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To my son S¢ren 



Preface 

This book is an introduction to categorical data analysis intended as textbook for 
a one-semester course of approximately 50 teaching units. 

The book is a short version of my book The Analysis of Categorical Data Analysis. 
3.ed. 1994. 

It consists of 8 chapters covering, in addition to an introduction and a chapter on 
basic theory, six of the most important areas of categorical data analysis within the 
social sciences and related fields. 

The theory is illustrated by examples almost entirely of Danish origin. In particular 
I have drawn heavily on the Danish Welfare Study 1974, 1984. I am grateful to the 
project director Erik JI/lrgen Hansen for help and support over many years. Also the 
exercises are based on Danish data. As a help, solutions to theoretical problems 
and computer output for selected exercises are given in the Appendix. This should 
help readers without access to relevant statistical computer packages to work 
through the exercises. 

The book requires a basic knowledge of statistical theory, but I have tried to keep 
mathematics at as elementary a level as possible. 

References are not given in the main text, but collected in short sections called 
"Bibliographical notes" for the benefit of readers seeking additional reading. 

Professor Leroy Folks has read the manuscript, corrected many errors and checked 
my language. I am very grateful for this invaluable help. 

Any errors are of course entirely my responsibility. 

Copenhagen, October 1996. Erling B. Andersen 



Contents 

Chapter 1 
Introduction 

1.1 

Chapter 2 

The two-way table ............................. . 

Basic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6 
2.1 Introduction................................... 6 
2.2 Exponential families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
2.3 Statistical inference in an exponential family . . . . . . . . . . .. 8 
2.4 The binomial distribution ......................... 12 
2.5 The multinomial distribution ........... . . . . . . . . . . .. 13 
2.6 The Poisson distribution ................... . . . . . .. 20 
2.7 Composite hypotheses ........................... 21 
2.8 Applications to the multinomial distribution ............ 25 
2.9 Log-linear models .............................. 29 
2.10 The two-way contingency table . . . . . . . . . . . . . . . . . . . .. 31 
2.11 The numerical solution of the likelihood equations 

for the log-linear model . . . . . . . . . . . . . . . . . . . . . . . . .. 35 
2.12 Bibliographical notes ........................... 36 
2.13 Exercises.................................... 37 

Chapter 3 
Three-way contingency tables ................................ 42 

3.1 Log-linear models .............................. 42 
3.2 Log-linear hypotheses. . . . . . . . . . . . . . . . . . . . . . . . . . .. 46 
3.3 Estimation.................................... 49 
3.4 Testing hypotheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 59 
3.5 Interpretation of the log-linear parameters . . . . . . . . . . . . .. 65 
3.6 Choice of model ............................... 66 
3.7 Detection of model deviations . . . . . . . . . . . . . . . . . . . . .. 73 
3.8 Bibliographical notes ............................ 78 
3.9 Exercises .................................... 79 

Chapter 4 
Multi-dimensional contingency tables . . . . . . . . . . . . . . . . . . . . . . . . . .. 84 

4.1 The log-linear model ............................ 84 
4.2 Classification and interpretation of log-linear models ...... 87 
4.3 Choice of model ............................... 99 
4.4 Diagnostics ................................... 105 
4.5 Model search strategies . . . . . . . . . . . . . . . . . . . . . . . . . .. 109 
4.6 Bibliographical notes ............................ 114 
4.7 Exercises .................................... 114 



x CONTENTS 

Chapter 5 
Incomplete Tables ........................................ 127 

5.1 Random and structural zeros ....................... 127 
5.2 Counting the number of degrees of freedom ............ 129 
5.3 Validity of the X2-approximation .................... 133 
5.4 Exercises .................................... 138 

Chapter 6 
The Logit Model ......................................... 141 

6.1 The logit model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 141 
6.2 Hypothesis testing in the logit model ................. 144 
6.3 Logit models with higher order interactions . . . . . . . . . . . .. 151 
6.4 The logit model as a regression model ................ 154 
6.5 Bibliographical notes ............................ 155 
6.6 Exercises .................................... 156 

Chapter 7 
Logistic Regression Analysis ................................. 157 

7.1 The logistic regression model ...................... 157 
7.2 Estimation in the logistic regression model ............. 159 
7.3 Numerical solution of the likelihood equations .......... 162 
7.4 Checking the fit of the model ...................... 163 
7.5 Hypothesis testing .............................. 172 
7.6 Diagnostics ................................... 177 
7.7 Predictions ................................... 182 
7.8 Dummy variables ............................... 183 
7.9 Polytomous response variables ...................... 187 
7.10 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . .. 194 
7.11 Exercises .................................... 194 

Chapter 8 
Association Models ....................................... 204 

8.1 Introduction................................... 204 
8.2 Symmetry models .............................. 204 
8.3 Marginal homogeneity ........................... 209 
8.4 RC-association models ........................... 210 
8.5 Correspondence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 217 
8.6 Bibliographical notes ............................ 225 
8.5 Exercises .................................... 226 

Appendix 
Solutions and output to selected exercises. 235 

References ............................................. 260 

Subject Index ........................................... 264 



Chapter 1 

Introduction 

1.1 The two-way table 

A two-way table, or a two-way contingency table, gives the observed counts 
simultaneously for the categories of two categorical variables, as illustrated by the 
following example. 

EXAMPLE 1.1. In 1976 a random sample of approximately 5000 Danes was 
interviewed concerning a wide range of aspects of their private and working lives. 
We shall term this study: The Danish Welfare Study. From one of the reports from 
the Welfare Study (Hansen( 1984)), we bring one of the tables concerning how often 
the interviewed attended meetings outside working hours and their social group. 
We shall meet the classification in social groups, used by the Danish National 
Institute for Social Research, several times in this book. Here is a short description 
of the five groups: 

Social group I 

Social group 1I 

Social group III 

Social group IV 

Social group V 

Academics and main executives in 
the private and public sector. 

Second level executives 
in the private and public sector. 

Foremen, heads of sections etc. 
with less than 5 employees below 
them. 

White collar workers and blue 
collar workers with special training. 

Blue collar workers. 

Table 1.1 now shows the cross-classification of the two categorical variables: 
"Frequency of attending meetings outside working hours" and "Social group" for 
the 1779 persons in the sample with age between 40 and 59. 
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TABLE 1.1. 1779 persons in Denmark between the age of 40 and 59 cross­
classified according to the variables: Frequence of attending meetings and Social 
group. 

Social 
group 

II 

III 

IV 

V 

Total 

One or 
more 
times 

a week 

17 

25 

38 

22 

9 

111 

Frequence of attending meetings 

One or Approx. A few 
more once every times a 
times second year 

a month month 

27 13 24 

57 17 49 

91 41 217 

33 21 133 

21 17 87 

229 109 510 

Never Total 

25 106 

55 

213 

222 

305 

820 

203 

600 

431 

439 

1779 

Source: Data from the Danish Welfare Study: Hansen (1984), appendix Table 14. 

From elementary courses in statistics we know that the hypothesis of independence 
between two categorical variables, like those shown in Table 1.1, is tested by the 
Q-test statistic: 

(1.1) 

where 

In these expressions Xij is the observed count in cell ij (that is for the combination 
of category i for the row variable and category j for the column variable), mij is 
an estimate for the expected count in cell ij if the variables are independent, and 
n is the total number of counts in the table. 

In the test statistic (1.1) the point is to compare the observed counts with the 
expected counts under independence, and to do so by only looking at one 
summarizing number, namely the observed number of Q. If Q is large we have 
reasons to believe that the hypothesis of independence is not true. If Q is small or 
moderate in value, we would tend to conclude that there is in fact independence. 
But let us return to Example 1.1 to see why a comparison between Xij and II1jj is 
so important. 

EXAMPLE 1.1 (continued). Independence between variables "Frequence of 
attending meetings" and "Social group" obviously means that there is no difference 
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betrveen the frequency with which persons in a low social group and persons in a 
high social group attend meetings outside working hours. If this is so, then the 
percentages over column categories in each row should be the same. Whether this 
is the case is illustrated by Table 1.2, where these percentages are calculated. 

TABLE 1.2. Percentages rowwise for the data in Table 1.1. 

Frequence of attending meetings 

Social One or One or Approx. A few 
group more times more times once every times a 

a week a month second year 
month 

16.0 25.5 12.3 22.6 

II 12.3 28.1 8.4 24.1 

III 6.3 15.2 6.8 36.2 

IV 5.1 7.7 4.9 30.9 

V 2.1 4.8 3.9 19.8 

Total 6.2 12.9 6.1 28.7 

Never 

23.6 

27.1 

35.5 

51.5 

69.5 

46.1 

Total 

100.0 

100.0 

100.0 

100.0 

100.0 

100.0 

From these percentages is obvious that the independency hypothesis has to be 
rejected. Clearly the frequencies of attending meetings change with social group. 
Persons in a high social group are much more likely to attend meetings frequently 
than persons in a low social group. The observed value of Q is 262.7, which is a 
very high number. In our basic course in statistics, we learned to compare the 
observed value of Q with the percentiles of the X2-distribution with a number of 
degrees of freedom equal to the number of rows minus one times the number of 
columns minus one, here (5-1)(5-1) = 16. The 95%-percentile in a £-distribution 
with 16 degrees of freedom is 26.3, so the Q-value we have observed is very 
unlikely, should the independency hypothesis hold. 

When we perform a test based on the Q-test statistic, we are using a statistical 
model for the data. In case of Example 1.1 the essence of the test was to compare 
the observed counts xij with the expected counts 111jj' But the expected counts are 
just the common row totals for all rows, namely x.1 , ... x.5 divided by n and then 
multiplied by the row marginals xi. . Hence the expected counts are what we 
should expect in the rows, if the row percentages are equal. The failure of the 
independency hypothesis to describe the data, is thus equivalent to the fact, that an 
assumption of equal row percentages fails to fit the data in the table. A statistical 
model should, according to this line of reasoning, describe the distribution over 
column categories for each row and for the marginal at the bottom of the table, and 
compare these distributions. 
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The statistical distribution, which describes the distribution over a number of 
categories, given how many individuals are to be distributed, is (under certain 
important assumptions, which we leave out here) the multinomial distribution. It 
follows that the Q-test is a statistical test for comparing m multinomial dis­
tributions under the assumption that they are identical. In Example 1.1 we thus 
compare the multinomial distributions for the five rows of the table with the one 
for the column marginals. The multinomial distribution is for this - and other 
reasons - the central distribution for the models we shall study in this book. 

Actually in real life applications it is more the exception than the rule that a 
hypothesis of independence in a two-way table is accepted. Hence we need 
statistical methods to describe why the hypothesis fails to describe the observed 
count. Obviously any study of how it can be, that our hypothesis of independence, 
or equivalently of equal row percentages, does not describe the observed counts in 
the two-way table, must be based on a study of the differences Xij - fijj. 

It is rather common to see the square roots of the individual terms in the Q-test 
statistic, that is 

Xij - fijj 

rm:; 
as indicators of which cells in the two-way table contribute most to departures 
from independence. The problem with these indicators is that their relative 
expected magnitude under the hypothesis of independence varies with the number 
of rows and columns and with the values of the marginals. Hence we have no 
obvious "yardstick" for claiming when an indicator is large or small. 

Fortunately it is known how to standardize the differences xij - 111jj such that they 
approximately follow a standard normal distribution. The formula is as follows 

These standardized values are called residuals or, to emphasize that they are 
standardized, standardized residuals. 

EXAMPLE 1.1. (continued) Table 1.3 shows the indicators, where we have only 
divided with the square root of the expected counts, while Table 1.4 shows the 
standardized residuals. 
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TABLE 1.3. Differences between observed and expected counts, divided by the 
square root of the expected count for the data in Table 1.1. 

Social 
group 

II 

III 

IV 

V 

One or 
more times 

a week 

4.04 

3.47 

0.09 

-0.94 

-3.51 

Frequence of attending meetings 

One or Approx. once A few 
more times every second times a year 

a month month 

3.62 2.55 -1.16 

6.04 1.29 -1.21 

1.57 0.70 3.43 

-3.02 -1.05 0.85 

-4.72 -1.91 -3.46 

TABLE 1.4. Standardized residuals for the data in Table 1.1. 

Frequence of attending meetings 

Social One or One or Approx. once A few 
group: more times more times every second times a year 

a week a month month 

4.30 3.99 2.72 -1.41 

II 3.80 6.87 1.42 -1.52 

III 0.12 2.06 0.89 4.99 

IV -1.12 -3.71 -1.25 1.16 

V -4.18 -5.83 -2.27 -4.73 

Never 

-3.41 

-3.99 

-3.82 

1.66 

7.22 

Never 

-4.79 

-5.77 

-6.39 

2.59 

11.32 

From both tables we infer that the dependencies are such that the higher the 
social group, the more often people attend meetings outside working hours. Note 
that the numbers in Table 1.4 are markedly higher than in Table 1.3. For example 
cells 3.2, 4.5 and 5.3 show values numerically higher than the critical value 2, 
corresponding to the 97.5% percentile of the standard normal distribution, in Table 
1.4, but not in Table 1.3. Thus in a situation with a few important significant 
departures from independence, we are likely to identify themfrom the standardized 
residuals; but we may miss them from a table like Table 1.3. 

In subsequent chapters, we shall not only formulate models for contingency tables 
and develop tests for model check and for hypotheses regarding the parameters of 
the models, but also study methods for describing the nature of model departures 
and which parts of the data are the primary source for the model departures. 



Chapter 2 

Basic Theory 

2.1 Introduction 

Most of the models presented in this book belong to a class of models called 
exponential families. The statistical distributions, which we use most often, are the 
multinomial distribution and the Poisson distribution. Both these distributions 
in their basic form belong to the class of exponential families. 

This chapter is, therefore, devoted to a treatment of the basic theory for models 
within the class of exponential families, especially models based on the multi­
nomial distribution. 

It is assumed that the reader is familiar with basic concepts in statistical 
distribution theory, estimation theory and the theory for testing statistical 
hypotheses. If this is not the case, it is advisable to consult an elementary text book 
in mathematical or theoretical statistics, for example Andersen, Jensen and 
Kousgard (1987). 

2.2 Exponential families 

Let Xl,,,,,Xn be n independent, identically distributed random variables with 
common distribution, expressed through the point probability 

P(X=x) = f(xl6) , (2.1) 

which depends on the vector 6 = (6l, ... ,6n) of real valued parameters. 

Note: Vectors are in general not written with bold face type setting. With this notation, vectors can be 
recognized by not having subscripts, while individual elements have subscripts as in 9 = (91, ... ,9n). 

The simultaneous distribution of (Xl' ... ,~) is then expressed as the joint point 
probability 
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n 

f(x 1,···,xn IS) = II f(xi IS ) . 
i=l 

If the point probability (2.1) has the form 

m 

7 

(2.2) 

In f(xIS) = L gjCx)<I>jCS) + hex) - K(S) , (2.3) 
j=l 

where gj and h are real valued functions of x, and <l>j and K are real valued 
functions of the vector S, f(xIS) is said to belong to an exponential family. The 
important part of expression (2.3) is that in logarithmic form the value of x and the 
value of the parameter vector S only appear together as products gjCx)<I>jCS) of 
certain real valued functions of x and S. 

Because of the constraint Lx f(xIS) = 1, the function K(S) is implicitly given as a 
function of all the other functions through the relationship 

(2.4) 

The smallest number m for which In f(xIS) can be written in the form (2.3) is 
called the dimension of the exponential family. 

If we introduce the sufficient statistics 

n 

tj = L gj (xi) , j = 1, ... ,m 
i=l 

and the canonical parameters 

Equations (2.2) and (2.3) can be written as 

Inf(x1,···,xn IS) = Inf(x1,···,xn l't) 

m n (2.5) 
= E tj'tj + E h(xi) - nK('t) , 

j=l i=l 

where 't = ('t1, ... ,'tm). It is a consequence of (2.4), which can be written 

K(S) = In { ~ exp ( :y g/x)'tj + hex) )} = K('t) , 

that K(8) is a function of't. In order not to unnecessarily complicate notation, we 
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write K('t), although K is strictly speaking not the same function of't as K(8) is 
of 9. 

It is important, that the log-likelihood function (2.5) for an exponential family only 
depends on the observations through the values of the sufficient statistics tj , and 
on the parameters through the values of the canonical parameters 'tj. It follows that 
for an exponential family one can only estimate parameters and test hypotheses for 
the canonical parameters, or set of parameters which are uniquely determined by 
the canonical parameters. It also follows that all information available in the data 
is summarized in the values of the sufficient statistics. Hence we only need the 
observed values of the sufficient statistics for statistical analyses. This means that 
we can concentrate on studying the canonical parameters, and that we can replace 
the log-likelihood function (2.5) with 

lnf(tl't) = L tj'tj + hl(t)- nK('t) , (2.6) 
j 

since 

f(t l't) L f(xl,···,xn l't) . 
x! ..... xn It 

2.3 Statistical inference in an exponential family 

Since (2.6) is the logarithm of the joint point probability of the observed values of 
the sufficient statistics and all the information available concerning the canonical 
parameters is contained in the sufficient statistics, (2.6) is the log-likelihood 
function pertaining to statistical inference concerning the canonical parameters. We 
can thus write 

InL('t) = ~ tj'tj + hI (t) - nK('t) . 
J 

In order to maximize the log-likelihood function and thus obtain the maximum 
likelihood estimates (ML-estimates), we differentiate the log-likelihood function 
partially with respect to 'tj. The resulting likelihood equations become 
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olnL('t) = t. -n oK('t) = 0, j =l, ... ,m 
o't. J o't. 

J J 

or the m equations 
tJ. = noK('t) , j =1, ... ,m . 

o'tj 
(2.7) 

One of the advantages of working with distributions which belong to the 
exponential family is the simple form of the likelihood equations (2.7). A closer 
look at the properties of the function K make the likelihood equations even more 
attractive. From (2.3) and the condition ~x f(xlS) = 1 it follows that 

or 

exp{K('t)} = ~ eXP{-r gj(x)'tj +h(X)} . 

Hence by differentiation with respect to 'tj we get 

exp{K('t)} . o~(~) = E gj(x)exp{~ g/x)'tj +h(X)} . 
~ x J 

If divided by exp{K('t)} the right hand side in this equation has the form 

E gj(x)f(xl't) = E[gj(X)]. 
x 

Hence 

oK('t) = E[g.(X)l . 
o't. J 

J 

(2.8) 

Summation then yields 

E[Tjl = ~ E[ gj(X j )] = n_o~~'t_(~-) , 
I J 

(2.9) 

where Tj is the random variable corresponding to the sufficient statistic tj. 

If we compare (2.8) and(2.9) with (2.7) it becomes clear that the likelihood 
equations can also be written as 

~ = E[Tjl , j = 1, ... ,m , (2.10) 

where, of course, the mean values E[Tjl depend on the parameters. 

Since for regular functions the partial derivatives of a function must be 0 at the 
point of maximum, Equations (2.7) and (2.10) show that it is a necessary 
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condition for tI, ... ;tn to be the ML-estimates that they satisfy Equations (2.10). 
When we are working with exponential families, it can also be established under 
which conditions it is a sufficient condition for obtaining the maximum, that the 
partial derivatives are 0, that is whether Equations (2.7) and (2.10) has a unique 
set of solutions, which are then the ML-estimates. 

In order to formulate this important result, we need two new basic concepts: The 
domain and the support. 

DEFINITION: The domain D for an exponential family is a set within the range 
of variation for the 't' s, for which the condition 

is satisfied. 

L exp[t't' +hl (t)] < 00 , 

t 

Since it follows from (2.6) that f(tl't) can be written 

exp[ t't' + hI (t)] 

L exp[t't' +hl(t)] 
t 

(2.11) 

the domain consists of all those 't-vectors for which the likelihood function exists. 

DEFINITION: The support is the set To of all t-vectorsfor whichf(tl't} is positive. 

From the form (2.11) of f it is clear that the support does not depend on 'to 

After introducing the domain and the support we have the important result. 

THEOREM 2.1. If the domain is an open set in Rm there exists a unique solution 
to the likelihood equations 

tj = E[Tj]' j = I, ... ,m. 

if t is an interior point in the smallest convex set which includes all points of the 
support. This solution f is then the ML-estimate for 'to 

In case the standard errors of the ML-estimates are also required, the following 
result can be used for suitable large sample sizes. 
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THEOREM 2.2. If't is in the domain, t will converge in probability to 't and the 
asymptotic distribution of t satisfies 

fn"lt -'t) - NJO,M-1) , (2.12) 

where Nm is the m-dimensional normal distribution, 0 a vector of zero's and M 
a quadratic matrix with elements 

~q 

In large samples we have accordingly 
E[tt] = 't (2.13) 

and when var[tt] is the variance-covariance matrix 

var[tt] = 2. ·M-1 . (2.14) 
n 

Confidence intervals for the canonical parameters with confidence level ex can then 
be obtained as 

where mll is the j'th diagonal element in M-1, and ~j is mij with the 't's replaced 
by their ML-estimates. 

In order to test hypotheses of the form 

or 

the following result can be used, with the abbreviated notation Q - x2(m), when 
Q is X2 -distributed with m degrees of freedom. 

THEOREM 2.3. If 'to is in the domain then the test statistic 

Z = _2In(L('tO)) 
L(tt) 

(2.15) 

is under Ho asymptotically X2-distributed with m degrees of freedom, that is if 
Q - x2(m), then 

P(Z:5:z) ~ P(Q:5:z) , 

when n ~ 00. 
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Theorem 2.3 is used to test the hypothesis Ho as follows. The level of significance 
p for testing Ho based on the observed value z of the test statistic Z can be 
approximated by 

p = P(Q ~ z) , 

where Q - x2(m). In order to test Ho at a given level a, we reject Ro, if 

(2.16) 

2.4 The binomial distribution 

Let Xl , ... ,~ be n independent binary random variables with possible values 0 and 
1 and probability 1t of observing the value 1. The common point probability for the 
X's can then be written 

f(xl1t) = 1tx(1_1t)I-x, X = 1,0 . 

The logarithm of f(xl1t) takes the form 

Inf(xl1t) = xln1t + (1 -x)ln( 1 -1t) = xln(~) + In(1 -1t) . 
1 -1t 

f(xl1t) thus belongs to an exponential family with m=l, g(x)=x and canonical 
parameter 

't = In(~). 1 -1t 

For n independent, identically distributed random variables with this distribution 
the sufficient statistic t is equal to the sum of the x's, or t = LXi' But for n 
independent binary random variables with the same probability of x=l, the sum t 
is binomially distributed with number parameter n and probability parameter n. It 
follows that the binomial distribution for varying 1t belongs to the class of 
exponential families. 

Since the theory for the binomial distribution is well known, we can check the 
general results in this very simple situation. The likelihood equation is 

t = E[T] = n1t (2.17) 

so that the ML-estimate for 1t is tin. In order to find the ML-estimate for the 
canonical parameter 't, we note that 

1t = exp(t) 

1 +exp('t) 

such that the ML-estimate for t is obtained by solving 
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= n exp('t) 
1 +exp('t) 

or 

t = In(_t ). 
n-t 

It is important to note, that while the ML-estimate for 1t can be calculated for all 
values of t this is not the case for 't where t=O and t=n does not yield any 
estimates. The reason for this can be seen by looking at the domain and the 
support. The domain is the real line, since the point probability exists for all 
values of the canonical parameter 'to Note, however, that the extreme values 0 and 
1 for 1t corresponds to 't being +00 and -00. This explains why there are ML­
estimates for 1t for t=O and 1, but not for 'to The same can be seen by looking at 
the support, which is the set of integers (O,I, ... ,n). According to Theorem 2.1 there 
is a unique solution to the likelihood equation if t is any point in the interior of the 
smallest interval containing the support, which is the interval [0,1]. But 0 and 1 are 
not interior points in this interval. Thus Theorem 2.1 does not say what happens 
for t=O and t=n. There are good reasons for regarding t=O and t=1 as extreme 
cases, which must be handled carefully. For example, note that the variance of T 
is 0 for 1t = 0 or 1. Any evaluation of standard errors for observed values of t=O 
or I are, therefore, meaningless. 

2.5 The multinomial distribution 

Let Xl"",Xn be independent, identically distributed random variables, which can 
each attain the values 1,2, ... ,k with probabilities 

P(X=j) = 1tj , j = l, ... ,k . 

The simultaneous point probability of Xl , ... ,~ is then 

where 

It follows that 

t, tk 
f(xl, .. ·,xn 11t) = 1tl ···1tk ' 

tj = number of x's equal to j . 

Inf(xl,· .. ,xn l1t) = L t}n1tj' 
j 

A comparison with Equation (2.5) then shows that the common distribution of the 
X's belongs to the class of exponential families with sufficient statistics tl , ... ,tk 
and canonical parameters 'tj = In1tj' j=l, ... ,k .. 
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To derive the exponential family directly from the point probability of X is 
possible, but requires a somewhat clumsy notation, cf. exercise 2.4. 

The distribution of the vector (T 1 , ... ,T k) of random variables is a multinomial 
distribution with number parameter n and probability parameters 1t1, ... ,1tk' that is 

( 
n ) t\ tk f(t1,···,tkl7t) = t t 7t1 .... ·7tk 

I'" k 

The log-likelihood function is therefore 

InL(1t) = Inf(t1,···h/ 7t ) = In(tl.~.tk) +:t tjln1tj' (2.18) 

From this equation one would perhaps conclude that the dimension of the 
exponential family is k. But that is not the case! The binomial distribution is a 
special case of the multinomial distribution for k=2. According to Example 2.1 the 
canonical parameter in the binomial distribution is 't = In[1t/(1-1t»). That the 
canonical parameters in the multinomial distribution seem to be just the In7t/ s 
should thus warn us that we have overlooked something. The thing we have 
actually overlooked are the linear constraints 

k 

L tj = n (2.19) 
j =1 

and 

(2.20) 

The constraint (2.19) implies that the log-likelihood function (2.18) can be written 
as 

k-l k-I 
InL(1t) = const. + L t}n1tj + (n - L tj )ln1tk 

j=1 j=1 

k-I 
= const. + L tj (In 7tj -In 1tk) + n 'In 7tk ' 

j=1 

where the term const. is a constant, which does not depend on the parameters. The 
log-likelihood function thus has the form 

k-I 
InL('t) = const. + L tj'tj + n 'In1tk ' 

j =1 
(2.21) 

showing that the multinomial distribution with no other constraints on the 
probability parameters than (2.20), is an exponential family of dimension at most 
m=k-l. In this unconstrained case the log-likelihood function can not be further 
reduced, and the correct dimension of the exponential family is m=k-l. The 
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sufficient statistics are tj, j = 1, ... ,k - 1 and the canonical parameters 

With a short notation we shall often write 

if (T 1'"'' T k) has a multinomial distribution with number parameter n and 
probability parameters 1t1, ... ,1tk. 

In section 2.9 we shall discuss parametric multinomial distributions, where the 
canonical parameters 'tj are linear functions of a new set of parameters. In this case 
we call the model a log-linear multinomial model, or just a log-linear model. 
It follows from (2.21) that 

K(1t) = -ln1tk . 

K can also be expressed as a function af the canonical parameters, but we seldom 
need this form. 

According to (2.10), the likelihood equations are 

Since the marginal distribution of Tj is a binomial distribution, when the vector 
(T1, ... ,Tk) follows a multinomial distribution, the likelihood equations can also be 
written as 

with solutions 

tj = n1tj • j = 1 ..... k-l • 

t· 
ftj = J. . j = 1 ..... k-l 

n 
(2.22) 

It is an important and useful property of exponential families. that the likelihood 
equations often provide simple and direct estimates for parameters. which are not 
the canonical parameters but rather a reparametrization of the canonical parameters. 
In this connection a reparametrization means a set of parameters. which have a 
one-to-one relationship to the canonical parameters. Thus if ML-estimates for one 
set of parameters are obtained. the ML-estimates for the other set are obtained by 
using the one-to-one relationship between the parameters. The multinomial distribu­
tion is a simple - but typical - example of this property. If Equations (2.22) are 
satisfied for j = 1 ..... k-1. then the constraints L1tj = 1 and Ltj = n implies that (2.22) 
is also true for j=k. that is 

-. n 
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so that (2.22) can be replaced by 

t· 
ftj = -:!. , j =l, ... ,k . 

n 

The ML-estimates for the canonical parameters are thus 

tj = lnftrln~ = lntrlntk . 

BASIC THEORY 

(2.23) 

(2.24) 

As for the binomial distribution, where t = 0 and 1 are border line cases, tj = 0 for 
any j is a border line case for the multinomial distribution, where there are no ML­
estimates for the canonical parameters. Thus if tj = 0 for any j = 1, ... ,k-1 
(and tk~)' then ftj = 0, but'tj will be -00, which does not belong to the domain. 
Also tk = 0 will cause the 't's to be +00 or indetermined depending on the values 
of the other t's. 

From Theorem 2.1 it can also be deduced that cases where one or more t's are zero 
are border line cases. Consider, for example, the case k=3. Here the sufficient 
statistics are tl and ~. But since tl + ~ + t3 = n, tl and t2 satisfy the inequalities 

In the (t},~)-plane the convex extension of the support is accordingly the triangle 
shaded in Figure 2.1 

FIGURE 2.1. The convex extension of the support for the trinomial distribution. 

Theorem 2.1 states that the likelihood equations pertaining to the canonical 
parameters have a unique set of solutions except perhaps on the houndary of the 
convex hull of the support. This means, in the present case, that unique solutions 
are guaranteed except along the edges of the triangle in Figure 2.1. But these edges 
are the t2-axes with t} = 0, the t}-axes with t2 = 0 and the line t} + t2 = n, where, 
because of (2.19), t3 = O. For all points in the interior of the triangle all three t's 
are positive and ML-estimates for the canonical parameters exists. 

Consider now the hypothesis 
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HO: 1tj = 1tjO ' j = 1, ... ,k . (2.25) 

In terms of the canonical parameters this hypothesis is 

Ho: 'tj = In1tjO - In1tkO = 'tjO ' j = 1, ... ,k - 1 . (2.26) 

Since the log-likelihood function according to (2.21) is equal to 

InL('t) = In(t1.~tk) + ~ tj'tj + nln~ , 
)=1 

the Z-test statistic in Theorem 2.3 in this case take the form 

(
k-1 ) (k-1 ) 

Z = -2 ~ Tj'tjO +nln~o + 2 ~ Tj'tj +nlnftk . 
)=1 ]=1 

In this formula it is not necessary to express 1tk as a function of the 't's, since 
(2.26) together with (2.24) directly yields 

k~ k~ 

Z = -2L Tj(ln1tjO-In~o)- 2nln~o + 2 L Tj(lnTj-InTk)+2nln(Tk/n) 
j=l j=l 

or 

k k 

= 2L TjlnTr2L TjIn1tj0 -2nln(n) , 
j=l j=l 

k 

Z = 2 L Tj(lnTj -In (n1tjo )) . 
j=l 

(2.27) 

The test statistic for the hypothesis (2.25) of known probability parameters in the 
multinomial distribution thus has the form 

Z = 2 L observed (In(observed) - In(expected)) , 

We shall meet this form, which is characteristic for the test statistics, many times 
in this book. 

It follows from Theorem 2.3 that 

such that we reject Ho at approximate level n, if the observed value of Z satisfies 
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Some readers may object, that the detour around the canonical parameters, when 
formulating the hypothesis as (2.26) and testing it by means of (2.27), is 
unnecessary, since both the hypothesis and the resulting test statistic only depend 
on the sufficient statistics and the 7tjO's. But the formulation in terms of the 
canonical parameters helps us to keep in mind: 

(i) The hypothesis (2.25) only concerns k-l unconstrained parame­
ters, because one of the parameters, for example 7tk, is a function 
of the other 7t's. 

(ii) The ML-estimates for the canonical parameters does not exist if 
any tj is o. This corresponds to cases, where a term in the test 
statistic Z is 0, invalidating the approximation to the X2-dis­
tribution. Also cases where 7tjO is close to 0 can cause the 
approximation of Z to a X2-distribution to be dubious. 

EXAMPLE 2.1. Traffic accidents. 
Table 2.1 shows the distribution of traffic accidents involving pedestrians in 
Denmark in 1981 by days of the week. 

TABLE 2.1. Distribution of traffic accidents involving pedestrians in Denmark in 
1981 by days of the week. 

Weekday Mon- Tues- Wednes- Thurs- Fri- Satur- Sun- Total 
day day day day day day day 

Number of 
accidents 279 256 230 304 330 210 130 1739 

Source: Road traffic accidents. Publication 1982:8. Statistics Denmark. Table 5.3 

lfwe assume that the accidents happen independently of each other. we have 1739 
observations of accidents. which all can fall on any day of the week. Hence the 
observed vector (t/ •...• t7) of accidents on the seven days follows a multinomial 
distribution. We want to test the hypothesis that a randomly selected accident is 
equally likely to fall on any of the 7 days. This is also the hypothesis of an equal 
distribution of accidents over the seven days of a week. In terms of the parameters 
of the multinomial distribution. we have 7tj = 7tjO = 117 for all j=l •...• 7. if all 7 7t' S 

are equal. The expected numbers under the hypothesis are then 
1739 

n7tjO = -7- = 248.43 . 

With the values in Table 2.1. the observed value of(2.27) is easily computed to be 
Z = 115.83. In this case Z - X2(6). such that at level 0.05 we must reject the 
hypothesis if Z>X20.95(6)=12.6. Hence we reject the hypothesis of accidents 
happening equally likely on all seven days of the week. 
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EXAMPLE 2.2. Representativity. 
Table 2.2 shows the number of girls between the age of 7 and the age of 15, who 
were selected for interviews in connection with a study by the Danish National 
Institute of Social Research regarding school children's use of their time outside 
school hours. 

TABLE 2.2. The number of girls between the age of 7 and the age of 15, who 
were selected for interviews 

Age 7 8 9 10 11 12 13 14 15 Total 

Number 
interviewed 40 28 38 30 38 45 39 34 48 340 

Source: Children's leisure time. Report 95.2. The Danish National Institute of Social Research. 
Appendix Table 1. 

In the report on Children's leisure time the percentage of Danish girls on January 
1st 1993 was also shown. These percentages are shown asfrequencies in Table 2.3 
together with the expected numbers in the age categories if the sample of girls is 
representative for the Danish population of girls in the given age categories. The 
sample is representative if a girl is selected in the sample with a probability ltjO 
equal to the relative size of the female population in her age interval j. The 
expected numbers are then nltjO' j=I, ... , 7. 

TABLE 2.3. The frequency of girls between age 7 and age 15 in Denmark on 
January 1st 1993 and the expected numbers in a representative sample of size 340. 

Age 7 8 9 10 11 12 13 14 15 Total 

Frequency 
1/1 1993 .107 .. 103 .102 .105 .106 .114 .117 .123 .123 340 

Expected 
numbers 36.4 35.0 34.7 35.7 36.0 38.8 39.8 41.8 41.8 340.0 

With the values in Table 2.2 and Table 2.4 the observed value of (2.27) is z = 
6.64. In this case Z-X2(8), such that at level 0.05 we must reject the hypothesis if 
Z>X20.95(8) =15.5. Hence we accept the hypothesis and can conclude that the 
sample of girls is, in fact, representative of the population of 7 to 15 year old girls 
in Denmark. 
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2.6 The Poisson distribution 

The Poisson distribution also belongs to the class of exponential families. Let 
Xl , ... ,~ be n independent random variables with common Poisson point prob­
ability 

A.X -I.. f(xlA.) == _e . 
xl 

In logarithmic form, we get 
Inf(xlA.) == In(xl) +xlnA.-').. , 

showing that the sufficient statistic is t = l:Xj and the canonical parameter 't = InA.. 
It then follows from the general result, Theorem 2.1, that the likelihood equation 
for estimating ').. or 't is t = E[T]. Due to the addition rule for the Poisson 
distribution T is also Poisson distributed with parameter nA.. The ML-estimate for 

. A. is accordingly obtained by solving t = nA., or 

~==~==x. 
n 

The support for the Poisson distribution is the set of all non-negative integers. 
Hence the likelihood equation according to Theorem 2.1 has a guaranteed unique 
solution for all values of t in the open interval (0,+00). For the Poisson distribution 
the border line case is thus t=O, that is the case where all x's are O. In this case the 
canonical parameter 't has estimated value -00 and, even though the ML-estimate 
(with the value 0) for A. formally exists, var[T]=O for 1..=0, so we have to be careful 
here. 

There is an important connection between the Poisson distribution and the multinomial 
distribution, which is useful in some situations. Let X1' .... Xk• be independently Poisson 
distributed random variables with parameters 1..1' .... ~. The conditional distribution of 
X1,,,,,Xk given the value t of the sum T = :EXj is then a multinomial distribution with number 
parameter n=t and probability parameters 7tj = " / 1... ' where 1... is the sum :EI..] of the A'S. 
In formula form we have 

(Xl' ... 'Xn I T=n) - M (n; 1..1()..., ... ,~.) (2.28) 

The proof of (2.28) is straightforward and is left to the reader, ct. exercise 2.3. 

This connection between the Poisson distribution and the multinomial distribution allows us 
to treat many situations, where the "correct" model would seem to be a Poisson distribution, 
by the statistical methods developed in this book, which are In almost all cases based on 
the multinomial distribution or the binomial distribution. One typical example is Example 2.1. 
Many would argue that the "correct" model would be to assume that accidents follow a 
Poisson process. That is the probability that an accident happens in the time interval (t,t+dt) 
on a Monday is approximately 1..1dt for small values of dt. In this case 1..1 is the intenSity of 
accidents per time unit on Mondays. The number of accidents Xl on Mondays will then be 
Poisson distributed with mean value 1..1 = (365/7). But according to (2.28) we can treat the 
vector (x1""'x7) of observed accidents for all seven days of the week as multinomially 
distributed with parameters 7ti = " / A.. , j = 1, ... 7. 
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2.7 Composite hypotheses 

In many cases the relevant hypothesis to test involves only some of the canonical 
parameters. The relevant hypotheses may for example be 

with r < m. 
HO: 'tj = 'tjO ' j = 1, ... ,r 

Under Ho there are in this case m-r parameters, which are not specified and 
accordingly must be estimated. Under Ho the log-likelihood function (2.6) has the 
form 

r m 

InL('t) = :E tj 'tj 0 +:E tj'tj +hl (t) - nK('t) , 
j=l j=r+l 

showing that the model still belongs to an exponential family, but now of 
dimension m-r. The likelihood equations under Ho therefore become 

tj = E[Tj] , j = r + 1, ... ,m . (2.29) 

If we denote the solutions to (2.29) tr+I, ... /tm, the value of the log-likelihood 
function becomes 

r m 

InL(t) = :E tj'tjO + :E tjtj + hI (t) - nK('t) , 
j=l j=r+l 

where t = ('t1o,· .. ,'trO ' tr+l, ... ,'tm) . 

In order to test Ho we can, therefore, use the test quantity 

Z(HO) = -21n L('t) , 
L(t) 

(2.30) 

where t is the vector of unconstrained ML-estimates, that is 't estimated without 

Ro· 
The asymptotic distribution of of Z(Ho) follows from the following theorem: 

THEOREM 2.4. Let the vector 
't = ('tlO, ... ,'trO,'tr+I, ... ,'tm) , 

be in the domain, where 'tr+1, ... ,'tm are the true, unknown values of the 't's which 
are not specified under the hypothesis. Then Z(Ho) is under Ho asymptotically 
x2-distributed with r degrees offreedom, i.e. for any observed value z of Z(Ho) 

when n ~ 00, where Q - x2(r). 
P(Z(HO)Sz) ~ P(QSz), 
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The hypothesis Ho can accordingly be rejected at approximate level a. if the 
observed value z of Z(Ho) satisfies 

z ;:: x7-o:(r) • 

or by evaluating the relative size of the level of significance p = P(Q2::z) for the 
observed value z of Z(Ho). where approximately Q-x2(r). 

We shall often write in the abbreviated form 

if Z(Ho) has an approximate X2 - distribution with df degrees of freedom. 

Theorem 2.4 can be extended to cases with constrained canonical parameters. 
We shall say that a hypothesis Ho concerns constrained canonical parameters. if 
two conditions are satisfied. 

(i) 

and 
(ii) 

(2.31) 

(2.32) 

is a reparametrization of the model in the sense that there is a one to one 
correspondence between the 'V's and the ,['s determined by the Equations (2.32). 
In this situation let t be the vector of ML-estimates for the '[' s under the 
constraints (2.31) and t the ML-estimates for the unconstrained '[' s in the test 
statistic (2.30). We then have the following more general form of Theorem 2.4. 

THEOREM 2.5. Assume the vector'[ of canonical parameters obtained by solving 
(2.32) with the 'V-vector given by 

'V = ('VIO· .. ·• 'VrQ' 'Vr+ 1· .. ·• 'Vm) • 

is in the domain. Then under H{)1 given by (2.31), Z(Ho) is asymptotically X2-
distributed with r degrees of freedom, i.e. 

P(Z(Ho):S;z) ~ P(Q:S;z) • 

when n ~ 00, where Q - x2(r). 

Typical examples of hypotheses expressed through constraints on the canonical 
parameters are as follows: 

(a) 

Here the 'V's are given by 
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'VI = 't l +···+'tm ' 

'V2 = 't2 ' 

Then Ho : 'VI = 0, with all the remaining 'V's unspecified. 

(b) 

Here the 'V's are given by 

and 

Then Ho : 'Vj = ° , j=l, ... ,m-l. 

Another important result is obtained if we only let the vector of parameters include 
some of the 't's, for example by putting 'ts+I = ... = 'tm = 0, with r < s. Then under 
the hypothesis 

the ML-estimates for the canonical parameters will be 

f = ('tlO, ... ,'trO,-'tr+I""''ts'O, ... ,O) . 

Without the hypothesis, the ML-estimates will be 

~ = (tI,···;tr,'tr+I,···;ts'O, ... ,O) . 

Consider now the hypothesis 

H~: 'tj = 0, j = s+l, ... ,m . 

Then f are the ML-estimates under the hypothesis that both Ho or H~ holds, while 
t is the vector of ML-estimates under H~. 

It makes the notation clearer if we write the likelihood function L('t) as L(tIHo) 

when t is estimated under Ho' The likelihood ratio test of Ho against the alternative 

that the hypothesis H~ hold (rather than against the model with unspecified 
canonical parameters) can with this notation be based on the test statistic 
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L(:e IH ,H *) 
Z(Ro I HO*) = -2ln 0 0 

L(t I Ho*) 

or 

(2.33) 

But since Ho c Ho * in the sense that if Ro is satisfied then also Ro * is satisfied, 
we can rewrite (2.33) as 

Z(Ho I Ho*) = -2lnL(1t I Ro) + 2lnL(t I Ho*) . (2.34) 

Here L(t IHo), in accordance with our notation, is the likelihood function with the 
unconstrained parameters estimated under both Ho and H~, while L(t IH~) is the 
likelihood function with only the unconstrained parameters under H~ estimated. 

Theorem 2.4 is also valid for this situation because we are just testing r specified 
values of canonical parameters in an exponential family with s (rather than m) un­
constrained canonical parameters 't1, ... ,'ts' The asymptotic distribution of Z(Ho IH~) 
is therefore, as in Theorem 2.4, a X2-distribution with r degrees of freedom. In 
summary we have. 

THEOREM 2.6. Let the vector 

't = ('tlO, .. ·, 'trO' 'tr+ 1 , ... , 'ts) , 

be in the domain, where 'tr+l''''''ts are the true, unknown values o/the 't's, which 
are unspecified under the hypothesis. Then under Ho the test statistic Z(HoIH~) 
given by (2.34) is asymptotically X2-distributed with r degrees o/freedom, i.e 

P(Z(HolHo*)~z) ~ P(Q~z) , 

when n ~ 00, where Q -x2(r). 

For later use we rewrite the test statistic (2.34). Noting that 

Z(Ho I Ho*) = (-2lnL(1t I Ho) +2InL(t» + (2InL(t I Ho*) -2lnL(t» , 

where L(t) is the likelihood with 't estimated unconstrained, we get 

Z(HolHo*) = Z(lIo) -Z(lIo*) 

We shall use the abbreviated notation 

* 2 Z(HoIHo ) - X (r) , 

for the result in Theorem 2.6. 

(2.35) 

Theorems 2.4 and 2.5 thus show that ZeRo) - X2(dt) , where df can either be 
calculated as the number of constrained canonical parameters, or as the difference 
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between the total number of unconstrained canonical parameters and the number 
specified under the hypothesis. 

Theorem 2.6 on the other hand establishes that if we test Ho given that the 
hypothesis ~ is already satisfied, then Z(Ho) - Z(H~) - X2(df), where df is the 
number of canonical parameters specified under Ho, or alternatively the difference 
between the number to be estimated under Ho and the number to be estimated 
under H~. 

2.8 Applications to the multinomial distribution 

In section 2.5 we derived the test statistic (2.27) for the hypothesis of all the 
probability parameters having specified values. We now consider typical cases, 
where under the hypothesis certain restrictions are imposed on the 1t's. 

Matters are much simplified for the multinomial distribution when we recall that 
1t1, ... ,1tk_l is a reparametrization of the canonical parameters 't1, ... ,'tk_1 and that 
-2 InL can be expressed both as 

and as 

k-l 
-2InL('t) = const. - 2 E tj'tj - 2nln1tk 

j=l 

k 

-2InL('t) = const. - 2E tjln1tj , 
j=l 

(2.36) 

(2.37) 

where in (2.37) the 1t'S are functions of the 't's. It follows that if we can determine 
the ML-estimates for the 1t'S under any composite hypothesis imposing constraints 
on the 1t'S, then the test statistic Z(Ho) in (2.30) or the test statistic Z(HoIHo'l) in 
(2.34) can be expressed directly in terms of these 1t-estimates. As examples we 
consider the following two important and often met cases. 

(a) 

In this case the log-likelihood function according to (2.36) is 
r 

InL = const. + (E tj)'tr + nln1tk ' 
j=l 

(2.38) 

since'tj = 0 for j=r+l, ... ,k-l, when 1tj = 1tk for k>r. The likelihood equation for 
estimatmg the common value 'tr of the first r 't's under Ho is, therefore, 
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with solution 

r r r 
t(r) = ~ tj =~ E[Tjl = ~ n1tj = nmr ' 

J=l J=l J=l 

t (r) . 
1I:j = 1I:r = - , J = 1, ... ,r . 

rn 

From :E 1tj = 1 and 1tr+1= ... =1tk it then follows that 

t (k -r) . 
1I:j = , J =r + 1 , ... , k , 

n(k -r) 

where 
k 

t (k-r) = n -t (r) = E tj . 
j=r+1 

Without Ro the ML-estimates are 

t· 
11: - J 

j - Ii" 

Equations (2.30) and (2.37) therefore yield 

Z(RO) = -2InL(t) + 2lnL(t) 

k [T- J = 2E Tj In_J -ln1l:j . 
j=l n 

or 
k 

ZeRo) = 2~ Tj[lnTj -In(nftj )] . 
J=l 

The test statistic thus again has the typical form 

Z = 2 L observed (In(observed) - In (expected)) 

which we met in Section 2.5, Equation (2.27). 

(2.39) 

The number of degrees of freedom for ZeRo) can be found by noting that only one 
parameter has to be estimated according to (2.38). Thus the number of constrained 
parameters is k-l-l=k-2. We can also count the number of 't's, which are specified 
under Ro. Since 'tj=O for j=r+l, ... ,k-l and the first r 't's are equal, (k-l-r)+(r-l) = 
k-2 canonical parameters are specified. The distribution of the test statistic ZeRO) 
is thus approximately 
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and we reject Ho at approximate level of significance (X, if the observed value z of 
Z(Ho) satisfies 

z > XT-c./k-2) . 

The next case is 

(b) 1tl = ... =1tr ' 1tj unspecified, j = r+ 1 , ... ,k . 

In this case the log-likelihood function is 
r k-J 

InL('t) = const. + (L tj)'tr + L tj'tj + nln1tk ' 
j=l j=r+l 

since 'tj is unspecified for j = r+l, ... ,k-l when 1tj is unspecified for k>r. The 
likelihood equation for estimating the common value 'tr of the first r 't's under Ho 
is 

r r 

t(r) = Ltj = L E[Tj] = L n1tr , 
j=l j=J j=J 

with solution 

t (r) . 
ft· = ftr = - , J l, ... ,r. 

J rn 

For j=l, ... ,k-l we get the likelihood equations tj = n1tj with solutions 

t· 
ftj = ~ , j =r+l, ... ,k-l 

It is easy to see that these estimates, due to L1t = 1, imply that 
_ tk 
1tk =_· 

n 

Without Ho the ML-estimates are still 

t· 
ft. = J 

J n 

Equations (2.30) and (2.37) therefore again yield 
k 

Z(Ho) = 2LTj[lnTj -In(nftj )] . 
j=l 

Also in this case the test statistic has the form 

Z = 2 L observed (In(observed) - In(expected)) . 

(2.40) 
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The degrees of freedom for Z(Ho) in this case can most easily be determined by 
noting that r-l canonical parameters are specified under Ho. The distribution of the 
test statistic Z(Ho) is thus approximately 

For case (b) we accordingly reject Ho at approximate level of significance a if the 
observed value z of Z(Ho) satisfies 

z > XI-a(k-l) . 

