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Preface

The aim of this book is to give an up to date account of the most commonly uses statisti-
cal models for categorical data. The emphasis is on the connection between theory and
applications to real data sets. The book only covers models for categorical data. Various
models for mixed continuous and categorical data are thus excluded.

The book is written as a textbook, although many methods and results are quite
recent. This should imply, that the book can be used for a graduate course in categorical
data analysis. With this aim in mind chapters 3 to 12 are concluded with a set of exer-
cises. In many cases, the data sets are those data sets, which were not included in the
examples of the book, although they at one point in time were regarded as potential can-
didates for an example.

A certain amount of general knowledge of statistical theory is necessary to fully
benefit from the book. A summary of the basic statistical concepts deemed necessary pre-
requisites is given in chapter 2.

The mathematical level is only moderately high, but the account in chapter 3 of
basic properties of exponential families and the parametric multinomial distribution is
made as mathematical precise as possible without going into mathematical details and
leaving out most proofs.

The treatment of statistical methods for categorical data in chapters 4 to 12 is
based on development of models and on derivation of parameters estimates, test quanti-
ties and diagnostics for model departures. All the introduced methods are illustrated by
data sets almost exclusively from Danish sources. If at all possible, the data source is
given.

Almost all statistical computations require the use of a personal or main frame
computer. A desk calculator will only in few cases suffice. As a general rule the methods
in chapters 4 to 7 are covered by standard statistical software packages like SAS, BMDP,

SPSS or GENSTAT. This is not the case for the methods in chapters 8 to 12. Sgren V.
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Andersen and the author have developed a software package for personal computers,
called CATANA, which cover all models in chapters 8 to 12. This package is necessary in
order to check the calculations in the examples or to work through the exercises. Informa-
tion on how to obtain a diskette with CATANA, which will be released in early 1990, can
be obtained by writing to the author.

A fair share of the examples and exercises are based on the Danish Welfare Study
and I wish to thank the director of this study professor Erik J. Hansen, who through the
Danish Data Archive put the data file from the Welfare Study to my disposal, and has
been extremely helpful with extra information on tﬁe data.

Part of the book was written during visits to the United States and France. I wish
to thank first of all Leo Goodman, but also Peter Bickel, Terry Speed, Jan de Leeuw,
Shelby Haberman, Peter McCullogh, Darrell Bock, Clifford Clogg, Paul Holland, Robert
Mislevy and Murray Aitkin in the United States and Yves Escoufier, Henri Caussinus and
Paul Falguerolles in France for stimulating discussions. Many other persons have contri-
buted to the book through discussions and criticism. It is impossible to name all, but the
help of Svend Kreiner, Nils Kousgaard and Anders Milhgj is appreciated.

I also wish to thank the Danish Social Science Research Council, who financed my
visits to the United States and France.

The book would never have been a reality without the care and enthusiasm with
which my secretary Mirtha Cereceda typed and retyped the manuscript many times. I
owe her my most sincere thanks for a very competent job.

Finally a special thank you to the many students who suffered through courses

based on early drafts of the book.

Copenhagen, October 1989
Erling B. Andersen



Contents

DO N
[INGrICICRu

WWWWWWwwW w
COTDDUTR W —

O >
DU W =

CTOTOTOTOUT Ot Qi
e e e e e e .

O TR O DN =

(e NerNorNorNea)) (=]
TR W -

Categorical Data

Preliminaries

Statistical models

Estimation

Testing statistical hypotheses
Checking the model

Statistical Inference

Log—linear models

The one—dimensional case

The multi—dimensional case

Testing composite hypotheses

The parametric multinomial distribution
Generalized linear models

Solution of likelihood equations
Exercises

Two—way Contingency Tables

Three models

The 2x2 table

The log—-linear parameterization
The hypothesis of no interaction
Residual analysis

Exercises

Three—way Contingency Tables

The log—-linear parameterization
Hypotheses in a three—way table
Hypothesis testing

Decomposition of the test statistic
Detection of model departures
Exercises

Multi—dimensional Contingency Tables

The log—linear model
Interpretation of log—linear models
Search for a model

Diagnostics for model departures
Exercises

10
14
19

25

25
29
43
55
62
70
74
82

89

89
94
105
108
120
121

131

131
135
143
164
167
173

179

179
181
190
199
202

VII



VIII

ENENENENEN SN
U W N =

oo 00 0o @®

W N =

O©OYWYW© =
U W N =

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

11.

11.
11.
11.
11.

> WNo—

12.

12.
12.
12.
12.
12.

N U WN -

12.

Incomplete Tables, Separability and Collapsibility

Incomplete tables

Two—way tables and quasi—independence
Higher order tables. Separability
Co%lapsibility

Exercises

The Logit Model

The logit model with binary explanatory variables

The logit model with polytomous explanatory variables

Exercises

Logistic Regression Analysis

The logistic regression model
Regression diagnostics
Predictions

Polytomous response variables
Exercises

Models for the Interactions

Introduction

Symmetry models

Marginal homogeneity

Models for mobility tables
Association models
RC-association models
Log—linear association models
Exercises

Correspondance Analysis

Correspondance analysis for two—way tables
Correspondance analysis for multiway tables
Comparison of models

Exercises

Latent Structure Analysis

Latent structure models

Latent class models

Continuous latent structure models

The EM—-algorithm

Estimation in the latent class model

Estimation in the continuous latent structure model
Testing the goodness of fit

212

212
216
220
228
234

239

239
254
265

269

269
286
303
305
311

320

320
320
329
333
336
345
352
354

362

362
387
397
402

406

406
407
411
424
426
437
453



12.8  Diagnostics

12.9  Score models with varying discriminating powers
12.10 Comparison of latent structure models

12.11 Estimation of the latent variable

12.12 Exercises

References
Author Index

Subject Index
Examples with Data

462
473
476
479
481
495
510
515

523

IX



1. Categorical Data

This book is about categorical data, i.e. data which can only take a finite or countable
number of values. Typical situations, which give rise to a statistical analysis of categorical
data are the following:

Consider first a population of individuals. For each of these a variable can be mea-
sured for which the possible values are the numbers from 1 to m. The variable may for
example be the social class, the individual belongs to, with the possible social classes num-
bered 1 to 5. From the population a sample of n individuals is selected at random and for
each of the sampled individuals the social class, he or she belongs to, is observed. The

data then consists of the counts x X of number of individuals observed in each social

1
class. Based on this data set one statistical problem is to estimate the percentages of
individuals in the total population, which belong to the five social classes. Another would
be to test hypotheses concerning the distribution of the population on social classes.

Consider secondly the counting of traffic accidents. One may e.g. be interested in the
increase or decrease of accidents following the enforcement of a given safety measure for
the traffic, like speed limitations. A data set could then consist of the number of traffic
accidents Xp5eX g for the months of a particular year. If a safety measure has been intro-
duced during the year, the statistical problem would be to check if the data bear evidence
of a decrease in number of accidents, which cannot be ascribed to random fluctuations in
the traffic counts.

Consider thirdly an economic variable, which takes a wide range of values on the real
line, like income, but where the observed values for practical reasons are only registered
in intervals, i.e. it is only observed which income interval a given income belongs to. The
data set then consists of the numbers of incomes x
(0,8,], (tgbglserns(t _joFm).

The three kinds of data considered above are very different in nature and require,

X in each of the income intervals

therefore, different statistical models. There are, however, a number of common features

for categorical data. Such a basic structure allows for a unified treatment.



The basic statistical distribution for categorical data is the multinomial distribution.
It describes the distribution of a random sample from a given large population over the
categories of a variable measurable for each individual in the population. But also other
distributions play important roles.

The statistical models and methods of subsequent chapters can be exemplified by

five concrete sets of data.

Example 1.1.

Table 1.1 show the number of persons killed in the traffic in Denmark 1970 to 1980. The
number of persons killed during a given year is a categorical random variable for which
the possible values are all non—negative integers. Based on the data in table 1.1 it is pos-
sible to evaluate the extent to which the risk of being killed in the traffic has changed
over the years 1970 to 1980. Since considerable speed limitations were introduced in Den-
mark in 1973 a more concrete question is whether these speed limits have caused a decre-
ase in the risk of being killed in the traffic. In order to answer this question, a statistical
model must be formulated for the data in table 1.1, i.e. a probability distribution must be

specified for the number of killed persons in a given year. The statistical model should

Tabel 1.1. Number of persons killed in the traffic in Denmark 1970 to 1980.

Year Number of killed persons
1970 1208
1971 1213
1972 1116
1973 1132
1974 766
1975 857
1976 857
1977 828
1978 849
1979 730
1980 690

Source: Road traffic accidents 1981. Publication 1982:8.
Statistics Denmark. Table 1.1.



include the risk of being killed as a parameter, to be estimated from the data. A compari-
son of the estimated risks for the years up to and including 1973 and the corresponding
estimated risks for the years after 1974 can then tell the statistician if the drop in number
of killed persons from 1973 and 1974 is a clear indicator of a corresponding drop in the

general risk of being killed in the traffic. A.

Example 1.2.
As part of a large scale investigation of job satisfaction in 1968, a random sample of blue
collar workers in Denmark were interviewed. The main questions were a number of ques-
tions concerning aspects of the workers job satisfactions. Based on the answers the wor-
kers were categorized as having high or low job satisfaction. At the same time the workers
supervisors were asked similar questions leading to a categorization of the supervisors as
those with high and low job satisfaction. In addition the quality of the factory manage-
ment was classified as good or bad based on an external evaluation. Thus three categori-
cal variables are measurable for each worker:

A: The workers own job satisfaction.

B. The job satisfaction of the workers supervisor.

C: The quality of the management.

Table 1.2 show the sample cross—classified according to these three categorical vari-
ables. Such a table is called a contingency table.

Based on the data in table 1.2 it is possible to study the way the job satisfaction of a
worker depends on his work environment, exemplified by the job satisfaction of the super-
visor and the quality of the management. A very primitive analysis based on comparisons
of relative frequencies will indicate the type of statistical conclusions, which can be reach-
ed. Consider tables 1.3 and 1.4, where the percentage of workers with low and high job
satisfaction are shown for various parts of the sample. In table 1.3 the percentages are
shown for the two levels of job satisfaction of the supervisor. In table 1.4 the percentage

of workers with low and high job satisfaction is in addition subdivided according to the



quality of the management.

Table 1.2. A sample of 715 blue collar workers cross—classified according to
three categorical variables: Own job satisfaction, supervisors job
satisfaction and quality of management.

Quality of Supervisors Own job satisfaction
management job satisfaction Low High
Bad Low 103 87
High 32 42
Good Low 59 109
High 78 205

Source: Petersen (1968). Table M /7.

Table 1.3. Percentage of workers with high and low job satisfaction for the two levels of
the supervisors job satisfaction.

Supervisors
job satisfaction Own job satisfaction
Low High Total
Low 43 55 100
High 31 66 100

Tables 1.3 and 1.4 show that the difference between the percentage of workers with
high and low job satisfaction is smaller if the two levels of the supervisors job satisfaction
are studied independently as in table 1.4. The quality of the management thus seems to

influence the job satisfaction of workers more than the job satisfaction of the supervisor.
A.

Table 1.4. Percentaige of workers with high and low job satisfaction for the two levels of

quality of management jointly with the two levels of the supervisors job
satisfaction.
Quality of Supervisors Own job satisfaction
management job satisfaction
Low High Total
Low 54 46 100
Bad High 43 56 100
Low 35 65 100
Good

High 28 72 100




Example 1.3

The Danish National Instilute for Social Science Research interviewed in 1974 a random
sample of 5160 Danes between 20 and 69 years old in order to investigate the general
welfare in Denmark. In table 1.5 the distribution of this sample with respect to five age
groups is shown.

Each of the sampled persons represents an observation of a categorical variable with
the five age groups as categories. If the sample is drawn completely at random, the multi-
nomial distribution describes the observed distribution over age groups. The parameters
of this distribution are the probabilities that a randomly drawn person belong to each of
the age groups. These probabilities are according to Laplace's law equal to the frequencies
of persons in the total Danish population in 1974 in the various age groups. These fre-
quencies are shown as the last column in table 1.3.

The statistical problem arising from table 1.5 is whether the sample is representative
of the population. In more concrete terms the statistical problem is to determine if the
observed distribution is consistent with the teoretical distribution represented by the fre-
quencies over the age groups in the total population. An equivalent formulation of this
problem is to ask , if column two in table 1.5 is equal to column three apart from random
errors. If the answer is affirmative one may claim that the sample is representative as
regards age. A
Table 1.5. A random sample of persons in Denmark in 1974 distributed according to

age, and the age group distribution of the total population in Den-
mark in 1974.

Age groups The sample The population
—years — ~-%- -h-
20-29 24.3 24.6
30-39 24.3 23.0
4049 17.5 17.8
50-59 17.7 18.4
60—69 16.1 16.2
Total 99.9 100.00
Number of persons 5166 3124455

Source: Hansen (1978). Table 4.10.



Example 1.4.
Many of the methods in this book are concerned with contingency tables, where two or
more categorical variables are cross—classified for a sample of persons. Table 1.6 is a ty-
pical example of such a contingency table. In the table the welfare sample, mentioned in
example 1.3, is cross—classfied according to income, in five income intervals, and wealth in
five wealth intervals. The observed numbers are presented in table 1.6 as one often meet
similar data, namely as percentages rowwise. The percentages immediately reveal the
expected feature, that low incomes more often are connected with low wealth and high
incomes more often with high wealth.

Many statistical methods for categorical data are concerned with describing the asso-
ciation between categorical variables. In case of the data in table 1.6, the problem is to
express the obvious association between income and wealth in terms of parameters in a

statistical model. A.

Table 1.6. Income and wealth cross—classified for a random sample in Denmark in

1974.
Wealth

Income — 1000 Dkr —

— 1000 Dkr — 0 0-50 50-150 150-300 300— Total
040 45 25 15 10 5 100
40-60 37 26 17 12 8 100
60-80 32 23 23 15 7 100
80-110 31 24 23 14 9 101
110- 23 18 21 18 21 101

Source: Hansen (1978). Table 6.H.32.

Example 1.5.

In an investigation of consumer behaviour a sample of 600 persons were confronted with 6
situations, where a purchased item did not live up to their expectations. For each situa-
tion, the interviewed persons were asked if they would complain to the shop or not. The
answers to four of these questions are shown in table 1.7, where 1 stands for yes and 0 for
no.

The purpose of collecting the data in table 1.7 was to evaluate the extent to which



consumers can be graded on a consumer complain "scale" with persons who seldom com-
plain on the lower end and persons who almost always complain on the upper end. If the
persons can in fact be graded on a complain scale, one consequence would be that a posi-
tive answer to a question would indicate that the person is more likely to be a complainer
than a non—complainer. Hence such a person would have a higher probability of complain-
ing on another question than a person, who answered no to the first question. The
answers to the questions are accordingly not independent. The existence of a complain
scale for the persons can, therefore, partly be confirmed by showing that the answers to
the four questions fail to be independent. To illustrate such an analysis consider the first
response pattern 1111 in table 1.7. The probability of this response assuming in-
dependence is
P(1111) = p,p,P,D,;,

where P; is the probability that a randomly selected person answers yes to question num-—

ber j. The estimates for P;» Pgs Py and p 4 are the marginal frequencies

Table 1.7. The number of persons for each of the 16 possible response patterns on
four questions concerning consumer complain behaviour.

Response Number of Expected frequency Expected numbers
pattern observations given independence given independence
1111 207 0.258 154.9
1110 72 0.185 110.8
1101 75 0.145 87.2
1100 76 0.104 62.3
1011 24 0.056 33.6
1010 24 0.040 24.0
1001 7 0.032 18.9
1000 20 0.022 13.5
0111 19 0.048 29.1
0110 22 0.035 20.8
0101 8 0.027 16.4
0100 14 0.019 11.7
0011 5 0.011 6.3
0010 11 0.008 4.5
0001 5 0.006 3.5
0000 11 0.004 2.5
Total 600 1.000 600

Source: Poulsen (1981).



p, = 0.842
p, = 0.822
p, = 0.640
p, = 0.583.

The expected frequency under independence with response pattern (1111) is thus
0.842-0.822-0.640-0.583=0.258. This number and the corresponding expected frequencies
for the remaining 15 response patterns are shown in table 1.7. The corresponding expected
numbers, obtained by multiplying with 600, are also shown in table 1.7. The main step of
a statistical analysis of the data in table 1.7 is to evaluate the likelihood that the observed
and the expected numbers for the various reponse patterns are equal apart from random
errors. If this is the case the answers to the questions are independent and no complain

scale exists. With the numbers in table 1.7 this likelihood is obviously very low. A



2. Preliminaries

2.1. Statistical models
In this chapter a short review is given of some basic elements of statistical theory which
are necessary requisites for the theory and methods developed in subsequent chapters.

A statistical model is a specification of the probability distribution of the data. Let
Xy It is then assumed that there exist
n random variables Xl,...,Xn of which X)y-e X ATE the observed values. The joint probabi-

the data set consist of the observed numbers x
lity
(2.1) f(x))mx ) = P{(X1=xl)ﬂ...n(Xn=xn)}

then specifies the statistical model. In most cases we assume that the model belong to a
family of models, which is indexed by one or more unknown parameters. The model is

then written as
(2.2) f(xl,...,xn| 0), 08¢0,

where the range space O is called the parameter space.The parameter space is usually a
subset of a k—dimensional Euclidean space, in which case # can be written 0=(01,...,0k).
The probability (2.2) as a function of @ is called the likelihood function and is deno-
ted by L, i.e.
L(9|x1,...,xn) = f(xl,...,xnl 6).
Most statistical methods are based on properties of the likelihood function.
In many situations the random variables XX are independent and identically

distributed, such that the likelihood function becomes

L(0|x1,...,xn) = f(x1|0)...f(xn| 6)
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with f(x, | )=P(X.=x).
A data set (xl,...,xn) is often called a sample. This expression is derived from situa-
tions where the data are observed values from units in a sample drawn from a population.

In accordance with this a function
t=t(x)-.x )

of the observations is called a sample function. Sample functions are important tools for
drawing statistical conclusions from a sample. To stress their role as statistical tools,

sample functions are often called statistics.

2.2. Estimation

A method for summarizing the information in a data set about a parameter is called an
estimation method. The most commonly used method is the maximum likelihood method.
A sample function which is used to estimate a parameter is called an estimate. The maxi-

mum likelihood (ML) estimate 9 is defined as the value of §, which maximizes L, i.e.

L(/é|x1,...,xn) = rgagL(&lxl,...,xn).
€

Obviously 4 is a sample function and, therefore, an estimate.
If © is a subset of the real line, the ML—estimator is in regular cases found as the

solution to the likelihood equation

dlnL(()lxl,...,xn) o
dg -

The most important regular case is, when the statistical model forms an exponential fa—
mily. Also for the so—called parametric multinomial distribution the regular cases can be

identified. Both cases are described in chapter 3.



"

‘As a function f(X,,-..,X ) of random variables an estimate is called an estimator.

A

If O is a subset of a k—dimensional Euclidean space, the ML—estimator 5:(/51,...,0k)

is in regular cases found as a solution to the k likelihood equations

61nL(01,.. , Bklxl,...,xn)
6Pj

=0, i=1,...k.

Two important properties of estimates are unbiasedness and consistency. An estimate

0=0(x,,...,x_) is said to be unbiased if it satisfies
Ea[o(xl,...,xn)] -9
where the mean value is taken with respect to the probability f(x,,...,x_ | 6), i.e.

LY 0(xpe0x )f(xl,...,x |6) = 6.
xl xn n n

An estimator is said to be consistent if it satisfies

From the law of large numbers it follows that @ is consistent, if it is unbiased and

~ P
var[ﬂ]-» 0 as n-w .

But an estimator can also be consistent under other conditions. In particular it does not

need to be unbiased.

The basis for a description of the properties of an estimator is its probability

distribution, i.e. the probability
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g(t16) = P(O(X, .. X,) = t]0),

1
for all values of 6.

The distribution of Ié is, however, in most cases so complicated, that it is of little
practical use. In most cases statistical methods for practical use rely, therefore, on asymp-
totic properties of the estimator, i.e. approximations to the distribution of /6\?, which are
valid for large sample sizes. In many important cases, to be considered later, it can be

proved that # is asymptotically normally distributed, i.e. for a certain constant o P

P({n -0%0 <u)f) - ®(u) as n-w.
d
where ®(u) is the cumulative distribution function for the standard normal distribution.

With an abbreviated notation, this is often written as

A2 9
# ~ N(6, o4 /n).
This means that the distribution of /(; in large samples can be approximated by a
normal distribution with mean value # and variance 02/ n.
In the k—dimensional case it can be proved that the ML—estimator in regular cases

has the asymptotic distribution.

A A

a
1
(013'“’01() - Nk((ala"-aak)’ n 20)3

where ¥ g is non—negative definite matrix and Nk’ the k—dimensional normal distribution.

Sometimes an interval estimate rather than a point estimate is preferred. The inter-
val (01, 02) is an interval estimate for 6, if there exist sample functions «91(x1,...,xn) and
02(x1,...,xn) such that

P(0,(X,,X ) > 6) = a2

1
and

P(0,(X X ) < 0) = a2
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The interval (01 <8¢ 02) is then interpreted as an interval estimate or a confidence inter-
val in the sense that the unknown parameter f is contained in the interval with confi-
dence level 1—a. Confidence intervals are usually justified by a so—called frequency inter-
pretation. Suppose the confidence interval is computed for each sample in a long sequence
of independent samples. The probability of both 01(X1,...,Xn) being less than or equal to ¢
and 02(X1,...,Xn) being larger than or equal to @ is then 1—a in each of the samples. The
relative frequency of the event {01 <6< 02} will therefore approach 1-a in the long run
due to the law of large numbers. With many independent calculations of confidence inter-
vals the true parameter value 6 will thus be in the interval with frequency 1—a. It can
accordingly be claimed that the confidence level of # being in the interval [01,92] is 1—a. It
is obvious that another word than "probability" must be used to describe our belief in the
statement §, < 0 < 6, as the event {0, <0< 02} for given values of ¢, and 6, has probabi-
lity either 1, if #in fact is in the interval, or 0, if 4 is in fact outside the interval.
Confidence intervals are very often obtained as approximate intervals based on an
application of the central limit theorem. Suppose that 2 is an estimate for 6, e.g. the

ML—estimate, and that

Ad

(2.3) 0 - N(6, 0°/n),

It then follows that

P(—ul_.a/2 <An(8-0)/ay< ul—a/2) ~ l-a

or
A 0'0 A 00
P(o—lll_a/Q[?‘Sgg 0+u1__a/2 J’H )_1—a
such that
o o
a 0 7 0
0,00 f—n_’ 0+ o m
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A,
where az is an estimate of a%, is a confidence interval with approximative confidence level

1-a.

2.3. Testing statistical hypotheses
A statistical hypothesis is a specification of the unknown value of a parameter. A typical
statistical hypothesis is

HO: 0= 00.
A test of a statistical hypothesis is a confrontation of H0 with one or more alternatives.
Typical alternatives are

le 0+ 00

H: 0 < 6’0
or

Hr 0> 00,

The purpose of the test is evaluate if the data supports H0 or one of the alternatives.
Usually the data is for use in test situations summarized in a test statistic.

Whether the hypothesis is supported by the data can be determined in two ways.
One way is to divide the range space T of the test statistic in two regions. One region A is
called the acceptance region and the remaining region A is called the critical region. The

acceptance and critical regions must satisfy

T=AUA
and

AnA=0.

Since HO is rejected whenever teA, the critical region should consist of all values of t,
for which it is unlikely that H0 is true. How A and A are chosen depend on the alternati-

ve. If thus HI:#HO and the test statistic 0=t(x1,...,xn) is an estimate of #, the critical re—
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gion can be chosen as those t—values for which # is not close to 6, i.e.
A = {t] 18,2}

for a certain number c. If the alternative is one—sided, for example 6> 00, the critical re-

gion is also chosen one-sided as

A= {t|t-6,>c}

for a certain c. Note that the acceptance region and the critical region A and A are
* *
defined in the range space of the test statistic. The two subsets A and A in the range

space X of the original observations defined through
*
A= {x X [8(x )% JeA}

and K*=X\A* are also referred to as the acceptance region and the critical region.
The extent to which the data supports the hypothesis can alternatively be measured

by the level of significance defined as
p=P(T 2 t|0=0,),

if the alternative is H,:6> 00 and large values of t are indications of H, rather than H,

being true. If the alternative is < 00, the level of significance is given by
p=P(T<t|0=10).

Under a two sided alternative HI: 0#00 both large and small values of t should lead a re-

jection of H; Hence the level of significance is chosen as

p = 2min{P(T 2 t[6 = §)), P(T <t|0= 0,))-
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A general method for selecting a test statistic is based on the likelihood ratio, defined for

the hypothesis HO: 0=00 as

£(X, X |8)
oK)= — LT
B(X,pee X, | 0)

where 2is the maximum likelihood estimator for 4. The observed value r(xl,...,xn) of the
likelihood ratio is a measure of the extent to which the given data set (xl,...,xn) supports
the null hypothesis, such that HO is rejected if r is small and accepted if r is close to its
maximum value r=1. For a given observed value r:r(xl,...,xn) of the likelihood ratio the

significance level p of the data is accordingly

The critical level ¢ is determined as
P(r(X,,..X ) <cld= 00) =a ,

where o is the level of the test. In many cases there exist a sufficient statistic

T:t(Xl,...,Xn) for the parameter 6, for which the likelihood function can be factorized as
(2.4) f(xpex [0) = h(x 5% )g(t]0),

where h does not depend on 6 and g only depend on the x's through t. The factorization

(2.4) implies that the conditional probability
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f(x)ex [t) = P{(Xex N.N(X =x )| T=t}

has the form

f(xl,...,xn|t) = h(xl,...,xn)/ ¥.X h(xl,...,xn),

which does not depend on 6. Hence T is a sufficient statistic for # if the observed value of
t contains all the information available in the data set about 6. It is easy to see that if T

is sufficient for 6, then the likelihood ratio can be written

&(T|6,)
(25) (X ,...,X ==
Tt T )

such that the likelihood ratio test statistic only depends on T.

In case the model depends on k real valued parameters 01,...,49]( a test can in most
cases not be based on simple calculations of levels of significance based on a sufficient
statistic. The principles behind the likelihood ratio test are, however, still applicable. If

all k parameter are specified under HO’ ie.

HO: 01=010,,..,0k = 0k0,
the level of significance for an observed value r=r( xl,...,xn) of the likelihood ratio is given
as

p="P(r(X ...,Xn) <rf 01=010,...,0k = 0k0)’

17

with the likelihood ratio defined as
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where 01""’01( are the ML—estimators for 01,...,0k. At level a, H0 is rejected for

r(xl,...,xn) <1
where r o8 the a—percentile of the distribution of r(Xl,...,Xn) under HO.

If all the parameters of a model are specified under HO, the hypothesis is called a
simple hypothesis. In many situations, however, only some of the components of

0=(01,...,0k) are specified under H, Suppose for example that the null hypothesis is

with Hr +1""’0k being unspecified. The likelihood ratio is then defined as

e B(X oo s X 189 sl yrresB))

r(X1 n ~
(X, X 10),.,0,)

where Hr +1”"’0k are the ML—estimators for 0r +1""’0k in a model where 01,...,0r have va-
lues 010,...,0r0, and 01,...,0 are the ML—estimators in a model, where all k parameters are
unconstrained. A hypothesis, where only some of the parameters of the model are speci-
fied, is called a composite hypothesis.

