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Preface 

The aim of this book is to give an up to date account of the most commonly uses statist i­

cal models for categoriCal data. The emphasis is on the connection between theory and 

appIications to real data sets. The book only covers models for categorical data. Various 

n:t0dels for mixed continuous and categorical data are thus excluded. 

The book is written as a textbook, although many methods and results are quite 

recent. This should imply, that the book can be used for a graduate course in categorical 

data analysis. With this aim in mind chapters 3 to 12 are concluded with a set of exer­

eises. In many cases, the data sets are those data sets, which were not included in the 

examples of the book, although they at one point in time were regarded as potential can­

didates for an example. 

A certain amount of general knowledge of statistical theory is necessary to fully 

benefit from the book. A summary of the basic statistical concepts deemed necessary pre­

requisites is given in chapter 2. 

The mathematical level is only moderately high, but the account in chapter 3 of 

basic properties of exponential families and the parametric multinomial distribution is 

made as mathematical preeise as possible without going into mathematical details and 

leaving out most proofs. 

The treatment of statistical methods for categorical data in chapters 4 to 12 is 

based on development of models and on derivation of parameters estimates, test quanti­

ties and diagnostics for model departures. All the introduced methods are illustrated by 

data sets almost exclusively from Danish sources. If at all possible, the data source is 

given. 

Almost all statistical computations require the use of a personal or main frame 

computer. A desk calculator will only in few cases suffice. As a general rule the methods 

in chapters 4 to 7 are covered by standard statistical software packages like SAS, BMDP, 

SPSS or GENSTAT. This is not thc case for thc methods in chapters 8 to 12. S0ren V. 
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Andersen and the author have developed a software package for personal computers, 

called CA T AN A, which cover all models in chapters 8 to 12. This package is necessary in 

order to check the calculations in the examples or to work through the exercises. Informa­

tion on how to obtain a diskette with CATANA, which will be released in early 1990, can 

be obtained by writing to the author. 

A fair share of the examples and exercises are based on the Danish Welfare Study 

and I wish to thank the director of this study professor Erik J. Hansen, who through the 

Danish Data Archive put the data file from the Welfare Study to my disposal, and has 

been extremely helpful with extra information on the data. 

Part of the book was written during visits to the United States and France. I wish 

to thank first of all Loo Goodman, but also Peter Bickel, Terry Speed, Jan de Leeuw, 

Shelby Haberman, Peter McCullogh, DarreIl Bock, Clifford Clogg, Paul Holland, Robert 

Mislevy and Murray Aitkin in the United States and Yves Escoufier, Henri Caussinus and 

Paul Falguerolles in France for stimulating discussions. Many other persons have contri­

buted to the book through discussions and criticism. It is impossible to name all, but the 

help of Svend Kreiner, Nils Kousgaard and Anders Milh0j is appreciated. 

I also wish to thank the Danish Social Science Research Council, who financed my 

visits to the Uni ted States and France. 

The book would never have been a reality without the care and enthusiasm with 

which my secretary Mirtha Cereceda typed and retyped the manuscript many times. 

owe her my most sincere thanks for a very competent job. 

Finally a special thank you to the many students who suffered through courses 

based on early drafts of the book. 

Copenhagen, October 1989 
Erling B. Andersen 
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1. Categorical Data 

This book is about categorical data, i.e. data which can only take a finite or countable 

number of values. Typical situations, which give rise to a statistical analysis of categorical 

data are the following: 

Consider first a population of individuals. For each of these a variable can be mea­

sured for which the possible values are the numbers from 1 to m. The variable may for 

example be the social class, the individual belongs to, with the possible social classes num­

bered 1 to 5. From the population a sampie of n individuals is selected at random and for 

each of the sampled individuals the social class, he or she belongs to, is observed. The 

data then consists of the counts x1""x5 of number of individuals observed in each social 

class. Based on this data set one statistical problem is to estimate the percentages of 

individuals in the total population, which belong to the five social classes. Another would 

be to test hypotheses concerning the distribution of the population on social classes. 

Consider secondly the counting of traffic accidents. One may e.g. be interested in the 

increase or decrease of accidents following the enforcement of a given safety measure for 

the traffic, like speed limitations. A data set could then consist of the number of traffic 

accidents xl"" 'X12 for the months of a particular year. If a safety measure has been intro­

duced during the year, the statistical problem would be to check if the data bear evidence 

of a decrease in number of accidents, which cannot be ascribed to random fluctuations in 

the traffic counts. 

Consider thirdly an economic variable, which takes a wide range of values on the real 

line, like income, but where the observed values for practical reasons are only registered 

in intervals, i.e. it is only übserved which income interval a given income belongs to. The 

data set then consists of the numbers of incomes xl'""xm in each of the income intervals 

(O,tlJ, (t2,t3], .. ·,(tm_I ,+oo). 

The three kinds of data considered above are very different in nature and require, 

therefore, different statistical models. There are, however, a number of common features 

for categorical data. Such a basic structure allows for a unified treatment. 
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The basic statistical distribution for eategorical data is the multinomial distribution. 

It deseribes the distribution of a random sampie from a given large population over the 

eategories of a variable measurable for eaeh individual in the population. But also other 

distributions play important roles. 

The statistical models and methods of subsequent ehapters ean be exemplified by 

five eonerete sets of data. 

Example 1.1. 

Table 1.1 show the number of persons killed in the traffie in Denmark 1970 to 1980. The 

number of persons killed during a given year is a eategorieal random variable for which 

the possible values are all non-negative integers. Based on the data in table 1.1 it is pos­

sible to evaluate the extent to which the risk of being killed in the traffic has ehanged 

over the years 1970 to 1980. Sinee eonsiderable speed limitations were introdueed in Den­

mark in 1973 a more eonerete quest ion is whether these speed limits have eaused a deere­

ase in the risk of being killed in the traffic. In order to answer this question, a statistieal 

model must be formulated for the data in table 1.1, i.e. a probability distribution must be 

specified for the number of killed persons in a given year. The statistical model should 

Tabel1.1. Number of persons killed in the traff ic in Denmark 1970 to 1980. 

Year 

1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 

Number of killed persons 

1208 
1213 
1116 
1132 
766 
857 
857 
828 
849 
730 
690 

Souree: Road traffie aceidents 1981. Publieation 1982:8. 
Statisties Denmark. Table 1.1. 
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include the risk of being killed as a parameter, to be estimated from the data. A compari­

son of the estimated risks for the years up to and including 1973 and the corresponding 

estimated risks for the years after 1974 can then tell the statistician if the drop in number 

of killed persons from 1973 and 1974 is a clear indicator of a corresponding drop in the 

general risk of being killed in the traffic. 6; 

Example 1.2. 

As part of a large scale investigation of job satisfaction in 1968, a random sampie of blue 

collar workers in Denmark were interviewed. The main questions were a number of ques­

tions concerning aspects of the workers job satisfactions. Based on the answers the wor­

kers were categorized as having high or low job satisfaction. At the same time the workers 

supervisors were asked similar quest ions leading to a categorization of the supervisors as 

those with high and low job satisfaction. In addition the quality of the factory manage­

ment was classified as good or bad based on an external evaluation. Thus three categori­

cal variables are measurable for each worker: 

A: The workers own job satisfaction. 

B. The job satisfaction of the workers supervisor. 

C: The quality of the management. 

Table 1.2 show the sampie cross--classified according to these three categorical vari­

ables. Such a table is called a contingency table. 

Based on the data in table 1.2 it is possible to study the way the job satisfaction of a 

worker depends on his work environment, exemplified by the job satisfaction of the super­

visor and the quality of the management. A very primitive analysis based on comparisons 

of relative frequencies will indicate the type of statistical conclusions, which can be reach­

ed. Consider tables 1.3 and 1.4, where the percentage of workers with low and high job 

satisfaction are shown for various parts of the sampie. In table 1.3 the percentages are 

shown for the two levels of job satisfaction of the supervisor. In table 1.4 the percentage 

of workers with low and high job satisfaction is in addition subdivided according to the 
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quality of the management. 

Table 1.2. A sampIe of 715 blue collar workers cross-classified according to 
three categorical variables: Own job satisfaction, supervisors job 
satisfaction and quality of management. 

Quality of Supervisors Own job satisfaction 
management job satisfaction Low High 

Bad Low 103 87 
High 32 42 

Good Low 59 109 

High 78 205 

Source: Petersen (1968). Table M/7. 

Table 1.3. Percentage of workers with high and low job satisfaction for the two levels of 
the supervisors job satisfaction. 

Supervisors 
job satisfaction 

Low 
High 

Own job satisfaction 
Low High 

43 
31 

55 
66 

Total 

100 
100 

Tables 1.3 and 1.4 show that the difference between the percentage of workers with 

high and low job satisfaction is smaller if the two levels of the supervisors job satisfaction 

are studied independently as in table 1.4. The quality of the management thus seems to 

influence the job satisfaction of workers more than the job satisfaction of the supervisor. 

Table 1.4. Percentage of workers with high and low job satisfaction for the two levels of 
quality of management jointly with the two levels of the supervisors job 
satisfaction. 

Quality of Supervisors Own job satisfaction 
management job satisfaction 

Low High Total 

Low 54 46 100 
Bad High 43 56 100 

Low 35 65 100 
Good High 28 72 100 
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Example 1.3 

The Danish National Instit.ute for Social Science Research interviewed in 1974 a random 

sampie of 5160 Danes between 20 and 69 years old in order to investigate the general 

welfare in Denmark. In table 1.5 the distribution of this sampie with respect to five age 

groups is shown. 

Each of the sampled persons represents an observation of a categorical variable with 

the five age groups as categories. If the sampie is drawn completely at random, the multi­

nomial distribution describes the observed distribution over age groups. The parameters 

of this distribution are the probabilities that a randomly drawn person belong to each of 

the age groups. These probabilities are according to Laplace's law equal to the frequencies 

of persons in the total Danish population in 1974 in the various age groups. These fre­

quencies are shown as the last column in table 1.3. 

The statistical problem arising from table 1.5 is whether the sample is representative 

of the population. In more concrete terms the statistical problem is to determine if the 

observed distribution is consistent with the teoretical distribution represented by the fre­

quencies over the age groups in the total population. An equivalent formulation of this 

problem is to ask , if column two in table 1.5 is equal to column three apart from random 

errors. If the answer is affirmative one may claim that the sampie is representative as 

regards age. 6; 

Table 1.5. A random sampie of persons in Denmark in 1974 distributed according to 
age, and the age group distribution of the total population in Den­
mark in 1974. 

Age groups The sample The population 
-years - -%- -%-

20-29 24.3 24.6 
30-39 24.3 23.0 
40-49 17.5 17.8 
50-59 17.7 18.4 
60-69 16.1 16.2 

Total 99.9 100.00 

Number of persons 5166 3124455 

Source: Hansen (1978). Table 4.10. 
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Example 1.4. 

Many of the methods in this book are concerned with contingency tables, where two or 

more categorical variables are cross-dassified for a sampie of persons. Table 1.6 is a ty­

pical example of such a contingency table. In the table the welfare sampie, mentioned in 

example 1.3, is cross--classfied according to income, in five income intervals, and wealth in 

five wealth intervals. The observed numbers are presented in table 1.6 as one often meet 

similar data, namely as percentages rowwise. The percentages immediately reveal the 

expected feature, that low incomes more often are connected with low wealth and high 

incomes more often with high wealth. 

Many statistical methods for categorical data are concerned with describing the asso­

ciation between categorical variables. In case of the data in table 1.6, the problem is to 

express the obvious association between income and wealth in terms of parameters in a 

statistical model. 6. 

Table 1.6. Income and wealth cross--classified for a random sampie in Denmark in 
1974. 

Wealth 
Income -1000 Dkr-
-1000 Dkr- 0 0-50 50-150 150-300 300- Total 

0-40 45 25 15 10 5 100 
40--60 37 26 17 12 8 100 
60-80 32 23 23 15 7 100 
80-110 31 24 23 14 9 101 
110- 23 18 21 18 21 101 

Source: Hansen (1978). Table 6.H.32. 

Example 1.5. 

In an investigation of consumer behaviour a sampie of 600 persons were confronted with 6 

situations, where a purcha.'led item did not live up to their expectations. For each situa­

tion, the interviewed persons were asked if they would complain to the shop or not. The 

answers to four of these quest ions are shown in table 1. 7, w here 1 stands for yes and 0 for 

no. 

The purpose of collecting the data in table 1.7 was to evaluate the extent to which 
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consumers can be graded on a consumer complain "scale" with persons who seldom com-

plain on the lower end and persons who almost always complain on the upper end. If the 

persons can in fact be graded on a complain scale, one consequence would be that a posi­

tive answer to a question would indicate that the person is more likely to be a complainer 

than a non-complainer. Hence such a person would have a higher probability of complain­

ing on another quest ion t.han aperson, who answered no to the first question. The 

answers to the questions are accordingly not independent. The existence of a complain 

scale for the persons can, therefore, partly be confirmed by showing that the answers to 

the four questions fail to be independent. To illustrate such an analysis consider the first 

response pattern 1111 in table 1.7. The probability of this response assuming in­

dependence is 

P(l111) = PIP2P3P4' 

where p. is the probability that a randomly selected person answers yes to question num­
J 

ber j. The estimates for PI' P2' P3 and P 4 are the marginal frequencies 

Table 1. 7. The number of persons for each of the 16 possible response patterns on 
four quest ions concerning consumer complain behaviour. 

Response Number of Expected frequency Expected numbers 
pattern observations gi ven independence gi yen independence 

1111 207 0.258 154.9 
1110 72 0.185 110.8 
1101 75 0.145 87.2 
1100 76 0.104 62.3 
1011 24 0.056 33.6 
1010 24 0.040 24.0 
1001 7 0.032 18.9 
1000 20 0.022 13.5 
0111 19 0.048 29.1 
0110 22 0.035 20.8 
0101 8 0.027 16.4 
0100 14 0.019 11. 7 
0011 5 0.011 6.3 
0010 11 0.008 4.5 
0001 5 0.006 3.5 
0000 11 0.004 2.5 

Total 600 1.000 600 

Source: Poulsen (1981). 
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A 

PI = 0.842 
A 

P2 = 0.822 
A 

P3 = 0.640 
A 

P4 = 0.583. 

The expected frequency under independence with response pattern (1111) is thus 

0.842-0.822·0.640·0.583=0.258. This number and the corresponding expected frequencies 

for the remaining 15 response patterns are shown in table 1.7. The corresponding expected 

numbers, obtained by multiplying with 600, are also shown in table 1. 7. The main step of 

a statistical analysis of the data in table 1.7 is to evaluate the likelihood that the observed 

and the expected numbers for the various reponse patterns are equal apart from random 

errors. If this is the case the answers to the questions are independent and no complain 

scale exists. With the numbers in table 1.7 this likelihood is obviously very low . .6,' 



2. Preliminaries 

2.1. Statistical models 

In this chapter a short review is given of some basic elements of statistical theory which 

are necessary requisites for the theory and methods developed in subsequent chapters. 

A statistical model is a specification of the probability distribution of the data. Let 

the data set consist of the observed numbers x1"",xn ' It is then assumed that there exist 

n random variables X!,"",Xn of which xl' ... ,xn are the observed values. The joint probabi­

lity 

(2.1) 

then specifies the statistical model. In most cases we assume that the model belong to a 

farnily of models, which is indexed by one or more unknown parameters. The model is 

then written as 

(2.2) f(x l , ... ,xn 10), 0(8, 

where the range space 8 is called the parameter space. The parameter space is usually a 

subset of a k-dimensional Euclidean space, in which case 0 can be written 8=( 0l' ... ,Ok)' 

The probability (2.2) as a function of 0 is called the likelihood function and is deno­

ted by L, Le. 

Most statistical methods are based on properties of the likelihood function. 

In many situations the random variables Xl'""Xn are independent and identically 

distributed, such that the likelihood function becomes 



10 

with f(x.1 O)=P(X.=X). 
1 1 

A data set (xl""'xn) is often called a sampie. This expression is derived from situa­

tions where the data are observed values from units in a sampie drawn from a population. 

In accordance with this a function 

of the observations is called a sampie function. Sampie functions are important tools for 

drawing statistical conclusions from a sampie. To stress their role as statistical tools, 

sampie functions are often called statistics. 

2.2. Estimation 

A method for summarizing the information in a data set about a parameter is called an 

estimation method. The most commonly used method is the maximum likelihood method. 

A sample function which is used to estimate a parameter is called an estimate. The maxi-
A 

mum likelihood (ML) estimate 0 is defined as the value of 0, which maximizes L, i.e. 

A 

L(0Ix1, ... ,x ) = maxL(0Ix1, .. ·,x ). 
n Ofe n 

A 

Obviously 0 is a sample function and, therefore, an estimate. 

If e is a subset of the real line, the ML-estimator is in regular cases found as the 

solution to the likelihood equation 

The most important regular case is, when the statistical model forms an exponential fa­

mily. Also for the so-called parametric multinomial distribution the regular cases can be 

identified. Both cases are described in chapter 3. 
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As a function O(Xl' ... ,Xn) of random variables an estimate is called an estimator. 
A A A 

If e is a subset of a k-dimensional Euclidean space, the ML-estimator 0=( 0F .. ,Ok) 

is in regular cases found as a solution to the k like1ihood equations 

j=l, ... ,k. 

Two important properties of estimates are unbiasedness and consistency. An estimate 
A A 

O=O(xl' ... ,xn) is said to be unbiased if it satisfies 

where the mean value is taken with respect to the probability f(xl' ... ,xn 10), i.e. 

An estimator is said to be oonsistent if it satisfies 

A 

From the law of large numbers it follows that 0 is consistent, if it is unbiased and 

But an estimator can also be consistent under other conditions. In particular it does not 

need to be unbiased. 

The basis for a deseription of the properties of an estimator is its probability 

distribution, Le. the probability 
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for all values of 0. 
Ä 

The distribution of ° is, however, in most cases so complicated, that it is of little 

practical use. In most cases statistical methods for practical use rely, therefore, on asymp-
Ä 

totic properties of the estimator, i.e. approximations to the distribution of 0, which are 

valid for large sampie sizes. In many important cases, to be considered later, it can be 
Ä 

proved that 0 is asymptotically normally distributed, i.e. for a certain constant a fJ' 

Ä 

P(.fil B-;0 ~ uJ 0)..-; <I>(u) as n..-;oo. 

° 
where <I>(u) is the cumulative distribution function for the standard normal distribution. 

With an abbreviated notation, this is often written as 

",a 2 
0- N( 0, a ° In). 

'" This means that the distribution of ° in large sampies can be approximated by a 

normal distribution with mean value ° and variance a~/n. 

In the k-dimensional case it can be proved that the ML-Bstimator in regular cases 

has the asymptotic distribution. 

where l.O is non-negative definite matrix and Nk, the k-dimensional normal distribution. 

Sometimes an interval estirnate rather than a point estimate is preferred. The inter­

val (°1, 02) is an interval estimate for 0, if there exist sample functions 01 (x1""'xn) and 

02(x1, ... ,xn ) such that 

and 
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The interval (01 5 0 5 O2) is then interpreted as an interval estimate or a confidence inter­

val in the sense that the unknown parameter 0 is contained in the interval with confi­

dence level I-a. Confidence intervals are usually justified by a s~alled frequency inter­

pretation. Suppose the confidence interval is computed for each sampie in a long sequence 

of independent sampies. The probability of both 01(Xl""'Xn) being less than or equal to 0 

and 02(Xl""'Xn ) being larger than or equal to 0 is then I-a in each of the sampies. The 

relative frequency of the event {01 5 0 5 02} will therefore approach I-a in the long run 

due to the law of large numbers. With many independent calculations of confidence inter­

vals the true parameter value 0 will thus be in the interval with frequency I-a. It can 

accordingly be claimed that the confidence level of 8 being in the interval [01, (2) is l-a. It 

is obvious that another word than "probability" must be used to describe our belief in the 

statement 01 5 05 O2, as the event {01 5 05 02} for given values of 01 and O2 has probabi­

lity either 1, if 0 in fact is in the interval, or 0, if 0 is in fact outside the interval. 

Confidence intervals are very often obtained as approximate intervals based on an 

" application of the central limit theorem. Suppose that 0 is an estimate for 0, e.g. the 

ML-estimate, and that 

(2.3) 
"a 2 
o - N( 0, (J 0 In), 

It then follows that 

" P(-u1- a/2 S [ll(B-8)I(JoS u1- a/2) ~ l-a 

or 

such that 
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where ;~ is an estimate of (T~ is a confidence interval with approximative confidence level 

I-G'. 

2.3. Testing statistica.l hypotheses 

A statistica.l hypothesis is a specification of the unknown value of a parameter. A typical 

statistical hypothesis is 

A test of a statistical hypothesis is a confrontation of Ho with one or more alternatives. 

Typical alternatives are 

or 

HI : (}f 00 

HI : 0< 00 

The purpose of the test is evaluate if the data supports Ho or one of the alternatives. 

Usually the data is for use in test situations summarized in a test statistic. 

Whether the hypothesis is supported by the data can be determined in two ways. 

One way is to divide the range space T of the test statistic in two regions. One region A is 

called the acceptance region and the remaining region A is called the critica.l region. The 

acceptance and critical regions must satisfy 

T=AUA 

and 

An A= 0. 

Since Ho is rejected whenever tfA, the critical region should consist of all values of t, 

for which it is unlikely that Ho is true. How A and A are chosen depend on the alternati-
A 

ve. If thus HI :OfBo and the test statistic O=t(xl' ... 'xn ) is an estimate of 0, the critical re-
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'" gion can be chosen as those t-values for which (J is not elose to (Jo' Le. 

for a certain number c. If the alternative is one-sided, for example (J>Oo' the critical re­

gion is also chosen one-sided as 

A = {tlt-Oo ~ c} 

for a certain c. Note that the acceptance region and the critical region A and Aare 

* * defined in the range space of the test statistic. The two subsets A and A in the range 

space X of the original observations defined through 

* * and A =X\A are also referred to as the acceptance region and the critical region. 

The extent to which the data supports the hypothesis can alternatively be measured 

by the level of significa.nce defined as 

if the alternative is H1:(J>00 and large values of t are indications of H1 rather than Ho 

being true. If the alternative is 0< 00' the level of significance is given by 

Under a two sided alternative H1: {}f0o both large and small values of t should lead a re­

jection of Ho. Hence the level of significance is chosen as 
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A general method for selecting a test statistic is based on the likelihood ratio, defined for 

the hypothesis Ho: fJ= 00 as 

A 

where 0 is the maximum likelihood estimator for O. The observed value r(xl""'xn) of the 

likelihood ratio is a measure of the extent to which the given data set (xl""'xn) supports 

the null hypothesis, such that Ho is rejected if r is small and accepted if r is elose to its 

maximum value r=1. For a given observed value r=r(xl""'xn ) of the likelihood ratio the 

significance level p of the data is accordingly 

The critical region consist of values of xl, ... ,xn for which 

The criticallevel c is determined as 

where a is the level of the test. In many cases there exist a sufficient statistic 

T=t(XI, ... ,Xn ) for the parameter B, for which the likelihood function can be factorized as 

(2.4) 

where h does not depend on 0 and g only depend on the XiS through t. The factorization 

(2.4) implies that the conditional probability 
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has the form 

f(x1,···,X It) = h(x1,···,x)/ E ... E h(x1,···,x ), 
n n ( ) n t xl' ... ,xn =t 

which does not depend on O. Hence T is a sufficient statistic for 0 if the observed value of 

t contains all the information available in the data set about O. It is easy to see that if T 

is sufficient for 0, then the likelihood ratio can be written 

(2.5) 

such that the likelihood ratio test statistic only depends on T. 

In case the model depends on k real valued parameters 0F .. ,Ok a test can in most 

cases not be based on simple calculations of levels of significance based on a sufficient 

statistic. The principles behind the likelihood ratio test are, however, still applicable. If 

all k parameter are specified under Ho' Le. 

the level of significance for an observed value r=r(xF .. ,xn ) of the likelihood ratio is given 

as 

with the likelihood ratio defined as 
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A A 

where 0l'0oo,Ok are the ML-estimators for 0l'0oo,Oko At level a, Ho is rejected for 

where r a is the ll'-percentile of the distribution of r(Xl'0oo,Xn ) under Hoo 

lf all the parameters of a model are specified under Ho' the hypothesis is called a 

simple hypothesiso In many situations, however, only some of the components of 

0=( 0Foo,Ok) are specified under Hoo Suppose for example that the null hypothesis is 

with 0r+1,000,Ok being unspecifiedo The likelihood ratio is then defined as 

where 0r+l,ooo,Ok are the ML-estimators for 0r+l,ooo,Ok in a model where 0l,ooo,Or have va-
A A 

lues 0lO,ooo,OrO' and 0l'0oo,Ok are the ML-estimators in a model, where all k parameters are 

unconstrainedo A hypothesis, where only some of the parameters of the model are speci-

fied, is called a composite hypothesiso 

For the composite hypothesis 

the level of significance for r=r(xl'0oo,xn ) is given by 
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The level of significance depends for a composite hypothesis on the unknown values 

of 0r+l, ... ,Ok' 

In other situations the parameters 0l' ... ,Ok are constrained through a common depen­

dency on k-r new parameters Tl' ... ,Tk_ r . The hypothesis, to be tested, can then be 

(2.6) 

where hl' ... ,hk are real valued functions of the T'S. 

In this case the likelihood ratio is defined as 

A. A A A 

where O.=h.( Tl"'" Tk ) for j=l, ... ,k and Tl"'" Tk are the ML-estimates for the T'S. 
J J -r -r 

2.4. Checking the model 

A model check is a procedure for evaluating to what extent the data supports the model. 

The most direct way to check the model is by means of residuals. The residuals for 

the model 

are defined as 
"- "-

e. = x. - E[X.I 0), 
I I I 

"-

where ° is the ML-estimate for 0. Residuals are usually scaled such that they are 

measured in the same units relative to their standard error. The scaled residuals are de-
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fined as 

They are called standardized residuals. A model check based on residuals consists of 

making a residual plot of the standardized residuals. What the standardized residuals 

should be plot ted against depend on the model in question. 

For categorical data, there are usually many x-values, which have identical values. 

In this case the standardized residuals are derived as follows: 

Suppose that X1, ... ,X are independent random variable, each of which can take one 
11 

of m possible values zl""'z . Let further 7r. be the probability that X. takes the value z. 
m J 1 J 

and define the random variables Y 1"'" Y m as 

Y. = number of X.'s equal to z .. 
J 1 J 

Then (Y1, ... ,Ym ) follows a multinomial distribution with parameters (n,7r1, ... ,7rm), Le. 

(2.7) 

where the 7r.'s depend on O. The residuals based on the y.'s are defined as 
J J 

" A A 

e. = y. - E[Y .17r.( 0) 1 = y. - n 7r.( 0). 
J J J J J J 

The standardized residuals are 

A 

where var[e.] depends on the estimated 7r.'s. 
J J 
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The model is accepted as a description of the data based on a residual plot if the 

residuals are small and does not exhibit a systematic patterns. A model check based on 

residuals can be supplemented by a goodness of fit test. 

If (Y 1' ... ,Y m) indeed follows a multinomial distribution with parameters 

(n,1r1(O), ... ,1rm (O)), it can be shown that the random variable 

m A 2 A 

Q = ~ (Y.-n1r.(O)) j(n1r.(O)) 
j=l J J J 

is asymptotically i -distributed with m-2 degrees of freedom. 

The data obviously supports the model if the observed value q of Q is elose to zero, 

while large values of q indicate model departures. Hence the model is rejected as a 

description of the data if the level of significance computed approximately as 

p = P(Q ~ q) ~ P(i(m-2) ~ q). 

is large. 

A test based on Q is called a goodness of fit test and Q is called the Pea.rson test sta­

tistic. If the given model depends on several real valued parameters 0l' ... ,Ok' the goodness 

of fit statistics becomes 

and the asymptotic i-distribution has m-k-l degrees of freedom. The precise assump­

tions for the asymptotic i -distribution of Q and proofs for some important special cases 

are given in chapter 3.4. The model (2.7), where the 1r.'s depend on a parameter 0 is cal-
J 

led the parametric multinomial distribution. 

An alternative to the test statistic Q, is the transformed likelihood ratio test statis­

tic. It can be derived as a test statistic for a parametrie hypothesis. Assurne first that the 

distribution of (Y l""'Y m) is extended to all multinomial distributions of dimension m 
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with no constraints on the 7r.'s. Within this dass of models consider the hypothesis 
J 

(2.8) 

Since Y./n is the ML~stimate for 7r. in an unconstrained multinomial distribution, the 
J J 

likelihood ratio for Ho is 

(2.9) 

A A 

where {}!'" .. '{}k are the ML~stimates for the (}j'S under the hypothesis. 

The transformed likelihood ratio test statistic -21nr(Y 1' ... ' Y m) is due to (2.9) equal 

to 

m A 

-21nr(Y1, ... ,Y ) = 2 E Y.ln(Y./(n7r.)) 
m j=l J J J 

A A A 

with 7rr7rj({}1' ... '{}k). The test statistics Q and -21nr(Y1' ... 'Ym) are asymptotically equi-

valent in the sense that 

p 
I Q-(-21nr(Y 1' ... ,Y m)) I -! 0, 

and Q and -21nr(Y 1' ... ,Y m) have the same asymptotic i-distribution. It is a matter of 

taste whether Q or -21nr are preferred as a gooodness of fit test statistic. A general dass 

of power divergence statistics, which indude Q and -21nr was introduced by Cressie and 

Read (1984). 

The level of significance is defined as 
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where r(y 1 , .. ,y m) is the observed value of r(Y F"'Y m)' Since lnx is a monotone function, 

the level of significance can also be computed as 

To test a statistical hypothesis can just as weIl be described as checking a new model 

against an already accepted model. Hence the words hypothesis and model are often syno­

nomous. As an illustration consider the multinomial model (2.7). If no constraints are 

imposed on the T.'S the model is called the saturated model. 
J 

Under the hypothesis (2.8), the likelihood is given by 

(2.10) 

The likelihood function for the saturated model is 

(2.11) 

A comparison of (2.10) and (2.11), shows that to test the parametric hypothesis 

HO: tr.=tr.( fJ) , j=l, ... ,m 
J J 

is equivalent to compare the saturated model (2.11) and the parametric multinomial mo-

deI (2.10). 

In general to test the hypothesis 

against the alternative 
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is equivalent to comparing the model with likelihood L( (0), containing just one distribu­

tion, with the model with unconstrained likelihood L( 0). 



3. Statistical Inference 

3.1. Log-linear models 

The majority of interesting models for categorical data are log-linear models. A farnily of 

log-linear models is often referred to as an exponential family. 

Consider n independent, identically distributed discrete random variables Xp-",Xn 

with common point probability 

(3.1) 

which depend on k real valued parameters 0l' ... ,Ok' The model 

n 
(3.2) f(x1,···,xnI01,···,Ok) = i~/(xiIOp- .. ,Ok) 

is then called a log-linear model or is said to form an exponential farnily, if the logarithm 

of (3.1) has the functional form 

(3.3) 

where g., 'P., and h are all real valued functions of their arguments.The function K satis-
J J 

fies 

(3.4) 

since ~f(xl 0l' ... ,Ok)=1. 
x 

The dimension of the exponential farnily is the smallest integer m for which the 

representation (3.3) is possible. The dimension of an exponential farnily is less than the 
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apparent dimension of the logarithmic form (3.3) if there are linear dependencies between 

either the gis or the ipls. Suppose for example that 

but that for all values of the Bis 

* with g. (x)=g.(x)-g5(x) and the dimension m=4 rather than the apparent dimension 
J J 

m=5. 

Under the log-linear model (3.3), the logarithm of the point probability of xl' ... ,xn 

can be written as 

(3.5) 

where 

and 

n 
t. = ~ g.(x.), j=l, ... ,m 
J i=l J 1 

The parameters T 1' ... , Tm are called the canonical parameters. The strategy for making 

statistical inference based on log-linear models is to formulate the statistical problem 

under consideration in terms of the canonical parameters, if at all possible. In case infer-
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ence 'is needed about the original parameters, the relevant results are derived from those 

obtained for the canonical parameters. 

Since the joint probability of the XiS according to (3.4) and (3.5) has the multiplica­

tive form 

the t.ls form a set of sufficient statistics for the canonical parameters. This means that as 
J 

regards statistical inference concerning the TIS, we can restriet attention to the joint dis-

tribution of the sufficient statistics 

n 
T. = E g.(X.), j=l, ... ,m. 

J i=l J I 

The joint distribution of T 1, ... ,Tm 

can according to (3.5) be written as 

where S(t1, ... ,t ) = {x1'""'x I Eg.(x.)=t., j=l, ... ,m}. 
m . n i J I J 

Since K defined in (:3.4) only depend on the BiS through the T'S, K can also be de­

fined as 

K(T1, ... ,T ) = ln{f.exp(bg.(x)r. + h(x))}. 
m x j J J 

Hence with 
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m 
(3.6) Inf(t1,···,t IT1,···,T ) = ~ t.T. + h1(t1,oO,t ) -nK(T1,oO.,T ), 

m m. IJJ m m 
J= 

Here and in the following K is used both when the arguments are Bl'oO.,ok and when the 

arguments are T1, ... ,Tm . 

The concept of an exponential family goes far back. At one point in time its disco­

very was attributed to four people Fisher, Darmois, Pitman and Koopman. As a tool for 

making statistical inference, it was brought to prominence by Lehmann (1959) in his book 

on testing statistical hypothesis. The exact conditions for the validity of the commonly 

used statistical methods based on the likelihood function and a precise definition of the 

concept of an exponential distribution is due to Barndorff-Nielsen (1978). In a parallel 

development Haberman (1974b) gave rigorous proofs of the validity of a wide range of 

statistical results for log-linear models applied to contingency table data. 

In the following a number of results concerning estimators and statistical tests in 

log-linear models are stated. These results are extensively used in contingency table 

theory and other theories for categorical data. Not all results in this chapter are support­

ed by rigorous mathematical proofs, but in order to gain insight in the mathematical 

structure of the likelihood equations, on which the ML-€stimates are based, and the 

structure of the asymptotic limits for the distributions of estimators and test statistics, 

the results are proved for the case of one real valued canonical parameter T. 

The results are stated for the case, where the x's are independent and identically 

distributed. Under certain extra conditions the results are also true for situations where 

x1, ... ,xn are not identically distributed, as long as the model reduces to the form (3.6) for 

a set of m sufficient statistics. Assume thus that all the X. 's follow log-linear models 
1 

(3.3), but that the probability 
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depends on i. Then 

m 
1nf.(x I 0l,···,o'k) = E g .. (x)~.( 0l, .. ·,Ok)+h.(x)-K.( 0l, .. ·,o'k)' 

1 j=l 1J J 1 1 

It is assumed that the canonical parameters are the same for all i. Equation (3.5) then 

takes the form 

where 

n 
t. = E ~.(x.) 
J j=l J 1 

Equation (3.6) is, however, unchanged if h1(t1, ... ,tm) is defined as 

h (t t) -1 '(" Eh.(x.) 
1 1"'" - n .lJ eil. 

m S(t1, ... ,tm) 

with S(t1, ... ,t )={x1, ... ,x 1I:e: .. (x.)=t., j=l, ... ,m}, and nK(T1, ... ,T ) is defined as 
m n'1.Jl J m 

llij ( °l, .. ·,Ok)· 

A discussion of estimation problems in exponential families with non-identically 

distributed random variables was given by Nordberg (1980). 

3.2. The one-dimensional case 

For m=l the log-linear model (3.5) has the form 

while (3.6) has the form 
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(3.7) Inf(t I T) = tT + h1 (t) - nK( T). 

Here T=r.p( 0) is the canonical parameter and t=t(xl""'xn) the sufficient statistic for T. 

Theorem 3.1 

The likelihood equation 

(3.8) dlnf(tIT) - 0 
dT -

for a log-linear model (3.7) is equivalent to 

E[TI Tl = t, 

and to 

nK'( T) = t. 

Proof 

For m=1, K( T) = !ln{Eexp(tT+h1(t))}. Hence 
n t 

(3.9) 
nK( T) tT+h1 (t) 

e = Ee , 

and it follows by differentiation that 

(3.10) 
nK(T) tT+h1(t) 

nK'( T)e = Ete 
t 

Dividing by enK( T) on both si des in (3.10) and using that 

then yields 

nK'( T) = E[T I Tl· 
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Since, however, according to (3.7) 

dlnHt Ir) = t - nK'( r), 

the theorem follows. D. 

In case the ML-estimator is a solution to the likelihood equation, it can thus be found by 

simply equating the observed value of the sufficient statistic and its mean value. Theorem 

3.1 can be sharpend, if two important concepts for log-linear models are introduced, the 

domain and the support. The domain or the natural parameter space, D, is defined as the 

subset of the range space of r for which 

(3.11) 

Since the domain is defined through condition (3.11), it can be a smaller set or a larger 

set than the parameter space for r defined as 

{rl r=r( 8), OEe}. 

It can be shown that the domain D is always an interval and that the function K( r) is 

infinitely often differentiable with finite derivatives for r in the interior of D. 

The support To of the log-linear model (3.7) is the set of all t-values with positive 

probability i.e. 

TO = {tlf(tlr) > O}. 

According to theorem 3.1 the ML-estimate is found from the equation 

(3.12) nK'(r) = t 

in regular cases. From (3.10) follows 
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Hence the second derivative K"( r) of K satisfies 

(3.13) nK II (r) = var[Tlr], 

since nK'( r)=E[T Ir]. From (3.13) follows that K'( r) is an increasing function and (3.12) 
.. , 

has at most one solution r, if var [T Ir] >0 for all r. The next theorem shows an even 

stronger result, namely that the likelihood equation has a unique solution if t is in the 

interior of the smallest interval covering the support TO' 

Theorem 3.2 
"-

H the domain D is an open interval, there exist a unique solution r to the likelihood equa-

tion 

t = E[T Ir), 

for each value of t in the interior of the smallest interval C()Vering the support To. The 

solution r is the Mlr-€stimate. 

Proof 

Let K and K be the upper and lower limits of nK'( r) as r ranges from the upper to the 

lower limit of the domain. Let in addition t and i be the upper and lower limits of the 

support. From the inequality 

tr+h (t) tr+h (t) 
nK'( r) = e -nK( T)~te 1 ~ te -nK( r)~e 1 = t 

t t 

when t<oo, then follows that R~t. A similar argument shows that K ~ t. 
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Suppose now that Kd', such that K<+oo and that there exists a K with K<Kd', If 

K<oo, the domain D must have +00 as its upper limit, since T5.7 for all TED would entail 

that K( T)--+oo as 7-loo as can be seen from the equality 

nK(T) tT+h1(t) 
e = ~e 

and the definition of the domain. But if K( T)-loo for T-l7(00 then also K'( T)--+oo. Thus a finite 

upper limit for nK'(t) can only happen for 7=+00. 

Consider now the inequality 

tT+h (t) (t-K)T+h (t) 
K-nK'(T) = e-nK(T)~(K_t)e 1 = eTK-nK(T)~ (K-t)e 1 

t t 

( ) h (t) 
5. eTK- nK T ~ (K-t)e 1 

t<K 

The last term is positive and independent of T. Hence K=K if it can be proved that 

TK-nK(T) e -l0 as T-loo. 

This convergence follows from the inequality 

T(t-K)+h (t) h (t) 
enK(T)e-TK = ~eT(t-K)+hl(t) > ~ e 1 > lT ~ e 1 

- - , 
t~K-E t~K-E 

the right hand side of wh ich tends to infinity as T-loo, Since K=K for all K satisfying 

K(K(t, it follows that K=1.' and the theorem is proved. D. 
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Example 3.1 

In order to illustrate the concept of a log-linear model and the use of theorems 3.1 and 

3.2 consider n binary variables X1"",Xn with 

P(X.=x) = {O for x=l 
I l-Ofor x=O 

The probability f(x I O)=P(X.=x) can then be written 
I 

f(xIO) = UX(1-0)1-x, 

such that 

lnf(xIO) = xln~ + ln(1-0). 

The model is thus log-linear of the form (3.3) with m=l, gl(x)=x, 

h(x)=O and K(0)=-ln(1-0). The canonical parameter is accordingly 

o r=lnr=y 

For n independent observations x1, ... ,x , t=~x. is the sufficient statistic for r. Since the 
n I 

conditions for the binomial distribution are satisfied, T is binomially distributed, i.e. 

The log-linear expression (3.7) for the probability distribution of T is thus given by 

lnf(t Ir) = tr + ln(~) - nK( r) 

with 



since (1-0)=1/(1+eT ). 

It then follows from theorem 3.1, that the likelihood equation is equivalent with 

(3.14) 

The solution to (3.14) is 

or since O=eT /(l+e T ) 

A tin 
T = Inr=tTn. 

This last result can, however, be derived directly from the likelihood equation 

t = E[T 10] = nO. 
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In this case the likelihood equation can be solved directly yielding an explicit expression 
A 

for T. It is instructive, however, to derive the domain and the support for the binomial 

model. The domain consist of all values T for which 

which is all T-values, since the sum is finite. Being the complete real line, the domain is 

an open interval and it follows from theorem 3.2 that the ML-estimate is a unique solu­

tion to (3.12) for all values of tin the interior of the smallest interval containing the sup­

port. The support is the set 

{O,l, ... ,n}, 

such that (3.12) has a solution for all values of t (integers or non-integers) in the open 

interval (O,n). Surprisingly t=O and t=n are not included in spite of the fact that 0 can be 

estimated also for these extreme values. These values correspond, however, to T equal to 
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+00 or -w in (3.12), which are not proper values of the canonical parameter. It is thus im­

portant that theorem 3.2 is formulated in terms of the canonical parameters. 6' 

It may seem a complicated way to derive ML-estimates to take the detour of intro­

ducing log-linear models, domains, supports, etc. But the fact that the ML-estimator can 

be derived from a simple mean value equation and that precise ruIes for the soIvability of 

this equation can be formuIated, simplifies the treatment of more compIex models with 

many parameters. In addition it is possible to derive strong results concerning the asymp­

totic distribution of ML-estimators and of goodness of fit test statistics if attention is 

restricted to log-linear models. These results are important in the many cases, where the 

likelihood equations do not yield explicit soIutions. 

Theorem 3.3. 
A 

If T is in the domain, then the ML-estimator T converge in probability to T as n .... oo and 
A 

T is asymptotically normally distributed with asymptotic mean value T and asymptotic 

variance ~(K"( T))-\ Le. 

A 

P (.[ll.[K1r(TJ ( T-T) ~ u) ....q,( u) for n .... oo. 

for alI UfR, where ~ is the cumulative distribution function for the normal distribution. 

Proof 

Since 

is an averaged of n independent random variables, the Iaw of large numbers yields 

(i) Tin ~ E[g(X.)] = K'(T) 
1 



and the centrallirnit theorem yields 

(ii) 

according to (3.13). 

T/n ~ N(K'(r), K"(r)/n) 

From (i) and (3.12) follows that 

A P 
K'( r) ~ K'( r), as n ~oo. 

But since K'( r) is continuous and monotonely increasing it can then be concluded that 

A p 
r ~ r, as n ~oo. 

If K'( r) is expanded in a Taylor series, one furt her gets 

" " t/n-K'( r) = t/n-K'( r) - (r-r)K"( r*) 

.t'\ A A A 
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with 17*-TI < 1 T-TI. Since t=nK'( r) this means that r-r has the same distribution as 

* (t/n-K'(r))/K"(T ). The result (ii) then implies 

" a rn(r-T)K"(T*)/~ N N(O,l). 

But ;!: r implies that r* e T, and since K" is continuous, it follows that 

" a rn(r-r)~ N N(O,l). 

and the theorem is proved. D. 

Results similar to theorem 3.3 can be proved for models, which are not log-linear, 

but then more complicated conditions on the properties of the log-likelihood function are 

needed. 
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There are two immediate applications of theorem 3.3. Firstly a confidence interval 

with approximate confidence level 1-0:' can be derived from the equation 

A 

P(-u1-0:'/2 ~ ß..fK1TTJ(T-T) ~ u1_0:'/2 1 T) = 1-0:' 

which is approximately valid for large values of n. The interval 

is accordingly an approximate 1-0:' confidence interval for T. 

Consider, secondly, the hypothesis 

against the alternative 

A 

If the critical region is chosen as a set, where 1 T-TOI is large, the level of signifi-

cance is according to theorem 3.3 approximately 

(3.15) 

A 

where UN N(O,l) and T is the observed value of the ML--estimator. The critical region for a 

test with approximate level 0:' is 

A 

{t 11 T-TO 1 ~ U1_0:'/2NnK"( Ton· 

For a log-linear model the likelihood ratio only depends on the sufficient statistic T for 

the canonical parameter. The logarithm to the likelihood ratio, or the log-likelihood ratio 

is according to (3.6) and (2.5) given by 
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A A A 

Inr(XF··,Xn) = Inf(T I TO)-lnf(T I T) = TTO - nK( TO) - TT + nK( T) 

or 
A A 

(3.16) Inr(T) = T(TO-T) -n(K(TO) -K(T)) 

The following theorem shows that the level of significance for a likelihood ratio test can 

be approximated by a percentile in a i-distribution. 

Theorem 3.4. 

H X1"",Xn are independent, identically distributed random variables with a log-linear 

model (3.3), then the transformed likelihood ratio test statistic -2Inr(T) and 

nK" ( T 0) (;-TO)2 has under Ho the same asymptotic distribution namely 

Z = -2Inr(T) ~ i(l). 

Proof. 
A 

From (3.16) and a Taylor-€xpansion of K(TO) around rfollows that 

* A A A A 

where I T -TI ~ I To-TI, since T=nK'( T) when T is the ML-€stimator. According to theo-

* P A a 
rem 3.3 T ...; TO and y'n~(T-To)NN(O,l)under Ho' such that 

a 2 
-2Inr(T) N X (1). D. 

If the X's are non-identically distributed, theorem 3.4 is true when the model for each X. 
1 

is log-linear and the sufficient statistics for T is T=~g.(X.) . 
. 1 1 
1 

Since the hypothesis Ho:T=To is rejected for small values of the likelihood ratio, the 

level of significance for Ho is according to theorem 3.4 computed approximately as 

p :; P(Q ~ -2lnr(t)), 
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It further follows from theorem 3.4 that the test with approximate level of signifi­

cance (3.15), based on the asymptotic distribution of the ML-estimate is equivalent with 

the transformed log-likelihood ratio test. 

Example 3.2: 

Consider n independent Poisson distributed random variables Xl'""Xn with common 

parameter A, i.e. 

}. x _}. 
P(X.=x) = ~ e . 

I X. 

This model is log-linear with canonical parameter T=lnA and sufficient statistic T=~X., 
I 

since 

lnf(x I}.) = xln}.-lnx!-}.. 

Since further K( T)=}.=e T, the ML-estimate is given as the unique solution to 

~x. = E[T) = ne T, 
I 

" Le. T=lnx. 

Note that }.=o with T=-oo is a boundary point of the domain and that x=O, or 

xl = ... =xn=O, correspondingly a boundary point for the support. 

For the hypothesis 

or 

the transformed log-likelihood ratio is according to (3.16) given by 

According to theorem 3.4, -2lnr(t) ~ i(l), such that the level of significance is given 

approximately as 
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If the model is parameterized by the original parameter 0 rather than the canonical 

parameter T, the results contained in theorems 3.1 to 3.4 are true in almost identical ver­

sions provided the function 

T = cp(O) 

is strictly monotone in the domain D. Without proof, we state briefly the equivalents of 

theorems 3.1 to 3.3. 

Theorem 3.1A 

The likelihood equation 

dlnf(x1, . ",xn 10) 
dU = 0 

is equivalent to 

E[T 10] = t 

orto 

nK'(O)jcp'(O) = t, 

where K( O)=K( cp( 0)). 

Let D O={ 01 T=CP( O)fD} be the domain of O. 

Theorem 3.2A 

If D 0 is an open interval, then there exist a unique solution 0 to the likelihood equation 

t = E[TI 0] 

for each value of t in the interior of the smallest interval covering the support T O' The 

solution 0 is the ML-estimate. 
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Theorem 3.3A 
A 

If 8 ia in the domain D 8' then the M~timator 8 converge in probability to 8 as n-joo and 

A 2 
8 N N(8,(J (8)/n), 

where 

(J2( 8) = [K"( 8) - K'( 8)cp"( 8)/ cp'( 8)]-1. 

A 

The variance of 8 in theorem 3.3A is derived by using the rules of differentiation to K"( r) 

in theorem 3.3 as follows: 
A A 

A Taylor expansion of r= cp( 8) yields 
A A 

r = r+( 8--8)cp'( 8)+... , 
" such that var [r] can be approximated by 

" 2 A 

var[r] ~ (cp'(8)) var[8]. 

Hence 

" " 2 var[8] ~ var[r]/(cp'(8)) . 

Accordingly to theorem 3.3, however, var[;]~(n(K"(r))-l. Implicit differentiation of K(B) 

now yields 

K'( B) = K'( r)cp'( 8) 

and 

K"( 8) = K"( r)( cp'( 8))2 + K'( r)cp"( 8). 

Hence 

which is the result stated in theorem 3.3A. 

Theorem 3.4 is valid also if the parameterization is in terms of a strictly monotone 

transformation 8= cp-1 ( r) of the canonical parameter. In this case the likelihood ratio is 

defined as 
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A 

where 0 is the maximum likelihood estimate of O. 

3.3. The multi-dimensional case 

Consider the log-linear model (3.6) with canonical parameters 71, ... ,7 m and sufficient 

statistics 

n 
T. = E g.(X.), j=l, ... ,m, 

J i=1 J 1 

in the i.i.d (independent identically distributed) case and 

n 
T. = E g .. (X.), j=l, ... m 

J i=l 1J 1 

in the non-i.i.d. case, 

The analogue to theorem 3.1 is then 

Theorem 3.5. 

The likelihood equations 

Olnf(t1,.·.,t 171, ... ,7 )/07.=0, j=l, ... ,m 
m m J 

are equivalent to 

E[T·171,···,7 1 = t., j=l, ... ,m 
J m J 

or 

n{}I«(71, ... ,7 )/07. = t., j=l, ... ,m. 
m J J 

In the multi-dimensional case, the domain is defined by 
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(3.17) D = {T1, ... ,T II: ... I:exp(I:t.T.+h(t1, ... ,t ))(+oo}. 
m t t .JJ m 

1'" m J 

It can be proved that D is a convex set, Le. if two points in Rm are both in D, then the 

complete line connecting the two points is also in D. A typical convex domain is shown in 

fig. 3.1. 
t 2 

t1 

Figur 3.1. The domain for the canonical parameters in a two-dimensional log-linear 
model. 

The support To of the log-linear model is the subset of vectors (t1" .. ,tm)ERm for 

which 

It can be shown that the support does not depend on the values of the T'S. 

The function K( Tl , ... , Tm) is the key to a study of the properties of the ML-€stima­

tors for T1, ... ,T • From theorem 3.5 follows that the mean values of the T.'s are equal to 
m J 

the partial derivatives of K, apart from the factor n, and that the likelihood equations are 

obtained by equating these derivatives with the observed values of the sufficient statis­

tics. In addition (3.13) generalizes to 

na2K( Tl'"'' T )/OT? = var[T.] 
m J J 

and 
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The equivalent of theorem 3.2 is 

Theorem 3.6: 
A A 

H the domain D is an open set, then there exist a unique set of solutions T 1"" , Tm to the 

likelihood equations 

(3.18) t. = E[T·I T1, ... ,T ], j=l, ... ,m, 
J J m 

whenever (t, ... ,t ) is an interior point in the smallest convex set enclosing the support. 
m 

The solutions are the M~timators for Tl"" , Tm' 

Theorem 3.3 generalizes as follows 

Theorem 3.7: 

H r=(T1, ... ,Tm ) is in the domain, then the M~timator converge in probability to T as 

n-too and 
Aal 

[Il( T-r) N N (O,~), 
m 

where M is an m-dimensional square matrix with elements 

This implies that 
A A a 2 

n(r-r)'M(r-r) N X (m). 

In the multi-dimensional case the log-likelihood ratio for testing 
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against an alternative where the T'S are unconstrained is given by 

Theorem 3.8: 

The transformed likelihood ratio test statistic 

for the hypothesis 

has asymptotic distribution 

if (T10 , ... , T mO) is a point in the interior of the domain. 

The result in theorem 3.8 is extremely useful because the likelihood ratio test statis-

tic or simple transformations thereof only in rare situations has a known distribution. 

Example 3.3. 

Let Xl' ... ,Xk be multinomially distributed with parameters n and Pl' ... ,Pk' i.e. 

Then 

and the model is log-linear with canonical parameters 
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T. = Inp.-lnPk' j=l, ... ,k-l 
J J 

and sufficient statistics 

T. = X., j=l, ... ,k-l. 
J J 

The log-linear model is thus of dimension m=k-l, and the ML~timates are given by 

the equations 

x. = E[X.] = np., j=l, ... ,k-l. 
J J J 

A 

The ML-€stimates p.=X./ll for the original parameters are thus found directly. For the 
J J 

canonical parameters the ML-€stimates are 

A 

T. = ln(x./n)-ln(xk/n) = ln(x./xk). 
J J J 

Consider now the hypothesis 

In terms of the canonical parameters, Ho has the form 

A 

Since p.=x./n., the log-likelihood ratio 
J J J 

such that the transformed likelihood ratio is given by 

k 
-2lnr(xl""'xk) = 2 ~ x.(lnx.-ln(np.o))' 

j= 1 J J J 
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According to theorem 3.8 l.his test statistic follows approximately a i -distribution with 

k-l of freedom, provided Tjo=lnpjO-lnPkO' j=I, ... k-l is in the interior of the domain for 

the canonical parameters. 

The sum in the definition (3.17) of the domain for the present model is finite. Hence 

the domain consist of all values of Tl' ... ,Tk_1 in Rk- 1. In terms of the Pj'S only vectors 

(Pl' ... ,Pk) for which at least one Pj=O are thus excluded. This means that the approxima­

tion to a limiting i -distribution is valid if none of the values PlO, ... ,PkO are zero. It is 

essential that the true dimensionality m=k-l of the log-linear model is established. For 

the present example the only linear ties between observations or parameters are 

and 

1 = P1+ ... +Pk. 

Both these are accounted for when the canonical parameters are chosen as 

T. = lnp.-lnPk J J 

for all j. 

Notice also in this example that the canonical parameters are only unique up to a 

1 k 
constant. Thus also T.=lnp.- K ~ lnp. could have been used . .6.,.. 

J J j= 1 J 

Example 3.4. 

As an example, where the support of the log-linear model is non- trivial and the condi­

tions for existence of finite solutions to the likelihood equations accordingly also non-tri­

vial, consider a simple example of the logistic regression model, which we return to in 

chapter 9. Let Xl' ... ,Xn be binary variables with point probabilities 

and 

or 

{
po for x=1 

p X=x = I 
(i ) I-Pi for x=o 
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where zl"",zn have known values. 

This is called a logistic regression model for binary variables, because the linear 

expression is in terms of a logistic transformation of the probabilities. The model is 

log-linear, since for x=l and 0, lnfi(x I ßO,ß1) can be written as 

It is thus a case of non-identically distributed random variables. The canonical par­

ameters are Tl =ßo and T2=ßl' and the corresponding sufficient statistics 

Tl = l:X., T2 = l:z.X . . 1 . 1 1 
1 1 

Since 

ß +ß z. ß +ß z. 
P(X.=l) = e 0 1 1/(l+e 0 1 I), 

1 

the likelihood equations are according to theorem 3.5 

ß +ß z. ß +ß z. 
t = E[l:X.] = l:e 0 1 1/(l+e 0 1 I) 
I . 1 . 

1 1 

and 

ß +ß z. ß +ß z. 
t2 = E[l:z.X.] = l:z.e 0 I 1/(1+e 0 I I). 

. 1 1 . 1 
1 1 

These equations do not have explicit solutions and must be solved by numerical methods. 

Hence it is of interest to determine for which observed values of t l and t 2 there are 

solutions. According to theorem 3.6 the likelihood equations have a unique set of solu-
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tions, if (tl't2) is an interior point of the convex extension of the support. In this case it is 

easy to derive the support. If, namely, t1=i, it follows that exactly i of the binary vari­

ables have the value 1. Hence if z(1)Sz(2)S ... Sz(n) are the z's in order of magnitude, the 

minimum and maximum values of t2 are 

It is further easy to see that the set obtained by connecting the 2n points {O,O}, 

and 

{i, z(n_i+l)+ ... +z(n)}' i=1, ... ,n-1 

is a convex set. Hence the likelihood equations have solutions if (t1,t2) does not coincide 

with any of the 2n boundary points. For the case n=lO and z.=i, i=1, ... ,10 the convex 
1 

extension of the support is shown in fig. 3.2. 

30 

20 

10 

0~~~~ __________ ~ ______________ --T 

o 5 10 

Fig. 3.2. The convex extension of the support for a logistic regression model with n=10 
and z.=i. 

1 

Thus if t 1=4, there are only solutions to the likelihood equations if t 2 is larger than 10 

and less than 34. If t2=10, we are in a situation where x1=x2=x3=x4=1 and 
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X5=X6=X7=XS=Xg=XlQ=O, and if one tries to solve the likelihood equations in this case, 

the estimation procedure would converge to an infinite value of either ßo or ß1. On the 

other hand for x1=x2=x3=x5=1 and x4=x6=x7=xS=Xg=xlQ=O, such that t2=11, there 

are no problems with solving the likelihood equations . .6: 

Example 3.5. 

Consider a two-way contingency table with I rows and J columns, and observed count x .. 
IJ 

in row i and column j. Assume furt her that the counts are independent and Poisson dis-

tributed with parameters All, ... ,AIJ' The distribution of the observed counts is then 

The model is log-linear, since 

with sufficient statistics xl1"",x1J and canonical parameters Tij=ln\j' i=l, ... ,I, j=l, ... ,J. 

The likelihood equations are accordingly 

x .. = E[X .. ] = A .. , i=l, ... ,I, j=l, ... ,J 
IJ IJ IJ 

and the ML-estimates become 
-" 

T .. = lnx ... 
IJ IJ 

The likelihood ratio for the hypothesis 

become 

. _ 0 xij xij 0 
r(xll"",xIJ) - IIII[(A .. ) Ix .. ]exp(~~(X .. -A .. )). 

i j IJ IJ i j IJ IJ 
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A 

since A .. =X ... Hence the transformed log-likelihood ratio is 
IJ IJ 

x.. 0 
-2lnr(x11 , ... ,xIJ) = 2EEx .. ln(--t--)+2>' -2x , 

i j IJ A. . .. .. 
IJ 

which under Ho is approximately i -distributed with IJ degrees of freedom. If it is ag­

sumed that, >.0 =x , then 

o -2lnr(x11 ,· .. ,xIJ) = 2EEx .. (lnx .. -lnA .. ). 6: 
i j IJ IJ IJ 

Theorems 3.5 to 3.7 can be formulated in terms of the original parameters of the 

model, if the concept of identifiability for a log-linear model is introduced. Model (3.3) is 

identifiable in terms of the parameters 0l, ... ,Om if 0m+l, ... ,Ok are functions of 0l, ... ,Om and 

the equations 

have a unique set of solutions 

and in addition, #<P/Ol, ... ,Ok)/fJOqfJOp is uniformly bounded for all j, p and q less than or 

equal to m in any closed subset of D 0' where 
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and D is the domain. Since D 0 maps onto Dunder the transformation cp -1, it follows 

that D 0 is open if and only if D is open. Theorems 3.5 to 3.7 now generalize as follows: 

Theorem 3.5A. 

H the log-linear model (3.3) is identifiable in terms of 01' ... ' ° m the likelihood equations 

are equivalent to 

(3.19) 

Note that there are only m equations in (3.19). In fact the k-m last o's are functions 
A A 

of 0l' ... ,Om when the model is identifiable in 01' ... ,Om and it is sufficient to find 0l,·.·,Om. 

Theorem 3.6A: 

H the domain D 0 for the log-linear model (3.3) is open, then there exist a unique set of 
A A 

solutions 0l' ... '()k to the likelihood equations whenever (t1, ... ,tm ) is in the interior of the 

smallest convex set enclosing the support. The solutions are the ML--eltimates for 

°l,···,Ok· 

Note that D ° is not necessarily the original parameter set 6. 

Theorem 3.7 A: 

H'the model (3.3) is identifiable in terms of O=(0l' ... ,Om) and (()!'" .. ,Ok) is in the domain 
A A A 

DO' then the ML--eltimates fJ=(Ol, ... ,Om) converge in probability to the true values for 

n-+oo and 

where the square matrix M has elements 
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and wpq are the elements of the inverse to the matrix with elements ocp/Ol, ... ,Ok)/fJ0t: 

j,l=l, ... ,m. 

Theorem 3.8A: 

The transformed likelihood ratio test statistic 

for the hypothesis 

has asymptotic distribution 

a 2 
ZN X (m) 

if the log-linear model is identifiable in terms of 0l' ... ,Om and (0lO' ... ,okO) is an interim 

point of the domain D 0. 

Theorems 3.5A, 3.6A and 3.8A are formulated in terms of all k O's even though the 

dimension of the log-linear model is m. As mentioned above the last k-m O's are redun­

dant, since indentifiability of the model in terms of 0F .. ,Om means that 0m+l, ... ,Ok are 

functions of 0F .. ,Om. As an example of this consider the multinomial distribution, with 

O.=p. and r.=lnp.-lnPk' j=l, ... ,k-l. Then the likelihood equations are 
J J J J 

(3.20) x. = np., j=l, ... ,k-l 
J J 

A 

with solutions p.=x./n, j=] , ... ,k since 
J J 
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A k-1A k-1 
Pk = 1- 1: p. = 1- I: x·/n = xk/n. 

j==1 J j==1 J 

In practice the equation system (3.20) is extended to k equations by adding xk=nPk' 

which is automatically true if the equations (3.20) are satisfied, although the model is 

identifiable in terms of Pl' ... Pk-1' 

3.4. Testing composite hypotheses 

Consider first the composite hypothesis 

(3.21) 

where r of the m canonical parameters have given values and the remaining m-r canonical 

parameters are unspecified under the hypothesis. 

U nder Ho the model is still log-linear with canonical parameters T 1"'" T and suf-r+ m 

ficient statistics T 1, ... ,T since from (3.6) 
r+ m 

m r 
(3.22) lnf(t1,···,t I T10,···,T O,T 1,···,T ) = I: t.T.+h1(t1,···,t ) + I: t.T·O m r r+ m . 1 J J m. 1 J J 

J== r + J== 

The likelihood equations for a ML-€stimation of T 1"'" T are accordingly 
r+ m 

(3.23) t. = E[T·I T10 ,···,T 0' T 1,···,T ], j=r+1, ... ,m. 
J J r r+ m 

Let the solutions to (3.23) be T 1"",7 . Conditions for a unique solution of (3.23) follow 
r+ m 

from theorem 3.6, with only Tr+1 , ... Tm being the canonical parameters of the log-linear 

model. In fact if (TlO' ... ,TrO,Tr+1, ... ,Tm) is in the domain D for the model (3.6), then 

T 1"'" T is in the domain D for the model (3.22). It is also easy to see that if 
r+ m r 
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(tl, ... ,tr,tr+l, ... ,tm) is point in the support for the model (3.6), then (tr+1, ... ,tm) is also a 

point in the support for the model (3.22). Hence equations (3.23) have a set of unique 

solutions if equations (3.18) have a set of unique solutions. 

For the composite hypothesis (3.21) the likelihood ratio test statistic is given by 

(3.24) 

In many instances the parameters specified under the hypothesis is not a subset of 

the canonical parameters, but rather a subset of the original parameters 0F .. ,Ok. In other 

cases the hypothesis specify certain dependencies between the original parameters or the 

canonical parameters. In order to derive the asymptotic distribution of the transformed 

likelihood ratio test statistic in such cases, it is necessary to establish an equivalence 

between the hypothesis under consideration and a hypothesis of the form (3.21). 

Consider first a hypothesis where a set of r dependencies between the canonical par­

ameters is specified, e.g. 

(3.25) 

where '1fJ1, ... ,'1fJr are continuous functions. The number of parameters specified under (3.25) 

is r, if there exists a parameterization '1fJ1, ... ,'1fJm with '1fJ1, ... ,'1fJr given by the left hand sides 

in (3.25) and m-r continuous functions 

(3.26) 

such that '1fJ1' ••• , '1fJm are identifiable in the log-linear model. 

The log-likelihood ratio for (3.25) is given by 
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(3.27) 

where ,\, ... ,7 mare the values of TF .. , Tm that maxirnize the likelihood function under the 

constraints (3.25). 

Assume secondly that the log-linear model is identifiable in terms of m of the origin­

al parameters 0l' ... ,Ok' for example 0l' ... ,Om. Consider then the hypothesis 

(3.28) 

Under (3.28) the likelihood ratio is given by 

(3.29) 

A A 

where 0r+l, ... ,Ok are the ML-estimates under the constraints (3.28) and 0F .. ,Ok the un-

constrained ML-estimates. 

Assume finally that the model is identifiable in terms of 0F .. ,Om and Ho specifies r 

constraints between the identifiable parameters, i.e. 