EXAMPLE 2.1 (continued). It is obvious from Table 2.1 that the number of 
accidents is lower in the weekend. A tempting hypothesis is, therefore, 

This is case (a) with k=7 and r=5. The common estimate ofTt] to Tt5 is 

it = 279+256+230+304+330 = 0.1609 . 
5 5'1739 

The common expected number of accidents on Mondays to Fridays is thus 

0.1609 '1739 = 279.8 . 

In the same way the common estimate of Tt6 and Tt7 is 

1t = 1t = 210+130 = 0.0978 
6 7 2'1739 ' 

The common expected number of accidents on week-ends is thus 

0.0978 ·1739 = 170.0 . 

With these expected values under the hypothesis, the observed value of Z(HoJ is 
z=41.08. With k=7 the number of degrees of freedom for the approximating X2-
distribution is 5. Since P(Q>41.08)= 0.0000001 if Q-X2(5) we can not accept the 
hypothesis. 

As a final attempt, we could try to test whether the accidents are equally 
distributed over the first five weekdays, lower in the week-end, but not necessarily 
equally distributed between Saturday and Sunday. This iJ; case (bi, again with k=7 
and r=5. The expected numbers for Monday to Friday are the same as for case 
(a), but for Saturday and Sunday, the observed and expected values are now equal. 
In this case the value of Z(Ho) get the observed value z=22.08 and the number of 
degrees offreedom is 5-1=4. But since P(Q>22.08)= 0.0002 if Q-X2(4), we must 
still reject the hypothesis. The general conclusion is, therefore, that there is a clear 
variation of accidents over days of the week. It would be an error, from an applied 
statistician's point of view, to try to test the very specified hypothesis, that the Tt'S 
are equal for Monday, Tuesday and Wednesday, then change to a higher level on 
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Thursday and Friday, and finally decrease over the week-end. If we do so, we 
would use our data to formulate a hypothesis rather than to test a hypothesis. 

2.9 Log-linear models 

First we give two important definitions. First, we shall call a multinomial model 
the saturated model if the canonical parameters 'tj = In1tj - In1tk are unconstrained. 
Second we shall call a multinomial model a log-linear model if the canonical 
parameters in the saturated model are linear functions of a new set of parameters 
(81, ... ,8m), i.e 

'tj = 11l1tj -ln1tk = E Wjp 8p , j = 1 , ... ,k-1 
p 

(2.41) 

where the w's are known constants and 8p, p = 1, ... ,m are the real parameters of 
the model. The matrix W with elements Wjp , j=1, ... ,k-1, p=l, ... ,m is called the 
design matrix. 

Since there is a one to one correspondence between the canonical parameters and 
the probability parameters, the 1t'S can be expressed in terms of the 8's, namely as 

exp(~ wjp8p ~ 
1tj k L J (2.42) 

E exp(E Wqp 8p) 
q=1 P 

From (2.41) follows that we can put wkp = 0 , p = 1, ... ,m, which means that (2.42) 
can be written as 

1t. expr~ Wjp8p) 

J k-I 

1 + E exp(E Wqp 8p) 
q=1 P 

(2.43) 

If (T I , ... ,T k) follows a multinomial distribution the log-likelihood function for 
observed values (tl, ... ,tk) is 

k-I 

InL('t) = const. + E tj'tj + nln~ . 
j=l 

Hence under a log-linear model InL has the form 

InL(8) = const. + E 8pE Wjptj + nln1tk . 
p j 

according to (2.41). The model thus still belongs to the class of exponential 
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families, but the canonical parameters are now the 8's and the sufficient statistics 
are 

t; = L Wjptj ,p=l, ... ,m . 
j 

It follows that the ML-estimators are obtained as solutions to the equations 

tp* = E[T p*l = L wjpE[Tj l = L wjp(n1t) , p = 1 , ... ,m . 
j j 

or as 

L Wjptj = L wjp (n1tj) ,p=l, ... ,m. 
j j 

(2.44) 

The standard errors of the ML-estimators are obtained from an application of 
Theorem 2.2. It is rather straightforward ( although we omit the details ) to show 
that the matrix M has elements 

mpq = [~WjpWjq1tj-~ Wjp1tjL WSq 1ts], 
J J S 

where to save space 1tj is a function of 8 given by (2.43). If we introduce the 
matrix V of dimension kxk with elements 

v .. = 1t. (1 -1t.) 
JJ J J' 

and extend the matrix W of dimension (k-l)xm to a matrix of dimension kxm by 
adding a last line with elements wkp = 0 , p=l, ... m, M can be written 

M=W'VW. 

From Theorem 2.2 it then follows that 

var[9pl = 2.m pp , 
n 

where mpq is the (p,q)'th element in the inverse matrix M-1 of M. 

(2.45) 

The matrix M = W'VW is a key element also in connection with analyses of 
residuals. In fact it can be shown that 

varlT. - nit·] = n1t.(1 - 1t.)(1 - h··) 
J J J J JJ' 

(2.46) 

where hjj is the j'th diagonal element in the matrix 

H = (VYzWM-IW'VYzrl , (2.47) 
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v'h being diagonal with diagonal elements 

Vn .. ( 1 -n.) 
J J 

H is called the "hat" matrix. 
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It is thus relatively easy to compute the necessary estimates and test statistics for 
log-linear models. Admittedly it can not be done be hand, and hardly by pocket 
computers. But it is easy to program the computations for a computer, and for 
many important special cases elements of the hat matrix are included in standard 
statistical computer packages. 

2.10 The two-way contingency table 

In Chapter 1 we discussed the two-way contingency table in an introductory way. 
The two-way table is the most basic of all log-linear models and also the model, 
which - in its multivariate version - is the main topic of this book. 

To be in accordance with the notation we shall use later in the book, we shall de­
note the observed numbers in the IxJ cells of a two-way table Xij' The model we 
shall use is a multinomial model over the IxJ cells, that is 

The independence hypothesis states that 

where n· = L·n·· and n· =L·n·· 1. 1 1J .J J 1J 

The canonical parameters for the multinomial distribution over the cells are 

'tij = lnnij - InnIJ . 

Rence under Ro, we have the constraints 

't .. = Inn·· - InnIJ = (lnn· - InnI )+(lnn· - Inn J) 1J 1J 1...J. (2.48) 

on the canonical parameters. This is a log-linear model with I+J-2 new parameters 
91, ... ,9I+J_2, since 'tij according to (2.48) can be written 

(2.49) 

where 
9i = lnni. - In~. ' i = 1, ... ,1-1 
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and 

9I-1+j = In7t.j - In7tJ ' j = 1, .. .1-1 . 

Equation (2.49) shows that the two-way contingency table under the independence 
hypothesis is a log-linear model with all weights w being either 0 or 1. To 
illustrate how the w's look in a typical situation, we take as an example the 3x3 
table, where the w's are given by Table 2.4: 

TABLE 2.4. The log-linear weights for the case I=J=3. 

wij.!! p=1 2 3 4 

ij=11 0 1 0 

12 0 0 

13 0 0 0 

21 0 0 

22 0 0 

23 0 0 0 

31 0 0 0 

32 0 0 0 

From (2.44) we can then directly derive the likelihood equations as 

L L Wjj'pXjj = L L wjj'p(n7tij) , p = 1, ... ,I+J-l 
j j j j 

Table 2.4 then shows that for p = 1, 2, 3 and 4 the likelihood equations are 

and 
X.j = n7t.j , j = 1,2 . 

(2.50) 

(2.51) 

From l:j Xj. = l:j X:j = nand l:j 7tj. = l:j 7t:j = 1 follows that (2.50) and (2.51) are 
also true for i=j=3. Hence the estimates for the marginal probabilities are 

and 

x, 
itj • = _' , i = 1,2,3 

n 

X'j . 
it.j = - ,J = 1,2,3 . 

n 

(2.52) 

(2.53) 

Under the hypothesis the expected numbers are accordingly the well-known 
expressions 
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_ Xj.X.j 
n1tij - -- . 

n 

The Z-test statistic is computed in the well-known way as 

Z = 2 I. observed (In(observed) - In(expected)) . 

We thus get 

i-- i.. [ (Xi .X.j ] Z(Ho) = 2 L...i L...i ~j ln~j -In -- . 
i=l j=l n 
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The asymptotic X2-distribution of Z(Ho) has (1-1)(1-1) degrees of freedom, since 
there are IJ-l unconstrained multinomial probabilities in the saturated model and 
I+J-2 parameters to be estimated under the hypothesis, which means 

df = IJ - I - J + 1 = (1-1) . (J-1). 

It is relatively easy to derive the matrix M needed to compute variances, standard 
errors and residuals. 

In order to compute the inverse of M one really needs a computer, but the result 
is rather simple. The diagonal element (2.47) of the matrix H is thus (remembering 
that the elements in a two-way table have double subscripts) 

where 1tij = 1tL1t.j. It follows that 

1ti . +1t.j - 21tij 

1 -1tij 

var[ x.. - n1t·· ] = n1t··(l - 1t .. )(1 - h·· .. ) = n1t·{1 - 1t. )(1 - 1t.) (2.54) IJ IJ IJ IJ IJ.IJ IJ I. .J ' 

such that the standardised residuals under the independence hypothesis are given 
by 

with var[ Xij - n1tij ] given by (2.54). 

Strictly speaking, we have not shown that the X2 approximation to the Z-test 
statistic is valid. To do so, we would have to verify that the assumptions for 
Theorem 2.5 are satisfied. Theorem 2.5 is the appropriate theorem to apply, since 
Ho places constraints on the canonical parameters, as shown by (2.49). We must, 
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therefore, show that there is reparametrization, which has the I+J-2 9's as part of 
the new parameter set. This can be done although the expressions are not obvious 
and require some space to write. In addition it is not the most convenient 
parametrization if we want to generalize to multi-way contingency tables. 

For these and other reasons, it is now standard for contingency tables to use a 
reparametrization which has the following form 

AB A B 
In 1tij = 'tij + 'ti + 'tj + 'to 

with the linear constraints 
J 

't~B = "'t:7-B =0, 
l' L...- 1J 

j=l 

and 

These constraints are necessary, because otherwise the model would be over­
parametrized. Actually we have B-1 unconstrained 1t'S and, due to the constraints, 
(I-1)(J-l) 'tAB,s, I-I -.A's and J-l 'tB,s, which adds up to B-1 parameters. Hence 
the last parameter 'to must be a function of the other parameters, which can also 
be seen from the expression for In 1tij and the fact that L1tij = 1. That we have a 
true reparametrization can be verified directly by calculating the 't's in terms of the 
In 1ti/s. We get for example 

't~B = Aij - ~i' - ~.j + ~ .. , 

The most important property of this parametrization is that the hypothesis of 
independence is equivalent to 

H . A:7-B = ° for all i and J' • o· 1J 
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In addition 

under the hypothesis, as is easily seen. 

2.11 The numerical solution of the likelihood equations 
for the log-linear model 

The likelihood equations for a log-linear model are in almost all computer 
packages solved by the so-called iterative proportional fitting method or the 
Deming-Stephan method. This method usual requires more iterations than 
standard methods, like the Newton-Raphson method or the Fisher scoring method. 
But this is more than compensated for by the fact that the calculations, to be 
carried out in each iteration, are extremely simple. 

Since the likelihood equations for the log-linear model according to (2.44) has the 
form 

t; = nE Wjp7tj , P = 1, ... ,m , 
j 

(2.55) 

the vector of ML-estimates ~ for S are found when 7tj(~) = 1tj satisfies equations 
(2.55). The iterative proportional fitting method is, therefore, a method for 
obtaining values of the n's which satisfy (2.55). Sometimes this is all one need, for 
example to compute Z-test statistics. If the S-estimates are required, the relations­
hip (2.41) is used. On matrix form (2.41) can be written 

B=WS, (2.56) 
where B has elements In7tj - ln~. 

The solution to (2.56) is 

from which the ML-estimates for the S's are obtained, if the ML-estimates for the 
7t'S have already been calculated. 

In order to obtain the n's which satisfies (2.55), the n's are adjusted p times in 
each iteration through the following adjustment formulas: 

For p=l we adjust 7tl, ... ,7tk proportionally as follows 

(2.57) 
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where 7tl1 ..... 7tkl are the adjusted values in step 1 of iteration 1 and 7t1O ..... 7tkO are 
a set of initial values. In step p=2 we use almost the same formula. namely 

* t2 7tjl 
7t'2 = ---==----

J n E Wq27tql 
(2.58) 

q 
to obtain new adjusted 7t-values 7t12 ..... 7tk2. 

In step p the adjustment formula is 

(2.59) 

It is clear, that the first likelihood Equation (2.55) for p=l is satisfied if 7tll .... '7tkl 
satisfies (2.57). In the same way (2.55) is satisfied for p=2 if 7t12 .... '7tk2 satisfies 
(2.58). And in general (2.55) is satisfied for p=2 if 7t1p ..... 7tkp satisfies (2.59). When 
steps 1 through m have been executed the last obtained adjustments 7t1m ..... 7tkm are 
compared to the initial values. and step 1 to m is repeated if the differences are 
above a preset limit. for example 0.0001. The procedure is now to continue 
repeating step I to m until the 7t's no longer change. for example if the changes 
are all numerically below 0.0001. 

The iterative proportional fitting method is both extremely fast and has in addition 
the very useful feature that the choice of initial values are of no real consequence. 
Usually the trivial initial values 7tj = 11m are chosen. 

As mentioned the method produces a set of estimated multinomial probability 
parameters 7tj • j=l, ... m and therefore also a set of estimated expected cell counts 
nft1 ..... nftk, which satisfies the likelihood equations. Since only the ft/ s are required 
to compute the value of a Z-test statistic the method directly produces the wanted 
result. If the ML-estimates for the S' s are required, the vector ~ of ML-estimates 
are obtained by inserting the ft·s in the solution to (2.56). that is 

where the matrix B has elements lnftj - lnftk . 

In the next chapter, we shall see how the method works for a 3-way contingency 
table. 

2.12 Bibliographical notes 

The literature on the exponential family goes far back. It has been attributed to 
many people and was for a long time known as the Fisher-Darrnois-Pitman­
Koopman model. As a basic model for making statistical inference it was first dis-
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cussed in depth by Lehmann (1959). The exact definition of the family and its key 
concepts as well as the main results in section 2.3 was established by Barndorff­
Nielsen (1973) and published internationally in Barndorff-Nielsen (1978), see also 
Andersen (1980), Chapter 3. The asymptotic theory for test and estimators in expo­
nential families was not given in Barndorff-Nielsen (1978), but is contained in 
Andersen (1980), building on Barndorff-Nielsens work, and unpublished results by 
A.H. Andersen. 

The log-linear model was introduced by Birch (1973) as a model for three-way 
contingency tables. The connection between the multinomial distribution and the 
Poisson distribution in connection with log-linear models was first noted by 
Haberman (1974). The log-linear models, as defined in section 2.9, are special 
cases of a general class of models called the generalized linear model. It was 
introduced by NeIder and Wedderburn (1972). McCullagh and NeIder (1983) 
contains a systematic treatment of generalized linear models. 

The iterative proportional fitting method was introduced by Deming and Stephan 
(1940). 

2.13 Exercises 

2.1 Let X follow the geometric distribution with point probability 

f(xI9) = 9x( 1-9) ,x~O. 

(a) Show that the geometric distribution belongs to the family of exponential 
distributions with canonical parameter 't = In(9) and g(x) = x. 

(b) For n independent random variables Xl' ... ,~ from a geometric distribution 
derive the ML-estimate for both 't and 9. [ Hint: The mean value of X for a 
geometric distribution is E[X] = 9/(1-9). ] 

( c) Show that 

K('t) = -In( 1 -e t) 

and use this result to derive the asymptotic variance of 'to 

2.2 Consider again the geometric distribution in exercise 2.1. Show that the log­
likelihood function is 

(a) Use this result to derive the likelihood ratio test for Ho : 't = 'to . 

(b) Let the observed values for n = 10 be 2, 4, 1,0,2, 1, 1,2,3, 1. Estimate 't and 
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test the hypothesis 't = -0.3. 

2.3 Show by a direct calculation of the joint conditional probability that if Xl ,,,,,Xk 
are independent, Poisson distributed with parameters A,1, ... ,A,k the distribution of 
Xl"",Xk given the sum L Xi = n is multinomial with parameters nand 

A,. 
1tj = .....2. , j = 1 , ... ,k . 

A,. 

2.4 Let the possible values of x be j = l, ... ,k, and let g/x) = 1 if x=j and = ° if 
x~j. Then show that P(X=x) can be written as 

k 
= II 1t~j(X) P(X =x) J ' 

j=l 

where 1tj = P(X=j) and that 
k -I 

InP(X =x) = L gj(x)'tj +ln1tk ' 
j=1 

where 'tj = In 1tj - In 1tk' Use this result to verify that the multinomial distribution 
belongs to the class of exponential families. 

2.5 Let Xl' ... ,Xn be independent Poisson distributed random variables with 
common mean A,. 

(a) Show that the K-function is K('t) = exp('t). 

(b) Use the K-function to derive the ML-estimate for 't from Equation (2.9). 

(c) Derive var[t] from the derivatives of K. 

An often used approximation when 't = g(A,) and g is a monotone function is 

var[t] ~ (g I (A,»)2 'var[x'] , 

where g' is the derivative of g. 

(d) In the Poisson distribution var[X] = A.. Verify that the approximation just 
mentioned, gives the same variance as the one you derived in (c). 

2.6 In the Danish popular historical magazine Skalk, 1990, nr. 1, there is an article 
"The executioners axe" from which one can derive the number of executions for 
each decade in the 19th century. 
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Decades 1800 10 20 30 40 50 60 70 80 1890 
1800-1900 -1810 -20 -30 -40 -50 -60 -70 -80 -90 -1900 

Number of 
executions 10 46 18 19 17 19 5 o 2 
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(a) Argue that given the 137 executions in Denmark from 1800 to 1900 the 
numbers per decade can be described by a multinomial distribution of dimension 
k = 10 and probability parameters 1tj , j=l, ... ,IO. 

(b) Test the hypothesis Ho that the 137 executions are uniformly distributed over 
decades. 

(c) Use the following information to formulate an alternative hypothesis H( (1) In 
1866 a law was passed by the Danish Parliament, which greatly reduced the 
offenses for which the accused received a death penalty. But already in the early 
60's the coming law was very much in the King's mind. (He was the only one who 
could grant clemency. ) (2) In 1817 there was a major riot in the main Copenhagen 
prison. After the riot, 14 persons were given a death sentence. The King was very 
upset over the riot and refused to grant clemency for any of the convicted 
prisoners. Usually the King was rather lenient with granting clemency. 

(d) Estimate the 1t'S under the alternative hypothesis HI and test HI. 

2.7 The table shows the number of persons killed in the traffic in Denmark 
between 1981 and 1990. 

Year 

81 82 83 84 85 86 87 88 89 90 

Number 
killed 478 456 461 466 572 509 461 492 472 438 

Test the hypothesis that the probability of being killed in the traffic has not 
changed over the decade 1981-1990 in Denmark. 

2.8 Consider a trinomial distribution with probability parameters 1tI, 1t2 and 1t3. We 
want to test the hypothesis 

(a) Show that Ho is equivalent to 

4 2 
7 7' 
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and test the hypothesis. 

(b) Show that 91 = 't l - 't2 ' 92 = 't2 is a reparametrization of the canonical 
parameters 

and 

Then show that Ho in terms of the 9's can be expressed as 

Ho : 91 =92 =ln2 . 

2.9 Among 132 twins the distribution over the three combinations girl-girl (GG), 
girl-boy (GB) and boy-boy (BB) was 

GG GB ss Total 

Number 45 53 34 132 

(a) If girls and boys are born independently with probability 0.5 for each 
possibility, the expected frequencies for the three combinations should be 114, 112 
and 114. Test this hypothesis. 

Let 9 be the probability that a pair of twins being monozygotes ( born from one 
egg rather than from two separate eggs ), in which case both twins has the same 
sex. 

(b) Show that the probability of the combinations GG and BB are both 

P(BB) = P(GG) = ~(l +9) 
4 

and 

The ML-estimate for 9 is 

P(GB) = ..!.(l-9) . 
2 

~ = xGG +xBB -xGB . 
n 

(c) Estimate the percentages of monozygotes from the given data. 

(d) Test that a model which allows for both monozygotes and dizygotes fits the 
data. 

2.10 Show that for a 2x2 table the variance of the residuals for cells (l, I) and (2,2) 
under the independenced hypothesis are 
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and 

[Hint: Use Equation (2.54).]. 

2.11 Consider a 2x2 table. Under the independence hypothesis we can introduce 
the parameters 

and 

92 = In1t'1 -In1t'2 

Show that a log-linear model is defined by the log-linear weights Wij-p in the table 
below 

Wn.p p=1 2 

ij=11 1 

12 0 

21 0 

2.12 (a) Show that the formula 
AB - - -

'tij = Lij -Li . - L.j + L .. 

for a 2x2 table with I = J = 2 can be written as 

(b) Use this result to show that for a 2x2 table the interaction ~ can be written 

.,.AB _ 1 I [1t11 ~2 J "II - - n . 
4 1t12~1 



Chapter 3 

Three-way contingency tables 

3.1 Log-linear models 

A three-way contingency table is an array of observed values Xijk' i=l, ... ,I, j=l, ... ,J, 
k=l, ... ,K of IxJxK random variables, arranged in I rows, J columns and K layers. 
As model for the corresponding random variables, we choose 

(3.1) 

that is a multinomial distribution with number parameter n and probability 
parameters 1tijk' where 

n = x ... = L L L Xijk 
i j k 

A three-way contingency table is often formed as one of the data summaries from 
a questionnaire given to a random sample of n individuals. In such a questionnaire 
the three-way contingency table is the cross-classification of the answers to three 
of the questions in the questionnaire, having, respectively, I, J and K response 
categories. If the sample is randomly drawn, and one respondent does not influence 
the responses of any other respondent, we can assume as statistical model, that the 
number of individuals Xijk having response i on question 1, response j on question 
2 and response k on question 3, follows the multinomial distribution (3.1), where 
the probability parameter 1tijk is the probability that a randomly drawn individual 
has his or her response in cell (ijk). If the sample is drawn from a well-defined 
population, this probability is also the frequency in the total population, who, if 
asked, would have responded in response categories i, j and k. 

A terminology, which is convenient, is to introduce three categorical variables A, 
Band C. Variable A has I categories, variable B has J categories and variable C 
has K categories. If the response of one of the n individuals in the sample falls in 
cell (ijk), we shall say that variable A has observed value i, variable B observed 
value j and variable C observed value k. 
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EXAMPLE 3.1. Children's use of video. 
In 1993 the Danish National Institute of Social Research investigated the way 
young people between 7 and 15 years old used their time outside school hours. 
Table 3.1 is from this investigation. The 3-way table shows how often the young 
people watch video, in three frequency categories, where the other categorical 
variables are sex and age. 

TABLE 3.1. Frequency of watching videos at home or at friends homes for young 
people between 7 and 15 years of age, cross-classified according to age and sex. 

Frequency of 
watching videos 

Almost daily 

Every week 

Seldom or never 

Age 

7 - 9 years 

10 - 12 years 

13 - 15 years 

7 - 9 years 

10 - 12 years 

13 - 15 years 

7 - 9 years 

10 - 12 years 

13 - 15 years 

Sex 

Boys Girls 

5 5 

4 3 

5 7 

28 14 

20 17 

27 33 

88 87 

78 93 

100 81 

Source: Andersen, D. (1995): School children's leisure hours. (In Danish). Report no. 95:2. 
Copenhagen: Danish National Institute of Social Research. 

The three categorical variables forming the table are 

A: Frequency of watching videos. 

B: Age. 

C: Sex. 

The dimension of Table 3.1 is 1= 3, J = 3 and K = 2. 

As a help for grasping the formulas in the following, the Table 3.1 is shown as 
Table 3.2 with the general notations of this book. 
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TABLE 3.2. The notations of a general three-way contingency table of dimension 
3x3x2. 

Variable A Variable B Variable C 

j=l x ll1 xl12 

i=1 2 x121 x122 

3 x131 x132 

j=1 x211 x21 2 

2 2 x221 x222 

3 x231 x232 

j=1 x311 x312 

3 2 x321 x322 

3 x331 x333 

We know from section 2.5 that the canonical parameters for the multinomial distri­
bution (3.1) are 'ti"k = In(1tijk) - In (1tUK). This parametrization has proved to be 
inferior to the log-~inear parametrization, introduced briefly in section 2.10, for the 
purpose of testing the most important hypotheses for three-way contingency table. 
The log-linear parametrization for a 3-way contingency table is 

As E[xijkl = n1tijk' the log-linear parametrization is a parametrization of the log­
mean values in the cells. If we make the parameter change 'to" = 'to - In(n), the 
corresponding parametrization for In(1tijk) is 

* ABC AB AC BC ABC In (1tijk ) = 'to +'ti +'tj +'tk +'tij +'tik +'tjk +'tijk . (3.3) 

The model has too many parameters - is over-parametrized - if no constraints are 
placed on the parameters, since l+I+J+K+U+IK+JK+UK > UK. This over­
parametrizatIOn can be overcome by introducing the linear constraints 

'tA = 'tB = 'tC = ° , (3.4) 

AB AC AB AC Be BC 
'ri. = 'ti. = 't.j = 't.k = 'tj. = 't.k = ° (3.5) 
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and 

ABC ABC ABC 
'tij . = 'ti 'k = 't'jk = 0 , (3.6) 

where a dot (" ''') means that the parameter has been summed over the index in 
question. A popular phrase is to say, that the log-linear parameters "sum to 0 over 
all indices". With these constraints, the parametrization (3.2) is a true reparametri­
zation in the sense that the 't's can be derived in a unique way from the 1t's. For 
example 

where ~;jk = In(n1tijk)' a dot again means a summation over the index in question, 
and a bar denotes an average. As an example of this notation 

K 
-* 1 ~ * 
~j. = K L.J ~jk . 

k=1 

Alllog-linear.:e..arameters have special names. Thus 'tft~ is a three-factor interac­
tion, while 'tfj, -rt~ and ~~ are two-factor interactions and -rt, ~ and 't~ are 
main effects. 

A consequence of the linear constraints (3.4) to (3.6) is that certain log-linear 
parameters are functions of other log-linear parameters. If, for example,'t~~ is 
given for i = 1, ... ,1-1 and j = 1, ... ,J-l, the remaining values for i = I and j = f can 
be derived from (3.5) as 

1-1 
AB 'tIj = -E'tr 

i=1 

1-1 
AB E AB 'tiJ - 'tij , 

j=1 
and 

I-I 1-1 
'tAB 
II -LL't~ 

i=1 j=1 ~ 

It follows that only (I-l)(J-l) 2-factor interactions between A and B have an un­
constrained (or free) variation. Going through all log-linear parameters in this way, 
we get Table 3.3, which shows that the number of log-linear parameters with a free 
variation exactly equals the number of parameters in the multinomial distribution 
(3.1). Note, though, that 'to is a function of all other log-linear parameters due to 
the constraint 

11K 

LEL 1tijk=l 
i=1 j=1 k=1 
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TABLE 3.3. Number of unconstrained (or free) log-linear parameters. 

Parameter Number 

'CP-
1 r - 1 

'Cl? J - 1 

l- K - 1 k 
'CP-l? (I - 1)(1 - 1) Ie 
-r[k (I - l)(K - 1) 

~~ (1 - 1)(K - 1) 

A~ (I - 1)(1 - 1)(K - 1) 
1 J 

Total IJK - 1 

If all log-linear parameters are included in the model, we say that the model is 
saturated. 

3.2 Log-linear hypotheses 

Within the log-linear parametrization (3.2) a number of important hypotheses can 
be formulated by setting larger or smaller sets of 'C's to O. The following 7 are the 
main types. 

for all i, j and k 

for all i, j and k 

for all i, j and k 

for all i, j and k 

for all i, j and k 

for all i 

for all i and j 

for all i, j and k 

When we write "main types", it is because one - by exchange of letters - arrive at 
new hypotheses, but all such hypotheses are of the same type, in the sense that any 
hypothesis obtained from another by exchange of letters, can be treated statistically 
in exactly the same way. For this reason we study only the main types in the 
following discussion. 

It is an important feature of log-linear models for 3-way tables, that all the main 
types of hypotheses, except HI' can be interpreted as independence, conditional 
independence or uniform distribution over categories. In order to keep track of the 
various independencies and conditional independencies, we introduce the symbol 
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A .1 B for independence between A and B, the symbol A .1 B Ie for conditional 
independence between A and B given e and A = u for a uniform distribution over 
the categories of A. Expressed in terms of the parameters of the multinomial 
distribution, these symbols correspond to the following. 

(i) A and B are independent, and we write A .1 B, if and only if 

1tij . = 1ti .. 1t.j. ' for all i and j. (3.7) 

(ii) A and B are conditionally independent given e, and we write A .1 B Ie, if 
and only if 

1tijk _ 1ti.k 1t.jk - __ , ,for all i, j and k, (3.8) 
1t .. k 1t .. k 1t .. k 

that is if we have independence between variables A and B for every level k 
of variable e. 

(iii) There is uniform distribution over the categories of A, and we write A = u, 
if and only if 

1ti .. = l/I, for all i. (3.9) 

It is not particularly hard, although it requires a few lines of algebra, to show, that 
H2 is satisfied if and only if (3.8) is satisfied. In the same way (but we again omit 
details) it can be shown that H3 holds if and only if (3.7) is satisfied and at the 
same time 

1ti.k = 1ti..1t .. k for all i and k . 

If one inspects all the other main types of hypotheses in the same manner, the 
following results emerge. 

THEOREM 3.1. Hypotheses H2 through H7 can all be interpreted as indepen­
dence, conditional independence or uniform distribution over categories as follows 

H2: A.l B Ie 
H3: A.l B,e 

* H4 : A.l B,e and A = u 
H4: A.l B .1 e 
Hs: A.l B .1 e and A = u 
H6: A .1 B .1 e and A = B = u 
Hi A .1 B .1 e and A = B = e = u . 

HI is a special case, because it cannot be interpreted in terms of independence, 
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conditional independence or uniform distribution over categories. 

With the interpretations in Theorem 3.1, we can write down explicit expressions 
for the cell probabilities under each of the hypotheses except HI' as shown in 
Theorem 3.2. 

THEOREM 3.2. Under the hypotheses H2 to H7 the cell probabilities have the 
explicit expressions 

H2: 

H3: 
* H4 : 

H4: 

Hs: 

H6: 

H7: 

1t"k = 1t. k1t 'k / 1t k 1J I..J .. 

1tijk = 1ti .. 1t.jk 

1t" k = 1t 'k II 1J .J 

1tijk = 1ti .. 1t.j.1t .. k 
1t"k = 1t . 1t k II 1J .J. .. 

1tijk = 1t .. k I (IJ) 

1tijk = 1 I (IJK) . 

The relationships in Theorem 3.2 are easily derived successively from (3.7) to 
(3.9). The expression for H2, for example, follows directly from (3.8). If we then 
rewrite 1ti.k according to (3.7) by changing the letters j and k and insert the 
resulting expression 1ti.k = 1ti .. 1t .. k in (3.8), we get H3, etc. For HI there is no 
explicit expression for 1tijk as a function of the 1t-marginals. 

In the next chapter we discuss in more detail the connection between the various 
hypotheses, the formulation of the various hypotheses in terms of log-linear 
parameters, and the interpretation of the hypotheses. 

An association diagram for a log-linear model is a graph, where each variable is 
indicated by a point and the letter allocated to the variable. Two points in the asso­
ciationdiagram are connected by a line if, under the given hypothesis, there is an 
interaction involving those two variables, which is not assumed to be O. For HI all 
points in the diagram must, according to this rule, be connected, because all 3 two­
factor interactions are included. For H2, on the other hand, only A to C, and B to 
C need to be connected since all interactions involving both A and B are zero. 
Figure 3.1 shows the association diagrams for all the eight hypotheses. A uniform 
distribution over categories is denoted by a star ( "*" ). 
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HI: H2: H3: 
A A A 

1>' >, • 

/c 
B B B 

* H4 : H4: H5: 

A A A 

* • * 

/c . c . c 
• • 

B B B 

H6: Hi 

A A 

* * . c *c 

* * B B 

FIGURE 3.1. Association diagrams for hypotheses H2 to H7 in a three-way 
contingency table. 

A more complete discussion of association diagrams is postponed to chapter 4. For 
the present, it suffices to say that two variables are independent, if they are not in 
any way connected in the association diagram, and that two variables are 
conditionally independent given a third variable, if they are unconnected directly 
in the association diagram, but connected by a route passing through this third 
variable, as shown for H2 in Figure 3.1. 

3.3 Estimation 

Because the x's follow a multinomial distribution with probability parameters, 
whose logarithm is given by (3.2), the log-likelihood function is given by 
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InL = const. + L L L Xijk ln7tijk 
i j k 

= const. + 'to X ... + L 'ttXi.. + L 'tfx.j. + L 't;X .. k 
i j k 

+~ ~ 't~Bx .. +~ ~ lk'CX·k+~ ~ 't~kCX·k+~ ~ ~ 't~kCX··k 
~ ~ 1J IJ. ~ ~ 1 1. ~ ~ J .J ~ ~ ~ 1J 1J' 
ij ik jk ijk 

where const. is a constant which is independent of the 't's. The model thus belongs 
to an exponential family, where the log-linear parameters are the canonical 
parameters and the sufficient statistics are different marginals derived from the 
contingency table. It then follows from Theorem 2.1 that the ML-estimates for the 
log-linear parameters are obtained by equating these marginals with their mean 
values. A complete estimation of all log-linear parameters in the saturated model 
is thus obtained by solving the following system of likelihood equations: 

x = E[X . ..l = n7t ... = n , (3.10) 

Xi .. = E[XiJ = n7ti..' i=I, ... ,1 (3.11) 

X.j. = E[X.j.l = n7t.j.' j=I, ... ,J (3.12) 

X .. k = E[X .. k] = n7t .. k , k=I, ... ,K (3.13) 

Xij . = E[Xij.] = n7tij., i=I, ... ,I, j=I, ... ,J (3.14) 

\.k = E[Xi.k] = n7ti.k' i=I, ... ,I, k=I, ... ,K (3.15) 

X.jk = E[X.jk ] = n7t.jk , j=I, ... ,J , k=I, ... ,K (3.16) 

Xijk = E[Xijk ] = n7tijk' i=I, ... ,I, j=I, ... ,J, k=I, ... ,K. (3.17) 

All these equations are satisfied if (3.17) is satisfied, that is if 

ft··k = x··· In IJ IJk" (3.18) 

which is the trivial estimation of 7tijk in the saturated model. 

Actually the equation system (3.10) to (3.17) is overdetermined in the sense that 
there are more equations than log-linear parameters, when we let all indices run to 
their upper limit. As an example (3.14) consists of IxJ equations, while there are 
only (1-1)(1-1) unconstrained 't~~'s. It is on the other hand, as we shall see below, 
inconvenient to restrict alllikelinood equations to those with indices i ~ I-I, j ~ J-l 
and k ~ K-l. 



THREE-WAY CONTINGENCY TABLES 51 

If we want to estimate the parameters under one of the hypotheses, only some of 
the Equations (3.10) to (3.17) must be solved. It is thus one of the important tasks, 
when estimating parameters, to keep track of which equations are included in the 
estimation process. 

As mentioned, all equations are satisfied if 1tijk is estimated as (3.18). This means 
that under the saturated model the ML-estimates for the log-linear parameters are 
obtained by using (3.2), defining the 't's with 'tijk replaced by itijk = xijJ!n, and then 
using the constraints (3.4) to (3.6). 

If, for example, under the saturated model we need the ML-estimate for 't~~, we 
find from 

using (3.4) to (3.6) that 

and 

-
L 

such that 

1t:~B = i: .. -L. -L. +L 
1J 1J. 1.. .J. . .. ' (3.19) 

where as before a bar means an average and a dot a summation over the index in 
question. 

It is a little more complicated when the model is not saturated. Because all 
hypotheses HI to H7 have the form that a certain subset of log-linear parameters 
are zero, ML-estimation of parameters under any of these hypotheses is the same 
as solving a subset of the likelihood Equations (3.10) to (3.17). It is also clear 
which equations to solve, namely those corresponding to log-linear parameters not 
assumed to be zero under the hypothesis. For the first hypothesis HI' we must 
according to this rule solve Equations (3.10) to (3.16), but not (3.17) since 't1"~~ 
is assumed to be zero. As another example, if we need to find the ML-estimates 
under H3, Equations (3.10) to (3.13) and (3.16) must be solved, but not (3.14), 
(3.15) and (3.17). Matters are simplified by the fact that if certain equations are 
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zero, several other equations are also satisfied automatically, as we saw with 
Equation (3.17), which entailed that all other Equations were satisfied. As a typical 
example, if (3.16) is satisfied then automatically (3.10), (3.12) and (3.13) are also 
satisfied. Below is a listing of those equations we need to solve for each 
hypothesis. 

Hypothesis Likelihood equations 

HI (3.14), (3.15), (3.16) 
H2 (3.15), (3.16) 
H~ (3.16), (3.11) 
H4 (3.16) 
H4 (3.11), (3.12), (3.13) 
H5 (3.12), (3.13) 
H6 (3.13) 
H7 (3.10) 

Note in particular that we need to add Equation (3.11) under H3, since it does not 
follow from (3.16) that (3.11) is satisfied. In most cases we can omit equations 
which correspond to marginals with fewer indices than those marginals already 
included, but there are exceptions. It is even simple to describe when this happens; 
namely when a marginal of lower order has indices which are not a subset of the 
indices of the included marginals of higher order. This is what happened for hy­
pothesis H3. Here the only 2-factor marginal included in the likelihood equation 
is x.jk' but the index "i" is missing, which is why we have to include the one factor 
marginal xL. 

The likelihood equations to be solved can be expressed in symbolic form by 
writing down the combinations of variable names which corresponds to the 
marginals. Thus for HI' we have to solve (3.14), (3.15) and (3.16) corresponding 
to the marginals Xij.' xLk and x.jk. We write this as AB, AC, BC. 

The marginals, which are equated to their mean values for a given hypothesis, are 
called sufficient marginals. For the hypothesis HI the sufficient marginals are, as 
we saw, xij.' xLk and x.jk. For the hypothesis H3 the sufficient marginals are x.jk 
and XL' etc. In symbolic form the sufficient marginals for H3 are BC and A. Table 
3.4 gives a survey of the typical hypotheses, the sufficient marginals, their 
symbolic forms and the interpretation of the hypotheses. 



THREE-WAY CONTINGENCY TABLES 53 

TABLE 3.4. Sufficient marginals, symbolic forms and interpretations for hypothe­
ses HI through H7. 

Hypothesis Sufficient 
marginals 

HI x·· I). xi.k x.jk 

H2 xi.k x.jk 

H3 x.jk x· 1.. 

H* x.jk 4 

H4 X· 1.. X· .J. X .. k 

H5 X· .J. X .. k 

Symbolic 
form 

AB,AC,BC 

AC,BC 

BC,A 

BC 

A,B,C 

B,C 

Interpretation 

A..L BIC 

A..L B, C 

A ..L B, C and A = u 

A..LB..LC 

A ..L B ..L C and A = u 

H6 X .. k 
H7 x 

C A ..L B ..L C and A = B = u 

A=B=C=u 

Note that there is no interpretation for HI. 

Given the sufficient marginals for a hypothesis, the corresponding likelihood 
equations are solved with respect to the 1t'S by the iterative proportional fitting 
method we introduced in section 2.11. This method is so fast and reliable that it 
is used even in cases where there are explicit expressions for the solutions. For 3-
way tables this is the case for all hypotheses except HI. 

We now illustrate the iterative proportional fitting method for the solution of 
Equations (3.14) to (3.16), that is for hypothesis HI. The method, we recall, result 
in estimates ftijk for the cell probabilities under HI. From (2.57) follows that the 
1t'S are adjusted in the first step from initial values 1tf~~ by 

(0) 
1 xij.1tijk 

n 1t~?) 
I) . 

In this step we ensure that Equation (3.14) is satisfied, since (3.20) implies 

n1t~~) = x·· . 
1J. IJ. 

From (2.58) follows that the 1tm's in step 2 are adjusted by 

(2) 
1tijk 

Then (3.15) is satisfied since now 

n 

(1) 
xi.k 1tijk 

(1) 
1ti.k 

n1tf~~ = xi.k . 

In the third and last step of iteration 1 1tfI~ is adjusted by 

(3.20) 

(3.21) 
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(2) 
1P) = 1 x.jk1tijk 

1Jk n (2) 
1t.jk 

(3.22) 

to ensure that ensure that Equation (3.16) is satisfied. 

Steps 1 through 3 are now repeated until the 1t'S no longer change their values 
within a specified level, for example 0.0001. The resulting values of 1tijk are the 
ML-estimates ftijk, since now Equations (3.14), (3.15) and (3.16) are all satisfied. 

The method usually converges very fast. In addition the method is almost 
completely insensitive to the choice of initial values. It is customary, therefore, to 
choose the initial values 

(0) 1 
1tijk UK' 

Alternative to stopping the iterations when the 1t'S do not change any more within 
a specified limit, one can choose to stop when the expected values under the 
hypothesis do not change any more. Here a wise choice is a change less than 
0.001, which would ensure that the expected values are accurate up to the second 
decimal point. 

The conditions for a unique set of solutions to the likelihood equations are very 
simple for the log-linear model (3.2). The likelihood equations simply have a set 
of unique solutions if under a given hypothesis none of the sufficient marginals 
have the value zero. If there are zero's in one or more cells of a contingency table, 
we talk about incomplete tables. As there are only problems with the solution of 
likelihood equations when the sufficient marginals under a given hypothesis are 
zero, there may well be unique solutions also for incomplete tables and models not 
equivalent to the saturated model. Chapter 5 is devoted to a more thorough 
discussion of incomplete contingency tables 

EXAMPLE 3.1 (continued). We now demonstrate how the iterative proportional 
fitting procedure works for the data in Table 3.1 and ML-estimation under H j • 

Table 3.5 is Table 3.1 extended to include all the marginals we need for solving 
likelihood equations. 
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Sex 

Frequency of Age 
watching videos in years Boys Girls Total 

7 - 9 5 5 10 

Almost daily 10 - 12 4 3 7 

13 - 15 5 7 12 

Total 14 15 29 

7 - 9 28 14 42 

Every week 10 - 12 20 17 37 

13 - 15 27 33 60 

Total 75 64 139 

7 - 9 88 87 175 

Seldom or never 10 - 12 78 93 171 

13 - 15 100 81 181 

Total 266 261 527 

7 - 9 121 106 227 

Total 10 - 12 102 113 215 

13 - 15 132 121 253 

Total 355 340 695 

We start by setting all expected values equal to 695/18 = 38.61. Following (3.20) 
in step 1 we multiply xij. by 38.61/(38.61 +38.61) = 0.5, since k has two levels. This 
gives the expected numbers in the next table. 
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Frequency of 
watching videos 

Almost daily 

Every week 

Seldom or never 

Total 

Age 
in years 

7 - 9 

10 - 12 

13 - 15 

Total 

7 - 9 

10 - 12 

13 - 15 

Total 

7 - 9 

10 - 12 

13 - 15 

Total 

7 - 9 

10 - 12 

13 - 15 

Total 
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Sex 

Boys Girls Total 

5.0 5.0 10 

3.5 3.5 7 

6.0 6.0 12 

14.5 14.5 29 

21.0 21.0 42 

18.5 18.5 37 

30.0 30.0 60 

69.5 69.5 139 

87.5 87.5 175 

85.5 85.5 171 

90.5 90.5 181 

263.5 263.5 527 

113.5 113.5 227 

107.5 107.5 215 

126.5 126.5 253 

347.5 347.5 695 

In step 2 the expected numbers in this table are, according to (3.21), adjusted by 
the factor 

The number in cell (111) is thus multiplied by 14114.5 = 0.9655, giving 4.83. The 
expected numbers after two steps are 
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Frequency of 
watching videos 

Almost daily 

Every week 

Seldom or never 

Total 

Age 
in years 

7 - 9 

10 - 12 

13 - 15 

Total 

7 - 9 

10 - 12 

13 - 15 

Total 

7 - 9 

10 - 12 

13 - 15 

Total 

7 - 9 

10 - 12 

13 - 15 

Total 

Boys 

4.83 

3.38 

5.79 

14.00 

22.66 

19.96 

32.38 

75.00 

88.33 

86.31 

91.36 

266.00 

115.82 

109.65 

129.53 

355.00 

57 

Sex 

Girls Total 

5.17 10.00 

3.62 7.00 

6.21 12.00 

15.00 29.00 

19.34 42.00 

17.04 37.00 

27.62 60.00 

64.00 139.00 

86.67 175.00 

84.69 171.00 

89.64 181.00 

261.00 527.00 

111.18 227.00 

105.35 215.00 

123.47 253.00 

340.00 695.00 

Finally in step 3 the numbers in this table are, according to (3.22), adjusted with 
the factor 

X.jk 

(2) 
1t.jk 

The number in cell (111) is thus multiplied by 1211115.82 = 1.0447, giving 5.05 
The expected numbers after step three are shown in the table below together with 
the expected values after the final iteration, which in this case, using the BMDP 
package, was iteration number 3. 
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Sex 

Boys Girls Total 

Frequency 
of watching Age Final Final Final 

videos in years Step 3 values Step 3 values Step 3 values 

7-9 5.05 5.02 4.93 4.98 9.98 10.00 

Almost daily 10 - 12 3.14 3.11 3.88 3.89 7.02 7.00 

13 - 15 5.90 5.87 6.09 6.13 11.99 12.00 

Total 14.09 14.00 14.90 15.00 28.99 29.00 

7-9 23.67 23.55 18.44 18.45 42.11 42.00 

Every week 10 - 12 18.57 18.59 18.27 18.41 36.84 37.00 

13 - 15 33.00 32.87 27.07 27.13 60.07 60.00 

Total 75.24 75.00 63.78 64.00 139.02 139.00 

7-9 92.28 92.43 82.63 82.57 174.91 175.00 

Seldom 10 - 12 80.28 80.31 90.84 90.69 171.12 171.00 

13 - 15 93.10 93.26 87.85 87.74 180.95 181.00 

Total 265.66 266.00 261.32 261.00 526.98 527.00 

7-9 121.00 121.00 106.00 106.00 227.00 227.00 

Total 10 - 12 101.99 102.00 112.99 113.00 214.98 215.00 

13 - 15 132.00 132.00 121.01 121.00 253.01 253.00 

Total 354.99 355.00 340.00 340.00 694.99 695.00 

As is easily seen, the first cycle of three steps has already brought us close to the 
solutions, in spite of the fact that we started out with the same expected number 
in each cell. Thus only a few more iterations of step 1 to step 3 are required, in 
this case 2. 

Although the iterative proportional fitting procedure is almost always used, it is for 
3-way tables only necessary for the estimation of parameters under HI' For all 
other models there is an explicit solution to the likelihood equations. These 
solutions follow from Theorem 3.2 when we replace the 1t'S on the right hand sides 
with the corresponding sufficient marginals divided by the sample size n, for 
example 1ti.k with xi.k/n, 1ti" with xi/n etc. Then the 1t'S on the left hand side 
obviously satisfy the likelihood equations, since the sufficient marginals for a given 
hypothesis is equal to its mean value. As an example (3.15) and (3.16), which are 
the likelihood equations H2, are satisfied for 

ft"k = (x· kX 'k) I (nx k) , 1J I..J " 

since Equation (3.15) becomes 
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and Equation (3.16) becomes 

The validity of the remaining relationships can be verified in the same way. A 
survey of these results is given in Table 3.5. 

TABLE 3.5. Estimated cell probabilities under hypotheses H2 through H7. 

Hypothesis Estimated cell probability 

ft··k = (x· kX ·k) / (nx k) 1J 1..J .. 
ft··k = (x· x .k) / n2 

1J 1 ... J 
ft··k = x ·k / (nI) 1J .J 

ft··k = (x. x· x k) / n3 
1J 1.. .J. .. 

ft··k = (x . x k) / (n2I) 1J .J ... 
ft··k = x k / (nIJ) 1J .. 

ftjjk = 1 / (IJK) 

3.4 Testing hypotheses 

For a 3-way contingency table, there are seven prototypes of hypotheses we may 
want to test, namely Hl through H7. In order to do so, we apply Theorem 2.4, 
since all hypotheses can be formulated in terms of canonical parameters being set 
equal to 0 within a log-linear model. Equation (2.30) then shows that all we have 
to do is calculate the value of -2"ln(L) with the canonical parameters, estimated 
under the hypothesis, inserted and with the canonical parameters, estimated without 
the hypothesis, inserted. This task is greatly facilitated by the fact, that -2In(L) for 
the multinomial distribution (3.1) is 

-21nL = -2:E:E:E Xijk ln7tjjk • 
i j k 

Accordingly it suffices to estimate the cell probabilities under and without the 
hypothesis. For the purpose of testing hypotheses we need not bother with deriving 
the estimates for the log-linear parameters, that is the 'C's, which as we have seen 
are functions of the estimated cell probabilities. It follows that if ftijk are the 
estimated cell probabilities under the hypothesis H, and ftijk the estImated cell 
probabilities without this hypothesis, the test statistic (2.30) takes the form 
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Z(H) = 2E E E XijkOnftijk - Inftijk) . (3.23) 
i j k 

Z(H) is under H, according to Theorem 2.4, approximately distributed as a X2-
distributed random variable with degrees of freedom equal to the number of 
unconstrained log-linear parameters which are set to zero under H. Without H, that 
is in the saturated model, the ML-estimates for the cell probabilities are ftijk=XjjI!n 
so that (3.23) takes the form 

Z(H) = 2E E:E Xijk(ln~jk-ln(nftijk») . (3.24) 
i j k 

The test statistics thus have the well-known form 

2:E :E :E observed· (In ( observed) -In ( expected») . 
i j k 

Note that it is not necessary to calculate the ML-estimates for the log-linear 
parameters if we only want to test hypotheses, since the Z-test statistic only 
depends on the estimated 1t's. In view of the iterated proportional fitting method, 
which provides estimates for the 1t'S but not for the "C's, this is an obvious 
advantage. 