For the composite hypothesis

HO: 01:010,...,0r= 0r0, with 0r+1""’0k unconstrained,

the level of significance for r=r(x,,...,x ) is given by

p=P(r(X},...X ) <] 0,=0,,....0 =0 )

1
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The level of significance depends for a composite hypothesis on the unknown values
of 0r+1""’0k'
In other situations the parameters 01,...,0 are constrained through a common depen-
dency on k-t new parameters Ty Ty The hypothesis, to be tested, can then be
f, =h (0 )

(2.6)

0k = hk(Tl""’Tk—-r) ,

where hl""’hk are real valued functions of the 7's.

In this case the likelihood ratio is defined as

£(X, 10X | 0y50ns0)
H(X s X_[07000,)

A

A
for j=1,...,k and TpreeorTh, BT€ the ML—estimates for the 7's.

~ A A
where 0j=hj( TpoeeoT, -

k~r)

2.4. Checking the model

A model check is a procedure for evaluating to what extent the data supports the model.
The most direct way to check the model is by means of residuals. The residuals for

the model

f(xl,...,xnla), 0e®

are defined as

e, = x,—E[X;|f],

where 6 is the ML-estimate for 6. Residuals are usually scaled such that they are

measured in the same units relative to their standard error. The scaled residuals are de—
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fined as

r. = (x—E[X.| 9)/{varfe] .

They are called standardized residuals. A model check based on residuals consists of
making a residual plot of the standardized residuals. What the standardized residuals
should be plotted against depend on the model in question.

For categorical data, there are usually many x—values, which have identical values.
In this case the standardized residuals are derived as follows:

Suppose that Xl""’Xn are independent random variable, each of which can take one

of m possible values z z Let further . be the probability that Xi takes the value 2

P
and define the random variables Yl,...,Ym as

Yj = number of Xi’s equal to Z

Then (Yl,...,Ym) follows a multinomial distribution with parameters (n,7r1,...,7rm), ie.

(2.7) (3 oo | Ty ) = P(Y =y oY=y )

where the 7rj's depend on 4. The residuals based on the yj's are defined as

A

e =y - E[YJ.I 1rj(())] =y;~n 7rj(0).

The standardized residuals are
.= (yj-nwj(e))/J var[ej] ,

J

where var [ej] depends on the estimated 7rj's.
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The model is accepted as a description of the data based on a residual plot if the
residuals are small and does not exhibit a systematic patterns. A model check based on
residuals can be supplemented by a goodness of fit test.

If (Yl,...,Ym) indeed follows a multinomial distribution with parameters

(m,7,(6),...,x_(0)), it can be shown that the random variable

Q=3 (Yor(0)/(ar(6))

I 48

=1

is asymptotically X2——distributed with m—2 degrees of freedom.
The data obviously supports the model if the observed value q of Q is close to zero,
while large values of q indicate model departures. Hence the model is rejected as a

description of the data if the level of significance computed approximately as

p=P(Q2q) =P(x"(m-2) 2 q).
is large.
A test based on Q is called a goodness of fit test and Q is called the Pearson test sta-
tistic. If the given model depends on several real valued parameters 01,...,0k, the goodness

of fit statistics becomes

A A

Q = lé] (Yj—nwj(/él,...,€k))2/(n7rj(/él,...,¢9k)),

and the asymptotic x2—distributi0n has m—k—1 degrees of freedom. The precise assump-
tions for the asymptotic x2——distribution of Q and proofs for some important special cases
are given in chapter 3.4. The model (2.7), where the 7rj's depend on a parameter 4 is cal-
led the parametric multinomial distribution.

An alternative to the test statistic Q, is the transformed likelihood ratio test statis—
tic. It can be derived as a test statistic for a parametric hypothesis. Assume first that the

distribution of (Yl,...,Ym) is extended to all multinomial distributions of dimension m
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with no constraints on the wj‘s. Within this class of models consider the hypothesis
(2.8) HO: 1rj=7rj(01,...,0k), j=1,...,m.

Since Yj/n is the ML—estimate for . in an unconstrained multinomial distribution, the

likelihood ratio for H0 is

[v,.

(2.9) r(Yv""Ym) = 5 %

where 01,...,0 are the ML—estimates for the ()j's under the hypothesis.
The transformed likelihood ratio test statistic ~2Inr(Y1,...,Ym) is due to (2.9) equal

to

m A
—2lnr(Y1,...,Ym) = 2j§1len(Yj/(n7rj))

A A

with 7rj=7rj( 01,...,0k). The test statistics Q and ~21nr(Yl,...,Ym) are asymptotically equi-

valent in the sense that

P
|Q~(-2Inr(Y,...,Y ))| =0,

and Q and —2lnr(Y1,...,Ym) have the same asymptotic x2—distribution. It is a matter of
taste whether Q or —2Inr are preferred as a gooodness of fit test statistic. A general class
of power divergence statistics, which include Q and —2lnr was introduced by Cressie and
Read (1984).

The level of significance is defined as

p=PE(Y,....Y ) <r(ypeny )
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where r(yl,..,ym) is the observed value of r(Y Ym). Since Inx is a monotone function,

R,
the level of significance can also be computed as

p= P(—2lnr(Y1,...,Ym) > —2lnr(y1,...,ym)) .

To test a statistical hypothesis can just as well be described as checking a new model
against an already accepted model. Hence the words hypothesis and model are often syno-
nomous. As an illustration consider the multinomial model (2.7). If no constraints are
imposed on the rj's the model is called the saturated model.

Under the hypothesis (2.8), the likelihood is given by

n m yl ym
(2.10) L0 = [y ) Ty (O) (O™
J:
The likelihood function for the saturated model is
n y, ¥
(2.11) L(7r1,...,7rm) = [yl,...,ym] Toem m

A comparison of (2.10) and (2.11), shows that to test the parametric hypothesis

HO: 7rj=7rj(0) , j=1,...,m

is equivalent to compare the saturated model (2.11) and the parametric multinomial mo-
del (2.10).

In general to test the hypothesis

against the alternative
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is equivalent to comparing the model with likelihood L(()O), containing just one distribu-

tion, with the model with unconstrained likelihood L(6).



3. Statistical Inference

3.1. Loglinear models
The majority of interesting models for categorical data are log—linear models. A family of
log-linear models is often referred to as an exponential family.

Consider n independent, identically distributed discrete random variables Xl,...,Xn
with common point probability

(3.1) f(x|4,,....0,) = P(X.=x|0,;...,8,),

ey
which depend on k real valued parameters 01,...,0k. The model

n
)= i1211f(xi| 0,,--r0,)

(3.2) f(x, 50X _|0,,...,0

I ST
is then called a log—linear model or is said to form an exponential family, if the logarithm

of (3.1) has the functional form

m
(3.3) Inf(x|0,,....6,) = JE:’lgj(x)<;:j(01,...,()k)+h(x)—K(01,...,6?1{)
where 8 ¥y and h are all real valued functions of their arguments.The function K satis-

fies

(3.4) K(01,...,0k) = ln{Zexp(i_)gj(x)cpj(ﬂl,...,ﬂk)+h(x))},

X J

since Xf(x | 0

X
The dimension of the exponential family is the smallest integer m for which the

8 )=1.

representation (3.3) is possible. The dimension of an exponential family is less than the
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apparent dimension of the logarithmic form (3.3) if there are linear dependencies between

either the g's or the ¢'s. Suppose for example that
5
Inf(x|0,,....0,) = j.z—_;l gj(x)goj(01,...,0k)+h(x)——K(01,...,0k).
but that for all values of the #'s

(0,50 )+ +0,(0,..,8,) = 0.

Then Q=P =Py and we have

4 x

Inf(x| 0,,-,0,) = ‘21 gj(x)tpj(ﬂl,‘..,ﬂk)ﬁ-h(x)—K(01,...,0k)
J:

*
with gj(x)zgj(x)—g5(x) and the dimension m=4 rather than the apparent dimension
m=5.

Under the log-linear model (3.3), the logarithm of the point probability of XX

can be written as

m n
(3.5) Inf(x,,....x_| 0)5s8,) = jiltjrj + iElh(xi) —nK(ﬂl,...,ﬂk)

where

and

The parameters 7 weyT_ AT€ called the canonical parameters. The strategy for making

17
statistical inference based on log—linear models is to formulate the statistical problem

under consideration in terms of the canonical parameters, if at all possible. In case infer—
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ence is needed about the original parameters, the relevant results are derived from those
obtained for the canonical parameters.

Since the joint probability of the x's according to (3.4) and (3.5) has the multiplica-
tive form

f(x )% | 6)50,6,) = G(t

ety ..,tm;‘rl,...,rm)H(xl,...,xn),

1 1

the tj's form a set of sufficient statistics for the canonical parameters. This means that as
regards statistical inference concerning the 7's, we can restrict attention to the joint dis-

tribution of the sufficient statistics

The joint distribution of T,.T

(bt |0,08,) = P(T,=t .., T_=t )

1 1Y 1=t

can according to (3.5) be written as

where S(tl,...,tm) = {xl,...,xn|2i)gj(xi)=tj, j=1,...,m}.
Since K defined in (3.4) only depend on the #'s through the 7's, K can also be de-

fined as

K(rpnt ) = ln{Eexp(Z.)gj(x)rj + h(x))}.
x

Hence with
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the logarithm of f(tl,...,tml rl,...,'rm) has the log-linear form

m
(3.6) lnf(tl,...,tm|‘rl,...,rm) = 'E tjrj + hl(tl,..,t —nK(‘rl,...,Tm),

=1

Here and in the following K is used both when the arguments are 6,,...,6, and when the

arguments are 7 T .

T

The concept of an exponential family goes far back. At one point in time its disco-
very was attributed to four people Fisher, Darmois, Pitman and Koopman. As a tool for
making statistical inference, it was brought to prominence by Lehmann (1959) in his book
on testing statistical hypothesis. The exact conditions for the validity of the commonly
used statistical methods based on the likelihood function and a precise definition of the
concept of an exponential distribution is due to Barndorff-Nielsen (1978). In a parallel
development Haberman (1974b) gave rigorous proofs of the validity of a wide range of
statistical results for log—linear models applied to contingency table data.

In the following a number of results concerning estimators and statistical tests in
log-linear models are stated. These results are extensively used in contingency table
theory and other theories for categorical data. Not all results in this chapter are support-
ed by rigorous mathematical proofs, but in order to gain insight in the mathematical
structure of the likelihood equations, on which the ML—estimates are based, and the
structure of the asymptotic limits for the distributions of estimators and test statistics,
the results are proved for the case of one real valued canonical parameter 7.

The results are stated for the case, where the x's are independent and identically
distributed. Under certain extra conditions the results are also true for situations where
X,,-X  are not identically distributed, as long as the model reduces to the form (3.6) for

a set of m sufficient statistics. Assume thus that all the X.'s follow log-linear models

(3.3), but that the probability
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£(x]8,,....8,) = P(X.=x|0,,....0,)

depends on i. Then

m
Inf (x| 6,,...,6,) = 'Elgij(x)gojw eens ) (x)-K (0, ... 0, ).
j=

It is assumed that the canonical parameters are the same for all i. Equation (3.5) then

takes the form

m n n
lnf(xl,...,xnl [ ,...,0k) =3 tjrj + ‘E hi(xi)—‘E Ki(«9 ,...,Ok),
=1 i=1 i=1
where
n
= i§1 ;)

Equation (3.6) is, however, unchanged if hl(tl,...,tm) is defined as

h (t,,...,t )=In b)

P b
with S(tl,...,tm)={x1,...,x
IK.(0),--,0,)-

A discussion of estimation problems in exponential families with non—identically

(xi)=t., j=1,...,m}, and nK(rl,...,rm) is defined as

|26 ;

n' 7o)

distributed random variables was given by Nordberg (1980).

3.2. The one—dimensional case

For m=1 the log-linear model (3.5) has the form
Inf(x,,...x ) = t(xl,...,xn)go(ﬂ)+h(x1,...,xn)—nK(0)

while (3.6) has the form



(3.7 Inf(t|7) =t7 + hl(t) —nK(7).
Here r=(6) is the canonical parameter and t=t(x1,...,xn) the sufficient statistic for 7.

Theorem 3.1
The likelihood equation

(3.8) dlnfrgt T) _ 0

for a log-linear model (3.7) is equivalent to
E[T|7] =t,
and to
nK'(7) = t.
Proof

For m=1, K(71) = Il—lln{Eexp(tr+h1(t))}. Hence
t

nK(7) t7+h, (t)
(3.9) e = Xe ,
t

and it follows by differentiation that
(3.10) nK'(7)e = Xte

Dividing by enK(T) on both sides in (3.10) and using that

t7+h,(t)
flt|r)=e | &K

then yields
nK'(7) = E[T|7].
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Since, however, according to (3.7)

dlnfrgtl T) =t —nK'(T),

the theorem follows. [ ].

In case the ML—estimator is a solution to the likelihood equation, it can thus be found by
simply equating the observed value of the sufficient statistic and its mean value. Theorem
3.1 can be sharpend, if two important concepts for log—linear models are introduced, the
domain and the support. The domain or the natural parameter space, D, is defined as the

subset of the range space of 7 for which

t7+h,(t)
(3.11) e <
t

Since the domain is defined through condition (3.11), it can be a smaller set or a larger
set than the parameter space for 7 defined as

{r]|7="7(0), feo}.
It can be shown that the domain D is always an interval and that the function K(7) is
infinitely often differentiable with finite derivatives for 7 in the interior of D.

The support T of the log-linear model (3.7) is the set of all t—values with positive

probability i.e.

T,= {t|f(t|7) > 0}.

According to theorem 3.1 the ML—estimate is found from the equation
(3.12) nK'(7) =t

in regular cases. From (3.10) follows
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2K (K () 4 n2(x (7)) 20K () gz T

Hence the second derivative K"(7) of K satisfies
(3.13) nK"(7) = var[T| 7],

since nK'(7)=E[T|7]. From (3.13) follows that K'(7) is an increasing function and (3.12)
has at most one solution 7, if var [T|7]>0 for all 7. The next theorem shows an even
stronger result, namely that the likelihood equation has a unique solution if t is in the

interior of the smallest interval covering the support TO'

Theorem 3.2

If the domain D is an open interval, there exist a unique solution 7 to the likelihood equa-
tion

t = E[T]|7],

for each value of t in the interior of the smallest interval covering the support To’ The

solution 7 is the ML—estimate.

Proof
Let K and K be the upper and lower limits of nK'(7) as  ranges from the upper to the
lower limit of the domain. Let in addition t and ¢ be the upper and lower limits of the

support. From the inequality

tr+h, (t) trthy (8)
Ye =t

t

nK'(7) = ¢ K (Tpie < fe 2K (7)
t

when t<w, then follows that K<f. A similar argument shows that K > t.



33

Suppose now that K<t, such that K<+ and that there exists a K with K<K<t. If
K<, the domain D must have +w as its upper limit, since 7<7 for all 7€D would entail

that K(7)-o as 7w as can be seen from the equality

and the definition of the domain. But if K(7)-w for 7-7(w then also K'(7)-wo. Thus a finite
upper limit for nK'(t) can only happen for 7=+w.

Consider now the inequality

K-nK'(r) = e*'nK(T)E(K_t)e”*hl(t) _ K1K(1)g, (K_t)e(t—K)th(t)
t t
< oTK-1K(7) 5 (K—t)ehl(t)
t<K

The last term is positive and independent of 7. Hence K=K if it can be proved that

eTK—nK( 7) -0 as T w.

This convergence follows from the inequality

JIK(T) 7K _ o (t-K)+h,(t) 5 er(t~K)+h1(t)>eeT . ehl(t),

t t>2K—€ t>K—€

v

the right hand side of which tends to infinity as 7-w. Since K=K for all K satisfying
K(K(t, it follows that K=t and the theorem is proved. [_].
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Example 3.1
In order to illustrate the concept of a log-linear model and the use of theorems 3.1 and

3.2 consider n binary variables Xl""’xn with

9 for x=1
1-6 for x=0

P(X,=x) = {
The probability f(x| 0)=P(Xi=x) can then be written

f(x|8) = £(1-0)",

such that
Inf(x| 4) = xln& + In(1-6).

The model is thus log-linear of the form (3.3) with m=1, g, (x)=x,

0,(0) = Il

h(x)=0 and K(6)=-In(1-6). The canonical parameter is accordingly

T=lnm .

For n independent observations x X, t=2)x.l is the sufficient statistic for 7. Since the

P
conditions for the binomial distribution are satisfied, T is binomially distributed, i.e.

P(T=t) =(}) ¢ (1-6)""".
The log-linear expression (3.7) for the probability distribution of T is thus given by
Inf(t|7) = t7 + In(}) — nK(7)

with
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K(7) = In(14e"),
since (1-6)=1/(1+e”).

It then follows from theorem 3.1, that the likelihood equation is equivalent with
(3.14) ne’/(14+e”) = t.

The solution to (3.14) is
or since f=e’ /(1+e")

This last result can, however, be derived directly from the likelihood equation

t = E[T| 6] = né.
In this case the likelihood equation can be solved directly yielding an explicit expression
for /; It is instructive, however, to derive the domain and the support for the binomial

model. The domain consist of all values 7 for which

£ (M <
t=0

which is all 7—values, since the sum is finite. Being the complete real line, the domain is
an open interval and it follows from theorem 3.2 that the ML—estimate is a unique solu-
tion to (3.12) for all values of t in the interior of the smallest interval containing the sup-
port. The support is the set

{0,1,...,n},

such that (3.12) has a solution for all values of t (integers or non—integers) in the open
interval (0,n). Surprisingly t=0 and t=n are not included in spite of the fact that é can be

estimated also for these extreme values. These values correspond, however, to 7 equal to
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+o Or —w in (3.12), which are not proper values of the canonical parameter. It is thus im-

portant that theorem 3.2 is formulated in terms of the canonical parameters. .

It may seem a complicated way to derive ML—estimates to take the detour of intro-
ducing log-linear models, domains, supports, etc. But the fact that the ML—estimator can
be derived from a simple mean value equation and that precise rules for the solvability of
this equation can be formulated, simplifies the treatment of more complex models with
many parameters. In addition it is possible to derive strong results concerning the asymp-
totic distribution of ML—estimators and of goodness of fit test statistics if attention is
restricted to log—linear models. These results are important in the many cases, where the

likelihood equations do not yield explicit solutions.

Theorem 3.3.

If 7 is in the domain, then the ML—estimator ; converge in probability to 7 as n-w and

? is asymptotically normally distributed with asymptotic mean value 7 and asymptotic
variance L(K"(r)) ™, i.e.

P{E{R™(7)(7-7) < u) +¢(u) for n-r.

for all ueR, where ¢ is the cumulative distribution function for the normal distribution.

Proof

Since T/n =

=2
I M=

g(X.)
1

is an averaged of n independent random variables, the law of large numbers yields

(i) T/n 5 Blg(X))] = K'(7)
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and the central limit theorem yields

(i) T/n & N(K'(7), K"(r)/n)
according to (3.13).

From (i) and (3.12) follows that

But since K'(7) is continuous and monotonely increasing it can then be concluded that
T E T, aS NI 0.
If K'(7) is expanded in a Taylor series, one further gets

t/n-K'() = t/n-K'(7) — (+-T)K"(r*)

A A A A
with | 7*—7| < |7—7|. Since t=nK'(7) this means that 7—r has the same distribution as

(t/n—K'(7))/K"(r"). The result (ii) then implies
{a(r-n)K" () /{K"(7) & N(0,1).
But /7\' B 7 implies that 7* E 7, and since K" is continuous, it follows that
[5(r-n){E™7) & N(0,1).
and the theorem is proved. [ _].

Results similar to theorem 3.3 can be proved for models, which are not log-linear,
but then more complicated conditions on the properties of the log-likelihood function are

needed.
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There are two immediate applications of theorem 3.3. Firstly a confidence interval

with approximate confidence level 1—« can be derived from the equation

P(-uy_gp < AIRTTI(-1) <1y, ol =10

which is approximately valid for large values of n. The interval

[?-ul_a ol [rnl K"(7) ] T [rnl K"(7) ”

is accordingly an approximate 1—q« confidence interval for 7.
Consider, secondly, the hypothesis
HO: T=T,
against the alternative

le T#TO .
If the critical region is chosen as a set, where ]r—ro| is large, the level of signifi-

cance is according to theorem 3.3 approximately

(3.15) p=P(|U] > {T {KT7)| 77, )

where U~N(0,1) and 7 is the observed value of the ML—estimator. The critical region for a

test with approximate level a is

{t| |-, 2 ul_a/2/¢nK' (r)}-

For a log-linear model the likelihood ratio only depends on the sufficient statistic T for
the canonical parameter. The logarithm to the likelihood ratio, or the log—likelihood ratio

is according to (3.6) and (2.5) given by
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veX_) = Inf(T| 7)-Inf(T | 7) = Tr, — nK(r,) — T7 + nK(7)

1 n

Inr(X
or

(3.16) Int(T) = T(ry~7) - n(K(r,) ~ K(7))

The following theorem shows that the level of significance for a likelihood ratio test can

be approximated by a percentile in a X2—distribution.

Theorem 3.4.
If Xl,...,Xn are independent, identically distributed random variables with a log—linear
model (3.3) then the transformed likelihood ratio test statistic —2Inr(T) and

nK"(r )( ) has under Hthe same asymptotic distribution namely

Proof.
From (3.16) and a Taylor—expansion of K(TO) around 7 follows that

=2lnr(T) = QT(;—TO)—FQDK'(;’)(TO——/7\')+IIK"(T*)(TO—;\‘)Q = nI("(T*)(/;——TO)2

where |r*~rl < |r —7|, since T=nK'(7) when 7 is the ML—estimator. According to theo-
rem3.3 7 5 7, and VoyK"(r i (r—1 ~N (0,1)under H, such that

“2lnr(T) ~ x*(1). ]

If the X's are non—identically distributed, theorem 3.4 is true when the model for each X,

is log-linear and the sufficient statistics for 7 is T=Egi(Xi).
1

Since the hypothesis H0:7'=7' is rejected for small values of the likelihood ratio, the

0
level of significance for H0 is according to theorem 3.4 computed approximately as

p = P(Q 2 2lnr(t)),
where Q~x2(1).
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It further follows from theorem 3.4 that the test with approximate level of signifi-
cance (3.15), based on the asymptotic distribution of the ML—estimate is equivalent with

the transformed log—likelihood ratio test.

Example 3.2:
Consider n independent Poisson distributed random variables Xl""’Xn with common
parameter A, i.e.
M-
P(XI=X) = xT e .
This model is log—linear with canonical parameter r=In\ and sufficient statistic T=2Xi,

since

Inf(x| A) = xlnA-Inx!-A.

Since further K(7)=A=e", the ML—estimate is given as the unique solution to
Tx, = E[T] = ne’,

i.e. 7=InX.

Note that A=0 with 7=—w is a boundary point of the domain and that x=0, or
x1=...=xn=0, correspondingly a boundary point for the support.

For the hypothesis

H: A=A
or
HO: T:rozln/\o,

the transformed log—likelihood ratio is according to (3.16) given by
~2lnr(t) = 2n§(—1n/\0+lnﬂ+2n(/\0—@.

According to theorem 3.4, —2Inr(t) & x2(1), such that the level of significance is given

approximately as
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p = P(Q > 2nx(Inx — ln/\o)-Qn(i-/\o))

where Q~x2(1). A

If the model is parameterized by the original parameter 6 rather than the canonical
parameter 7, the results contained in theorems 3.1 to 3.4 are true in almost identical ver-
sions provided the function

= ¢(0)
is strictly monotone in the domain D. Without proof, we state briefly the equivalents of

theorems 3.1 to 3.3.

Theorem 3.1A
The likelihood equation
dlnf(xl, ...,xn| 6) o
is equivalent to
E[T|f =t

or to
nK'(0)/¢'(6) = t,
where K(8)=K(¢(0)).
Let D j={0| 7=¢(6) €D} be the domain of f.

Theorem 3.2A
IfD 9 is an open interval, then there exist a unique solution 0 to the likelihood equation

t = E[T| 4

for each value of t in the interior of the smallest interval covering the support TO. The

solution 4 is the ML—estimate.
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Theorem 3.3A
If 4 is in the domain D P then the ML—estimator 3 converge in probability to # as n-w and

9~ N(6,6%(6)/n),
where

a%(6) = [K"(9) = K'(9)¢"(8)/ ¢ (9)] .

The variance of @ in theorem 3.3A is derived by using the rules of differentiation to K"(7)
in theorem 3.3 as follows:
A Taylor expansion of ;= go(/é) yields
7= r+(0-09'(O)+... ,

such that var [;] can be approximated by
var[;] ~ (<p'(0))2var[5].
Hence

var[8] = var[7]/(¢'(6))2.

Accordingly to theorem 3.3, however, var[/;]:(n(K"(r))_l. Implicit differentiation of K(6)

now yields
K'(6) = K'(1)¢'(0)
and
K"(6) = K"()(¢'(8))*+K'(1)¢"'(0).
Hence

var(8) = ' [K"(0) - K8 (07,

which is the result stated in theorem 3.3A.
Theorem 3.4 is valid also if the parameterization is in terms of a strictly monotone
transformation 0=<p_1(r) of the canonical parameter. In this case the likelihood ratio is

defined as
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where /é is the maximum likelihood estimate of 4.

3.3. The multi—dimensional case

Consider the log-linear model (3.6) with canonical parameters 7.,...,7 ~and sufficient

P
statistics
n
Tj =X g.(Xi), j=1,...m,

i=1 9

in the i.i.d (independent identically distributed) case and

in the non—i.i.d. case,

The analogue to theorem 3.1 is then

Theorem 3.5.
The likelihood equations

are equivalent to
E[TJ.| rl,...,rm] = tj, j=1,...,m
or

n@K(rl,...,rm)/ﬁrj = tj, j=1,....m.

In the multi—dimensional case, the domain is defined by
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(3.17) D= {rl,...,rm|% ...%exp(?thj-’rh(tl,...,tm))(+oo}.

ot
It can be proved that D is a convex set, i.e. if two points in R™ are both in D, then the
complete line connecting the two points is also in D. A typical convex domain is shown in

fig. 3.1.
ta

t

Figur 3.1. The domain for the canonical parameters in a two—dimensional log-linear
model.

The support T0 of the log-linear model is the subset of vectors (tl,...,tm)ERm for
which

f(t, ot |7,y ) > 0.

1 m'"'1’ m
It can be shown that the support does not depend on the values of the 7's.

The function K(Tl,...,Tm) is the key to a study of the properties of the ML—estima-
tors for Ty T From theorem 3.5 follows that the mean values of the Tj's are equal to
the partial derivatives of K, apart from the factor n, and that the likelihood equations are

obtained by equating these derivatives with the observed values of the sufficient statis-

tics. In addition (3.13) generalizes to

n321<(7'1,...,rm)/3rj2 = var[TJ.]

and
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n@zK(Tl,...,Tm)/(ﬁrj,arl) = cov(T,,T,).
The equivalent of theorem 3.2 is

Theorem 3.6:
If the domain D is an open set, then there exist a unique set of solutions Ty T, 10 the

likelihood equations
(3.18) tj = E[Tj| Tl,...,Tm], j=1,...,m,

whenever (t,...,tm) is an interior point in the smallest convex set enclosing the support.

