. Due to this observation, the
above choice of parameters is often considered in various applications.

Example 9.5. 1. Poisson Lévy basis. If �.A/ 	 Pois.�.A//, A 2 E , for a finite
measure � on .E; E/, then log'�.A/.s/ D �.A/.eis � 1/, Q�.y/ 	 Pois.1/,
s 2 R, y 2 E , and thus it is a Lévy basis with a characteristic triplet . Qa; Q	2; h/ D
.1; 0; ı1.dx// and control measure �c D �, where ıx is the Dirac ı-measure
concentrated at x 2 R.

2. Gaussian Lévy basis. If �.A/ 	 N.a.A/; 	2.A//, A 2 E , then

log'�.A/.s/ D isa.A/ � s2

2
	2.A/

and Q�.y/ 	 N. Qa.y/; Q	2.y//, y 2 E . It is a Lévy basis with characteristic triplet
. Qa; Q	2; 0/ with respect to some control measure �c .

3. Gamma Lévy basis. Choose �c D M�d , M > 0, and consider the characteristic
triplet . Qa; 0; h/ with h.y; dx/ D 1.x 2 .0;1// 1

x
e��x dx, Qa.y/ D 1

�

�
1 � e�� �

for � 2 .0;1/. Using formulae from Exercise 9.33 we get E. Q�.y// D ��1 and
var. Q�.y// D ��2. By (9.52), the factorM is equal to

M D 1C � � 2�e�� � e��

�2
C
Z 1

1

1

x
e��xdx

where dx D �1.dx/. Then we have �.A/ 	 � .�d .A/; �/ where A 2 B0.Rd /
and � .�d .A/; �/ is the Gamma distribution with probability density function

f .x/ D ��d .A/

� .�d .A//
x�d .A/�1e��x1x2Œ0;1/;

see [240, p. 608]. In the last formula � .�/ denotes the Gamma function. In this
case � is called Gamma Lévy basis.

4. Symmetric stable case. Let �.A/, A2 E , be a symmetric ˛-stable random
variable (S˛S), ˛ 2 .0; 2/, i.e. its characteristic function is

'�.A/.s/ D e�c˛Ajsj˛ ; s 2 R:
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Here cA > 0. It is a Lévy basis with characteristic triplet .0; 0; h/ where h has a
density

dh=dx D
(
c1.A/x

�1�˛; x > 0;

c2.A/jxj�1�˛; x < 0;

for specified factors c1.A/; c2.A/ � 0, c1.A/C c2.A/ > 0 with respect to some
control measure �c , see [436, p. 80].

9.7.3 Infinitely Divisible Stochastic Integrals

Our goal is to introduce a stochastic integral
R
E
g.x/�.dx/ of a deterministic

function g W E ! R with respect to a Lévy basis � defined on .E; E/ where E is a
non-empty subset of a real separable Hilbert space equipped with a 	-algebra E .

Definition 9.31. An E-measurable function f W E ! R is integrable with respect
to the Lévy basis � with control measure �c if

1. There exists a sequence .fn/n2N of simple functions fn.x/D Pkn
jD1 xnj

1.x 2Anj /, n 2 N, Ani \ Anj D ;, i ¤ j , i; j 2 f1; : : : ; kng converging
to f �c-almost everywhere as n ! 1.

2. For anyA 2 E , the sequence .
R
A
fn.x/�.dx//n2N converges in probability. Here,R

A
fn.x/�.dx/ WD Pkn

jD1 xnj �.A\Anj /.
Then the limit (in probability) of the above sequence for A D E is denoted byR
E
f .x/�.dx/. Namely,Z

E

f .x/�.dx/ D lim
n!1

Z
E

fn.x/�.dx/:

It can be shown that this integral is well-defined in the sense that it does not
depend on the choice of the sequence .fn/n2N of simple functions approximating
f , see [318, Sects. 7.3 and 8.3]. The following sufficient conditions of integrability
of f are given in [240, Lemma 1]. For both necessary and sufficient conditions see
[413, Theorem 2.7].

Theorem 9.15. An E-measurable function f W E ! R is integrable with respect
to the Lévy basis � with a triplet .a; 	2;H/ if one has

1.
R
E

jf .y/j kakT V .dy/ < 1,
2.
R
E
f 2.y/ 	2.dy/ < 1,

3.
R
E

R
R

jf .y/xjH.dy; dx/ < 1.

Then the cumulant function of � D R
E fd� equals

K�.s/ D
Z
E

K Q�.y/.sf .y//�c.dy/; s 2 R; (9.53)

where Q� is the spot variable corresponding to � and �c is the control measure.
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Exercise 9.34. Prove that if E� and var � exist, then one has

E� D
Z
E

f .y/E. Q�.y//�c.dy/;

var � D
Z
E

f 2.y/ var. Q�.y//�c.dy/:

Example 9.6. If � is a Gaussian Lévy basis, i.e. �.A/ 	 N.a.A/; 	2.A//, A 2 E ,
then

R
E
f d� 	 N.

R
E
f .y/a.dy/;

R
E
f 2.y/	2.dy//.

9.7.4 Spectral Representation of Infinitely Divisible Random
Functions

Let T be any index set and .E; E/ an arbitrary measurable space. Introduce the
random function

�.t/ D
Z
E

ft .y/�.dy/; t 2 T; (9.54)

where fft ; t 2 T g is a family of E-measurable real-valued functions that are
integrable with respect to the Lévy basis �. It can be easily shown that � is an
infinitely divisible random function. Indeed, it suffices to prove that .'t1;:::;tn /

� is a
characteristic function for any � > 0, n 2 N and t1; : : : ; tn 2 T where 't1;:::;tn is a
characteristic function of the vector �t1;:::;tn D .�.t1/; : : : ; �.tn//

>. Since 't1;:::;tn .s/,
s D .s1; : : : ; sn/

>, can be regarded as a characteristic function of the random
variable � D Pn

jD1 sj �.tj / and � is clearly infinitely divisible by additivity of
the integral (9.54) with respect to the kernel ft , one can use (9.53) for the cumulant
function of � to see that .'�/� has representation (9.53) with control measure ��c .
Hence .'�/� is a characteristic function.

Random functions (9.54) are used, e.g., to model turbulence phenomena in
liquid flows (see [54] and references therein) and spatial distributed claims in storm
insurance [287], see Fig. 9.16. They are also instrumental in the construction of new
classes of Cox point processes [240].

Example 9.7. 1. If � is a Gaussian Lévy basis, then � is a Gaussian random
function.

2. If � is a Poisson Lévy basis, then � is a shot-noise random function.
3. Let � be an ˛-stable Lévy noise (0 < ˛ < 2), i.e. an independently scattered

random measure with control measure �c where �.A/ is an ˛-stable random
variable with zero shift parameter (b D 0), skewness ˇ.A/ D ˇ and scale
parameter 	 D .�c.A//

1=˛ (compare the notation in Sect. 9.2.7) for all sets
A 2 E . Assume that ft 2 L˛�c .E/ for all t 2 T if ˛ ¤ 1 and

ft 2 ff 2 L1�c .E/ W
Z
E

jf .x/ log jf .x/jj�c.dx/ < 1g
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Fig. 9.16 Extrapolated yearly fluctuations of insurance claims around the mean in storm insurance
(2005) in Vienna (left) and a simulated realization of a 1:3562-stable random field (9.54) with
Gaussian kernel ft .x/ D 0:982443 expf�kx� tk22=8:6944g and skewness parameter ˇ D 0:2796

modelling these fluctuations (right). The colour scale stretches from red for high (positive) values
to blue for low (negative) values

for all t 2 T if ˛ D 1. Then ft , t 2 T , is integrable with respect to �, and � from
(9.54) is an ˛-stable random function.

4. Let �P be a Poisson random measure on .0;1/�Rnf0g with intensity measure
�1 � H, see Sect. 4.1.1, Definition 4.2, where H is the Lévy measure on R n f0g.
Let �G be a Gaussian (2-stable) random measure with Lebesgue control measure
and skewness intensity ˇ � 0. Then the Lévy process with Lévy measure H,
Gaussian part �G and drift � is given by

�.t/ D
Z t

0

Z
R

x �P.dy; dx/C t

�
� �

Z
jxj<1

xH.dx/

�
C
Z t

0

�G.dy/

D
Z
R

1.y 2 Œ0; t 
/ �.dy/

for t � 0. Here

�.dy/ D
Z
R

x �P.dy; dx/C
�
� �

Z
jxj<1

x H.dx/ dy

�
C �G.dy/:

Exercise 9.35. Show that

� D E�.1/ �
Z

jxj�1
xH.dx/

whenever E �.1/ exists and is finite.

Can any infinitely divisible random function � be represented as a stochastic
integral (9.54)? The answer to this question is negative. However, the spectral
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representation (9.54) holds true for a large class of infinitely divisible random
functions that satisfy some additional conditions, as the following result (see [413,
Theorem 4.11]) shows.

Theorem 9.16. Let � D f�.t/; t 2 T g be an infinitely divisible Lp-separable real-
valued random function .p � 1/ satisfying one of the following three conditions.

1. � is symmetric.
2. E.�.t// D 0 for t 2 T .
3. � is centered ˛-stable, ˛ 2 .0; 2/, p < ˛.

Then there exists an uncountable Borel subset E of a Polish space equipped with a
	-algebra E and a Lévy basis � on .E; E/ together with a family of �-integrable
functions ft W E ! R, t 2 T , such that

�
dD
�Z

E

ft .x/�.dx/ W t 2 T
	
:

If � is ˛-stable, then � is ˛-stable as well.

Remark 9.7. 1. In order to get a spectral representation of � not only in distribution,
but almost surely, an enlargement of the probability space by “randomiza-
tion” should be performed, see [413, Theorem 5.2].

2. For a S˛S random field � D f�.t/; t 2 Z
d g, a unique decomposition (in law)

into a sum of two independent random fields �C and �D generated by conservative
and dissipative Zd -actions, respectively, is given in [428].

9.8 Elementary Statistical Inference for Random Fields

Let � D f�.t/; t 2 R
d g, �.t/ D .�1.t/; : : : ; �m.t//

>,m � 1, be a stationary (vector-
valued) random field with E �2i .o/ < 1, mean � D .�1; : : : ; �m/

> where �i D
E �i .o/ and cross-covariance function Cij .h/ D cov.�i .o/; �j .h//, h 2 R

d , i; j D
1; : : : ; m.

In this section, we consider some non-parametric statistical assessment proce-
dures for the estimation of �, Cij and related characteristics such as variogram,
spectral density, asymptotic (cross) covariance matrix from a single realization of �.
In our exposition we mainly follow [268, 387, 388].

9.8.1 Estimation of the Mean

To estimate � D .�1; : : : ; �m/
> consider a sequence .Wn/n2N of bounded Borel

sets Wn � R
d growing in the Van Hove sense. It means that
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lim
n!1 �d .Wn/ D 1 and lim

n!1
�d .@Wn ˚ Br.o//

�d .Wn/
D 0 (9.55)

for any r >0. We use ˚ and 
 for Minkowski’s addition and difference, respec-
tively. Furthermore, suppose that the random fields �i D f�i .t/; t 2 R

d g are
observable on subwindows Wni � Wn, �d .Wni/ < 1 for all i and n. An unbiased
estimator of the mean � is given by O�n D . O�n1; : : : ; O�nm/>; n � 1, with

O�ni D
Z
Wn

�i .t/ Gi .Wn; t/ dt

for weight functionalsGi W B0.Rd /˝ R
d ! Œ0;1/; i D 1; : : : ; m, which satisfy

Gi.W; t/ D 0; t 2 R
d nWni; and

Z
Rd

Gi .W; t/ dt D 1 (9.56)

for any W 2 B0.Rd /. The simplest weight functional is the uniform weight

Gi.W; t/ D 1.t 2 Wni/ = �d .Wni/; i D 1; : : : ; m; t 2 R
d : (9.57)

Exercise 9.36. Use the stationarity of � and the Fubini theorem to show that O�n is
an unbiased estimator of � for any n.

Put

�nij.t/ D
Z
Rd

Gi .Wn; y/Gj .Wn; y C t/ dy for i; j D 1; : : : ; m:

Note that �nij.t/ D 0 if t … Wni ˚ LWnj . Here LK means the set �K .

Exercise 9.37. Prove, that for any n 2 N, it holds that

cov. O�ni ; O�nj / D
Z
Rd

Cij .t/�nij.t/ dt; i; j D 1; : : : ; m: (9.58)

Hint: Use the Fubini theorem.

To study the asymptotic behavior of O�n, we assume that there exist constants
c1; �ij 2 .0;1/ for all i; j D 1; : : : ; m such that for any t 2 R

d

sup
t2Rd

Gi .W; t/ � c1

�d .W /
; lim

n!1 �d .Wn/�nij.t/ D �ij : (9.59)

Both conditions are evidently met, for example in the case (9.57).

Lemma 9.8. Let conditions (9.55), (9.56) and (9.59) be satisfied. If Cij is abso-
lutely integrable on R

d then
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lim
n!1 �d .Wn/ cov. O�ni ; O�nj / D �ij

Z
Rd

Cij .t/ dt; i; j D 1; : : : ; m: (9.60)

Hence the estimator O�n is mean square consistent for �, i.e.,

lim
n!1 E j O�n � �j2 D 0 :

Proof. The first assertion follows from the inequality in (9.59), Exercise 9.37 and
dominated convergence theorem. The second assertion is a consequence of (9.60)
and the unbiasedness of O� as limn!1 �d .Wn/D 1 and thus limn!1 var. O�ni /D 0,
i D 1; : : : ; m. ut

Under appropriate mixing and integrability conditions imposed on �1; : : : ; �m
(see for example [268, Sect. 1.7]) one can show that O�n D O�n D . O�n1; : : : ; O�nm/>
is asymptotically normal, i.e.,

p
�d .Wn/. O�n1 � �1; : : : ; O�nm � �m/

> d�! N.o;˙/; n ! 1; (9.61)

N.o;˙/ is an m-dimensional Gaussian random vector with mean zero and covari-
ance matrix˙ D .	ij / where

	ij D �ij

Z
Rd

Cij .t/ dt; i; j D 1; : : : ; m:

9.8.2 Estimation of the Covariance Function and Related
Characteristics

There exist many parametric estimation procedures for various second order
characteristics of random functions. Most of them are based on the use of the method
of least squares or the method of moments. Here we focus on non-parametric
approaches.

Assume that each component of � is observed within the observation windowWn

and (9.55) holds.
A classical estimator of the cross-covariance function Cij within a compact set

K � R
d is

OCnij .h/ D 1

�d .Wn \ .Wn � h//

Z
Wn\.Wn�h/

�i .t/�j .t C h/ dt � O�ni O�nj (9.62)

where i; j D 1; : : : ; m, n 2 N and h 2 K . Alternatively, one can integrate over Wn

instead ofWn \ .Wn � h/ in (9.62) and normalize the integral by the volume ofWn.
However, in this case we need the observations �.t/ for t 2 Wn [ .Wn ˚K/.
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Lemma 9.9. If Cij is absolutely integrable on R
d then the estimator (9.62) is

asymptotically unbiased as n ! 1.

Proof. Add ˙�i�j to OCnij .h/. By stationarity of � and the Fubini theorem, we get

E OCnij .h/ D Cij .h/ � cov. O�ni ; O�nj /:

By Lemma 9.8, cov. O�ni ; O�nj / ! 0 as n ! 1 which completes the proof. ut
For simplicity, consider the case m D 1 in more detail. We shall write C for C11

and assume that � is a mean-zero field with variogram � W Rd ! R and spectral
density f W Rd ! R. Introduce

OCn.h/ D 1

�d .Wn/

Z
Wn

�.t/�.t C h/ dt (9.63)

and

OC �
n .h/ D 1

�d .Wn \ .Wn � h//

Z
Wn\.Wn�h/

�.t/�.t C h/ dt; h 2 K: (9.64)

Stationarity of � and a straightforward application of the Fubini theorem yield
that both estimators (9.63) and (9.64) are unbiased. Under certain additional
assumptions on �, these estimators are a.s. consistent (also uniformly in h 2 K)
and asymptotically normally distributed, see [268, Chap. 4].

Since in practice one works with finite sums rather than with integrals, we give
a discrete version of the estimator (9.64) used in geostatistical literature, see [122,
136, 504]. Let the random field � be observed at a finite number of spatial locations
t1; : : : ; tk 2 Wn. Introduce

OC ��
n .h/ D 1

Nh

X
i;j W ti�tjDh

�.ti /�.tj /; h 2 K; (9.65)

where Nh is the number of pairs of points .ti ; tj / 2 W 2
n such that ti � tj D h. If the

points ti do not lie on a regular grid one can expect that the numberNh is either zero
or very small for most values of h. Hence one considers all pairs of points .ti ; tj / in
(9.65) such that ti � tj � h, i.e. the vector ti � tj lies in a small neighborhood of h.
Unfortunately, OC ��

n is not positive semi-definite. We refer to [136, p. 71] and [216,
Sect. 4.1] for the asymptotic properties of OC ��

n .
The use of the variogram � instead of C is very popular in geostatistics, see for

example [300, 490]. To assess � , the estimator

O�n.h/ D 1

2�d.Wn \ .Wn � h//
Z
Wn\.Wn�h/

.�.t/ � �.t C h//2 dt; h 2 K; (9.66)
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is employed, see [504, p. 50]. Again, it is easily seen that O�n is unbiased. A
discretized version of (9.66) is

O��
n .h/ D 1

2Nh

X
i;j W ti�tjDh

�
�.ti / � �.tj /

�2
; h 2 K; (9.67)

see for example [504, p. 47]. Asymptotic properties of O��
n are close to those of

OC ��
n , see [136, p. 71]. Robust versions of (9.67) based on the trimmed mean and

the sample median are given in papers [52, 181, 182] and in [136, pp. 74–83], [122,
pp. 39–44]. Alternatively, the relation �.h/ D C.0/ � C.h/, h 2 R

d (cf. (9.43))
can be used to get the estimator O���

n .h/ D QC.0/ � QC.h/, h 2 R
d , where QC is any

estimator of C .
The spectral density f of � can be estimated, e.g., by means of periodogram

Ofn.h/ D 1

.2�/d�d .Wn/

ˇ̌
ˇ̌ Z

Wn

expfi ht; hig�.t/ dt
ˇ̌
ˇ̌2 ; h 2 K: (9.68)

If f is continuous this estimator is asymptotically unbiased as n ! 1, cf. [425,
p. 132] for the case T D Z and [180, Sect. 5.3] for the two-dimensional case.
However, its variance does not vanish with increasing n which makes it of limited
use in applications. To improve the asymptotic behavior of its variance, smoothed
versions of the periodogram can be used:

Of �
n .h/ D

Z
Rd

Gn.h � t/ Ofn.t/ dt; h 2 K; (9.69)

where Gn W R
d ! RC is a square integrable smoothing kernel such that Gn

approximates the Dirac delta function as n ! 1 and
R
Rd
Gn.t/ dt D 1 for all

n 2 N. Examples of the smoothing kernel Gn (Bartlett’s, Parzen’s, Zhurbenko’s
kernels) for T D Z can be found, e.g., in [472, pp. 444–445]. Under certain
(regularity) assumptions on � and Gn, n 2 N, smoothed periodograms are
asymptotically unbiased and consistent as n ! 1, cf. [425, pp. 134–135] for
the case T D Z. Under further assumptions on �, Of �

n is asymptotically normally
distributed, cf. [244] and [425, pp. 155–157]. For an overview of results on the
estimation of spectral density (block estimators, tapering data, etc.) see [425,
Chap. 5], [216, Chap. 4]. The estimation of cumulant densities of � of any order
is considered in [425 and 523, Chap. 6].

9.8.3 Estimation of the Asymptotic Covariance Matrix

Since explicit formulae for 	ij , i; j D 1; : : : ; m, are in general unknown, we are
interested in the estimation of ˙ in (9.61). To this end, we assume that
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Z
Rd

jCij .t/j dt < 1; i; j D 1; : : : ; m : (9.70)

Consider Wn D Œ�n; n/d , n 2 N. Assume that .bn/n2N is any sequence of non-
random numbers such that

bn ! 1 and bn D o.n�/; n ! 1; (9.71)

for some � > 0.

9.8.3.1 The Estimator Involving Local Averaging

For z 2 Wn \ Z
d , n; bn 2 N and i; j D 1; : : : ; m set

Kz.bn/ D ft 2 Z
d W kz � tk1 � bng; Dz D Dz.Wn; bn/ D Wn \Kz.bn/;

where k tk1 D maxiD1;:::;d jti j for t 2 R
d . Following [101] we introduce the

estimator Ȯ
n D . O	nij /mi;jD1, n 2 N, with the elements

O	nij D 1

�d .Wn/

X
z2Wn\Zd

�d .Dz/

�
Si .Dz/

�d .Dz/
� Si .Wn/

�d .Wn/

��
Sj .Dz/

�d .Dz/
� Sj .Wn/

�d .Wn/

�
;

here Si.Dz/ D R
QDz
�i .t/ dt , QDz D [y2Dz Œy; y C 1
d for i; j D 1; : : : ; m and

z 2 Z
d . The notation Œy; y C 1
d is used for a unit cube with lower vertex y 2 Z

d .
Note that this estimator differs from the traditional one which is used in the case
of independent observations. Here we deal with dependent summands and use the
averaged variables Si .Dz/=�d .Dz/. Under specified conditions on the field � and
the sequence .bn/n2N one can prove (see [101, Theorem 2]) the L1-consistency of
the estimator Ȯ

n, i.e.,

lim
n!1 E j O	nij � 	ij j D 0

for all i; j D 1; : : : ; m.

9.8.3.2 A Covariance-Based Estimator

The random matrix Ȯ �
n D . O	�

nij /
m
i;jD1, n 2 N, is determined by means of the

estimator (9.62) of the cross-covariance function Cij , i; j D 1; : : : ; m, as a matrix
with elements

O	�
nij D 1

�d .Wn/

Z
Œ�bn;bn
d

OCnij .t/�d .Wn \ .Wn � t// dt:

For estimators with more general weights Gi see [388].
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Proposition 9.1 ([388]). Let � D f�.t/; t 2 R
d g be a stationary square integrable

vector-valued random field satisfying (9.70). Then, for any sequence of non-random
numbers .bn/n2N such that (9.71) holds with � D 1=2, the estimator Ȯ �

n is
asymptotically unbiased. If additionally E �4i .o/ < 1 for i D 1; : : : ; m and

1

b2dn

Z
Œ�bn;bn
d

Z
Œ�bn;bn
d

Z
Rd

ˇ̌
cov

�
�i .o/�j .t1/; �i .t/�j .t2 C t/

�ˇ̌

� dt dt1dt2 < 1; (9.72)

sup
t1;t22Rd

Z
Rd

ˇ̌
E
�
.�i .o/ � �i/.�i .t/ � �i /�j .t1/�j .t2/

�ˇ̌
dt < 1 (9.73)

for all i; j D 1; : : : ; m then Ȯ �
n is mean-square consistent as n ! 1.

Conditions (9.72) and (9.73) are evidently satisfied if the random field � has finite
correlation range, i.e. cov.�.s/; �.t// D 0 whenever ks � tk � r0, for some r0 > 0.
In this case, all covariances (includingCij and those in relations (9.72), (9.73)) have
compact support.

9.8.3.3 The Subwindow Estimator

The calculation of estimators Ȯ
n and Ȯ �

n is very time-consuming. The subwindow
estimator described below is more efficient for applications.

Let Vn D Œ�bn; bn/d � Wn D Œ�n; n/d ; n � 1; and bn ! 1 as
n ! 1. Consider subwindows Vn;k D Vn ˚ fhn;kg where hn;k 2 R

d , k D
1; : : : ; N.n/ and .N.n//n2N is an increasing sequence of positive integers. Assume
that [N.n/

kD1 Vn;k 
Wn for each n 2 N and there exists some r > 0 such that

Vn;k \ Vn;l � @Vn;k ˚ Br.0/ for k; l 2 f1; : : : ; N.n/g with k ¤ l:

Denote by

O�.k/ni D 1

�d .Vn/

Z
Vn;k

�i .t/ dt; k D 1; : : : ; N.n/;

the estimator of �i based on observations within Vn;k, and by

N�ni D 1

N.n/

N.n/X
kD1

O�.k/ni ; n 2 N; i D 1; : : : ; m;

the average of these estimators. Define the estimator Ȯ ��
n D . O	��

nij /
m
i;jD1 for the

covariance matrix˙ by setting
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O	��
nij D �d .Vn/

N.n/� 1

N.n/X
kD1

. O�.k/ni � N�ni /. O�.k/nj � N�nj /: (9.74)

The following result describes the asymptotic behaviour of Ȯ ��
n as n ! 1.

Theorem 9.17 ([388]). Let � D f�.t/; t 2 R
d g be a stationary square integrable

vector-valued random field satisfying (9.70). Then the estimator Ȯ ��
n is asymptoti-

cally unbiased. If additionally

Z
R3d

jc.2;2/ij .x; y; z/j dx dy d z < 1; i; j D 1; : : : ; m; (9.75)

where the fourth-order cumulant function

c
.2;2/
ij .x; y; z/ D E.Œ�i .0/� �i 
Œ�j .x/ � �j 
Œ�i .y/� �i 
Œ�j .z/� �j 
/

� Cij .x/Cij .z � y/ � Cii .y/Cjj .x � z/ � Cij .z/Cj i .x � y/;

then Ȯ �� introduced in (9.74) is mean-square consistent.

Relation (9.75) holds for a random field � with finite dependence range,
see Sect. 10.1.2. For strictly stationary vector-valued Gaussian time series, the
corresponding sufficient condition for (9.75) to hold is the absolute summability of
its cross-covariance functions, see [85, Condition 2.6.1]. In other cases this question
is non-trivial.

9.9 Simulation of Random Fields

In many applications one has to (efficiently) simulate random fields with certain
parameters which are either known or have been estimated from the (image) data.
These simulation techniques can be rather involved. In this section, we give a brief
survey of the simulation methods for widely used subclasses of infinitely divisible
random fields such as Gaussian, shot-noise, stable ones. Special attention is paid to a
general approach permitting to simulate all infinitely divisible random fields having
the integral representation (9.54), see Sect. 9.9.3.

9.9.1 Gaussian Random Fields

There exist many ways to simulate Gaussian random fields, see [437] for an
overview of the subject. They can be divided into two major classes: exact methods
and approximative ones.
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Exact methods yield a realization of the required Gaussian random field with
specified mean and covariance function. These are, for instance, the direct sim-
ulation and the circulant embedding. The direct method simulates the Gaussian
random vector with zero mean and a given covariance matrix using its Cholesky
decomposition, see [280, 338]. Due to computational restrictions of the Cholesky
decomposition, it is employed on modern PCs (with 8 GB RAM) mainly for
Gaussian processes (d D 1) for up to 10; 000 simulation points or in two dimensions
(d D 2) for an image of maximal size 100� 100. The circulant embedding method
(see [115,150,195,521]) relieves us from these restrictions allowing to simulate two-
dimensional realizations of size 1; 000�1; 000. For larger images, an approximative
circulant embedding can be used (see [521]).

We shall describe the circulant embedding in more detail. Let � D f�.t/;
t 2 R

d g, d � 1, be a centered stationary Gaussian random field. A field � has
to be simulated within the window W D Œ0; 1
d on a square regular grid G with
nd points which is equivalent to simulating a Gaussian random vector � 	 N.o;A/

with nd components constructed by ordering the rows of the values of � at G in a
certain way and putting it row by row into the vector �.

Definition 9.32. The matrixA D .akj /
m�1
k;jD0 is Toeplitz if akj D ak�j for all k; j D

0; : : : ; m � 1. It is block Toeplitz if this relation holds only within square blocks on
the main diagonal of A, whereas all other elements of A are zero.

Definition 9.33. The matrix AD .akj /
m�1
k;jD0 is circulant if its columns are consec-

utive permutations of a vector a D .a0; : : : ; am�1/>, i.e.,

A D

0
BBBBB@

a0 am�1 : : : a2 a1

a1 a0 : : : a3 a2
: : : : : : : : : : : : : : :

am�2 am�3 : : : a0 am�1
am�1 am�2 : : : a1 a0

1
CCCCCA
:

It is block circulant if A has the above form within square blocks on the main
diagonal of A whereas all other elements of A are zero.

Exercise 9.38. 1. Show that if A andB are (m�m) circulant matrices thenACB ,
AB are circulant and AB D BA.

2. Let OFm D .e�2�ijk=m/m�1
k;jD0 be the discrete Fourier transform matrix (i 2 D �1).

Show that a symmetric circulant m �m -matrix A generated by a vector a has a
decompositionADQ�Q�, whereQDm�1=2 OFm is unitary,Q� is the conjugate
transpose of Q, and � D diag. OFma/. Demonstrate that the eigenvalues of A are
given by OFma.

The covariance matrix A of � consisting of the values of C at certain points
can be made Toeplitz in case d D 1 and block Toeplitz for d D 2 (for d � 3,
nested block Toeplitz matrices are employed, see [521]). It can be shown that an
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m �m (block) Toeplitz matrix A can be embedded into a p � p symmetric (block)
circulant matrix B with p D 2q � 2.m � 1/. The embedding means that A can be
viewed as a submatrix of B . In many cases, p can be chosen such that B is positive
semi-definite, see [521, Propositon 2] for sufficient conditions. If one fails to find
a positive semi-definite circulant embedding, approximative circulant embedding
described in [521] can be used.