The degrees of freedom for the approximating X2-distribution are the number of 
log-linear parameters specified to be o. Hence it is easy, by simple counting, to 
find the number of degrees of freedom for testing each of the hypotheses HI to H7. 

For HI there are (I-l)(1-1)(K-1) 3-factor interactions, which are assumed 0, which 
is then the number of degrees of freedom. For H2, in addition, (1-1)(1-1) 2-factor 
interactions are 0, such that the number of degrees of freedom become 

(1-1).(1 -1) ·(K-1) +(1 -1)·(1 -1) = (I -1)·(1 -I)·K 

All the degrees of freedom df(H) for the various hypotheses are listed in Table 3.6. 
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TABLE 3.6. Number of degrees of freedom df(H) for Z(H) , H = HI, ... ,H7. 

H Parameters set equal to 0 df(H) 

HI ~~=O (I - I)(J - I)(K - 1) 

H2 #~=~=O (I - l)(J - I)K 

H3 :ti~ = :u = ~~ = 0 (I - I)(KJ - I) 
H* j . ~ = j. = ~~ = 'tt = 0 KJ(1 - I) 4 

~~~ = ~~ = ~~ = ~~ = 0 H4 1JK-1-J-K+2 

Hs H4 and 'tt = 0 1KJ-J-K+l 

H6 H4 and 'tt = 't~ = 0 1KJ - K 

H7 H4 and ~ = ~ = 't~ = 0 1KJ - 1 

In order to test the hypotheses we thus compute the test statistics 

z(H) = 2E L L xij(lnxjjk -In (nftjjk) ) , 
j j k 

where nftjjk are the estimated expected numbers H, and reject H if 

Z(H) > X2I_idf(H» 

(3.25) 

where a is the chosen level for the test, for example 0.05. If H is one of the types 
presented in the start of section 3.2, the number of degrees of freedom for Z is 
found in Table 3.6. If H is not one of the hypothesis in Table 3.6, the degrees of 
freedom are obtained by interchanging I, J and K in the same way as the letters A, 
Band C are interchanged. 

It may happen that we only want to test one specific hypothesis; in which case the 
test statistic (3.25) and the test procedure just outlined can be used. But a far more 
common situation is that we want - among many candidates - to find a hypothesis, 
which can be accepted at a reasonable low test level, and for which the correspon­
ding model has a simple and relevant interpretation. In order to search for such a 
hypothesis and its corresponding model, there are several possible strategies, which 
we shall study in more detail in section 3.6. Some important strategies are based 
on a sequential procedure, where the relative merits of two hypotheses Ho and H~ 
are compared by means of the sequential test statistic (2.34). Before we apply 
(2.34), note that Ho must be included in H~ in the sense that all 't's, which are 0 
under H~, also are 0 under Ho. To test Ho against H~ is thus equivalent to testing 
the hypothesis that those 't's, which are not already assume 0 under H~, are 0; that 
is we test that 

'tj = 0 , j = 1, ... ,r , (3.26) 

but not that 'tj = 0 , j =r+l, ... ,m. A sequential testing of Ho against H~ is thus the 
same as testing (3.26) assuming that 
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'tj = O,j = r+l, ... ,m. (3.27) 

We shall use the symbol H c H"', for situations where all log-linear parameters, 
which are assumed 0 in H~ are also assumed 0 under HQ• 

From the definitions given at the start of section 3.2 it is now clear that we have 
the relationships 

and 
H7 c H6 c Hs c H4 c H3 c H2 c HI 

H7 c H6 c Hs c H/ c H3 C H2 c HI . 

For any two hypotheses H and H*, which according to these relationships satisfy 
He H* it then follows from (2.34) and (3.25) that 

Z(H I H *) = Z(H) -Z(H *) 

= 2L E E Xjjk(ln(nff:j~k)-ln(nftjjk») , 
j j k 

(3.28) 

where ff:jjk are the estimated cell probabilities under Rand ft*jjk the estimated cell 
probabilities under R*. 

According to Theorem 2.6 Z(R IR"') is approximately X2-distributed with degrees 
of freedom 

df(H IR"') = df(H) - df(H*) . 

If we want to evaluate the goodness of fit of the hypothesis 

AC 
H: 'tjk = 0 for all i and k , 

given that -cft~ = -rty = 0 for all i, j and k , we are testing H3 against H2, and the 
sequential test statistic to use is 

where according to Table 3.5 

and 

* ft··k = (X- kX ·k) I (nX k) IJ I..J .. 

ft·· k = (X- X ·k) I n2 . IJ I...J 

The number of degrees of freedom for Z(H3IH2) is 

df(H3) - df(H2) = (1 - 1)(KJ - 1) - (I - 1)(J -1)K = (I - l)(K - 1) , 

which is also the number of unconstrained -rt~' s. 
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EXAMPLE 3.2. Possesion of a freezer. 
One of the questions included in the 1976 Danish Welfare Study was whether there 
was a freezer in the household or not. Table 3.7 shows the cross-classification of 
this categorical variable, called A, with categories "yes" and "no", and variables 
B: Social group, with four categories (cj Example 1.1) and C: Ownership, with 
categories "Owner" and "Renter", dependent on whether the interviewed owned his 
or her dwelling or rented it. 

TABLE 3.7. The sample in the Danish Welfare Study cross-classified according 
to Possession of a freezer, Social group and Ownership 

c: Ownership 

A: Freezer B: Social group Owner Renter 

I-II 304 92 
Yes III 666 174 

IV 894 379 
V 720 433 

I-II 38 64 
No III 85 113 

IV 93 321 
V 84 297 

Source: Hansen,E.J. (1978): The Distribution of Living Conditions. Publication 82. 
Danish National Institute for Social Research. Copenhagen: Teknisk Forlag. The 
table is constructed from the data base available at the Danish Data Archives. 
Odense. Denmark. 

Table 3.B shows the test statistics for the hypotheses H] to H7. 

TABLE 3.8. Test statistics and levels of significance for HI to H7 for the data in 
Table 3.7. 

Sufficient Degrees level of 
Hypothesis marginals Z(H) of Significance 

freedom 

H1 AB,AC,BC 5.97 3 0.113 
H2 AC,BC 7.38 6 0.287 
Ha. BC,A 661.06 7 0.000 
H4 BC 2122.83 8 0.000 
H4 A,B,C 783.30 10 0.000 
Hs B,C 2245.08 11 0.000 
Hs C 3056.32 14 0.000 
H7 3094.51 15 0.000 

From Table 3.B it follows that hypotheses H] and H2 can be accepted, while all 
the remaining hypotheses are rejected. H2 has the association diagram shown in 
Figure 3.2. 
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A: Freezer 

>'~' 
B : Social group 

FIGURE 3.2. Association diagram for H2 . 

The interpretation of H2 is A.lB I C; that is there is no association between position 
according to social group and possession of a freezer, if we look at owners and 
renters separately. 

According to Table 3.5 we have explicit expressions for the estimated cell 
probabilities under H2. The expected numbers under H2 are thus easily derived. 
The expected number in cell (1,1,1), for example, is 

2584,342 
= 306.42 . 

2884 

The expected numbers in all the cells under H2 are shown in Table 3.9. 

TABLE 3.9. Expected numbers under H2 for the data i Table 3.7. 

A: Freezer B: Social group C: Ownership 
Owner Renter 

I-II 306.42 89.78 
Yes III 672.88 165.18 

IV 884.33 402.88 
V 720.37 420.15 

1-11 35.58 66.21 
No III 78.12 121.82 

IV 102.67 297.12 
V 83.63 309.85 

This example can be used to illustrate the important point, that conditional 
independence given a third variable does not necessarily imply unconditional 
independence. As Figure 3.2 shows ownership of a freezer and social group are 
independent variables among owners as well as among renters taken separately. 
But if we study the marginal distribution of variables A and B shown in Table 
3.10, they are no longer independent. 
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TABLE 3.10. The marginal contingency table of variables A and B. 

Freezer 

Social group Yes No 

1-11 396 102 
III 840 198 
IV 1273 414 
V 1153 381 

The z-test statistic for independence between A and B computed from the numbers 
in Table 3.10 is 

z = 16.36, df = 3 . 

Since X2 O.95( 3) = 7.81 we must reject a hypothesis of independence (marginally) 
between social group and the possession of a freezer. 

As Example 3.2 demonstrated conditional independence does not necessarily imply 
marginal independence, that is AlBIC does not imply AlB. 

3.5 Interpretation of the log-linear parameters 

It is a consequence of the definition (3.2) of the log-linear parameters that the 
higher their values, the larger the value of the expected numbers for those cells 
which have subscripts in common with the parameter in question, and the lower 
their values, the smaller the value of the expected numbers. It thus follows that a 
negative value of a log-linear parameter means that the expected numbers are less 
that if the parameter in question is 0, while a positive value, on the other hand, 
means that the expected numbers become larger than if the parameter has the value 
O. Finally since all log-linear parameters according to (3.3), (3.4) and (3.5) sum to 
o over all indices, their values illustrate the relative importance of the various 
interactions as compared to the baseline value O. 

As an example, if the value of ~ is positive for a given combination of i and j, 
then the expected values in cells with A at level i and B at level j have larger 
values than if ~ = O. Example 3.2 illustrates this. 

EXAMPLE 3.2 (continued). As we saw in section 3.4, the hypothesis H2 can be 
accepted for the data in Table 3.6. Under H2 the model contains the following 
parameters: 't/C, 'tjlj1C, 'tiA, 't/ and 't/. The ML-estimates for these parameters 
are shown below: 
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.AC 
'tlk k=1 2 

i = 1 0.462 -0.462 
2 -0.462 0.462 

·BC 't 1k k=1 2 

j = 1 0.119 -0.119 
2 0.208 -0.208 
3 -0.102 0.102 
4 -0.225 0.225 

·A 't l i = 1 2 

0.614 -0.614 

·B 
'tj j = 1 2 3 4 

-0.794 -0.096 0.486 0.405 

·C 
'tk k=1 2 

0.032 -0.032 

The interactions between A: Possession of a freezer and C: Ownership shows that 
more owners than renters have afreezer. The interactions between B: Social group 
and C: Ownership shows that owners are more often found in the high social 
groups, while renters are more oftenfound in the lower social groups. The main 
effects 1,/ tell us that marginally, there are more Danes with a freezer in the 
household than without. According to the relative magnitude of the 1./'s there are 
more Danes in the lower social groups, and finally the tj c, s show that there are 
about the same number of owners and renters. 

3.6 Choice of model 

In discussion of contingency tables it is tradition to talk about models rather than 
hypotheses. In fact, for every hypothesis HI to H7 there is a corresponding 
multinomial model (3.1) with cell probabilities defined by (3.2), without those log­
linear parameters included which are specified as zero under the hypothesis. Under 
the hypothesis H3, for example, all three-factor interactions and all two-factor 
interactions between A and B and between A and C are O. This means that the 
model corresponding to H3 is a multinomial distribution, where the cell pro­
babilities 1tijk satisfy 
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This model is simpler than the saturated model (3.2), both in the sense that there 
are fewer parameters to keep track of, and in the sense that it has a simpler 
interpretation. The purpose of a statistical analysis of a contingency table is 
basically to describe the data in the table by a statistical model as simple as 
possible. Testing the hypotheses we considered in section 3.3 is thus part of a well 
structured statistical analysis. 

Often one does not have a specific model in mind prior to the analysis. Confronted 
with the data the only possible approach is to try different models and evaluate 
their relative merits. For three-way contingency tables (in contrast to higher order 
contingency tables) it is possible to list all possible hypotheses and the correspon­
ding models, together with the z-test statistics (3.19) for goodness of fit of the 
model. If we omit all hypotheses connected with uniform distribution over 
categories, that is the generic types H:, Hs, H6 and H7, the list is even short 
enough to be displayed in a convenient table. From such a table, it is then in many 
cases possible to choose directly a suitable model to describe the data. 

EXAMPLE 3.2 (continued). Table 3.11 shows for the data in Table 3.6 the test 
statistics for all possible hypotheses except hypotheses of uniform distribution over 
categories 

TABLE 3.11. Test statistics for all possible hypotheses except hypotheses of 
uniform distribution over categories for the data in Table 3.6. 

Hypothesis 
Sufficient 
marginals 

AB,AC,BC 
AB,AC 
AB,BC 
AC,BC 
AB,C 
AC,B 
BC,A 
A,B,C 

z(H) 

5.97 
113.27 
644.70 

7.38 
766.95 
129.62 
661.06 
783.30 

df 

3 
6 
4 
6 
7 
9 
7 
10 

Level of 
signif. 

0.113 
0.000 
0.000 
0.287 
0.000 
0.000 
0.000 
0.000 

Table 3.11 shows that those hypotheses we chose to consider in Table 3.7 were 
indeed well chosen, since all hypotheses obtained from the generic types H 2 and 
H3 by interchange of letters (indicated by parentheses in Table 3.11) obviously can 
not be accepted at any reasonable level. 

There is a common and basic problem connected with using tables like Table 3.11 
where many possible models are compared, especially for multi-way contingency 
tables, where the number of possible hypotheses to test - and thus models to 
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compare - can be unmanageably large. The problem is that if we test all hypotheses 
at the same level, for example a = 0.05, the level for the simultaneous test 
becomes much larger. By test level, we shall in this connection mean the 
probability of (incorrectly) rejecting a true hypothesis. In Table 3.11 there are 8 
test statistics z(H). Even in a most favorable situation, where all test statistics are 
independent - which they definitely are not in this case - the simultaneous test level 
will with level a = 0.05 in each individual test, be 

I - (1 - 0.05)8 = 0.337 . 

This, as we shall see below, is the probability that at least one true hypothesis is 
rejected. If we thus perform 8 tests, each with probability 0.05 of rejecting a true 
hypothesis, then in the end the probability is more than 113 that we have rejected 
at least one true hypothesis. 

In order to show that if each test is performed at level 0.05, then the simultaneous 
test level is 0.337, let the test statistic for the j'th test be Zj and let 

P( Zj ~ Cj ) = 0.05 , 

where Cj is the critical value, for example x5.95(3) for Zl' Then the probability of 
incorrectly rejecting at least one true hypothesis is 

P( Zj ~ Cj for at least one j ) = 1 - P( Zj < Cj for all j ) . 

If the Zj' s are independent it follows from the rules of probability calculus that 

m 
P(Z.<c. for all j) = 11 P(Z.<c.) 

J J j=l J J 

and hence 

P( Zj ~ Cj for at least one j ) = 1 - (1 - a)m , 

if each test has level a and there are m tests. This is the formula we used above 
with m=8 and a = 0.05. 

To cope with simultaneous test situations, one possibility is to use the so-called 
Bonferroni procedure. This test procedure guaranties that the simultaneous test 
level for several tests does not exceed a. In its original form the Bonferroni 
procedure simply prescribed to use the test level aim for each of m hypotheses 
tested simultaneously. Unfortunately the cost of this guaranty is that the actual 
simultaneous test level usually becomes considerably lower than a. Holm (cf. 
bibliographical notes) has improved the Bonferroni procedure, by developing a 
sequential Bonferroni procedure, for which the simultaneous test level is kept 
much closer to the intended level a, while still guarantying a simultaneous level 
of at most a. 
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The sequential Bonferroni procedure is as follows: 

(i) Ordering. The m test statistics ZI' .. , ,Zm are ordered according to increasing 
level of significance, that is if zl' ... ,zm are the observed values of the test 
statistics, then the ordered Z's, Z(1)' Z(2)' ... ,Z(m) satisfy 

p(Z(1)~z(1») s; ... s; p(Z(m)~z(m») . 

(ii) Step 1. The hypothesis connected with Z(1) is treated first. If 

p(Z(1)~z(l») > ~ 
m 

we accept all m hypotheses and the procedure stops at step 1. If on the other hand 

p(Z(l)~z(1») S; ~ 
m 

then H(1) is rejected and the procedure continues. 

(iii) Step 2. Now the hypothesis connected with Z(2) is treated. If 

P(Z(2)~Z(2») > ~ 
m-l 

all subsequent hypotheses H(2)' ... ,H(m)' i.e those connected with Z(2)' ... ,Z(m)' are 
accepted and the procedure stops. If 

we reject H(2) and continue the procedure. 

(iv) Steps 3 to m-1. The procedure continues in the same way with Z(3)' Z(4) and 
so on, until we no longer reject hypotheses. In step 3 we use a/(m-2) in the 
inequalities, in step 4 a/(m-3), etc. 

(v) Step m. If all hypotheses, except the one connected with Z(m)' has been 
rejected, that is we have carried out m-l steps of the procedure, the last step is to 
accept H(m) if 

and reject if 

The best way to illustrate the use of the procedure is to apply it. 



70 THREE-WAY CONTINGENCY TABLES 

EXAMPLE 3.3. Opinion on sports jointly with the opposite sex. 
The data in Table 3.12 is from an investigation of Danish school children. Among 
other things, they were asked about their views concerning sports at school. The 
three categorical variables considered here are: 

A: Opinion on sports jointly with the opposite sex. 
B: School category. 
c: Sex. 

TABLE 3.12.625 Danish school children cross-classified according to Opinion on 
sport jointly with the opposite sex, School category and Sex. 

A: Opinion on B: School C: Sex 
joint sport category Boys Girls 

Vocational school 27 13 
Very good idea Commercial school 15 40 

High school 31 103 

Vocational school 31 10 
Good idea Commercial school 21 43 

High school 51 67 

Vocational school 12 6 
Bad idea Commercial school 23 18 

High school 38 29 

Vocational school 2 3 
Very bad idea Commercial school 7 4 

High school 14 17 

Source: Scholin, B. (1989): The activities in and attitudes towards sport among Danish 
school children, age 16-19. (In Danish). Danish School for Higher Physical Education. 
(Dan marks H0jskole for Legems0velser.) 

Note: Between the age of 16 and 18 Danish school children can choose between three 
types of high schools (or junior colleges); one leading to vocational jobs, like carpenters, 
automechanics or electricians, one leading to commercial jobs in stores or in offices, and 
finally the traditional high school leading to further theoretical education. 

lfwe use the data in Table 3.12 to order the 8 hypotheses in Table 3.11, identified 
by their sufficient marginals, according to increasing value of the level of 
significance, we get Table 3.13, where also the value ofO.051(9-j) for j = 1, ... ,8 is 
shown. 
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TABLE 3.13. Eight hypotheses for the data i Table 3.12 ordered according to 
increasing value of the level of significance. 

Sufficient Level of 
Hypothesis marginals z(H) df signif. 0.05/ (9-D 

j=1 H(1) AB,C 73.44 11 0.00000 0.00625 
2 H(2) A,B,C 79.71 17 0.00000 0.00714 
3 H(3) AB,AC 48.68 8 0.00000 0.00833 
4 H(4) AC,B 54.95 14 0.00000 0.01000 
5 H(S) AB,BC 39.81 9 0.00001 0.01250 
6 H(S) BC,A 46.08 15 0.00005 0.01667 
7 H(7) AC,BC 21.33 12 0.04581 0.02500 
8 H{81 AB,AC,BC 11.50 6 0.07400 0.05000 

If we follow the sequential Bonferroni procedure, we must reject the first 6 
hypotheses and when in step seven 0.04581 > 0.025, we accept the remaining two 
hypotheses H(7) and H(8). Note here that Hm with sufficient marginals AC and 
BC, is accepted at level 0.05, although the level of significance for a direct test is 
0.046 < 0.05. This example thus shows that when testing several hypotheses one 
should not to be too strict with obeying the prescribed over-all level of 
significance. 

In the process of choosing a model we can also use the sequential test statistic 
(3.28), where two nested hypotheses H c H* are compared. This means that 
instead of comparing the model corresponding to H to the saturated model by 
means of Z(H), we evaluate the goodness of fit of the model corresponding to H 
by comparing it to H*, where H* corresponds to a more complicated - although not 
the saturated - model by means of 

Z(HIH*) = Z(H)-Z(H*) = 2}:}:}: Xjjk(ln(nftjJk>-ln(nftijk») . 
i j k 

This is equivalent to testing if the model under hypothesis H describes the data as 
well as the model under the alternative hypothesis H*. 

EXAMPLE 3.3 (continued). Suppose that for the data in Table 3.12 we have 
decided to test the fet of various models in such a way that we try in tum to omit 
the interactions -c1. f, -c11, -c1f and -rJf in that order. This means that a priori we 
regard it as most likely that the two-factor interaction between Opinion on joint 
sport with the other sex and School category can be omitted, and it is least likely 
that the two-factor interaction between Sex and School category can be omitted. 
This leads to the four hierarchically ordered hypotheses shown in Table 3.14. Also 
shown in the table are the observed values of Z(H) and Z(H /H*). 
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TABLE 3.14. Four hierarchically ordered hypotheses for the data in Table 3.12 
shown with z(H) and z(H IH\ where H* is the previous hypothesis in the list. 

Sufficient Omitted Level of Level of 
H marginal interaction z(H) df sign. z(H IH*) df sign. 

H1 AB,AC,BC ABC 11.50 6 0.074 
H2 AC,BC AB 21.33 12 0.046 9.83 6 0.132 
H3 BC,A AC 46.08 15 0.000 24.75 3 0.000 
H4 A,B,C BC 79.71 17 0.000 33.63 2 0.000 

Table 3.14 shows that the three-factor interactions can be omitted and that also 
the two-factor interactions between variables A and B can be omitted. Both these 
conclusions are in agreement with the conclusion from the sequential Bonferroni 
procedure. 

In order to illustrate that it occasionally happens that we want to test uniform 
distribution over categories when all the variables are independent, we return to 
Example 3.1. 

EXAMPLE 3.1 (continued). Table 3.15 shows the test statistics for a sequence of 
models applied to the data in Table 3.1. 

TABLE 3.15. Test statistics for selected hypotheses for the data in Table 3.1, 
where z(H IH*) is the sequential test statistic and H* the previous hypothesis in the 
list. 

Sufficient Omitted Level of Level of 
H marginals interaction z(H) df signif. z(HIH*) df signif. 

H1 AB,AC,BC ABC 6.78 4 0.148 

H2 AB,BC AC 7.37 6 0.288 0.59 2 0.745 

H3 AB,C BC 9.08 8 0.336 1.71 2 0.245 

H4 A,B,C AB 13.61 12 0.326 4.53 4 0.339 

Hs A,B C 13.93 13 0.379 0.32 0.572 

H6 A B 17.16 15 0.309 3.23 2 0.199 

H7 A 620.90 17 0.000 603.75 2 0.000 

For these data the independence hypothesis with sufficient marginals A,B, C is 
accepted, and we have the possibility, given independence, to check uniform 
distribution over categories. Table 3.15 shows that all variables have a uniform 
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distribution over categories except variable A: Frequency of watching videos. The 
final model is thus a model with sufficient marginals A,B and C, but with uniform 
distribution over the categories of variables Band C, that is Age and Sex. The 
uniform distribution over Age and Sex means that the sample is representative of 
the population of school children age 7 to 15 since there is approximately the same 
number of boys and girls and the same number for each 3-year age interval in the 
population. The association diagram for the final model is shown in Figure 3.3. 

• A: Watching videos 

* B:Sex 

* C:Age 

FIGURE 3.3. Association diagram for a model with sufficient marginals A, Band 
C and uniform distribution over the categories of variables B and C, 

3.7 Detection of model deviations 

It often happens that an otherwise interesting model is rejected as a satisfactory fit 
to the data, in some cases clearly against the data collector's expectations. Such 
cases call for a closer inspection of the data. It may for example be that the model 
fits the data except for a few cells. The model is then rejected on the weight of the 
model deviations in these few cells. In case there is a natural explanation for the 
behavior in these few cells, one can give a more accurate summary of the search 
for a model, for example a statement like: "By and large the following simple 
model fits the data, except for a few - to be expected - model deviations connected 
with the following combinations of variable categories .... ". The way to find out 
if we are in such a situation, is to use standardized residuals. A residual is the 
difference between the observed and the expected number in cell (ijk) under a 
given hypothesis H, that is 

(Xijk - nftijk) , 

where ftijk is the estimated cell probability under H. The standardized residuals are 
then 

(3.29) 

where 
(3.30) 
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and oTjk is an estimate of arjk' 

Since the model is a log-linear model, oTjk is obtained by inserting the estimates 
ftijk under H in formula (2.46). The design matrix W and the inverse of M are not 
computed as a by-product of the iterative proportional fitting procedure and thus 
have to be computed separately. On the other hand, the calculations needed to 
estimate the standard errors of the ML-estimates for the log-linear parameters are 
easy. Surprisingly many major statistical program packages still do not pro-vide 
standardized residuals, although they compute the standard errors for the ML­
estimates and often also the elements of H. 

For all the decomposable models, where we have closed forms for the expected 
values, it can be shown that there are also a closed form for o-rjk' The required 
expression is obtained by noting from Table 3.5 that all expected values for 
decomposable models for a certain b have the form 

where x[vJ and n[vJ are totals of the contingency table. It was shown by Haberman 
(see biographical notes) that the values of oTjk are the given by 

2 [ [b I b 1 J] O"ijk = Pijk 1 -Pijk :E - -:E - . 
v=! x[v] v=2 n[v] 

(3.31) 

The values of (3.31) for hypotheses H2, H3 and H4 are shown in Table 3.16. 

TABLE 3.16. Estimated variances of the residuals for hypotheses H2, H3 and H3. 

Hypothesis Estimated variance o-rjk of the residuals 

Pijk(1 - xLk I x .. k)(1 - x.jk I x .. k) 

Pijk(1 - x.jk I n)(1 - XL I n) 

Pijk(1 - xi .. x.j. I n2 - xLx .. k / n2 - x.j.x .. k / n2 + 2xi..x.j.x .. k I n3) 

There is a standardized residual for each cell in the contingency table and rijk is 
approximately distributed as a standard normal random variable. Model deviatIOns 
are, therefore, most likely to be found in cells for which 

Quantities like the standardized residuals ( often in program packages called 
"adjusted" residuals) are known in modem statistics as diagnostics. 

It is important to keep in mind that any of the generic types of hypotheses assumes 
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that all the interactions of a certain type are O. But we may face situations where 
almost all interactions of a certain type are zero, expect for a few large ones. The 
hypothesis is then rejected on the weight of these few large interactions. In case 
there is a natural explanation for these few interactions to be large, one can then 
give a more accurate summary of the search for a model, for example: "By and 
large the following simple model fits the data, except for a few large interactions 
between the following variables .... ". The diagnostics for detecting such situations, 
are the standardized parameter estimates, for example 

f~B 
1J 

for 't'(~ where 

2 AB [ AB] 0' ('too ) = var t.. , 
1J 1J 

Also the standardized parameter estimates are approximately distributed as standard 
normal random variables. They can, therefore, be used to detect combinations of 
levels i and j for which 

indicating cells where the model fit is poor. 

EXAMPLE 3.4. Broken marriages. 
We have for this example selected the following variables from the Danish Welfare 
Study (cf Example 1.1 and 3.2): 

A: Social group 
B: Sex 
C: Broken marriage or not 
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The cross-classification of these categorical variables is shown in Table 3.17. 

TABLE 3.17. The sample from the Danish Welfare Study cross-classified 
according to Social group, Sex and Broken marriage or not. 

A: Social B:Sex C: Broken marriage 

group Yes No 

Men 14 102 
Women 12 25 

II Men 39 15 
Women 23 79 

III Men 42 292 
Women 37 151 

IV Men 79 293 
Women 102 557 

V Men 66 261 
Women 58 321 

Source: The data base of the Danish Welfare Study. Cf. Example 3.2. 

Note: Because of more modem forms of living, for example in Denmark in 1974, 
'marriage' is a common term for both a formal marriage and a permanent relation­
ship. 

Table 3.18 shows the test statistics for all the hypotheses of generic types HI' H2, 

H3 and H4· 

TABLE 3.18. Test statistics for 8 hypotheses and the data in Table 3.18. 

Sufficient Level of 
Hypothesis marginals z(H) df signif. 

H1 AB,AC,BC 19.89 4 0.001 
H2 AB,AC 20.38 5 0.001 
H2 AB,BC 24.78 8 0.002 
H2 AC,BC 215.67 8 0.000 
H3 AB,C 25.18 9 0.003 
H3 AC,B 216.07 9 0.000 
H3 BC,A 220.47 12 0.000 
H4 ABC 220.88 13 0.000 

Obviously none of the hypotheses can be accepted at a reasonable test level, which 
means that no simple model with an interesting interpretation can be found based 
on this data set. There is, however, a pattern in the sizes of the observed test 
statistics and the levels of significance. This phenomenon is further illustrated by 
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the sequential tests in Table 3.19, where the models are compared with the model 
having sufficient marginals AB, AC, BC, that is hypothesis Hi' 

TABLE 3.19. Sequential test statistics for some of the hypotheses in table 3.18. 

Hypothesis Sufficient Level of 
marginals z(HIH1) df significance 

H2 AB,AC 0.49 1 0.483 
H2 AB,BC 4.89 4 0.300 
H3 AB,C 5.29 5 0.382 

A model with sufficient marginals AB, C thus describes the data in the contingency 
table just as well as a model with sufficient marginals AB, AC, BC. The model 
under H3 is interesting, since it has the interpretation C 1. A,B and hence the 
association diagram shown in Figure 3.4. 

A : Social group I · ~::: .. 
B:Sex 

FIGURE 3.4. Association diagram for the model AB, C. 

A model with interpretation C 1. A,B means that whether one has a broken 
marriage or not is independent of sex and social group; that is broken marriages 
occur equally frequently among men and women and the probability of having a 
broken marriage is the same in all five social groups. Unfortunately H 3 does not 
fit the data, but this might be due to a few deviations from the expected pattern 
under H3 in the cells. In order to explore this possibility, we consider the 
standardized residuals under H3, shown in Table 3.20. 
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TABLE 3.20. Standardized residuals for the data in Table 3.l8 under H3. 

A: Social B: Sex C: Broken marriage 

group Yes No 

Men -1.56 1.56 
Women 2.42 -2.42 

II Men 1.16 -1.16 
Women 1.38 -1.38 

III Men -2.51 2.51 
Women 0.83 -0.83 

IV Men 2.07 -2.07 
Women -1.54 1.54 

V Men 1.39 -1.39 
Women -1.19 1.19 

As the table shows, it is in fact only 4 of the 20 cells that account for the model 
deviations, in the sense that the residuals are substantially larger numerically than 
2. These four cells are interesting. In social group I, there are more women that 
we should expect who have a broken marriage. Virtually all women in social group 
I in Denmark in 1974 had academic degrees because very few women had top 
positions in the private sector. The fact that so many broken marriages were found 
among women in social group I, therefore, gave rise to the headline "Academic 
women in top" for the article where these data were first presented; In social 
group Ill, on the other hand, men seem to have a broken marriage less often than 
women. In 1974 men in social group III were to a large extent owners of small 
businesses such as grocery stores, carpenter firms or sanitary repair firms. In such 
businesses the wife was often part of the firm as bookkeeper, giving a hand in the 
store, or taking the telephone calls. One explanation could therefore be that a 
couple would hesitate to divorce, because both partners are needed to secure the 
income. The reason for women with an academic degree to divorce more often can 
have several explanations. One might be more economical freedom. 

3.8 Bibliographical notes 

The classical book on log-linear models for contingency tables is Bishop, Fienberg 
and Holland (1975), which contains all basic results including the asymptotic 
results for estimators and tests. For general reference readers are referred to the 
recent monographs covering log-linear models for contingency tables by 
Christensen (1990), Agresti (1990) and Andersen (1990). General references for 
graphical models are Whittager (1990) and Edwards (1995). 

The log-linear parametrization for three-way tables was introduced by Birch (1963). 
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The theory of log-linear models for contingency tables was developed by Goodman 
(1968). The major papers by Goodman are collected in the monograph by 
Goodman (1978). A wealth of statistical important results, including the asymptotic 
theory for estimators and tests, was given by Haberman (1974) on a high 
mathematical level. An easier accessible account is given in the two volume book 
Haberman (1978), (1979). 

Graphical representations for associations in log-linear models were introduced by 
Goodman (1972) and (1973). A general theory for graphical models was developed 
by Darroch, Lauritzen and Speed (1980), cf. also Lauritzen (1996). 

The sequential Bonferroni procedure was introduced by Holm (1979) and further 
developed by Schaffer (1986). Standardized residuals for the multinomial 
distribution were introduced by Rao (1973). For contingency tables they were fully 
developed by Haberman (1974). 

3.9 Exercises 

[In some of these exercises it is necessary to apply statistical packages like SPSS, 
BMDP or SAS to compute test statistics and parameter estimates. For readers 
without access to such packages a number of key test statistics and parameter 
estimates are given for selected exercises in the Appendix.] 

3.1 Consider a 2x2x2 contingency table where all the expected numbers are equal 
and the total is n = 480. 

(a) Show that all log-linear parameters except 'to are zero. 

(b) Estimate both 'to and 't~. 

3.2 Consider a 2x2x2 contingency table with observed numbers 

A = 1 

2 

8=1 

2 

8=1 

2 

C = 1 2 

71 

50 

18 

21 

18 

38 

31 

91 

(a) Estimate the log-linear parameters ~ for all i and j. 

(b) Estimate the main effects 't~ for all j. 
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3.3 For a 3x2x2 contingency table let the expected values be 

C = 1 2 

A=1 B=1 40.5 28.7 

2 34.7 36.5 

2 B=1 64.6 31.4 

2 70.4 41.5 

3 B = 1 56.7 32.7 

2 13.5 7.8 

(a) Compute the values of the interactions ~~ for all j and k. [ Hint: Use an 
analogue to the formula just after Equation (3.6) in Section 3.1. ] 

(b) Compute the values of the main effects 't~. 

3.4 Consider a 4x5x3 contingency table. 

(a) Calculate the number of unconstrained log-linear parameters for all interactions 
and main effects ( except 'to ). 

(b) Check that the numbers you found in (a) add up to 59. Why is the total 59? 

3.5 Consider the hypotheses HI through H4 given by 

HI: 

H2: 

H3: 
>I< 

H4 : 

H4: 

rather than those given at the start of Section 3.2. 

for all i, j and k 

for all i, j and k 

for all i, j and k 

for all i, j and k 

for all i, j and k 

(a) Write down the interpretations of H2 through H4 in the same manner as in 
Theorem 3.1. 

(b) Give the exact expressions for 1tijk under H2 through H4 in terms of the 
marginals of 1tijk' 

(c) Draw the association diagrams of H2 through H4. 
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3.6 Reconsider the data in exercise 3.2. 
(a) Estimate the expected numbers under the model AC, BC. 

(b) Draw the association diagram for the model in (a). 

Under the model AB, AC, BC the estimated expected numbers are 

A= 1 

2 

8=1 

2 

8=1 

2 

C = 1 2 

70.3 

50.7 

18.7 

20.3 

18.7 

37.3 

30.3 

91.7 

81 

(c) Carry out steps 1 through 3 of iteration 1 for the iterative proportional fitting 
procedure, as described in Section 3.3, Example 3.1 and compare the results 
obtained with the expected values shown above. 

(d) Test the fit of both model AC, BC and model AB, AC, BC. 

3.7 The table below shows the Non-response ( variable A ) cross-classified with 
Sex (variable B) and Residence (variable C) in a survey conducted by the Danish 
National Institute of Social Research. 

C: Sex 

A: Response 8: Residence Male Female 

Copenhagen 306 264 

Yes Cities 609 627 

Countryside 978 947 

Copenhagen 49 76 

No Cities 77 79 

Countryside 103 114 

(a) Determine a suitable model which fits the data. 

(b) Draw the association diagram for the chosen model and interpret the model. 

(c) Compute the ML-estimates of any 2-factor interactions in the model based on 
the expected numbers under the model. What do they tell you about the way the 
variables interact? 

3.8 The Swedish Traffic Authorities counted the number of persons killed in the 
traffic in trial periods of 18 weeks in 1961 and 18 weeks in 1962. In 9 weeks of 
each of these periods a speed limit of 90 km per hour was imposed, while in the 
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remaining 9 weeks of the periods there were no speed limits. The number of killed 
were cross-classified according to A: Speed limit or not, B: Year and C: Type of 
road. 

c: Type of road 

A: Speed limit B: Year Main Secondary 

90 kmlhour 1961 8 42 

1962 11 37 

Free 1961 57 106 

1962 45 69 

(a) Use direct or sequential tests to determine a simple model which fits the data. 

(b) Make an interpretation of the selected model based on an association diagram. 

(c) Compute the z(H)-test statistics for the following models in tum and apply the 
sequential Bonferroni procedure. 

AB,AC,BC 
AC,BC 
AC,B 
AC 
A,B,C 
A,C 
C 

3.9 Radio Denmark conducted in 1985 a survey of the interest among TV-viewers 
concerning the length (variable A) of the Saturday afternoon TV-program called 
"Saturday Sports" featuring various sports events. The Preferences (variable A) as 
regards the length of the program were cross-classified with Age (variable B) and 
Sex (variable C). The results were 

A: Preference C: Sex 

of length B: Age Male Female 

Less than Under 40 65 77 

2 hours Over 40 81 80 

2% to 3% Under 40 63 39 

hours Over 40 50 38 

4 hours Under 40 59 32 

or more Over 40 30 6 

(a) Find a suitable simple model which fits the data. 
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(b) Explain how you have used test statistics to select the model. 

(c) Draw the association diagram of the selected model and give an interpretation 
of the model. 

(d) Compute the expected values under the chosen model. 

3.10 Twins can be either Monocygotes (corning from one egg) or Dicygotes 
(coming from different eggs). Monocygotes can be expected to have identical 
genetical characteristics. Twin studies are, therefore, important in genetic research. 
In order to test the hypothesis that alcohol abuse is hereditary information was 
collected in Finland and Sweden on alcohol abuse of the second twin, if alcohol 
abuse was already established for one of the twins. The table below shows the 
results. 

C: Alcohol abuse 

A: Country B: Twin type Both Only one 

Finland Monocygote 159 1102 

Dicygote 220 2696 

Sweden Monocygote 132 1171 

Dicygote 165 1756 

(a) Select a simple model, which fits the data and draw its association diagram. 

(b) What does the association diagram tell you about alcohol abuse being 
hereditary? 

(c) Are there differences in alcohol abuse between the two involved Scandinavian 
countries? 

3.11 Derive the expressions in Table 3.16 from Equation (3.24). 

3.12 Compute the standardized residuals for models (a) AB, BC, (b) A, BC and (c) 
A, B, C for the data in Exercise 3.10. 



Chapter 4 

Multi-dimensional contingency tables 

4.1 The log-linear model 

An m-dimensional contingency table is an m-dimensional array of observed counts 

with index i1, ... ,im, which is the result of a cross-classification of m categorical 
variables. When Ij is the number of categories for variable number j, the range of 
ij is 

The dimension of the contingency table is thus II ..... ~. 

We shall use I. J, K, and L, instead of 11,12,13 and 14 when the contingency table 
is of dimension 2, 3 and 4, and use the capital letters A,B,C and D as generic 
names for the categorical variables. 

As statistical model for an m-dimensional contingency table we shall use a multi­
nomial model, such that the vector of random variables 

(X1l... 1 "",XIII2'''~) 

connected with the observed counts 

has the distribution 

(Xll...l ... ·'XIII2 ... Im) - M(n;1tll ... l, ... ,1tIl ... lm) . (4.1) 

This model can also arise from a Poisson model, where the X's are independent 
Poisson distributed, cf. the remark in section 2.6 and formula (2.28). 

The multinomial model for a multi-dimensional contingency table is called a log­
linear model, if the mean values 
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have the parametric structure 

1 AB ... S ABC QRS nil. . = 'to . + ... + 'to . + ... + 'to . . 
"\ ... lm 1) ... lm 1) ... 13 Im-2Im-)1m 

(4.2) 
AB RS A S 

+ 't.. + ... + 'to . + 'to + ... + 'to + 'to . 1)12 'm-)Im I) 1m 

If a 't-pararneter has more than one subscript it is called an interaction, while a 't 
with only one subscript is called a main effect. With N subscripts an interaction 
is called an N-factor interaction. Thus with il=i, i2=j, i3=k and i4=1, ~~? is the 
4-factor interaction between variables A, B, C and D, while ~ is the 2-factor in­
teraction between variables A and B, and 'tiA is the main effect for variable A. As 
in section 3.1 (Equations (3.4) to (3.6)), the interactions and main effects are nor­
malized so that they sum to zero over all indices, for example 

Since a contingency table is a cross-classification of m categorical variables, a very 
common application is to describe the result of a survey. If a random sample of n 
individuals is drawn from a population and for each individual we have observed 
the response on m questions in a questionnaire, all with a finite number of response 
categories, the cell count in cell (ii' ... ,im) is the number of individuals, who have 
responded in category il on question A, in i2 on question B, etc. If all n individuals 
have answered the questions independently, the multinomial model (4.1) is 
obviously the correct model. Alternatively to saying that question A is answered 
in category ii' we may say that variable A is observed at level ii' the latter 
expression being the most general. Hence the cell probabilities in (4.1) are 

1ti) ... im = peA is observed at level ii' B at level i2 , ... , S at level im ) . 

The log-linear model (4.2) may seem complicated at first sight, but is in fact a very 
convenient way of keeping track of important hypotheses. Matters are also 
considerably simplified by the fact, as will be shown below, that we seldom need 
to write the full expression or even estimate the many interactions that are part of 
a typical model. 

That model (4.2) is a log-linear model, as introduced in section 2.9, is readily seen 
from the defining Equation (2.39) for a log-linear model. The design matrix is on 
the other hand rather complicated because of the many constraints imposed by all 
subscripts adding to zero. Since the model is log-linear any hypothesis, defined in 
terms of interactions or main effects, can, however, be tested by Z-test statistics of 
the form 
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111m 

Z(H) = 2.L ···.L Xil .. .im{In~I .. .im -lnl\ ... im) , (4.3) 
II =1 Im=1 

where H is a hypothesis specified by setting a certain subset of log-linear 
parameters equal to O. In (4.3) 

where the ft's are the estimated cell probabilities. 

The fact that the test statistic (4.3) depends only on the expected mean values 
under H has important consequences for the statistical analysis of contingency 
tables. The iterative proportional fitting method results in estimated expected values 
rather than ML-estimates of the log-linear parameters. Hence we do not need 
additional computations in order to calculate the value of Z(H) by Equation (4.3). 

The asymptotic distribution of Z(H) is a X2-distribution with df(H) degrees of 
freedom, where df(H) is the number of unconstrained 't's, which are 0 under H. 

The significance level of H is evaluated by 

p = P(Z(H)~z(H)) .. P(Q~z(H)) (4.4) 

where z(H) is the observed value of Z(H), and 

By a sequential test, we can evaluate the goodness of fit of the data under the 
model corresponding to H against the model corresponding to H*, where H is a 
model with more log-linear parameters assumed to be zero than under H*, i.e. 
H c H*. For a sequential test, the test statistic is 

Z(H I H*) = Z(H) - Z(H*) (4.5) 

with level of significance 

where Q_X2( df(H)-df(H*)). As we recall, if the value of (4.6) is above a certain test 
level, for example 0.05, we accept H as compared with H*. This means that the 
model corresponding to H describes the date as well as the model corresponding 
to H*. Since the model corresponding to H is the simpler one, we would then 
prefer this model as a description of the data. 
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For contingency tables of high dimensions, there are many hypotheses and models 
to track. This is a consequence of model (4.2) being a saturated model, in the 
sense that it is equivalent to a multinomial model with no constraints on the cell 
probabilities. For three-dimensional tables, which we treated separately in chapter 
3, there are a limited number of possible hypotheses and models, such that in 
principle one can take a look at the fit of all the possible models. This is not the 
case for higher order tables. Hence it becomes essential that we develop strategies 
to determine which models to inspect during the statistical analysis. Already for 4-
way contingency tables there are so many possible models that it is difficult to set 
up a reasonable listing order for the hypotheses under consideration. It is, on the 
other hand, possible to make a classification of special generic types of hypotheses. 
This facilitates the interpretation of a model, once found satisfactory by a goodness 
of fit test. 

The 4-way contingency table is attractive as an illustration of multiple contingency 
tables, because, on the one hand, the number of possible models to consider is rich 
enough to illustrate the problem of model search strategies and, on the other hand, 
the number of generic or typical models is limited, making a description of basic 
principles possible. 

4.2 Classification and interpretation of log-linear models 

We shall increasingly talk about models rather than hypotheses. As we have seen, 
to every hypothesis H, defined as a certain subset of the log-linear parameters 
being 0, there is a corresponding model, where the log-mean value of the counts 
is defined as the sum of those log-linear parameters not assumed to be 0 under the 
hypothesis. 

It is important to repeat that for 4-way tables, we use the subscripts i, j, k and I 
rather than iI' i2, i3 and i4. For a 4-way contingency table the observed counts are 
thus denoted 

Xijkl ' i = 1, ... ,1 , j = 1, ... ,J , k = 1, ... ,K , I = 1, ... ,L 

and the saturated log-linear model is 

ABCD ABC BCD 
InJlijkl = 'tijkl +'tijk + ... +'tjkl 

(4.7) 

where Jlijkl=E[Xijk1]. 

As an example of a possible model consider the model corresponding to the 
hypothesis 
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ABCD ABC ABD 
HI : 'tijk1 = 'tijk = 'tij1 = 0 . (4.8) 

for all i, j, k and 1. The model corresponding to HI is uniquely defined by the 
sufficient marginals 

ACD, BCD, AB . (4.9) 

To see this, we recall that all likelihood equations have the form 

observed sufficient marginal = expected sufficient marginal 

for all sufficient marginals corresponding to interactions not being zero under the 
model. The equations corresponding to the sufficient marginals ACD and BCD are 

Xi.kl = E[Xi.kl] , for all i, k and I (4.10) 
and 

X.jkl = E[X.jk1] , for all j, k and I . (4.11) 

In addition there are a number of likelihood equations corresponding to two-factor 
interactions and main effects. The majority of these will follow automatically from 
(4.10) and (4.11), for example 

which follows from (4.10) by summation over 1. Only one equation corresponding 
to a 2-factor interaction can not be obtained by summation over either (4.10) or 
(4.11), namely 

Xij .. = E~jJ ' for all i and j. (4.12) 

It follows that the sufficient marginals for the model corresponding to the hypothe­
sis (4.8) are those on the left hand sides in Equations (4.10), (4.11) and (4.12), or 
in symbolic form: ACD, BCD, AB. 

It is now easy to recognize the general pattern. For a given hypothesis, we 