The solutions are the ML—estimators for T T

Theorem 3.3 generalizes as follows

Theorem 3.7:

If T:(rl,...,rm) is in the domain, then the ML—estimator converge in probability to 7 as
- and
~ \a 1
n(r-7)~ Nm(O,M_ ),
where M is an m—dimensional square matrix with elements
M7 T, ) = 32K(Tl,...,rm)/((9'rj8'r€).
This implies that

In the multi—dimensional case the log—likelihood ratio for testing

HO: T =710 T =Tmo
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against an alternative where the 7's are unconstrained is given by

Inr(T,,...,T )

Theorem 3.8:
The transformed likelihood ratio test statistic

Z = 2lnr(T,,...,T )

1 m

for the hypothesis

has asymptotic distribution

if (r1 0,...,rm0) is a point in the interior of the domain.

The result in theorem 3.8 is extremely useful because the likelihood ratio test statis-

tic or simple transformations thereof only in rare situations has a known distribution.

Example 3.3.

Let Xl,...,Xk be multinomially distributed with parameters n and ORI ie.

X X

n 1
.xk)p1 Py

k
f(xl,...,xk|pl,...,pk) = (Xl" .

Then

k—1
Inf(x,-...%, |P-eiPy) = jEllen(pj/pk)+nlnpk+ln(x1.I.l.xk)

and the model is log—linear with canonical parameters
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7. = Inp.—In ji=1,....,k—
i 1 pJ pk, ] geees 1
and sufficient statistics

T.=X, j=l,..k-1.
J J

The log-linear model is thus of dimension m=k-1, and the ML—estimates are given by

the equations

X, = E[Xj] = np;, j=1,....k-1.

The ML—estimates pj:xj/n for the original parameters are thus found directly. For the

canonical parameters the ML—estimates are
T = ln(xj/n)—ln(xk/n) = ln(xj/xk).

Consider now the hypothesis

Hy: Py =Py g Py =Py
In terms of the canonical parameters, H0 has the form
HO: T = 1npj0—lnpk0, j=1,....k-1.

Since p.=x./n., the log—likelihood ratio
A &

k

X)) = jzl xj(lnpjo—ln(xj/n))

lnr(x1

such that the transformed likelihood ratio is given by

k
—21nr(x1,...,xk) = jSllxj(lnxj—ln(npjo)).
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According to theorem 3.8 this test statistic follows approximately a xz—distribution with
k-1 of freedom, provided rj0=lnpj0—lnpk0, j=1,..k—1 is in the interior of the domain for
the canonical parameters.

The sum in the definition (3.17) of the domain for the present model is finite. Hence
the domain consist of all values of ToenTy g in R, In terms of the pj's only vectors
(pl,...,pk) for which at least one pj=0 are thus excluded. This means that the approxima-
tion to a limiting X2—distribution is valid if none of the values D, Pyq are zero. It is
essential that the true dimensionality m=k-1 of the log-linear model is established. For
the present example the only linear ties between observations or parameters are

n= xl+...+xk
and
1= p,t...+p,.
Both these are accounted for when the canonical parameters are chosen as

.= Inp-l
7;= Inp-inp,

for all j.
Notice also in this example that the canonical parameters are only unique up to a
k
constant. Thus also rj=lnpj—llz b)) lnpj could have been used. A.
=1
Example 3.4.

As an example, where the support of the log-linear model is non— trivial and the condi-
tions for existence of finite solutions to the likelihood equations accordingly also non—tri-
vial, consider a simple example of the logistic regression model, which we return to in

chapter 9. Let Xl""’Xn be binary variables with point probabilities

D, for x=1
P(X;=x) = 1-p, for x=0
and
B.,+8.z. B +8.z.
p.___eO 11/(1+e0 11)

1

or
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P;
In 1—-pi - ﬂO Al ﬂlzi’

where z - have known values.

17
This is called a logistic regression model for binary variables, because the linear

expression is in terms of a logistic transformation of the probabilities. The model is

log-linear, since for x=1 and 0, lnfi(x|ﬂ0,ﬁ1) can be written as

Bythiz,
Inf.(x| 8,,8,) = xInp,+(1-x)In(1-p,) = xf+2xB -In(1+e ).

It is thus a case of non—identically distributed random variables. The canonical par-

ameters are rlzﬂo and 72=ﬂ1, and the corresponding sufficient statistics

T, =%X, T,= zi:zixi

1

Since

P(X.=1) = <eﬁ°+ﬂlzi/(1+eﬂ"+ﬁ1Zi

1

)’

the likelihood equations are according to theorem 3.5

+0,z, N eﬂ0+ﬂlzi

)

ﬂO
t, = B[ZX] = De /Q

and
Bythyz,
t, = E[XilziXi] = Zzie /(1

1

B.+8.z.
+e0 171

).

These equations do not have explicit solutions and must be solved by numerical methods.
Hence it is of interest to determine for which observed values of t and t, there are

solutions. According to theorem 3.6 the likelihood equations have a unique set of solu—
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tions, if (tl’t'2) is an interior point of the convex extension of the support. In this case it is
easy to derive the support. If, namely, t1=i, it follows that exactly i of the binary vari—

ables have the value 1. Hence if z <...&z, . are the z's in order of magnitude, the

<z
=72
minimum and maximum values of t, are

(m)

<z

) $ta S Ziqytote

+..4+z

1) (n)’

It is further easy to see that the set obtained by connecting the 2n points {0,0},

{i, Z(1)+"'+Z },i=1,...,n

(1)
and

{i, Z(n—i+1)+"'+z(n)}’ i=1,...,n—1

is a convex set. Hence the likelihood equations have solutions if (tl,t2) does not coincide
with any of the 2n boundary points. For the case n=10 and z=i, i=1,...,10 the convex
extension of the support is shown in fig. 3.2.

60 4
50 A
40 4
30 A

20J

10

o..

I T il

0 s 10
Fig. 3.2. The convex extension of the support for a logistic regression model with n=10
and z.=i.
1
Thus if t1=4, there are only solutions to the likelihood equations if to is larger than 10

and less than 34. If t2=10, we are in a situation where x1=x2=x3=x4=1 and
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Ky =Xg=Xy=Xg=Xy

the estimation procedure would converge to an infinite value of either ﬂo or ,61. On the

=x10=0, and if one tries to solve the likelihood equations in this case,

other hand for x1=x2=x3=x5=1 and x4=x6=x7=x8=x9=x10=0, such that t2=11, there

are no problems with solving the likelihood equations. a,.

Example 3.5.
Consider a two—way contingency table with I rows and J columns, and observed count X;
in row i and column j. Assume further that the counts are independent and Poisson dis-

tributed with parameters ,\1 1,...,/\1_]. The distribution of the observed counts is then

f(x

X.. ..
_ -1 1j ij
11,...,xIJ{/\11,...,/\”) = IiIIjI[(xij!) ’\ij e ).

The model is log—linear, since

) — ]
Inf(x) e X [ Ay e Ayg) = ZI)ZJ)x ln/\] A le?ln(xj)
with sufficient statistics Xg X and canonical parameters rijzln/\ij, i=1,....1, j=1,...,J.

The likelihood equations are a,ccordmgly

x.=E[X.]= A, i=l,.], j=1,..,]

and the ML—estimates become

=S D

i~ My
The likelihood ratio for the hypothesis

. _ 0 _ 0
HO' /\ /\11’ o /\IJ

become

(X roenXyy) = HH[/\O)”/X ‘J]exp(zzJ( —/\0))
ij
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since )‘ij=xij' Hence the transformed log-likelihood ratio is

—2lnr(x

X,.
= ij 0_
1) = 2§?xijln(—6_)+2’\.. 2

ij
which under H0 is approximately x2—distributed with IJ degrees of freedom. If it is as-
sumed that, A0 =x , then

0
—2lnr(x = 22:?xij(lnxij—ln,\ ij). A

11,...,XIJ)
Theorems 3.5 to 3.7 can be formulated in terms of the original parameters of the
model, if the concept of identifiability for a log—linear model is introduced. Model (3.3) is

identifiable in terms of the parameters 4,,...,0 ,...,0, are functions of @.,...,0 and
1 m k 1 m

if 6’m+1
the equations

have a unique set of solutions

and in addition, 32<pj( 01,...,0k) / 00q80p is uniformly bounded for all j, p and q less than or

equal to m in any closed subset of D o where

Dp= {01,‘..,0 |Tj=<pj(01,...,0k)ED, j=1,...,m},
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and D is the domain. Since D g maps onto D under the transformation <,o’1, it follows

that D 9 is open if and only if D is open. Theorems 3.5 to 3.7 now generalize as follows:

Theorem 3.5A.
If the log—linear model (3.3) is identifiable in terms of 01,...,0m the likelihood equations

3lnf(xl,...,xn|01,...,0k)/30j=0, j=1,...,m

are equivalent to
(3.19) tj = E[leel,...,ak]. j=1,...,m

Note that there are only m equations in (3.19). In fact the k—m last 6's are functions

of 01,...,0 when the model is identifiable in 4.,...,0 and it is sufficient to ﬁnd/é yeeen .
m 1 m 1 m

Theorem 3.6A:
If the domain D 4 for the log-linear model (3.3) is open, then there exist a unique set of

solutions «91,...,0k to the likelihood equations whenever (tl,...,t is in the interior of the

m)
smallest convex set enclosing the support. The solutions are the ML—estimates for
01""’0k‘

Note that DB is not necessarily the original parameter set O.

Theorem 3.7A:
If the model (3.3) is identifiable in terms of §=(f,,...,6 ) and (6,,...,6,) is in the domain

D, then the ML—estimates 0=(91,...,0m) converge in probability to the true values for

-0 and

(-0 &N_(oM™),

where the square matrix M has elements
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OK(0,,...0) v (6,,..6)
_ _ k q' 1’7777k
mj[_fx(al,...,ok)/aajaat, fi: A X}

and LA are the elements of the inverse to the matrix with elements 3<,9j(01,...,0k) / 300

jt=1,...,m.

Theorem 3.8A:
The transformed likelihood ratio test statistic

Z = -2Inr(T.,...,T )

' 'm

for the hypothesis
H:6=60_ j=1,.k
i

has asymptotic distribution

Z ~ x*(m)

if the loglinear model is identifiable in terms of 01,...,0m and (010,...,0k0) is an interior

point of the domain D P

Theorems 3.5A, 3.6A and 3.8A are formulated in terms of all k #'s even though the
dimension of the log—linear model is m. As mentioned above the last k—m §'s are redun-
dant, since indentifiability of the model in terms of 01,...,0 means that 6  ,....0 are

m m+1 k
functions of 05,0 - As an example of this consider the multinomial distribution, with

0j=pj and rj=lnpj—lnpk, j=L1,...,k=1. Then the likelihood equations are

(3.20) X, = np,, j=1,....k-1

A
with solutions pj=xj/n, j=1,....,k since
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N k—1A k—1 / /
p=1-Yp.=1-Y¥x/n=x/n
ST F A
In practice the equation system (3.20) is extended to k equations by adding X, =P, ,
which is automatically true if the equations (3.20) are satisfied, although the model is

identifiable in terms of PysePp_y-

3.4. Testing composite hypotheses

Consider first the composite hypothesis
(3.21) H:r =1

where 1 of the m canonical parameters have given values and the remaining m-r canonical

parameters are unspecified under the hypothesis.

Under H0 the model is still log—linear with canonical parameters Ter1 and suf-
ficient statistics T | .,...,T since from (3.6)
r+1 m
m r
(3.22) lnf(tl,...,tml Tm,...,TrO,Tl_+l,...,Tm) = j_Zr)+1thj+h1(t1,...,tm) + jiltjrjo

—HK(TIO,...,TrO,Tr+1,...,Tm).

The likelihood equations for a ML—estimation of T Ty, are accordingly

+1

(3.23) t, = E[T,7

; .,Tm], j=r+1,...,m.

1(),...,TI_O, Tr+1,..

Let the solutions to (3.23) be T 7 - Conditions for a unique solution of (3.23) follow

FRTRE)

from theorem 3.6, with only Tl Tm being the canonical parameters of the log—linear

1

TIO""’TrO’Tr-H""’Tm) is in the domain D for the model (3.6),. then

7, 18 in the domain D for the model (3.22). It is also easy to see that if

model. In fact if (

T
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(tl,...,tr,tr +1’""tm) is point in the support for the model (3.6), then (tr +1,...,1:m) is also a
point in the support for the model (3.22). Hence equations (3.23) have a set of unique
solutions if equations (3.18) have a set of unique solutions.

For the composite hypothesis (3.21) the likelihood ratio test statistic is given by

f(tl,...,tm| T .,rro,i'r+1,...,7'm)

ft,, ...,tmlrl,...,rm)

(3.24) Kbyt ) =

In many instances the parameters specified under the hypothesis is not a subset of
the canonical parameters, but rather a subset of the original parameters 01,...,0k. In other
cases the hypothesis specify certain dependencies between the original parameters or the
canonical parameters. In order to derive the asymptotic distribution of the transformed
likelihood ratio test statistic in such cases, it is necessary to establish an equivalence
between the hypothesis under consideration and a hypothesis of the form (3.21).

Consider first a hypothesis where a set of r dependencies between the canonical par-

ameters is specified, e.g.

(3.25) H,: {7/)1(71,---1Tm) =%

BT pnT) = g

where z/)l,...,zpr are continuous functions. The number of parameters specified under (3.25)
is r, if there exists a parameterization g{)l,...,wm with wl,...,gbr given by the left hand sides

in (3.25) and m-r continuous functions

Y (T, T )=
(3.26) H: { PHIVLIT T el

1/:m( ‘rl,...,rm) = wm
such that wl,...,zl)m are identifiable in the log-linear model.

The log-likelihood ratio for (3.25) is given by
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£t et T peensT )

_ m
(3.27) r(tl,. b)) = o l; ~ ) ,
Pt [ T T
where ?1,...,?m are the values of T T that maximize the likelihood function under the

constraints (3.25).
Assume secondly that the log—linear model is identifiable in terms of m of the origin-

al parameters 01,...,0k, for example 01,...,0m. Consider then the hypothesis

(3.28) H:

Under (3.28) the likelihood ratio is given by

0 0 ...

f(xl,...,xn|0 LTS k)

107

(3.29) (X, ...

A

F(xpyer |00 6)

A

where 0r +1"“’0k are the ML—estimates under the constraints (3.28) and 01”"’01( the un-
constrained ML—estimates.
Assume finally that the model is identifiable in terms of 01,...,0m and H0 specifies r

constraints between the identifiable parameters, i.e.

¥y =(0p0) = ¥y
(3.30) Hi: 4:
0 1/)r=(01, "’0m) = er

(3.31) I(XppeX ) =
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where 01,...,0k are the ML—estimates under the constraints (3.30), and 01,...,0k the un-
constrained ML—estimates. Note that the constraints only concern the identifiable par-

ameters 6.,...,0 , but since the remaining parameters, .....,6_ are functions of
1 m k

m+1
01,...,0m the constraints (3.30) also apply to 0m+1""’0k'

We can collect all four cases, by saying that the parameters satisfy exactly r cons-
traints if one of the hypotheses (3.21), (3.25), (3.28) or (3.30) holds under the given condi-

tions. With this terminology, we have

Theorem 3.9
For a composite hypothesis, with exactly r constraints on the parameters, the transformed

likelihood ratio test statistic has limiting distribution
(3.32) —2Inr(T,,...,T

The limiting distribution for —2Inr is thus a xz—distribution both when all canonical par-
ameters are specified and under a composite hypothesis with r constraints on the par-
ameters. The number of degrees of freedom are in both cases the number of parameters
specified under the hypothesis.

In most cases composite hypotheses are formulated in terms of the original par-
ameters as in (3.28) or (3.30). The role of the canonical parameters and the subset of i-
dentifiable parameters is then to determine the correct number of constraints between the
parameters. If e.g. two of the equations in (3.30) are linearly dependent, then a set of m—r
parameters 1,/)]r +1,...,z/1k does not exist for which the model is identifiable in terms of
z/;l,...,wm, and theorem 3.9 does not hold. Thus all linear dependencies between the equa—
tions in (3.30) must be accounted for in order to determine the degrees of freedom for the

limiting Xz—distribution.

Example 3.6.

Table 3.1 show the traffic accidents in Denmark in 1981 involving pedestrians distributed
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according to the week day on which the accident happend.

Table 3.1. Traffic accidents in Denmark in 1981 involving pedestrians distribu—
ted over weeks days.

Week Number of Expected numbers
day accidents H0 H1
Monday 279 248.43 279.8
Tuesday 256 248.43 279.8
Wednesday 230 248.43 279.8
Thursday 304 248.43 279.8
Friday 330 248.43 279.8
Saturday 210 248.43 170.0
Sunday 130 248.43 170.0
Totals 1739 1739.01 1739.0

Source: Road traffic accidents. Publication 1982:8
Statistics Denmark. Table 5.3.

As a model for the data assume that all accidents happen independent of each other
and that, given a particular week day, the number of accidents follow a Poisson distribu-~

tion. Let Xl,...,X7 be the daily number of accidents. Then for day j

X. -A.

X.Je !

P(X.=x,) = -4
( ) XJ) Xj~

and Xl,...,X7 are independent. Hence the log-likelihood of X, yeeei X, CAD be written

7 7 7
AjpeenA,) = L xInA -3 Inx -3 A..
7 PP R I boa_q )

Inf(x_,....x, |
reotri e i=1 i1 =1

It follows that the model is log—linear with canonical parameters rj=ln/\j, j=1,...,7 and

sufficient statistics x --X7. The ML—estimates for the /\j's are given as solutions to

1

x. = E[X] = A.
J J J

or simply as ’\j:Xj'
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Consider now the hypothesis
H: ,\1=...=/\7=,\,
to the effect that the expected number of accidents is independent of week day. Since the

model is identifiable in terms of the /\j's, Hyisa hypothesis of the type (3.30) with

There are thus exactly 6 constraints. Theorem 3.9 then applies since the model is
. . . L L _ ,
identifiable in terms of wl—/\l /\7,...,1/)6—/\6 /\7 and 1,[)7—-/\7. If all A's are equal the

log—likelihood function becomes

7 7
| AyeesA) = InA £ x— ¥ Inx -7A

lnf(xl,...,x
=17 j=1

7

and the likelihood equation for the estimation of A is

with solution /\=2xj/ 7. The likelihood ratio then with x =§Jxj becomes

{ES )

i) = —
H[ije J/xj!]

such that

_ X
2lnr = 22j3xj[lnxj Inz] .

According to theorem 3.9, —21nr~x2(6) and we reject H, if the observed value of —2lnr is
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large. The expected numbers x./7 under H,, are shown as column 2 in table 3.1. The value
of —2Inr computed from table 3.1 is —2Inr=115.56, which is clearly significant. Consider
next the hypothesis that the expected number of accidents is the same for Monday to Fri-

day, and the same for Saturday and Sunday. Formally this is the hypothesis

! 5
Hl'
Ae=A7
Written on the form (3.30) we have
A=A =0
A=A =0
Ag—A,=0.

Since the model is identifiable in terms of ¢1=/\1—/\5, w2=A2—A5, ¢3 ,\3 5 ¢4 . 5,
wszx\ﬁ-/\r 1/)6=A5 and w7=,\7, theorem 3.9 applies to H, with r=>5. Under Hl, the log—li-
kelihood ratio is given by

7

Inf(x |/\ ALALALALA ,/\) ln/\ Zx+ln,\ Y x~ 21nx'—5,\ —2,\
LA LA LS R L2 26 jo1

Hence the ML—estimates for ’\1 and /\6 are obtained from

E X. = 5/\
=1
and
XgtX, = 2/\6
with solutions
~ 5
A=1% xj/5

j=1
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and

A = (xg+x,)/2.

The transformed likelihood ratio becomes

7 ~
z==2lnr(x,,...x,) = 2j§1xj[lnxj—ln/\j].

According to theorem 3.9, z is approximately X2—distributed with 5 degrees of freedom.

The values of A are shown in column 3 of table 3.1. With these values —2Inr is computed
to 41.8. The corresponding level of significance P(Q>41.8) is less than 0.0005 when
Q~x2(5). Neither H0 nor H1 can thus be accepted for the data in table 3.1 and it seems

that a more complex model is needed to describe the data. A.

3.5. The parametric multinomial distribution
Many discrete statistical models are based on the multinomial distribution. When, as in
section 2.4, the cell probabilities depend on one or more parameters, the distribution is
called a parametric multinomial distribution.

The multinomial distribution can be generated by n independent, discrete random

variables Xl,...,Xn, which can attain the values 1,...,m with probabilities

If these probabilities do not depend on i and if
YJ = number of Xi's with observed value j, j=1,...,m,

then the vector (Y ,...,Ym) follows a multinomial distribution with count parameter n og

1

probability parameters 7_,...,m7 . The joint point probability P(Yl_—-yl,...,Ym=ym) is

l,..., m
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given by

_[ =
(3.33) f(yl,...,ym) = [yl...ym] LIRS

As shown in example 3.3 the multinomial distribution is log—linear with canonical

parameters
T = 1n7rj - ln7rm, j=1,...,m~1

and sufficient statistics YooY gy
For the parametric multinomial distribution, (Y1""’Ym) has joint point probability

(3.33) and the #'s are functions
(3.34) r.=m.(6,,..

of k parameters 01""’0k’ where k<m-1.

The validity of the usual asymptotic results applied to the parametric multinomial
distribution depend on the model being identifiable in its parameters. Fortunately the
conditions for identifiability are well studied in this case, cf. for example Andersen
(1980a), p.95, Bishop, Feinberg and Holland (1975), p.510 or Rao (1973), p.359-360.

The key assumptions for the following theorems are:

7k
continuous derivatives and the square matrix M with elements

Regularity: The functions 7rj(0 ..8,), j=1,...m are positive and differentiable with

Om(0,s0) IO, ,..8,)

m
(3.35) m =% ,
pa 2 WO o0) o0 o7

has rank k.

Identifiability: The model must be identifiable in terms of 0=01,...,0k.
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The exact definition of identifiability is given in the references above. If the matrix
M has rank less than k, the model is not identifiable.

The matrix M with elements (3.35) is generally knowns as the information matrix,
because it describes the precision with which the parameters can be estimated and hence

the strength of information in the data concerning the values of the parameters.

Theorem 3.10:
Under regularity and identifiabily conditions, the asymptotic distribution of the ML—esti-
mates in the model (3.33), (3.34) is given by

A a

(3.36) (06— 6) ~ N (OM"),

From theorem 3.12 follows that the asymptotic variance of ()p is

A a
(3.37) var[ﬂp] = % mPP | p=1,...k,

where mPP is the p'th diagonal element of M. From (3.37) a confidence interval for o,

with approximate confidence level 1—« can be constructed as

(3.38) (7}p —up, /25&7’ /{5, er+u1_a /QFmTP /{0)

where mPP is the p'th diagonal element of M~ with the #'s replaced by their ML—estima-

tes.

Theorem 3.11:

Under regularity and identifiability conditions, the test statistic

m A
(3.39) Z=2 %X Y (InY-In(nr,)),
=1 9 i i
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with
T = 7rj(01,...,0k)
and 01,...,0k being the ML—estimates, has the asymptotic distribution

a

Znw x2(m—1—k) .

The result in theorem 3.11 is usually applied in connection with a goodness of fit
test. Suppose the assumed model for the data is a multinomial distribution with cell pro-
babilities (3.34), then (3.39) can be used to test whether the assumed model fits the data.

If HO is the composite hypothesis that the multinomial probabilities « -, are cons-

1

trained by their common dependencies (3.34) on 01,...,0k, then the log—likelihood under

H0 is

~ n m A A
InL = In [yl...ym] + jilyjln(wj(ﬂl,...,ﬂk)).

Without HO the ML—estimators for the #'s are . =yj/n, j=1,...,m. Hence the log—like—

lihood without H0 is

A n m
InL = ln[yl...me + .Elyjln(yj/n).
J:

It follows that the log—likelihood ratio for testing His

~ A m A A
Inr = InL —InL = ¥ Y [In(7(6,,...,4,)) — In(Y./n)],
=1 9 Tk i

and H0 is rejected if Inr is small. This is, however, equivalent to rejecting H0 if

m A
—2lnr =2 ¥ Y (InY. - In(nr.))
j=1 J J J

A

6.). The data supports the model if the observed value of Z is

. A A
is large, where T = 7rj(01,..., \
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small, while a large observed value of Z is an indication of a lack of fit between data and
model. The level of significance is accordingly approximateoly equal to P(Q>-2lnr),
where Q- Xz(m—l—k).

Many statisticians prefer the Pearson test statistic, defined as

A A

Q= X (Yrar)*/(ar),

I 48

j=1

to Z. The two quantities are, however, asymptotically equivalent under Ho’ Also Q is
thus asymptotically X2~distributed with m—1-k degrees of freedom under the conditions
of theorem 3.11.

With Z replaced by Q, theorem 3.11 was first rigorously proved by Birch (1964), and
the theorem is widely refered to as Birch's theorem.

Under regularity conditions, where n7rj>0 for all j, the expected numbers n/7\rj will
with probability one be bounded away from zero. If, therefore, theorem 3.11 is used as
basis for approximating the distribution of Z or Q, it is a critical condition for the validi-
ty of the approximation that the estimated expected numbers n/7\rj are not too close to
zero. Cases where an observed multinomial distribution has small expected numbers are
referred to as sparse multinomials or sparse tables. Sparse tables are discussed in Haber—
man (1977a), Dale (1986) and Koehler (1986).

If a test based on Z or Q has revealed that the data does not support the model, it
can be of interest to study which data points contribute to the lack of fit. For such a
study residual analysis is often helpful. The residuals for the multinomial distribution are
defined as the differences

A
Y.—nm.

i i
between observed and expected numbers. In order to judge if a given residual contribute
significantly to a lack of fit, it is common practice to standardize the residuals by dividing

them with their standard errors. Hence we need the variance of Yj—n7rj.
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Theorem 3.12:
Under regularity and identifiability conditions the asymptotic variance of the residual
Yj—n . is given by

A a 1 . .
(340) varlY; —nr] = nr1-7 XX ?77’:_, Wj "

Pq ]

where 7rj:7rj( 6,---,0,) and mPY is the element in row p and column q of M "

Theorem 3.12 can be derived from theorem 3.10 rather easily. Details are given in
Rao (1973), p.393, which also seems to be the first time the formula appears in the littera-
ture.

Often the squared roots

* A
T, = (y.—nn.)/lnn.
J J J J
of the individual terms in Pearsons test statistic Q are referred to as standardized resi-
duals. Theorem 3.12 shows that these residuals do not have unit variance or even the

same variance. Residuals with unit variance are given by

(3.41) I = (yj - n7rj)/ nr, (1—6j),
where
A A 1 or. 67FJ qu
Pq T p q

and I/I\lpq is the (p,q)—element of the inverse of M evaluated at (/51,...,31(). We shall call the
quantities (3.41) standardized residuals.

Since 31. is positive, I, is always larger than the Pearson residuals. Hence rj will not
often enough point to critical model departures.

How to choose residuals has attracted much attention in recent years. The main in-
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terest is in residuals of the type (3.41) or normalized versions of the individual terms in
the test statistic (3.39). Key references are Cox and Snell (1968), (1971) and Pierce and
Schafer (1986).