Suppose that matrix B is positive semi-definite. The idea is to simulate a larger
p-dimensional random vector � 	 N.o;B/ in an efficient way and then to pick
up the coordinates from � which correspond to �. For simplicity, consider the one-
dimensional case d D 1. Simulate

� D Q�1=2Q�


where 
 	 N.o; I / is a p-dimensional standard Gaussian vector. The matrix� and
subsequent multiplications by Q and Q� can be efficiently computed by the fast
Fourier transform, see [408, Chap. 12]. Since Q is unitary, it can be easily verified
that � 	 N.o;B/ as stated above.

Approximative methods can be classified into three groups. Methods of the
first group yield Gaussian realizations with an approximated covariance function.
For example, we refer to methods in [471] (see also [151]) based on the spec-
tral representation of stationary Gaussian processes [1, Theorem 5.4.2], on the
Karhunen–Loève expansion [1, pp. 71–73], sequential method [276]). Methods of
the second group simulate random fields with an exact covariance function and an
approximated (non-Gaussian) joint distribution. These are, e.g., all methods based
on CLT such as the tessellation method [320, p. 191] and the spectral method
described in more detail below. The third group contains methods (such as, e.g.,
turning bands, see [320, p. 192]) that yield an approximation of the target random
field regarding both the covariance function and the joint distribution.

The so-called spectral method for the simulation of a centered stationary
Gaussian random field � D f�.t/; t 2 R

d g with covariance functionC makes use of
cosine waves, see Sect. 9.2.4. To obtain a realization of �, one simulates independent
cosine waves �k , k D 1; : : : ; n, where the distribution of the auxiliary random vector
� is chosen to be the spectral measure � of C , see Definition 9.27 and Theorem 9.6.
One can show that each cosine wave �k has the covariance function C . Then

the finite-dimensional distributions of Sn D
n
Sn.t/ D 1p

n

Pn
kD1 �k.t/; t 2 R

d
o

converge weakly to the finite-dimensional distributions of � as n! 1, see Exer-
cise 9.8. As a measure of the accuracy of approximation, the Kolmogorov distance
supx2R jFSn.x/�F�.x/j between the cumulative distribution functionsFSn of Sn.0/
and F� of �.0/ can be chosen. The number n of cosine waves sufficient to perform
simulations with a desired accuracy " > 0 can be found by the Berry–Esseen
inequality, see for example [472, p. 374] and cf. [495]. For other approaches to
measure the quality of approximation see [320, pp. 197–199].
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9.9.2 Shot-Noise Random Fields

Another simple example of infinitely divisible random fields is Poisson shot-noise
� introduced in Sect. 9.2.5, see (9.11). Its simulation in an rectangular observation
window W � R

d is straightforward. Namely, suppose that the response function
g has a compact support such that suppg�Br.o/ for some r > 0. First, the
homogeneous Poisson process ˘� of germs is simulated in an enlarged window
W ˚ Br.o/ to account for edge effects, cf. Sect. 3.2.2. Then shifted response
functions g.� � xi / are placed at the points xi of ˘� within W ˚ Br.o/. Their
values are summed up at any location t 2 W to get the value of �.t/.

9.9.3 Infinitely Divisible Random Fields

There exists vast literature on the simulation methods for many particular classes
of infinitely divisible random functions, see [288] for a survey. Here we describe a
general method to simulate any infinitely divisible random field

�.t/ D
Z
Rk

ft .x/ �.dx/; t 2 W D Œ�t0; t0
d ;

where t0 > 0 and � is a Lévy basis. Denote by supp.ft / the support of ft for each
t 2 W and assume that it is compact and

[
t2W

supp.ft / � Œ�A;A
k

for some A > 0. Then

�.t/ D
Z
Œ�A;A
k

ft .x/ �.dx/; t 2 W: (9.76)

Approximate sample paths of � using the approximation of ft by

Qf .n/
t D

m.n/X
iD1

ai gt;i ; t 2 W; n 2 N;

wherem.n/ 2 N, ai 2 R and gt;i W Rk ! R is �-integrable, i D 1; : : : ; m.n/.
Due to the linearity of stochastic integral we get

Q�.n/.t/ D
Z
Œ�A;A
k

Qf .n/
t .x/ �.dx/ D

m.n/X
iD1

ai

Z
Œ�A;A
k

gt;i .x/ �.dx/; t 2 W:
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One can consider Q�.n/ as an approximation of �.
Let gt;i be simple functions such that

Z
Œ�A;A
k

gt;i .x/ �.dx/ D
lX

jD1
gt;i .xj /�.�j /; i D 1; : : : ; m.n/; t 2 W;

for some xj 2 Œ�A;A
k , l 2 N and a partition f�j gljD1 of Œ�A;A
k . Then

Q�.n/.t/ D
m.n/X
iD1

lX
jD1

aigt;i .xj /�.�j /

which can be simulated if �.�j /, j D 1; : : : ; l , can be simulated.

Example 9.8. Let � be an ˛-stable Lévy basis with Lebesgue control measure and
constant skewness intensity ˇ. Then

�.�j / 	 S˛.�k.�j /
1=˛; ˇ; 0/; j D 1; : : : ; l;

see [432, p. 119]. Furthermore, �.�j /, j D 1; : : : ; l , are independent since � is
independently scattered. A method to simulate ˛-stable random variables can be
found in [114].

The approximation of the random field � by Q�.n/ as described above implies that
Q�.n/ is close to � whenever Qf .n/

t is close to ft in a sense. Assume that ft ; Qf .n/
t belong

to Ls�k .Œ�A;A
k/ for all t 2 W and some s > 0. We use

Errs.�.t/; Q�.n/.t// WD
���ft .x/ � Qf .n/t .x/

���
Ls

WD
�Z

Œ�A;A
k
jft .x/ � Qf .n/

t .x/js �k.dx/
�1=s

to measure the approximation quality of Q�.n/. Let us now motivate the choice of the
error measure by several examples.

Example 9.9. 1. ˛-stable random fields. For any t 2 W , Q�.n/.t/ converges in
probability to the ˛-stable random field �.t/ from (9.76) iff

Err˛.�.t/; Q�.n/.t// D
Z
Rk

jft .x/ � Qf .n/
t .x/j˛�c.dx/ ! 0; n ! 1;

where �c is a control measure, see [432, p. 126]. It can also be shown that the
above condition is sufficient for the weak convergence of all finite-dimensional
distributions of Q�.n/.t/ to those of �.t/. Since �.t/ and Q�.n/.t/ are jointly ˛-stable
random variables for all t 2 W , �.t/ � Q�.n/.t/ is also an ˛-stable random
variable with scale parameter 	�.t/�Q�.n/.t / D Err˛.�.t/; Q�.n/.t//; see [432, p. 122].

Furthermore, for ˛ ¤ 1 one can show that the error Ej�.t/�Q�.n/.t/jp , 0 < p < ˛,
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is proportional to Errp˛.�.t/; Q�.n/.t//. If ˛ D 1 and the skewness ˇ ¤ 0 for at least
one t 2 W then Err3=2.�.t/; Q�.n/.t// can be used to measure the approximation
error, see [288].

2. Square integrable infinitely divisible random fields. Let � be an infinitely divisible
random field with a finite second moment and spot variable Q�.y/. If

var. Q�.y// WD c1 < 1; y 2 R
k; and

Z
Œ�A;A
k

.E. Q�.y///2 �k.dy/ WD c2 < 1

then we get

�
E.�.t/ � Q�.n/.t//2

�1=2 � .c1 C c2/
1=2 Err2.�.t/; Q�.n/.t//:

Exercise 9.39. Find the constants c1 and c2 from the last example for the Gamma
Lévy random field.

We see that the problem of approximating the random field � reduces to an
approximation problem of the corresponding kernel functions. The goal is then to
find a set of functions . Qf .n/

t /t2Rk such that Errs.�.t/; Q�.n/.t// can be made arbitrarily
small. These sets of functions can be, e.g., step functions, Haar wavelets, etc., see
[288].

Let us consider the case of step function approximation more closely. For any
n 2 N and j D .j1; : : : ; jk/

> 2 Z
k with �n � j1; : : : ; jk < n, let

�j D
�
�

�
j1
A

n
; � � � ; jk A

n

��
;

�j D


j1
A

n
; .j1 C 1/

A

n

�
� � � � �



jk
A

n
; .jk C 1/

A

n

�
:

Introduce the step function

Qf .n/
t .x/ WD

X
jj j�n

ft .�j /1.x 2 �j /

where jj j � n means �n � ji < n for i D 1; : : : ; k. Then we have

Q�.n/.t/ D
Z
Œ�A;A
k

Qf .n/
t .x/�.dx/ D

X
jj j�n

ft .�j /�.�j /: (9.77)

The following result provides error bounds Errs.�.t/; Q�.n/.t// for functions ft
which are Hölder-continuous.
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Theorem 9.18 ([288]). Assume that 0 < s � 2, the control measure is the
Lebesgue measure �d and the functions ft are Hölder-continuous for all t 2 W , i. e.

jft .x/ � ft .y/j � Ct � jjx � yjj�t2 ; x; y 2 Œ�A;A
k; t 2 W;
for some 0 < �t � 1 and Ct > 0. Then for any t 2 W and all n 2 N one has

Errs.�.t/; Q�.n/.t// �
�
2kCtk

1C �ts

�1=s
A�tCk=sn��t : (9.78)

Suppose that the conditions of Theorem 9.18 are statisfied. If the support of ft is
not compact, we first approximate

�.t/ D
Z
Rk

ft .x/�.dx/

by
�K.t/ D

Z
Œ�K;K
k

ft .x/�.dx/:

For K > 0 large enough, the approximation error is small since

Errs.�.t/; �K.t// D
� Z

RknŒ�K;K
k
jft .x/jsdx

�1=s
! 0; K ! 1;

and ft ; Qf .n/
t 2 Ls.Œ�A;A
k; �d /.

Remark 9.8. Theorem 9.18 provides a pointwise estimate of the approximation
error for each t 2 W . One obtains a uniform error bound as follows.

Assume that � WD inf
t2W �t > 0. Then for each t 2 W , ft is Hölder-continuous

with parameters � and some constant C �
t > 0. Set C WD sup

t2Œ�t0;t0
k
C �
t . Then the

approximation error Errs.�.t/; Q�.n/.t// can be estimated by (9.78) with Ct and �t
replaced by C and � .

Remark 9.9. Assume that 0 < s � 2 and the functions ft are differentiable with
jjrft.x/jj2 � Ct for all x 2 Œ�A;A
k and t 2 W . Then for any t 2 W , (9.78) holds
for all n � 1 with �t D 1.

The above simulation method is illustrated by two numerical examples (see
Fig. 9.17). Fix the simulation window Œ�1; 1
2 and the resolution 200 � 200. Let
the accuracy of approximation not exceed " > 0. Take the bisquare kernel

ft .x/ D
(
b � .a2 � kx � tk22/2; kx � tk2 � a;

0; otherwise

in (9.76) with a D 0:2, b D 5, " D 0:05 in the case of Gamma Lévy basis
(� D 0:01) and aD 0:2, bD 1000, "D 0:1 in the case of symmetric 1:5-stable
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Fig. 9.17 Simulated realizations of a Gamma Lévy field (left) and a symmetric 1:5-stable random
field (right)

basis (ˇ D 0), see Example 9.5. Simulation of realizations shown in Fig. 9.17
requires 982ms (26; 138ms, respectively) of computational time on a Pentium
Dual-Core CPU E5400, 2.70 GHz. We refer the reader to [288] for further perfor-
mance issues.

Note that most non-Gaussian fractional fields are obtained by integration of
deterministic kernels with respect to a random infinitely divisible measure. In
[128] generalized shot noise series are used to obtain approximations of such
fields, including linear and harmonizable fractional stable fields. Almost sure and
Lp -norm rates of convergence, relying on asymptotic developments of the deter-
ministic kernels, are presented as a consequence of an approximation result
concerning series of symmetric random variables. The general framework is
illustrated by simulations of classical fractional fields.
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Central Limit Theorems for Weakly Dependent
Random Fields

Alexander Bulinski and Evgeny Spodarev

Abstract This chapter is a primer on the limit theorems for dependent random
fields. First, dependence concepts such as mixing, association and their general-
izations are introduced. Then, moment inequalities for sums of dependent random
variables are stated which yield e.g. the asymptotic behaviour of the variance of
these sums which is essential for the proof of limit theorems. Finally, central limit
theorems for dependent random fields are given. Applications to excursion sets of
random fields and Newman’s conjecture in the absence of finite susceptibility are
discussed as well.

10.1 Dependence Concepts for Random Fields

This section reviews several important dependence concepts of random variables
and random fields such as mixing and m-dependence (already touched upon in
Sect. 4.3 for point processes), association (both positive and negative), quasi-
association, etc. Special attention is paid to association of random elements with
values in partially ordered spaces and Fortuin–Kastelleyn–Ginibre inequalities.
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10.1.1 Families of Independent and Dependent Random
Variables

We consider a real-valued random function � D f �.t/; t 2 T g defined on a
probability space .˝;A;P/ and a set T , i.e. �.t/ W ˝ ! R is a random variable for
any t 2 T . Recall the following basic concept.

Definition 10.1. A family � D f �.t/; t 2 T g consists of independent random
variables if for each finite set J � T and any collection of sets Bt 2 B.R/, t 2 J ,
one has

P

 \
t2J

f �.t/ 2 Bt g
!

D
Y
t2J

P.�.t/ 2 Bt/: (10.1)

If (10.1) does not hold then � is named a family of dependent random variables.

The independence of events fAt ; t 2 T g can be defined as independence of
random variables f 1.At/; t 2 T g.

Exercise 10.1. Prove that validity of (10.1) is equivalent to the following statement.
For all finite disjoint sets I D f s1; : : : ; sk g � T , J D f t1; : : : ; tm g � T (with
all possible values k;m 2 N) and any bounded Borel functions f W R

k ! R,
g W Rm ! R

cov.f .�.s1/; : : : ; �.sk//; g.�.t1/; : : : ; �.tm/// D 0: (10.2)

Definition 10.1 can be easily extended to comprise random elements
�.t/ W ˝ ! St where .St ;Bt / are any measurable spaces and �.t/2 A j Bt
for each t 2T . Note that (10.1) is the particular case of the independence
notion for arbitrary family of 	-algebras (for every t 2 T we use 	-algebras
	f �.t/ g D f ��.t/��1.B/ W B 2 Bt g/. Due to the Theorem 9.1 one can construct
a collection f �.t/; t 2 T g of independent random variables on some probability
space .˝;A;P/ (defined on an arbitrary set T and taking values in any measurable
spaces .St ;Bt /) having given laws �t D Law.�.t//, t 2 T . Many interesting
stochastic models can be described by families of dependent random variables
which are constructed by means of independent ones.

10.1.2 Mixing Coefficients and m-Dependence

There are many ways to describe the dependence structure of the (existing) family of
random variables. Further on we concentrate on the study of real random functions
� D f �.t/; t 2 T g with T D Z

d or T D R
d .d � 1/. The investigation of

stochastic processes (i.e. d D 1) has the following advantage. There is a total
order on the real line R and we can operate with the “past” and the “future” of
a process � whereas for d > 1, that is for random fields, one can introduce only
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partial orders on R
d (andZd ). In the latter case, well-known concepts of dependence

involving the events related to the “past” and the “future” lose their meaning.
Nevertheless, it is natural to assume that the dependence between collections of
random variables f �.t/; t 2 I g and f �.t/; t 2 J g is “rather small” for I; J � T

such that the distance between I and J is “large enough”. For example, the notion of
m-dependence (m > 0) means that 	-algebras 	�.I / and 	�.J / are independent if

dist.I; J / WD inf f 
.s; t/ W s 2 I; t 2 J g � m (10.3)

where 
 is a metric in R
d . 	�.I / is the 	-algebra in A generated by f �.t/; t 2 I g.

One says also that � has a finite dependence range.
A stationary centered random field � D f �.t/; t 2 R

d g with covariance function
C is said to be long range dependent (LRD) if

Z
Rd

jC.t/j dt D 1:

Otherwise it is short range dependent (SRD).

Exercise 10.2. Show that the Gaussian random field with generalized Cauchy
covariance introduced in Sect. 9.2.2 is a LRD random field iff 0 < ˛ˇ � d .

It turns useful to consider a concept of m.U /-dependent random field � D
f �.t/; t 2 R

d g assuming that 	�.V / and 	�.W / are independent for V;W � U

whenever dist.V;W / � m.U /. Here m.U / denotes a positive-valued function on
subsets of Rd ; d � 1 (Fig. 10.1).

However, the generalization of the mixing coefficients known for stochastic
processes (see for example [264]) is not straightforward. In contrast with the case
d D 1, one has to take into account not only the distance between subsets I ,
J � T D Z

d (I and J for d D 1 belong to the “past” and “future”, respectively)
but also some other characteristics, for example their cardinalities jI j and jJ j (see
for example [83, 99, 159]). For instance, one can define for � D f �.t/; t 2 Z

d g the
mixing coefficients

˛k;m.r/ WD sup f˛.	� .I /; 	�.J // W I; J � Z
d ;

dist.I; J / � r; jI j � k; jJ j � m g (10.4)

where k;m 2 N [ f 1 g, r 2 RC and

˛.B;D/ D sup f jP.AB/� P.A/P.B/j W A 2 B; B 2 D g

for 	-algebras B;D � A. In a similar way we can introduce an analogue of the coef-
ficient ˛k;m for random fields � D f �.t/; t 2 R

d g by taking I; J � R
d in (10.4) and

employing the diameters of I and J .diam.I / WD sup f 
.x; y/ W x; y 2 I g) instead
of their cardinalities.
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V

W

m(U)

U

Fig. 10.1 m.U / corresponds here to the sup-norm in R
d (d D 2)

Exercise 10.3. Prove that ˛.B;D/ � 1=4 for any 	-algebras B;D � A. Give an
example of B and D such that ˛.B;D/ D 1=4.

Note that the calculation or estimation of various mixing coefficients for random
fields is by no means a trivial problem. Moreover, the class of well-studied models
involving mixing random fields is rather meagre as compared with that of Gaussian
fields or m.U /-dependent ones.

10.1.3 Association, Positive Association and Negative
Association

Now we concentrate on stochastic models whose descriptions are based on the
covariance function properties. Following the seminal paper by Newman [379] we
are interested in generalizations of the independence notion in which approximate
uncorrelatedness implies approximate independence in a sufficiently quantitative
sense leading to useful limit theorems for sums of dependent random variables.

We start with the definition of associated random variables. It is underlined in
[379] that there are two almost independent bodies of literature on this subject.
One has originated from the works of Lehmann [327], Esary, Proschan and Walkup
[167] and Sarkar [434] and is oriented towards mathematical statistics and reliability
theory. Another has developed from the works by Harris [223] and Fortuin et al.
[175] and is oriented towards percolation and statistical physics.

Introduce some notation. For n 2 N let M.n/ denote the class of bounded
coordinate-wise nondecreasing Borel functions f W R

n ! R. Consider a real-
valued random function � D f �.t/; t 2 T g defined on a probability space
.˝;A;P/. Set �I D f �.t/; t 2 I g for I � T .

Definition 10.2. A family � is associated .we write � 2 A/ if, for each finite set
I � T and any functions f; g 2 M.jI j/, one has

cov.f .�I /; g.�I // � 0: (10.5)

The notation f .�I / in (10.5) means that one considers any vector �I in R
jI j

constructed by ordering a collection f �.t/; t 2 I g. It is convenient to assume that
f .�;/ WD 0 for I D ;. We say that a random vector � D .�1; : : : ; �n/

> is associated
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if a collection f �1; : : : ; �n g 2 A. Thus a random vector � 2 A iff any permutation
of its components is associated. One says also that random variables �1; : : : ; �n are
associated.

A probability measure Q on .Rn;B.Rn// is called associated if Q D P� where
a random vector � 2 A. In other words,Q is associated in view of (10.5) iff for any
f; g 2 M.n/ one has

Z
Rn

f .x/g.x/Q.dx/ �
Z
Rn

f .x/Q.dx/

Z
Rn

g.x/Q.dx/: (10.6)

Theorem 10.1 ([167]). Any collection � D f �.t/; t 2 T g consisting of indepen-
dent random variables is associated.

Proof. We start with T such that jT j D 1. Then inequality (10.5) is known as one of
Chebyshev’s inequalities. To study this particular case of a single random variable �,
let us take its independent copy �. For f; g 2 M.1/ (for bounded nondecreasing
functions f; g W R ! R which are automatically Borel functions) one has

cov.f .�/; g.�// D Ef .�/g.�/ � Ef .�/Eg.�/

D 1

2
E.f .�/ � f .�//.g.�/ � g.�// � 0 (10.7)

since the expression under the expectation is nonnegative for each ! 2 ˝ . Next we
need the following simple

Lemma 10.1. A union of mutually independent collections of associated random
variables is associated.

Proof. Assume that random vectors �k 2 A for each k D 1; : : : ; m, and �1; : : : ; �m

are independent. If m D 1 then the assertion is true. By induction, thus suppose
that it holds for �1; : : : ; �m�1. Let r be the dimension of � WD .�1; : : : ; �m�1/ and n
be the dimension of �m. Set Q D P�m . Then for any f; g 2 M.r C n/ the Fubini
theorem implies

cov.f .�; �m/; g.�; �m// D
Z
Rn

�
Ef .�; x/g.�; x/ � Ef .�; x/Eg.�; x/

�
Q.dx/

C
Z
Rn

Ef .�; x/Eg.�; x/Q.dx/

�
Z
Rn

Ef .�; x/Q.dx/
Z
Rn

Eg.�; x/Q.dx/:

The integrand in the first term of the right-hand side is nonnegative by induction
hypothesis as � 2 A and for each x 2 R

n the functions f .�; x/; g.�; x/ 2 M.r/.
Note that Ef .�; �/, Eg.�; �/ 2 M.n/ and �m 2 A (i.e., Q is associated). Hence the
difference between the second and third terms is nonnegative in view of (10.6). ut
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Lemma 10.1 and the established Chebyshev’s inequality prove Theorem 10.1. ut
Remark 10.1 (see for example [96, Theorem 1.5]). The dominated convergence
theorem allows to replace the boundedness assumptions concerning f and g in
Definition 10.2 by the requirement that all expectations forming the covariance
exist. A random vector � D .�1; : : : ; �n/

> 2 A if condition (10.6) holds whenever
both f and g taken from M.n/ belong to either of the following classes of
functions: .a/ binary .being the indicators of some measurable sets/, .b/ continuous,
.c/ having bounded .partial/ derivatives of any order. The functional class M D
[1
nD1M.n/ is closed under compositions. Therefore a family of functions belonging

to M and having arguments taken from finite subsets of associated random variables
is associated.

Exercise 10.4. Let �1; : : : ; �n be i.i.d. random variables and �.1/; : : : ; �.n/ be the
corresponding order statistics (�.1/ D minkD1;:::;n �k , . . . , �.n/ D maxkD1;:::;n �k).
Show that the random vector .�.1/; : : : ; �.n//> 2 A.

Theorem 10.2 ([96, Theorem 3.8]). Let � D f �.t/; t 2 R
d g be a shot-noise

random field defined in Sect. 9.2.5 with g being a nonnegative integrable function.
Then � 2 A.

Theorem 10.3 ([407]). A Gaussian process � D f �.t/; t 2 T g 2 A iff

cov.�.s/; �.t// � 0 for any s; t 2 T:

Now we recall another important concept of dependence extending
Definition 10.2.

Definition 10.3. A family � D f �.t/; t 2 T g is weakly (or positively) associated
.� 2 PA/ if

cov.f .�I /; g.�J // � 0 (10.8)

for any finite disjoint sets I; J � T and all functions f 2 M.jI j/, g 2 M.jJ j/.
It is useful to consider also the following counterpart of (10.8).

Definition 10.4. A family � D f �.t/; t 2 T g is called negatively associated
.� 2 NA/ if

cov.f .�I /; g.�J // � 0 (10.9)

for any finite disjoint sets I; J � T and all functions f 2 M.jI j/, g 2 M.jJ j/.
For NA systems the following result is a direct analogue of Theorem 10.3.

Theorem 10.4 ([273]). A Gaussian process � D f �.t/; t 2 T g 2 NA iff

cov.�.s/; �.t// � 0 for any s ¤ t; s; t 2 T:

Remark 10.2. The class PA is strictly larger than the class A (see [105]). However,
in view of Theorem 10.3 any Gaussian process � 2 A iff � 2 PA.
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A family � D f �.t/; t 2 T g consists of independent random variables iff
simultaneously � 2 PA and � 2 NA. To verify the last statement it is sufficient
to consider the independence condition for �.t/, t 2 T; in terms of their distribution
functions and to take into account that if .�.t1/; : : : ; �.tn//> 2 PA and gk W R ! RC
are bounded nondecreasing functions for k D 1; : : : ; n then

E
nY

kD1
gk.�.tk// �

nY
kD1

Egk.�.tk//; (10.10)

whereas if � 2 NA then the analogue of (10.10) is true with the opposite
sign of inequality. Relation (10.10) is obtained by induction with application of
Remark 10.1 showing that .g1.�.t1//; : : : ; gk.�.tn///> 2 A.

Remark 10.3. If there is a family of functions from M and their arguments belong
to finite pairwise disjoint subsets of PA .or NA/ random variables then these
functions are PA .or NA/.

Theorem 10.5 ([326]). Let � D .�1; : : : ; �n/
> be an ˛-stable random vector. Then

� 2 A iff � .S�/ D 0 where

S� D f .s1; : : : ; sn/ 2 Sn�1 W si sj < 0 for some i; j 2 f 1; : : : ; n g g

and � 2 NA iff � .SC/ D 0 where

SC D f .s1; : : : ; sn/ 2 Sn�1 W si sj > 0 for some i; j 2 f 1; : : : ; n g; i ¤ j g:

Let B0.S/ consist of all bounded Borel subsets of a metric space S .

Theorem 10.6 ([104]). A family f�.B/; B 2 B0.S/ g 2 A whenever � is an
independently scattered random measure.

Proof. Let B1; : : : ; Bn 2 B0.S/. Then there is a finite number of pairwise
disjoint sets C1; : : : ; Cr 2 B0.S/ such that every Bi is a union of some of Cj .
Random variables �.C1/; : : : ; �.Cr/ are independent, hence Remark 10.1
(concerning increasing functions in associated random variables) implies that
.�.B1/; : : : ; �.Bn//

> 2 A. ut
Let R be a ring of subsets of Rd consisting of the finite unions of the blocks

having the form

C D .a1; b1
 � : : : � .ad ; bd 
; ak � bk; k D 1; : : : ; d:

We give the following generalization of the result by Burton and Waymire [104].

Theorem 10.7 ([96, Theorem 3.19]). Assume that � is a random measure on the
space .Rd ;B.Rd // with a finite intensity measure E�. ThenX D fX.B/; B 2 R g
introduced in (9.15) is associated.
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Further results concerning the association of point random fields can be found in
the book [96].

10.1.4 Association on Partially Ordered Spaces

Definitions 10.2–10.4 admit natural extensions to partially ordered spaces as the
only notion needed essentially was that of nondecreasing functions. As a motivation
for such generalizations we mention the detailed proofs of interesting results by
Barbato [51] concerning the association properties of strong solutions of stochastic
differential equations (cf. [96, Chap. 1]). The connections between supermodular
ordering and positive or negative association properties are considered in [126].

Let .S;B/ be a measurable space and �S a partial order on S (we write � for the
usual order on R).

Definition 10.5. A function f W S ! R is �S -increasing if x; y 2 S and x �S y

imply f .x/ � f .y/.

Definition 10.6. Let a space S be endowed with partial order �S . A probability
measure Q on the measurable space .S;B/ is called positively correlated, or
associated .one writes Q 2 A/ if

Z
S

fg dQ �
Z
S

f dQ

Z
S

g dQ (10.11)

for any bounded �S -increasing BjB.R/-measurable functions f; g W S ! R.
A random element � defined on a probability space .˝;A;P/ and taking values
in S .i.e., � is AjB-measurable/ is called associated if P� 2 A.

It is worthwhile to write .S;B;Q;�S/ 2 A to emphasize the role of partial order
in the last definition. Clearly (10.6) is a particular case of (10.11) when S D R

n is
endowed with usual partial order. For any probability measureQ on .S;B/ one can
find the random element � W ˝ ! S with P� D Q. Therefore relation (10.11) can be
written in equivalent manner: cov.f .�/; g.�// � 0 for any bounded �S -increasing
functions f W S ! R and g W S ! R. We have the following analogue of
statement (a) of Remark 10.1.

Theorem 10.8 ([334]). One has .S;B;Q;�S/ 2 A iff

Q.A\ B/ � Q.A/Q.B/

for any �S -increasing sets A;B 2 B .i.e., indicators 1.A/ and 1.B/ are increasing
functions on .S;�S//.

Proof. Necessity is clear. To establish sufficiency w.l.g. we can consider �S -
increasing BjB.R/-measurable f W S ! R, 0 � f < 1, and g W S ! R with the
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same properties (because for any random variables �; � and constants a; b; c; d 2 R

one has cov.a.�C b/; c.� C d// D ac cov.�; �/). For n 2 N set

fn.x/ WD
nX

kD1

k

n
1
�
k � 1
n

� f .x/ <
k

n

�
D 1

n

nX
kD1

1
�
f .x/ � k � 1

n

�
; x 2 S:

We define gn.x/ in the same way. Obviously fn.x/ ! f .x/ and gn.x/ ! g.x/

for all x 2 S as n ! 1. The function 1.x W f .x/ � v/ is �S -increasing for every
v 2 Œ0; 1/. Therefore,

Z
S

fngn dQ �
Z
S

fn dQ

Z
S

gn dQ:

Due to Lebesgue’s convergence theorem we come to (10.11). ut
Now let .S;B;�S/ be a partially ordered measurable space. For a subset B � S

introduce
CB WD fy 2 S W y �S x for some x 2 B g: (10.12)

This set (its indicator) is increasing. Let the partial order be measurable, that is for
any x 2 S , the sets f y W y �S x g and fy W y �S x g belong to B. Then for every
x 2 S

fy W y �S x g \ f y W y �S x g D fx g 2 B and Cfx g 2 B: (10.13)

The following result can be regarded as “generalized Chebyshev’s inequality”,
cf. (10.7).