(a) write down all sufficient marginals corresponding to interactions 
of the highest dimension, which are not zero under the hypothe­
sis. 

(b) add all nOll-zero sufficient marginals of a lower dimension, which 
are not obtainable from the marginals in (a). 

As an example we apply this method of selecting sufficient marginals to the log-
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linear model under the hypothesis 

ABCD ABC ABD ACD 
H2 : 'tijkl = 'tijk = 'tijl = 'tikI = 0 . (4.13) 

Under (a) we must include the sufficient marginal x.jkl' or in symbolic form BCD. 
Among the 2-factor interactions those marginals corresponding to BC, BD and CD 
can be derived from x.jkl' but this is not the case for the 2-factor interactions 
corresponding to AC, AB and AD. If one does not want to check the many 
subscripts, an easy rule is the following: A two-factor interaction must be added, 
if the corresponding letter combination is not a subset of the letter combination for 
a 3-factor interaction, not assumed to be zero. Thus AC must be added, because 
the letters A and C are not a subset of the three letter group BCD. The model is 
accordingly determined by the sufficient marginals 

BCD, AC, AB, AD . (4.14) 

In this example we do not need to add sufficient marginals corresponding to main 
effects, since all letters are represented in (4.14). 

In general the rule is as follows: 

A lower dimension interaction between variables must be added, if the correspon­
ding letter combination is not a subset of the letter combination for a higher 
dimension interaction, not assumed to be zero under the model. 

Consider as an application the model corresponding to the hypothesis 

H3 : All 3 -factor and 4 -factor interactions are 0 

AB AC AD 
and 'toO = 't' k = 't' 1 = 0 . 

1J 1 1 

(4.15) 

In this case we first write down the interactions of highest dimension with 
sufficient marginals, which are not assumed to be zero, namely BC, BD, CD. In 
this case we have, however, to add the marginal Xi ... ' since the letter A is not 
represented in any of the included 2-factor interactions. Hence the sufficient 
marginals for the model are 

BC, BD, CD, A . 

The models corresponding to the hypotheses HI' H2 and H3 are all examples of 
hierarchical models. A model is hierarchical if no likelihood equation correspon­
ding to a sufficient marginal can be derived by summation over other likelihood 
equations, which corresponds to sufficient marginals defining the model. A model 
is therefore hierarchical, if it is uniquely determined by its sufficient marginals. 
The hypothesis 
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ABCD ABC ACD CD 
H4 : 'tijkl = 'tijk = 'tiki = 'tkl = 0 

does not, according to this definition, correspond to a hierarchical model, since all 
~~?'s are assumed to be 0, and the letter combination CD is a subset of ACD. 
Hence the likelihood equation E[X .. kl] = x .. kl corresponding to the sufficient 
marginal CD can be derived from the likelihood equation corresponding to ACD. 
By our rule H4 is uniquely determined by the sufficient marginals 

ABD, BCD, AB , 

which give no indication of the fact that we have assumed that 't~? = O. In the rest 
of this chapter we only consider hierarchical hypothesis. 

Note: The reason why non-hierarchical models are complicated to handle is primarily that the 
normalization and hence the definition of lower order interactions depends on the normalization of 
higher order interactions and accordingly which higher order interactions are included in the model. 

As yet another example consider the model with sufficient marginals 

ABC, AD, BD 

corresponding to the hypothesis 

ABCD ACD ABD BCD CD 
Hs : 'tijkl = 'tiki = 'tijl = 'tjkl = 'tkl = 0 . 

We can conclude from the sufficient marginals that 't~? = 0 because the sufficient 
marginal CD is missing and the marginal x .. kl can not be derived from the only 3-
factor marginal Xijk. included. A simpler way to express this is that the letter 
combination CD is not a subset of ABC. On the other hand ~ is not necessarily 
0, since the letter combination AB is a subset of ABC. 

It is impossible to list all models. But it is possible to list the main types of 
hierarchical models. This is done in Table 4.1. This table also contains several 
characterizations of the models, which will be introduced later. 
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TABLE 4.1. All main types of hierarchical models for a 4-way contingency table 
and their interpretations. 

Classifi- Sequence of Sufficient Interpretation Type 
cation hierarchical marginals 

models 

./ ABC,ABD,ACD,BCD - S 

./ ABC,ABD,ACD S 

./ ABC,ABD,CD S 
G,D ABC,ABD CloDIA,B I 

./ ABC,AD,BD,CD S 
ABC,AD,BD CloDIA,B I 

G,D ABC,AD DloB,CIA II 
G,D ABC,D Dl.A,B,C III 
G,D ABC Dl.A,B,C & D=u XI 

./ AB,AC,AD,BC,BD,CD - S 

./ AB,AC,AD,BC,BD CloDIA,B I 

./ AB,AC,AD,BC DloB,CIA II 
G AB,BC,CD,AD Al.CIB,D & BloDIA,C IV 

AB,AC,BC,D Dl.A,B,C III 
AB,AC,BC Dl.A,B,C & D=u XI 

./ AB,AC,AD BloCloDIA VII 
G,D AB,BC,CD Dl.A,B IC & Al.C,D IB V 
G,D ./ AB,AC,D Dl.A,B,C & BloC IA VI 
G,D AB,AC Dl.A,B,C & BloC IA & D=u X 
G,D AB,CD A,BloC,D VIII 
G,D AB,C,D A,BloC,D & CloD IX 
G,D AB,C A,BloC,D & CloD & D=u XII 
G,D AB A,BloC,D & CloD & C=D=u XIII 
G,D ./ A,B,C,D AloBloCloD XIV 
G,D ./ A,B,C AloBloCloD & D=u XV 
G,D ./ A,B Al.BloCloD & C=D=u XVI 
G,D ./ A AloBloCloD & B=C=D=u XVII 
G,D ./ AloBloCloD & A=B=C=D=u XVIII 

A sequence of models is hierarchically ordered if all interactions, which are 0 in 
one model are also 0 in all subsequent models. The models marked by a'/ in Table 
4.1 thus form a sequence of hierarchically ordered models. Obviously we obtain 
a sequence of hierarchically ordered hypotheses by successively setting interactions 
and main effects to o. The models marked with ,/ in Table 4.1 thus correspond to 
setting interactions and main effects equal to zero in the following order: 

(1): ~t? = 0 

(4): 't1i? = 0 

(7): 1? = 0 

(10): 't~~ = 0 

(13): 't~ = 0 

(2): 't~t? = 0 

(5): 't1it = 0 

(8): 't~t = 0 

(11): ~ = 0 

(14): 1 = 0 

(3): 't~~? = 0 

(6): 'tt? = 0 

(9): 't~ = 0 

(12): 't? = 0 

(15): -r-; = 0 



92 MULTI-DIMENSIONAL CONTINGENCY TABLES 

Most - but not all - the models in Table 4.1 can be interpreted by statements 
describing independence, conditional independence, or uniform distribution over 
categories. The easiest way to obtain the interpretation of a given model is to draw 
the association diagram for the model. An association diagram is drawn by 
plotting the four variables A, B, C and D as dots, and then connecting any two 
dots if the corresponding variables are both represented in the same interaction. 
Thus A and B are connected if either ABCD, ABC, ABD or AB are among the 
sufficient marginals defining the model. The generic types af association diagrams 
are shown in fig. 4.1 together with the interpretation of the model. 

In Table 4.1 is marked in the last column which of the types in Figure 4.1 the 
model belongs to. Note here, that several models can have the same association 
diagram and hence the same interpretation. Note also, that some of the models are 
equivalent to the saturated model. As an example of three models with the same 
association diagram and the same interpretation, consider the models with sufficient 
marginals 

M1: ABC, ABD , M2: ABC, AB, AD, BD and M3: AB, AC, AD, BC, BD 

By drawing the association diagram for each of these three models and comparing 
with fig. 4.1, we can see that they are all of type I and therefore equivalent in the 
sense of their interpretation. From the association diagram it is easy to derive the 
common interpretation for M I , M2 and M3. The rule is, as we recall, that two 
variables are independent, if they are not connected at all in the diagram, and 
conditionally independent, given a set of other variables, if they are only connected 
by a route passing through these variables. The rule of thumb is here to cover the 
conditioning variables by (literally) your thumb (or any other finger or a pencil). 
If you now see no connection between two variables, they are independent given 
the covered set of variables. By using this rule, we conclude, that the interpretation 
of type I is 

C..L DIA,B. 

In the association diagram for the models ABC, AD and AB, AC, AD, BC, having 
the same diagram, namely type n, we can only reach D from B or C by a route 
passing A. Hence the interpretation is 

D..L B,CIA. 
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A~B 
C 0 

Ar><:r 
C 0 

ARB 

C 0 

AVB 

C eo 

s: - I: C.LDIA,B II: Dl.B,CIA III: D.LA,B,C 

AX B 

C 0 

AZB 

C 0 
Ar.

B 

C eo 

Af::B 

C 0 

IV: A.LC IB,D v: D.LA,BIC VI: D.LA,B,C VII: Dl.Bl.C IA 
&B.LDIA,C & A.LC,DIB & B.LCIA 

A--B A--B 
Al.B Av. B 

c--o ce eo C * 0 C * 0 

VIII: A,B.LC,D IX: A,B.LC,D x: B.LCIA XI: D.LA,B,C 
& C.LD & D.LA,B,C & D=u & D=u 

A--B A--B Ae e B Ae e B 

ce *0 c* * 0 ce eo ce * 0 

XII: A,B.LC,D XIII: A,B.LC,D XIV: A.LB.LC.LD XV:A.LB.LC.LD 
& Cl.D & D=u & C.LD & C=D=u & D=u 

Ae e B Ae *B A* *B 

c* *0 c* *0 c* *0 

XVI: A.LB.LC.LD XVII: A.LB.LC.LD XVIII: A.LB.LC.LD 
& C=D=u & B=C=D=u & A=B=C=D=u 

FIGURE 4.1. Generic types of association diagrams for the models in Table 4.1 

It is important to note that two association diagrams can be of the same type, 
although they look different at first glance. An association diagram may thus 
sometimes seem to be missing in fig. 4.1. One example concerns the two models 
with sufficient marginals AB, AD, BC, CD and AB, AC, BD, CD. They are of the 
same type, namely type IV, as is readily seen by ex-changing the letters C and D. 
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As shown in fig. 4.2 the diagram is an "hour glass" (the one shown in fig 4.1) 
before the exchange of C and D and a "square" after. 

A~B 

c60 
ADB 
C 0 

FIGURE 4.2. Association diagrams for the models AB, AD, BC, CD and AB, AC, 
BD,CD. 

Another example is the diagram, type II, for model ABC, AD, which becomes an 
"axe" if we exchange B and A, while in fig. 4.1 it is an "arrow". Finally the "Z" 
for model AB, BC, CD in fig 4.1 becomes a "three-winged castle" if C and D are 
interchanged. 

For all models M with the same interpretation there is a most simple and a most 
complex model. There are thus a model Mmax and a model M min, such that Mmin 
cMcMmax . 

If a model M is the maximal model Mmax, the model is called graphic. The 
minimal model M min is defined by having all 2-factor interactions, corresponding 
to lines in the association diagram, as its sufficient marginals. 

In order to define Mmax we need the notion of a clique in an association diagram. 
If we visualize the association diagram as the description of 4 persons, A, B, C and 
D on a hiking trip, a line between two hikers mean that they communicate fre­
quently during the trip. A clique is then a group of hikers, who all communicate, 
and is not a subgroup of a larger clique. All hikers in a clique thus communicate, 
and for all hikers outside the clique, there is at least one in the clique with whom 
they do not communicate. In exact terms a clique is a maximal subset of points in 
the association diagram, which are all connected. For type I in fig. 4.1, there are 
thus two cliques ABC and ABD, while for type II the cliques are ABC and AD. 

A model is graphic if all interactions corresponding to cliques are included as suf­
ficient marginals in the definition of the model. For the models M1: ABC, ABD, 
M2: ABC, AD, BD and M3: AB, AC, AD, BC, BD with the same association 
diagram, MJ is by this rule the graphical model. For models M4: ABC, AD and 
Ms: AB, AC, AD, BC , also with the same association diagram, the graphical 
model is M4. For the models in fig. 4.2 the minimal and the graphical model coin­
cide because there are no 3-factor interactions and all included 2-factor interactions 
are cliques. The graphical models are marked by a "G" in Table 4.1, column 1. 

The graphical models are equivalent with their interpretation since the association 
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diagram can be derived from the interpretation. On the association diagram the 
cliques can then be identified and the model determined. On the other hand the 
interpretation can be derived from the association diagram, which is uniquely 
determined by the cliques, and thus the graphical model. 

An important subset of the graphical models is the subset of decomposable 
models. The exact definition of a decomposable model is quite complicated. For 
our purpose it suffices to say that a model is decomposable if it is graphical and 
it does not contain any 4-point cycle anywhere in the association diagram, 
independently of how it is drawn. A 4-point cycle is a set of four points, which 
does not contain any triangles. For 4-way tables only the type IV models in fig. 4.2 
and models obtained from these by exchange of letters, are graphical but not 
decomposable. For contingency tables of higher order, there are many graphical 
models which are not decomposable. In Table 4.1 the decomposable models are 
denoted by a "D" in column 1. 

The main property, which holds for decomposable models and not for any other 
type of model, is that there are explicit expressions for the solutions of the 
likelihood equations, i.e. the estimated expected values can be expressed explicitly 
in terms of the sufficient marginals. 

For all the decomposable model types in Table 4.1, the explicit expressions for the 
estimated mean values are shown in Table 4.2. 
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TABLE 4.2. Explicit expressions for the estimated expected values ~jk! for all 
decomposable models in Table 4.1. 

Sufficient 

marginals 

ABC, ABD 
ABC, AD 
ABC,D 

ABC 
AB, AC, AD 
AB,BC,CD 
AB, AC, D 

AB,AC 
AB,CD 
AB,C,D 

AB,C 
AB 

A,B,C,D 
A,B,C 

A,B 

A 

Explicit expressions 

for ~jk! 

x"k . x''! / x" 1J. 1J. 1J" 
x"k . x· ! / x. 1J. 1.. ''1 ... 

X"k . x ! / n 1J. ... 

x"k / L 1J . 
x" . x· k . x· ! / x. 2 1J.. 1.. 1.. ''1 ... 

Xij ... X,jk .. X .. k! / (X.j ... X .. k) 

x" . X· k • x ! / (n . x· ) 1J.. 1..... 1... 

Xij.. • XLk. / (L . ~.J 
x" . x k1 / n 1J.. .. 
x" . x . x / n2 

1J.. ..k. ...1 
Xij ... X .. j. / (nL) 
Xij .. / (KL) 
X· • X· • x . x / n3 

1... .J.. ..k. ...1 
X· • X· • x / (n2L) 

1... .J.. ..k. 

Xi... • X.j .. / (nKL) 

Xi... / (JKL) 

For nondecomposable models it is necessary to apply the iterative proportional 
fitting method to obtain the estimated expected values. The iterative proportional 
fitting method on the other hand, as is evident from Table 4.3 and the description 
of the method in section 3.3 for 3-way tables, provide the solutions after just one 
iteration in case there are explicit solutions. For computer programming, it is 
therefore easier to use the iterative proportional fitting method in all cases, rather 
than building a library of exact solutions for the decomposable models. 

EXAMPLE 4.1. Truck collisions. 
The datafor this example were collected in England in two periods: Thefirstfrom 
November 1969 to October 1971, the second from November 1971 to October 
1973. The observations were the number of collisions involving trucks in the two 
periods. In addition to the period, which we shall call variable D with two 
categories, the collisions were also classified according to three more categorical 
variables: 

A: Light conditions, with 3 categories Daylight, Night but illuminated road and 
Dark road. 
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B: Movement, with two categories Parked and Moving. 

C: Point of collision, with two categories in the Back or in the Front. ( The front 
included the rare collisions in the sides of the trucks.) 

Table 4.3 shows the observed number of collisions cross-classified over all four 
variables. 

TABLE 4.3. The observed number of collisions cross-classified over Light 
condition, Movement, Point of collision and Period. 

D: Period 

A: Light B: Movement C: Point of Nov. 69 to Nov. 71 to 
Conditions collision Oct. 71 Oct. 73 

Parked Back 712 613 

Daylight Front 192 179 

Moving Back 2557 2373 

Front 10749 9768 

Parked Back 634 411 

Night, Front 95 55 

illuminated street Moving Back 325 283 

Front 1256 987 

Parked Back 345 179 

Night, Front 46 39 

dark street Moving Back 579 494 

Front 1018 885 

Source: Leaflet from Transport and Road Research Laboratory. Department of Environment. 
Crowthorne. Berkshire. UK. October 1976. 

The study was undertaken because a new safety measure for trucks was introduced 
in October 1971 and the traffic authorities wanted to know if this safety measure 
had any effect on the number of collisions and on where the trucks were hit during 
a collision. To answer one of these questions a model with conditional independen­
ce between the variables Period and Point of collision given the two variables, 
describing different environment conditions, would be an interesting model. This 
type of independence is conditional independence of variables C and D given A 
and B corresponding to the type I graphical model ABC, ABD. 

Note: This is a typical situation where the correct model would be that the cell counts were 
independent Poisson distributed random variables. But, as we have seen, when we con­
dition on the total number of collisions in both periods, we get the multinomial model (4.1). 
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The estimated expected numbers under the model ABC, ABD are shown in Table 
4.4. 

TABLE 4.4. The estimated expected numbers under the model ABC, ABD for the 
data in Table 4.3. 

D: Period 

A: Light B: Movement C: Point of Nov. 69 to Nov. 71 to 
Conditions collision Oct. 71 Oct. 73 

Parked Back 706.2 618.7 

Day light Front 197.8 173.3 

Moving Back 2577.9 2352.1 

Front 10728.1 9788.9 

Parked Back 637.5 407.5 

Night, Front 91.5 58.5 

illuminated street Moving Back 337.2 270.8 

Front 1243.8 999.2 

Parked Back 336.4 187.6 

Night, Front 54.6 30.4 

dark street Moving Back 575.8 497.2 

Front 1021.2 881.8 

The values in Table 4.4 are copiedfrom a computer output, but can, in fact by the 
exact expressions in Table 4.2, be calculated directly from the marginals over C, 
over D and over both C and D. For example xU]. = 1325, xu.] = 904 and xlJ .. 
= 1696 yields 

111111 
1325·904 

= 706.2 . 
1696 

The fit of the model is very satisfactory, as the closeness of the observed counts 
and the expected numbers under the model strongly suggests. The Z-test statistic 
for the model has observed value 

z = 6.86, df = 6 , 

The level of significance of this result is p=0.334, which is not significant at any 
reasonable level. 
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4.3 Choice of model 

Altogether there are 28 hierarchical model types in Table 4.1. If we also count all 
those derived from the generic types in Table 4.1 by an interchange of letters, there 
are 166 different hierarchical models. Some of these are variations including 
uniform distribution over categories. Even if we exclude these, there remains 113 
different hierarchical models to search among. It follows that it is of vital 
importance for a successful statistical analysis, that a sound procedure for the 
selection of a satisfactory model is employed. 

In some situations we know beforehand, as was the case in Example 4.1, which 
model, or which small collection of models, is of interest. This is, for example, the 
case if there is a particular hypothesis, specified in terms of interactions being 0, 
we want to test. In this case we can use the test statistic (4.3), which for a 4-
dimensional table has observed value 

I J K L 

z(H) = 2L L L L Xijkl [In Xijkl -In Ctijk1] , 
i=l j=l k=l 1=1 

We reject the hypothesis, if the level of significance 

p = P(Q ~ z(H» , 

(4.16) 

(4.17) 

is suitable small, where Q - X2(df(H» and df(H) are the degrees of freedom for 
the approximating X2-distribution. If p is larger than a certain value, we accept H. 
Often H is accepted if p is larger than 0.05. In other situations there are two 
competing hypotheses Hand H* we want to compare. If this is the case, the 
purpose of the statistical analysis is to compare the fit of the data to the two 
models corresponding to the two hypotheses in question. Usually the task is to 
determine if a simpler model gives as good a fit as a more complex model. In this 
situation H and H must obey the relationship 

HcH* . 

We can then use the sequential test statistic (4.5), which for a 4-dimensional table 
has observed value 

z(H IH *) = z(H) -z(H *) = 2L L L L Xijkl[lni\jkl-In~jkl]' (4.18) 
i j k 1 

where iljjkl are the estimated expected numbers under H*, and ~jkl the estimated 
expected numbers under H. We would prefer the simpler model under H over the 
model under H* if 

p = P(Q ~ z(H IH*» (4.19) 

has a value larger than a specified level, for example p = 0.05, where 
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since this indicates that the fit under H is as good as the fit under H*. 

In most situations we must, however, start by evaluating the fit of various models 
by means of the test statistic (4.16). But (4.16) can be combined with the 
sequential test (4.18) if the possible candidates for a fit of the data to the model 
can be listed in a manageable short list. 

For models, which include interactions between 3 or more variables, it is in general 
difficult to interpret these interactions. Hence it is often a sensible first procedure 
to start with the model 

AB,AC,AD,BC,BD,CD (4.20) 

which only contains 2-factor interactions and then by sequential tests try to omit 
one or more of these two-factor interactions. We can then use the test statistic 
(4.18), with level of significance (4.19), to evaluate if an interaction can be 
omitted. This method of course is based on acceptance of the model (4.20). If the 
model (4.20) can not be accepted, we have to go back to a more complicated 
model, for example the saturated, and then use sequential tests (4.18) or direct tests 
(4.16) to see if the 4-factor interaction and subsequently one or more of the three­
factor interactions can be omitted without significantly worsening the fit of the 
model to the data. In this connection it is worth noting from Table 4.1, that 
relatively few model types with 3-factor interactions have interpretations in terms 
of independence or conditional independence. If the simplest model, which fits the 
data, does not have such an interpretation, and in addition contains interactions of 
dimension 3 or higher, very little can be said as a conclusion of the statistical 
analysis. There are, however, models with 3-factor interactions, which are of 
interest and where a useful statistical conclusion can be stated. Such an example 
is the model in Example 4.1 with sufficient marginals ABC, ABD, for which the 
interpretation is that variables C and D are independent given variables A and B. 

EXAMPLE 4.1 (continued). The model ABC, ABD fits the truck collision data in 
Table 4.34 well. In addition we show below in Table 4.56, by applying sequential 
tests, that no simpler, interesting model fits the data. Hence the conclusion is that 
the number of collisions in the back as compared to the number in the front of the 
truck, given the light and movement conditions, did not change from period 1 to 
period 2, i.e. before and after the introduction of the safety measure. The 
association diagram describing this independence is shown as Figure 4.3. 
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A: Light B: Movement 
conditions 

lX1 
C: Point of 0: Period 

collision 

FIGURE 4.3 Association diagram for the truck collision data under the model 
ABC,ABD. 

Table 4.5 shows the appropriate sequence of sequential test leading to the choice 
of the model ABC, ABD. 

TABLE 4.5 A sequence of sequential tests for the data in Table 4.3 

Model Minus z(H) df Level z(HIH') df Level 
sign. sign. 

ABC,ABD,ACD,BCD 2.42 2 0.298 

ABC,ABD,ACD BCD 4.26 3 0.235 1.84 0.176 

ABC, ABD, BCD ./ ACD 5.19 4 0.269 2.76 2 0.251 

ABC, ACD,BCD ABD 14.92 4 0.005 12.49 2 0.002 

ABD,ACD,BCD ABC 37.78 4 0.000 35.36 2 0.000 

ABC, ABD, CD ./ BCD 6.60 5 0.252 1.41 0.235 

ABC, BCD,AD ABD 19.88 6 0.003 14.69 2 0.001 

ABD, BCD,AC ABC 39.78 6 0.000 34.60 2 0.000 

ABC, ABD./ CD 6.85 6 0.335 0.26 0.612 

ABC,AD,BD,CD ABD 22.33 7 0.002 15.73 2 0.000 

ABD,AC, BC,CD ABC 41.49 7 0.000 34.90 2 0.000 

ABC, AD, BD ./ ABD 22.64 8 0.004 15.78 2 0.000 

ABD,AC,BC ACD 41.74 8 0.000 34.89 2 0.000 

ABC, AD BD 41.23 9 0.000 18.60 0.000 

ABC,BD AD 47.81 10 0.000 25.18 2 0.000 

AB,AC,AD,BC,BD ABC 57.57 10 0.000 34.93 2 0.000 

With '/, we have marked which model has been chosen in each step of the elimi­
nation procedure. It is worth noticing, that it is necessary to omit the twolactor 
interaction between variables C and D, before the association diagram becomes 
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the picture in fig. 4.3. We may also note, that a procedure, where we try to omit 
all 3-factor interactions before starting to omit 2-factor interactions will not lead 
to the model ABC, ABD. According to this procedure, we would try to fit the 
models ABC, AD, BD, CD and BCD, AB, AC, CD first, both of which are clearly 
rejected. The procedure would then have stopped with model ABC, ABD, CD of 
type S having the same association diagram as the saturated model. 

EXAMPLE 4.2. Smoking habits and headaches. 
This data set is from an investigation carried out by the Danish Institute for 
Building Research in January 1983. A random sample of Danes was interviewed 
with respect to a number of issues. Among the categorical variables, which was the 
result of questions asked, consider. 

A: Smoking habits, with the categories Smoker and Non-smoker. 

B: Age with categories Over 40 and Below 40. 

C: Sex, with categories Men and Women. 

D: Frequency of head aches, with categories More than once a week and Less 
the once a week. 

Table 4.6 shows the 2x2x2x2 contingency table of observed numbers for each 
combination of the categories of the four variables. 

TABLE 4.6. A random sample of Danes cross-classified according to the variables: 
Smoking habits, Age, Sex and Frequency of head aches. 

D: Frequencies of 
head aches 

A: Smoking 8: Age c: Sex More than Less than 
habits once a week once a week 

Under 40 Men 11 142 
Smoker Women 45 83 

Over 40 Men 11 145 
Women 15 76 

Under 40 Men 8 117 
Non-smoker Women 29 89 

Over 40 Men 7 113 
Women 8 80 

Source: Unpublished data from the Danish Institute for Building Research. 

For this data set we shall use a search strategy where we start by testing the fit 
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of the model AB, AC, AD, BC, BD, CD with all 2-factor interactions included, but 
without interactions of higher dimensions and successively try to omit 2-factor 
interactions from the model. 

The test statistic (4. 16) for the model AB, AC, AD, BC, BD, CD has observed value 

z(H) = 6.63, df= 5 

which corresponds to the level of significance 

p = P(Q ~ 6.63) = 0.249. 

Hence we can accept that a model without 3-factor and 4-factor interactions 
describes the data. 

The procedure is now to try to omit two-factor interactions one by one. The order 
in which we omit 2-factor interactions is determined by the level of significance for 
each new model. We could also have used the level of significance for the 
sequential tests, comparing each model with and without a 2-factor interaction 
included. That the interaction between A and B is the first we try to omit, is, 
therefore, due to the fact, that the level of significance is 0.344 for the model 
AC,AD,BC,BD, CD - which is the one, where AB is omitted - and that this level of 
significance is higher than for the other five models with two-factor interactions 
excluded. The test statistics and levels of significance for the steps of this search 
procedure are shown in Table 4.7. 

TABLE 4.7. Test statistics and levels of significance for the models obtained by 
successively omitting 2-factor interactions from the model AB, AC, AD, BC, BD, 
CD. 

Model Minus z(H) dt Level z(H IH') dt Level 
sign. sign. 

AB,AC,AD,BC,BD,CD 6.63 5 0.249 
AC,AD,BC,BD,CD AB 6.76 6 0.344 0.13 1 0.723 

AC,AD,BD,CD BC 9.08 7 0.247 2.32 1 0.128 
AD,BD,CD AC 12.30 8 0.138 3.23 1 0.072 
BD,CD,A AD 15.63 9 0.075 3.33 1 0.068 
CD,A,B BD 31.82 10 0.000 16.19 1 0.000 
A,B,C,D CD 85.25 11 0.000 53.43 1 0.000 

For this data set we are fortunate, that in order to reach a conclusion, it is not a 
question of choosing the level of significance for the various tests very carefully, 
for example in the interval between 0.05 and 0.01. From Table 4.7 it is quite 
obvious, that it is the step from model BD, CD, A to model CD, A, B, which 
seriously makes the fit of the model worse. The model BD, CD, A is thus the most 
simple model, which gives us a satisfactory fit. (A uniform distribution over the 
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categories of A, i.e equally many smokers and non-smokers marginally, is of no 
interest in this connection.} The association diagram for the model with sufficient 
marginals BD, CD and A is shown in Figure 4.4. 

A : Smoking B : Age 
habits 

~ 
C:Sex D : Frequency of 

headaches 

FIGURE 4.4. Association diagram for the model BD, CD, A 

The association diagram shows that the interpretation is 

A 1. B, C,D & C.l BID. 

Smoking habits are thus, it seems, independent of age as well as sex. Most 
important is, of course, that there is no connection between smoking habits and 
frequency of headaches, if these data are to be trusted. The conditional inde­
pendence of Band C given A is not very interesting. We must at least not fall for 
the "causality trap" of saying that frequency of headaches "explains" that age and 
sex are independent variables. This last independence is just a consequence of the 
simple fact that there are about the same number of men and women among those 
under 40, and the same is true for those over 40. It is more important to note, that 
frequency of headaches depends on both age and sex. This is well illustrated by 
the estimated 2-factor interactions shown in Table 4.8. 

TABLE 4.8. Estimated 2-factor interactions between variables B and D and 
between variables C and D. 

·BO 
'tj I 1=1 2 

Frequent headaches Infrequent headaches 

j=1 Under 40 0.195 -0.195 
2 Over 40 -0.195 0.195 

·CO 
't kl 1=1 2 

Frequent headaches Infrequent headaches 

k=1 Men -0.355 0.355 
2 Women 0.355 -0.355 

Relatively fewer men thus suffer from frequent headaches, and the frequency of 
headaches declines over the years. 



MULTI-DIMENSIONAL CONTINGENCY TABLES 105 

4.4 Diagnostics 

In situations where the model search and the hypotheses tested does not lead to a 
satisfactory simple model, it is important to have diagnostics to tell us which cells, 
or which combinations of categories, we should inspect closer. The most important 
of these diagnostics are the standardized residuals, defined as 

(4.21) 

where 

(4.22) 

and the Pijkl are the estimated expected numbers under the model. The symbol var 
means that the estimated values of the parameters are inserted in the variance 
formula given below as (4.23). The distribution of rijkl is approximately a standard 
normal distribution, so values higher than 2 numerically are indications of a poor 
model fit. The formula for (4.22) is known, although a bit complicated, namely 

(4.23) 

where the hijk1's are the diagonal elements of the "hat"-matrix H, defined by the 
general formula (2.45), with the necessary adjustments to the log-linear model for 
a 4-way table. For the present we shall not go into more details, as regards the 
exact form of H. The necessary calculations must at any rate be done by a 
computer, and, as noted in section 2.9, the formulas are well suited for computer 
programming. 

Sometimes it is also helpful to look at the standardized interactions, i.e the ML­
estimates of the interaction parameters divided by their standard error. For the 3-
factor interaction between variables A, B and C, for example, the standardized 
interaction is defined as 

(4.24) 

where 

( ABc)2 A ABC 
~ijk = var[tijk ]. 

By the general theory in chapter 2, ML-estimates are approximately normally 
distributed. Hence the quantities (4.24) are approximately normally distributed with 
mean 0 and variance 1. So again values numerically larger than 2 call for a closer 
inspection. It follows that if the value of (4.24) is larger than 2 or smaller than -2 
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for values i, j and k there is a positive or negative connection between the variables 
A, B, and C, which manifests itself especially for cells where the combination of 
the subscripts contain i, j and k, i.e. cells (ijkl), (ijk2), ... , (ijkL). 

Finally there is Cook's distance, which is a measure for how much a cell 
contributes to the values of the ML-estimates for the log-linear parameters. We 
return to Cook's distance in more detail in chapter 7. For the present, it suffices 
to say the following: Let 't be the vector of log-linear parameters and M the matrix 
defined by formula (2.43). Then Cook's distance is given by 

(4.25) 

where N is the number of unconstrained 't's and t(ijld) is the vector of log-linear 
parameters estimated without using the data in cell (ijkl). Since the variance matrix 
of tis M-1/n, Cook's distance is a scaled difference between the estimates we get 
if all cells are included in the estimation and the estimates we get if all cells except 
cell (ijkl) are included. It follows that Cook's distance measures the influence of 
the data in cell (ijkl) on the estimated parameter values. It has been shown (cf. 
bibliographical notes) that an approximation to Cook's distance is the following 

1 2 hijk1 
= N rijkl 1 -h~ 

ijkl 
(4.26) 

Cook's distance is thus l~rge if a residual is large, but also if the value of hijk1 is 
close to 1. The quantity hijk1 is called the leverage, and is an important indicator 
for any cell of the contingency table. It follows from (4.23), for example, that the 
reduction in the variance of the residual as compared to the "binomial" variance 
n 1t (1 - 1t) is large if the leverage is close to 1 and small if the leverage is close 
to o. From (4.26) it further follows that the influence of a cell on the parameter 
estimates can be large, even though the residual is moderate, namely if the leverage 
is close to 1. 

Example 4.3. Employment status. 
In 1974 the Danish National Institute of Social Research made an investigation of 
1314 employee's who had left their job during the second half of the year. These 
lay-offs we cross-classified according to the following three categorical variables: 

A: Employment status on January 1, 1975, with categories Got a new job and 
Still unemployed. 

B: Cause of lay-off, with categories Closure of firm (incl. reduction of the 
number of employees) and Replacement by another employee. 
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C: The length of the employment prior to the lay-off, with 5 categories. 

The counts obtained by cross-classifying these 3 variables are shown in Table 4.9. 

TABLE 4.9. A sample of employees cross-classified according to Employment 
status on January 1st, Cause of lay-off and Length of employment prior to the lay­
off. 

C: Employment status on January 1, 1975 

A: Length B: Cause of Got a Still 
of employment lay-off new job unemployed 

Less then 1 month Closure 8 10 

Replacement 40 24 

1-3 month Closure 35 42 

Replacement 85 42 

3 month to 1 year Closure 70 86 

Replacement 181 41 

1-2 years Closure 62 80 

Replacement 85 16 

2-5 years Closure 56 67 

Replacement 118 27 

More than 5 years Closure 38 35 

Replacement 56 10 

Source: Kja:lr, A. (1978): Redundancy in the Labour Market. Literature and concepts. (In Danish). 
Study no. 36. The Danish National Institute of Social Research. Copenhagen: Teknisk Forlag. 

TABLE 4.10. Test statistics for different models applied to the data in Table 4.9. 

Model Minus z(H) df Level z(HIH*) df Level 
sign. sign. 

AB,AC,BC 9.02 5 0.108 
AB,BC AC 24.63 10 0.006 15.62 5 0.008 
AC,BC AB 64.62 6 0.000 55.61 1 0.000 
AB,AC BC 165.92 10 0.000 156.91 5 0.000 

Table 4.10 shows all the test statistics, if we try to omit one of the 2-factor 
interactions from the model. At first glance there is no indication of a reduction 
from the model AB, AC, BD, with an association diagram where all Ihe variables 
are connected. Jfwe take a look at the standardized residuals in Ta.ble 4.11, we 
gain some hope, however. The residuals are computed under the model AB, BC, 
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because we are primarily interested in a connection between the chance of getting 
a job relatively soon again, and the length of employment prior to the lay-off. 

TABLE 4.11. Standardized residuals for the employment data in Table 4.9 under 
the model AB, Be. 

C: Employment status on January 1, 1975 

A: Length B: Cause of Got a Still 
of employment lay-off new job unemployed 

Less then 1 month Closure -0.11 +0.11 

Replacement -3.12 +3.12 

1-3 month Closure -0.04 +0.04 

Replacement -3.29 +3.29 

3 month to 1 year Closure -0.23 +0.23 

Replacement +1.55 -1.55 

1-2 years Closure -0.55 +0.55 

Replacement +1.63 -1.63 

2-5 years Closure -0.04 +0.04 

Replacement +1.12 -1.12 

More than 5 years Closure +1.17 -1.17 

Replacement +1.42 -1.42 

The residuals in Table 4.11 shows that there are two model modifications which 
seems to point to a satisfactory model. One is to study only individuals with 
variable B at level 1, i.e. those who have been laid-off due to closures and 
reductions. If this is the reason for the lay-off all the residuals are insignificant in 
value, and we should expect independence between variables A and C. We may 
write this as A.l C I B( 1), B( 1) meaning B at level 1. 

The second possible model modification is based on the observation that the 
residuals are all of the same size and magnitude for variable A at levels 1 and 2, 
and all residuals are insi!?n~ficant for variable A at levels 4 to 6. If we thus split 
the persons in two groups: Those with a very short employment prior to the lay-off 
and those with a reasonably long employment, i.e. over 3 month at the time of the 
lay-off, we should expect independence between variables A and C given B. That 
this is true is confirmed by Table 4.12, which shows the same test statistics as in 
Table 4.10, but now only for persons with length of employment over 3 months at 
time of lay-off. 
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TABLE 4.12. Test statistics for different models applied to the data in Table 4.10, 
when only persons with an employment length of more than 3 months, prior to the 
lay-off, are included in the data. 

Model Minus z(H) df Level z(HIH') df Level 
sign. sign. 

AB,AC,BC 0.52 3 0.914 
AB,BC AC 2.19 6 0.902 1.67 3 0.644 
AC,BC AB 18.46 6 0.005 17.94 3 0.001 
AB,AC BC 154.96 4 0.005 154.44 1 0.001 

4.5 Model search strategies 

For contingency tables of higher dimensions than 4, it is impossible to keep track 
of all hierarchical models. Even to decide in which sequence one should test the 
fit of the graphical models is a difficult problem. There are good reasons for 
limiting attention to the graphical models. They are for example the maximal 
models with a given interpretation. Hence further reductions within the class of 
hierarchical models with the same association diagram would not change the 
interpretations in terms of independence and conditional independence, but only in 
some cases reduce the number of higher order interactions, making the inter­
pretation of the estimated log-linear parameters easier. 

In the years 1983 to 1985 a number of search strategies among graphical models 
were introduced (see the bibliographical notes). In Example 4.5 we shall for a 5-
way table demonstrate the following simple strategy. Consider first the association 
diagram for the saturated model, where all points are connected. From this base 
model the steps of the procedure are as follows. 

Step 1. Try to remove all lines in the association diagram one by one. This gives 
rise to a number of new graphical models. The model among these with the highest 
level of significance, thus fitting the data best, is then taken as the next base 
model. 

Step 2. From the base model chosen in step one (with one line missing in the 
association diagram) we then try to remove each of the remaining lines one by one 
again giving rise to a number of new graphical models. The model among these 
with the highest level of significance is then the next base model. It has of course 
an association diagram with two lines missing in the association diagram. 

Steps 3 and the following; In each new step the procedure in step 2 is repeated 
until the next base model has a level of significance which clearly indicates, that 
the model fit is unsatisfactory. The model selected in the previous step is thenthe 
final model. 



110 MULTI-DIMENSIONAL CONTINGENCY TABLES 

EXAMPLE 4.4. Tax evasion data. 
The study was based on a sample of employed men in the age interval 18 to 67. 
The key question asked was whether they in the preceding 12 months had done any 
work, which before they would have paid a craftsman to do. This question - among 
others - should illustrate the amount of tax evasion in Denmark in the building 
industry, a phenomenon widely known as "black work". The responses "yes" and 
"no" to this question are recorded in the table below as variable D. Table 4.14 
shows a 5-way contingency table formed by variable D and the variables: 

A: Type of residence, with categories Apartment and House. 

B: Employment, with categories Skilled blue collar, Unskilled blue collar and 
White collar. 

c: Mode of residence, with categories Renter and Owner. 

E: Age group, with categories Under 30, 31-45 and 46-67. 
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TABLE 4.13. A sample of Danish men cross-classified according to Type of 
residence, Employment, Mode of residence, Response to without craftsman and 
Age. 

E: Age interval 

A: Type B: Employ- e: Mode 0: Response to 
of resi- ment of re- work without Under 
dence sidence craftsman 30 31-45 46-67 

Renter Yes 18 15 6 

Skilled No 15 13 9 

blue collar Owner Yes 5 3 

No 1 

Renter Yes 17 10 15 

Apartment Unskilled No 34 17 19 

blue collar Owner Yes 2 0 3 

No 3 2 0 

Renter Yes 30 23 21 

White collar No 25 19 40 

Owner Yes 8 5 

No 4 2 2 

Renter Yes 34 10 2 

Skilled No 28 4 6 

blue collar Owner Yes 56 56 35 

No 12 21 8 

Renter Yes 29 3 7 

House Unskilled No 44 13 16 

blue collar Owner Yes 23 52 49 

No 9 31 51 

Renter Yes 22 13 11 

White collar No 25 16 12 

Owner Yes 54 191 102 

No 19 76 61 

Source: Edwards and Kreiner (1983). 

The results of the tests during step 1 of the procedure are shown in Table 4.14. 
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TABLE 4.14 Significance tests for removal of 2-factor interactions one by one 
from the saturated model for the data in Table 4.13. 

Model Interaction Z(H) df Level of 
omitted significance 

ACDE,BCDE AB 32.37 24 0.118 

ABDE,BCDE AC 541.68 18 0.000 

ABCE,BCDE AD 19.81 18 0.344 

ABCD,BCDE AE 76.09 24 0.000 

ACDE,ABDE BC 41.06 24 0.016 

ACDE,ABCE BD 52.98 24 0.001 

ABCD, ACDE BE 106.36 32 0.000 

ABCE,ABDE CD 73.71 18 0.000 

ABCD,ABDE CE 194.32 24 0.000 

ABCD,ABCE DE 38.77 24 0.029 

From Table 4.14 we must - according to the procedure - choose the model with 
sufficient marginals ABCE and BCDE. It has the association diagram shown infig. 
4.5 (a). Since we have removed the line between A and D, the interpretation of the 
model is A .1 D I B,C,E. The next step is with model ABCE, BCDE as base model 
to try to remove the remaining lines in Figure 4.5 (a) one by one. The 9 tests 
corresponding to these attempts to remove lines in the association diagram are 
shown in Table 4.15. 

A~E A~E 

C ~ C ~ 
(a) (b) 

FIGURE 4.5. Association diagrams for models ABCE, BCDE and BCDE, ACE. 
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TABLE 4.15 Significance tests for removal of 2-factor interactions one by one 
from the model ABCE, BCDE. 

Model Interaction Z(H) df Level of 
omitted significance 

BCDE,ACE AB 35.64 30 0.256 

BCDE, ABE AC 575.75 27 0.000 

BCDE,ABC AE 77.02 30 0.000 

ACE,ACE,BDE,CDE BC 51.85 36 0.040 

ABCE,CDE BD 55.25 30 0.003 

ABC,ADE,BCD,CDE BE 109.22 42 0.000 

ABCE,BDE CD 107.79 27 0.000 

ABC, ABE, BCE, BCD CE 204.19 36 0.000 

ABCE, ABC DE 39.71 30 0.111 

We now conclude that the line between A and B can be removed, since the model 
BCDE, ACE without this line in the association diagram has the largest level of 
significance, namely p = 0.256. The association diagram for this model is shown 
as Figure 4.5 (b). The interpretation is now, that A .1 B,D I C,E. We still have a 
satisfactory fit by the new base model: BCDE, ACE, so we can go on with step 3 
of the procedure. 

From the new base model BCDE, ACE we again try to remove lines in the 
association diagram fig 4.5 (b). The required tests are shown in Table 4.16. 

TABLE 4.16 Significance tests for removal of 2-factor interactions one by one 
from the model BCDE, ACE. 

Model Interaction Z(H) df Level of 
omitted significance 

BCDE, AE AC 594.45 33 0.000 

BCDE,AC AE 88.06 34 0.000 

ACE,BDE,CDE BC 69.12 42 0.005 

ACE,BCE,CDE BD 70.07 42 0.004 

ACE,BCD,CDE BE 120.20 46 0.000 

ACE,BCE,BDE CD 122.61 39 0.000 

BCE, BCD, AE, AC, CE 235.32 44 0.000 

ACE,BCD,BCE DE 54.53 42 0.093 

The new base model is now ACE, BCD, BCE with a level of significance p = 
0.093. The association diagram for this model is shown as fig 4.6. There are two 
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interpretations for this model, B, D J.. A I C, E and D J.. A,E I B, C. 

For the model in Figure 4.6 there are three cliques ACE, BCD and BCE and they 
are all included in the model with their full 3-factor interactions, which is the 
requirement for a model being graphical. Also note that it is decomposable, as the 
association diagram does not exhibit any 4-cycle. 

A~E 

c~ 
FIGURE 4.6. Association diagram for model ACE, BCD, BDE. 

4.6 Bibliographical notes 

As for chapter 3 the general references for log-linear models are Bishop, Fienberg 
and Holland (1975), Haberman (1978), (1979), Christensen (1990), Agresti (1990) 
and Andersen (1994). For graphical models the general references are Whittager 
(1990), Edwards (1995) and Lauritzen (1996). Goodmans fundamental contributions 
to the theory of log-linear models are collected in Goodman(1978). 

The definition of hierarchical models and the classification of models as decompo­
sable and non-decomposable was given by Goodman (1970) although he called the 
decomposable "elementary". He also showed that only the decomposable models 
have an explicit solution to the likelihood equations in terms of marginals. The 
name "decomposable" was suggested by Haberman (1974), see also Andersen 
(1974). The notion of a sufficient marginal is also due to Goodman (1970). These 
and other results were fully developed mathematically by Haberman (1974). 
Association diagrams were introduced in Goodman (1972), (1973). The theory for 
association diagrams was developed by Darroch, Lauritzen and Speed (1980), who 
introduced the graphical models and gave the conditions for a graphical model to 
be decomposable. Formulas for the standardized residuals was first given by 
Haberman (1974). 

Model search strategies for multiple contingency tables has been studied by 
Edwards and Kreiner (1983) and by Edwards and Havranek (1985), (1987). 

4.7 Exercises 

[In some of these exercises it is necessary to apply statistical packages like SPSS, 
BMDP or SAS to compute test statistics and parameter estimates. For readers 
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without access to such packages a number of key test statistics and parameter 
estimates are for selected exercises given in the Appendix] 

4.1 In the two tables below, both extracted from the data base of the Danish 
Welfare Study, the variables Sex, Social group and Urbanization is compared with 
two typical Yes-No questions from the study: (1) Do you own a color-TV? and (1) 
Do you have a washing machine? 

For each table: 

(a) Try to find as simple a log-linear model as possible that fits the data. 

(b) Draw the association diagram and interpret the model. 

(1) 

D: Social group 

A: Owns a 
Color-TV B:Sex C: Urbanization I-II III IV V 

Copenhagen 12 23 36 19 

Cop: Suburbs 36 46 39 16 

Male Three big cities 28 25 49 23 

Other cities 75 112 119 90 

Yes Countryside 24 90 63 80 

Copenhagen 2 12 60 33 

Cop: Suburbs 9 20 76 43 

Female Three big cities 7 20 52 35 

Other cities 21 79 135 140 

Countryside 12 27 86 77 

Copenhagen 25 21 60 39 

Cop: Suburbs 46 23 47 34 

Male Three big cities 17 33 46 40 