Consider next the case of L independent multinomial distributions, where for each

1=1,...,L, the vector (Yl P ’Ylm) has a multinomial distribution with parameters

n, and LR The likelihood funtion is then given by

1 Im

m Yj
H7rl.
=1

L

n
1
(3.43) L(n, pr )= I
S

We assume that for each 1=1,...,L, 10 in such a way that the ratio nl/n does not tend to
zero, where n=n,+...+n,.

One such situation is survey sampling, where units are sampled by simple random
sampling within L strata. The total sample of size n is then composed of the subsamples
units are

from the strata of a priori fixed sizes n . Within a given stratum the n

1,..,nL 1

sampled at random. The distribution of a categorical variable over its categories can then
be described by the multinomial distribution within each stratum and provided the L
subsamples are independent, the total likelihood will be (3.43).

Consider now the parametric models

(3.44) mo=.

n 67r

L l 1 6 il

m
X
=1

—
—

Theorems 3.10 to 3.12 then take the following forms:
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Theorem 3.13
Under regularity and identifiability conditions, the asymptotic distribution of the ML—es-

timates is given by

A a

(3.46) {m(6-6~N(0,M)

The confidence limits (3.38) accordingly also applies to the model (3.43), (3.44) when

the information matrix is defined with elements (3.45) rather than (3.35).

Theorem 3.14:
Under regularity and identifiability conditions the test statistic

L m A
(3.47) z=2 121 jEl Ylj(ln Ylj - ln(nl7rlj)),

where

m; = 7r1j(01""’0k)’

A

and 01,...,21( are the ML—estimates, has the agsymptotic distribution
2
Z ~ x“(L(m—-1)-k).

Note that in (3.43) the number of free parameters without constraints on the 's is
L(m-1), since there are L independent multinomial distributions with m—1 degrees of

freedom each.

Theorem 3.15
Under regularity and identifiability conditions the asymptotic variance of the residual

A

Yy I8
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A a . .
Tl = —r.—yp L1 L "lj pq
(3.48) va,r[YlJ. n17rlj] = nl7rlj(1 s fi) o -ay;—mq— m*?),

A

where /;rlj= 7rlj( 01,...,/5‘() and mP9 is the (p,q)—element of M.

For the model (3.44) the standardized residuals are thus

(3.49) ;= (ylj - nlwlj)/,] nlwlj(l—élj),

where
A A nl 1 aﬂ'l] aﬂ'lj qu
Pq m p q

>

and mP% is the (p,q)—element of M~! evaluated at (/6\?1,...,0k).

3.6. Generalized linear models

Related to the theory of the exponential family is the theory of generalized linear models.
Generalized linear models in their modern formulation is due to Nelder and Wedderburn
(1972). A comprehensive account can be found in Nelder and McCullogh (1983).

A generalized linear model is a generalized form of the exponential family introduced
in section 3.1, for non—identically distributed observations and canonical parameters,
which are linear functions of a set of covariates.

For each observation X, let AR be a set of p covariates and assume that the
probability

P(X,= x) = f(x;|6,,6)

1

has the generalized exponential form

(3.51) Inf(x;18,8) = 8(x)¢(8)/2(8) ~ K(6)/a(8) + h(x, ),
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where ()i is a model parameter and ¢ is a parameter, which may or may not be known.

This model is called a generalized linear model if the canonical parameters aTy has

"
the linear form

_]—1

where ﬂl,...,ﬂp are unknown regression parameters. The log-likelihood function for a

generalized linear model with n independent observations x X_is given by

e

(3.53) InL(7y7,,6) = 3y;7,/a(8) ~BK(7)/a(8)+3h(x,),

where K(ri)=K(0i) and y, =g(x,).

The factor 1/a(6) does not change the exponential form, if § is known. If § is un-
known the model may or may not be an exponential family. If, however, only the 7's are
of interest simple calculations show, that the likelihood equations derived from (3.53) are
the same with arbitrary a(6) as with a(é)=1. Hence a(6) acts as an unimportant scaling
factor as regards inferences concerning the r's. The factor a(6) is called the dispersion
factor and ¢ the dispersion parameter. For discrete models a(é) is almost always known.
Hence in the following a(é)=1.

There is a canonical parameter T, for each observation y;» but if the regression func-
tion (3.52) is inserted in the log—likelihood function and a(6) is set to 1, the log—likelihood

in terms of the 3's become

(354  WL(8,,..0) = §lﬂ f\:lyz = 3K (8,-.) + Th(y,),
j=1 ‘i= i i

where

K,(BpB) = K(Zz, 8)

1 P 1))

and
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h(y,) = h(x0).
A generalized linear model for discrete data is thus an exponential family with cano-

nical parameters f.,...,8 and sufficient statistics
1 p

TJ. = .EYizij , J=1,...,p-

1

Accordingly the likelihood equations are

t,=E[T] = XiizijE [v]

or

(3.55) .Zzij(yi_E [Yi]) =0, j=1,..,p.

1

In section 3.7 below it is discussed how such equations are solved by numerical
methods.

The support of the exponential family depends on the values of the covariates
2By i=1,...,n. This means that conditions for a unique solution to the likelihood e-
quations depend on the actual values of the covariates, and one has to be very careful to

check for singularities.

A generalized linear model can also be defined if

P
(3.56) =3 zp.,
=1
which is called the linear predictor, is not equal to the canonical parameter T..
The linear predictor is connected with the mean value function
K= E [Yi]
through the link function
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(3.57) m,= Glw),
which is assumed to be strictly monotone with inverse

-1
p=G(n).
In order to formulate a generalized linear model with dispersion factor 1 it is

necessary to define

(1) a distribution (3.51) belonging to the exponential family,

(2)  alinear predictor (3.56) with corresponding covariates
and

(3)  alink function (3.57).

If n=T the link funktion is called a canonical link function.

If the link function is not canonical the canonical parameter 7. is derived from the
link function by solving the equation

g =K'(r) =G }n).

1 1 1

The linear predictor and the link function together with the distribution

Inf(x|7,) = g(x,)7, -K(7,) + h(x

i
then specifies the model.

Example 3.7.
The logistic regression model in example 3.4 is a typical example of a generalized linear

model. The model is binomial and hence an exponential family with canonical parameter
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where p,= 0i is the model parameter. Since
= Bthiz

the link function is canonical. The dimension is p=2 with z, =1 and Z,)=Z,. Hence the
likelihood equations are

Ix=ZE[Y;] = Zp,

1 1 1
and

?"izi = ?ZiE [Yil = Zi:pizi

with

B.+0,z. B.+0, 2.

plzeo 11/(l+e0 ll)‘ A_

3.7. Solution of likelihood equations

The likelihood equations for a log-linear model with k real-valued parameters 01,...,0k

has the form (3.19). If the mean value function is denoted
E[le 01,...,0k] = ¢j(01,...,0k),
the ML—estimates are, therefore, found by solving the equations
(3.58) t, = ¢.(al,...,a ), j=1,....m
with respect to the ¢'s. In (3.58) the @'s are either the canonical parameters or a set of m
parameters, which are identifiable in the sense introduced in section 3.3.

If the equations (3.58) do not have explicit solutions, numerical procedures are called

for, e.g. the so—called Newton—Raphson procedure. The Newton—Raphson procedure is
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based on a Taylor expansion of (3.58) up to first order terms, i.e.

X *
s o m o(6,,...0)
b= 9,(67,,00) + % (6-60) ——5—

1=1 1

*
where |01—€? [<] 01—0?|, 1=1,...,m. On matrix form this can be written
b= YA, 00) + (0- )T,

E 3
where t=(t ...t ), (0)r0 )=(8; (0 r0 )ysth (0,100 ), 0=(0,,....0 ) and ¥ is

the a square matrix with elements

* *
(0,,,0,)

— =, =1, I=1,..m.
|

*
If 6, is close to 0? for all 1, 4, is also close to 0‘1’ and we get for @ close to 6 the

approximation

(3.59) b YO0, 00) + (0-F)¥
where W is 'Il* with 0* replaced by 6°. Solving (3.59) yields
(3.60) 0=0" + (t—9(6) ¥ L.

Equation (3.60) is an algorithm for obtaining a new approximation to the solution of
(3.58) with the elements of 6° as initial values. Repeated applications of this algorithm
can be expected to converge if the initial values ¢° ,...,0;: are reasonable close to the solu-
tions. The algorithm based on (3.60) is called the Newton—Raphson procedure. It normal-

ly converge rapidly if the initial values are close to the solution, but if this is not the case
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it may not converge at all. A disadvantage is that it requires the computation and
inversion of the matrix ¥, which in some cases can be very time consuming. In such cases
one may either look for simpler procedures or for approximations to W.

A time saving device, which sometimes works, is only to compute ¥ in the first one
or two steps of the iterative procedure and then use the inverse of this matrix in all
remaining steps. Another possibility is only to use the diagonal elements of ¥, in which
case the inversion is trivial and the time necessary for computing and inverting ¥ is
greatly reduced.

It is instructive to consider the Newton—Raphson procedure for m=1. The likelihood
equation is then

t = y(6)
and the equation (3.60) becomes
0= 0+ (t—u(6°)[ow(6°) /00"
As illustrated in figure 3.3 this means that new approximations to # according to the

Newton—Raphson procedure are obtained by searching along a tangent to ¢(6).

$(8)

-t ~—1

Fig.3.3. The Newton—Raphson procedure for the case k=m=I.



77

The Newton—Raphson procedure has the further advantage, that it as a by—product pro-
vide estimates of the asymptotic variances and covariances of the ML—estimates. This

follows from the following theorem

Theorem 3.16:
If the likelihood equations have the form (3.58), then the asymptotic covariance matrix of

A A

()1,...,0m is M—l, where M has elements

(0. ,...\0 )
mﬂ:_i_;m__m_, j=1,...,m, 1=1,...,m.
1

Proof:

Let for simplicity 0l=rl,...,0m= T be the canonical parameters. Then the likelihood e-

quations are

tj = naK(‘rl,...,'rm)/a‘rj.

The theorem then follows immediately from theorem 3.7. If 01,...,0m are not the canonical

parameters, the likelihood equations are
tj == naK(ﬂl,‘..,Bm)/(?Op WP j,p=1,...,m,
where ij is defined in theorem 3.7A and theorem 3.6 now follows from theorem 3.7A.

.

The practical use of theorem 3.16 is that the matrix ! obtained in the last step of the
iterative procedure is an estimate of the asymptotic covariance matrix of the ML—esti-

mates.

The particular form (3.58) of the likelihood equations allow in many cases for very
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simple iterative procedures with attractive properties. One method known as the
Deming—Stephan method or the iterative proportional fitting method is widely used for
log—linear models of the type treated in chapters 4,5 and 6. The use of this method re-
quire that the right hand side of (3.58) is a sum of basic parameters from which the §'s
can be obtained by direct calculation. If these basic parameters are called 51,...,51, it is
thus assumed that (3.58) has the form

I
(3.61) tj= z wjiéi’ j=1,...,m,

i=1

where Wy, are known constants. The #'s are functions of the &'s, i.e.

(3.62) 0J.= aj(al,...,zsl), j=1,...,m.
Let now 6‘; ,...,b‘; , be a set of initial values. A new set of §'s is then derived by changing

the initial set of &'s proportionally to satisfy (3.61) for j=1, i.e.

fo_ g
! Ewl.é(.) !
i 11
Obviously now
1 _
Eilwliéi =t

Next, the 5%‘3 are adjusted proportionally to satisfy (3.61) for j=2, i.e.

9 2
§i_2w ot §i.
; 211

When all m tj's have been adjusted the algorithm goes back to adjusting t), etc. The iter-

ations are stopped, when further adjustments do not change the values of the tj's within
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the required accuracy. Finally the 65 are obtained from (3.62). The procedure may re-
quire a large number of steps, but each step only involve simple calculations. The conver-
gence of the procedure is often insensitive to the choice of initial values.

The Deming—-Stephan procedure is widely used in connection with log—linear model
for contingency tables, because the parameters of interest are the expected values in the
cells, which are the ¢'s of the Deming—Stephan procedure. By iterative proportional mar-
ginal fitting the expected cell numbers under the hypothesis are thus derived directly.

Other situations, where the form of the likelihood equations calls for simple iterative
procedures, are latent structure models, treated in chapter 12. For such models (3.58)

typically has the form

where 6j=b’( Oj) is a monotone function with an explicit solution
_ 1
0j =4 (6j)

while Dj(01,...,()k) has a rather limited variation as a function of the 's.

From initial values 0;’,...,0; improved estimates can then be obtained as
1 1 o o .
ﬂj =4 (tj/Dj(ﬂl,...,Hm)), j=1,...,m.
This procedure, is known as the partial solution method.
In generalized linear models of the form (3.54), solutions to the likelihood equations

can be obtained by a weighted least square method. Consider the Newton—Raphson

method (3.60) where #1is the vector of 8 's and t is the vector

tj = ?Zijyi’ J=1....p
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of sufficient statistics. The matrix ¥ in (3.60) then has elements

m[T]
\I’Jl = W}— y ],1—1,...,p.

Since, however,

B[T]] = %2,K'(r),

we get from (3.52)

ar.
— [ 1 _ n
\Iljl— Zi)zin '(r) 9, ?ZijZiIK (7).

Equation (3.59) for the generalized linear model thus takes the form

P
(3.63) b= E [Tj| ﬂlO""’ﬂpo] + 1§§ﬂ1—ﬂ10)§zijzilK"(Ti0)
with
Tio = ?ZijﬁjO'
On the other hand,
E[Tj]ﬂw,...,ﬁpo] = ?zin‘(TiO)
and
such that (3.63) as an equality has the form

yK'(

3.64 5 |5 o) 5 - § 8% '
(3.64) i ‘T*’ l=1ﬂlozil Wi = 1=1ﬂ1izijzuwi’ J

1,...
where
W, = K"(Tio)‘

If we put
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yiK'(mg)  »
(3.65) Yomu w1 D%
i I=1
(3.64) are the estimation equations for the weighted least square estimates of ﬂl,...,ﬂp in a

yZ. 38

linear regression model with Y;, @ response variable, the covariates ZipreBip

explanatory variables and W, as weights, i.e.

P
(3.66) Y= 5
=1

[3jzij+ei ,
where e, is an error term.

It follows that the new set of approximations to the ML—estimates for ﬂl,.,.,ﬂp in
each step of the Newton—Raphson procedure are obtained as weighted least squares esti-
mates in the model (3.66). It follows that the Newton Raphson procedure is equivalent to
the following iterative weighted least square method suggested by Nelder and Wedder-
burn (1972).

(1) Given initial values g "ﬂpO’ form the pseudo response variables Y0¥ no

Lo
as (3.65).

(ii)  Obtain the weighted least squares estimates for ﬂl,...,ﬂp from the linear

regression model (3.66) with wi:K"(TiO) as weights.

(iii)  repeat (i) and (ii) with the new estimates as initial values until convergence

is obtained.

This method is widely used for the regression models in chapter 8 and 9. It is the
main numerical tool in the GLIM software package, cf. Baker and Nelder (1978).
Jorgensen (1984) extended the method and coined the phrase a delta algorithm. The
method of iterative weighted least squares has been generalized to distributions outside
the exponential family by Green (1984), who also discussed robust alternatives. For

further reading the reader is referred to Nelder and McCullogh (1983) or Jgrgensen
(1984).
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3.8. Exercises
3.1. Two players A and B play each other in n plays. The winner of each play receive 1
dollar from the loser. The plays are assumed to be independent and the probability that A
wins is 6.

Let X. be A's gain/loss in play number i, i.e. 1 dollar if he wins and —1 dollar if he
loses.

(a) Show that the log-likelihood function is

n+Yx. n—Yx.
InL(6) = — ‘1nf + 5 L In(1-6).

Why does it only depend on Exi?

(b) Find the canonical parameter 7 and the sufficient statistic.
(c)  Specify and solve the likelihood equation.

(d) What is the connection to the binomial distribution.

3.2. A random variable with point probability
fx) = =0 x=0,..k,0<0<1
J_ﬁ ) yerey )

is said to follow the truncated geometric distribution.

Let XX be n independent observations from this distribution.

(a) Show that the distribution of X forms an exponential family.

(b)  Identify the canonical parameter 7 and the sufficient statistic T.

(¢) Construct the support and identify those values t of T for which theorem 3.2 does
not ensure a unique solution to the likelihood equation.

(d) Write down the likelihood equation for 6.
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3.3. A random variable X with point probability

f(x) = 5%75 xo, x=1,2,...

is said to follow the zeta—distribution. The function c(4) is Riemann's zeta—function. It

can be shown that the domain is (—w,-1).

(a)
(b)

()

3.4.

Show that the distribution of X forms an exponential distribution.
Identify the canonical parameter and the sufficient statistic for n independent ob-
servation x_,...,X .
1 n
Derive the likelihood equation and use theorem 3.1 to verify the formula

® 9
% Inx-x’ = C'(9).

x=1

Identify those values of X X for which theorem 3.2 does not guarantee a unique

solution to the likelihood equation.

A random variable with point probability

f(x) = [—ln(l——ﬁ)]_lb’x/x, x=1,2,...

is said to follow a logarithmic series distribution.

(a)
(b)
()
(d)

Find the domain of the distribution.

Derive the likelihood equations for n independent observations.

Determine the asymptotic variance of the ML—estimator as a function of 4.
Suppose x=3.5. Determine the ML—estimate ,(; by the Newton—Raphson method

and give an estimate of its standard error.
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3.5. A random variable X with point probability

F(1-6) , x=0,1,2,...,

—1
i) = |FK

where k is an integer, is said to follow a Pascal distribution. Let X)X be n independent

observations from this distribution.

(a) Derive and solve the likelihood equation for 6.
(b)  Identify the function K(#6) and use theorem 3.3A to find the asymptotic variance of
6.

(c) Let k=4, n=5 and consider the following observations x ..,x5=3,2,5,3,2. Test then

1
the hypothesis
HO: 6 =0.5.

by a likelihood ratio test.
3.6. Let Xl, X2, X3 follow & trinomial distribution with

n X, X, X
fxpxpxg) = {x1x2x3] p11p22p33 :
(a) What is the dimension of the exponential family.
(b) Find the canonical parameters.
(c) Derive the likelihood ratio test for Hg: p,=p,=D,.
(d) 1f x1=4, x2=3, x3=5 compute the value of the transformed likelihood ratio test sta—

tistic and test Ho‘

3.7. The table below show for three municipalities in Denmark the persons, which was in-
terviewed in connection with the Danish Welfare Study, cross—classified according to the

household income (rounded to 10.000 Dkr.) and whether the household has a swimming
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pool or a freezer. If analyzed by a logistic regression model, check for each data set,

whether there are unique solutions to the likelihood equations.

Number of household with
Municipality Income Sample Pool Freezer
(10.000 Dkr.)  size

Fredensborg 1 1 0 1
4 2 0 1

6 3 0 2

7 1 0 1

8 2 0 2

10 1 0 1

15 1 0 1

Total 11 0 9
Karlebo 0 1 0 1
1 2 0 2

2 1 0 1

3 1 0 0

4 3 1 3

5 1 0 1

7 2 0 2

8 4 1 3

Total 15 2 13
Stenlgse 0 2 0 2
3 3 1 3

6 3 0 3

7 3 0 3

8 2 0 2

10 1 0 1

Total 14 1 14

3.8. In exercise 3.2 suppose we have observed 10 observations with average value x=1.2.
(a) Find 5 using the Newton—Raphson method.
(b)  Test the hypothesis

0=0.5

by a likelihood ratio test.

3.9. Between October 1961 and December 1964, there were born 98 twins at a hospital in

Melbourne. The distribution of these according to sex is shown below
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(a)

2 boys 2 girls 1 boy, 1 girl

29 36 33

Suppose these data are described by a trinomial distribution with parameters

(98,p1,p2,p3). Show that if the sex of twin number two is independent of the sex of twin

number one, then

(b)  Test the hypothesis in (a).

(c) Twins can be classified as monozygotes and dizygotes. For monozygotes the sex of
the two twins is the same. If the probability of observing a monocygotic pair of
twins is 6, then show that

_ . _144 _1-4
PI=P = Py =

(d) Derive the likelihood ratio test for the hypothesis in (c) and use the observations
from Melbourne to test the hypothesis.

3.10. Let X P X be independent of Poisson distributed with common mean value /\1 .

Let further Y1, Y be independent Poisson distribution with common mean value Ay

Suppo~ We are interested in the parameter

0= A [Aq
(a)  Show that the model is identifiable in §,=0 and 02=/\2.
(b)  Derive the canonical parameters and the likelihood equations.
(c)  Derive the transformed likelihood ratio test statistic

Z = -2Inr(T,,T,)

for the hypothesis

HO: =1
(d) Would you accept H, if n=50, x=20 and y=307
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3.11. In example 3.6 consider the hypothesis
H: ,\1=/\2=/\3, A4= A5

(a) Show that the model is identifiable in terms of ApApAgand A
(b) Formulate H, in terms of the canonical parameters.

(c) Test H0 based on the data in table 3.1.

3.12. Pairwise comparison are observations of a set of variables jointly two by two. Consi-
der for example four variables indexed 1,2,3,4. Data consist of the number of times X
variable i is prefered to variable j. It is assumed that any of n individuals prefers variable

i to variable j with probability

€.—€. Ci .
pg=e' Jllve’ )

(a) Show that if X,y are independent, then the log—likelihood become

Xl

€—¢.
InL = X% (e—~€)x..—n XX In(1+e ' J).
ici PUVY g
(b) How many parameters are identifiable.
(c) Derive the likelihood equations.

(d) Find conditions for the solvability of the likelihood equations.

3.13. In exercise 3.7 consider the number of households in Karlebo with and wihtout free-

zer as a function of income.

(a) Show that formulited as a generalized linear model, a logistic regression model has
n= B+ By

and

T.
K(7) = In(1+e ).

(b) Describe how the method of iterative weighted least squares work for the house
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holds with and without freezers in Karlebo.
(c) Choose initial values for ﬂo and ﬂl, for example from a plot and work through the

calculations for two iterations.



4. Two-way Contingency Tables

4.1. Three models
A two—way contingency is a number of observed counts set up in a matrix with I rows

and J columns. Data are thus given as a matrix

The statistical model for such data depends on the way the data are collected. A great
variety of such tables can, however, be treated by three closely connected statistical mo-
dels. Let the random variables corresponding to the contingency table be X”,...,XIJ.

Then in the first model the Xij's are assumed to be independent with

Xij ~ Ps(/\ij),

i.e. Xij is Poisson distributed with parameter ’\ij' The likelihood function for this model is

X..
1 3 ,\ij” =
(4.1) f(xll,..,XIJ‘/\ll,.,/\IJ) = H H T’—e .
i=1 =1 1)
The log-likelihood is accordingly given by
(4.2) lnL(,\u,...,/\U) =XX xi.ln,\i.—EElnxi.!—EZ,\ij.

ij 0 oYy N

The model is thus a IJ—dimensional log-linear model with canonical parameters

ln/\ll,...,ln,\IJ and sufficient statistics T..=X.., i=1,...,I, j=1,...,J.
1) 1)
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The Poisson model (4.1) covers many applications in traffic research, where the ob-
served counts are traffic accidents. The contingency table can, for example, represent
traffic accidents cross—classified according to type of accident and time of year.

The Poisson model is not the model most frequently met in practice. Consider a
situation, where a sample of size n is drawn at random from a population of size N. For
each sampled unit two categorical variables A and B (e.g. sex and social rank) are ob—
served. Let then X be the number of persons, which belong to category i according to
variable A and category j according to variable B. If N is sufficiently large the distribu-

tion of X can be described by a multinomial distribution with parameters

S ¢
17y
n,p,.,...,p;;), where p.. is the probability that a randomly sampled unit falls jointly in
11 I 1]

categories i and j. The probability of observing the data is

X..
(4'3) f(xll""’XIJIplli"‘)pIJ) = (X o )H H p1337
such that the log-likelihood function become

(4.4) IL(p,,,ePyy) = In(, ™ )+ ZEx Inp...
11 I xll"'xIJ ij ij v
This is a log—linear model with canonical parameters lnpu,...,lnpIJ and sufficient statis-

tics Tij:Xij. Since, however, the pij's are constrained by

I J
¥ ¥ op.=1,
i=1 j=1 N

the dimension of the exponential family is less than IJ.

In fact (4.4) can be rewritten as

(4.5) InL(p, ,,-,pgy_;) = In( nx )+ ¥ X x . (lnp,

—~Inp..) + nlnp_ .,
1Xw G )#ILD) 1j 1j 1 1J
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showing that the canonical parameters are lnpll—lnpm,...,lnpm_1 -—lnpm, and the dimen-
sion of the model is IJ-1.

In most situations it is not necessary to explicitly write down the reduced form
(4.5) as long as we bear in mind that only 1J-1 parameters are identifiable. Thus the pij's
can be estimated and the asymptotic distributions of the transformed log—likelihood ratio
can be derived directly in terms of the pij's.

The conditional probability distribution of X11""’XIJ given X..=x.. is under the

Poisson model (4.1) given by

I J

X X..
(4.6) £, yenesXpr | X)) = N mIo/x)y,
11 1J xll"'xIJ i=1 j=1 iy’ ..

with /\_.=Zi) ?’\ij' Model (4.3) can thus be derived from model (4.1) by conditioning on the
total X.. .

At least formally models (4.3) and (4.6) are identical . This means that by fixing the
total at a given level X =, the Poisson model can be treated as the multinomial model
(4.3). The equivalents of the cell probabilities p; are the proportions ’\ij/ A . This means
that if one is only interested in the relative magnitudes of the ,\ij's, inference can be
drawn from the multinomial model (4.6). In a sense our lack of interest in the over—all
level A is reflected in a conditioning on x . Statistical methods developed for the multi-
nomial model (4.3) thus also apply to the Poisson model (4.1) as long as only estimates of
ratios like ’\ij/ A and hypotheses concerning relative magnitudes of A, j's are of interest.

It is not trivial that statistical properties derived from the Poisson model (4.1) are
automatically also true for the derived conditional model (4.6). In this case conditions
must be placed on the values of the conditioning statistic. In order for the asymptotic
properties of goodness of fit test statistics to be valid, it is thus necessary that X
approach infinity.

A third model is connected with stratified sampling, where the population is di-

vided in I strata of sizes Nl,...,NI. From these strata independent random samples of sizes
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n.,...,n. are drawn. The observed counts x. in row i of the contingency tables are

ol iy
then the number of units among the n, drawn from stratum i that belong to the J cate-
gories of a categorical variable B. If the stratum sizes are large, the data from such sam-
pling can be described as I independent vectors each with a multinomial distribution

X..