(3.30) 

The likelihood ratio is then given by 

(3.31 ) 
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A A 

where 0l, ... ,Ok are the ML-estimates under the constraints (3.30), and 0l,,,.,Ok the un-

constrained ML-estimates. Note that the constraints only concern the identifiable par-

ameters 0l,,,.,Om' but since the remaining parameters, 0m+l,,,.,Ok are functions of 

0l'".,Om the constraints (3.30) also apply to 0m+l,,,·,Ok· 

We can collect all four cases, by saying that the parameters satisfy exactly r cons-

traints if one of the hypotheses (3.21), (3.25), (3.28) or (3.30) holds under the given condi-

tions. With this terminology, we have 

Theorem 3.9 

For a composite hypothesis, with exactly r constraints on the parameters, the transformed 

likelihood ratio test statistic has limiting distribution 

(3.32) 

The limiting distribution for -21m is thus a i -distribution both when all canonical par­

ameters are specified and under a composite hypothesis with r constraints on the par­

ameters. The number of degrees of freedom are in both cases the number of parameters 

specified under the hypothesis. 

In most cases composite hypotheses are formulated in terms of the original par­

ameters as in (3.28) or (3.30). The role of the canonical parameters and the subset of i­

dentifiable parameters is then to determine the correct number of constraints between the 

parameters. If e.g. two of the equations in (3.30) are linearly dependent, then a set of m-r 

parameters 'l/Jr+l,.",'l/Jk does not exist for which the model is identifiable in terms of 

'l/Jl,.",'l/Jm' and theorem 3.9 does not hold. Thus all linear dependencies between the equa­

tions in (3.30) must be accounted for in order to determine the degrees offreedom for the 

limiting i -distribution. 

Example 3.6. 

Table 3.1 show the traffic accidents in Denmark in 1981 involving pedestrians distributed 
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according to the week day on which the accident happend. 

Table 3.1. Traffic accidents in Denmark in 1981 involving pedestrians distribu­
ted over weeks days. 

Week Number of Expected numbers 
day accidents Ho H1 

Monday 279 248.43 279.8 
Tuesday 256 248.43 279.8 
Wednesday 230 248.43 279.8 
Thursday 304 248.43 279.8 
Friday 330 248.43 279.8 
Saturday 210 248.43 170.0 
Sunday 130 248.43 170.0 

Totals 1739 1739.01 1739.0 

Source: Road traffk accidents. Publication 1982:8 
Statistics Denmark. Table 5.3. 

As a model for the data assume that all accidents happen independent of each other 

and that, given a particular week day, the number of accidents follow a Poisson distribu­

tion. Let Xl'"",X7 be the daily number of accidents. Then for day j 

x. -).. 
). . Je J 

P(X.=x.) = J I 
J J xr 

and Xl'""X7 are independent. Hence the log-likelihood of x1, ... ,x7 can be written 

It follows that the model is log-linear with canonical parameters T.=ln).., j=1, ... ,7 and 
J J 

sufficient statistics x1, ... ,x . The ML--€stimates for the ). .rs are given as solutions to 
7 J 

x. = E[X 1 = ).. 
J J J 

A-

or simply as ). .=x .. 
J J 
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Consider now the hypo thesis 

HO: \= ... =A7=A, 

to the effect that the expected number of accidents is independent of week day. Since the 

model is identifiable in terms of the \'s, Ho is a hypothesis of the type (3.30) with 

{
A = 
. ~. 
A -

6 

A = 0 7 

A = 0 
7 

There are thus exactly 6 constraints. Theorem 3.9 then applies since the model is 

identifiable in terms of 1fJl=Al-A7, ... ,1fJ6=A6-A7 and 1fJ7=AT If all A'S are equal the 

log-likelihood function becomes 

7 7 
Inf(x!," .. ,x71 A, ... ,A) = InA E X·- E Inx.!-7A 

j=l J j=l J 

and the likelihood equation for the estimation of A is 

7 7 
E x. = E[ EX.] = 7A 

j=l J j=l J 

A 

with solution A=Ex.j7. The likelihood ratio then with x =~. becomes 
J . J 

I1[ (~') xje-x. /7jx.!] 
r(x1, ... ,x7) = J 

x. -x. 
I1[x. Je Jjx.!] 

J J 

such that 

-21m = 2Ex.[1nx.-1n~·] . 
j J J 

According to theorem 3.9, -21nrNx2(6) and we reject Ho if the observed value of -21nr is 
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large. The expected numbers x./7 under HO are shown as column 2 in table 3.1. The value 

of -2lnr computed from table 3.1 is -2lnr=115.56, which is clearly significant. Consider 

next the hypothesis that the expected number of accidents is the same for Monday to Fri­

day, and the same for Saturday and Sunday. Formally this is the hypothesis 

Written on the form (3.30) we have 

Since the model is identifiable in terms of 'l/11=A1-A5, 'l/12=A2-A5, 'l/13=A3-A5, 'l/14=\-\' 

'l/15=A6-A7, 'l/16=A5 and 'l/17=A7, theorem 3.9 applies to H1 with r=5. Under H1, the log-li­

kelihood ratio is given by 

Hence the ML--€stimates for \ and A6 are obtained from 

and 

with solutions 

5 
2: x. = 5A1 

j=l J 

- 5 
\ = 2: x./5 

j=l J 
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and 

The transformed likelihood ratio becomes 

7 
z = -21nr(xF .. ,x7) = 2 ~ x.[lnx.-lnA.]. 

j=l J J J 

According to theorem 3.9, z is approximately l-distributed with 5 degrees of freedom. 

The values of Aare shown in column 3 of table 3.1. With these values -21nr is computed 

to 41.8. The corresponding level of significance P(Q~41.8) is less than 0.0005 when 

Q",l(5). Neither Ho nor H1 can thus be accepted for the data in table 3.1 and it seems 

that a more complex model is needed to describe the data . .6.: 

3.5. The parametric multinomial distribution 

Many discrete statistical models are based on the multinomial distribution. When, as in 

section 2.4, the cell probabilities depend on one or more parameters, the distribution is 

called a parametrie multinomial distribution. 

The multinomial distribution can be generated by n independent, discrete random 

variables XI, ... ,Xn , which can attain the values 1, ... ,m with probabilities 

71'. = P(X. = j), j=l, ... ,m. 
J I 

If these probabilities do not depend on i and if 

Y = number of X.'s with observed value j, j=l, ... ,m, 
J I 

then the vector (Y 1 , ... ,Y m) follows a multinomial distribution with count parameter n og 

probability parameters 7I"1, ... ,7I"m' The joint point probability P(Y1=Yl""'Ym=Ym) is 
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given by 

(3.33) f(Y1""'y ) = ... 71"1 ... 71" . [ 
n ] Y1 Ym 

m Y1 Ym m 

As shown in example 3.3 the multinomial distribution is log-linear with canonical 

parameters 

T. = ln71". -ln71" , j=1, ... ,m-1 
J J m 

and sufficient statistics Y!'" .. ,Ym- 1. 

For the parametric multinomial distribution, (Y 1 , ... ,Y m) has joint point prob ability 

(3.33) and the 71"l S are functions 

(3.34) 

of k parameters (lF"'(}k' where k<m-l. 

The validity of the usual asymptotic results applied to the parametric multinomial 

distribution depend on the model being identifiable in its parameters. Fortunately the 

conditions for identifiability are well studied in this case, cf. for example Andersen 

(1980a), p.95, Bishop, Feinberg and Holland (1975), p.510 or Rao (1973), p.359-360. 

The key assumptions for the following theorems are: 

Regularity: The functions 'Ir} (}F"'(}k)' j=l, ... ,m are positive and differentiable with 

continuous derivatives and the square matrix M with elements 

(3.35 ) 
m 1 ih'((}1""'(}k) fh'((}1""'(}k) 

m - ~ J ~J~~ __ ~. 
pq - . 1 71".(01", .,Ok) ao ao 

J= J P q 

has rank k. 

Identifiability: The model must be identifiable in terms of B=(}l""'(}k' 
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The exact definition of identifiability is given in the references above. If the matrix 

M has rank less than k, the model is not identifiable. 

The matrix M with elements (3.35) is generally knowns as the information matrix, 

because it describes the precision with which the parameters can be estimated and hence 

the strength of information in the data concerning the values of the parameters. 

Theorem 3.10: 

Under regularity and identifiabily conditions, the asymptotic distribution of the Mlrilsti­

mates in the model (3.33), (3.34) is given by 

(3.36) 

A 

From theorem 3.12 follows that the asymptotic variance of 0 is 
P 

(3.37) 
Aal 

var[ 0 1 = - mPP , p=I, ... ,k, 
P n 

where mPP is the p'th diagonal element of ~l. From (3.37) a confidence interval for 0 
P 

with approximate confidence level l-a can be constructed as 

(3.38) 

where ~PP is the p'th diagonal element of ~l with the O's replaced by their ML-Bstima­

tes. 

Theorem 3.11: 

Under regularity and identifiability conditions, the test statistic 

m A 

(3.39) Z = 2 I; Y.(ln Y.-In(ll1r.)), 
j=l J J J 
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with 
A A A 

7rj = 7rl°l' ... ,Ok) 

A A 

and °1, ... , 0k being the M:I.r-estimates, has the asymptotic distribution 

a 2 
ZN X (m-l-k) . 

The result in theorem 3.11 is usually applied in connection with a goodness of fit 

test. Suppose the assumed model for the data is a multinomial distribution with cell pro­

babilities (3.34), then (3.39) can be used to test whether the assumed model fits the data. 

If Ho is the composite hypothesis that the multinomial probabilities 7rl'" .. ,7rm are cons­

trained by their common dependencies (3.34) on 0l' ... ,Ok' then the log-likelihood under 

Ho is 

A 

Without Ho the ML-€stimators for the 7r'S are 7r. =Y./n, j=l, ... ,m. Hence the log-like-
J J 

lihood without Ho is 

InL = In Yl·· .Ym +.~ y.ln(Y·/n). A [n] m 

J=1 J J 

It follows that the log-likelihood ratio for testing Ho is 

A m A A 

1m = InL -lnL = ~ Y. [ln( 7r.( 01 , ... ,Ok)) -ln(Y ./n)], 
j= 1 J J J 

and Ho is rejected if 1m is smalI. This is, however, equivalent to rejecting Ho if 

m A 

-21m = 2 ~ Y.(lnY. -ln(n7r.)) 
j= 1 J J J 

A A A 

is 1arge, where 7rj = 7r} 01 , ... ,Ok)· The data supports the model if the observed value of Z is 
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small, while a large observed value of Z is an indication of a lack of fit between data and 

model. The level of significance is accordingly approximateoly equal to P(Q>-2lnr), 

where Q-i(m-1-k). 

Many statisticians prefer the Pearson test statistic, defined as 

m A 2 A 

Q = ~ (Y.-n1r.) /(n1r.), 
j= 1 J J J 

to Z. The two quantities are, however, asymptotically equivalent under Ho. Also Q is 

thus asymptotically i-distributed with m-1-k degrees of freedom under the conditions 

öftheorem 3.11. 

With Z replaced by Q, theorem 3.11 was first rigorously proved by Birch (1964), and 

the theorem is widely refered to as Birch's theorem. 
A 

Under regularity conditions, where n1r.>O for all j, the expected numbers n1r· will 
J J 

with probability one be bounded away from zero. If, therefore, theorem 3.11 is used as 

basis for approximating the distribution of Z or Q, it is a critical condition for the validi-
A 

ty of the approximation that the estimated expected numbers n1rj are not too elose to 

zero. Cases where an observed multinomial distribution has small expected numbers are 

referred to as sparse multinomials or sparse tables. Sparse tables are discussed in Haber-

man (1977a), Dale (1986) and Koehler (1986). 

If a test based on Z or Q has revealed that the data does not support the model, it 

can be of interest to study which data points contribute to the lack of fit. For such a 

study residual analysis is often helpful. The residuals for the multinomial distribution are 

defined as the differences 
A 

Y.-n1r. 
J J 

between observed and expected numbers. In order to judge if a given residual contribute 

significantly to a lack of fit, it is COlnmon practice to standardize the residuals by dividing 
A 

them with their standard errors. Hence we need the variance of Y.-n1r .. 
J J 
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Theorem 3.12: 

Under regularity and identifiability conditions the asymptotic variance of the residual 
A 

Y .-n 1r. is given by 
J J 

(3.40) 
A a 1 Ehr. Ehr. 

var[Y. -n7r.] = n7r.(1-7r.-~E-orI-orI-mpq) 
J J J J pq 7r j P q 

A AAl 

where 7rj =7r/0l' ... ,Ok) and mpq is the element in row p and column q of ~ . 

Theorem 3.12 can be derived from theorem 3.10 rather easily. Details are given in 

Rao (1973), p.393, which also seems to be the first time the formula appears in the littera-

ture. 

Often the squared roots 

* A I" 
r. = (y.-n7r.)l~n7r; 

J J J J 

of the individual terms in Pearsons test statistic Q are referred to as standardized resi­

duals. Theorem 3.12 shows that these residuals do not have unit variance or even the 

same variance. Residuals with unit variance are given by 

(3.41) 

where 
A A 

(3.42) 
A A 1 [hr./h.A 
{j _ ~~ J J pq . - 7r. + L"L" ~ 7J8 (J(J m , 
J J pq7r. P q 

J 

A A A 

and mpq is the (p,q)-element of the inverse of M evaluated at (Ol, ... ,Ok)' We shall call the 

quantities (3.41) standardized residuals. 
A * 

Since {j. is positive, r. is always larger than the Pearson residuals. Hence r. will not 
J J J 

often enough point to critical model departures. 

How to choose residuals has attracted much attention in recent years. The main in-
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terest is in residuals of the type (3.41) or normalized versions of the individual terms in 

the test statistic (3.39). Key references are Cox and Snell (1968), (1971) and Pierce and 

Schafer (1986). 

Consider next the case of Lindependent multinomial distributions, where for each 

1=1, ... ,L, the vector (Y I1 , ... , YIm) has a multinomial distribution with parameters 

nl and 1I"11, ... ,1I"Im' The likelihood funtion is then given by 

(3.43) L [ni 1 m Y1j 
L(1I" , ... ,11" ) = II II 11" • 

11 Lm 1=1 Yll' "Y1m j=1 IJ. 

We assume that for each l=l, ... ,L, nl"""'OO in such a way that the ratio n/n does not tend to 

zero, where n=n1+ ... +nL . 

One such situation is survey sampling, where units are sampled by simple random 

sampling within L strata. The total sample of size n is then composed of the subsampies 

from the strata of apriori fixed sizes nl' .. ,nL. Within a given stratum the nl units are 

sampled at random. The distribution of a categorical variable over its categories can then 

be described by the multinomial distribution within each stratum and provided the L 

subsamples are independent, the totallikelihood will be (3.43). 

Consider now the parametric models 

(3.44) 

for the 1I"'S, and let M be the matrix with elements 

(3.45) 
L m n l 1 011"'1 011"'1 

m = ~ ~ --~~, p,q=l, ... ,k. 
pq 1 l' 1 n 11"'1 uu uu = J= J P q 

Theorems 3.10 to 3.12 then take the following forms: 
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Theorem 3.13 

Under regularity and identifiability conditions, the asymptotic distribution of the ML-es­

timates is given by 

(3.46) 

The confidence limits (3.38) accordingly also applies to the model (3.43), (3.44) when 

the information matrix is defined with elements (3.45) rather than (3.35). 

Theorem 3.14: 

Under regularity and identifiability conditions the tffit statistic 

(3.4 7) 

where 
A A A 

1f'lj= 1f'1}Ol,,,·,Ok)' 

A A 

and 0l'".,Ok are the ML-estimates, has the asymptotic distribution 

ZN i(L(m-l)-k). 

Note that in (3.43) the number of free parameters without constraints on the 1f"S is 

L(m-I), since there are Lindependent multinomial distributions with rn-I degrees of 

freedom each. 

Theorem 3.15 

Under regularity and identifiability conditions the asymptotic variance of the residual 
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(3.48) 

A AAl 

where 11"lj=11"I} 0l' ... ,Ok) and mpq is the (p,q)-element of Ar . 

For the model (3.44) the standardized residuals are thus 

(3.49) 

where 
A A 

(3.50) 
A A n l 1 Eh l · 811"1' A 

15 -"""" J J pq I' - 11"1' + L.JL.J"n:-""- 7J7j" 7J7j" m 
J J P q 7r Ij P q 

A 1 A A 

and mpq is the (p,q)-element of Ar evaluated at (0l' ... ,Ok). 

3.6. Generalized linear models 

Related to the theory of the exponential family is the theory of generalized linear models. 

Generalized linear models in their modern formulation is due to NeIder and Wedderburn 

(1972). A comprehensive aecount can be found in NeIder and McCullogh (1983). 

A generalized linear model is a generalized form of the exponential family introduced 

in section 3.1, for non-identically distributed observations and canonical parameters, 

which are linear functions of a set of covariates. 

For each observation X., let z'l' ... 'z. , be a set of p covariates and assume that the 
1 1 Ip 

probability 

P(X.= X.) = f(x·1 0.,15) 
1 1 1 1 

has the generalized exponential form 

(3.51 ) Inf(x.1 0.,15) = g(x.)cp( O.)ja( 15) - K( O.)ja( 15) + h(x.,15), 
1 I 1 1 1 1 
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where B. is a model parameter and bis a parameter, which may or may not be known. 
1 

This model is called a generalized linear model if the canonical parameters T 1"'" T n has 

the linear form 

P 
(3.52) T. = cp( B.) = ~ z . .ß. , 

1 1 j=l 1J J 

where ßl' ... ,ßp are unknown regression parameters. The log-likelihood function for a 

generalized linear model with n independent observations xl' ... xn is given by 

(3.53) lnL(T1,···,Tn ,8) = ~Y/Ja(8) -~K(T)/a(b)+~(\,8), 
I I I 

where K(T.)=K(B.) and y. =g(x.). 
1 I 1 I 

The factor l/a( b) does not change the exponential form, if b is known. If b is un­

known the model may or may not be an exponential family. If, however, only the TIS are 

of interest simple calculations show, that the likelihood equations derived from (3.53) are 

the same with arbitrary a(b) as with a(b)=l. Hence a(b) acts as an unimportant scaling 

factor as regards inferences concerning the TIS. The factor a( 8) is called the dispersion 

factor and b the dispersion parameter. For discrete models a( b) is almost always known. 

Hence in the following a( 8) = 1. 

There is a canonical parameter T. for each observation y., but if the regression func-
I I 

tion (3.52) is inserted in the log-likelihood function and a(8) is set to 1, the log-likelihood 

in terms of the ßIS become 

p n 
(3.54) lnL(ß1,···,ß ) = ~ ß. ~ y.z .. - ~K.(ßl, ... ,ß ) + Th(y.), 

P j=l Ji=l I IJ i 1 P i 1 

where 

K.(ß1,··.,ß ) = K(Th . .ß.) 
I p j IJ J 

and 
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h(y.) = h(x.,b). 
1 1 

A generalized linear model for discrete data is thus an exponential family with cano­

nical parameters ßl' ... ,ßp and sufficient statistics 

T. = EY.z .. , j=l, ... ,p. 
J i 1 IJ 

Accordingly the likelihood equations are 

t. = E[T.] = Th .. E[Y] 
J J i IJ 1 

or 

(3.55) Th .. (y.-E[Y]) = 0, 
i IJ 1 1 

j=l, ... ,p. 

In section 3.7 below it is discussed how such equations are solved by numerical 

methods. 

The support of the exponential family depends on the values of the covariates 

Z'l" .. 'z. , i=l, ... ,n. This means that conditions for a unique solution to the likelihood e-
1 Ip 

quations depend on the actual values of the covariates, and one has to be very careful to 

check for singularities. 

A general ized linear model can also be defined if 

(3.56) 
p 

rJ· = ~ z··ß·, 
I j=l IJ J 

which is called the linear predictor, is not equal to the canonical parameter T .. 
1 

The linear predictor is connected with the mean value function 

jt. = E[Y] 
I I 

through the link function 
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(3.57) TJ· = G(Jt.), 
I I 

which is assumed to be strictly monotone with inverse 

In order to formulate a generalized linear model with dispersion factor 1 it is 

necessary to define 

and 

(1) a distribution (3.51) belonging to the exponential family, 

(2) a linear predictor (3.56) with corresponding covariates 

(3) a link function (3.57). 

If TJ.= r. the link funktion is called a canonicallink function. 
I I 

If the link function is not canonical the canonical parameter r. is derived from the 
I 

link function by solving the equation 

The linear predictor and the link function together with the distribution 

lnf(xl r.) = g(x.)r. -K(r.) + h(x. 
I I I I I 

then specifies the model. 

Example 3.7. 

The logistic regression model in example 3.4 is a typical example of a generalized linear 

model. The model is binornial and hence an exponential family with canonical parameter 
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p. 
T. =lnr, 

I -Pi 

where p.=O. is the model parameter. Since 
I I 

the link function is canonical. The dimension is p=2 with z.l=l and z.2=z .. Hence the 
I I I 

likelihood equations are 

Thc.= m [Y] = ~p . 
. I. I . I 
I I I 

and 

Thc.z. = u.E [Y] = ~p.z . 
. I I . I I . I I 
I I I 

with 

3.7. Solution of likelihood equations 

The likelihood equations for a log-linear model with k real-valued parameters 0l' ... ,Ok 

has the form (3.19). If the mean value function is denoted 

the ML-estimates are, therefore, found by solving the equations 

(3.58) t.= 1/1.(01, •.. ,0 ), j=l, ... ,m 
J J m 

with respect to the O's. In (3.58) the O's are either the canonical parameters or a set of m 

parameters, which are identifiable in the sense introduced in section 3.3. 

If the equations (3.58) do not have explicit solutions, numerical procedures are called 

for, e.g. the so-called Newton-Raphson procedure. The Newton-Raphson procedure is 
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based on a Taylor expansion of (3.58) up to first order terms, i.e. 

* where I 0l-~ I s I 0l-~ I, l=l, ... ,m. On matrix form this can be written 

* where t=(t1, .. ·,tm),1/I( 01, .. ·,Om)=( '1/\ (01, .. ·,Om), .. ·,1/Im( 01, .. ·,Om))' 0=( 01, .. ·,Om) and W is 

the a square matrix with elements 

* * 81/1.(01 , ... ,0 ) 
J m 

aOI 
j=l, ... ,m, l=l, ... ,m. 

* If 01 is elose to O~ for all 1, 01 is also elose to O~ and we get for () elose to ff the 

approximation 

(3.59) 

* * where W is W with () replaced by ff. Solving (3.59) yields 

(3.60) 

Equation (3.60) is an algorithm for obtaining a new approximation to the solution of 

(3.58) with the elements of ff as initial values. Repeated applications of this algorithm 

can be expected to converge if the initial values O~, ... ,O~ are reasonable elose to the solu­

tions. The algorithm based on (3.60) is called the Newton-Raphson procedure. It normal­

ly converge rapidly if the initial values are elose to the solution, but if this is not the case 
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it may not converge at all. A disadvantage is that it requires the computation and 

inversion of the matrix W, which in some cases can be very time consuming. In such cases 

one may either look for simpler procedures or for approximations to W. 

A time saving device, which sometimes works, is only to compute W in the first one 

or two steps of the iterative procedure and then use the inverse of this matrix in all 

remaining steps. Another possibility is only to use the diagonal elements of W, in which 

case the inversion is trivial and the time necessary for computing and inverting W is 

greatly reduced. 

It is instructive to consider the Newton-Raphson procedure for m=l. The likelihood 

equation is then 

t = 1jJ(0) 

and the equation (3.60) beeomes 

o = 0° + (t-1jJ( 0°))[ 81jJ( 0°) / 8Uj-l. 

As illustrated in figure 3.:~ this means that new approximations to 0 according to the 

Newton-Raphson procedure are obtained by searching along a tangent to 1jJ( 0). 

~(a) 

Fig.3.3. The Newton-Raphson procedure for the case k=m=l. 
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The Newton-Raphson procedure has the further advantage, that it as a by-product pro­

vide estimates of the asymptotic variances and covariances of the ML-estimates. This 

follows from the following theorem 

Theorem 3.16: 

H the likelihood equations have the form (3.58), then the asymptotic covariance matrix of 
AAl 

0l, ... ,Om is ~ , where M has elements 

01/J.(01'···'0 ) 
mjl = J 8°1 m, j=l, ... ,m, l=l, ... ,m. 

Proof: 

Let for simplicity 0l=Tl' ... ,Om=Tm be the canonical parameters. Then the likelihood e­

quations are 

t. = noK(T1, ... ,T )/OT .. 
J m J 

The theorem then follows immediately from theorem 3.7. If 0l, ... ,Om are not the canonical 

parameters, the likelihood equations are 

t. = nßK( °1, ... ,0 )/00 . w ., j,p=l, ... ,m, 
J m P PJ 

where w . is defined in theorem 3.7A and theorem 3.6 now follows from theorem 3.7A. 
PJ 

D· 

The practical use of theorem 3.16 is that the matrix \)-1 obtained in the last step of the 

iterative procedure is an estimate of the asymptotic covariance matrix of the ML-esti-

mates. 

The particular form (3.58) of the likelihood equations allow in many cases for very 
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simple iterative procedures with attractive properties. One method known as the 

Deming-Stephan method or the iterative proportional fitting method is widely used for 

log-linear models of the type treated in chapters 4,5 and 6. The use of this method re­

quire that the right hand side of (3.58) is a sum of basic parameters from which the BIs 

can be obtained by direct calculation. If these basic parameters are called 0l' ... A, it is 

thus assumed that (3.58) has the form 

(3.61 ) 
I 

t. = I; w .. O., j=l, ... ,m, 
J i=1 JI I 

where w .. are known constants. The BIs are functions of the OIS, Le. 
Jl 

(3.62) 

Let now t;., ... ,t;, be a set of initial values. A new set of OIS is then derived by changing 

the initial set of OIS proportionally to satisfy (3.61) for j=l, Le. 

Obviously now 

I t 1 
O. = f. . 

I I;wl . f. I 
I I 

1 
I;wl·O. = t l · 
. I I 
I 

Next, the oilS are adjusted proportionally to satisfy (3.61) for j=2, Le. 

2 t 2 1 
O. = I O .. 

I I;w2. O. I 
. I J 
J 

When all m tjls have been adjusted the algorithm goes back to adjusting t l , etc. The iter­

ations are stopped, when further adjustments do not change the values of the t.ls within 
J 
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the required accuracy. Finally the 0 s are obtained from (3.62). The procedure may re­

quire a large number of steps, but each step only involve simple calculations. The conver­

gen ce of the procedure is often insensitive to the choice of initial values. 

The Deming-Stephan procedure is widely used in connection with log-linear model 

for contingency tables, because the parameters of interest are the expected values in the 

ceIls, which are the O's of the Deming-Stephan procedure. By iterative proportional mar­

ginal fitting the expected cell numbers under the hypothesis are thus derived directly. 

Other situations, where the form of the likelihood equations calls for simple iterative 

procedures, are latent structure models, treated in chapter 12. For such models (3.58) 

typically has the form 

t. = b(O.)D.(Ol'''''O ), j=l, ... ,m, 
J J J m 

where b.=b( 0.) is a monotone function with an explicit solution 
J J 

while D/01, ... ,Ok) has a rather limited variation as a function of the O's. 

From initial values O~ , ... ,0: improved estimates can then be obtained as 

1 1 ° 0). O. = {) (t./D.(Ol'''·'O ), J=l, ... ,m. 
J J J m 

This procedure, is known as the partial solution method. 

In generalized linear models of the form (3.54), solutions to the likelihood equations 

can be obtained by a weighted least square method. Consider the Newton-Raphson 

method (3.60) where (J is the vector of ß 's and t is the vector 

t. = ~ Z .. y., j=l, ... ,p 
J i IJ 1 



80 

of sufficient statistics. The matrix w- in (3.60) then has elements 

8E[T.] 
,T, _ J 
'l'jl - aß1 ' j,l=l, ... ,p. 

Since, however, 

E[T.] = Th .. K'(T.), 
J i IJ 1 

we get from (3.52) 

Equation (3.59) for the generalized linear model thus takes the form 

(3.63) 

with 

On the other hand, 

and 

p 

t. ~ E[T·Iß10, .. ·,ß 0] + ~(ßI-ßIO)Th .. z·IK"(T·O) 
J J P 1= 1 i IJ 1 1 

t. = Th .. y., 
J i IJ 1 

such that (3.63) as an equality has the form 

(3.64) j=l, ... p 

where 

w. = K"( T.O)' 
I 1 

If we put 
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(3.65) 
y.-K I (r.o) p 

y.o= 1 1 + f,ß10Z'1' 
1 w i 1=1 1 

(3.64) are the estimation equations for the weighted least square estimates of ßF .. ,ßp in a 

linear regression model with YiO as response variable, the covariates zi1, ... ,zip as 

explanatory variables and w. as weights, i.e. 
1 

(3.66) 

where e. is an error term. 
1 

p 
Y'O = f, ß·z . .+e. , 

1 j=1 J 1J 1 

It follows that the new set of approximations to the ML--€stimates for ßF .. ,ßp in 

each step of the Newton-Raphson procedure are obtained as weighted least squares esti­

mates in the model (3.66). It follows that the Newton Raphson procedure is equivalent to 

the following iterative weighted least square method suggested by NeIder and Wedder­

burn (1972). 

(i) Given initial values ßlO, ... ,ßpo ' form the pseudo response variables Y10""'YnO 

as (3.65). 

(ii) Obtain the weighted least squares estimates for ßl"",ßp from the linear 

regression model (3.66) with w.=K"( r.o) as weights. 
1 1 

(iii) repeat (i) and (ii) with the new estimates as initial values until convergence 

is obtained. 

This method is widely used for the regression models in chapter 8 and 9. It is the 

main numerical tool in the GLIM software package, cf. Baker and NeIder (1978). 

J0rgensen (1984) extended the method and coined the phrase adelta algoritbm. The 

method of iterative weighted least squares has been generalized to distributions outside 

the exponential family by Green (1984), who also discussed robust alternatives. For 

furt her reading the reader is referred to NeIder and McCullogh (1983) or J0rgensen 

(1984). 
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3.8. Exercises 

3.1. Two players A and B play eaeh other in n plays. The winner of eaeh play reeeive 1 

dollar from the loser. The plays are assumed to be independent and the probability that A 

wins is O. 

loses. 

Let X. be AlS gain/loss in play number i, Le. 1 dollar if he wins and -1 dollar if he 
1 

(a) Show that the log-likelihood funetion is 

n+Lx. n-Lx. 
lnL(O) = -2-1lnO+ -rln(1-0). 

Why does it only depend on Lx.? 
1 

(b) Find the eanonical parameter T and the suffieient statistie. 

( e) Specify and sol ve the likelihood equation. 

(d) What is the eonneetion to the binomial distribution. 

3.2. A random variable with point probability 

f(x) = tf 1-j+1 ' x=O, ... ,k ,0 <0< 1, 
1-

is said to follow the truneated geometrie distribution. 

Let xl' ... xn be n independent observations from this distribution. 

(a) Show that the distribution of X forms an exponential family. 

(b) Identify the eanonical parameter T and the sufficient statistie T. 

(e) Construet the support and identify those values t of T for which theorem 3.2 does 

not ensure a unique solution to the likelihood equation. 

(d) Write down the likelihood equation for O. 
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3.3. A random variable X with point probability 

1 8 f(x) = cruJ x , x=I,2, ... 

is said to follow the zeta-distribution. The function c( 8) is Riemann's zeta-function. It 

can be shown that the domain is (-00,-1). 

(a) Show that the distribution of X forms an exponential distribution. 

(b) Identify the canonical parameter and the sufficient statistic for n independent ob-

servation x1,.",xn ' 

(c) Derive the likelihood equation and use theorem 3.1 to verify the formula 

~ lnx.x8 = C'(8). 
x=l 

(d) Identify those values of xl"",xn for which theorem 3.2 does not guarantee a unique 

solution to the likelihood equation. 

3.4. A random variable with point probability 

-1 
f(x) = [-ln(1-8)] {fIx, x=I,2, ... 

is said to follow a logarithmic series distribution. 

(a) 

(b) 

( c) 

(d) 

Find the domain of the distribution. 

Derive the likelihood equations for n independent observations. 

Determine the asymptotic variance of the ML-estimator as a function of 8. 
A 

Suppose x=3.5. Determine the ML-estimate 8 by the Newton-Raphson method 

and give an estimate of its standard error. 
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3.5. A random variable X with point probability 

where k is an integer, is said to follow a Pascal distribution. Let xl"",xn be n independent 

observations from this distribution. 

(a) Derive and solve the likelihood equation for 8. 

(b) Identify the function K( 8) and use theorem 3.3A to find the asymptotic variance of 

8. 

(c) Let k=4, n=5 and consider the following observations xl'".,x5=3,2,5,3,2. Test then 

the hypothesis 

HO: 8 = 0.5. 

by a likelihood ratio test. 

3.6. Let Xl' X2, X3 follow a trinomial distribution with 

(a) What is the dimension of the exponential family. 

(b) Find the canonical parameters. 

(c) Derive the likelihood ratio test for Ho: PI =P2=P3' 

(d) If Xl =4, x2=3, x3=5 compute the value of the transformed likelihood ratio test sta­

tistic and test Ho' 

3.7. The table below show for three municipalities in Denmark the persons, which was in­

terviewed in connection with the Danish Welfare Study, cross-classified according to the 

household income (rounded to 10.000 Dkr.) and whether the household has a swimming 
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pool or a freezer. If analyzed by a logistic regression model, check for each data set, 

whether there are unique solutions to the likelihood equations. 

Number of household with 
Municipality Income Sampie Pool Freezer 

(10.000 Dkr.) size 

Fredensborg 1 1 0 1 
4 2 0 1 
6 3 0 2 
7 1 0 1 
8 2 0 2 

10 1 0 1 
15 1 0 1 

Total 11 0 9 

Karlebo 0 1 O' 1 
1 2 0 2 
2 1 0 1 
3 1 0 0 
4 3 1 3 
5 1 0 1 
7 2 0 2 
8 4 1 3 

Total 15 2 13 

Stenl0se 0 2 0 2 
3 3 1 3 
6 3 0 3 
7 3 0 3 
8 2 0 2 

10 1 0 1 

Total 14 1 14 

3.8. In exercise 3.2 suppose we have observed 10 observations with average value x=1.2. 

" (a) Find 0 using the Newton-Raphson method. 

(b) Test the hypothesis 

0= 0.5 

by a likelihood ratio test. 

3.9. Between October 1961 and December 1964, there were born 98 twins at a hospital in 

Melbourne. The distribution of these according to sex is shown below 
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2 boys 2 girls 1 boy, 1 girl 

29 36 33 

(a) Suppose these data are described by a trinomial distribution with parameters 

(98,pl'P2,P3)' Show that if the sex of twin number two is independent of the sex of twin 

number one, then 

(b) Test the hypothesis in (a). 

(c) Twins can be classified as monozygotes and dizygotes. Für monozygotes the sex of 

the two twins is the same. If the probability of observing a monocygotic pair of 

twins is 0, then show that 

(d) Derive the likelihood ratio test for the hypothesis in (c) and use the observations 

from Melbourne to test the hypothesis. 

3.10. Let Xl" <'Xn be independent of Poisson distributed with common mean value "\ . 

Let furt her Yl""'Yn be independent Poisson distribution with common mean value A2. 

Suppoc~ we are interested in the parameter 

0= Al / A2. 

(a) Show that the model is identifiable in 01=0 and °2=).2' 

(b) Derive the canonical parameters and the likelihood equations. 

(c) Derive the transformed likelihood ratio test statistic 

for the hypothesis 

(d) Would you accept Ho if n=50, x=20 and y=30? 
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3.11. In example 3.6 consider the hypothesis 

(a) Show that the model is identifiable in terms of Al'A4,A6 and A7. 

(b) Formulate Ho in terms of the canonical parameters. 

( c) Test Ho based on the data in table 3.1. 

3.12. Pairwise comparison are observations of a set of variables jointly two by two. Consi­

der for example four variables indexed 1,2,3,4. Data consist of the number of times x .. 
IJ 

variable i is prefered to variable j. It is assumed that any of n individuals prefers variable 

i to variable j with probability 
t.-(. t.-(. 

p .. = e 1 J/(l+e 1 J) 
IJ 

(a) Show that if xll, ... ,xI_l.I are independent, then the log-likelihood become 

t.-L 

InL = ~~ (t.-t.)x .. - n ~~ ln( 1 +e 1 J). 
i <j 1 J IJ i<j 

(b) How many parameters are identifiable. 

(c) Derive the likelihood equations. 

(d) Find conditions for the solvability of the likelihood equations. 

3.13. In exercise 3.7 consider the number of households in Karlebo with and wihtout free-

zer as a function of income. 

(a) Show that formuHl,ted as a generalized linear model, a logistic regression model has 

Ti = ßo + ß1zi 

and 

T. 

K( T.) = ln(l+e I). 
1 

(b) Describe how the method of iterative weighted least squares work for the house 
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holds with and without freezers in Karlebo. 

(c) Choose initial values for ßo and ß1, for exarnple from a plot and work through the 

calculations for two iterations. 



4. Two-way Contingency Tables 

4.1. Three models 

A two-way contingency is a number of observed counts set up in a matrix with I rows 

and J columns. Data are thus given as a matrix 

The statistical model for such data depends on the way the data are collected. A great 

variety of such tables can, however, be treated by three closely connected statistical mo­

dels. Let the random variables corresponding to the contingency table be Xu, ... ,XIJ. 

Then in the first model the X . .'8 are assumed to be independent with 
IJ 

X .. N Ps( A .. ), 
IJ IJ 

Le. X .. is Poisson distributed with parameter A ... The likelihood function for this model is 
D Y 

( 4.1) 

The log-likelihood is accordingly given by 

( 4.2) 

-A .. 
e IJ 

The model is thus a IJ-dimensional log-linear model with canonical parameters 

InA ll ,· .. ,lnAIJ and sufficient statistics Tij=Xij, i=l, ... ,I, j=l, ... ,J. 
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The Poisson model (4.1) covers many applications in traffic research, where the ob­

served counts are traffic accidents. The contingency table can, for example, represent 

trafiic accidents cross-classified according to type of accident and time of year. 

The Poisson model is not the model most frequently met in practice. Consider a 

situation, where a sampIe of size n is drawn at random from a population of size N. For 

each sampled unit two categorical variables A and B (e.g. sex and social rank) are ob­

served. Let then x.. be the number of persons, which belong to category i according to 
IJ 

variable A and category j according to variable B. If N is sufficiently large the distribu-

tion of xu, ... ,x1J can be described by a multinomial distribution with parameters 

(n,pll, ... ,PIJ)' where Pij is the probability that a randomly sampled unit falls jointly in 

categories i and j. The probability of observing the data is 

(4.3) 
x .. 

f(x11, ... ,x..J Ipll, ... ,PIJ) = ( n )11 11 p. ~J, 
1 xll ·· .x1J i j IJ 

such that the log-likelihood function become 

( 4.4) InL(Pll, ... ,PIJ) = ln( n )+ I:I:x . .lnp ... 
xll ·· .~J i j IJ IJ 

This is a log-linear model with canonical parameters InPu, ... ,lnPIJ and sufficient statis­

tics T .. =X ... Since, however, the p .. I S are constrained by 
D D D 

I J 
I: I: p .. = 1, 

i=l j=l IJ 

the dimension of the exponential family is less than IJ. 

In fact (4.4) can be rewritten as 

(4.5) InL(Pll, ... ,PIJ_l) = ln( n )+ I: I: x .. (lnp .. -lnPIJ) + nlnPIJ' 
xu· .. xIJ (i, j )=F(I ,J) IJ IJ 
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showing that the canonical parameters are InPll-lnPIJ, ... ,lnPIJ_1 -lnPIJ' and the dimen­

sion of the model is IJ-l. 

In most situations it is not necessary to explicitly write down the reduced form 

(4.5) as long as we bear in mind that only IJ-1 parameters are identifiable. Thus the p .. 's 
IJ 

can be estimated and the asymptotic distributions of the transformed log-likelihood ratio 

can be derived directly in terms of the p . .'s. 
IJ 

The conditional prob ability distribution of Xll, ... ,XIJ given X .. =x .. is under the 

Poisson model (4.1) given by 

( 4.6) f(x 11, ... ,xIJ Ix .. ) = .. II II ().. .. /).. ) 11, [ X] I J x .. 

Xu ... xIJ i=l j=l IJ .. 

with)" =E E).. ... Model (4.3) can thus be derived from model (4.1) by conditioning on the 
.. i j IJ 

total X ... 

At least formally models (4.3) and (4.6) are identical .This means that by fixing the 

total at a given level x =n, the Poisson model can be treated as the multinomial model 

(4.3). The equivalents of the cell probabilities p .. are the proportions ).. .. /).. . This means 
IJ IJ .. 

that if one is only interested in the relative magnitudes of the )" . .'s, inference can be 
IJ 

drawn from the multinomial model (4.6). In a sense our lack of interest in the over-all 

level)" is reflected in a conditioning on x . Statistical methods developed for the multi-.. .. 

nomial model (4.3) thus also apply to the Poisson model (4.1) as long as only estimates of 

ratios like ).. .. /).. and hypotheses concerning relative magnitudes of ).. .. 's are of interest. 
IJ .. IJ 

It is not trivial that statistical properties derived from the Poisson model (4.1) are 

automatically also true for the derived conditional model (4.6). In this case conditions 

must be placed on the values of the conditioning statistic. In order for the asymptotic 

properties of goodness of fit test statistics to be valid, it is thus necessary that x 

approach infinity. 

A third model is connected with stratified sampling, where the population is di­

vided in I strata of sizes NI' ... ,N r From these strata independent random samples of sizes 
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n1, ... ,nl are drawn. The observed counts xil"",xjJ in row i of the contingency tables are 

then the number of units among the n. drawn from stratum i that belong to the J cate­
I 

gories of a categorical variable B. If the stratum sizes are large, the data from such sam­

pling can be described as I independent vectors each with a multinornial distribution 

[ ] 
J x .. 

f(x,I"",x'J!PI!"""PJ !,)= nj II p,!,IJ. I I I I x' l ' . ,x, J ' I J I 
I I J= 

The likelihood function is given by 

(4.7) r [[ n, 1 J x .. ] L(PI!I,,,,PJ!I) = II I II p,!, IJ . 
'1 x· I · "X'J ' I J I 1= I I J= 

The parameter p,!, is here the probability that a person in stratum i belongs to category j 
J I 

of variable B. Accordingly the P .!, satisfy 
J I 

(4.8) 
J 
~ P'!' = 1, 

j=l J 1 
i=l, .. "I. 

The model is thus a product of I independent multinomial distributions of sizes n1, ... ,nI, 

The log-likelihood function has the log-linear form 

(4.9) InL(P1!I'" "PJ ! r) = ~ln [ n
j 1 + ~~x .. lnp ,! .. , x'I' "x'J "IJ J I I I I I J 

Due to the constraints (4.8) the dimension of the exponential family is I· (J-1) and from 

the reduced form 

(4,10) [ 
n, 1 1 J-l r 

InL(PI!I,,,,,PJ!r) = ~ln I + ~ ~ x .. (lnp,!.-lnpJ !,)+ ~ n.lnpJ !" , x'I . "x'J '1' I IJ J I I, I I I I I I 1= J= 1= 
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follows that the canonica.l parameters are InP111-lnPJ 11"'" lnPJ_11 ClnPJ I r 

Model (4.7) Can be obtained from (4.1) by conditioning, since the conditional dis­

tribution of X, l"",X'J given X. =x. under the Poisson model is equal to 1 1 1. 1. 

(4.11) [
X ]J .Lx .. 

f(x, l"",xiJ Ix. )= i. II (.-Y) IJ. 
1 1. X·1· "XiJ . 1 A. 

1 J= 1. 

Another analogue to (4.7) can be obtained from (4.3) by conditioning on the row margi­

nals xl , .... ,L . In fact the distribution of X, l "",X'J given X. =x. , if (4.3) is the model, is 
. 1. 1 1 1. 1. 

( 4.12) [
X. 1 J [P..] xij 

f(x. , ... ,X. Ix.) = 1. II _IJ_ . 
11 IJ 1. Xil' "XiJ j=l Pi. 

Both under the conditioning (4.11) and the conditioning (4.12), the log-likelihood has the 

form 

(4.13) InL(Q11,···,qIJ) = ~ln[ ni 1 + ~~x··llnq .. , . x·1· "x'J . . IJ IJ 1 1 1 1 J 

where n.=x. , q .. =A . .j>,. in (4.11) and q .. =p .. /p. in (4.12). Thus at least formally (4.13) 1 1. IJ IJ I. IJ IJ I. 
is identical with (4.9) and statistical methods developed for models (4.1) and (4.3) also 

apply to the case of stratified sampIing if one is only interested in parameters derivable 

from A1'J'/ Al' or parameters derivable from p .. /p .. The correspondances between models . IJ I. 

(4.1), (4.3) and (4.7) noted above are important, because they allow us to concentrate on 

one type of model, when we develope the necessary statistical methodologies. It is impor­

tant to keep in mind, what parameters, it is possible to draw inference about, however. 

Thus if the Poisson model is reduced to model (4.13) by conditioning, one cannot draw 

inference about the over-alilevel A or about the row levels A. , i=l, ... ,1. 
•. I. 

In epidemiology the difference between models (4.3) and (4.7) are often described in 

terms of the experimental design. Model (4.3) is connected with what is called a cross-
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sectional study, where a sampie is taken from the population and the number of stages of 

a disease are recorded as they manifest themselves in various groups. In its most simple 

form the observations can be if the disease is found or not at individuals in various age 

groups. For a sampie of size n, XiI is then the number of individuals in age group i, who 

has the disease and \2 the number in age group i, who do not have the disease. Model 

(4.7) on the other hand is an example of a prospective study. From each age group a 

sampie is drawn, and among the n· selected in age group i, it is recorded how many x. I' 
1 1 

who have the disease, and how many xi2 ' who do not have the disease. For so-called 

retrospective studies the model is deri ved from (4.1) by condi tioning. In such st udies a 

number nI, which have the disease and a number n2 who do not have the disease are se­

lected from a file of all individuals. Among the nl with the disease, it is then recorded 

how many individuals xu , ... xlJ are found in each of the Jage groups. The distribution 

(4.11) then describes the distribution over age groups of those xl. =n l selected with the 

disease. 

4.2. The 2x2 table 

A contingency table with I=J=2 is usually refered to as a two by two table or 2x2 table. 

This most simple of all contingency table is weIl suited for explaining some of the basic 

hypotheses to be considered in contingency tables. 

It is most convenient to start by model (4.3). Let thus the model for the 2x2 table 

be 

(4.14) 

Due to the constraint Pu +P12 +P2I +P22=l, there are three free parameters. If the table is 

formed by cross-classification of a random sampie of size n according to two binary vari-
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IJ 
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Pij = P{ a randornly sampled unit belongs to category i according to variable A and 

category j according to variable B.} 

If the sampling is completely random and the population size N is large, p .. can also be 
IJ 

interpreted as the proportion of the population belonging jointly to categories i and j. 

Without furt her knowledge about the values of the p .. 's, the ML-estimate of p .. is 
~ ~ 

A 

p .. = x··/n. 
IJ IJ 

Hence inference about the distribution of the population over the four cells of the table 

can be drawn from the observed frequencies 

In a 2x2 table the hypothesis of primary interest is 

( 4.15) HO: p .. = p. p., i,j=1,2, 
IJ !..J 

also known as the independence hypothesis. 

In order to interprete Ho' let Al and A2 with 

A. = {a randomly sampled unit belongs to category i of variable A}, i=1,2 
1 

be the two events connected with variable A. Analogously let BI and B2 with 

B. = {a randomly sampled unit belongs to category j of variable B}, j= 1,2 
J 

be the events connected with variable B. The three terms in (4.15) can then be inter-

preted as p .. = p(A.nB.), p. = P(A.) and p . = P(B.). 
IJ 1 J I. 1 .J J 

Hence Ho is an independence hypothesis in the exact sense that the events Ai and 

B. connected with the two binary variables are independent. 
J 

The formulation of Ho in (4.15) is convenient for interpretation purposes, but it is 
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useful also to have a formulation of HO in terms of the original four parameters 

PU,P12,P21 and P22 of the multinomial model. This is obtained by writing (4.15) for i=l 

and j=l as 

multiplying the left hand side by l=Pll +P12 +P21 +P22 and reducing, which yields 

(4.16) 

It is easy to see that we get exactly the same condition for all other combinations of i and 

j in (4.15). Hence Ho is equivalently expressed by (4.16). One consequence is that Ho is 

satisfied if and only if the odds ratio 

(4.17) 

has the value 1, Le. (4.15) can be expressed as 

(4.18) 

The term odds ratio is derived from betting for example on horses, where the chance of 

winning is measured by the ratio of the chance of winning and the chance of loosing, cal­

led the odds in favour of ones bet. Independence between A and B thus means that the 

odds of variable being observed at level 1 is the same whether variable B is at level one or 

two. In a betting situation, we thus would bet on the events of A independently of any 

knowledge as regards the levels of variable B. 

An even more popular formulation of Ho is in terms of the log-odds ratio, Le. 

(4.19) HO: lnp = 0, 
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where p is given by (4.17). 

Sinee the ML-estimate of p .. is x .. /n, the empirieal equivalent of p is 
IJ IJ 

( 4.20) 

whieh is extremely easy to eompute in praetice. In addition the statistical uneertainty of r 

is known under the multinomial model (4.14). In faet it ean be shown (cf. for example 

Bishop, Holland and Fienberg (1977), p.497 or Andersen (1980a), p.167) that 

1 1 1 1 1 var[lnRJ ~ -(- + - + - + -) , 
n PlI PI2 P21 P22 

where R=XUX22!(XI2X2I)' 

Henee eonfidenee limits for lnp with approximate level of eonfidenee 1-<1' are gi yen by 

(4.21 ) I ± 1_1_+_1_+_1_+_1_ 
nr uI_"'/2~ 

u XII xI2 x21 x22 

These eonfidenee limits are relatively precise even for moderate values of n, beeause the 

asymptotic distribution of Inr is almost symmetrie. Sinee r is a ratio, the distribution of r 

ean be very skew for vaIues of r elose to O. Confidenee limits for p are obtained, therefore, 

by transforming the limits in (4.21) exponentially. Confidenee limits for p with level of 

eonfidenee 1-<1' are thus given by 

( 4.22) exp{ lnr + UI-<1'/2~ _1_ + _1_ + _1_ + 
XII x I2 x21 x:2 }. 

and 

(4.23) exp{ Im - UI_Q'/2~ _1_ + _1_ + _1_ + 1 }. 
XII xI2 x21 x22 

The eonfidenee limits (4.22) and (4.23) for the odds ratio are very useful. In order 
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to check the independence hypothesis, the appropriate first step is to compute r by (4.20) 

to get an impression of how strong the dependency iso If r is elose to unity, the confidence 

limits (4.22) and (4.23) are computed to check if the hypothetical value 1 is between these 

limits and thus in agreement with the given data. 

Formulae (4.21), (4.22) and (4.23) also apply under the models (4.1) and (4.7), but 

the interpretations of Ho are of course different. Under (4.1), Ho has the form 

HO: A .. = A. A ./ A , 
1J 1..J .. 

which states that the mean values A .. apart from a normalization factor I/Aare products 
1J .. 

of a row effect \. and a column factor A.r For model (4.7), Ho takes the form 

i.e. the probability of being at level j of variable B is the same, whether the sampled unit 

is from stratum 1 or stratum 2. But again the odds ratio r given by (4.20) is a measure of 

how elose the data is to what should be expected under Ho' The theoretical odds ratio 

under model (4.7) is 

and under model (4.1) 

It is typical for contingency tables that models may be different, depending on the 

sampling design, but that the statistical tools for checking the hypothesis Ho are the same 

for all models. 
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Example 4.1: 

A retrospective study of cancer of the ovary was carried out in Denmark in 1973. 300 

women were selected for the study, 150 who had survived a cancer operation by 10 years 

and 150, who did not survive the operation by 10 years. One record was lost for a woman, 

who did not survive. For the remaining 299 women it was recorded whether the cancer at 

the time of operation was at an early or at an advanced stage. The resulting data are 

shown in table 4.1. 

Table 4.1. 299 women in 1973 cross-classified according to survival and stage of cancer. 

Stage of cancer 

Early 

Advanced 

Total 

Source: übel (1975). 

The observed odds ratio for these data is 

Survival by ten years 
No' Yes 

31 

118 

149 

127 

23 

150 

r = 0.0476, 

Total 

158 

141 

299 

showing that the odds of survival is very low when the cancer is operated at an advanced 

stage and that the odds of survival is high when the cancer is operated at an early stage. 

That the observed value of r does in fact point to the true odds ratio being different from 

1 and hence that Ho can not be true is seen by computing the confidence limits (4.22) and 

(4.23). For the data i table 4.1, the 95% confidence limits are 

0.026 S P S 0.086, 

showing that it is extremely unlikely that p=1. 

Note that the appropriate model for these data is the model (4.7), since the women 

are sampled in two strata. Stratum one consists of those who have survived, and stratum 

two of those, who did not survive. From these two strata n1 =149 are selected at randorn 

from stratum 1 and n2=150 are selected at random from stratum 2. In fact it was decided 

to sampie 150 from each stratum, but 1 record was lost 1. The sampling design deter-
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mines what quantities can be estimated. Thus in this case the probability, which we can 

assess is the chance of having the cancer at an early stage at the time of the operation, 

given that the patient has survived, and the corresponding three other conditional prob­

abilities. We cannot, however, assess the chance of survival given that the cancer is at an 

early stage. We can check if it is different from the chance of survival given the cancer is 

at an advanced stage, but not the actually magnitude of the probability. This would re-­

quire that the design is prospective, Le. that a certain number of women with their cancer 

at an early stage and a certain number with the cancer at an advanced stage had been se-­

lected and it then was recorded how many survived in each group. 6; 

Example 4.2. 

As an example of model (4.3) consider the data in table 4.2 showing for a random sampie 

of 4229 individuals in Denmark in 1965 whether they returned the postal questionnaire. 

The table also shows the distribution according to sex. A non-return is denoted in table 

4.3 as a non-response 

Table 4.2. A random survey in Denmark in 1965 cross c1assified according to sex and 
non-response. 

Response 

Non-response 

Total 

Male 

1893 

240 

2133 

Female 

1838 

258 

2096 

Total 

3731 

498 

4229 

Source: Unpublished data from the Danish National Institute for Social Research. 

The data in table 4.2 is an example of model (4.3) since the total n=4229 is fixed and the 

appropriate parameters are p .. , with for example 
lJ 

p 11 = P { a sampled person res ponds and is a male}. 

The observed odds ratio for the data in table 4.2 is 

r = 1.107, 
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which is rat her elose to 1, hence one would suspect that HO is true. The rate of non-res­

ponse thus seems to be the same for men and women. In order to evaluate the degree to 

which the data supports Ho' one can compute the confidenee limits (4.22) and (4.23). 

These limits show that the true odds ratio is between 

0.918 ~ P ~ 1.335 

with level of confidence 0.95,such that the data strongly supports p=l. Under Ho:p=l, we 

can in addition estimate the over-all rate of response, which is 

3731 - 0882 4229- . 

or 88.2%, and the percentage of men in the population, which is 

2133 - 0 504 4229 - . 

or 50.4%. These figures show that the response rate is satisfactory high and that the 

sampie is weIl balanced sexuaIly. 6. 

Example 4.3. 

The data in table 4.3 are from an investigation in Sweden i 1961 and 1962 over the effects 

of speed limitations. The table shows for 18 weeks in 1961 and 1962 with a speed limit 

enforeed and for 18 weeks in 1961 and 1962 without speed limits, the number of killed in 

the traffie. 

Table 4.3. Number of persons killed in the traffic on main roads and seeondary roads 
for periods of the same lenght without and with speed limitations in 1961 
and 1962. 

Speed limit Main roads Secondary roads Total 

90 kmjhour 19 79 98 

Free 102 175 277 

Total 121 254 375 

Source. Unpublished data from the Swedish Road Authorities. 

For the data in table 4.3, model (4.1) is the appropriate one, since no totals are 

given beforehand. The parameters of interest are acordingly All' \2,A21 and A22 , with for 
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example 

Au = expected number of killed persons on main roads under a 

speed limit of 90 km/hour in aperiod of 18 weeks. 

Hence the expected number of killed persons per week under a speed limitation on main 

roads can be estimated from table 4.3 as 

19 
18 = 1.056, 

while the expected number of killed persons on secondary roads is 

79 18 = 4.389. 

These numbers does not mean that it is more dangerous to drive on secondary roads, 

since the total length of secondary roads i Sweden is many times larger than the total 

length of main roads. The Swedish authorities reported the accidents for both main roads 

and secondary roads because they wanted to check if a speed limitation is equally effecti­

ve on main and secondary roads. This would be the case if the obvious drop in expected 

number of killed persons from free to limited speed is the same for main and for secondary 

roads. In terms of the parameters of the model this would be the case if 

or 

The problem is thus equivalent with testing Ho. The odds ratio, has observed value 

r = 0.413. 

The effect of a speed limit thus seems (as expected) to be much larger on main roads. 

That r=0.413 is not in stat.istical agreement with p=1 can be seen from the limits (4.22), 
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(4.23) which yield that 

0.236 ~ p ~ 0.720. 

with level of confidence 95%.6; 

The hypothesis HO can also be evaluated by a formal test. Consider for example 

model (4.7). Here the 2x2 table reduces to a comparison of two binomial distributions, 

with likelihood function 

(4.24) 

while Ho has the form 

( 4.25) 

The ML~stimates for the parameters are 

and 

A test statistic for Ho can thus be based on the difference 

( 4.26) 

Since X u and x21 are binomially distributed and independent, the variance of (4.26) is 
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which under HO become 

where PI =PII I =PI 12· 

It follows that the test quantity 

(4.27) 

A 

where PI is the ML-estimate of Pl' is approximately distributed as a standard normal 

deviate. 

It is easily seen that 

The test statistic (4.27) is very useful, but its use is limited to situations, where both n i 

and n2 are so large that the approximation provided by the limiting distribution of the 

difference (4.26) is valid. In most cases it is required that both n i and n2 are at least 10, 

but the validity of the approximation depends also on the value of Pl' such that neither 

nlPl' nl(l-PI)' n2PI nor n2(1-PI) must be too small. 

In small samples one must either derive the exact distribution of (4.27) or rely on 

an important conditional test due to Fisher (1935). 

Assume that (4.25) for the model with likelihood (4.24) is true. We can then derive 

the conditional distribution of Xll given Xu + X21 =ml. Since under Ho' Xll + X2I has a 

binomial distribution with parameters n1 +n2 and PI' it follows from (4.24) that 
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( 4.28) 

which is a hypergeometric distribution with parameters n1,m1 and n1+n2. 

In the original 2x2 table n1=xl.' m1=x.1 and n1+n2=x.: Hence the distribution 

(4.28) is simply the distribution of xlI given the marginals of the table. The same distri­

bution is, therefore, valid under model (4.3) if we condition upon xl. and x.1 and under 

model (4.1) if we condition is upon x1.,x.1 and x.: 

In order to test Ho' an observed value xlI is judged to be in disagreement with Ho' 

if the difference between xlI and the expected value n1m1/(n1+n2) is large. If the alterna­

tive to Ho is 

the level of significance become 

p = P(XlI > XlI)' 

where the probability is computed in the hypergeometric distribution (4.28). This test is 

known as Fisher's exact test. 

4.3. The log-linear parameterization 

Since the data collected from different sampie designs can be treated based on the same 

basic model, it is to expected that also parametric hypothesis in different models can be 

treated within a common parametric framework. This framework is provided by the 

log-linear parameterization introduced for contingency tables by Birch (1963), which is 

essentially a reparameterization in terms of the canonical parameters of the model (4.1). 

Consider thus the reparameterization 

(4.29) AB A B InA .. =T . . + T. + T. + TO ' 
IJ 1 J 1 J 

of the A . .'s, where the T'S satisfies the linear constraints 
IJ 
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(4.30) 
lAB J AB IA J B 
~ T . . = ~ T . . = ~ T. = ~ T. = O. 

i=1 1 J j=1 1 J i=1 1 j=1 J 

This means that only (J-1)(I-l) of the T~~'S, 1-1 of the T~'S and J-l of the T~'S have a 
1 J 1 J 

free variation, and that the model is identifiable in terms of T~~, .•. ,T~~1 J-l' T~, ... ,T~_I' , 

T~, •.. ,T~_I' TO' That (4.29) is in fact a reparameterization follows from the expressions 

AB * -* -* - * 
T.. = 1" .. - 1". -I" .+1" 

1 J IJ 1.. J .. 

A -*-* 
(4.31 ) Ti = J.t i .- 1" .. 

B -* -* T. = I" . j - I" 
J .. 

-* TO = I" 

* -* * -* * -* * / where 1" . . =ln.L, 1". =~J.t .. /J, I" .=~J.t .. /I and I" =~~J.t .. (IJ). In (4.29) TO is called the 
IJ IJ I. j IJ . J i IJ .. i j IJ 

overa.ll level, T~ is called a row effect and T~ a column effect. Hence T~~ is a residual 
1 J 1 J 

which measures that part of the logarithmic mean values which cannot be attributed to 

the over-all level, an isolated row effect or an isolated column effect. The Ttj'S thus 

measure the degree of interaction between the rows and the columns in the expected 

counts of the table. Accordingly they are called interaction parameters or just interac-

tions. 

In section 4.2 we introduced the odds ratio. It is easy to verify that the interaction 

parameters for a 2x2 table are connected with the odds ratio through 

In fact 

and 

AB 
lnp = 4T 11' 
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Hence an analysis of dependency in a 2x2 table can be based on an analysis of the interac­

tion parameters. Note that for a 2x2 table the constraints T~B=TA~=O for i,j=1,2 implies 
1 • • J 

that 

and 

such that only T~~ needs to be specified by the hypothesis. 

There are various reasons for prefering the parameterization (4.29). Since the cano­

nical parameters in (4.1) are In..\ .. , i=l, ... ,I, j=l, ... ,J, the log-linear parameters are essen-
IJ 

tially equal to the canonical parameters. In subsequent sections it will in addition become 

obvious that many important hypotheses have more convenient formulations in terms of 

the T'S than in terms of the A 'so It is a further advantage in relation to models (4.3) and 

(4.7) that the log-linear parameterization for these models are obtained from (4.1) by 

simply omitting some of the parameters. Thus (4.3) is parametrized by the interactions, 

the row effects and the column effects without the main effect, since 

( 4.32) AB A B A .. = exp{T . . +T.+T.+TO} 
IJ 1 J 1 J 

in (4.1), entails that 

AB ABI J {AB A B} p .. =). .. /). =exp{T . . +T.+T.}/ r; r; exp T .. +T.+T .. 
IJ IJ.. 1 J 1 J i=l j=l 1 J 1 J 

The model (4.7) is parameterized by the interactions and the column effects only since the 

parameters according to (4.11) become 

AB B J {AB B} A .. / A. =exp{ T .. +T.}/ r; exp T .. +T .. 
IJ I. ) J J j=l ) J J 
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4.4. The hypothesis of no interaction 

The hypothesis of no inter action between the rows and the colurnns in a two-way contin-

gency table is 

( 4.33) AB Ho: T . . = 0, i=l, ... ,I, j=1, ... ,J. 
1 J 

Actually (4.33) needs only to be specified for i=1, ... ,I-1 and j=1, ... ,J-1 due to the cons­

traints (4.30). The Poisson model (4.1) is under Ho known as the multiplicative Poisson 

model, since A .. under (4.33) can be written as 
IJ 

(4.34) A .. = rco., 
IJ 1 J 

with (.= exp{ T~}, o.=exp{ T~} and r=exp{ TO}' Under model (4.3), Ho is an independence 
1 1 J J 

hypothesis. The marginal probability that a randomly chosen person belongs to row i is 

J 
p. = ~ p .. 

I. j=l IJ 

and the corresponding marginal probability for column j is 

I 
p. = ~ p ... 

. J i=l IJ 

Under (4.33) p. and p. become 
I. .J 

A I A 
p. = A. IA = exp { T . } I ~ exp{ T . } 

I. I... 1 i=l 1 

and 

B J B 
p. = A .IA = exp {T.}I ~ exp{T.} . 

. J .J.. J j= 1 J 
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Hence 

ABI J A B 
p .. =>.. . .j> .. =exp{T. +T. }/E Eex:p{T.+T.} 

IJ IJ.. I J i= 1 j= 1 I J 

such that 

(4.35) p .. = p. p .. 
IJ I..J 

Under HO' the probability of observing a person in cell (i,j) is thus the product of the mar­

ginal probabilities of observing a person in row i and in column j. 

Ho given by (4.33) is identical with Ho given by (4.16) for a 2x2 table. In fact since 

4T~~=lnp, the odds ratio for a 2x2 table is 1 if and only if all four interaction parameters 

T~~ are zero. 
I J 

Under the model (4.7), the hypothesis of no interaction corresponds to 

(4.36) P.I. = p., j=l, ... ,J, 
J I J 

since P.I.=>.. .. I >... in the multinomial distribution (4.11) and if T~~=O then 
J I IJ I. I J 

AB J AB B J B 
P·I. = exp{T.+T.+To} I E exp{T.+T.+To} = exp {T·}I E exp{T.}. 

J I I J j=l I J J j=l J 

The hypothesis (4.36) is also known as the homogeneity hypothesis, referring to the fact 

that under (4.36) the distribution over column categories is the same for each row. 