Theorem 10.9 ([334]). Let the measurable space .S;B/ be endowed with a mea-
surable partial order �S . Then .S;B;�S/ is totally ordered iff any probability
measure on B is associated.

Proof. First we verify the necessity. Assume that S is not totally ordered but
every probability measure on B is associated. Then there exist two non-comparable
elements x; y 2 S . Take probability measure P such that P.fx g/ D P.f y g/ D 1=2.
Introduce increasing sets Cfx g and Cfy g according to (10.12). Since P 2 A we
get P.Cfx gCfy g/ � P.Cfx g/P.Cfy g/ � 1=4 by Theorem 10.8. However, since
x … Cfy g and y … Cfx g, one has P.Cfx g n f x g/ � P.S n .f x g [ fy g// D 0.
Similarly P.Cfy g n fy g/ D 0. Consequently

P.Cfx gCfy g/ D P..Cfx g n fx g/ \ .Cfy g n fy g// D 0:

We come to a contradiction.
To establish sufficiency let now S be totally ordered. We write Bc WD S n B for

B � S . Take a probability measure P on B and any increasing sets C1; C2 2 B.
We show that either C1C c

2 D ; or Cc
1 C2 D ;. If this were not true then there
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would exist points x 2 C1C
c
2 and y 2 Cc

1 C2. These points are different as
.C1C

c
2 /\ .C c

1 C2/ D ;. But then neither y �S x nor x �S y which is impossible
as S is totally ordered (indeed, if y �S x then y 2 C1 as C1 is increasing, however
y 2 Cc

1 C2 � Cc
1 which is impossible, the case x �S y is analogous). Suppose at

first that C1C c
2 D ;. Then

P.C1C2/ D P.C1/ � P.C1C c
2 / D P.C1/ � P.C1/P.C2/:

The same situation occurs for Cc
1 C2 D ;. Now we can complete the proof using

Theorem 10.8. ut
Example 10.1. Let � and �lex be the usual partial and lexicographical orders in R

2,
respectively. Consider a random vector � D .�1; �2/

> with bounded components
such that cov.�1; �2/ < 0. Then .R2;B.R2/;�;P�/ … A in view of Remark 10.1.
However, .R2;B.R2/;�lex;P�/ 2 A due to Theorem 10.9. Thus we obtain an
example of a probability space endowed with two different (partial) orders such
that the first one does not provide an association whereas the second one does.

10.1.5 FKG-Inequalities and Their Generalizations

For a finite space L we assume that all its subsets (i.e., elements of 2L) are
measurable.

Definition 10.7. A partially ordered set L is called a lattice, if any two elements
x and y in L have a join x _ y and a meet x ^ y (i.e., x �L x _ y, y �L x _ y, and
x �L z, y �L z imply x _ y �L z, while x ^ y is defined analogously). A lattice is
called distributive if these operations satisfy the following conditions

x ^ .y _ z/ D .x ^ y/ _ .x ^ z/; x _ .y ^ z/ D .x _ y/ ^ .x _ z/

for all x; y 2 L.

A typical example of a finite distributive lattice is a collection W of subsets of
f 1; : : : ; n g such that A;B 2 W H) A \ B; A [ B 2 W , with partial order
A �W B ” A � B: By Birkhoff’s theorem [73, p. 59], every finite distributive
lattice L is isomorphic to some latticeW of subsets of f 1; : : : ; n g with partial order
of inclusion. That is, there exists a bijection F from L to W such that x �L y iff
F.x/ 
 F.y/ for any x; y 2 L.

To simplify the notation we write Q.t/ instead of Q.f t g/ for a probability
measureQ and t 2 L.

Theorem 10.10 ([175]). LetL be a finite distributive lattice. LetQ be a probability
measure on .L; 2L/ such that for any x; y 2 L

Q.x _ y/Q.x ^ y/ � Q.x/Q.y/: (10.14)
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Then Q 2 A, i.e. (10.11) holds with S replaced by L.

One usually refers to condition (10.14) as to FKG lattice inequalities (FKG
stands for Fortuin–Kastelleyn–Ginibre). The proof of the above result based on the
deep theorem by Holley [247] can be found in [96, Theorem 4.10].

Sufficient conditions for the Ising model (e.g., for two-body interaction) to satisfy
the FKG inequalities are given in [175].

The results discussed above for a finite lattice can be extended to infinite sets if
the potentials are defined in such a way that all the set-indexed series are absolutely
convergent. In particular, it is true for the Ising model on Z

d when i and j are
neighbours only if ji � j j D 1. FKG-inequalities and their generalizations remain a
subject of constant interest in reliability theory, statistical physics, quantum physics,
discrete mathematics. Interesting modifications appear when index sets are more
general than Z

d (then the corresponding algebraic lattice may be non-distributive).
For instance, the “right” FKG-inequalities differ from the usual ones on triangular
nets (see [117]). Even if we consider a finite graph consisting of one triangle, the
simplest example might fail to satisfy the classical FKG-inequalities. The modified
FKG-inequalities were also applied to phase transition problems for the correspond-
ing Potts model and to analyzing the existence of infinite clusters in percolation
models. We mention also that Liggett [332] introduced the concept of conditional
association leading to the so-called downward FKG-property for specified models,
which lies strictly between regular FKG-inequalities and association.

The FKG-inequalities were generalized by Holley [247] and Preston [409]. We
formulate the result by Ahlswede and Daykine which in its turn generalizes the
former two. For sets A;B � L define

A _ B D f x _ y W x 2 A; y 2 B g; A ^ B WD f x ^ y W x 2 A; y 2 B g:

For a function f W L ! R and A � L introduce

f .A/ D
X
x2A

f .x/:

Theorem 10.11 ([7]). Let f; g; h; k be nonnegative functions defined on a finite
distributive lattice L such that

f .x/g.y/ � h.x _ y/k.x ^ y/ for any x; y 2 L: (10.15)

Then
f .A/g.B/ � h.A _ B/k.A ^ B/ for any A;B � L: (10.16)

Notice the attractive similarity between the hypothesis (10.15) and the
conclusion (10.16). Various applications of this theorem are considered in [6, 9].
For other aspects of the correlation inequalities see for example [63].
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10.1.6 Quasi-association and Further Extensions

Now we revisit independence relation (10.2). Clearly a family � D f �.t/; t 2 T g
consists of independent random variables if (10.2) holds for sufficiently large
class of functions f; g (and then for all Borel bounded functions). Moreover, the
value cov.f .�.s1/; : : : ; �.sk//; g.�.t1/; : : : ; �.tm/// for a pair of test functions f; g
indicates “how strong” is the dependence between the vectors .�.s1/; : : : ; �.sk//>
and .�.t1/; : : : ; �.tm//>. To clarify this idea, we consider the class of Lipschitz test
functions. Recall that f W Rk ! R is a Lipschitz function if

Lip.f / WD sup
x;y2Rk ; x¤y

jf .x/ � f .y/j
kx � yk1 < 1;

here kx � yk1 D Pk
iD1 jxi � yi j, x D .x1; : : : ; xk/

> and y D .y1; : : : ; yk/
>.

Definition 10.8. A random field � D f �.j /; j 2 Z
d g is called quasi-associated

.� 2 QA/ if E�2.j / < 1 for all j 2 Z
d , and, for any finite disjoint sets I; J � Z

d

and for arbitrary bounded Lipschitz functions f W RjI j ! R, g W RjJ j ! R, one has

j cov.f .�I /; g.�J /j � Lip.f /Lip.g/
X

i2I; j2J
j cov.�.i/; �.j //j: (10.17)

The extension of the above definition to random fields indexed by t 2R
d is proposed

in [92].
Now we formulate the following elementary but important result.

Theorem 10.12 ([96, Theorem 5.3]). Let � D f �.j /; j 2 Z
d g be a random field

such that E�2.j / < 1 for all j 2 Z
d . Then � 2 PA or � 2 NA implies that � 2 QA.

One can obtain also the analogue of (10.17) using the “partial Lipschitz
constants”, see [96, p. 89].

Corollary 10.1. Let a random vector � D .�1; : : : ; �n/
> 2 A .PA, NA/ such that

Ek�k22 < 1. Then for any t1; : : : ; tn 2 R it holds

ˇ̌
ˇ̌
ˇE ei.t1�1C:::Ctn�n/ �

nY
kD1

E eit�k

ˇ̌
ˇ̌
ˇ � 4

X
1�j<k<n

jtj tkj j cov.�j ; �k/j: (10.18)

It is interesting to compare the next statement with Theorems 10.3 and 10.4.

Theorem 10.13 ([466]). Any Gaussian random field .having the covariance func-
tion of arbitrary signs/ is quasi-associated.

The Cox–Grimmett coefficient (see [135]) for a field � D f �.t/; t 2 Z
d g is

introduced by formula
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u.r/ WD sup
i2Zd

X
j Wki�j k

1

�r
j cov.�.i/; �.j //j; r 2 ZC; (10.19)

where kik1 WD maxsD1;:::;d jisj. If � is a wide-sense stationary random field satisfy-
ing the finite susceptibility condition by Newman, i.e.

X
j2Zd

j cov.�.0/; �.j //j < 1; (10.20)

then

u.r/ D
X

j Wkj k
1

�r
j cov.�.0/; �.j //j < 1 for all r 2 ZC: (10.21)

Following [98, 160] (for random fields and stochastic processes, respectively) we
provide

Definition 10.9. A random field � is called .BL; �/-dependent .� 2 .BL; �// if
there exists a nonincreasing sequence � D f �r gr2Z

C

of nonnegative numbers

�r ! 0 as r ! 1, such that for any finite disjoint sets I; J � Z
d and bounded

Lipschitz functions f W RjI j ! R, g W RjJ j ! R one has

j cov.f .�I /; g.�J /j � Lip.f /Lip.g/.jI j ^ jJ j/�r (10.22)

where r D dist.I; J / and a ^ b D min f a; b g for a; b 2 R.

Thus we obtain that if a random field � 2 QA then � 2 .BL; �/ with �r D u.r/,
r 2 ZC. It is proved in [467] that the class of .BL; �/-dependent random fields is
strictly larger than QA.

We can generalize these definitions for a field � D f �.t/; t 2 R
d g. For � > 0

introduce a lattice T .�/ D f .j1=�; : : : ; jd =�/> W .j1; : : : ; jd /> 2 Z
d g:

Definition 10.10. A field � D f �.t/; t 2 R
d g is called .BL; �/-dependent .we

write � 2 .BL; �// if there exists a nonincreasing function � W RC ! RC,
�.r/ ! 0 as r ! 1 such that for all sufficiently large �, any finite disjoint
I; J � T .�/ and arbitrary bounded Lipschitz functions f W R

jI j ! R, g W
R

jJ j !R

j cov.f .�I /; g.�J //j � Lip.f /Lip.g/�d .jI j ^ jJ j/�.r/ (10.23)

where r D dist.I; J /.

Note that if � D f �.t/; t 2 R
d g is a wide-sense stationary random field with

continuous covariance function C which is absolutely directly integrable in the
Riemann sense then (see [92]) one can use in (10.23) the analogue of the Cox–
Grimmett coefficient
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�.r/ D 2

Z
k tk2�r

jC.t/j dt:

In the next section we illustrate the use of the dependence conditions introduced
above in the limit theorems for random fields.

10.2 Moment and Maximal Inequalities for Partial Sums

Consider a partial sum of a stationary dependent random field over an unboundedly
growing finite subset of Zd . This section defines the proper growth notion of such
subsets in order to study the asymptotics of the variance and higher moments of
these partial sums. Moreover, upper bounds for higher moments of these sums as
well as of their maxima are given.

10.2.1 Regularly Growing Sets

Let � D f �.j /; j 2 Z
d g be a random field. For a finite set U � Z

d consider the
partial sum

S.U / WD
X
j2U

�.j /: (10.24)

To study the limit behaviour of (normalized) partial sums S.Un/ we have to specify
the growth conditions for finite sets Un � Z

d as n 2 N increases.
First of all we recall the concept of “regular growth” for a sequence of sets in

R
d . Let a D .a1; : : : ; ad /

> be a vector with positive components. Introduce the
parallelepiped

�0.a/ D f x 2 R
d W 0 < xi � ai ; i D 1; : : : ; d g:

For j 2 Z
d define the shifted blocks

�j .a/ D �0.a/˚ f ja g D f x 2 R
d W ji ai < xi � .ji C 1/ai ; i D 1; : : : ; d g

where jaD .j1a1; : : : ; jd ad /
> and ˚ is the Minkowski addition. Clearly f�j .a/;

j 2 Z
d g form a partition of Rd . For a set V � R

d put

J�.V; a/ D f j 2 Z
d W �j .a/ � V g; JC.V; a/ D f j 2 Z

d W �j .a/\ V ¤ ; g;
V �.a/ D

[
j2J

�

.V;a/

�j .a/; V C.a/ D
[

j2J
C

.V;a/

�j .a/:
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Recall that for a measurable set B � R
d its Lebesgue measure is denoted by

�d .B/.

Definition 10.11. A sequence of sets Vn �R
d tends to infinity in the Van Hove

sense (or is VH-growing) if, for any a 2 R
d having positive components,

�d .V
�.a// ! 1;

�d .V
�.a//

�d .V C.a//
! 1 as n ! 1: (10.25)

Exercise 10.5. Show that

Vn D .a.n/; b.n/
 D fx 2 R
d W a.n/i < xi � b

.n/
i ; i D 1; : : : ; d g ! 1

in the Van Hove sense iff min1�i�d .b.n/i � a.n/i / ! 1 as n ! 1.

For " > 0 and V � R
d we define the "-neighbourhood of V as follows

V " D f x 2 R
d W 
.x; V / WD inf

y2V 
.x; y/ � " g

where 
 is the Euclidean metric.
Recall that the boundary of a set V �R

d is a set @V consisting of such points
z 2 R

d that in every neighbourhood of f z g there exist a point x 2V and a point
y … V .

Lemma 10.2 ([431]). Let .Vn/n2N be a sequence of bounded measurable sets in
R
d . Then this sequence is VH-growing iff for any " > 0 one has

�d ..@Vn/
"/

�d .Vn/
! 0 as n ! 1: (10.26)

The proof can be found in [95, p. 173].
For finite sets Un �Z

d one can use an analogue of condition (10.26). Given
U �Z

d and p 2 N, write

Up D f j 2 Z
d n U W dist.j; U / WD inf

i2U dist.i; j / � p g

where dist is the metric on Z
d corresponding to the sup-norm in R

d . Set @U DU 1.
Therefore

@U D f j 2 Z
d n U W dist.j; U / D 1 g;

cf. Sect. 9.3. Recall that jU j stands for the number of elements of a finite setU �Z
d .

Definition 10.12. A sequence .Un/n2N of finite subsets of Zd is called regularly
growing (or is growing in a regular way) if

jUnj ! 1 and j@Unj=jUnj ! 0 as n ! 1: (10.27)



352 A. Bulinski and E. Spodarev

Now we formulate the result (see [95, Lemmas 3.1.5 and 3.1.6]) clarifying the
relationship between VH-growing sets in R

d and regularly growing sets in Z
d .

Lemma 10.3. Let .Vn/n2N be a sequence of bounded sets in R
d such that Vn ! 1

in the Van Hove sense. Then Un WDVn \ Z
d .n 2 N/ form a regularly growing

sequence in Z
d . Conversely if .Un/n2N is a sequence of regularly growing subsets

of Zd then Vn WD [j2Un�j .n 2 N/ form a VH-growing sequence where the cubes

�j WD f x 2 R
d W ji < xi � ji C 1; i D 1; : : : ; d g; j D .j1; : : : ; jd /

> 2 Z
d :

10.2.2 Variances of Partial Sums

Theorem 10.14 ([74]). Let � D f �.j /; j 2Z
d g be a wide-sense stationary ran-

dom field such that X
j2Zd

cov.�.0/; �.j // D 	2

where this series is absolutely convergent. Then for any sequence .Un/n2N of
regularly growing subsets of Zd and partial sums appearing in (10.24) the following
relation holds

varS.Un/
jUnj ! 	2 as n ! 1: (10.28)

Proof. Take arbitrary p 2 N and introduceGn DUn\.@Un/p ,Wn D UnnGn. Then

	2jUnj � varS.Un/ D
X
j2Un

X
k…Un

cov.�.j /; �.k//

D
X
j2Gn

X
k…Un

cov.�.j /; �.k//C
X
j2Wn

X
k…Un

cov.�.j /; �.k//

DW T1;n C T2;n:

Note that jGnj � j.@Un/pj � .2p C 1/d j@Unj and by (10.27)

jT1;nj
jUnj � jGnj

jUnj
X
j2Zd

j cov.�.0/; �.j //j � c0.2p C 1/d j@Unj=jUnj ! 0; n ! 1;

where c0 D P
j2Zd j cov.�.0/; �.j //j.

Taking into account that dist.Wn;Z
d nUn/ � p and jWnj � jUnj we come to the

inequality

lim sup
n!1

jT2;nj
jUnj �

X
j2Zd Wkj k

1

�p
j cov.�.0/; �.j //j (10.29)
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where kjk1 D max1�i�d jji j.
The finite susceptibility condition

X
j2Zd

j cov.�.0/; �.j //j < 1 (10.30)

implies that the right-hand side of (10.29) can be made arbitrary small when p is
large enough. ut
Exercise 10.6. Prove that if a random field � D f�.j /; j 2 Z

d g 2 .BL; �/

then (10.30) holds.

An extension of Theorem 10.14 for .BL; �/-dependent stationary random field
�D f �.t/; t 2 R

d g is provided in [92]. Now we consider random fields without
assuming the finite susceptibility condition. We start with

Definition 10.13. A function L W R
dC ! R n f 0 g is called slowly varying (at

infinity) if for any vector a D .a1; : : : ; ad /
> with positive components

L.a1x1; : : : ; ad xd /

L.x1; : : : ; xd /
! 1 as x ! 1; (10.31)

that is when x1 ! 1; : : : ; xd ! 1. For such function we write L 2 L.Rd /.
A function L W N

d ! R n f 0 g is slowly varying (at infinity) if for any a D
.a1; : : : ; ad /

> 2 N
d relation (10.31) holds with supplementary condition x 2 N

d .
We write L 2 L.Nd /.

For d D 1 this is the classical definition introduced by Karamata (see for example
[462]). Clearly, f .x/ D Qd

iD1 log.xi _ 1/, where x 2 R
dC, belongs to L.Rd /. For

x 2 R
d put Œx
 D .Œx1
; : : : ; Œxd 
/

>, where Œ�
 stands for the integer part of a number.

Exercise 10.7. Let L2 L.Nd / and L be nondecreasing in each argument. Set
H.x/DL.Œ Qx
/ for all x 2 R

dC where Qxi D xi _ 1, i D 1; : : : ; d . Prove that
H 2 L.Rd /.

Let � D f �.j /; j 2 Z
d g be a family of square-integrable random variables. Set

K�.n/ D
X

j2Zd W�n�j�n
cov.�.o/; �.j //; n 2 N

d : (10.32)

The sum is taken over j D .j1; : : : ; jd /
> 2Z

d such that �n1 � j1 � n1; : : : ;
�nd � jd � nd . Write 1 D .1; : : : ; 1/> for a vector in R

d with components
equal to 1.

Theorem 10.15. Let � D f �.j /; j 2 Z
d g be a wide-sense stationary random field

with nonnegative covariance function R andUn D f j 2 Z
d W 1 � j � n g, n 2 N

d .
If K� .�/ 2 L.Nd / then
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varS.Un/ 	 K� .n/ jUnj as n ! 1:

Conversely, if varS.Un/ 	 L.n/jUnj as n ! 1 with L 2 L .Nd /, then
L.n/ 	 K� .n/, n ! 1.

Proof. Assume that K�.�/ 2 L.Nd /. Due to stationarity of the field � under consi-
deration we have cov.�.i/; �.j // D R.i � j / for i; j 2 Z

d . Thus

var S.Un/ D
X
i;j2Un

cov.�.i/; �.j // D
X
i;j2Un

R.i � j /

D
X

m2Zd W�.n�1/�m�n�1

.n1 � jm1j/ : : : .nd � jmd j/R.m/

� jUnj
X

m2Zd W�.n�1/�m�n�1

R.m/ � K� .n/ jUnj (10.33)

as R is a nonnegative function.
Take any c 2 .0; 1/ and n � 1

1�c1 (i.e. cn � n � 1, n 2 N
d ). One has

var S.Un/ D
X

m2Zd W�.n�1/�m�n�1

.n1 � jm1j/ : : : .nd � jmd j/R.m/

� .1 � c/d jUnj
X

m2Zd W�cn�m�cn
R.m/ D .1 � c/dK� .Œcn
/ jUnj:

In view of Exercise 10.7 and (10.31) we write

.1 � c/dK� .Œcn
/ jUnj 	 .1 � c/dK� .n/ jUnj; n ! 1; n 2 N
d :

Therefore varS.Un/ 	 K� .n/ jUnj as n ! 1, because c can be taken arbitrary
close to zero.

Now suppose that varS.Un/ 	 L.n/ jUnj as n ! 1 holds with L 2 L.Nd /.
Then for any " > 0 and all n large enough, i.e. when all components of n are large
enough, (10.33) yields

K� .n/ � varS.Un/
jUnj � .1 � "/L.n/: (10.34)

For given q 2 N, q > 1, nr 2 N and mr 2 Z such that jmr j � nr , r D 1; : : : ; d ,
one has

q

q � 1

�
1 � jmr j

nrq

�
� q

q � 1

�
1 � nr

nrq

�
D 1:

Consequently
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K� .n/ �
�

q

q � 1

�d X
m2Zd W�n�m�n

R.m/
dY
rD1

.nrq � jmr j/
nrq

�
�

q

q � 1

�d  dY
rD1

nrq

!�1 X
m2Zd W�nq�m�nq

R.m/
dY
rD1
.nrq � jmr j/

D
�

q

q � 1

�d varS.Unq/
jUnqj 	

�
q

q � 1
�d
L.nq/; n ! 1: (10.35)

As q can be taken arbitrary large and L2 L.Nd /, combining (10.34) and (10.35) we
complete the proof. ut

10.2.3 Moment Inequalities for Partial Sums

There are a number of beautiful results concerning the moments of sums of
independent (or dependent in a sense) random variables. One can refer to the
classical theorems by Khinchin, Doob, Burkholder–Davis–Gandy, see, for example
[125, 405, 472]. However, the structure of the index set was not so important there
as for partial sums generated by a random field � D f �.j /; j 2 Z

d g consisting
of dependent random variables where additional difficulties arise due to the spatial
configuration of the index set of summands.

Recall that if .�n/n2N is a sequence of i.i.d. random variables with mean zero and
Ej�1js < 1 for some s > 2, then

E j�1 C : : :C �njs D O.ns=2/ as n ! 1 (10.36)

which follows, e.g., from the Rosenthal inequality, cf. [405, Theorem 2.10].

Exercise 10.8. Show that this estimate is sharp, that is one cannot obtain in general
for such sequence .�n/n2N and r < s=2 the estimate

E j�1 C : : :C �njs D O.nr/ as n ! 1:

However for dependent summands there are new effects which we are going to
discuss. We start with PA or NA random field � D f �.j /; j 2Z

d g. Let U be the
class of blocks in Z

d , that is of the sets

U D .a; b
\Z
d D ..a1; b1
�: : :�.ad ; bd 
/\Z

d ; ai ; bi 2 Z; ai < bi ; i D 1; : : : ; d:

For � > 0 and n2N let us introduce the analogue of the Cox–Grimmett [135]
coefficient
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��.n/ D sup
nX
i2U

�X
j…U

j cov.�.i/; �.j //j
�� W U 2 U ; jU j D n

o
� 1:

Given a block U 2 U , r > 1 and n 2 N, set

ar.U / D EjS.U /jr ; Ar.n/ D sup f ar .U / W U 2 U ; jU j D n g:

Theorem 10.16 ([91]). Let a centered random field � D f �.j /; j 2 Z
d g 2 PA be

such that for some r > 2, ı > 0 and � � 0 one has

ArCı.1/ D sup
j2Zd

Ej�.j /jrCı < 1; (10.37)

�ı=~.n/ D O.n�/ as n ! 1; (10.38)

here ~ D ı C .r C ı/.r � 2/. Then Ar.n/ D O.n� / where

� D �.r; ı; �/ D
(
r=2; 0 � � < .1C ı=~/=2;

~.� ^ 1/=.r C ı � 2/; otherwise:
(10.39)

Remark 10.4. Therefore the upper bound forAr.n/ has the same formO.nr=2/ as in
the case of i.i.d random summands when the dependence is small enough, namely,
0 � � < .1 C ı=~/=2. Moreover, the result of Theorem 10.16 is sharp as the
following statement shows.

Theorem 10.17 ([91]). For any r >2, ı >0,�� 0 and d 2N there exists a random
field � D f �.j /; j 2 Z

d g which satisfies all the conditions of Theorem 10.16 and
such that

ar .Un/ � c .�d .Un//
�

where Un D .0; n
d for n 2 N, � D �.r; ı; �/ was defined in (10.39) and c > 0

does not depend on n.

Denote the length of edges of a parallelepiped V D .a; b
�R
d by l1.V /; : : : ;

ld .V / (ai < bi , i D 1; : : : ; d ). We write also li .U / when U D V \ Z
d 2 U . Set

U 0 D fU 2 U W lk.U / D 2qk ; qk 2 ZC; k D 1; : : : ; d g:

Introduce the congruent blocks v; v0 obtained from V by drawing a hyperplane
orthogonal to the edge having length l0.V / D max1�k�d lk.V /. If there are several
edges li .V / having the length l0.V / we take that with the minimal i .

Remark 10.5. Analyzing the proof of Theorem 10.16 (see [95, Theorem 2.1.4]) one
sees that the condition �ı=~.n/ D O.n�/ as n ! 1 can be replaced by a weaker
assumption that �1.1/ < 1 and
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sup
nX
i2v

�X
j2v0

cov.�.i/; �.j //
�ı=~ W U D V \ Z

d 2 U 0; jvj D n
o

D O.n�/; n ! 1;

where the blocks v; v0 for V are described above.

Corollary 10.2 ([95, p. 116]). Let a centered field � D f �.j /; j 2 Z
d g 2 PA,

Ap.1/ < 1 for some p 2 .2; 3
 and u.n/ D O.n��/ for some � > 0, where u.n/
is the Cox–Grimmett coefficient introduced in (10.19). Then there exists r 2 .2; p


such that Ap.n/ D O.nr=2/ as n ! 1.

The following example constructed by Birkel shows that even for associated
sequence (d D 1) of random variables in Theorem 10.16 one cannot assume
Ar.1/ < 1 (as for i.i.d. summands) instead of the hypothesis ArCı.1/ < 1 to
obtain the nontrivial estimate for Ar.n/ as n ! 1. Namely, we give

Theorem 10.18 ([72]). Let .�n/n2N be a monotone sequence of positive numbers
such that �n ! 0 as n ! 1. Then for any r > 2 there exists a centered sequence
.�n/n2N 2 A such that

i) Ar.1/ < 1,
ii) u.n/ D O.�n/ as n ! 1,

iii) ar ..0; n
/ � cnr where c > 0 does not depend on n.

Now we turn to .BL; �/-dependent random fields. Here we shall only pay
attention to the conditions guaranteeing the “independent-type” behaviour for
partial sums moments.

Introduce a function

 .x/ D

8̂
<̂
ˆ̂:
.x � 1/.x � 2/�1; 2 < x � 4;

.3 � p
x/.

p
x C 1/; 4 < x � t20 ;

..x � 1/
p
.x � 2/2 � 3 � x2 C 6x � 11/.3x � 12/�1; x > t20 ;

(10.40)

where t0 � 2:1413 is the maximal root of the equation t3 C 2t2 � 7t � 4 D 0. Note
that  .x/ ! 1 as x ! 1 (Fig. 10.2).

Theorem 10.19 ([96, p. 120]). Let � D f �j ; j 2 Z
d g be a centered .BL; �/-

dependent random field such that there are p > 2 and c0 > 1 ensuring that
Ap.1/ < 1 and

�r � c0r
��; r 2 N; (10.41)

for � > d .p/ with  defined in (10.40). Then there exist ı > 0 and C > 1

depending only on d; p;Ap.1/; c0 and � such that for any block U 2 U one has

EjS.U /j2Cı � C jU j1Cı=2: (10.42)

Remark 10.6. In [315] this result was extended to cover finite U � Z
d having

arbitrary configuration. Now we briefly describe the main idea of this generalization.
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Fig. 10.2 Graph of the function  .x/

Let f be a probability density (with respect to the Lebesgue measure �d ) on
B.Rd / such that

sup
x2Rd

f .x/ � ˛ (10.43)

for some ˛ > 0. For unit vector � 2 R
d and " > 0 introduce the concentration

function

Q.�; "/ D sup
b2R

Z
xWb�h�;xi�bC"

f .x/�d .dx/

where h�; xi D Pd
kD1 �kxk .