J
_ n. 1]
f(xil""’xiJ'plli"“’lei) —[xil'f'xiJ]jEI Pyl

The likelihood function is given by

I

(47) L(pl | 17"apJ | I) = 121

ni J xij
Iop.,. ".
X Xig| =1 ili

The parameter P; li is here the probability that a person in stratum i belongs to category j

of variable B. Accordingly the pj]i satisfy
(4.8) E p;

The model is thus a product of I independent multinomial distributions of sizes n Pl

The log-likelihood function has the log—linear form

(4.9) lnL(plll’ ,p”I) Zln + EZ‘X lnp ili

1]

X

i1" ")

Due to the constraints (4.8) the dimension of the exponential family is I-(J—1) and from

the reduced form

I J-1 I
+ X X X (Inp. il lanl )+E nlanl
i=1 j=1

n.
(4.10) lnL(pl]l""’pJ[I) = Xilln X

i7"
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follows that the canonical parameters are lnp1 | l—lan R lan_1 'I—lan I
Model (4.7) can be obtained from (4.1) by conditioning, since the conditional dis-

tribution of Xil,...,XiJ given Xi =X under the Poisson model is equal to

X I A%
(4.11) f("11""”‘iaI"i.)=[x. i, ].H (x) ™
il iJ[j=1 "1
Another analogue to (4.7) can be obtained from (4.3) by conditioning on the row margi-

nals x, ,....,x; . In fact the distribution of X, ,...X,; given X, =x; , if (4.3) is the model, is

X, J
1.
(4.12) f(xil,...,XiJIXi_) = [x, X }.H
il iJ

Both under the conditioning (4.11) and the conditioning (4.12), the log-likelihood has the

form

n.
1

X.11 . ..XiJ

(4.13) lnL(qH,...,qIJ) = Zln
1

+ LEx;lng;;,
1j

where n.=x. , qijz’\ij/)‘i. in (4.11) and qijzpij/pi‘ in (4.12). Thus at least formally (4.13)
is identical with (4.9) and statistical methods developed for models (4.1) and (4.3) also
apply to the case of stratified sampling if one is only interested in parameters derivable
from ’\ij/ ’\i. or parameters derivable from pij/pi.' The correspondances between models
(4.1), (4.3) and (4.7) noted above are important, because they allow us to concentrate on
one type of model, when we develope the necessary statistical methodologies. It is impor-
tant to keep in mind, what parameters, it is possible to draw inference about, however.
Thus if the Poisson model is reduced to model (4.13) by conditioning, one cannot draw -
inference about the over—all level /\_. or about the row levels /\i., i=1,...,L.

In epidemiology the difference between models (4.3) and (4.7) are often described in

terms of the experimental design. Model (4.3) is connected with what is called a cross—
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sectional study, where a sample is taken from the population and the number of stages of
a disease are recorded as they manifest themselves in various groups. In its most simple
form the observations can be if the disease is found or not at individuals in various age
groups. For a sample of size n, X is thén the number of individuals in age group i, who
has the disease and Xiq the number in age group i, who do not have the disease. Model
(4.7) on the other hand is an example of a prospective study. From each age group a
sample is drawn, and among the n, selected in age group i, it is recorded how many x.,
who have the disease, and how many Xio» who do not have the disease. For so—called
retrospective studies the model is derived from (4.1) by conditioning. In such studies a

number n_, which have the disease and a number n, who do not have the disease are se-

17
lected from a file of all individuals. Among the n, with the disease, it is then recorded

how many individuals x are found in each of the J age groups. The distribution

11,...X1J

(4.11) then describes the distribution over age groups of those x, =n. selected with the

1 1

disease.

4.2. The 2x2 table

A contingency table with I=J=2 is usually refered to as a two by two table or 2x2 table.
This most simple of all contingency table is well suited for explaining some of the basic
hypotheses to be considered in contingency tables.

It is most convenient to start by model (4.3). Let thus the model for the 2x2 table

1 12
X91 %99
be
n X, X, X_. X
_ 11._%12_*91 %22
(4.14) £, X g Xpp%g9) = [xll"‘x22]p11 Pig Py Poy

Due to the constraint PP g Py Py =1, there are three free parameters. If the table is

formed by cross—classification of a random sample of size n according to two binary vari—
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ables A and B, the interpretation of pij is

pjj = P{a randomly sampled unit belongs to category i according to variable A and

category j according to variable B.}

If the sampling is completely random and the population size N is large, p;; can also be
interpreted as the proportion of the population belonging jointly to categories i and j.

Without further knowledge about the values of the pij's, the ML—estimate of P is

Py = xij/n.
Hence inference about the distribution of the population over the four cells of the table
can be drawn from the observed frequencies

In a 2x2 table the hypothesis of primary interest is
(4.15) Hy: pjy =0, P Li=l2,

also known as the independence hypothesis.

In order to interprete HO, let A1 and A2 with

Ai = {a randomly sampled unit belongs to category i of variable A}, i=1,2
be the two events connected with variable A. Analogously let B , and B, with

Bj = {a randomly sampled unit belongs to category j of variable B}, j=1,2

be the events connected with variable B. The three terms in (4.15) can then be inter-
preted as Py = P(AinBj), p, = P(Ai) and P;= P(Bj).

Hence H0 is an independence hypothesis in the exact sense that the events Ai and
Bj connected with the two binary variables are independent.

The formulation of H; in (4.15) is convenient for interpretation purposes, but it is
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useful also to have a formulation of H0 in terms of the original four parameters
P;1Py9Py; and J of the multinomial model. This is obtained by writing (4.15) for i=1
and j=1 as

multiplying the left hand side by 1=p,, 4P, 5+Py; TPy and reducing, which yields
(4.16) P11P9g = PygPyy-

It is easy to see that we get exactly the same condition for all other combinations of i and
j in (4.15). Hence H is equivalently expressed by (4.16). One consequence is that H, is

satisfied if and only if the odds ratio

_ PuPa
P19Pgy

(4.17)

has the value 1, i.e. (4.15) can be expressed as

(4.18) Hyip=1

The term odds ratio is derived from betting for example on horses, where the chance of
winning is measured by the ratio of the chance of winning and the chance of loosing, cal-
led the odds in favour of ones bet. Independence between A and B thus means that the
odds of variable being observed at level 1 is the same whether variable B is at level one or
two. In a betting situation, we thus would bet on the events of A independently of any
knowledge as regards the levels of variable B.

An even more popular formulation of Ho is in terms of the log—odds ratio, i.e.

(4.19) H0 :1lnp =0,
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where p is given by (4.17).

Since the ML—estimate of P is xij/ n, the empirical equivalent of p is

X, X
11722
(420) I = 3(——)(— ,
12721
which is extremely easy to compute in practice. In addition the statistical uncertainty of r
is known under the multinomial model (4.14). In fact it can be shown (cf. for example
Bishop, Holland and Fienberg (1977), p.497 or Andersen (1980a), p.167) that
1 1 1 1
)

1
arloR] =1L 4 L4 14 L
var(nR} n(p11+p12 p21+p22

where R=X11X22/(X12X21).

Hence confidence limits for Inp with approximate level of confidence 1-« are given by

J 1 1 1 1
— 4
X1 X120 X1 X9

(4.21) Inr + U_g/2

These confidence limits are relatively precise even for moderate values of n, because the
asymptotic distribution of Inr is almost symmetric. Since r is a ratio, the distribution of r
can be very skew for values of r close to 0. Confidence limits for p are obtained, therefore,

by transforming the limits in (4.21) exponentially. Confidence limits for p with level of

confidence 1—a are thus given by

1 1 1 1
(4.22) exp{lnr tu_ 4L+ L4 L4 L }
=020 Xy 0 Xy Xgp o Xy
and
1 1 1 1
(4.23) exp{ Inr —u J — t — 4+ — 4+ — }
=020 Xy 7 Xy 0 Xy Xy

The confidence limits (4.22) and (4.23) for the odds ratio are very useful. In order
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to check the independence hypothesis, the appropriate first step is to compute r by (4.20)
to get an impression of how strong the dependency is. If r is close to unity, the confidence
limits (4.22) and (4.23) are computed to check if the hypothetical value 1 is between these
limits and thus in agreement with the given data.

Formulae (4.21), (4.22) and (4.23) also apply under the models (4.1) and (4.7), but

the interpretations of H are of course different. Under (4.1), H, has the form
Hp A= XA 4

which states that the mean values ’\ij apart from a normalization factor 1/A are products

of a row effect A, and a column factor A i For model (4.7), H, takes the form
HO: pjll = pjl?’ 1:172’

i.e. the probability of being at level j of variable B is the same, whether the sampled unit
is from stratum 1 or stratum 2. But again the odds ratio r given by (4.20) is a measure of
how close the data is to what should be expected under HO. The theoretical odds ratio

under model (4.7) is

_ P1]iPe)2

~ Py|oPas

and under model (4.1)

It is typical for contingency tables that models may be different, depending on the
sampling design, but that the statistical tools for checking the hypothesis H0 are the same

for all models.
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Example 4.1:

A retrospective study of cancer of the ovary was carried out in Denmark in 1973. 300
women were selected for the study, 150 who had survived a cancer operation by 10 years
and 150, who did not survive the operation by 10 years. One record was lost for a woman,
who did not survive. For the remaining 299 women it was recorded whether the cancer at
the time of operation was at an early or at an advanced stage. The resulting data are

shown in table 4.1.

Table 4.1. 299 women in 1973 cross—classified according to survival and stage of cancer.

Stage of cancer Survival by ten years

No Yes Total
Early 31 127 158
Advanced 118 23 141
Total 149 150 299

Source: Obel (1975).

The observed odds ratio for these data is
r = 0.0476,

showing that the odds of survival is very low when the cancer is operated at an advanced
stage and that the odds of survival is high when the cancer is operated at an early stage.
That the observed value of r does in fact point to the true odds ratio being different from
1 and hence that H can not be true is seen by computing the confidence limits (4.22) and
(4.23). For the data i table 4.1, the 95% confidence limits are

0.026 < p £0.086,
showing that it is extremely unlikely that p=1.

Note that the appropriate model for these data is the model (4.7), since the women
are sampled in two strata. Stratum one consists of those who have survived, and stratum
two of those, who did not survive. From these two strata n1=149 are selected at random
from stratum 1 and n,=150 are selected at random from stratum 2. In fact it was decided

to sample 150 from each stratum, but 1 record was lost 1. The sampling design deter-
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mines what quantities can be estimated. Thus in this case the probability, which we can
assess is the chance of having the cancer at an early stage at the time of the operation,
given that the patient has survived, and the corresponding three other conditional prob-
abilities. We cannot, however, assess the chance of survival given that the cancer is at an
early stage. We can check if it is different from the chance of survival given the cancer is
at an advanced stage, but not the actually magnitude of the probability. This would re-
quire that the design is prospective, i.e. that a certain number of women with their cancer
at an early stage and a certain number with the cancer at an advanced stage had been se-

lected and it then was recorded how many survived in each group. A.

Example 4.2.

As an example of model (4.3) consider the data in table 4.2 showing for a random sample
of 4229 individuals in Denmark in 1965 whether they returned the postal questionnaire.
The table also shows the distribution according to sex. A non-return is denoted in table

4.3 as a non—response

Table 4.2. A random survey in Denmark in 1965 cross classified according to sex and
non—response.

Male Female Total
Response 1893 1838 3731
Non—response 240 258 498
Total 2133 2096 4229

Source: Unpublished data from the Danish National Institute for Social Research.

The data in table 4.2 is an example of model (4.3) since the total n=4229 is fixed and the
appropriate parameters are Py with for example
P, = P{a sampled person responds and is a male}.
The observed odds ratio for the data in table 4.2 is
r = 1.107,
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which is rather close to 1, hence one would suspect that H0 is true. The rate of non-res-
ponse thus seems to be the same for men and women. In order to evaluate the degree to
which the data supports H,, one can compute the confidence limits (4.22) and (4.23).
These limits show that the true odds ratio is between

0.918 < p<1.335
with level of confidence 0.95,such that the data strongly supports p=1. Under HO:p=1, we

can in addition estimate the over—all rate of response, which is
3731

00 = 0.882

or 88.2%, and the percentage of men in the population, which is
2133 _
1999 = 0.504

or 50.4%. These figures show that the response rate is satisfactory high and that the

sample is well balanced sexually. &,

Example 4.3.

The data in table 4.3 are from an investigation in Sweden i 1961 and 1962 over the effects
of speed limitations. The table shows for 18 weeks in 1961 and 1962 with a speed limit
enforced and for 18 weeks in 1961 and 1962 without speed limits, the number of killed in

the traffic.

Table 4.3. Number of persons killed in the traffic on main roads and secondary roads
for periods of the same lenght without and with speed limitations in 1961

and 1962.
Speed limit Main roads Secondary roads Total
90 km/hour 19 79 98
Free 102 175 277
Total 121 254 375

Source. Unpublished data from the Swedish Road Authorities.

For the data in table 4.3, model (4.1) is the appropriate one, since no totals are

given beforehand. The parameters of interest are acordingly /\“, /\12,/\21 and /\22, with for
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example
A, = expected number of killed persons on main roads under a

speed limit of 90 km/hour in a period of 18 weeks.

11

Hence the expected number of killed persons per week under a speed limitation on main

roads can be estimated from table 4.3 as
19
8= 1.056,

while the expected number of killed persons on secondary roads is

79 _
8= 4.389.

These numbers does not mean that it is more dangerous to drive on secondary roads,
since the total length of secondary roads i Sweden is many times larger than the total
length of main roads. The Swedish authorities reported the accidents for both main roads
and secondary roads because they wanted to check if a speed limitation is equally effecti-
ve on main and secondary roads. This would be the case if the obvious drop in expected
number of killed persons from free to limited speed is the same for main and for secondary

roads. In terms of the parameters of the model this would be the case if

or

The problem is thus equivalent with testing HO' The odds ratio, has observed value
r = 0.413.
The effect of a speed limit thus seems (as expected) to be much larger on main roads.

That r=0.413 is not in statistical agreement with p=1 can be seen from the limits (4.22),



103

(4.23) which yield that
0.236 < p < 0.720.

with level of confidence 95%. A

The hypothesis H0 can also be evaluated by a formal test. Consider for example
model (4.7). Here the 2x2 table reduces to a comparison of two binomial distributions,

with likelihood function
(4.24) L( ) = o[ Yilp ) 12
: PrvPr2) = 2 Mg P U o
while H0 has the form
The ML—estimates for the parameters are
Pyjy = Xp/ny
and
P12~ Xg1/Dy

A test statistic for Ho can thus be based on the difference

(4.26) X, /0, =X, /0,

Since X), and X,, are binomially distributed and independent, the variance of (4.26) is

Xn Xy
l'l] l'l2

_ lel(l—plll) + pll2(1—p112)
n b

var
o, 2
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which under H0 become

0N s I PR S P
o, | =PV n, “n,”

where p,=p, l =Py B

It follows that the test quantity

X /0 Xy /0y

131(1—51)(%1 + %)

(4.27)

where P is the ML—estimate of p,, is approximately distributed as a standard normal
deviate.
It is easily seen that

A~ X“+X21

P =4 m

1 n,+n,
The test statistic (4.27) is very useful, but its use is limited to situations, where both n,
and n, are so large that the approximation provided by the limiting distribution of the
difference (4.26) is valid. In most cases it is required that both n, and n, are at least 10,
but the validity of the approximation depends also on the value of P, such that neither

n,p,, nl(l—-pl), n,p, nor n2(1—p1) must be too small.

In small samples one must either derive the exact distribution of (4.27) or rely on

an important conditional test due to Fisher (1935).
Assume that (4.25) for the model with likelihood (4.24) is true. We can then derive
the conditional distribution of X, given X[ Xy =m,. Since under Hy, X,,+X,, has a

binomial distribution with parameters n,+n, and p,, it follows from (4.24) that
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Dy Dgy (D40,
(4.28) f(x, 1%, +%5,=m ) = [xll] [xn]/[ m, ],

which is a hypergeometric distribution with parameters n.,m. and n,+n,.

||

In the original 2x2 table n,=x,, m=x, and n,+n,=x . Hence the distribution

1
(4.28) is simply the distribution of X,, given the marginals of the table. The same distri-
bution is, therefore, valid under model (4.3) if we condition upon x; and x ; and under
model (4.1) if we condition is upon x

X, and x .
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In order to test Ho’ an observed value X, is judged to be in disagreement with Ho’
if the difference between x,; and the expected value n m, /(n+n,) is large. If the alterna-
tive to H0 is

Hiipyjp > Py
the level of significance become
p=P(X;; >xp),

where the probability is computed in the hypergeometric distribution (4.28). This test is

known as Fisher's exact test.

4.3. The log-linear parameterization

Since the data collected from different sample designs can be treated based on the same
basic model, it is to expected that also parametric hypothesis in different models can be
treated within a common parametric framework. This framework is provided by the
log-linear parameterization introduced for contingency tables by Birch (1963), which is
essentially a reparameterization in terms of the canonical parameters of the model (4.1).

Consider thus the reparameterization
(4.29) A =rAB Ay By
ij 1) i ] 0

of the /\ij's, where the 7's satisfies the linear constraints
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I J 1 J
(4.30) sAB_y AB_sA_n B
i=1 ' =1 ' =1t =1 )
This means that only (J-1)(I-1) of the 7, B's, I-1 of the r 's and J-1 of the T Bis have a
free variation, and that the model is identifiable in terms of ’:‘f; ) .,T‘?E 13— TA ?‘ "
7113, ,r?_l, us That (4.29) is in fact a reparameterization follows from the expressions
[ AB K kX _*
Tij = My T KRR
A _ % %
(4.31) Ty T kK
1B _o=r
3
Ty = B s

* —* * % * —* *
where “ij=ln’\ij’ “i.=?”ij/‘]’ “.j=?'uij/1 and “..=2i;?“ij/(l‘])' n (4.29) 7, is called the

overall level, 7-? is called a row effect and r]j3 a column effect. Hence 7"iuj3 is a residual
which measures that part of the logarithmic mean values which cannot be attributed to
the over—all level, an isolated row effect or an isolated column effect. The TA]J3'S thus
measure the degree of interaction between the rows and the columns in the expected
counts of the table. Accordingly they are called interaction parameters or just interac-
tions.

In section 4.2 we introduced the odds ratio. It is easy to verify that the interaction

parameters for a 2x2 table are connected with the odds ratio through

AB
Inp = 4T
In fact
Inp = ln)\l1—111/\12—1n/\21+ln/\22
and
AB _ 1 1
711 = InA;, =5 (InA  +1nA.,) — 5 (InA, +InA, )

1
+z{(InA;,+InA ,+1InA, +InA (ln/\ —In), ,-InA, +InA,,).

22) =
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Hence an analysis of dependency in a 2x2 table can be based on an analysis of the interac-

AB_ AB

tion parameters. Note that for a 2x2 table the constraints T —0 for i,j=1,2 implies

that

AB _ _AB
22~ 11

and

AB _ AB _ _ AB
127 217 M1

such that only r’luf needs to be specified by the hypothesis.

There are various reasons for prefering the parameterization (4.29). Since the cano-
nical parameters in (4.1) are ln’\ij’ i=1,...,I, j=1,...,J, the log-linear parameters are essen-
tially equal to the canonical parameters. In subsequent sections it will in addition become
obvious that many important hypotheses have more convenient formulations in terms of
the 7's than in terms of the A's. It is a further advantage in relation to models (4.3) and
(4.7) that the log-linear parameterization for these models are obtained from (4.1) by
simply omitting some of the parameters. Thus (4.3) is parametrized by the interactions,
the row effects and the column effects without the main effect, since

(4.32) ’\ij = exp{ AB+TA+TB+T o)

n (4.1), entails that

py=hy/A =l T s ¥ oo ottt}
- i=1j=1
The model (4.7) is parameterized by the interactions and the column effects only since the

parameters according to (4.11) become

A, //\ -exp{rAB B}/E exp{rAB B}
i=
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4.4. The hypothesis of no interaction
The hypothesis of no interaction between the rows and the columns in a two—way contin-

gency table is

AB . .
(4.33) HO: T T 0, i=1,...,.I, j=1,...,J.

Actually (4.33) needs only to be specified for i=1,...,]-1 and j=1,...,J—1 due to the cons-
traints (4.30). The Poisson model (4.1) is under H, known as the multiplicative Poisson

model, since ’\ij under (4.33) can be written as
(4.34) X; = 168,

with €= exp{ r?}, 6j=exp{rlj3} and y=exp{7}. Under model (4.3), H is an independence

hypothesis. The marginal probability that a randomly chosen person belongs to row i is

J
p.=%Xp

1. i=1 1

and the corresponding marginal probability for column j is

Under (4.33) p, and P become

I
b= A = exp {77 S exp{r])
1=
and

B J
p,=A /A =ep ()3

exp{r}?}.
=1 !



109

Hence
A, By, L 3 A, B
p; = ’\ij/’\.. =exp {7, + T }/ii ji)lexp{7'i+7'j}
such that
(4.35) P;=D,p

Under H, the probability of observing a person in cell (i,j) is thus the product of the mar-
ginal probabilities of observing a person in row i and in column j.
H, given by (4.33) is identical with H, given by (4.16) for a 2x2 table. In fact since
AB

41 1=lnp, the odds ratio for a 2x2 table is 1 if and only if all four interaction parameters

Under the model (4.7), the hypothesis of no interaction corresponds to
(436) lel = PJ, .]21"--,*]7

since pj|i=)‘ij/ A, in the multinomial distribution (4.11) and if rl??zﬂ then

J J
p.: = exp{r{\‘+rl.3+r }/E exp{rA+Tl?+T } = exp {TB}/ ) exp{r].S}.
jli it it i i
The hypothesis (4.36) is also known as the homogeneity hypothesis, referring to the fact
that under (4.36) the distribution over column categories is the same for each row.
The test statistic for H0 is most easily obtained for model (4.3), which under H0 is

a parametric multinomial distribution with parameters n and

1 A, B . .
py; = -ﬁexp(ri+rj+7'0) ,i=1,...,I j=1,....J.

The log—likelihood is then
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[ n ] A, B
lnL(pu,...,pU) =In{x,,..x,) + Ez.:xij(Ti+Tj+T0)_n In(n)

ij

n

1 Xy —n In(n).

=ln[x ] +3x Aex Bax ot
1 ) .

1 J

0

From this expression follows that the likelihood equations are
X, =1p, , i=1,....1

and
x.j = np_j , =1 d.

Since the expected values under Ho’ are

is not necessary to derive the ML—estimates for the 7's. The likelihood equations yields

p, =X, /n and p =X j/n, such that the estimated expected values become

Hence the transformed likelihood ratio test statistic is according to (3.39) given by

(4.37) ~2lnr = 25X [InX, - In(X; X /n)].

] S
Since there are 1J-1 parameters in model (4.3) and I-14J-1 free parameters under (4.33),
Z=-2Inr is, according to theorem 3.13, approximately x2—distributed with [J-1
-I-J+2=(I-1)(J-1) degrees of freedom. The hypothesis of no interaction is rejected for

large values of

X X
(4.38) z = 2??xij(lnxij—ln ).
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When in (4.38) n is replaced by x_, the statistic also covers model (4.1) and when x; is
replaced by n, also model (4.7).
The level of significance can be computed approximately as
p = P(Q2z),
where Quy?((I-1)(J-1)).

Alternatively to (4.37), one can use the Pearson test statistic

the distribution of which can also be approximated by a X2—distribution with (I-1)(J-1)
degrees of freedom.

In general the limiting X2—distribution is only valid when the Xij's are independent
Poisson distributed random variable, or if they are jointly multinomially distributed.
These assumptions are not satisfied under complex sampling schemes or when there are
non-trivial dependencies between the cells of the table. The behaviour of Z and Q in such
non-regular cases has received much attention in the literature, cf. e.g. Gleser and Moore,
(1985) Tavare and Altham (1983) and Rao and Scott (1981).

In order to derive the ML —estimates for the log—linear parameters in the saturated
model consider the Poisson model.The likelihood function is

InL = £x. A
j i

E."+ Yx. T’.&-i— ¥x .TE."+x T
ij A A j.jj .

0

— £ZInx. ! - SZexp{ B + A+ By 7 ).
ij 1) ij 1] 1 J 0

Hence the likelihood equations are

(4.39) x; = E[X; ], i=1,.. -, j=1,..,0-1
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(4.40) x. =E[X.],i=1,..,-,
(4.41) x;=EX ], =10,
and

(4.42) x =E[X ]

These equations have the same solutions as
(4.43) x,; = E[X.], i=l..L, j=1,...J,
where the indices i and j run over all values including I and J. From
AB, A B
E[Xij]=exp(7'i it +Tj+T0)
and the constraints (4.30) then follow
~AB _ 1 1 1
7'i i = lnxij - J EJHDXU - T Zl)lnle—F—U Xil?lnxij
A1 1
U %)lnxij -3 Zilijllnxij
B _1 1
Tj =1 Zi3lnxij I EiIXj)lnxij

~ 1
=TI ??lnxij.

Under H, TA?=0 and the likelihood equations become (4.40), (4.41) and (4.42)

i

with solutions
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T':A = Inx. — {—Elnx.
1 1. l 1.
TB = Inx .—:}Elnx .
i B P

0 I- 1. J s -J .

Example 4.4:

In 1968 there was a lively debate in Denmark over the effects of air pollution in the city
of Fredericia, which is dominated by a large fertilizer plant, cf. Andersen (1974). In an
attempt to study the effect of the suspected air pollution, the number of lung cancer cases
was observed for each of the years 1968 to 1971 for Fredericia and three other cities close
to Fredericia and of about the same size. These data are shown in table 4.4. In the table
the lung cancer cases are also distributed over 6 age groups. Finally the table shows the

marginal number of inhabitants for each age group and for each city.

Table 4.4. Observed number of lung cancer cases for four Danish cities, 1968 to
1971, distributed according to age.

City

Age Fredericia Horsens Kolding Vejle Total Number of
inhabitants

40-54 11 13 4 5 33 11.600
55-59 11 6 8 7 32 3.811
60-64 11 15 7 10 43 3.367
65—69 10 10 11 14 45 2.748
70-74 11 12 9 8 40 2.217
over 75 10 2 12 7 31 2.665
Total 64 58 51 51 224
Number of in-
habitants  6.294 7.135  6.983  6.026 26.408

Source: Clemmensen et al. (1974).

The ML—estimates of the log-linear parameters for the data in table 4.4 are shown

in table 4.5.
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Table 4.5. Log—linear parameters for the data in table 4.4.

AB j=1 2 3 4
ij
i=1 40199  +0.641  —0.529 ~0.311
2 +0.135  —0.196  +0.100 -0.038
3 —0.150  +0.435  —0.318 +0.033
4 —0318  —0.042  +0.062 +0.298
5 —0.102  +0.261  —0.018 ~0.141
6 +0.236  —1.098  +0.703 +0.159
™ i=1 ) 3 4 5 6
—0.167  -0.103  +0.182  +0.254  +0.133 ~0.300
~ j=1 2 3 4

+0.210 —-0.066 -0.075 —0.069

The hypothesis of interest for the data in table 4.4 is that the risk of getting lung
cancer is the same in all four cities. The alternative hypothesis is that the risk is higher in
Fredericia. Marginal hypotheses concerning the cities can only be tested in a meaningful
way if there is no interactions in the table. Such an interaction would namely imply that
the risk of getting lung cancer for a cititizen of, say, Horsens would depend on an indivi-
duals age and no general statements of differences between the cities as regards cancer

risks are possible. Consider the following model for the data

Xij ~ Ps(/\ij)’
X11’ - ,X64 are independent
Al = GNg/N,

where Xij is the number of lung cancer cases in city j and age group i, and Nij is the num-
ber of inhabitants in city j and age group i. Assume in addition that the age distribution

is the same in all four cities, i.e.
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Ng/N =N /N .