The test statistic for Ho is most easily obtained for model (4.3), which under Ho is 

a parametric multinomial distribution with parameters n and 

p .. = lexp(T~+T~+To)' i=l, ... ,I j=l, ... ,J. 
ij n I J 

The log-likelihood is then 
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From this expression follows that the likelihood equations are 

x. = np. , i=l, ... ,1 
I. I. 

and 

x . = np . , j=l, .... ,J . 
. J .J 

Since the expected values under Ho' are 

np .. = np. p ., 
IJ I. .J 

is not necessary to derive the ML-€stimates for the r's. The likelihood equations yields 

" " p. =x. In and p .=x .fn, such that the estimated expected values become 
I. I. .J.J 

" x. x. 
np .. =~· 

IJ n 

Hence the transformed likelihood ratio test statistic is according to (3.39) given by 

( 4.37) -21nr = 2~~X .. [lnX .. -In(X. X ./n)]. 
i j IJ IJ I..J 

Since there are IJ-1 parameters in model (4.3) and 1-1+J-1 free parameters under (4.33), 

Z=-2Inr is, according to theorem 3.13, approximately i -distributed with IJ-1 

-1-J+2=(1-1)(J-1) degrees of freedom. The hypothesis of no interaction is rejected for 

large values of 

x. x. 
( 4.38) z = 2~~x .. (lnx .. -ln~) . 

. . IJ IJ n 
1 J 
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When in (4.38) n is replaced by x , the statistic also covers model (4.1) and when x. is 
•. I. 

replaced by n. also model (4.7). 
I 

The level of significance can be computed approximately as 

p = P(Q~z), 

where Q",i((I-1)(J-1)). 

Alternatively to (4.37), one can use the Pearson test statistic 

X. X. 2 X. X. 
Q=~(X .. -~) /(~) 

.. IJ n n 
I J 

the distribution of which can also be approximated by a i-distribution with (I-1)(J-1) 

degrees of freedom. 

In general the limiting X2-distribution is only valid when the X . .'s are independent 
IJ 

Poisson distributed random variable, or if they are jointly multinomiaIly distributed. 

These assumptions are not satisfied under complex sampling schemes or when there are 

non-trivial dependencies between the ceIls of the table. The behaviour of Z and Q in such 

non-regular cases has received much attention in the literat ure, cf. e.g. Gleser and Moore, 

(1985) Tavare and Altham (1983) and Rao and Scott (1981). 

In order to derive the ML -estimates for the log-linear parameters in the saturated 

model consider the Poisson model. The likelihood function is 

AB A B InL = EEx .. T. . + Ex. T. + Ex . T. + X TO i j IJ I J i I. I j.J J .. 

, {AB AB} - EElnx ... - EEexp T. . + T. + T . + T 0 . 
i j IJ i j I J I J 

Hence the likelihood equations are 

(4.39) x .. = E[X . .1 , i=1, ... ,I-1, j=1, ... ,J-1 
IJ Ij' 
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(4.40) x. = E[X.) , i=1, ... ,I-1, 
I. I. 

(4.41 ) x . = E[X .) , j=1, ... ,J-1, 
.J .J 

and 

( 4.42) x .. = E[X) 

These equations have the same solutions as 

( 4.43) x .. = E[X .. ), i=l, ... ,I, j=l, .... ,J, 
IJ IJ 

where the indices i and j run over all values including land J. From 

[) AB AB) EX .. =exp(T . . +T. +T .+TO IJ IJ 1 J 

and the constraints (4.30) then follow 

AAB 1 1 1 
T . . = lnx .. - J 2:1nx .. - T 2:Inx''+lJ 2:I;lnx .. 

1 J IJ j IJ i IJ i j IJ 

AA 1 1 
T. = J 2:lnx .. -lJ 2:2:1nx .. 

I j IJ i j lJ 

AB 1 1 
T. = T 2:Inx .. -lJ 2:2:1nx .. 

J i lJ i j lJ 

A 1 
TO = lJ 2:I;lnx ... 

i j IJ 

Under Ho' T~~=O and the likelihood equations become (4.40), (4.41) and (4.42) 
1 J 

with solutions 
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"'A 1 
T. = lnx. - TElnx. 

I I.. I. 
I 

AB 1 
T. = lnx . - J Elnx . 

J ~ j ~ 

A 1 1 
TO = TEInx. + J Elnx . -lnx 

i 1. j.J .. 

since E[X .. )=exp( l:-+T~ + TO) under HO' 
I] I] 

Example 4.4: 

In 1968 there was a lively debate in Denmark over the effects of air pollution in the city 

of Fredericia, which is dominated by a large fertilizer plant, cf. Andersen (1974). In an 

attempt to study the effect of the suspected air pollution, the number of lung cancer cases 

was observed for each of the years 1968 to 1971 for Fredericia and three other cities elose 

to Fredericia and of about the same size. These data are shown in table 4.4. In the table 

the lung cancer cases are also distributed over 6 age groups. Finally the table shows the 

marginal number of inhabit.ants for each age group and for each city. 

Table 4.4. Observed number of lung cancer cases for four Danish cities, 1968 to 
1971, distributed according to age. 

City 
Age Fredericia Horsens Kolding Vejle Total Number of 

inhabitants 

40-54 11 13 4 5 33 11.600 
55-59 11 6 8 7 32 3.811 
60-64 11 15 7 10 43 3.367 
65-69 10 10 11 14 45 2.748 
70-74 11 12 9 8 40 2.217 
over 75 10 2 12 7 31 2.665 

Total 64 58 51 51 224 

Number of in-
habitants 6.294 7.135 6.983 6.026 26.408 

Source: Clemmensen et al. (1974). 

The ML-estimates of the log-linear parameters for the data in table 4.4 are shown 

in table 4.5. 
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Table 4.5. Log-linear parameters for the data in table 4.4. 

AAB 
j=1 2 3 4 T .. 

I J 

i= 1 +0.199 +0.641 ---{).529 -0.311 
2 +0.135 ---{).196 +0.100 -0.038 
3 ---{).150 +0.435 ---{).318 +0.033 
4 ---{).318 ---{).042 +0.062 +0.298 
5 ---{).102 +0.261 ---{).018 -0.141 
6 +0.236 -1.098 +0.703 +0.159 

AA 
i=1 2 3 4 5 6 T. 

I 

-0.167 -0.103 +0.182 +0.254 +0.133 -0.300 

AB 
j=1 2 3 4 T. 

J 

+0.210 -0.066 -0.075 -0.069 

Ta +2.156 

The hypothesis of interest for the data in table 4.4 is that the risk of getting lung 

cancer is the same in all four cities. The alternative hypothesis is that the risk is higher in 

Fredericia. Marginal hypotheses concerning the cities can only be tested in a meaningful 

way if there is no interactions in the table. Such an interaction would namely imply that 

the risk of getting lung cancer for a cititizen of, say, Horsens would depend on an indivi­

duals age and no general statements of differences between the cities as regards cancer 

risks are possible. Consider the following model for the data 

Ix .. NP (A .. ), 
I J S IJ 

Xll , ... ,X 64 are independent 

A . .; A = O .. N .. /N 
I J •. IJ IJ .. 

where X .. is the number of lung cancer cases in city j and age group i, and N .. is the num-
D D 

ber of inhabitants in city j and age group i. Assurne in addition that the age distribution 

is the same in all four cities, i.e. 
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N··/N . = N. IN . IJ.J 1... 

Since E [X .. ] =A .. , () .. is the individual risk of getting lung cancer in city j and age group i. 
IJ IJ IJ 

The hypothesis of no interaction between city and age as regards lung cancer risk can, 

therefore, be expressed as 

which corresponds to 

( 4.44) 

() .. = cp.1/J., 
IJ 1 J 

2 A .. =,\ cp.1/J.N. N ./N 
IJ .. 1 J 1..J .. 

or (4.34) with ,=,\ ,f.=cp.N. IN and 8.=1/J.N ./N . The hypothesis of no interaction can 
•• 1 1 1. .• J J.J .. 

accordingly be tested by the test statistic (4.37), which for the data in table 4.4 has 

observed value 

z = 20.67. 

The level of significance is approximately P(Q~z)=0.148, where Q",i(5). The hypothesis 
I 

of no interaction (4.44) is thus accepted. 6. 

Consider the hypotheses 

( 4.45) A A 
H1: Ti = T io ' i=l, ... ,I 

and 

( 4.46) 

where T~ 0 and T~ 0 are known constants. These hypothesis are only relevant in case the 

hypothesis (4.33) of no-interaction has been accepted. The test statistic for H1 can be 

derived from the distribution of Xl., ... ,XI.' since (4.45) under Ho is equivalent to 

A A 

(4.47) H1: Pi. = /iO/~/iO 
1 
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under model (4.3). In fact, under (4.33) and H1 

A B 
T· O T.+TO 

p. = e 1 ~e J 
I. j 

But since 

A B 
T· O T.+TO 

l=p = ~e 1 ~e J 
j 

(4.47) follows. In the same way (4.46) is under Ho equivalent to 

( 4.48) 

From (4.47) and (4.48) follow that H1 can be tested in the marginal distribution of 

X1., ... ,XI. and that H2 can be tested in the marginal distribution of X.1'" .. 'X.J . The same 

result is true for model (4.1). For model (4.7) only H2 makes sense since the values of the 

row marginals are fixed. 

Since H1 is a hypothesis of fully specified probabilities in the multinomial distribu­

tion of Xl. , ... ,XI.' it follows that the appropriate test statistic is 

I 
( 4.49) Zl = 2 ~ X. (lnX. -ln(np·o))' 

i=l I. I. 1 

where PiO is the right hand side of (4.47). H1 can be specified in terms of the T~'S or direc­

tly in terms of the p. Iso For the special case 
J. 

PiO=l/I and the test statistic becomes 
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I 
(4.50) Zl = 2 E X. (lnX. -lnr)' 

i=l I. I. 

H1 is rejected if the observed value Zl of Zl' Le. if P(Zl~zl) computed in a 

i-distribution with 1-1 degrees offreedom is small. 

For H2, the test statistic is 

J 
( 4.51) Z2 = 2 E X .(lnX .-ln(npo'))' 

j= l·J·J J 

where PO' is the right hand side of (4.48) or a directly specified value of p .. The special 
J .J 

case 

B H2: T j =0, 

yields p Oj= 1 / J and the test statistic becomes 

(4.52) 
J n 

Z2 = 2 EX .(lnX .-lnJ)' 
j=l·J .J 

H2 is rejected if the observed value of Z2 is large compared with a i -distribution with 

J-l degrees of freedom. 

Under the Poisson model, the hypotheses H1 and H2 become 

( 4.53) H1: A. / A = L O' 
I. •• 1 

where f iO is the right hand side of (4.47), and 

(4.54) H2: A ./,\ = {j.o' 
.J.. J 

where {jjO is the right hand side of (4.48). 

As for the multinomial model H1 and H2 can be specified in terms of the T~IS and 
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the T~'S or directly in terms of the ratios ).. I). and)''; ). . 
J 1... .J .. 

The fact that all hypotheses under Ho can be studied in the distributions of the 

marginals of the table is called collapsability. In chapter 7 we return to conditions under 

which a table can be collapsed onto its lower dimensional marginals. 

Example 4.4. (Continued) 

The hypothesis of main interest for the lung cancer data in table 4.4 is that the risk of 

getting lung cancer is the same for all four cities. On parametric form this hypothesis is 

j=1, ... ,4. 

Prom (4.44) follows then that H2 is equivalent to 

). .1). = N ·/N . 
. J .• .J .• 

Hence H2 can be tested by means of (4.48) with po.=N ./N . The observed value of Z2 is 
J .J .. 

with level of significance 

p~P(Q ~ 3.5) = 0.32 

It follows that a hypothesis of equal lung cancer risk in the four cities can not be 

rejected based on the available data. Note that H2 is formulated directly in terms of the 

).'s and not in terms of the T~. ~. 
J 

Example 4.4 shows that it need not be necessary to derive the log-linear par­

ameters in order to compute the test statistic. This is due to the fact that the transformed 

likelihood ratio test statistic always takes the form 

I J A 

(4.55) Z = 2 ~ ~ X .. [lnX .. -ln{L .. ], 
i=l j=l IJ IJ IJ 
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A 

where Jt .. are the expected values under the hypothesis. The test statistic (4.37) direct1y IJ 
has this form. That the test statistics (4.49) and (4.51) also have this form can be seen as 

A 

folIows. Under the hypotesis (4.47), Jt .. becomes IJ 

A 

Jt .. = p·oX ., IJ I.J 

A 

since p. is specified under H1 and p .=X ./n. Hence (4.55) become 
L ~ ~ 

I J 
( 4.56) Z = 2 ~ ~ X .. [lnX .. -lnp.o -lnX .] 

i=l j=l IJ IJ 1 .J 

I J X. X. 
= 2 ~ ~ X .. [lnX. -ln(-I-. _.J)] + 2~X. [lnX. -ln(np.o)]. 

. 1· 1 IJ I. n . 1. I. 1 
1= J= I 

The first term is the test statistic (4.37) for the independence hypothesis (4.35). This 

term is approximately X2-distributed with (I-1)(J-l) degrees of freedom. The second 

term is the test statistic (4.49) for H1, which is approximately i-distributed with (I-I) 

degrees offreedom. The sum (4.56) is thus approximately i -distributed with (1-1)( J-l) 

+(1-1) =(I-l)J degrees of freedom. This was to be expected since (4.56) is the test 

* statistic for the hypothesis H that both (4.35) and (4.47) hold. The number of degrees of 

* freedom is IJ minus the number J-l + 1 of parameters estimated under H , or 

df = IJ-J = J(I-l). 

That the direct test statistic (4.56) for both (4.35) and (4.47) split up in two terms corres­

ponding to the two hypotheses under consideration is referred to as a decomposition of the 

test statistic. 

Note that (4.47) only is meaningful if (4.35) is true. This means that hypotheses 

concerning the main effects only make sense if the interaction parameters T~~ are zero. 
1 J 

The hypotheses Ho and H1 are thus nested with H1 being dependent on Ho being true. 

The term to be used later for nested hypotheses is hierarchical hypotheses. Thus Ho and 

H1 form a set of two hierarchical ordered hypotheses. 
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4.5. Residual analysis 

If the model fails to describe the data, a study of possible directions for model departures 

can be based on the differences 
A 

X .. -p, .. , 
1J 1J 

A 

where p, .. are the expected numbers estimated under the given model. Haberman (1978), 
1J 

cf. also Haberman (1983), has shown that the standardized residuals 

( 4.57) r .. = (x .. -~ .. )/~~ .. (l-x. /n)(l-x .jn) 
1J 1J 1J 1J 1. .J 

are approximately normally distributed with mean 0 and variance 1. Hence an inspection 

of the standardized residuals can reveal, which cells contribute significantly to model 

departures. 

Many other methods have been proposed for the identification of deviations from 

independence in a two-way table. Several of these are based on an inspection of the 2x2 

subtables of the contingency table. One proposal is to plot selected values of the form 

r~'t = Inx .. -lnx. -lnxt · + Inxt 1J S 1J IS J S 

for itt, jts in a suitable diagram. Under the independence hypothesis the expected value 

of r~'t is O. Hence if I r~'t I is large for many combinations of t and s, cell (i,j) represents a 
1J S 1J S 

model departure. As regards such methods see for example Kotze and Hawkins (1984). 

Example4.5 

Table 4.6 shows the opinions of a random sampie of 838 persons in 1982 concerning "early 

retirement", a system which has been in effect since 1979 and a new system "partial pen­

sion" proposed in 1982 to the Danish Parliament. 
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Table 4.6. 838 persons cross-classified according to their views on two pensions 
systems. 

Early retirement 
Partial Good Relatively Bad Do not know 
pension system good system 

Good proposal 377 75 38 19 
Maybe good proposal 92 25 15 8 
Bad proposal 84 17 16 4 
Do not know 34 17 6 11 

Source: Olsen (1984). Table 3.12. 

As a model for the data assume the multinomial model (4.3). The test statistic (4.37) for 

the independence hypothesis (4.35) has observed value 

z = 27.22, df = 9. 

with level of significance p=O.OOl. Hence independence must be rejected. The depen­

dencies of the table can be illustrated by the standardized residuals (4.57) shown in table 

4.7. 

Table 4.7. Standardized residuals for the data in table 4.6 under independence. 

Ear ly ret irement 
Partial Good Relatively Bad Do not know 
pension system good system 

Good system +3.16 -1.23 -1.87 -2.11 
Maybe good system -1.23 +0.66 -0.80 +0.42 
Bad system -0.16 -0.63 +1.78 -0.93 
Do not know -3.77 +2.11 -0.04 +4.40 

Table 4.7 shows that most of the model departures are connected with persons, 

which do not have an opinion of the new system. In addition there are significantly more 

persons than expected with the opinion that both systems are good . .t::::.. 

4.6. Exercises 

4.1. In the Danish Welfare Study the interviewed were classified as renters (if they rented 

their dwelling) or owners (if they owned their house or apartment). The table shows how 

many among renters and owners, who have a freezer. 
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Renter 
Owner 

(a) Formulate a model for the data. 

Has a freezer 
Yes No 

2584 
1096 

300 
795 

(b) Estimate the odds ratio and construct 95% confidence limits for it. 

(c) Does the data support that renters has a freezer as often as owners?' 

4.2. In order to test a hypothesis to the effect that alcohol abuse is hereditary data were 

collected on a large number of twins in Sweden and Norway. The table shows for mono­

cygotic as wells as dicygotic twins, where at least one has a monthly consumption of more 

than 500 g. alcohol, in how many of these cases both have this high consumption. 

Both Only one Number of 
abuse abuse twins 

Monocygotes 159 1102 1216 
Finland: Dicygotes 220 2696 2916 

Monocygotes 132 1171 1303 
Sweden: Dicygotes 165 1756 1921 

(a) Formulate a model for each of the two data sets. 

(b) Test both in the Finish data set and in the Swedish data set, whether coinciding 

abuse is more frequent among monocygotes than among dicygotes. 

(c) Compare the results from Sweden and Finland and try to draw a more general 

conclusion. 

4.3. The tabel below from the Danish Welfare Study shows the number of broken 

marriages or permanent relationships cross-classified with sex. The sampie only include 

those persons who are socio-economic active. 



Men 
Wornen 

Broken rnarriage or 
permanent relationship 
Yes No 

240 
232 

1099 
1133 

123 

(a) Discuss whether one of the model suggested in section 4.1 can be used to analyze 

this data set. 

(b) Whatever conclusion reached in (a), perform a statistical analysis based on the odds 

ratio 

4.4. The table shows for the total sample in the Danish Welfare Study how many among 

men and wornen, which often suffer from headaches. 

(a) Estimate the odds ratio and construct 95% confidence limits for it. What does these 

lirillts tell uso 

(b) Does the table supports a claim to the effect that the sample in the Welfare Study 

is representative of the Danish population as regards sex? 

Sex 

Men 
Wornen 

Suff er often frorn 
headaches 

Yes No 

379 2177 
620 1975 

4.5. The table shows the answer to the broken rnarriage quest ion in exercise 4.3 

cross-classified according to sodal rank. 

(a) Assurne that a mult.inomial model describes the data. Express the independence 

hypothesis in terms of marginal or conditional probabilities of a given marriage or 

relationship ending up being broken. 

(b) Test the independence hypothesis. 

(c) Describe the departures from independence (if any) by suitable diagnostics, e.g. 

standardized log-linear parameters or standardized residuals. 
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Social rank 
group 

I 
II 
III 
IV 
V 

Broken marriage 
or relationship 
Yes No 

28 127 
62 230 
79 443 

181 850 
124 582 

4.6. The Danish survey company OBSERVA conducts political poUs monthly. From 8 

such poUs in late 1983 and early 1984, the table shows the unweighted returns. 

(a) Formulate a model für the data. 

(b) Ras the expected frequency of non-voters changed. 

(c) Describe the changes in expected votes for the different parties between June 83 

and January 84, if any. 

(d) The foUowing two blocks are sometimes identified in Denmark: 

Socialist or leaning socialist: A,F,K,Y. 

Conservativejliberal or leaning conservativejliberal: B,C,E,M,Q,V,Z 

Ras the balance between these blocks changed between August 83 and 

January 84? 
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4.7. In 1985 Radio Denmark conducted a survey regarding the interest among TV viewers 

with the Saturday afternoon broadcast called ISportskJrdag". In the sampie of size n=958, 

635 said that they had seen ISports1!iJrdag" at least one. These 635 were asked about their 

preferences regarding the lenght of the broadcast. The answers were grouped in four time 

intervals. The sampie was collected in four age/sex strata in such a way that the relative 

sampie sizes from the strata corresponded to actual sizes of the strata in the adult Danish 

population. 

Agejsex Wishes to the length of "SportsI0rdag" 
Sampie stratum Have seen 

11 Sports- size 
Less than 2t to 3t 4 hour Do not 10rdag" 

2 hours hour or more know at least 
once 

Men, above 40 65 63 59 5 192 234 
Women, above 40 77 39 32 4 152 225 
Men, under 40 81 50 30 2 163 235 
Women, under 40 80 38 6 4 128 264 

Total 303 190 127 15 635 958 

(a) Formulate a model for the data. 

(b) Does the wishes to the length of ISports10rdag" depend on age and sex among those 

who watch the broadcast? 

(c) Describe the way the wishes depend on age and sex. Are there any strata for which 

the wishes are similar. 

4.8. Consider again the data in exercise 4.7. 

In Denmark in 1985 the distribution of the adult population on the four strata was 

as follows (in 1000 persons). 

Men 
Women 

Under 40 

1033 
985 

Above 40 

1035 
1178 
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(a) Is the claim correct that the sampies from the strata were constructed to match the 

actual stratum sizes? 

(b) Are those who watch "SportsI0rdag" representative of the population as regards sex 

and age? 

(c) In what direction goes the lack of representativeness? 

4.9. In a 1982 study of attitude towards early retirement and partial pension a special 

index for working environment was also reported for each interviewed person. The index 

takes values from 0 to 10 with 0 representing an excellent working environment and 10 a 

very bad working environment. The table shows the sampie cross-dassfified according to 

this index and according to attitude towards early retirement. 

Attitude towards 
Ear ly ret irement 

Working environment index 

0-2 3-6 7-10 

Good system 267 152 52 
Maybe good system 68 30 11 
Bad system 26 24 10 
Do not know 15 9 6 

Total 376 215 79 

(a) Does the attitude towards early retirement have a connection with the working 

environment. 

The attitude towards early retirement was also cross-dassified with an index for 

health. The health index could take values from 0 to 22 with 0 being very bad health. The 

observed numbers are shown below 

Attitude towards Heal th index 
Early retirement 

0-3 4-9 10-22 

Good system 276 232 73 
Maybe good 69 52 15 
Bad system 41 26 13 
Do not know 20 13 8 

Total 406 323 109 
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(b) Does the attitude towards early retirement have a connection with a persons 

health. 

(c) Compute the estimates of the log-linear parameters under independence for both 

the data sets above. 

4.10. Two Danish Survey Companies OBSERV A and AlM both conducted political polIs 

in June 1983. The table shows the actual number of persons in each sampie who claimed 

that they intended to vote for the different political parties. Also shown is the actual 

percentage, who voted for the parties in the latest Danish parlamentary election in 

December 1981. 

Party OBSERVA AlM Election 
Decernber 1981 

7-

A 416 268 32.9 
B 45 22 5.1 
C 338 160 14.5 
E 13 6 1.4 
F 131 66 11.3 
K 8 10 1.1 
M 47 16 8.3 
Q 20 8 2.3 
V 129 92 11.3 
Y 22 9 2.7 
Z 76 32 8.9 
Other 0.2 

Total 1245 689 100.0 

Copyright: OBSERV A and AlM. 

(a) Suppose the distribution over parties is compared for the two survey 

companies. What hypothesis is tested in this way? 

(b) Compare the results from the polls with the latest election results. What hypothesis 

is tested here? 

(c) Are there any connertion between the analyses in (a) and (b). 
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4.11. The table shows for the Danfsh survey company AlM, the planned sampie, how 

many were at horne at the time of the interview and how many refused to participate. 

The dates in the upper part of the table are all from 1983. 

Poll 
Personal 
interview 2-8/5 16-22/5 6-16/6 15-22/8 12-19/9 20-27/10 7-20/11 

Planned 
sampIe 1307 1404 1436 1433 1470 1413 2690 

Not at horne 276 307 269 272 285 302 554 
Refused to 
participate 186 210 187 192 187 196 385 

Aetual sampIe 845 887 980 969 998 915 1751 

Poll 
Telephone 
interview 13-14/12-1983 7/1-1984 

Planned sarnple 1085 1018 

Not at horne 264 264 
Refused to 
partieipate 101 41 

Aetual sampIe 720 713 

(a) Has the number not at horne or the number who refused to participate changed in 

the period eovered. 

(b) Does the data indicate a change in the ratio between actual and planned sampie 

after the introduetion of telephone interviewing. 

4.12. The table show for 1271 Danish school children between 16 and 19 years of age in 

1983-1985 the attitude among boys and girls towards having sport at sehool jointly with 

the other sex. 

(a) Do boys and girls have different views on sport jointly with the other sex. 

(b) If different views, eharaeterize the differences. 
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Joint sport at school 

Very good idea 
Good idea 
Neither good nor bad idea 
Bad idea 
Very bad idea 

Boys 

168 
240 
175 
47 
18 

Girls 

346 
342 
147 

51 
12 



5. Three-way Contingency Tables 

5.1. The log-linea.r parameterization 

Consider a three-way contingency table {x .. k, i=l, .. .I, j=l, ... ,J, k=l, ... ,K}. As model for 
IJ 

such data, it may be assumed that the XiS are observed values of random variables X. 'k' 
IJ 

i=l, ... ,I, j=l, ... ,J, k=l, ... ,K with a multinomial distribution 

(5.1 ) 

This would be the model, if x" k is the observed number in cell (i,j,k) after a simple ran-
IJ . 

dom sampie of size n has been drawn from a population and P"k is the proportion of indi­
IJ 

vi duals in the population belonging to cell (i,j,k). The p. 'klS can also be interpreted as the 
IJ 

probability that a randomly drawn individual will belong to cell (i,j,k). Alternatively it 

may be assumed that all X. 'klS are independent Poisson distributed random variables 
IJ 

(5.2) X" k - Ps(.Lk), 
IJ IJ 

with the A .. kls being positive parameters. Model (5.1) can be obtained from model (5.2) 
IJ 

by conditioning on X ... ' since the conditional distribution of X111 , ... ,XIJK given that 

X ... =n is multinomial with parameters n and A1111 A .. .' ... ,A1JKI A .. : The parameters of 

(5.1) and (5.2) are thus connected through 

P"k = A. 'k l A . IJ IJ ... 

A three-way contingency table is often pictured as a block with I rows, J columns 

and K layers as show in fig. 5.1. 

We shall in general regard the observed numbers in a three-way contingency table as 

the observed responses on three categorical variables. Thus x" k is the observed number of 
IJ 

individuals who have responded in category i on variable A, in category j on variable B 
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and in category k on variable C. 

X113 x123 

I x1l2 

x223 
x122 x323 

~22 
xll1 x121 x322 
x211 ~21 
x311 x321 

Fig. 5.1. Picture of a three-way contingency table. 

(5.3) 

The log-linear parameterization of (5.2) is as follows 

J A B C AB AC BC ABC InE[X,ok = InAook = TO+T 0 +T 0 +Tk+T 0 0 +T 0 k+T 0 k+T 0 0 k' 
lJ lJ 1 J 1 J 1 J 1 J 

with the linear constr.aints 

(5.4) 

(505) 

and 

(5.6) ABC ABC ABC 
T 0 0 = T. k = T 0 k = O. 
lJ. J. .J 

Thus any summation over an index of a log-linear parameter is zero 0 The parameter 

T~~Ck is called a three-factor interaction, while T~~, T~Ck and T~Ck are called two-factor 
1 J 1 J 1 J 

interactions and T~, T~ and TCk are called main effects. The log-linear parameterization 
1 J 

and the name "interaction" are due to Birch (1963). That (5.3) is a reparameterization of 

* (5.2) is straight forward to verify by expressing the TIS in terms of /1-0 'k=lnA.ok, i=l, ... ,I, 
lJ lJ 

j=l, ... ,J, k=l, ... ,K. For example the three-factor interaction T~~Ck is given as 
1 J 

(5.7) ABC * -* - * -* -* -* -* -* 
T. 0 k = /1- 0 °k-/1-0 0 - /1- 0 k-/1- °k + /1- 0 +/1- 0 + /1- 0 - /1- , 1 J lJ lJ. 1. .J 1.. .J. o.J ... 



the two factor inter action 7~~ is given as 
I J 

AB -* -* -* -* 
T .. =ft··-ft· -ft ·+ft , I J IJ. 1.. .J. . .. 

etc. In these expressions a bar indicates an average and a dot a summation, e.g. 

_* 1 K * 
ft·· =K E ft··k· 

IJ. k=l IJ 
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The constraints mean that the model can be parametrized in terms of the 7'S for 

i=l, ... ,I-l, j=l, ... ,J-l, k=l, ... ,K-l with the remaining 7'S given implicitly through (5.4), 

(5.5) and (5.6), e.g. 

That the number of 7'S match the number of ,\'s in the Poisson model (5.2) is de­

monstrated in table 5.1. For the multinomial model, there are IJK-l pIS, but here 70 is 

redundant. 

Table 5.1. Number of free parameters in the parameterization (5.3). 

Parameter Number of free parameters 

TO 1 

A I-I 7. 
I 

B J-l 7. 
J 
C 

Tk K-l 

AB (I-I) (J-l) 7. . 
I J 
AC 7ik (I-I) (K-l) 

BC 7jk (J-1) (K-1) 

ABC (I-I) (J-l) (K-1) 7ijk 

Total IJK 
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The Poisson-model (5.2) is a log-linear model according to the definition in section 

3.1. In fact the logarithm of the point probability of an observed tab1e {x .. k,i=l, .. .I, 
IJ 

j=l, ... ,J,k=l, ... ,K} is 

I J K I J K 
- ~ ~ ~ >'··k - ~ ~ ~ In(x··k!)· 

i=l j=l k=l IJ i=l j=l k=l IJ 

The x .. k's are thus the sufficient statistics and the canonica1 parameters are 7. ·k=ln>. .. k· 
IJ IJ IJ 

Hence the ML-estimators for the >. .. k's are obtained through the likelihood equations as 
IJ 

x··k = E[X··kl = >'··k IJ IJ IJ 

as 

" (5.8) >'··k = x··k, i=l, ... ,I, j=l, ... ,J, k=l, ... ,K. 
IJ IJ 

These trivial estimates are on1y of interest in the so-called saturated model, where none 

of the log-linear parameters vanish. For the saturated model the ML-estimates for the 

log-linear parameters are obtained from (5.8) though the reparameterization formulas, 

Le. through the expression for the 7'S in terms of the InA 'so For example according to (5.7) 

"ABC 
7 .. k = 1. ·k-l.. -1. k-l ·k+1. +1. +1 .-1 , 1 J IJ IJ. I. .J I.. .J. ..J ... 

where l..k=lnx .. k, and simi1arly 
IJ IJ 

AAB - - - -
7 .. =1 .. -1.-1.+1. 

1 J IJ. I.. .J. 

The importance of the log-linear parameterization (5.3), with the constraints (5.4) 
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to (5.6), lies in the fact, that most hypotheses of interest in a three-way table can be for­

mulated in terms of the log-linears parameters. 

5.2. Hypotheses in a three-way table 

In a three-way contingency table there are the following major types of hypotheses 

ABC 
H1 : Ti j k = 0 

ABC AB 
H2 : Ti j k = Ti j = 0 

ABC AB AC 
:Tijk=Tij=Tik=O 

ABC AB AC A 
:Tijk=Tij =Tik=T i =0 

ABC AB AC BC 
:Tijk=Tij =Tik=Tjk=O 

A H5 : H4 and Ti = 0 

A B 
H6 : H 4 and T i = T j = 0 

ABC 
H7 : H 4 and T i = T j = T k = 0 

for all i, j and k 

for all i 

for all i and j 

for all i, j and k 

From these the other hypotheses of interest are obtained through exchange of in­

dices. 

Hypotheses are often referred to as models. Thus H2 can also be referred to as the 

log-linear model (5.3), but with no three-factor interactions and no two-factor inter­

actions between variables A and B. 

All hypotheses above except H1 can be expressed in terms of independence, condi­

tional independence and uniform distribution over categories. It is convenient to express 

independence between variables A and B on symbolic form as 

A~B, 

conditional independence between A and B given variable C as 

A~BIC 

and uniform distribution over the categories of variable A as 

A=u. 

Clusters of variables can be independent of a single variable or clusters of variables. 
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If e.g. A is independent of both Band C, it is ex:pressed as 

AG:lB,C. 

In order to illustrate the use of these symbols in contingency tables let A, Band C 

be the three categorical variables of the contingency table under model (5.1). This means 

that A is a categorical variable with observed value i, if a randomly chosen individual 

belongs to row i of the contingency table in fig.5.1. In the same way the observed value of 

variable B is j if a randomly chosen individual belongs to column j of the table and 

variable C has observed value k, if the individual belongs to layer k of the table. Since the 

marginal probability that variable A has observed value i under model (5.1) is p. and 
1 •. 

correspondingly for Band C, the symbol A G:I B G:I Cis equivalent with 

(5.9) P··k = p. p. P k' for all i, j and k. IJ 1.. .J. .. 

By simple probability algebra it can be shown that AG:lB I C is equivalent with 

(5.10) 
p. kP'k 

- I. .J ~ 11·· d k P"k - , lor a 1, J an . 
IJ P .. k 

The symbol A G:I B,C is equivalent with 

(5.11) 

and finally A=u is equivalent with 

(5.12) p. = 1/1, for all i. 
I •• 

Theorem 5.1. 

The hypothesis H2 to H7 have the following interpretations in terms of independence, 

conditional independence and uniform distribution 



Proof: 

H2: A E9BIC 

H3: A E9 B,C 

* H4: A E9 B,C; A=u 

H4: A E9 B E9 C 

H5: A E9 B E9 C; A=u 

H : A E9 B E9 C; A=B=u 
6 

H : A E9 B E9 C; A=B=C=u 
7 

Consider first H2. Under H2, T~~=T~~Ck=O and since E[X .. k]=np'.k' 
1 J 1 J IJ IJ 

and 

1 A C AC J B BC 
p. k = - exp{ TO+T. +Tk+T. k} I: exp{ T. +T. k}' 

I. nil . 1 J J 
J= 

1 { B C BC} I {A AC} P ·k=-exp TO+T.+Tk+T· k I: exp T.+T· k .J n J J i=l 1 1 

Multiplying these expressions yield 

1 ABC AC BC} 
p. kP ·k/P k = -=-€xp{ TO+T. +T. +Tk+T. k+ T . k ' 

I. .J .. n 1 J 1 J 
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which is equal to Pijk under H2, thus proving that (5.10) holds under H2. On the other 

hand, if (5.10) is satisfied, then InE[X .. k1 = In(np'.k) has the form 
IJ IJ 

But it can be shown by easy algebra, that the fact that this expression does not contain 

terms with joint indices i and j combined with the constraints (5.4) and (5.5) entails that 
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T~~Ck=T~~=O. Hence if (5.10) is satisfied, the hypothesis H2 holds. 
1 J 1 J 

ABC AB AC Under H3, T . . k = T . . = T. k=O, such that 
1 J 1 J 1 

1 A B K BC C 
p .. =-exp{T.+T.+TO} E exp{T.k+Tk}, 

IJ. n 1 J k=l J 

1 A JK BCCB 
p. = - exp{ T . +TO} E E exp{ T . k+Tk+T .} 

1.. n 1 j=l k=l J 

and 

1 B I K BC A C 
p. =-exp{T.+To} E E exp{T.k+T.+Tk} . 

. J. n i=l k=l J 1 

Hence 

[ ( A (BC B C) p.. = p. p . / exp T o)Eexp( T . ) EEexp T. k + T . +T k) 
IJ. I.. .J. i 1 j k J J 

But under H3 

1 ABC BC} P =-EEEexp{To+T.+T.+Tk+T· k = 1, ... n .. k 1 J J 
1 J 

and it follows that 

p .. = p. p .. 
IJ. I.. .J. 

The fact that H3 holds thus imply that A and B are independent. That A and C are inde­

pendent under H3 is proved in a similar manner. If on the other hand A is independent of 

both B and C, or A $ B,C, then P"k=P. p 'k' which means that the logarithm of the mean 
IJ I...J 

value E[X. 'k)=np"k has the form 
IJ IJ 

ln(np"k) = a·k+ß.+r IJ J 1 

From this form and the constraints (5.4) and (5.5) it follows by easy algebra that 

T~~Ck=T~~=T~Ck=O for all i, j and k. Hence A$B,C implies that H3 holds. 
1 J 1 J 1 

The remaining equivalences of the theorem are proved in similar ways. D 
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It is worth noting that H1 cannot be expressed in terms of independence, conditional 

independence or uniform distribution over categories. For three-ways tables this is the 

only such hypothesis. For higher order tables, to be dealt with in the next chapter, there 

are many such hypotheses. 

The hypotheses H2 to H7 can be illustrated graphically, by representing each of the 

variables by a point or dot. If two variables in the log-linear parameterization (5.3) is 

connected through a non-zero interaction, then the dots representing the variables are 

connected by a line. If a variable is uniforrnly distributed over its categories, the dot is 

replace by an asterisk. The resulting graphs are for hypotheses H1 to H7 shown in fig. 5.2. 

A A A A 

I>B ~B 
• * /B /B 

C C C C 

H1 H2 H3 
H>l' 

4 

A A A A 

• * * * 
.B .B *B *B 

• • • * C C C C 

H4 H5 H6 H7 

Fig. 5.2. Association graphs for hypotheses H1 to H7. 

The graphs in fig. 5.2 are called association graphs. The connection between the 

graphs and the interpretation of the hypotheses in terms of independence and conditional 

independence has been explored by Darroch, Lauritzen and Speed (1980), by Goodman 

(1972), (1973) and by others. Two variables are independent if there is no route connect­

ing the dots representing the variables on the graph, i. e. if the dots are not connected by 

lines either directly or via other points. Two variables A and Bare conditionally inde­

pendent given a third variable C, if the only route between A and B passes through C. 

Thus variables A and Bare conditionally independent if their connecting line is discon-
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nected when the dot representing the third variable is covered e.g. by a thumb. From the 

association graph it is thus easy to establish the interpretation of a given model for the 

data in terms of independence and/or conditional independence. 

It should be noted that the association graphs for hypothesis H1 and the saturated 

model are identical. This means that the fact that T~~Ck=O does not entail any interpreta-
1 J 

ti on in terms of independence and conditional independence. An intuitive reason for this 

is that, although the three variables do not interact jointly in terms of a three-factor 

interaction, each pair of variables interact. 

The most important hypothesis in a three-way table is H2, because the association 

between two variables can then be explained by their associations with the third variable. 

It is important to emphasize that H2 does not not imply that A and B are independent. 

This means that an acceptance of H2 based on the statistical analysis of a three-way con­

tingency table, does not entail that an independence hypotheses will be accepted based on 

an analysis of the marginal two-way table of the two conditionally independent variables. 

Under the saturated model the likelihood equations are 

x"k = E[X, 'k], i=l, ... ,I, j=l, ... ,J, k=l, ... ,K. IJ IJ 
A A 

with solutions A, 'k=x, 'k for the Poisson model and p, 'k=x, 'kin for the multinomial model. IJ IJ IJ IJ 

When some of the interactions are zero, the likelihood equations are replaced by e-

quations of the same basic structure. Consider e.g. the equations under H1. The log-likeli­

hood function for the Poisson model (5.2) is under H1, where T~~~=O, 

I J K 
-,\ -}:; }:; }:; ln(x"k!) 

i=lj=lk=l IJ 

I A J B K C 
=x TO +}:; x, T,+}:; X.J,.T J, +}:; X .. kT k+ 

... i=l I.. 1 j=l k=l 

J AB K AC J K BC I J K 
+}:; }:; x" T, , +}:; }:; x, kT, k +}:; }:; X 'kT, k -,\ -}:; }:; }:; ln(x"k!)' 

i=l j=l IJ, 1 J i=l k=l I. 1 j=l k=l .J J i=l j=l k=l IJ 
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From the linear form of this expression it follows that the sufficient statistics for the in­

teraction parameters and main effects in the model are the corresponding marginals of the 

contingency table. The likelihood equations are thus the following set of equations 

(5.13) x = E[X...l 

(5.14) x. = E[X. ], i=1, ... ,I-1, 
1.. 1 .. 

(5.15) x. = E[X .], j=1, ... ,J-1, 
.J. .J. 

(5.16) x .. k = E[X .. kl, k=l, ... ,K-l. 

(5.17) x .. = E[X .. l, i=1, ... ,I-1, j=1, ... ,J-1 
IJ. IJ. 

(5.18) x. k = E[X. kl, i=1, ... ,I-1, k=l, ... ,K-l. 
1. 1. 

(5.19) x 'k = E[X 'kl, j=1, ... ,J-1, k=1, ... ,K-1, 
.J .J 

The number of equations would have exceeded the number of free parameter, if aB 

equations up to indices i=I, j=J and k=K have been included. It is, however, easy to see 

from table 5.1 that the total number of equations in (5.13) to (5.19) is also the number of 

unconstrained log-linear parameters under Hl' Because, on the other hand, equations 

(5.13) to (5.16) are all obtainable from equations (5.17) to (5.19) if the indices i, j and k 

are allowed to run all the way to I, J and K, any solution to the equations 

(5.20) x .. = E[X .. ], i=l, ... ,I, j=l, ... ,J, 
IJ. IJ. 

(5.21) x. k = E[X. kl, i=l, ... ,I, k=l, ... ,K, 
1. 1. 
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(5.22) x .k = E[X ·k], j=l, ... ,J, k=l, ... ,K. 
.J .J 

will also be a solution to all the equations (5.13) to (5.19). Hence the ML-estimates are 

usually found by solving (5.20) to (5.22) rat her than (5.13) to (5.19) although there are 

IJ+IK+JK equations in the latter system and only IJ+IK+JK-l-K-J+1 in the former. 

This observation is general and shall be used extensively in the following. The rule is 

as follows: Under a given hypothesis (or model) the likelihood equations are obtained by 

equating the sufficient marginals for the interactions of highest order with their expecta­

tions. Sufficient marginals of lower orders are only set equal to their mean values, if such 

marginals can not be obtained by summation over an already included marginal. Thus for 

H1 we do not need to include equations (5.13) to (5.16) because they can all be obtained 

by summation from equations (5.17), (5.18) and (5.19). 

Once it has been established that the likelihood equations are obtained by equating 

observed and expected marginals, several consequences can be drawn. Firstly, a model or 

a hypothesis can be uniquely identified by its sufficient marginals. Thus the statement: 

"The model is log-linear with T,?-~Ck=O for all i, j and k", can equivalently be expressed 
I J 

as: "The model is log-linear with sufficient marginals x .. , x'k and x. k". This last 
IJ..J I. 

statement can even be abbreviated if the symbols AB, BC and AC are used for the 

marginals x .. , x 'k and x. k' Thus the model under H1 is uniquely identified by the symbol 
IJ..J I. 

AB, BC, AC. 

For computer programs this way of identifying models and hypotheses is very convenient 

and helpful. 

Secondly the ML-estimates for the log-linear parameters need not in many cases be 

computed. The test quantities, necessary to test various hypotheses, depend only on the 

T'S through the expected numbers, and the estimated expected numbers for a given model 

can for many important models be expressed directly in terms of the sufficient marginals. 

The sufficient marginals and the symbols for the hypotheses H1 to H7 are listed in 

table 5.2 together with their interpretations in terms of independence and conditional 

independence. Note the difference between the sufficient marginals for hypotheses H3 and 
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* H4· Under hypothesis H3 the marginal xi .. must be added to x. jk ' since xi .. cannot be de-

* rived by summation over the x .k'S. For H4, however, x .k alone is sufficient . 
. J .J 

Table 5.2. Sufficient marginals, letter symbols and interpretations for the 
hypotheses of a three-way table. 

Hypothesis Sufficient 
marginals 

H1 xij . ,\. k ' x . jk 
H2 x. k'x ·k 1. .J 
H3 X. jk '\ .. 
* H4 x .jk 

H4 xi .. ,x . j. ,x .. k 
H5 x. ,x .. k . J. 
H6 x 

.. k 
H7 x 

Letter 
symbol 

AB,AC,BC 

AC,BC 

BC,A 

BC 

A,B,C 

B,C 

C 

Interpretation 

A El)BIC 

A El)B,C 

A EI) B,C; A=u 

AEI)BEI)C 

A EI) B EI) C; A=u 

A EI) B EI) C; A=B=u 

A=B=C=u 

As an example of the use of table 5.2 consider H2. Under H2, the complete set of likeli­

hood equations is (5.13), (5.14), (5.15), (5.16), (5.18) and (5.19). But by the general rule 

it suffice to find solutions to (5.21) and (5.22) since all of the equations in (5.13) to (5.16) 

can be obtained by summations in (5.21) and (5.22). 

The conditions for a unique solution of the likelihood equations are for the log-linear 

parameterization extremely simple. It can be shown that an observed set of marginals is 

on the boundary of the support if and only if one of the marginals appearing in likelihood 

equations are zero. So a necessary condition for the existence of ML-estimates for the 

parameters of a log-linear model is according to theorem 3.6A that none of the sufficient 

marginals are zero. If the table contains zero counts, the situation is more complicated. 

This situation is discussed in Haberman (1974), p.37-38 and appendix B. Tables with 

zero counts or marginals are called incomplete tables. We return to this subject in chapter 

7. 

5.3. Hypothesis testing 

As mentioned above we may either speak of a hypothesis or of a model. Thus the hypoth-
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esis H2 is equivalent with a log-linear model, where T~~Ck=O and T~~=O for aB i, j 
I J I J 

and k. When testing a given hypothesis it is important to state what alternative hypothe-

sis, it is to be tested against. For multi-dimensional tables, where there are many poten­

tial hypotheses to consider, it is especiaBy important how the testing is planned and 

carried out. For three-way tables the situation is still so relatively simple that common 

sense arguments are often enough to determine what hypotheses to test and in what order 

to test these hypotheses. In order to set the stage for some more general observations, 

consider, however, the hypothesis H2, where the three-factor interactions as weB as the 

two-factor interactions between variables A and B are zero. 

In order to derive a test statistic for H2 consider model (5.1), where the log-likeli­

hood function is 

lnL = In + ~ ~ ~ x .. lnp., . [ 
n 1 I J K 

xl11,· .. xIJK i=lj=lk=l IJk IJk 

Under the saturated model the ML-estimates are 

" 
P"k = x"k /n , IJ IJ 

while under H2 

" " "A "B "c "AC "BC " 
P"k = exp( TO+T , +T ,+Tk+r , k+ T 'k) = J1, 'kin, IJ I J I J IJ 

" where the J1, 'klS are the estimated expected numbers. 
IJ 

According to (3.39) the log-likelihood ratio for the hypothesis H2 against the satu-

rated model is then 

(5.23) 

In the saturated model there are IJK parameters, while the number of unconstrained 
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parameters under H2 is 

(1-1 )(K-1 )+(J-1 )(K-1 )+(1-1 )+(J-1 )+(K-1)+ 1 = K(I +J-l) 

according to table 5.1. Hence Z(H2) given by (5.23) is approximately l-distributed with 

df = IJK-K(I+J-1) = IJK-lK-JK + K 

degrees of freedom, according to theorem 3.11. The test statistic (5.23) is called a good­

ness of fit test statistic for the model under H2 as it is used to evaluate the fit of the mo­

del as contras ted to the saturated model. The test of H2 is thus against the alternative 

that the p .. I S are unrestricted. For later reference we state the result as 
IJ 

(5.24) 

where 

(5.25) df(H2) = (l-l)(J-l)(K-1)+(1-1)(J-1). 

Here the degrees of freedom df(H2) for H2 is written on the form which Call be obtained 

direct1y from table 5.1. 

One of the important features of the analysis of contingency tables based on a log-li-

* near parameterization is that hypotheses H1 to H7 (without H4, which we return to in a 

moment) are hierarchica.l, Le. each subsequent hypothesis is more restrictive than the 

preceeding are. All interactions and main effects which are zero under H1 are e.g. also 

zero under H2. This means that any property true under H1 will also be true under H2. It 

also means that H2 can be tested with H1 as an alternative, and that a test of H2 against 

the alternative H1 is equivalent to a test of the hypothesis 

H 1 • AB - O' I . J 2. T . . - , 1=1, ... , , J=l, ... , . 
1 J 

These considerations show that the hypothesis of two-factor interactions between vari­

ables A and B being zero is tested under the hierarchical structure as a test of H2 with H1 
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as the alternative. The test, statistic for this hypothesis can also be derived from theorem 

3.11. Under HI the model is log-linear with canonical parameters T~~, T~Ck' T~Ck' T~, T~, 
IJ J 1 1 J 

T~ and TO' According to table 5.1, there are IJK-(I-1)(J-1)(K-1) unconstrained log-li-

near parameters in this model. According to table 5.1 there are IJK-(I-1)(J-1)(K-1) 

-(I-1)(J-1) unconstrained log-linear parameters under H2. This means that when H2 is 

tested with HI as the alternative, we are testing H2 with (I-1)(J-1) parameters set to 

zero, namely the unconstrained T~~'S. 
1 J 

The test statistic is again most easily derived under the model (5.1). The log-likeli-

hood is under any hypotheses given as 

[ I I J K 
InL = In n + E E E x. ·kln[P. 'k/n] , 

xIll , .. '~JK i=I j=I k=I IJ IJ 

where JLijk=E[Xijk]' Hence the log-likelihood ratio for testing H2 against HI is equal to 

(5.26) 

where ILijk =E[Xijk] with the ML-estimates for the log-linear parameters under H1 in-
A 

serted and JL"k=E[X"k] with the ML-estimates for the log-linear parameters under H2 IJ IJ 

inserted. According to theorem 3.11, Z(H21 H1) is then approximately i-distributed with 

degrees of freedom, since of the unconstrained parameters under H1, (I-1)(J-l) are set 

equal to zero under H2 according to table 5.1. Thus in addition to (5.24), we have 

(5.27) 

The test statistics for other hypotheses have the same forms as (5.24) and (5.26). We may 
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collect the results in the following theorem. 

Theorem 5.2 

The goodness of fit test statistic for a hypothesis H expressable in terms of log-linear par-

ameter is 

(5.28) 

A 

where f.J, •• k=E[X .. kl, estimated under H. The distribution of Z(H) is approximately 
IJ IJ 

(5.29) Z(H) N i(df(H)), 

where df(H) is the number of log-linear parameters set equal zero under H. The test sta­

tistic for H against an alternative hypothesis HA' also expressable in terms of log-linear 

parameters, is 

(5.30) 

where ILijk =E[Xijkl, estimated under HA. The distribution of Z(H I HA) is approximately 

(5.31) 

where df(H I HA) is the difference between the number of unconstrained parameters set 

equal to zero under H and the number set equal to zero under HA. Finally 

(5.32) Z(H I HA) = Z(H)-Z(H A)· 
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Proof: 

Consider in this case the model (5.2). The log-likelihood function is here equal to 

(5.33) 

I J K I J K 
= E E E x .. klnA .. k- A - E E E In(x .. k!) 

i=l j=l k=l 1J 1J ... i=l j=l k=l 1J 

The transformed likelihood ratio is then 

A A 

z(H) = -21nr = -21nf(xlll,· .. ,xIJKIA1l1, ... ,AIJK) +21nf(xlll, ... ,xIJKIX111, ... ,xijk)' 

A 

where L k is the ML-estimate for A" k under H and A..k is the ML- estimate for A" k in the 
1J 1J 1J 1J 

saturated model. Since l'k=x" k 1J 1J 

I J K A A 

z(H) = 2[ E E E x. 'klnA"k -A 1 
i=l j=l k=l 1J 1J ... 

+ 2 [E E E x··klnx··k-x l. 
i=l j=l k=l 1J 1J ... 

Since, however, x ... =E[X...l=A , whatever equations (5.14) to (5.19) are included in a 
A A 

ML-estimation of the parameters and A .. k=J.Lk, (5.28) folIows. The distribution al result 
1J 1J 

(5.29) is a direct application of theorem 3.11. The result (5.31) is also a consequence of 

theorem 3.11, and equation (5.32) follows directly from (5.28) and (5.30). D 

For later reference table 5.3 summarizes the number of degrees of freedom for the 

approximate i -distributions of the goodness of fit test statistics for the hypotheses H1 to 

H7. These numbers can be obtained from table 5.1 by adding the number of parameters 

set equal to zero under a particular hypothesis. The number of degrees of freedom not 
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found in table 5.3 are obtained by interchanging the indices i, j and k. 

* It is time to say a few words about H4, which is parallel to H4 in the sense that 

* * H5CH4CH3· Thus the following test statistics make sense Z(H4 1 H3), Z(H5 1 H4), Z(H41 H3) 

* * * and Z(H5IH4). On the other hand Z(H4IH4) and Z(H4IH4) does not make sense, since 

* * neither H4 testet against H4 nor H4 tested against H4 are tantamount to setting a set of 

log-linear parameters equal to zero. 

Table 5.3. Degrees of freedom for the approximate x2-distribution of 
ZeH). 

Hypothesis Parameters set Number of d1crees of 
H equal to zero freedom or ZeH) 

H1 
ABC (1-1) (J-l) (K-l) 7 .. k =0 
I J 

H2 
ABC AB 

7 i j k =7 i j = 0 (I-i) (J-l)K 

H3 
ABC AB AC 

7 i j k =7 i j = 7 i k = 0 (I-i) (KJ-l) 

* ABC AB AC A KJ (I-i) H4 7 i j k =7 i j = 7 i k =7 i = 0 

H4 
ABC AB AC BC 

7 i j k =7 j j = 7 j k =T j k = 0 IKJ-I-J-K+2 

H5 all above plus T1 = 0 IKJ-J-K+l 

H6 - /: = T~ = 0 IKJ-K 
I J 

H7 
ABC 

-T j =T j =7k =0 IKJ-l 

Because of the constraints (5.4) to (5.6) the values of the main effects T~ for variable 
I 

Aare influenced by the values of the interactions 7~~ and T~Ck' which both relate to vari-
I J I 

able A. This means that it is meaningsless to test the hypothesis Tt=O in a model, where 

'th AB AC . h nel er 7. . nor T . k vams . 
I J I 

The analysis of a given observed three-way contingency table can be carried out in 

many different ways. Since all tests are based on the Z(H)'S and their differences, one idea 

is to make a list of the observed value of ZeH) for all possible hypotheses, Le. not only H1 

to H7 of table 5.3, but also the hypotheses obtained by exchange of indices, for example 

the hypotheses corresponding to the symbols (AB,BC), (AB,C) or (AC). From such a list 

one gets a first impression of what models are likely to fit the data. It is important to 
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avoid tests at a given level for all the hypotheses in this list, since the hypotheses can not 

be tested independently. Even if all the test statistics are independent, the probability of 

rejecting at least one correct model is much larger than a, when all test are carried out at 

level a. To see this let ZI""Zm be m independent test statistics for H1, ... ,Hm with critical 

regions Zl~cl'""Zm~cm' and let 

Then the probability of incorrectly rejecting at least one correct hypothesis is 

= P(U{Z. ~ c.}) = I-p(n{Z. <c.}) = l-(l-a)m. 
j J J j J J 

If thus a=0.05 and m=8, we reject at least one correct hypothesis with probability 0.337. 

There is a rich litterature on what to do in this situation. Generally the situation is 

known as a case of multiple test procedures. There are two very simple procedures which 

are easy to understand and apply. One procedure is known as the Bonferroni procedure. It 

is based on the simple fact that if 

for all j, Le. if all tests are carried out at level alm, then by the Bonferroni inequality 

P(Zj ~ cj for at least one j) ~ ~P(Zj ~ cj I H) = malm = a, 
J 

whether Zl'",Zm are independent or not. 

The Bonferroni procedure thus gives us a guarantee that the maximum overall level 
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is less than or equal to a. 

Holm (1979), see also Schaffer (1986) and Hommel (1988), has improved the Bon­

ferroni procedure by introducing the sequential procedure described in fig. 5.3, where 

ZCl),···,ZCm) is ordered such that P(ZCl)~zCl»$ P(ZC2)~zC2»$···$P(ZCm) ~ zCm»· The se­

quential Bonferroni procedure will apart from very trivial cases lead to tests which are 

more powerful than the Bonferroni procedure and the increase in power can be substantial 

as shown by Holm (1979). 

I Start 

1 

If not reject H(l) and continue. 

1 

If P(Z(2) ~ z(2»> m~l' accept H(2),···,H(m) 

If not reject H(2) and continue. 

! 

! 

If P(Z(m) ~ z(m» > a, accept H(m) 
If not continue. 

1 
Reject H(m) 

Fig. 5.3. The sequential Bonferroni procedure. 
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In some cases it is possible to determine apriori a hypothesis which is likely to hold. In 

such cases one may test this hypothesis directly through the test statistic (5.28). Suppose, 

for example, that we are fairly convinced that the three- factor interactions and the two­

factor interactions between variables Band C are zero. We can then test 

by estimating the expected numbers under H2, where the sufficient marginals are AB, 

AC, and compare the observed value of (5.28) with a i-distribution with 

df=(I-1)( J-1 )(K-1 )+( J-1 )(K-1) 

degrees of freedom. 

It is, however, relatively seldom that a likely final hypothesis can be formulated di­

rectly. The best thing to do is then to set up a sequence of hierarchical hypotheses by 

determining which interactions are likely to vanish first. It may e.g. be more likely that B 

and C interact than A and C and more likely that A and C interact than A and B. The 

hypotheses H1,H2,H3 and H4 of table 5.2 should then be tested in that order. When a 

hierarchical order can be determined the relevant test statistics are (5.30). In the 

examples below it is shown how the testing is carried out and how different results are 

interpreted. Tables 5.5 and 5.9 thus shows the listing of z(H) for all possible hypotheses 

and tables 5.6 and 5.10 the test statistics hierarchically ordered. 

Before we proceed to the examples, it remains to show how the expected numbers 

necessary for the test statistics (5.28) and (5.30) are computed. As mentioned above, it is 

often unnecessary to compute the ML-estimates of the log-linear parameters in order to 

obtain values of the expected numbers, As one example consider hypothesis H4. Accord­

ing to theorem 5.1 and (5.9), we have under H4 

2 
/lOOk = np. ·k=np. p. p k=/l· /l. /l kin. IJ IJ I.. .J... I.. .J. .. 

Under H4 the likelihood equations are, however, 

x. = /l. , 
I.. I .. 

i=l, ... ,I, 



x. = /l. , 
.J. .J. 

j=l, ... ,J, 

and 

x -/l .. k - .. k' k=l, ... ,K. 

A 

It follows that /lijk under H4 is given by 

A 2 
/look = x. x. x kin. IJ I ... J ... 
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For the hypotheses H2 to H7 the expected numbers are listed in theorem 5.3. In order to 

cover all models, n is written as x . 

Theorem 5.3. 

The expected numbers /lijk are under hypotheses H2 to H7 estima.ted as 
A 

H2: /look = x. kX 'k/x k IJ I..J .. 

A 

H3: /look = x ·kx. Ix IJ .J I.. ... 

A 2 
H4: /look = x. x. x k/x IJ 1.. .J. .. . .. 

A 1 
H5: /look = IX. x k /x IJ .J...... 

Proof: 

The expression for H4 was proved above. For H2, we get from (5.10) 

/look = np"k = (np. k)(np 'k)/(np k) = /l .. /1, 'k//l k' IJ IJ I. .J .. I.Je.J .. 



154 

for which the expression for H2 follows when the sufficient marginals under H2 are in­

serted in place of the J.L's. 

Under H3, T~~Ck=T~~=T~Ck=O for all i, j and k. But then 
I J I J I 

B C BC) ( A) J.L 'k = exp(To+T .+T k +T. k I: exp T . 
. J J J i I 

ABC BC J.L. = exp( TO+T. )EE exp( T. +Tk+T. k) 
I.. I j k J J 

and 

TO ABC BC 
= e E exp(T. )EE exp(T .+Tk +T 'k)' 

i I jk J J 

such that 

J.L··k = J.L .. /1,. /J.L . IJ .Jk' I.. .., 

Hence when the ML-estimates for the J.L'S are replaced by the sufficient marginals under 

H3, the expression for H3 follow. The expressions for H5 is obtained by setting xi .. =x . ../I 

in H4, the expression for H6 by setting x.j.=x . ../J and xi .. =x . ../I in H4 and finally the 

expression for H7 by setting \ .. =x . ../I, x.j.=x . ../J and x .. k =x . ../K in H4. 0' 

The necessary computations for solving the likelihood equations are carried out by 

means of standard statistical computer packages like SPSS, BMDF, GENSTAT or SAS. 

From theorem 5.3 follows that there are explicite solutions to the likelihood equa­

tions for all models except H1, where the likelihood equations are (5.20), (5.21) and 

(5.22). These equations are in almost all computer programs solved by the method of iter­

ative proportional fitting, described in section 3.6. Let J.L ~'k be initial estimates for the ex-
IJ 

pected values. Then improved estimates J.L~ 'k' J.L~·k and J.L~·k in iterations 1, 2 and 3 are 
IJ IJ IJ 

obtained as 

I X .. 
_ 0 IJ. 

J.L ijk - J.Lijk----o 
J.L .. 

IJ. 



2 1 X i .k 
JL ijk = JL ijk -1-

JL i.k 

3 _ 2 X. jk 
JL ijk - JL ijk -2- . 

JL 'r_ .JK 
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At iterations 1, 2 and 3 the JL'S are thus adjusted to satisfy (5.20), (5.21) and (5.22) res­

pectively. These three steps are repeated in iterations 4, 5 and 6 and so on. When the 

expected values do not change within the required accuracy in three consecutive itera­

tions, the iterations are stopped and the ML--estimates found. 

Example 5.1. 

In 1968, 715 blue collar workers, selected from Danish Industry, were asked a number of 

questions concerning their job satisfaction. Some of these questions were summarized in a 

measure of job satisfaction. Based on similar questions the job satisfaction of the su­

pervisors were measured. Also included in the investigation was an external evaluation of 

the quality of management for each factory. Table 5.4 shows the 715 workers distributed 

on the three variables 

A: Own job satisfaction 

B: Supervisors job satisfaction 

C: Quality of management. 

In table 5.5 the observed values of the goodness of fit test statistics (5.28) are shown 

for all hypotheses, which can be ordered hierarchicaIly. The levels of significance 

P(Z(H)~z(H)) are computed in the approximating l-distribution. In the table the hy­

potheses are identified by their sufficient marginals, as weIl as with the H-notations used 

earlier. An H in a parenthesis means, that the hypothesis is obtained from one of the hy­

potheses introduced in the start of section 5.2 by an interchange of indices. 
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Table 5.4. Own job satisfaction, supervisors job satisfaction and the quality of 
management for 715 blue collar workers in Denmark in 1968. 

Quality of Supervisors Own Job 
management job satisfaction satisfaction 

Low High 

Low 103 87 
Bad High 32 42 

Low 59 109 
Good High 78 205 

Source: Petersen (1968), table M/7. 

Table 5.5. Observed values of the goodness of fit test statistic for all relevant 
hypotheses for the data in table 5.4. 

Hypothesis Sufficient z(H) df(H) Levelof 
marginals significance 

H1 AB, AC, BC 0.06 1 0.800 

(H2) AB, AC 71.90 2 0.000 

(H2) AB, BC 19.71 2 0.000 

H2 AC, BC 5.39 2 0.068 

(H3) AB, C 102.11 3 0.000 

(H3) AC, B 87.79 3 0.000 

H3 BC, A 35.60 3 0.000 

* (H4) AB 151. 59 4 0.000 

* (H4) AC 87.79 4 0.000 

* H4 BC 76.89 4 0.000 
H4 A, B, C 118.00 4 0.000 

(H5) A, B 167.48 5 0.000 

(H5) A,C 118.00 5 0.000 
H5 B, C 159.29 5 0.000 

(H6) A 167.48 6 0.000 
(H6) B 208.77 6 0.000 
H6 C 159.29 6 0.000 
H7 220.00 7 0.000 
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The first impression from table 5.5 is that the three-factor interaction vanish, while 

of the three two-factor interactions the one between A and B is most likely to be zero. If 

a set of hierarchical hypothesis were to be set apriori, it is likely that the sequence exhi­

bited in table 5.6 would have been chosen. The observed test statistics in table 5.6 are 

obtained from the values in table 5.5 by substractions. 

The most restrictive hypothesis, which can be accepted is thus H2 with sufficient 

marginals AC and BC. The interpretation of the corresponding model is shown in fig. 5.4. 

A: Own satisfaction 

~ 
B: Supervisors 

satisfactions 

C: Quality of 
management 

Fig. 5.4. The interpretation of the least restrictive model fitted to the data of tabel 5.4. 

Table 5.6. Observed test statistics under hierarchical testing for the data of table 5.4. 

Hypothesis Sufficient Interactions z(HIHA) df Levelof 

marginals set to zero significance 

H1 AB, AC, BC ABC Tijk = 0 0.06 1 0.800 

H2 AC, BC AB 
T· . = 0 

1J 
5.33 1 0.022 

H3 BC, A AC 
Tik = 0 30.21 1 0.000 

* A H4 BC T· = 0 41. 29 1 0.000 
1 

The sequential Bonferroni procedure works well on table 5.5. In table 5.5 there are 18 

hypotheses. Hence we start with the smallest level of significance and compare with 

0.05/18=0.003 for overall level 0'=0.05. As can be seen the first 16 comparisons lead to re­

jection of all hypotheses except H1 and H2. The second largest level of significance is 

P(Z(H2)~5.39)=0.068. This is larger than 0.05/2. Hence H2 is accepted and consequently 

also H1. It thus seems that we have reached a plausible result, which coincides with the 

conclusion reached above. 
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Verbally we may claim that the quality of management rat her than the job 

satisfaction of the supervisor influence the job satisfaction of the worker. That the job 

satisfaction of the worker is only independent of the job satisfaction of the supervisor, 

conditionally on the level of management quality, can be seen by analysing the marginal 

table between variables A and B shown in table 5.7. A test of independence in this table, 

using the transformed log-likelihood ratio test statistics gives 

z = 15.89, df=l, 

such that the variables A and B are not independent, when variable C is not taken into 

consideration. 