Theorem 10.20 ([331]). Let (10.43) be fulfilled. Then for any d � 3 there exists
Cd > 0 such that for any " > 0 one can find the unit vector � D �.f; "/ such that
the relation Q.�; "/ � Cd˛

1=d " is true.

We shall say that sets W1;W2 � R
d are separated by a layer of width " if there

exist a unit vector � 2 R
d and a number b 2 R such that

W1 � fx 2 R
d W hx; �i � b g and W1 � fx 2 R

d W hx; �i � b C " g:

The following result can be viewed as useful analogue of Theorem 10.20 for
discrete case.

Theorem 10.21 ([315]). Let integer d ¤ 2 and

0 < a D
X
j2Zd

aj < 1 where aj � 0 for all j 2 Z
d :
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Then for any " � 1=2 there exists a partition Z
d into sets U1; U2; U3 and U4 with

the following properties:

i) U1 and U4 are separated by a layer of width 2";
ii) U1 and U3 [U4 as well as U1 [U2 and U4 are separated by a layer of width ";

iii) for i D 2; 3 and �A.U / WD P
j2U aj where U � Z

d one has

�A.Ui/ � Kda
1=d
maxa

1�1=d ";

here amax D maxj2Zd aj and Kd depends on d only;
iv) moreover,

j�A.U1 [ U2/� �A.U3 [ U4/j � 1

2
Kda

1=d
maxa

1�1=d ":

To construct the appropriate partition of Z2, the author of [315] employed the
analogue of Theorem 10.20 established in [99] for d D 2.

The bisection method used to prove Theorem 10.19 and its generalization (see
for example [95, p. 121]) allows (under specified conditions) to estimate the partial
sums’ moment of any order greater than two. The situation becomes simpler if one
is interested in the moment of order 2r when r > 1 is an integer. In this case (see
[36]) it is useful to consider the estimates of cov.F.�I /; G.�J // for power-type “test
functions” F and G and finite disjoint sets I; J � Z

d . We provide here only such a
result for the fourth moment of partial sums.

For n 2 N and � 2 R set

B.n; �/ D

8̂
<̂
ˆ̂:
n� ; � > 0;

log.n _ e/; � D 0;

1; � < 0;

h.�/ D

8̂
<̂
ˆ̂:
��1 _ 1; � > 0;

2; � D 0;

2.j� j�1 _ 1/; � < 0:

Theorem 10.22 ([468]). Let � D f �.j /; j 2Z
d g be a centered .BL; �/-dependent

random field such that Ap.1/ D supj2Zd Ej�.j /jp < 1 for some p > 4

and (10.41) holds. Then for any U 2 U one has the estimate

ES.U /4 �
X
j2U

E�4j C 12jU j2.A2.1/C �1/
2

C jU jC1.d; �; p/cv
0Ap.1/

2=.p�2/B.jU j; �/ (10.44)

where

v D .p�4/=.p�2/; � D 3�.�v=d/; C1.d; �; p/ D 192d233d .p�4/2=.p�2/h.�/v�1:
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If � is quasi-associated and for any i ¤ j

j cov.�.i/; �.j //j � c1ji � j j�~ (10.45)

with some c1; ~ > 0, the same estimate (10.44) holds upon replacement of c0 with
c1 and � with ~.

Corollary 10.3. Assume that conditions of Theorem 10.22 are satisfied with any
p > 4 .e.g. j�j j � b for all j 2 Z

d and some constant b > 0/ and � > 2d . Then
A4.n/ D O.n2/ as n ! 1. One can obtain the same estimate for A4.n/ whenever
Ap.1/ < 1 for some p > 4 and � large enough.

Indeed, � D 1 means �v D 2d . Now note that v D v.p/ " 1 as p ! 1. Setting
jU j D n in (10.44) we come to the desired statement. The second claim is verified
in a similar way.

10.2.4 Bounds Based on Supermodular Results

Recall the following important

Definition 10.14. A function f W R
n ! R is called supermodular if for any

x; y 2 R
n one has

f .x _ y/C f .x ^ y/ � f .x/C f .y/

where x _ y D .x1 _ y1; : : : ; xn _ yn/> and x ^ y D .x1 ^ y1; : : : ; xn ^ yn/>.

Exercise 10.9. Prove that the following functions are supermodular:

i)
Pn

iD1 xi ,
ii) maxnkD1

Pk
iD1 xi ,

iii) g.h1; : : : ; hn/ where g W R
n ! R is supermodular and hi WR ! R are

nondecreasing functions for i D 1; : : : ; n.
iv) g ı h where h W R

n ! R is supermodular coordinatewise nondecreasing
function and g W R ! R is a nondecreasing convex function.

Definition 10.15. Let Q1 and Q2 be probability measures on .Rn;B.Rn//. One
says that Q1 is less than Q2 in the supermodular order (and writes Q1 �sm Q2) if
for any supermodular function f W Rn ! R

Z
Rn

f .x/Q1.dx/ �
Z
Rn

f .x/Q2.dx/

whenever both integrals exist. For random vectors � D .�1; : : : ; �n/
> and � D

.�1; : : : ; �n/
> the notation � �sm � means that Law.�/ �sm Law.�/. If � and �

are defined on the same probability space then � �sm � iff for any supermodular
function f W Rn ! R
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Ef .�/ � Ef .�/ (10.46)

whenever both expectations exist.

Definition 10.16. For a random vector � D .�1; : : : ; �n/
>, its decoupled version is

a vector � D .�1; : : : ; �n/
> such that Law.�i / D Law.�i /, i D 1; : : : ; n, and the

components of � are (mutually) independent. The decoupled version of a family
f �.t/; t 2 T g is a family1 f �t ; t 2 T g consisting of independent random variables
having Law.�.t// D Law.�t / for each t 2 T .

We shall assume without loss of generality that f �.t/; t 2 T g and its decoupled
version f �t ; t 2 T g are defined on the same probability space (the extension of the
one where � was defined).

Now we can formulate the important result by Christofidis and Vaggelatou.

Theorem 10.23 ([126]). Let � D .�1; : : : ; �n/
> be the decoupled version of a

random vector � D .�1; : : : ; �n/
>. If � 2 PA then � �sm �. If 2 NA then � �sm �.

Exercise 10.10. Is it possible that � �sm � where � is a decoupled version of a
random vector � and � … PA? Does there exist a random vector � such that � … NA
and � �sm � where � is its decoupled version?

Next we can easily obtain the following useful result by Shao.

Theorem 10.24 ([464]). Let a sequence .�n/n2N 2 PA and .�n/n2N be its
decoupled version. Set Sn D Pn

iD1 �i and Tn D Pn
iD1 �i for n 2 N. Then for

any convex function f W R ! R and each n 2 N

Ef .Sn/ � Ef .Tn/ (10.47)

whenever the expectations exist. If, moreover, f is nondecreasing, then for any
n 2 N

Ef .Mn/ � Ef .Rn/ (10.48)

whenever the expectations exist, hereMn D max1�j�n Sj andRn D max1�j�n Tj .
If .�n/n2N 2 NA then both assertions hold with reversed signs of inequalities.

Proof. We consider .�n/n2N 2 PA because the NA case is analogous. If f is nonde-
creasing then (10.47) and (10.48) are derived from Theorem 10.23 and Exercise 10.9
(i), (ii) and (iv). Thus we have only to prove (10.47) without assuming that a
convex f is nondecreasing. If f is convex and nonincreasing then we introduce
g.x/ D f .�x/, x 2 R. Obviously the function g is convex and nondecreasing.
Note that .��1; : : : ;��n/> is a decoupled version of .��1; : : : ;��n/> 2 PA.
Consequently in view of Exercise 10.9 (i) and already discussed case we have

1Such family f �t ; t 2 T g exists due to Theorem 9.1.
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Ef .Sn/ D Eg

 
nX

kD1
.��k/

!
� Eg

 
nX

kD1
.��k/

!
D Ef .Tn/

if Eg
�Pn

kD1.��k/
�

and Eg
�Pn

kD1.��k/
�

exist or equivalently whenever Ef .Sn/
and Ef .Tn/ exist.

If convex f is neither nondecreasing nor nonincreasing (on R) there exists at
least one point c 2 R such that f 1.x < c/ is nonincreasing and f 1.x � c/ is
nondecreasing. Set

f .C/.x/ D f .c/C .f .x/� f .c//1.x � c/; f .�/.x/ D f .x/� f .C/.x/; x 2 R;

If E� exists for a random variable �, then for any eventA 2 A there exists E �1.A/.
The constant is integrable. Therefore if Ef .Sn/ and Ef .Tn/ exist we conclude that
Ef .C/.Sn/, Ef .�/.Sn/, Ef .C/.Tn/ and Ef .�/.Tn/ exist as well. Thus by (10.47)
already proved for convex nondecreasing f one has

Ef .C/.Sn/ � Ef .C/.Tn/; n 2 N: (10.49)

The sequence .��n/n2N 2 PA and its decoupled version is .��n/n2N. Therefore,
taking g.x/ D f .�/.�x/ for x 2 R, in view of (10.47) established for convex
nondecreasing f we come to the inequality

Ef .�/.Sn/ D Eg.�Sn/ � Eg.�Tn/ D Ef .�/.Tn/; n 2 N: (10.50)

Clearly Ef .�/.Sn/ and Ef .�/.Tn/ exist when Ef .Sn/ and Ef .Tn/ exist. It remains
to combine (10.49) and (10.50) as f D f .C/ C f .�/. ut
Exercise 10.11. Explain why the same reasoning that was used to prove (10.47)
does not permit to obtain (10.48) for any convex f .

Using Theorem by Shao one can provide some analogues of the well-known
Bernstein exponential inequality for negatively associated random variables. In this
regard we refer to [95, Corollary 2.2.11].

Remark 10.7. Inequality (10.47) can be applied to random field � D f �.j /;
j 2Z

d g 2 PA or with opposite sign to � 2 NA. Namely, for any finite set
U � Z

d , any supermodular convex function f W RU ! R and decoupled version
� D f �.j /; j 2 Z

d g of � one has

Ef .S.U // � Ef .T .U // (10.51)

where T .U / D P
j2U �.j / whenever the expectations in (10.51) exist. Indeed we

can enumerate the points of U and employ (10.47). However, it is impossible in
general to prove inequality of the type (10.48) for random fields as the function
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f .x1; : : : ; xn/ D sup
I2�

X
i2I

xi ; x D .x1; : : : ; xn/
> 2 R

n;

is not supermodular for arbitrary system � of subsets of f 1; : : : ; n g. Let us provide
a corresponding counterexample.

For a field � D f �.j /; j 2 Z
d g and n D .n1; : : : ; nd /

> 2 N
d introduce

Mn D maxj2.0;n
 S..0; j 
/ where the block .0; n
 D .0; n1
 � : : : � .0; nd 
. For
the decoupled version � D f �.j /; j 2 Z

d g of � we define Rn in a similar way as
Mn.

Theorem 10.25 ([98]). Let f W R ! R be any function with property f .1/>f .0/.
Then for any integer d > 1 there exists a random field � D f �.j /; j 2 Z

d g 2 NA
and a point n 2 N

d such that

Ef .Mn/ > Ef .Rn/:

Proof. It suffices to consider d D 2 and n D .2; 2/> as we always can take other
random variables in � to be equal to zero a.s. Let � be a random variable such that
P.� D �1/ D P.� D 1/ D 1=2. Set

�.1;1/ D 0; �.1;2/ D �; �.2;1/ D ��; �.2;2/ D �3:

Then it is easily seen that f �.1;1/; �.1;2/; �.2;1/; �.2;2/ g 2 NA. For n D .2; 2/> one has
Mn D 1 a.s. since either S.1;2/ D 1 or S.2;1/ D 1 with other partial sums being at
the same time nonpositive. Thus Ef .Mn/ D f .1/.

The random variables �.1;2/ and �.2;1/ are independent and distributed as �.
Clearly �.1;1/ D 0 and �.1;1/ C �.1;2/ C �.2;1/ C �.2;2/ < 0. Therefore R.2;2/ D 0

iff �.1;2/ D �.2;1/ D �1. Otherwise R.2;2/ D 1. Hence

Ef .Rn/ D 1

4
f .0/C 3

4
f .1/ < f .1/ D Ef .Mn/; n D .2; 2/>;

as f .0/ < f .1/. This completes the proof. ut
For random field � D f �.j /; j 2 Z

d g 2 PA the upper bounds for maximum of
partial sums moments will be discussed further on.

10.2.5 The Móricz Theorem

There is a powerful method proposed by Móricz to obtain the inequalities for
expectations of the maximum of partial sums using the corresponding estimates
for moments of these sums.

Let U be a collection of blocks U D .a; b
\ Z
d , a < b, a 2 Z

d as above.
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Definition 10.17. A function ' W U ! R is called superadditive if, for any blocks
U;U1; U2 2 U such that U D U1 [U2 and U1 \U2 D ;, one has '.U / � '.U1/C
'.U2/:

For example, the function '.U / D jU jr is superadditive if r � 1. Let � D
f �.j /; j 2 Z

d g be a real-valued random field. Introduce

S.U / D
X
j2U

�.j /; M.U / D max
a<j�b jS..a; j 
/j

for U D .a; b
\ Z
d 2 U where a < j � b means ai < ji � bi for i D 1; : : : ; d .

Theorem 10.26 ([371]). Let d 2 N and � � 1. Suppose that there exist functions
' W U ! RC and  W RC � Z

d ! RC such that ' is superadditive,  is
coordinatewise nondecreasing and, for any block U 2 U with mi D bi � ai � 1,
i D 1; : : : ; d , one has

EjS.U /j� � '.U / � .'.U /;m1; : : : ; md /: (10.52)

Then EjM.U /j� , for any U 2 U , admits the following upper bound

�
5

2

�d
'.U /

 
Œlog2 m1
X
k1D1

: : :

Œlog2 md 
X
kdD1

� .2�k1�:::�kd '.U /; Œ2�k1m1
; : : : ; Œ2
�kd md 
/

!�
; (10.53)

here Œ�
 stands for the integer part of a number.

Corollary 10.4 ([371]). Let d 2 N and � � 1, ˛ � 1. Assume that there exists
a nonnegative and superadditive function f W U ! RC such that, for any block
U D .a; b
 \ Z

d 2 U , one has

EjS.U /j� � f ˛.U /:

Then

EM.U /� �
(
.5=2/d .1 � 2.1�˛/=� /�d�f ˛.U / if ˛ > 1;

5d2d.��1/f .U /.ŒLog2 m1
 : : : ŒLog2 md 
/
� if ˛ D 1

(10.54)

where mi D bi � ai , i D 1; : : : ; d , and Log2 x WD log2 .x _ 2/ for x 2 R.

Note that a very useful particular case of Corollary 10.4 is provided by the choice
f D cjU j, c D const. Thus we can use here for instance Theorem 10.16 and
Corollary 10.2.
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Now we provide the simple proof, proposed by P.A. Yaskov, of the particular case
of Theorem 10.26. The main idea here goes back to the dyadic representation of an
integer number used in the proof of the famous Rademacher–Menshov inequality
(see for example [336]).

Theorem 10.27. Let d 2 N, p � 1 and ˛ � 0. Suppose that for any block U D
.a; b
\ Z

d 2 U and some superadditive function f W U ! RC

EjS.U /jp � f .U /jU j˛: (10.55)

Then, for every U D .a; b
 D .a1; b1
 � : : : � .ad ; bd 
 \ Z
d 2 U

EM.U /p �
( �
Œlog2 n1
C 1/p : : : .Œlog2 nd 
C 1

�p
f .U /; ˛ D 0;�

1 � 2�˛=p��dpf .U /jU j˛; ˛ > 0;

where ni D bi � ai , 1 � i � d .

Proof. At first consider the case d D 1. Put for simplicity .a; b
 D .0; n
. We shall
write l D Œlog2 n
. From the dyadic expansion of m � n, i.e.

m D
lX

kD0
bk2

l�k; bk 2 f 0; 1 g; b0 ¤ 0;

we obtain S..0;m
/ D P
k S
��
m.k�1/; m.k/

��
where m.k/ D b02

l C : : : C bk2
l�k

with m.�1/ D 0. For example if m D 7 or 5, then, since 7 D 4C 2C 1, 5 D 4C 1

and S..0; 0
/ D 0,

S..0; 7
/ D S..0; 4
/C S..4; 6
/C S..6; 7
/; S..0; 5
/ D S..0; 4
/C S..4; 5
/:

This yields

M..0; n
/ D max
m�n jS..0;m
/j �

lX
kD0

Mk;

where
Mk D max

i W.iC1/2k�n
jS.Ii k/j; Ii k D �

i2k; .i C 1/2k
�
:

Further, applying the triangular inequality for the norm k�kp D .Ej�jp/1=p , we
derive

kM..0; n
/kp �
lX

kD0
kMkkp:

In addition,
EMp

k �
X

i W.iC1/2k�n
EjS.Ii k/jp � 2˛kf ..0; n
/:

Finally, we obtain that EM..0; n
/p admits the upper bound
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.Œlog2 n
C 1/pf ..0; n
/ as ˛ D 0 and
n˛f ..0; n
/�
1 � 2�˛=p�p if ˛ > 0:

For d >1 the proof is quite similar. The only difference is that we use the
d -dimensional dyadic expansion of S..0;m
/ with

�
m.k�1/; m.k/

� D �
m
.k1�1/
1 ;m

.k1/
1

� � : : : � �m.kd�1/
d ;m

.kd /

d

�
;

and consider the sum over k W ki � Œlog2 ni 
; i D 1; : : : ; d , defined by m1; : : : ; md

in the same way as for d D 1. ut
Remark 10.8. The proof above allows to derive a similar upper bound for EM.U /p

when there is the sum

f1.U /jU j˛1 C : : :C fN .U /jU j˛N

at the right-hand side of (10.55). The induction argument used by Móricz does not
cover such case.

10.2.6 Rosenthal Type Inequalities

For p � 1 and a real-valued random variable � we write k�kp D .Ej�jp/1=p. Let
� D f �.t/; t 2 T g be a family of (real-valued) random variables. For a finite set
U � T and numbers a; b � 1 introduce

S.U / D
X
t2U

�.t/; Q.U; a; b/ D
X
t2U

k�.t/kba:

The classical Rosenthal inequality (see for example [405, p. 83]) states that if �.t/,
t 2 T , are independent centered random variables such that Ej�.t/jp < 1 for all
t 2 T and some p > 1, then for any finite set U � T one has

EjS.U /jp � 2p
2

.Q.U; p; p/_ .Q.U; 1; 1//p/; (10.56)

if, moreover, Ej�.t/jp < 1 for all t 2 T and some p > 2 then

EjS.U /jp � 2�p.Q.U; p; p/_Q.U; 2; 2/p=2/: (10.57)

Note that x 7! jxjp .x 2 R/ is a convex function for p � 1. Therefore due to
Theorem 10.24 we immediately come to the following statement.

Theorem 10.28 ([126]). Let � D f �.j /; j 2 Z
d g be a centered random field and

Ej�.j /jp < 1 for some p > 1, then for any finite set U � Z
d inequality (10.56)



10 Central Limit Theorems for Weakly Dependent Random Fields 367

holds if � 2 NA. Let a centered field � 2 PA and Ej�.j /jp < 1 for some p > 2,
then (10.57) is valid.

The next result is due to Vronski.

Theorem 10.29 ([501]). Let a centered wide-sense stationary random field � D
f �.j /; j 2 Z

d g 2 PA and

i) a < E�.0/2 < 1 for some a > 0,
ii) the finite susceptibility condition (10.20) holds,

iii) there exist an even integer k and some ı > 0 such that

Ej�.j /jkCı < 1 for any j 2 Z
d ;

1X
nD1

u.n/ı=.kCı�2/nd.k�1/�1 < 1;

where u.n/ is defined in (10.21).

Then there exists C D C.k; d; ı; .a�2U.n//n2N/ such that for any finite U � Z
d

EjS.U /jk � C
�
Q.U; k C ı; k/ _Q.U; 2C ı; 2/k=2

�
:

It would be desirable to find the optimal relationship between the conditions
imposed on the moments of summands and the dependence structure of a field in
the spirit of Theorems 10.16 and 10.17.

10.2.7 Estimates Obtained by Randomization Techniques

The idea of additional randomization to obtain the moment inequalities for maxi-
mum of absolute values of partial sums was developed by Peligrad [393], Shashkin
[468] and Zhang and Wen [528].

Theorem 10.30 ([468]). Let � D f �.j /; j 2 Z
d g be a centered random field such

that A2.1/ < 1.

i) Assume that � 2 .BL; �/ and (10.41) holds. Then for any m 2 N and U 2 U
one has

EM.U /2 � 3md
��X

j2U
Ej�.j /j

�2C18X
j2U

E�.j /2C16c0 jU jm���: (10.58)

ii) If � 2 QA and (10.45) holds, then (10.58) is true with � and c0 replaced by
~ and c1 D C.~/, respectively, where
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C.~/ D
X

k2Zd ; k¤0
jkj�~:

iii) If � 2 NA, then for any U 2 U

EM.U /2 � 2
�X
j2U

Ej�.j /j
�2 C 100

X
j2U

E�.j /2:

Remark 10.9. In general this result provides only trivial estimate

M.U /2 DO.jU j2/ as jU j ! 1:

However, it could be applied to “tails” of random variables arising after appropriate
truncation. Thus it could lead to useful bounds.

We have not a possibility to discuss here the proof of Theorem 10.30 based on
the employment of auxiliary random field f "j ; j 2 Z

d g consisting of i.i.d. random
variables taking values 0 and 1 and such that this field and � are independent. We
refer to [95, p. 153].

10.2.8 Estimates for the Distribution Functions of Partial Sums

Recall one of the Kolmogorov inequalities (see for example [405, p. 52]). Let
�1; : : : ; �n be independent random variables having finite variances and zero means.
Then for any x 2 R one has

P. max
1�k�n Tk � x/ � 2P.Tn � x �

p
2 var Tn/ (10.59)

where Tk D Pk
iD1 �i and var Tn D Pn

iD1 E�2i . In particular, for any � > 0

P. max
1�k�n Tk � �

p
var Tn/ � 2P.Tn � .� � p

2/
p

var Tn/:

The analogue of this inequality was obtained by Newman and Write for associated
random variables.

Theorem 10.31 ([380]). Let .�1; : : : ; �n/> 2 PA and the components be centered
and square integrable. Then EL2n � ES2n where Ln D max1�k�n Sk and Sk D
�1 C : : : C �k , k D 1; : : : ; n. If, moreover, .�1; : : : ; �n/> 2 A then for Mn D
max1�k�n jSkj and any � > 0

P.Mn � �
p

var Tn/ � 2P.jSnj � .� � p
2/
p

var Sn/:
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This inequality was extended in [381] for partial sums generated by array
f �.j /; j 2 N

2 g 2 PA. However, their method works only for dimension d D 2 of
index set Nd .

To formulate the maximal inequality for random field � D f �.j /; j 2 Z
d g with

arbitrary d 2 N we need some notation. For U 2 U set

MU D max f jS.W /j W W 2 U ; W � U g:

Theorem 10.32 ([100]). Let a centered wide-sense stationary random field � D
f �.j /; j 2 Z

d g 2 A be such that Ap.1/ < 1 for some p > 2 and the Cox–
Grimmett coefficient u.n/ D O.n��/ as n ! 1 for some � > 0. Then, for any
� 2 .0; 1/, there exists x0 > 0 such that for all U 2 U and x � x0 one has

P.MU � x
p

jU j/ � 2P.jS.U /j � �x
p

jU j/:

The proof can be found in [95, p. 104].

10.3 Limit Theorems for Partial Sums of Dependent
Random Variables

Finally we are able to state and give ideas of the proof of a central limit theorem
(CLT) for partial sums of .BL; �/-dependent stationary random fields together with
some corollaries and applications. Extensions of this CLT to random fields without
finite susceptibility property are considered as well.

10.3.1 Generalization of the Newman Theorem

For partial sums of multiindexed random variables we use the notation introduced
in (10.24).

Theorem 10.33 ([96, p. 178]). Let � D f �.j /; j 2 Z
d g be a .BL; �/-dependent

strictly stationary centered square-integrable random field. Then for any sequence
of regularly growing sets Un � Z

d one has

S.Un/=
p

jUnj d�! N.0; 	2/; as n ! 1; (10.60)

here 	2 was defined in Theorem 10.14.

Proof. We divide the proof into several steps.
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Step 1. First of all, we explain why, instead of proving (10.60), one can operate
with normalized sums taken over finite unions of fixed blocks which form a partition
of Rd . For any bounded V � R

d set

S.V / D
X

j2V\Zd

�.j /:

Then obviously S.U / D S.V / where U D V \ Z
d .

If .Un/n2N is a sequence of regularly growing subsets of Z
d (see Defini-

tion 10.12) then in view of Lemma 10.3 we conclude that Vn D [j2Un�j ! 1 in
the Van Hove sense as n ! 1 where�j D .j; j C 1
 � R

d , j 2 Z
d , a vector 1 in

R
d has all components equal to 1. Consequently we have to prove that for arbitrary

fixed t 2 R

E exp f itS.Vn/=
p
�d .Vn/ g ! exp f � 	2t2=2 g as n ! 1; (10.61)

here i 2 D �1 and jUnj D �d .Vn/.
Take aD .a1; : : : ; ad /

> with ak D mr , k D 1; : : : ; d , where m; r 2 N will
be specified later. Consider V �

n .a/ introduced before Definition 10.12. Note that
j exp f ix g � exp f iy gj � jx � yj for any x; y 2 R. Therefore

jE exp f i t�d .Vn/�1=2S.Vn/ g � E exp f i t�d .V �
n .a//

�1=2S.V �
n .a// gj

� jt j�d .Vn/�1=2EjS.Vn/� S.V �
n .a//j

Cjt j ˇ̌�d .Vn/�1=2 � �d .V �
n .a//

�1=2 ˇ̌EjS.V �
n .a//j: (10.62)

The Lyapunov inequality, and estimate (10.17) yield

EjS.Vn/� S.V �
n .a//j � .ES.Vn n V �

n .a//
2/1=2 � �

.E�20 C �1/�d .Vn n V �
n .a//

�1=2

and since V �
n .a/ � Vn � V C

n .a/ and .Vn/n2N is VH -growing sequence, it holds

�d .Vn n V �
n .a///=�d .Vn/ ! 0 as n ! 1: (10.63)

It is easily seen that

ˇ̌
�d .Vn/

�1=2 � �d .V �

n .a//
�1=2

ˇ̌

D �d .Vn/ � �d .V �

n .a//

.�d .Vn/�d .V �

n .a///
1=2.�d .Vn/1=2 C �d .V �

n .a//
1=2/

� �d .Vn/� �d .V �

n .a//

.�d .Vn/�d .V �

n .a///
1=2
:

Taking into account (10.62), (10.63) and the inequalities

EjS.V �
n .a//j � .E.S.V �

n .a///
2/1=2 � ..E�20 C �1/�d .V

�
n .a///

1=2 (10.64)
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we conclude that to prove (10.60) it suffices to verify that

E exp f i t�d .V �
n .a//

�1=2S.V �
n .a// g ! exp f � 	2t2=2 g as n ! 1: (10.65)

Step 2. This step is to construct for each j 2 Z
d the auxiliary block Q�j .a;m/

inside�j .a/ in such a way that the law of �d .V �
n .a//

�1=2S.V �
n .a// is close enough

to the one of �d .Wn.a;m//
�1=2S.Wn.a;m// for large n where

Wn.a;m/ D
[

j2J�.Vn;a/

Q�j .a;m/

and at the same time the asymptotical behaviour of �d .Wn.a;m//
�1=2S. Q�j .a;m//

is similar to that which the normalized sums of independent random variables
demonstrate whenever parameters a and m (that is r and m) are chosen in
appropriate way. For r;m 2 N, r > 2 and j D .j1; : : : ; jd /

> 2 Z
d introduce

Q�j .a;m/ D f x 2 R
d W mrjk Cm < xk � mr.jk C 1/�m; k D 1; : : : ; d g:

Thus, for any fixed t 2 R, we show that E exp f i t�d .V �
n .a//

�1=2S.V �
n .a// g

can be approximated by E exp f i t�d .Wn.a;m//
�1=2S.Wn.a;m// g when n is large

enough. Clearly

�d .V
�
n .a/ nWn.a;m// D jJ�.Vn; a/j.�d .�0.a// � �d . Q�0.a///

D �d .V
�
n .a//

�d .�0.a//� �d . Q�0.a//

�d .�0.a//

� �d .V
�
n .a//

.rm/d � ..r � 2/m/d

.rm/d

� �d .V
�
n .a//

2d

r
:

The same reasoning that was used to prove (10.62) and (10.64) leads for any " > 0,
t 2 R and m; n 2 N to the estimate

ˇ̌
E exp f i t�d .V �

n .a//
�1=2S.V �

n .a// g � E exp f �d .Wn.a;m//
�1=2S.Wn.a;m// gˇ̌

� 2jt j �2d.E�20 C �1/=r
�1=2

< "

if r is large enough.