Since E[Xij] =’\ij’ 0ij is the individual risk of getting lung cancer in city j and age group i.
The hypothesis of no interaction between city and age as regards lung cancer risk can,
therefore, be expressed as

0ij = ‘Pﬂﬁj ’
which corresponds to

_ 2
(4.44) A=A AN N /N7

or (4.34) with 7=A ,e=p.N. / N and 6j=¢jN.j/N“. The hypothesis of no interaction can
accordingly be tested by the test statistic (4.37), which for the data in table 4.4 has
observed value

z = 20.67.
The level of significance is approximately P(Q>z)=0.148, where Q~X2(15). The hypothesis

of no interaction (4.44) is thus accepted. a.

Consider the hypotheses

A A
(4.45) H1 T =T, 1=1 B
and
..B_ B .
(4.46) H,: T =Tio =1,...,d,
where 7 and 75 are known constants. These hypothesis are only relevant in case the

10 j0
hypothesis (4.33) of no—interaction has been accepted. The test statistic for H1 can be

derived from the distribution of X1 e X » SIDCE (4.45) under H, is equivalent to

T
(4.47) Hi:p =e 105 10
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under model (4.3). In fact, under (4.33) and H,

A B

T. T.4+T,
p, =e 102.;e J 0.
' ]
But since
TAO r].3+r0
l=p =Xe '"Se J 7,
. ; i

(4.47) follows. In the same way (4.46) is under H, equivalent to

B B
To0. Ti0
(4.48) Hyp =e W/ze I°.
’ i
From (4.47) and (4.48) follow that H, can be tested in the marginal distribution of
X1 ,...,XI and that H2 can be tested in the marginal distribution of X 1,...,X 5 The same
result is true for model (4.1). For model (4.7) only H, makes sense since the values of the
row marginals are fixed.
Since H, is a hypothesis of fully specified probabilities in the multinomial distribu-

tion of Xl.,...,XI_, it follows that the appropriate test statistic is

I
(4.49) Z, = 25—_:1Xi'(lnxi' - ln(npio)),

where p, is the right hand side of (4.47). H can be specified in terms of the r’?'s or direc-

tly in terms of the D, 's. For the special case

p,p=1 /1 and the test statistic becomes
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I
(4.50) Z,=2 .EIXi‘(lnXi- ~ In]).

1=

H1 is rejected if the observed value z

x2—distribution with I-1 degrees of freedom is small.

of Z,, ie if P(ZIZZI) computed in a

For H2, the test statistic is

J
(4.51) Z,= 2j§1X.j(lnX_j——ln(np0j)),

where Py; is the right hand side of (4.48) or a directly specified value of p i The special

case

2
yields p0j=1/ J and the test statistic becomes

H:T].3=0,
i

J
(4.52) Z,=2 %

n
J_IX.j(lnX'j In]).

H2 is rejected if the observed value of Z2 is large compared with a x2—distribution with
J—1 degrees of freedom.

Under the Poisson model, the hypotheses H 1 and H2 become
(4.53) H: ’\i./’\.. =€
where ¢, is the right hand side of (4.47), and
(4.54) H,: ’\.j/’\.. = 6J.0,

where §j0 is the right hand side of (4.48).

As for the multinomial model H, and H, can be specified in terms of the r‘:"s and
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the 7-]].3'3 or directly in terms of the ratios A, /A and A j/ A
The fact that all hypotheses under H0 can be studied in the distributions of the
marginals of the table is called collapsability. In chapter 7 we return to conditions under

which a table can be collapsed onto its lower dimensional marginals.

Example 4.4. (Continued)

The hypothesis of main interest for the lung cancer data in table 4.4 is that the risk of

getting lung cancer is the same for all four cities. On parametric form this hypothesis is
H2: wj =1, j=1,..4.

From (4.44) follows then that H, is equivalent to

’\.j/’\.. = N.j/N..'

Hence H, can be tested by means of (4.48) with p0j=N.j/ N . The observed value of Z, is
Zo = 3.5
with level of significance
p~P(Q > 3.5) = 0.32
where Q~X2(3).
It follows that a hypothesis of equal lung cancer risk in the four cities can not be
rejected based on the available data. Note that H, is formulated directly in terms of the

A's and not in terms of the r?. A

Example 4.4 shows that it need not be necessary to derive the log—linear par-
ameters in order to compute the test statistic. This is due to the fact that the transformed

likelihood ratio test statistic always takes the form

I ] N
(4.55) Z= 25__)1 jiIIXij[InXij—ln,uij],
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where ; are the expected values under the hypothesis. The test statistic (4.37) directly
has this form. That the test statistics (4.49) and (4.51) also have this form can be seen as

follows. Under the hypotesis (4.47), ;Azij becomes

A

i = PioX

3

-J

since p. is specified under H andp j——‘X j/n. Hence (4.55) become

I J
(4.56) 7 = 251 jzIXij[lnXij_lnpio—lnX.j]

I J X. X.
= zigl jElxij[lnxi_— In(—5—2)] + 2§Xi.[lnXi'—ln(npiO)].
The first term is the test statistic (4.37) for the independence hypothesis (4.35). This
term is approximately x2—distributed with (I-1)(J-1) degrees of freedom. The second
term is the test statistic (4.49) for H,, which is approximately X2—distributed with (I-1)
degrees of freedom. The sum (4.56) is thus approximately x2—distributed with (I-1)(J-1)
+(I-1) =(I-1)J degrees of freedom. This was to be expected since (4.56) is the test
statistic for the hypothesis H' that both (4.35) and (4.47) hold. The number of degrees of
freedom is IJ minus the number J-1+1 of parameters estimated under H*, or
df = 1J-J = J(I-1).

That the direct test statistic (4.56) for both (4.35) and (4.47) split up in two terms corres-
ponding to the two hypotheses under consideration is referred to as a decomposition of the
test statistic.

Note that (4.47) only is meaningful if (4.35) is true. This means that hypotheses
concerning the main effects only make sense if the interaction parameters r‘iu; are zero.
The hypotheses H0 and H1 are thus nested with H1 being dependent on H0 being true.
The term to be used later for nested hypotheses is hierarchical hypotheses. Thus H0 and

H1 form a set of two hierarchical ordered hypotheses.
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4.5. Residual analysis
If the model fails to describe the data, a study of possible directions for model departures

can be based on the differences

A

Xi j—-'ui j

where I; are the expected numbers estimated under the given model. Haberman (1978),

cf. also Haberman (1983), has shown that the standardized residuals

(457) ry = 0 ) A (1, /m)(1x /)
are approximately normally distributed with mean 0 and variance 1. Hence an inspection
of the standardized residuals can reveal, which cells contribute significantly to model
departures.

Many other methods have been proposed for the identification of deviations from
independence in a two—way table. Several of these are based on an inspection of the 2x2

subtables of the contingency table. One proposal is to plot selected values of the form

rl. =Inx.-Ilnx. —lnx,. + Inx
1jts 1) 18 t) ts

for i#t, j#s in a suitable diagram. Under the independence hypothesis the expected value

of r;jts is 0. Hence if |r;jts| is large for many combinations of t and s, cell (i,j) represents a

model departure. As regards such methods see for example Kotze and Hawkins (1984).

Example 4.5
Table 4.6 shows the opinions of a random sample of 838 persons in 1982 concerning "early
retirement", a system which has been in effect since 1979 and a new system "partial pen-

sion" proposed in 1982 to the Danish Parliament.
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Table 4.6. 838 persons cross—classified according to their views on two pensions

systems.
Early retirement

Partial Good Relatively Bad Do not know
pension system good system

Good proposal 377 75 38 19
Maybe good proposal 92 25 15 8

Bad proposal 84 17 16 4

Do not know 34 17 6 11

Source: Olsen (1984). Table 3.12.

As a model for the data assume the multinomial model (4.3). The test statistic (4.37) for
the independence hypothesis (4.35) has observed value

z2=12722, df=9.
with level of significance p=0.001. Hence independence must be rejected. The depen-
dencies of the table can be illustrated by the standardized residuals (4.57) shown in table

4.7.

Table 4.7. Standardized residuals for the data in table 4.6 under independence.

Early retirement

Partial Good Relatively Bad Do not know
pension system good system

Good system +3.16 -1.23 ~1.87 -2.11
Maybe good system -1.23 +0.66 -0.80 +0.42
Bad system -0.16 —0.63 +1.78 -0.93
Do not know -3.77 +2.11 -0.04 +4.40

Table 4.7 shows that most of the model departures are connected with persons,
which do not have an opinion of the new system. In addition there are significantly more

persons than expected with the opinion that both systems are good. &,

4.6. Exercises
4.1. In the Danish Welfare Study the interviewed were classified as renters (if they rented
their dwelling) or owners (if they owned their house or apartment). The table shows how

many among renters and owners, who have a freezer.
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Has a freezer

Yes No
Renter 2584 300
Owner 1096 795

(a) Formulate a model for the data.
(b)  Estimate the odds ratio and construct 95% confidence limits for it.

(c) Does the data support that renters has a freezer as often as owners?

4.2. In order to test a hypothesis to the effect that alcohol abuse is hereditary data were
collected on a large number of twins in Sweden and Norway. The table shows for mono-
cygotic as wells as dicygotic twins, where at least one has a monthly consumption of more

than 500 g. alcohol, in how many of these cases both have this high consumption.

Both Only one Number of
abuse  abuse twins
) Monocygotes 159 1102 1216
Finland: Dicygotes 220 2696 2916
Monocygotes 132 1171 1303
Sweden: D;
icygotes 165 1756 1921

(a) Formulate a model for each of the two data sets.

(b)  Test both in the Finish data set and in the Swedish data set, whether coinciding
abuse is more frequent among monocygotes than among dicygotes.

(c) Compare the results from Sweden and Finland and try to draw a more general

conclusion.

4.3. The tabel below fromm the Danish Welfare Study shows the number of broken
marriages or permanent relationships cross—classified with sex. The sample only include

those persons who are socio—economic active.
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Broken marriage or
permanent relationship

Yes No
Men 240 1099
Women 232 1133

Discuss whether one of the model suggested in section 4.1 can be used to analyze

this data set.

Whatever conclusion reached in (a), perform a statistical analysis based on the odds

ratio

4.4. The table shows for the total sample in the Danish Welfare Study how many among

men and women, which often suffer from headaches.

(a)

(b)

Estimate the odds ratio and construct 95% confidence limits for it. What does these

limits tell us.
Does the table supports a claim to the effect that the sample in the Welfare Study

is representative of the Danish population as regards sex?

Suffer often from

headaches
Sex Yes No
Men 379 2177
Women 620 1975

4.5. The table shows the answer to the broken marriage question in exercise 4.3

cross—classified according to social rank.

(a)

Assume that a multinomial model describes the data. Express the independence
hypothesis in terms of marginal or conditional probabilities of a given marriage or
relationship ending up being broken.

Test the independence hypothesis.

Describe the departures from independence (if any) by suitable diagnostics, e.g.

standardized log—linear parameters or standardized residuals.
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Broken marriage

Social rank or relationship
group Yes No
I 28 127
11 62 230
IIT1 79 443
IV 181 850
v 124 582

4.6. The Danish survey company OBSERVA conducts political polls monthly. From 8

such polls in late 1983 and early 1984, the table shows the unweighted returns.

(a) Formulate a model for the data.
(b)  Has the expected frequency of non—voters changed.
(¢) Describe the changes in expected votes for the different parties between June 83
and January 84, if any.
(d)  The following two blocks are sometimes identified in Denmark:
Socialist or leaning socialist: A,F,K,Y.
Conservative/liberal or leaning conservative/liberal: B,C,E,M,Q,V,Z
Has the balance between these blocks changed between August 83 and

January 847
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4.7. In 1985 Radio Denmark conducted a survey regarding the interest among TV viewers
with the Saturday afternoon broadcast called "Sportslgrdag". In the sample of size n=958,
635 said that they had seen "Sportslgrdag" at least one. These 635 were asked about their
preferences regarding the lenght of the broadcast. The answers were grouped in four time
intervals. The sample was collected in four age/sex strata in such a way that the relative

sample sizes from the strata corresponded to actual sizes of the strata in the adult Danish

population.
Age/sex Wishes to the length of "Sportslgrdag"
stratum Have seen Sample
"Sports— size
Less than 24 to 34 4 hour Do not lgrdag"
2 hours hour or more know at least
once
Men, above 40 65 63 59 5 192 234
Women, above 40 77 39 32 4 152 225
Men, under 40 81 50 30 2 163 235
Women, under 40 80 38 6 4 128 264
Total 303 190 127 15 635 958

(a) Formulate a model for the data.

(b) Does the wishes to the length of "Sportslgrdag" depend on age and sex among those
who watch the broadcast?

(c) Describe the way the wishes depend on age and sex. Are there any strata for which

the wishes are similar.

4.8. Consider again the data in exercise 4.7.
In Denmark in 1985 the distribution of the adult population on the four strata was

as follows (in 1000 persons).

Under 40 Above 40

Men 1033 1035
Women 985 1178
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(a) Isthe claim correct that the samples from the strata were constructed to match the
actual stratum sizes?

(b)  Are those who watch "Sportslgrdag" representative of the population as regards sex
and age?

(c) In what direction goes the lack of representativeness?

4.9. In a 1982 study of attitude towards early retirement and partial pension a special
index for working environment was also reported for each interviewed person. The index
takes values from 0 to 10 with O representing an excellent working environment and 10 a
very bad working environment. The table shows the sample cross—classfified according to

this index and according to attitude towards early retirement.

Attitude towards Working environment index
Early retirement

0-2 36 7-10
Good system 267 152 52
Maybe good system 68 30 11
Bad system 26 24 10
Do not know 15 9 6
Total 376 215 79

(a) Does the attitude towards early retirement have a connection with the working
environment.
The attitude towards early retirement was also cross—classified with an index for
health. The health index could take values from 0 to 22 with 0 being very bad health. The

observed numbers are shown below

Attitude towards Health index
Early retirement

0-3 4-9 10-22
Good system 276 232 73
Maybe good 69 52 15
Bad system 41 26 13
Do not know 20 13 8

Total 406 323 109
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(b) Does the attitude towards early retirement have a connection with a persons
health.
(¢) Compute the estimates of the log—linear parameters under independence for both

the data sets above.

4.10. Two Danish Survey Companies OBSERVA and AIM both conducted political polls
in June 1983. The table shows the actual number of persons in each sample who claimed
that they intended to vote for the different political parties. Also shown is the actual
percentage, who voted for the parties in the latest Danish parlamentary election in

December 1981.

Party OBSERVA AIM Election
December 1981

A 416 268 32.9
B 45 22 5.1
C 338 160 14.5
E 13 6 1.4
F 131 66 11.3
K 8 10 1.1
M 47 16 8.3
0 20 8 2.3
v 129 92 11.3
Y 22 9 2.7
Z 76 32 8.9
Other - - 0.2
Total 1245 689 100.0

Copyright: OBSERVA and AIM.

(a) Suppose the distribution over parties is compared for the two survey
companies. What hypothesis is tested in this way?

(b)  Compare the results from the polls with the latest election results. What hypothesis
is tested here?

(c)  Are there any connection between the analyses in (a) and (b).
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4.11. The table shows for the Dantsh survey company AIM, the planned sample, how
many were at home at the time of the interview and how many refused to participate.

The dates in the upper part of the table are all from 1983.

Poll
Personal
interview 2-8/5 16-22/5 6-16/6 15-22/8 12-19/9 20-27/10 7-20/11

Planned

sample 1307 1404 1436 1433 1470 1413 2690

Not at home 276 307 269 272 285 302 554

Refused to

participate 186 210 187 192 187 196 385

Actual sample 845 887 980 969 998 915 1751
Poll

Telephone

interview 13-14/12-1983 7/1-1984

Planned sample 1085 1018

Not at home 264 264

Refused to

participate 101 41

Actual sample 720 713

(a) Has the number not at home or the number who refused to participate changed in
the period covered.
(b) Does the data indicate a change in the ratio between actual and planned sample

after the introduction of telephone interviewing.

4.12. The table show for 1271 Danish school children between 16 and 19 years of age in
1983-1985 the attitude among boys and girls towards having sport at school jointly with

the other sex.

(a) Do boys and girls have different views on sport jointly with the other sex.

(b)  If different views, characterize the differences.
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Joint sport at school Boys Girls
Very good idea 168 346
Good idea 240 342
Neither good nor bad idea 175 147
Bad idea 47 51
Very bad idea 18 12




5. Three-way Contingency Tables

5.1. The log-linear parameterization
Consider a three-way contingency table {xijk, i=1,...1, j=1,...,J, k=1,...,.K}. As model for
such data, it may be assumed that the x's are observed values of random variables Xijk’

i=1,....I, j=1,...,J, k=1,...,.K with a multinomial distribution

(5.1) X111""’XIJK”M(n’plll""’pIJK)'

This would be the model, if Xiik is the observec_l number in cell (i,j,k) after a simple ran-
dom sample of size n has been drawn from a population and Piik is the proportion of indi-
viduals in the population belonging to cell (i,j,k). The pijk's can also be interpreted as the
probability that a randomly drawn individual will belong to cell (i,j,k). Alternatively it

may be assumed that all Xijk's are independent Poisson distributed random variables
(5.2) Xijk ~ Ps(/\ijk),

with the ’\ijk's being positive parameters. Model (5.1) can be obtained from model (5.2)
by conditioning on X , since the conditional distribution of Xlll""’XIJK given that
X =n is multinomial with parameters n and /\111//\ ""”\IJK/)‘ . The parameters of

(5.1) and (5.2) are thus connected through
Pig = A/ A

A three—way contingency table is often pictured as a block with I rows, J columns
and K layers as show in fig. 5.1.

We shall in general regard the observed numbers in a three-way contingency table as
the observed responses on three categorical variables. Thus Xiik is the observed number of

individuals who have responded in category i on variable A, in category j on variable B
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and in category k on variable C.

13 *123
X993
X112 %122 | *323
X992
m %12 X3922
Xo11 X991
X311 X321

Fig. 5.1. Picture of a three—way contingency table.

The log-linear parameterization of (5.2) is as follows

_ _ . A, B, C, AB, _AC, BC, ABC
(5.3) lnE[Xijk] = ln’\ijk = Tt T AT T T T T T

with the linear constraints

(5.4) =1 =1

(5.5) PAB_ AC_ AB_ BC_ AC_ BC_,
i. i. L] ). .k .k
and
ABC _ _ABC _ _ABC _
(5.6) Tij.—Tilk'"T.jk_O'

Thus any summation over an index of a log—linear parameter is zero. The parameter

r?? (kj is called a three—factor interaction, while T??,r? (13 and T?f are called two—factor
interactions and r?, r? and Tf are called main effects. The log—linear parameterization

and the name "interaction" are due to Birch (1963). That (5.3) is a reparameterization of

(5.2) is straight forward to verify by expressing the 7's in terms of ,u:jk=lnAijk, i=1,....1,

j=1,...,J, k=1,...,K. For example the three—factor interaction r‘?}? (kJ is given as

ABC _ * —* _* *

7 i - _* _* ok % -
(5.7) Tijk = Bty Rt TR TR TR TR
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. . AB. .
the two factor interaction 7' ; is given as

AB _ —* —_* __* %
Ty = Mgy 8 R R

etc. In these expressions a bar indicates an average and a dot a summation, e.g.

LK
Bij. =K 2 P

k=
The constraints mean that the model can be parametrized in terms of the 7's for
i=1,...,I-1, j=1,...,J-1, k=1,...,K-1 with the reimaining 7's given implicitly through (5.4),
(5.5) and (5.6), e.g.

That the number of 7's match the number of A's in the Poisson model (5.2) is de-
monstrated in table 5.1. For the multinomial model, there are IJK-1 p's, but here Ty is

redundant.

Table 5.1. Number of free parameters in the parameterization (5.3).

Parameter Number of free parameters
7 1
7‘? 11
B J—1

i
T(l':’ K—1

AB
T8 (I-1) (J-1)
49 (I-1) (K1)
r‘j‘lf (J-1) (K1)
r‘??g (I-1) (J-1) (K=1)

Total 1JK
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The Poisson—model (5.2) is a log—linear model according to the definition in section
3.1. In fact the logarithm of the point probability of an observed table {xijk,i=1,...I,
i=1,....J k=1,...K} is

1 J K
Inf(x. .,..x..)=3% ¥ X x. In}.
Rt I
1 J K I J K i
- ¥ ¥ A.,-3Y ¥ 3 In(x.,!.
i=1j=1k=1 & jopj=1k=1 = K

The xijk's are thus the sufficient statistics and the canonical parameters are Tijkzln)‘ijk'

Hence the ML—estimators for the )\ijk's are obtained through the likelihood equations as

ikl = Ak

X = E[X
as

(5.8) \ i=1,..1 j=1,..J, k=1,... K.

ik~ Nk !
These trivial estimates are only of interest in the so—called saturated model, where none
of the log-linear parameters vanish. For the saturated model the ML—estimates for the
log-linear parameters are obtained from (5.8) though the reparameterization formulas,

i.e. through the expression for the 7's in terms of the InA's. For example according to (5.7)

S I T R R
Jk ULy ) .

TABC _, |
ik = b hoh

k

where lijk=lnxijk’ and similarly

AB _

T =L =141 .
1] | R P N

The importance of the log—linear parameterization (5.3), with the constraints (5.4)
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o0 (5.6), lies in the fact, that most hypotheses of interest in a three—way table can be for-

mulated in terms of the log—linears parameters.

5.2. Hypotheses in a three-way table

In a three—way contingency table there are the following major types of hypotheses

H, .r‘??f::O for alli, jand k
. _ABC _ _AB _ - _

H2'Tijk_Tij_
ABC _ _AB _ AC _ o

H3'Tijk_Tij_Tik‘0

* _ABC _ AB _ _AC _ A _

H k== =7 =0 - T~
. _ABC _ _AB_ _AC _ BC _ L

By ok =75 Tik=Tjx =0

H :H and™=0 for all i

5 4 1

H, H4andr‘?=rlj3=0 for all i and j
) A__B_ C_ -

H7.H4andri—rj—rk—0 for all i, j and k

From these the other hypotheses of interest are obtained through exchange of in-
dices.

Hypotheses are often referred to as models. Thus H2 can also be referred to as the
log—linear model (5.3), but with no three—factor interactions and no two—factor inter-
actions between variables A and B.

All hypotheses above except H1 can be expressed in terms of independence, condi-
tional independence and uniform distribution over categories. It is convenient to express
independence between variables A and B on symbolic form as

A®B,
conditional independence between A and B given variable C as
AeB|C
and uniform distribution over the categories of variable A as
A=u.

Clusters of variables can be independent of a single variable or clusters of variables.
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If e.g. A is independent of both B and C, it is expressed as
AeB,C.

In order to illustrate the use of these symbols in contingency tables let A, B and C
be the three categorical variables of the contingency table under model (5.1). This means
that A is a categorical variable with observed value i, if a randomly chosen individual
belongs to row i of the contingency table in fig.5.1. In the same way the observed value of
variable B is j if a randomly chosen individual belongs to column j of the table and
variable C has observed value k, if the individual belongs to layer k of the table. Since the
marginal probability that variable A has observed value i under model (5.1) is P, and

correspondingly for B and C, the symbol A ® B & C is equivalent with
(5.9) P =Py PP po for all i, j and k.
By simple probability algebra it can be shown that A®B|C is equivalent with

P; kP ik .
(5.10) Pig = T, for all i, j and k.

The symbol A ® B,C is equivalent with

(5.11) Piik = Pi P i
and finally A=u is equivalent with

(5.12) p, =1/I, foralli.
Theorem 5.1.

The hypothesis H2 to H7 have the following interpretations in terms of independence,

conditional independence and uniform distribution
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:A®B|C

:Ae®B,C

:A®B,C; A=u
:A®BeC
:AeBeC; A=u
:A®BeoC; A=B=u
:A®B6&C; A=B=C=u
Proof:

Consider first H,. Under H,), ?f; 2BC=0 and since E[X. k] np.

ijk ijk’

D, = %exp{r +7' +7 +TAC} E exp{r +r

p. =lexp{r +r +7 +TBC}E exp{TA+T |
Jk n 0
and
1 k=—exp{‘r +Tk}E E exp{r +T +T (kJ}

i=1 j=1
Multiplying these expressions yield

1 C, AC, BC
pi.kp.jk/p.k ﬁexp{r +T 478 +Tk+Tik+T. }

which is equal to Piik under H o» thus proving that (5.10) holds under H,. On the other

hand, if (5.10) is satisfied, then InE[X. In(np. k) has the form

W =
ln(npijk) = aik+ﬂjk+7k+6.

But it can be shown by easy algebra, that the fact that this expression does not contain

terms with joint indices i and j combined with the constraints (5.4) and (5.5) entails that
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ABC_ AB—O Hence if (5.10) is satisfied, the hypothesis H, holds.

ijk
Under Hy, 757 = % = r49=0, such that
ijk ij ik
P;; =Il—lexp{r +r +7 } 2 exp{rBC C
p. ——exp{r +T0} E E eXp{TBC+TC+TB}
L j=1 k=1
and
P; =-—exp{T +T0} E 2 exp{rBC+‘rA+'rC
Hence

p; = b; b /lexp(ro)Sexp(r?) ZBexp(7 o))
1 J

But under H3

p .y FIIE exp{r +T +r TC+TI.BC} =1,
ik k' " jk

and it follows that

The fact that H3 holds thus imply that A and B are independent. That A and C are inde-
pendent under H3 is proved in a similar manner. If on the other hand A is independent of
both B and C, or A ® B,C, then Pin=P;. P which means that the logarithm of the mean
value E[Xijk]=npijk has the form

ln(npijk) = ajk+ﬂi+7

From this form and the constraints (5.4) and (5.5) it follows by easy algebra that

r’}?‘g rAB r49=0 for all i, j and k. Hence A®B,C implies that H, holds.

The remaining equivalences of the theorem are proved in similar ways.[ ]
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It is worth noting that H1 cannot be expressed in terms of independence, conditional
independence or uniform distribution over categories. For three-ways tables this is the
only such hypothesis. For higher order tables, to be dealt with in the next chapter, there
are many such hypotheses.

The hypotheses H, to H, can be illustrated graphically, by representing each of the
variables by a point or dot. If two variables in the log-linear parameterization (5.3) is
connected through a non—zero interaction, then the dots representing the variables are
connected by a line. If a variable is uniformly distributed over its categories, the dot is

replace by an asterisk. The resulting graphs are for hypotheses H1 to H7 shown in fig. 5.2.

A A A A
L] *
B B /B /B
c c c c
*
H, H, H3 H,
A A A A
L) * ¥* *
®B eB *B *%B
) ° ) *
(o] c c C
H4 H5 He Ho

Fig. 5.2. Association graphs for hypotheses Hl to H7.

The graphs in fig. 5.2 are called association graphs. The connection between the
graphs and the interpretation of the hypotheses in terms of independence and conditional
independence has been explored by Darroch, Lauritzen and Speed (1980), by Goodman
(1972), (1973) and by others. Two variables are independent if there is no route connect-
ing the dots representing the variables on the graph, i. e. if the dots are not connected by
lines either directly or via other points. Two variables A and B are conditionally inde-
pendent given a third variable C, if the only route between A and B passes through C.

Thus variables A and B are conditionally independent if their connecting line is discon—
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nected when the dot representing the third variable is covered e.g. by a thumb. From the
association graph it is thus easy to establish the interpretation of a given model for the
data in terms of independence and/or conditional independence.