Other cities 71 79 152 141 

Countryside 36 212 149 206 

No Copenhagen 12 30 76 43 

Cop: Suburbs 16 31 69 33 

Female Three big cities 8 26 68 54 

Other cities 21 70 154 188 

Countryside 16 60 150 200 
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(2) 

D: Social group 

A: Owns a 
washing machine B: Sex C: Urbanization I-II III IV V 

Copenhagen 9 13 15 9 

Cop: Suburbs 58 44 48 24 

Male Three big cities 38 38 51 26 

Other cities 118 142 168 108 

Yes Countryside 56 241 173 213 

Copenhagen 4 15 28 13 

Cop: Suburbs 19 32 76 31 

Female Three big cities 10 25 70 38 

Other cities 29 115 197 179 

Countryside 25 73 200 208 

Copenhagen 28 31 81 49 

Cop: Suburbs 24 25 38 26 

Male Three big cities 7 20 44 37 

Other cities 28 49 103 123 

Countryside 4 61 39 73 

No Copenhagen 10 27 108 63 

Cop: Suburbs 6 19 69 45 

Female Three big cities 5 21 50 51 

Other cities 13 34 92 149 

Countryside 3 14 36 69 

4.2 The table below shows the Danish Welfare Study cross-classified according to 

A: Alcohol consumption, with categories 0-1 units a day, 2-10 units a day 
and 10 or more units a day. 

(A unit is roughly one 33 cl bottle of beer of strength 4% vol. or its 
equivalent.) 

B: Social group with four categories (cf. Example 1.1). 
c: Marriage status, with categories Married and Not married. 
D: Age with categories: 20-39 years old and 40-69 years old. 

(According to modem Danish thinking "married" includes "living in a 
permanent partnership".) 
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A: Alcohol B: Social C: Marriage D: Age 
consumption group status 

20-39 40-69 

I-II Married 43 38 
Not married 11 6 

III Married 112 158 
0-1 units Not married 35 33 

a day IV Married 195 169 
Not married 76 44 

V Married 135 216 
Not married 72 61 

I-II Married 102 83 
Not married 29 21 

III Married 147 166 
2-10 Not married 60 33 

units a day IV Married 242 182 
Not married 130 34 

V Married 100 169 
Not married 83 33 

I-II Married 47 51 

Not married 18 7 

III Married 53 59 

More than 10 Not married 20 12 

units a day IV Married 54 56 

Not married 65 16 

V Married 31 43 

Not married 47 16 

(a) Start both with the saturated model and with the model AB, AC, AD, BC, BD, 
CD as first model in your search for a simple model to describe the data. Give an 
account of your experiences with the two approaches. 

The next table shows some of the standardized esti.mates for log-linear parameters 
in the model ACD, AB, Be, BD. 
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1=1 2 

k=1 +3.437 -3.437 

2 -3.437 +3.437 

k=1 -0.515 +0.515 

2 +0.515 -0.515 

k=1 -2.362 +2.362 

2 +2.362 -2.362 

234 

+ 1.363 +2.891 +8.322 

+0.022 +0.838 -3.034 

-1.146 -3.033 -4.201 

(b) Use these values to describe the dependencies in the table. 

In the table below the standardized residuals for the model ACD, Be, BD are 
shown. 
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A: Alcohol B: Social C: Marriage D:Age 
consumption group status 

20-39 40-69 

1-11 Married -4.497 -5.775 
Not married -2.277 -0.129 

III Married -0.623 -0.655 
0-1 units Not married -0.398 +0.294 

a day IV Married +0.600 -0.015 
Not married -0.730 +0.017 

V Married +3.699 +4.838 
Not married +2.631 +1.000 

1-11 Married +2.325 +0.917 
Not married -0.309 +3.734 

III Married +0.592 -0.343 
2-10 Not married +0.400 +1.548 

units a day IV Married +1.185 +0.837 
Not married +0.617 -0.633 

V Married -3.901 -1.163 
Not married -0.808 -2.930 

I-II Married +4.419 +5.368 

Not married +0.889 +1.339 

III Married +1.558 +0.026 

More than 10 Not married -1.980 +0.268 

units a day IV Married -2.969 -0.790 

Not married +0.464 -0.139 

V Married -1.873 -3.153 

Not married +0.636 -1.147 

(c) Use this table to explain why the model ACD, BC, BD does not fit the data. 

4.3 In 1983 the Danish Institute for Building Research investigated the indoor 
climate in Danish homes. A random sample of 1968 persons above the age of 16 
were selected for interviewing. Here we consider the following variables: 

A: Indoor temperature ( normal for the house), with categories Under 23° 
and Over 23° (Celsius). 

B: Age, with categories Under 40 and Over 40. 
C: Moisture or mould at the walls, with categories Yes and No. 
D: Irritation or dryness of the throat, with categories Yes and No. 
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The resulting 4-way contingency table was. 

D: Irritation of throat 

A: Temperature B:Age C: Moisture Yes No 

Under 40 Yes 4 22 
Under 23° No 24 607 

Over 40 Yes 3 12 
No 52 684 

Under 40 Yes 3 6 
Over 23° No 20 219 

Over 40 Yes 1 3 
No 34 274 

(a) Use both direct and sequential test statistics to find an as simple as possible 
model which fits the data. Comment on the use of direct or of sequential test 
statistics in the model search procedure. 

(b) Draw the association diagram for the chosen model and interpret the diagram. 

The table below shows the standardized 2-factor interactions between variable D 
and the other three variables in the model AD, BD, CD. 

wAD 1=1 2 

i=1 -3.420 +3.420 

2 +3.420 -3.420 

wBD 1=1 2 

j=1 -2.412 +2.412 

2 +2.412 -2.412 

weD 1=1 2 

k=1 +3.589 -3.589 

2 -3.589 +3.589 

(c) Use these values to describe the way the variables A, B and C interact with 
Irritation of the throat. 

(d) Compare the sizes of the standardized estimates in (c) with the conclusions 
drawn in (a). 

4.4 In a retrospective study of cancer in the ovary the Survival ( variable B ) by 
10 years after being operated was recorded for 299 women together with the values 
of the variables: 



MULTI-DIMENSIONAL CONTINGENCY TABLES 121 

A: Stage of the cancer at the time of operation, with categories Early and 
Advanced. 

B: Operation mode, with categories Radical and Limited. 
D: X-ray treatment applied, with categories No and Yes. 

The observed numbers were: 

c: Survival 0: X-ray treatment 

A: Stage B: Operation by 10 years No Yes 

Radical No 10 17 

Early Yes 41 64 

Limited No 3 

Yes 13 9 

Radical No 38 64 

Advanced Yes 6 11 

Limited No 3 13 

Yes 5 

(a) Find a simple model that fits the data. 

(b) Describe what the model tells you about the factors of importance for 
predicting the survival by 10 years after this type of operation. 

(c) Compute the expected values under the model and comment on them. 

(d) If 

show that under the model AC, B, D the 2-factor interactions between variables A 
and C are given by. 

and use this result to estimate and interpret the 2-factor interactions between 
Survival and Stage. 

4.5 From the report used in Example 3.1, one can also extract the following table, 
showing the connection between A: Sex, B: Age, C: Whether the family has a 
video recorder or not and D: Whether the teenager has been to a movie theater 
within the last month. 
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D: Been to a movie 

A: Sex B:Age C: Has video Yes No 

7-9 No 18 31 

Yes 49 68 

Boy 10-12 No 25 29 

Yes 56 57 

13-15 No 28 33 

Yes 63 45 

7-9 No 15 35 

Yes 44 81 

Girl 10-12 No 21 28 

Yes 62 73 

13-15 No 28 18 

Yes 79 47 

(a) Start by with the model AB, AC, AD, BC, BD, CD and use direct and 
sequential tests to select a simple model to describe the data. 

(b) Interpret the model based on the association diagram. 

(c) Use the formula in exercise 4.4 to estimate the 2-factor interactions ( if any) 
in the selected model. 

(d) Comment on any 2-factor interactions you would expect to be non-zero, but are 
in fact zero, in the selected model. 

4.6 The Danish Council for Road Safety has collected the following table of 
number of traffic accidents in Jutland. The involved variables were: A: Time of the 
accident, B: Number of parts involved in the accident, C: Whether the driver was 
under influence of alcohol and D: The direction of the road. The last variable was 
of special interest because main roads ( for example all 4-lane freeways ), due to 
the geography of Jutland, in general go North-South while secondary roads go 
East -'Vest. 
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B: Number C: Under influence D: Direction 

A: Time of parts of alcohol N-S E-W 

One Yes 29 38 

Morning No 6 4 

More than one Yes 294 206 

No 7 5 

One Yes 13 14 

Afternoon No 3 7 

More than one Yes 120 102 

No 8 15 

One Yes 15 21 

Evening No 11 16 

More than one Yes 53 52 

No 18 12 

One Yes 17 23 

Night No 26 20 

More than one Yes 16 16 

No 4 11 

(a) Start your search for a simple model which fits the data with the model AB, 
AC, AD, BC, BD, CD and comment on the levels of significance for the Z(H)'s 
and those for the Z(HIH"')'s which you evaluated during the search procedure. 

(b) Consider the three models (1) AB, AC, BC, BD, (2) AB, AC, BC, D and (3) 
AB, AC, BC. Compare their association diagrams, their interpretations and their 
levels of significance. Draw your conclusions. 

(c) How would you report your findings concerning differences between accidents 
on N-S roads and on E-W roads to Road Authorities? 

4.7 The Danish Gallup Institute addressed the issue of corporale punishment of 
children in a survey in the late 70' s. From this survey the following table can be 
extracted for the variables A: Having the opinion that you can punish your children 
or the opinion that you can not, B: Memory of being punish yourself as a child, 
C: Education and D: Age. 
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D:Age 

A: Punish as 8: Memory of c: Education 
a child punishment 15-24 25-39 40-

Elementary 1 3 20 

Yes Secondary 2 8 4 

No High 2 6 

Elementary 26 46 109 

No Secondary 23 52 44 

High 26 24 13 

Elementary 21 41 143 

Yes Secondary 5 20 20 

Yes High 4 8 

Elementary 93 119 324 

No Secondary 45 84 56 

High 19 26 17 

(a) Use direct or sequential tests to select a simple model to describe the data. 

(b) Draw the association diagram for the selected model. 

(c) Is the selected model graphical and/or decomposable? 

(d) What are the interpretations of the selected model? 

4.8 Consider the following five variables in the Danish Welfare Study: A: Sex, B: 
Age, C: Family taxable income, D: Employment sector and E: Whether there is a 
freezer in the household. The age categories were 

Old: Over 40. 
Young: Under 40. 

The income intervals were: 

Low: Under 60 000 D.kr. 
Medium: Between 60000 Dkr. and 100000 Dkr. 
High: Over 100 000 D.kr. 
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E: Freezer in 
the household 

A: Sex B: Age C: Income 0: Sector Yes No 

High Private 152 39 

Public 82 18 

Old Medium Private 135 31 

Public 35 12 

Low Private 89 45 

Male Public 20 9 

High Private 259 46 

Public 101 26 

Young Medium Private 183 55 

Public 54 15 

Low Private 108 54 

Public 22 13 

High Private 82 17 

Public 85 16 

Old Medium Private 46 16 

Public 60 11 

Low Private 29 29 

Female Public 40 18 

High Private 160 23 

Public 152 28 

Young Medium Private 89 17 

Public 56 21 

Low Private 57 41 

Public 34 28 

Use the procedure suggested in Section 4.5, Example 4.4 to select a graphical 
model for these data. 

(a) Remove the lines in the association diagram in the following order: 

(1) D-E (2) B-E (3) A-B (4) A-E (5) B-D (6) A-C 
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and write down for each step the possible graphical models obtained by removing 
each of the remaining lines in the next step. 

(b) Make a list of z-test statistics and levels of significance explaining your 
selection procedure. 

[Hint: Tables similar to those in Section 4.5 are shown in the Appendix.] 



Chapter 5 

Incomplete Tables 

5.1 Random and structural zeros 

A contingency table is incomplete if one or more cells have a zero count. We 
distinguish between random and structural zeros. If the cell count has expected 
value 0, i.e. the probability of observing an observation in the cell is 0, the zero 
a structural zero. If on the other hand the expected value, and thus the probability 
of an observation in a cell is larger than 0 an observed zero is random. Technically 
random and structural zeros are treated in the same way. The reason is that in any 
test statistic, a term corresponding to a cell with a zero count will cancel out, since 
all test statistics have the form 

Z = 2 I. observed (In(observed) - In(expected)) . 

If there are few zeros in a table the consequences are limited·. Then only a few 
terms are missing in the Z-test statistic and we only need to compensate in the 
degrees of freedom for the test statistic used to test the fit of the model. The 
important thing is that the expected numbers under the model can be estimated. 
Since the likelihood equations all have the form of equating sufficient statistics 
with their expected values, problems only arise if one or more of the sufficient 
marginals for a model are zero. In this case there clearly will be no solutions to the 
likelihood equations. Only for the saturated model is it necessary that the table is 
complete with no zeros. 

As an Example consider a 3-way contingency table under the model with sufficient 
marginals AB, AC. For this model the likelihood equations are 

Xij. = n1tij . ' i = 1, ... ,1 , j = 1, ... ,J (5.1) 

and 

Xi.k = n1tLk ' i = 1, ... ,1 , k = 1, ... ,K . (5.2) 

If for Example xll!' ... ,xllk are all zero, xll. = 0 and according to (5.1) then also 
n1tij. = O. As expected this implies that there is no finite estimate for 'tfl. To see 
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this, consider the likelihood equation (5.1) for i=l and j=l, which since 

ABC AB AC 
In(n1t11k ) = 'to +'t1 +'t1 +'tk +'tll +'tlk ' 

and 

becomes 

or 

3 

n1tll · = L n1t11k 
k=l 

(5.3) 

All parameters in this equation, except -rf/, can be estimated with finite values, 
since all 't's, except -rf/, correspond to non-zero sufficient marginals. Hence the 
equation can only be satisfied if the ML-estimate for -rf/ is -00. In this situation 
we say that -rf/ is non-estimable. 

As a very simple Example of how the zero marginals determine which parameters 
are estimable, consider the hypothetical contingency table in Table 5.1. 

TABLE 5.1. A hypothetical 2x2x3 table. 

k=1 2 3 

i = 1 j = 1 0 0 0 
2 0 43 7 

2 j = 1 11 14 46 
2 13 21 5 

In Table 5.1 there are 4 zeros. The zeros for i=l, j=l and k = 1,2, 3 may in this 
case be structural, while x l2l = 0 may be random, but this does not influence the 
arguments in the following. There is only one marginal, which is zero, namely 

Xll. = 0 . (5.4) 

This means that there is no estimated e.xyected marginal n1tll.' and no finite ML­
estimate for the log-linear parameter 'tff. 
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If there is no estimate for 't'{~, the remaining 't'[~' s are also non-estimable in this 
case with I = J = 2 in spite of the fact that x 12. > 0, x21. > 0 and x22. > O. This 
follows from the constraints 

and 

't'{~=~+~=0, 

~='t~+~~=0 

Thus also for log-linear parameters corresponding to non-null marginals, there may 
be non-estimable log-linear parameters due to the constraints defining the log-linear 
parameters. Example 5.1 in the next section gives more details on which 
parameters can be estimated in an incomplete table. 

In summary: If for a given model all sufficient marginals are positive, all the log­
linear parameters can be estimated and any zeros in the table only have the 
consequence of reducing the number of degrees of freedom for the Z-test statistic. 
This reduction is obtained by counting the number N of non-zero cells, subtracting 
1 and subtracting the number of estimated unconstrained log-linear parameters. If 
for Example in Table 5.1 all the 3 zeros in the first row were changed to positive 
values, there would be N=l1 non-zero cells and under the model AB, AC seven 
unconstrained log-linear parameters to be estimated (one ~B, two ~C's, one~, 
one ~ and two 'tc's). Hence the Z-test statistic will have 11 terms and be 
approximately X2-distributed with df = 11 - 1 - 7 = 3 degrees of freedom. Note 
that this is one degree of freedom less than we would have found in a complete 
table, since under the model AB, AC there are two 3-factor interactions which are 
o and two ~C's which are 0, giving 4 degrees of freedom. 

5.2 Counting the number of degrees of freedom 

As mentioned the number of degrees of freedom depends on the number of zeros 
in the contingency table in two ways. First, for any observed zero count in a cell 
the corresponding term in the Z-test statistic is missing and we must compensate 
in the number of degrees of freedom. Second, zero's may correspond to one or 
more sufficient marginals under the model being zero, in which case we must 
adjust for log-linear parameters not being estimable. Fortunately there is a formula 
for how to count the number of degrees of freedom correctly. This formula is 
based on the quantities No, N 1 (H) and N2(H) defined as 

No = Number of cells with observed count *- O. 
N 1 (H) = Number of unconstrained log-linear parameters under H in a 

complete table without zeros. 
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N2(H) = Number of unconstrained log-linear parameters under H for 
which the corresponding sufficient marginal is O. 

If Z(H) is the test statistic for H. 

Z(H) - X2(df(H» • 

where 

(5.5) 

If we apply this formula to the data in Table 5.1 under the model AB. BC we get 
No = 8 and N1(H) = 8 since in a com8lete table the following log-linear parameters 
have to be estimated: 't1~. 't~T. ~ 2' -.t. 'tT. 'ti. ~ and 'to. Finally N2(H) = 2. 
since x1.1 = 0 and xll. = o. It follows that the number of degrees of freedom 
according to Equation (5.5) is 

df(H) = 8 - 8 + 2 = 2. 

In order to check that Equation (5.5) counts the number of degrees of freedom 
correctly. we use the result that the number of degrees of freedom is the number 
of unconstrained log-linear parameters set equal to zero. In this case no 3-factor 
interactions can be estimated. In the complete table there are two unconstrained 3-
factor interactions 't1~? and -.t~i. but since both x 1l1 and x1l2 are zero neither of 
these are estimable. Also the 'tAB·s are non-estimable. as we saw in section 5.1. In 
the model AB. BC only the 2-factor interactions 't~~ are thus set to zero. and there 
are two unconstrained 't~~·s. such that 

df(H) = 2 . 

EXAMPLE 5.1. Strenuous work. 
The data in Table 5.2 are extracted from the data base of the Danish Welfare 
Study. The sample is cross-classified according to the following 3 variables: 

A: Strenuous work, with categories Yes, Yes sometimes and No. 
B: Type of employment, with categories Blue collar employee, White 

collar employee and Employer. 
c: Social group with 4 categories. 
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TABLE 5.2. The Danish Welfare Study cross-classified according to Strenuous 
work, Type of employment and Social group. 

A: Strenuous B: Type of C: Social group 
work employment 

I-II III IV V 

Blue collar 0 0 64 182 
Yes White collar 79 98 110 0 

Employer 38 126 19 0 

Yes, Blue collar 0 0 131 265 
sometimes White collar 156 166 292 0 

Employer 28 150 52 0 

Blue collar 0 0 156 556 
No White collar 136 166 382 0 

Employer 18 180 54 0 

Source: The data base from the Danish Welfare Study. Cf. Example 3.2. 

Table 5.3 shows the observed values z(H) of the test statistic Z(H) for four 
interesting models of types HI and H2. 

TABLE 5.3. The test statistic z(H) for four models applied to the data in Table 5.2 

Model z(H) df 

AB,AC,BC 43.66 4 (12) 
AB,BC 92.43 10 (18) 
AC,BC 116.07 8 (16) 
AB,AC 194.16 6 (18) 

The number of degrees of freedom in parentheses are the degrees of freedom for 
the model in a complete table. The reduction in the number of degrees of freedom 
is due to the zeros in the table. In this case the zeros are structural. They are a 
consequence of the way the social groups are constructed. Blue collar workers are 
always by definition in group IV or in group V. Hence there are structural zeros 
for (j,k)= (1,1) and (1,2). In addition neither white collar employees nor employers 
can be in social group V, since social group V is exclusively blue collar workers 
with no additional job education. This means that also cells with (j,k) = (2,4) and 
(3,4) are structural zeros. Thus the marginals x.ll ' x.12 ' x.24 and x.34 are all 
structural zeros. This influences which parameters are estimable. Variable A and 
B both have 3 levels, while variable C has 4 levels, which means that there are 
2 . 2 ·3 = 12 three-factor interactions which are 0 in all 4 models. Due to the 
structural zeros only some of these are estimable, however. The same is true for 
the 3 ·2 = 6 two-factor interactions between variables Band C. Table 4.4 
provides a summary of the estimable parameters. In order to make the table easier 
to read the superscripts ABC and Be are omitted inside the table. 
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TABLE 5.4. The estimable three-factor interactions between A,B and C and the 
estimable two-factor interactions between Band C for the incomplete contingency 
Table 5.2. 

't~~~ II k = 1 2 3 4 

1=1 j=1 
2 't121 't122 -'t121 - 't122 
3 -'t121 -'t122 't121 + 't122 

2 j=1 * 
2 't221 't222 -'t221 - 't222 
3 -'t221 -'t222 't221 + 't222 

3 j=1 
2 -'t121 - 't221 - 't122 - 't222 't121 + 't122 

+ 't221 + 't222 
3 't121 + 't221 + 't122 + 't222 -'t121 - 't122 

- 't221 - 't222 

'tBe 
Ik k=1 2 3 4 

j=1 * 
2 't21 't22 -'t21 - 't22 
3 -'t21 -'t22 't21 + 't22 

In Table 5.4 parameters which are non-estimable due to structural zeros are 
marked by a "_". Parameters, which are non-estimable due to a normalization 
without the corresponding marginal being a structural zero are marked by a "*". 
As an Example of a non-estimable parameter of the latter type, consider Tj~~, 
which is non-estimable because both Tj~~ and Tj~~ correspond to marginals, 
which are structural zeros and 

-ABC - 0 1:j.4 - . 

From Table 5.4 we can conclude that the number of estimable 3-factor interactions 
is only 4, despite the fact that there are 12 unconstrained 3-factor interactions in 
a complete table. In the same way the table shows that there are only 2 estimable 
ifi's compared to the 6 -rIfi's in a complete table. It is now easy to count the 
correct number of degrees of freedom in Table 5.3. For the model AB, AC, BC 
only the 3-factor interactions between A, Band C are set to zero, so df = 4. For 
the model AB, BC in addition the 2-factor interactions between A and C are zero, 
but here are no structural zeros, so we add 6 degrees offreedom. In the same way 
we get df = 4 + 4 = 8 degrees of freedom for the model AC, BC. In the final 
model with sufficient marginals AB, AC in addition to the 3-factor interactions also 
the 2-factor interactions between Band C are zero, but since only two -rIfi's are 
estimable df = 4 + 2 = 6. 

It is usually easier to apply Formula (5.5) than setting up and counting the 1:'S in 
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a table like Table 5.4. For the model AC, BC we thus get No = 24, NlH) = 20, 
because 'to> 7 main effects, 6 -rtf's and 6 ~f's add up to 20, and NiH) = 4, since 
there are 4 zeros in a table over x.jll! and none of these are a consequence of other 
zeros. The correct number of degrees of freedom is therefore 

df = 24 - 20 + 4 = 8 . 

Note thatfor NiH) we only count marginal zeros, corresponding to unconstrained 
parameters. For Example x.14 = 0 would not cause NiH) to be increased by 1, 
since x.14 = 0 can be deduces from the 4 structural zeros. 

5.3 Validity of the x2.approximation 

In some contingency tables the problem is not structural or random zeros, but cells 
with small expected counts. According to section 2.6, the x2-approximations to the 
true percentiles of the distribution of the Z-test statistics are not necessarily valid 
if the cell probabilities are small. Since the expected counts are obtained as the cell 
probabilities mUltiplied by the sample size we should be careful when we evaluate 
the significance level of an observed Z-test statistic by the percentiles of a X2-

distribution for small counts. There have been many investigations of the validity 
of the x2-approximations for the Z-test statistic. None of these give any conclusive 
answer to the question of a lower bound for the observed expected counts in order 
for the x2-approximation to be valid. Most studies agree, however, that the X2-
approximation is valid if the expected counts are larger than I, but if too many 
cells have expected counts close to I, the x2-approximation is questionable. A 
sensible rule is to require that all expected counts are larger than 3. 

If one or more cells have expected counts smaller than 3, one way to remedy the 
situation is to group cells in the computation of the Z-test statistic. A grouping of 
cells consists of adding both the observed and the expected counts for the cells in 
question. Mter the grouping the grouped observed and expected counts then only 
contribute one term to the Z-test statistic. This term will have the usual form 

2 . observed' (In(observed) - In(expected)) , 

but instead of several terms for cells with small expected counts there will be just 
one term. That the Z-test statistic after grouping is still approximately X2-
distributed can be seen as follows: Let the contingency table be a 3-way table, and 
suppose that 

nft111 < 3, nft112 < 3, nft113 < 3 . 

The grouping could then be 

ft~ 11 = ftll1 + ft112 + ft113 



134 INCOMPLETE TABLES 

and 

But if 

then 

where the dimension of the multinomial distribution is now IJK-2. Hence 

Z = 2xtll(lnxtll-In(nft;Il») + 2:E :E :E Xijk(lnXijk-ln(nftijk») 
ijk;o! (111,112 ,113) 

is X2-distributed with IJK - 1 - m - 2 degrees of freedom, where m is the number 
of parameters in the model. 

Whether we group or not, the degrees of freedom are always calculated as 

df = number of terms in z(H) - 1 - number of estimated parameters. 

Unfortunately the parameters have to reestimated since the model has changed. The 
model is thus not necessarily log-linear after grouping. We can hope that the ML­
estimates for the parameters do not change too much when re-estimated, but this 
is not always the case. 

Another way to account for small expected counts is to compute what are 
popularly known as exact levels of significance. This is a Monte Carlo 
technique, where we let a computer simulate a large number of contingency tables, 
for Example 500, which has the given total n and cell probabilities derived as the 
observed expected values divided by n. For each of these tables a Z-test statistic 
is computed and the percentage of the observed 500 z-values larger than the one 
observed in the original table is then an estimate of the true level of significance 
according to the law of large numbers. 

EXAMPLE 5.2. Leave schemes. 
In 1996 The Danish National Institute of Social Research carried out a large scale 
investigation of the effects of some new leave of absence schemes offered with 
government support to the Danish public. In Table 5.5 two of these schemes are 
compared with the variables: 

A: Contact with substitute having the 9 categories, shown in the table, 
describing the way the employer got in contact with the substitute for 
the person on leave. 
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B: Sector, with categories employed in the Private sector and employed 
in the Public sector 

Variable C is the Leave scheme with categories Parental leave or Leave with the 
purpose of further education, here called Educational leave. 

The symbol "AF" in the table stands for "Arbejdsformidlingen ", the official Danish 
government agency with job centres in most cities, who advertises vacant jobs and 
offer job search facilities. 
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TABLE 5.5. A sample of 711 employers cross-classified according to method of 
Contact with substitute, Sector and the Leave scheme for the employee. 

A: Contact with 
substitute 

By the AF 

By advertisement 

Unannounced 
contact 

Employer has 
other substitute 

Recommended by 
other employee 

Recommended by 
the Union 

Recommended by 
City authorities 

Contact to 
substitute agency 

Other contact 

B: Sector 

Private 

Public 

Private 

Public 

Private 

Public 

Private 

Public 

Private 

Public 

Private 

Public 

Private 

Public 

Private 

Public 

Private 

Public 

C: Leave scheme 

Parental Education 

36 24 

17 27 

37 20 

74 43 

31 18 

15 8 

16 12 

75 48 

15 9 

25 14 

7 5 

4 9 

0 

9 10 

5 

3 

41 10 

21 20 

Source: Andersen, D., Appeldorn, A. and Weise, H.: Leave - an evaluation of the leave 
schemes. (In Danish). Report 96:11. The Danish National Institute of Social Research. 

For this table a model with sufficient marginals AB and C barely fits this data with 
observed Z-value 

z(H) = 32.37, df = 17 
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and level of significance 

P(Q ~ 32.37) = 0.014. 

The expected numbers under the model are shown in Table 5.6. 

TABLE 5.6. Expected numbers for the data in Table 5.5 under the model AB, C. 

C: Leave scheme 

A: Contact B: Sector Parental Education 

By the AF Private 36.2 23.8 

Public 26.5 17.5 

By advertisement Private 34.4 22.6 

Public 70.6 46.4 

Unannounced Private 29.6 19.4 
contact 

Public 13.9 9.1 

Employer has Private 16.9 11.1 
other substitute 

Public 74.2 48.8 

Recommended by Private 14.5 9.5 
other employee 

Public 23.5 15.5 

Recommended by Private 7.2 4.8 
the Union 

Public 7.8 5.2 

Recommended by Private 0.6 0.4 
City authorities 

Public 11.5 7.5 

Contact to Private 3.6 2.4 
substitute agency 

Public 2.4 1.6 

Other contact Private 30.8 20.2 

Public 24.7 16.3 

We note that several of these values are small, in particular the values 0.6 and 0.4. 
In order to study the grouping procedure, the three expected counts smaller than 
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2 are merged into two combined "cells". First, cells (711), (712) and (722) are 
merged to give 

X~l1 = 11 , nit~l1 = 8.5 . 

Second, cells (812) and (822) are merged to give 

XS12 = 4 , nitS12 = 4.0 . 

The procedure is now to omit the five terms in z(H) corresponding to the merged 
cells, but then to add the two terms 

2 . { 11' (In( 11) - In(8.5)) } + 2 . ( 4· (In(4) - In(4.0)) } 

to z(H). Doing this we get 

z(H) = 28.42 , df = 14 
with level of significance 

P(Q ~ 28.42) = 0.013. 

Note that the grouping causes a reduction in the number of degrees of freedom. 
The result of the grouping seems to indicate, that in this case, the X2 -approxima­
tion is valid. If we simulate an exact level of significance based on 500 simulated 
tables with the expected values in Table 5.6 the result is 

P(Z ~ 32.37) = 0.017, 

confirming that in this case the X2 -approximation indeed seems to work. 

If possible we should try to compute simulated exact levels of significance. But 
since it is time consuming, we may have to rely on grouping procedures. 

5.4 Exercises 

5.1 Consider the 3-way table 

k = 1 2 3 

i = 1 j = 1 0 0 8 
2 5 43 7 

2 j = 1 0 0 46 
2 8 21 5 

(a) Count the number of degrees of freedom for the model AB, AC, BC. 
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(b) Count the number of degrees of freedom for the models AB, AC, and AB, BC. 

5.2 Consider the 3-way table 

k=1 2 3 

i=1 j = 1 42 33 11 
2 0 0 4 
3 11 12 8 

2 j = 1 53 58 46 
2 0 0 5 
3 15 8 11 

3 j = 1 26 18 5 
2 0 0 4 
3 14 17 6 

(a) Count the number of degrees of freedom for the model AB, AC, BC by 
Formula (5.5). 

(b) Count the number of degrees of freedom for the models (1) AB, AC, (2) AB, 
BC and (3) AC,BC by Formula (5.5). 

(c) Check the results in (a) and (b) by making tables like those in Table 5.4. 

5.3 Suppose we want to compare time spent on training per for four different 
sports disciplines: Track and field, tennis, boxing and wrestling for both men and 
women athletes. In boxing and wrestling there are very few practitioners, and a few 
years ago, none. Hence a 3-way table may look like this (the data are fictitious). 

Hours spent on 
training per day 

Discipline Sex 1 1-2 3 or more 

Track & Field Male 25 102 32 

Female 33 89 25 

Tennis Male 12 99 44 

Female 14 75 43 

Boxing Male 24 78 17 

Female 0 0 0 

Wrestling Male 22 23 15 

Female 0 0 0 

(a) Count the number of degrees of freedom for models AB, AC and AC and BC, 
when variable A is Discipline, variable B is Sex and variable C is Training hours. 
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(b) Compare the numbers in (a) with the degrees of freedom one gets in a 
complete table. 

(c) Show in a table that there is, in fact, only one 3-factor interaction in this 
incomplete table. [Hint: Take inspiration from Table 5.4.] 



Chapter 6 

The Logit Model 

6.1 The logit model 

In many contingency tables the aim of the analysis is to explain the variation in 
one of the variables by the variation of other variables. Such a special variable of 
interest is called a response variable. Those variables in the contingency table, 
which explain the variation in the response variable, are called explanatory 
variables. 

The assumptions for the logit model, to be introduced below, are 

(i) The response variable is binary. 
(ii) The statistical model for the contingency table formed by the 

response variable and the explanatory variables is log-linear. 

As an introduction to the logit model consider the model 

(Xl 1"",XI I) - M(n;1t1 1,···,1tI I)' ... 1'" m ••• 1'" m 
(6.1) 

for an m-dimensional contingency table such that 

For il = 1 we get according to assumption (ii) 

I * A B S AB RS AB '" S 
n1tl · . = 'to +'t l +'t. + ... +'t. +'t l · + ... +'t. . + ... +'tl · . . 

12··· 1m 12 1m 12 1m-1 1m 12··· 1m 
(6.2) 

For i2 = 2 we get in the same way 

I * A B S AB RS AB ... S 
n1t2 · . = 'to+'t2 +'t. + ... +'t. +'t2 · + ... +'t. . + ... +'t2· .. 

12'"1m 12 1m 12 1m-1 1m 12 .. ·1m 
(6.3) 

From (6.2) and (6.3) then follows that 
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A A AB AB AB ... S AB ... S 
= 't l -1:2 +'tl · -'t2 · + ... +'tl · . -'t2 · . , 

12 12 12 .. ·1m 12 .. ·1m 

(6.4) 

since all interactions, which do not have A as a subscript, cancel out. Due to the 
constraints 

it follows from (6.4) that 

In(1tI · .) - In(1T.~. .) = 2'tA1 +2'tAl1.B2 + +2'tA1·B .... S , (6.5) 
12· .. 1m "J.12 .. •1m 12· .. 1m 

The prediction probability of observing the response variable A at level 1 given 
the explanatory variables is defined as 

(6.6) 

Here the symbol "A=I I levels i2 ... im" stands for: Variable A is observed at level 
1 given that the explanatory variables B, C, ... S are observed at levels i2, ... , im. 
The connection between the prediction probability (6.6) and the expression (6.5) 
becomes clearer, when we introduce the logit function 

Y = logit (x) = In(~) , 
I-x 

for which the inverse function is 

x = 
exp(y) 

1 +exp(y) 

The logit-function (6.7) is shown in Figure 6.1 

(6.7) 
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FIGURE 6.1. The logit function. 

it follows from (6.5) that 

I . ( ) 2 A 2 AB 2 AB ... S 
Oglt 1ttli2 ... im = 'tt + 't li2 + + 'tli2 .. .im ' 
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(6.8) 

Figure 6.1 shows that logit(x) has the limit +00 when x tends to 1 and the limit -00 
when x tends to O. The prediction probability thus has range (0,1), while the logit­
transformed prediction probability has range (-00,+00). It follows from (6.8) that if 
the value of the logit (6.8) is large then the probability of observing variable A at 
level 1 is much larger than the probability of observing variable A at level 2. In 
the same way if the logit is large negative, theQ we are more likely to observe 
variable A at level 2. 

We further note that the logit (6.8) only depends on those interactions involving 
the response variable A. 

Finally (6.8) shows that the magnitudes and signs of the interactions between the 
response variable and the explanatory variables determine if we are more likely to 
get a response 1 or a response 2 on variable A. If interactions with positive values 
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dominate, the response is more likely to be and if interactions with negative 
values dominate, the response is more likely to be 2. If, however, the sum of the 
interactions are 0 then the probability of response 1 and the probability of response 
2 are equal and, therefore, 112. Note that there is no constant term 'to in (6.8), so 
that it is the balance between positive and negative interactions with variable A 
that determines the prediction probability. 

Two features of the logit model are important: 

(i) The estimation problem is already solved by the methods 
discussed in chapters 3 and 4. In fact the ML-estimates for the 
interactions are those obtained from an analysis of a log-linear 
model for the contingency table formed by all the variables, 
under the restrictions imposed by the logit model. 

(ii) Only interactions which involve the response variable A are part 
of the model. Hence we do not need to estimate interactions 
between the explanatory variables. 

On the other hand, if we want to obtain the ML-estimates from a log-linear model 
for the full contingency table, the correct model must include all interactions up 
to the highest dimension between the explanatory variables. 

6.2 Hypothesis testing in the logit model 

In this section we consider only cases with three explanatory variables. (Extensions 
to more explanatory variables are straight forward.) In this case the logit model has 
the form 

ABC ABD ACD ABCD 
+2'tIjk +2'tIjl +2'tIkl +2'tIjkl 

(6.9) 

This model, describing the influence of the explanatory variables on the response 
variables, can be considerably simplified if some of the interactions involving more 
than one explanatory variable can be omitted. Of special interest are those cases 
where the logit model (6.9) contains only 2-factor interactions. One interesting 
basic hypothesis is accordingly 

ABC ABD ACD ABCD 
Ho : 'tIjk = 'tIjl = 'tIki = 't Ijkl = 0 (6.10) 

for all j, k and 1. 

Since interactions between explanatory variables are not specified in a logit model, 
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the sufficient marginals for Ho are 

AB, AC, AD, BCD. 

A test for Ho is, therefore, identical with a test for a log-linear model with 
sufficient marginals AB, AC, AD and BCD against the saturated model in the 
contingency table formed by all four variables A, B, C and D. 

If Ho can be accepted, the logit model reduces to 

(6.11) 

In (6.11) the influence of the explanatory variables is expressed directly in the 2-
factor interactions 't1Y, t1~ and ~. Thus if't'}? = 0 for alII, variable D does not 
contribute to the description of the variation in the response variable A. Hence 
given that the logit model (6.11) describes the data, we can evaluate the 
contribution of each of the explanatory variables either by comparing the three 
parallel hypotheses 

H( 't'}? = 0 , I = 1, ... ,L , 

H2: t1~ = 0 , k = 1, ... ,K 
and 

H3: t1Y = 0, j = 1, ... ,J , 

using their level of significance in a test against Ho, or by evaluating the level of 
significance for the three sequential hypotheses 

H(1): = HI: t1? = 0, 1= 1, ... ,L , 

and 
H(2): t1~ = 't'}? = 0 , k = 1, ... ,K , I = 1, ... ,L 

H(3): ~ = t1~ = t1? = 0, j = 1, ... ,1 , k = 1, ... ,K , I = 1, ... ,L , 

where H(l) = HI is compared with Ho, H(2) with H(I) and H(3) with H(2)' Of course 
a sequential procedure is only valid if variable D IS the most likely to be omitted 
from the model, variable C the second most likely and variable B the least likely 
to be omitted. 

As mentioned, each log it model is equivalent to a log-linear model for the 
contingency table between variables A, B, C and D. Each of the hypotheses Ho, 
H(3)' H(2)' H(1)' H3, H2 and HI thus corresponds to a model given by its sufficient 
marginals, where the 3-factor interaction and all lower dimension interactions 
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between B, C and D are always included. Table 6.1 gives a summary of the 
sufficient marginals for the different hypotheses and the corresponding logit 
models. The table also shows the number of degrees of freedom, when the model 
is tested against the fulliogit model (6.9). 

TABLE 6.1. The hypotheses HI' H2, H3, H(2) and H(3) for a logit model and the 
corresponding sufficient marginals and the number of degrees of freedom when 
tested against the saturated model. 

Hypothesis Omitted Sufficient Number of 
variable marginals degrees of freedom 

Ho AB,AC,AD,BCD (1 - 1)(JKL - J - K - L + 2) 
H3 B AC,AD,BCD (1 - 1)(JKL - L - K + 1) 

H2 C AB,AD,BCD (I - l)(JKL - L - J + 1) 
HI = H(l) D AB, AC, BCD (I - 1)(JKL - J - K + 1) 

H(2) C,D AB,BCD (I - 1)(JKL - J) 

H~3l B,C,D A,BCD (I - 1)(JKL - 1) 

From Table 6.1 it is easy to form a table of tests from which the most simplest 
logit model, which fits the data to a satisfactory degree, can be selected. The 
selected logit model then tells us which explanatory variable must be included in 
the model. If for example hypothesis HI holds, the analysis has shown that D can 
be omitted as explanatory variable, but not Band C. The logit model is then 

logit(1tIljkl) = 2't~ + 2rif + 2r{~ . (6.12) 

After it has been determined which variables are necessary to describe the variation 
in the response variable, there are two ways to report the results of an analysis by 
a logit model: 

(1) The influence of the explanatory variables can be described through the 
signs and the magnitudes of the 2-factor interactions included in the 
model. 

As we saw in connection with (6.8), the larger the value of the logit, the larger the 
likelihood of response 1 and the smaller the value of the logit - i.e the larger a 
negative value - the larger the likelihood of response 2 on the response variable. 
If thus the estimated value of 't1~ for a certain category j is positive, persons with 
variable B observed in category J will be more likely to have a response 1 than if 
r{T has the value O. For a negative estimated value of r{T a response 2 will, in 
the same way, be more likely than if't1T has the value O. The absolute value of 
the 2-factor interactions may depend on many features of the data setup. It is, 
therefore, desirable to have standardized estimates, which scale the estimates to 
have the same expected range as a standardized normal deviate. Such standardized 
estimates are computed as 
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(6.13) 

Since the estimates in (6.13) are standardized, they provide us with measures of the 
relative strength of the influence of explanatory variable B on the response 
variable. 

(2) For a given combination of observed categories of the explanatory 
variables we can estimate the prediction probability, which according to 
(6.8) is 

exp(gjkl) 
itllj k I = ~-----',-:----,-

1 +exp(gjkl) 

where, under HI for example, 

gjkl = logit(it l Ukl) = 2t~ + 2t~B + 2t~kC , 

(6.14) 

(6.15) 

We can thus estimate the prediction probability itl Ukl if we have estimated values 
of the 't's. A list of the prediction probabilities itl Ukl for all possible combinations 
of j, k and 1 in the contingency table can provide us with an overview of the way 
the explanatory variables influence the expected response on the response variable. 
Note that what terms we include on the right hand side in (6.15) will depend on 
which of the hypotheses H3, H2, HI' H(2) or H(3) has been accepted. Hence the 
prediction probability need not be calculated for different values of 1, if variable 
D does not contribute to the description of the variation in the response variable. 

According to Theorem 2.2 the estimates of the log-linear parameters are 
approximately normally distributed with a covariance matrix, which is easy to 
estimate. It follows that we can establish 95% confidence limits for the prediction 
probability. In fact the confidence limits for the logit (6.15) are 

where 

6fkl = var[ gjkd = 4 var[ t~ ] +4 var[ t~B ] +4 var[ t~kC ] 

+8COV[ t~, t~B ] +8cov[ t~, t~;] +8COV[ t~B, t~;] , 

(6.16) 

(6.17) 

and all the variances and covariances in (6.17) are elements of the covariance 
matrix for the ML-estimates of the 't's. From (6.16) confidence limits for the 
prediction probabilities are obtained by transforming the limits by the inverse 
function to the logit function (6.7). In this way we get 
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( 
exp(g -) exp(g +) J 

1t1 Ukl E ,--=--....;;;....~ 
1 +exp(g -) 1 +exp(g +) 

(6.18) 

where 

Most computer programs will provide the estimated prediction probabilities ftlUkl' 

as well as the confidence limits (6.18) as output options. 

EXAMPLE 6.1. Party membership. 
In this example we shall study factors influencing membership of a political party 
in Denmark. The data are drawn from the data base of the Danish Welfare Study 
1976. The response variable is thus 

A: Member of a political party, with response categories Yes or No. 

The explanatory variables are 

B: Sex, with categories Women and Men. 
C: Employment sector, with categories Public sector and Private sector. 
D: Residence, with categories Living in Copenhagen or Living outside 

Copenhagen. 

The resulting contingency table is shown as Table 6.2. 

TABLE 6.2. The Danish Welfare Study cross-classified according to Membership 
of a political party, Sex, Employment sector and Residence. 

A: Membership B: Sex C: Employment 0: Residence 
of party sector in Copenhagen 

Yes No 

Women Public 12 31 
Yes Private 5 20 

Men Public 16 37 
Private 19 73 

Women Public 175 375 
No Private 162 475 

Men Public 111 266 
Private 241 906 

Source: The data base of the Danish Welfare Study. Cf. Example 3.2. 

In order to determine the simplest logit model which fits the data, we compute the 
test statistics for the hypotheses in Table 6.1. The result is shown in Table 6.3, 



THE LOGIT MODEL 149 

which shows both the tests z(H) for H against Ho and the sequential tests z(H /H*). 
For the sequential tests, H* is Hofor the tests of H1, H2, and H3, while H* is H(1) 
for the test of Hm and H(2) for the test of H(3)' 

TABLE 6.3 Test statistics for different logit models fitted to the data in Table 6.2. 

H Minus Sufficient z(H) df P z(HIH') df p 
var. marginals 

Ho AB,AC, AD,BCD 0.64 4 0.958 
H3 B AC,AD,BCD 18.48 5 0.002 17.84 0.000 
H2 C AB,AD,BCD 17.12 5 0.004 16.48 0.000 

H1=H(1) D AB,AC,BCD 0.87 5 0.973 0.23 0.028 
H(2) C,D AB,BCD 17.14 6 0.009 16.13 0.000 

H(3) B,C,D A,BCD 28.80 7 0.000 31.66 0.000 

The first line in Table 6.3 shows that the logit model (6.11) fits the data to a 
satisfactory degree. The next three lines show that only H1 can be accepted, i.e. 
Sex and Employment sector influence Party membership, while persons living in 
Copenhagen are as often party members as persons living outside Copenhagen, 
given the two other explanatory variables. 

Method (1) of reporting the results of the analysis by a logit model is shown in 
Table 6.4. 



150 THE LOGIT MODEL 

TABLE 6.4. ML-estimates (Est.) and standardized estimates (Std. est.) for the 
significant interactions in the logit model (6.11). 

t AC : Employment sector 

Membership Public Private 
of party 

Yes Est. 0.302 -0.302 

Std.est. 8.158 -8.158 

No Est. -0.302 0.302 

Std.est. -8.158 8.158 

tAB: Sex 

Membership Women Men 
of party 

Yes Est. -0.324 0.324 

Std.est. -8.260 8.260 

No Est. 0.324 -0.324 

Std.est. 8.250 -8.260 

From this table we can conclude that given other variables are constant more 
persons in the public sector than in the private sector are members of a political 
party, and that more men than women are members of a political party. 

Method (2) of reporting the results of the analysis by a logit model is shown in 
Table 6.5. 

TABLE 6.5. Prediction probabilities for Party membership given the different 
combinations of Sex and Employment sector. 

B:Sex C: Employment Prediction probabilities 
sector for party membership 

Women Public 0.070 
Private 0.040 

Men Public 0.126 
Private 0.073 

The prediction probabilities confirm the conclusions from Table 6.4. 
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6.3 Logit models with higher order interactions 

The logit model (6.9) is equivalent to the saturated model for the contingency table 
for all variables, while the logit model (6.11) includes only 2-factor interactions. 
Between these two models there are a number of models of interest, although they 
can not be treated in as simple a way as the model with only 2-factor interactions. 
For example, models with a few 3-factor interactions included can in some cases 
be given useful interpretations. We consider, as an example, the following logit 
model with one set of three-factor interactions 

This model corresponds to the hypothesis 

HOI:~? = ~~? = ~~? = 0, for allj, k and I. 

Here the logit model depends on the terms 't~, 't1~ and 't1?, expressing the direct 