Table 5.7. Marginal contingency table for workers and supervisors job satisfactions. 

Job satisfaction 
of supervisor 

LOI< 
High 

Example 5.2. 

Job satisfaction 
of I<orker 

LOI< High 

162 
110 

196 
247 

The Swedish traffic authorities investigated in 1961 and 1962 on a trial basis the possible 

effects of speed limitations. In certain weeks a speed limit of 90 km/hour was enforced, 

while in other weeks no limits were enforced. Table 5.8 shows for two periods of the same 

length, one in 1961 and one in 1962, the observed number of killed person in traffie aee-

idents on main roads and on seeondary roads. 

Table 5.8. Persons killed in traffic aecidents in aperiods of length 18 weeks in 
1961 and 1962. 

Year Speed Main Secondary 
limit roads roads 

90 km/hour 8 42 
1961 

Free 57 106 

90 km/hour 11 37 
1962 

Free 45 69 

Source: Unpublished data from the Swedish Traflic Authorities. 
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The goodness of fit test statistics for all models are shown in table 5.9. The notation 

is as in table 5.5, and the three variables are labeled 

A: Year 

B: Speed limit 

C: Road type 

Based on apriori knowledge it is most reasonable to expect that it is mainly road type 

that influences the effect of speed limits and that there is probably no major differences 

between the two years considered. For these reasons, the sequence of hierarchical tests 

shown in table 5.10 was chosen. 

Table 5.9. Goodness of fit test statistic for all relevant models and the data in table 5.8. 

Hypothesis Sufficient z(H) df Levelof 
rnarginals significance 

H1 AB, AC, BC 0.19 1 0.660 

(H2) AB, AC 11.36 2 0.003· 

(H2) AB, BC 1.34 2 0.513 
H2 AC, BC 2.44 2 0.295 

(H3) AB, C 12.05 3 0.007 

(H3) AC, B 13.16 3 0.004 

H3 BC, A 3.13 3 0.372 

* (H4) AB 60.27 4 0.000 

* (H4) AC 102.19 4 0.000 

* H4 BC 10.09 4 0.039 

H4 A, B, C 13.85 4 0.008 

(H5) A, B 62.06 5 0.000 

(H5) A, C 102.88 5 0.000 

H5 B, C 20.81 5 0.001 

(H6) A 151.09 6 0.000 

(H6) B 69.02 6 0.000 
H6 C 109.83 6 0.000 

H7 158.04 7 0.000 
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The conclusion of the analysis is thus that there is an interaction between road type 

and speed limits, such that the drop in number of total traffic accidents, obvious through­

out the table, depends on the road type considered. The trend is that more accidents are 

prevented on main roads, when a speed limit is enforced. It is natural in this case to test 

* H4 rat her than H4 against H3• We might namely be interested in testing that the accident 

level is the same in 1961 as in 1962 whether there is an interaction between road type and 

* speed limitation or not. As it turns out H4 is rejected, so the least complicated model 

which fits the data in a satisfactory way, is the one corresponding to H3 with interpreta­

tion illustrated in the association graph figure 5.5. 

Table 5.10. A sequence of hierarchical tests for the data in table 5.8. 

Hypothesis 

H1 

(H2) 

H3 

* H4 

H5 

(H6) 

H7 

Sufficient 

marginals 

AB, AC, BC 

AB, BC 

BC, A 

BC 

B,C 

B 

A: Year • 

Interactions Z(HIHA) 

set to zero 

ABC 0.19 T . . k=O 
1 J 
AC 

Tik=O 1.15 

T~~=O 1. 79 
1 J 

T~=O 6.96 
1 

BC 
Tjk=O 10.72 

TC=O 
k 48.21 

T~=O 89.02 
J 

...---------- C: Speed limit 

B: Road type 

df Levelof 

signif icance 

1 0.660 

1 0.270 

1 0.084 

1 0.009 

1 0.001 

1 0.000 

1 0.000 

Fig. 5.5. Association graph for the least complicated model, which describes the data in 
table 5.8. 
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In order to apply the sequential Bonferroni procedure on the data in this example, 

the levels of significance in order of magnitude and the corresponding limits aj(m+1-j) 

are for a=0.05 shown in table 5.11. From this table it is seen that all hypotheses are rejec­

ted except those with sufficient marginals: (AB,AC,BC),(AB,BC),(AC,BC),(BC,A), and 

(BC). 

Table 5.11. The hypotheses of table 5.9 ordered according to increasing level of 
significance and the adjusted levels aj(m+l-j), m=18. 

Hypothesis Sufficient Levelof 0.05j(m+l-j) 
marginals significance 

j=l H7 0.000 0.003 

2 H6 C 0.000 0.003 

3 (H6) B 0.000 0.003 

4 (H6) A 0.000 0.003 

5 (H5) A,C 0.000 0.004 

6 (H5) A,B 0.000 0.004 

* 7 (H4) AC 0.000 0.004 

* 8 (H4) AB 0.000 0.005 

9 H5 B,C 0.001 0.005 

10 (H2) AB,AC 0.003 0.006 

11 (H3) AC,B 0.004 0.006 

12 (H3) AB,C 0.007 0.007 

13 H4 A,B,C 0.008 0.008 

* 14 H4 BC 0.039 0.010 

15 H2 AC,BC 0.295 0.012 

16 H3 BC,A 0.372 0.017 

17 (H2) AB,BC 0.513 0.025 

18 H1 AB,AC,BC 0.660 0.050 

* This result coincide with the result above except as regards H4, which is accepted by ase-

quential Bonferroni procedure. 

A uniform distribution over the categories of variable A means that there on the 

average were as many accidents in 1961 as in 1962. 
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The estimated log-linear parameters of the model BC,A are 

ABC ABC 
T 11 = T 22 = - 0.221 

ABC ABC 
Tl 2 = T 2 1 = + 0.221 

AA 
Tl = +0.137, 

AB 
Tl = -{l.619, 

AC 
Tl = -{l.491, 

AA 
T 2 =-0.137 

AB 
T 2 = + 0.619 

AC 
T 2 = + 0.491 

T = 3.533 o 

These estimates can be derived direct1y from the likelihood equations, and it is instructive 

to do so. The likelihood equations corresponding to sufficient marginals BC are 

xB~k = E[X 0kl . J .J 

or 

These equations imply that 



"BC "B "c 
Tl2 = In79 - c- Tl - T 2 

where c is a common value. Since, however, 

"BC "BC "BC "BC "BC "BC "BC "BC "B "B "c "c 
T 11 + Tl 2 = T 11 + T 21 = Tl 2 + T 22 = T 21 + T 22 = Tl + T 2 = Tl + T 2 =0, 

it follows that 
AB 1 

c + Tl = 2(ln19+1n79) = 3.657, 

c + ~~ = ~(ln19+1n102) = 3.785 

and from the similar equations involving ~~ and ~~ 

Hence 

and consequently 

c = i(ln19+1n79+1n102+1n175) = 4.276. 

AB 
T = -0.619 

I 
AC 
Tl = -0.491 

"BC 
T 11 = -0.222. 

The estimate for T~ is obtained from the equations 
1 

"A " ABC "B "c 
x. = exp( T. + To)EEexp( T . k+ T . +Tk) 

I.. 1 j k J J 

163 
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corresponding to sufficient marginals A, or 
AA A 

213 = exp( Tl +TO) • 5.318 

and 
AA A 

162 = exp( T 2 +TO) • 5.318 
AA AA 

From Tl + T 2 =0 follows then than 

A 1 
TO = 2" (ln213+1n162)-ln(5.318) = 3.553 

such that 
'A 
Tl = 0.137. 

The estimates of the two-factor interactions ;~~ show that the speed limitations as ex­

pected has had the largest effects on the main roads in Sweden since ;~~ <0 indicates that 

there have been significantly fewer killed in the traffic than expected under a speed limi­

tation on main roads. The positive value of ;~, which is slightly significant, indicates that 

there as a whole has been slightly more killed persons in 1961 than in 1962. L:::.,' 

5.4. Decomposition of the test statistic 

The additive form of the test statistic (5.28) allow us to decompose selected test statistics 

in order to further illustrate the interpretation of the models under consideratioll. As Olle 

example collsider the test statistic for H2 with 

A 

/look = x. kX 'k/x k lJ I..J .. 

according to theorem 5.3. Decomposed according to the value of k, Z(H2) can be written 

as 

(5.34) 

For a given k, 
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"'-

/look = X. kX 'k/X k' i=l, ... ,1 j=l, ... ,J, 1J I..J .. 

are, however, the expected numbers under independence in the IJ ceHs in the klth layer of 

the table. Z(H2) is thus the sum of K test statistics for independence in the conditional 

contingency tables given the levels of variable C. The terms in (5.34) are independent and 

each approximately i-distributed with (l-l)(J-l) degrees offreedom. Hence approxima­

tely 

Z(H2) N i(K(I-l)(J-l)), 

in accordance with table 5.3. The decomposition of (5.34) shows that the test statistic for 

H2 based on K(I-l)(J-l) degrees of freedom, is composed of K test of independence be­

tween variables A and B each with (1-1)( J-l) degrees offreedom. 

This way of deriving Z(H2) does not reveal, however, the alternative decomposition 

which correponds to successive tests of the H1 and H2. The number K(I-1)(J-l) can thus 

be divided in two ways: Under the latter decomposition the degrees of freedom are di­

vided as 

K(I-l)( J-l )=(1-1)( J-l )(K-l )+(1-1)( J-l) 

corresponding to a test of H1 foHowed by a test of H2 given H1. Under the former decom­

position the degrees of freedom are divided as 

K( 1-1)( J-l )=(1-1)( J-l )+ ... +(1-1)( J-l) 

corresponding to independence tests in each layer of the contingency table. Which one of 

the decomposition one choose to consider depends on what alternatives H2 are compared 

to. The advantage of the decomposition (5.34) is, that if H2 is rejected, the single terms in 

(5.34) may indicate that an independence hypothesis holds in some layers of the table. 
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Example 5.3. 

In 1974 the Danish National Institute for Sodal Sdence Research investigated 1314 em­

ployee's who 1eft their job during the second half of the year. The lay-offs were cate­

gorized according to three variables 

A: Employment status on January 1st. 1975. 

B: Cause of lay-off. 

C: The length of present employment at time of lay-off. 

Table 5.12 shows the three-way contingency table formed by these three categorical vari­

ables. The observed values of the test statistics in table 5.13 show that there does not 

seem to be any simple interpretation of the table in terms of independence, or conditional 

independence. 

Table 5.12. Employment status on January Ist.1975, causes of lay-off and length of 
employment at time of lay-off for 1314 employee's who lost their job in the 
fall of 1974 in Denmark. 

Employment status on 
January 1st, 1975 

Lenyth of Cause of Got a Still 
emp oyment lay-off new job unemployed 

Less than Closure etc. 8 10 
1 month Replacement 40 24 

1-3 Closure etc. 35 42 
months R,eplacement 85 42 

3-12 Closure etc 70 86 
months Replacement 181 41 

1-2 Closure etc. 62 80 
years Replacement 85 16 

2-5 Closure etc. 56 67 
years Replacement 118 27 

More than Closure etc 38 35 
5 years Replacement 56 10 

Source: Kjrer (1978). Table 4.8. 
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Table 5.13. Selected observed test statistics for the data in table 5.12. 

Model Test Statistic df Significance 
probability 

AB, AC, BC 9.01 5 0.108 
AB, BC 24.63 10 0.006 
AC, BC 165.92 6 0.000 
AB, AC 64.62 10 0.000 

The decomposition (5.34) with respect to variable B for the data in table 5.12 takes 

the form 

24.63 = 1.44+23.19 

The term 1.44 corresponds to a test of independence between variables A and C given 

level 1 of variable Band the term 23.19 corresponds to a test of independence between 

variables A and C given level 2 of variabel B. Both terms in (5.34) are in the present si­

tuation i-distributed with five degrees of freedom. Hence only 23.19 is significant. Thus 

we cannot conclude that 

A9CIB, 

but we may safely conclude that 

A9CIB(1), 

i.e. A and B are independent given level 1 of variable B. The interpretation of the table is 

thus that there is a dependency between length of employment and the chance of getting 

a new job immediately, if the cause of the lay-off is areplacement. If the cause is a clo­

sure, this dependency is not manifest in the data. This conclusion can be sharpended, as 

we shall see by means of analysis of residuals in section 5.5. oCl.,. 

5.5. Detection of model departures 

There are many models of interest, which do not correspond to any of the hypothesis H1 

to H7 or their equivalencies. It may thus be an important model to consider that variables 

A and B are independent for certain levels of variable C, although not for all. 

As diagnostics for model departures two sets will be suggested here, standardized 

residuals and standardized estimates of log-linear parameters. As regards alternative 
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diagnostics, cf. Kotze and Hawkins (1984). The residuals are defined as 

A 

dijk = xijk - Jtijk , 

A 

where Jt"k is Jt. ·k=E[x. 'kl with the ML-estimates for the T'S under the given model in-
IJ IJ IJ 

serted. The variance of d" k depends on which T'S are set equal to zero. In addition the T'S, 
IJ 

which are non zero under the model, have to be replaced by estimates. 

For a thre~imensional table, there exist simple approximations for the variance of 

d" k except for the model AB, BC, AC. Table 5.14 is due to Haberman (1978), p.231. It 
IJ 

shows approximations to the variances of the residuals x. 'k-Jt"k for aH hypotheses except 
IJ IJ 

H1. The standardized residuals are defined as 

A A 

(5.3.5) r.·k = (x. ·k-Jt· 'k)/ (l"k ' IJ IJ IJ IJ 

• A 2 A A 

wlth (l. ·k=var[x. ·k-Jt· 'kl. IJ IJ IJ 

Some computer programs provide exact or approximate expressions for (5.35) with 
A 

(l"k estimated under the chosen model. Based on a table of the standardized residuals 
IJ 

(5.35) it is possible to determine what ceHs of the table contribute significantly to the 

lack of fit. 

Example 5.3. (Continued) 

An analysis of the standardized residuals for the model AB,BC applied to the data in 

table 5.12, shown in table 5.15, reveals that the conclusion AE9C I B(l) can be sharpended. 

We immediately notice that only the residuals for levels 1 and 2 of variable C have value 

significantly different from zero. This suggest that the model AB, BC may fit the data, if 

levels 1 and 2 of variable C, Le. all employee's which have worked less than 3 months at 

the present employer, are omitted from the analysis. This can be illustrated by table 5.16, 

which shows the test statistics for the models of table 5.13 without levels 1 and 2 of 

variable C. It can thus be further concluded from the analysis of the data in table 5.12, 
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that there is independence between the chance of getting a new job soon after the lay-off 

and the length of employment, if the employee has been employed more than 3 months at 

the time of lay-off . .6. 

Table 5.14: Approximate estimated variances for the residuals . 

A A 

Hypoth- Sufficient var [X, 'k-P,"kJ IJ IJ 
esis marginal 

A 

H2 AC, BC P,ijk (1-\. k/x . . k)(l-x .jk/x . . k) 

A 

H3 BC, A 1l"k(l-x 'kin) (l-x, In) IJ . J I •• 

* H4 BC 
A 1 
ll .. k(l-x 'kin) (1-.) 

IJ • J .l 

H4 A,B,C 

H5 B, C 
All 
Ilijk (1 - r + r(l-x. j . In) (l-x .. kin)) 

H6 C 
A 1 
Ilijk (1 - IT ) 

H7 
, 1 
llijk (l - m) 

Table 5.15. Standardized residuals for the model AB, BC and the data in table 5.12. 

Employment status 
Lenyth of Course of Got a Still 
emp oyment lay-off new job unemployed 

Less than Closure etc. -D.ll +0.11 
1 month Replacement -3.12 +3.12 

1-3 Closure etc. 0.04 +0.04 
month Replacement -3.29 +3.29 

3-12 Closure etc -D.23 +0.23 
month Replacement +1.55 -1.55 

1-2 Closure etc. -D.55 +0.55 
years Replacement +1.63 -1.63 

2-5 Closure etc. -D.04 +0.04 
years Replacement +1.12 -1.12 

More than Closure etc +1.17 -1.17 
5 years Replacement +1.42 -1.42 
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Table 5.16. Test statistics for the models of table 5.13, if levels 1 and 2 of 
variable C are omitted. 

Model Test Statistic df Levelof 
significance 

AB, AC, BC 0.52 3 0.914 
AB, BC 2.19 6 0.902 
AC, BC 154.96 4 0.000 
AB, AC 18.46 6 0.005 

Instead of looking at the residuals, one may study the estimates of the log-linear 

parameters. According to theorem 5.1 two variables are independent, or conditionally 

independent, if all two-factor or higher order interactions involving the variables are zero. 

An inspection of the estimated interactions can thus reveal why an expected independence 

does not materialize. In order to obtain a correct evaluation of the significance of a given 

estimated interaction, the corresponding parameter estimate must be standardized. Consi­

der thus e.g. 

(5.36) "'AB "'AB ~ x x AB 
W . . = T . . / var[T .. ] , 

1J 1J 1J 

'" "'A "'A where var[ T . ~] is the variance of T. ~ with the estimated values of the T'S inserted. The 
I J I J 

exact expression for var[;~~] is rat her complicated, but approximations are available, 
I J 

which are valid if the limiting i -distribution of the test statistic is valid. One possibility 

is to apply theorem 3.7 according to which var[;~~] is a diagonal element in the matrix 
1 J 

n -1M. Most computer programs provide both estimates of the log-linear parameters and 

standardized estimates (5.36) of the log-linear parameters. Since by theorem 3.7 the 

ML--estimates for the ;~~ are asymptotically normally distributed with mean 0 under the 
I J 

model, 

(5.37) "'AB w . . N N(O,l). 
1 J 
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Hence the two-factor inter action T~~ may be said to contribute significantly to the lack 
I J 

of fit, if 

(5.38) "AB Iw. ·1 > 2, 
I J 

since this event under the hypothesis T~~=O has approximate probability 0.05. Great care 
I J 

should be exercised if this rule is applied too strictly. Firstly, the ~~~'s are not inde-
I J 

pendent, such that the different standardized estimates cannot be evaluated independent-

ly of each other. Secondly, one in every 20 values of (5.38) should on the average exceed 2 

even were the ~~'s independent. None the less a table of the ~~~'s combined with the 
I J I J 

rule (5.38) is helpful to determine which of the T~~'S are different from zero if the value 
I J 

of the test statistic makes it likely that not all are zero. 

sion 

It should finally be noted that T~~ is an additive term in the exponent of the expres­
I J 

/-l"k = E[x"k1 = exp{ ... +T~~+ ... }, 
IJ IJ IJ 

such that the expected numbers in cell (i,j,k) is relatively larger when T~~)O than when 
I J 

T~~=O, and relatively smaller when T~~ <0. Hence a positive value of a two-factor inter-
I J I J 

action indicates a positive covariation between the two variables in question. 

Example 5.4. 

Consider the data in table 5.17 showing the non-response for a survey in Denmark in 

1965. 
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Table 5.17. The non-response for a Danish survey in 1965 distributed according to 
sex and residence of the sampled person. 

Sex 
Residence Response Male Female 

Yes 306 264 
Copenhagen 

No 49 76 

Yes 609 627 
Cities outside 
Copenhagen No 77 79 

Yes 978 947 
Countryside 

No 103 114 

Source: Unpublished data from the Danish National Institute for Social Research. 

Table 5.18 shows some of the possible models and their test statistics. The most res-

trictive model to fit the data thus seems to be BC with 

A: Sex 

B: Response 01' non-response 

C: Residence 

Table 5.18. Test statistics for selected hypotheses for the data in table 5.17. 

Model Test df Level of 
Statistic significance 

AB, AC, BC 5.38 2 0.068 
AB, BC 6.29 4 0.178 
A, BC 10.27 5 0.068 
BC 10.32 6 0.112 
B,C 39.26 8 0.000 

The standardized ML-€stimates ~~~ for T~~ are 

'BC wjk k=l 2 3 

j=l -5.378 +2.101 +4.022 
j=2 +5.378 -2.101 --4.022 
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All these values are significantly larger than 2, such that the conclusion, that the 

T~~IS are not all zero, is confirmed. We note, however, that the great difference is be­

tween k=l and k=2,3, or between the Capital, and the rest of Denmark. 

As a final model, one may, therefore, consider a model, where variables B and C are 

independent if only persons outside Copenhagen are included. 

The 2x2 contingency table formed by variables Band C, without level 1 for variable 

Cis shown in table 5.19. The test statistic for independence in this table is 

z = 0.52, df=l, 

which is not significant. The hypothesis suggested by the standardized ML-estimates is 

confirmed and the rate of non-response is outside Copenhagen the same in the cities and 

in the countryside. 6: 

Table 5.19. Response and non-response for the cities outside Copenhagen and the 
countryside. 

5.6. Exercises 

Residence 

Cities outside 
Copenhagen 

Countryside 

Response 
Yes No 

1236 1925 

156 217 

5.1. In 1973 a group of elderly in the city of Odense in Denmark were divided into groups. 

The persons in the E-groups were offered special help in their hornes, while such help was 

not offered to the persons in the C-group. For each quarter in 1973, 1974, 1975 and 1976 

was then reported how many of the elderly, who had to leave their hornes to go to special 

care centers. 

(a) Formulate a model for the data, which allows for a comparison of the E- and 

C-groups. 

(b) Does the number who move to a care center from the two groups depend on the year 

or the season. 
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Nurnber rnoved to care center frorn 
Year Quarter E-group C-group 

1 5 3 
2 3 3 

1973 3 2 8 
4 7 6 

1 9 2 
2 9 20 

1974 3 7 7 
4 8 7 

1 7 14 
2 8 12 

1975 3 4 11 
4 5 6 

1 7 7 
2 8 8 

1976 3 9 20 
4 6 6 

(c) Does it matter for the analysis that the sizes of the E-group and the C-group are 

not reported. 

5.2. The table below is from the Danish Welfare Study. It shows the number of persons in 

the sampie, for wh ich the social rank is reported, cross-classified as renters/owners and 

according to ownership of a freezer. 

Social Renter Owns a freezer 
rank or owner 
group Yes No 

I+II Renter 304 38 
Owner 92 64 

III Renter 666 85 
Owner 174 113 

IV Renter 894 93 
Owner 379 321 

V Renter 720 84 
Owner 433 297 

(a) Carry out two iterations of the marginal proportional fitting procedure, with all 
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initial expected values equal to 297.31, for estimating the parameters of the model, 

where only the three-factor interaction is zero. 

(b) Carry out a number of tests in order to find a reasonable model to fit the data. 

(c) Give an interpretation of the model and estimate its parameter. 

5.3. In 1975 the connection between high school average (K) and the performance after 

the first year of studying economies at the University of Copenhagen was investigated. 

The table shows the number of economy students, who passed and failed after 1 year of 

study in 1971, 1972, 1973 and 1974 cross--classified with the high school average in six 

intervals. 

High school Year Passed Failed 
average 

K< 7.0 71 8 24 
72 8 19 
73 7 20 
74 10 29 

7.0<K<7.5 71 24 21 
72 18 17 
73 10 30 
74 21 30 

7.5<K<8.0 71 13 16 
72 25 26 
73 23 24 
74 16 24 

8.0<K<8.5 71 15 13 
72 9 22 
73 24 16 
74 17 15 

8.5<K<9.0 71 15 15 
72 8 9 
73 16 10 
74 16 11 

9.0< K 71 14 8 
72 12 7 
73 6 10 
74 13 8 

(a) Describe the data in table by a suitable log-linear model. 
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(b) Interprete the parameters of the chosen model. 

(c) The investigators were especially interested in the connection between high school 

average and the chance of passing the examen. Wh ich of the parameters cast light 

on this connection and in what way? 

(d) It is common wisdom among students and teachers that the chance of passing after 

one year is 50%. Does the data support this claim? Can the 50% claim in 

any way be modified or improved? 

5.4. In a study among persons between age 50 and age 66, the sample size was cross­

classified according to type of dwelling, sex and marriage-status. The table shows the 

resulting contingency table. 

Sex 
Marriage 
status Apartment 

Dwelling 

House Farm 

Married 30 32 5 
Male Not married 64 229 14 

Married 68 41 5 
Female Not married 76 193 44 

(a) Apriori it is reasonable to believe that the strongest interactions are between 

dwelling and marriage status and the weekest between dwelling and sex. Test 

various models by a sequential test procedure. 

(b) Use theorem 5.3 and table 5.14 to compute expected values and standardized resi­

duals directly from the observed numbers. 

(c) Study the residuals for the model A,BC, where A is sex, B marriage status and C 

dwelling. Do they reveal important information? 

(d) Use the residuals for the independence model A,B,C to describe the way the vari­

ables interact. 

5.5. In the data base of the Danish Welfare Study a special computer search was carried 



177 

out to check how broken marriages or permanent relationships depended on sex and social 

rank. The table shows the resulting contingency table. 

Sex Social Marriage or permanent 
rank relationship broken 
group Yes No 

I 14 102 
II 39 151 

Men III 42 292 
IV 79 293 
V 66 261 

I 12 25 
II 23 79 

Women III 37 151 
IV 102 557 
V 58 321 

It is known apriori that there is a connection between sex and social rank. But it is 

of no interest in this connection. 

(a) Is there a connection between broken marriage and one or both of the other two 

variables? 

(b) Use residuals to describe the dependencies in the table. 

(c) Compare the use of standardized residuals and standardized log-linear parameters 

as indicators of model departues for the present data set. 

5.6. Reconsider the data in exercise 4.2. 

(a) Analyse the table as a three-way contingency table. 

(b) Compare the results from the analysis based on the three-way table with the 

conclusions drawn in exercise 4.2. 

5.7. We return to the investigation concerning sport and youth in exercise 4.12. Among 

the quest ions in the survey was one concerning the time used to read about sport. The 

table below shows the sampIe cross-dassified according to the answers to this question as 

weIl as sex and whether the students attend a high school or a vocational or commercial 

school. 
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Time spent on reading Attend School 
about sports Sex High Vocational 
(hours) School or Commercial 

None Boy 34 64 
Girl 49 135 

0-1/2 Boy 29 61 
Girl 31 118 

1/2 -1 Boy 40 81 
Girl 37 142 

1-2 Boy 37 65 
Girl 32 64 

2-4 Boy 24 40 
Girl 11 37 

4-6 Boy 6 15 
Girl 0 3 

More than 6 Boy 3 7 
Girl 4 2 

(a) Analyse the data by a log-linear model. 

(b) Estimate the parameters of the most simple model which fits the data. 

(c) Characterize the dependencies in the table based on the estimates from (b). 



6. Multi-dimensional Contingency Tables 

6.1. The log-linear model 

In chapter 5, log-linear models for three-dimensional tables were treated in great details. 

Hence we shall not for higher order tables go into details with the parameterizations of 

the models or with the exact expressions for test quantities and their distributions. 

Besides for higher order tables the mathematical expressions quickly becomes large and 

cumbersome to write down. 

An m-way contingency table can be written as follows 

x.. ., i1=1, ... ,I1, i2=1, ... ,12, ... ,i =1, ... ,1 , 
1112 ... 1m m m 

where i1 is the index of the first, i2 the index of the second, and im the index of the last of 

the m categorical variables forming the table. When X.. . is the random variable cor-
1112· .. 1m 

responding to x.. ., the contingency table can be parameterized through the 
1112 .. ·1m 

log-linear parameterization 

(6.1) 

It is difficult to keep track of all these parameters, but for concrete applications matters 

are much simplified by two facts. Firstly any model can be identified through its suffi­

dent marginals, which also form the basis for the ML-estimation of the parameters. Se­

condly the actual estimates of the parameters are seldom needed in order to identify a 

model and give a valid interpretation of the model. 

The r-parameters in (6.1) with two or more indices are called interactions. 
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A S 
T. , ... , T. are called main effects and Ta the over-all effect. If there are kindices for a 

1 1 Im 

log-linear parameter it is called a k-factor interaction. As a rule models which include 

non-null interactions of higher order than 4 are difficult to interprete and of limited prac­

tical use. 

The main tools for statistical analyses of multiple contingency tables are test sta­

tistics of the general form (5.28) and (5.30). For multiple contingency tables the results in 

theorem 5.2 extend directly. Consider thus a hypothesis H, which consist of setting a 

number of log-linear parameters equal to zero. The test-statistic for H is 

(6.2) 

"-

where f.L.. . is E[X.. . 1 with the non-null T'S under H replaced by their ML-esti-
1112···lm 1112 ... Im 

mates. It can be proved that Z( H) under H is approximately i -distributed, i.e. 

Z(H) - i (df). 

The degrees of freedom df for Z(H) are the number öf T'S set equal to zero under H. 

As in chapter 5 the fit of an observed table to a given model is measured by the ob­

served value z(H) of (6.2). The hypothesis and the corresponding model are rejected if the 

value of z(H) is large. The level of significance 

p = P(Z(H) ~ z(H)) 

can accordingly be approximately evaluated in a i-distribution with df degrees of free­

dom. 

It is often logical to test a hypothesis against an alternative hypothesis HA' und er 

which fewer interactions than under H are zero. In this way it can be tested whether the 

interactions assumed to be zero under H, but not under HA' are in fact zero. 

For higher order tables there are in general so many candidates for a reasonable mo­

del that a complete set of hierarchical hypothesis can not be set up beforehand. Special 
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attention must, therefore, be devoted to setting up a reasonable strategy for testing the 

hypotheses of interest. We return to his problem in section 6.3. 

6.2. Interpretation of log-linear models 

For higher dimensional contingency tables, there are often many potential models which 

merit consideration. Hence it is important to have an easy way to identify a model. It 

turns out that also for higher order tables the sufficient marginals are convenient instru­

ments for identifying models. 

As noted in chapter 5, we do not consider models as valid, if an interaction between 

a given set of variables is zero, but there are non-null interactions between a larger set of 

variables, which include the given set. Models which are valid under this criterion are 

called hierarchical models. Consider e.g. for a four-way table the model with 

ABCD ABC ABD CD 
Ti j k I = Ti j k = Ti j I = T k I = 0, for all i,j,k 1 

and with at least one non-zero interaction in all other sets of variables. This model is not 

hierarchical, since T~~=O for all k and 1, but at least one T~~~ /0. 

Consider now a four-way table formed by the four categorical variables A, B, C and 

D. Table 6.4 below shows an example of such a table. As for thre~imensional models a 

sufficient marginal corresponds to one of the equations in the minimal set of likelihood 

equations. Under the log-linear parameterization (6.1) all likelihood equations have the 

structural form of equating an observed marginal of the table with its mean value. As we 

saw in chapter 5 all equations corresponding to non-null interactions need not, however, 

be included. The general rule is, that an equation can be omitted if it can be obtained 

from another likelihood equation by summation. None of the equations in the minimal set 

of likelihood equations can thus be obtained by summation over any other equation in the 

set. 

A concrete example illustrates the rule. Consider the hierarchical model for a four­

way table characterized by 
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(6.3) ABCD ABC ABD 
Ti j k I = Ti j k = Ti j I = 0 for all i,j,k,1. 

The minimal set of likelihood equations are then 

(6.4) xi.kl = E[Xi.kll , for all i, k and I 

(6.5) x '!d = E[X 'kll .J .J 
, for all j, k and I 

and 

(6.6) x .. = E[X .. 1 
IJ.. IJ .. 

, for all i and j. 

All other equations can be obtained from these by summation. Consider e.g. the equations 

corresponding to T~~, which are not assurne to be zero. The likelihood equations for T~~ 

are 

\.k, = E[Xi.k.l ' for all i and k. 

But these equations can be obtained from (6.4) by summation over 1. As another example, 

h · d' D t e equatlOns correspon mg to T I are 

1=1, ... ,1. 

But these equations can be obtained from (6.4) by summation over i and k or from (6,5) 

by summation over j and k. 

Note that even though (6.6) corresponds to a two-factor interaction, it can not be 

derived from equations (6.4) and (6.5) by summation. 

On symbolic form (6.4) is the sufficient marginal ACD, (6.5) is BCD and (6.6) is 

AB. Equations (6.4) to (6.6) and hence the model can thus be expressed through the sym-

bol ACD,BCD,AB. 

The complete set of marginals for the hypothesis (6.3) are characterized by ACD, 

BCD,AB,AC,AD,BC,BD,CD,A,B,C,D. The rule is thus that a sufficient marginal on 
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symbolic form is omitted if it occurs as a combination in on of the earlier elements of the 

list. Thus AC and AD are omitted because they appears as combinations in ACD, BD 

and CD because they appear in BCD, etc. 

The best way to illustrate the hierarchical hypotheses or models in a four-way table 

is to list the models, identified by their sufficient marginals, together with their 

interpretations in terms of independence, conditional independence and uniform 

distribution over categories. This is done in table 6.1 for a set of typical hierarchical 

models. All other hierarchical models can be obtained by exchange of variables. Several 

features of table 6.1 are important. Note firstly, that four models does not have an 

interpretation in terms of independence or conditional independence. These are models 

where all variables interact with each other, e.g. the saturated model and the model with 

sufficient marginals AB, AC, AD, BC, BD, CD. Note secondly that for any model in-

volving higher order interactions, there exists a model in terms of only second order inter-

actions, with the same interpretation. It is, thirdly, important to note that not all models 

in table 6.1 can be hlerarchically ordered in one hierarchical order. The hypotheses 

marked by an asterix is a set of hierarchical ordered hypotheses, but there are may other 

such sets. The hierarchical order marked by an asterix corresponds to testing the follow-

ing partial hypotheses successively 

(1) ABCD 
T1jk1=0 (2) BCD 

Tjkl=O (3) ACD 
Ti k I = 0 

(4) ABD (5) ABC (6) CD 
Ti j I = 0 T . . k = 0 Tki = 0 

I J 

(7) BD 
Tj I = 0 (8) BC 

Tj k = 0 (9) AD 
Ti 1= 0 

(10) AC (11 ) T~~ = 0 (12) TD = 0 Ti k = 0 
I J I 

(13) TC = 0 (14) T~ = 0 (15) T~ = 0 k J I 
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Table 6.1. All types of hierarchical models in a four-way table and their interpretations. 

Model Sequence of Sufficient Interpretation Association 
classi- hierarchical marginals graph 
fication models 

* ABC,ABD,ACD,BCD ~: 
* ABC,ABD,ACD ~ 
* ABC,ABD,CD ~ 

G,D ABC,ABD C®DIA,B ~ 
* ABC,AD,BD,CD ~ 

ABC,AD,BD C®DIA,B rx1 
G,D ABC,AD D®B,CIA 15<: 
G,D ABC,D D®B,C,A V. 
G,D ABC D ® B, C, A & D=u v: 

* AB,AC,AD,BC,BD,CD ~ 
* AB,AC,AD,BC,BD C®DIA,B ~ 
* AB,AC,AD,BC D®B,CIA R 

G AB,BC,CD,AD A®CIB,D&B®DIA,C X 
AB,AC,BC,D D ® B,C,A 17. 
AB,AC,BC D ® B,C,A & D=u V. 

G,D * AB,AC,AD B®C®DIA f': 
G,D AB,BC,CD D®A,BIC&A®C,DIB Z 
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Table 6.1. ~Co~t:): All typ~s of hierarchical models in a four-way table and 
t elr Interpretat IOns. 

Model Sequence of Suffieient Interpretation Associat ion 
classi- hierarehieal marginals diagram 
fieation models 

G,D * AB,AC,D D®A,B,C&B®CIA 
Ar.S 
C .0 

G,D AB,AC D ® A ,B ,C & B ® C I A & D=u r. 
----G,D AB,CD A,B ® C,D 

--------G,D * AB,C,D A,B®C,D&C®D • • ---. 
G,D AB,C A ,B ® C ,D & C ® D & D=u • * ---G,D AB A ,B ® C ,D & C ® D & C=D=u 

* * • • 
G,D * A,B,C,D A®B®C®D • • 

• • 
G,D * A,B,C A ® B ® C ® D & D=u • * • • 
G,D * A,B A ® B ® C ® D & C=D=u 

* * • * 
G,D * A A ® B ® C ® D & B=C=D=u * * 

* * 
G,D * A=B=C=D=u *" * 
Onee the most restrietive model to fit the data in a satisfactory way has been identified 

by its sufficient marginals the interpretation of the model can thus be established. A help­

ful mean is the association graph, which as defined in seetion 5.2 is a graph with m dots 

representing the m variables, where two dots are eonnected by a line if and only if there 

exists a non-null interaetion involving the two variables. From an association graph the 

interpretation of a model can be derived directly. The rule is that if the route between 

two variables, say from A to B, can be disconnected by covering the dot corresponding to 

one variable, say C, or the dots corresponding to several variables, say both C and 
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D, then A and Bare conditionally independent given C in the first case and given both C 

and D in the second case. Two variables are independent unconditionally, if they are not 

connected at all in the graph. If a main effect, say T~, is 0 for all indices, it is shown by 

replacing the dot representing A with an asterisk. As an illustration consider the first 

non-trivial model in table 6.1, which has sufficient marginals ABC and ABD. For this 

model, the association graph is shown in fig.6.1. 

A B 

o c 

Fig. 6.1. Association graph for models ABC,ABD, ABC,AD,BD and 

AB,AC, AD,BC,BD. 

On fig.6.1 the route from C to D is disconnected if the dots representing A and Bare 

covered. Hence the interpretation 

C ® DIA,B. 

Note that the models ABC,AD,BD and AB,AC,AD,BC,BD also have the association 

graph shown in fig.6.1. As another example consider the two models ABC,AD and 

AB,AC,AD,BC which both have the association graph shown in fig. 6.2. 

A B 

c o 

Fig. 6.2. Association graph for models ABC,AD and AB,AC,AD,BC. 
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On fig.6.2, the only routes from D to either C or B is through A, such that both mo­

dels have the interpretation 

D®C,BIA. 

The log-linear models for multi-way contingency tables can be classified into two 

partly overlapping classes of models, the graphical models introduced by Darroch, Laurit­

zen and Speed (1980) and the decomposable models introduced by Goodman (1968). In 

order to introduce the graphical models, we mention first that among all hierarchical mo­

dels with the same interpretation, there is one for which the interpretation is equivalent 

to the model. This model is identified by the property that the set of sufficient marginals 

corresponds to the cliques, or the maximal complete subsets of the association graph. A 

complete sub set is a set of neighbours in the graph which are all connected and a com­

plete subset is maximal if it is not a true subset of another complete subset. Consider thus 

fig.6.1, where there are two cliques namely ABC and ABD. Hence model ABC, ABD is 

equivalent to the interpretation C ® D I A,B in the sense that if T~~~~=T~~~=T~~~=O 

for all i,j,k and 1 then variable C is independent of variable D given the levels of both A 

and Band if Cis independent of D given both A and B, then T~~~~=T~~~=T~~~=O for 

all i,j,k and 1. The model AB,AC,AD,BC,BD, which differs from ABC,ABD in that in 

addition T~~Ck=O and T~~Dl =0 for all i,j,k and 1, also has interpretation C ® D I A,B but in 
I J I J 

this case the model can not be derived from the interpretation, since the cliques are still 

ABC and ABD, and their corresponding interactions are not necessarily zero. Models for 

which the sufficient marginals corresponds to the cliques of the association graph are the 

graphical models. Darroch, Lauritzen and Speed (1980) showed that all decomposable 

models are graphical and that a graphical model is in addition decomposable if the associ­

ation graph does not contain a cycle of length 4 or more. A cycle is a set of points, which 

are connected successively, but the diagonals are missing. The association graphs for mo­

dels AB,AC,BD,CD and AB,BC,CD,AD, shown in fig.6.3, thus have cycles of length 4. 

For four-way tables the only graphical models, which are non-decomposable are AB,AC, 

BD,CD and its equivalents. Note on fig.6.3 the two ways a 4-cycle can manifest itself on 
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an association graph. 

A 8 A 8 

c o c o 

Fig. 6.3. Association diagram for models AB,AC,BD,CD and AB,BC,CD,AD. 

It is often the case that an association graph need to be rearranged in order to reveal 

its true nature. 

Wermuth and Lauritzen (1983) contains a rat her comprehensive treatment of asso­

ciation graphs for multiple contingency tables. 

The importance of the concept of a decomposable model is partly due to the follow­

ing theorem, first stated by Goodman (1968) and rigorously proved by Haberman 

(1974b), cf. also Andersen, A.H. (1974). 

Theorem 6.1. 

There is an explicite solution to the likelihood equations and the estimated expected num­

bers are direct functions of the sufficient marginals, if and only if the model is decompos­

able. 

As an illustration reconsider the case of a three-way table. A typical set of hierarchi­

cal models, their interpretations and their association graphs are shown in table 6.2. 

In table 6.2 a decomposable model is marked by a D and a graphical model by a G. 

The only non-graphical model is AB, BC, AC, which fails to be graphical, because A, B 

and C form a clique and TA~Ck =0 for all i, j and k. All graphical model are decomposable. 
I J 

This means according to theorem 6.1, that the estimated expected numbers are direct 

functions of the sufficient marginals, except for the model AB,BC,AC. The exact 
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expressions are listed in theorem 5.3. 

Table 6.2. All typical hierarchical models in a three-way table and their inter-
pretations. 

Model Sufficient Interpretation Association 
c1assification marginals graph 

AB, BC, AC :1:>B 
G,D AB, BC A ® CIB > 
G,D AB, C A,B ® C "-• 
G,D AB A,B ® C, C=u "-* • G,D A, B, C A®B®C • • 

• 
G,D A, B A ® B, C=u • 

* • 
G,D A B=C=u * * * * G,D A=B=C=u 

* 

For four-way tables the graphical models are indicated by aG in table 6.1. The de­

composable models are marked by a D. As noted above the only graphical model, which is 

not decomposable is AB,BC, CD,AD. For the decomposable models the exact expressions 

for the estimated expected numbers in terms of marginals are listed in table 6.3. 
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Tabel 6.3. Exact express ion for the estimated expected numbers JljjktE[XjjklJ for 

the decomposable models of a four-way table. 

Sufficientmarginals 

ABC,ABD 

ABC,AD 

ABC,D 

ABC 

AB,AC,AD 

AB,BC,CD 

AB,AC,D 

AB,AC 

AB,CD 

AB,C,D 

AB,C 

AB 

A,B,C,D 

A,B,C 

A,B 

A 

6.3. Search for a model 

A 

Exact expression for Jl .. kl 
1J 

x· ·k x·· l/x .. IJ . IJ. IJ .. 

x· ·k x· l/x. IJ . 1.. 1 ... 

x· ·k x l/n IJ . . .. 

x· ·k IL IJ . 

2 
x·· x· k x· l/x. IJ .. 1 .. 1.. 1 ... 

Xij .. X. jk. x .. kl l (X. j .. x .. k) 

Xij .. xi.k.X ... I/(nxi ... ) 

X·· X· k I (Lx. ) IJ .. 1.. 1 ... 

X·· x kIln 1J.. .. 

x·· x . I (nL) IJ.. .. J. 

X·· I(KL) 1J .. 

2 
xi ... x. j .. x .. k)(n L) 

xi ... x.j .. /(nKL) 

x· I (JKL) 
1 ... 

Since there are so many potential models in a high er order contingency table, it is im­

portant to have a good strategy for searching among the models. Goodness of fit test sta-
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tistics are important tools for such a search, but they should not be used exclusively as 

formal tests of hypotheses. Rather should the level of significance, computed approximate­

ly from the appropriate i -square approximation, serve as a guideline for the inclusion or 

exclusion of a set of interaction parameters. If formal tests of hypotheses are required, it 

is advisable to use multiple test procedures as for example the sequential Bonferroni 

procedure discussed in section 5.3. For four-dimensional tables, which form the basis for 

most examples below, the goodness of fit statistic for hypothesis H is given by 

I J K L A. 

(6.7) Z(H) = 2 ~ ~ ~ ~ X··k1(lnX··k1 -ln/t"kl)' 
i=1 j=1 k=1 1=1 IJ IJ IJ 

A. 

where /tijkl is E[Xijkll with the ML-€stimates for the non-null log-linear parameters under 

the model inserted. The distribution of Z(H) can be approximated by 

Z(H) N i(df(H)), 

where df(H) is the number of log-linear parameters set equal to zero under H. If HAis an 

alternative hypothesis, where fewer log-linear parameters are set equal to zero, then 

(6.8) 
I J K L N A. 2 

Z(HIHA)=2~ ~ ~ ~ X"kl[ln/t"kl-In/t"kllNx (df(H)-df(HA))· 
i=1 j=1 k=1 1=1 IJ IJ IJ 

where tLjjkl is E[Xjjkll with the ML-€stimates of the non-null loglinear parameters under 

HA inserted and df(H A) are the degrees of freedom for HA' In the search for a model that 

fits the data both test statistics of the form (6.8) and of the form (6.7) are useful. 

As mentioned in section 6.2, the model which includes all two-factor interactions 

and the saturated models have the same interpretation. Accordingly a search procedure, 

which often works, is to start by the model with fitted marginals AB, AC, AD, BC, BD, 

CD and test the fit of this model directly by means of (6.7). If the fit is satisfactory, one 

may then try sequentially through the use of (6.8) to exclude one or more of the two-fac­

tor interactions. If the model AB,AC,AD,BC,BD,CD does not fit the table, one has to go 

back to the saturated model and try to eliminate the four-factor and the three-factor 
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interactions in turns. Unfortunately different search strategies may lead to different mo­

dels, as the next example illustrates. 

Example 6.1 

In 1973 a retrospective study of cancer of the ovary was carrried out. Information was 

obtained from 299 women, who were operated for cancer of the ovary 10 years before. For 

these women the following four dichotomous variables were observed 

A: Whether X-ray treatment was received or not. 

B: Whether the women had survived the operation by 10 years or not. 

e: Whether the operation was radicalor limited. 

D: Whether the cancer at the time of operation was in an early or in an advanced 
stage. 

The observed number of women are shown in table 6.4. 

Table 6.4. 299 wornen cross-classified according to four categorical variables. 

D: Stage C: Operat ion B: Survival A: X-ray 
No Yes 

Radical No 10 17 
Yes 41 64 

Early 

Lirnited No 1 3 
Yes 13 9 

Radical No 38 64 
Yes 6 11 

Advanced 

Lirnited No 3 13 
Yes 1 5 

Source: übel (1975). 

Our first search strategy is a stepwise exclusion of interactions, starting with the 

saturated model. Table 6.5 shows a number of models and the associated test statistics. 

The models in table 6.5 are selected partly based on prior beliefs on the part of the princi­

pal investigator and partly based on preliminary attempts with other models. 
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Table 6.5. Test statistics for a number of hierarchical models for the data of 
table 6.4. 

Sufficient Test statistics df Leve 1 of s ign if i cance 
marginals Z(H) 

ABC,ACD,ABD,BCD 0.60 1 0.438 

ACD,ABD,BCD 1.23 2 0.540 

ACD,BCD,AB 1.55 3 0.662 

ACD,BC,BD,AB 1.93 4 0.748 

AB,AC,AD,BC,CD,BD 7.17 5 0.208 

AC,AD,BC,CD,BD 7.25 6 0.298 

AD,BC,CD,BD 7.26 7 0.403 

AD,BC,BD 7.86 8 0.447 

AD,BD,C 9.39 9 0.402 

BD,A,C 10.99 10 0.358 

BD,C 28.99 11 0.002 

BD,A 162.04 11 0.000 

A,B,C,D 143.60 11 0.000 

A satisfactory model is thus BD,A,C, showing that only the stage of the cancer in­

fluences the chance of survival, while neither the mode of operation nor treatment with 

X-rays seems to have an effect on the chance of survival. 

A sequential procedure, which starts hy testing the model AB, AC,AD,BC,CD,BD 

and then eliminate the two-factor interactions in turn would lead to the same model, as 

table 6.6 shows. 

The test statistics and the degrees of freedom are obtained from table 6.5 in 

accordance with (6.8). 
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Table 6.6. Test statistics for a sequential testing of two-factor interactions 
being zero, start ing wi th model AB, AC, AD, BC, BD, CD. 

Suff ici ent Interactions set Test df Levelof 
marginals equal to zero statistics significance 

z(H)-'Z(HA) 

AB,AC,AD,BC,CD,BD All three- and 7.17 5 0.208 
four factors 

AC,AD,BC,CD,BD AB =0 0.08 1 0.770 T 

AC,AD,CD,BD BC 
Tjk = 0 0.01 1 0.933 

AC,AD,BD CD 
Tkl = 0 0.60 1 0.530 

AD,BD,C AC Tik = 0 1.53 1 0.216 

BD,A,C AD 
Til = 0 1.60 1 0.206 

A,B,C,D BD 
Tjl = 0 18.00 1 0.000 

Suppose, however, that a sequential test procedure is chosen, starting with the satu­

rated model. The test statistics corresponding to this procedure are shown in table 6.7. 

The very low level of significance for the step from model ACD,BC,BD,AB, to model 

AB,AC,AD,BC,BD,CD suggests that the three-factor interactions between ACD do not 

all vanish and the resulting model could have been ACD,BD. The main interpretation 

would still be that it is the stage of the cancer, which influences the chance of a survival 

by 10 years. But in addition one could conclude that the type of operation and the de­

cision whether to use an X-ray treatment or not would depend on the stage of the cancer. 

The association graphs for the two models are shown in fig. 6.4.6.. 

A 

• 

• 
C 

B 

o 

A B 

c o 
Fig. 6.4. Association graphs for two models fitted to the data in table 6.4. 
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Table 6.7. Sequential tests for a hierarchical ordered sequence of models for the 
data in table 6.4, starting with the saturated model 

Sufficient Interactions set Test df Levelof 
marginals equal to zero statistics significance 

z(H)-z(HA) 

ABC,ACD,ABD,BCD AB CD 
Tijkl = 0 0.60 1 0.438 

ACD,ABD,BCD ABC Tijk = 0 0.63 1 0.429 

ACD,BCD,AB ABD 
ijl = 0 0.32 1 0.568 

ACD,BC,BD,AB BCD 
Tjkl = 0 0.38 1 0.538 

AB,AC,AD,BC,BD,CD ACD 
Tikl = 0 5.24 1 0.002 

ACD,BC,BD AB T· .=0 
1J 

0.09 1 0.743 

ACD,BD BC 
Tjk=O 2.10 1 0.152 

ACD,B BD 
Tjl =0 132.61 1 0.000 

Example6.2 

The data for this example was collected in England in two periods from November 1969 

to October 1971 and November 1971 to October 1973. The counts in table 6.8 are the 

numbers of traffic accidents involving trucks. In addition to the two periods, the accidents 

were classified according to three more categorical variables: 

B: Whether the collision was in the back of the car or forward on the car. Forward 
includes the front and the sides. 

C: Whether the truck was parked or not. 

D: Light conditions with three levels: Day light, night on an illuminated road, night 
on a dark road. 

The classification before and after November 1st. 1971 is called variable A. 

The point of the study was, that a new compulsory safety measure for trucks was 

introduced in October 1971. The problem was, therefore, if the safety measure has had an 

effect on the number af accidents and on the point of collision on the truck. 
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For these data the strategy of starting with the model involving all two-factor inter­

actions does not produce an immediate result. The observed test statistic for AB,AC,AD, 

BC,BD,CD is 

z = 57.23, df = 9 

with a level of significance below 0.0005. As an alternative we may consider the only mo­

del involving three-factor interactions, which has an interesting interpretation, namely 

ACD,BCD. This model has the association graph shown in fig. 6.5. 

Table 6.8. Number of accidents involving trucks for two per iods in England 
between 1969 and 1973, cross-classif ied according to three categorical 
variables. 

D: Light C:Parked B: Collision A: Per iods 
Conditions Nov .69 to Nov.71 to 

Oct.71 Oct. 73 

Yes Back 712 613 
Forward 192 179 

Daylight 
No Back 2557 2373 

Forward 10749 9768 

Yes Back 634 411 
Forward 95 55 

Niyht, 
il uminate 
street No Back 325 283 

Forward 1256 987 

Yes Back 345 179 
Forward 46 39 

Night, 
dark 
street No Back 579 494 

Forward 1018 885 

Source: Leaflet from Transport and Road Research Laboratory. Department of Environment. 
Crowthorne. Berkshire. UK. October 1976. 

A B 

c o 
Fig. 6.5. Association graph for the model ACD,BCD. 
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The interpretation of model ACD,BCD is A ® BI C,D, Le. if differences in light con-

ditions and whether the truck was parked or not, are taken into account, then the expec­

ted numbers of accidents in the back end and in the forward end of the truck was the 

same before and after the introduction of the safety measure. The test statistic for ACD, -

BCD is 

z = 6.86, df = 6 

with level of significance 0.334, so the model with the interpretation above can safely be 

accepted. 

The introduction of the safety measure has not, accordingly, changed where on the 

trucks collisions take place. The analysis also shows that variables A and Bare dependent 

through the common dependence on variables C and D. Hence one cannot make state­

ments about A and B from a two-way table of A and B cross-classified, without loosing 

information contained in table 6.8. 

If a model where all interactions involving variable A are zero fits the data the safety 

measure has had no effect whatsoever on the number truck accidents. The model con-

cordant with ACD, BCD for which this is the case is the model with sufficient marginal 

BCD. The test statistic for model BCD against the alternative model ACD,BCD has ob-

served test statistic 

z(H I HA) = 218.92, df = 6 

with level of significance p<0.0005 such that there is clearly a time effect in the data. A 

quick glance down table 6.8 shows that the number of accidents is in fact less in the 

second than in the first period for any combination of the three other variables. 

Table 6.9 shows for the data of table 6.8 standardizes estimates of the three-factor 

interactions under the model ACD,BCD. For the interactions between ACD the figures in 

table 6.9 are thus 

A AACD AACD 
where var [T i k I] are estimates for the variances of Ti k I' In order to interprete the 

figures in table 6.8, one must keeep in mind that the expected number in a ceH increases 
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if a positive inter action is included and decrease if a negative interaction is included. 

Table 6.9. Standardized estimates of three-factor interactions for the model 
ACD, BCD. 

Variable D: Light 
condition 

Daylight 

Night, 
illuminated 

Night, 
dark 

Variable D: Light 
condition 

Daylight 

Ni ht 
ilYuminated 

Night, 
dark 

C: Parked 

Yes 
No 

Yes 
No 

Yes 
No 

C: Parked 

Yes 
No 

Yes 
No 

Yes 
No 

A: Periods 
Nov. 69 to 
Oct.71 

-3.811 
+3.811 

-0.121 
+0.121 

+2.976 
-2.976 

B: Collisions 
Back 

-1.208 
+ 1. 208 

+5.839 
-5.839 

-4.274 
+4.274 

Nov.71 to 
Oct. 73 

+3.811 
-3.811 

+0.121 
-0.121 

-2.976 
+2.976 

Forward 

+1. 208 
-1.208 

-5.839 
+5.839 

+4.274 
-4.274 

In general three-factor interactions are difficult to interprete and this example is no ex­

ception. The upper half of table 6.9 shows that the combinations that increase the number 

of accidents significantly are daylight - parked - after November 1971, day-light - not 

parked - before November 1971, darkness - parked - before November 1971 and darkness­

not parked - after November 1971. One way to describe this tendency is to say that the 

introduction of the safety measure seems to have limited the number on collisions on 

moving cars in daylight, while at night the safety measure has limited the number of 

collisions on parked cars. The lower part of table 6.9 shows that there is no significant 

dependency between where on the truck the collision happend and whether the truck 

moved or not, as long as we restrict attention to the daylight hours. However, after the 

safety measure was introduced parked cars on illuminated roads and moving cars on dark 

roads seem to be hit more often in the back while moving cars on illuminated 
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roads and parked cars on dark streets are hit more often in the forward end.~. 

Example 6.1 and 6.2 indicate how the search for a suitable model can be carried out 

for two concrete data sets. In recent years there have been an increasing interest in estab­

lishing general search procedures, which work well for a wide range of typical data sets. 

Almost all statistical analyses of contingency tables are to day carried out on computers. 

Search procedures which require little or no interference by the data analyst are, there­

fore, both appealing and potentially useful. Search procedures for contingency tables with 

many variables, which fast reach an acceptable model have been studied by Havranek 

(1984), Edwards and Havranek (1985), (1987) and Edwards and Kreiner (1983). 

6.4 Diagnostics for model departures 

The standardized residuals for a four-way table are defined as 

(6.9) 

A A A 

where /-L .. kl are the estimated expected numbers under the given model and var[X··k1-/-L··kl1 ij ij. ij 
A 

an estimate of the variance of Xijk1-/-Lijkr For all decomposable models for four-way 

tables, Haberman (1978), p.275 gives approximate expressions for the denominator in 

(6.9). These results are reproduced in table 6.10. For non~ecomposable models the calcu-
A 

lation of var[Xjjkl-/-Ljjkll involves inversion of the information matrix according to the 

general formula (3.48). 

Standardized residuals can be used as diagnostics for possisible model modifications, 

if an otherwise plausible model fails to fit the data satisfactorily, or to give a more 

differentiated picture for a model, which fits reasonable weil. 
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Table 6.10. Approximations to the variances of the residuals for a11 decomposable 
modelsinafour-waytable,excludinguniformdistributions. 

Sufficient 

marginals 

ABC,ABD 

ABC,AD 

ABC,D 

AB,AC,AD 

AB,BC,CD 

AB,AC,D 

AB,CD 

AB,C,D 

A,B,C,D 

A 

Approximate variance of XijkCl1jkl 

~. . (1-Xjjk • )( 1-Xjj • I ) 
IJkl x.. x .. 

IJ. • IJ .. 

~ .. (1_Xjjk ·)(1_\··I) 
IJkl x. x. 

1... I ... 

A x" k x I 
.. (l--2.L.)(l--'-·') JL1Jkl n n 

A X. k x. I x.. x, I x.. x. k x.. x. k x. I 
JLjjkl(l 1'2' I.. IJ.; 1.. IJ'; I. '12 IJ .. ~ •• I .. ) 

X. X. x. X. 
I. • I. • I. • I. • 

x.. x. k x kl x.. x . k x kl IJ .. . J • .• IJ... J . •• 
+ 2 + 2 

x.x k x.x k .J.. .. . .J ..... 

x.. x. k x 1 x.. x. k x 1 IJ.. I. . ,.. IJ.. I. . ... ) 
+ 2 + 2 

nx. n x. 
1... 1. .. 

A X k xIx.. x I x.. x k x. . x k x I 
JLjjkl (1 .. ~2'" IJ~;'" IJ~;" , +2 IJ .. n3' .... ) 

A X • j .. x .. k. x ... 1 \ ... x .. k. x ... 1 x j ••• x . j .. x ... 1 
JLjjkl(l n3 n3 n3 

x. x. x k x. x. x k x 1 
I .... J .... '+3 1. ... J ........ ) 

n3 n4 



201 

The standardized residuals are used to identify cells of the contingency table, where 

the fit between observed and expected numbers is particularly good or bad. Another diag­

nostics is known as Cooks distance. The precise definition of this measure is most easily 

explained within the framework of a regression model. It was in this connection the mea­

sure was introduced by Cook (1977). In chapters 8 and 9 it will be demonstrated, how­

ever, that a log-linear model for a contingency table can be formulated as a regression 

model, and in section 9.2, the exact definition of Cook's distance will be given. For the 

present application it suffice to say that Cook's distance is a measme of how much the 

log-linear parameters as a whole change if the observed number in a cell is removed from 

the data set. If Cook's distance for a cell is large, this cell thus havs a large influence on 

the values of the parameter estimates. 

Example 6.2 (Cont.) 

Table 6.11 show the standardized residuals and Cook's distances for the data in table 6.8 

and the model ACD,BCD. Obviously it is for parked trucks at dark streets at night that 

the fit between model and data is the worst. Cook's distance, however, only attain large 

values for those trucks, which on dark streets are hit in the back. The two cell counts 345 

and 179 thus have largest influence on the estimates of the log-linear parameters. 6 .. 
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Table 6.11. Cook's distance (Cook) and standardized residuals (res) for the data 
in table 6.8 and the model ACD,BCD. 

D: Light C: Parked B: Collision A: Per iods 
Conditions Nov .69 to Nov.71 to 

Oct.71 Oct.73 

Back Cook: 0.19 0.17 
res: 0.68 -0.68 

Yes 
Forward Cook: 0.05 0.04 

res: -0.68 0.68 
Day-
light Back Cook: 0.03 0.03 

res: -0.66 0.66 
No 

Forward Cook: 0.04 0.04 
res: 0.66 -0.66 

Back Cook: 0.32 0.24 
res: -0.63 0.63 

Yes 
Forward Cook: 0.04 0.02 

res: 0.63 -0.63 
Niyht, 
il uminate Back Cook: 0.13 0.09 
street res: -1.12 1.12 

No 
Forward Cook: 0.49 0.43 

res: 1.12 -1.12 

Back Cook: 4.05 2.44 
res: 2.09 -2.09 

Yes 
Forward Cook: 0.57 0.21 

res: -2.09 2.09 
Night, 
dark Back Cook: 0.01 0.01 
street res: 0.24 -0.24 

No 
Forward Cook: 0.01 0.01 

res: -0.24 0.24 

6.5. Exercises 

6.1. The Danish Institute for Building Research investigated in January 1983 the indoor 

climate in private hornes in Denmark by interviewing a random sample of persons over 16 

years of age. Among the variable measured for each person was 

A: Smoking habits 

B: Age 

C: Sex 
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D: Frequeney of headaehe 

The resulting four-way contingeney table is shown below. 

Smoking Age Sex Headaehe frequeney 
habits One or more times Less than 

pr.week onee a week 

Male 11 142 
Below 40 Female 45 83 

Smoker 
Male 11 145 

Above 40 Female 15 76 

Male 8 117 
Below 40 Female 29 89 

Non-
smoker Male 7 113 

Above 40 Female 8 80 

(a) Find a suitable model to deseribe the data by means of a sequential test proeedure. 

(b) Give an interpretation of the model arrived at in (a). 

6.2. From the same investigation as in exercise 6.1 the table below shows the eontingeney 

table formed by the following variables, all eategorized as binary. 

A: The normal indoor temperature in the horne. 

B: Age 

C: The presenee of wall moisture or mould. 

D: Dryness or irritation of the throat. 

(a) Compare the fit of the following two models 

I: AD,BC,CD 

II: AD,CD,B 

both by testing the goodness of fit against the saturated model and by testing the 

fit of model II against model I as the alternative. Comment on the results. 
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Normal room Age Moisture Irritation of 
temperature or mould throat 

Yes No 

Much 4 22 
Below 40 Little 

or nothing 24 607 
Under 230 

Much 3 12 
Above 40 Little 

or nothing 52 684 

Much 3 6 
Below 40 Little 

or nothing 20 219 
Over 230 

Much 1 3 
Above 40 Little 

or nothing 34 274 

(b) Draw association graphs for the two models in (a) and interprete them. 

(c) Show that both models are decomposable and check the computer program by 

calculating the expected values under both models directly. 

6.3. From the Danish Weifare Study we consider the following four variables: 

A: Daily alcohol consumption 

B: Marriage status 

C: Income 

D: Urbanization 

The categories of these variables follow from the four-way contingency table shown 

below. 

(a) The connection between alcohol consumption and the three other variables is of 

main concern. In addition Marriage status is assumed apriori to influence alcohol 

consumption the most and urbanization the least. Try accordingly to find a 

suitable model by eliminating the interactions in the following order BCD,ACD, 

ABD,ABC, CD,BD, CD,AD,AC,AB. 
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A: C: B: D:Urbanization 
Dailyalcohol- Income Marriage Copen- Suburbian Three Other Country 
consumption (1000 Dkr) status hagen Copen- l~r~est Cities side 

hagen cItles 

Widow 1 4 1 8 6 
0-50 Married 14 8 41 100 175 

Unmarried 6 1 2 6 9 

Widow 8 2 7 14 5 
50-100 Married 42 51 62 234 255 

Unmarried 7 5 9 20 27 

Less than Widow 2 3 1 5 2 
1 unit 100-150 Married 21 30 23 87 77 

Unmarried 3 2 1 12 4 

Widow 42 29 17 95 46 
150- Married 24 30 50 167 232 

Unmarried 33 24 15 64 68 

Widow 3 0 1 4 2 
0-50 Married 15 7 15 25 48 

Unmarried 2 3 9 9 7 

Widow 1 1 3 8 4 
50-100 Married 39 59 68 172 143 

Unmarried 12 3 11 20 23 

1 - 2 units Widow 5 4 1 9 4 
100-150 Married 32 68 43 128 86 

Unmarried 6 10 5 21 15 

Widow 26 34 14 48 24 
150- Married 43 76 70 198 136 

Unmarried 36 23 48 89 64 

Widow 2 0 2 1 0 
0-50 Married 1 2 2 7 7 

Unmarried 3 0 1 5 1 

Widow 3 0 2 1 3 
50-100 Married 14 21 14 38 35 

Unmarried 2 0 3 12 13 

More than 2 Widow 2 1 1 1 0 
units 100-150 Married 20 31 10 36 21 

Unmarried 0 2 3 9 7 

Widow 21 13 5 20 8 
150- Married 23 47 21 53 36 

Unmarried 38 20 13 39 26 

Remark: 1 unit is approximately 1 bottle of beer or 2 cl. 40% alcohol. 
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(b) Discuss the use of direct model checks as opposed to sequential model checks. 

( c) Estimate the two factor interactions, which are non-zero under the model and use 

them to describe the way the variables interact. 

6.4. The Danish Institute for Trafik Safety Research collected the data in the table below 

of accidents involving a motor vehicle in order to study which factors influences the 

number of accidents. 