It should be noted that the association graphs for hypothesis H1 and the saturated
tion in terms of independence and conditional independence. An intuitive reason for this

model are identical. This means that the fact that 0 does not entail any interpreta-
is that, although the three variables do not interact jointly in terms of a three—factor
interaction, each pair of variables interact.

The most important hypothesis in a three—way table is H2, because the association
between two variables can then be explained by their associations with the third variable.
It is important to emphasize that H, does not not imply that A and B are independent.
This means that an acceptance of H2 based on the statistical analysis of a three—way con-
tingency table, does not entail that an independence hypotheses will be accepted based on
an analysis of the marginal two—way table of the two conditionally independent variables.

Under the saturated model the likelihood equations are

X = E[Xijk], i=1,...,.], j=1,...,J, k=1,....K.
with solutions :{ijkzxijk for the Poisson model and Bijkzxijk /n for the multinomial model.
When some of the interactions are zero, the likelihood equations are replaced by e-

quations of the same basic structure. Consider e.g. the equations under Hl‘ The log—likeli-

hood function for the Poisson model (5.2) is under Hl, where r‘?‘?gzo,
3 K A, B, C, AB, AC, BC
lnf(xul,...xUK) =1 E b xijk(1'0+ri+rj+rk+7'i it k+Tjk)
i=1 j=1 k=1
I J K
- =X % % In(x..!)
“* j=1j=1k=1 ijk
I J K
=X 7‘0+ ) X, TA+E x.rl?'+ Y x kTE+
=1 1 j=1 J0 ) mp v
I J I K J K I J K

+ 3 X xi.rl.m+ 2 2 x A4y 2 B0y -2 2 o3 ln(xijk!)'

i=1j=1 01 oy mp PROTR g oy ok Tk i=1 j=1 k=1
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From the linear form of this expression it follows that the sufficient statistics for the in-
teraction parameters and main effects in the model are the corresponding marginals of the

contingency table. The likelihood equations are thus the following set of equations

(5.13) x =E[X ]

(5.14) x, =E[X, ], i=l,..,-,

(5.15) x; =EBX,), j=L..1,

(5.16) x | =E[X ], k=l1,..K-L.

(5.17) x; = EX; ], i=lead-, j=1,.,0-1
(5.18) x = E[X. ], i=1,...J-1, k=1,....K-1.
(5.19) X 5 = EX 3, j=1,d-1, k=1,... K1,

The number of equations would have exceeded the number of free parameter, if all
equations up to indices i=I, j=J and k=K have been included. It is, however, easy to see
from table 5.1 that the total number of equations in (5.13) to (5.19) is also the number of
unconstrained log-linear parameters under Hl. Because, on the other hand, equations
(5.13) to (5.16) are all obtainable from equations (5.17) to (5.19) if the indices i, j and k

are allowed to run all the way to I, J and K, any solution to the equations
(5.20) X, = E[Xij_], i=1,...,1, j=1,...,d,

(5.21) x = EX ], i=1..L k=1,.. K,
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(5.22) X g = BIX 3l j=1,.3, k=1,..K.

will also be a solution to all the equations (5.13) to (5.19). Hence the ML—estimates are
usually found by solving (5.20) to (5.22) rather than (5.13) to (5.19) although there are
IJ+IK+JK equations in the latter system and only IJ+IK+JK-I-K—J+1 in the former.

This observation is general and shall be used extensively in the following. The rule is
as follows: Under a given hypothesis (or model) the likelihood equations are obtained by
equating the sufficient marginals for the interactions of highest order with their expecta-
tions. Sufficient marginals of lower orders are only set equal to their mean values, if such
marginals can not be obtained by summation over an already included marginal. Thus for
H, we do not need to include equations (5.13) to (5.16) because they can all be obtained
by summation from equations (5.17), (5.18) and (5.19).

Once it has been established that the likelihood equations are obtained by equating
observed and expected marginals, several consequences can be drawn. Firstly, a model or
a hypothesis can be uniquely identified by its sufficient marginals. Thus the statement:
"The model is log-linear with T’??S:O for all i, j and k", can equivalently be expressed

as: "The model is log-linear with sufficient marginals X X and x. ". This last

.Jk

statement can even be abbreviated if the symbols AB, BC and AC are used for the

marginals X0 X ik and X, Thus the model under H1 is uniquely identified by the symbol
AB, BC, AC.

For computer programs this way of identifying models and hypotheses is very convenient

and helpful.

Secondly the ML—estimates for the log—linear parameters need not in many cases be
computed. The test quantities, necessary to test various hypotheses, depend only on the
7's through the expected numbers, and the estimated expected numbers for a given model
can for many important models be expressed directly in terms of the sufficient marginals.

The sufficient marginals and the symbols for the hypotheses H1 to H7 are listed in

table 5.2 together with their interpretations in terms of independence and conditional

independence. Note the difference between the sufficient marginals for hypotheses H3 and
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HZ. Under hypothesis H, the marginal x, must be added to x i since x, cannot be de-

* . .
rived by summation over the x J.k's. For H " however, x ik alone is sufficient.

Table 5.2. Sufficient marginals, letter symbols and interpretations for the
hypotheses of a three—way table.

Hypothesis Sufficient Letter Interpretation
marginals symbol

H1 X % X AB,AC,BC -

H2 X 0%k AC,BC AeB|C

H3 X 0% BC,A AeB,C

HZ X . BC A®B,C; A=u
.jk

H4 X, ,X . ,X A,B,C AoeBo(C
1. .J ..k

H5 XXy B,C AoBoC; A=u

H6 X C AeBeC(C; A=B=u

H7 X - A=B=C=u

As an example of the use of table 5.2 consider H,. Under H,, the complete set of likeli-
hood equations is (5.13), (5.14), (5.15), (5.16), (5.18) and (5.19). But by the general rule
it suffice to find solutions to (5.21) and (5.22) since all of the equations in (5.13) to (5.16)
can be obtained by summations in (5.21) and (5.22).

The conditions for a unique solution of the likelihood equations are for the log—linear
parameterization extremely simple. It can be shown that an observed set of marginals is
on the boundary of the support if and only if one of the marginals appearing in likelihood
equations are zero. So a necessary condition for the existence of ML—estimates for the
parameters of a log—linear model is according to theorem 3.6A that none of the sufficient
marginals are zero. If the table contains zero counts, the situation is more complicated.
This situation is discussed in Haberman (1974), p.37-38 and appendix B. Tables with
zero counts or marginals are called incomplete tables. We return to this subject in chapter
7.

5.3. Hypothesis testing

As mentioned above we may either speak of a hypothesis or of a model. Thus the hypoth-
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esis H2 is equivalent with a log-linear model, where ABC—O and 7 .-—0 for all i, j

and k. When testing a given hypothesis it is important to state what alternative hypothe-
sis, it is to be tested against. For multi—dimensional tables, where there are many poten—
tial hypotheses to consider, it is especially important how the testing is planned and
carried out. For three—way tables the situation is still so relatively simple that common
sense arguments are often enough to determine what hypotheses to test and in what order
to test these hypotheses. In order to set the stage for some more general observations,
consider, however, the hypothesis H2, where the three—factor interactions as well as the
two—factor interactions between variables A and B are zero.

In order to derive a test statistic for H, consider model (5.1), where the log-likeli-

hood function is
I J K

+ ¥ ¥ ¥ x. lnp
i=1 j=1 k=1

n

InL =1n
[xlll""xIJK

Under the saturated model the ML—estimates are

Pijp = Xij/ B
while under H2

piJk = exp(r +‘r +‘r IC:+TAC+TBC)

Hiiel ™
where the uijk's are the estimated expected numbers.
According to (3.39) the log-likelihood ratio for the hypothesis H, against the satu-

rated model is then

I J K N
(5.23) Z(H,) = ~2lnr = 2 iil jEl kzl X, InX g g )-

In the saturated model there are IJK parameters, while the number of unconstrained
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parameters under H2 is
(I-1)(K-1)+(J-1)(K-1)+(I-1)+(J-1)+(K-1)+1 = K(I+J-1)
according to table 5.1. Hence Z(H2) given by (5.23) is approximately )(2—distributed with
df = DK-K(I+J-1) = DK-IK-JK + K
degrees of freedom, according to theorem 3.11. The test statistic (5.23) is called a good-
ness of fit test statistic for the model under H, as it is used to evaluate the fit of the mo-
del as contrasted to the saturated model. The test of H2 is thus against the alternative

that the pij's are unrestricted. For later reference we state the result as

I J K A
(5.24) Z(H2) =2 iil jEl k§.1 Xijk[lnxijk_ln”ijk]~ X2(df(H2)),
where
(5.25) df(H2) = (I-1)(J-1)(K-1)+(I-1)(J-1).

Here the degrees of freedom df( H2) for H, is written on the form which can be obtained
directly from table 5.1.

One of the important features of the analysis of contingency tables based on a log-li-
near parameterization is that hypotheses H1 to H7 (without H:, which we return to in a
moment) are hierarchical, i.e. each subsequent hypothesis is more restrictive than the
preceeding are. All interactions and main effects which are zero under H1 are e.g. also
zero under H2. This means that any property true under H1 will also be true under H,. It
also means that H, can be tested with H, as an alternative, and that a test of H, against
the alternative H1 is equivalent to a test of the hypothesis

H); rfi“J? =0, i=1,...,], j=1,...,J.
These considerations show that the hypothesis of two—factor interactions between vari-

ables A and B being zero is tested under the hierarchical structure as a test of H2 with H1
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as the alternative. The test statistic for this hypothesis can also be derived from theorem

3.11. Under H1 the model is log-linear with canonical parameters T?? , T?g, T?E, r‘:‘, r?,

T(lf and 7. According to table 5.1, there are IJK—(I-1)(J-1)(K-1) unconstrained log-li-
near parameters in this model. According to table 5.1 there are IJK—(I-1)(J-1)(K-1)
~(I-1)(J-1) unconstrained log-linear parameters under H,. This means that when H, is
tested with H, as the alternative, we are testing H, with (I-1)(J-1) parameters set to
zero, namely the unconstrained r‘? ?'s.

The test statistic is again most easily derived under the model (5.1). The log-likeli-

hood is under any hypotheses given as

I J K
+3X % X x‘jkln['uijk/n]’

1

InL = In n
i=1 j=1 k=1

X111 Xk

where ‘uijsz[Xijk]‘ Hence the log—likelihood ratio for testing H, against H, is equal to

I J K A
(5.26) Z(H,|H)) =2 iil jil ki 1 Xl 0fk 1o,

where ﬁijsz[Xijk] with the ML-estimates for the log—linear parameters under H, in—
serted and pijk:E[Xijk] with the ML—estimates for the log-linear parameters under H,
inserted. According to theorem 3.11, Z(H, | Hl) is then approximately )(2—distributed with

df(H, | H,) = (I-1)(J-1)

degrees of freedom, since of the unconstrained parameters under H,, (I-1)(J-1) are set

equal to zero under H, according to table 5.1. Thus in addition to (5.24), we have
2

The test statistics for other hypotheses have the same forms as (5.24) and (5.26). We may



147

collect the results in the following theorem.

Theorem 5.2
The goodness of fit test statistic for a hypothesis H expressable in terms of log—linear par-

ameter is

I J K N
: = _[InX.. —Ing,
(5.28) Z(H) 221 jil kil X, [InX, g,

jk]’
where ”ijsz[Xijk]’ estimated under H. The distribution of Z(H) is approximately

(5.29) Z(H) ~ (df(H)),

where df(H) is the number of log—linear parameters set equal zero under H. The test sta-
tistic for H against an alternative hypothesis H A also expressable in terms of log—linear

parameters, is

I J K A
(5.30) Z(H|H,) = 212 1 jEl kE 1 X Inf sy,

where ,Tlijsz[Xijk], estimated under H , . The distribution of Z(H|H A) is approximately
2
(531 Z(H|H,) ~ Y*(di(H|H,)),
A A

where df(H|H ) is the difference between the number of unconstrained parameters set

equal to zero under H and the number set equal to zero under H A Finally

(5.32) Z(H|H,) = Z(H)-Z(H,,).
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Proof:

Consider in this case the model (5.2). The log-likelihood function is here equal to

(5.33) lnf(xlll""’xIJKI"111"""\IJK)
1 J K 1 J K
=2 T Exglnd,—d -% I Ela(x,))
i=1 j=1 k=1 ¥ " i=1j=1k=1 Y

The transformed likelihood ratio is then

z(H) = —2Inr = —2Inf(x X

"IJK) +2lnf(x111,...,qulell,...,

Xkl Ao k)
where A... is the ML—estimate for \.. under H and X.. is the ML— estimate for .., in the
ijk ijk ijk ijk

saturated model. Since X.. =x..
ijk ik

1 J K
ZH)=2[% £ %x, lnA -,\ ]
i=1 j=1 k=1 ¥

+2[2 5 % xlnx.

i=1 j=1 k=1 K ik

Since, however, x =E[X ]=1 , whatever equations (5.14) to (5.19) are included in a
ML-estimation of the parameters and A iik u ik (5.28) follows. The distributional result
(5.29) is a direct application of theorem 3.11. The result (5.31) is also a consequence of

theorem 3.11, and equation (5.32) follows directly from (5.28) and (5.30).[_]

For later reference table 5.3 summarizes the number of degrees of freedom for the
approximate )(2-distributions of the goodness of fit test statistics for the hypotheses H, to
H7. These numbers can be obtained from table 5.1 by adding the number of parameters

set equal to zero under a particular hypothesis. The number of degrees of freedom not
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found in table 5.3 are obtained by interchanging the indices i, j and k.

It is time to say a few words about H:, which is parallel to H 4 in the sense that
H5CHZCH3. Thus the following test statistics make sense Z(H,|H,), Z(H,|H,), Z(H:|H3)
and Z(H5|H:). On the other hand Z(H 4IH:) and Z(Hle ,) does not make sense, since
neither H 4 testet against HZ nor H: tested against H 4 are tantamount to setting a set of

log—linear parameters equal to zero.

Table 5.3. Degrees of freedom for the approximate x2—distribution of

Z(H)
Hypothesis Parameters set Number of degrees of
equal to zero freedom for Z(H)
ABC '
H1 ik =0 (I-1) (J-1) (K-1)
ABC __AB _ 1) (J—
H, Tk =Ti =0 (I-1) (J-)K
ABC __AB _ AC _ _ —
H, Tk =T =7 =0 (I-1) (KJ-1)
* ABC __AB _ _AC__A_ .
H, Tijk_Tij"Tik'Ti"O KJ(I-1)
ABC __AB _ _AC__BC_ i i
H4 ik =Tig ik'Tjk"O IKJ-I-JK+2
H5 all above plus ré =0 IKJ-J-K+1
H6 - - 7—“.& = 7'1_3 =0 IKJ-K
i
A_B_ C_ _
H, - - -—Ti-—Tj—Tk—O IKJ-1

Because of the constraints (5.4) to (5.6) the values of the main effects T‘? for variable
A are influenced by the values of the interactions T?? and T‘?‘E, which both relate to vari-

able A. This means that it is meaningsless to test the hypothesis T?=0 in a model, where

neither ‘r“.u? nor TAC
ij ik

The analysis of a given observed three—way contingency table can be carried out in

vanish.

many different ways. Since all tests are based on the Z(H)'s and their differences, one idea
is to make a list of the observed value of Z(H) for all possible hypotheses, i.e. not only H,
to H, of table 5.3, but also the hypotheses obtained by exchange of indices, for example
the hypotheses corresponding to the symbols (AB,BC), (AB,C) or (AC). From such a list

one gets a first impression of what models are likely to fit the data. It is important to
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avoid tests at a given level for all the hypotheses in this list, since the hypotheses can not
be tested independently. Even if all the test statistics are independent, the probability of
rejecting at least one correct model is much larger than a, when all test are carried out at
level a. To see this let Zl...,Zm be m independent test statistics for Hl""’Hm with critical

regions lecl,...,ZmZCm, and let
.>2¢c.|H) =uea.
P(ZJ > cJ]HJ) a
Then the probability of incorrectly rejecting at least one correct hypothesis is

P(ZJ. > ¢ for at least one j|H,,...,H

m

=P(U{Z;> cj}) =1-P(0{Z; <c}) = 1—(1-e)™.
] ]

If thus @=0.05 and m=8, we reject at least one correct hypothesis with probability 0.337.
There is a rich litterature on what to do in this situation. Generally the situation is

known as a case of multiple test procedures. There are two very simple procedures which

are easy to understand and apply. One procedure is known as the Bonferroni procedure. It

is based on the simple fact that if
> =
P(Zj > cj}Hj) a/m
for all j, i.e. if all tests are carried out at level ¢/m, then by the Bonferroni inequality

P(Zj > ¢ for at least one j) < EP(ZJ. > CjIHj) = me/m = a,
i

whether Z Zm are independent or not.

1,",
The Bonferroni procedure thus gives us a guarantee that the maximum overall level
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is less than or equal to a.
Holm (1979), see also Schaffer (1986) and Hommel (1988), has improved the Bon-
ferroni procedure by introducing the sequential procedure described in fig. 5.3, where
i > < > <..< > .
Z(l), ,Z(m) is ordered such that P(Z(l)_z(l))_ P(Z(z)_z(z))_ _P(Z(m) > z(m)) The se-
quential Bonferroni procedure will apart from very trivial cases lead to tests which are

more powerful than the Bonferroni procedure and the increase in power can be substantial

as shown by Holm (1979).

Start

If P(Z(l) > 2(1))> -2, accept gyl

If not reject H(l) and continue.

|

If P(Z(2) > 2(2))> ﬁ, accept H(2)""’H(m)

If not reject H(2) and continue.

!
!

If P(Z(m) > z(m)) > a, accept H(m)

If not continue.

RejeCt H (Il'l)

Fig. 5.3. The sequential Bonferroni procedure.
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In some cases it is possible to determine a priori a hypothesis which is likely to hold. In
such cases one may test this hypothesis directly through the test statistic (5.28). Suppose,
for example, that we are fairly convinced that the three— factor interactions and the two—

factor interactions between variables B and C are zero. We can then test

H2: T’??S = T?E =0
by estimating the expected numbers under H2, where the sufficient marginals are AB,
AC, and compare the observed value of (5.28) with a f—distribution with
df=(I-1)(J-1)(K-1)+(J-1)(K-1)
degrees of freedom.

It is, however, relatively seldom that a likely final hypothesis can be formulated di-
rectly. The best thing to do is then to set up a sequence of hierarchical hypotheses by
determining which interactions are likely to vanish first. It may e.g. be more likely that B
and C interact than A and C and more likely that A and C interact than A and B. The
hypotheses Hl’Hz’Hs and H 4 of table 5.2 should then be tested in that order. When a
hierarchical order can be determined the relevant test statistics are (5.30). In the
examples below it is shown how the testing is carried out and how different results are
interpreted. Tables 5.5 and 5.9 thus shows the listing of z(H) for all possible hypotheses
and tables 5.6 and 5.10 the test statistics hierarchically ordered.

Before we proceed to the examples, it remains to show how the expected numbers
necessary for the test statistics (5.28) and (5.30) are computed. As mentioned above, it is
often unnecessary to compute the ML—estimates of the log—linear parameters in order to
obtain values of the expected numbers, As one example consider hypothesis H 4 Accord-

ing to theorem 5.1 and (5.9), we have under H 4

2
Mige = DP=0P; P oD (= p (/0"
Under H 4 the likelihood equations are, however,

X, =g i=1,...,1,



and

I k=1,...,K.

It follows that Hiik under H 4 18 given by

A
2
sk

= xi..x.j.x..k/ n-.
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For the hypotheses H2 to H7 the expected numbers are listed in theorem 5.3. In order to

cover all models, n is written as x .

Theorem 5.3.

The expected numbers s 3T under hypotheses H2 to H7 estimated as

Hy' e = X0 /% )

A

Hy gy = x.jkxi../x...

A

o~ 2
Hypg = xi..x.j.x..k/ X

Proof:

The expression for H 4 Was proved above. For H2, we get from (5.10)

Hige = 0Py = (mp;  )(mp o)/ (np ) = oo B o
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for which the expression for H, follows when the sufficient marginals under H, are in-

serted in place of the u's.

Under H,, FABC TAB "}C—O for all i, j and k. But then

x jk
b= exp(‘ro+7' +TC+TBC)E exp(r )
B = exp(r +77, )22 exp(r +TBC)
1.. ik ik
and
To A
p =e Zexp(r,)Lt exp(r +T +r ),
cee i 1 Jk
such that

Moo = By 1

Hence when the ML-estimates for the p's are replaced by the sufficient marginals under
H3, the expression for H3 follow. The expressions for H5 is obtained by setting x, =x /1
in H o the expression for H, by setting X ;=X /J and X, =X /Tin H 4 and finally the

expression for H, by setting x, =x /I, X, =x /Jandx ,=x [KinH,. -

The necessary computations for solving the likelihood equations are carried out by
means of standard statistical computer packages like SPSS, BMDF, GENSTAT or SAS.

From theorem 5.3 follows that there are explicite solutions to the likelihood equa-
tions for all models except H,, where the likelihood equations are (5.20), (5.21) and
(5.22). These equations are in almost all computer programs solved by the method of iter-
ative proportional fitting, described in section 3.6. Let “ci’jk be initial estimates for the ex-

pected values. Then improved estimates u ik p and ”?jk in iterations 1, 2 and 3 are

ijk
obtained as
X..
1 _ o ij.
ik = HFix o
ij.
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2 1 Xk

Bia =B T
jk ijk 1
Bix

X
3 _,2 L
Pige = HFigx 2
.jk
At iterations 1, 2 and 3 the p's are thus adjusted to satisfy (5.20), (5.21) and (5.22) res-
pectively. These three steps are repeated in iterations 4, 5 and 6 and so on. When the
expected values do not change within the required accuracy in three consecutive itera-

tions, the iterations are stopped and the ML—estimates found.

Example 5.1.

In 1968, 715 blue collar workers, selected from Danish Industry, were asked a number of
questions concerning their job satisfaction. Some of these questions were summarized in a
measure of job satisfaction. Based on similar questions the job satisfaction of the su—
pervisors were measured. Also included in the investigation was an external evaluation of
the quality of management for each factory. Table 5.4 shows the 715 workers distributed

on the three variables

A: Own job satisfaction
B: Supervisors job satisfaction

C: Quality of management.

In table 5.5 the observed values of the goodness of fit test statistics (5.28) are shown
for all hypotheses, which can be ordered hierarchically. The levels of significance
P(Z(H)>z(H)) are computed in the approximating xz—distribution. In the table the hy-
potheses are identified by their sufficient marginals, as well as with the H-notations used
earlier. An H in a parenthesis means, that the hypothesis is obtained from one of the hy-

potheses introduced in the start of section 5.2 by an interchange of indices.
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Table 5.4. Own job satisfaction, supervisors job satisfaction and the quality of
management for 715 blue collar workers in Denmark in 1968.

Quality of Supervisors Own Job
management job satisfaction satisfaction
Low High
Low 103 87
Bad High 32 42
Low 59 109
Good High 78 205

Source: Petersen (1968), table M/7.

Table 5.5. Observed values of the goodness of fit test statistic for all relevant
hypotheses for the data in table 5.4.

Hypothesis Sufficient z(H) df (H) Level of
marginals significance
H, AB, AC, BC 0.06 1 0.800
(1) AB, AC 71.90 2 0.000
(1) AB, BC 19.71 2 0.000
H, AC, BC 5.39 2 0.068
() AB, C 102.11 3 0.000
(H,) AC, B 87.79 3 0.000
B, BC, A 35.60 3 0.000
(I,) AB 151.59 4 0.000
(H,) AC 87.79 4 0.000
K, BC 76.89 4 0.000
H, A, B, C 118.00 4 0.000
(H,) A, B 167.48 5 0.000
() A, C 118.00 5 0.000
h B, C 159.29 5 0.000
() A 167.48 6 0.000
(H,) B 208.77 6 0.000
B C 159.29 6 0.000
H - 220.00 7 0.000
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The first impression from table 5.5 is that the three—factor interaction vanish, while
of the three two—factor interactions the one between A and B is most likely to be zero. If
a set of hierarchical hypothesis were to be set a priori, it is likely that the sequence exhi-
bited in table 5.6 would have been chosen. The observed test statistics in table 5.6 are
obtained from the values in table 5.5 by substractions.

The most restrictive hypothesis, which can be accepted is thus H2 with sufficient

marginals AC and BC. The interpretation of the corresponding model is shown in fig. 5.4.

A: Own satisfaction

C: Quality of
management
B: Supervisors
satisfactions

Fig. 5.4. The interpretation of the least restrictive model fitted to the data of tabel 5.4.

Table 5.6. Observed test statistics under hierarchical testing for the data of table 5.4.

Hypothesis Sufficient Interactions z(H|HA) df  Level of
marginals set to zero significance

ABC _

H, AB, AC, BC Tijk = 0 0.06 1 0.800
AB _

H, AC, BC Tij‘o 5.33 1 0.022
AC _

Hz BC, A T =0 30.21 1 0.000

B, BC A - 41.29 1 0.000

The sequential Bonferroni procedure works well on table 5.5. In table 5.5 there are 18
hypotheses. Hence we start with the smallest level of significance and compare with
0.05/18=0.003 for overall level a=0.05. As can be seen the first 16 comparisons lead to re-
jection of all hypotheses except H1 and H,. The second largest level of significance is
P(Z(H,)25.39)=0.068. This is larger than 0.05/2. Hence H, is accepted and consequently
also Hl. It thus seems that we have reached a plausible result, which coincides with the

conclusion reached above.
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Verbally we may claim that the quality of management rather than the job
satisfaction of the supervisor influence the job satisfaction of the worker. That the job
satisfaction of the worker is only independent of the job satisfaction of the supervisor,
conditionally on the level of management quality, can be seen by analysing the marginal
table between variables A and B shown in table 5.7. A test of independence in this table,
using the transformed log—likelihood ratio test statistics gives

z = 15.89, df=1,
such that the variables A and B are not independent, when variable C is not taken into

consideration.

Table 5.7. Marginal contingency table for workers and supervisors job satisfactions.

Job satisfaction Job satisfaction
of supervisor of worker
Low High
Low 162 196
High 110 247
Example 5.2.

The Swedish traffic authorities investigated in 1961 and 1962 on a trial basis the possible
effects of speed limitations. In certain weeks a speed limit of 90 km/hour was enforced,
while in other weeks no limits were enforced. Table 5.8 shows for two periods of the same
length, one in 1961 and one in 1962, the observed number of killed person in traffic acc-

idents on main roads and on secondary roads.

Table 5.8. Persons killed in traffic accidents in a periods of length 18 weeks in
1961 and 1962.

Year  Speed Main Secondary
limit roads roads
90 km/hour 8 42
1961
Free 57 106
90 km/hour 11 37
1962
Free 45 69

Source: Unpublished data from the Swedish Traffic Authorities.
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The goodness of fit test statistics for all models are shown in table 5.9. The notation

is as in table 5.5, and the three variables are labeled

A: Year
B: Speed limit

C: Road type
Based on a priori knowledge it is most reasonable to expect that it is mainly road type

that influences the effect of speed limits and that there is probably no major differences

between the two years considered. For these reasons, the sequence of hierarchical tests

shown in table 5.10 was chosen.

Table 5.9. Goodness of fit test statistic for all relevant models and the data in table 5.8.