Step 3. Now we reduce the problem to the study of auxiliary independent
random variables. Write Nn D jJ�.Vn; a/j and enumerate a family of random
variables
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�d . Q�j .a;m//
�1=2S. Q�j .a;m//; j 2 J�.Vn; a/;

to obtain the random variables �n;1; : : : ; �n;Nn (obviously �n;k D �n;k.a;m/). Then
�d .Wn/ D Nn�d . Q�0.a;m// and

E exp f i t�d .Wn/
�1=2S.Wn/ g D E exp

(
i tN�1=2

n

NnX
kD1

�n;k

)
:

Note that jE exp f i t� gj � 1 for all t 2 R and a (real-valued) random variable �.
Recall that the covariance for complex-valued random variables � and � is defined
by formula

cov.�; �/ WD E�� � E�E� (10.66)

where � stands for the random variable conjugate to �. Thus for all n large enough
(i.e. for Nn > 1)

ˇ̌
ˇ̌
ˇE exp

(
i tN�1=2

n

NnX
kD1

�n;k

)
�

NnY
kD1

E exp
˚
i tN�1=2

n �n;k
�ˇ̌ˇ̌
ˇ

�
Nn�1X
rD1

ˇ̌
ˇ̌
ˇcov

 
exp

˚
i tN�1=2

n �n;r
�
; exp

(
�i tN�1=2

n

NnX
kDrC1

�n;k

)!ˇ̌
ˇ̌
ˇ : (10.67)

Obviously dist. Q�j .a;m/; Q�k.a;m//� 2m for all j; k 2Z
d , j ¤ k. Furthermore,

Lip.cos.�// D Lip.sin.�//D 1. The Lipschitz constant of the composition of
Lipschitz functions is estimated by the product of their Lipschitz constants. Taking
into account .BL; �/-dependence, for any " > 0, n; r 2 N and r > 2, the right-hand
side of (10.67) admits the estimate

4t2Nn
�2m�d .�0.a;m//

Nn�d .�0.a;m//
D 4t2�2m < " (10.68)

when m is large enough. The factor 4 appeared as we used the Euler formula
exp i˛ D cos˛ C i sin ˛ for ˛ 2 R, i 2 D �1, and separated four summands
in (10.66). We used also the relation

min

( ˇ̌
�r.a;m/ \ Z

d
ˇ̌
;

ˇ̌
ˇ̌
ˇ
Nn[
kD1

�k.a;m/\ Z
d

ˇ̌
ˇ̌
ˇ
)

D j�0.a;m/ \ Z
d j D �d .�0.a;m//:

Introduce a decoupled version .�n;1; : : : ; �n;Nn/
> of a vector .�n;1; : : : �n;Nn/

>. Then
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NnY
kD1

E exp
˚
i tN�1=2

n �n;k
� D

NnY
kD1

E exp
˚
i tN�1=2

n �n;k
�

D E exp

(
i tN�1=2

n

NnX
kD1

�n;k

)
: (10.69)

Step 4. Now we explain why it suffices to prove the CLT for independent copies
of random variables �n;1; : : : ; �n;Nn . Note that

N�1=2
n

NnX
kD1

�N;k
d�! � 	 N .0; 	2.a;m// as n ! 1 (10.70)

where
d�! means the convergence in law, N .0; 	2.a;m// stands for the normal

distribution with parameters 0 and

	2.a;m/ D var �n;k D var �n;k D var S.�0.a;m//=�d .�0.a;m//; n 2 N; k D 1;: : : ;Nn:

Relation (10.70) is the simple variant of the CLT for an array of i.i.d square-
integrable random variables. Theorem 10.14 yields that for eachm 2 N and a D mr

	2.a;m/ ! 	2 as r ! 1:

Thus to guarantee (for any fixed t 2 R) the validity of (10.65) we take arbitrary
" > 0 and find m 2 N large enough to ensure (10.68). Then we choose r 2 N large
enough to obtain

j exp f � 	2.a;m/t2=2 g � exp f � 	2t2=2 gj < ":

The proof is complete in view of (10.67)–(10.70). ut
Exercise 10.12. Let the conditions of Theorem 10.33 be satisfied and 	2 > 0. Show
that, for any sequence of regularly growing sets Un � Z

d , one has

S.Un/=
p

var S.Un/
d�! N.0; 1/; n ! 1:

Remark 10.10. Let the conditions of Theorem 10.33 be satisfied. Then (10.60)
holds. Assume that 	2 ¤ 0 and . O	n/n2N is a sequence of consistent estimates for

	 , i.e. O	n d�! 	 as n ! 1 (or . O	2n/n2N
d�! 	2 as n ! 1 because the function

f .x/ D p
x, x 2 RC, is continuous). Then in view of Slutsky’s lemma we conclude

that
S.Un/� E�.o/ jUnj

O	n
pjUnj

d�! N .0; 1/; n ! 1: (10.71)



374 A. Bulinski and E. Spodarev

10.3.2 Corollaries of the CLT

Cramér–Wald device permits to obtain the following result from Theorem 10.33.

Corollary 10.5 ([96, p. 180]). Let � D f �.j /; j 2 Z
d g be a .BL; �/-dependent,

strictly stationary random field taking values in R
k and such that Ek�.o/k2 < 1.

Then, for any sequence of regularly growing sets Un � Z
d , one has

jUnj�1=2
X
j2Un

�.j /
d�! N .o; C / as n ! 1:

Here C is the .k � k/-matrix having the elements

Cl;m D
X
j2Zd

cov .�l .o/; �m.j //; l; m D 1; : : : ; k:

The classical Newman’s CLT can be deduced from Theorem 10.33. To clarify it
we introduce for n 2 N, j D .j1; : : : ; jd /

> and k D .k1; : : : ; kd /
>

B
.n/

k WD f j 2 Z
d W nkl < jl � n.kl C 1/; l D 1; : : : ; d g; �.n/.k/ WD n�d=2S

�
B
.n/

k

�
:

Theorem 10.34 ([378]). Let � D f �.j /; j 2 Z
d g be a centered, strictly

stationary, associated random field such that E�.o/2 < 1 and

	2 D
X
j2Zd

cov .�.o/; �.j // < 1:

Then the finite-dimensional distributions of the field f �.n/.k/; k 2 Z
d g converge,

as n ! 1, to the corresponding ones of the field � D f �.k/; k 2 Z
d g consisting

of independent N .0; 	2/ random variables.

Proof. Let m 2 N and k1; : : : ; km 2 Z
d . For t D .t1; : : : ; tm/

> 2 R
m with k tk22 D

t21 C : : :C t2m and i 2 D �1, we have

ˇ̌
ˇ̌EeiPm

rD1 tr �
.m/.kr / � e

	2k tk2

2

ˇ̌
ˇ̌

�
ˇ̌
ˇ̌
ˇEei

Pm
rD1 tr �

.m/.kr / �
mY
rD1

Eeitr �
.n/.kr /

ˇ̌
ˇ̌
ˇC

ˇ̌
ˇ̌
ˇ
mY
rD1

Eeitr �
.n/.kr / � e

	2k tk2

2

ˇ̌
ˇ̌
ˇ :

The second term in the right-hand side of the last inequality converges to zero as

�.n/.k/
d�! �.k/ for any k 2 Z

d due to Theorem 10.33 (the field � is .BL; �/-
dependent with �m D u.m/ where u.m/ is the Cox–Grimmett coefficient). For the
first term by Corollary 10.1 one has



10 Central Limit Theorems for Weakly Dependent Random Fields 375

ˇ̌
ˇ̌
ˇE exp

(
i

mX
rD1

tr�
.m/.kr /

)
�

mY
rD1

E exp
˚
i tr�

.n/.kr /
�ˇ̌ˇ̌
ˇ

� 4
X

1�r;v�m;r¤v

jtr tvj cov.�.n/.kr /; �.n/.kv//

� 4k tk21 n�d
 

var
mX
rD1

S.B
.n/

kr
/ �

mX
rD1

varS.B.n/

kr
/

!

where k tk1 WD max1�r�m jtr j. Note that [m
rD1B

.n/

kr
tends to infinity in the Van

Hove sense as n ! 1. Therefore, by virtue of Theorem 10.14

n�d
 

var
mX
rD1

S.B
.n/

kr
/ �

mX
rD1

varS.B.n/

kr
/

!
! 0 as n ! 1:

The proof is complete. ut

10.3.3 Application to the Excursion Sets

Definition 10.18. Let � be a measurable real-valued function on R
d and T � R

d

be a measurable subset. Then for each u 2 R

Au.�; T / D f t 2 T W �.t/ � u g

is called the excursion set of � in T over the level u.

For a real-valued random field � D f �.t/; t 2 R
d g we assume the measurability

of �.�/ as a function on R
d �˝ endowed with the 	-algebra B.Rd /˝ A. Thus

�d .Au.�; T // D
Z
T

1.�.t/ � u/ dt

is a random variable for each u 2 R and any measurable set T � R
d .

We assume for random field � D f �.t/; t 2 R
d g (see [97]) one of the following

conditions.

(A) Let � be quasi-associated and strictly stationary such that �.o/ has a bounded
density. Assume that a covariance function is continuous and there exists some
˛ > 3d such that

j cov.�.o/; �.t//j D O
�k tk�˛

2

�
as k tk2 ! 1: (10.72)



376 A. Bulinski and E. Spodarev

(B) Let � be Gaussian and stationary. Suppose that its continuous covariance
function satisfies (10.72) for some ˛ > d .

Note that continuity of a covariance function of � implies the existence of
measurable modification of this field. We shall only consider such versions of �.
Clearly one can write k � k1 in (10.72) instead of k � k2 as all the norms in R

d are
equivalent. We also exclude the trivial case when �.t/ D const a.s. for all t 2 R.
Introduce

Su.�;Wn/ D .�d .Au1 .�;Wn//; : : : ; �d .Aur .�;Wn///
>; n 2 N; (10.73)

where u D .u1; : : : ; ur /> 2 R
r .

Theorem 10.35 ([97]). Let � D f �.t/; t 2 R
d g be a random field satisfying

condition (A). Then, for each u D .u1; : : : ; ur /> 2R
r and any VH-growing

sequence .Wn/n2N of subsets of Rd , one has

�d .Wn/
�1=2.Su.�;Wn/� �d .Wn/P.u//

d�! Vu 	 N .o;˙.u// as n ! 1 (10.74)

where
P.u/ D .P.�.o/ � u1/; : : : ;P.�.o/ � ur //

> (10.75)

and˙.u/ D .	lm.u//rl;mD1 is an .r � r/-matrix having the elements

	lm.u/ D
Z
Rd

cov.1.�.o/ � ul /; 1.�.t/ � um// dt: (10.76)

The following theorem is a generalization of the result [268, p. 80].

Theorem 10.36 ([97]). Let � D f �.t/; t 2 R
d g be a random field satisfying

condition (B) and �.o/ 	 N .a; �2/. Then, for each u D .u1; : : : ; ur /> 2 R
r and

any sequence .Wn/n2N of VH-growing subsets of Rd , one has

�d .Wn/
�1=2.Su.�;Wn/��d .Wn/ �.u//

d�! Vu 	 N .o;˙.u// as n ! 1: (10.77)

Here �.u/ D .�..u1 � a/=�/; : : : ; �..ur � a/=�//> and˙.u/ D .	lm.u//rl;mD1 is
an .r � r/-matrix having the elements

	lm.u/ D 1

2�

Z
Rd

Z 
.t/

0

glm.r/ dr dt (10.78)

where

glm.r/ D 1p
1 � r2

� exp

�
� .ul � a/2 � 2r.ul � a/.um � a/C .um � a/2

2�2.1 � r2/

	
(10.79)
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and 
.t/ D corr.�.o/; �.t//. If ˙.u/ is nondegenerate, we obtain by virtue of
(10.77)

�d .Wn/
�1=2˙.u/�1=2.Su.�;Wn/� �d .Wn/ �.u//

d�! N .o; I/; n ! 1;

here I is the .r � r/-unit matrix.

Theorems 10.35–10.36 are generalized to hold for a large subclass of (PA or
NA) stochastically continuous stationary random fields (possibly without the finite
second moment) in the paper [286]. Examples of fields belonging to this subclass
are infinitely divisible random fields with an integral spectral representation (see
Sect. 9.7.4) satisfying some conditions, max- and ˛-stable random fields with the
corresponding tail behaviour of their kernel functions.

A functional limit theorem (the so-called invariance principle, where the level
u is not fixed and interpreted as a new variable) for the volume of the excursion
sets of stationary associated random fields with smooth realizations is proved
in [353]. A limit theorem for the perimeter of the excursion sets of smooth
stationary Gaussian random fields in two dimensions is established in [313]. The
corresponding functional limit theorem has been recently given in [354]. The
asymptotic behaviour of other related functionals of Gaussian random fields is
considered in [314].

10.3.4 The Newman Conjecture and Some Extensions of CLT

In [379] Newman formulated the conjecture concerning the CLT for strictly
stationary associated random field � D f �.j /; j 2 Z

d g with finite second moment.
Namely, he wrote that instead of the finite susceptibility condition (10.20) it is
sufficient (when one proves the CLT for partial sums over growing blocks) to use
the hypothesis that the function K�.�/ introduced in (10.32) is slowly varying.

Unfortunately, this elegant hypothesis is not true. The first counterexample was
constructed by Herrndorf in the case d D 1.

Theorem 10.37 ([243]). There exists a strictly stationary associated, centered
sequence .�j /j2Z such that K� .n/ 	 logn as n ! 1 and Sn=

p
nK� .n/ do not

have any nondegenerate limit law as n ! 1 .as usual, Sn D �1 C : : :C �n/.

This theorem can be obtained as a corollary from the next result by Shashkin.

Theorem 10.38 ([469]). Let L be a nondecreasing slowly varying function such
that L.n/ ! 1 as n ! 1. Then, for any positive unbounded sequence .bn/n2N,
there exists a strictly stationary random sequence .�j /j2N 2 A with properties

i) E�1 D 0 and E�21 D 1;
ii) K� .n/ 	 L.n/ as n ! 1;

iii) .Sn=
p
nbn/n2N do not have any nondegenerate limit in law as n ! 1.
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Note that if .�j /j2N 2 A then K� .�/ is a nondecreasing function. Thus the
assumption in Theorem 10.38 that L is nondecreasing looks natural.

However, it is possible to establish the CLT without the finite susceptibility
assumption. To formulate it we recall the following

Definition 10.19. A family of real-valued random variables f �.t/; t 2 T g is uni-
formly integrable if limc!1 supt2T Ej�.t/j1.j�.t/j � c/ D 0:

Exercise 10.13. Let a family f �.n/; n 2 N
d g be uniformly integrable. Prove

that, for any nonrandom family f cn; n 2 N
d g such that cn ! 1 as n D

.n1; : : : ; nd /
> ! 1 .i.e. n1 ! 1; : : : ; nd ! 1/, the following relation holds

Ej�.n/j1.j�.n/j � cn/ ! 0; n ! 1: (10.80)

We also propose the extension of well-known result (see for example [69,
Theorems 3.5–3.6]).

Lemma 10.4. Let f �.n/; n 2 Z
d g be a family of uniformly integrable random

variables. Suppose that �.n/
d�! � as n ! 1. Then � is integrable and

E�.n/ ! E�; n ! 1: (10.81)

Moreover, if f �.n/; n 2 Z
d g is a family of nonnegative random variables such that

�.n/
d�! � as n ! 1 where � is integrable and (10.81) holds then the family

f �.n/; n 2 Z
d g is uniformly integrable.

Set hni D n1 �: : :�nd ,Un D Œ�n; n
 D Qn
kD1Œ�nk; nk
, Sn WD S.Un/ for n2N

d . The
following result is a generalization of one by Lewis [329] established for sequences
of random variables.

Theorem 10.39 ([93]). Let �D f �.j /; j 2 Z
d g be a strictly stationary PA

random field, 0 < E�.o/2 <1 and K�.�/ 2 L.Nd /. Then � satisfies CLT, that is

Sn � ESnp
var Sn

d�! � 	 N .0; 1/ as n ! 1 (10.82)

iff the family
˚
.Sn � ESn/2=.hniK�.n//; n 2 N

d
�

is uniformly integrable.

Proof. Necessity. Assume that (10.82) holds. Then

.Sn � ESn/2= varSn
d�! �2 as n ! 1

(if �n
d�! � and h is a continuous function then h.�n/

d�! h.�/). Obviously
.Sn � ESn/2= varSn � 0, E.Sn � ESn/2= varSn D 1 D E�2, n 2 N

d . Lemma 10.4
yields that the family f .Sn � ESn/2= varSn g is uniformly integrable. Due to
Theorem 10.15, one has varSn 	 hniK�.n/ as n ! 1. Therefore a family
f .Sn � ESn/2=.hniK�.n//; n 2 N

d g is uniformly integrable as well.
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Sufficiency. We shall assume that K� is unbounded, as otherwise (10.82) follows
from Theorem 10.33. With a slight abuse of notation, set K� .t/ WD K� .Œt 
 _ 1/
for t 2 R

dC and 1 D .1; : : : ; 1/> 2 R
d where Œt 
 _ 1 is understood component-

wise. Then this extension of function K� belongs to L.Rd / as K� is coordinate-wise
nondecreasing on N

d . ut
Lemma 10.5. There exists a family f qn; n 2 Z

d g of nonrandom vectors qn 2 N
d ,

qn D .q
.1/
n ; : : : ; q

.d/
n /> such that

q.k/n � nk; q
.k/
n =nk ! 0 for k D 1; : : : ; d; qn ! 1 as n ! 1; (10.83)

K�.n/=K� .qn/ ! 1; n ! 1: (10.84)

Proof. For any L D .L.1/; : : : ; L.d//> 2 N
d we can choose N0.L/ such that for

any n � N0.L/
K�.n1; : : : ; nd /

K�
�
n1
L.1/
; : : : ; nd

L.d/

� � 1 � 1

hLi :

Take a sequence .L.r//r2N such that L.r/ 2 N
d for all r 2 N and L.r/ < L.rC 1/

for all r 2 N. Here .a.1/; : : : ; a.d//> < .b.1/; : : : ; b.d//> means a.k/ < b.k/ for
k D 1; : : : ; d . SetM0.1/ D N0.L.1// andM0.rC1/ D .M0.r/_N0.L.rC1///C1
for r 2 N where

.a.1/; : : : ; a.d//> _ .b.1/; : : : ; b.d//> D .a.1/ _ b.1/; : : : ; a.d/ _ b.d//>:

ThenM0.r/ < M0.r C 1/ for all r 2 N. If n D .n1; : : : ; nd /
> � M0.r/ then

K� .n1; : : : ; nd /
K�. n1

L.1/.r/
; : : : ; nd

L.d/.r/
/

� 1 � 1

hL.r/i :

Introduce the nonrandom family of numbers f "n; n 2 N
d g in the following way.

Put "nk D 1=L.k/.r/ for k D 1; : : : ; d and n D .n1; : : : ; nd /
> 2 N

d such that
M0.r/ � n < M0.r C 1/, r 2 N.

Take any " > 0 and find r0 2 N such that 1=hL.r0/i < ". Then for any n such
that M0.r/ � n < M0.r C 1/ where r � r0 one has

1 � K�.n1; : : : ; nd /
K� .n1"n1; : : : ; nd "nd /

D K�.n1; : : : ; nd /
K� .n1=L.1/.r/; : : : ; nd =L.d/.r//

� 1C 1

hL.r/i � 1C 1

hL.r0/i � 1C ":

Now we can take

qn D .n1"n1; : : : ; nd "nd /
> _ .Œlogn1
; : : : ; Œlog nd 
/

>

to guarantee (10.83)–(10.84). The proof of the lemma is complete. ut
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It is not difficult to find a nonrandom family fpn; n 2 N
d g with pn taking values

in N such that

q.k/n � p.k/n � nk; q
.k/
n =p.k/n ! 0 and p.k/n =nk ! 0; (10.85)

for k D 1; : : : ; d; as n ! 1. Now we use the well-known sectioning device
by Bernstein. For n; j 2 N

d and pn; qn introduced above, consider the blocks
U
.j /
n �N

d with elements r D .r1; : : : ; rd /
> such that

.jk � 1/.q.k/n C p.k/n / < rk � .jk � 1/q.k/n C jkp
.k/
n ; k D 1; : : : ; d:

Let Jn D f j 2 N
d W U .j /

n � Un g. Set Wn D [j2JnU
.j /
n , Gn WD Un nWn, n 2 N

d .
In other words, Wn consists of the union of “big rooms” (having the

“size” p.k/n along the k-th coordinate axis for kD 1; : : : ; d ) and separated by
“corridors” belonging to Gn. See Fig. 10.3. We write vn D phniK�.n/, n 2 N

d .
Then for each t 2 R and n 2 N

d one has

ˇ̌
ˇ̌E exp

�
i t

vn
Sn

	
� e

�t2

2

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌
ˇ̌E exp

�
i t

vn
Sn

	
� E exp

8<
:
i t

vn

X
j2Jn

S.U .j /
n /

9=
;
ˇ̌
ˇ̌
ˇ̌

C
ˇ̌
ˇ̌
ˇ̌E exp

8<
:
i t

vn

X
j2Jn

S.U .j /
n /

9=
; �

Y
j2Jn

E exp
�
i t

vn
S.U .j /

n /

	 ˇ̌ˇ̌
ˇ̌

C
ˇ̌
ˇ̌
ˇ̌
Y
j2Jn

E exp
�
i t

vn
S.U .j /

n /

	
� e

�t2

2

ˇ̌
ˇ̌
ˇ̌ DW

3X
mD1

Qm

where i 2 D �1 and Qm D Qm.n; t/. As jeix � eiyj � jx � yj for x; y 2 R, then
using the Lyapunov inequality, we get

Q1 � jt j
vn

EjS.Gn/j � jt j
vn

�
ES.Gn/2

�1=2
:

The covariance function of a field � 2 PA is nonnegative. Thus using the wide sense
stationarity of � one has

ES.Gn/2 �
X
j2Gn

X
�n�r�n

cov .�.j /; �.r// � jGnjK�.n/

� K�.n/
dX
kD1

.m.k/
n q

.k/
n C p.k/n C q.k/n /

Y
1�l�d; l¤k

nl
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qn
(2)

q n
(1) p n

(1) q n
(1)

pn
(2)

Un
( j)

qn
(2)

Fig. 10.3 Bernstein’s sectioning technique for d D 2

where m.k/
n D Œnk=.p

.k/
n C q

.k/
n /
, k D 1; : : : ; d . Due to (10.83)–(10.85) we come

to the inequality

ES.Gn/2

hniK�.n/ �
dX
kD1

m
.k/
n q

.k/
n C p

.k/
n C q

.k/
n

nk
! 0; n ! 1:

Therefore,Q1.n; t/ ! 0 for each t 2 R as n ! 1.
For any n 2 N

d , the family fS.U .j /
n /; j 2 Jn g 2 PA in view of Remark 10.3.

Let us enumerate this family to obtain a collection f �n;s; s D 1; : : : ;Mn g where
Mn D jJnj D m

.1/
n � : : : �m.d/

n . Now Theorem 10.12 and Corollary 10.1 yield

Q2 �
Mn�1X
sD1

ˇ̌
ˇ̌
ˇ̌cov

0
@exp

�
i t

vn
�n;s

	
; exp

8<
:� i t

vn

MnX
lDsC1

�n;s

9=
;
1
A
ˇ̌
ˇ̌
ˇ̌

� 4t2

v2n

X
1�s;u�Mn; s¤u

cov.�n;s ; �n;u/ � 4t2

hniK� .n/
X
j2Un

X
r2UnW kr�jk

1

>qn

cov.�.j /; �.r//:

Obviously, for any j 2 Un
f r 2 Un W kr � jk1 > qn g � f r W j � n � r � j C n g n f r W kr � jk1 � qn g:
Consequently,

X
j2Un

X
r2UnW kr�j k

1

>qn

cov.�.j /; �.r// � hni.K�.n/ � K�.qn//;

and (10.84) implies that Q2.n; t/ ! 0 as n ! 1 (for each t 2 R).
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Now for each n 2 N
d introduce .�n;1; : : : ; �n;Mn/

> as a decoupled version of the
vector 1

vn
.�n;1; : : : ; �n;Mn/

>. By Theorem 10.15 for every s D 1; : : : ;Mn

var �n;s D var �n;1 	 hpniK�.pn/=hniK�.n/; n ! 1:

Therefore,
MnX
sD1

var �n;s D Mn var �n;1 ! 1; n ! 1

because Mnhpni D Qd
kD1Œnk=.p

.k/
n C q

.k/
n /
p

.k/
n 	 hni and K� .pn/=K�.n/ ! 1 as

n ! 1. Furthermore, for any " > 0, using the strict stationarity of �, one has

MnX
sD1

E�2n;s1.j�n;sj > "/ D Mn

hniK�.n/E�2n;1f �2n;1 > "2hniK�.n/ g

D MnhpniK� .pn/
hniK�.n/ E

S.U
.1/
n /2

hpniK� .pn/1

 
S.U

.1/
n /2

hpniK�.pn/ > "
2 hniK�.n/
hpniK�.pn/

!
! 0 as n ! 1

in view of (10.80) since it holds hniK�.n/=hpniK� .pn/ ! 1 as n ! 1 and the

family fS.U .1/
n /2=hpniK�.pn/ g is uniformly integrable. Indeed, fS2pn=hpniK�.pn/;

n 2 N
d g is a subfamily of fS2n=hniK�.n/; n 2 N

d g. Thus, by the Lindeberg
theorem (see for example [472, p. 329])

MnX
sD1

�n;s
d�! � 	 N .0; 1/; n ! 1:

Consequently, for each t 2 R one has Q3.n; t/ ! 0 as n ! 1. ut

10.3.5 Concluding Remarks

There are interesting generalizations of the CLT for random fields. Namely, the
weak invariance principle (or functional CLT) and strong invariance principles are
discussed in [96, Chap. 5]. In [465] one can find the proof of strong invariance
principle for PA or NA (positively or negatively associated) random fields with
power-type decreasing property of the Cox–Grimmett coefficient. The law of the
iterated logarithm (LIL) and the functional LIL for PA or NA random fields are
established in [96, Chap. 6]. In the same book, various statistical problems (e.g. the
estimation of unknown density of a field) or the study of various functionals of
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random fields arising as solutions of partial differential equations (PDE) are given
as well.

CLT for mixing random fields are given in the monograph [83] and papers
[147, 148, 493]. Linear random fields are studied in [41, 390]. Rates of convergence
in the CLT for vector-valued random fields can be found in [94]. Convergence of
partial sums of weakly dependent random variables to infinitely divisible laws is
established in [149] by the Lindeberg method. In this paper, convergence to Lévy
processes for associated variables is studied as well. Convergence to stable laws
is considered [269, 270]. CLTs for random elements with values in abstract spaces
(e.g., generalized Hölder spaces) are treated in [412]. Weak convergence of random
measures generated by Bernoulli associated random variables is proved in [33].
The application of limit theorems for random fields to the asymptotic theory of
M-estimators is considered in [272].



Chapter 11
Strong Limit Theorems for Increments
of Random Fields

Ulrich Stadtmüller

Abstract After reconsidering the oscillating behaviour of sums of i.i.d. random
variables we study the oscillating behavior for sums over i.i.d. random fields under
exact moment conditions. This summarizes several papers published jointly with A.
Gut (Uppsala).

11.1 Introduction

We shall consider a classical scenario, namely i.i.d. random variables X;Xi , i 2N

and we shall impose appropriate moment conditions later on. As usually we
denote by

Sn D
nX

jD1
Xj ; n 2 N

the partial sums of these random variables and begin with an overview of almost
sure limit theorems on Sn. In all kind of statistics and questions averages play an
important role and averages are just of the form Sn=n and almost sure limit theorems
deal with such averages. Typically in this situation there is an equivalence between
such limit results and appropriate moment conditions. In order to demonstrate this
we begin with the strong law of large numbers (SLLN). Fore more details see, e.g.,
the book [210].

Theorem 11.1 (SLLN (Kolmogorov)).

Sn

n

a:s:�! 0 ” EjX j < 1 and EX D 0:
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Remark 11.1. The ) direction is formulated somewhat sloppily, here and through-
out it should be read as follows: if lim supn!1

jSnj
n
< 1 then EjX j < 1, hence by

the converse conclusion the limit exists and is then EX:

This result was extended as follows.

Theorem 11.2 (Marcinkiewicz–Zygmund ’37). For 0 < r < 2

Sn

n1=r
a:s:�! 0 ” E.jX jr / < 1 and .EX D 0 provided r � 1/:

By the CLT it follows that the result fails to hold for r D 2: Next, we go on with the
speed of convergence in the SLLN, the famous law of iterated logarithm (LIL).

Theorem 11.3 (LIL (Hartmann–Wintner ’44, Strassen ’66)). It holds that

lim sup
n!1

Snp
2n log logn

a:s:D 1 ” EjX j2 D 1; EX D 0:

Remark 11.2. Obviously under these moment conditions

lim inf
n!1

Snp
2n log logn

a:s:D �1

and any point in Œ�1; 1
 is an a.s. limit point of the sequence .Sn=
p
2n log logn/:

A corresponding remark applies to related theorems below.

A somewhat different topic are limit laws for increments of sums of i.i.d. random
variables. That is we shall study the almost sure oscillation behaviour of partial
sums. This oscillation behaviour is interesting itself. We shall start with the
following result where we denote by logC x D maxf1; logxg; x > 0:
Theorem 11.4 (Chow ’73, Lai ’74 [123, 124, 319]). For 0 < ˛ < 1 we have a
SLLN

SnCn˛ � Sn
n˛

a:s:�! 0 ” E.jX j1=˛/ < 1; EX D 0;

and a law of single logarithm (LSL)

lim sup
n!1

SnCn˛ � Snp
2n˛ logn

a:s:D p
1 � ˛ ” E.jX j2=˛.logC jX j/�1=˛/ < 1

and EX D 0; EX2 D 1:

Remark 11.3. 1. Increments of sums can be considered as special weighted sums
of random variables.