influence of the three explanatory variables, and on the three-factor interaction 
~y~, which is an expression for the joint influence of the explanatory variables 
B and C. Such a joint influence of two variables can manifest itself by the 
prediction probability being high if the 3-factor interaction between A, B and C is 
large positive (all other interactions having neutral values) or by the prediction 
probability being low if the 3-factor interaction between A, B and C is large and 
negative. 

EXAMPLE 6.2. Alcohol consumption. 
Table 6.6 shows the contingency table formed by a cross-classification of the 
persons in the Danish Welfare Study 1976 with respect to the response variable 

A: Alcohol consumption, with categories 0-1 units a day and 2 or more 
units a day. 

(A unit is roughly one 33 cl bottle of beer of strength 4% vol. or its equivalent. ) 

The explanatory variables are 

B: Social group with four categories (cf Example 1.1). 
C: Marriage status, with categories Married and Not married. 
D: Age with categories 20-39 years old and 40-69 years old. 

(According to current Danish terminology "married" includes "living in a 
permanent partnership".) 
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TABLE 6.6. The Danish Welfare Study 1976 cross-classification with respect to 
Alcohol consumption, Social group, Marriage status and Age. 

A: Alcohol 
consumption 

0-1 units 

a day 

More than 2 

units a day 

8: Social 
group 

1-11 

III 

IV 

V 

I-II 

III 

IV 

V 

c: Marriage 
status 

Married 
Not married 

Married 
Not married 

Married 
Not married 

Married 
Not married 

Married 
Not married 

Married 
Not married 

Married 
Not married 

Married 
Not married 

D: Age 

20-39 

43 
11 

112 
35 

195 
76 

135 
72 

149 
37 

200 
80 

296 
195 

131 
130 

Source: The data base of the Danish Welfare Study. Cf. Example 3.2. 

40-69 

38 
6 

158 
33 

169 
44 

216 
61 

134 
28 

225 
45 

238 
50 

212 
49 

In this case a logit model with only 2-factor interactions between the response 
variable and the explanatory variables does not fit the data. The Z-test statistic for 
the model with sufficient marginals AB, AC, AD, BCD, i.e the logit model 

A AB AC AD 
logit(1t1 Ukl) = 2'tl +2'tlj +2'tlk +2't1l ' (6.19) 

has observed value 

z(H) = 18.81 , df = 10 

with level of significance 0.043. The fit is, therefore, not quite good enough. As 
expected it is the 3-factor interaction between variables A, C and D which can not 
be omitted. When we add this interaction to the logit model (6.19), we get the logit 
model 

(6.20) 

The ML-estimates of the parameters are obtained by estimating the log-linear 
parameters for a model with sufficient marginals 

AB, A CD, BCD. 
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The observed value of the Z-test statistic for this model is 

z(H) = 5.93, df= 9 

with level of significance 

p = P(Q ~ 5.93) = 0.747. 

The prediction probability for alcohol consumption thus depends on the ex­
planatory variables in a slightly more complicated way. Since response 1 on the 
response variable means a low alcohol consumption, the estimated parameters in 
Table 6.7 show that alcohol consumption is lower in the lower social groups than 
in the two highest social groups. The table also shows that alcohol consumption 
is lower for married people than for unmarried, and lower for old people than for 
young people. But on tog of this we must add the contributions from the estimated 
3-factor interactions,;A 'D, where the estimates in Table 6.7 show that the alcohol 
consumption is lower for the combinations married-young and unmarried-old than 
for the combinations married-old and unmarried-young. 

It is obvious from these somewhat complicated conclusions that it is in general 
preferable to try to avoid log it models with 3-factor interactions. 

TABLE 6.7. Estimated parameters in the logit model (6.20). 

Social group I-II III IV V 

-0.716 0.070 0.132 0.514 

Marriage status Married Unmarried 

0.084 -0.084 

Age 20-39 40-69 

-0.190 0.190 

Marriage Age 

status 20-39 40-69 

Married 0.148 -0.148 
Unmarried -0.148 0.148 

Ifwe report the results by method (2), we get the prediction probabilities in Table 
6.8. 
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TABLE 6.8. Prediction probabilities for the logit model (6.20). 

B: Social group c: Marriage status D: Age ii:11ikl 

Married 20-39 0.219 
I-II 40-69 0.233 

Not married 20-39 0.150 
40-69 0.257 

Married 20-39 0.382 
III 40-69 0.402 

Not married 20-39 0.280 
40-69 0.433 

Married 20-39 0.395 
IV 40-69 0.415 

Not married 20-39 0.291 
40-69 0.447 

Married 20-39 0.489 
V 40-69 0.510 

Not married 20-39 0.376 
40-69 0.542 

From Table 6.8 we can deduce which groups in the 1974 Danish population, when 
the data was collected, had a relative low alcohol consumption (high prediction 
probability in Table 6.8), for example unmarried old people in social group V. A 
group with a relatively high alcohol consumption are young, unmarried people in 
the highest social groups. 

6.4 The logit model as a regression model 

The logit model (6.8) can be formulated as a regression model, although such a 
model takes different forms depending on two things: 

(i) The number of categories for the explanatory variables. 

(ii) The dimension of the interactions between the response variable 
and the explanatory variables. 

Here we only consider case (i) with binary explanatory variables, i.e. when the 
possible values of j, k and I are all 1 or 2. For this case we introduce the 
regression parameters ~O' ~1' ~2 and ~3 as 
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and 

2 AB - A 
1t 1 1 - 1-'1 ' 

21t~T = ~2 ' 

21t~? = ~3 . 
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Then (6.11), which is the logit model with only 2-factor interactions, becomes 

(6.21) 

where zl = 1 and z2 = -1. Formula (6.21) is true given (6.11) for both j, k and I 
equal to 1 and 2, since -r1'~ + 'f{~ = 0 implies that 'f{~ = -'t~~ and we for j = 1 
get 

and for j = 2 get 

With a "scoring" +1 and -1 of the binary categories for the explanatory variables, 
the logit-transformed response probability (6.21) for response i = 1 given the 
explanatory variables thus becomes a linear regression model. As 

the same is the true for the logit-transformed response probability for response i 
= 2. 

Formulated as a regression model, the hypotheses HI' H2 and H3 in section 6.2 has 
a new interpretation. 

thus becomes 

and the sequential procedure in Table 6.1, where first variable D is omitted, then 
C and finally B, corresponds to a sequential procedure in a regression analysis, 
where the hypotheses ~3 = 0, ~2 = ° and ~1 = ° are tested sequentially. 

6.S Bibliographical notes 

The idea of using the logistic function to transform probabilities goes far back. As 
a statistical tool for modelling data it seems to have been suggested first by 
Berkson (1973) in connection with so-called bioassay data. As a regression model 



156 THE LOGIT MODEL 

it was introduced by Cox (1970). The name logit model has been used for different 
models. Since analysis by the regression model is now widely known as logistic 
regression, we have in this book followed a recent tradition to reserve the name 
logit model for models with binary responses and categorical explanatory variables 
where there is a direct connection to the log-linear models for contingency tables. 

The logit model is covered in most basic textbooks on categorical data, for 
example Andersen (1990), chapter 8, or Agresti (1996) chapter 4. 

6.6 Exercises 

All the exercises for this chapter takes the form of a reanalysis of the exercises in 
chapters 4 and S. The questions to answer are the same: 

(a) Reformulate the model as a log it model with variable as the response 
variable and the remaining variables as explanatory variables. 

(b) Estimate the regression parameters of the logit model. 

(c) For data with only binary response variables estimate the parameters of the 
regression model. 

6.1 Exercise 3.7 with variable A as response variable. 

6.2 Exercise 3.8 with variable A as response variable. 

6.3 Exercise 3.10 with variable C as response variable. 

6.4 Exercise 4.1 with variable A as response variable. (Pick one of the two tables). 

6.S Exercise 4.3 with variable D as response variable. 

6.6 Exercise 4.4 with variable C as response variable. 

6.7 Exercise 4.5 with variable D as response variable. 

6.8 Exercise 4.7 with variable A as response variable. 

6.9 Exercise 4.8 with variable E as response variable. 



Chapter 7 

Logistic Regression Analysis 

7.1 The logistic regression model 

In section 6.3 it was demonstrated how the logit-model can be written as a 
regression model. In this chapter we treat regression models for categorical 
response variables in more details. A common name for these models is the 
logistic regression model because the regression part of the models, i.e. a linear 
combination of the values of the explanatory variables and the regression 
coefficients, is a logistic transformation of the probabilities of the response 
categories. The logistic transformation is given by the function 

y = In(_X ), 
I-x 

discussed in section 6.1 and shown in Figure 6.1. The usefulness of this transfor­
mation lies in the fact, that it transforms the interval between 0 and 1 on to the real 
axis (-00,+00). If we, therefore, transform probabilities by the logistic transfor­
mation, the probabilities will be "stretched" out over the complete real axis. A 
linear regression model directly for a response probability 1t, for example 

1t = ~o +~1 x , 

would cause the predicted value of the probability to be outside the permissible 
interval (0,1) if x becomes large positive or negative. This predictable performance 
can be avoided if we transform a response probability by the logistic transfor­
mation, so that we instead have 

10git(1t) = In(~) = ~O+~lx . 
I-1t 

Now the range is (-00,+00) and large positive values of the term ~lx will predict 
probabilities near 1, and large negative values of ~lx will predict probabilities near 
0, without going outside the range of 1t. 

The basic logistic regression model deals with the binary case, where the range of 
the response variable consists of just two values. In section 7.9 we discuss 
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situations with more than two response categories, so-called polytomous response 
variables. The logistic regression model in addition assumes that we have N 
independent joint observations of the response variable y and the explanatory 
variables zl""'zp, Thus let 

be the jointly observed values of the response variable y and the explanatory 
variables. The vector (Yv' zlv' ... ,zpv) for a given value of V is called a case. In the 
model the z's are regarded as known values without random variation, while the 
random variable Yv' corresponding to the observed value YV' has possible values 
o and 1, 1 and 2 or "Yes" and "No". It the following we shall for consistency in 
the notation always use 0 and 1. The response probability 

1ty = P(Yv = llz1v' ... ,zpv) 
is a linear regression model in the z's after the response probability 7tv has been 
transformed logistically, i.e. 

This corresponds to ny having the form 

p 

exp ~o + L ~jZjV 
j=l 

p 

1 +exp ~o + L ~jZjv 
j"l 

The likelihood function for the logistic regression model is given by 

N 
L = II 7t~v (1 -7tv ) 1 -Yv 

v=l 

(7.1) 

(7.2) 

since case V contributes with the factor 7tv if Yv = 1 and 1 - 7tv if Yv = O. This 
means that the log-likelihood function takes the form 

N ( J N 
InL = L Yv 'lnl' ~ + L In( 1 -7tv) . 

v=l 1 -ny v=l 
(7.3) 

If we insert (7.1) in this expression, we get 

N p N N 

InL = ~o L Yv+ L ~j L YvZjv + L In(1-ny) . 
v=l j=l v=l v=l 

(7.4) 
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Equation (7.4) shows that the model belongs to an exponential family and that the 
sufficient statistics are 

N 

to = E Yv = y. 
v=1 

and 

N 

tj = L YvZjv ' j=l, ... ,p . 
v=1 

7.2 Estimation in the logistic regression model 

Since E[Yv1 = 1tv when the possible values of Yv are 1 and 0, it follows from 
Theorem 2.1, that the likelihood equations become 

N 

to = y. = L 1tv (7.5) 
v=1 

and 

N N 
tj = E YvZjv = E 1tyZjv ' j=I, ... ,p , (7.6) 

v=1 v=1 

and that equations (7.5) and (7.6) have a unique set of solutions if (to, t1, ... ,tp) is 
an interior point in the convex extension of the support. For logistic regression the 
support is relatively simple and there are accordingly simple rules for when the 
likelihood equations have a unique set of solutions. 

Note: Strictly speaking we can not apply the theorems in section 2.3 to the logistic 
regression model. The reason is that the V's are not identically distributed. The theorems 
are basically valid, however, because the likelihood function, expressed by means of the 
canonical parameters and the sufficient statistics has the form (2.7), where for non-identical 
distributed variables the term nK('t) has the slightly more complicated form 

l1 K1('t)· 

Thus for the logistic regression model 

l:y I<y(~) = -~ In(1 - 7ty ) 

where 7tv is a function of the vector ~ = (~o' ~1' ... '~p). 

To illustrate the form the support takes for a logistic regression model, consider the 
case p = 1, where there are two parameters ~o and ~1 in the model and the 
sufficient statistics are 
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N 

to = y. = L yy (7.7) 
y=l 

and 

N 

tl = L YyZvl (7.8) 
y=l 

Since the possible values of Yy are 1 and 0, the possible values of to are all 
integers between 0 and N. Now let 

be the ordered values of Zvl and let Y. = to. Then the limits for tl are the sum of 
the to smallest and the sum of the to largest z-values, i.e. 

z(l) + ... +z(lo) ~ tl ~ z(N-Io+ I ) + ... +z(N) , (7.9) 

as can be verified directly from (7.8). The inequalities (7.9) together with 

thus form the limits for the support. The convex extension is then constructed 
simply by plotting the limits (7.9) in a (to, t1)-plane for each value of to between 
o and N and connecting the plotted points by straight lines. For all observed cases 
Yl' ... 'YN' where (to, t1) given by (7.7) and (7.8) are inside these lines, there is a 
unique solution to the likelihood equations (7.5) and (7.6) for p = 1. As an 
example, let N = 12 and the z-values be 

(Zll' ... ,z1.12) = (-5, 8, 11, 2, 0, 1, 5, 5, -5, -3, 0, 3) . 

The convex extension of the support for these values is shown in Figure 7.1. 

..­-

4Or---------------~ 

-20,-I----~--~--~------j 

o 3 6 9 12 
to 

FIGURE 7.1. The convex extension of the support for a logistic regression 
model with p=l. 
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For p > 2 the convex area, within the interior of which the likelihood equations 
have unique solutions, becomes more complicated. However in 1984 Albert and 
Andersson (cf. the bibliographic notes) introduced an algebraic criterion which 
makes it easy to check whether there are unique solutions to the likelihood equa­
tions. This criterion is based on the following definition: 

DEFINmON: A set of observations Yl' ... 'YN are said to be quasi-complete se­
parated if there exist constants (0.0> ••• ,ap)' with at least one aj '* 0 , j = 1, ... ,p, 
such that 

for all Yv = 1, and 

for all Yv = o. 

Quasi-complete separation means that there is a plane, spanned by the vector (no, 
... ,~), in the (p + I)-dimensional Euclidian space, such that all z's corresponding 
to Yv = 1 are situated on one side of (for example above) this plane, while all z's 
corresponding to Yv = 0 are situated on the opposite side of the plane. For points 
on the plane itself, that is points for which 

it does not matter whether Yv has the value I or the value O. 

For p=l the criterion is that 
no + a1z1v ~ 0 for Yv = 1 

and 

If 0.1 > 0 this leads to 

and 
Z1v $; -arJal for Yv = 0 , 

while we for 0.1 < 0 get the opposite inequalities. Hence for p = 1 the observations 
are quasi-complete separated if there is a constant c, such that z1v ~ c for all obser­
vations with Yv = 1 and z1v $; c for all observations with Yv = 0, or vice versa 
zlv $; c for all Yv = 1 and zlv ~ c for all Yv = O. 

For p = 2 the observations are quasi-complete separated if there is a line 

such that all observations with Yv = 0 are either on the line or on the same side of 
the line, while all observations with Yv = 1 are either on the line or on the opposite 
side of the line. 
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In summary we have: 

THEOREM 7.1: There exists a unique set of solutions to the likelihood equations 
(7.5), (7.6) except if the observations are quasi-complete separated 

7.3 Numerical solution of the likelihood equations 

In order to solve the likelihood equations numerically the so-called Newton·Raph. 
son method is used. Briefly, the method is based on the following arguments. 

If we introduce the additional z-values zOv =1 and let Z be the matrix of dimension 
(p+l)xN with elements Zjv' j = O, ... ,p , V = 1, ... ,N, the likelihood equations (7.5) 
and (7.6) can be written III the matrix form 

yZ / - TtZ / = 0 , (7.11) 

where y = (y I' ... 'YN)' Tt = (Ttl' ... ,TtN) and 0 is a vector of p+ 1 zeros. If we per­
form a Taylor expansion on (7.11) and include only one term, we get with ~ = 
(~o, ... ,~p)' ~o the point of expansion and Tt° the vector of Tt'S computed with ~ = 
~o 

(7.12) 

since ~ is the vector of ML-estimates and therefore satisfies (7.11). The matrix nO 
is of dimension (p+ 1 )x(p+ 1) and contains the derivatives 

a(E TtyZjY) 

__ Y-=:-;::--_ , j,q = 0, ... p . 
apq 

If now pO is an initial guess for the vector of p's, the Newton-Raphson method is 
to solve (7.12) with respect to ~ in order to get new improved estimates for the 
p's. The solution is 

(7.13) 

where ~1 is the improved estimate. The improvement of ~ is repeated until it does 
not (within a specified limit) change any more. 

In order to apply the algorithm (7.13) we need a simple expression for the matrix 
nO of derivatives. These derivatives have, however, a very simple form. To see this 
we recall from (7.2) that the response probability Tty is given by 
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p 

exp(~o + L ~jZjv) 
J"=1 

1ty = ----"----
p 

1 +exp(~o + L ~jZjv) 
j=1 

Differentiation with respect to Zjv then yields 

so that 

The matrix DO, therefore, has the matrix form 

DO = ZWZ' , 
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where W is a diagonal matrix of dimension N with diagonal elements 1ty(1 - 1ty). 
According to the Newton-Raphson method we thus improve a set of initial estima­
tes ~O = (~OO, " .. ,~pO) as 

(7.14) 

where reO = (reIO, ... ,reNO)' WO is diagonal with diagonal elements 1ty0(1_1ty0) and 
1ty ° is (7.2) with the W s replaced by ~o 0, ... '~p 0. 

The algorithm (7.14) is computational very simple and effective. In addition it can 
be shown that 

var[~] = (ZWZ'r1 . (7.15) 

Estimates for the standard errors of the W s are thus a biproduct of the estimation 
procedure. 

7.4 Checking the fit of the model 

The logistic regression model can be checked in two different ways" We can check 
the model fit by graphical methods, primarily by using residual diagrams, or we 
can use a goodness of fit test statistic. For the goodness of fit test we need more 
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than one observed y value for each distinct combination of values of the expla­
natory variables, or at least that we for a relatively large and representative per­
centage of distinct values of the explanatory variables have more than one observed 
y-value. 

It is, therefore, convenient to distinguish between two schemes A and B: 

Scheme A: There is one observed y-value for each distinct combination of the ex 
planatory variables. 

Scheme B: There are several observed y-values for each distinct combination of the 
explanatory variables. 

It is not a question of a mathematically or logically sharp distinction between two 
schemes, but more a question of one for the applications' practical distinction. In 
some situations we will have a mixture of the two schemes. 

For scheme B we have to change the notations slightly. Thus let i = 1, ... ,1 be an 
index, running over all distinct combinations of the explanatory variables, such that 

is a typical combination of observed explanatory variables. There are thus 1 dif­
ferent vectors Zj and we introduce the counts 

nj = number of cases Yv with values zli, ... ,Zpj of the explanatory variables. 

and 
Xj = number of these nj cases for which Yv = 1 . 

This implies that the N cases Yv can be divided into I groups of sizes nl' n2' ... ,nr, 
where of course 

All cases in a group have the same values of the z's, while at least one Zjv is dif­
ferent if two observations belong to different groups. It further follows that 1ty 
given by (7.2) is constant in group i and has the value 

exp ~o + E ~jZji \ 
1tj = --~-....;;j-----,-~ 

I +exp ~o + E ~jZji 
j 

(7.16) 

Since the random variables corresponding to the y's are independent, the same is 
true for the random variables XI, ... ,Xr corresponding to the x's. Finally it is easy 
to see that for each i, Xj has the binomial distribution 
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(7.17) 

since the probability of observing 1tj for Yv = 1 is constant within the i'th group. 

If in (7.5) and (7.6) we first sum within the groups and then over the groups, 
noting that Zjv is constant and equal to Zjj within a group, the likelihood equations 
(7.5) and (7.6) expressed in terms of the x's become 

and 

't"' x. = 't"' n· 1t. L 1 L 11 

L XiZji = L ni1tjZji ,j=l, ... ,p 
i j 

(7.18) 

(7.19) 

It follows from (7.18) and (7.19) that the likelihood equations only depend on the 
x's thus being the sufficient statistics. The likelihood function can accordingly be 
formulated based on the binomial distributions (7.17) of the X's. From indepen­
dence and (7.17) it follows that the likelihood function is 

I [n.}x. _ L = II 1 j 1(1 _1t)n j Xj , 

i=l Xj 
(7.20) 

where 1tj is given by (7.16). 

The likelihood function (7.20) shows that there is an alternative to the logistic 
regression model, namely a model with no restrictions on the binomial parameters 
1tj. If we maximize (7.20) without restrictions on the 1t'S, the ML-estimates become 

X· _ 1 
1tj = _ . 

n· 1 

It is, therefore, possible to check whether a logistic regression model fits the data 
by the likelihood ratio test 

L(ftl, .. ·,ftl ) 

L(ft l , ... ,ftl ) 

where the likelihood function in the numerator is maximized under the logistic 
regression model with 

ft· 1 

exp(ao+L aj Zjj ) 
j 

1 +exp(ao + L ajZjj ) 
j 

and the likelihood function in the denominator is maximized by ftj = Xj/nj . 

(7.21) 
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According to Theorem 2.5 the likelihood ratio (transformed by -2 In) is approxima­
tely X2-distributed. The hypothesis that a logistic regression model fits the data, rat­
her than a product of unrestricted binomial distributions, can thus be tested by the 
test statistic 

(7.22) 

The larger the observed value of (7.22), the larger is it possible to make the likeli­
hood by maximizing without restrictions rather than by maximizing under the 
restriction of a logistic regression model. Hence we should reject the hypothesis 
that a logistic regression model fits the data if the observed value of Z is large. 

According to Theorem 2.5 the number of degrees of freedom for the approximating 
X2-distribution is the number of constrained parameters under the hypothesis. In the 
unconstrained model there are I canonical parameters, namely one probability para­
meter for each binomial distribution. In the logistic regression model there are p+ 1 
canonical parameters. Hence the number of constrained parameters are 

df=I-p-l. 

We accordingly reject a logistic regression model as a satisfactory fit to the data, 
if the level of significance computed approximately as 

p = P(Q ~ z) , (7.23) 

where Q - X2(I - P - 1), is smaller than a certain critical level. 

Note: When we counted the degrees of freedom for (7.22), we counted differences between 
canonical parameters. One might object that the !t'S and the Ws are not linearly connected. 
But in fact the canonical parameter in the i'th binomial distribution is 

and 't j has under the logistic regression model the form 

(7.24) 

such that the I - P - 1 constrained canonical parameters are in fact linear constraints on the 
canonical parameters of the larger model. 

Note also that (7.24) has the matrix form 
't = Z'~ 

with solution 

It is thus a condition for Z to have I - P - 1 degrees of freedom that Z and therefore ZZ' has 
rank p + 1. 

As usual the x2-approximation requires that the expected numbers are not too 
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small. It would be wise for example to only use the x2-approximation if both 
njftj > 3 and njftj > 3. 

Since the model is not a single multinomial distribution, we can not use the results 
from section 2.9 concerning the distribution of the residuals directly. It can be 
shown, however, (see biographical notes) that for a logistic regression model the 
variance of the residuals can be approximated by 

var[X. -n.ft.] = n·1t· (1 -1t.) (1 -h·) 
I I I I I I I' 

(7.25) 

where hj is the diagonal element in the matrix 

and Wand Z are the matrices, introduced in section 7.3, except that for case B W 
must be redefined as a diagonal matrix of dimension I with elements nj1tj(1 - 1tj) 
and Z must be redefined as a matrix of dimension (p + l)x I and elements Zjj with 
ZOj = 1. 

Equation (7.25) implies that standardized residuals can be defined as 

Xj -nj ftj 
rj = r======= , 

Vn jft j(1-ftj)(1-h) 

(7.26) 

where hj is obtained by replacing 1tj with ftj in W. The residuals (7.26) are approxi­
mately normally distributed with mean 0 and variance 1. 

The model fit can be checked graphically by plotting the residuals (7.26) against 
the expected values njftj or against each of the explanatory variables. Such residual 
diagrams can point out model deviations. From the fact that the residuals (7.26) 
are standardized it follows that residuals which are numerically larger than 2, call 
for further inspection. We postpone demonstrations of the use of the standardized 
residuals (7.62) to section 7.6. 

EXAMPLE 7.1. Stress at work. 
From the data base of the Danish Welfare Study 1976 it is possible to extract in­
formation on the persons in the sample, who felt that they suffered from stress at 
work. The response variable thus has value 1 for a person feeling stress at work 
and the value 0 if he or she did not suffer from stress. We shall try to describe the 
variation in the stress variable by the following explanatory variables: 
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Age, divided into five age intervals, which we score by the interval midpoints 

20-29 year: 25 
30-39 year: 35 
40-49 year: 45 
50-59 year: 55 
60-69 year: 65 

Sector, with categories Private, scored 1 and Public, scored -1. 
Employment, with categories White collar, scored 1 and Blue collar scored -1. 

Table 7.1 shows the number of persons in the sample feeling stress at work 
for each combination of the explanatory variables. 

TABLE 7.1. The number of persons in the Welfare Study feeling stress at work for 
each combination of Sector, Employment and Age. 

Response Explanatory variables 

Case Number with Number of Sector Employment Age 
stress persons 

XI ni z1i Z21 z3i 

i=1 39 265 1 1 25 
2 63 253 1 1 35 
3 38 155 1 1 45 
4 23 111 1 1 55 
5 4 45 1 1 65 
6 46 298 1 -1 25 
7 65 292 1 -1 35 
8 46 211 1 -1 45 
9 35 188 1 -1 55 

10 13 82 1 -1 65 
11 30 189 -1 1 25 
12 41 260 -1 1 35 
13 19 137 -1 1 45 
14 19 118 -1 1 55 
15 7 44 -1 1 65 
16 8 55 -1 -1 25 
17 7 58 -1 -1 35 
18 12 60 -1 -1 45 
19 12 73 -1 -1 55 
20 2 33 -1 -1 65 

Totals 529 2927 215 37 20995 

Source: The data base of the Danish Welfare Study. Cf. Example 3.2. 

The last line in Table 7.1 gives the totals 
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and the sufficient statistics 

X. = LXj, 
j 

tj = L XjZji ' j=I, ... ,3 . 
j 
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In this example, we can use the Albert and Andersson criterion to verify that there 
is in fact a unique solution to the likelihood equations. In Figure 7.2 we have plot­
ted all combinations of values (zl' ~, z3) represented in Table 7.1. Since all X;'s 
satisfy 

the points in the 3-dimensional space, shown in Figure 7.2, are quasi-complete se­
parated only if there is a plane on which all the points are located. Since this is 
obviously not the case we can conclude that there is, in fact, a unique set of 
solutions to the likelihood equations. 

Z3 
• 

• • 
• 60 • • • • • • • • 40 • • • 

• • 
.. - 20-.......... • 

.... ~ ...... 
-1 

+1 
Z2 ......... ~--. 

FIGURE 7.2. Configuration of (zl,z2,z3)-points for the data in Table 7.1. 

The estimated parameters with standard errors are shown in Table 7.2. 
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TABLE 7.2. Estimated regression parameters for the data in Table 7.1 with stan­
dard errors. 

Variable Parameter Estimate Standard error 

Intercept ~o -1.629 0.165 

Sector ~1 0.161 0.054 

Employment ~2 0.034 0.050 

Age ~3 0.002 0.004 

The test statistic (7.22) has observed value 

z = 25.15, df = 16, 

with level of significance p = 0.067, indicating a satisfactory fit by a logistic reg­
ressions model. 

EXAMPLE 7.2. Indoor climate. 
The Danish Institute for Building Research in 1970 carried out an investigation of 
the indoor climate in Danish schools. The students in 3 school classes was asked 
at different occasions whether they felt that the indoor climate was pleasant or not 
so pleasant. The response 1 indicated that the indoor climate was pleasant, while 
response 0 indicated a not so pleasant indoor climate. Simultaneously the Building 
Research Institute measured 6 indicators of the actual (or "objective") indoor 
climate for each occasion in each class room. These indicators were as follows. 

T: Temperature. 
M: The degree of moisture. 
C: The amount of carbon dioxide in the air. 
F: The amount of fresh air. 
D: The amount of dust. 
V: The degree of ventilation. 

Table 7.3 shows the collected data, i.e. for each class on each occasion the number 
of students claiming a pleasant indoor climate together with the class size and the 
6 measurements of the "objective" indoor climate indicators. 
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TABLE 7.3 The number of students (x) claiming a pleasant indoor climate shown 
together with class size and 6 objective indicators for 3 Danish school classes on 
different days. 

Objective indicators 

Class Date Class x T M C F D V 
size 

7A 4/3 19 18 22.0 30 0.09 8.5 0.20 230 

7A 3/3 20 16 21.5 25 0.11 6.1 0.08 230 

7A 2/3 19 4 21.5 25 0.11 4.8 0.06 230 

8A 4/3 18 13 18.5 25 0.09 9.2 0.07 236 

8A 3/3 14 12 20.0 25 0.05 8.7 0.08 236 

8A 2/3 18 4 20.0 25 0.11 5.2 0.12 236 

8A 18/3 17 14 20.5 30 0.08 13.1 0.09 249 

8A 17/3 19 18 21.0 30 0.08 12.5 0.06 249 

98 18/3 16 9 21.5 30 0.09 8.7 0.07 215 

98 17/3 18 8 21.0 30 0.07 9.3 0.09 215 

Source: Unpublished data from the Danish Institute for Building Research. 

We shall now analyze the data in Table 7.3 using an analysis based on a logistic 
regression model. First, a logistic regression model is checked by the Z-test 
statistic (7.22). The observed value of Z is 

z = 176.05 - 169.58 = 6.47, df = 3, 

with level of significance p = 0.091 indicating a satisfactory fit. The number of 
degrees of freedom 3 are obtained as the difference between I = 10 and p+ 1 = 7. 

Table 7.4 shows the ML-estimates of the regression parameters and their standard 
errors. 
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TABLE 7.4. ML-estimates for the regression parameters with standard errors for 
the data in Table 7.3. 

Variable Parameter Estimate Standard error 

Intercept ~o 4.656 9.064 

T: Temperature ~1 1.320 0.342 

M: Moisture ~2 -1.141 0.290 

C: Carbon dioxide ~3 20.290 17.700 

F: Fresh air ~4 1.449 0.330 

D: Dust ~5 25.305 7.560 

V: Ventilation ~6 -0.070 0.036 

The estimates seem to indicate that only the explanatory variables Temperature, 
Moisture, Fresh air and Dust contribute significantly to describe the variation in 
the response variable: Pleasant or unpleasant indoor climate. 

7.5 Hypothesis testing 

In logistic regression analysis there are two main types of hypotheses to be tested: 

and 
Hj : ~j = 0, j = 1, ... ,p 

H(j): Pj = ... = Pp = 0, j = 1, ... ,p . 

H(j) is mainly used if we have reasons a priori to believe that none of the explana­
tory variables connected with ~.t_ ... '~p contribute significantly to the regression 
model. The connection between H(j) ana Hj is that H(j) is true if and only if all the 
hypotheses Hj, Hj+ I' ... ,Hp are true. 

Consider first the test for Hj . For this test we need the ML-estimates for the P's 
under the hypothesis. Let us for convenience start with j = p, where Hp = He ). If 
L(~o, ... ,~~ is the likelihood function (7.20) with the 1t'S given by (7.16) the IML­
estimates lPo, ... ,Sp_l) under Hp are defined by the relationship 

The arguments leading to the Z-test statistic (7.22) then yield that Hp can be tested 
by the test statistic 

(7.27) 

where (~O' ... '~p) are the ML-estimates for the regression parameters in the full 
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model. Since ~p = 0 is the only canonical parameter, which is specified under H", 
(7.27) is asymptotically X2-distributed with 1 degree of freedom. Hence the hypotll­
esis Hp : ~p = 0 can be tested by evaluating the level of significance p as 

(7.28) 

where z(H ) is the observed value of z(HI') and Q - X2(l). If p is less than a cer­
tain critic;} value, we reject ~. How to choose this critical value depends on the 
circumstances. 

Note: The letter p is used both for a level of significance and for the number of explanatory 
variables. The meaning of p should always be clear from the context. 

If H is accepted, we say that the p'th explanatory variable does not contribute to 
the description of the variation in the response variable. This is a neutral statement. 
A statement like" the p'th explanatory variable does not influence the response 
variable" is more suggestive. It would for example implicate, or at least hint at, a 
causal relationship. It also suggests that explanatory variable p has an effect on the 
response variable, independently of how the other explanatory variables vary. 

In a logistic regression analysis there are p explanatory variables to consider. 
Hence it is often practical to organize the analysis such that the contributions of 
the explanatory variables are evaluated in a certain order. One often used 
possibility is to take the variables in an order determined by the magnitudes of the 
significance levels 

where z(Hj ) is the observed value of 

(7.29) 

Here, as before, the ~'s are the ML-estimates under Hj and the ~'s are the ML­
estimates in the unrestricted model. The procedure is then first to consider the 
hypothesis with the highest level of significance, then the hypothesis with the 
second highest level of significance and so on. 

If possible one should, however, discusses the contributions of the explanatory 
variables in an order which reflect a priori considerations on the part of the prin­
cipal investigator who originally collected the data. 

The hypotheses H(j) are the appropriate instruments for a sequential testing of the 
contributions from the explanatory variables. Since HG) is the hypothesis that 
p - j + 1 of the explanatory variables can be omitted, or equivalently that it suffices 
to include j - I explanatory variables in the logistic regression model, the test 
statistic for H(j) is 

Z(H(j» = -2InL(~O""'~j_l ,0, ... ,0) +2In(~O'''''~P_l'~P) , (7.30) 
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where ~O""'~j-l are the ML-estimators under HO). 

The test statistic (7.30) is asymptotically X2-distributed with p+ I-j degrees of free­
dom, since p+l-j Ws are specified under H(,j)' We, therefore, reject the hypothesis 
if the level of significance is below a certaIn critical level 

p = P( Q ~ z(H(j») , 

Here z(HO») is the observed value of (7.30), and Q - X2(p+l-j). 

The tests for the sequential procedure now become 

Z(HO)IH(j+l)) = -2 In L(~o' ... '~j_l'O, ... ,O) + 21n L(~o'''''~j'O, ... ,O) , (7.31) 

where ~o'''''~f'-l are the ML-estimates under HO) and ~O""'~j the ML-estimates 
under H(j+l)' t follows from (7.30) and (7.31), that 

Z(HO) IH(j+l») = Z(HO» - Z(Hj+l) . 

Since exactly one canonical parameter, ~j' is specified under H(j) with H(j+l) as 
alternative, it further follows that (7.31) is approximately X2-distributed with 1 
degree of freedom. 

EXAMPLE 7.2 (continued). The estimates and their standard errors in Table 7.4 
suggested that the explanatory variables C and V did not contribute to the descrip­
tion of the variation in the response variable. Table 7.5 shows both the observed 
values of the test statistics Z(Hj ) and of the sequential test statistics Z(H(j) I 
Z(HU+J))) with the associated degrees of freedom and levels of significance. In 
Table 7.5 the system of excluding the explanatory variable with the highest sig­
nificance level for Z(H(j)J first, then the variable with the second highest level of 
significance for Z(HU))' and so on, is applied. 

TABLE 7.5. Direct and sequential tests with degrees of freedom (df) and levels of 
significance (p) for the indoor climate data. 

Hypothesis Variable Parameters z(Hm) df p z(HmIHo+1») df p 
omitted equal to 0 

H(6) C ~3=0 1.25 0.264 1.25 0.2 
64 

H(5) V f33=~6=O 3.82 2 0.148 2.58 0.1 
08 

H(4) D ~3=~6=~5=0 14.67 3 0.002 10.85 0.0 
01 

Note 1: The notation H(6)' H(5hand so on, does not follow the notation in the text, since explanatory 
variable 3 is omitted first, not t e last number 6, etc. But the system should be clear enough from the 
entries in the table. 

Note 2: H(6) is tested against the full regression model in column 7. 
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The significance levels in Table 7.5 reveal that we were right that only the vari­
ables Carbondioxide and Ventilation can be omitted from the model. 

EXAMPLE 7.1 (continued). The table corresponding to Table 7.5 for the stress at 
work data is shown in Table 7.6. In this case the order of the hypotheses H(3)' H(2) 
and H( 1) corresponds to the subscripts of the W s. 

TABLE 7.6. Direct and sequential tests with degrees of freedom (df) and levels of 
significance (p) for the stress at work data. 

Hypo- Variable Parameters z(Hm) df p z(HmIHo+1») df p 
thesis omitted equal to 0 

H(3) Age ~3=0 0.15 0.695 0.15 0.695 

H(2) Empl. ~3=~2=0 0.56 2 0.776 0.40 0.526 

H(1) Sector ~3=~2=~1=0 9.02 3 0.029 8.47 0.004 

Note: H(3) is tested against the full regression model in column 7. 

Both Age and Employment can thus be left out of the model without making the fit 
significantly worse. The explanatory variable Sector on the other hand contributes 
significantly to the description of the response variable. The sign of~l in Table 7.2 
shows that persons with zli = 1 more often than persons with Zli = -1 are stressed 
at work. Since persons employed in the private sector are scored 1 and persons 
employed in the public sector are scored -1, this means, as expected, that persons 
in the private sector are stressed more often than persons in the public sector. 

In scheme A, where it is not possible to check the logistic regression model by a 
goodness of fit test, we can still estimate the regression parameters and evaluate 
their contributions to describing the variation in the response variable. This means 
that we can test the contribution of variable Zj by the test statistic (7.29), or 
sequentially by the test statistic (7.31). Both test statistics are differences between 

or 

depending on which explanatory variables are included in the model. Hence in 
order to test hypotheses concerning the contributions of the explanatory variables 
all we need is a table of -21nL and the corresponding number of degrees of free­
dom for various sets of the explanatory variables included in the model. From this 
table we can then compute the desired z-test statistics by subtracting values of 
-2InL. Most packages provide the values of -21nL for specified models. 
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EXAMPLE 7.3. Public and private employment. 
From the data base of the Danish Welfare Study we have for this example extrac­
ted the following variables for further analysis. 

A: Employment sector, with categories Public sector and private sector. 
B: Social group, with the usual 4 groups. 
C: Sex, with categories Male and Female. 
D: Income in Danish kroner, grouped in income intervals. 
E: Age in years. 
F: Urbanization, with categories Copenhagen, Suburbs of Copenhagen, 

Three biggest cities (outside Copenhagen), Other cities and Countryside. 

Here Employment sector is the response variable and we want to analyze which 
of the explanatory variables contribute to explain the variation in the response 
variable. 

The complete list of -2lnLfor different sets of explanatory variables included in the 
model is shown in Table 7.7. 

TABLE 7.7 The complete list of -21nL for different sets of explanatory variables 
included. 

Explanatory Explanatory 
variables included -2 In L variables included -2 In L 

BCOEF 3305.21 BC 3333.15 

BCOE 3308.62 BO 3501.40 

BCOF 3327.69 BE 3501.26 

BCEF 3305.22 BF 3503.93 

BOEF 3471.80 CO 3495.64 

COEF 3473.82 CE 3514.48 

BCD 3332.60 CF 3508.09 

BCE 3308.66 DE 3656.52 

BCF 3327.97 OF 3638.67 

BOE 3482.39 EF 3633.42 

BDF 3488.51 B 3514.93 

BEF 3492.10 C 3527.26 

COE 3485.37 0 3663.40 

COF 3482.80 E 3657.59 

CEF 3497.30 F 3665.18 

OEF 3633.16 None 3665.04 
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From Table 7.7 we can derive a sequence of test statistics of the form (7.31) for 
successive omissions of explanatory variables. This is shown in Table 7.B. 

TABLE 7.8 A sequence of test statistics z(HIH*) for possible exclusion of explana-
tory variables with degrees of freedom and levels of significance. 

Hypothesis Variables Variable Level of 
included omitted z(HIH.) df significance 

Ho BCDEF 

H1 BCEF 0 0.01 1 0.920 

H2 BCE F 3.44 1 0.064 

H3 BC E 24.49 0.000 

H4 B C 181.78 0.000 

Hs None B 150.11 0.000 

Table 7.B thus shows that Sex and Urbanization contribute to explain the variation 
in the response variable, while Social group, Income and Age are explanatory 
variables which are of importance if we want to predict whether a given person 
is in the private or in the public sector. 

7.6 Diagnostics 

The main diagnostics for detection of model deviations are the standardized residu­
als (7.26). In recent years a number of additional residuals have been suggested. 
One example are the individual terms in the Z-test statistic 

called deviances. Scaled by their standard errors to be approximately normally 
distributed with mean 0 and variance 1, they are used in the same way as standar­
dized residuals. Another type of diagnostic is Cook's distance, which is a measure 
of the influence of each particular group on the estimates of Ws. Cook's distance 
for group i is defined as 

where ~ is the vector of ML-estimates and ~(i) a vector, which contains the ML­
estimates one would obtain if the i'th group were omitted from the data. The factor 
(ZWZ') is a scaling factor since it follows from (7.15) that 

The so-called hat matrix plays an important role both for standardized residuals and 
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Cook's distances. The hat matrix is defined by 

(7.32) 

where W is the diagonal matrix, which was introduced in connection with (7.25) 
and (7.26), but now with the 7t/s replaced by their ML-estimates, i.e. W has diago­
nal elements njftj(l - ft j). The diagonal elements hj of the hat matrix are called 
leverages. Note that there is a leverage for each group i. 

Equation (7.26) shows that we need the elements of the hat matrix in order to com­
pute the standardized residuals. In addition it can be shown (see biographical notes) 
that Cook's distance for logistic regression can be approximated by 

1 2 hj 
Cj = __ rj --h-

p+l I-h. 
I 

(7.33) 

showing that Cook's distance ~s in general large if the standardized residual rj is 
large, but also if the leverage hj is close to its maximal value 1. Leverages close 
to one are more common in logistic regression models with several responses for 
each distinct combination of the explanatory variables (scheme B), than in scheme 
A, or in ordinary regression analysis. It is in particular when nj is large, that we 
risk large leverages. This is because groups based on many observations potentially 
contribute more to the estimates than if the number of cases nj in a group is small. 

Cook's distance can also be defined for scheme A. 

EXAMPLE 7.2 (continued). As we saw, Carbon dioxide and Ventilation can be 
omitted as explanatory variables in the model. Table 7.9 shows the estimated 
parameters and their standard errors for this reduced model, while Table 7.10 
shows the expected values, the standardized residuals and Cook's distances for 
each group i. 
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TABLE 7.9. ML-estimates for the regression parameters with standard errors for 
the data in Table 7.3. 

Variable Parameter Estimate Standard error 

Intercept ~o -11.160 4.081 

T: Temperature ~1 1.042 0.284 

M: Moisture ~2 -0.703 0.168 

F: Fresh air ~4 0.950 0.171 

0: Dust ~5 17.531 6.085 

TABLE 7.10. Standardized residuals and Cook's distances for a logistic regression 
model with only four explanatory variables for the indoor climate data. Also shown 
are the values of the explanatory variables. 

Group Observed Expected Explanatory Standardized Cook's 
number number variables residuals distances 

Xj nj 7tj T M F D rl Cj 

18 17.21 22.0 30 8.5 0.20 1.37 1.83 

2 16 14.10 21.5 25 6.1 0.08 1.37 0.54 

3 4 6.25 21.5 25 4.8 0.06 -1.64 0.83 

4 13 11.26 18.5 25 9.2 0.07 1.72 2.31 

5 12 11.98 20.0 25 8.7 0.08 0.02 0.00 

6 4 5.41 20.0 25 5.2 0.12 -1.18 0.59 

7 14 16.29 20.5 30 13.1 0.09 -3.12 0.60 

8 18 17.64 21.0 30 12.5 0.06 0.39 0.02 

9 9 6.62 21.5 30 8.7 0.07 1.71 0.73 

10 8 9.23 21.0 30 9.3 0.09 -0.78 0.12 

Figure 7.3 shows the standardized residuals in Table 7.10 plotted against the four 
explanatory variables included in the final model. Since the model describes the 
data, we should expect few residuals outside the range (-2,+2) and a random scat­
tering of the residuals within these limits. 
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FIGURE 7.3. Residual diagrams for the indoor climate data with the standardized 
residuals plotted against the four explanatory variables. 

Thefour diagrams in Figure 7.3 show that only one residual is somewhat extreme. 
It is group 7 with a relatively high expected value as compared with the observed 
count of students feeling a pleasant indoor climate. For most of the explanatory 
variables this group does not correspond to an extreme value, except maybe for 
Fresh air, where group 7 has the largest value, but group 6 has almost as large 
a value. 

The Cook distances in Table 7.10 shows that two groups have Cook distances, 
which are clearly larger than the other 8 values, namely group 1 and 4. Figure 7.3 
shows immediately the reasons Jor this. The residual diagram for Temperature 
shows that group 4 has a temperature that is well below the lump of the other 
temperatures. Group 1 on the other hand stands out in the diagram for Dust with 
a much higher degree of dust that the other groups. The reason for Cook's distan­
ce to be large for groups 1 and 4 is thus that these two groups are connected with 
extreme values of the explanatory variables which of course, if removed from the 
data set, will influence the estimates more than if groups with not so extreme valu­
es are removed. This example also shows that a Cook distance can be large even 
when the residual is moderate in value. 
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If diagnostics point to special cases or groups as having a large influence on the 
parameter estimates or on the model fit, one often used technique is to remove 
these groups and re-estimate the parameters and retest the fit of the model. This 
does not mean that it is always justified to remove observations from a data set. 
Only if it becomes clear, by careful checking of the data collection procedure, that 
errors have occurred it can be fully justified to correct these errors and thus change 
the data. The influence of one of the cases or groups may on the other hand be so 
invalidating for an otherwise simple and reasonable model for the data, that a 