A: General B: Number C: Driver in- D: Time of day 
direction of of parts fluenced by 
the road involved alcohol Morning Afternoon Evening 

One Yes 29 13 15 
No 6 3 11 

North-
South Several Yes 294 120 53 

No 7 8 18 

One Yes 38 14 21 
No 4 7 16 

East-
West Several Yes 206 102 52 

No 5 15 12 

(a) Formulate a statistical model for the data in the table. 

(b) The goodness of fit test statistic for the model with the four-factor and all three­

factor interactions equal to zero has observed value 16.93 with 13 degrees of 

freedom. Explain how the degrees of freedom are calculated. 

(c) Use the table below which shows a number of selected goodness of fit test statistic, 

all against the saturated model, to find a suitable model to describe the data. 

(d) Draw the association graph and interprete the model. 



Model 

AB,AC,AD,BC,BD,CD 
AB,AC,AD,BC,BD 
AB,AC,AD,BC,CD 
AB,AC,BC,BD,CD 
AB,AC,AD,BD,CD 
AB,AD,BC,BD,CD 
AC,AD,BC,BD,CD 
AB,AD,BC,BD 
AB,AD,BC,CD 
AB,BC,BD,CD 
AB,AD,BD,CD 
AD,BC,BD,CD 
AB,BC,BD 
AB,BC,CD 
AB,BD,CD 
BC,BD,CD,A 
BD,CD,A 
BC,CD,A 
BC,BD,A 
CD,A,B 
BD,A,C 
A,B,C,D 

z(H) 

16.93 
126.45 
113.97 
20.79 
50.34 
16.95 
21.47 

126.86 
114.00 
21.71 
50.68 
21.80 

131.14 
119.73 
54.94 
29.54 
62.78 

127.56 
138.97 
229.33 
240.74 
407.30 

6.5. Consider again the data in exercise 6.4. 

degrees of freedom 

13 
16 
16 
16 
14 
14 
14 
17 
17 
17 
15 
15 
20 
20 
18 
18 
19 
21 
21 
22 
22 
25 

(a) One candidate for a model is BC,BD,CD,A. Is this model decomposable? Why? 
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(b) Estimate the log-linear parameters of the model in (a) and use them to 

characterize the way variables B,C and D influences the number of accidents. 

6.6. The Gallup Institute in Denmark interviewed in 1979 a random sampie of 783 per­

sons. Among the questions asked was one concerning attitude towards corporal punish­

ment of children and one concerning memories of corporal punishment as a child. In the 

table below the answers are cross-dassified with education and age. 

(a) Formulate a log-linear model for the data. 

(b) Find a reasonable simple model to fit the data. 

(c) Interprete the resulting model. 

(d) Use standardized residuals or standardized log-linear parameters to through light 

on the direction of model departures if any. 
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A: Attitude B: Memory C: Education D: Age (years) 
of punish- (highest school 
ment level) 15-24 25-39 40-

Elementary 1 3 20 
Yes Secondary 2 8 4 

No punish- High 2 6 1 
ment of 
children Elementary 26 46 109 

No Secondary 23 52 44 
High 26 24 13 

Elementary 21 41 143 
Yes Secondary 5 20 20 

Moderate 
punishment 

High 1 4 8 

of children Elementary 93 119 324 
No Secondary 45 84 56 

High 19 26 17 

6.7. The four-way table below is from a 1971 investigation of satisfaction with housing 

conditions. The variables are 

A: Type of housing 

B: Influence on the management of the building 

C: Degree of contact with other inhabitants 

D: Satisfaction with housing conditions. 

(a) Take the model with all 6 two-factor interactions included as base model and use a 

sequential procedure to find a reasonable model. 

(b) Interprete the resulting model. 

(c) U se the estimated log-linear parameters to describe the way the satisfactions 

depend on contact, influence and type of hopusing. Are there any surprises? 
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Type of Influence Contact Satisfaction 
housing Low Medium High 

Little Little 21 21 28 
Much 14 19 37 

Apartment Some Little 34 22 36 
building 
with 4 or 

Much 17 23 40 

more storeys Much Little 10 11 36 
Much 3 5 23 

Little Little 61 23 17 
Much 78 46 43 

Apartment Some Little 43 35 40 
building, 
less than 

Much 48 45 86 

4 storeys Much Little 26 18 54 
Much 15 25 62 

Little Little 13 9 10 
Much 20 23 20 

Rented house, Some Little 8 8 12 
not Much 10 22 24 
detached 

MUch Little 6 7 9 
Much 7 10 21 

Little Little 18 6 7 
Much 57 23 13 

Rented house, Some Little 15 13 13 
detached Much 31 21 13 
or semi-
detached Much Little 7 5 11 

Much 5 6 13 

6.8. A large scaled investigation of sportsactivities and attitudes among 16-19 year old 

high school students was carried out in Denmark in 1983 and 1985. One of the questions 

asked was concerning attitude to sport jointly with the other sex. The answers to this 

question is in the table below cross-classified with the sex of the student, the year of the 

interview and whether the student is in his or her first or third year in high school. 
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Sports joint Year 
with the 
other sex 

1983 

Very good 
idea 1985 

1983 

Good idea 
1985 

1983 

Indifferent 
1985 

1983 

Bad idea 
1985 

1983 

Very bad 
idea 1985 

Grade 

First 
Third 

First 
Third 

First 
Third 

First 
Third 

First 
Third 

First 
Third 

First 
Third 

First 
Third 

First 
Third 

First 
Third 

Boy 

31 
23 

41 
31 

51 
39 

67 
31 

38 
36 

35 
31 

10 
15 

12 
4 

4 
2 

2 
7 

Sex 

Girl 

103 
61 

77 
52 

67 
72 

80 
70 

29 
39 

27 
28 

15 
16 

10 
4 

2 
3 

3 
3 

(a) Explain how a log-linear model can throw light on what influences the view on 

joint sports. 

(b) Choose a suitable model for the data and compute the standardized residuals for 

this model. Are there any ceHs of the contingency table, which deserve a comment? 

(c) Choose a model which does not quite fit the data and use the standardized residuals 

to check for ceHs or variable levels, with may be omitted to improve the fit. 

6.9. Consider a five-way contingency table formed by the variables A,B,C,D and E, and 

assume that a log-linear model with sufficient marginals AC,AD,BD,BE,CD fits the data. 

(a) Draw an association graph for the model and give an interpretation in terms of 

conditional independencies. 



211 

(b) Show that the model is not decomposable and find the decomposable model with 

the same association graph. 

( c) Specify the likelihood equations for the decomposable model. 

(d) Show that the expected values under the decomposable model are given by 

A x. kl x. I x . _ 1. . .J ••• J •• ffi 
Jt"kl -

1J • x ... Lx. j ... 

[Hint: Note that the expected values must have the form 

Jtookl = cpoklll'°Ißo .] 1Jffi 1 JJffi 

(e) Use the likelihood equations and the constraints T~D=TBDI =0 to derive the esti-
J . . 

BD mate for T j I' 



7.Incomplete Tables, Separability and Collapsibility 

7.1. Incomplete tables 

An observed contingency table is incomplete if it contains zeros in certain cells. Such ze­

ros are of two types, random zeros and structural zeros. A cell has a random zero, if the 

observed value in the cell is zero, but the expected value is positive. A cell has a struc­

tural zero if the expected number is zero, Le. if it is known apriori that the cell will con­

tain a zero. Random or structural zeros does not impaire the log-linear structure of a 

given model. It means, however, that certain log-linear parameters can not be estimated. 

Consider e.g. a three-way table, where the log-likelihood has the form 

(7.1) ABC AB InL = ~~~T . . kX .. k + ~~T . . x .. + •.. +TO X 
i j k I J IJ i j I J IJ. . •. 

+{terms in x} + {terms in T}. 

If certain x .. klS are zero then the corresponding three-factor interactions T~~Ck does not 
IJ I J 

appear in the likelihood function and can not be estimated. In addition some of the lower 

order interactions mayaiso vanish, namely if the corresponding marginal is zero. If e.g. 

XlIi = ... =xlIK=O then XlI. =0 and T~~ can not be estimated. For I=J=K=2 an example 

of a table , where T~~~, T~~~ and T~~ can not be estimated is shown in table 7.1. 

Table 7.1. A 2x2x2 table with random zeros. 

A: 

i=1 

2 

B: 

j=1 
2 

1 
2 

C:k=1 

o 
24 

41 
27 

2 

o 
33 

32 
11 
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In a log-linear model the likelihood equations are derived by equating sufficient mar­

ginals with their mean values. Since zero marginals does not contribute to the likelihood 

equations, it follows that the set of likelihood equations will be the same whether the 

zeros of the table are random or structural. Thus log-linear parameters corresponding to 

zero marginals can not be estimated whether the zeros are random or structural. In a 

technical sense the estimation problem is, therefore, identical for cases with random zeros 

and cases with structural zeros. 

There is still a difference between the two cases as regards the interpretation of the 

obtained estimates. If a cell count or a marginal is a structural zero, the corresponding 

log-linear parameter does not exist, since it does not enter any likelihood function. If a 

cell count or a marginal is a random zero, the corresponding parameter does exist, but it 

is not estimable based on the given data set. 

As regards hypothesis testing the log-likelihood ratio test statistics for cases with 

random and structural zeros will be the same. Cells with structural or random zeros do 

not contribute to the log-likelihood ratio test statistic, since both the expected and the 

observed values are zero. It follows that the only problem connected with hypothesis test­

ing in incomplete tables is how to count the degrees of freedom for the test statistic 

correctly. One may of course rely on the computer to do the count correctly, but it is im­

portant to be able to check the result. Hence we shall list a few important rules for count­

ing degrees of freedom below. 

The main rule is the following: Let H be hypothesis formulated in terms of log-linear 

parameters being zero and let No,N1(H) and N2(H) be defined as 

NO = number of cells with a non-zero count 

NI (H) = number of ullconstrained log-linear parameters under H in a complete table 

N2(H) = number of unconstrained log-linear parameters under H for which the 

corresponding sufficient marginal is zero. 

The number of degrees of freedom for the log-likelihood ratio test statistic for 
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testing H against the saturated model is then given by the formula 

(7.2) 

Under the saturated model the number of free log-linear parameters, which can be esti­

mated, is equal to the number of cells No with non-zero counts, because the likelihood 

equations in this case are 

X"k = E[X. 'k1, IJ IJ 
for all i, j, k with x. 'k>O. 

IJ 

Under H not all free parameters can be estimated. Only those log- linear parameters, 

which corresponds to non-zero marginals have estimates. Hence the number of par­

ameters that can be estimated under H is the number of unconstrained parameters NI (H) 

in a complete table, minus the number of zero-marginals N iH) under H. 

As an example consider again the 2x2x2 table in table 7.1 and the hypothesis 

ABC AC 
H: T . . k = T. k = O. 

I J I 

If it is ignored that the table is incomplete, the number of degrees of freedom for the log­

likelihood ratio test statistic for H is 

df(H) = 2. 

The table has, however, only 6 non-zero cells. In a complete table the number of log-li-

near parameters for the model AB,BC is (I-1)(J-1)+(J-1)(K-l)+(I-l)+(J-l) 

+(K-l)+1=6. Under H there is, however, the zero marginal x11.=O, such that T~~ can­

not be estimated. Hence the elements of (7.2) are 

NO = 6 

N1(H) = 6 

NiH) = 1 
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The correct number of degrees of freedom is thus 

df(H) = 6-6+ 1 = 1. 

The cens with zero counts are easy to count. The problem is those marginals which 

are zero because all cens adding up to it have zero counts. H all log-linear parameters are 

explicitly estimated for an incomplete table it is obvious which log-linear parameters 

have finite estimated values and contribute to the test statistic. But usually the estimates 

are not needed to derive the test statistic, and one has to be aware of zero marginals. 

Haberman (1974b) has formulated a very simple rule that solve many problems. 

Assume that there is an index (io,jo,ko) with x .. k >0 such that for any other index 
10JO 0 

(i,j,k), which coincide with (io,jo,ko) on one component, xijk>O. Then N2(H)=0. As an 

example of the application of this rule consider again table 7.1. For this table none of the 

indices satisfy the rule, because any index will have either k=l in common with (1,1,1) or 

k=2 in common with (1,1,2). H, however, the zero in ceH (1,1,2) is changed to a positive 

number, the index (2,2,2) satisfies the rule. Hence N2(H)=0 in the new situation with 

x1l2>0. The rule does not imply that N2(H)0 when the rule is not satisfied. Consider for 

example the hypothesis of no two or three factor interactions for table 7.1. Here NI (H)=4 

corresponding to T~,T~,T~ and TO' but N2(H)=0 since all marginals xl..' x.I. and x .. 1 are 

positive, and the degrees of freedom become 6-4=2. 

The methods developed above also apply to models, where the expected numbers in 

certain cens by assumption are equal to the observed numbers. Any cell, where the ex­

pected number by definition is equal to the observed number, does not contribute to the 

test statistic for a given hypothesis. It does not matter, therefore, what value we assign to 

such a cell. Also all estimates of parameters will be the same, whether we fit the expected 

number in such a cell by its observed number, or put both expected and observed num­

bers equal to zero. 

These considerations imply that a model for an incomplete table can forma.lly be 

written as 

ABC AB 
InjL··k = T . . k+ T . . + ••. +TO' IJ· 1 J 1 J 

(i,j,k)cMO' 
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where MO is the set of cells, which have either non-zero counts or for which by assump­

ti on p.. 'k=x, 'k' 
IJ IJ 

Much of the theory on incomplete tables was developed around 1970, cf. Bishop 

(1969), (1970), Fienberg (1970), (1972) and Haberman (1974b), chapter 7. Arecent refer­

ence is ehen and Fienberg (1986). 

7.2. Tw<r-way tables and quasi-independence 

For two-way tables the main hypothesis is the independence hypothesis 

(7.3) lnp. .. = In[E..] = T~+T~+TO' 
D D 1 J 

The hypothesis corresponding to (7.3) only implies independence between the two catego­

rical variables if (7.3) holds for all i and j. But independence in a table with structural 

zeros imply that p. .. =0, which is in conflict with (7.3). Instead we consider the hypothesis 
IJ 

of quasi-independence, defined as 

(7.4) A B lnp. .. = T. +T . +TO ' (i,j)tMo' 
IJ 1 J 

where Mo is a subset of the cells, for example the cells with structural zeros. 

No structure is assumed for the cells outside Mo. 

The fact that the table is incomplete does not change the form of the likelihood e­

quations, which are 

x. = E[X.] , i=l, ... ,I 
I. I. 

and 

x . = E[X.] ,j=l, ... ,J, 
.J .J 

but the summations are only over pairs (i,j) in Mo' The test statistic for the model is 



217 

'" (7.5) Z(H) = 2 ~~ X .. [lnX .. -lnjl .. ], 
(. ') M IJ IJ IJ 
I, J ( 0 

where 

'" "'A "'B '" 
jl .. = exp( T. + T . +TO) 
~ 1 J 

are the estimated expected values under H. In order to compute the degrees of freedom 

for the asymptotic i-distribution of (7.5), we need the concept of an inseparable tW<T­

way table. 

Definition 7.1.: A tW<T-way contingency table {x .. ; i=I, ... ,I, j=I, ... ,J} is inseparable under 
IJ 

the quasi-independence hypothesis (7.4) if all cells can be connected without passing 

through a cell outside Mo 

The check of inseparability for a table requires a diagram like fig. 7.1. In (b) the 

table is inseparable as indicated by the drawn lines. In (a) the table can be separated in 

two subtables, such that a connecting line between the subtables must pass a cell outside 

(a) (b) 

Fig. 7.1. Examples of a separable and an inseparable tW<T-way table, where a zero denote 
a structural zero or a completely fittet cello 

For a complete table the degrees offreedom for (7.5) is (I-1)(J-I). If all marginals X. and 
I. 

x . are null-zero and if the table is inseparable the degrees of freedoll1 for an incomplete 
.J 

table are 

df(H) = No(M)-I-J+I, 
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where N(MO) is the number of elements in Mo. 

Caussinus (1965) showed that if the table contains s inseparable subtables then the 

general formula for the degrees of freedom for the log-likelihood ratio test statistic for 

quasi-independence is 

(7.6) df(H) = N (Mo)-N I-N 2 +8, 

where N(Mo) is the number of elements in Mo' NI is the number of positive \. 's and N2 is 

the number of positive x .'s. One intuitive explanation for the additive term s, which for 
.J 

inseparable tables has value 1, is that the model under H contains one main effect TO for 

each of the inseparable subtables. 

The hypotheses of uniform distribution over the row levels or over the column levels 

can under independence be tested for incomplete tables as weIl as for complete tables. 

Consider thus under H the hypothesis 

where M~={j I (i,j)(Mo for some i}. 

Since there are only N2 positive x .'s, at most N2-1 unconstrained T~'S can be 
~ J 

estimated. If, however, the table is separable into s separable subtables. there are s 

constraints among the T~'S rather than 1. Hence the test statistic for H2 has 

df(H2) = N2 - s 

degrees of freedom. Similarly for 

HI: T~ = 0 for all i(M~, 

with M~ = {i I (i,j) (Mo for some j}, the degrees of freedom are 

df(H1) = NI - s. 

Example 7.1. 

The Danish National Institute for Social Science Research conducted in 1982 a survey of 
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838 persons concerning their views on two retirement systems. One system called "early 

retirement" had been in effect for three years. The second called "partial pension" had 

just been introduced as a bill in the Danish Parliament. The interviewed persons were as 

regards the old system asked whether they regarded the system as a good system, a relati­

vely good system or a bad system. For the new system, they were asked if we consider the 

proposal a good one, maybe a good one or a bad one. The responses are shown in table 

7.2. 

Table 7.2. 838 persons in 1982 cross-classified according to their views on two 
retirement systems. 

Early retirement 

Good Relatively Bad No opinion 
Partial pension system good system system 

Good proposal 377 75 38 19 

Maybe good 
proposal 92 25 15 8 

Bad pro pos al 84 17 16 4 

No opinion 34 17 6 11 

Source: Olsen (1984). Table 3.12. 

It is clear from the numbers that an independence hypothesis will almost surely be 

rejected. A more reasonable hypothesis could be quasi-independence with 

) A B InE[X .. = TO+T. +T., 
1 1 J 

for iij, 

Le. quasi-independence outside the diagonal. After removal of the diagonal, the table is 

still inseparable and all marginals still non-zero. The test statistic has, therefore, 

according to (7.6) 

df = 12-4-4+1 = 5 

degrees of freedom. The observed value of the test statistic is 

z = 5.94, df=5 
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with level of significance p=0.312. The hypothesis of quasi-independence can thus be ac­

cepted. The interpretation of this result is that the dependency between the views on the 

two retirement systems is due to the many cases where the views coincide. For the 409 

persons, who do not have coinciding views, their opinion of the "early retirement" system 

is independent of their opinion of the "partial pension" system. The expected numbers 

under quasi-independence are shown in table 7.3. Note that the expected numbers in the 

diagonal are equal to the observed numbers.,6' 

Table 7.3. Expected numbers und er quasi-independence for the data of table 7.2. 

Early retirement 

Good Relatively Bad No opinion 
Part ial pens ion system good system system 

Good proposal (377) 74.8 38.7 18.5 

Maybe good 
proposal 93.8 (25) 14.3 6.9 

Bad proposal 76.8 22.6 (16) 5.6 

No opinion 39.4 11.6 6.0 (11 ) 

7.3 Higher order tablE~. Separability 

For higher order tables the definition of an inseparable table is more complicated than 

definition 7.1, because the definition depends on the hypothesis to be tested. 

Definition 7.2.: A table is inseparable if none of the categorical variables defining the 

table are contained in all the variable combinations that define the hypothesis and if the 

table is connected in the sense of definition 7.1. 

This definition contains definition 7.1 since the variable combinations, which define 

(7.4), namely A and B, have no element in common. 
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A three dimensional table is thus inseparable under the hypotheses with sufficient 

marginals AB, BC, AC and A,B,C if the table is connected. Under the model AB, AC the 

table is, however, separable whether it is connected or not since A is contained in both 

sufficient marginals. The reason is that AB,AC is equivalent to conditional independence 

of B and C given A, in which case the analysis can be based on the I two-way tables be­

tween B and C for given levels of A. These tables are inseparable under the independence 

hypothesis if they satisfy definition 7.l. 

In the following we shall often refer to the generators of a hypothesis. The set of ge­

nerators is the set of sufficient marginals, which define the minimal set of likelihood equa­

tions. The generators are usual identified by the letter combinations corresponding to the 

variables. The generators for the hypo thesis A®B I C or equivalently the model for which 

ABC AB 
Ti j k = Ti j = 0, for all i, j and k 

in a three-way table are thus AC and BC. 

In general if there is a variable combination, which belong to all generators of the 

hypothesis, then two cells with different indices on these variables must belong to diffe­

rent subtables, when the table is divided into inseparable subtables. As an example consi­

der a 2x2x2 table with no zeros under the model AB, AC, BC. Since there is no common 

element to the generators and the table is connected, it is inseparable. Under the model 

AC,BC, however, Cis a common element and the table can be divided into the two inse­

parable 2x2 tables of A cross-classified with B for levels C=l and C=2, if these tables are 

inseparable. 

The concept of separability is important in order to determine the number of degrees 

of freedom for the test statistic. The following result is often useful: If there are s insepa­

rable subtables of a multi-way table and if the hypothesis H is generated by just two va­

riable combinations Al anel A2, then the number of degrees of freedom for the log-likeli­

hood ratio test statistic is given by 
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(7.7) 

where NO is the number of ceHs with positive counts, N(A I ) is the number of non-zero 

marginals involving all variables in Al and N(A2) the number of non-zero marginals in­

volving all variables in A2. If formula (7.7) does not apply the only method for deter­

mining the degrees of freedom is to count the unconstrained parameters without and 

under the model. 

Example 7.2. 

The data in table 7.4 is from the Danish Welfare study in 1976. 

The Danish Welfare Study was based on a random sampie of 5960 individuals. The 

non-response was 13.3%. In the obtained sampie of size 5166, 3137 were classified accord­

ing to sodal rank. Table 7.4 shows for each combination of sodal rank and sociü-€cono­

lniC group in this subsampie the number of respondents which frequently use medidn for 

headaches. Because there by definition is a certain overlapping between sodal rank and 

sodü-€conomic group, 8 of the ceHs in table 7.4 are structural zeros. There are thus by 

definition no blue collar workers in sodal groups I-III and no self-€mployed and white 

collar workers in social group V. The reason for these structural zeros is that the sodal 

rank scale is primarily based on employment status and level of education. Thus all blue 

collar workers are either in group IV or group V, with the skilled workers in group IV. 

Let the variables of table 7.4 be denoted 

A: Social rank. 

B: Sodü-€conomic group. 

C: Headache rnedicin consumption. 

Consider the following hypotheses involving three- and two-factor interactions: 

all i, j and k 
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ABC AB 
H2: Ti j k = Ti j = 0, all i, j and k 

ABC AC 
H3: Ti j k = Ti k = 0, all i, j and k 

ABC BC 
H4: Ti j k = T j k = 0, all i, j and k 

Table 7.4. Social rank, socio-economic group and use of headache medicin cross­
classified for 3137 individuals in the Danish Welfare Survey. 

Social rank Socio-economic Frequent use of 
group group headache medicin 

Yes No 

Self employed 5 77 
I+II White collar workers 26 343 

Blue collar workers 0 0 

Self employed 60 400 
III White collar workers 42 377 

Blue collar workers 0 0 

Self employed 26 102 
IV White collar workers 102 685 

Blue collar workers 32 314 

Self employed 0 0 
V White collar workers 0 0 

Blue collar workers 160 839 

Source: Hansen (1978): Table B.A.50. 

The test statistics and the degrees of freedom for these four hypotheses are shown in table 

7.5 together with their level of significance. 

Table 7.5. Test statistics, degrees of freedom and levels of significance for 
four hypotheses and the data in table 7.4. 

Hypothesis Sufficient Test Degrees of Levelof 
marginals statistic freedom significance 

H1 AB,AC,BC 1. 74 2 0.419 

H2 AC,BC 354.90 4 0.000 

H3 AB,BC 24.63 .5 0.001 
H4 AB,AC 8.57 4 0.073 
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From table 7.5 it is evident that a model only involving interactions between vari­

ables A and Band between variables A and C describes the data in a satisfactory way. 

Further reductions in the model are not possible. Since the table is of dimension 1=4, 

J=3, K=2, the degrees of freedom in table 7.5 can not be obtained from the formulae for 

the complete table. The degrees of freedom for H1 in a complete table are thus 3·2· 1 =6. 

It is easily seen that the structural zeros only affect the number of free parameters for the 

three-factor interactions 7~~Ck and the two-factor interactions 7~~. As regards the three 
I J I J 

f t . t t' 't . t 'f h 'f th . ABC ABC ABC 0 ac or m erac IOns, 1 IS easy 0 yen y, t at 1 e constramts 7. . =7. k=7 . k= are 
I J . I . . J 

satisfied with summations over the non-Bmpty cells of the table, then there are only two 

ABC ABC unconstrained parameters 7 111 and 72 11' All three-factor interactions are shown in 

table 7.6. 

Table 7.6. Three-factor interactions for the incomplete table 7.4 (with label ABC 
omitted). 

A: B: 

i=l j=l 

2 

3 

4 

2 

3 

1 

2 

3 

1 

2 

3 

1 
2 
3 

C: 
k=l 

+7111 
-7111 

+7211 
-7211 

-7111-7211 
+7111+7211 

0 

o 

2 

-7111 
+7111 

-7211 
+7211 

+7111+7211 
-7111-7211 

0 

o 

Table 7.7 shows that under the constraints 7~B=7A~=O, there are only two unconstrain-
I • . J 

ed interactions, involving A and B, namely 7~~ and 7~~. 
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Table 7.7. Two-factor interactions between variables A and B for the incomplete 
table 7.4 (with label AB omitted). 

A: j=1 

i=1 T11 
2 T21 
3 -T11-T21 
4 

B: 

2 

-T11 
-T21 
T11 + T21 

3 

o 
o 

ABC ABC AB The degrees of freedom for HI, where T. 'k=O, and for H2, where T. 'k=T .. =0 
I J I J I J 

follows immediatetly from tables 7.6 and 7.7. Note that the number of unconstrained 

three-factor interactions is less than (I-l)(J-l)(K-1)=3·2·1=6 due to the structural 

marginals x. 'k=O in the saturated model. The number of unconstrained T~~IS is less than 
IJ I J 

(1-1)( J-1 )=3·2=6 because the marginals x13.' x23.' x41. and x42. are all structural zeros. 

For variable combinations AC and BC, there are no marginals, which are st~uctural zeros. 

Hence the degrees of freedom for H3 follow by adding (I-l)(K-l)=3 to the degrees of 

freedom for HI and for H4 by adding (J-l)(K-l)=2 to the degrees of freedom for HI. 

As an exercise let us derive the degrees of freedom for HI from formula (7.2) and for 

H4 from formula (7.7). The numbers in (7.2) for HI are 

No= 16 

NI (H I) = 1+(I-l)+(J-l)+(K-l)+(I-l)(K-l)+(J-l)(K-l)+(I-l)(J-l)=18 

N2(H I) = 4 

The last number is due to the fact that four marginals are zero for variable combina­

tion AB. 

Under H4, the table is separable since variable A is in both generators AB and AC. 

The interpretation of H4 is B®C I A and variable A has four levels. Hence the table can be 

separated into four conditional tables, given the levels of variable A. These four subtables 

are inseparable. In order to apply formula (7.7) let Al be combination AC and A2 combi­

nation AB. The number of non-zero marginals corresponding to T~~ is I· K=8. Corres­

ponding to T~~, there are , however, 8 rather than I·J=12 non-zero marginals, since 
I J 
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X13. =X23. =X41. =X42. =0. 

Hence the numbers in formula (7.8) become 

NO =16 

N(A1) =8 

N(A2) =8 

s = 4, 

such that the degrees offreedom for H2 is in fact 4 as claimed in table 7.4. 

The model AB ,AC and its interpretation B®C I A shows that only social rank seems 

to influence the consumption of headache medicin. Surprisingly if the social rank is taken 

into account the use of headache medicin is independent of socio-€conomic group. The 

interactions between variables A and C are shown in table 7.8. 

Table 7.8. Estimated interaction parameters between variables A and C. 

Frequent use of 
headache medieill 

Yes 
No 

I+II 

-0.281 
+0.281 

Social rank 

III 

-0.007 
-0.007 

IV 

+0.079 
-0.079 

V 

+0.194 
-0.194 

The table shows that headache medicin is used more frequent by people with low 

social rank and less frequently by people with high social rank...::::::.. 

The concept of separability applies to complete as weIl as incomplete tables. For 

complete tables the only condition in definition 7.2 for the table to be inseparable is that 

the set of generators do not have a common element. For a three-way table this gives the 

classification in table 7.9 of separable and inseparable tables under H. If the generating 

class only have one element, separability has the special meaning that the corresponding 

marginal table is saturated. The test statistic is then trivial and separability means that 

the table can be separated in its cells. 



Table 7.9. Separable and inseparable models in a three-way table. 

Sufficient 
marginals 

AB,AC,BC 
AC,AB 
AB,C 
AB 
A,B,C 
A,B 
C 

Separable 
jlnseparable 

Inseparable 
Separable 
Inseparable 
Separable 
Inseparable 
Inseparable 
Separable 
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The only non-trivial case of separability for a three-way table is AC, AB. In this 

case there are I inseparable sub-tables corresponding to the I levels of variable A. As al­

ready noted in section 5.4, the test statistic for -conditional independence of C and B given 

A can be decomposed in I components according to the levels of variable A. This result 

b.as general validity. If the set of generators for a hypothesis has a common group of 

\Tariables then the transformed log-likelihood ratio test statistic can be decomposed accor­

jing to the combined levels of this group of variables. Such a decomposition correponds to 

;he inseparable subtables of the original table. 

Separability for a complete table is a graphical property if the model is decompos­

tble. The rule is that a given decomposable model can be decomposed according to a 

~iven set of variables if on the association graph for the model all variables are fully 

:onnected to the set. Consider e.g. the association graph in fig. 7.2. 

B 

c 

E 

"ig. 7.2. Association graph of a five-dimensional contingency table. 

The decomposable model corresponding to fig. 7.2 is 
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(7.8) ABD, BCD, BDE. 

The common group of variables for the generating set is BD, such that the table under 

this model can be decomposed according to the cells of the marginal table of Band D. 

This is in accordance with the interpretation 

(7.9) A ® C ® EIB,D. 

of the model. The common set BD and hence the relevant decomposition is easily iden­

tified on the association graph. If the model is not decomposable, these results do not 

hold. The model 

AB,AD,BCD,BE,DE 

thus have the same interpretation (7.9) as (7.8), but the intersection of these marginals is 

empty and no decomposition is possible. 

Formula (7.7) is also true for complete tables. Consider for example in a complete 

three-way table the model AB,AC. Here A1=AB and A2=AC, 

s = I 
N(A1) = IJ 

N(A2) = IK 

and the number of degrees of freedom for testing the model AB, AC against the saturated 

model is 

IJK-IJ-IK + I = I(J-l)(K-l), 

which is the correct number. 

7.4. Collapsibility 

For many tables the statistical analysis of a subset of variables can be based on a contin­

gency table only involving the variables in the subset. This property is called collapsibili­

ty with respect to the subset, and we say that the table can be collapsed onto the margin­

al table of the variables in the subset. The most simple example of collapsibility is the 
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model for independency in a two-way table. In a two-way table formed by variables A 

and B, the generators under the independence hypothesis are A and B. As we saw in sec­

tion 4.5 hypotheses concerning T~ can then be studied in the marginal table of xl. ,,,,,xI. 

and hypotheses concerning T~ in the marginal table of x.1"",x.J ' The table can thus be 

:x>llapsed onto the marginal table of A in order to study properties of variable A and onto 

Ghe marginal table of B in order to study properties of variable B. There are several defi­

Ilitions of collapsibility stressing various aspects of a statistical analysis. It is most con­

lequent, however, to say that a contingency table under a given model can be collapsed 

)nto a set of variables A1, ... ,\ if the expected values of the cell counts are the same when 

ierived from the full table as when derived from the marginal table of A1, ... ,Ar . If a table 

s collapsible onto A1, ... ,Ar according to this definition, it follows that ML-estimates for 

;he log-linear parameters of the table and the transformed likelihood ratio test for the 

~oodness of fit of the model will also be the same. To make the definition precise it is 

lecessary to define how the equivalent of a given model is defined in the collapsed table. 

rhe rule is that if all variables not in the set A1, ... ,Ar are removed from the generators of 

;he model, and the new set of generators is reduced to its minimal form, then these are 

;he generators of the derived model. Consider e.g. the five-dimensional table formed by 

rariables A,B,C,D and E, and assurne that we under the model ABE, ACD,ADE want to 

:ollaps onto the marginal table formed by A,B and C. When D and E are removed, the 

lew generators are AB,AC,A. Reduced to minimal form the generators for the model in 

,he collapsed table are thus AB and AC. 

)efinition 7.3.: An m-way contingency table composed of variables Al' ... ,Am can under 

;he log-linear model H be collapsed onto the variables Al' ... ,Ar , if the expected numbers 

~timated under H in the full model are the same as those estimated under the derived 

nodel in the marginal table of A1, ... ,Ar . 

There are, however, other definitions. Thus Wermuth (1987) discussed adefinition, 

vhere a three-dimensional table is collapsible if certain statistical measures as odds ratios 
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are preserved is when the table is coHapsed onto a two-dimensional table. 

A survey of different definitions of collapsibility and furt her results can be found in 

Kreiner (1987). 

A not entirely trivial example is the three-way table formed by A,B and C with 

generators AC, BC. The expected numbers under the fuH model are 

A 

(7.10) J,t··k = x. kX ·k/x k IJ I..J .. 

The derived model for the table collapsed onto the marginal table of Band C has genera­

tor BC. For the coHapsed model the expected numbers are thus 

J,t·k = x ·k' .J .J 

The same result is, however, obtained by direct summation in (7.10). Hence the table is 

collapsible onto the marginal table of Band C. 

Collapsibility is a graphical property for graphical models. The following theorem is 

due to Asmussen and Edwards (1983). On the association graph of the model the bounda­

ry 8G of a set of variables G is the set of variables A for which A~G and A is conl1ected 

with at least one variable in G. Consider for example fig. 7.2. Here the boundary of 

G={E} is OG={B,D} and the boundary of G={B,D} is OG={A,C,E}. 

Theorem 7.1. 

A hierarchica.l model H for an m-way contingency table is collapsible onto Al'" .,Ar if 

and only if the boundary of every connected component G. of {A +l, ... ,A }, is contained 
I r m 

in a generator of H. 

It follows immediately from this theorem that a table is always collapsible onto any sub­

set of its generators. It is also obvious, that it is very easy to check whether a table is 

collapsible under a given model. Consider the following four models for a four way table 



which have the graphical representations shown in fig. 7.3. 

(a) AB,AC,AD,BC,BD,CD 

(b) ABC,ABD,CD 

(c) ABC,AD 

(d) AB,AC,BC,AD 

(a) & (b) (e) & (d) 
A B A B 

c o c o 

Fig. 7.3. Graphs of four hierarchical models for a four-way table. 
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For model (a) the table can not be collapsed onto A,B,C because the complement of 

{A,B,C} is {D}, for which the boundary is ö{D}={A,B,C}. But ABC is not contained in 

a generator and the table cannot be collapsed onto D. In contrast (b) is collapsible onto 

A,B,C since now ABC is a generator of the model. Both model (a) and model (b) are col­

lapsible onto A,B since ö{C,D}={A,B} and AB is contained in a generator for both mo­

dels. For models (c) and (d) the check of collapsibility onto A,B is slightly different, be­

cause C and D are disconnected in the set {C,D}. Hence the boundaries of both {Cl and 

{D} should be checked. For (c) as weil as (d), ö{C}={A,B} and ö{D}={A} are contained 

in generators of the model, such that the table is collapsible onto A,B. Consider next col­

lapsibility onto C,D.The complement of {C,D} is {A,B} and ö{A,B}={C,D}, but CD is 

not contained in the generator of any of the models (c) and (d). The table is not ac­

cordingly collapsible onto the marginal table of A and B. The intuitive reason for this 

result is that there is a dependency between C and D through A and B, which will not 

reveal itself in the marginal table of just C and D. 
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The most famous example of lack of collapsibility is onto A,B in the three-way table 

with generators AC,BC. Here A and B are independent given C, but may weH be, and 

often are, dependent in the marginal table of A and B. 

Example 7.3. 

Consider again the cancer survival data in table 6.3. For this data set a plausible model 

has generators 

ACD,BD, 

such that only the stage of the cancer (variable D) influences the chance of survival 

(variable B). The interactions between x-ray treatment (A), extensiveness of operation 

(C) and stage (D) reflects the fact that adecision on what treatment and kind of opera­

tion to use naturally will depend on the stage of the cancer. For this model we can with­

out loss of information collaps onto the sub-tables of variables A,C,D and B,D, respective­

ly. For A,C,D the complement is {B}, for which the boundary is a{B}={D} as illustrated 

in fig. 7.4. 

A B 

c D 

Fig. 7.4. The association graph for model ACD,BD. 

Variable D is contained in both the generators, hence we can collaps onto the marginal 

table of A,C and D. As regards B,D, the complement is {A,C}, which is connected in fig. 

7.4. The boundary of {A,C} is a{A,C}=D, which again is contained in both generators. 

Hence we can also collaps onto the marginal table of Band D. In the marginal table of 

A,C and D, the derived model has generator ACD, such that the model is saturated. 
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Hence the expected numbers are equal to the observed numbers. The marginal table of 

A,C and D is shown in table 7.10. The expected numbers for the four-dimensional table 

under model ACD,BD are shown in table 7.11. It is easy to verify that the marginals for 

variable combination A,C,D computed in table 7.11 are equal to the numbers in table 

7.10, which is the condition for collapsibility. 

Table 7.10. The marginal table for variables A,C and D and the data in table 6.1. 

D: Stage C:Operation A: X-ray 
No Yes 

Radical 51 81 
Early 

Limited 14 12 

Radical 44 75 
Advanced 

Limited 4 18 

Table 7.11. The expected numbers for the data in table 6.1 under the model ACD, BD. 

D: Stage C: Operation B: Survival A:X-ray 
No Yes 

Radical No 10.0 15.9 
Yes 41.0 65.1 

Early 

Limited No 2.7 2.4 
Yes 11.3 9.6 

Radical No 36.8 62.8 
Yes 7.2 12.2 

Advanced 

Limited No 3.3 15.1 
Yes 0.7 2.9 

When collapsed onto the marginal table of variables Band D, the derived model has 

generator BD and is thus again saturated. The expected numbers are, therefore, the ob­

served marginals shown in table 7.12. 
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Table 7.12. The marginal table for variables Band D and the data in table 6.1. 

D: Stage 

Early 
Advanced 

B: Survival 
No Yes 

31 
118 

127 
23 

Again it is easy to verify that the condition for collapsibility onto variables BanD is 

satisfied by checking that the marginals for the combination B,D obtained from table 7.11 

are identical with the numbers in table 7.12.6,' 

7.5. Exercises 

7.1. Consider the three-way table below, where an "x" denote a positive count and "0" a 

zero. 

A B C 

k=l 2 3 

i=l j=l x 0 x 
2 0 x x 

2 j=l x 0 x 
2 x x x 

3 j=l x 0 0 
2 0 0 0 

4 j=l x 0 x 
2 x x x 

(a) Count the degrees of freedom for the goodness of fit test statistics for the hypoth­

esis with sufficient marginal 

(1) AB,AC,BC 

(2) AB ,AC 

(3) AC,BC 

(4) AB,C 
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(b) There are four unconstrained two-factor interactions between variables A and C, 

. . AC AC AC AC 
WhlCh can be estlmated. If T 11' TI 2' T 2 l' T 22 are unconstrained, derived the 

remaining tACIs as functions of these four values. 

(c) Are matters simplified if the x in cell (3,1,1) is changed to a zero? How? Why? 

7.2. Consider the very sparse three-way contingency table below, where an "x" means a 

positive cell count and "0" a structural zero. 

(a) Show that all three-factor interactions and all two-factor interactions between 

variables A and C are zero. 

(b) Compute the degrees of freedom for the hypothesis with sufficient marginals AB,C. 

A B C 

k=l 2 3 

i=l j=l 0 x 0 
2 0 x 0 
3 0 x 0 

2 j=l 0 x x 
2 0 0 x 
3 0 0 x 

3 j=l x x 0 
2 x x 0 
3 0 0 0 

7.3. For the survival data in example 6.1, the contingency table was originally a five-way 

table, where also the pathology of the tumor was recorded. This 5-way table, shown 

below, is, however, incomplete. 

(a) Count the degrees of freedom for the goodness of fit test statistic for the model AB, 

AC,AD,AE,BC,BD,BE,CD,CE,DE. 

(b) Identify the three terms in formula (7.2) for question (a). 

(c) Specify for which interactions all terms can be estimated. 



236 

A:Stage B. Type of cancer C: X-ray D: Pathology E:Survival 

10 year More than 
or less 10 years 

Extensive No Localized 1 21 
Spread 9 20 

Yes Localized 0 23 
Spread 17 41 

Limited 
Limited No Localized 0 4 

Spread 1 9 

Yes Localized 1 2 
Spread 2 7 

Extensive No Localized 1 3 
Spread 37 3 

Yes Localized 1 4 
Spread 63 7 

Advanced 
Limited No Localized 0 0 

Spread 3 1 

Yes Localized 0 1 
Spread 13 4 

7.4. Svalastoga (1959) collected data on the relationship between the social rank of father 

and son. Categorized in 5 sodal rank classes I to V, the data are shown in the table 

below. 

Father social Sons social rank 
rank I II III IV V 

I 18 17 16 4 2 
II 24 105 109 59 21 
IU 23 84 289 217 95 
IV 8 49 175 348 198 
V 6 8 69 201 246 

(a) Test the hypothesis of quasi-independence on these data. 

(b) Does the analysis suggest other plausible models? 
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7.5. Consider a 5-way contingency table and assurne that a log-linear model with suf­

ficient marginals 

AC,BC,CDE 

fits the data. 

(a) Is this table separable when all cells have positive count? Why? 

(b) Describe the decomposition, which corresponds to the separability of the table. 

7.6. Consider the 5-way formed by the variables A,B,C,D and E, and assurne that the 

model with sufficient marginals 

AC,BC,CDE 

fits the data. 

(a) Is it possible to collaps the table onto: 

(1) The two-way table formed by C and D. 

(2) The two-way table formed by Band D. 

(3) The marginal table of D. 

(b) For each of the three models in (a) derive the model corresponding to AC,BC,CDE. 

(c) The model AC,BC,CD,CE,DE has the same graf as AC,BC,CDE. Is the table col­

lapsable onto the same subtables in (a) as AC,BC,CDE. 

(d) Find a two-way table for which the 5-way table is collapsable under AC,BC,CDE, 

but not under AC,BC,CD,CE,DE. Is there an intuitive explanation for this? 

7.7. Consider a four-way table formed by A,B,C and Dassume that the model with 

sufficient marginals AB,CD,B fits the data. 

(a) Determine for all three- and two-way subtables if the table is collapsable onto 

them. 

(b) Are there intuitive reasons for the results in (a)? 

7.8. Reconsider the data in table 6.3. 

(a) Are the zeros in the table random or structural? 
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(b) Clearly the zeros have an effect on what four-factor interactions can be estimated. 

A computer program prints out that the degrees of freedom for testing the model 

where all four-factor interactions are zero against the saturated model is 40. How is 

this number calculated? 

(c) Are the any three-factor interactions which cannot be estimated? 

(d) Compute the degrees of freedom for the hypothesis AB,AC,AD,BC,BD,CD. 



8. The Logit Model 

8.1. The logit model with binary explanatory variables 

In chapters 4, 5 and 6 the categorical variables appeared in the model in a syrnmetrical 

way. In many situations, for example in examples 6.1 and 6.2 in chapter 6, one of the 

variable is of special interest. For the survival data in example 6.1, survival is the vari­

able of special interest, and the problem is to study if the other three variables have in­

fluenced the chance of survival. Variable B in example 6.1 may, therefore, be called a res­

ponse variable and variables A, C and D explanatory variables. This terminology is the 

same as the one used in regression analysis, and when survival is regarded as a response 

variable the data in example 6.1 can in fact be analysed by a regression model. In ex­

ample 6.2 the position on the truck of the collision can be regarded as a response variable. 

We are here primarily interested in the effect of explanatory variable A, i.e. the introduc­

tion of the safety measure in November 1971, but have to take into account that the other 

explanatory variables, Le. whether the truck was parked or not and what the light condi­

tions were, may be of importance for the location of the collision. When the response vari­

able is binary and the explanatory variables are categorical, the appropriate regression 

model is known as the logit model. More precisely the assumptions for a logit model are: 

(a) The response variable is binary. 

(b) The contingency table formed by the reponse variable and the explanatory 

variables can be described by a log-linear model. 

Let the two levels of the response variable be denoted 1 and 2. The variation of the 

response is then conveniently described as a function of the explanatory variables through 

the conditional probability 
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Pli' . = P {variabel A at level 11 variables B, ... ,S at levels i2, ... ,i } 
12 ... 1m m 

If p.. . is the probability under the multinomial model of observing an individual in 
l l 12···1m 

cell (il' ... ,im) then 

The transformation 

(8.1) 

is called the logit corresponding to the levels i2, ... ,im of the explanatory variables. 

In general the logit-transformation y=logit(x) is defined as 

y = In1x . -x 

The logit-function is monotone with range (-00,+00). Its graph is shown in fig. 8.1. High 

values of the logit correspond to x elose to 1 while low values correspond to x elose to O. 

It follows that the logit (8.1) attains a high value if the observed levels i2, ... ,im of the 

explanatory variables are most likely to occur together with the value 1 of the response 

variable, while the logit has a high negative value if the combination i2, .. .im is most likely 

to occur together with the value 2 of the response variable. It follows that the logit is an 

important statistical tool for a study of the influence of the explanatory variables on the 

response variable. 
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Fig. 8.1. The logit-transformation. 

1.0 

241 

To avoid cumbersome expressions, we limit attention to the case with one response 

variable and three explanatory variables. Before formulating the logit-model in general as 

a regression model, consider the following special case: 

Let a log-linear model be defined as 

(8.2) 

ABC D AB 
= TO+ T. + T. + Tk + TI + T. . 

I J I J 

BC AD BD ABD 
+T·k+T· 1 +T· 1 +T. ·1· J 1 J I J 

The interpretation of this model is C ® A,D I B with association graph shown in fig. 8.2 

A B 

/<J 
c o 
Fig. 8.2. Association graph for the model C ® A,D I B. 
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The logit with A as response variable is then 

(8.3) 

A AB AD ABD) 
=2[Tl+Tlj+Tll+Tljl' 

since terms not containing A cancei out and 

A A AB AB 
Tl + T 2 = 0, Tl j + T 2 j = 0, etc. 

The logit thus has two properties: 

(a) The logit only depends on the main effect for the response variable and on 
interactions between the response variable and the explanatory variables. 

(b) The logit is twice the sum of those non-null interactions, which involve the 
response variable. 

Property (a) means that if only the effects of the explanatory variables on the 

response are of interest, attention can be restricted to those interactions involving the 

response variable. This limit the number of models to include in the model search 

considerably. If the logit in (8.3) is denoted by gjkl' then 

It is convenient to introduce the parameters ßo = 2T~, tIJ = 2T~~, ß~ = 2T~~ and 
nBD ABD . 
P j I = 2T 1 j l' Then gjkl has the lmear form 

(8.4) 

The expression (8.4) shows that the model (8.2) can be formulated as the logit being 

a linear expression in parameters connected with explanatory variables B,C and D. 
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In the following the assigment of letters A, B, C and D to the variables is always 

such that A is the response variable. 

In order to show that (8.4), and in general the logit model, can be expressed as a 

regression model, consider next the case, where the model only contain main effects and 

two-factor interactions involving the response variable, Le. the model 

(8.5) A AB AC AD . 
In(np"kl) = ro+r.+r .. +r. k+r. I + {terms m B, C and D}. 

IJ 1 1 J 1 1 

The logit of (8.5) is 

(8.6) _ Pljkl _ A AB AC AD 
g'kl -ln -- - 2r 1 + 2r 1 . + 2r 1 k + 2T 11 . 

J P2jkl J 

with the ß-notation, introduced above, the logit can then be written 

AB AB Since the explanatory variables B, C and D are assumed to be binary, T 12=-r 11' 

AC AC AD AD . 
T 12=-r 11' and r 12=-r 11' Hence accordmg to (8.6) 

(8.7) gjkl = ßo + ~ z(j) + rf z(k) + ~ z(l), 

with ~=rJi., rf=rf{, ~=Ir:., z(l)=l and z(2)=-1. The logit model is thus a multiple re­

gression model, based on which the influence on the response variable of a given combina­

tion of levels of the explanatory variables can be studied. Consider e.g. two vectors 

(a) (j,k,l) = (1,1,2) 

and 

(b) (j,k,l) = (2,1,1) 
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The values of the logit gjkl for these combinations of j, k and I are 

and 

(b) g211 = ßo - f + rf + (p. 

Hence the effect on the response variable of a given set of observed values of the explana­

tory variables is fully described by the values of ß's. Given the logit, gjkl' the effect of the 

explanatory variables on the probability Pljkl of observing the response variable at level 1 

given the values i, j and k can be studied, since 

(8.8) 

From (8.8) follows that if for a given combination of j, k and 1 the probabilities of 

observing the response variable at levels i=l and i=2 are equal, then gjkl=O, while gjkl>O 

if Pljkl >P2jkl and gjkl<O if Pljkl<P2jkr The logit for given values of the explanatory 

variables thus measures the relative chance of observing response i=l rat her than i=2, 

and the larger the value of gjkl the larger the chance of observing i=l. 

One reason for chosing the logit rather than the conditional probabilities directly to 

measure the effect of the explanatory variables is that the logit has the complete real line 

as its range space. Had we instead chosen a modellike 

or 

certain combinations of j, k and 1 might for certain values of f,(f or rfJ bring us outside 

the range space of Pljkl or InPljkl' while this can not happen for the logit model. One 
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furt her desirable property of the logit transformation, not possessed for example by 

* gjkl=lnp1jkI' is symmetry in i=l and i=2. In fact if the two values of i are interchanged, 

then gjkl just changes sign, since 

and the model structure is unchanged. 

Since the logit-model is merely a reformulation of the log-linear model for a multi­

way contingency table, no new statistical tools need to be introduced. The analysis is, 

however, simplified by the fact that only interactions which involve the response variable 

have to be accounted for. This means that even for higher order tables, a simple strategy 

can be set up for the search for a satisfactory logit-model. In addition logit-models, 

which involves three-factor or higher order interactions between the response variable 

and two or more explanatory variables are difficult to give a simple interpretation. Hence 

a natural starting point for a model search is the model (8.5). 

Assuming that rJD is most likely and !f next most likely to be zero consider thus the 

hypotheses 

and 

HO): rJD= 0 

H(2): !f= ßD=O 

Both the necessary test statistics for testing these hypotlleses and the parameter 

estimates under the hypotlleses are derived directly from the corresponding quantities for 

log-linear model of the four-way contingency table formed by the response variable A, 

and the explanatory variables B, C and D. The assumptions for the logit model (8.6) is 

that 

ABC ABD ACD ABCD 
Tl j k = Tl j I = Tl k I = Tl j k I = O. 
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Hence (8.6) is equivalent with the log-linear model with sufficient marginals 

(8.9) H: AB,AC,AD,BCD 

Note here that nothing is assumed about the interactions between B, C, and D. Given 

this model the hypotheses H(1), H(2) and H(3) corresponds to the log-linear models 

H(l): AB,AC,BCD 

H(2): AB,BCD 

H(3): A,BCD 

It follows that H(2) can be tested against H(l) by means of the test statistic 

(8.10) 

from chapter 6 applied to t.he four-way table forme<! by A,B,C and D. Similarly H(3) can 

be tested against H(2) by means of 

(8.11) 

If the observed value of (8.10) is small then H(2); rf=tP=O is accepted. If in addition the 

observed value of of (8.11) is small, then H(3):f=rf=tP=0 is accepted. 

In order to test H(l):tP=O, we can choose H given by (8.9) as alternative, such that 

H(l) is accepted if the observed value of 

Z(H(l) I H) = Z(H(l») - Z(H) 

is small. Finally the logit model is accepted as an adequate description of the data if H 

tested against the saturated model is accepted. 
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The hypothesis 

is within the log-linear model framework equivalent to 

H(O): BCD, A = u. 

The ML--estimates for the iJs are obtained from the ML--estimates of the r's through the 

definition of the ß's in terms of the r's, Le. 

Example 8.1. 

~ "'AC 
P =2r 11' 

~ "'AD 
P =2r 11. 

The data in table 8.1 is a cross-dassification of the Danish Welfare Study according to 

the following four binary variables 

A: Member of political party or not 

B: Sex 

C: Whether employed in the public or private sector 

D: Whether living in Copenhagen or not. 

For shortness the variables are denoted A: Membership, B: Sex, C: Sector and D: 

Urbanization. We shall analyse the data in table 8.1 by a logit-model with A as the 

response variable and B,C and D as explanatory variables. The observed goodness of fit 

test statistic for the model with sufficient marginals AB,AC,AD,BCD is 

z = 0.93, df=4, 

leading to dear acceptance of the logit model 
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Table 8.1. The Danish Welfare Study cross-classified according to membership of a 
politicaJ party, sex, employment sector and urbanization. 

A: Member B: Sex C: Employment D:Living in 
of party sector Copenhagen 

Yes No 

Female Public 12 31 
Private 5 20 

Yes 
Male Public 16 37 

Private 19 73 

Female Public 175 375 
Private 162 475 

No 
Male Public 111 266 

Private 241 906 

Table 8.2 show the next steps in the analysis of the data by a logit model. The table 

display the log-linear models as identified by their sufficient marginals, the hypotheses in 

terms of the ß's, the observed values of Z(H) for each hypotheses and the observed value 

of the test statistic Z(H I HA) for the hypo thesis H given that all previous hypotheses have 

been accepted. 

Table 8.2. Test statistics for an analysis of the data in table 8.1 by a logit-model, wi th 
p being the level of significance. 

Log-linear Hypothesis z(H) df p z(HIHA) df p 

model 

AB,AC,AD,BCD 0.64 4 0.958 0.64 4 0.958 

AB,AC,BCD !P=O 0.87 5 0.973 0.22 1 0.637 

AB,BCD !P=ßC=O 17.14 6 0.009 16.27 1 0.000 

A,BCD !P=ßC=rJ3=o 28.80 7 0.000 11.56 1 0.000 

The most restrictive model to fit the data is AB,AC,BCD. The logit for this model is 

gjkl = ßo + fz(j) + (P(k). 

The variables Sex and Sector thus influence the response variable, while Urbanization 

does not. Membership of a political party thus depends on sex and on whether the person 
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is publicly or privately employed. Membership of a political party seems, however, to be 

as common in Copenhagen as outside Copenhagen. The estimates of the parameters for 

ßo' Jf> and tf in the final model are (with standard errors in parantheses ): 
A AA 
ßo = 2r 1 = -2.560 (0.076) 

~ AAB 
P = 2r 11 = -{).324 (0.078) 

"";c A AC 
P = 2r 11 = 0.302 (0.074). 

The signs of the estimates for Jf> and f show that membership of a political party 

is more frequent for employees in the public sector and more frequent among men. 

For given values of the explanatory variables, the probability of membership can be 

estimated. Thus j=l, k=l is a publicly employed woman and j=2, k=l is a publicly em­

ployed man. For these combinations 
A 

gu = -2.582 

and 

g21 = -1.934. 

The corresponding probabilities of membership are 
A 

Plln = 0.070 

and 

P1121 = 0.126. 

The probability of a randomly chosen person being political active is thus in general 

smalI, but significantly lower for women than for men. 6. 

If the study is cross-sectional or prospective, Le. if 

or 
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estimates of the probabilities Pli jkl of predicting i= 1 given the values of the explanatory 

variables can be derived from the estimated logits through (8.8). This is not the case if 

the study is retrospective. In this case 

where n. is the number of individuals selected with the response variable at level i and 
1 

PjkIli = P{variables B,C and D at levels j,k and 11 variabel A at level i}. 

Hence the logit is given by 

But 

P'k11' = P··k1/P. , J 1 IJ I ••• 

such that 

The logit for a cross-sectional or prospective study is equal to the first term is this 

expression according to (8.3). The two last terms do not depend on j,k and 1, however, 

such that an analysis by a logit-model for a retrospective study will thus only differ from 

an analysis based on a cross-sectional study or a prospective study by yielding a different 

parameter ßo' The evaluation of the influence of the explanatory variables can thus be 

summarized and interpreted in the same way. It is not, however, possible to estimate the 

probability Pli jkl from the logit, if PI... is unknown, since 

The only quantity, which is independent of PI... and thus can be estimated from the logit 
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is the odds ratio 

(8.12) P2Ij'k'l' _ 
P I - exp(gJ'kl - gJ"k'I ' ) 

1 j'klll 

The odds-ratio (8.12) is the ratio between the odds of i=l as compared with i=2 given 

the explanatory variables at levels j,k,l and at levels j' ,k' ,1'. The odds ratio (8.12) has the 

same interpretation as in section 4.2. The ratio is 1 if the explanatory variables do not 

influence the response variable, and the larger the value of the odds ratio, the more likely 

is the response i=l given levels j,k,l of the explanatory variables than it is given levels 

jl ,k ' ,1'. 

Example 8.2. 

In example 6.1 we studied a four-way table between binary variables. Let now the letters 

A to D be assigned as follows 

A: Survival 

B: Stage of cancer 

C: Mode of operation 

D: X-ray treatment 

The data in table 6.4 can then be analysed by a logit-model with A as the response vari­

able and stage of cancer, x-ray treatment and mode of operation as explanatory variables. 

The observed goodness of fit test statistic for the model with sufficient marginals AB, 

AC,AD,BCD is 

z = 1.93, df = 4, 

leading to a dear acceptance of the logit model 

gjkl = ßo+tf3z(j)+tPz(k)+tfz(l) . 

. Table 8.3 shows the next steps in the analysis of the survival data by a logit model. The 

table display the log-linear model as identified by its sufficient marginals, the hypoth-
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eses in terms of the ß's, the observed values of Z(H) for each hypotheses and the observed 

value of the test statistic Z(H I HA) for the hypothesis H given that all previous 

hypotheses have been accepted. 

Table 8.3. Test statistics for an analysis of the survival data by a logit-model. 

Log-linear Hypothesis z(H) df p z(HIHA) df p 

model 

AB,AC,AD,BCD 1.93 4 0.748 1.93 4 0.749 

AB,AC,BCD ~=O 2.02 5 0.846 0.09 1 0.764 

AB,BCD ~=ßC=O 4.12 6 0.661 2.10 1 0.147 

A,BCD ~=ßC=~=o 136.73 7 0.000 132.61 1 0.000 

The most restrictive model to fit the data is AB,BCD. The logit for this model is 

gjkl= ßo + fz(j). 

Only the stage of the cancer thus influences the chance of survival. The estimates of f 
and ßo are 

and 

Hence 

"B "AB ß = 2TII = -1.522 

" "A ßo = 2 Tl = -0.112. 

_ {-1.634 for j=l 
gjkl - + 1.400 for j=2 

The data in this example is based on a retrospective study, where n l =150 were 

selected among those women, who survived and n2=149 among those women, who did 

not. Hence it is not possible to estimate the probability of survival given the value of the 

explanatory variable "stage of cancer". In this case the only quantity, which can be 

estimated is the odds ratio (8.12) between the odds of survival for women with the cancer 
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at early stage and the odds of survival for women with the cancer at an advanced stage. 

According to (8.12) with j=1 and j'=2 this odds ratio is 

Since i=1 is not surviving and j=1 is cancer at an early stage according to table 6.4, the 

low value of the odds ratio indicate that the odds of not surviving against surviving is 

much lower with the cancer at an early stage, that at an advanced stage. The chances of 

survival are as expected much better with the cancer at an early stage.oCl.' 

For log-linear models with interactions between the response variable and the 

explanatory variable of higher order than 2, as for example in (8.4), the logit model is 

formulated as follows. Let as before z(1)=1 and z(2)=-1, but let in addition 

Then (8.4) can be written as 

+1 for p=1, q=1 

z(p,q) = -1 for p=1, q=2 
-1 for p=2, q=1 

+ 1 for p=2, q=2 

where ;f3D=I{~. That 1{~=;f3Dz(1,1) follows directly. Since ß~~=-ß~l' because the 

variables are both binary, it follows that 1{~=;f3Dz(1,2). The remaining two cases are 

verified in the same manner. With score matrices constructed like z(j,l), j=1, .. ,J, 

1=1, ... ,L, the logit can thus be expressed as a regression model. This construction is only 

possible for combinations of binary variable. 
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8.2. The logit model with polytomous explanatory variables 

The only assumption for the regression formulation (8.7) of the logit model is that the 

explanatory variables are dichotomous. The scoring z(l)=l and z(2)=-1 is thus arbitrary. 

Suppose for exarnple that z(l) and z(2) are defined as z(l)=c and z(2)=-c for arbitrary c. 

The value of gjkl in (8.7) is then unchanged if the ß's are redefined as t=t jc, rf=rf jc 
and rfJ =rfJ j c. If one or more of the explanatory variables are polytomous the scoring is 

not, however, arbitrary. 

Consider first a situation, where it is possible based on background information to 

assign scores to the J categories of explanatory variable B, while explanatory variables C 

and D are dichotomous. Variable B may for example be income with J income intervals. 

The category scores can then be chosen as the median incomes z21, ... ,z2J in the J 

intervals. A regression model analogous to (8.7) can now be formulated for the logits as 

(8.13) 

where as before z(l)=l and z(2)=-1 for the binary explanatory variables, rf=2r~~ and 

nD AD 
P =r 11' 

The values z21, ... ,z2J are called score values for the categories. While rf and ßD are 

direct functions of the r's such that ML-estimates for these parameters are obtained from 

the ML-estimates for the r's, this is not the case for ßB, when the categories are scored. 

In order to derive the ML-estimate for ßB we need the likelihood function for the 

model (8.13). The logit is a parameter in the distribution of x1jkl given X1jkl+x2jkl=x. jkl' 

which is a binomial distribution. The likelihood function is accordingly a product of 

binomial distributions, or 

(8.14) 

with 
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Hence the log-likelihood function is 

g"kl 
- ~~~x. "klln(l+e J ) + {terms in x} = 

j k 1 J 

g"kl 
- ~~~x. "klln(l+e J ) + {terms in x}. 

j k I J 

Since the sums x.jk1 in the logit model are regarded as fixed, the model is log-linear 

and the likelihood equations for the estimation of ßo and r! become 

(8.15) 

and 

(8.16) 

* x = Jt 1... 1. .. 

* with Jt1jk1=E [Xljkll x. jk1] =x.jklPll jkJ" 

The likelihood equations for the estimation of fand ßD become 

(8.17) * * x -x = Jt -Jt 1.1. 1.2. 1.1. 1.2. 

and 

(8.18) * * x -x = Jt -Jt 1..1 1..2 1..1 1..2 
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Due to (8.15), (8.17) and (8.18) can, however, be replaced by 

(8.19) 

and 

(8.20) 

* x = f.t 1.1. 1.1. 

* x = f.t 1..1 1..1 

Equations (8.15), (8.19) and (8.20) are satisfied if and only if the corresponding 

likelihood equations for a ML-estimation of the log-linear parameters T~, T~~ and T~~ 

are satisfied, provided that the likelihood equations for the estimation of T~~~ are 

satisfied. In fact if 

(8.15) can be written as 

(8.21 ) Xl = ~E~x 'klP1'kl/(P1'kl+P2'kl) = ~~~nP1'kl = nPl ... j k I·J J J J j k I J ... 

In the same way (8.19) and (8.20) are equivalent with 

(8.22) x = np 
1.1. 1.1. 

and 

(8.23) x = np 
1..1 1..1 

Equations (8.21), (8.22) and (8.23) are, however, the likelihood equations for the 

. . f A AC d AD H ., d 1 estlmatlOn 0 Tl' T 11 an Tl l' ence It IS not necessary to eve op new computer pro-

cedures to estimate ßo' ~ and ~. From the ML-estimates for T~, T~~ and T~~, ßo' ~ 

and ~ are derived as 

"'c "'AC ß = 2T 11 



and 
o ~ "AD 

P = 2r 11 0 

Equation (8.16) is new, but is easily solved by numerical methods. 
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In a saturated model, where the conditional probabilities Pli jkl are unconstrained, 

the likelihood function is 

(8.24) L = TI TI TI .J P . (l-p 0 ) 

J 2 2 [X Okl] x ljk1 x2jk1 

j=l k=ll=l X ljk1 llJkl llJkl . 

Hence the ML-€stimate for Pli jkl in the saturated model is 

(8.25) 

Under the logit model, the ML-€stimates of the conditional probabilities are 

" " 
(8.26) 

with 

~jkl = ßo + (Jz2j + ßCz(k) + ßDz(l)o 

From (8.24) follows that 

From (8.26) follows further that 

and 

" g'kl 
In(l-Plljkl) = -ln(1+e J ). 
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Hence the transformed likelihood ratio test statistics for the fit of the model becomes 

A A 

(8.28) Z = -2lnL(P11111'''''P11 JKL) + 21nL(PIjlll ""'P11 JKL) 

A 

According to the general result, theorem 3.9, Z is approximately i -distributed with 

JKL-4 degrees of freedom, where K=L=2, since there are JKL unconstrained P1ljk1's and 

4 ß's. Hence the model is rejected if the level of significance 

p = p(Z ~ z) , 

computed in a i -distribution with JKL-4 degrees of freedom, is small. 