SnCn˛ � Sn D
1X
kD1

wkn Xk with wkn D 1.k 2 .n; nC n˛
/:
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In case ˛ D 1=2 these weight are related to the so-called Valiron weights

wkn D 1p
2�n

exp

�
� 1

2n
.k � n/2

	

being centered at n and having standard deviation
p
n. It was shown in the papers

by Chow and Lai that analogous limit results with the same moment conditions
occur for sums having such weights and also weights being asymptotically
equivalent to those of the Valiron mean like, e.g. Euler- or Borel-means of i.i.d.
random variables (observe that local CLT’s apply to the corresponding weight
sequences like wkn D e�nnk=kŠ:).

2. The result above has been extended by Bingham and Goldie [70] to a larger class
of span sizes e.g. span sizes a.n/ where a.�/ is a regularly varying function of
order ˛ 2 .0; 1/ in short a.�/ 2 RV.˛/. For a short introduction to this notion,
a measurable function L W .0;1/ ! .0;1/ is called slowly varying if

L.�t/

L.�/
! 1 as � ! 1 for all t > 0:

Typical examples are L./ � c >0 or L.t/ D c.log.1C t/˛ with constants ˛ 2R

and c > 0:A measurable function f W .0;1/ ! .0;1/ is regularly varying with
index ˛ 2R if there exists a slowly varying function L such that f .t/D t˛ L.t/

which is equivalent to

f .�t/

f .�/
! t˛ as � ! 1 for all t > 0:

See the book [71] for the notion of regular variation and many results and
applications.

3. Interesting are also the limiting cases of the results from above such as ˛D 1

which was dealt with in [211] and as ˛D 0 containing e.g. the Erdös–Rényi laws
(see e.g. [138]) where a.n/ D c logn and the limit depends on the complete
distribution function and not just on its moments. For related intermediate results
see also [321].

11.2 Classical Laws for Random Fields

Now consider random fields fXn; n 2N
d g containing i.i.d. random variables Xn

with a multi-index n 2 N
d and having the same distribution as X: Again our

goal is to derive strong limit theorems under exact moment conditions. In Chap. 10,
limit theorems for random fields relaxing these assumptions in various directions to
sufficient sets of conditions for limit theorems are discussed. As before we consider
partial sums (where inequalities are understood componentwise)
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Sn D
X
j�n

Xj and T.n/;.nCa.n// D
X

n�j�nCa.n/
Xj

where a.n/D .a.1/.n1/; : : : ; a
.d/.nd // and a.i/.�/2RV.˛i /with ˛D .˛1; : : : ; ˛d / 2

Œ0; 1
d ; that is, in case d D 2 we consider sums over an area like

�

�

�

�

�

�

�

�

�

�

�

� � �

� � �

�

�

�

�

�

�

m mC a.1/.m/

n

nC a.2/.n/

� � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � �

The result could be applied to deal with noise in pictures described by a smooth
surface-function on R

2C:
Many classical limit laws for partial sums Sn have been carried over to the random
field case. Most of the standard inequalities in probability can be transferred to the
multiindex case, see e.g. [306,474]. Denote by jnj D n1 �: : :�nd ; jn˛j D n

˛1
1 �: : :�n˛dd :

Then we begin with the analogous results to the classical limit theorems described
above.

Theorem 11.5 (SLLN (Smythe ’74 [477])).

Sn

jnj
a:s:�! 0 ” E

�jX j.logC jX j/d�1� < 1 and EX D 0:

Next, there is also a Marcinkiewicz–Zygmund-type result (MZ).

Theorem 11.6 (MZ (Klesov ’02 [307], Gut-S. [214])). For 1=2 < ˛1 � ˛2; � � � �
˛d � 1 and p D argmaxf˛j D ˛1g

Sn

jn˛j
a:s:�! 0 ” E.jX j1=˛1 .logC jX j/p�1/ < 1 and EX D 0:

And, also a law of iterated logarithm (LIL) holds.

Theorem 11.7 (LIL (Wichura ’73 [515])).

lim sup
n!1

Snp
2jnj log log jnj

a:s:D
p
d ” E

 
jX j2 .logC jX j/d�1

logC logC jX j

!
< 1

and EX D 0; EX2 D 1:
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Why are there stronger moment assumptions than in the ordinary case, i.e. the case
d D 1? Splitting the random variables in a part with large values and the rest, the
part with large values should appear only finitely often, this determines the moment
condition. That is, having the Borel–Cantelli Lemma in mind one considers sums
of the following type with some function ˚ W Œ1;1
 ! .0;1/; ˚.x/ ! 1 as
x ! 1 such that

X
n

P.jXnj > ˚.n// D
X
n

P.˚�1.jX j/ > n/ < 1 ” E
�
˚�1.jX j/� < 1;

where the latter equivalence comes from a simple argument comparing a sum and a
integral. Now, in the multiindex case let ˚ W N ! N and we obtain

X
n

P.jXnj > ˚.n// D
X
k

X
˚.n/Dk

P.jX j > k/ D
X
k

d.k/P.jX j > k/ < 1:

The function d.�/ is typically rather irregular but its partial sumsD.m/ D P
k�m dk

has often a regular behaviour and satisfies D.m/=m ! 1 as m ! 1. E.g., if
˚.x/ D x we have Dm is of order m.logm/d�1 (d � 1). If dk appears as a weight
in a sum with “nice” additional weights we can nevertheless assume that dk behaves
like .log k/d�1. This means in particular that dk D 1 in the scalar case d D 1. Hence
we end with the natural extension of the scalar moment condition EjX j < 1 to the
moment condition E.jX j.logC jX j/d�1/ < 1 which in the random field case with
d > 1 is stronger than in the classical case d D 1:

11.3 Chow-Type Laws for Random Fields

We shall study here Chow-type laws for random fields with i.i.d. random variables
where we obtain again limit results under some exact moment condition. Limit
theorems under dependence assumptions and sufficient conditions are given in
Chap. 10. We begin with SLLN for a rectangular window.

Theorem 11.8 (S., Thalmaier [479]). Again, assume 0 < ˛1 � ˛2 � � � � �
˛d < 1, p D argmaxf˛j D ˛1g and ˛i � �i � minf1; 2˛ig; 1 � i � d then

1

jn˛j max
n�r�nCn�

T.n/;.nCr/
a:s:�! 0 ” E

�
jX j 1

˛1

�
logC jX j�p�1�

< 1; EX D 0:

Remark 11.4. In particular we find under this moment assumption that

T.n/;.nCn˛/

jn˛j
a:s:�! 0

holds.
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Concerning the oscillation behaviour for random fields a lot is known provided the
moment generating function of X exists in Br.0/ for some r > 0: Denote by J a
half-open interval, by jJ j its volume and by

D.jnjI k/ D max
J	Œ0;n
; jJ j�k

SJ :

Then the following result was shown.

Theorem 11.9 (Steinebach ’83 [483]). Let .kn/ be a sequence of integers such that
kjnj= log jnj ! 1 and E.exp.tX// < 1 for some t 2 Br.0/, EX D 0; EX2 D 1

then

lim
n!1

D.jnj; kjnj/p
2d kjnj log jnj D 1 a.s.:

Remark 11.5. Some further situations are treated in [483], as e.g, an Erdős–Rényi
law, this is the case where kjnj= log jnj ! c with some c > 0.

Next, we shall discuss the following problem: If we do not assume the existence of
a moment generating function, is it still possible to give this type of limit theorems
under certain weaker moment conditions or can we even characterize the limit
behaviour by a moment condition for the iid random variables involved?
So, the next result we discuss is the analogue of the LSL ?

Theorem 11.10 (A. Gut, U.S. [212, 213]). Assume that 0 < ˛1 � ˛2 � � � � �
˛d < 1; p D argmaxf˛j D ˛1g then

lim sup
n!1

T.n/;.nCn˛/p
2jn˛j log jnj

a:s:D
p
1 � ˛1 ” E

�
jX j 2

˛1 .logCX j/p�1� 1
˛1

�
< 1

and EX D 0; EX2 D 1:

This theorem complements the strong law given above in Theorem 11.8.

11.4 Proofs

We shall discuss the proof of Theorem 11.10 to some extend but not in all details.
The typical pattern in proving results of the LIL type requires two truncations; the
first one in order to match the Kolmogorov exponential bounds (see e.g. [210,
Sect. 8.2], and the second one in order to match the moment requirements in
Theorem 11.10. The proof follows that in [212].

Toward this end, let ı be small, let

bn D bjnj D 	ı

"

pjn˛j
log jnj (11.1)
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and set

X 0
n D Xn1.jXnj � bn/; X 00

n D Xn1.bn < jXnj � ı
p

jn˛j log jnj/;
X 000

n D Xn1.jXnj � ı
p

jn˛j log jnj/:
In the following all objects with primes or multiple primes refer to the respective

truncated summands.
Since truncation destroys centering, we obtain, using standard procedures and

noticing that EX D 0 that

jEX 0
kj D j � E.Xk1.jXkj > bk//j � E.jX j1.jXkj > bk//

� E.X2.logC jX j/1�˛=21.jX j > bk//

bk.log bk/1�˛=2
;

so that

jET 0
n;nCn˛ j �

X
n�k�nCn˛

E.X2.logC jX j/1�˛=21.jX j > bk//

bk.log bk/1�˛=2

� C
p

jn˛j.log jnj/˛ � E.X2.logC jX j/1�˛=21.jX j > bn//

D o.
p

jn˛j log jnj/ as n ! 1: (11.2)

Moreover,
varXn � E.X2

n/ D EX2 D 	2;

so that
var.T 0

n;nCn˛/ � jn˛j	2: (11.3)

Next we use Kolmogorov’s upper exponential bounds (see e.g. [210, Lemma 8.2.1])
dealing with independent random variables .Yk/ with EYk D 0 for all k, varYk D
	2k and s2n D Pn

kD1 	2k : The goal is to have inequalities for the probability that the
sum exceeds some threshold are close to that for Gaussian random variables. We
begin with the upper bound.
If for n � 1 and some cn > 0 it holds that jYkj � cnsn for 1 � k � n then we have
for 0 < x < 1=cn

P.
nX

kD1
Yk > x cn/ � exp

�
�x

2

2

�
1 � x cn

2

�	
:

There is also a corresponding lower bound (see e.g. [210, Lemma 8.2.2]). Suppose
in addition that � > 0. Then there exist constants x.�/ and �.�/ such that for
x.�/ � x � �.�/=cn we have

P.
nX

kD1
Yk > x cn/ � exp

�
�x

2

2
.1C �/

	
:
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In the application it is important to choose x and cn suitably.
First we use the upper bound. Here we choose x D ".1 � ı/

p
2 log jnj and cn D

2ı=x, (note jX 0
kj D o

�
cn
p

var.TnCn˛ /
�

for n � k � nCn˛). The inequality together

with (11.2) and (11.3) now yield

P.jT 0
n;nCn˛ j > "

p
2jn˛j log jnj/

� P
�
jT 0

n;nCn˛ � ET 0
n;nCn˛ j > ".1� ı/

p
2jn˛j log jnj

�

� P
�

jT 0
n;nCn˛ � ET 0

n;nCn˛ j > ".1 � ı/
	

q
2 var.T 0

n;nCn˛/ log jnj
�

� exp

�
�2"

2.1 � ı/2

2	2
log jnj.1� ı/

	

D jnj� "2.1�ı/3

	2 : (11.4)

In order to apply the lower exponential bound (see e.g. [210, Lemma 8.2.2], we first
need a lower bound for the truncated variances:

varX 0
n D E.X 0

n/
2 � .E.X 0

n//
2 D EX2 � E.X21.jXnj � bn// � .E.X 0

n//
2

� 	2 � 2E.X21.jXnj � bn// � 	2.1 � ı/

for jnj large, so that

var.T 0
n;nCn˛/ � jn˛j	2.1 � ı/ for jnj large: (11.5)

Next we conclude that for any � > 0,

P.jT 0
n;nCn˛ j > "

p
2jn˛j log jnj/

� P
�
jT 0

n;nCn˛ � ET 0
n;nCn˛ j > ".1C ı/

p
2jn˛j log jnj

�

� P

 
jT 0

n;nCn˛ � ET 0
n;nCn˛ j > ".1C ı/

	
p
.1 � ı/

q
2 var.T 0

n;nCn˛/ log jnj
!

� exp

�
�2"

2.1C ı/2

2	2.1 � ı/ log jnj.1C �/

	

D jnj�
"2.1Cı/2.1C�/

	2.1�ı/ for jnj large: (11.6)

Hence, roughly we obtain P.jT 0
n;nCn˛ j > "p2jn˛j log jnj/ D jnj� "2

2	2 for any " > 0:
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11.4.1 Sufficiency: The Upper Bound

We begin by taking care of the double- and triple primed contributions, after
which we provide a convergent upper Borel–Cantelli sum for the single primed
contribution over a suitably chosen subset of points in Z

d . After this we apply the
first Borel–Cantelli lemma for this subset, and then “fill the gaps” in order to include
arbitrary windows.

11.4.1.1 The Term T 00
n;nCn˛

In this subsection we establish the fact that

lim sup
n!1

jT 00
n;nCn˛ jpjn˛j log jnj � ı

1 � ˛
a.s. (11.7)

In order for jT 00
n;nCn˛ j to surpass the level �

pjn˛j log jnj it is necessary that at least
N � �=ı of the X 00s are nonzero, which, by stretching the truncation bounds to the
extremes, implies that

P.jT 00
n;nCn˛ j > �

p
jn˛j log jnj/

�
 

jn˛j
N

!�
P
�
bn < jX j � ı

p
.jnj C jn˛j/ log.jnj C jn˛j/

��N

� jnj˛N �P �jX j > C jnj˛=2= log jnj��N

� C jnj˛N
 

EjX j2=˛.logC jX j/d�1�1=˛

.jnj˛=2= log jnj/2=˛.log jnj/d�1�1=˛

!N

D C
.log jnj/N..3=˛/C1�d/

jnjN.1�˛/ :

Since the sum of the probabilities converges whenever N.1 � ˛/> 1, considering
that, in addition, Nı � �, we have shown that

X
n

P
�
jT 00

n;nCn˛ j > �
p

jn˛j log jnj
�
< 1 for all � >

ı

1 � ˛ ;

which establishes (11.7) via the first Borel–Cantelli lemma.
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11.4.1.2 The Term T 000
n;nCn˛

Next we show that

lim
n!1

jT 000
n;nCn˛ jpjn˛j log jnj D 0 a.s. (11.8)

This one is easier, since in order for jT 000
n;nCn˛ j to surpass the level �

pjn˛j log jnj
infinitely often it is necessary that infinitely many of theX 000s are nonzero. However,
via an appeal to the first Borel–Cantelli lemma, the latter event has zero probability
since

X
n

P
�
jXnj > �

p
jn˛j log jnj

�
D
X

n

P
�
jX j > �

p
jn˛j log jnj

�
< 1

iff our moment condition holds by the following Lemma in [479].

Lemma 11.1. Let 0 < ˛1 � ˛2 � � � � � ˛d < 1; p D argmaxf˛j D ˛1g and
suppose that fXk; k 2 Z

d g are independent random variables with mean zero, then

X
n

P .jXnj > jnj˛.log jnj// < 1 ” E
�jX j1=˛1.logC jX j/d�1�1=˛1� < 1:

The proof of this Lemma contains the details of the arguments described at the end
of Sect. 11.2.

11.4.1.3 The Term T 0
n;nCn˛

As for T 0
n;nCn˛ we have to resort to subsequences. Set �1 D 1, �2 D 2, and, further,

�i D
�

i

log i

�1=.1�˛/
; i D 3; 4; : : : ; and � D f�i ; i � 1g:

Our attention here is on the subset of points n D .n1; n2; : : : ; nd / 2 Z
d such that

nk 2 �; i.e nk D Œ�ik 
; for all k D 1; 2; : : : ; d; in short n 2 �:

Suppose that n 2 � and set i D Qd
kD1 ik. This implies, in particular, that ik � i

and that log ik � log i for all k, so that

jnj D
dY
kD1

�k D
 Qd

kD1 ikQd
kD1 log ik

!1=.1�˛/
� i 1=.1�˛/

.log i/d=.1�˛/
:
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With this in mind, the estimate (11.4) over the subset � now yields

X
fn2�g

P
�
jT 0

n;nCn˛ j > "
p
2jn˛j log jnj

�
�
X

fn2�g
jnj� "2.1�ı/3

	2

�
X
i

X
jQd

kD1 ik jDi
jnj� "2.1�ı/3

	2

�
X
i

d.i/

�
i 1=.1�˛/

.log i/d=.1�˛/

�� "2.1�ı/3

	2

� C C
X
i�i0

d.i/i
� "2..1�ı/3�2ı/

	2.1�˛/ < 1 (11.9)

for " > 	
q

1�˛
.1�ı/3�2ı , (where i0 was chosen such that .log i/d.1�ı/3 � i ı and d.i/ �

i
ı
"2.1�ı/3

	2.1�˛/ for i � i0).

11.4.1.4 Joining the Contributions

We first note that an application of the first Borel–Cantelli lemma to (11.9) provides
an upper bound for lim supT 0

n;nCn˛ as n ! 1 through the subset �. More precisely,

lim sup
n!1fn2�g

jT 0
n;nCn˛ jp

2jn˛j log jnj � 	

s
1 � ˛

.1� ı/3 � 2ı a.s. (11.10)

Joining this with (11.7) and (11.8) now yields

lim sup
n!1fn2�g

jTn;nCn˛ jp
2jn˛j log jnj � 	

s
1 � ˛

.1� ı/3 � 2ı C ı

1 � ˛ a.s.,

which, due to the arbitrariness of ı, tells us that

lim sup
n!1fn2�g

jTn;nCn˛ jp
2jn˛j log jnj � 	

p
1 � ˛ a.s. (11.11)
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11.4.1.5 From the Subsequence to the Full Sequence

We shall omit the complete details here. This can be based on symmetrization and
the Lévy-inequality and some technical details similar to techniques applied to the
one-dimensional case. Desymmetrization follows the usual patterns.

11.4.2 Necessity

If even somewhat less, namely

P

 
jT.n/;.nCn˛/jp
2jn˛j log jnj < 1

!

holds then, by the zero-one law, the probability that the lim sup is finite is 0 or 1,
hence, being positive it equals 1. Consequently (cf. [319, p. 438] or [476, 477]),

lim sup
n!1

jXnjpjn˛j log jnj < 1 a.s.,

from which it follows via the second Borel–Cantelli lemma and the i.i.d. assumption
that

1 >
X

n

P
�
jXnj >

p
jn˛j log jnj

�
D
X

n

P
�
jX j >

p
jn˛j log jnj

�
;

which verifies the moment condition by Lemma 11.1 above.
An application of the sufficiency part finally tells us that 	2 D varX D 1.

11.5 Boundary Cases

We shall add some comments on the limit cases ˛ D 1 and ˛ D 0 in the span sizes
of the windows. Here we consider d D 1 and a.n/ D n=L.n/ with a slowly varying
function L.�/ (under some mild additional assumptions).

Theorem 11.11 (Gut, Jonsson, S. [211]). Let d.n/ D logL.n/ C log logn and
f .n/ D minfn; a.n/ d.n/g then

lim sup
n!1

SnCn=L.n/ � Snp
2a.n/d.n/

a:s:D 1 ” E
�
f �1.X2/

�
< 1;

EX2 D 1; EX D 0:



11 Strong Limit Theorems for Increments of Random Fields 397

Example 11.1. 1. If L.n/ D logn then

lim sup
n!1

SnCn= log n � Snp
4n log logn= logn

a:s:D 1 ” E

 
X2 logC jX j

logC logC jX j

!
< 1;

EX2 D 1; EX D 0:

2. L.n/ D log logn then

lim sup
n!1

SnC n
log logn

� Snp
2n

a:s:D 1 ” EX2 < 1;

EX2 D 1; EX D 0:

Random field extensions have been given in [215]. In the case ˛ D 0 and L.n/ D
c logn we are in the area of Erdős–Rényi theorems, where the limit depends in
contrary to the results above on the complete distribution of the underlying random
variables, see e.g. the book of Csörgő and Révész [138] in the case d D 1 and for
the multi-index case see e.g. the paper of Steinebach, [483].
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partnership.

11.6 Exercises

1. Let ˚ W .0;1/ ! .0;1/ be a nondecreasing, right continuous and unbounded
function with generalized inverse ˚.�1/.y/ D inffx W ˚.x/ � yg.

(a) Show that

˚.˚.�1/.y/�/ � y � ˚.˚.�1/.y// and ˚.�1/.˚.x// � x � ˚.�1/.˚.x/C/

where the plus or minus signs indicate one sided limits as e.g. ˚.�1/.˚.x/C/
D limy&˚.x/ ˚

.�1/.y/; and that for a random variable X

P.˚.jX j/ < t/ D P.jX j < ˚.�1/.t//:

(b) Show the following equivalence

1X
nD1

P.jX j > ˚.n// < 1 , E.˚.�1/.jX j// < 1
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2. Show that
P

k;`2N;k�`�n
1 D .1C o.1// � n logn as n ! 1:

3. Show that: If f .x/D x˛.logx/ˇa.x/ is invertible for x >x0 >1 with ˛ >0, ˇ 2
R and some function a.x/ ! 1, x ! 1; then there exists some function b.:/ on
.f .x0/;1/ with b.y/ ! 1; as y ! 1; such that for y > f .x0/

f .�1/.y/ D .˛ˇy/1=˛

.logy/ˇ=˛
b.y/:

4. Show that for wk;n D e�n nk
kŠ

it holds that (so-called local CLT)

wnC�p
n;n D 1p

2�n
exp

�
��

2

2

��
1CO

�
1p
n

��
for fixed � and n ! 1:

5. Verify the calculations leading to (11.4) and (11.6).
6. Verify the calculations in Sect. 11.4.1.3
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Geometry of Large Random Trees: SPDE
Approximation

Yuri Bakhtin

Abstract In this chapter we present a point of view at large random trees. We study
the geometry of large random rooted plane trees under Gibbs distributions with
nearest neighbour interaction.

In the first section of this chapter, we study the limiting behaviour of the trees as
their size grows to infinity. We give results showing that the branching type statistics
is deterministic in the limit, and the deviations from this law of large numbers
follow a large deviation principle. Under the same limit, the distribution on finite
trees converges to a distribution on infinite ones. These trees can be interpreted as
realizations of a critical branching process conditioned on non-extinction.

In the second section, we consider a natural embedding of the infinite tree into
the two-dimensional Euclidean plane and obtain a scaling limit for this embedding.
The geometry of the limiting object is of particular interest. It can be viewed as a
stochastic foliation, a flow of monotone maps, or as a solution to a certain Stochastic
PDE with respect to a Brownian sheet. We describe these points of view and discuss
a natural connection with superprocesses.

12.1 Infinite Volume Limit for Random Plane Trees

In this section we discuss a biological motivation to study the geometry of large
trees, introduce a relevant model (Gibbs distribution on trees) and study its behavior
as the tree size grows to infinity, thus obtaining an infinite discrete random tree as a
limiting object.
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Fig. 12.1 An RNA secondary structure is shown in solid line. The dashed lines represent the
edges of the encoding tree. The vertices of the tree are shown as black circles and the black square
represents the root

12.1.1 Biological Motivation

The initial motivation for this study was the analysis of branching statistics for the
secondary structures of large RNA molecules, and we begin with a description of
the relevant mathematical models.

RNA molecules are much like DNA molecules, since the primary structure of an
RNA molecule is a sequence of bases (nucleotides). One difference is that DNAs
exist in the form of two complementary nucleotide strands coiled together into a
double helix, whereas RNA is a single-stranded sequence of nucleotides, and there
is a variety of three-dimensional configurations that RNA molecules can assume.

Nucleotides tend to pair up with complementary nucleotides, and this is exactly
what makes the DNA double helix a stable structure. In a single stranded RNA,
the nucleotides still have potential to get paired with other nucleotides, and in the
absence of a complementary strand, they pair up to nucleotides of the same strand.
The resulting shape or folding is called the secondary RNA structure. It consists of
groups of paired nucleotides and groups of free unpaired nucleotides.

In Fig. 12.1 we see a schematic view of an RNA secondary structure. The groups
of bases that got aligned and paired up are shown as pairs of parallel solid segments.
Loops, i.e. groups of nucleotides that have no pair are shown as circular arcs.

If we ignore more complicated and rare situations where three groups of
nucleotides aligned together can occur, then every RNA folding can be naturally
encoded in a plane rooted tree. The procedure should be obvious from Fig. 12.1.
The edges of the tree correspond to stacked base pairs and the vertices of the tree
correspond to loops. The root of the tree is a special vertex that corresponds to the
“external loop” formed by the ends of the sequence.

If one has a rooted tree on the plane then to reconstruct the corresponding RNA
secondary structure one has simply to surround the tree by a contour beginning and
terminating near the root.

Since the trees we consider are rooted trees, one can naturally interpret them as
genealogical structures. For any vertex v of a tree, its height or generation num-
ber h.v/ is the distance from v to the root along the edges of the tree, i.e. the number
of edges in the shortest path from v to the root. The shortest path is unique, and the
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first edge of this path connects v to its parent p.v/. The vertex v is called a child
of p.v/. Each nonroot vertex has one parent and the branching number deg.v/ of
the vertex (also called its out-degree), i.e. the number of its children, is nonnegative.

In order to encode the RNA secondary structure, one has to fix the order of the
child vertices for each vertex. Therefore, we shall consider two trees to be identical
to each other if there is a one-to-one map between the vertex sets of the two trees that
preserves the parent-child relation and the order of the child vertices. The classes of
identical trees are called plane rooted trees or ordered rooted trees.

Now all the questions about RNA secondary structures can be restated using
the tree terminology. The first problem we can study is to determine the typical
behaviour of the branching type for a large tree. The branching type of a tree T is
the vector .�0.T /; �1.T /; �2.T /; : : :/, where �i .T / denotes the number of vertices
with branching number i � 0 in T .

One approach is based on energy minimization. According to this approach, the
typical trees are (close to) energy minimizers. To realize this approach one has to
assign an energy value to every tree. We proceed to describe an energy model with
nearest neighbour interaction used in [531]. We assume that the energy contribution
of each vertex of the tree depends only on its branching number, i.e., on its nearest
neighbourhood in the tree. We consider a sequence of numbers .Ei/iD0;1;:::, and
introduce the energy of the tree as

E.T / D
X

v2V.T /
Edeg.v/ D

X
i�0

�i .T /Ei ; (12.1)

where V.T / is the set of vertices of the tree T . This is a very rough “low-
resolution” model that ignores details of the nucleotide sequences. The concrete
values of Ei can be found in [38] or [531].

We can now consider the following problem. For simplicity, let us fix a (large
number) D 2 N and for a given N , among trees on N vertices with branching
numbers not exceeding D find trees that minimize E.�/. It follows from (12.1) that
this problem is equivalent to:

DX
iD0

�iEi ! min

DX
iD0

�i D N; (12.2)

DX
iD0

i�i D N � 1; (12.3)

�i � 0; i D 0; : : : ;D:

Restriction (12.2) means that the total number of vertices equals N . Restric-
tion (12.3) means that the total number of child vertices equals N � 1 (since the
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root is the only vertex with no parent). Introducing xi D �i=N and letting N ! 1
we see that the limiting problem is

E.x/ ! min

DX
iD0

xi D 1; (12.4)

DX
iD0

ixi D 1; (12.5)

xi � 0; i D 0; : : : ;D; (12.6)

where

E.x/ D
DX
iD0

xiEi : (12.7)

Conditions (12.4)–(12.6) define a convex set �.

Exercise 12.1. Prove that � is, in fact, a D � 1-dimensional simplex.

Since the function we have to minimize is linear, for most choices of .Ei /DiD0 the
minimizers will have to be extremal points of �. In particular, it means that most
coordinates of the minimizers will be 0. In fact, for the energy values suggested
in [531], the minimizer is .1=2; 0; 1=2; 0; 0; : : :/ which corresponds to the statistics
of a binary tree (a tree that has only vertices with zero or two children).

This clearly explains why the fraction of vertices with high branching in RNA
secondary structures is small. In fact, the energy minimization approach suggests
that this fraction should be 0.

It turns out that most real RNA foldings contain branchings of higher orders,
producing small but steady high branching frequencies. In [38] it is claimed that the
failure to explain this by the energy minimization approach is due to the fact that
the binary trees are too exotic, rare in the space of all possible trees, and one has to
introduce a model that would take into account entropy considerations.

12.1.2 Gibbs Distribution on Trees. Law of Large Numbers
and Large Deviation Principle for Branching Type

A natural candidate for such a model is the Boltzmann–Gibbs distribution on TN D
TN .D/, the set of all trees on N vertices with branching not exceeding D. Let us
fix an inverse temperature parameter ˇ � 0 and define a probability measure PN on
TN by

PN .T / D e�ˇE.T /

ZN
;
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where the normalizing factor (partition function) is defined by

ZN D
X
T2TN

e�ˇE.T /:

For more information on Gibbs measures see Sect. 9.3.2.
In particular, if ˇ D 0 or, equivalently, Ei D 0 for all i , then PN is a uniform

distribution on TN .
In this model, �0 D �0.T /; �1 D �1.T /; : : : become random variables (being

functions of a random tree T ), and the normalized branching type 1
N
.�0; : : : ; �D/

becomes a random vector. Let us describe the asymptotics of the normalized
branching type as N ! 1.

Let

J.x/ D �H.x/C ˇE.x/; x 2 �; (12.8)

where

H.x/ D �
DX
iD0

xi logxi

is the entropy of the probability vector .x0; : : : ; xD/ 2 �, and E.x/ is the energy
function defined in (12.7).