sound way to report one's findings is to say, that the simple model fits the data 
except for some unexplainable extreme observations connected with certain groups. 
In many cases further investigations may shown that such extreme groups, for 
reasons not clear at present, are bound to be observed. With all these reservations 
in mind it can be recommended to repeat the estimations and test without groups 
pointed out extremes by well chosen diagnostics like standardized residuals and 
Cook distances. 

EXAMPLE 7.2 (continued). Table 7.11 represents a summary of the changes in the 
parameter estimates and the Z-test statistics for goodness offit of the model, when 
in turn groups 1 and 4, with large Cook distances, and group 7 with a standar­
dized residual numerically larger than 3, are removed from the data set. 

TABLE 7.11. Parameter estimates and observed values (z) of the goodness of fit 
test statistics Z for a logistic regression model, with degrees of freedom (df) and 
significance levels (p), when all groups are included, and with groups 1,4 and 7 
removed. 

Parameter estimates 

Variable All groups Without group 1 Without group 4 Without group 7 

Intercept -11.16 -6.98 -20.92 -14.20 

Tempera- 1.04 0.83 1.50 1.28 
ture 

Moisture -0.70 -0.62 -0.70 -0.85 

Fresh air 0.95 0.84 0.94 1.21 

Dust 17.53 2.96 19.79 19.96 

z 10.30 8.36 7.33 3.69 

dt 5 4 4 4 

p 0.067 0.079 0.120 0.449 

The table shows, as expected, that exclusion of group 1 change the parameter esti-
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mates in particular the intercept and the ~ for Dust. Also the exclusion of group 
4 change the parameter estimates, here mostly the ~ for Temperature and the inter­
cept. The exclusion of group 7 does change the parameter estimates much, but in 
contrast to the two other groups, where the fit of the model is not significantly im­
proved, the fit is markedly improved if we remove group 7 with the large residual. 

7.7 Predictions 

For given values z = (zl' ... 'zp) of the explanatory variables one can - this might 
indeed be the whole purpose of the data analysis - make a prediction of the pro­
babilities ny, which are the basis for the expected value of Y y. Since 

E[Yy] = n(z) . 1 + (1 - n(z)) . 0 = n(z) , 

when the explanatory variables corresponding to Yy are z = (zl' ... ,zp)' the connec­
tion between the prediction probabilities n(z) and the z's is 

In( n(z) ) = ~z , 
1 -n(z) 

From (7.15) we the get 

Confidence limits for 

var[ln( 1t(z) )] = z, (ZWZ')-lz . 
1 -1t(z) 

logit (n(z)) = In ( n(z) J 
1 - n(z) 

with level of confidence 1 - a are, therefore, given by 

where 
logit(1t(z)) ± ul-a/2 . fj , 

fj2 = z'(ZWZ')"lz . 

(7.34) 

The confidence limits for the prediction probabilities n(z) are thus given by 

and 

exp(logit(1t(z)) +uI -C1.I2 .fj) 

1 +exp(logit(ft(z) +uI -C1.I2 ofj) 

exp(logit(ft(z)) -uI-C1.I2 ofj) 

1 +exp(logit(ft(z) -uI-C1.I2 ofj) 
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EXAMPLE 7.2 (continued). We shall now show the predicted response 
probabilities and their upper and lower 95% confidence limits for the indoor 
climate data, when only the four significant explanatory variables are included in 
the model. Table 7.12 shows the predicted response probabilities for all 10 groups 
together with the upper and lower 95% confidence limits. 

TABLE 7.12. The predicted response probabilities for all 10 groups together with 
the upper and lower 95% confidence limits. 

Explanatory 
variables 

Group T M F D Predicted Upper and lower 
probability Confidence limits 

i=1 22.0 30 8.5 0.20 0.906 ( 0.709 , 0.974 ) 

2 21.5 25 6.1 0.08 0.706 ( 0.542 , 0.829 ) 

3 21.5 25 4.8 0.06 0.329 ( 0.194 , 0.499 ) 

4 18.5 25 9.2 0.07 0.626 (0.421 , 0.793 ) 

5 20.0 25 8.7 0.08 0.855 ( 0.739 , 0.925 ) 

6 20.0 25 5.2 0.12 0.301 ( 0.162 , 0.488 ) 

7 20.5 30 13.1 0.09 0.958 ( 0.889 , 0.985 ) 

8 21.0 30 12.5 0.06 0.929 ( 0.824 , 0.973 ) 

9 21.5 30 8.7 0.07 0.414 (0.259,0.588) 

10 21.0 30 9.3 0.09 0.513 ( 0.326 , 0.661 ) 

The number 0.906 in row one of Table 7.12 is computed in the following way: For 
the values 22.0, 30, 8.5 and 0.20 and the ~'s in Table 7.9, we get the logit 

-11.16 + 22.0 '1.042 +30 . (-0.703) + 8.5 . 0.950 + 0.20 '17.531 = 2.2552 . 

Hence 
e 2.2552 

it 1 = ----"....,....".= 
1 +e 2.2552 

9.5372 
10.5372 

which is 0.906 apart from rounding errors. 

7.8 Dummy variables 

= 0.905 , 

When we formulated the logit-model as a regression model in section 6.3, we in 
principle only treated binary explanatory variables. If, however, in a logit-model 

A AB AC AD 
logit(1t1Ijkl) = 2'tl +2'tlj +2'tlk +2't1l ' (7.35) 
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one of the explanatory variables, for example variable D, has more than two levels, 
we can not directly formulate the model (7.35) as 

(7.36) 

with zi = 1 or -1. If we want to formulate (7.35) as a regression model, we need 
as many regression parameters ~ as there are unconstrained 't1?'s. Thus let vari­
able D have 5 levels. Then there are 4 unconstrained 't11's and we need 4 Ws and, 
therefore, also 4 constructed explanatory variables zi 1 , z?), ZI(3) and zl(4). The 
way to obtain this is known as the dummy variable method and the z's are called 
dummy variables. 

One way to construct dummy variables is shown in Table 7.13. 

TABLE 7.13. Definition of dummy variables for a polytomous explanatory variable 
with five levels. 

Category z(1) 
I 

z(2) 
I 

z(3) 
I 

z(4) 
I 

1=1 0 0 0 

2 0 0 0 

3 0 0 0 

4 0 0 0 

5 -1 -1 -1 -1 

If we define ~31' ... '~34 as 

~31 
AD 

= 'tIl 

~32 
AD 

= 't12 

~33 
AD 

= 't13 

AD 
~34 = 't14 

Models (7.35) and (7.37) are in fact identical. This means that if we use dummy 
variables, there is thus no reduction in the number of parameters in the regression 
model, and estimation of the parameters and a goodness of fit test based on (7.35) 
will tell us if a logistic regression model can describe the data at all. 
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To see that (7.35) and (7.37) are identical, we choose to check the values of the 
last 4 terms in (7.37) for the typical category 1=1 and the special category 1=5. For 
1= 1, we get, according to Table 7.13 

~31Z?)+~32Z1(2)+~33Z?)+~34Z1(4) = ~31 = 2't~f, 
which is the last term in (7.35) for 1=1. For 1=5, we get 

~31 zP) +~32Z?) + ~33ZP) +~34Z?) 
which according to Table 7.13 is equal to 

AD AD AD AD AD 
-~31-~32-~33-~34 -2'tll -2't12 -2't13 -2't14 = 2't15 ' 

due to the constraint 
5 

" AD L.... 'tll = O. 
1=1 

Thus for 1=1 and 1=5, (7.35) and (7.37) are identical. 

When dummy variables are derived from the logit-model, as is done here, the 
correct definition of the variables is the one given in Table 7.13. It is, however, 
much more common (for example in econometrics) to define dummy variables with 
reference to a base line category, often the last response category. The values of 
the dummy variables for the base line category are all 0, so that the dummy 
variables for 5 categories are defined by Table 7.14. 

TABLE 7.14. Definition of dummy variables for an explanatory variable with five 
levels, number five being the base line category. 

Category z(1) 
I 

z(2) 
I 

z(3) 
I 

Z(4) 
I 

1=1 1 0 0 0 

2 0 0 0 

3 0 0 0 

4 0 0 0 

5 0 0 0 0 

It is easy to check, that if we change from the dummy variables defined in Table 
7.13 to the dummy variables defined in Table 7.14, all the Ws are changed by the 
additive constant 

~35 = - ~31 - ~32 - ~33 - ~34 . 

It is added to ~o and subtracted from ~31 through ~34' 

In some situations the scores are preassigned to the levels of a polytomous expla­
natory variable. If for variable D being the polytomous variable, (z31' ... ,z3L) are 
the scores preassigned to the L levels, the logistic regression model becomes 
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(7.38) 

but we have no guarantee that the scoring of the levels of variable D is optimal in 
the sense that we get as good a fit as for the model with dummy variables. In the 
example below, we shall demonstrate this. But before discussing the example, we 
have to clarify the connection between model (7.37), using dummy variables, and 
model (7.38), using a fixed scoring of the response categories. The best way to do 
this is to demonstrate, that if we use a scoring, which is proportional to the maxi­
mum likelihood estimates for the dummy variables, then the ~3' s estimated from 
(7.38) are proportional to the Ws estimated from (7.37). Such a result can be para­
phrased by saying that the ~-estimates obtained using dummy variables represent 
an "optimal scoring" of the categories of explanatory variable D. The argument 
runs as follows. 

Suppose that we in model (7.38) use z31 = c~31' 1=1, ... ,L, where ~31 are the ML­
estimates obtained from the dummy variable model (7.37), as the scoring of the re­
sponse categories, then the last term in (7.38) becomes 

(7.39) 

But if we replace the Ws in (7.37) by their ML-estimates, we get for category 1=1 
~31z1 (1) = ~31' A comparison with (7.39) for 1=1 then shows that the ML-estimates 
for the Ws obtained from the dummy variable method are proportional with the 
ML-estimates for the ~'s obtained by using the dummy variable Ws as scores for 
the categories in the fixed scoring model (7.38). 

EXAMPLE 7.1 (continued). We return to the data in Table 7.1. In this table, we 
used aflXed scoring of the age categories, namely the interval midpoints. We now 
compare this scoring with using dummy variables. Since there are five levels of 
variable Age, we define four dummy variables Agel, Age2, Age3 and Age4. The 
dummy variable scoring of the five age intervals is in accordance with Table 7.13. 
The regression parameter estimates are shown in Table 7.15. 

TABLE 7.15. Estimated regression parameters for the data in Table 7.1 with dum­
my variables according to Table 7.13. 

Variable Parameter Estimate Standard error 

Intercept ~o -1.629 0.062 
Sector ~1 0.165 0.055 

Employment ~2 0.028 0.051 
Age1 ~31 -0.163 0.096 
Age2 ~32 0.211 0.088 
Age3 ~33 0.211 0.100 
Age4 ~34 0.081 0.108 

If we compare with Table 7.2 , the ML-estimates for the Intercept, Sector and 
Employment has not changed much. The Z-test statistic for the model with dummy 
variables, however, has observed value 
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z(H) = 10.71, df = 13 , 

with level of significance p = 0.635. Hence the model fit is much better than with 
the "midpoint" scores (25, 35, 45, 55, 65). The ~-estimates in Table 7.15 in fact 
suggest that the optimal scoring of the age intervals in this group are not the 
interval midpoints. The sum of the ~-estimates for the four age variables in Table 
7.15 is 0.340. Hence the last age category must be assigned the value -0.340 in 
order for the Ws to sum to zero. Ifwe choose scores proportional to the estimated 
~-valuesfrom the dummy variable method in such a way, that the range is 40 and 
the median is 45, as for the age interval midpoints, we get the "optimal" scores 
(33,60,60,51,20). Ifwe use these scores for the five age categories, we get the 
estimates in Table 7.16. 

TABLE 7.16. Estimated regression parameters for the data in Table 7.1 with the 
scoring (33, 60. 60, 51.20) for the age categories. 

Variable Parameter Estimate Standard error 

Intercept ~o -2.249 0.192 
Sector ~1 0.166 0.054 

Employment ~2 0.028 0.050 
Age ~3 0.Q14 0.004 

Again the estimates have not changed much, except of course for ~(» but as 
expected the goodness of fit for this model is about the same as for the model with 
dummy variables, namely 

z(H) = 10.71, df = 16, 

with level of significance p = 0.827. That the fit is even slightly better, judged by 
the level of significance, is because we have "cheated" a little by using the data 
to construct the "optimal" scoring. 

7.9 Polytomous response variables 

For polytomous response variables, i.e. if the response variable has more than two 
possible response categories, we can not use the logistic regression model in the 
form we have used so far. It is at least not immediately clear to what probabilities 
the logistic transformation shall be applied. Thus let the possible values of the 
response variable Yy be t = 1, .... T and assume that we are in scheme B. For each 
i, there will then be T observed numbers xil ..... xiT' where Xit is the number of per­
sons in the group with response {Y y = t} for which the values of the explanatory 
variables are zli, ... ,zpi' 

The distribution of the random variables XiI' ... ,XiT corresponding to the observed 
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values xjJ"",xiT is a multinomial distribution 

where ni is the number of cases with values zli, ... ,zpi of the explanatory variables, 
and 

1tit = P(Yv = t Izli, .. ·,Zpi) . 

The likelihood function then becomes 

(7.40) 

It is possible to formulate a number of regression models based on the probability 
parameters 1tit of the likelihood function (7.40). Since there are T -1 unrestricted 
parameters one possibility is to consider the T -1 partial logistic regression models 

( 
1tit 1 (t) ~ (t) In -- = ~o +.LJ ~j Zji' t = 1, .... T-l • 

1 -1tit j 
(7.41) 

with one set of regression parameters (~o (t) .... '~p (t») for each value of t. This is 
not necessarily the most obvious way to establisli T -1 partial regression models. 
An attractive alternative is thus to compare the 1tit's to the same denominator. 
which results in the model 

( 
7tit 1 A(t) ~ A(t) In --- = .... 0 +.LJ .... j Zji' t = 1 ..... T -1 . 

1 -1t' T . 
1 J 

(7.42) 

For each t this is a logistic regression model in a conditional sense. Assume that 
the response can only take the values t and T. Then 1tiT = 1 - 1tit and in the 
conditional distribution given that t is either t or T (7.42) is for each t a condi­
tional logistic regression model. 

Another idea is to compare neighbouring probabilities 1tit and 1tit+l' giving the 
model 

( 
1tit 1 (t) ~ (t) In -- = ~o +.LJ~. Zji' t = 1, ... ,T -1 . 

1t. 1 . J 
1t+ J 

(7.43) 

Model (7.43) is also a conditional logistic regression model if we condition on t 
being either t or t+ 1. 

A final partial model with some attractive properties is the continuation regres­
sion model given by 
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In( 1tit 1 = A(t) +" A~t)Z" t = ~ f-'O ~f-'J J1' 
L...J 1tis J 
s>t 

I ..... T -1 . (7.44) 

The idea is here to compare 1tit in a logistic way with 1 minus the cumulative pro­
bability 

Pit = P(S:;;t) = L 1tis • 
s:5:t 

where in S the response is a random variable with range (1 ..... T). 

(7.45) 

Note that the ~-parameters in models (7.41) to (7.44) are not the same parameters in spite 
of the common notation. 

It is a common advantage for all these models. that we can use the statistical 
methodology developed for the simple dichotomous logistic regression model. 

It is on the other hand a common disadvantage of the models. that each gives rise 
to not one. but T -1 sets of regression parameters. This means that an explanatory 
variable may give a significant contribution to the variation of the response vari­
able for one value of t. but not for other values of t. We can thus easily come 
across situations. as in Example 7.4 below, where a statistical analysis based on 
one of the models for one value of t clearly indicates that the j'th explanatory vari­
able can be omitted. while the analysis for another value of t equally clearly in­
dicates that the j'th explanatory variable contributes significantly to explain the 
variation in the response variable. 

Models have also been developed. where only one set of regression parameters is 
enough to describe the contribution of the explanatory variables. The McCullagh­
model (cf. the biographical notes) has the form 

In( ~ 1tiSJ - In[ E 1tiSJ = at + ~ PjZji ' t = I ..... T -1. (7.46) 
l~=l s=t+l J 

This model can be described as a logistic regression model for the cumulative 
probabilities (7.45) since (7.46) is equivalent with 

[ Pit J In -- = at+L ~jZji . 
I-Pit j 

Model (7.46) implies that the contributions of the explanatory variables via 

L PjZji • 
j 

are distributed over the T categories of the response variables in such a way that 
the logits of the cumulative probabilities (7.46) increase or decrease with 
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(X1, ... ,cx.r-1. It follows that the model contains p parameters (~l' ... '~p)' which 
describe the contributions of the explanatory variables, and T -1 parameters 
(X1, .•. ,cx.r-1' which describe the distribution over the response categories. 

A model, which also have only one set of regression parameters is 

(7.47) 

For this model 

(7.48) 

The probabilities 1tit' given by (7.48), are invariant under linear transformations of 
the w's. In fact if wt* = a +bwt then (7.48) becomes 

exp ~o + ~ ~jZji a+bWt)] 

T 

L exp[~o+~ ~jZji)a+bWs)] 
s=l J)' 

ex1a ~o+~ ~jZji ~.ex b~o+~ b~jZji Wt] 

T 

ex1a(~o+~ ~jZji]·~ eX~b~o+~ b~jZjirS] 

which is identical to (7.48) apart from a rescaling of the W s. Hence we can norma­
lize the w's by introducing the constraints 

T T ., 
L W t = 0 and L W t- = 1 (7.49) 
t=l t=l 

From (7.48) then follows by simple algebra that 

T [J 1tit L wt·ln - = ~o+L ~jZji . 
t=l 1tiT j 
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Model (7.47) can thus be described as a conditional logistic regression model (the 
conditioning being on either t or T being the response) where a weighted sum of 
the logarithms of the response probabilities is a regression model. 

Both models (7.46) and (7.47) can be checked in the usual way by means of a Z­
test statistic for goodness of fit. Z has in this situation the form 

(7.50) 

For model (7.46), ftit is given by 

where 

Under models (7.46) and (7.50) is approximately X2-distributed with 

df = 1(T - 1) - p - (T - I) = (I - I)(T - 1) - p 

degrees of freedom, while (7.50) under model (7.47) is approximately X2-distribu­
ted with 

df = 1(T - 1) - P - 1 
degrees of freedom. 

EXAMPLE 7.4. Stress at work. 
We return to the question offeeling stressed at work. In Example 7.1 the responses 
were dichotomized to the categories Feeling stressed and Not feeling stressed. 
Actually the question: "Do youfeel stress at work?" in the Welfare Study had three 
response categories: "Yes", "Yes, sometimes" and "No". Table 7.17 shows the re­
sponses distributed on all three response categories, now with the explanatory 
variables: 
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Employment, with categories White collar worker =1 and Blue collar worker =2. 
Sector, with categories Private =1 and Public =2. 
Geographical region, with categories Copenhagen =1, Zeeland and Fuen =2 and 

Jutland =3. 

TABLE 7.17. The sample in the Danish Welfare Study cross-classified according 
to Stress at work, Employment, Sector and Geographical region. 

Observed responses on the question: Explanatory variables 
Do you feel stressed at work? 

Yes Yes sometimes No Employment Sector Region 

54 107 97 
43 54 68 2 1 1 
35 91 113 1 2 1 
10 20 45 2 2 1 
45 94 104 1 1 2 
62 110 178 2 1 2 
29 88 103 1 2 2 
13 15 39 2 2 2 
68 135 125 1 1 3 

100 165 291 2 1 3 
52 98 139 1 2 3 
18 32 87 2 2 3 

Source: The data base of the Danish Welfare Study. Cf. Example 3.2. 

If we analyze the data in Table 7.17 by the four partial logistic or conditional lo­
gistic regression models (7.41) to (7.44), we get the parameter estimates shown in 
7.18. Also shown are the observed values of the Z-test statistic and the correspon­
ding levels of significance. Parameters, which are significantly different from 0 at 
a 95%-level are highlighted by bold types. 



LOGISTIC REGRESSION ANALYSIS 193 

TABLE 7.18. Parameter estimates for models (7.41) to (7.44) with observed values 
(z) of the Z-test statistic, degrees of freedom (df) and levels of significance (p) for 
the data i Table 7.17. 

Model ~o(t) ~,(t) ~2(t) ~3(t) Z df P 

(7.41 ) t=l -0.928 -0.055 -0.320 -0.035 9.77 8 0.281 
t=2 0.439 -0.469 -0.211 -0.006 3.53 8 0.897 

(7.42) t=l -1.222 0.170 -0.083 0.001 3.33 8 0.912 
t=2 -0.340 -0.092 0.040 -0.003 1.41 8 0.994 

(7.43) t=l -0.881 0.261 -0.124 0.012 6.78 8 0.557 
t=2 1.100 -0.550 -0.340 -0.072 4.06 8 0.852 

(7.44) t=l -0.928 -0.055 -0.320 -0.035 9.77 8 0.281 
t=2 1.100 -0.550 -0.340 -0.072 4.06 8 0.852 

It is obvious from this table that we get very different results when applying the 
different models. It is also clear that the models do not give a unique universal 
answer to the obvious question: Which explanatory variables contribute sig­
nificantly to the description of the variation in the response variable? It is indeed 
the exception rather than the rule that the parameter estimates for t=1 and t=2 are 
identical. even when both are significantly different from O. The only clear con­
clusion is that the explanatory variable Geographical region does not contribute 
significantly. Stressed work is thus not. as one maybe would have believed. more 
common in Copenhagen. the only real big city in Denmark, than in the rest of the 
country, according to peoples own conception. 

In order to apply model (7.47) to the data in Table 7.17, we have chosen an equi­
distant scoring, which with the constraints (7.49) becomes 

Table 7.19 shows the parameter estimates, the observed values of the Z-test sta­
tistics and the corresponding levels of significance for models (7.46) and (7.47). 
Parameters, which are significantly different from 0 at a 95%-level are, as in 
Table 7.18, highlighted by bold types. 

TABLE 7.19. Parameter estimates for models (7.46) and (7.47) with observed val­
ues (z) of the Z-test statistic, degrees of freedom (df) and levels of significance (p) 
for the data i Table 7.13. 

Model 

(7.46) 
(7.47) 

-0.333 0.286 
0.347 

0.331 
0.360 

0.054 
0.061 

z 

56.09 
32.92 

df 

20 
19 

p 

0.000 
0.025 

The two models (7.46) and (7.47), which provide one set of ~-estimates, both desc-



194 LOGISTIC REGRESSION ANALYSIS 

ribe the data much less satisfactorily than the partial models. The regression para­
meters ~ l' ~2 and ~ 3 are, on the other hand, almost identical for the two models 
and as for the partial models, they show that Geographical region does not make 
a significant contribution. 

7.10 Bibliographical notes 

Logistic regression analysis was suggested by Cox (1970). It has been known for 
a long time that the canonical parameter for the binomial distribution is obtained 
by a logistic transformation of the probability parameter, cf. for example Lehmann 
(1959) or Barndorff-Nielsen (1978). The conditions for existence of unique solu­
tions to the likelihood equations was given by Albert and Andersson (1984). 

The logistic regression model is a special case of the generalized linear model as 
introduced by NeIder and Wedderburn (1972) and fully discussed in McCullagh 
and NeIder (1983). It is shown in the book by McCullagh and NeIder that the 
Newton-Raphson solution of the likelihood equations for generalized linear models 
- and hence for logistic regression - can be obtained by a method similar to the 
weighted least squares solution for ordinary regression models. The method is 
called the iterative weighted least squares method or iterative reweighed least 
square method, cf. also Andersen (1990) section 3.7 or Agresti (1996) section 
4.7.3. 

Standardized residuals and Cook distances for logistic regression were discussed 
by Pregibon (1981). 

Continuation regression models was suggested by Thompson (1977) and Fienberg 
and Mason (1979). The McCullagh model was suggested by McCullagh (1980). 

Logistic regression analysis is treated in most books on categorical data and analy­
sis and in many books on applied regression analysis. Cf. for example Andersen 
(1990) chapter 9, Agresti (1996) chapter 4 and Weisberg (1985). Recently special 
books on logistic regression analysis have been published, for example Hosmer and 
Lebeshowes (1989). 

7.11 Exercises 

[For some of the exercises you need a computer package like BMDP or SAS to 
obtain test statistics, estimates, standard errors, predictions or diagnostics. For rea­
ders without access to such packages, selected and organised output from the SAS 
package is shown in the Appendix] 

7.1 The table below shows for 8 hypothetical groups the number of positive 
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responses xi out of ni observations together with three sets of two explanatory 
variables. 

Positive Observed 
Group response number Set 1 Set 2 Set 3 

Xj nj Z1 z2 z1 z2 z1 Z2 

13 25 0.5 0.5 0.5 3.0 0.5 3.0 

2 10 10 3.0 0.5 2.0 2.5 2.0 2.5 

3 11 15 1.5 1.5 1.0 1.5 1.0 1.5 

4 8 10 2.5 2.5 3.5 1.5 1.5 1.5 

5 0 9 2.0 2.5 1.5 1.5 2.5 2.5 

6 0 15 1.0 1.5 2.5 2.5 3.5 1.5 

7 3 17 3.0 3.0 3.0 0.5 3.0 0.5 

8 15 15 3.5 1.5 0.5 0.5 0.5 0.5 

9 0 12 0.5 3.0 3.0 3.0 3.0 3.0 

For which of the three sets of explanatory variables are there solutions to the likeli-
hood equations? 

7.2 In this exercise we consider 10 hypothetical cases with 0 - 1 responses and two 
explanatory variables. As in exercise 7.1 there are three alternative sets of explana-
tory variables. 
The table below shows for each case the response together with the three different 
sets of explanatory variables. 

Case Response Set 1 Set 2 Set 3 

Yj Z1 z2 z1 z2 z1 Z2 

0 0.5 3.0 0.5 3.0 2.5 0.0 

2 2.5 0.0 2.0 2.5 0.5 3.0 

3 2.5 2.5 1.0 1.5 2.0 2.5 

4 1.5 1.5 1.5 1.5 1.0 1.5 

5 0 2.0 2.5 2.5 2.5 3.5 1.5 

6 0 1.0 1.5 3.5 1.5 3.0 0.5 

7 3.5 1.5 3.0 0.5 1.5 1.5 

8 3.0 0.5 0.5 0.5 2.5 2.5 

9 0.5 0.5 3.0 3.0 0.5 0.5 

10 3.0 3.0 0.0 1.0 0.0 1.0 

11 0 0.0 1.0 2.5 0.0 3.0 3.0 
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7.3 Write the data set in Example 6.2, Table 6.2 (with Party membership as the 
response variable) as a logistic regression data set, i.e in the same form as Table 
7.1. 

(a) Estimate the regression parameters and their standard errors. 

(b) Carry out a logistic regression analysis to determine which of the three explana­
tory variables contribute significantly to the description of the variation in the re­
sponse variable. 

(c) Compare the results in (b) with the conclusions drawn in Example 6.1 

7.4 The Danish Institute for Building Research in 1983 made an investigation of 
the indoor climate at a number of City Halls of independent municipalities in the 
suburbs of Copenhagen. The response variable was - as in Exercise 4.3 - Irritation 
of the throat. The explanatory variables were A: Dust, measured in a typical office 
of the building and B: The amount of Ventilation, also measured in a typical of­
fice. The table below shows the number of City Hall employees with irritation of 
the throat together with the total number interviewed and the values of the explana­
tory variables. 

Number with 
irritation Number Dust Ventilation 

City Hall no. of the throat interviewed (mg/m3) (liter/sec.) 

120 105 301 0.27 7.50 

41 22 36 0.16 9.20 

70 206 317 0.12 8.60 

121 137 196 0.11 7.70 

(a) Test if a logistic regression model fits the data. 

(b) Estimate the regression parameters and test whether it is necessary to include 
both, just one, or none of the explanatory variables in the model. 

In the table below the standardized residuals and the Cook distances are shown for 
a logistic regression model with both explanatory variables included. 

Dust Ventilation Standardized Cook 
City Hall no. (mg/m3) (liter/sec.) residuals distances 

120 0.27 7.50 -0.698 68.85 

41 0.16 9.20 +0.698 0.13 

70 0.12 8.60 -0.698 0.79 

121 0.11 7.70 +0.698 1.87 
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(c) Comment on the information provided by both the values of the standardized 
residuals and of the Cook distances. 

7.5 The table below is typical for the way results from a logistic regression analy­
sis are presented in many publications. The table is from a report published by the 
Danish Institute for Border Research (the border being the German-Danish border). 
The response variable is whether the interviewed person has changed jobs within 
the last ten years with response values 1 for Yes and 0 for No. 

Variable 

Intercept 

Sex: Men(O) 
Women(1) 

Age: Years 

Household income 
( 1000 Dkr. ) 

Number of children 
at home under 18 

Number of hours 
per week your wife or 
husband goes to work 

Length of education: 
Month more than 10 years 

Estimated regression coefficient 
( standard error ) 

Modell Model II Model III 

1.2831 
(0.9010) 

-0.2995 
(0.2874) 

-0.0262 
(0.0136) 

0.0002 
(0.0021) 

-0.0157 
(0.1256) 

0.0037 
(0.0125) 

-0.0043 
(0.0070) 

4.6945 
(0.5783) 

-0.7735 
(0.2622) 

-0.1007 
(0.0127) 

-0.0036 
(0.0024) 

0.0133 
(0.0066) 

5.4697 
(0.9560) 

-0.7735 
(0.2622) 

-0.0989 
(0.0165) 

(a) Explain the meaning of the entries in the table. 

(b) What would your conclusions be as regards the explanatory variables contri­
bution to explain the differences between those who have changed jobs and those 
who have not. 

(c) How would you describe the differences between the three models shown. 

7.6 The data set for this exercise is from an comparative investigation of the sports 
careers, the social careers, the educational careers and the occupational careers of 
290 Danish soccer players, who had played professional soccer outside Denmark 
from 1945 to 1990. A sample of 131 of these players answered a questionnaire. 
We consider the answers on seven of the questions in the questionnaire as basis for 
a logistic regression analysis. The response variable has the value 1 if the player 
answered Yes to the question "Do you feel your career as a professional soccer 
player has been an economic success?" and 0 if the answer was No. The explana­
tory variables were: 
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A: Married, with value 1 if the player was married or had established a permanent 
relationship before starting his soccer career abroad, and 0 if he was unat­
tached. 

B: Money with value 1, if a motive for seeking a soccer career abroad was to 
earn money, and 0 if money was not mentioned as a motive. 

C: Team, with value 1 if the player claimed that he was on his club's best team 
almost all the time he played abroad, and 0 otherwise. 

D: The number of Years he has played professional soccer outside Denmark. 
E: The number of different Clubs he has played for while abroad. 
F: The number of Games played on the Danish National soccer team before 

heleft Denmark the first time to play professionally abroad. 

The table below shows the values of -21nL for a number of logistic regression mo­
dels with different sets of explanatory variables included. 
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Included variables -21nL 

ABCDEF 55.137 

BCDEF 55.138 

ABCDE 55.407 

ABCDF 56.452 

ABCEF 61.234 

ACDEF 61.462 

ABDEF 62.527 

BCDE 55.413 

BCDF 56.486 

BCEF 61.248 

CDEF 61.509 

BDEF 63.112 

ABCD 56.506 

ABCE 61.575 

ACDE 62.238 

ABDE 63.447 

ABCF 61.299 

ACDF 62.204 

ABDF 63.692 

ACEF 68.951 

ABEF 73.975 

ADEF 68.460 

BCD 56.550 

BC 61.750 

C 71.791 

(a) Use this table to select those explanatory variables which contribute significant­
ly to describe whether a player feels he has had economic success or not. 

(b) Make a table of test statistics, their degrees of freedom and their levels of sig­
nificance based on which your selection in (a) can be justified. 

The table below shows the estimated parameters and their standard errors for the 
model with explanatory variables B, C and D included. 
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Variable Estimate Stand. error 

Intercept -1.51 0.69 

B: Money 1.66 0.71 

C: Team 2.12 0.78 

D: Years 0.35 0.18 

(c) Estimate the probability of economic success if a player has been on the best 
Team almost all the time, a motive for leaving Denmark was to earn money and 
he has played 5 years abroad. Estimate also the probability if he was on the best 
team almost all the time, but he did not give earning money as a motive and he 
played only 1 year abroad before he returned to Denmark. 

7.7 In 1982 the Danish Institute for Border Research investigated the labour mobi-
lity in the border region between Denmark and Germany. The persons interviewed 
were asked if they had been unemployed within the last 5 years. The answers are 
shown together with the explanatory variables A: Sex and B: Age in the table be-
low. 

Unemployed Unemployed 
last 5 years last 5 years 

Sex Age Yes No Sex Age Yes No 

18-19 4 18-19 0 2 

20-24 15 14 20-24 12 10 

25-29 12 19 25-29 8 15 

30-34 10 25 30-34 3 16 

Men 35-39 4 28 Women 35-39 5 23 

40-44 6 18 40-44 14 

45-49 6 15 45-49 2 12 

50-54 2 15 50-54 3 18 

55-59 3 19 55-59 6 

60- 13 60-

(a) Test if a logistic regression model fit these data with Sex scored 1 for Men and 
o for Women, and Age scored in the interval midpoints: 19,22.5,27.5, 32.5, 37.5, 
42.5, 47.5, 52.5, 57.5 and 65. 

(b) Estimate the parameters and determine if both, just one, or none of the explana­
tory variables are needed to explain the differences between persons with an unem­
ployment history and persons without. 
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(c) Is it possible for this data set to use the dummy variable method to avoid ar­
bitrarily assigning the age midpoints as scores? If yes, test the new model and esti­
mate its parameters. 

7.8 From the data base of the Danish Welfare Study we consider the response vari­
able: Sports activity with response categories 1: At least once a week and 0: Never 
or occasionally. (Sports activities include swimming, cycling or running to stay fit.) 
The explanatory variables were: 

A: Sex, with categories Male and Female. 
B: Age with five age intervals 20-29, 30-39,40-49, 50-59 and 60-69. 
C: Employment sector with categories: Private or Public. 
D: Urbanization with categories Copenhagen, Suburbs of Copenhagen, the 

Three largest cities (outside Copenhagen), Other cities and Countryside. 

The scoring of the two polytomous explanatory variables are: For Age the interval 
midpoints 25, 35,45,55 and 65. For Urbanization Copenhagen = 1, Suburbs = 2, 
Three largest cities = 3, Other cities = 4 and Countryside = 5. 

With these scoring the test statistics zeRO») defined by (7.30), here just called z, are 
shown for a selection of included explanatory variables in the table below. The test 
statistic in line one with all explanatory variables included is the one defined by 
(7.22). 

Explanatory variables Explanatory variables 
included excluded z 

ABCD None 121.16 

BCD A 1.29 

ACD B 111.30 

ABD C 16.40 

ABC D 1.55 

CD AB 111.55 

BD AC 16.21 

BC AD 2.68 

C ABD 111.94 

B ACD 18.57 

None ABCD 123.50 

There are 100 possible combinations of categories for the explanatory variables, 
but for 8 of these either x or n-x are zero, so the number of binomial distributions 
involved is I = 92. 
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(a) Detennine the number of degrees of freedom for each of the z-values in the 
table above. 

(b) Use the table to determine which explanatory variables contribute significantly 
to describe the variation in the response variable. 

As an alternative we can introduce the four dummy age variables BI, B2, B3 and 
B4 with definition given in Table 7.13. The table of test statistics now becomes. 

Explanatory variables Explanatory variables 
included excluded z 

A 81 82 83 84 C D None 106.22 

81 828384 CD A 0.81 

A 81 828384 D C 14.53 

A 81828384 C D 1.47 

ACD 81 828384 125.43 

81 828384 D AC 15.35 

81 828384 C AD 2.18 

CD A 81 828384 126.49 

81 828384 ACD 16.82 

C A 81828384 D 126.87 

(c) Detennine the degrees of freedom for all z-values in this table and test which 
explanatory variables contribute significantly to explain the variation in the respon­
se variable. 

The table below shows the regression parameters estimated both with and without 
dummy variables together with their standard errors. 
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Model with age scored Model with dummy age variables 

Expl. var. ~ Std. error Expl. var. ~ Std. error 

Intercept -0.368 0.248 Intercept 1.387 0.208 

Sex 0.098 0.087 Sex 0.078 0.087 

Age 0.037 0.004 Bl -0.628 0.081 

B2 -0.606 0.080 

B3 0.047 0.097 

B4 0.523 0.112 

Sector -0.360 0.089 Sector -0.343 0.090 

Urbanization 0.040 0.032 Urbanization 0.039 0.032 

(d) Compare the estimates in this table and draw your conclusions. 



Chapter 8 

Association Models 

8.1 Introduction 

In this chapter we shall discuss a number of association models for two-way tables. 
If the independence model 

't.. = 'to 't . 
1J 1 .. J 

fails to fit the data, or for the log-linear parametrization, the hypothesis 

AB 
H: 'tij = 0, 

is rejected, we often want to search for a model which can describe the dependen­
cies. Such models are called association models. 

It is beyond the scope of this book to discuss the various association models in 
very much detail. For a more complete discussion, the reader is referred to Ander­
sen (1990), chapters 10 and 11. We shall, however, give a short review of the most 
important association models. 

8.2 Symmetry models 

A very simple association model is the symmetry model, according to which the 
cell probabilities 1tij satisfy the relationships 

(8.1) 

The model is thus that the expected values n1tij are equal for cells symmetric in 
relation to the diagonal. The model does not put restrictions on the expected values 
in the diagonal. The symmetry hypothesis is of course only meaningful for square 
contingency tables, i.e. two-way tables with I = J. 

The symmetry model is log-linear, since the log-likelihood function can be written 
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InL = const +" " x· ·ln1t·· . ~~ IJ IJ 
i j 

= const +" (x·. +x.·)ln1t·· + " x··ln1t·· • ~ IJ J 1 IJ ~ 11 11' 
i~ i 

From (8.2) we can conclude that the likelihood equations are 

x .. +x .. = E[X .. ]+E[X .. ] = 2n1t .. = 211.. i:;t:J' 
IJ J 1 IJ J 1 IJ f"IJ' 

and 

x .. = E[X .. ] = n1t .. = II ... 
11 11 11 f"11' 

so the common estimate for J..Iij outside the diagonal is 

and for the diagonal we get 

Note here that we estimate the /.I-parameters rather than the 1t's. 

The Z-test statistic for the symmetry hypothesis has the form 

Z(HS) = 2 E E ~j(lnXij -lnl\j) , 
i j 
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(8.2) 

(8.3) 

(8.4) 

where ~ij is given by (8.3) and (8.4). It follows from Z(Hs) that there are no 
contributIOns to the Z-test statistic from the observed counts in the diagonal. Since 
the model is log-linear Z(Hs) is approximately X2-distributed. The number of 
degrees of freedom is 

1(1 -1) 

2 

since the equalities (8.1) defining the model impose a number of restrictions on the 
log-linear parameters, which is equal to the number of cells over ( or below) the 
diagonal in a square table of dimension Ix!. We accordingly reject the symmetry 
model as a description of a square contingency table if the observed value z(Hs) 
of Z(Hs) is larger than a suitable percentile, for example the 95% percentile, in a 
X2 -distribution with 1(1-1 )/2 degrees of freedom. 
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Since the mean value in cell (ij) under a log-linear model has the form 

( AB A B ) ,1.. = exp 't.. +'t. +'t. +'to r"IJ IJ 1 J 

it is clear that the symmetry model (8.1) requires that 't~~ be s~mmetric and also 
that 't~ = 't~. If we relax the last condition and only require ~ j to be symmetric, 
we get the hypothesis of quasi-symmetry. 

The quasi-symmetry model is thus a log-linear model for a square contingency 
table under the hypothesis 

AB AB 
HQS : 'tij = 'tji (8.5) 

Also this model is log-linear and the ML-estimates for the log-linear parameters 
are easy to derive. The Z-test statistic for quasi-symmetry is 

Z(HQS ) = 2 L L Xij(lnXij -In Jlij) , 
i j 

(8.6) 

where the l1i/s are now the expected numbers under the quasi-symmetry hypothesis 
(8.S). Z(HQs) is approximately X2-distributed. In order to determine the number of 
degrees of freedom, note that the unconstrained 2-factor interactions form a square 
table of dimension (I-1)x(l-1). Under HQS elements over the diagonal are equal to 
the elements under the diagonal in this table. Hence the number of degrees of 
freedom for the Z-test statistic Z(HQs) is equal to the number of elements over ( 
or below) the diagonal in a (I-1)x(l-1) table, or 

The hypothesis of quasi-symmetry is rejected at level a if the observed value 
z(HQs) of (8.6) is larger than the (l-a)-percentile X21_aC df(HQs)) in the approxima­
ting X2-distribution. 

Under the hypothesis of quasi symmetry, the likelihood function becomes 

(8.7) 

The likelihood equations are therefore 

x .. +x .. = E[X·]+E[X .. ] =n7t .. +n7t .. , i 1, ... ,1-1, j = i+l, ... ,J, 
IJ J 1 IJ J 1 IJ J 1 

Xii = E[~d = n7tjj , i 1, ... ,1, 
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and 

X'j = E[X-j1 = n1t'j , j = 1, ... ,J . 

These likelihood equations can be solved by a method similar to the iterative 
proportional fitting procedure, which will produce ML-estimates for the expected 
cell counts n1tij' This is all we need to test the goodness of fit of the model by 
(8.6). If we also need estimates of the 'C's, they can be obtained from the log-linear 
parametrization 

by inserting the ML-estimates on the left hand side and solving the equations. 

EXAMPLE 8.1. Social group over generations. 
In afollow up to the Danish Welfare Study the social group of the married women 
in the sample between the age of 40 and 59 was compared to the social group of 
their fathers. The resulting cross-classification is shown as Table 8.1. 

TABLE 8.1 The Social groups of the married women between the age of 40 and 
59 in the Danish Welfare Study cross-classified with the Social group of their 
fathers. 

Daughter's social group 

Father's social 
group I-II III IV V Total 

1-11 12 17 22 3 54 

III 8 33 85 95 221 

IV 11 26 72 87 196 

V 2 18 50 111 181 

Total 33 94 229 296 652 

Source: The data base from the Danish Welfare Study. Ct. Example 3.2. 

The expected numbers under a model of complete symmetry are shown in Table 
8.2. 
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TABLE 8.2. Expected numbers under the model of complete symmetry for the data 
in Table 8.1. 

Daughter'S social group 

Father's social 
group I-II III IV V Total 

I-II 12.00 12.50 16.50 2.50 43.50 

III 12.50 33.00 55.50 56.50 157.50 

IV 16.50 55.50 72.00 68.50 212.50 

V 2.50 56.50 68.50 111.00 238.50 

Total 43.50 157.50 212.50 238.50 652.00 

The observed value of the Z-test statistic is 

z = 107.96, 

which with df = 6 degrees of freedom has a level of significance less than 0.0005, 
so a model of complete symmetry does not fit the data. 

The expected numbers under a model of quasi-symmetry are shown in Table 8.3. 

TABLE 8.3 Expected numbers under the model of quasi-symmetry for the data in 
Table 8.1. 

Daughter's social group 

Father's social 
group 1-11 III IV V Total 

I-II 12.00 12.95 24.84 4.20 54.00 

III 12.05 33.00 82.05 93.90 221.00 

IV 8.16 2B.95 72.00 86.90 196.00 

V O.BO 19.10 50.10 111.00 181.00 

Total 33.00 94.00 229.00 296.00 652.00 

The observed value of the Z-test statistic is now 

z = 6.07, 

which with 3 degrees of freedom has level of significance p = 0.108. The fit of the 
model is thus satisfactory. Symmetry in the table of expected values means that a 
movement of a daughter to a lower social group as compared to her father is as 
likely as a movement to the corresponding higher social group. That we rejected 
the hypothesis of complete symmetry and accepted the hypothesis of quasi­
symmetry thus means that the movements have been symmetric, except for the fact 
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that in the marginal distributions over social groups, the daughters still tend to 
belong to lower social groups, as the marginals in Table 8.3 shows. 

8.3 Marginal homogeneity 

For square tables one can also consider the hypothesis that the expected marginals 
are equal, or 

HM : J.li. = Jl.j ,i = 1, ... ,I . (8.8) 

The model under the hypothesis HM of marginal homogeneity is not log-linear 
and more general iterative methods than the iterative proportional fitting method 
are necessary to solve the likelihood equations. Let Iljj be the ML-estimate for Jljj 
under the restriction (8.8). The Z-test statistic for testmg HM is then 

Z(HM) = 2LL Xjj(lnXjj-ln/ljj) . 
j j 

The number of degrees of freedom df(HM) for (8.9) is 

df(HM) = I-I , 

(8.9) 

since the hypothesis (8.8) imposes I-I constraints on the multinomial parameters, 
namely 

1tj. = 1t.j ,i = 1, ... ,I -1 . 

The last equation for i = I is not needed since 1t .. = 1. 

EXAMPLE 8.1 (continued). Table 8.4 shows the expected numbers for daughter's 
andfather's social group under the model of marginal homogeneity. 

TABLE 8.4. Expected numbers under the model of marginal homogeneity for the 
data in Table 8.1. 

Daughter's social group 

Father's social 
group I-II III IV V Total 

I-II 12.00 17.14 15.19 1.79 46.12 

III 7.93 33.00 58.35 56.30 155.58 

IV 19.95 47.87 72.00 70.70 210.51 

V 6.23 57.57 64.98 111.00 239.79 

Total 46.12 155.58 210.51 239.79 652.00 

The observed value of the Z-test statistic is 
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z = 101.27, 

which with df = 3 degrees of freedom has a level of significance less than 0.0005. 
The model of marginal homogeneity does not fit the data either. This confirms our 
finding in section 8.2 that the marginal distribution over social groups of the 
daughter's is different from the marginal distribution over social groups of their 
fathers. 

If the table is a 2x2 table, the hypotheses of symmetry and marginal homogeneity 
are identical. The Pearson test statistic Q in this case takes a particularly simple 
fonn. The cells (1,1) and (2,2) do contribute, while the expected values in cells 
(1,2) and (2,1) are both (X12 + X 21 )/2, but 

X 12 +X21 X 12 -X21 [ X 12 +X21 J 
X 12 = = - X 21 - . 
222 

Hence Pearson's Q becomes 

[ X12 -XO, J 
2 2 

X 12 +X21 

2 

(X12 -X21 )2 

X 12 +X21 

This special test statistic is called McNemars test statistic. 

8.4 RC-association models 

As we mentioned in section 8.1, the hypothesis of independence in a two-way 
contingency table can be formulated in terms of the 2-factor interactions as 

AB 
H : 'tij = 0 . 

Hence if we want to describe dependencies, the parameters to model are the 'tij's. 
Around 1980 Goodman (see biographical notes) introduced the following model 
for the 2-factor interactions 

AB 
't.. = pE· 8· 1J 1 J 

(8.10) 

under the name RC-association model. Here "RC" stands for Row-Column. The 
full RC-association model is thus 
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A B In II.. = P E· 8· +'t. +'t. +'to I"'IJ 1 J 1 J • (8.11) 

Since the left hand side in (8.10) sums to zero over both indices, we must also 
have 

LEj =L8j =O. (8.12) 
j j 

In addition the term pEj8j is undetermined up to multiplicative factors. These are 
resolved by introducing the constraints 

L E~ = L 8f 1. 
j j 

(8.13) 

Finally we have the "old" constraints 

L 'tt = L 'tf = 0 . 
j j 

(8.14) 

Equation (8.11) together with the constraints (8.12), (8.13) and (8.14) define the 
RC-association model. 

Since the model is not log-linear, the likelihood equations are not as simple as for 
other models, we have met. Since, however, the log-likelihood function can be 
written as 

InL = const. + L L xj j PEj8j + L Xj.'tt + L x.j'tf +x .. 'to' (8.15) 
j j j j 

we can derive the likelihood equations by taking partial derivatives of (8.15) with 
respect to all the parameters. In this way we get the "old" equations 

(8.16) 

and 

(8.17) 

We then get new likelihood equations derived from differentiation with respect to 
p, Ej and 8j . If we differentiate partially with respect to Ej, we get 

L 8jxjj = E 8j /-ljj ,i=l, ... ,I, (8.18) 
j j 

and if we differentiate partially with respect to 8j , we get 
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E EiXij = E Eillij ,j =l, ... ,J . 
i i 

(8.19) 

From the partial derivative with respect to p we get 

but this equation is satisfied if either (8.18) or (8.19) are satisfied. 

Although Equations (8.16) to (8.19) can not be solved by the iterative proportional 
fitting method, an algorithm (see bibliographical notes) was suggested by 
Goodman, which is very similar to the algorithm used in the iterative proportional 
fitting method. If the data is not too ill-behaved it converges quickly to final 
values. 

If P;j are the estimated expected numbers, i.e. 

P;j = exp(~~i 8j +tt +t~ +to) , 

where a "/\" denotes a ML-estimate, the hypothesis HRC that the data fits an RC­
association model can be tested by the Z-test statistic 

Z(HRC ) = 2E E XiAlnXij -lnjlij) . 
i j 

In order to count the number of degrees of freedom for Z(HRC)' we note that both 
the E'S and the O's satisfy 2 constraints due to (8.16) and (8.17). Hence there are 