The influence of the explanatory variables can be evaluated through a sequential 

test. The influence of variable D can thus be evaluated by testing the hypothesis 

H4: rfJ = o. 
Under H4 the logit is given by 

Let /Jo'!? and /P be the ML-estimates for the parameters under H4 and let 

Then the test statistic 

(8.29) 
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A 

obtained as twice the difference between (8.27) with PI! jkl replaced by PI! jkl' and (8.27) 

with PI! jkl replaced by PI! jkl is approximately X2 -distributed with one degree of freedom. 

A significant value of Z4 indicates that H4 can not be accepted such that variable D 

contributes to the description of the variation in the response variabel. If the observed 

value of Z4 is non-significant, we may exclude variable D from the model without making 

the fit significantly worse. 

If H4 is accepted, one can go on to test 

sequentially through Z3' which is equal to Z4' when PI! jkl is the estimated value under H3 

and ~l!jkl the estimated value under H4. Z3 is also approximately x2-distributed with 

one degree of freedom. 

In practice these sequential tests are easily obtained as differences from a list of 
A 

(8.28) with gjkl being the estimated logits under the model. 

For models with a few explanatory varables it is often relatively easy to set up a 

reasonable sequence in which to check the inclusion or exclusion of the explanatory vari­

ables. If many explanatory variables are under consideration it is more difficult to plan a 

sequential procedure for testing the partial influence of the explanatory variables. 

In many situations it is unrealistic to assurne that the categories of an explanatory 

variable can be assigned store values. Even in this situation a regression model may be 

formulated. The method is related to what is often termed the dummy variable method in 

ordinary regression analysis. 

Consider e.g. a model where B is polytomous, while C and D are dichotomous. The 

problem is then to formulate a regression model, where all the interactions T~~, j=l, ... ,J 

between the response variable and explanatory variable Bare identifiable in the model. 

This can be done through the J dummy variables 
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(8.30) (.) {lifj=1/ z1/ J = 0 if H 1/ ' 1/, j=1, ... ,J-1 

and z1/(J)=-l for v=l, ... ,J-l. 

The logit for the model is 

(8.31) A AB AC AD 
gjkl = 2r 1 + 2r 1 j + 2r 1 k + 2r 1 I . 

Since C and D are binary, the last two terms can be written 

AC rAJ 
2r 1 k = P z(k) 

and 

AD nD 
2r 11 = P z(l) 

with rf=2r~~, rP=2r~~, z(l)=l and z(2)=-1. The second term on the right hand side 

of (8.31) can be written as 

(8.32) 
AB J-1 nB . 

2r1 . = ~ P .. z (J), 
J 1/=1 1/ 1/ 

with ~ =2r~~. For j=1, ... ,J-1 this is obvious from (8.30). For j=J, (8.32) becomes 

AB J-1 oB J-1 AB 
2r1J =- ~ p1/=-2 ~ r 1 1/ 

1/=1 1/=1 

which is true because r~~=O. Collecting the results, we have 

(8.33) 
J-1 

g·kl = ßo + L: rJ!.z (j) + rfz(k) + rPz(l), 
J 1/= 1 lJ lJ 

where ßo=2r~. This model has 3+(J-1)=J+2 regression parameters ßo,ßC,rP and 
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tit,···,tJi-l· 
It should be kept in mi nd that (8.33) is merely a reformulation of (8.31). This means 

that the likelihood equations for the ML--estimation of r~~ , ... , r~~ are the same as those 

for the estimation of tit, ... ,tJi-l' with 

~ "AB 
P .. = 2r v 1 v 

The goodness of fit test statistic for the logit model with dummy variable is given by 

(8.28) with 

" "J-l" " " 
g·kl = ßo + ~ /J!z (j) + (fz(k) + ßDz(1). 

J v=l v v 

" Due to (8.30), gjkl can also be written 

~jkl = ßo + fJ + ßCz(k) + ßDz(1) , 

where tJi=-tit-... -tJi-l. 
In (8.33) there are J+2 parameters to be estimated. Hence the goodness of fit test 

statistic has an approximate i -distribution with JKL-J-2 degrees of freedom, where 

K=L=2. It should be noted that the introduction of dummy variables for the categories of 

a polytomous explanatory variable, does not change the model. It is merely a convenient 

way of introducing such a variable in the model for practical purposes. If for example the 

available computer programs require that a model is formulated as a regression model, 

(8.33) is the appropriate form. The dummy variable method on the other hand allow us to 

check the logit model without assuming score values for the categories of variable B. 

Example 8.3. 

The data in table 8.4 sterns from an investigation of the Danish labour market in 1979. 

The table shows a sample of 398 persons with a university degree in three Danish counties 
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distributed according to sex and employment status. 

Consider a model, where employment is dichotomized by merging the categories fuIl 

time and part time employed. The response variable A is then binary with categories: 

employed and unemployed, and the data can be analysed by a logit model. The 

explanatory variables are: 

B: County. 

C: Sex. 

Table 8.4. A random sampie of 398 persons in three Danish counties distributed 
according to sex and employment status. 

A: Employment status 

C: Sex B: County 

Fyn 
Arhus Male 
Copenhagen 

Female 
!yn 

rhus 
Copenhagen 

Unemployed Part time 
employed 

3 6 
43 24 
16 25 

3 2 
25 18 
16 30 

Source: Unpublished data from Statistics Denmark. 

The logi t model is accordingly 

Full time 
employed 

16 
44 
43 

4 
41 
39 

Since variable B is polytomous, we use dummy variables for B. The values z)j) for the 

categories of B are assigned as foIlows 

j=l 
2 
3 

11=1 2 

1 
o 

-1 

o 
1 

-1 

The logit model with dummy variables then become 
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(8.34) 

where J-L"k is the expected number in cell (ijk) with employment status i and sex k living in 
IJ 

county j. The estimated parameters of this model are with standard errors in parantheses 

A 

ßo = -1.224 (0.173) 

ßIt = ~.356 (0.313) 

ß1; = +0.587 (0.192) 

~ = ~.082 (0.117) . 

These estimates seem to indicate, that sex does not contribute to the description of the 

response variable. The test statistics (8.28) for evaluating the fit of three logit models with 

various explanatory variables included are shown in table 8.5. Thus a model including both 

sex and county and a model only including county as explanatory variables both describes 

the data in a satisfactory way, while at least one of the explanatory variables are needed to 

explain the variation in employment. This is a clear indication that the contribution of sex 

is insignificant. 

Given that a model with both explanatory variables included describes the data, the 

tests for ;1:=0 and !p=o can be carried out as sequential tests. Thus the test statistic for 
J 

H2:~=0 given that (8.34) describes the data is obtained according to (8.29) by substrac-

tion in table 8.5 as 

Z2 = 0.49. 
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Table 8.5. Test statistics for various logit-models applied to data in table 8.4. 

Explanatory 
variables z df Levelof Sequential df Levelof 
included significance tests significa 

Sex, County 3.11 2 0.211 
County 3.60 3 0.309 0.49 1 0.488 
None 17.03 5 0.004 13.43 1 0.000 

The test statistic for H3:~=0, j=I,2, given H2, is 

Za = 13.43. 

These values and the corresponding degrees of freedom and levels of significance are 

shown in the last three columns of table 8.5. They confirm that the variation in 

employment status is adequately described by the variation over counties. 

The three counties can be ordered in terms of urbanization, such that the county of 

Fyn is the least urbanized and the county of Copenhagen the most. Assume that this or­

dering can be represented in the model by scoring the counties Fyn: -1, Arhus: 0 and 

Copenhagen: +1. A new logit model can then be formulated in accordance with (8.13), as 

where z21=-I, z22=0, z2a=l, z(I)=1 and z(2)=-1. The estimates of ßo' rf3 and rP with 

standard errors in parantheses are 

A 

ßo = -0.926 (0.127) 

?J3 = 0.307 (0.180) 

7P = -0.064 (0.116) 
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The test statistics for this model corresponding to table 8.5 are shown in table 8.6. It is 

obvious from these test statistics that a logit model with an equidistant scoring according 

to degree of urbanization does not fit the data. L::.,' 

Table 8.6. Test statistics for logit-models with an equidistant scoring of 
variable B applied to the data in table 8.4. 

Explanatory variables 
included 

Sex, County 
County 
None 

8.3. Exercises 

Test 
statistic 

13.53 
13.84 
17.03 

df Levelof 
significance 

3 0.004 
4 0.008 
5 0.004 

8.1. Formulate exercise 5.3 as a logit-model with interval mid-points of high school 

average and the year as explanatory variables and passedjfailed as the response. 

(a) Estimate the parameters of the logit-model and test which of the explanatory va­

riables are needed to predict the result of the examen. 

(b) Compare the result of the analysis by means of a log-linear model in excercise 5.3 

and the analysis by means of a logit-model. 

(c) Does the logit-model describe the data in a satisfactory way. 

(d) Compute confidence limits for the probability of passing for a student with high 

school average 8.0. 

8.2. Reconsider the data in exercise 5.2. 

(a) Formulate a logit-model with ownership of a freezer as response variable and social 

rank and renterjowner status as explanatory variables. 

(b) Use a dummy-variable for social rank group, estimate the parameters of the logit­

model and compare with the log-linear parameters estimated in exercise 5.2. 

(c) Assurne now that the social rank categories have been scored I-II=2, III=3, IV=4. 

and V=5. Repeat the analysis and compare the regression parameters now obtained 

with those obtained in (b). 
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(d) Test which of the explanatory variables are needed both with social rabl as a dum­

my variable and scored as in (c). 

8.3. Reconsider the data in exercise 5.5. 

(a) Can the problem be formulated in terms of a logit-model? 

(b) Test whether a logit-model describe the data. 

(c) Which explanatory variables are needed. 

(d) Compare the predicted probability of a broken marriage for a man and a woman in 

social class I and for a man and a woman in social class V. Are these differences to 

be expected? 

8.4. Suppose explanatory variable B is binary. If the categories are scored as 

z(l) = 1 

z(2) = -1, 

then (J3=2 r~~ and ßo=2r~. 
(a) Show that if the binary categories of B are scored 

then 

and 

z(1) = 1 

z(2) = 0, 

nB AB 
P = 4r 11 

A AB ßo = 2r 1 -2r 11 . 

(b) Derive the corresponding formulas if the scoring is z(l)=l, z(2)=2. 

8.5. Reconsider the problem and the data in exercise 6.1. 

(a) Check if a logit-model with headache frequency as response variable fits the data. 

(b) Which of the explanatory variable contribute to explain the variation in the res-

ponse variable. 

(c) Check the formula 
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2r 11 - P 
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and the corresponding formulae and the estimates obtained in this exercise by a 

logit-model and by a log-linear model. 

8.6. In the fall of 1974 the Danish National Institute for Social Research investigated the 

mobility of the Danish work force. The table below is from this investigation. The four 

recorded variables are Age, Change of Job, Plans to quit the job voluntarily and Sex. 

(a) Analyse the data by means of logit-model, where the age categories are score 22, 27 

32,37 and 47, and Change of job is the response variable. 

(b) Compare the results in (a) with a logit-model, where age is represented by 4 dum-

my variables. 

Age Change of Plans to Sex 
job quit Men Wornen 

Voluntarily Yes 53 54 
No 70 66 

19-24 
Forced Yes 31 6 

No 32 9 

Voluntarily Yes 52 21 
No 38 39 

25-29 
Forced Yes 18 2 

No 28 4 

Voluntarily Yes 27 12 
No 19 15 

30-34 
Forced Yes 11 2 

No 20 4 

Voluntarily Yes 14 4 
No 11 5 

35-39 
Forced Yes 6 1 

No 19 3 

Voluntarily Yes 14 6 
No 21 12 

40-
Forced Yes 20 5 

No 35 7 
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(c) Describe the way the explanatory variables in the final model influence whether 

the job change is forced or voluntary by computing the estimated probability that 

the change is voluntary for each combination of the observed combination of the ex­

planatory variables. 

8.7. Reconsider the data in exercise 6.2. 

(a) Let irritation of the throat be the response variable and analyse the data by a 

logit-model. 

(b) Compare the estimat.ed parameters of the finallogit-model and the estimated par­

ameters of the log-linear model AC,CD,B. Are they directly comparable? 

(c) How do the explanatory variables influence the response variable. 

8.8. Reconsider exercise 6.6. 

(a) Can the problem be formulated in terms of a logit model? 

(b) Analyse the data by a logit-model. 

(c) Compare with the analysis in exercise 6.6. 



9. Logistic Regression Analysis 

9.1. The logistic regression model 

In chapter 8 the connection to log-linear models for contingency tables was stressed. The 

direct connection to regression analysis for continuous response variables will now be 

brought more clearly into focus. Assume as before that the response variable is binary and 

that it is observed together with p explanatory variables. For n cases the data will then 

consist of n vectors 

(YV,Zl , ... ,z ), v=1, ... ,n v pv 

of jointly observed values of the response variable and the explanatory variables. 

The logistic regression model then states that 

where 

(9.1) 

or equivalently 

(9.2) 

Y ={1 v 0 

with probability P v 

with probability I-P v 

p p 
P = exp(ßo+ r: ß.z) / [1+exp(ßo+ r: ß.z)l 

v j=l J J j=l J J 

p 
In(P /(I-P v)) = ßo+ r: ß.z·v· 

v j=l J J 

It is assumed that the Yls are independent. If the Yls are not independent one has to take 

into account the dependencies. Suggestions for such models are due to Qu et al. (1987) 

and Conolly and Liang (1988). A very comprehensive survey of the history and 

methodology of logistic regression is due to Imrey, Koch and Stokes (1981). 
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The logistic regression model was introduced by Cox (1970) to describe the depend­

ency of a binary variable on a set of continuous variables. The statistical model underly­

ing logistic regression analysis was introduced by Berkson (1944), (1953) in connection 

with the analysis of so-called bio assays. The name of the model is derived from the fact 

that the logistic transformation of the probability of Y v=l is linear. There are, however, 

no restrictions on the explanatory variables. All models treated in chapter 8 are thus 

special cases of (9.2), and we can mix binary, polytomous, whether scored or not, and 

continuous explanatory variables in the model. 

The likelihood function for a set of n observations y l'···'y n is 

n yv l-yv 
L = P(Y1=Yl'···'Y =y ) = 11 P (l-P) , 

n n v=l v v 

When the logistic expression (9.1) is inserted in L, the log-likelihood becomes 

(9.3) InL(ßO,ß1,···,ß ) = ~ y [ßo+ t ß.z. ] 
p v=l v j=l J JV 

n p p n 
- ~ In [1+exp(ßo+ ~ ß.z. )] = Y ßo+ ~ ß· ~ y z. - nK(ßO,ßl,···,ß ), 

v=l j=l J JV . j=l JV=l v JV P 

where K(ßO,ß1, ... ,ßp) does not depend on the observations Yl' ... 'Yn. The model is ac­

cordingly log-linear with canonical parameters ßo,ßl' ... ,ßp and sufficient statistics Y.' 

~YVzlV'···'~y vZpv· The dimension of the model is p+ 1 if the ßIS are unrestricted as is 

usually the case, and if there are no linear ties between the p+ 1 sufficient statistics. A 

typical example, where the log-linear model is of dimensionalless than p+ 1, is if explana­

tory variables one and two are binary and z2V is -1 whenever zlV is 1 and z2V is 1 

whenever zlv is -1. In this singular case ~y VZIV=-~y vZ2v and there is no unique 

maximum for the likelihood function since L(ßo,ß!," .. ,ßp ) is constant as long as ß1-ß2 

does not changes its value. 
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In the following it is assumed Utat (9.3) has dimension P+1. Since the sufficient sta­

tistics for ßo,ßl' ... ,ßp are y., 'Ey V"lV, ... ,'Ey V"pl/' the likelihood equations are 
v 

n 
(9.4) Y. = E[Y.J = 'E P v' 

v=1 
and 

n n n 
(9.5) 'E y V"·v = 'E z·vE[Y J = 'E z·vP v' j=l, ... ,p. 

1/=1 J 1/=1 J v=1 J 

Equations (9.4) and (9.5) have a unique set of solutions, which are the ML-€stimates for 

ßo, ... ,ßp according to theorem 3.6 if the vector of lenght p+l formed by the left hand sides 

of (9.4) and (9.5) corresponds to an interior point in the convex extension of the support. 

The boundary of the convex extension of the support consist of piecewise-linear 

functions since the possible values of to, .. ,tp , where 

and 

t = Y o . 

n 
t. = ~ Y z., j=l, ... ,p 
J v=1 v JV 

are limited by linear inequalities in sums of the z. 'so When p>l these inequalities are 
JV 

cumbersome to write down, but for p=l it is straight forward. Assume that the Zlj'S are 

ordered such that zl(I(ZI(2)S ... Szl(n)" Then since y v=l or 0, 

OS to S n 

and 

forming a convex set in a (to,t1)-space, and there is a unique solution to the likelihood 

equations if none of these inequalities are equalities. 
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Boundary points corresponds to infinitely large values of the estimates. Thus if the 

numerical procedure used to solve the likelihood equations converges to a finite vector 

then this vector will be the ML-€stimates of the ß's. 

It can be helpful to distinguish between two cases: 

Case A: There is one y-value for each combination of z's. 

Applications of the asymptotic results in chapter 3 require for case A that n is rea­

sonable large. Goodness of fit tests similar to the ones used in chapter 8 are not available, 

since the observed x-values for the Z-test statistic are either 1 or O. It is, however, possi­

ble to compare different regression models and in this way evaluate the relative influence 

of different explanatory variables. 

Case B: There are several observed y-values for each combination of the explanatory 

variables. In this case it is convenient to index the set of possible distinct combinations of 

the explanatory variables by the letter i=I, ... ,1. 

Let 

n. = number of observations with values zl"""z . of the explanatory variables 
I I pI 

and 

x. = number of these n. observations for which y =l. 
I I v 

By independence of the Y 's, the random variable X. corresponding to x. follows a v I I 

binomial distributon with parameters n. and P., where 
I I 

p p 
(9.6) P. = exp(ßo+ ~ ß.z .. )/[I+exp(ßo+ ~ ß.z .. )], 

I j=l J JI j=l J JI 

by virtue of (9.1). 

Hence the likelihood function is 

(9.7) 

Due to (9.6) the log-likelihood function become 



p' [n.] InLeßO,ßl, ... ,ß) = ßO ~x. + ~ e~.z .. )ß. -~n.lne1+expeßO+~ß.z .. )) + ~ln I . 
P . I . 1 . I JI J . I . J JI . X· 

I J= I I J 1 I 

Hence the sufficient statistics for case B are 

and 

I 
t=x=~x. 
o . i=l I 

I 
t. = I: x.z.. j=l, ... ,p. 
J i=l I JI, 

Since E [X.] =np., the likelihood equations thus become 
I I 

(9.8) x = I:n.P. 
I 1 

and 

I 
(9.9) I: x.z .. = I: n.P.z .. , j=l, ... ,p. 

i=l I JI i=l I 1 JI 
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The boundaries of the convex extension of the support are again formed by linear inequa­

lities, since the x.'s are positive and bounded by 0 and n .. For the case p=l, the lower 
I I 

boundary of the convex extension of the support has the form 

(9.10) 

J 'l(Ih 10' 0 ~ '0 ~ 0(1) , 

zl(1)n(1)+(to-n(I))zl(2) fOI n(I)~to~n(1)+n(2) 

zl(l)n(1) + ... +z 1 (I-I) n (1-1) +(to-n (I-I f·· . -n(1))zl(I) 

for to ~ n(I)+ ... +n(l_l) 

when the zli's are ordered so that zl(I)~zl(2)~ ... ~zl(I) and the nj's accordingly. The upper 

limit has the form 
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Zl(I)t o for 0 ~ to ~ n (I) 

(9.11) zl(I)n(I)+zl( I _l/to-n( I») for n(I)~to~n(I) +n(l_l) 

Thus a unique set of ML~timates for the ß's exists if none of these inequalities are equa­

lities. 

Instead of drawing the convex extension of the support and checking if the observed 

point is on the boundary, one can, following an important result by Albert and Anderson 

(1984), check the existence and uniqueness of the ML~stimate by looking into the forma­

tion of the observations in the (p+ 1 )-dimensional plane spanned by the z's. It was proved 

by Albert and Anderson (1984), that there exists a unique, finite solution to the likelihood 

equations if and only if it is not possible to find a vector (ao, ... ,ap) with 

(al' ... ,ap):f=(O, ... ,O) such that 

(9.12) 

whenever x.=n., 
I I 

(9.13) 

whenever O<x.<n .. 
I I 

and 

(9.14) 

whenever X.=O. 
I 

aO+a1z1.+ ... +a Z . > 0 
I P pi -

aO+a1z1.+ ... +a Z . = 0 
I P pi 

aO+a1z1.+ ... +a z . < 0 
I P pi -

This result means that a set of observations xl' ... ,xI corresponding to I distinct vec­

tors of explanatory variables (zu , .. ,zpl)"",(zlI, ... ,zpI) is extreme in the sense that a 
A A 

unique and finite ML~stimate (ßo, ... ,ßp) does not exists, if and only if the inequalities 

(9.12) to (9.14) are satisfied. The advantage of this result is that one can check directly in 

a p-dimensional diagram if the given observations form an extreme combination. 

Consider thus the cases p=l and p=2. For p=l the inequalities (9.12) to (9.14) 
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means that there is a point a on the realline such that, either 

Zl' > a, whenever x.=n. 
I - I I 

Zl' < a, whenever X.=O 
I - I 

and 

Zl' = a, if 0 ( x. ( n. , 
I I I 

or the opposite inequalities hold. This simply means that only one of the ZIS, say zOl' have 

x. different from 0 or n. and for those ZI S which are smaller than zOl' either X.=O for all i 
I I I 

or x.=n for all i, and for those ZIS which are larger than zOl' either x.=n. for all i or X.=O 
I I I I 

for all i. Albert and Anderson (1984) termed this type of configuration quasi-eomplete 

separation of the data points. 

For p=2, the equalities (9.12) to (9.14) means that when satisfied there is a line 

(9.15) 

in the (zl"z2.)-plane which separates those vectors (zl"z2') for which x.=n. from those for 
I I I I I I 

which X.=O. One the line (9.15) x. may be less than n· and larger than O. 
I I 1 

For a general p, a configuration of XiS is extreme, if there exist a (p-l)-{fimensional 

plane which separates those vectors (z'l""'z, ) for which X.=O from those for which x.=n .. 
I Ip I I I 

In practice the test for an extreme configuration runs as follows: Let the rows of the 

matrix Zl be those 

(I,Z'l""'Z, ) I Ip 

for which O<x. <n.. Then the rank of Zl must be less than or equal to p, in order for 
I I 

(9.13) to be satisfied. 

This is obviously a necessary condition for the configuration to be extreme and it 

will, in most cases, suffice to check this condition. Thus if the rank of Zl is larger than p, 

the configuration is not extreme, and in the normal case, where there are more than p 
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vectors (Z'I""'Z. ) with O(x.(n., it often suffice to check this condition. 
I Ip I I 

Based on the likelihood function (9.7) it is possible to derive a goodness of fit test for 

the regression model. If the P.' s are unconstrained, the ML-estimates are 
I 

P. = x./n .. 
I I I 

The transformed likelihood ratio test statistic for comparing a model, where P. has the 
I 

parametric form (9.6) with a model, where P. is unconstrained is, therefore, 
I 

I X. n.-X. 
(9.16) Zo = 2 I; [X.ln---.!. + (n.-X.)ln(-I-I)] 

i=1 I ni I I n i 

I A A 

-2 I; [X.lnP. + (n.-X.)ln(l-P.)] 
i=1 I I I I I 

with 

A A P A A P A 

P. = exp(ßo+ I; ß.z .. )/[l+exp(ßo+ I; ß.z .. )] . 
I j=1 J JI j=l J JI 

The test statistic Zo is thus a goodness of fit test statistic for the regression model. If the 

ni's are reasonable large, Zo follows an approximate i -distribution with I-(p+ 1) degrees 

of freedom, since there are I unconstrained P. 's and p+ 1 ß's. The regression model is re-
I 

jected as a description of the data if the level of significance 

p = P(Zo ~ zo) 

computed in a i --distribution with I-p-1 degrees of freedom is sufficiently small. 

As an alternative to (9.16) one may use the Pearson test statistic 

A 2 A A 2 A 

Qo = E(X.-nP.) l(nP.) + E(n-X.-n(l-P.)) l(n(l-P.)), 
. I I I . I I I 
I I 

which is easily rewritten as 
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(9.17) 
A 2 A A 

QO = I: (x.-nP.) /(nP.(l-P.)). 
. 1 1 1 1 
1 

As for Zo' Qo is approximately i-distributed with I-p-1 degrees of freedom. 

Assuming that the explanatory variables are ordered according to relative influence 

on the response variable, a reasonable first step is to test the hypothesis 

H : ß = 0 pp' 

i.e whether the p'th variable is without influence. Let ßo' ß1" .. ,ßp_ 1 be the ML~stimates 

under H , i.e. let 
p 

Then ßo,ßl' ... ,ßp_ 1 are the solutions to the equations 

where 

in case A, and 

where 

in case B. 

n 

Y = E P 
• 1/ ' 

1/=1 
n n 
E y z. = E z. P , 

1/= 1 1/ JI/ 1/= 1 JI/ 1/ 
j=1, ... ,p-1, 

p-1 p-1 
P = exp(ßo+ E ß.z. ) / [l+exp(ßo+ E ß.z. )] 

1/ . 1 J JI/ . 1 J JI/ 
J= J= 

x = En.P., 
• . 1 I 

I 

Ex.z .. = En.P.z .. , j=1, ... ,p-1 
i I J1 i 1 1 JI 

p-1 P-1A 
P. = exp(ßo + E ß.z .. )/[1+exp(ßo + E ß.z .. )] 

1 j =1 J J1 j =1 J J1 
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The transformed likelihood ratio test statistic for testing H against the model with 
p 

all explanatory variables included is 

A A A 

(9.18) Zp = - 2InL(ßo,ßl' ... ,ßp_1'0) + 2InL(ßo,ßl' ... ,ßp). 

According to theorem 3.18, Z is approximately l-distributed with one degree of free­
p 

dom. If the observed value of Z is found to be non..,gignificant a logistic regression model 
p 

with ß =0 describes the data as weH as a model with all p explanatory variables included. 
p 

The next step is then to test whether ß 1 can be set to zero without any loss in goodness p-

of fit between data and model, and so on. 

Sometimes there are strong prior reasons to believe that several of the ßI S are zero. 

Suppose for example that prior beliefs suggest the hypo thesis 

H( ): ß +1=···= ß = 0 . r p-r p 

Under H(r) a model with only the first p-r explanatory variables included describes the 

data as weH as a model including all p explanatory variables. This hypo thesis can be 

tested by 

A A A 

(9.19) Z(r) = - 21nL(ßo,ßl' ... ,ßp-r'0' ... '0) + 21nL(ßo,ß1,···,ßp) 

which is approximately l-distributed with r degrees of freedom. 

The ML-€stimates ßl' ... ,ßp-r' constrained by H(r)' satisfy 

L(ßO,ß1,.·.,ß ,0, ... ,0)=maxL(ßO,ß1, .. ,ß ,0, ... ,0) p-r p-r 

Since all test statistics are differences between the values of -21nL with various argu­

ments, it is a reasonable starting point for an analysis to list the value of -21nL for all 

models. 
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Example9.1 

The Institute for Building Research in Denmark made in 1970 an investigation of the 

indoor dimate in Danish Schools. The students in a number of school dasses were asked 

whether they feIt that the indoor dimate at the moment was pleasant or not so pleasant. 

SimuItaneously a number of objective measurements were taken of the actual climate in 

the dass room, namely 

T: Temperature 

M: Degree of moisture 

C: Amount of carbondioxide in the air 

F: Amount of fresh air 

D: Amount of dust 

V: Degree of ventilation 

Table 9.1 shows the number of students in the dass, the number of yes-answers to the 

question above and the values of the 6 indoor climate indicators. 

Table 9.1. Number of students claiming that the indoor climate is pleasant together with 
60bjective indoor climate indicators for three Danish school classes 
observed on differents days. 

Number of Number 
students in of yes 

Class Date the class answers T M C F D V 

7A 4/3 19 18 22.0 30 0.09 8.5 0.20 230 
7A 3/3 20 6 21.5 25 0.11 6.1 0.08 230 
7A 2/3 19 4 21.5 25 0.11 4.8 0.06 230 
8A 4/3 18 13 18.5 25 0.09 9.2 0.07 236 
8A 3/3 14 12 20.0 25 0.05 8.7 0.08 236 
8A 2/3 18 4 20.0 25 0.11 5.2 0.12 236 
8A 18/3 17 14 20.5 30 0.08 13.1 0.09 249 
8A 17/3 19 18 21.0 30 0.08 12.5 0.06 249 
9B 18/3 16 9 21.5 30 0.09 8.7 0.07 215 
9B 17/3 18 8 21.0 30 0.07 9.3 0.09 215 

Source: Unpublished data from the Danish Institute for Building Research. 
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These numbers can be analysed by a logistic regression model with p=6 and a yes­

answer as response variable. The estimates and their standard errors are shown in table 

9.2. 

Table 9.2. ML-€stimates and their standard errors for a logistic regression model 
applied to the data in table 9.1. 

Variable Parameter Estirnate Standard error 

Intercept Po 4.656 9.064 
T:Ternperature Pi 1.320 0.342 
M:Moisture P2 -1.141 0.29 
C:Carbondioxide P3 20.29 17.7 
F:Fresh air P4 1.449 0.33 
D:Dust P5 25.305 7.56 
V: Ventilation P6 -0.0705 0.036 

The form of the convex extension of the support can be illustrated by this example if 

we assume that the only explanatory variable is F. Table 9.3 show the values of z4.,x.,n. 
I I I 

and the cumulative sums necessary to establish the lower and upper limits (9.10) and 

(9.11) for t1 given the value of to' after the observations have been rearranged according 

to z-values and i=5 and 9 with the same z-value have been merged. 

Tabel 9.3. Cornputations of the curnulative sums (9.10) and (9.11) for the data in 
table 9.1 and explanatory variable F. 

z4i x· n· z4ixi z4ini Surn frorn Surn from 
1 1 below above 

4.8 4 19 19.2 91.2 1522.5 
5.2 4 18 20.8 93.6 184.8 1431.3 
6.1 16 20 97.6 122.0 306.8 1337.7 
8.5 18 19 153.0 161.5 468.3 1215.7 
8.7 21 30 182.7 261.0 729.3 1054.2 
9.2 13 18 119.6 165.6 894.9 793.2 
9.3 8 18 74.4 167.4 1062.3 627.6 

12.5 18 19 225.0 237.5 1299.8 460.2 
13.1 14 17 183.4 222.7 1522.5 

Surn 116 178 1075.7 1522.5 
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Since tO=116 is between 19+18+20+19+30=106 and 106+18=124 when we sum from 

below and between 17+19+18+18+30=102 and 102+19=121, when we sum from above, 

the relevant inequalities ernerging from (9.10) and (9.11) are 

729.3 + 10 . 9.2 = 821.3 ~ t 1 

and 

1054.2 + 14 . 8.5 = 1163.2 ~ t 1. 

The value 1057.7 of t 1 does not attain any of these limits, such that the likelihood equa­

tions have a unique solution in this case. The convex set enveloped by inequalities (9.10) 

and (9.11) is shown in fig. 9.1. The observed point is marked by a dot. 

500 

50 100 150 

Figur 9.1. The boundary of the support for the indoor climate data, when F is the 
only explanatory variable. 
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Suppose next that there are two explanatory variables in the model, namely T: Tem­

perature and M: Moisture. For this case it is somewhat more complicated to derive the 

limits of the convex extension of the support. To give an impression of the form of its 

shape, we have constructed the boundaries for the support for 6 values of to' The results 

are shown in fig.9.2. 

The most interesting features on figur 9.2 are the three points marked by +,ß and 

*. The point + corresponding to the observed value (t1,t2)=(2413.0, 3235) is weH within 

the boundaries. The point * with (t1,t2)=(2472.5, 3235) is on the boundary, because no 

combination of XIS can give a t1-value higher than 2472.5. Table 9.4 column 4 show one 

combination of XIS that leads to t1 =2472.5. 
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Figur 9.2. The boundaries of the support for tO=1O,30 
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Table 9.4. Observed x-val ues w i th t 2=3235 and t 1 equal to ei ther (a) 2472.5 or 

(b) 2449.5. 

x· 
1 

n· 
1 zli z2i (a) (b) 

19 22.0 30 19 19 
20 21.5 25 20 20 
19 21.5 25 19 19 
18 18.5 25 0 10 
14 20.0 25 5 0 
18 20.0 25 5 0 
17 20.5 30 0 16 
19 21.0 30 16 0 
16 21.5 30 16 16 
18 21.0 30 16 16 

t 1= 2472.5 2449.5 

t 2= 3235 3235 

What characterizes (a) is, that the x's are placed where both z1i and z21 have high 

values and no redistribution of the x's can make the value of t 1 higher given the value 

3235 of t2. Column (b) shows on the other hand a distribution of the x's for which 

t 1 =2449.5 and its obvious that the value of t 1 can be increased. The important point to 

stress is that there is no simple rule by which to determine if (t 1,t2) is on the boundary. 

Even for t o fixed at 116, t 1 does not attain its highest value, which is 2480.0, for the 

boundary point (2472 .. 5, 323.5). It is neither a criterion that an observed value of x. is 
I 

zero, since the point (2449 .. 5, 323.5), marked by fl. on fig. 9.2, which is in the interior, is 

generated by a set of x's containing more zeros than the boundary point (2472 .. 5, 3235). 

In order to check whether the configuration with all six explanatory variables inclu­

ded is extreme, we form the matrix Zl' which, since none of the x.'s are equal to 0 or n., 
I I 

becomes 
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1 22.0 30 0.09 8.5 0.20 230 

1 21.5 25 0.11 6.1 0.08 230 

1 21.5 25 0.11 4.8 0.06 230 

1 18.5 25 0.09 9.2 0.07 236 

Zl = 1 20.0 25 0.05 8.7 0.08 236 

1 20.0 25 0.11 5.2 0.12 236 

1 20.5 30 0.08 13.1 0.09 249 

1 21.0 30 0.08 12.5 0.06 249 

1 21.5 30 0.09 8.7 0.07 215 

1 21.0 30 0.07 9.3 0.09 215 

It can be checked by numerical methods that the rank of Z1 is 7 and it follows that the 

configuration is not extreme, such that a unique set of ML-€stimates in fact exists. 

Fortunately boundary points in general corresponds to solutions of the likelihood 
A 

equations, where one or more ß is infinitely large. Hence a boundary point will in almost 

all cases reveal itself by a numerical estimation procedure, which diverges. 
A A 

Since ßa and ß6 are less than twice their standard errors, table 9.2 seems to indicate 

that the amount of carbondioxide and the degree of ventilation may be omitted in the 

model as explanatory variables. The tests for these hypotheses can be derived from table 

9.5, which shows the estimated values of -21nL under various models. 

Table 9.5. The transformed likel ihood rat io and the observed val ues of the I ike­
lihood ratio test statistic for various models applied to the data in 
table 9.1. 

Variables 
included -21nL z df Level of significance 

Saturated 169.581) 
TMCFDV 176.05 6.47 3 0.091 
TMFDV 177.29 1.25 1 0.264 
TMFD 179.87 2.58 1 0.108 
TMF 190.72 10.85 1 0.001 

Note: 1) equal to the first term in (9.16). 

The conclusion of the analysis is that temperature, degree of moisture, the amount of 

fresh air and the amount of dust all makes significant contributions to the description of 

the indoor climate as perceived by the students. L::,.. 
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For the logistic regression model (9.6), (9.7) it is assumed that the x.'s follow inde­
I 

pendent binomial distributions. This assumption is not satisfied, if the observations are a 

result of a clustered or stratified sampling design. How the statistical procedures are ad­

justed to account for such situations are discussed in Roberts, Rao and Kumar (1987). 

In other situations model departures are due to over dispersion, Le. the variance of 

Y y can not be described by the binomial variance 

whatever the choice of the P y's. In such situations Efron (1986) has suggested to base the 

analysis on the so----called double exponential family, introduced by Diaconis and Efron 

(1985). 

9.2. Regression diagnostics 

In section 3.7 it was shown that the likelihood equations for a generalized linear model are 

equivalent with the normal equations (3.64) for a weighted least square solution based on 

the adjusted y-values (3.65). Since the y-values are readjusted in each iteration of the 

estimation procedure, the method is widely known as an iterative weighted least square 

meth()(l. We now specify the method in details for the logistic regression model (9.6), 

(9.7) for I independent binomials. The sufficient statistics are 

and the likelihood equations are 

with zOi=l, i=l, ... ,1. 

t. = u.z .. , j=O, ... ,p 
J i I JI 

E[T.] = ~n.P.z .. , 
J i I I JI 

Hence in the general linear model 

(9.20) K'( T.) = n.P. 
I I I 

with 
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P. 
Ti = In I-P. 

I 

and P. given by (9.6). 
I 

Accordingly 

(9.21 ) 
ßP. OT. 1 

I 1- ) K"( r.) = n. -=- = n(-mr) = n.P.(I-P. 
I I uT. ur. I I I 

I I 

and the normal equations (3.57) become 

(9.22) 

with w'o=n'P'o(I-P.o) and the adjusted x'values x.o defined as 
I I I I I 

(9.23) 
x.-n.P·o p 

I I I ~ ß 
x·o = + L.J IOzl" 

I w jO 1=1 I 

The iterative weighted least squares procedure thus prescribes in each iteration to com­

pute the adjusted x-values (9.23) and then obtain least squares estimates of the ß's using 

the wjQ's as weights. On matrix form (9.22) become 

(9.24) 

where Z has elements z .. ,j=O, ... ,p, i=I, ... ,I Xo is a vector with elements x.o' i=I, ... ,I and p I 

Wo a diagonal matrix with w lO, ... ,wIQ in the diagonal. 

As shown by Pregiborn (1981) the fact that the regression parameters are obtained 

by a least square method allows for the definition of a number of diagnostics similar to 

those uses in modern regression analysis, cf. also McCullogh and NeIder (1983), chapter 4 

and Jennings (1986). 
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Residuals for the logistic regression model can be defined in various ways. Most com­

monly used are the squared roots of the individual terms in (9.17), i.e. 

(9.25) o. = (x.-n.P.)/4nP.(I-P.). 
~ I I I I I 

Pregiborn (1981) and McCullogh and NeIder (1983) also consider square roots of the 

individual terms in (9.16) defined as 

(9.26) 
r:::- A A .I. 

d. = + 12{X. [lnx.-In(n.P.)] + (n.-x.)[ln(n.-x.)-ln(n.(I-P.))] p , 
I - I I ll I I I I I I 

A 

where "+" is used, when x.>n.P. and "_", when x.<n.P .. Both q. and d. are useful as 
I ll I ll I I 

measures of the influence of the i'te term on the value of the test statistics. In order to 

evaluate their relative influence, it is, however, important that both ~ and zi are properly 

scaled. 
A 

As regards q., we can use theorem 3.15 to derive the variance of X.-nP .. The deriva-
I I I 

tives of P. and (I-P.) with respect to ß. are 
I I J 

oP./oß. = z .. P.(I-P.) 
I J JI I I 

and 

o(I-P.)/oß· = -z .. P.(1-P.), 
I J JII I 

which also covers the case j=O, if zOi is set equal to 1. It then follows from (3.48) that 

(9.27) 
A _ P P n i 2 jk 

var[X.-n.P.) - n.P.(I-P.- E E - Z .. Zk.P.(1-P.) m ) 
I I I I I I j=O k=O n JI I I I 

where mjk are the inverse elements of the square matrix M of dimension p+ 1 with ele-

ments 



I n i 2 2 I n i 
m·k = E --Z .. Zk.(P.(I-P.) +P . (I-P.))= E -Z .. Zk.P.(1-P.) 

J i=l n JI I I I I I i=l n JI I I I 

The matrix M can be written as 

M= kzwz', 
where W is diagonal with diagonal elements n.P.(I-P.). 

I I I 
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If, therefore, z. is the i'th column of Z, the standardized residual based on q. become 
I I 

'" (9.28) r.= (x.-n.P.)/ (1., 
I I I I I 

where 

"'2 _ I ,1 
(1. - n.P.(I-P.)(I--n.P.(I-P.)z.~ z.). 

I I I I n I I I I I 

The standardized residual r. is approximately distributed as a standard normal deviate. 
I 

Since approximately 

the variance of d. in (9.26) can be estimated by 
I 

T~ = 1-.!. n.P.(1-P.)z~ ~lz. = I-h .. , 
I n I I I I I 11 

such that the standardized residual based on d. is 
I 

* (9.29) r. = d./fI=IC. 
I I 11 

* Both r. and r. are useful as diagnostics for detecting model deviations in logistic regres-
I I 

si on analysis. Their role as diagnostics are primarily to indicate which of the observed 

responses contribute most to a significant test statistics. 

Note that with w.=n.P.(I-P.), (9.27) can be written 
I I I I 
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All 
var[X.-nP.] = w.(l- - z~(ZWz')- z.w.)) 

I I I nl II 

which is the diagonal element in the matrix 

(9.30) W(I- H), 

where 

H = 1. WZ'(ZWZ,)-lZW . 
n 

The matrix H is known in applied regression analysis as the hat-matrix. As in ordinary 

regression analysis, the elements of the hat-matrix are the necessary adjustments of the 

residuals as compared to the estimated variance 

A A 

var[X.] = nP.(l-P.). 
I I I 

The diagonal elements 

(9.31 ) h .. = 1. w.z~(ZWZ,)-lz.w. 
11 nil II 

of the hat-matrix are also often used as diagnostics. A large value of h .. indicate a data 
11 

point, where the variance of the residual deviate more from the binomial variance than for 

other data point. Such a data point can, therefore, influence the evaluation of the fit of 

the model in an uncharacteristic way. 

While the standardized residuals (9.28) or (9.29) tell us whether an observed number 

x. differ significantly from the expected number n.P. under the logistic regression model, 
I I I 

the term h .. is an indicator of how much the variance of the residual is influenced by an 
11 

observation x .. 
I 

In applied regression analysis a third widely used indicator is Cooks distance. An 

observation Xi is regarded as influencing the estimation of the parameters ßo,ßl'" .. ,ßp if 
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the estimates change significantly when x. is removed from the dataset. Cook (1977) sug-
1 

gested to compare the original ß--estimates with a new set of ß--estimates, say 

(/Jo(i) , ... ,p(i») obtained after x. has been removed from the dataset. As a measure for the 
p 1 

A _ A A A(iL A(i) A(i) . 
change from ß~(ßo,· .. ,ßp) to ßo -(ßo , ... ,ßp ), Cook suggested to conslder 

A 

where V ß is the variance matrix of the ß's. In a logistic regression model the variance 
A 

matrix of ß is 

hence Cook's distance becomes 

D. = 1:. (iJ-rJi»)'ZWZ'(p-{Ji») . 
1 P 

Pregiborn (1981) showed that D. can be approximated by 
1 

1 A~ A A 2 
D. = - (x.-n.P.) h .. j[n.P.(1-P.)(1-h .. ) ]. 

1 pli I 11 1 1 J 11 

or due to (9.28) 

1 2 j D. = - 1'.h .. (1-h .. ). 
I Plll 11 

Whether the Cooks distance differ from r~ jp thus depends on the value of h ... For h .. = -21, 
11111 

1 2 D. = -1'. . 
1 P I 

An observation, which influence the ß--estimates more than the other observations is 

often referred to as an outlier. The easiest way to spot outliers is on plots of the residuals 

against the explanatory variables. Some outliers will not reveal themselves in this way, 

however, if they are due to a combination of values of two explanatory variables. 

If a residual analysis shows that a logistic regression model does not fit the data, it is 

a possibility that a transformation of the response variables 01' of the logit 
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In(P v/(I-P V)) , 

will yield more satisfactory residual diagrams. One attractive candidate for a transforma­

tion of the logit is the power transformation due to Box and Cox (1964). 

With A being a parameter to be estimated, the Box-Cox tranformation is given by 

{
ln(p / (I-P )) for A=O 

gA {ln(P v/(I-P II))} = -1 [v[ P v 1 r 1 
A I=J> -1 for MO 

v 

A discussion of the application of the Box-Cox transformation can be found in Guerro 

and Johnson (1982). Kay and Little (1987) discuss the possibility of transforming the ex­

planatory variables to obtain a better fit. 

Example 9.1. (Continued) 

The final model to be accepted for the indoor climate data was 

where T=temperature, M=moisture, F=fresh air and D=dust contributed to the des­

cription of the variation in the perceived indoor climate. The ML-estimates of ßO,ßl'ß2,ß4 

and ß5 under the model are 

A 

ß = 0 
-11.16 (4.08) 

A 

ß = 1 
1.042 (0.284) 

A 

ß2 = --0.703 (0.168) 
A 

ß4 = 0.950 (0.171) 
A 

ß5 = 17.53 (6.08) 
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with standard errors in parantheses. 

Table 9.6 shows the logits ln(x.j(n.-x.)), the diagonals h .. of the hat matrix, the 
111 II 

* standardized residuals r., the alternative residuals r. and Cook's distance D .. 
1 1 1 

Table 9.6. Logits, diagonals of the hat matrix, residuals and Cook's distances 
for the data of table 9.1 with Temperature, Moisture, Fresh Air, and 
Dust as explanatory variables. 

Residuals Cook's 
distance 

* Case Logit h .. 
11 r· 1 

r· 1 
D. 

1 

1 2.89 0.80 1.37 1.49 1.83 
2 1.39 0.54 1.37 1.42 0.54 
3 -1.32 0.55 -1.64 -1. 70 0.83 
4 0.96 0.76 1.72 1. 76 2.31 
5 1. 79 0.24 0.02 0.02 0.00 
6 -1.25 0.63 -1.19 -1.22 0.59 
7 1.54 0.20 -3.12 -2.35 0.60 
8 2.89 0.34 0.39 0.41 0.02 
9 0.25 0.50 1. 71 1.69 0.73 

10 -0.22 0.45 -0.78 -0.78 0.12 

The residuals in table 9.6 show that only case number 7 has a significantly large va­

lue. Nevertheless, case 7 does not have an especially large value of Cook's distance. Hence 

case 7 can be expected to contribute to the value of the test statistic, but does not 

influence the values of the parameter estimates more than other cases. 

Cases 1 and 4 have, however, relatively high values of Cook's distance. Accordingly 

these two cases can be expected to influence the parameter estimates. That cases 1 and 4 

indeed correspond to outlying observations can be seen directly from the residual plots fig. 

9.3, where the residuals r. are plotted against the four included explanatory variables. 
J 

None of the four plots in fig. 9.3 show systematic patterns apart from the large negative 

residuals for case 7. Two points differ, however, substantially from the other points. On 

the plot for Temperature the point for case 4 with Temperature =18 is clearly below the 

rest of the points, while on the plot for Dust the point for case 1 with Dust=0.20 is clearly 

above the other points. The two large values of Cook's distance thus correspond to out-



294 

Hers. In order to demonstrate the relative influence of cases 1, 4 and 7 on the parameter 

estimates and the test statistics, logistic regression analyses were carried out with these 

three cases excluded in turns. Table 9.7 show the results. 

Table 9.7. Regression analyses with case 1,4 and 7 respectively excluded. 

Without 
All cases Case 1 Case 4 Case 7 

Intercept -11.16 .:..{).98 -20.92 -14.20 
Temperature 1.04 0.83 1.50 1.28 
Moisture -0.70 -0.62 -0.70 -0.85 
Fresh Air 0.95 0.84 0.94 1.21 
Dust 17.53 2.96 19.79 19.96 

z 10.3 8.36 7.33 3.69 
df 5 4 4 4 

P 0.067 0.079 0.120 0.449 

res 
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Fig. 9.3. Residuals plot ted against the explanatory variables Temperature and Moisture. 
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.~es 

: 1--------;--:------------------------------------;--· 

* I 
0+1----~*~· --------------------

-, 1 

I * 
-2 t----------------------------------------------------· 

I 
I 
I 
I 
I -31 
I 

* 

-4J~~'----~i----~'----~,-
0.05 0.10 0.15 0.20 

dust 

Figur 9.3. Residuals plot ted against the explantory va.riables Fresh Air and Dust. 

As expected exclusion of case 1 change the ß-€stimate for Dust dramatically and the 

exclusion of case 4 change the ß-€stimate for Temperature by 50%. The exclusion of case 

7 only change the ß-€stima.tes in a moderate manner, but the value of the test statistic is 

decreased by more than 60%, thus dramatically changing the fit of the model. 

The results in table 9.7 confirm the usefulness of both the standardized residuals and 

of Cook's distance as regression diagnostics.6 . 



296 

Example9.2 

In the Danish Welfare Study from 1974, a sampie of 2827 employed persons were cross-­

classified according to following 4 variables 

Employment: 

Sex: 

Sodal rank: 

Urbanization: 

l=Private employment 

O=Public employment 

l=Male 

2=Female 

2=Rank group land 11 

3=Rank group III 

4=Rank group IV 

5=Rank group V 

1 =Copenhagen 

2=Suburbs of Copenhagen 

3=Cities 

4=Countryside 

We regard Sex, Sodal rank and Urbanization as explanatory and want to study 

whether the percentage of persons, which are privately employed, depends on these 

variables. Table 9.8 shows the data with x. being the number of privately employed 
I 

persons and n. the total number of employed persons for combination (z'1,z'2,z'3) of the 
I I 1 1 

explanatory variables. 
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Table 9.8. Number of privately employed, xi' among a11 employed persons, ni' in 
a 1974 Danish sample, for each combination of sex, social rank and 
urbanization. 

Sex Social rank Urbanization 

Case x· n· z1i z2i Z3i I 1 

1 7 9 1.00 2.00 3.00 
2 27 34 1.00 2.00 4.00 
3 12 15 1.00 2.00 2.00 
4 7 12 1.00 2.00 1.00 
5 20 21 1.00 2.00 5.00 
6 12 23 1.00 3.00 3.00 
7 41 69 1.00 3.00 4.00 
8 17 33 1.00 3.00 2.00 
9 13 23 1.00 3.00 1.00 

10 24 36 1.00 3.00 5.00 
11 24 58 1.00 4.00 3.00 
12 64 162 1.00 4.00 4.00 
13 49 93 1.00 4.00 2.00 
14 41 82 1.00 4.00 1.00 
15 48 102 1.00 4.00 5.00 
16 21 49 1.00 5.00 3.00 
17 48 167 1.00 5.00 4.00 
18 23 44 1.00 5.00 2.00 
19 18 40 1.00 5.00 1.00 
20 58 142 1.00 5.00 5.00 
21 21 36 2.00 2.00 3.00 
22 42 87 2.00 2.00 4.00 
23 34 62 2.00 2.00 2.00 
24 14 25 2.00 2.00 1.00 
25 24 40 2.00 2.00 5.00 
26 6 24 2.00 3.00 3.00 
27 30 98 2.00 3.00 4.00 
28 12 46 2.00 3.00 2.00 
29 7 21 2.00 3.00 1.00 
30 10 41 2.00 3.00 5.00 
31 21 78 2.00 4.00 3.00 
32 52 226 2.00 4.00 4.00 
33 20 75 2.00 4.00 2.00 
34 23 68 2.00 4.00 1.00 
35 36 162 2.00 4.00 5.00 
36 7 51 2.00 5.00 3.00 
37 20 164 2.00 5.00 4.00 
38 9 42 2.00 5.00 2.00 
39 8 33 2.00 5.00 1.00 
40 23 234 2.00 5.00 5.00 

Totals 993 2827 1412.00 3619.00 3351.00 

Source: Data obtained from the databased of the Danish Welfare Study. Cf.Hansen (1978). 

Table 9.9 summarizes a logistic regression analysis of these data. 
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Table 9.9. Parameter estimates and test statistics for a logistic regression 
analysis of the data in table 9.8. 

Variable Parameter Standard error 

Intercept 3.586 r· 251j Sex -1.119 0.086 
Social rank -0.573 0.044 
Urbanizat ion -0.073 0.032 

z = 52.69 df = 36 p = 0.036 

The significance level of the goodness of fit test statistic indicates that the regression 

model does not fit the data in a satisfactory way. In order to evaluate the reasons für the 

lack of fit, the residuals and Cook's distances are shüwn in table 9.10. 

3 i 

, ~ ...................... ' ...•.. , ..................... ' .. 

, j ~: ' ':.:" .: 
O+I------~------~t~-------------

I * **.1< * 
., 1 

* 
* * 

* ** 
* * 

- 2 r"------------------- __ o_,j( - --- ------ - - - ------------- --- ---

I 

I 
-3~~~,----~,--~--~r_--~--~--_r_, 

-3 -2 -I 0 2 3 

l09,I 

res 
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1 * 
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I : 

* 

* 
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* 
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Figur 9.4. Standardized residuals plütted against the logits and Sex. 
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Figur 9.4. Standardized residuals plot ted against Sodal rank and Urbanization. 

299 

Four of the residuals are larger than 2. In figur 9.4 the residuals are plotted against 

the logits and against the three explanatory variables. The second largest residual for case 

number 5 is connected with the largest logit. The Cook distance for this observation is, 

however, not particularly large. The residual plot for Sex shows, what is also obvious from 

the table, that the model fits better for women than for men. 
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* Table 9.10. Logits L., standardized residuals r., alternative residuals r· and 
I 1 1 

Cook I s distances Ci for the data in table 9.8. 

* Case L. r· r· C. 
1 1 1 1 

1 1.253 0.188 0.190 0.000 
2 1.350 0.788 0.809 0.019 
3 1.386 0.331 0.337 0.001 
4 0.336 -1.641 -1.523 0.031 
5 2.996 2.431 2.834 0.138 
6 0.087 -1.090 -1.074 0.013 
7 0.381 -0.333 -0.333 0.004 
8 0.061 -1.625 -1.591 0.051 
9 0.262 -1.021 -1.001 0.020 

10 0.693 0.908 0.918 0.023 
11 -0.348 -1.189 -1.193 0.027 
12 -0.426 -2.125 -2.136 0.281 
13 0.108 0.393 0.393 0.008 
14 0.000 -0.526 -0.525 0.022 
15 -0.118 0.377 0.376 0.009 
16 -0.288 1.171 1.154 0.030 
17 -0.908 -1.449 -1.468 0.172 
18 0.091 2.218 2.174 0.141 
19 -0.201 0.897 0.889 0.034 
20 -0.370 2.595 2.541 0.635 
21 0.336 1.088 1.090 0.032 
22 -0.069 0.099 0.099 0.001 
23 0.194 0.582 0.583 0.020 
24 0.241 0.288 0.288 0.002 
25 0.405 1.890 1.888 0.155 
26 -1.099 -1.109 -1.140 0.010 
27 -0.818 -0.760 -0.766 0.021 
28 -1.041 -1.641 -1.685 0.064 
29 -0.693 -0.557 -0.563 0.005 
30 -1.131 -1.137 -1.167 0.028 
31 -0.999 0.654 0.645 0.009 
32 -1. 208 0.174 0.174 0.002 
33 -1.012 0.306 0.304 0.003 
34 -0.671 1.454 1.417 0.115 
35 -1.253 0.306 0.304 0.006 
36 -1.838 -0.266 -0.269 0.001 
37 -1.974 -0.764 -0.779 0.033 
38 -1.299 0.995 0.955 0.020 
39 -1.139 1.153 1.098 0.033 
40 -2.216 -1.768 -1.841 0.320 

It is the plot for Social rank, which reveals the most distinct model departure. The 

line on the graph connects the average residual value for each sodal rank group. Such a 

curved development of the averages indicate that the dependency of sodal rank is not 

linear. The plot for Urbanization does not show systema.tic model depa.rtures. 
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Social rank was scored 2,3,4,5 for the four categories, but as the residual plot shows, 

the logits depend in a non-linear way on this scoring. Since Social rank is categorical, we 

can use the dummy variabel method in section 8.2 to check the scoring. Table 9.11 shows 

the results from a logistic regression analysis with explanatory variables Sex and Urbani­

zation combined with the dummy variables SoclI, SocIII and SocIV defined as 

{
I for Social rank =2 

SocII = 0 for Social rank =3,4 

-1 for Social rank =5 

{
I for Social rank =3 

SocIII = 0 for Social rank =2,4 

-1 for Social rank =5 

{
I for Social rank =4 

SocIV = 0 for Social rank =2,3 

-1 for Social rank =5 

Table 9.11. A logistic regression analysis with dummy variables for Social rank. 

Variable Estimate Standard error 

Intercept 1.634 0.175 
Sex -1.144 0.087 
SocII 1.079 0.096 
SocIII 0.033 0.087 
SocIV -D.312 0.066 
Urbanization -D.076 0.032 

z = 42.25 df = 34 p=0.156 

The estimates for Sex and Urbanization are in agreement with table 9.9 but the esti­

mates for SoclI, SocIII and SocIV show, that the proper scoring of the categories should 

put more distance between rank groups 1-11 and rank group III than between rank groups 
A 

III and IV. With dummy variables SocII, SocIII and SocIV, chosen as they are, the ß's 
A 

should be compared with ß=-1.079-D.033+0.312=0.800 for rank group V. Hence the 
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A 

distance between the ß's of rank groups IV and V is about the same as between rank 

groups III and IV. In fact with a scoring of sodal rank 0,3,4,5 rat her than 2,3,4,5, a logis­

tic regression model fits the data weH. Returning to table 9.10, we note that the highest 

values of Cook's distance are for case 20 and case 40, i.e. the two cases with lowest sodal 

rank and lowest degree of urbanization. Table 9.12 summarizes different logistic regres­

sion analyses with cases or explanatory variables omitted. Both the removal of case 20 

and of case 5 improves the fit of the model, but does not change the values of the ß-esti­

mates significantly. A large value of Cook's distance does not, therefore, correspond to an 

outlier. Case 5 is one of the observations in Sodal rank group 1-11, which as we saw con­

tributed most to the lack of fit. If this case is omitted the fit improves considerable. 

The model without Urbanization fits the model as weH as the original model. Hence 

Urbanization only contribute in a marginal way to explain the differences in percentage of 
A A 

privately employed persons. The signs of ß1 and ß2 are as expected. Women are more 

often privately employed and the higher the sodal rank, the higher the percentage of pri­

vately employed . .c::.. 

Table 9.12. Logistic regression analyses with case 20, case 40 and Urbanization 
removed compared with the original regression analysis. 

All cases Without All cases without 
case 20 case 5 urbanization 

Intercept 3.586 3.661 3.485 3.411 
Sex -1.119 -1.071 -1.090 -1.134 
Social rank -D.573 -D.597 -D.551 -D.587 
Urbanization -D.073 -D.096 -D.083 

z 52.69 46.16 44.79 57.87 
df 36 35 35 37 
Level of 
significance 0.036 0.098 0.124 0.016 

A very critical survey of various suggestions for residuals in logistic regression analy­

sis is due to Jennings (1986). He especially emphasize the differences of substancial cha­

racter between residuals in regressions analysis based on data with normally distributed 

error terms and logistic regression analysis. 
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Johnson (1985) discussed diagnostics which are especially important when judging 

the influence of the various data points on predictions. Various methods for making 

graphs of regression diagnostics for logistic regression are surveyed by Landwehr, 

Pregiborn and Shoemaker (1984). 

Fowles (1987) suggested to apply smoothing of the data to overcome the discrete 

nature of the binary responses, which is known to hamper residual plots in logistic regres-

sion. 

9.3 Predictions 

In the case of logistic regression the response variable is binary. The interesting quantity 

to predict is, therefore, the probability under the model of obtaining the response yv=l 

given the values of the explanatory variables. Under the logistic regresssion model this 

probability is estimated as 

A A " p" p" 
P = P(zl , ... ,Z ) = exp(ßO+ E ß·z. )/[l+exp(ßO+ E ß·z. )] 

v v pv j = 1 J JV j = 1 J JV 

for combinations of the observed explanatory variables. Let now zlO, ... ,zpO be any given 

combination of the explanatory variables, observed or not. Then the response is 1 with 

estimated or predicted probability 

It is a common practiee also to estimate the logit 

(9.32) 

A 

For a given set of explanatory values zlO, ... ,zpo' go represents a linear predictions based 
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A 

on the model. Approximate confidence limits for Po or go can be derived from the 
A A 

asymptotic distribution of the ML-estimates (ßo, ... ,ßp)' by an application of theorem 3.7. 
A A 

Let var[gol be the asymptotic variance of go' and let 

(9.33) 

Then go is with approximate level of confidence 1-0:' contained in the interval 

(9.34) 

A A A 

where var[gol is var[gol with the ß's replaced by their estimates. 

Confidence limits for P o=exp(go)/[1+exp(go)l are obtained by transforming the li­

mits in (9.34) by P=exp(g)/[l+exp(g)J. 

Example 9.1 (Continued) 

Table 9.13 show the confidence limits for P. based on the observed values of temperature, 
1 

moisture, fresh air and dust. 

Table 9.13. Confidence limits for the probability of observing Yv=l for the 

observed value zl' z2' z4 and z5 of explanatory variables T,M,F and D. 

zl z2 z4 z5 Lower limit p. 
1 

Upper limit 

22.0 30 8.5 0.20 0.709 0.906 0.974 
21.5 25 6.1 0.08 0.542 0.705 0.829 
21.5 25 4.8 0.06 0.194 0.328 0.499 
18.5 25 9.2 0.07 0.421 0.626 0.793 
20.0 25 8.7 0.08 0.739 0.855 0.925 
20.0 25 5.2 0.12 0.162 0.301 0.488 
20.5 30 13.1 0.09 0.889 0.959 0.985 
21.0 30 12.5 0.06 0.824 0.929 0.973 
21.5 30 8.7 0.07 0.259 0.414 0.588 
21.0 30 9.3 0.09 0.362 0.513 0.661 

Note that the limits are not symmetrie. The confidence limits provide us with a dear 

pieture of the predictive power of the model. With the given data the uncertainty concer-
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ning the value of P. for given values of the explanatory variables is thus between 0.025 
1 

and 0.205. 6.: 

Irnrey, Koch, Stokes (1982) contains a number of illuminating examples of logistic 

regression analyses. 

9.4 Polytomous response variables 

The simple logistic model does not apply if the response variable has several categories. 

One possibility, often suggested, is to form a set of logistic transformations by taking the 

categories of the response variable two by two. Let Y v with response categories t=l, ... ,T, 

be a polytomous response variable corresponding to the values zl , ... ,Z of the v pv 

explanatory variables. The Y v's are then independent with distribution 

(9.35) P(Y = t IZ1 , ... ,Z ) = Pvt' t=l, ... ,T, v v pv 

T 
satisfying ~ Pvt=l. It is then possible to formulate various sets of T-1 logistic regression 

t=1 

models. One possibility is 

(9.36) [ 
P vt]_ (t) P At) _ 

In r-rr-- - ßo + ~ p~ z. , t-1, ... ,T-1. 
l-r vt j=l J JV 

Other possibilities are 

(9.37) [ P vt] (t) P dt) In ~_ = ßo + ~ p; z. , t=1, ... ,T-1 , 
l-r vT j=1 J JV 

[ 
P vt]_ (t) P At) _ 

In ~ - ßo +.~ p; z.v' t-1, ... ,T-1 vt+l J=l J J 

or 
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[ P vt ] _ (t) P rft) _ 
In ~ p -ßo +.~ j zjV,t-1, ... ,T-1. 

l~ t +1 vI J=1 

Some of these models are only logistic regresson models in a conditional sense. The left 

hand side of (9.37) is thus a logistic regression model conditional upon the response being 

either t 01' T. 

For each of these models it is straight forward to apply the methods in earlier 

sections to estimate the regression parameters. The problem is of course, that the analysis 

results in T-1 sets of regression coefficients connected with the different levels of the 

response variable. 

Begg and Gray (1984) compared models (9.36) and (9.37) and demonstrated that 

they are identical as regards ß~t), ... ,ß~t). 

A more satisfactory solution is to introduce the levels of the response variable in the 

model. The model suggested by McCullogh (1980), cf. also Andersson and Blair (1982), 

introduces additive parameters for the levels in the following way. 

(9.38) 

This corresponds to the logistic model 

where Qvt is the cumulative probability 

t 
Qvt = ~ P r 

1=1 v 

Especially if the response variable is ordinal this model seems appealing, as an ordering of 

the a's, e.g. fr1<fr2< ... <frT entail an ordering of the response probabilities given the va­

lues of the explanatory variables. The model does not belong to the dass of log-linear mo-
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dels, but in practice it is relatively easy to obtain ML~timates of the parameters. 

Another possibility is to assume that a regression model describes the data for a 

weighted sum of the logarithms of the P lIt Iso This would be the case if P lIt satisfies 

(9.39) 

where wl' ... ,wT are preassigned weights. Whether an ordering of the w's here introduce an 

ordering of the P lIt's will depend on the z's. Since wl' ... ,wT have known values the model 

with probabilities given by (9.39) is log-linear. It is possible to derive the likelihood func­

tion in case A with different sets of explanatory variables for each value of the response 

variable. Here we consider case B, Le. the binomial-situation (9.7), where there are n. 
I 

cases with z-values zl.' ... 'z . of which x·t have observed value Y =t. 
I pi 1 V 

For the polytomous case, the likelihood corresponding to (9.7) is 

(9.40) 
I [ n. ] T x. t 

L = 11 x· 1· ~.x·T 11 P. tl , 
i=1 I I t=l I 

where 

(9.41) 

From (9.40) the likelihood equations for the estimation of ßo, ... ,ßp are derived as 

(9.42) 

and 

(9.43) 

since 

T T I 
~ wt ~ x·tz .. = ~ wt ~ z .. n.P.t, j=1, ... ,p 

t=1 i=1 I JI t=1 i=l JI I I 
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E[X·tl = n.P· t· I I I 

A A A 

From (9.42) and (9.43) the ML-estimates for ßo and ß1' ... ,ßp are easily computed by a 

suitable iterative procedure. 