The following theorem plays the role of a law of large numbers for the branching
type of a large random tree.

Theorem 12.1. As N ! 1,

��0
N
;
�1

N
; : : : ;

�D

N

�
! p

in probability, where p is a solution of the following optimization problem:

J.x/ ! min; (12.9)

x 2 �: (12.10)

Before we give a sketch of a proof of this theorem, let us make several comments.
The function J.x/ is strictly convex on�. Therefore, the minimizer p is unique and
it can be found using the method of Lagrange multipliers:

logpi C 1C ˇEi C �1 C i�2 D 0; i D 0; 1; : : : ;D;

where �1 and �2 are the Lagrange multipliers. So we see that

pi D C
ie�ˇEi ; i D 0; 1; : : : ;D; (12.11)
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where C D e�1��1 , and 
 D e��2 . Constants C and 
 can be uniquely defined from
the two equations

DX
iD0

pi D 1; (12.12)

DX
iD0

ipi D 1: (12.13)

Since ˇ is a finite number, we have

pi > 0; i D 0; 1; : : : ;D;

and the minimizer p belongs to the relative interior of � (with respect to the D � 1
affine subspace it spans). Therefore, a typical large tree has a positive fraction of
vertices with any given branching number. This explains why typical RNAs contain
branchings of high degree. We refer the reader to [38] for more detailed analysis, and
note here only that the phenomenon we are facing is typical for statistical mechanics
models where there is always interplay and competition between the energy and
entropy factors. If subsystems of a system are not independent, then the free energy
of the system is not equal to the sum of the subsystem free energies, and an entropy
correction is needed. This is precisely the content of definition (12.8), where J plays
the role of free energy.

We shall now give a sketch of the proof of Theorem 12.1. The proof is based
on the fact that trees with equal branching degree sequences have equal energy.
Therefore,

PN .�.T / D n/ D e�ˇE.n/C.N; n/

ZN
; (12.14)

where n D .n0; : : : ; nD/ and C.N; n/ is the number of plane trees of order N with
nk nodes of branching degree k:

C.N; n/ D 1

N

�
N

n0; n1; n2; : : : ; nD

�
D .N � 1/Š
n0Šn1Šn2Š � � �nDŠ (12.15)

if n1C2n2C: : :CDND D N �1, and 0 otherwise (see e.g. [480, Theorem 5.3.10]).
One can apply Stirling’s formula to get

C.N; n/ D exp

(
N

 
�

DX
kD0

nk

N
log

nk

N
C O

�
logN

N

�!)

D exp
n
NH

� n
N

�
C O.logN/

o

as n ! 1, which holds true uniformly in n, see e.g. [166, Lemma I.4.4].
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Plugging this into (12.14), we get

PN

�
�.T /

N
D n

N

�
D exp f �N 


ˇE. n
N
/ � H. n

N
/
�C O.logN/ g

ZN
;

D exp
˚�NJ. n

N
/C O.logN/

�
ZN

:

Clearly, the expression in the numerator is maximal if n=N is close to p, and it is
exponentially in N smaller for points n=N that are not close to p. Since the total
number of points grows only polynomially in N , the desired asymptotics follows.

In fact, one can strengthen the law of large numbers of Theorem 12.1 and
provide a large deviation principle (LDP). Roughly speaking, the LDP shows that
probability for �=N to deviate from p by at least " decays exponentially in N , and
gives the rate of decay in terms of a large deviations rate function the role of which
is played by J.x/ � J.p/, see [37, 38] for the details.

12.1.3 Infinite Volume Limit for Random Trees

We must note here that the above results concern only the branching type of a
random tree which ignores a lot of details about the geometry of the tree. Completely
different random trees can have the same branching types. So let us describe a result
from [34] that takes into account the way the various generations are related to each
other. We need more notation and terminology.

Each rooted plane tree can be uniquely encoded as a sequence of genera-
tions. Each generation is represented by its vertices and pointers to their parents.
More precisely, by a generation we mean a monotone (nondecreasing) map G W
f 1; : : : ; k g ! N, or, equivalently, the set of pairs f .i; G.i// W i D 1; : : : ; k g such
that if i1 � i2 then G.i1/ � G.i2/. We denote by jGj D k the number of vertices
in the generation, and for any i D 1; : : : ; k, G.i/ denotes i ’s parent number in the
previous generation.

For two generationsG andG0 we writeG C G0 and say thatG0 is a continuation
of G if G0.jG0j/ � jGj. Each tree of height n can be viewed as a sequence of
generations

1 C G1 C G2 C : : : C Gn C 0;

where 1 C G1 meansG1.jG1j/ D 1 (the 0-th generation consists of a unique vertex,
the root) and Gn C 0 means that the generation n C 1 is empty. Infinite sequences
1 C G1 C G2 C : : : naturally encode infinite trees.

For any plane tree T and any n 2 N, �nT denotes the neighbourhood of the root
of radius n, i.e. the subtree of T spanned by all vertices with height not exceeding n.

For any n and sufficiently large N , the map �n pushes the measure PN on TN

forward to the measure PN��1
n on Sn, the set of all trees with height n. In other

words, �nT is an Sn-valued random variable with distribution PN��1
n .



406 Y. Bakhtin

Theorem 12.2. 1. There is a unique measure P on infinite rooted plane trees with
branching bounded by D such that for any n 2 N, as N ! 1;

PN�
�1
n ! P��1

n

in total variation.
2. Measure P defines a Markov chain on generations .Gn/n�0. The transition

probabilities are given by

P.GnC1 D g0 j Gn D g/ D
( jg0j

jgj pi1 � � �pi
jgj

; g C g0;
0; otherwise,

(12.16)

where ik, k D 1; : : : ; jgj denotes the number of vertices in generation g0 that are
children of k-th vertex in generation g.

The transition probability formula can be understood as follows: given that the
current generation has k > 0 vertices, the conditional probability that the first vertex
produces i1 children, the second vertex produces i2 children, . . . , the k-th vertex
produces ik children, equals

i1 C : : :C ik

k
pi1 : : : pik : (12.17)

To check that these are well-defined transition probabilities, we can write

X
i1;:::;ik

i1 C : : :C ik

k
pi1 � � �pik D k

k

X
i1;:::;ik

i1pi1 � � �pik

D
 X

i1

i1pi1

! X
i2

pi2

!
� � �
0
@X

ik

pik

1
A ;

(where we used the symmetry with respect to index permutations) and notice that
each of the factors on the right-hand side equals 1.

This process was first obtained in [294], under the name of the family tree of a
critical branching process conditioned on nonextinction, a term resulting from the
limiting procedure used in [294]. The probability vector p plays the role of the
branching distribution for the underlying Galton–Watson process.

Let us give a sketch of the proof of Theorem 12.2 given in [34]. Take any n 2 N

and any two trees �1 and �2 of height n. The plan is to find

lim
N!1

PN�
�1
n f �1 g

PN��1
n f �2 g :

Each tree contributing to PN��1
n f �j g, j D 1; 2 can be split into two parts. The first

part consists of the vertices of first n� 1 generations of �j . The energy contribution



12 Geometry of Large Random Trees: SPDE Approximation 407

of these vertices is entirely defined by � , and we denote it by E.�j /. If we assume
that this part has mj vertices, and the n-th generation of �j has kj vertices then
the rest of the tree is a forest with kj components and N � mj vertices. We can
use a generalization of formula (12.15). The number of plane forests on N vertices
with k components and r0; r1; : : : ; rD vertices with branching numbers, respectively,
0; 1; : : : ;D is (see e.g. Theorem 5.3.10 in [480])

k

N

�
N

r0; r1; : : : ; rD

�

if r0 C : : :C rD D N , r1 C 2r2 C : : :CDrD D N � k, and 0 otherwise.
Therefore,

PN�
�1
n;N f �1 g

PN�
�1
n;N f �2 g D

e�ˇE.�1/ X
r2�.N;m1;k1/

k1

N �m1

�
N �m1

r0; r1; : : : ; rD

�
e�ˇE.r/

e�ˇE.�2/ X
r2�.N;m2;k2/

k2

N �m2

�
N �m2

r0; r1; : : : ; rD

�
e�ˇE.r/

:

Here

�.N;m; k/ D
(
r 2 Z

DC1
C W

DX
iD1

ri D N �m;

DX
iD1

iri D N �m � k

)
;

and ZC D N [ f 0 g.
As well as in the proof of Theorem 12.1 one can prove that the dominating

contributions to the sums in the numerator and denominator come from r such that
r

N�mj lies in a small neighbourhood of p (where p is the solution of (12.9), (12.10))

intersected with �.N;mj ; kj /. Moreover, there is a natural way to match points
of these two small sets to each other and estimate the ratio of contributions from
individual points. We omit the details of the computation and give only the result:

lim
N!1

PN�
�1
n f �1 g

PN��1
n f �2 g D k1e�ˇE.�1/
k1em1J.p/

k2e�ˇE.�2/
k2em2J.p/
;

where 
 was introduced in (12.11).
It follows that for any � 2 Sn with k vertices of height n andm vertices of height

less than n,
lim
N!1PN�

�1
n f � g D Qnke�ˇE.�/
kemJ.p/;

where Qn depends only on n. One can use the consistency of limiting distributions
for all values of n to deduce that, in fact, Qn D C e�J.p/ (where C was introduced
in (12.11)) and does not depend on n. This results in
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Fig. 12.2 Several first generations of a realization of an infinite random tree for D D 2, E0 D
E1 D E2 D 0

lim
N!1PN�

�1
n f � g D Cke�ˇE.�/
ke.m�1/J.p/;

which completely describes the limiting distribution on any finite number of
generations. It now takes a straightforward calculation to see that the limiting
process on generations is Markov and to derive the transition probabilities (12.16).

Notice that it is not a priori clear that the limiting process is Markov. The
probability PN��1

n f � g depends on the “future”, i.e., on the realization of the
generations of the tree after the n-th one. However, this dependence disappears in
the limit.

We can informally summarize this section as follows: large random trees under
Gibbs distributions with nearest neighbour interaction asymptotically look and
behave like realizations of Markov process on generations known as critical branch-
ing process conditioned on nonextinction. The limiting process has some interesting
properties. Some of them like an “immortal particle” representation from [294]
that represents the limiting tree via a unique infinite path with independent copies
of critical Galton–Watson trees attached to it are well known. Some geometric
properties of plane embeddings of these trees will be discussed in the next section.

Figure 12.2 shows several first generations of an infinite random tree realization
for the case where D D 2, E0 D E1 D E2 D 0, so that the branching distribution
is p0 D p1 D p2 D 1=3.

12.2 From Discrete to Continuum Random Trees

In this section, we study a scaling limit for the infinite random tree constructed in
the previous section. The limits will be described in terms of diffusion processes
and stochastic differential equations. We have to start with a brief and highly
nonrigorous introduction to diffusion processes.
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12.2.1 Diffusion Processes

First we have to recall a definition of a Markov process with continuous time.
Suppose f �.t/; t � 0 g is a stochastic process defined on a probability space
.˝;F ;P/, with values in some metric space. For each t > 0 we denote

F �
�t D 	.�.s/; 0 � s � t/; F �

Dt D 	.�.t//; F �
�t D 	.�.s/; s � t/:

These are sigma-algebras of events related to the past, present, and future with
respect to t . A process is called Markov if for any t > 0, any bounded random
variable ��t measurable with respect to F �

�t ;

E.��t j F �
�t / D E.��t j F �

Dt /:

Informally, a process is Markov if it exhibits instantaneous loss of memory and the
future depends on the past only through the present.

Since the probabilistic properties of the evolution in the future depend only
on the present, it is often convenient to work with transition probability kernels
P.s; x; t; A/, describing the conditional probability for the process � to end up in
set A at time t � s given that �.s/ D x. If the transition probabilities depend only
on t � s, the process is called homogeneous and its transition kernel is denoted
P.x; t; A/ D P.0; x; t; A/.

It turns out that many R
d -valued homogeneous Markov processes with continu-

ous trajectories satisfy the following properties:

1. Stochastic continuity: for any x and any open set U containing x, P.x; t; U c/ !
0 as t ! 0.

2. Existence of local drift: there is a vector b.x/ D .b1.x/; : : : bd .x// for any x,
such that for any bounded open set U containing x, and any i D 1; : : : ; d

Z
U

.yi � xi /P.x; t; dy/ D bi .x/t C o.t/; t ! 0: (12.18)

3. Existence of local covariance matrix: there is a matrix a.x/ D .aij .x//
d
i;jD1

for any x, such that for any bounded open set U containing x, and any i; j D
1; : : : ; d ,

Z
U

.yi � xi /.yj � xj /P.x; t; dy/ D aij .x/t C o.t/; t ! 0: (12.19)

We shall call these processes diffusion processes. Let us consider two simple
examples. One example is a process with zero diffusion matrix a. In this case, the
process is a solution of ODE Px D b.x/. If the drift is 0 and the diffusion matrix
a is identical to the unit d � d matrix Id , then the diffusion process is a standard
d -dimensional Wiener process (we shall denote it by W D .W1; : : : ;Wd /), i.e., for
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any s and t > s, the incrementW.t/ �W.s/ is a centered Gaussian random vector
with covariance matrix .t � s/Id , independent of FW�t .

Under mild restrictions on b and a, the distribution of the corresponding diffusion
process coincides with that of the solution of the following stochastic differential
equation:

d�.t/ D b.�.t// dt C 	.�.t// dW.t/;

where 	 is a matrix function such that for each x, 	.x/	T .x/ D a.x/. This equation
has to be understood as an integral equation:

�.s/ � �.0/ D
Z s

0

b.�.t// dt C
Z s

0

	.�.t// dW.t/; s > 0;

where the integral with respect to the Wiener process W is understood in the Itô
sense.

Roughly speaking, a solution of a one-dimensional stochastic equation satisfies

�.t C�t/� �.t/ � b.�.t//�t C 	.�.t//�W.t/; (12.20)

where �t is a small time interval and �W.t/ is distributed as an increment of the
Wiener process over this time interval. In other words, for small �t the increment
of � is approximately Gaussian with mean b.�.t//�t and variance 	2.�.t//�t .

The theory of Markov processes and stochastic equations can be found in
many excellent books, see [164, 168, 266, 285]. One can roughly describe the
diffusion process solving the equation as a stochastic perturbation (induced by the
“noise” dW ) of the deterministic dynamics defined by the vector field b. Typical
realizations of diffusion processes are highly irregular. They are not smooth, and
they are not even ˛-Hölder if ˛ � 1=2.

12.2.2 Convergence of the Process of Generation Sizes

We begin with a limit theorem for the process of the Markov infinite tree’s
generation sizes: �n D jGnj. We introduce moments of the distribution p:

Bn D
DX
iD0

inpi ; n 2 N;

and its variance
� D B2 � B2

1 D B2 � 1: (12.21)

Let us now fix a positive time T and define

�n.t/ D 1

�n
.�Œnt 
 C fnt g.�ŒntC1
 � �Œnt 
//; t 2 Œ0; T 
;
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the rescaled process of linear interpolation between values of �k given at integer
times k D 0; 1; : : :.

A proof of the following theorem showing that on average the generation sizes
grow linearly can be found in [34], although the limiting process have appeared in
the theory of random trees much earlier, see e.g. comments on Conjecture 7 in [8].

Theorem 12.3. The distribution of �n converges in the weak sense in uniform
topology on C.Œ0; T 
/ to the distribution of a diffusion process on Œ0;1/ with drift
b.x/ D 1 and diffusion a.x/ D x emitted from 0 at time 0.

The limiting process can be viewed as a weak solution of the one-dimensional
stochastic Itô equation

d�.t/ D dt Cp
�.t/ dW.t/; (12.22)

�.0/ D 0; (12.23)

i.e., this process can be realized on some probability space along with a Wiener
process W so that equations (12.22), (12.23) hold true for all t � 0.

Proving weak convergence of distributions on a space like C.Œ0; T 
/ is a
nontrivial issue. It has been extensively studied, see [69, 168]. Most techniques
involve verifying tightness of the sequence of measures and applying the Prokhorov
theorem or one of its consequences. Checking the tightness condition usually
requires significant efforts. Instead of going into details of a complete proof, let
us see how the drift and diffusion coefficients can be guessed.

First let us compute the mean of the increment for the pre-limit process:

E.�jC1 j �j D k/ D 1

k

X
i1;:::;ik

.i1 C : : :C ik/
2pi1 � � �pik

D 1

k

"
k

 X
i1

i 21 pi1

! X
i2

pi2

!k�1

C k.k � 1/

 X
i1

i1pi1

!2  X
i2

pi2

!k�2#

D 1

k
.kB2 C k.k � 1//

D B2 C k � 1 D �C k; (12.24)

so that

E
�
�jC1
�n

� k

�n

ˇ̌
ˇ̌ �j
�n

D k

�n

�
D 1

n
:

The role of a small time increment is played by 1=n. The last formula shows that
in time 1=n the process increases on average also by 1=n. Comparing this to the
definition of the drift (12.18), we conclude that the limiting drift b.x/must be equal
to 1 for all points x.



412 Y. Bakhtin

Similar computations show that

E.�2jC1 j �j D k/ D 1

k

X
i1;:::;ik

.i1 C : : :C ik/
3pi1 � � �pik

D 1

k

�
kB3 C 3k.k � 1/B2 C k.k � 1/.k � 2/�

D B3 C 3.k � 1/B2 C .k � 1/.k � 2/: (12.25)

Combining (12.24) and (12.25), we can compute that if we take a sequence of
numbers k such that k=.�n/ ! x for some x � 0, then

E

 �
�jC1
�n

� k

�n

�2ˇ̌ˇ̌ �j
�n

D k

�n

!
! x � 1

n
:

Comparing this with the definition of the diffusion matrix (12.19), we conclude that
the limiting diffusion coefficient a.x/ is equal to x for all nonnegative x.

Of course, these computations do not prove the desired convergence of distribu-
tions of processes in C.Œ0; T 
/, but they serve as a basis for a rigorous proof based
on the martingale problem associated with a and b, see [34].

It follows from the Feller classification of boundary points for diffusions (see
[266]) that the limiting process begins at 0, immediately drifts into the positive
semiline and never touches 0 again staying positive all the time. The reason for
this entrance and no exit character of point 0 is that the drift near 0 is sufficiently
strong to dominate over the fluctuations generated by the diffusion coefficient.

Theorem 12.3 describes the behaviour of the process of population sizes and it
ignores all the interesting details on how the generations are connected to each other.

12.2.3 Trees as Monotone Flows

This section is based on [35]. Our goal is to obtain a scaling limit for random trees
that would take into account the genealogy geometry. To make sense of this limit,
let us interprete trees as flows of monotone maps.

Let us describe the idea first. Suppose we have an infinite tree � and consider
generations n1 and n2 of the tree. Let the size of generation n1 be k1 and the size
of generation n2 be k2. Then for i 2 f 1; : : : ; k1 g we can find how many vertices in
generationn2 are descendants of vertices from 1; 2; : : : ; i in generation n1. Denoting
this number by mn1;n2.i/ we see that mn1;n2.i/ is monotone nondecreasing in i , and
maps f 1; : : : ; k1 g onto f 1; : : : ; k2 g. Thus we have a family of consistent monotone
maps mn1;n2 associated with the tree. It is natural to call this family a discrete
monotone flow since n1 and n2 play the role of time. Obviously, two different
trees will necessarily produce different flows, so that this procedure is a one-to-one
encoding of trees by flows of monotone maps.
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We are going to produce a continuum limit under an appropriate rescaling of
the flows encoding random realizations of infinite random trees. To that end we
must embed the discrete monotone flows defined above into a space of continuum
monotone flows. Let us recall that Donsker’s invariance principle for random walks
involves constructing continuous trajectories out of realizations of discrete time
random walks. This allows to embed the random walks into the space of continuous
functions and prove convergence in that space, see e.g. [69] for details.

We have to develop an analogous procedure for random trees, and embed them
into a space of monotone flows in continuous time.

We begin with considering a space of monotone maps. In our choice of the space
and topology on it we have to take into account several things. In particular, the
domains of monotone maps we consider do not have to coincide with each other.

Consider all points z � 0 and nonnegative nondecreasing functions f defined
on .�1; z
 such that f .x/ D 0 for all x < 0. Each of these functions has at most
countably many discontinuities. We say that two such functions f1 W .�1; z1
 !
R

C, f2 W .�1; z2
 ! R
C are equivalent if z1 D z2, f1.z1/ D f2.z2/, and for each

continuity point x of f1, f1.x/ D f2.x/. Although the roles of f1 and f2 seem to
be different in this definition, it is easily seen to define a true equivalence relation.
The set of all classes of equivalence will be denoted by M. We would like to endow
M with a metric structure, and to that end we develop a couple of points of view.

Sometimes, it is convenient to identify each element of M with its unique right-
continuous representative. Sometimes, it is also convenient to work with graphs. The
graph of a monotone function f defined on .�1; z
 is the set Gf D f .x; f .x//,
x � z g. For each discontinuity point x of f one may consider the line segment Nf .x/
connecting points .x; f .x�// and .x; f .xC//. The continuous version of Gf is the
union of Gf and all segments Nf .x/. It is often convenient to identify an element
of M with a continuous version of its graph restricted to R

2C, and we shall do so
from now on calling the elements of M monotone graphs. Yet another way to look
at monotone graphs is to think of them as monotone multivalued maps so that the
image of each point is either a point f .x/ or a segment Nf .x/.

The distance between �1 2 M and �2 2 M is defined via Hausdorff metric 
H
of �1 and �2 as compact sets (graphs), see Sect. 1.2.3 for the definition of 
H .

Exercise 12.2. Prove that this metric turns .M; 
H / into a Polish (complete and
separable) metric space.

We refer to [35] for several useful facts on the geometry of .M; 
H / such as
criteria of convergence of sequences of monotone graphs. The main difference
between the uniform distance on functions and 
H is that the former considers
graphs of two functions to be close to each other if they differ just a little in
the “vertical” direction, whereas the latter allows for proximity of graphs due to
tweaking in the horizontal direction.

Let us introduce zj .� / D sup f xj W .x0; x1/ 2 � g, j D 0; 1, and for two
monotone graphs �1 and �2 with z1.�1/ D z0.�2/, define their composition �2 ı �1
as the set of all pairs .x0; x1/ such that .x0; x2/ 2 �1 and .x2; x1/ 2 �2 for some x2.
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Let T > 0 and �T D f .t0; t1/ W 0 � t0 � t1 � T g. We say that .� t0;t1 /.t0;t1/2�T
is a (continuous) monotone flow on Œ0; T 
 if the following properties are satisfied:

1. For each .t0; t1/ 2 �T , � t0;t1 is a monotone graph.
2. The monotone graph � t0;t1 depends on .t0; t1/ continuously in 
.
3. For each t 2 Œ0; T 
, � t;t is the identity map on Œ0; �.t/
 for some �.t/. The

function � is called the profile of � .
4. For any .t0; t1/ 2 �T , z0.� t0;t1 / D �.t0/, z1.� t0;t1 / D �.t1/, where � is the profile

of � .
5. If .t0; t1/ 2 �T and .t1; t2/ 2 �T , then � t0;t2 D � t1;t2 ı � t0;t1 .

It is easy to check that the space MŒ0; T 
 of all monotone flows on Œ0; T 
 is a
Polish space if equipped with uniform Hausdorff distance:


T .�1; �2/ D sup
.t0;t1/2�T


H .�
t0;t1
1 ; �

t0;t1
2 /: (12.26)

Property 5 (consistency) implies that Property 2 (continuity) has to be checked
only for t0 D t1.

Let us now embed infinite trees into M. To any realization of an infinite tree �
we shall associate a continuous time monotone flow.

Recall that there are �n � 1 vertices in the n-th generation of the tree. For
i 2 f 1; : : : ; �n g, the i -th vertex of n-th generation is represented by the point
.n; i � 1/ on the plane. The parent-child relation between two vertices of the tree
is represented by a straight line segment connecting the representations of these
vertices.

Besides these “regular” segments, we shall need some auxiliary segments that
are not an intrinsic part of the tree but will be used in representing the discrete tree
as a continuous flow. Suppose a vertex i in n-th generation has no children. Let j be
the maximal vertex in generation nC 1 among those having their parents preceding
i in generation n. Then an auxiliary segment of type I connects the points .n; i � 1/
and .nC 1; j � 1/. If vertex 1 in n-th generation has no children, points .n; 0/ and
.nC 1; 0/ are connected by an auxiliary segment of type II. Auxiliary segments of
type III connect points .n; i � 1/ and .n; i/ for 1 � i � Xn � 1.

Every bounded connected component of the complement to the union of the
above segments on the plane is either a parallelogram with two vertical sides of
length 1, or a triangle with one vertical side of length 1. One can treat both shapes as
trapezoids (with one of the parallel sides having zero length in the case of triangle).

For each trapezoid, we shall establish a bijection with the unit square and define
the monotone flow to act along the images of the “horizontal” segments of the
square. A graphic illustration of the construction is given on Fig. 12.3, and we
proceed to describe it precisely.

Each trapezoid L of this family has vertices g0;0 D .n; i0;0/; g0;1 D .n; i0;1/,
g1;0 D .nC 1; i1;0/; g1;1 D .nC 1; i1;1/, where i0;1 � i0;0 2 f 0; 1 g and i1;1 � i1;0 2
f 0; 1 g.
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Fig. 12.3 Construction of the continuous monotone flow

Then, for every ˛ 2 .0; 1/ we define

gLm.˛/ D gm;0 C ˛.gm;1 � gm;0/; m D 0; 1;

and
gL.˛; s/ D gL0 .˛/C s.gL1 .˛/ � gL0 .˛//; s 2 .0; 1/:

This definition introduces a coordinate system in L, i.e., a bijection between L and
the unit square .0; 1/ � .0; 1/. We are going to use it to construct the monotone
map associated with the tree for times t0; t1 assuming that there is n 2 f 0 g [ N

such that n< t0 � t1 <n C 1. Let us take any x such that .x; t0/ belongs to one
of the trapezoids L. Then there is a unique number ˛.x; t0/ 2 .0; 1/ such that
gL.˛.x; t0/; f t0 g/ D x, where f � g denotes the fractional part. We can define
gt0;t1 .x/ D gL.˛.x; t0/; f t1 g/. This strictly increasing function can be consistently
and uniquely extended by continuity to points x such that .x; t0/ belongs either
to a regular segment in the tree representation or an auxiliary segment of type I
or II. This function gt0;t1 also uniquely defines a monotone graph Q� t0;t1 D Q� t0;t1 .�/

depending continuously on t0; t1. Next, if we allow t0 and t1 to take values n and
nC 1, then we can construct the associated monotone graph as the limit in .M; 
H /
of the monotone graphs associated to the increasing functions defined above (as
t0 ! n or t1 ! n C 1). Notice that the resulting monotone graphs may have
intervals of constancy and shocks (i.e., contain horizontal and vertical segments).
Now we can take any .t0; t1/ 2 �1 D f .t0; t1/ W 0 � t0 � t1 g and define

Q� t0;t1 D Q� Œt1
;t1 ı Q� Œt1
�1;Œt1
 ı : : : ı Q� Œt0
C1;Œt0
C2 ı Q� t0;Œt0
C1

which results in a continuous monotone flow . Q� t0;t1 .�//.t0;t1/2�1

.
To state our main result we need to introduce a rescaling of this family. For every

n 2 N, we define

� t0;t1
n .�/ D

��
x

�n
;
y

�n

�
W .x; y/ 2 Q� nt0;nt1 .�/

	
; .t0; t1/ 2 �1: (12.27)

Notice that this is exactly the same scaling as in Theorem 12.3. The time coordinate
is rescaled by n, and the space coordinate is rescaled by �n.
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For each T > 0 we can consider the uniform distance 
T on monotone flows
in MŒ0; T 
 introduced in (12.26), and define the locally uniform (LU) metric
on MŒ0;1/ via

d.�1; �2/ D
1X
mD1

2�m.
m.�1; �2/ ^ 1/:

Theorem 12.4 ([35]). Suppose p is a nonnegative vector satisfying (12.12)
and (12.13). Let the infinite random tree � be constructed according to transition
probabilities (12.17). Let � be defined by (12.21). The random monotone flow �n.�/
defined in (12.27) converges as n ! 1 in distribution in LU metric to a limiting
flow � . The distribution of the limiting flow does not depend on p.

This theorem is the first part of the main result of this chapter. It would not be
complete without a description of the distribution of the limiting flow. This descrip-
tion can be obtained by tracing trajectories of individual points in the monotone flow.

Suppose � 2 MŒ0; T 
, and � is the profile of � . Let � W RC � �T satisfy the
following properties:

1. For any .t0; t1/ 2 �T , the function �.x; t0; t1/ is monotone in x 2 Œ0; �.t0/
.
2. For any .t0; t1/ 2 �T , if x 2 Œ0; �.t0/
, then .t1; �.x; t0; t1// 2 � t0;t1 .
3. For all x; t0, �.x; t0; t1/ is continuous in t1.

Then � and � are said to be compatible with each other, and U is said to be a
trajectory representation of � . Clearly, the monotonicity implies that, given �, there
is at most one monotone flow on Œ0; T 
 compatible with �. Moreover, it is sufficient
to know a trajectory representation �.x; t0; t1/ for a dense set of points x; t0; t1 (e.g.,
rational points) to reconstruct the flow.

Although a trajectory representation for a monotone flow � with profile � is not
unique (due to the presence of discontinuities in the monotone maps constituting
the flow), there is a special representation �.x; t0; t1/ that is right-continuous in x 2
Œ0; �.t0/
 for every t1 � t0:

�.x; t0; t1/ D
�

sup fy W .x; y/ 2 � t0;t1 g; x 2 Œ0; �.t0/

x; x > �.t0/:

The concrete way of defining �.x; t0; t1/ for x > �.t0/ is inessential for our
purposes, and we often will simply ignore points .x; t0; t1/ with x > �.t0/.