Hypothesis Sufficient z(H) df Level of
marginals significance
H, AB, AC, BC 0.19 1 0.660
(H,) AB, AC 11.36 2 0.003
(1) AB, BC 1.34 2 0.513
B, AC, BC 2.44 2 0.295
(1) AB, C 12.05 3 0.007
(H,) AC, B 13.16 3 0.004
B BC, A 3.13 3 0.372
(H,) AB 60.27 4 0.000
(H,) AC 102.19 4 0.000
H, BC 10.09 4 0.039
, A, B, C 13.85 4 0.008
() A, B 62.06 5 0.000
(H,) A, C 102.88 5 0.000
B B, C 20.81 5 0.001
(Hy) A 151.09 6 0.000
(1) B 69.02 6 0.000
H C 109.83 6 0.000
H - 158.04 7 0.000
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The conclusion of the analysis is thus that there is an interaction between road type
and speed limits, such that the drop in number of total traffic accidents, obvious through-
out the table, depends on the road type considered. The trend is that more accidents are
prevented on main roads, when a speed limit is enforced. It is natural in this case to test
HZ rather than H, against H3. We might namely be interested in testing that the accident
level is the same in 1961 as in 1962 whether there is an interaction between road type and
speed limitation or not. As it turns out HZ is rejected, so the least complicated model
which fits the data in a satisfactory way, is the one corresponding to H3 with interpreta-

tion illustrated in the association graph figure 5.5.

Table 5.10. A sequence of hierarchical tests for the data in table 5.8.

Hypothesis Sufficient Interactions  Z(H| 1,) df  Level of
marginals set to zero significance
H, AB, AC, BC r’??%o 0.19 1 0.660
(H,) AB, BC 490 1.15 1 0.270
H, BC, A r’}lj?:o 1.79 1 0.084
K, BC =0 6.96 1 0.009
H, B, C %<0 10.72 1 0.001
jk
() B =0 48.21 1 0.000
H - r‘;’eo 89.02 1 0.000
A: Year
[
B: Road type

Fig. 5.5. Ass&ciation graph for the least complicated model, which describes the data in
table 5.8.
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In order to apply the sequential Bonferroni procedure on the data in this example,
the levels of significance in order of magnitude and the corresponding limits a/(m+1-j)
are for a=0.05 shown in table 5.11. From this table it is seen that all hypotheses are rejec-
ted except those with sufficient marginals: (AB,AC,BC),(AB,BC),(AC,BC),(BC,A), and
(BC).

Table 5.11. The hypotheses of table 5.9 ordered according to increasing level of
significance and the adjusted levels a/(m+1-j), m=18.

Hypothesis Sufficient Level of 0.05/(m+1-j)
marginals significance
RS _ 0.000 0.003
2 Hg C 0.000 0.003
3 () B 0.000 0.003
4 (@) A 0.000 0.003
5 ()  AC 0.000 0.004
6 (i) AB 0.000 0.004
T (H) AC 0.000 0.004
8 (H) B 0.000 0.005
9 g B,C 0.001 0.005
10 (H)  AB,AC 0.003 0.006
11 (Hy)  AC,B 0.004 0.006
12 (Hy)  AB,C 0.007 0.007
13§, A,B,C 0.008 0.008
14 H, BC 0.039 0.010
15 K, AC,BC 0.295 0.012
16 H, BC, A 0.372 0.017
17 (H)  AB,BC 0.513 0.025
18 H AB,AC,BC 0.660 0.050

*
This result coincide with the result above except as regards H " which is accepted by a se-
quential Bonferroni procedure.
A uniform distribution over the categories of variable A means that there on the

average were as many accidents in 1961 as in 1962.
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The estimated log—linear parameters of the model BC,A are

“BC _ “BC _
TI1= Tos =-0.221

TBC = TBC =4 0.221

127 '21
™ = 40137, A = 0137
= 0619, ™ = + 0619
7 = ~0.491, 75 =+ 0491
7,= 3.533

These estimates can be derived directly from the likelihood equations, and it is instructive
to do so. The likelihood equations corresponding to sufficient marginals BC are

BC _
X7 = ElX gl
or
TA
_ “BC,”B,C,"” i
19 = exp(ry [+7,+7/+7) Zi)e

“A
_ “BC "B ~C * Ti
79 = exp(rl2+rl+r2+r0) Xile
’;A
_ “BC,”B,7C," i
102 = exp(r21+r2+r1+ro) Eile
~A
r

_ “BC,”B,7C " i
175 = exp(7y g + 7, +7,+7)) Zi)e .

These equations imply that

A A A
BC _ _"B_"C
T”—lnlg—c T, — T,
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“BC _ __T™B_"C
Tig = In79 — ¢ T =T,
“BC _ “B °C
To1 = In102 —¢ Ty = T;
“BC _ “B_“C
Tog = In175 — c— Ty~ To

where c is a common value. Since, however,

A A, A,
¢ BC BC C——T +7 —7(1)+T(23=0,

BC +rB +r +rB

+ 7_BC BC

it follows that
= 7(In19+n79) = 3.657,

¢ + 75 = 3(In19+1n102) = 3.785
~C

A
and from the similar equations involving r? and 7,

= 7(In19+1n79+1n102+1n175) = 4.276.

Hence
)= ~0.619
= —0.491
and consequently
1 1 = —0.222.

The estimate for r? is obtained from the equations

x, = exp(r +7- )EEexp( BC+TB+TC)
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corresponding to sufficient marginals A, or

213 = exp(ri+7,) - 5.318
and

162 = exp(A+7) - 5.318

From T";‘+ Tg=0 follows then than

7, = 5 (In213+1n162)-In(5.318) = 3.553
such that

= 0.137.
The estimates of the two—factor interactions 7}1.3(13 show that the speed limitations as ex-
pected has had the largest effects on the main roads in Sweden since 7']13 (1:<0 indicates that
there have been significantly fewer killed in the traffic than expected under a speed limi-
tation on main roads. The positive value of TAI‘, which is slightly significant, indicates that

there as a whole has been slightly more killed persons in 1961 than in 1962. A.

5.4. Decomposition of the test statistic
The additive form of the test statistic (5.28) allow us to decompose selected test statistics
in order to further illustrate the interpretation of the models under consideration. As one

example consider the test statistic for H2 with

A

B = xi.kx.jk/ X x

according to theorem 5.3. Decomposed according to the value of k, Z(Hz) can be written

as

I J N I J A
(5.34) Z(H,) = 251 jgl Xmm(xijl/“ijl)*--~+2i§1 j§1 X% e/ )

For a given k,
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A

Pige = xi.kx.jk/x..k’ i=1,...,I j=1,....J,

are, however, the expected numbers under independence in the IJ cells in the k'th layer of
the table. Z(H2) is thus the sum of K test statistics for independence in the conditional
contingency tables given the levels of variable C. The terms in (5.34) are independent and
each approximately xz—distributed with (I-1)(J-1) degrees of freedom. Hence approxima-

tely
Z(H,) ~ x*(K(1-1)(J-1),

in accordance with table 5.3. The decomposition of (5.34) shows that the test statistic for
H, based on K(I-1)(J-1) degrees of freedom, is composed of K test of independence be-
tween variables A and B each with (I-1)(J-1) degrees of freedom.

This way of deriving Z(Hz) does not reveal, however, the alternative decomposition
Z(H,) = Z(H,) + Z(H,|H,),

which correponds to successive tests of the H, and H,. The number K(I-1)(J-1) can thus
be divided in two ways: Under the latter decomposition the degrees of freedom are di-

vided as
K(I-1)(J-1)=(I-1)(J-1)(K-1)+(I-1)(J-1)

corresponding to a test of H followed by a test of H, given H,. Under the former decom-
position the degrees of freedom are divided as

K(I-1)(J-1)=(I-1)(J-1)+...+(1-1)(J-1)
corresponding to independence tests in each layer of the contingency table. Which one of
the decomposition one choose to consider depends on what alternatives H2 are compared
to. The advantage of the decomposition (5.34) is, that if H2 is rejected, the single terms in

(5.34) may indicate that an independence hypothesis holds in some layers of the table.
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Example 5.3.
In 1974 the Danish National Institute for Social Science Research investigated 1314 em-
ployee's who left their job during the second half of the year. The lay—offs were cate-

gorized according to three variables

A: Employment status on January 1st. 1975.
B: Cause of lay—off.

C: The length of present employment at time of lay—off.

Table 5.12 shows the three—way contingency table formed by these three categorical vari-
ables. The observed values of the test statistics in table 5.13 show that there does not
seem to be any simple interpretation of the table in terms of independence, or conditional

independence.

Table 5.12. Employment status on January 1st.1975, causes of lay—off and length of
employment at time of lay—off for 1314 employee's who lost their job in the
fall of 1974 in Denmark.

Employment status on
January 1st, 1975

Length of Cause of Got a Still
employment lay—off new job unemployed
Less than Closure etc. 8 10
1 month Replacement 40 24
1-3 Closure etc. 35 42
months Replacement 85 42
3-12 Closure etc 70 86
months Replacement 181 41
1-2 Closure etc. 62 80
years Replacement 85 16
2-5 Closure etc. 56 67
years Replacement 118 27
More than Closure etc 38 35
5 years Replacement 56 10

Source: Kjeer (1978). Table 4.8.
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Table 5.13. Selected observed test statistics for the data in table 5.12.

Model Test Statistic df Significance
probability

AB, AC, BC 9.01 5 0.108

AB, BC 24.63 10 0.006

AC, BC 165.92 6 0.000

AB, AC 64.62 10 0.000

The decomposition (5.34) with respect to variable B for the data in table 5.12 takes
the form
24.63 = 1.44+23.19

The term 1.44 corresponds to a test of independence between variables A and C given
level 1 of variable B and the term 23.19 corresponds to a test of independence between
variables A and C given level 2 of variabel B. Both terms in (5.34) are in the present si-
tuation xz—distributed with five degrees of freedom. Hence only 23.19 is significant. Thus
we cannot conclude that

AeC|B,
but we may safely conclude that

A e C|B(1),
i.e. A and B are independent given level 1 of variable B. The interpretation of the table is
thus that there is a dependency between length of employment and the chance of getting
a new job immediately, if the cause of the lay—off is a replacement. If the cause is a clo-
sure, this dependency is not manifest in the data. This conclusion can be sharpended, as

we shall see by means of analysis of residuals in section 5.5. A

5.5. Detection of model departures
There are many models of interest, which do not correspond to any of the hypothesis H 1
to H7 or their equivalencies. It may thus be an important model to consider that variables
A and B are independent for certain levels of variable C, although not for all.

As diagnostics for model departures two sets will be suggested here, standardized

residuals and standardized estimates of log-linear parameters. As regards alternative
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diagnostics, cf. Kotze and Hawkins (1984). The residuals are defined as

i = X~ Higo

where l/;ijk is uijsz[xijk] with the ML—estimates for the 7's under the given model in-
serted. The variance of dijk depends on which 7's are set equal to zero. In addition the 7's,
which are non zero under the model, have to be replaced by estimates.

For a three—dimensional table, there exist simple approximations for the variance of
dijk except for the model AB, BC, AC. Table 5.14 is due to Haberman (1978), p.231. It
shows approximations to the variances of the residuals Xk for all hypotheses except
Hl‘ The standardized residuals are defined as

A A

(5.35) Lk = (i) T

i k-
Some computer programs provide exact or approximate expressions for (5.35) with

/\2 A
with ¢%, =var[x.
ijk

A

aijk estimated under the chosen model. Based on a table of the standardized residuals
(5.35) it is possible to determine what cells of the table contribute significantly to the

lack of fit.

Example 5.3. (Continued)

An analysis of the standardized residuals for the model AB,BC applied to the data in
table 5.12, shown in table 5.15, reveals that the conclusion A®C|B(1) can be sharpended.
We immediately notice that only the residuals for levels 1 and 2 of variable C have value
significantly different from zero. This suggest that the model AB, BC may fit the data, if
levels 1 and 2 of variable C, i.e. all employee's which have worked less than 3 months at
the present employer, are omitted from the analysis. This can be illustrated by table 5.16,
which shows the test statistics for the models of table 5.13 without levels 1 and 2 of

variable C. It can thus be further concluded from the analysis of the data in table 5.12,
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that there is independence between the chance of getting a new job soon after the lay—off
and the length of employment, if the employee has been employed more than 3 months at

the time of lay—off. &

Table 5.14: Approximate estimated variances for the residuals .

Hypoth— Sufficient var[)(le uuk]
esis marginal
H, AC, BC Mg /%) (1% g /x )
H, BC,A g (1= /) (1%, /n)
* A 1
H, BC ”ijk(l_x.jk/n)(l—[)
H, 4,8,C 1_|k(1 i .j./“2—x.j.x..k/“2“xi..x..k/“2+2xi..x.j.x..k/“g)
i, B,C i (1= ]j(l—x [m)(1=x_, /n))
oy © g (1= 71)
6 ijk I
B, - i (1= 1)
7 ijk TJK

Table 5.15. Standardized residuals for the model AB, BC and the data in table 5.12.

Employment status

Length of Course of Got a Still
employment lay—off new job unemployed
Less than Closure etc. -0.11 +0.11
1 month Replacement -3.12 +3.12
1-3 Closure etc. 0.04 +0.04
month Replacement -3.29 +3.29
3-12 Closure etc -0.23 +0.23
month Replacement +1.55 -1.55
1-2 Closure etc. -0.55 +0.55
years Replacement +1.63 -1.63
2-5 Closure etc. -0.04 +0.04
years Replacement +1.12 -1.12
More than Closure etc +1.17 -1.17

5 years Replacement +1.42 -1.42




170

Table 5.16. Test statistics for the models of table 5.13, if levels 1 and 2 of
variable C are omitted.

Model Test Statistic df Level of
significance

AB, AC, BC 0.52 3 0.914

AB, BC 2.19 6 0.902

AC, BC 154.96 4 0.000

AB, AC 18.46 6 0.005

Instead of looking at the residuals, one may study the estimates of the log-linear
parameters. According to theorem 5.1 two variables are independent, or conditionally
independent, if all two—factor or higher order interactions involving the variables are zero.
An inspection of the estimated interactions can thus reveal why an expected independence
does not materialize. In order to obtain a correct evaluation of the significance of a given
estimated interaction, the corresponding parameter estimate must be standardized. Consi-

der thus e.g.

(5.36) AP = r??/l var[r’i“j3 ,

J

A A A
where var[r‘??] is the variance of r??

with the estimated values of the 7's inserted. The
exact expression for var[;??] is rather complicated, but approximations are available,
which are valid if the limiting X2—distribution of the test statistic is valid. One possibility
is to apply theorem 3.7 according to which var[;’;‘?] is a diagonal element in the matrix
n'M. Most computer programs provide both estimates of the log—linear parameters and
standardized estimates (5.36) of the log—linear parameters. Since by theorem 3.7 the
ML-estimates for the :;‘?? are asymptotically normally distributed with mean 0 under the
model,

(5.37) &‘.”j.’ ~ N(0,1).



171

Hence the two—factor interaction r‘:‘? may be said to contribute significantly to the lack

of fit, if

(5.38) |&‘;“J?| > 2,
since this event under the hypothesis T??=0 has approximate probability 0.05. Great care
should be exercised if this rule is applied too strictly. Firstly, the 2}‘;‘]].3'3 are not inde-
pendent, such that the different standardized estimates cannot be evaluated independent-
ly of each other. Secondly, one in every 20 values of (5.38) should on the average exceed 2
even were the :)’??'s independent. None the less a table of the ;’??'s combined with the
rule (5.38) is helpful to determine which of the r’:‘?'s are different from zero if the value
of the test statistic makes it likely that not all are zero.

It should finally be noted that r‘?? is an additive term in the exponent of the expres-

sion
AB
P = E[xijk] = exp{..+7" j+...},

such that the expected numbers in cell (i,j,k) is relatively larger when r‘?ljg)o than when

A
1)

action indicates a positive covariation between the two variables in question.

0, and relatively smaller when r‘??<0. Hence a positive value of a two—factor inter-

Example 5.4.

Consider the data in table 5.17 showing the non-response for a survey in Denmark in

1965.
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Table 5.17. The non—response for a Danish survey in 1965 distributed according to
sex and residence of the sampled person.

Sex

Residence Response Male Female

Yes 306 264
Copenhagen

No 49 76

Yes 609 627
Cities outside
Copenhagen No 77 79

Yes 978 947
Countryside

No 103 114

Source: Unpublished data from the Danish National Institute for Social Research.

Table 5.18 shows some of the possible models and their test statistics. The most res-

trictive model to fit the data thus seems to be BC with
A: Sex
B: Response or non—response
C: Residence

Table 5.18. Test statistics for selected hypotheses for the data in table 5.17.

Model Test df Level of
Statistic significance

AB, AC, BC 5.38 2 0.068

AB, BC 6.29 4 0.178

A, BC 10.27 5 0.068

BC 10.32 6 0.112

B,C 39.26 8 0.000

The standardized ML—estimates ;?g for r?g are
"BC _
ik k=1 2 3

j=1 ~5.378 +2.101 +4.022
j=2 +5.378 ~2.101 —4.022
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All these values are significantly larger than 2, such that the conclusion, that the

TBC'
ik

tween k=1 and k=2,3, or between the Capital, and the rest of Denmark.

s are not all zero, is confirmed. We note, however, that the great difference is be-

As a final model, one may, therefore, consider a model, where variables B and C are
independent if only persons outside Copenhagen are included.
The 2x2 contingency table formed by variables B and C, without level 1 for variable
C is shown in table 5.19. The test statistic for independence in this table is
z =052, df=1,
which is not significant. The hypothesis suggested by the standardized ML—estimates is
confirmed and the rate of non—response is outside Copenhagen the same in the cities and

in the countryside. .

Table 5.19. Response and non-response for the cities outside Copenhagen and the

countryside.
Residence Response
Yes No
Cities outside
Copenhagen 1236 1925
Countryside 156 217

5.6. Exercises

5.1. In 1973 a group of elderly in the city of Odense in Denmark were divided into groups.
The persons in the E—groups were offered special help in their homes, while such help was
not offered to the persons in the C—group. For each quarter in 1973, 1974, 1975 and 1976
was then reported how many of the elderly, who had to leave their homes to go to special
care centers.

(a) Formulate a model for the data, which allows for a comparison of the E— and

C—groups.
(b) Does the number who move to a care center from the two groups depend on the year

or the season.
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Number moved to care center from

Year Quarter E—group C—group
1 5 3
2 3 3
1973 3 2 8
4 7 6
1 9 2
2 9 20
1974 3 7 7
4 8 7
1 7 14
2 8 12
1975 3 4 11
4 5 6
1 7 7
2 8 8
1976 3 9 20
4 6 6

(c) Does it matter for the analysis that the sizes of the E—group and the C—group are

not reported.

5.2. The table below is from the Danish Welfare Study. It shows the number of persons in
the sample, for which the social rank is reported, cross—classified as renters/owners and

according to ownership of a freezer.

Social Renter Owns a freezer
rank or owner
group Yes No
I+1I1 Renter 304 38
Owner 92 64
111 Renter 666 85
Owner 174 113
IV Renter 894 93
Owner 379 321
N Renter 720 34
Owner 433 297

(a) Carry out two iterations of the marginal proportional fitting procedure, with all
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initial expected values equal to 297.31, for estimating the parameters of the model,
where only the three—factor interaction is zero.
(b) Carry out a number of tests in order to find a reasonable model to fit the data.

(c) Give an interpretation of the model and estimate its parameter.

5.3. In 1975 the connection between high school average (K) and the performance after
the first year of studying economics at the University of Copenhagen was investigated.
The table shows the number of economy students, who passed and failed after 1 year of

study in 1971, 1972, 1973 and 1974 cross—classified with the high school average in six

intervals.

High school Year Passed Failed

average

K<7.0 71 8 24
72 8 19
73 7 20
74 10 29

7.0<K< 7.5 71 24 21
72 18 17
73 10 30
74 21 30

7.5 <K< 8.0 71 13 16
72 25 26
73 23 24
74 16 24

8.0<K<8.5 71 15 13
72 9 22
73 24 16
74 17 15

8.5<K<9.0 71 15 15
72 8 9
73 16 10
74 16 11

9.0<K 71 14 8
72 12 7
73 6 10
74 13 8

(a) Describe the data in table by a suitable log—linear model.
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(b)
()

54.

Interprete the parameters of the chosen model.

The investigators were especially interested in the connection between high school
average and the chance of passing the examen. Which of the parameters cast light
on this connection and in what way?

It is common wisdom among students and teachers that the chance of passing after
one year is 50%. Does the data support this claim? Can the 50% claim in

any way be modified or improved?

In a study among persons between age 50 and age 66, the sample size was cross—

classified according to type of dwelling, sex and marriage-status. The table shows the

resulting contingency table.

Dwelling
Marriage
Sex status Apartment House Farm
Married 30 32 5
Male Not married 64 229 14
Married 68 41 5
Female Not married 76 193 44

(a)

5.5.

A priori it is reasonable to believe that the strongest interactions are between
dwelling and marriage status and the weekest between dwelling and sex. Test

various models by a sequential test procedure.

Use theorem 5.3 and table 5.14 to compute expected values and standardized resi-
duals directly from the observed numbers.

Study the residuals for the model A,BC, where A is sex, B marriage status and C
dwelling. Do they reveal important information?

Use the residuals for the independence model A,B,C to describe the way the vari—

ables interact.

In the data base of the Danish Welfare Study a special computer search was carried
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out to check how broken marriages or permanent relationships depended on sex and social

rank. The table shows the resulting contingency table.

Sex Social Marriage or permanent
rank relationship broken
group Yes No
I 14 102
IT 39 151

Men 11T 42 292
IV 79 293
v 66 261
I 12 25
1T 23 79

Women 111 37 151
IV 102 557
) 58 321

It is known a priori that there is a connection between sex and social rank. But it is
of no interest in this connection.
(a) Is there a connection between broken marriage and one or both of the other two
variables?
(b) Use residuals to describe the dependencies in the table.
(c) Compare the use of standardized residuals and standardized log—linear parameters

as indicators of model departues for the present data set.

5.6. Reconsider the data in exercise 4.2.
(a) Analyse the table as a three—way contingency table.
(b) Compare the results from the analysis based on the three—way table with the

conclusions drawn in exercise 4.2.

5.7. We return to the investigation concerning sport and youth in exercise 4.12. Among
the questions in the survey was one concerning the time used to read about sport. The
table below shows the sample cross—classified according to the answers to this question as
well as sex and whether the students attend a high school or a vocational or commercial

school.
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Time spent on reading

Attend School

about sports Sex High Vocational
(hours) School or Commercial
None Boy 34 64

Girl 49 135
0-1/2 Boy 29 61

Girl 31 118
1/2 -1 Boy 40 81

Girl 37 142
1-2 Boy 37 65

Girl 32 64
24 Boy 24 40

Girl 11 37
4-6 Boy 6 15

Girl 0 3
More than 6 Boy 3 7

Girl 4 2

(a) Analyse the data by a log—linear model.

(b) Estimate the parameters of the most simple model which fits the data.

(c) Characterize the dependencies in the table based on the estimates from (b).



6. Multi-dimensional Contingency Tables

6.1. The log—linear model

In chapter 5, log—linear models for three-dimensional tables were treated in great details.
Hence we shall not for higher order tables go into details with the parameterizations of
the models or with the exact expressions for test quantities and their distributions.
Besides for higher order tables the mathematical expressions quickly becomes large and
cumbersome to write down.

An m—way contingency table can be written as follows

X . . ,i 1,....1

1,1,...1 1

=1,...,Il,i
12" m

o= greeid

where i1 is the index of the first, 12 the index of the second, and im the index of the last of

the m categorical variables forming the table. When X. . Isthe random variable cor-
yigeeiy
responding to X, . . ,the contingency table can be parameterized through the
Jigeerd

log—linear parameterization

(6.1) i = E[XiliQ...im]
=exp{r® S+ AP0 b P R )
1'2...'m 1'2'3 1'2 1 m

It is difficult to keep track of all these parameters, but for concrete applications matters
are much simplified by two facts. Firstly any model can be identified through its suffi-
cient marginals, which also form the basis for the ML—estimation of the parameters. Se-
condly the actual estimates of the parameters are seldom needed in order to identify a
model and give a valid interpretation of the model.

The 7—parameters in (6.1) with two or more indices are called interactions.



r’? ,...,7-? are called main effects and Ty the over—all effect. If there are k indices for a

1 m

log—linear parameter it is called a k—factor interaction. As a rule models which include
non—null interactions of higher order than 4 are difficult to interprete and of limited prac-
tical use.

The main tools for statistical analyses of multiple contingency tables are test sta-
tistics of the general form (5.28) and (5.30). For multiple contingency tables the results in
theorem 5.2 extend directly. Consider thus a hypothesis H, which consist of setting a

number of log—linear parameters equal to zero. The test—statistic for H is

I I I
1 2 T m A
(6.2) ZH)=2.% .. %X . . [IX. . -op. . ],
ll:1 l2=1 lm:l 1112...lm 1112...1m 1112...lm
where B is E[Xi C | with the non—null 7's under H replaced by their ML—esti-
Lo figeeel

mates. It can be proved that Z(H) under H is approximately x2—distributed, i.e.

Z(H) - x2 (df).

The degrees of freedom df for Z(H) are the number of 7's set equal to zero under H.

As in chapter 5 the fit of an observed table to a given model is measured by the ob-
served value z(H) of (6.2). The hypothesis and the corresponding model are rejected if the
value of z(H) is large. The level of significance

p = P(Z(H) 2 z(H))
can accordingly be approximately evaluated in a X2—distribution with df degrees of free-
dom.

It is often logical to test a hypothesis against an alternative hypothesis H A under
which fewer interactions than under H are zero. In this way it can be tested whether the
interactions assumed to be zero under H, but not under H RELE in fact zero.

For higher order tables there are in general so many candidates for a reasonable mo-

del that a complete set of hierarchical hypothesis can not be set up beforehand. Special
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attention must, therefore, be devoted to setting up a reasonable strategy for testing the

hypotheses of interest. We return to his problem in section 6.3.

6.2. Interpretation of log—linear models
For higher dimensional contingency tables, there are often many potential models which
merit consideration. Hence it is important to have an easy way to identify a model. It
turns out that also for higher order tables the sufficient marginals are convenient instru-
ments for identifying models.

As noted in chapter 5, we do not consider models as valid, if an interaction between
a given set of variables is zero, but there are non—null interactions between a larger set of
variables, which include the given set. Models which are valid under this criterion are

called hierarchical models. Consider e.g. for a four—-way table the model with

ABCD _ ABC _ _ABD _

CD _ .
Pkl =TT =T =0, for all i,j,k 1

k1l

and with at least one non—zero interaction in all other sets of variables. This model is not
CD_ ACD

hierarchical, since T =0 for all k and 1, but at least one Tkl #0.

Consider now a four—way table formed by the four categorical variables A, B, C and
D. Table 6.4 below shows an example of such a table. As for three—dimensional models a
sufficient marginal corresponds to one of the equations in the minimal set of likelihood
equations. Under the log—linear parameterization (6.1) all likelihood equations have the
structural form of equating an observed marginal of the table with its mean value. As we
saw in chapter 5 all equations corresponding to non—null interactions need not, however,
be included. The general rule is, that an equation can be omitted if it can be obtained
from another likelihood equation by summation. None of the equations in the minimal set
of likelihood equations can thus be obtained by summation over any other equation in the
set.

A concrete example illustrates the rule. Consider the hierarchical model for a four—

way table characterized by
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