That the model is a regression model for weighted averages of the logarithmically 

transformed expected numbers follows from (9.41), which yields 

2 
~wtlnP't = (ßo+~ß.z .. )~Wt 
t I j J JI t 

T 
-~wtln ~ exp[(ßo+~ß.z .. )w 1· 

t 8=1 j J JI 8 

Hence if location and scale for the weights w 1"'" w 1 are chosen such that 

~w = 0 
t t 

and 

then 

(9.44) 

2 
~Wt = 1, 
t 

~wtlnP't = ßo+~ß.z ... 
t I j J JI 

An immediate consequence of this result is that the model in case p=l can be checked by 

plotting 

[\t] y. =~wtln -
I t n j 

against z1" since x·t/n. is an estimate for P.t. The points should then scatter around the 
I I I I 

line y=ßO+ß1z1. 

The goodness of fit test statistic for both model (9.38) and model (9.39) is 
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I T A 

(9.45) Z = 2 ~ ~ X.t[lnX.t-In(n.P. t)], 
i=l t=l 1 1 1 1 

A 

where Pit for model (9.38) is 

A A A 

Pit = Qit - Qit-1 

with 
A A A A A 

Q't = exp(at+~ß.z .. )/[l+exp(at+~ß.z··)l 
I. jJJI jJJI 

and for (9.39) 

The degrees of freedom for the approximating i -distribution of (9.45) are for model 

(9.38) 

df = I(T-l) - P - (T-l) 

since the model is a product of I multinomial distributions each of dimension T and one of 

the a's is redundant due to the constraint ~P't=l. For (9.39) the degrees offreedom are 
t 1 

df = I(T-1) - p-l. 

Amemiya (1981) ami Manski (1981) discussed various models for polytomous 

response variables with special regard to applications in econometrics and marketing. 

Andersson (1984) suggested to extend McCullogh's model to allow for parallel regres-

si on lines, Le. 

t T p 

ln( ~ P 1/ ~ P I) = at +'t ~ ß.z .. 
1=1 v l=t+1 v j=l J JV 

Example9.3 

We return to example 8.1. The data in table 8.2 was analysed in chapter 8 by merging the 
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categories fulltime employed and part time employed. Without a dichotomization the data 

can be analysed by either model (9.38) or by model (9.39). These analyses are summarizes 

in table 9.14. 

Table 9.14. Parameter estimates and goodness of fit test statistics for models 
(9.38) and (9.39) applied to the data in table 8.2. 

Parameter Estimates 

Urbanization Urbanization 
scored 1,0,-1 scored 1,0,1 

Model(9.38) Model(9.39) Model (9.38) Model (9.39) 

ßO -0.404 -0.191 

0:'1 0.150 0.371 

0:'2 -0.986 -0.778 

ß1 0.029 -0.113 -0.471 -0.507 

ß2 0.087 0.034 0.028 0.035 

Goodness of 
fit test 19.8 26.2 11.3 18.7 

Degrees of 
freedom 8 9 4 5 

Levelof 
significance 0.011 0.002 0.023 0.003 

Table 9.14 shows that neither model with the original scoring 1,0,-1 of urbanization 

describe the data in an satisfactory way. One reason could be that the scoring of the three 

urban categories is inappropriate. The estimates of r{ in section 8.2 suggested that a 

scoring with Fyn and Copenhagen equal to + 1 and Ärhus equal to 0 would fit the data 

better. With this scoring the regression analyses are summarized in the right hand half of 

table 9.14. 

In both cases there is now a better fit than before although for model (9.39) only 

slightly. Both models seem to estimate the same regression model variable with ß1 

approximately equal to -0 .. ) and ß2 elose to 0.03. 6: 
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9.5. Exercises: 

9.1. The table below is typical of the way logistic regression analyses are presented in 

research reports. The report is from the Danish Institute for Borderregion Research loca­

ted near the Danish-German border. The binary response is whether the interviewed per­

son have changed job within a certain period or not. The headings of the table are direct 

translations of the Danish text in the report. 

(a) Explain the meaning of the numbers in the table. 

(b) Is there an explanation for the degrees of freedom D.F. shown in the table. 

(c) What conclusions would you draw from the table. 

Variabel Estirnated coefficient 
(Standard deviation) 

Model I Model II ModelIII 

Constant 1. 2831 4.6945 5.4697 
(0.9010) (0.5783) (0.9560) 

Sex:Men(O) -0.2995 -0.7735 -1.0041 
Wornen(l) (0.2874 (0.2622) (0.3236) 

Age:years -0.0262 -0.1007 -0.0989 
(0.0136) (0.0127) (0.0165) 

Household- 0.0002 -0.0036 
incorne: (1000 Dkr.) (0.0021) (0.0024) 

Nurnber of children living -0.0157 
at horne under age 18: (0.1256) 

Nurnber of hours per week partner 0.0037 
(wifejhusband) go to work: (0.0125) 

Length of education (rnonth more -0.0043 0.0133 
than 10 years) : (0.0070) (0.0066) 

Likelihood rat io: 201.1 217.06 240.90 
D.F.(n.k): 166 201 210 
Prob.value: 0.0300 0.2079 0.706 

Left hand side: Change of job = 1 
No change = 0 
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9.2. A psychological experiment consists of letting a person react to a sound stimulus. For 

each of 100 persons it is reported if they for a given sound intensity react within a given 

time interval. The test persons were exposed to 3 sound intensity levels in intervals of 

four different lenghts. The table show how many out of 100, who managed to react. 

Intensity 

50 db 
60 db 
70 db 

190 msek. 

22 
48 
67 

195 msek. 

31 
58 
70 

Time interval 
200 msek. 

43 
67 
80 

(a) Describe the data by means of a logistie regression model. 

(b) What are the meaning of the regression coefficients? 

205 msek. 

51 
70 
84 

9.3. The table below show another example of how logistie regression analysis can be 

presented. Apart from translation to English and minor changes in notation, nothing is 

changed. The variables are: 

A: Age (0 for 20-39, 1 for 40-59) 

B: Education (1 for 12 years in school, 0 for less) 

C: Vocational education completed (1 for yes, 0 for no) 

D: Marriage status (1 for yes, 0 for no) 

E: Psychiatrie diagnosis (1 for yes, 0 for no) 

F: Physieal handieap (1 for yes, 0 for no) 

G: Working ability restrieted (1 for yes, 0 for no). 

The purpose of the investigation is to predict the socioeconomic activity after the 

conclusion of a training program following physical inability. The response variable thus 

has value 1 if the training program has been a success and the person is back in a 

socioeconomie activity, and 0 if not. 

It follows from the text, preceeding the table, that .6.G2 is the z-test statistic for a 

logistic regression model including the variables shown against the alternative that no 

variables 
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Variables ßG2 df p 0 A B C D E F G 

None 0.61 
All 49.40 7 0.0005 1.38 0.42 1.64 1.55 0.75 0.34 1.01 0.4 
ABCDEF 44.27 6 0.0005 1.39 0.38 1.56 1.54 0.76 0.35 0.83 
ABCDEG 49.40 6 0.0005 1.38 0.42 1.64 1.54 0.75 0.35 0.4 
ABCDFG 30.66 6 0.0005 0.81 0.48 1.73 1.67 0.70 0.97 0.4 
ABCEFG 48.52 6 0.0005 1.13 0.49 1.63 1.59 0.33 1.04 0.4 
ABDEFG 46.42 6 0.0005 1.76 0.40 1.79 0.70 0.32 1.01 0.4 
ACDEFG 46.65 6 0.0005 1.63 0.37 1.66 0.76 0.33 0.99 0.4 
BCDEFG 41.81 6 0.0005 0.68 2.01 1.68 1.13 0.36 0.97 0.3 
ABCEG 48.44 5 0.0005 1.14 0.49 1.63 1.59 0.33 0.4 
ABEG 45.06 4 0.0005 1.42 0.48 1.79 0.32 0.4 
ACEG 45.83 4 0.0005 1.35 0.43 1. 71 0.32 0.4 
AEG 41.10 3 0.0005 1.82 0.40 0.31 0.4 

are included. The value of the z-test statistic (9.16) for a logistic regression model against 

a product of unconstrained binomial distributions called G2 is reported in the text for 

three of the models as follows: 

All: 2 G = 54.00, df=58, 0.20<p<0.30 
ABCEG: 2 G = 54.96, df=60, 0.60<p<0.70 
AEG: 2 G = 62.30, df=62 , 0.40<p<0.50 

(a) Form a table of z-test statistics (9.16) for all the models shown, and draw your 

conclusion as to what variables contribute significantly. 

(b) Justify your choice in (a) by a sequence of sequential tests. 

(c) Do you need more numbers than shown in the table to justify your conclusions? 

(d) Do you think that the table shown is the most informative one can imagine. 

(e) The coefficients in the table are for the regression model 

P z 1 z 
E[I_P J = ßoß/ ... ßp IIp. 

v 
How are the ß's of (9.2) related to these new ß's? 

9.4. Reconsider the data in exercise 6.3. 

If alcohol consumption is the response variable consider the following binary 

constructions: 
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(1) Less than 1 unit = 0 

1 or more units = 1 

(2) Up to 2 units = 0 

More than 2 units = 1 

(3) Less than 1 unit = 0 

More than 2 uni ts = 1 

(4) 1-2 units = 0 

More than 2 units = 1. 

(a) Compare logistic regressions based on the variables in (1), (2), (3) and (4), w hen 

income is scored 25,75,125 and 175, marriage status is treated as a dummy variable 

and urbanization is scored Copenhagen=l, Suburban Copenhagen=2, Three largest 

cities=3, Other cities=4 and Country=5. 

(b) In model (1) study Cook's distance to see if any data points have especially large 

influence on the analysis. 

(c) If a computer program is available compare also with McCullogh's model. 

9.5. The table show for 24 persons in the city of Eisinore in 1974 the observed values of 

the variables: 

A: Phychiatrically demanding job 

B: Sex 

C: Household income 

D: Household wealth 

E: Age 

Sex is scored 

Male = 1 

Female = 2 

Income and wealth are both measured in 1000 Dkr. Age is measured in years. 

(a) Formulate a logistic regression model with variable Aasresponse variable and 

B,C,D and E as explanatory variables, after a suitable dichotomization of A, e.g. 



Yes and partly = 1 

No= O. 

(b) Which of the explanatory variables contribute to the description of variable A. 
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(c) U se regression diagnostics to describe the significance of the 24 cases individually. 

(d) Suggest an analysis, where A is not dichotomized or dichotomized in a different 

way. 

Case Psychiatrically 
demanding job 

Sex Income Wealth Age 

1 yes 2 16 0 36 
2 no 1 4 0 26 
3 no 2 7 3 57 
4 yes 1 14 3 51 
5 yes 1 8 2 52 
6 no 2 7 0 31 
7 partly 2 12 0 28 
8 partly 2 12 8 41 
9 yes 1 8 5 44 

10 no 2 11 0 29 
11 no 2 8 0 25 
12 yes 1 12 5 32 
13 partly 2 10 5 27 
14 no 2 7 7 42 
15 yes 2 20 2 42 
16 yes 1 15 0 37 
17 yes 1 8 0 28 
18 no 1 13 2 37 
19 yes 2 14 0 27 
20 no 2 12 0 41 
21 no 1 8 7 56 
22 no 1 5 0 40 
23 no 1 6 8 43 
24 partly 1 14 8 53 

9.6. We are interested in how dwellings, which are plagued by noise from the street, can 

be characterized. To do so the following variables were reported for a random sampIe of 

36 persons in Elsinore. 

A: Noise from the street 

B: Sex 

C: Number of inhabitants 

D: Number of rooms in the dwelling 

E: Household income 
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F: Age of the sampled person. 

These variables for all 36 cases are reported below. Variable A is scored as 

Much = 2 

Some = 1 

None = 0 

Sex is scored with 

Male = 1 Female = 2 

Income is reported in 1000 Dkr. and age in years old. 

Case Noise Sex Number of Number of Income Age 
inhabitants rooms 

1 0 2 2 3 11 59 
2 0 2 4 5 0 53 
3 0 2 4 5 16 36 
4 2 1 3 5 4 26 
5 0 2 2 2 7 57 
6 0 1 3 5 14 51 
7 0 1 3 3 8 52 
8 0 2 2 3 5 59 
9 0 2 2 2 7 31 

10 1 2 2 3 9 53 
11 0 1 2 3 2 25 
12 0 1 2 3 6 69 
13 0 2 2 3 9 63 
14 2 2 10 5 13 60 
15 2 1 2 2 20 69 
16 0 2 2 4 13 51 
17 0 2 4 4 12 28 
18 0 2 2 3 12 41 
19 0 1 3 5 8 44 
20 2 2 4 7 11 29 
21 0 2 4 3 8 25 
22 0 1 4 5 12 32 
23 0 2 3 6 10 27 
24 0 2 2 4 3 62 
25 0 2 2 4 7 42 
26 0 2 4 5 20 42 
27 0 1 2 5 15 37 
28 0 1 3 4 8 28 
29 1 1 4 5 13 37 
30 0 2 4 3 14 27 
31 1 2 2 4 12 41 
32 1 2 3 5 10 31 
33 0 1 2 3 8 .56 
34 0 1 4 4 5 40 
35 2 1 5 4 6 43 
36 2 1 2 3 14 53 
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(a) Analyse the data by a logistic regression model with noise as response variabel and 

the remaining 5 variables as explanatory, and with a suitable dichotomization of 

noise, e.g. 

Much and some = 1 

None = O. 

(b) Use Cook's distance to determine if some of the cases influence the values of the 

estimates especially much. 

(c) Suppose variable C is the only explanatory variable in the model. Make a graph of 

both the logit as a function of the values of variable C and a similar graph of the 

probability of noise in the dwelling. 

9.7. From a research report with the title IIChoice criteria for the assortment decisions of 

a supermarket chainll , the following section is quoted directly: 

IIThe finallogit model in this category includes four predictors variables: 

X212 = Market leader 

X217 = Sales index of the product 

X221 = Size of the product group 

X223 = Change in product group size. 

The estimated model is given by 

P2 
log I=P::" = -1.798- 1. 427X212 + 

2 
(1.161) (0.7154) 

0.02573X217 + 

(0.01030) 

0.2188X221 + 

(0.07256) 

0.4268X223 

(0.1581) 

Prob-values for (one-sided) testing of the coefficient are given in the following table . 

.01<P<.025 . 005<P<.01 P < .005 P < .005 

The response variable is 1: retain the product at time of change in assortment and 2: 

delete the product. P 2 is the probability of response 1 and I-P 2 the probability of 
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response 2". 

(a) Justify that a logistic model can be applied in this situation. 

(b) Comment on the regression equation. 

(c) Comment on the test statistics. 

9.8. The Danish Institute for Borderline Research investigated in 1982 the labour mobility 

in the borderline area between Denmark and Germany. The two tables below show the 

response variables "Changed job within the last 10 years" and "Been unemployed within 

the last 5 years" cross-dassified with the response variables sex and age. 

(a) Describe each of the two data sets by a logistic regression model. 

(b) Check the fit of the models. 

(c) Check if both explanatory variables are necessary to explain the variation in the 

response variable. 

(d) If Age is deleted as an explanatory variable can Sex then also be deleted without 

changing the fit of the model. 

Sex Age 
Changed job 

Yes No 

18-19 2 2 
20-24 23 2 
25-29 27 3 
30-34 30 4 

Men 35-39 22 8 
40-44 11 11 
45-49 11 8 
50-54 5 10 
55-59 8 9 
60- 3 8 

18-19 1 0 
20-24 15 2 
25-29 19 3 
30-34 12 4 

Wornen 35-39 15 11 
40-44 6 4 
45-49 4 8 
50-54 5 11 
55-59 0 6 
60- 1 0 
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Sex Age 
BMn unemployed 
Yes No 

18-19 1 4 
20-24 15 14 
25-29 12 19 
30-34 10 25 

Men 35-39 4 28 
40-44 6 18 
45-49 6 15 
50-54 2 15 
55-59 3 19 
60- 1 13 

18-19 0 2 
20-24 12 10 
25-29 8 15 
30-34 3 16 

Women 35-39 5 23 
40-44 1 14 
45-49 2 12 
50-54 3 18 
55-59 1 6 
60- 1 1 



10. Models for the Interactions 

10.1. Introduction 

If the statistical analysis of a contingency table is based on one of the log-linear models in 

chapters 5, 6 and 7, a number of natural models are easily overlooked. Many useful mo­

dels can thus be expressed as structures in the log-linear interaction parameters. In this 

chapter a number of such models are discussed. Many of these models can be viewed as 

attempts to describe the non-zero interactions by a simple structure if the analysis of the 

data by a log-linear model has failed to give a satisfactory fit to the model. If e.g. the 

independence hypothesis for a two-way table has been rejected, a residual analysis will 

often reveal a certain structure in the two-factor interactions. 

10.2. Symmetry models 

The most simple alternative to the independence hypothesis in a two-way table is an 

assumption of symmetric expected values. Assume thus that the table is squared, Le. I=J, 

and consider the hypothesis 

(10.1) HS: /1 .. = /1 .. , 
lJ Jl 

where /1 .. =E[X .. ). The model under Hs is a log-linear model, since the log-likelihood 
lJ lJ 

function for the Poisson model (4.1) under (10.1) become 

InL = ~~ (X .. +X .. )A .. +~X .. A .. -~nnx .. !-A .. 
i <j lJ Jl lJ i II II i j lJ 

The ML--€stimates for the A .. 'S are thus the solutions to 
IJ 

x .. +x .. = E[X .. ) + E[X .. ), iij 
lJ Jl IJ Jl 

and 

x .. = E[X .. ). 
II II 
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The estimated expeeted numbers aeC!Ordingly beeome 

A 

(10.2) J.L •• = (x .. +x .. )/2, 
IJ IJ JI 

i/j 

and 
A 

(10.3) J.L •• =x .. 
II 11 

Under the symmetry hypothesis (10.1) the expeeted values in the diagonal eells are thus 

the observed values, while outside the diagonal the expeeted numbers are the average of 

the observed values in the two eells symmetrie with respeet to the diagonal. The table of 

expeeted values is thus made symmetrie in the intuitively obvious way. 

The z-test statistie for Hs is given by 

A 

(10.4) Z = 2 ~~X .. (1nX .. -lnJ.L . .). 
i j IJ IJ IJ 

By theorem 3.11 the test statistie (10.4) is approximately l--distributed. The num­

ber of degrees of freedom is equal to the number of parameters specified under the hy­

pothesis. Under a Poisson model, there are 12 unrestrieted ).I S. Under Hs all ).Is above the 

diagonal are equal to the symmetrie value under the diagonal. Henee there are 1(1-1) /2 

constraints on the ).I S under HS' The degrees of freedom for (10.4) are accordingly 

df(HS) = 1(1-1)/2 

aecording to theorem 3.9. 

The symmetry hypothesis and the test statistie (10.4) was suggested by Bowker 

(1948) . 

In terms of the log-linear interactions the symmetry hypothesis is equivalent to 

(10.5 ) { T~~ = T~~ 
I J J I 

A B 
T. = T. 

I I 
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since 

AB A B 
J-L •• = exp( T . . + T. + T. + TO)' 

IJ IJ 1 J 

Complete symmetry thus means not only that the interaetions are symmetrie, but that 

also the main effeets for variable A and Bare equal. 

If it is only assumed that the two-faetor interaetions are symmetrie, the hypothesis 

beeome 

(10.6) 

The hypothesis (10.6) is ealled quasi-symmetry or interaction symmetry. The log-likeIi­

hood funetion under HIS is 

AB AB A B lnL=2: 2:(X .. +X .. )T .. +X .. T .. +X.T.+X.T.+X TO i < j IJ JI 1 J 11 1 1 I. 1 .J J .. 

+{terms in T}+{terms in x}. 

Henee the Iikelihood equations beeome 

(10.7) x .. +x .. = E[X .. ]+E[X .. ], i1=j, i=1, ... ,I-1, j=1, ... ,I-1 
IJ JI IJ JI 

(10.8) x .. = E[X .. ], i=1, ... ,I-1 
11 11 

(10.9) x. = E[X. J, i=1, ... ,I-1 
I. I. 

(10.10) x . =E[X .], j=1, ... ,I-1 
.J .J 

(10.11) x = E[X ]. .. .. 

Note that (10.9) and (10.10) does not follow from (10.8) and (10.7) with i=I an j=I 

included. Equations (10.7) to (10.11) do not have explicit solutions for the expeeted va-
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lues, but are easily solved numerically. The goodness of fit test statistic for the model 
A 

under HIS is given by (10.4), but the ttij's are now the estimated expected values under 

the HIS' Under HIS the constraint T~= T~ is lifted and since there are 1-1 free parameters 

T~, ... ,T~_l' there are 1-1 less constraints under HIS than under Hs. 

Hence the degrees of freedom are 

df(HIS) = 1(1-1)/2-(1-1) = (1-1)(1-2)/2. 

The degrees of freedom are thus the number of cells in the table under the diagonal, ex­

cluding the last row. 

Example 10.1. 

In connection with the Danish referendum on membership of the EEC, a number of poHs 

were taken in 1971, 1972 and 1973. The data in table 10.1 shows the observed number of 

answers "yes", "no" and "undecided" to the question: "Should Denrnark be a rnernber of 

the EEC?" far the polIs taken in 1971 and 1973. 

Table 10.1. Attitude towards the EEC in October 1971 and in Decernber 1973 for a 
randorn sampie of 493 Danes. 

October 1971 December 1973 
Yes No Undecided Total 

Yes 167 36 15 218 
No 19 131 10 160 
Undecided 45 50 20 115 

Total 231 217 45 493 

Source: Unpublished data from AlM, Survey Company. 

Table 10.2 show the observed values of the test statistic (10.4) under the hypotheses 

of cornplete syrnmetry and quasi-syrnmetry. 

Table 10.2. Goodness of fit test statistics for symmetry and quasi-symmetry 
and the data in table 10.1. 

Hypothesis 

Symmetry 
Quasi-symmetry 

z 

50.15 
0.06 

df 

3 
1 

Significance level 

0.000 
0.812 
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Under the quasi-symmetry hypothesis there is thus an almost perfeet fit, while 

under comp1ete symmetry, the fit is 1ess than satisfaetory. 

The expeeted va1ues under both symmetry hypotheses are shown in tab1e 10.3. The 

totals of tab1e 10.3 reveal that the expected distribution over the three eategories is the 

same in 1971 as in 1973 under comp1ete symmetry, while this is not the case under quasi­

symmetry. Although the interactions are symmetrie under HIS' the fact that T~ is not 

neeessarily equal to T~ implies that the expeeted number of supporters and opponents of 
I 

the EEC and the undecided were not the same in 1971 and 1973. 

Table 10.3. Expeeted numbers under the hypotheses of symmetry and quasi-symmetry 
for the data in table 10.1. 

Deeember 1973 
Symmetry: Yes No 

Oetober Yes 167.00 27.50 
1971 No 27.50 131. 00 

Undeeided 30.00 30.00 

Total 224.50 188.50 

Quasi- Deeember 1973 
symmetry: Yes No 

Yes 167.00 35.56 
Oetober No 19.44 131. 00 
1971 Undecided 44.56 50.44 

Total 231.00 217.00 

The estimated parameters under HIS are as follows 
"AB 
T. . j=l 2 3 

I J 

i=l 
2 
3 

AA 
T. 

I 

AB 
T. 

J 

0.931 
~.778 
~.153 

i=l 

0.227 

j=l 

0.379 

~.778 ~.153 
0.968 ~.191 
~.191 0.343 

2 3 

~.216 ~.011 

2 3 

0.540 ~.919 

Undecided 

30.00 
30.00 
20.00 

80.00 

Undecided 

15.44 
9.56 

20.00 

45.00 

Total 

224.50 
188.50 
80.00 

493.00 

Total 

218.00 
160.00 
115.00 

493.00 
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The fact that the interaction parameters of a log-linear model describe the depar­

tures from independence allows for an interpretation of quasi-symmetry. Independence in 

a two-way table means that the expected frequencies in the rows of the table are identi-

cal. Under this assumption the probabilities of responding "yes", "no" and "undecided" in 

1973 are the same whatever the opinion in 1971. Quasi-symmetry thus means that the 

departures from this behaviour is symmetrie. The interpretation of the results of the 

analysis thus seems to be that the movements of opinion between October 1971 and De-­

cember 1973 is symmetrie apart from a trend towards fewer undecided and more oppo­

nents in December 1973. It is primarily the undecided in 1971, which have changed to a 

no in 1973. Denmark joined the EEC in 1972. The effect of the membership thus seems to 

have been a decrease in the number of undecided persons and a increase in the number of 

opponents of the EEC. The number of supporters of the EEC does not seem to have 

changed from 1971 to 1973. 6: 

An example of quasi-symmetry based on a conditional likelihood is discussed in 

McCullogh (1982). 

Many models for contingency tables are connected with so-called Markov chains. A 

Markov chain is a randorn process, where individuals change between a limited number of 

states at certain points in time called change points. Let p~O) be the prob ability that an 
J 

individual is in state j at time 0, p~t) the probability that an individual is in state j at 
J 

change point t, and p .. the (constant) probability that an individual change from state i 
IJ 

to state j at any of the change points. Then the probabilities of being in states j=l, ... ,m 

at change point one are 

(10.12) p~l) = ~ p .. p~O), 
J i=l IJ I 

and in general 

(10.13) 
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From (10.12) and (10.13) the values of p~t) can be computed recursively for any t. If t-lOO, 
J 

there exists under certain conditions limiting probabilities 

(10.14) 1r. = lim p~t). 
J t-loo J 

The probability distribution ('lr1, ... ,'lrm ) of being in the m states after the process has been 

observed over a long period is called the equilibrium distribution. It cau be shown that 

the 'Ir.ls are uniquely determined by 
J 

m 
(10.15) 'Ir. = I: p .. 'Ir. 

J i=l IJ 1 

if the limits (10.14) exist, and that the equilibrium distribution does not depend on the 

values of p~O), ... ,p~O). One may think of the equilibrium distribution as the expected fre­

quencies in the m states if a large number of persons start at the same time and move 

between the states over many change points. The data in example 10.1 can be thought of 

as one change point in a Markov chain. The change probabilities 

p .. = P {move to state j I given state i}. 
IJ 

are called transition probabilities. They are connected with the expected numbers /1 .. in 
IJ 

the contingency table by 

p .. = /1 .. //1 .. 
IJ IJ I. 

Statistical inference in Markov chains from a contingency table point of view was 

first studied by Andersson and Goodman (1957). 

If the matrix of transition probabilities is symmetrie, Le. if p .. =p .. , the Markov chain 
IJ JI 

is called double stochastic. It then follows that 



1 1 1 1 
1r. = ~p .. - = - ~p .. = -p . = -

J . IJ m m. JI m.1 m' 
1 1 

such that the equilibrium is uniform, if the Markov chain is double stochastic. 

Under a log-linear parameterization, p .. has the form 
IJ 

(10.16) AB B AB B p .. = exp( T . . +T. )/~exp( T . . +T.). 
IJ 1 J J j 1 J J 

The condition p .. =p .. then iInplies 
IJ JI 

AB AB T . . =T .. + (.+0., 1 J J 1 1 J 
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for certain values t. and 0 .. But since T~B=TA~, this means that t.+o =( +0.=0. From 1 J 1 . . 1 1 J 

TAB =0 then follows 

(10.17) AB AB 
T . . = T ... 

1 J J 1 

To a doubly stochastic Markov chain thus corresponds a contingency table, which is 

quasi--symmetric. From (10.16) follows that the hypothesis of quasi--symmetry entails 

that the Markov chain is only double stochastic if all Tj'S are constant, i.e. 

B 
T. = 0, j=l, ... ,I. 

J 

Whether it is double stochastic does not depend on the T~'S. 
1 

Example 10.1. (Continued) 

The observed numbers in table 10.1 correspond to a Markov chain, where the population 

in Danmark moved between three categories of opinion towards the EEC between Octo-
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ber 1971 and December 1973. Suppose the attitude towards the EEC continue to change 

according to a Markov chain, whieh is observed for example every second year. One would 

then in the long run find a uniform distribution of the population over the three catego­

ries, if the Markov chain is double stochastie. Since we found that a hypothesis of quasi- -

symmetry fitted the data, we must next check if T~= ... =T~=O. The parameter estimates 

0.377, 0.539 and -{).916 clearly indieate, that this is not the case. The equilibrium distri­

bution corresponding to the transition probabilities estimated from table 10.1 is 

(Xl' x2' X3) = (0.393,0.534,0.073). 

If a Markov chain model applies to the process, the opposition to the EEC would thus 

gradually increase in Denmark to a level of about 53%. L:",: 

Symmetry models can be extended to higher dimensions in a number of ways. For a 

three-way table complete symmetry means that 

(10.18) 

Quasi-symmetry may means that 

(10.19) 

while nothing is assumed about the two-factor interactions or about the main effects. The 

hypothesis may also be, however, that both the three-factor interactions and the 

two-factor interactions are symmetrie. Conditional symmetry given the levels of variable 

C means that 

J.t"k = J.t··k, k=1, ... ,K. 
IJ JI 
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since the conditional mean values are 1-'. 'kl I-' k' 
IJ 00 

A useful hypotheses is marginal quasi-symmetry between variables A and B, defined 

as 

and 

T~~Ck = 0, for 8011 i, j and k 
I J 

AB AB C all' d' T . . =T . . , 10r 1 an J, 
I J J I 

while nothing is assumed about the remaining parameters. This hypothesis is different 

from complete marginal symmetry between variables A and B, which requires that 

1-' .. = 1-' .. , for 8011 i and j. 
IJ. JI. 

Goodman (1971), (1985) discussed various symmetry and quasi-symmetry models and re­

lated them to the models of sections 10.5 and 10.6 below. Read (1978) discussed 

symmetry models for three-dimensional tables. 

10.3. Marginal homogeneity 

A useful hypothesis, which can not be expressed in terms of log-linear parameters is 

marginal homogeneity. A squared two-way table of dimension I is said to satisfy the 

hypothesis of marginal homogeneity if the expected values satisfy 

(10.20) ". = Il., i=l,oo.,I. 
t"'1' t""l 

A maximalization of the likelihood under the constraints (10.20) does not lead to explicite 

solutions, but solutions are easily obtained by numerical methods. 

" " Let the solutions be 1-'11 ""'~I' then 

(10.21) 
A 2 

Z = 2~ ~X .. [lnX .. -Inl-' .. l N X (1-1), 
i j ~ ~ ~ 
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according to the general result, theorem 3.13. The degrees of freedom are I-I since Olle of 

the constraints in (10.20) is redundant such that there are I-I constraints under the hy­

pothesis. 

A survey of various test for marginal homogeneity is due to White et al. (1982). 

The hypothesis of marginal homogeneity is useful if Olle is not interested in the way 

variables A and B interact, but on1y want to check if the two variables are distributed 

marginally in the same way. Independence between A alld B combined with marginal 

homogeneity implies complete symmetry. 

Marginal homogeneity is of special interest in connection with Markov chains. Let as 

above p .. be the transition probability from state i to state j, and let p~t) be the 
IJ I 

probability of an individual being in state i at change point t. Then the observed number 

of changes x .. from state i to state j from time t to time t+ 1 satisfies 
IJ 

E[X .. ] = np .. p~t)=JL ... 
lJ IJ 1 lJ 

If the JL .. 's satisfy the hypothesis (10.20) of marginal homogeneity, it follows that 
IJ 

(t+l) _ I (t) _ 1 _ 1 _ I (tL (t) ._ 
p. - ~ p .. p. - - JL .- - JL. - ~ P·IP· - p. ,1-1, ... ,1 

J i= 1 IJ In' J n J' 1= 1 J J J 

such that p~t) is independent of t and the process has reached its equilibrium. If the hy-
J 

pothesis of marginal homogeneity is accepted, when the contingency table is the observed 

changes at a given change point in a Markov chain, the data thus supports that the pro­

cess has reached its equilibrium. 

A test for marginal homogeneity is not identical with a marginal test of equal ex­

pected marginals, i.e. a test of homogeneity between the two margina1s of the table. A 

basic condition for a formal homogeneity test is in this case not satisfied, since the two 

distributions are based on the same individuals and accordingly are not independent. 
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Example 10.2 

In 1962 and 1965 two surveys were conducted in Denmark regarding the health of the 

elderly population. As part of the surveys the interviewed persons were asked to rate their 

health on a three level scale with categories "good", "neither good nor bad" and "bad". 

Table 10.4 shows the cross-classification of the responses for those 411 elderly people 

participating in both surveys and giving responses on the subjective health quest ions on 

both occasions. 

Table 10.4. Cross-classification of responses on subjective self-rating of health for 411 
elderly people in Denmark in 1962 and 1965. 

Health Health 1965 
1962 Good Neither Bad Total 

Good 168 51 9 228 
Neither 42 73 23 138 
Bad 5 17 23 45 

Total 215 141 55 411 

Source: Data from the Danish National Institute for SociaI Research. Cf. Olsen and Hansen (1977). 

The expected numbers under the hypothesis of marginal homogeneity are shown in table 

10.5. Based on these numbers, the test statistic (10.21) has observed value 

z = 2.92, df = 2. 

Table 10.5. Expected nllmbers for the data in table 10.4 under the hypothesis of 
marginal homogeneity. 

Health Health 1965 
1962 Good Neither Bad Total 

Good 168.00 46.33 7.14 221.47 
Neither 46.70 73.00 19.84 139.54 
Bad 6.77 20.21 23.00 49.98 

Total 221.47 139.54 49.98 411.00 

Accordingly there does not seem to be any change in the distribution over health 

categories between 1962 and 1965. Note that marginal homogeneity does not imply 

independence between the responses. ,6,.. 
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In a 2x2 table, the hypotheses of symmetry and marginal homogeneity coincides. 

Since 

and 

Jtl. = Jt. l if and only if Jtl2 = Jt2l . 

Thus marginal homogeneity, i.e. Jtl. =Jt. l , implies Jtl2=Jt21 or symmetry, and sym­

metry, i.e. Jtl2=Jt21 , implies marginal homogeneity or Jt.1=Jt1: The test statistic for sym­

metry or for marginal homogeneity in a 2x2 table is 

2 2 [ x .. +x .. ] 
Z = 2 ~ ~ X.. InX .. -ln 1J 2 J1 , 

i=l j=l 1J 1J 

and Z is approximately l---distributed with one degree of freedom. The corresponding 

Pearson test statistic 

2 2 X .. +X .. 2 X .. +X .. 
Q= ~ ~ (X .. - 1J J1) /( 1J J1) 

i=l j=l IJ 2 2 

is widely known as McNemars test statistic, cf. Me Nemar (1947). It is often presented as 

where b=x12 and c=x21 . 

If 

(10.22) 

(ß--c)2 
q = +e ' 

{ T~~ = 0 
1 J 

A B 
T. = T. 

1 1 

the hypothesis of marginal homogeneity is eombined with independence of the two 

variables. The expeeted numbers under (10.22) are 
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A (x. +X .) (x. +X .) 
_ I' 'I J' 'J /1 .. -

1J 4n 

and the test statistic has 12-(1-1)-1=1(1-1) degrees of freedom, since only T~, .•. ,T~_l and 

TO need to be estimated under (10.22). 

10.4. Models for mobility tables 

Some squared contingency tables describe the mobility pattern of a population. In a 

mobility table it is often assumed that the probability of observing an individual in a cell, 

is smaller the farther away from the diagonal the cell is located. This will be the case if 

the expected numbers /1 .. satisfy 
1J 

(10.23) InJj .. = 81 i-j I + T~ + T~ + TO' 8<0. 
1J 1 J 

This model generates a smaller expected value in cell (i,j) the larger the value of I i-j I, 

which is a simple measure of the distance to the diagonal. The model is log-linear and the 

likelihood equations become 

(10.24) ~ ~Ii-jlx .. = ~ ~1i-jIE[X .. ], 
i#J ij i#J ij 

(10.25) x. = E[X. l, i=1,oo.,1 
I' I' 

and 

(10.26) x . = E[X .l, j=1,oo.,I. 
.J • J 

which are easily solved by iterative methods. 

In most mobility tables there is a clear tendency against changing group. Model 

(10.23) will therefore often fail to describe the data due to larger observed values than 

expected in the diagonal. An alternative model is to assurne that (10.23) is only valid for 
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the off-diagonal cells, Le. 

i/=j 

( 10.27) 

i=j. 

This model is equivalent to (10.23) for i/=j combined with 

(10.28) x .. = E[X .. ], i=I, ... ,I, 
Il Il 

since the (~s are unrestrict.ed. 
I 

Also for (10.27) the ML-estimates for the parameters and the expected numbers are 

easily derived by iterative procedures. The goodness of fit test statistic is as usual given 

by 
A 

Z = 2~ ~X .. (lnX .. -Inl1 .. ). 
i j lJ lJ lJ 

For model (10.23) there are 1-1 TA,S, 1-1 TB,S, one TO and one (j to be estimated and the 

degrees offreedom for the approximating i -distribution to Z is 12-21=1(1-2). For model 

(10.27) there are in addition I ('S to be estimated and the degrees of freedom become 

1(1-3). 

Example 10.3 

One of the famous data sets concerning sodal mobility is due to Svalastoga (1959) cf. also 

Haberman (1974b), chapter 6. Based on the ratings of a random sampie from the Danish 

population, Svalastoga esiablished five sodal rank groups with group 1 being the group of 

highest sodal ranking. This sodal grouping is with minor modifications still used in 

Denmark. As part of the investigation Svalastoga reported for all males in the sampie the 

connection between the social rank of the interviewed and of his father. The resulting 
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data are shown in table 10.6. 

Table 10.6. The relationship between fathers and sons social rank for a random 
sampIe of sons. 

Sons social rank 
Fathers Total 
social rank I II III IV V 

I 18 17 16 4 2 57 
II 24 105 109 59 21 318 
III 23 84 289 217 95 708 
IV 8 49 175 348 198 778 
V 6 8 69 201 246 530 

Total 79 263 658 829 562 2391 

Sourre: Svalastoga (1959). 

By iterative procedures, the solutions to (10.24), (10.25), (10.26) and (10.28) are 

found to be 

A 

TO = 5.184 

AA AA 
(T 1, ... ,T5 ) = (-1.280, -{).049, +0.484, +0.486, +0.360) 

AB AB 
(T 1'"'' T 5) = (-{).994, -{).362, 0.345, 0.552, 0.458) 

A 

0= -{).822 

A A 

(E 1, ... ,E5) = (-{).020, -{).119, -{).347, -{).370, -{).498). 

The expected numbers given these estimates are shown in table 10.7. Note that the 

expected numbers in the diagonal are equal to the observed numbers. 
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Table 10.7. Expected values under the social mobility model (10.27) for the data 
in table 10.6. 

Sons sodal rank 

Fathers 
social rank I II II IV V Total 

I 18.00 15.19 13.55 7.33 2.93 57.00 
II 27.63 105.00 105.48 57.06 22.84 318.01 
III 20.71 88.62 289.00 221.15 88.52 708.00 
IV 9.12 39.04 180.12 348.00 201.71 777.99 
V 3.54 15.14 69.86 195.46 246.00 530.00 

Total 79.00 262.99 658.01 829.00 562.00 2391.00 

The test statistic based on the expected numbers in table 10.7 has observed value 

z = 13.00, df = 10. 

With level of significance p=0.328, the model describes the data in a satisfactory way . .6.: 

10.5. Associationmodels 

In a number of situations the relationship between two categorical variables can be mo­

delled in terms of scores assigned to the categories of the variables. These scores may be 

known or unknown. With a somewhat misleading name such models are often termed 

models with ordered categories, cf. Agresti (1983) or Goodman (1979b). The models are 

now widely known as row-column association models, or RC-association models. The 

name is due to Goodman (1981a). 

Consider first the case where the scores for both variable A and variable Bare 

known. If the row scores are denoted e1, ... ,eI and the column scores dl' ... ,d J' an associa­

tion model specifies that the interactions between variables A and B have the multiplica­

tive form 

(10.29) AB 
T . . = pe.d .. 

I J I J 

In order to remove the indeterminancies in the parametrization it is necessary to 

introduce constraints. It is common practice to use the following constraints 
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(10.30) I I J 
1: e.x. In = 1: d.x ./n = 0 

. 1 I 1. . 1 J .J 1= J= 

I 2 J 2 
E e.x. In = E d.x ./n = 1 

i=l I 1. j= 1 J . J 

The constraints (10.30) do not conform with 

AB AB 
T. = T . = 0, 

I . . J 

but with 

AB AB 1:T . . x ./n = 1:T . . x. In = O. 
j I J.J i I J I. 

Under (10.29) the expected values satisfy 

(10.31 ) A B lnJ.t .. = pe.d. + T. + T. + TO' 
IJ I J I J 

where TP:-, T~ and TO are main effects. 
I J 

Model (10.31) was termed a uniform association model by Goodman (1979b) in case 

the known scores are equidistant, Le. the e.'s are rescaled values of 1, ... ,1 and the d.'s re-
I J 

scaled values of 1,2, ... ,J. The motivation for this name is given in section 10.7 below. 

One important implication of (10.29) is that the expected value in a cell is larger 

than under independence if e. and d. have the same sign, and smaller than under indepen-
I J 

dence, if e. and d. have different signs. In addition the larger the numerical value of e. or 
I J I 

d., the more will TP:-~ differ from what one gets under independence. Note, however, that 
J I J 

the effect on the expected value J.t .. of a change in e. depends on the value of d .. 
IJ I J 

In order to illustrate the effect of the model (10.29) on the expected values, consider 

a hypothetical model with TP:-=T~=O for all i and j and assurne that both A and B have 
I J 

equidistant scores, Le. the differences e.-€. 1 and 0.-0. 1 are constant. Under (10.30) and 
1 1- J J-

if the marginal frequencies are constant this implies that 
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(e1, ... ,e4) = (-0.671, -0.224, +0.224, +0.671) 

and 

(d1, ... ,dS) = (-0.632, -0.316, 0.000, +0.316 +0.632) 

Let n=400. If T~~=O, in addition to T~=~=O, then all expected numbers are equa1 to 20. 
1 J 1 J 

If, on the other hand, p=2 the expected numbers hecome 

ft .. = exp(2e.d.+2.896), 
1J 1 J 

where the va1ue To=2.896 is obtained from ft .. =400. Note that Ta under (10.31) is 

different from Ta when p=O, where Ta = 1n20=2.996. The reason is that the terms 

exp(pe.d.) do not necessarily sum to nj(IJ). The expected va1ues ft .. =exp(2e.d.+2.896) are 
1 J 1J 1 J 

shown in tab1e 10.8. 

Table 10.8. Expected values under model (10.29) with Tt=T~=O, p=2 and 

The values of e i and dj are shown in the marginals of the table. 

n=400. 

j=1 2 3 4 5 e· 
1 

i=1 42.3 27.5 18.1 11.9 7.8 -0.671 
2 24.0 20.8 18.1 15.7 13.7 -0.224 
3 13.7 15.7 18.1 20.8 24.0 +0.224 
4 7.8 11.9 18.1 27.7 42.3 +0.671 

d. 
J 

-0.632 -0.316 0.000 +0.316 +0.632 

Tab1e 10.8 shows how the category scores influence the expected va1ues. The 1arger 

the value of the product e.d. the 1arger the expected number. There will accordingly be a 
1 J 

1arge expected number if either both scores are large and positive or if they are both large 

and negative. 

The log-likelihood function for (10.31) is 



I J A B 
InL = p ~ ~ x .. e.d. + ~ T . X. + ~ T . X . + X T 0 

i= 1 j= 1 IJ 1 J i 1 I. j J.J .. 

+ {terms in the parameters} 

+ {terms in the observations}. 

such that the model is log-linear. The likelihood equations become 

(10.32) 

(10.33) 

and 

(10.34 ) 

~ ~x .. e.d. = ~ ~e.d.E[X .. l 
i j IJ 1 J i j 1 J IJ 

x. = E[X. ], for all i, 
I. !. 

x . = E[X .], for all j. 
.J .J 
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These equations are easily solved by iterative methods. The structure of the 

likelihood equations thus allow for a modification of the marginal proportional fitting 

procedure as suggested by Goodman (1979b). The procedure is described in section 10.6 

below. 

The goodness of fit of the model is tested in the usual way by the test statistic 

'" (10.35) Z = 2~ ~X .. (lnX .. -lnJ.l .. ), 
i j ~ ij ~ 

with 

'" '" "'A "'B '" 
J.l .. = exp(pe.d. + T. + T. + TO)' 

IJ IJ 1 J 

The number of degrees of freedom for the approximating l-distribution is 

df = (1-1)(J-1)-1, 

since in addition to the main effects p needs to be estimated. 
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Example 10.4. 

The data set in table 10.9 was first analysed by the Danish statistician Georg Rasch as an 

illustration of a type of statistical model c10sely related with the model of this section, 

which Rasch introduced in 1964, cf. Rasch (1966) and the discussion in Goodman (1986). 

The observations in table 10.9 are the number of crirninal cases for young men, 15 to 19 

years of age, for the years 1955 to 1958, where charges were dropped by the police before 

the case had lead to a verdict. 

Table 10.9. Number of criminal cases for young men between age 15 and age 19 
Denmark 1955 to 1958, where charges were dropped by the police. 

In 

Age 

Year 15 16 17 18 19 Total 

1955 141 285 320 441 427 1614 
1956 144 292 342 441 396 1615 
1957 196 380 424 462 427 1889 
1958 212 424 399 442 430 1907 

Total 693 1381 1485 1786 1680 7025 

Source: Rasch (1966), F.3 Tabel!. 

A first glance at the data seems to indicate that the number of dropped charges increased 

more rapidly with age in 1955 than in 1958. If this observation is correct, an assumption 

of independence between the variation over years and the variation over age does not 

hold. The observed value of (10.35) under independence is 

z = 38.25, df = 12. 

The level of significance is less than 0.0005 confirming that an independence model does 

not describe the data. In order to get a first impression of the applicability of a multipli­

cative model (10.29) for the interactions, the estimates of T~~ are shown in table 10.10. 
1 J 
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Table 10.10. Estimated interactions AB Tij between year and age for the data in 

table 10.9. 

Age 

Year 15 16 17 18 19 

1955 -0.089 -0.076 -0.041 +0.089 +0.118 
1956 -0.075 -0.060 +0.018 +0.081 +0.035 
1957 +0.052 +0.022 +0.051 -0.054 -0.071 
1958 +0.112 +0.114 -0.028 -0.116 -0.082 

The sign pattern of the estimated interactions strongly suggests a multiplicative 

model for the interactions. A set of equidistant row scores satisfying (10.30) have values 

(e1, ... ,e4) = (1.568,0.567, -0.435, -1.437). 

The equidistant scores for the columns are 

(dF .. ,d5) = (1.665,0.978,0.291, -0.396, -1.083). 

From these values an initial estimate of pis easily obtained. The definition (10.29) of p in 

terms of T~~ and the constraints (10.30) imply that 
1 J 

AB I 2 ~~e.d.T .. x.x.n =p. 
i j 1 J 1 J I. .J 

Hence an initial estimate for p is 

A "AB 2 
Po = ~ ~e.d.T .. x. x ·/n . 

i j 1 J 1 J \. .J 

From the estimates in table 10.10, we get 
A 

Po = -0.063. 

Thus an impression of the fit of model (10.31) is rendered by table 10.11 showing the 
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A 

values of POe.d .. 
I J 

A 

Table 10.11. Values of the expression POeidj" 

Year Age 

15 16 17 18 19 

1955 -0.166 -0.097 -0.029 +0.039 +0.107 
1956 -0.060 -0.035 -0.010 +0.014 +0.039 
1957 +0.046 +0.027 +0.008 -0.011 -0.030 
1958 +0.152 +0.089 +0.027 -0.036 -0.098 

To a certain extent the pattern of table 10.10 is thus reproduced. The ML-estimates 

for P and the main effects T~, T~, TO obtained by solving the likelihood equations (10.32), 
I J 

(10.33) and (10.34), are found to be 

A 

P = -0.065, 
AA 
T. = (-0.083, -0.082, +0.071, +0.074), 

I 
AB 
T. = (-0.779, -0.084, -0.008, +0.176, +0.113), 

J 
A 

TO = 5.927. 

The observed value of the test statistic (10.35) is 

z = 8.61, df=l1. 

The level of significance is p=0.658, such that the model (10.31) with an equidis-
A 

tant scoring of the categories describes the given data adequately. The negative value of P 

shows that relative more charges were dropped for the 19 year old in 1955 than in 1958, 

while for 15 year old boys relatively more charges were dropped in 1958 than in 1955 . .6.. 

Consider now a mixed model with interactions 

AB 
T . . = pE.d., 

I J I J 

i.e. a model with 
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(10.36) A B InJl .. = pt.d. + T. + T. + TO IJ I J I J , 

where d1, ... ,dI are known while the ('S and p are unknown. This model appears among 

other places in Habermall (1974a), Simon (1974), Plackett (1981), p.75 and Andersson 

(1984). It was called a row effects association model by Goodman (1979b) for equidistant 

d.'s. 
J 

For the ('S the same constraints as for the eis are imposed, Le. 

(10.37) 

and 

(10.38) 

I 
b t.X. /n = 0 

i=l I I. 

I 2 
~ LX. /n = 1 

i=l I I. 

At first glance the model is not log-linear, since the likelihood function has the form 

A B InL = p~t.~d.x .. + ~T. X. + ~T.X .+TOX • 
i I j J IJ i I I. j J.J 00 

The model can, however, be reparameterized through the I-I parameters 

* (i = P(i' i=l,oo.,I-l 

* satisfying ~(.x. /n=O. Since p is found as the square root of 
. I I. 
I 

* 

2 * 2 P = ~(c) x. In. 
. I I. 
I 

and t.=c / p, the reparameterization is one to one. Note that p can always be chosen 
I 1 

* larger than zero when the ('S are unknown. In terms of the (. 's the model is log-linear 
I 

and the likelihood equations consists of 
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(10.39) ~d.x .. = ~d.E[X .. ], for all i 
j J IJ j J IJ 

together with (10.33) and (10.34). 

The goodness of fit of the model is tested by the test statistic (10.35) with 

A AA AA AB A 

JL = exp(pLd.+T. +T . +TO)' 
IJ I J I J 

The degrees of freedom for the approximating l-distribution is 

2 df = I -(I-l)-(J-l)-I-(I-l) = (I-l)(J-2), 

since there are I-I T~'S, J-1 T~'S, one TO and I-I /'s to be estimated. 
I J I 

Row effects models when the unknown scores satisfy the order restriction (1 ~"'~(I 

were studied by Agresti, Chuang and Kezouh (1987). 

The equivalent of (10.36) if the scores for variable Aare known and those for 

variable B unknown, has 

(10.40) A B InJL .. = pe.8. + T. + T. + TO' 
IJ I J I J 

This model will be called a column effects association model. 

The likelihood equations for (10.40) are (10.33) and (10.34) combined with 

(10.41 ) ~e.x .. = ~e.E[X .. ], for all j 
i I IJ i I IJ 

and the goodness of fit is tested by (10.35) with 

A A A AA "B " 

JL .. = exp(pe.8.+T. +T .+TO)· 
IJ I J I J 
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The degrees of freedom for the approximating i -distribution is in this case 

df=(I-2)( J-l). 

10.6. RC-association models 

Consider now the situation where both sets of scores are unknown, Le. 

AB 
T . . = Pf..O., 

1 J 1 J 

where the mean value J.1 •. has the form 
1J 

(10.42) 

The {'s and o's satisfy 

(10.43) 

A B 
In/t .. = Pf..o. + T. + T. + TO' 

1J 1 J 1 J 

l ~': "In _ 
~(. x. In -
. 1 1. 
1 

~O. x ./n = 0 
j J . J 

~O~ x ./n 1 
j J . J 

The model (10.42) has been studied in the literature under various forms by many 

authors, e.g. Rasch (1966). It was brought to general prominence in the mid- and late 

1970's by Haberman (1974b), Simon (1974) and Goodman (1979b),(1981a). An excellent 

survey paper is due to Agresti (1983). An important reference is also the monograph by 

Agresti (1982). The usefulness of the model in sociological research was demonstrated by 

Clogg (1982b). We shall term the model (10.42) an RC-association model in accordance 

with Goodman (1981a). 

The RC-association model is not log-linear in its pa.rameters. In fact the 

log-likelihood function is given by 
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(10.44) A B InL = p~~t.l5.x .. +~x. T. +~x .T .+X TO i j 1 J 1J i 1. 1 j .J J .. 

+ {terms in the parameters} 

+ {terms in the observations}. 

The equations necessary to solve in order to obtain the ML--estimates are, therefore, more 

complicated. 

Theorem 10.1. 

The likelihood equations for the RC-association model (10.42) have the same solutions as 

(10.45) 

(10.46) 

(10.47) 

and 

(10.48) 

I 
~ f.X .. = ~ f./.L .. , j=I, ... ,J, 

i=l 1 1J i=l 1 1J 

J J 
~ D.x .. = ~ D./l .. , i=I, ... ,I, 

j=l J 1J j=l J 1J 

X. = /l., i=I, ... ,I 
1. 1. 

x . = /l., j=I, ... ,J . 
. J .J 

where /l .. is the expected value of X .. under the model. 
u u 

Proof: 

If the model is a Poisson model, Le. if Xll, ... ,XIJ are independent, 

X .. N Ps(.\ .. ), i=I, ... ,I, j=I, ... ,J 
1J 1J 

and .\ .. = /l .. satisfies (10.42), the log-likelihood function become 
1J 1J 
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A B 1nL = pEEt.8.x .. + Ex. T. +Ex .T . +X TO-EEln(x .. !) - ~JL... 
i j I J IJ i I. I j .J J .. i j IJ i j IJ 

Taking partial derivatives with respect to the parameters and using 

p. .. =exP(pi.c5.+T~+T~+To) yields the likelihood equations 
IJ I J I J 

(10.49 ) ~ = EEu5.x .. -EEf,0.p. .. = O. 
up . . I J IJ . . I J IJ 

I J I J 

(10.50) O1nL r 1: • 
::r:-- = pEu.x .. -pEu.p. .. = 0, 1=1, ... ,1-2. 
vi. . J IJ . J IJ 

I J J 

(10.51 ) O1nL . ao.- = pEf,x .. -pEf.p. .. = 0, J=1, ... ,J-2. 
j i I IJ i I IJ 

(10.52) ölnL . -y- = x. -p.. = 0, 1=1, ... ,1-1 
OT. I. I. 

I 

(10.53) 81nL . 
-B-= x .-p. . = 0, J=l, ... ,J-l. 
OT. .J.J 

J 

(10.54 ) 81nL = x -p. = O. o:r;; .... 

There are only 1-2 equations in (10.50) and J-2 equations in (10.51) due to the con­

straints (10.43). Since (10.54) is obtained by summing (10.52) over all i or (10.53) over all 

j, (10.47) and (10.48) have the same solutions as (10.52), (10.53) and (10.54). 

Notice further that the middle term in (10.50) sum to 0 over all i due to (10.53) and 

that the middle term in (10.51) sum to 0 over all j due to (10.52). In addition (10.49) is 

the weighted sum of the middle term in (10.50) with the f.IS as weights or the weighted 
I 

sum of the middle term in (10.51) with the O.I S as weights. Equations (10.49) and (10.53) 
J 

thus together form two linear constraints on (10.50), which means that (10.50) is satisfied 

for all i if it is satisfied for i=1, ... ,I-2. In the same way (10.49) and (10.52) ensure that 

(10.51) is satisfied for alt j, if it holds for j=1, ... ,J-2. Collecting the results, we have 
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shown that (10.49) to (10.54) is equivalent to (10.50) to (10.53) for all i and j. D. 

Equations (10.45) to (10.48) can be solved by a Newton-Raphson procedure. In the 

examples below the estimates are obtained this way. It is, however, also possible to apply 

an algorithm due to Goodman (1979b), which is closely related to the iterative propor­

tional fitting procedure for the log-linear models described in sections 3.7 and 5.3. 

Proportional fitting based on equation (10.47) yields the adjustments 

(10.55) 
(n+l) _ (n) (n) 

/1-. . - /1-.. (x. //1-. ), 
1 J 1 J I. I. 

where /1-~~) is the expected number after n iterations. If only T~ is changed in iteration n, 
1 J 1 

this means that T~ is adjusted as 
1 

(10.56) A(n+l) _ A(n) + 1 ( / (n») T . - T. n x. /1-. , 
1 1 I. I. 

Similarly T~ is adjusted as 
1 

(10.57) 

In order to derive the adjustment to (. consider the differens 
1 

ß = bO.(X .. - /1-.. ), 
j J IJ IJ 

which according to (10.46) is 0, when the solutions are obtained. Neglecting the con­

straints between the (. 's, the partial derivative of ß with respect to (. is 
1 1 

aß 2 Ot.=-pbO./1-.. 
f. i j J IJ, 
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due to (10.42). Hence a Taylor expansion of .6. with respect to (. at the value t:~n) of (. 
I I I 

yields 

where ln/1~~)=/n) (~n) tf.:n) + l·(n) + T~(n) + To(n). 
IJ I J I J 

Hence with .6.=0 and (.=t:~n+l) we obtain the adjusted value 
I I 

(10.58) (n+1) = (11) + ~,.In)( _ (n»)/~ (n)( '/11»)2 (n) t:. t:. LJl)~ x.. /1.. ~p ()~ /1 .. 
I I j J IJ IJ j J I J 

where /n), tf.:n) and /n) are the parameter values obtained after n iterations and /1~~) the 
J I I J 

expected values evaluated from these parameter. The adjustments for the 8.'s are derived 
J 

in the same way as 

(10.59) 

Finally p is adjusted as 

(10.60) (11+1) = (n) + ~ (n) ,.In)( _ (n»)/~( (11) ,.111»)2 (n) p p ~a. ()~ x .. /1.. ~~ t:. ()~ /1 ... 
i j I J IJ I J i j I J I J 

The algorithm introduced in Goodman (1979b) and known as Goodman's algorithm 

is defined as successive applications of (10.58) to (10.60). 

The model is in the usual way checked by the test statistic 

Ä 

(10.61 ) Z = 2L:L:X. .(lnX .. -1n/1 .. ), 
i j IJ IJ IJ 

where 
Ä AA. Ä Ä A Ä B Ä 

/1 .. = exp(pt:.8.+T.+T.+To)· 
IJ IJ I J 
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Since there are 1-2 unconstrained (,'s, J-2 unconstrained b.'s and one p to be estimated in 
I J 

addition to the I+J-1 main effects, the number of degrees of freedom for the approxima-

ting i -distribution is 

df = IJ-(1-2)-(J-2)-1-(I+J-1) = (1-2)(J-2). 

Example 10.5. 

Table 10.12 shows a random sampie of 1816 persons in Denmark in 1974, who rented their 

dwelling (in the sequel denoted "renters"), cross-dassified according to income and 

wealth. 

We shaIl analyze this data set by the RC-association model (10.42) as weIl as by the 

column effects associatioll model (10.40), the row effects association model (10.36) and 

the uniform association model (10.29) with known row and column effects. Table 10.13 

show the z-test statistics for these four models and for the independence model. 

Table 10.12. A random sampie of renters in Denmark in 1974, cross-classified 
according to income and wealth. 

Wealth (1000 Dkr.) 

Income 0 1-50 50-150 150-300 300- Totals 
(1000 DKr.) 

0-40 292 126 22 5 4 449 
40--60 216 120 21 7 3 367 
60-80 172 133 40 7 7 359 
80-110 177 120 54 7 4 362 
110- 91 87 52 24 25 279 

Total 948 586 189 50 43 1816 

Source: The Danish Welfare Study: Hansen (1978), table 6.H.32. 
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Table 10.13. Test statistics for independence and for four models applied to the 
data in table 10.12. 

Model z df Level of significance 

Independence 167.99 16 0.000 
Uniformassociation 52.07 15 0.000 
Row effects association 45.52 12 0.000 
Column effects association 21.13 12 0.049 
RC-association 14.46 9 0.107 

The known scores for the rows and columns in the middle three models of table 9.11 

was chosen as interval midpoints for the income and wealth scales. Thus (eI , ... ,e5) was 

chosen as a rescaling of (20,50,70,95,200), and (d1, ... d5) as a rescaling of 

(0,25,100,225,450). The values 200 and 450 were chosen in rather arbitrary fashion. 

A RC-association model thus fit the data weH, which means that the association 

between income and wealth for renters in Denmark in 1974 is described in a satisfactory 

way by a model with multiplicative interactions. The column effects association model 

fits the data relatively weH, while none of the other models fit the data. Table 10.14 

shows the estimates for the row and column effects for the RC-association model together 

with the rescaled scores obtained from the interval mid-points for the income and wealth 

scales. The estimated c's in the RC-association model by and large reflect the income 

scale, as we would expect since the column effects association model fit the data. The 

estimated 8.'s on the other hand do not reflect the wealth scale. L:;.. 
J 

Extensions of the RC-association model to three-dimensional and higher dimension-

al contingency tables were discussed by Goodman (1986), Clogg (1982a) and Choulakians 

(1988). 
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Table 10.14. Comparison between the estimated row and column scores in the RC­
association model and scores obtained by rescaling the interval 
mid-points of the income and wealth scales. 

E· 
1 

e. 
1 

" 8. 
J 

d. 
1 

0-40 

-1.151 

-1.012 

0 

0.726 

0.449 

Income (1000 Dkr.) 

40-60 60-80 

-0.644 0.283 

-0.494 -0.148 

Wealth (1000 Dkr.) 

-50 50-150 

-0.194 -1.601 

0.131 -0.822 

10.7. Log-linear association models 

80-110 110-

0.344 1.890 

0.284 2.099 

150-300 300-

-2.570 -3.338 

-2.412 -5.273 

In his original paper on the RC-association models, Goodman (1979b) considers a whole 

range of association models. The building blocks for these models are the odds-ratio's 

w .. = -c/li;...:!.j_/l_i:...:+_l ...... jc..:.+-.::1_ 

IJ /li+l.j /li.j+l 

for neighbouring ceHs in the contingency table. 

The RC-association model is equivalently with a model, where lnw .. is multiplica­
IJ 

tive, Le. there exist parameters cp. and 'IjJ. such that 
I J 

lnw .. = cp.'IjJ .• 
IJ I J 

As we have seen these models are not log-linear. If, however, the odds-ratio itself is 

multiplicative, i.e. if there exist parameters a. and ß. such that 
I J 

w .. = a.ß., 
IJ I J 
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then the model is log-linear. In fact, if w .. =o:.ß., the logarithm to the expected value in 
IJ 1 J 

cell (ij) has the form 

(10.62) l AB. . ß np .. =To+T.+T.+JO:.+l. 
IJ 1 J 1 J 

for certain parameters 0:. and ß .. 
1 J 

A model, where the expected values satisfy (10.62) was called a RC-association me}-

deI, type I by Goodman (1979b). The log-likelihood function for this model, which we 

shall call a log-linear association model, is 

lnL = x TO + x. TI>:- + x .T~ + ~ o:.~ jx .. + ~ ß. ~ ix ... 
.. I. 1 .J J i 1 j IJ j J i IJ 

The likelihood equations are accordingly 

(10.63) x. = p. , 
I. I. 

i=l, ... ,I 

(10.64) x.=p., 
.J .J 

j=l, ... ,J 

(10.65) nx .. =np .. 
i IJ i IJ, 

j=l, ... ,J 

and 

(10.66) ~jx .. = ~jp .. , 
j IJ j IJ 

i=l, ... ,I. 

These equations can be solved by a Newton-Raphson procedure or by an algorithm simi-

lar to the Goodman algorithm (10.56) to (10.60) in section 10.6. With this algorithm, 

which was also suggested by Goodman (1979b), 0:. is adjusted in order to satisfy as 
1 
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where j=(J+1)/2 and similarly for the ß's. 

Under the model (10.62), the test statistic (10.61) is approximately i-distributed 

with (I-2)(J-2) degrees of freedom . 

. The log-linear association model can be modified by assumming that the neighbour­

hood odds ratio's w .. only depend on i, only depend on j or are constant. 
IJ 

If w .. is independent of i, the model was termed a column effects association model 
IJ 

by Goodman (1979b). The cell mean values then have the structural form 

(10.67) l AB 'ß n/.l .. = T. + T. + I .. 
IJ 1 J J 

It is identical with the column effects association model in section 10.5, if the row scores 

are equidistant. In the same way the row effects association model of section 10.5 emerges 

if the known column scores are equidistant. 

In case the neighbourhood odds ratios are constant, Goodman (1979b) termed the 

model a uniform association model. The mean values for a uniform association model have 

for a certain Cl' the form 

(10.68) l AB .. 
n/.l .. = TO + T. + T. + IJ Cl' , 

IJ 1 J 

Le. the model is an RC-association model with known and equidistant row and co lu mn 

scores. 

10.8. Exercises 

10.1. The tables below show the forecasts for production and prices for the coming three 

year periods in July 1956 and the reports of the actual production and prices in May 1959 

for about 4000 Danish factories. 

(a) Test the hypotheses of symmetry and quasi-symmetry on both tables. 

(b) Compare the results for the two tables. 