It is often convenient to understand a monotone flow as a triple � D .�; �; �/,
where � is the profile of � , and � is one of the trajectory representations of � .

Theorem 12.5. The distribution of the limiting monotone flow � D .�; �; �/ of
Theorem 12.4 is uniquely defined by the following properties:

1. The profile � is a weak solution of stochastic equation (12.22), (12.23).
2. For any t0 > 0, any m 2 N, and any positive numbers x1 < : : : < xm, on the

event f xm < �.t0/ g, the process

.�1; : : : ; �m/ D .�.x1; t0; t/; : : : ; �.xm; t0; t//; t � t0:
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is a weak solution of

d�k.t/ D �k.t/

�.t/
dt C

kX
jD1

p
�k.t/ � �k�1.t/ dWj .t/; (12.28)

�k.t0/ D xk; k D 1; : : : ; m;

where .Wj /
m
jD1 are independent Wiener processes.

Although the proofs of Theorems 12.4 and 12.5 are fairly technical, the derivation
of the coefficients in the limiting stochastic equations is relatively easy and can be
done in the spirit of our derivation of the coefficients for (12.22) describing the
limiting behaviour of the profile of the random tree.

The trajectory description in terms of stochastic equations characterizes the
distribution of the monotone flow uniquely, but its drawback is that it requires a
separate stochastic system for each partition x1 < : : : < xm of the profile interval
Œ0; Z.t0/
. It turns out that one can write a single stochastic partial differential
equation (SPDE) that describes the behaviour of trajectories for all partitions at
once.

To write down this equation, we need a Browian sheet W on R
2C. It is a

centered Gaussian random field indexed by bounded Borel subsets of R2C, such that
cov.W.A/;W.B// D jA\Bj, where j � j denotes the Lebesgue measure. It follows
that W.�/ is a finitely additive function on sets almost surely, the values of W.�/ on
disjoint sets are independent, the processW.A� Œ0; t 
/ is a Gaussian martingale for
any bounded BorelA. We refer to [505] for more background on the Brownian sheet
and martingale measures in general.

The SPDE mentioned above is:

d�.x; t0; t/ D �.x; t0; t/

�.t/
dt CW.Œ0; �.x; t0; t/
 � dt/; (12.29)

�.x; t0; t0/ D x; x � �.t0/:

It must be understood as an integral equation

�.x; t0; t1/ D x C
Z t1

t0

�.x; t0; t/

�.t/
dt C

Z t1

t0

Z
R

1Œ0;�.x;t0;t /
.y/W.dy � dt/;

where the right-hand side contains a stochastic integral with respect to the Brownian
sheet, understood as an integral with respect to a martingale measure. Informally,
the equation means that for small �t , analogously to (12.20)

�.x; t0; t C�t/� �.x; t0; t/ � �.x; t0; t/

�.t/
�t CW.Œ0; �.x; t0; t/
 ��t/;

whereW is the Brownian sheet introduced above.
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12.2.4 Structure of the Limiting Monotone Flow

The random monotone flow � constructed in the previous section being a distribu-
tional limit of trees can be called a continuum random tree. Instead of a discrete
genealogy structure we have continual one and for any time t0 and any interval
Œa; b
 � Œ0; �.t0/
 we can trace the progeny of this set for all future times. We can
also do this for more general sets replacing Œa; b
.

Other models of continual branching have appeared in the literature. Our model
is most tighly connected to the Dawson–Watanabe superprocesses, and we comment
on this in the end of this section.

Let us study the structure of the monotone flow �. The difference �.x2; t0; t1/ �
�.x1; t0; t1/ describes the mass of progeny generated by particles located between
x1 and x2 at time t0. It can happen that at some point this subpopulation becomes
extinct, resulting in �.x2; t0; t1/ � �.x1; t0; t1/ D 0 for all times t1 starting with
the extinction time. Therefore, it is possible that monotone maps of the flow have
intervals of constancy. In fact, this happens with probability one.

Another interesting effect which is well-known in the theory of superprocesses
is that the monotone maps of the flow have discontinuities (shocks) with probability
one. It means that infinitesimal mass at some time t0 produces macroscopic progeny
at t1 > t0. This can be seen using the following criterion of continuity:

Lemma 12.1. If f W Œ0; z
 ! R is a bounded variation function then its quadratic
variation �.f / defined by

�.f / D lim
n!1

nX
iD0

.f .z.i C 1/=n/� f .zi=n//2

satisfies:

�.f / D
X

x2�.f /
.f .xC/ � f .x�//2;

where�.f / is the set of all discontinuity points of f . In particular, f is continuous
on Œ0; z
 iff �.f / D 0.

Let us compute the quadratic variation of �.�; t0; t1/ using tools of stochastic
calculus. For n 2 N we introduce (omitting dependence on n)

xk D k

n
� �.t0/; k D 0; : : : ; n;

and

�k.t1/ D �.xk; t0; t1/ � �.xk�1; t0; t1/; k D 1; : : : ; n:
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Itô’s formula (see, e.g., [168, Theorem 2.9, Chap. 5]) implies

d�2k .t1/ D 2�k.t1/ d�k.t1/C �k.t1/ dt1

D 2�2
k
.t1/

�.t1/
dt1 C 2�k.t1/W.Œ�.xk�1; t0; t1/; �.xk; t0; t1/
 � dt1/C �k.t1/ dt1:

Let
�n.t1/ D �21 .t1/C : : :C �2n.t1/:

Then �n.t0/ D .�.t0//
2=n, and

�n.t1/ D .�.t0//
2

n
C 2

Z t1

t0

�n.t/

�.t/
dt

C2
nX

kD1

Z t1

t0

�k.t/W.Œ�.xk�1; t0; t/; �.xk; t0; t/
 � dt/C
Z t1

t0

�.t/ dt:

Let us define �.t/ D limn!1�n.t/ and � D inf f t > t0 W �.t/ > 0 g. If � > t0,
then taking the limit as n ! 1 in both sides of the equation above at t1 D �, we see
that all terms converge to zero except for

R �
t0
�.t/ dt . To obtain the convergence to

zero for the martingale stochastic integral term, it is sufficient to see that its quadratic
variation in time converges to zero as n ! 1. Recall that the quadratic variation
of a stochastic process .�t /t�0 is another process denoted by .Œ�
t /t�0 such that for
each t > 0,

mX
iD1

�
�

�
i

m
t

�
� �

�
i � 1
m

t

��2
P! Œ�
t ; m ! 1:

For the martingale term above, the quadratic variation converges to 0 as n ! 1
since

"
nX

kD1

Z �

t0

�k.t/W.Œ�.xk�1; t0; t/; �.xk; t0; t/
 � dt/
#

�

D
Z �

t0

nX
kD1

�3k .t/ dt:

Since
R �
t0
�.t/ dt is a strictly positive random variable that does not depend on n,

we obtain a contradiction which shows that � D t0, so that �.t/ > 0 for any t > t0,
and the proof of a.s.-existence of shocks in monotone maps of the flow is finished.

These effects of extinction of subpopulations and creation of positive mass by
infinitesimal elements lead to an interesting geometric picture. The area in space-
time below the profile process �

f .t; x/ 2 R
2C W 0 � x � �.t/ g
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Fig. 12.4 Stochastic foliation constructed for 600 generations of a tree

is foliated by diffusion trajectories �.x; t0; t1/. However, this stochastic foliation
is very irregular. A most regular foliation would be represented by introducing
space-time coordinates so that level sets for the space coordinate map coincide
with the diffusion trajectories. This is exactly the situation with stochastic flows of
diffeomorphisms generated by stochastic Itô or Stratonovich equations, see [316].
However, our monotone flow generated by an SPDE is very far from being a flow
of diffeomorphisms. The creation of positive mass from infinitesimal elements is
followed by extinction that results in blobs that make it impossible to introduce a
reasonable global coordinate system in the stochastic foliation.

Figure 12.4 shows a realization of a pre-limit monotone flow for a large random
tree. Every tenth generation is split into about ten subpopulations, their progenies
are tracked and shown on the figure.

There is an important connection of our results to the theory of superprocesses.
Superprocesses are measure-valued stochastic processes describing the evolution
of populations of branching and migrating particles. The limiting SPDE that we
have constructed is similar to the genealogy in the Dawson–Watanabe superprocess
with no motion conditioned on nonextinction, see [169,170]. Our approach is more
geometric than the superprocess point of view. For the superprocess corresponding
to our situation, the continual mass momentarily organizes itself into a finite random
number of atoms of positive mass (corresponding to discontinuities of the monotone
maps in our approach). The mass of these atoms evolves in time analogously to
(12.28), but our approach helps to understand what happens inside the atoms by
unfolding the details of the genealogy. We emphasize the ordering and the geometry
of the stochastic foliation, the structures ignored in the superprocess approach. So,
the dynamics we have constructed is richer than in the corresponding superprocess.

Combining all the results of this chapter we conclude that a typical embedding
of a large ordered rooted tree in the plane if rescaled appropriately looks like a
stochastic foliation described by SPDE (12.29). It would be interesting to obtain
rigorously a direct convergence result that would not involve the intermediate
infinite discrete tree. However, currently this kind of result is not available.
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93. Bulinski, A.: Central limit theorem for positively associated stationary random fields. Vestnik

St. Petersburg University: Mathematics 44, 89–96 (2011)
94. Bulinski, A., Shashkin, A.: Rates in the central limit theorem for dependent multiindexed

random vectors. J. Math. Sci. 122, 3343–3358 (2004)
95. Bulinski, A., Shashkin, A.: Strong invariance principle for dependent random fields. In:

Dynamics & Stochastics. IMS Lecture Notes Monograph Series, vol. 48, pp. 128–143.
Institute of Mathematical Statistics, Beachwood (2006)

96. Bulinski, A., Shashkin, A.: Limit Theorems for Associated Random Fields and Related
Systems. World Scientific, Singapore (2007)

97. Bulinski, A., Spodarev, E., Timmermann, F.: Central limit theorems for the excursion sets
volumes of weakly dependent random fields. Bernoulli 18, 100–118 (2012)

98. Bulinski, A., Suquet, C.: Normal approximation for quasi-associated random fields. Stat.
Probab. Lett. 54, 215–226 (2001)

99. Bulinski, A.V.: Limit Theorems under Weak Dependence Conditions. MSU. Moscow (1990)
(in Russian)

100. Bulinski, A.V., Keane, M.S.: Invariance principle for associated random fields. J. Math. Sci.
81, 2905–2911 (1996)

101. Bulinski, A.V., Kryzhanovskaya, N.: Convergence rate in CLT for vector-valued random fields
with self-normalization. Probab. Math. Stat. 26, 261–281 (2006)



References 425

102. Bulinski, A.V., Shiryaev, A.N.: Theory of Stochastic Processes. FIZMATLIT, Moscow (2005)
(in Russian)

103. Bürgisser, P., Cucker, F., Lotz, M.: Coverage processes on spheres and condition numbers for
linear programming. Ann. Probab. 38, 570–604 (2010)

104. Burton, R., Waymire, E.: Scaling limits for associated random measures. Ann. Probab. 13,
1267–1278 (1985)

105. Burton, R.M., Dabrowski, A.R., Dehling, H.: An invariance principle for weakly associated
random vectors. Stoch. Process. Appl. 23, 301–306 (1986)

106. Calka, P.: Mosaı̈ques Poissoniennes de l’espace Euclidian. Une extension d’un résultat de
R. E. Miles. C. R. Math. Acad. Sci. Paris 332, 557–562 (2001)

107. Calka, P.: The distributions of the smallest disks containing the Poisson-Voronoi typical cell
and the Crofton cell in the plane. Adv. Appl. Probab. 34, 702–717 (2002)

108. Calka, P.: Tessellations. In: Kendall, W.S., Molchanov, I. (eds.) New Perspectives in Stochas-
tic Geometry. Oxford Univerxity Press, London (2010)

109. Calka, P., Schreiber, T.: Limit theorems for the typical Poisson-Voronoi cell and the Crofton
cell with a large inradius. Ann. Probab. 33, 1625–1642 (2005)

110. Calka, P., Schreiber, T.: Large deviation probabilities for the number of vertices of random
polytopes in the ball. Adv. Appl. Probab. 38, 47–58 (2006)

111. Calka, P., Schreiber, T., Yukich, J.E.: Brownian limits, local limits and variance asymptotics
for convex hulls in the ball. Ann. Probab. (2012) (to appear)

112. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. (N.S.) 46, 255–308 (2009)
113. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes

Mathematics, vol. 580. Springer, Berlin (1977)
114. Chambers, J.M., Mallows, C., Stuck, B.W.: A method for simulating stable random variables.

J. Am. Stat. Assoc. 71, 340–344 (1976)
115. Chan, G., Wood, A.T.A.: An algorithm for simulating stationary Gaussian random fields.

J. R. Stat. Soc. Ser. C 46, 171–181 (1997)
116. Chatterjee, S.: A new method of normal approximation. Ann. Probab. 36, 1584–1610 (2008)
117. Chayes, L., Lei, H.K.: Random cluster models on the triangular lattice. J. Stat. Phys. 122,

647–670 (2006)
118. Chazal, F., Guibas, L., Oudot, S., Skraba, P.: Analysis of scalar fields over point cloud data,

Preprint (2007)
119. Chazal, F., Oudot, S.: Towards persistence-based reconstruction in euclidean spaces. ACM

Symp. Comput. Geom. 232 (2008)
120. Chen, L., Shao, Q.M.: Normal approximation under local dependence. Ann. Probab. 32,

1985–2028 (2004)
121. Chen, T., Huang, T.S.: Region based hidden Markov random field model for brain MR image

segmentation. World Academy of Sciences. Eng. Technol. 4, 233–236 (2005)
122. Chilès, J.P., Delfiner, P.: Geostatistics: Modeling Spatial Uncertainty. Wiley, New York (1999)
123. Chow, Y.S.: Delayed sums and Borel summability of independent, identically distributed

random variables. Bull. Inst. Math. Acad. Sinica 1, 207–220 (1973)
124. Chow, Y.S., Lai, T.L.: Some one-sided theorems on the tail distribution of sample sums with

applications to the last time and largest excess of boundary crossings. Trans. Am. Math. Soc.
208, 51–72 (1975)

125. Chow, Y.S., Teicher, H.: Probability Theory: Independence, Interchangeability, Martingales.
Springer Texts in Statistics. Springer, New York (2003)

126. Christofidis, T.C., Vaggelatou, E.: A connection between supermodular ordering and posi-
tive/negative association. J. Multivariate Anal. 88, 138–151 (2004)

127. Clyde, M., Strauss, D.: Logistic regression for spatial pair-potential models. In: Possolo, A.
(ed.) Spatial Statistics and Imaging. IMS Lecture Notes Monograph Series, vol. 20, chap. II,
pp. 14–30. Institute of Mathematical Statistics, Hayward, California (1991)

128. Cohen, S., Lacaux, C., Ledoux, M.: A general framework for simulation of fractional fields.
Stoch. Proc. Appl. 118, 1489–1517 (2008)

129. Cont, R., Tankov, P.: Financial Modeling with Jump Processes. Chapman & Hall, Boca Raton
(2004)



426 References

130. Costa, J., Hero III, A.: Geodesic entropic graphs for dimension and entropy estimation in
manifold learning. IEEE Trans. Signal Process. 58, 2210–2221 (2004)

131. Costa, J., Hero III, A.: Determining intrinsic dimension and entropy of high-dimensional
shape spaces. In: Krim, H., Yezzi, A. (eds.) Statistics and Analysis of Shapes. Birkhäuser,
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336. Loève, M.: Probability Theory. Van Nostrand Co. Inc., Princeton (1960)
337. Ludwig, M., Reitzner, M.: A classification of sl.n/ invariant values. Ann. Math. 172, 1219–

1267 (2010)
338. Ma, F., Wei, M.S., Mills, W.H.: Correlation structuring and the statistical analysis of steady–

state groundwater flow. SIAM J. Sci. Stat. Comput. 8, 848–867 (1987)
339. Maier, R., Mayer, J., Schmidt, V.: Distributional properties of the typical cell of stationary

iterated tessellations. Math. Meth. Oper. Res. 59, 287–302 (2004)
340. Maier, R., Schmidt, V.: Stationary iterated tessellations. Adv. Appl. Probab. 35, 337–353

(2003)
341. Malyshev, V.A., Minlos, R.A.: Gibbs Random Fields. Kluwer, Dordrecht (1991)
342. Mandelbrot, B.B., Van Ness, J.: Fractional Brownian motion, fractional noises and applica-

tions. SIAM Rev. 10, 422–437 (1968)
343. Matern, B.: Spatial Variation, 2nd edn. Springer, Berlin (1986)
344. Mateu, J., Porcu, E., Gregori, P.: Recent advances to model anisotropic space-time data. Stat.

Meth. Appl. 17, 209–223 (2008)
345. Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975)
346. Matthes, K., Kerstan, J., Mecke, J.: Infinitely Divisible Point Processes. Wiley, Chichester

(1978)
347. Mayer, M., Molchanov, I.: Limit theorems for the diameter of a random sample in the unit

ball. Extremes 10, 129–150 (2007)
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Unterräume im n-dimensionalen Raum. Abf. Math. Sem. Univ. Hamburg 11, 249–310 (1936)

405. Petrov, V.V.: Limit Theorems of Probability Theory. Clarendon Press, Oxford (1995)
406. Pfanzagl, J.: On the measurability and consistency of minimum contrast estimates. Metrika

14, 249–276 (1969)
407. Pitt, L.D.: Positively correlated normal variables are associated. Ann. Probab. 10, 496–499

(1982)
408. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C. The

Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1997)
409. Preston, C.J.: Gibbs States on Countable Sets. Cambridge University Press, London (1974)
410. Quintanilla, J., Torquato, S.: Local volume fluctuations in random media. J. Chem. Phys. 106,

2741–2751 (1997)
411. Rachev, S.T., Mittnik, S.: Stable Paretian Models in Finance. Wiley, New York (2000)
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additivity, 24
affine surface area, 209
˛-mixing, 145
Arrival time, 50
associated zonoid, 225
asymptotic covariance matrix, 325

covariance-based estimator, 326
local averaging estimator, 326
subwindow estimator, 327

Aumann expectation, 14
avoidance functional, 10

bandwidth, 141
Bertrand’s paradox, 3
ˇ-mixing, 145
binomial process, 64
birth-and-death process, 93
birth measure, 95
bisector, 152
Blaschke body, 228
Boltzmann-Gibbs distribution, 402
Boolean model, 39, 131
Borel 	 -algebra, 278
Borel space, 282
Box-Muller device, 79
branching distribution, 406
branching number, 401
Brillinger-mixing, 137
Buffon problem, 2

capacity functional, 10
cell, 152

initial, 164
typical, 154

cell associated with x, 185

characteristic triplet, 316
Chebyshev inequality, 341
child, 401
Choquet theorem, 11
circulant embedding, 329
circumscribed radius, 196
clique, 296
clique counts, 274
cluster point process, 131
complete spatial randomness, 115, 135
conditional density, 301
conditional dependence structure, 303
conditional independence, 301
conditional intensity, 68
configuration, 293
consistency conditions, 281
contact distribution function, 138
continuity set, 177
control measure, 316
convex

averaging sequence, 133
hull, 7, 271
ring, 290

convex order, 199
convolution, 312
co-radius, 236
correlation function, 305
counting measure

locally finite, 116
counting process, 50
covariance function, 304
Cox-Grimmett coefficient, 348
Cox process, 59, 132, 159
Crofton cell, 186
cumulant density, 126
cumulants, 306
cylindric 	 -algebra, 279
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death probability, 95
decoupled version, 361
dependence, 280
design-based approach, 35
determinant, generalized, 33
diffusion process, 409
direct connection length

typical, 171
directional distribution, 5
direction distribution, 225
disector, 43
distribution, 116, 280
˛-stable, 289
centered, 289
Palm, 160, 168
symmetric, 289

downward FKG-property, 347
driving measure, 160

edge
typical, 155

edge star, 154
typical, 154

Effros measurable, 13
Efron’s identity, 210
elementary cylinder, 279
energy, 293

free, 294
energy minimizer, 401
entropy, 293
equilibrium distribution, 93
Euclidean distance

typical, 171
Euler-Poincaré characteristic, 5, 23
exact simulation method, 329
excursion set, 375
exponential space, 65

factorial cumulant measure, 125
factorial moment measure, 123
factorization condition, 301
finite dependence range, 339
finite-dimensional distribution, 117, 281
finite Gibbs process, 71
finite susceptibility, 349, 353
Fisher information, 100
FKG lattice inequality, 347
flat

FUR, 43
IUR, 28
VUR, 45

fractional Brownian field, 308
fractional Brownian motion, 308
function

concentration, 358
infinitely divisible, 315
integrable with respect to the Lévy basis �,

318
slowly varying, 353
superadditive, 364
supermodular, 360

functional
completely alternating, 11
Euclidean, 245
geometrically subadditive, 244
homogeneous of order p, 246
smooth of order p, 247
subadditive, 244
subadditive Euclidean, 246
superadditive, 245
superadditive Euclidean, 246
superadditive without any error term, 245
translation-invariant, 246
upper semicontinuous, 11

fundamental frequency, 194
fundamental stereological formulae, 29

Galton-Watson process, 406
Gaussian complex-valued random field, 284
Gaussian white noise, 283

measure, 288
generalized Cauchy covariance, 284
generalized nucleus, 236
Georgii-Nguyen-Zessin formula, 69
germ-grain model, 39, 131, 278
Geyer saturation process, 75
Gibbs measure, 293
Gibbs state, 293
Gibbs variational principle, 294
global Markov property, 303
grand canonical ensemble, 135
graph, 291

complete, 296
Grassmannian, 26
�S -increasing, 344
greyscale images, 283

Haar measure, 22
Hamiltonian, 293
hard-core process, 68, 98
Hausdorff distance, 13, 14, 413
height, 400
homogeneous, 23
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homogeneous stabilization, 253
hyperplane process, 225

inclusion-exclusion formula, 75
inclusion-exclusion principle, 28
independently scattered, 288, 316
independent random elements, 280
inradius, 192
integration, 313
intensity, 123, 223
intensity measure, 119
intersection process, 233
interval count, 50
intrinsic dimension of data sets, 272
intrinsic volume, 23, 37, 207
invariant

right, 22
under rigid motions, 23

Ising model, 296
isomorphic, 346
isotropy

in the strict sense, 307
in the wide sense, 307

J -function, 138
join, 346

Kendall’s conjecture, 228
kernel, 286

bisquare, 286
Epanechnikov, 286
Gaussian, 286

kernel approach, 312
kernel function, 141
K-function, 134

empirical, 135
multiparameter, 135

kth-order correlation function, 126
kth-order product density, 126
kth-order truncated correlation function, 126
k-TSP functional, 243

labeled graph, 302
large deviation principle, 405
large deviations rate function, 405
large-domain statistics, 115
lattice, 346

distributive, 346
law, 280
law of iterated logarithm, 386, 388

law of single logarithm, 386
law of single logarithm for random fields, 390
Lebesgue point, 256
length intensity, 155
Lévy basis, 315
Lévy measure, 315, 316
Lévy noise

˛-stable, 319
Lévy process, 315
Lévy representation, 315
L-function, 134
likelihood, 100
linear combination, 312
Lipschitz function, 348
locally finite simple point patterns, 278
locally uniform metric, 416
local Markov property, 303
local self-similarity, 308
local stereology, 48
location-dependent marking, 119
long range dependence, 339

mark, 116
mark correlation function, 127
mark distribution, 123
marked point process

simple, 119
marked Poisson process

isotropic, 122
motion-invariant, 122
stationary, 122

Markov chain, 92
in detailed balance, 93
time-homogeneous, 93

mark space, 116
Matérn cluster process, 61
maximum pseudolikelihood estimate (MPLE),

110
m-dependence, 142, 339
mean energy, 294
mean increment of order k 2 N, 305
mean value function, 304
measurable mapping, 277
measurable space, 277
meet, 346
Metropolis-Hastings algorithm, 95
minimal matching, 242
minimal semi-matching, 243
minimum spanning tree, 242
Minkowski sum, 16
minus sampling, 136
mixed moment, 304
mixing coefficient, 145, 339
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mixing rate, 147
Möbius formula, 294
model-based approach, 35
modified Thomas process, 61
monotone flow, 414
monotonicity, 24
moving average, 287
m.U /-dependence, 339
multiplication, 312

nearest-neighbour distance function, 138
nearest neighbours graph, 242
neighbour, 291
Neveu’s exchange formula, 169
Neyman-Scott process, 61, 132
node, 291
normal boundary point, 208
nucleus, 152

operator scaling random field, 307
out-degree, 401

pair correlation function, 138, 140
pairwise interaction, 73
pairwise Markov property, 303
Palm mark distribution, 124
parent, 401
partial order

measurable, 345
particle process, 131
partition function, 293
path, 303
periodogram, 325
point process, 51, 278

of cell nuclei, 154
of edge midpoints, 155
finite, 64
marked, 116
simple, 52
of vertices, 154

pointwise limit, 312
Poisson point process, 54

homogeneous, 53
marked, 119

Poisson process, 87
ergodic, 139
interrupted, 132
mixing, 139

polar hyperplane, 184
positive semi-definite, 305
potential, 294

nearest neighbour, 296

potential energy, 71
potential of order k, 71
precision matrix, 302
probability density, 66
probability measure

associated, 341, 344
positively correlated, 344
strictly positive, 296

profile, 414
pseudolikelihood, 110

radial function, 220
radius

of localization, 255
of stabilization, 255

random closed set, 8, 119, 155, 278
union-infinitely divisible, 19
union-stable, 19

random cluster measure, 288
random counting measure, 278
random element

associated, 344
symmetric, 282

random field, 279, 338
.BL; �/-dependent, 349
Gaussian, 283
Gaussian Markov, 301
lognormal, 284
Markov, 291
m-dependent, 142
quasi-associated, 348
shot-noise, 285

random function, 278
˛-stable, 289, 320
centered, 307
�2, 284
Lévy process, 320
Lp-continuous, 283
Lp-separable, 283
symmetric, 282

random line, 3
random marked point process, 115
random measure, 160

stationary, 160
random monotone flow, 416
random polyhedral set, 219
random polytope, 206, 207
random process, 279
random sequential adsorption, 269
random signed measure, 315
random variables, 278, 338

associated, 340
dependent, 338



Index 445

independent, 338
negatively associated, 342
positively associated, 342
symmetric ˛-stable, 317
uniformly integrable, 378
weakly associated, 342

random vector, 278
associated, 340
infinitely divisible, 314
stable, 288

rate measure, 99
realization, 277
reduced Campbell measure, 128
reduced kth-order factorial moment measure,

124
reduced Palm distribution, 127, 129
refined Campbell theorem, 127
regular closed, 13
regularly varying function, 387
reproducing kernel, 313
response function, 286
RNA secondary structure, 400
Robbins theorem, 9

salt-and-pepper noise, 283
scale mixtures, 313
scaling, 312
scaling factor, 163
scanning observation window, 290
score equation, 109
second moment intensity function, 58
section process, 233
segment system

typical, 171
selection, 12
selection expectation, 14
self-similar random field, 308
separable space-time model, 313
separation, 303
serving zone, 165, 170

typical, 170
set

polyconvex, 27, 36
regularly growing, 351
standard random, 36

shift, 186
shortest path length

typical, 172
short range dependence, 339
signed measure, 125
simulation algorithm, 164
site, 291
size functional, 230

Slivnyak theorem, 160
slowly varying function, 387
smooth boundary point, 208
space-time random field, 313
spatial birth-and-death process, 95
spectral density, 310
spectral function, 195
spectral measure, 289, 310
spectral method, 330
spectral representation, 314
spot variable, 316
stable law

scale, 289
shift, 289
skewness, 289

standard Wiener sheet, 149
stationarity

intrinsic of order two, 307
strict, 306

Steiner formula, 23, 207
Steiner minimal spanning tree, 243
Steiner point, 18
Steinhaus estimator, 45
stereology, 35
stochastic foliation, 420
stochastic process, 279
Strauss process, 72
strong law for increments of random fields, 389
strong law of large numbers, 385
structuring element, 135
substitution, 312
summary statistics, 115
supermodular order, 360
support function, 9
surface area, 23
symmetric measure, 282
systematic random sampling, 44

Takacs-Fiksel method, 109
temperature, 293
tessellation, 152, 223

convex, 184
Delaunay, 153, 158
hyperplane, 184
isotropic, 184
line, 153
Poisson

hyperplane, 183, 185
line, 159, 185

Poisson-Voronoi, 157, 183, 185
random, 154
random convex, 184



446 Index

stationary, 184
Voronoi, 152, 163, 185, 230, 254

total variation, 137
total variation measure, 137
trajectory, 279
trajectory representation, 416
traveling salesman problem, 242
trend, 305
typical cell, 183, 189, 223
typical face, 223
typical grain, 39, 131
typical k-face, 223

uniform Hausdorff distance, 414
uniformly random point, 80

vacancy probability, 52

vacuum configuration, 295
Valiron weights, 387
Van Hove sequence, 321
variogram, 305
vertex, 400, 401
Vietoris-Rips complex, 274
volume, 23
Voronoi flower, 193, 254

waiting time, 50
weak convergence, 118, 177
weighted typical face, 224
white noise, 283
wide sense stationary, 306
Wills functional, 290

zero cell, 186, 223
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