(1-2) unconstrained E'S and (J-2) unconstrained O's. The total number of un­
constrained parameters is therefore found by adding p, the (I-I) 't'('s and the 
(J-I) ~'s to the (1-2) E'S and the (J-2) O's. The degrees of freedom are accordingly 

df(HRC) = IJ - 1 - «(I-2) + (J-2) + 1 + (1-1) + (J-1 »= (I-2)(J-2) . 

We thus reject the RC-association model at level ex if the observed value z(HRC) 

of Z(HRC) satisfies z(HRC) > X\_a(df(HRC)' 

For later use note that without restrictions on the 2-factor interactions, ML­
estimates for the 't~~'s are easily obtained from 

AB A B 
lnx·· = lnjl .. = t.. +to +t. +to IJ IJ IJ 1 J 

using that all 't's sum to zero over all subscripts to get 
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(8.20) 

where Lij = In Xij' a subscript"." means a summation over that subscript and a bar 
indicates an average. 

EXAMPLE 8.2. Income and wealth. 
From the data base of the Danish Welfare Study, we have selected the persons for 
which information on both annual taxable income and wealth is available in the 
data base and who in addition rented their home, rather than owned it in 1974. 
The cross-classification of Income (ivided in five income intervals) and Wealth 
(also divided in five intervals) is shown as Table 8.5. 

TABLE 8.5. A random sample of renters in Denmark in 1974 cross-classified 
according to Income and Wealth. 

Wealth ( 1000 Dkr. ) 

Income 
(1000 Dkr.) 0 1 - 50 50 - 150 150 - 300 300 -

0- 40 292 126 22 5 4 

40 - 60 216 120 21 7 3 

60 - 80 172 133 40 7 7 

80 - 110 177 120 54 7 4 

110 - 91 87 52 24 25 

Source: The data base from the Danish Welfare Study. Cf. Example 3.2. 

A test of independence H for the data in Table 8.5 gives a z-value of 

z(H) = 167.99 . 

With 16 degrees of freedom the independence hypothesis is thus rejected at any 
reasonable level. 

The Z-test statistic for the goodness of fit of an RC-association model has observed 
value 

with df = 3 ·3 = 9 degrees of freedom. The level of significance is p = 0.107, so 
we can accept the model. 

The ML-estimates for the parameters - except the main effects - of the model are 
shown in Table 8.6. 
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TABLE 8.6. ML-estimates for the parameters of the RC-association model- except 
the main effects. 

p: 2.258 

i = 1 2 

-0.557 -0.339 

j = 1 2 

-0.636 -0.360 

3 

0.060 

3 

0.062 

4 

0.086 

4 

0.352 

5 

0.751 

5 

0.582 

Since ML-estimates for the 2-factor interactions can be derived from Equation 
(B.20) we can evaluate the fit of the model by comparing these estimates with the 
products 

(B.21) 

estimating the right hand side of (B. 10). This is done in Table 8.7. 

TABLE 8.7. Comparison of the ML-estimates of the 2-factor interactions and the 
products (8.21). 

·AS 
't j j j=1 2 3 4 5 

i=1 0.663 0.246 -0.299 -0.352 -0.258 

2 0.431 0.267 -0.276 0.054 -0.476 

3 -0.070 0.096 0.095 -0.220 0.098 

4 0.025 0.060 0.462 -0.153 -0.395 

5 -1.048 -0.669 0.017 0.671 1.030 

pej8j j = 1 2 3 4 5 

i=1 0.800 0.453 -0.078 -0.443 -0.732 

2 0.487 0.276 -0.047 -0.269 -0.446 

3 -0.086 -0.048 0.008 0.047 0.078 

4 -0.123 -0.070 0.012 0.068 0.113 

5 -1.078 -0.610 0.104 0.597 0.987 

As can be seen very clearly from the table the estimated products (8.21) match the 
estimated 2jactor interactions quite well, thus confirming that the RC-association 
model describes the data well. The sign pattern in Table 8.7, with different signs 
in the NWISE corners and in the SWINE corners, is a consequence of (B.21) and 
thus a typical feature of the model. 
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The parameters Cj are called row scores and the OJ'S are called column scores. 
These names are derived from the fact that they are a scoring of the categories of 
the row and the columns which, through the product (8.10) defining the RC­
association model, describe the dependencies between the row variable and the 
column variable. Tables 8.6 and 8.7 shows how the estimated scores interact to 
describe the variation in the 2-factor interactions. 

In many studies the normalization of the c's and the 8's are not (8.12) and (8.13) 
but instead 

and 

"X.,,~ ="x.s:~ 1. L" 1 '~I L,,'J uJ 
j 

The normalization of the main effects in (8.14) are then also changed to 

L Xj.'tt = L x.j'tf = O. 
j 

These alternative normalization are preferred by many because they put more 
weight on categories which are heavily represented in the table. For evaluating the 
fit of the model it does not matter what normalization we use. 

Sometimes there are good reasons to believe that a certain set of known scores for 
either the row or the column categories will fit the data. If the row scores are 
known, the model (8.10) for the interactions can then be reformulated as 

AB 't.. = pe.8. 
IJ 1 J (8.22) 

where the vector (el, ... ,er) is a set of known scores. Technically the e's must obey 
the same normalization (8.12) and (8.13) as the c's. We may for example believe 
that the row scores are equidistant. Thus for 1=5 both the values (1, 2, 3,4,5) and 
(-2, -1, 0, +1, +2) give the normalized values 

(-0.632, -0.316, 0.000, +0.316, +0.632). 

The model with known row scores, so that the full model becomes 

!ljj = exp (p ej OJ +'tt +'tf + 'to ) , 

is called a column effects association model. The column effects model is in 
contrast to the RC-association model log-linear and ML-estimates can be obtained 
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by the iterative proportional fitting method. 

If it is column scores rather than row scores which are known we get the 
interactions 

AB 't.. = pe.d. 
1J 1 J 

(8.23) 

with (d1, ... ,dJ) being the known scores satisfying (8.12) and (8.13) with Bj replaced 
by dj . The full model is then 

Ilij = exp(pejdj +'tt+'tf +'to) , 

It is now called a row effects association model. Also this model is log-linear. 

Both model (8.22) and model (8.23) can be tested in the usual way by Z-test 
statistics. The degrees of freedom for the column effects association model are the 
degrees of freedom for the RC-association model plus (1-2) because (1-2) more 
parameters are specified, which gives 

df = (1-2)(J-2) +(1-2) = (I-2)(J-1) . 

For the row effects association model we get in the same way 

df = (1-2)(J-2) +(J-2) = (I-l)(J-2) . 

EXAMPLE 8.2 (continued). For the data on income and wealth in Table 8.5 it is 
tempting to try to use the interval midpoints as scores in a row effects model or 
a column effects model. To do so we have to choose values somewhat arbitrarily 
for the upper intervals. For income we thus choose the values (20,50, 70, 95, 130) 
in units of thousand Danish kroner. After normalization this gives the values 

(-0.630, -0.273, -0.036, +0.261, +0.677). 

For wealth we choose (0, 25, 100,225, 400) also in thousand Danish kroner. Some 
claim that income and wealth distributions are skew and that the distributions of 
log-income and log-wealth are more symmetric. If this is the case we should use 
the interval midpoints on a logarithmic scale. For income this gives the values 
(1.84, 3.88, 4.23, 4.54,4.78) and for wealth the values (0, 1.96, 4.46, 5.35, 5.96), 
For wealth we have to use In(1 )=0 rather than In(O )=-00. 

In Table 8.8 the Z-test statistic for fit of the RC-association model is compared 
with the corresponding Z-test statistics for the row effects model and the column 
effects model for both direct interval midpoint scores and logarithmic midpoint 
scores. 
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TABLE 8.8.The fit of the RC-association model compared with the fit of the row 
effects model and the column effects model for different midpoint scores. 

Model z df Level of 
significance 

RC-association 14.46 9 0.107 

Column effects, 
midpoint scores 23.13 12 0.027 

Row effects, 
midpoint scores 40.28 12 0.000 

Column effects, 
log-midpoint scores 70.67 12 0.000 

Row effects, 
log-midpoint scores 18.44 12 0.103 

The conclusion from Table 8.8 is that the column effects model is barely 
acceptable, which means that known row scores equal to the income interval 
midpoints is acceptable at a 2% level, but not at a 5% level. A logarithmic 
transformation of the incomes makes the fit completely unacceptable. The 
conclusion for wealth is almost the exact opposite. For the direct midpoint scores 
the fit is totally unacceptable, but if we use interval midpoints on a logarithmic 
scale, the fit is almost as good as the fit of the RC-association model. 

8.5 Correspondence analysis 

Correspondence analysis is a statistical technique which has many features in 
common with the RC-association model. 

The RC-association model can be described as a multiplicative model for the 2-
factor interactions 

AB 
't.. = pe.8. 

1) 1 ) . (8.24) 

Consider now the independence hypothesis H. An alternative way to express H is 

H : 1tij -1ti .1t'j = O. (8.25) 

If we compare this with the log-linear parameter formulation of independence 

AB H : 'tij = 0 , 

we can as in (8.24) formulate an alternative to the independence hypothesis by 
assuming that the left hand side in (8.25) is the product 
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1tij - 1ti .1t.j = P ei Bj . (8.26) 

This is essentially the correspondence analysis model, but traditionally (8.26) is 
rewritten as 

(8.27) 

and in addition more than one product term is allowed on the right hand side in 
(8.27), giving 

( J 
M 

~ .. 
_IJ_ -1 = E AmQ)im "'jm . 
J.li ./l'j m=l 

(8.28) 

Equation (8.28) defines together with the necessary constraints on the parameters, 
defined below, the correspondence analysis model. Correspondence analysis is, 
however, seldom thought of as a model, but rather as a data descriptive procedure 
with scaled parameter estimates as the descriptive tools. For this reason the ~'s in 
(8.28) are replaced by their estimates. Since ftij = Xj/n, (8.28) becomes 

[ 
x .. /n ) M 

1J -1 = E Am Q)im "'jm ' 
(xi.ln)(x/n) m=l 

(8.29) 

which is the basis for correspondence analysis. 

Another tradition in correspondence analysis is to work with frequencies instead 
of counts, such that fij replaces xj/n in all formulas. This means that (8.29) 
becomes 

The Q)'s and the ",'s are subject to the following constraints 

L Q)imfj. = L'I'jmf.j = 0 , for all m , 
j j 

E Q)~mfj. = E'I'fmf.j = 1 ,for all m 
j j 

and 

(8.30) 

(8.31) 

(8.32) 
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L CPjm CPjq fj . = L 'l'jm'l'jqf.j = 0 ,for all m¢q. (8.33) 
j j 

Correspondence analysis is very much a matrix based technique. We shall now 
formulate the basic elements in correspondence analysis in matrix language. 

Two key matrices are 

:.1 
and 

i.e. diagonal matrices containing the marginal frequencies in the diagonals We 
further define F as the matrix with elements fij and the matrix R of residuals as a 
matrix with elements rij = fij - fJj' Since (8.30) can be written as 

M 

fij-fjJ'j = L fj.CPjmAm'l'jmf.j' 
m=l 

correspondence analysis can be defined by the matrix equation 

R = C1<llA 'PI CJ ' 

or 

(8.34) 

(8.35) 

where C1, CJ, R have already been defined, <ll is a matrix of dimension IxM with 
elements CPjm' 'P is a matrix of dimension JxM with elements 'l'jm and A is a 
diagonal matrix of dimension M with diagonal elements A.m' Any "solutiori" to the 
correspondence analysis problem is thus a question of Equation (8.35) having a set 
of solutions. This problem is a very old one in mathematics and has the following 
solution. 

For a wide range of matrices S of dimension IxJ - and it can be shown that 
CI-1RC/ is such a matrix - there exists a so-called single value decomposition 
of S, i.e there exist matrices E of dimension IxM, D of dimension JxM and a 
diagonal matrix A of dimension MxM such that 
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S = EAD' , (8.36) 

where M = min { rank(E), rank(D)}. The matrices E and D are usually normalized 
such that 

(8.37) 

where 1M is the unit matrix of dimension MxM with zeros outside the diagonal and 
1's in the diagonal. Other normalizations than (8.37) can also be used, however, 
and in correspondence analysis we have to normalize in a slightly different way. 

All this means that we can solve Equation (8.35) by a single value decomposition 

of Ci1RCJ-1. 

The normalizations (8.32) and (8.33) can be written in matrix form as 

cI>'CIcI> = '¥'CJ ,¥ = 1M , 

(8.38) 

(8.39) 

The normalizations are thus'slightly different from those given by(8.37). The single 
value decomposition in (8.38) gives a complete solution to the correspondence 
analysis equations (8.30), but there may be many terms on the right hand side of 
(8.30) and therefore many parameters connected with the row and column 
categ<;>ries of the two variables to be compared. If we only want one or two terms 
we need the following result. 

THEOREM 8.1. Let S be the matrix Cr-1RCil with elements sij and Q(Mo) the 
sum of squares 

MO 

Q(Mo) = L L (sij - L Am<J>im'l'jm)2 . 
i j m=l 

Then Q(Mo) is minimized if 

are the Mo largest values in A, <J>im' i=1, ... ,/ is the column in cI> corresponding to 
the mth largest A and ~jm' j=1, ... ,] is the column in 'II corresponding to the mth 
largest A, where cI>, 't' and A are the matrices defined by the single-value 
decomposition (8.38). 

With <1>0 being the IxMo-dimensional matrix formed by the columns of cI> 
corresponding to the m largest A'S, Ao being a diagonal matrix with the m largest 
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A's in the diagonal and 'Po defined in the same way as <1>0' theorem 8.1 can be 
stated as 

in the sense that the sum of squares between the corresponding elements on the left 
hand side and the right hand side is minimized. 

In a single value decomposition the diagonal elements in the middle matrix are 
called eigenvalues and the columns of the left and right matrix are called eigen 
vectors. It can be shown that all eigenvalues in the decomposition (8.38) are 
positive. (It is a property of the matrix R.) Thus if we, for example, want a 
correspondence analysis with two terms in (8.29) the parameter estimates for Al 
and 1.2 are the two largest eigenvalues, and the cp's and the 'I"s the corresponding 
eigenvectors in <1> and 'P. 

As mentioned, correspondence analysis is primarily a data descriptive analysis. 
There are many ways in correspondence analysis to illustrate the data structure of 
the contingency table, but the most important is graphical. 

A correspondence analysis diagram is a diagram in which for Mo=2 the elements 
of the eigenvectors - properly scaled - for dimension two are plotted against the 
elements of the eigenvectors for dimension one - also properly scaled. Here 
dimension one is the one corresponding to the largest eigenvalue and dimension 
two the one corresponding to the second largest eigenValue. There has been some 
debate over the scaling. An often used choice for the row categories is to plot the 
elements of the vector 

as x-coordinates and the elements of the vector 

as y-coordinates. In the same way for the column categories 

(1.1'1'11, ... ,1.1 'l'J1) 

are plotted as x-coordinates and 

are plotted as y-coordinates. 

There has been much debate about how to interpret correspondence analysis 
diagrams. On this point the reader is advised to consult textbooks on corresponden­
ce analysis, cf. the biographical notes. Some of the possible interpretations are 
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discussed in connection with Figure 8.1 below. 

EXAMPLE 8.3. Attending meetings. 
In the Danish Welfare Study one of the questions asked was "How often do you 
attend meetings outside working hours?". The categories are shown in Table B.9, 
where the responses are cross-classified with Social group for 1779 persons with 
age between 40 and 59. 

TABLE 8.9. A random sample of Danes in 1974 with age between 40 and 59 
cross-classified according to Frequency of attending meetings outside working 
hours and Social group. 

Frequency of attending meetings 

One or One or Approx. once A few 
Social more times more times every second times 
group a week a month month a year 

17 27 13 24 

II 25 57 17 49 

III 38 91 41 217 

IV 22 33 21 133 

V 9 21 17 87 

Source: The data base from the Danish Welfare Study. Cf. Hansen (1984). 

Never 

25 

55 

213 

222 

305 

The correspondence analysis diagram for the data in Table B.9 is shown as Figure 
B.1. 
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FIGURE 8.1. Correspondence analysis diagram for the data in Table 8.9. 

Since a correspondence analysis describes deviations from what should be expected 
under independence it follows that points on the correspondence analysis diagram 
which are far from the centre (0.0) indicate categories for which the observed counts 
deviate most from what should be expected under independence. It can in addition 
be shown that row categories for which the points in the correspondence analysis 
diagram are close have the same type of association with the column categories and 
vice versa. This means that, as regards attending meetings, persons in social groups 
I and IT behave in a similar fashion. In the same way the diagram shows that for all 
social groups the percentage attending meetings once a week and once a month are 
about the same. More controversial is the interpretation of closeness of points 
corresponding to a row category and a column category. Some prominent scholars 
argue that it is in fact wrong to plot row category points and column category points 
in the same diagram. It can, however, be argued that if a point for a certain row 
category is close to a point for a certain column category then the observed numbers 
in the cell in the contingency table corresponding to these two categories are 
significantly larger than the expected numbers under independence. The major 
problem with this type of interpretation is that it critically depends on the scaling of 
the plotted eigenvectors. If we accept this type of interpretation, however, Figure 8.1 
seems to indicate that persons in the two highest social groups attend meetings rather 
frequently, and that persons in the two lowest social groups almost never attend 
meetings. 
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We shall - without going into many more details of correspondence analysis - briefly 
mention one more central concept. It can be shown that the observed value 

q = E E [x;; -\x.; I 
i j Xi .X'j 

n 

of Pearson's test statistic for independence can be rewritten as 

(8.40) 

If we choose to consider only Mo dimensions, the difference between the left and 
right hand side of (8.30) for M = Mo would tell us how close we are to the zero we 
would get if all dimensions M are included. This means that from 

qo = nL L [~-1-E Am<l>im'VimJfi.f,j , 
i j fj .f.j m=l 

we should get an impression of how much of the dependencies are explained by the 
correspondence analysis parameters. 

Since by Equation (8.30) 

qo = n L L [f: Am <l>j m 'Vjm - E Am <l>j m 'VjmJfj .f.j 
j j m=l m=l 

(8.41 ) 

qo is close to zero if almost all dependencies are explained. If qo is close to q very 
little of the dependencies have been explained. 

From (8.41) follows (using (8.23)) that 

m=Mo+l 

or 

Mo 

q -qo = n L A~ . 
m=l 

We can therefore use 
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as a measure of how much of the dependencies in the contingency table are 
accounted for by a correspondence analysis, when a given number Mo of dimensions 
included. Almost all the dependencies are accounted for by Mo dimensions if r2(Mo) 
is close to one, and very little has been accounted for if r2(Mo) is close to zero. 

EXAMPLE 8.3 (continued). For the data in Table 8.9, the eigenvalues and the 
values of r'2 are shown in Table 8.10. 

TABLE 8.10. Eigenvalues and values of r2 for the data in Table 8.9. 

m=l 

0.354 

0.850 

2 

0.139 

0.981 

Dimension 

3 

0.048 

0.997 

4 

0.021 

1.000 

Table 8.10 strongly suggests that a model with Mo = 2 fits the data well with almost 
98% of the dependencies accounted for, while a model with only one dimension 
included still has about 15% of the dependencies to account for. 

8.6 Bibliographical notes 

The symmetry model was first suggested by Bowker (1948) while quasi symmetry 
was introduced by Caussinus (1965). Caussinus (1965) also noted the connection 
between marginal homogeneity, symmetry and quasi-symmetry. For 2x2 tables the 
marginal homogeneity hypothesis and the symmetry hypothesis coincide and lead to 
the McNemar test suggested by McNemar (1947). The RC-association model was 
introduced in the form treated here by Goodmann (1979). The model was developed 
independently by the Danish statistician Georg Rasch, but not published in English, 
cf. the references in Goodmann (1979). The relationships between the RC-association 
models and correspondence analysis was pointed out by van der Heijden and de 
Leeuw (1985), by Goodman (1986) and by van der Heijden, de Falguerolles and de 
Leeuw (1989). 

Goodman's contributions to association models are collected in Goodman (1984). 
Association models are treated at textbook level in Andersen (1990), chapter 10. 

Correspondence analysis has a long history and is known under many names, see 
Greenacre (1984) or Nishisato (1980). In France it was developed independently by 
Benzecri (1973). A number of books devoted to correspondence analysis are now 
available in English, for example Lebart, Morineau and Warwick (1984) and 
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Greenacre (1984). The geometry of correspondence analysis was discussed by 
Greenacre and Hastie (1987). 

8.5 Exercises 

8.1 The two tables below show the forecasts for production and prices for the 
coming three year periods given by experts in July 1956 and the actual production 
figures for production and prices in May 1959 given from a sample of 4000 Danish 
factories. 

Prices: Actual 1959 

Forecast 1956 Higher No change Lower 

Higher 209 169 6 

No change 190 3073 184 

Lower 3 62 81 

Production: Actual 1959 

Forecast 1956 Higher No change Lower 

Higher 532 394 69 

No change 447 1727 334 

Lower 39 230 231 

The expected numbers under quasi-symmetry are 

Prices: Actual 1959 

Forecast 1956 Higher No change Lower 

Higher 209.00 168.57 6.50 

No change 190.50 3073.00 183.50 

Lower 2.50 62.50 81.00 

Production: Actual 1959 

Forecast 1956 Higher No change Lower 

Higher 532.00 400.33 62.67 

No change 440.67 1727.00 340.33 

Lower 45.33 223.67 231.00 

(a) Test the hypotheses of symmetry and quasi-symmetry on both tables. 

(b) Compare the results of the two tests in (a). 
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The tables below show the expected numbers under marginal homonegeity. 

Prices: Actual 1959 

Forecast 1956 Higher No change Lower 

Higher 209.00 180.07 4.19 

No change 178.99 3073.00 123.27 

Lower 5.27 122.19 81.00 

Production: Actual 1959 

Forecast 1956 Higher No change Lower 

Higher 532.00 413.62 56.52 

No change 426.76 1727.00 276.79 

Lower 46.39 289.92 231.00 

(c) Test if a hypothesis of marginal homogeneity fits none, one, or both of the data 
sets. 

8.2 In connection with the Danish referendum on membership of the European 
Community (EEC) polls were taken regarding the attitude towards the EEC by the 
Danish Polling Institute AIM in October 1971 and again in December 1973. The 
opinions expressed were: 

December 1973 

For Against 
October 1971 membership membership Undecided 

For 
membership 167 36 15 

Against 
membership 19 131 10 

Undecided 45 50 20 

The expected numbers under quasi-symmetry are 
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December 1973 

For Against 
October 1971 membership membership Undecided 

For 
membership 167.00 35.56 15.44 

Against 
membership 19.44 131.00 9.56 

Undecided 44.56 50.44 20.00 

(a) Test both the hypotheses of symmetry and quasi-symmetry for these data. 

Denmark joined the EEC in September 1972 after a referendum with a clear majority 
for membership. 

(b) Interpret the results from (a) given this information. 

The expected numbers under marginal homogeneity are given below. 

December 1973 

For Against 
October 1971 membership membership Undecided 

For 
membership 167.00 28.88 27.34 

Against 
membership 25.22 131.00 33.11 

Undecided 31.00 29.45 20.00 

(c) Test the hypothesis of marginal homogeneity. 

(d) If the hypothesis of marginal homogeneity is rejected explain how the expected 
marginals differ from the observed. Do these differences tell you something 
important about the Danish populations change in attitude towards the EEC between 
1971 and 1973? 

8.3 In 1962 and again in 1965 a sample of elderly people were asked to rate their 
health as being: Good, Neither good nor bad, or Bad. The results of these two self 
ratings were shown below. 
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October 1971 

Good 

Neither 

Bad 

Good 

168 

42 

5 

Health 1965 

Neither 

51 

73 

17 

Bad 

9 

23 

23 

229 

The expected numbers under the hypothesis of marginal homogeneity are shown 
below. 

October 1971 

Good 

Neither 

Bad 

Good 

168.00 

46.71 

6.76 

Health 1965 

Neither 

46.33 

73.00 

20.22 

(a) Test the hypothesis of marginal homogeneity. 

(b) What can you conclude from the result in (a)? 

Bad 

7.14 

19.84 

23.00 

8.4 One of the first applications of the model later to be known as the RC­
association model was to a data set analyzed by Georg Rasch (see bibliographical 
notes). The data, shown in the table below, are the number of criminal cases dropped 
by the Police between 1955 and 1958 for male teenagers 15 to 19 years old before 
the case had led to a verdict. 

Age 

Year 15 16 17 18 19 

1955 141 285 320 441 427 

1956 144 292 342 441 396 

1957 196 380 424 462 427 

1958 212 424 399 442 430 

The parameters of an RC-association model can be estimated as ~ = 0.328 and 
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~i : i=1 2 3 4 

-0.590 -0.372 0.319 0.642 

8j : j=1 2 3 4 5 

0.518 0.458 0.042 -0.553 -0.485 

t.A . 
1 • i=1 2 3 4 

-0.102 -0.092 0.088 0.106 

t.B . J . j=1 2 3 4 5 

-0.666 0.026 0.107 0.297 0.236 

with to = 5.801. 

(a) Computed the expected values for each cell and test whether an RC-association 
model fits the data. 

(b) Interpret the estimated parameters of the model. 

Suppose we use the years as known scores for the row categories. Normalized 
according to (8.12) and (8.13) the row scores then become (-0.671, -0.224, 0.224, 
0.671). The estimated expected values under this model are shown below 

Age 

Year 15 16 17 18 19 

1955 

1956 

1957 

1958 

137.48 

150.87 

192.81 

211.84 

277.15 

302.07 

383.40 

418.38 

329.59 

337.91 

403.42 

414.09 

449.55 

425.11 

468.13 

443.21 

420.23 

399.04 

441.24 

419.49 

(c) Test whether this column effects model fit the data and compare with the result 
in (a). 

8.5 The table below shows Urbanization cross-classified with social rank for the 
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Danish Welfare Study. 

Social group 

Urbanization I-II III IV V 

Copenhagen 45 64 160 74 

Cop. Suburbs 99 107 174 90 

Three largest cities 57 85 153 103 

Other cities 168 287 415 342 

Countryside 83 346 361 399 

The estimated expected numbers under an RC-association model are 

Social group 

Urbanization I-II III IV V 

Copenhagen 58.41 73.25 132.70 78.64 

Cop. Suburbs 93.35 92.37 187.29 96.99 

Three largest cities 58.63 90.91 148.90 99.57 

Other cities 155.82 292.51 437.51 326.16 

Countryside 85.81 339.97 356.60 406.62 

(a) Check whether an RC-association model fits the data. 

The estimated row and column effects are 

~i : i=1 2 3 4 5 

-0.573 -0.259 -0.403 0.672 0.564 

bj : j=1 2 3 4 

-0.539 -0.005 0.445 0.095 

(b) Interpret the row and column effects. 

(c) Do the parameter estimates in (b) indicate that a row effects association model 
with Social groups scored with values 1, 2, 3 and 4, properly normalized, is likely 
to fit the data? 

The residuals for the RC-association model ( observed minus expected numbers 
divided by the standard error of the difference) have values: 
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Social group 

Urbanization 1-11 III IV V 

Copenhagen -3.46 -1.52 3.54 -0.83 

Cop. Suburbs 1.49 2.44 -1.76 -1.28 

3 largest cities -0.39 -0.85 0.49 0.54 

Other cities 1.98 -0.51 -1.83 1.62 

Countryside -1.08 1.36 0.85 -1.89 

(d) Can the RC-association models failure to fit the model be attributed to a few 
cells? If so describe these cells. 

8.6. In one of the publications from the Danish Welfare Study we find the following 
table showing the connection between income and wealth. 

Income Wealth ( 1000 D.kr. ) 

( 1000 D.kr. ) 0 0-50 50-150 150-300 Over 300 

0-40 360 196 120 79 39 

40-60 283 196 134 94 59 

60-80 269 197 193 127 61 

80-110 286 220 209 122 77 

Over 110 193 151 174 154 176 

The z-test statistic for goodness of fit of an RC-association model has value 
z = 19.86. 

(a) Determine the degrees of freedom for z and test whether an RC-association 
model fits the data. 

The eigenvalues (A.I, ... ,A.4) tum out to be (0.231, 0.086, 0.021, 0.015). 

(b) How much of the dependencies between income and wealth are accounted for by 
dimensions 1 and 2? 

The plot coordinates for a correspondence analysis model with two dimensions 
included are shown below. 



ASSOCIATION MODELS 233 

Category x-coordinate y-coordinate 
( dimension 1 ) ( dimension 2 ) 

Row 1 -0.281 0.110 

Row 2 -0.117 0.034 

Row 3 -0.032 -0.106 

Row 4 -0.Q16 -0.086 

RowS 0.418 0.066 

Column 1 -0.208 0.072 

Column 2 -0.111 -0.023 

Column 3 0.072 -0.132 

Column 4 0.189 -0.041 

Column 5 0.552 0.135 

(c) Draw a correspondence analysis diagram and try to give an interpretation. 

8.7 From the data base of the Danish Welfare Study one can extract the following 
table showing the association between Monthly income and Occupation. 

Monthly income ( D.kr. ) 

Occupation 0-3192 3193-4800 4801-5900 5901-7488 Over 7489 

Independent 108 82 52 44 147 

White collar 
workers 226 242 257 362 423 

Blue collar 
workers 308 359 320 230 75 

Pensioners 406 37 9 9 4 

Unemployed 61 64 2 2 

Students 174 9 0 0 0 

The eigenvalues (AI' ... ,1..4) tum out to be (0.571, 0.301, 0.152, 0.063). 

(a) How much of the dependencies between income and occupation are accounted 
for by dimensions 1 and 2? 

The plot coordinates for a correspondence analysis model with two dimensions 
included are shown below. 
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Category x-coordinate y-coordinate 
( dimension 1 ) ( dimension 2 ) 

Row 1 -0.198 0.357 

Row 2 -0.421 0.202 

Row 3 -0.107 -0.394 

Row 4 1.181 0.150 

RowS 0.505 -0.450 

Row 6 1.337 0.210 

Column 1 0.810 0.085 

Column 2 -0.151 -0.356 

Column 3 -0.386 -0.287 

Column 4 -0.471 -0.007 

Column 5 -0.565 0.555 

(b) Draw a correspondence analysis diagram and try to give an interpretation. 
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Solutions and output to selected exercises 

Chapter 2 

2.1 (a) Inf(xI9) = x·InS + In(1-S). 

(b) E[T] = n-S/(l-S) = LjXj ~ G = x/(1+x) 

(c) K(S) = -In(1-S) = -In(1-e't), K'('t) = e't/(1-e't) and K"('t) = e't/(1_e't)2 ~ 
var[-t] = (I-e 't)2/(ne 't) = 1/S(1-'t). 

2.2 (a) z = -21nL('to) + 2InL(-t) = 2LjXj(-t-'to) + 21n(1-exp{-t}) - 21n(1-exp{'to}). 

(b) LjXj = 17. -t = In(1.712.7) = -0.463. G = 0.629. 
'to = -0.3. So = 0.741. 

z = 34(-0.463 - (-0.3» + 20ln(1-0.630) - 20ln(1-0.741) = 1.60. 
z = 1.65 df = 1 p = 0.199. 

2.5 (a) InL = xlnA. - In(x!) - A. 
K(A.) = A = e't. 

(b) nK'(A) = e't = LXj 

-t = In(x). 

(c) K"('t) = e't. 
var[-t] = exp{-'t} = lI(nA). 

(d) var[A] = Aln and g'(A) = 111. ~ var[-t] = (lJA2)')Jn = lI(nA). 

2.6 (b) H : 1t = 1/10. 

z(H) = 2Lx[lnx - In(13.7)] = 124.15 df = 8 *) p = 0.000 *) One cell has zero count. 

(d) 1t(1) = (10+18+19+17+19)/5/137 = 0.121 
1t(2) = (5 + 0 + 2 + 1)/4/137 = 0.015 
~ = 46/137 = 0.336 
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Decades 1800 10 
1800-1900 -1810 -20 

Number of 
executions 10 46 

Expected 
numbers 16.7 46.0 

z(H) = 10.93 df = 6 P = 0.09 

2.7 H: ft = 1110. 

20 30 40 50 
-30 -40 -50 -60 

18 19 17 19 

16.7 16.7 16.7 16.7 

z(H) = 2~x[lnx - In(408.5)] = 25.7 df = 9 P = 0.002. 

HO : 't) = In(4) - In(1) = 2In(2) 
't2 = In(2) - In(1) = In(2) 

2.9 (a) 

z = 6.68 df = 2 P = 0.035. 

(c) ~ = 0.197. 

(d) 

z = 1.56 df = 1 P = 0.212. 

nft 

nft 

GG 

33 

GG 

39.5 

GB BB 

66 33 

GB BB 

53.0 39.5 

60 70 
-70 -80 

5 0 

2.0 2.0 

2.11 1:11 = In(1t1I) - In(1tzz) = In(1t1) + In(1t.1) - In(1tz) - In(1t.z) 
= In(1t1) - In(1tz) + In(1t.1) - In(1t.z) = 81 + 81. 

1:1Z = In(1t1Z) - In(1tzz) = In(1tl ) + In(1t.z) - In(1tz) - In(1t.z) 
= In(1t1) - In(1tz) = 81. 

1:Z1 = In(1tZl ) - In(1tzz) = In(1tz) + In(1t.l) - In(1tz) - In(1t.z) 
= In(1t. 1) - In(1t.z) = 8z. 

ApPENDIX 

80 1890 
-90 -1900 

2 

2.0 2.0 
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Chapter 3 

3.1 (b) to = In(60) = 4.094. 

t~ = In(60/480) = -2.079. 

3.2 (a) 

'tAB 

i=1 

2 

(b) 

'tB 

3.3 (a) 

tBC 

j=1 

2 

(b) 

t C 

3.4 (a) 

59 

(b) 59 = 60 - 1 

3.5 (a) 

H2 : Bl.C I A 
H~ : Cl.A,B 
H4 :Cl.A,B&C=u 
H4 :Al.Bl.C 

237 

j=1 2 

0.104 -0.104 

-0.104 0.104 

j=1 2 

-0.203 0.203 

k=1 2 

0.049 -0.049 

-0.049 0.049 

k=1 2 

0.220 -0.220 
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3.6 (a) Fonnula: xLkx.jIlX"k' 

Results: 

C=1 2 

A = 1 B=1 67.3 15.4 

2 53.7 40.6 

2 B=1 21.7 33.6 

2 17.3 88.4 

Model z(H) 

AB,AC,BC 0.12 

AC,BC 2.72 

3.7 (a) 

Level of 
Model z(H) df sign. 

AB,AC,BC 5.38 2 0.068 

AC,BC 34.49 4 0.000 

AB,BC 9.52 3 0.023 

AB,AC 6.29 4 0.178 

AC,B 35.23 6 0.000 

AB,C 10.27 5 0.068 

AB 10.32 6 0.112 

A,B,C 39.21 7 0.000 

A,B 39.26 8 0.000 

(b) Expected numbers under model AB. 

Fonnula: E[Xijk] = xij/K. 
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Results: 

A: Response 

Yes 

No 

B: Residence 

Copenhagen 

Cities 

Countryside 

Copenhagen 

Cities 

Countryside 

~AB ---
(c) Formula: .:-. = L·· - L· - L . +L , 1 J 1J 1. .J .. 

Results: 

-tB 
Non-response 

Yes 

No 

3.8 (a) and (c) 

Chose AC, B or AC. 

Copenhagen 

Model 

-0.203 

0.203 

AB,AC,BC 

AC,BC 

AB,AC 

AB,BC 

AC,B 

AB,C 

AC 

A,B,C 

A,C 

C 

z(H) 

0.19 

2.44 

1.34 

11.36 

3.13 

12.05 

10.09 

13.85 

20.81 

109.83 

(b) AC, B : B.LA,C ; AC : B.LA,C & B = u. 

Sex 

Male 

285.0 

618.0 

962.5 

62.5 

78.0 

108.5 

Residence 

Cities 

0.073 

-0.073 

df 

2 

2 

2 

3 

3 

4 

4 

5 

6 

Level of 
sign. 

0.660 

0.295 

0.513 

0.003 

0.372 

0.007 

0.039 

0.008 

0.001 

0.000 

Female 

285.0 

618.0 

962.5 

62.5 

78.0 

108.5 

Countryside 

0.130 

-0.130 

239 
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3.9 (a) 

Level of 
Model z(H) df sign. 

AB, AC, BC 4.67 2 0.097 

AB,BC 24.59 4 0.001 

AC,BC 28.42 4 0.000 

AB,AC 5.63 5 0.131 

AB, C 24.62 5 0.372 

AC,B 28.44 5 0.000 

(c) AB, AC : R.LC I A 

(d) Expected numbers under model AB, AC: 

A: Preference C: Sex 

of length B: Age Male Female 

Less than Under 40 68.4 73.6 

2 hours Over 40 77.6 83.4 

211.1 to 311.1 Under 40 60.7 41.3 

hours Over 40 52.3 35.7 

4 hours Under 40 63.8 27.2 

or more Over 40 25.2 10.8 

3.10 (a) 

Level of 
Model z(H) df sign. 

AB,AC,BC 5.53 0.019 

AB,AC 28.14 2 0.000 

AB,BC 5.63 2 0.060 

AC,BC 89.36 2 0.000 

AB,C 28.18 3 0.000 

BC,A 89.41 3 0.000 

(b) Alcohol abuse is hereditary, if model AB, BC is accepted. 

(c) No, if model AB, BC is accepted. 
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Chapter 4 

4.1 (1) 

Model z(h) df Level of sign. 

ABC, ABO, ACO, BCD 21.33 12 0.046 

ABC,ABO,ACO 66.64 24 0.000 

ABC,ABO,BCO 48.21 24 0.002 

ABC,ACO,BCO 32.84 21 0.005 

ABO, ACO, BCD 22.97 16 0.115 

ABO, ACO, BG 68.69 28 0.000 

ABO, BCD, AC 51.66 28 0.004 

AGO, BCD, AB 34.58 19 0.016 

AGO, BCD 34.58 20 0.021 

ACO, AB, BC, BO 75.98 31 0.000 

BCO,AB,AG,AO 60.65 31 0.001 

AGO,BG,BO 76.65 32 0.000 

BCO,AG,AO 61.33 32 0.001 
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4.1 (2) 

Model z(h) df Level of sign. 

ABC,ABD,ACD,BCD 7.35 12 0.834 

ABC,ABD,ACD 48.02 24 0.002 

ABC,ABD,BCD 26.97 24 0.306 

ABC,ACD,BCD 10.85 15 0.763 

ABD,ACD, BCD 10.73 16 0.826 

ABD,ACD,BC 52.04 28 0.004 

ABD,BCD,AC 31.28 28 0.305 

ACD, BCD,AB 14.43 19 0.758 

ACD, BCD 17.04 20 0.651 

ACD,AB,BC,BD 55.61 31 0.004 

BCD,AB,AC,AD 34.81 31 0.291 

ACD,BC,AC 58.76 32 0.003 

BCD,AC,BD 38.02 32 0.214 

BCD, AC 175.47 35 0.000 

BCD,AD 668.72 36 0.000 

AC,AD,BC,BD,CD 79.75 44 0.001 

4.2 

Model z(h) df Level of sign. 

ABC,ABD,ACD, BCD 5.21 6 0.517 

ABC,ABD,ACD 15.56 9 0.077 

ABC,ABD,BCD 19.23 8 0.014 

ABC, ACD, BCD 8.44 12 0.750 

ABD,ACD,BCD 15.01 12 0.241 

ABC,ACD,BD 19.16 15 0.207 

ABC,BCD,AD 22.98 14 0.061 

ACD, BCD,AB 18.71 18 0.410 

ACD, BCD 135.84 24 u.uvv 

ACD,AB,BC,BD 30.28 21 0.086 

BCD,AB,AC,AD 34.17 20 0.025 

ACD,AB, BC 80.97 24 0.000 

ACD,AB,BD 72.53 24 0.000 

ACD,BC,BD 143.97 27 0.000 

AB,AC,AD, BC,BD,CD 42.26 23 0.008 
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4.3 

Model z(h) df Level of sign. 

AB,AC,AD,BC,BD,CD 1.71 5 0.888 

AB,AC,AD,BC,BD 13.80 6 0.032 

AB,AC,AD,BC,CD 8.73 6 0.189 

AB,AC,BC,BD,CD 13.14 6 0.041 

AB,AC,AD,BD,CD 10.93 6 0.090 

AB,AD,BC,BD,CD 2.68 6 0.847 

AC,AD,BC,BD,CD 2.20 6 0.900 

AC,AD,BC,BD 14.32 7 0.046 

AC,AD,BC,CD 9.56 7 0.215 

AC,BC,BD,CD 13.96 7 0.052 

AC,AD,BD,CD 11.53 7 0.117 

AD,BC,BD,CD 3.27 7 0.858 

AD,BC,BD 14.85 8 0.062 

AD, BC,CD 10.63 8 0.223 

BC,BD,CD,A 14.51 8 0.070 

AD, BD,CD 12.60 8 0.126 

AD,BC 20.86 9 0.013 

BC,CD,A 21.87 9 0.009 

AD,CD,B 18.59 9 0.029 

AD,CD 31.29 10 0.000 

AD,B,C 28.79 10 0.001 

CD,A,B 29.82 10 0.001 
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4.4 (a) 

Model z(h) df Level of sign. 

ABC,ABD,ACD,BCD 0.60 0.438 

ABC,ABD,ACD 1.23 2 0.540 

ABC,ABD,BCD 0.96 2 0.620 

ABC,ACD,BCD 2.36 2 0.308 

ABD,ACD,BCD 1.18 2 0.555 

ABC,ABD,CD 1.55 3 0.670 

ABC,BCD,AD 3.09 3 0.378 

ABD,BCD,AC 1.57 3 0.667 

ABC,ABD 1.70 4 0.791 

ABC,AD,BD,DC 6.84 4 0.144 

ABD,AC,BC,CD 1.93 4 0.748 

ABC,AD,BD 6.93 5 0.226 

ABD,AC,BC 2.02 5 0.846 

ABD,AC 4.12 6 0.661 

ABD,BC 135.20 6 0.000 

AB,AC,AD, BC,BD 7.30 6 0.294 

ABD,C 136.73 7 0.000 

AB,AC,AD,BD 9.35 7 0.229 

AB,AC,AD 9.35 8 0.314 

AB,AC,BD 10.95 8 0.205 

AB, AD, BD, C 141.96 8 0.000 

AC, AD, BD 9.39 8 0.311 

AB,AC, D 10.95 9 0.279 

AB,AD,C 141.96 9 0.000 

AC,AD, B 9.39 9 0.402 

AC,AD 160.44 10 0.000 

AC,B,D 10.99 10 0.358 

AD, B,C 142.00 10 0.000 

AC,B 28.99 11 0.002 

AC,D 162.04 11 0.000 

A,B,C,D 143.60 11 0.000 
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(c) 

C: Survival D: X-ray treatment 

A: Stage B: Operation by 10 years No Yes 

Radical No 9.8 16.2 

Early Yes 40.3 66.3 

Limited No 1.9 3.1 

Yes 7.7 12.7 

Radical No 37.4 61.6 

Advanced Yes 7.3 12.0 

Limited No 7.2 11.8 

Yes 1.4 2.3 

(d) 

Survival by 10 years 

Stage Yes No 

Early -0.761 0.761 

Advanced 0.761 -0.761 
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4.5 (a) 

Model z(h) df Level of sign. 

AB,AC,AD,BC,BD,CD 6.66 9 0.672 

AB,AC, AD, BC, BD 9.39 10 0.495 

AB,AC,AD,BC,CD 37.86 11 0.000 

AB,AC,BC,BD,CD 6.75 10 0.749 

AB,AC,AD,BD,CD 7.60 11 0.748 

AB,AD,BC,BD,CD 10.22 10 0.422 

AC,AD,BC,BD,CD 6.89 11 0.808 

AC,AD,BC,BD 9.62 12 0.649 

AC,AD,BC,CD 38.10 13 0.000 

AC,BC,BD,CD 6.99 12 0.858 

AC,AD,BD,CD 7.86 13 0.853 

AD,BC,BD,CD 10.47 12 0.574 

AC,BC,BD 9.67 13 0.721 

AC,BC,CD 38.20 14 0.000 

AC,BD,CD 7.96 14 0.891 

BC,BD,CD,A 10.53 13 0.650 

AC,BD 10.20 15 0.870 

AC,CD,B 38.73 16 0.001 

BD,CD,A 11.50 15 0.716 

AC,B,D 40.97 17 0.001 

BD,A,C 13.74 16 0.618 

BD,A 185.26 17 0.000 

BD,C 14.55 17 0.628 

A, B,C,D 44.51 18 0.001 

BD 186.08 18 0.000 

B,C,D 45.32 19 0.001 
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(c) In the model BD, A, C. 

Been to a movie 

Age Yes No 

7- 9 -0.210 0.210 

10-12 -0.009 0.009 

13-15 0.219 -0.219 

4.6 

Model z{h) dl Level 01 sign. 

AB,AC,AD,BC,BD,CD 16.73 13 0.203 

AB,AC,AD,BC,BD 16.95 14 0.259 

AB, AC, AD, BC, CD 21.47 14 0.090 

AB,AC,BC,BD,CD 20.80 16 0.187 

AB,AC,AD,BD,CD 50.34 14 0.000 

AB,AD,BC,BD,CD 126.45 16 0.000 

AC,AD,BC,BD,CD 113.97 16 0.000 

AB,AC,AD,BC 21.80 15 0.113 

AB,AC,BC,BD 21.77 17 0.194 

AB,AC,AD,BD 50.68 15 0.000 

AB, AD, BC, BD 126.87 17 0.000 

AC,AD,BC,BD 114.00 17 0.000 

AB,AC,BC,D 29.61 18 0.041 

AB, AC, BD 54.94 18 0.000 

AB,BC,BD 131.14 20 0.000 

AC,BC,BD 119.73 20 0.000 

AB,AC,BC 34.12 19 0.018 

AB,AC,D 62.78 19 0.000 

AB,BC,D 138.97 21 0.000 

AC,BC,D 127.56 21 0.000 
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4.7 (a) 

Model z(h) df Level of sign. 

AB,AC,AD,BC,BD,CD 17.49 16 0.355 

AB,AC,AD,BC,BD 146.25 15 0.000 

AB,AC,AD,BC,CD 36.08 18 0.007 

AB,AC,BC,BD,CD 18.08 18 0.450 

AB,AC,AD,BD,CD 20.56 18 0.302 

AB,AD,BC,BD,CD 67.77 18 0.000 

AC,AD,BC,BD,CD 46.95 17 0.000 

AB,AC,BC,BD 151.00 22 0.000 

AB, AC, BC, CD 36.40 20 0.014 

AB,AC,BD,CD 21.20 20 0.386 

AB,BC,BD,CD 72.53 20 0.000 

AC,BC,BD,CD 47.26 19 0.000 

AB,AC,BD 158.39 24 0.000 

AB, AC, CD 43.78 22 0.004 

AB,BD,CD 79.74 22 0.000 

AC,BD,CD 54.47 21 0.000 

(b) Chose AB, AC, BD, CD. 

(c) Both graphical and decomposable. 

(d) AillIB,C & B.lCIA,D. 
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4.8 

Level Level 
Model z(H) df of sign. Model z(H) df of sign. 

ABCD, ACDE 14.19 12 0.289 ACD,BCD,CE 31.29 27 0.259 

ABCD,ABCE 13.20 12 0.354 ACD,BCD,AE 130.91 28 0.000 

ABCE, ACDE 22.64 12 0.031 ACD,ACE,BC 31.87 27 0.273 

ABCD,ABDE 115.59 16 0.000 ACE,AD,BC,BD 55.01 30 0.004 

ABCD,BCDE 13.95 12 0.304 ACE,BCD 162.93 27 0.000 

ACDE,BCDE 13.47 12 0.336 ACD,ACE,BD 34.72 28 0.178 

ABDE, BCDE 29.69 16 0.020 BCD,AD,AE,CE 46.22 30 0.030 

ABCE, ABDE 39.01 16 0.001 ACD,BCD 1010.87 30 0.000 

ABCE, BCDE 149.77 12 0.000 ACD, BC,CE 38.58 30 0.135 

ABDE, ACDE 20.21 16 0.211 AC,AD,BC,BD,CE 61.73 33 0.002 

ABCD, ACE 16.44 18 0.562 BCD,AC,CE 169.65 30 0.000 

ABCD, BCE 20.14 18 0.325 ACD,BD,CE 41.44 31 0.100 

ABCD,ABE 122.45 20 0.000 BCD,AD,CE 46.50 31 0.036 

ABCE,ACO 24.89 18 0.128 ACO,BC 1018.16 33 0.000 

ABCE, ABO 45.86 20 0.001 AC,AO, BC, CE 66.27 34 0.001 

ABCE, BCD 155.96 18 0.000 AC,BC, CD, CE 176.94 33 0.000 

ACO, ACE, BCD, BCE 21.51 21 0.428 ACO,CE 139.38 33 0.000 

ABO, ABE, ACO, ACE 28.89 24 0.224 AD,BC,CO,CE 53.79 34 0.017 

ABO,ABE,BCO,BCE 37.57 24 0.038 

ABCD,CE 23.16 21 0.336 

ABCD, AE 122.78 22 0.000 

ABC, ACO, ACE 28.14 24 0.254 

ABC,ABD,ACE 49.10 26 0.004 

ABC,ACE,BCO 159.20 24 0.000 

ACD, ACE, BCD 24.58 24 0.429 

ABO, ACD, ACE 29.26 26 0.300 

ABO,BCD,AE,CE 40.73 28 0.057 

Chapter 5 

5.1 (a) AB, AC, BC: 8 - 8 + 0 = O. 

(b) AB, AC: 8 - 6 + 0 = 2. AB, BC: 8 - 6 + 0 = 2. 

5.2 (a) AB, AC, BC: 21 - 19 + 2 = 4. 
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(b) AB, AC: 21 - 15 + 2 = 8. AB, BC: 21 - 15 + 0 = 6. AC, BC: 21 - 15 + 2 = 8. 

5.3 (a) AB, AC, BC: 18 - 18 + 2 = 2. 

(b) AB, AC: 18 - 16 + 2 = 4. AB, BC: 18 - 12 + 2 = 8. AC, BC: 18 - 15 + 0 = 3. 

Chapter 6 

6.1 

Level of 
Model z(H) df sign. 

AB,AC,BC 5.38 2 0.068 

AB,BC 9.52 3 0.023 

AC,BC 34.49 4 0.000 

A,BC 38.46 5 0.000 

6.2 

Level of 
Model z(H) df sign. 

AB,AC,BC 0.19 0.660 

AB,BC 1.34 2 0.513 

AC,BC 11.36 2 0.003 

A, Be 12.05 3 0.007 

6.3 

Level of 
Model z(H) df sign. 

Be,Ae,AB 5.53 0.019 

Be,AB 1.63 2 0.060 

Ae,AB 28.14 2 0.000 

e,AB 28.18 3 0.000 
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6.4 (1) 

Level of 
Model z(H) df sign. 

AB,AC,AD,BCD 34.81 31 0.291 

AB,AC, BCD 175.16 34 0.000 

AB,AD,BCD 668.69 35 0.000 

AC,AD,BCD 38.02 32 0.214 

AB,BCD 761.97 38 0.000 

AC,BCD 175.47 35 0.000 

AD,BCD 668.72 36 0.000 

A,BCD 766.74 39 0.000 

6.4 (2) 

Level of 
Model z(H) df sign. 

AB,AC,AD,BCD 60.65 31 0.001 

AB,AC,BCD 78.99 34 0.000 

AB, AD, BCD 159.92 35 0.001 

AC,AD,BCD 61.30 32 0.000 

AB, BCD 185.33 38 0.000 

AC,BCD 79.01 35 0.000 

AD,BCD 162.42 36 0.000 

A, BCD 185.99 39 0.000 
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6.5 

Level of 
Model z(H) df sign. 

DA,DB,DC,ABC 1.37 4 0.849 

DA,DB,ABC 13.52 5 0.019 

DA,DC,ABC 8.45 5 0.133 

DB,DC,ABC 12.86 5 0.025 

DA,ABC 19.18 6 0.004 

DB,ABC 24.43 6 0.000 

DC,ABC 20.22 6 0.003 

D,ABC 30.41 7 0.000 

6.6 

Level of 
Model z(H) df sign. 

CA,CB,CD,ABD 1.93 4 0.748 

CA,CB,ABD 2.02 5 0.846 

CA,CD,ABD 4.03 5 0.545 

CB,CD,ABD 134.13 5 0.000 

CA,ABD 4.12 6 0.661 

CB,ABD 135.20 6 0.000 

CD,ABD 135.67 6 0.000 

C,ABD 136.73 7 0.000 

6.7 

Level of 
Model z(H) df sign. 

DA,DB,DC,ABC 5.29 7 0.624 

DA,DB,ABC 8.02 8 0.432 

DA,DC,ABC 36.49 9 0.000 

DB,DC,ABC 5.37 8 0.717 

DA.ABC 38.77 10 0.000 

DB, ABC 8.06 9 0.529 

DC,ABC 36.59 10 0.000 

D,ABC 38.83 11 0.000 
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6.8 

Level of 
Model z(H) df sign. 

AB,AC,AD, BCD 15.80 12 0.201 

AB,AC,BCD 16.44 14 0.287 

AB,AD,BCD 66.12 14 0.000 

AC,AD, BCD 45.30 13 0.000 

AB, BCD 70.88 16 0.000 

AC, BCD 45.61 15 0.000 

AD, BCD 99.72 15 0.000 

A,BCD 106.99 17 0.000 

6.9 

Level of 
Model z(H) df sign. 

EA, EB,EC, ED,ABCD 23.00 18 0.191 

EA, EB, EC,ABCD 23.08 19 0.234 

EA,EB, ED,ABCD 122.22 20 0.000 

EA, EC, ED,ABCD 23.00 19 0.238 

EB, EC, ED,ABCD 23.04 19 0.236 

EA,EB,ABCD 122.60 21 0.000 

EA,EC,ABCD 23.08 20 0.285 

EA,ED,ABCD 122.42 21 0.000 

EB, EC,ABCD 23.16 20 0.281 

EB, ED,ABCD 122.45 21 0.000 

EC, ED,ABCD 23.04 20 0.287 

EA,ABCD 122.78 22 0.000 

EB,ABCD 122.73 22 0.000 

EC,ABCD 23.16 21 0.336 

ED,ABCD 122.64 22 0.000 

E,ABCD 122.90 23 0.000 

Chapter 7 

7.1 Set 1: No solutions. 
Set 2: Solutions. 
Set 3: Solutions. 
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7.2 Set 1: No solutions. 
Set 2: Solutions. 
Set 3: No solutions. 

7.3 (a) 

Variable Parameter Standard 
error 

Intercept 130 -2.578 0.087 

Sex 131 -0.322 0.078 

Empl. sector 132 0.305 0.074 

Residence 133 -0.039 0.084 

(b) 

Variables 
included z(H) 

All 0.65 

Sex, Empl. sector 0.87 

Sex 17.14 

None 28.80 

7.4 (a) z = 0.49 df = 1 p = for logistic regression model. 

(b) 

Variable Parameter Estimate Standard error 

Intercept 130 2.286 1.514 

Dust 131 -8.984 1.292 

Ventilation 132 -0.064 0.169 

Variables 
included z(H) 

Both 0.49 

Dust 0.63 

Ventilation 51.49 

None 81.02 
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Dust is included, Ventilation excluded. 

(c) If City Hall no. 120 is omitted the explanatory variables are almost quasi complete separated. 

7.6 (a) Variables B, C and D. 

(b) 

Variables 
included z 

BCD E F 0.00 

BCD E 0.28 

BCD 1.41 

B C 6.61 

C 16.65 

(c) P = 0.98, P = 0.72. 

7.7 (a) z = 19.36 df = 16 for a logistic regression model. 

(b) 

Variable 

Intercept 

Sex 

Age 

Age is significant. Sex is insignificant. 

Parameter 

~o 0.613 

~1 0.198 

~2 -0.050 

(c) Dummy variable Agel to Age9: z(H) = 7.24 df = 8. 

Variables 
included 

Sex 

Age1 to Age9 

None 

z 

41.81 

7.87 

42.13 

Standard 
error 

0.431 

0.250 

0.011 
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Variable Parameter Standard 
error 

Intercept ~o -1.481 0.242 

Sex ~1 0.205 0.259 

Age1 ~2 -0.460 0.982 

Age2 ~3 1.483 0.306 

Age3 ~4 0.832 0.306 

Age4 ~5 0.197 0.333 

Age5 ~6 -0.366 0.368 

Age6 ~7 -0.167 0.412 

Age7 ~B 0.139 0.400 

Age8 ~9 -0.501 0.465 

Age9 ~10 -0.509 0.513 

7.8 (a) 

Model df 

ABCD 87 

BCD 

ACD 

ABD 

ABC 

CD 2 

BD 2 

BC 2 

C 3 

B 3 

None 4 

(b) Band C are significant. 
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(c) 

Explanatory variables Explanatory variables 
included excluded 

A 81 82 83 84 C D None 

81828384 C D A 

A 81828384 D C 

A 81828384 C D 

ACD 81 828384 

81828384 D AC 

81 828384 C AD 

CD A 81828384 

81828384 ACD 

C A 81828384 D 

Chapter 8 

8.1 (a) Prices: 

Symmetry: z(H) = 62.73 df = 3 P = 0.000. 

Quasi-symmetry: z(H) = 0.14 df = 1 P = 0.707. 

Production: 

Symmetry: z(H) = 31.07 df = 3 P = 0.000. 

Quasi-symmetry: z(H) = 2.03 df = 1 P = 0.154. 

(c) Prices: z(H) = 65.41 df = 2 P = 0.000. 

Production: z(H) = 29.00 df = 2 P = 0.000. 

8.2 (a) Symmetry: z(H) = 50.15 df = 3 P = 0.000. 

Quasi-symmetry: z(H) = 0.06 df = 1 P = 0.812. 

(c) z(H) = 49.62 df = 2 P = 0.000. 

df 

84 

4 

2 

2 

5 

3 

6 

257 

(d) A number of undecided have changed to No. The nunmber of Yes is almost the same. 

8.3 (a) z(H) = 2.92 df = 2 P = 0.232. 
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8.4 (a) 

Year 

1955 

1956 

1957 

1958 

15 

139.19 

145.92 

196.42 

211.21 

z(H) = 3.49 df = 6 p = 0.746. 

(c) z(H) = 4.74 df = 8 p = 0.785. 

16 

281.22 

293.56 

389.86 

416.57 

8.5 (a) z(H) = 18.16 df = 6 p = 0.006. 

8.6 (a) df = 9 p = 0.019. 

(b) Dimension 1 : 86.9% 
Dimension 1 +2: 98.9% 

(c) 

Age 

17 

330.61 

335.02 

404.89 

413.97 

18 

446.94 

434.68 

461.24 

443.73 

ApPENDIX 

19 

416.36 

406.33 

435.86 

421.44 
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8.7 (a) Dimension 1 : 73.5% 
Dimension 1+2: 93.9% 

(b) 

0.5 
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