(c) What are the practical use of the results? 
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Prices: Report May 1959 
Higher No change Lower 

Forecast Higher 209 169 6 
July No change 190 3073 184 
1956 Lower 3 62 81 

Production: Report May 1959 
Increase No change Decrease 

Forecast Higher 532 394 69 
July No change 447 1727 334 
1956 Lower 39 230 231 

10.2. Verify that the Q-test statistic for sYIIJ.metry (or marginal homogeneity) in 2x2 

table can be written as 
(X12 - X21 ) 

Q - -...,...-,---..,...-- X12 + X21 

Give an intuitive argument for the fact that Q only depends on the off-diagonal elements 

of the table. 

10.3. The data in the table below correspond to those in table 10.1, but relate to a poIl 

taken in August 1971 and the one taken in October 1971. 

Attitude 
in August 
1971 

Yes 
No 
Undecided 

Attitude in October 1971 
Yes No Undecided 

176 
21 
21 

33 
94 
33 

40 
32 
43 

(a) Test the hypotheses of symmetry and quasi-symmetry on this table. 

(b) Compare with the analysis in example 10.1 

(c) Test if there is marginal homogeneity in table 10.1 and in the table above. 

10.4. The table shows the sampie from the Danish Welfare Study cross-dassified 

according to own educationallevel and fathers educationallevel. 
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Own educational level 
I II III 

Fathers I 
educational II 
level 111 

The educationallevels are 

3000 
88 
23 

I: Left school with an examen 

II: Examen, but below high school 

III: High school examen. 

1090 
209 
46 

218 
102 
87 

(a) Analyse the data by a symmetry and a quasi-symmetry model. 

(b) Interprete the parameters of the symmetry model, which fits the data, if any does. 

10.5. In a methodological follow up to the Danish Welfare Study the structure of the clas­

sification in sodal rank groups was studied in details for all subjects in the sampie with 

age between 40 and 59. The two tables below are based on the married women in this 

subsampie. In the tables the womens sodal rank is cross-classified with their husbands 

sodal rank and theirs fathers sodal rank. 

Husbands Womans social 
social rank rank 

I-II III IV V 

I-II 20 35 42 22 
III 4 44 122 71 
IV 6 12 49 71 
V 0 6 32 146 

Fathers Womans social 
social rank rank 

I-II III IV V 

I-II 12 17 22 3 
III 8 33 85 95 
IV 11 26 72 87 
V 2 18 50 111 
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(a) Test the hypotheses of symmetry and quasi-symmetry on both tables. 

(b) Interprete the parameters of the final model. 

10.6. In 1972 100 Polish refugees in Denmark were interviewed among other things about 

their health. A medical examination revealed how many of 15 specific illness symptoms 

they suffered by, ranging from coughing and headaches to heart pain and stornach pains. 

The table below show the number of symptoms in three intervals 0-3, 4-6, and more than 

7, cross-classified with ones own evaluation of health status. 

Own evaluation of heal th status 
Number of 
symptoms Good Reasonable Bad 

0-3 26 12 0 
4-6 5 16 5 
7- 2 10 24 

(a) For this problem describe the meaning of the hypotheses 

(i) Independence 

(ii) Symmetry 

(iii) Quasi-symmetry 

(iv) Marginal homogeneity 

(b) Test one or more of these hypotheses. 

(c) Draw your conclusions from the testing in (b) based on what you found in (a). 

10.7. The table below show for the Danish Welfare Study the sampie cross-dassified 

according to marriage status and social group. 

Marriage 
status 1-11 

Married 364 
Unmarried 60 
Widow 32 

Social rank group 

IU 

697 
117 
76 

IV 

898 
252 
114 

V 

695 
202 
113 
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(a) Analyse the data by an RC-association model. 

(b) Interprete the parameters. 

( c) Compute the expected numbers under the RC-association model and under the 

independence hypothesis. Give an interpretation of the differences. 

10.8. The contingency table below show the connection between urbanization and social 

rank in the Danish Welfare Study. 

Urbanization I-II 
Social rank group 
111 IV V 

Copenhagen 45 64 160 74 
Copenhagen suburbs 99 107 174 90 
Three largest cities 57 85 153 103 
Cities 168 287 415 342 
Countryside 83 346 361 399 

(a) Show that an RC-association model does not quite fit the data. 

(b) U se residuals to locate the cells that contribute most to the lack of fit. 

(c) Can the fit be significantly improved by deleting a row or column? 

10.9. From the Danish Welfare Study we consider the association between alcohol con­

sumption and social rank. Alcohol consumption in the contingency table below is grouped 

according to number of "units" consumed pr.day. A unit is typical a beer, half a bottle of 

wine or 2 cl of 40% alcohol. 

Units of alcohol 
Social rank group 

consumed per day I-II III IV V 

Under 1 98 338 484 484 
1-2 235 406 588 385 
More than 2 123 144 191 137 

(a) Test whether an RC-association model fits the data. 

(b) Suppose the average consumption in the three alcohol consumption intervals can be 
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set to 0.5, 1.5 and 2.5. Compute the correctly scaled row scores corresponding to 

these values. 

(c) Does an RC-association model with the fixed scores in (b) fit the data? 

(d) Try to determine an average consumption value in the upper interval such that an 

RC-association model fits the data. 

10.10. Escoufier (1982) introduced the data set below in the statistical literature. It has 

since proved to be one of the most frequently reanalysed data set. The table show a 

sampie of 1660 subjects cross-classified according to mental health status and parents 

socio-economic status. 

Parents socio-economic status 

Mental heal th 
status A B C D E F 

WeIl 64 57 57 72 36 21 
Mild symptoms 94 94 105 141 97 71 
Moderate symptoms 58 54 65 77 54 54 
Impaired 46 40 60 94 78 71 

10.11. Caussinus (1986) introduced the data set below showing the 2730 reported cases of 

cancer cross-classified according to age and type of cancer. 

(a) Analyse the data by an RC-association model. 

(b) Try to fit the data by a row effects association model with equidistant column 

scores. 

Type of cancer 
Age 

-49 50-59 60-69 70-79 80-

A 55 175 230 381 174 
B 108 138 191 334 262 
C 15 18 76 194 80 
D 19 41 67 117 55 

10.12. The table below shows the sampie in the Danish Welfare Study cross-classified 

according to social rank and family type. 
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Social rank group 

Family type I-lI III IV V 

Single, with children 54 116 187 196 
Single, without children 11 13 45 34 
Married, with children 104 264 357 309 
Married, without children 287 497 675 471 

(a) Does an RC-association model fit the data? 

(b) Describe the model departures for example by a residual diagram. 

(c) Are there cells with contribute especially much to the values of the paramemter 

estimates. 

10.13. Apply the Goodman algorithm described in section 10.6 on the data set below, with 

the following initial values. 

A 
T = (0.0, 0.0, 0.0) 

B 
T = (0.0, 0.0, 0.0, 0.0) 

i = (1.0, 0.0, -1.0) 

6 = (-1.0, 0.0,0.0, 1.0) 

P = 1.0 

The data are subjects in the Danish Welfare Study with incomes higher than 150.000 Dkr. 

cross--classified after social rank and alcohol consumption. 

Social rank group 

Alcohol consumption 
per day I-lI III IV V 

Less than 1 uni t 58 147 174 201 
1-2 units 145 197 220 155 
More than 2 uni ts 77 73 98 59 

(a) Compute the expected values, the weighted sums (10.45) and (10.46) and the im­

proved estimates in each step of the algorithm for two iterations. 
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(b) The ML~stimates (obtained after 6 iterations) are 

AA 
T = (0.095, 0.318, -0.554) 
AB 
T = (-0.461, -0.008, 0.157, -0.053) 
A 

f = (-1.539,0.617,1.267) 
A 

h = (1.618, 0.033, 0.083, -1.060) 
A 

P = 0.203. 

Compare these with the results in (a). 



11. Correspondance Analysis 

11.1. Correspondance analysis for two-way tables 

A statistical technique, which is closely related to the models discussed in chapter 

10, was developed in France in the 1970's. This technique known in the English speaking 

world as correspondance analysis was introduced by Benzecri (1973) as l'Analyse de Cor­

respondance. Many authors have argued that correspondance analysis was not developed 

in France by Benzecri. This claim is correct in the sense that the technique is closely 

related to many other forms of statistical analyses, which go far back in time. Some of 

these connections are discussed in section 11.3 below, where also references will be given. 

Whatever those connections are, the name correspondance analysis and its popularity in 

France and neighbouring count ries is certainly due to Benzecri and his students. 

Correspondance analysis is a combination of a mathematical technique to explore the 

structure of a contingency table and a graphical technique, where the derived structure is 

illustrated in a diagram with points representing the categories of the variables. A basic 

concept in correspondance analysis is the profile of a category. Let x .. , i=l, ... ,I, j=l, ... ,J 
IJ 

be the observed numbers in the cells of the contingency table. The profile of category i on 

variable A is then the vector 

(f.I/f. , ... ,f.J/f. ), 
1 I. 1 I. 

where f .. =x .. /n and f. the sum of f .. over j. Correspondingly the profile of category j on 
IJ IJ I· IJ 

variable B is the vector 

(fI·/f ., ... ,fI·/f .). 
J.J J.J 

Note that the concepts in correspondance analysis by tradition are formulated in terms of 

frequencies rat her than observed numbers. If the variables A and B are independent, the 

estimated expected value in cell (ij) is 



x.x ./n 
I •• J 
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Hence under independence between A and B, f.. is equal to f. f . apart from random fluctu-
IJ I .. J 

ations. The estimated common profile for the rows under independence is accordingly 

equal to the vector 

Hence we can evaluate the extent to which the profile of row category i resembles the 

expected profile under independence through the vector of distances 

(11.1) ~ = [~- f.1' ... ,~ - foJl 
1. I. 

between the profile of category i and the average profile of variable B. If h. is equal to a 
I 

vector of zero's apart from random fluctuations, the frequencies in row i are elose to what 

should be expected under independence. Similarly the vector 

(11.2) 

should be zero apart from random fluctuations under independence between A and B. The 

fundamental idea of correspondance analyses is to represent the vectors (11.1) and (11.2) 

by scores connected with the rows and the column categories. Consider the following de-

composition 

f.. M 
(11.3) IJ _ ~ \ r.t. - 1 - L..I 1\ U. v. , 

i 0 0 j m= 1 m Im Jm 

where M=min(I-1,J-1). 

Given (11.3) the distance (11.1) between the profile of row i and the average profile 
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of variable B can be written as 

h. = ~,\ u. (f lVI , ... ,f JVJ ) 
1 mIm. m . m 

m 

and correspondingly the distance (l1.2) between the profile of column j and the average 

profile of variable A can be written as 

g. = ~,\ v. (fi u l , ... ,fI uI ). 
J mmJm.m .m 

The decomposition (11.3) thus means that the profiles are closely connected with the 

vectors 

u = (u l , ... ,uI ), m=l, ... ,M 
m m m 

of row scores and the vectors 

v = (vI '''''VJ ), m=l, ... ,M m m m 

of column scores. 

As we shall see, the sum in (11.3) can often be approximated by a sum of just one or 

two terms, in which case the representation of the profiles by scores represent a useful 

data reduction. 

The scores u and v must satisfy the constraints. 
m m 

I J 
(1l.4) Eu. f. E v. f . = 0, m=l, ... ,M, 

i=l 
Iml' 

j=1 Jm 'J 

and 

I 
2 

J 
2 (11..5) Eu. f. E v. f . = 1, m=l, ... ,M. 

i=l 
Im)' 

j=1 
Jm . J 

In addition the relationship between the u's and v's for different values of m is deter­

mined through the ortogonality constraints. 



(11.6) 
I J 
E u. u. f. = E v. v. f . = 0 , J14m. 

i= 1 1m 1/1- l' j= 1 Jm J/1- • J 
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the constraints (11.4) and (11.5) are widely used, although other choices of constraints are 

possible. The possibilities were reviewed by Goldstein (1987). 

It is convenient to use matrix notation to describe correspondance analysis. Let thus 

F = {fij}' i=1, ... ,I, j=1, ... ,J, 

be the matrix of frequencies and 

R = {f.. -f. f .}, i=1, ... ,I, j=1, ... ,J. 
lJ 1 .. J 

the matrix of residuals. 

The marginals f. and f . are collected in the diagonal matrices 
1. .J 

and 

Let further A be a diagonal matrix of dimension m with \, ... ,>'m in the diagonal and U 

and V be matrices of dimension LM and J.M, respectively, which have the u. 's and 
1m 

v. 's as elements. Then the decomposition (11.3) can be expressed as 
Jm 

(11. 7) c-1 Fc:1 -l I' = UAV' 
I J I J ' 

where 1~=(1, ... ,1) and li=(l, ... ,1), or as 

( 11.8) 

The constraints (11.5) and (11.6) can be collected in the orthogonality conditions 
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(11.9) U'C U= I 
I ' 

and 

(11.10) 

where I is the identity matrix. 

Equation (11.8) shows that the decomposition (11.3) is obtained thorugh an eigen­

valuefeigenvector decomposition or single value decomposition of the scaled residual ma­

trix c;lRC;-t. This means that the ..\'s and the scores in (11.3) under proper normaliza­

tions are uniquely determinated. The exact formulation of this result is given in theorem 

10.1. 

Theorem 10.1. 

There is a unique solution to (11.8), under the constraints (11.9) and (11.10). The ele­

ments of A are the square roots of the eigenvalues of the matrix 

(11.11) 

or eqnivalently the square roots of the eigenvalues of 

(11.12) 

The columns of U are the eigenvectors of D and the COhUIll • ..-l of V the eigenvectors of E. 

Proof 

Equation (11.8) yields 

or 
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due to (11.10). By asymmetrie ealculation 

When V is eliminated from these equations, we get due to (11.9) 

such that A 2 contains the eigenvalues of D and the eolumns of U are the eorresponding 

eigenveetors. If U is eliminated rat her than V, we get 

showing that E has the same eigenvalues as D. Sinee 

I [ f.. 1 J [f.. 1 1: IJ -1 f. = 1: IJ -1 f . = 0 . :r:-r 1 • • :r:-r . 
1=1 I' 'J J=l I' 'J J 

D has at most rank 1-1 and E at most rank J-1. Henee M$min(I-1,J-l).,Ci.' 

Equations 

(11.13) 

and 

(11.14) 

represent the correspondance analysis solutions based on the residual matrix R. 

It is an important property in eorrespondanee analysis that the matrix F with ele­

ments f .. has the same eorrespondanee analysis solution as R. 
IJ 



368 

Since 

Condition (11.4) can also be written as 

Hence 

The correspondance analysis solution can thus be expressed either as (11.13) or as 

(11.15) 

To equation (11.14) corresponds in the same way 

(11.16) 

As mentioned we are interested in approximations to the left hand side of (11.13) with a 

moderate value Mo of M, usually Mo= 1 or 2. The next theorem shows that the eigenvec­

torjeigenvalue decomposition is useful also in this context. 

Theorem 11.2 

The weighted sum of squares of deviations 
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(11.17) 
I J [f. . MO ]2 

Q(MO) = ~ ~ f. f . rr. -1- ~ A u. v. 
i=l j=l 1 .. J i •. j m=l m 1m Jm 

is minimized if A~, ... ,A~O' are the Mo largest eigenvalues of E or D, (u1m""'u1m) is the 

eigenvector of D corresponding to A 2 and (v 1 , ... , vJ ) the eigenvector of E correspond-
m m m 

ingtoA 2 . 
m 

Proof 

The derivative of Q(Mo) with respect to u. is 
1m 

J [f.. ] OQ(MO)/fJu. =-2A ~ 4--1 f..f .. v. 
Im m. 1 LI. 1 J Jm 

J= I" J 

J Mo 
+ 2A ~ f. f .v. ~ A u. v. 

mj=l l' • J JmJL = 1 JL IJL JJL 

which due to (11.5) and (11.6) reduces to 

f v. [f. .-f. f .] f.- = A u. . 
j= 1 Jm IJ 1 .. J i . m Im 

or in matrix notation 

(11.18) 

In the same way OQ(Mo) / fJv. leads to 
Jm 

(11.19) 
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If (11.18) is multiplied by A and the left hand side of (11.19) is inserted in (11.18), we 
m 

get 

It follows that a neeessary eondition for Q(Mo) to attain its minimum is that A! is 

an eigenvalue of D and (u1m""'u1m) the eorresponding eigenvector. It is somewhat more 

involved to prove that the minimum is attained, when Ai, ... ,A~ are the Mo largest eigen­
o 

values. D. 

If Mo=l or Mo=2 provide us with a reasonable good approximation to (11.3), i.e. if 

f.. MO 
(11.20) ~ -1 ~ ~ A u. v. , 

i .. j m=l m Im Jm 

it is eommon praetiee in correspondance analysis to display the result of the analysis 

graphieally in a correspondance analysis diagram. For Mo=2 the Freneh tradition is to 

* * * * plot the points (ull,u12), ... ,uIl,uI2)' where 

* u. = A u. Im mim 

* * * * in a twCMlimensional diagram and eorrespondingly, (vll,v12), ... ,(vJ1,vJ2) with 

* v. = A v. Im m Jm 

* * in a two-dimensional diagram. The v 's ean be plotted in the same diagram as the u 's, 

or in a separate plot. If Mo=l provide a satisfaetory approximation in (11.20), the values 

* * * * ofull,· .. ,uIl and vll, ... ,vJ1 are plotted on a line. Sinee the most interesting case is Mo=2, 

we eoneentrate on this case in the following. Cases where Mo is higher than 2 are diffieult 
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to visualize in graphical displays. 

Since for Mo=2 each point in a correspondance analysis diagram relate to the 

category of a variable, we can write an abbreviation for the label of the category next to 

the point in the diagram. As an illustration, fig.ll.l shows an imaginary example with 

three categories for each variable. 

lt\ ~ 
\. 
0 .,. 
.~ 

C\l C 
QI 

0 t .,. 
'tl 

"" 0 

01 
. ·ö 

I 

o 
I 

(11 

o 
I 

cq12 

-0.5 0.0 

Fig. 11.1. An example of a correspondance analysis diagram. 

row2 

diMension1 

0.5 
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The interpretation of a correspondance analysis diagram is based on three properties. 

First consider the distances (11.1) from the profile of category i, to the average profile for 

variable B. From (11.5) and (11.6) follows under the approximation (11.20) for Mo=2 

(11.21 ) [ ]2 [ ]2 J f.. 1 J f .. 
E [.l-f. 1.= E r.f:-1 f.. ~ 

j=l i· 'J .j j=l i .. j J 

22 J 2 22 2 * 2 
E E).). u. u. E f .v. v. = E). u. = E (u. ). 

m=l ",=1 m '" 1m l"'j=l . J Jm J'" m=l m Im m=l 1m 

* * Hence the larger the distance from the point (u i1 ,u i2) to origo, the larger is the weighted 

discrepancy between the profile of category i and the average profile of variable B. It 

follows that points far away from origo indicates a dear deviation from what we would 

expect under independence, while a point near origo indicates that the frequencies in row i 

of the contingency table fits the independence hypothesis weIl. 

Seeondly, since 

(11.22) J [f.. f.] 2 1 2 2 2 2 * * 2 
E f-f- r.~ E). (u. -u ) = E(u. -u ) 

j=l i. S' .j m=l m Im sm m=l 1m sm 

* * * * the distance between the points (u i1 ,u i2) and (us1 ,us2) is a measure of the discrepancy 

between the profiles of categories i and s on variable A. This means that the furt her apart 

on the correspondance analysis diagram the points representing categories i and s for 

variable A, the larger the dissimilarities between the corresponding row frequencies. 

Thirdly it follows from (11.20) that 

f. . 2 2 * * rf- -1 ~ E ). u. v. = E u. v. j). 
i .. j m=l m 1m Jm m=l 1m Jm m 

such that the difference between f .. j(f. f .) and the number 1 to be expected under 
IJ I" J 

* * independence is proportional to the eosine to the angle between the points (u i1 ,ui2) and 
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* * (V jl'V j2)' Hence the smaller the angle between the lines connecting the points 

representing category i on variable A and category j on variable B with origo, the larger 

the difference between the observed frequency and what should be expected under 

independence, Le. the case of largest similarity between categories i and j. If cosine to the 

angle is 0, the observed frequency is equal to what we should expect under independence. 

This means that if the points corresponding to row category i and column category j are 

in "orthogonal" positions, the cell representing the joint occurrence of the two categories 

does not contribute to any dependency between the variables. One has to be very careful 

with this interpretation because under complete independence all A 's are zero and the 

points are scattered at random in the diagram. 

The extreme case, where the points corresponding to categories i and j are on opposi­

te sides of origo corresponds to f. .=0, Le. the observed frequency in the cell is zero, 01' a 
IJ 

situation with the largest dissimilarity between categories i and j. 

These rules for interpretation of a correspondance analysis graph applied to fig. 11.1 

yield, that category 2 for variable A and category 1 for variable Bare similar, reflecting 

the fact that cell (2,1) contains a much higher frequency than should be expected under 

independence. The same is true for category 3 on both variables. Cell (1,2) contains very 

few observations. The diagram reveals on the other hand that row 1 and column 3 of the 

table have profiles which differ most from the picture to be expected under independence. 

The appropriateness of representing the categories of variables A and B by points in 

the same diagram is an issue which has received much discussion. In the examples below 

we have chosen to represent the categories of A and B in the same diagram in accordance 

with the main French tradition. This is partly justified by the rules of interpretation 

described above. Arecent discussion of the diagrams used in correspondance analysis and 

possible alternatives is due to Greenacre and Hastie (1987). 

Another issue which has received much attention is an appropriate choice of the di­

mension Mo' The dominating tradition in correspondance analysis is to use Mo=2, where 

the diagram is two-dimensional. Whether the choice of dimension is appropriate is judged 

by the values of the ratios 
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(11.23) 

for m=1,2, ... ,M where ,\>A2> ... >AM• The ratio r! is interpreted as the amount of the 

variation accounted for by the first m dimensions. The choice of dimension Mo=m is 

considered satisfactory if r 2 is elose to 1 and largely unchanged if m is furt her increased. 
m 

The choice of Mo and the appropriateness of the model can also be based on 

statistical inference principles. 

Suppose a parametric multinomial model can be assumed for the data of the 

contingency table. Then under the regularity and identifiability conditions, discussed in 

section 3.5, 

I J A 

(11.24) Z = 2 r; r; X .. (InX. .-lnp. .. ) 
i=l j=l IJ 1J 1J 

follows an approximative i -distribution jf ~.. is the mean value of X.. with the 
~ ~ 

parameters of the model replaced by their ML-estimates. The degrees of freedom for the 

i-distribution depend on the number of estimated parameters in the model. For a 

correspondance analysis a statistical model can be infered from (11.3). Since (11.3) 

implies 

M 
fiX .. = x. x .(1+ r; A u. v. ), 

1J 1 .. J m=l m 1m Jm 

we get the approximative relationship 

x. x. MO 
(11.25) x .. ~ -2.:........:.J (1+ r; A u. v. ) 

1J n m= 1 m 1m Jm 

for a correspondance analysis solution with Mo <M. If (11.25) is regarded as an estimation 

equation for the unknown parameters A ,u. ,v. , i=l, ... ,I, j=l, ... ,J, m=l, ... ,Mo' theorem 
m 1m Jm 
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11.2 shows that the values obtained through a correspondance analysis can be regarded as 

weighted least squares estimates of the parameters. It also follows that the right hand 

sides in (11.25) are approximations to the expected numbers. Hence 

A X. X . MO 
(11.26) _ I' • J ( 11,.. - -- 1 + ~ A u. v. ), 

IJ n m=l m Im Jm 

are the estimated expected numbers. The appropriate number of degrees of freedom are 

obtained by counting the estimated parameters in (11.26) as shown in table 11.1. In table 

11.1 the terms 2Mo' which are subtracted in the row score count and the column score 

count, account for the constraints (11.4) and (11.5). The terms Mo(Mo-1)/2 account for 

the constraints (11.6). The degrees of freedom for (11.24) is the~ according to the general 

result equal to 

(11.27) 

Table 11.1. Parameter count for the correspondance analysis model. 

Parameters Notation Number of parameters 

Row marginals x. In 1-1 
I. 

Column marginals x ./n J-1 
. J 

Eigen values A Mo m 

Row scores IM -2M -
MO (Mo-l) 

u. 2 Im o 0 

Column scores JM -2M -
Mo(Mo-1) 

v. 2 Jm o 0 

Total (I+J) (Mo+1) - 2Mo - M~ - 2 

Gilula and Haberman (1986) has shown that the i-approximation to (11.24) is 

valid under the hypothesis Ho: Am =0 for m>Mo if \>A2> ... AMO >0. The correspondance 
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analysis description of the data with Mo terms in the approximation (11.20), can thus be 

accepted if the level of significance of (11.24) is small as compared with a i distribution 

with (I-Mo-1)(J-Mo-1) degrees of freedom. Note that the validity of the 2 x-
approximation may be invalid if Am =0 for some m~Mo or if Am=A1 for m ~ MO' 1 ~ MO 

and li=m. 

The Pearson test statistie 

(11.28) 
I J X. X. 2 X. X . 

Q = ~ ~ (X .. _..-2..:----=I) /(_1_. _.J) 
. 1· 1 IJ n n 1= J= 

is a measure of how weH the independence model fits the data. The observed value q of Q 

satisfies 

I J x. . x. 2 x. n I J f. . 2 1 
q = ~ ~ (--M _.....:1) (_1_. ) = n ~ f. ~ ( IJ - f .) , 

. . x. n x . . 1 I.. 1 1. .J r. 
1=1 J=l I. .J 1= J= I. .J 

and the symmetrie expression in i and j. 

Hence q can be written 

(11.29) 

or as 

J I fjj 2 1 
q = n ~ f . ~ (r - f. ) 1. 

j=1 ·Jj=1.j I. i. 

Pearsons test statistic can thus be interpreted as a weighted sum of distances between the 

column profiles and the estimated common column profile under independence or as a 

weighted sum of the distallces between the row profiles and the estimated common row 

profile under independence. The more the profiles thus differ from the expected profiles 

under independence, the larger the value of the Pearson test statistie. 
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Also the additive components 

J x. x . 2 x. x. J f. . 2 
q. = 1: (x .. --2...:.....:1) 1(-2...:.....:1) = ~ nf.f. ( IJ -1) 

I J'--l IJ n n '-l·J I. r.r J- I .. J 

in Pearsons test statistic have an interpretation in terms of the parameters of a 

correspondance analysis model. From (11.3) follows that 

M M J 
a. = n 1: 1: A A f. 1: u. u. v. v. f .. 
-'1 m= 1 fJ= 1 m fJ I. j=l Im IfJ Jm JfJ .J 

or according to (11.5) and (11.6) 

(11.30) M 22 M * 2 q. = nf. 1: A u. = nf. 1: (u. ). 
I I. m=l m Im I'm=l Im 

Apart from the factor nf. , the partial sum q. is thus the distance from origo to the point 
I. I 

* * (ui1,· .. ,uiM)· 

Under the correspondence analysis model the Pearson test statistic is 

(11.31 ) 
I J A 2 A 

Q = 1: 1: (X .. - jJ, •. ) 1 fJ·· 
i=l j=l IJ IJ IJ 

A 

where fJ .. is the expected number (11.26) in cell (ij) under the model. The test statistic Q 
IJ 

has, as (11.24) an approximative i-distribution with (I-Mo-1)(J-Mo-1) degrees of 

freedom if the conditions of Gilula and Haberman (1986) are satisfied. The tradition in 

correspondence analysis is to use the quantity 

(11.32) 
I J A 2 X. X. 

Qo = 1: 1: (X .. - fJ··) I(~) 
. l' 1 ~ ~ n 1= J= 

A 

where fJ .. in the denominator of (11.31) are replaced by the expected values under 
IJ 
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independence, to measure how weIl the model fits the data. The popularity of (11.32) as a 

measure of goodness of fit follows from the following expression for the observed value of 

Qo' derived from (11.3), (11.26) and (11.32) 

(11.33) 

M 
I J f.. 0 2 

qo = n L; L; (f i-I - L; ,\ u. v. ) f. f . 
i=l j=l i..j m=l m Im Jm I .. J 

I J M 2 M ,2 
=nL; L; f.f.( L; ,\ u. v.) =n L; Am' 

i=l j=l I .. J m=MO+l m Im Jm m=MO+l 

where the last reduction is due to (11.5) and (11.6). 

It follows that the observed value of Qo is large if there are large eigenvalues 

connected with dimensions, which are not ineluded in the estimated expected values. The 

observed value of Qo is on the other hand small, if the eigenvalues of the not ineluded 

dimensions are small. From (11.33) follows that the value of (11.23) for m=Mo is 

2 q-<Io qo 
r =--=1--. 

MO q q 

If qo can be regarded as a measure of how much variation the data exhibit as compared to 

a correspondance analysis model of dimension Mo and q is a measure of variation as com­

pared to independence, then r~ is the percentage of the variation in the data, which is 
o 

explained by the correspondance analysis model. The eloser r~ is to 1, the more satisfac­
o 

~ory is the fit by a correspondance analysis model as compared to the fit obtainable under 

lndependence. There are no general rules for how elose r~ should be to 1 before one can 
o 

daim that a correspondance analysis model gives a satisfactory description of the data. 

The contribution of dimension m to the partial sum q. is according to (11.30) 
I 

[1'\ 2f. u~ . If this value is compared to other categories, one gets the measure of contri­ml. Im 

!>ution 



A 2 2 I 2 2 
D. = n'\ f. u. / E n'\ f. u. 

Im m I. Im i=l m I. Im 

of row category i to dimension m. Due to (11.5), D~ reduces to 
Im 

(11.34) A 2 D. = f. u .. 
I m I. Im 

The contribution of column category j to dimension m is in the same way defined as 

(11.35) D~ = f.v~ . 
Jm .J Jm 

A second measure of contribution is 

(11.36) A 22 M 2 2 22 22 d. = n'\ f. u. / E n'\ f. u. =,\ u. /E,\ u. 
Im m I. Im m= 1 m I. Im m Im m m Im 
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which measure the contribution to row category i from dimension m. The contribution to 

column category j from dimension m is 

(11.37) B 2 2 2 2 d. ='\v./E,\v .. 
Jm m Jm m m Jm 

Example 11.1. 

Table 11.2 shows a random sampie of the Danish population in 1976 between age 20 and 

age 64 cross-dassified according to income and occupation. The headings in table 11.2 are 

the official translations to English of the categories in the Danish official employment 

statistic. 
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Table 11.2. A random sampIe of 4013 Danes in 1976 between age 20 and age 64 
cross-classified according to income and occupation. 

Occupation: 

Monthly Self Salaried Workers Pensioners Unem- Students 
Income: employed 
-Dkr-

employees ployed 

0-3192 108 226 308 406 61 174 
3193-4800 82 242 359 37 64 9 
4801-5900 52 257 320 9 2 0 
5901-7488 44 362 230 9 2 0 
7489- 147 423 75 4 1 0 

Source: Data from the Danish Welfare Study: Hansen (1978), vol.II, tables 6.H.1 and 6.H.9. 

The elements f..j(f. f .)-1 of the scaled residual matrix G:"J1RG:"J 1 are shown in table 
IJ I..J 

11.3. 

Table 11.3. The residual matrix CI1 RCJ1 for the data in table 11.2. 

Monthly Self Salaried Workers Pensioners Unem- Students 
Income employed employees ployed 
- D.Kr.-

0-3192 -0.22 -0.53 -0.25 1.73 0.47 1.97 
3193-4800 -0.04 -0.19 0.41 -0.60 1.49 -0.75 
4801-5900 -0.25 0.07 0.55 -0.88 -0.90 -1.00 
5901-7488 -0.37 0.49 0.10 -0.88 -0.90 -1.00 
7489- 1.10 0.73 -0.64 -0.95 -0.95 -1.00 

The eigenvalues of the residual matrix and the values of r 2 for m=1,2,3 and 4 are 
m 

shown in table 11.4. 

Table 11.4. Eigenvalues and the amount of variation accounted for (r;) for the 
data in table 11. 2 

Dimension 

m=l 2 3 4 

Eigenvalue Am 0.571 0.301 0.152 0.063 
Variation 
accounted for r; 0.735 0.939 0.991 1.000 
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The values of r 2 in table 11.4 strongly suggest that a correspondance analysis model with m 

MO=2 fits the data weH. It does not seem that Mo=l is sufficient to explain the variation 

in the data. Since some of the cellls have very smaH expected numbers, the i -approxi­

mation is not valid for the Pearson test statistic. The scores u. and v. for dimensions 1 
Im Jm 

and 2 are summarized in table 11.5. 

Table 11.5. Row scores (u im) and column scores (Vjm) for a correspondance analy­

sis solution wi th MO=2 and the data in table 11.2. 

Dimension 
Row m=1 2 

i=1 1.420 0.283 
2 -0.265 -1.182 
3 -0.677 -0.955 
4 -0.825 -0.023 
5 -0.991 1.847 

Column m=1 2 

j=1 -0.346 1.186 
2 -0.737 0.673 
3 -0.188 -1.312 
4 2.069 0.498 
5 0.885 -1.497 
6 2.342 0.701 

A2 0.326 0.091 
m 

F'ig. 11.2 shows the correspondance analysis diagram for the model with Mo=2. Note that 

* * it is u. =A u. and v. =A v. which are plotted. 
Im m Im Jm m Jm 

Fig. 11.2 shows that income and occupation foHows very closely. High incomes are 

30nnected with the two highest occupation groups, while students and pensioners as ex­

)ected mostly are in the lower income brackets. Most surprising is the distance between 

Norkers and salaried employees and the fact that workers and unemployed are rat her 

3lose incomewise. 
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Fig. 11.2. Correspondance analysis diagram for the data in table 11.6 with Mo=2. 

To evaluate the contributions of the categories of A and B to the dimensions, the 

measures of contribution D~ , D~ , d~ and d~ are for m=l and 2 shown in table 
Im Jm Im Jm 

11.6. 
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The numbers in table 11.6 show that among the income brackets, it is the lowest, 

which contributes the most. to dimension one and the highest, which contributes the most 

to dimension two. Among the occupation groups pensioners contribute the most to 

dimension one, while workers contribute the most to dimension two. Note that the 

measures of contribution D~ and D~ reflects both the position of the category on the 
1m Jm 

diagram and the marginal frequency. Thus the coordinate of unemployed on the second 

axes in figure 11.2 has a larger value than the coordinate of workers, but workers 

contribute more due to the larger percentage of workers in the sampie. A similar 

argument applies to pensioners and students on the first axes. The values of d~ show 
1m 

that dimension one gives the dominating contribution to the position of the lowest income 

brackets on fig.11.2. For the highest income bracket, on the other hand, dimension one 

and two provide equal contribution. 6: 

Table 11.6. The measures of contribution for dimensions 1 and 2 tor the data in 
table 11.2. 

i=1 
2 
3 
4 
5 

j=1 
2 
3 
4 
5 
6 

The contribution, Dtm' 
from cate/?ory i 
to dimenslOn m 
m=1 2 

0.644 
0.014 
0.073 
0.110 
0.159 

0.026 
0.276 
0.145 
0.000 
0.553 

The contribution, D~m' 
from category j 
to dimension m 
m=1 2 

0.013 
0.204 
0.011 
0.496 
0.025 
0.250 

0.152 
0.170 
0.554 
0.029 
0.073 
0.022 

The contribut ion, dtm' 
to category i 
from dimension m 
m=1 2 

0.988 
0.111 
0.556 
0.825 
0.499 

0.011 
0.614 
0.307 
0.000 
0.481 

The contribution, d~m' 
to category j 
from dimension m 
m=1 2 

0.161 
0.795 
0.068 
0.981 
0.277 
0.971 

0.526 
0.184 
0.913 
0.016 
0.221 
0.024 
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Example 11.2 

As another example consider the data in table 11.7 on the connection between frequency 

of attending meetings and social rank in Denmark. 

The values of the eigenvalues A and the variance accounted for r 2 for each dimen-
m m 

sion m are shown in table 11.8. 

Table 11. 7. A sampie of 1779 persons 40-59 years old in Denmark in 1976 cross-
classifed according to social rank and according to frequency of 
attending meetings outside working hours. 

Attend meetings outside working hours 

Social One or One or Approx.once A few times Never Total 
group: more times more times every second a year 

aweek a month month 

I 17 27 13 24 25 106 
II 25 57 17 49 55 203 
III 38 91 41 217 213 600 
IV 22 33 21 133 222 431 
V 9 21 17 87 305 439 

Total 111 229 109 510 820 1779 

Source: Data from the Danish Welfare Study: Hansen (1984), bilagstabel 14. 

Table 11.8. Eigenvalues Am and variance accounted for r~ for each dimension 

m=1,2,3 and 4 and the data in table 11. 7. 

Dimension 

m=l 2 3 4 

Am 0.354 0.139 0.048 0.021 

r~ 0.850 0.981 0.997 1.000 

Table 11.8 strongly suggests that a model with Mo=2 fits the data weH while a model 

with Mo=l would not suffice. The Pearson test statistic (11.31) for Mo=l has observed 

value 

q = 42.12, df = 9, 
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with approximate level of significance less than 0.0005. For Mo=2 the Pearson test statis­

tic (11.31) has observed value 

q = 4.14, df = 4, 

with approximate level of significance p=0.388. Hence a description with Mo=2 is satis­

factory, while a description of Mo=l is not. The scores u. and v. for dimensions m=l 
Im Jm 

and 2 are shown in table 11.9. 

Table 11.9. Row scores (u. ) and column scores (v.) for a correspondance 1m Jm 
analysis solution with MO=2 and the data in table 11. 7. 

Dimension 

u. m=l 2 
Im 

i=l -1.761 -1.640 
2 -1.526 -1.333 
3 -0.464 1.049 
4 0.459 0.500 
5 1.314 -0.912 

v. m=l 2 
Jm 

j=l -1.622 -1.198 
2 -1.652 -0.860 
3 -0.929 -0.393 
4 -0.234 1.548 
5 0.950 -0.508 

,\2 
m 0.125 0.019 

The correspondance analysis diagram is shown in fig.11.3. 

From fig.11.3 it can be coneluded that the categories for both variables can be 

scaled. The scaling is represented in the diagram by the connecting lines. These scalings 

can not be represented in one dimension, Le. by the projections of the points onto the first 

axes. After such a projection it would for example appear that categories 3 and 4 of the 

meetings variable are equally elose to sodal group III, while in fact category 4 is elose to 

sodal group III and category 3 is as elose to sodal group 11 as to sodal group III. Three 
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groupings seem to emerge: Persons in social groups I and II predominantly attend meet­

ings at least onee a month. Most persons in social group III only attend meetings a few 

times a year, while most people in social group V never attends meetings outside working 

hours. Persons in social group IV seems to be divided between those who never attend 

meetings and those who attend a meeting a few times a year. Finally to attend a meeting 

approximately every seeond month does not seem to be typical of any of the social groups. 

In a eomparison of eategories within a variable, the profiles of social groups land II seems 

to be similar, and the profiles of "one or more times a week" and "one or more times a 

month" are similar. L::~: 
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Figur 11.3. Correspündanee analysis diagram für the data in table 11. 7. 

diMension1 
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There are a number of textbooks in English dealing with correspondance analysis, 

e.g. Greenacre (1984), Lebart, Morineau and Warwick (1984), Nishisato (1980), Gifi 

(1981) and van der Heijden (1987). Important references in French are Escoufier (1982), 

and Escofier (1979). Correspondance analysis of incomplete tables was studied by de 

Leeuw and van der Heijden (1988). 

11.2. Correspondance analysis for multiway tables 

Correspondance analysis for a two-way table was defined as the eigenvaluejeigenvector 

decomposition (11.8) of the residual matrix R. 

Hence the problem for multi-way tables is to find an appropriate two-way matrix to 

perform the decomposition on. One approach is to consider the so-called Burt-matrix. 

For three variables the Burt-matrix B is defined as 

CI FAß FAC 

(11.38) ß= Fh CJ FBC 

F1c FSC CR 

where F AB={fij.}, F AC={fi.k} and FBC={f.jk}· For the Burt matrix, the equivalent of CI 

is 

(11.39) 
CIO 0 

CB = 3 0 CJ 0 
o 0 Ck 

since the marginals of Bare 3\ .. , 3x.j. and 3x .. k. The eigenvectorjeigenvalue 

decomposition of the Burt matrix is, therefore, 

(11.40) Cl BC-l = UAU' 
B B ' 

where A is an M-dimensional diagonal matrix of eigenvalues and U a (I+J+K)xM 

dimensional matrix with the eigenvectors as columns. The number M is the rank of B. 

The eigenvectors are normed by 



388 

(11.41 ) 

From (11.40) and (11.41) follow that the eigenvectors and eigenvalues satisfy the matrix 

equation 

(11.42) 

and hence 

(11.43) 

which corresponds to (11.13) and (11.14). 

The eigenvaluejeigenvector decomposition (11.40) of the Burt-matrix pro duces a 

simultaneous set of scores for the categories of all three variables. The correspondance 

analysis diagram will thus represent the categories of all three variables in the same 

diagram. Since the Burt-matrix is constructed from the marginal frequency tables F AB' 

F AC and F BC' the category scores produced by a correspondance analysis based on the 

Burt-matrix should be related to the category scores obtained from three separate 

correspondance analyses based on the marginal tables. It can in fact be proved that if 

correspondance analyses of the marginal tables, produce the same eigenvalues and 

eigenvectors, they will be equal to the ones obtained from the Burt-matrix. To be precise 

if u~B, v~B are the eigenvectors obtained from FAB, u~C, yAk C those obtained from FAc Im Jm Im m 

and u~~, v~~ those obtained from FBC and 

AB AC . u . = U . for all land m, 
Im Im 

v~B = u~C for all j and m, 
Jm Jm 

vt~ = v~~ for all k and m, 

then the eigenvectors obtained from the Burt-matrix are 
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for m=1, ... ,min(I-1,J-1,K-1). 

If the eigenvectors obtained from the analyses of the marginal tables are not 

identical, the eigenvectors from an analysis of the Burt-matrix tend to be average values 

of the eigenvectors from the marginal tables. 

To illustrate these results consider the Burt-matrix 

(11.44) 

for just two variables. The diagonal matrix of marginals is here 

(11.45) 

The matrix of eigenvalues A and the matrix of eigenvectors U are derived from (11.42), 

which in case of two variables due to (11.44) and (11.45) takes the form 

where U'=(Ul,U2) and U1 and U2 are matrices of dimension I.M and J.M respectively. 

Hence (11.42) is equivalent with the combined equations 

(11.46) 

Solved with respect to U1, (11.46) yields 
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(11.47) C-1FG:="lF'U = U (2A-I)2 
I J 1 1 . 

A comparison with (11.15) then shows that U1 is equal to the matrix U of eigenvectors 

obtained by a decomposition of F. The eigenvalues A~, ... ,A~ obtained from a 

decomposition of Fand the eigenvalues, say, D~, ... ,D~ obtained from a decomposition of 

the Burt-matrix are connected by 

or 

(11.48) 

215 -1 = A 
m m 

A +1 
1'2 _ (m )2 
um - -2- . 

It turns out that if '\~>".>,\~, then D~, ... ,D~ given by (11.48) are the M largest eigenva­

lues of the Burt-matrix. There may , however, be eigenvalues, D~+l ,,,., different from 

zero. These are, as can be seen from (11.48), less than 0.25. The eigenvalues obtained 

from the Burt-matrix are, accordingly, not as immediately appealing as indicators of the 

dimensionality of the correspondance analysis model as those obtained from F. 

Greenacre (1988) suggested to perform the correspondance analysis on the Burt-ma-

trix with the "diagonal"-matrices CI'CJ,CK, etc. omitted. 

Correspondance analysis for a multi-way table can also be defined by relating the 

correspondance analysis to a log-linear model as described by van der Heijden and de 

Leeuw (1985), Goodman (1986) and van der Heijden, Falguerolles and de Leeuw (1987). 

Suppose for example that variables A and B in a three-way table are conditionally 

independent given the third variable C. In the terminology of chapter 5, this is the hy­

pothesis 

(11.49) 

Under Ho the expected numbers are 

A 

(11.50) J.t"k = x. kX 'k/x k' IJ I..J" 
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These expected numbers are of course just the expected numbers in the K conditional 

two-way tables formed by variables A and B given the levels k=l, ... ,K of variable C. It 

follows that we can study the structure of the deviations of the observed frequencies from 

the expected under Ho by performing a correspondance analysis on each of the K 

conditional two-way tables. This type of analysis effectively utilise the frequencies of the 

three-way table while an analysis of the Burt-matrix only utilise the frequencies in the 

marginal two-way tables. Although a correspondance analysis of the K conditional 

two-way subtables given C thus utilise the three--dimensional character of the table, it 

can not account for all the variability in the numbers. In fact it only accounts for that 

variability, which is not accounted for by the model A®B I C. In terms of a log-linear 

model, the three-factor interactions and the two-factor interactions between A and Bare 

zero under (11.49). Hence a correspondance analysis of the conditional two-way tables 

given variable C is a method of studying the structure of the two-factor interactions 

between A and B separatedly, if we assurne that the three-factor interactions are all zero. 

Consider next the hypothesis 

(11.51 ) 

Under H1 the expected numbers are 

(11.52) f.t··k = x. x ·k/n . 1J 1.. .J 

These expected numbers can, however, also be interpreted as independence in a two-way 

table, where variable A is cross-classified with a new variable BC obtained by combining 

the categories of variables B and C. One can thus study the variability in the contingency 

table, not accounted for by the hypothesis (11.51) by merging the categories of variables 

B an C into a new variable BC with JK categories. 
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Example 11.3 

The data in table 11.10 is also from the Danish Welfare Study, 1976.The table shows the 

sampie cross-dassified according to the variables 

A: Income 

B: Wealth 

C: Ownership of dwelling. 

Table 11.10. A random sampie from the Danish Welfare Study in 1976 cross-clas­
sified according to income, wealth and ownership of dwelling. 

A: Income B: Wealth C: Ownership 

-1000 Dkr.- -1000 Dkr.- Own dwelling Rent dwelling 

0 69 291 
0-50 70 126 

0-40 50-150 98 22 
150-300 75 5 
300- 35 4 

0 68 215 
0-50 76 120 

40-60 50-150 113 21 
150-300 87 7 
300- 56 3 

0 98 171 
0-50 64 133 

60-80 50-150 153 40 
150-300 120 7 
300- 54 7 

0 110 176 
0-50 100 120 

80-110 50-150 155 54 
150-300 115 7 
300- 73 4 

0 103 90 
0-50 64 87 

110- 50-150 122 52 
150-300 131 24 
300- 151 25 

Source: Data from the Danish Welfare Study: Hansen (1978), table 6.H.32. 

In order to compare the different ways of analyzing a three-way table by 

correspondance analysis, six different correspondance analysis diagram are shown below in 
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figures 11.4 to 11.9. 
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As should be expected the various diagrams show different patterns. 

Firstly fig. 11.4 shows that there is a strong connection between income and wealth: 

high incomes correspond to high wealth and low incomes to low wealth. Fig. 11.5 and 11.6 

show, however, that the relationship between income and wealth is more complicated. 

Thus if only owners are included in the analysis, the relationship disappear except for the 

highest income and wealth brackets. One reason is that elderly people with declining in­

comes still are wealthy due to the savings implicit in owning their house or apartment. 

The diagram for renters alone, fig. 11.6, looks more like the over-all picture in fig. 11.4. 

The difference between owners and renters become more clear in fig. 11.8, which shows 

that there are real differences between the distribution of wealth between owners and 

renters. The renters are thus concentrated in the two lowest wealth brackets and the 

owners in the three highest. Note also in fig. 11.8 as in fig. 11.5 and 11.6, that income is 

scaled in relation to wealth for renters while, this is not the case for owners. The diagram 

fig. 11.9 for the Burt-matrix shows that there is a basic difference between owners and 

renters, but otherwise fig. 11.9 only shows that both wealth and income are scalable. 

This example illustrates how the Burt-matrix can not reveal the characteristic fea­

tures for understanding the data structure, which emerge from correspondance analysis 

decompositions, which utilise the multi-dimensionality of the data, here especially mani­

fest in figure 11.5 and 11.8. 

That the scores obtained from decomposing the Burt-matrix are average values of 

what one gets from correspondance analyses of the marginal two-way tables can be illus­

trated by table 11.11. The table show the scores for the income categories obtained in 

three ways: 

(a) 

(b) 

from a correspondance analysis of a two-way table of income against wealth 

from a correspondance analysis of a two-way table of income against owner­

ship 

(c) from a correspondance analysis of the Burt-matrix. 

The scores for the wealth eategories are in the same way obtained from two-ways tables 

against income and ownership and from the Burt-matrix. 
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Table 11.11. Scores for income and weal th obtained from correspondance analyses 
of marginal two-way tables and from the Burt-matrix. 

Income 0-40 40-60 60-80 80-110 110-

Against weal th 0.616 0.268 0.082 -0.004 -0.895 
Against ownership 0.821 0.278 -0.075 -0.250 -0.675 
The Burt-matrix 0.743 0.300 -0.038 -0.137 -0.780 

Wealth 0 0-50 50-150 150-300 300-

Against income 0.453 0.253 -0.184 -0.395 -1.176 
Against ownership 0.492 0.350 -0.410 -0.695 -0.657 
The Burt-matrix 0.485 0.331 -0.381 -0.651 -0.755 

As can be seen from table 11.11 the scores obtained from an analysis of the Burt­

matrix are with one exception intermediate values between the scores obtained from 

analyzing the marginal two-way tables. 6' 

11.3. Comparison of models 

In this section we compare the correspondance analysis model with the association 

models discussed in chapter 10. A number of authors have made such comparisons and 

commented on differences and similarities. Important references are Goodman (1985), 

(1986) and van der Heijden and de Leeuw (1985). Cf. also Choulakian (1988) and Tennen­

haus and Young (1985). 

Suppose for a two-way contingency table one wants to determine scores for the row 

categories and scores for the column categories such that there is maximum correlation 

between these scores. If the row scores are denoted u1, ... ,u1 and the column scores 

v1, ... ,vJ' the covariance between the scoring ofvariables A and B is 

I J 
cov(A,B) = E !:(u.-u) (v.-v)p .. , 

i=l j=l I J IJ 

where p .. is the probability of observing a unit in ceH (i,j), 
IJ 
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and 

u = ~ U.p. 
i=l 1 1· 

J 
V = ~ V.p .. 

j=l J • J 

If it is furt her assumed that the scores are scaled to satisfy 

(11.53) 

and 

(11.54) 

~v.p . = ~u.p. = 0 
j J • J i 1 1· 

2 2 
~v.p . = ~u.p. = 1 , 
j J.J i 1 1" 

then E[A]=u=O, E[B]=v=O, var[Al=~(u.-u)2p. =1 and var[B]=~(v.-v)2p .=1. The 
I 1. J .J 

correlation coefficient P AB between A and B then becomes 

PAB = ~ ~u.v.p ... 
i j 1 J 1J 

If the constraints (11.53) and (11.54) are replaced by the data dependent constraints 

(11.55) 

and 

(11.56) 

where f.. = x . . /n, then 
1J 1J 

(11.57) 

~v.f . = ~u.f. = 0 
j J. J 1 1· 

2 2 
~v.f . = ~u. f. = 1, 
j J • J i 1 1· 

r AB = ~ ~u.v.f.. 
i j 1 J 1J 

is the empirical correlation coefficient between A and B. The quantity r AB is called the 
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canonical correlation coefficient between A and B if the scores are chosen such that r AB is 

maxi mi zed. The scores that maximize (11.57) are called the canonical scores. The next 

theorem shows that correspondance analysis with Mo=l is equivalent to determining the 

canonical correlation. 

Theorem 11.3 

Let ..\ 2 be the largest eigenvalue of the matrix D defi.ned by (11.11 ). Then ..\ is the 

canonical correlation coefficient and the eigenvector (U1, ... , U1) corresponding to ..\ has as 

elements the canonical scores for variable A. Similarly if E is the matrix (11.12), the 

eigenvector (vl' ... 'vJ) corresponding to ..\, has as elements the canonical scor~s for variable 

B. 

Theorem 11.3 throws new light on some of the elements of correspondance analysis. 

Not only is the largest eigenvalue \ the canonical correlation, but the row scores 

ull, ... ,un and the column vll, ... ,vJ1 for dimension m=l represents a ~coring of the 

variables, which makes them correlate as much as possible. 

The result in theorem 11.3 can be extended. Thus if ull, ... ,un and vll , ... ,vJ1 are the 

canonical scores and u12, ... ,uI2 and v12, ... ,vJ2 two other set of scores, which satisfy the 

constraints (11.5) and (11.6), then these new scores maximize (11.57) subject to (11.5) 

and (11.6) and the constrained maximum value of r AB is the second largest eigenvalue ..\2 

of E or D. Note that the maximization of (11.57) is conditional upon the constraint 

(11.6). The conditions in (11.6) are often termed orthogonality constraints. Thus if (11.6) 

is satisfied, i.e. if 

~U·IU.2f. = 0 
. 1 1 1. 
1 

then in an I-dimensional Euclidean space the lines connecting the points 

x1=({I1.ull,···,{IIYIl) and x2 =({IIY12, ... ,{IIYn) to origo are arthogonal. 

The scores obtained from the second dimension in the correspondance analysis are 

thus scores that make the variables correlate as much as possible, given that the new set 

of scores are orthogonal to the canonical scores obtained from the first dimension. 
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The category scores which generate the canonical correlation coefficient and thus the 

parameters of the correspondance analysis model for Mo=1 are closely related to the par­

ameters of the RC-association model discussed in chapter 10. According to Goodman 

(1981a), the scores ull' ... ,uIl ' and vll , ... ,vJ1' which defines the canonical correlation coef­

ficient are under certain conditions approximately equal to the estimated parameters 
A A "'" A 

{1""'{1 and bl' ... ,bJ of the RC-association model. 

This is illustrated by table 11.12, where the estimated parameters of examples 10.4, 

10.5, 11.1 and 11.2 are compared. The comparisons in table 11.12 clearly supports the 

result in Goodman (1981a) that a canonical correlation analysis and an analysis by the 

model (10.42) leads to essential the same results. Only for the data in example 11.1 is 

there a rat her poor match between the estimates. In this case the RC-association model 

fits the data very badly, however. 

Caussinus (1986) has shown that these results are only valid if the canonical correla­

tion is clearly larger than the second largest eigenvalue of E or D. If \ ~A2 one may get 

quite different results. The intuitive reason is that if Al~A2 it can be a matter of chance 

which eigenvector is chosen to represent the first axes and which to represent the second 

axes. 

Gilula (1986) used the scores u1m, ... ,u1m and v1m, ... ,vJm from a canonical correlation 

analysis to determine if the categories of a two-way table can be grouped. The rule is that 

two rows i and I can be grouped if u. =u1 for all m. 
Im m 
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Table 11.12. A comparison of parameters estimated und er an RC-association 
with the scores from a correspondance analysis with MO=1. 

model 

Example 10.4: i = 1 2 3 4 

Ei: 1.390 0.902 -{).644 -1.367 

uil : 1.253 0.828 -{).554 -1.213 

j=l 2 3 4 5 
A 

8f -1.334 -1.210 -{).349 0.840 0.741 

Vj ( -1.433 -1.297 -{).333 1.001 0.888 

Example 10.5: i = 1 2 3 4 5 

Ei: 1.151 0.644 -{).283 -{).344 -1.890 

ui1 : 0.880 0.636 --{).007 --{).053 -2.174 

j=l 2 3 4 5 
A 

8f 0.726 --{) .194 -1.601 -2.570 -3.338 

Vj( 0.644 --{).052 -1.453 -2.877 -3.761 

Example 11.1: i = 1 2 3 4 5 

Ei: 1.084 0.462 0.018 --{).319 -2.174 

ui1 : 1.420 -{).265 -{).677 -{).825 --{).991 

j=l 2 3 4 5 6 
A 

8 . j. 0.426 0.442 0.056 -1.694 --{).700 -2.927 

vj1 : 0.346 0.737 0.188 -2.069 -{).885 -2.342 

Example 11. 2: i = 1 2 3 4 5 

Ei: -1.633 -1.429 --{).513 0.355 1.407 

Ui ( -1. 761 -1.526 -{).464 0.459 1.314 

j=l 2 3 4 5 
A 

8j : -1.628 -1.657 -{).874 -{).245 0.951 

Vj ( -1.622 -1.652 -{).929 -{).234 0.950 
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11.4. Exercises 

11.1. We return to the data in exercise 10.7. 

(a) Analyse the data by correspondance analysis. 

(b) In how many dimensions is it appropriate to draw the correspondance analysis 

diagram. 

(c) Draw the diagram and interprete it. 

(d) Compare with the results of the analysis in exercise 10.7. 

11.2. Reanalyse the data in exercises 10.10 and 10.11 by correspondance analysis and 

compare the results with the results obtained earlier. 

11.3. We return to the data in exercise 10.9. 

(a) Perform a correspondance analysis on the data. 

(b) Discuss whether the correspondance analysis diagram should be one- or two­

dimensional. 

(c) Compare the results of the correspondance analysis with those obtained in exercise 

10.9. 

11.4. Discuss the relationship between social dass and family type based on a 

corrrespondance analysis of the data on exercise 10.4. 

11.5. Denmark is often divided in 10 regions, which differ in many respects. In the table 

below the sampie of the Danish Welfare Study is cross-classified according to social dass 

and geographical region. 

(a) Perform a correspondance analysis of the data. 

(b) Compute the standardized residuals for the independence hypothesis and compare 

the pattern in these with the results of the correspondance analysis. 

(c) Describe the connection between a subjects social rank and the region he or she 

lives in. 
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(d) Comment on any peeuliarities in the strueture of the estimated parameters. 

Social rank group 

Region I-II III IV V 

Copenhagen 58 77 169 75 
Suburban Copenhagen 87 93 165 89 
Zeeland 82 147 194 142 
Lower Islands 19 52 60 60 
Bornholm 4 3 9 7 
Fuen 35 74 120 103 
South Jutland 15 45 67 58 
East Jutland 74 158 197 206 
West Jutland 33 97 118 111 
North Jutland 49 144 165 159 

11.5. The table below is onee again from the Danish Welfare Study. It shows social rank 

eross~lassified with age for both men and women. Sinee the table is three-dimensional 

the task is to analyse the table by various forms of eorrespondanee analysis and eompare 

the results. 

Social rank group 

Sex Age: I-II III IV V 

20-29 21 84 202 94 
30-39 48 88 164 112 

Wornen: 40-49 24 48 131 111 
50-59 11 39 82 110 
60-69 4 22 33 39 

20-29 52 80 199 132 
30-39 129 177 198 130 

Men: 40-49 87 126 107 105 
50-59 51 137 95 123 
60-69 29 89 53 54 

(a) Analyse the two eonditional tables of social rank eross~lassified with age for men 

and for women. 

(b) Analyse the table where sex and age are merged into one variable. 

(e) Analyse the table where sex and social rank are merged into one variable. 

(d) Analyse the Burt matrix. 

(e) Compare the results. 
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11.6. The table below show for the sample in the Danish Welfare Study, social rank 

cross-classified with income for each of the four family types in exercise 10.11. 

Social rank group 

Family Income I-II III IV V 
type -1000 kr.-

0-50 0 6 2 5 
S~n~le, 50-100 1 7 22 20 
Wlt 100-150 1 4 16 13 
children 150- 52 99 147 158 

0-50 0 1 3 1 
S~nee, 50-100 0 0 3 3 
wlt out 100-150 2 0 4 3 
children 150- 9 12 35 27 

0-50 0 21 23 26 
Married, 50-100 10 63 108 130 
with 100-150 20 56 98 56 
children 150- 74 124 126 97 

0-50 6 62 46 25 
Married, 50-100 51 144 259 222 
without 100-150 85 108 185 88 
children 150- 145 183 185 136 

(a) Analyse by correspondance analysis the four two-dimensional tables of income 

against social rank separately for each family type. 

(b) Discuss if there are other tables a correspondance analysis can meaningful be based 

on. 

(c) Comment on the diagrams derived from the various analyses. 

11.7. The table below show the wishes as regards the length of the regular sports feature 

"Sports Saturday" broadcast Saturday on Danish TV. The wishes are cross-classified 

with how organised the sports activities are for those in the sampie, who are sportsactive. 



Degree of organization 
in sports 

Unorganized 
Organized at 
exercise level 
Organized at 
competition level 

Wishes as regards length of 
"Sports Saturday" 

2 hours 
or less 

47 

77 

29 

2t to 3t 
hours 

42 

38 

70 

4 hours 
or more 

9 

38 

70 

(a) Perform a correspondance analysis on these data. 

(b) Interprete the correspondance diagram. 
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11.8. In the Danish Welfare Study all persons in the sampie was asked if their work was 

physically demanding and if it was phychiatrically strenuous. In the table below these two 

variables are cross-classified for men and women separately. 

Work physically Work psychiatrically strenuous 
demanding 

Yes Yes, somet imes No 

Yes 113 163 370 
Men Yes, somet imes 45 106 280 

No 229 343 568 

Yes 100 109 202 
Women Yes, somet imes 33 89 179 

No 100 179 524 

(a) Perform correspondance analysis on the table of physically demanding against psy­

chiatrically strenuous work for the total sampie and describe the association be­

tween the variables. 

(b) Perform correspondance analysis on the table in (a), but now for men and women 

separately. 

(c) Analyse the Burt-matrix and compare the results with those in (a) and (b). 



12. Latent Structure Analysis 

12.1. Latent structure models 

The structure of a log-linear model can be described on an association diagram by the 

lines connecting the points. Especially for higher order contingency tables the structure on 

an assocition diagram can be very complicated, implicating a complicated interpretation 

of the model. Adding to the interpretation problems for a multi-dimensional contingency 

table is the fact, that the decision to exclude or include a given interaction in the model 

can be based on conflicting significance levels depending on the order in which the 

statistical tests are carried out. These decisions are thus based on the intuition and 

experience of the data analyst rather than on objective criteria. Hence a good deal of arbi­

trariness is often involved, when a model is selected to describe the data. We recall for 

example from several of the examples in the previous chapters that the log-linear model 

often gave an adequate description of the data judged by a direct test of the model a­

gainst the saturated model, while among the sequence of successive tests leading to the 

model, there were cases of significant levels. 

In addition to these problems it is important to emphasize that log-linear models 

only describe structures that can be formulated in terms of interactions. Chapter 10 dealt 

with models wh ich introduced symmetric or multiplicative structures in the interactions. 

Some of these models were not log-linear. In this chapter, we shall consider models, which 

explain the dependencies in an association diagram through in a common dependency on a 

so-called latent variable. 

Consider fig.12.1 showing in (a) an association diagram for a four-way contingency 

table with a relatively complicated internal dependency structure, the only indepen­

dencies being 

D®BIC 

and 
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On fig. 12.1(b), the dependency structure is described by the common dependency of all 

four variables on a fifth variable e, which in contrast to variables A,B,C and D is 

unobservable. Such a variable is called a latent variable. Given the value of e, the 

observable variables A,B, C and D are independent, i.e. 

This interpretation is valid whether e can be observed or not, but if e is unobservable the 

problem arises how to estimate e and how to check whether the structure (b) on fig.12.1 

describes the data. Statistical models, where the necessary simplicity of the model is 

obtained through the assumed presence of a latent variable, are called latent stmcture 

models. A statistical analysis, which is based on a latent structure model is called a latent 

stmcture analysis. 

A B A B 

e 

c 
(a) 

o 
(b) 

Fig. 12.1. The association diagram for a four-way contingency table with a latent 
structure as compared with a complicated association diagram. 

The statistical analysis is different for a latent structure model with a continuous 

latent variable and for a latent structure model with a discrete latent variable. If the la-

tent variable is assumed to be discrete, the model is called a latent class model, while the 

model is called a continuous latent stmcture model if the latent variable is continuous. 

12.2. Latent class models 

For the majority of cases met in practice, the latent variable is an individual parameter in 

the sense that for each individual in the sampie there is associated a value of the latent 



408 

variable. The variation of the latent variable thus reflects differences between the indivi-

duals. When it is assumed that the latent variable is a discrete variable this mean that 

the sampie can be divided into latent classes. All members of a latent dass have the same 

value of the latent variable. It will be assumed that there is a finite number M of latent 

dasses. 

Consider for the sake of illustration a four-dimensional contingency table obtained 

through the cross-classification of a simple random sampie of size n according to four 

categorical variables A,B,C and D. The basic assumption in latent dass analysis is condi­

tional independence of variables A,B,C and D given the latent variable as illustrated on 

fig.12.1(b). Let P"kl be the probability that a randomly selected individual have vari-
IJ m 

ables A,B,C and D at levels i,j,k, and I and at the same time belong to latent dass m. 

Then conditional independence given the latent variable means that 

(12.1) 

where,t.- , 11'"~ ,1I'"Ck ,and 1I'"D1 are conditional probabilities of the respective levels of 
1m Jm m m 

the observable variables given latent dass m. For example 

11'"~ = P (observing variable A at level i given that the individual belongs to latent 1m 

dass m), 

while 

cp = P (a random selected individual belongs to latent dass m). m 

The marginal probability Pjjkl of being in cell (ijkl) is obtained from (12.1) by 

sumrning over the latent dasses, Le. 

(12.2) M ABC D 
P"kl = 2: 11'". 11'". 1I'"k 11'"1 cp IJ m=l 1m Jm m m m 

In a latent dass model the mean values in the cells are thus given by 
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(12.3) 

where the cell probabilities have the form (12.3) 

The parameters of a latent dass models are the conditional probabilities 7r~ , 
Im 

7r~ , ... of observing the four variables of the contingency table given latent dass m and 
Jm 

the marginal probabilities 'P of an individual belonging to the m latent classes. 
m 

The latent class model was introduced by Lazarsfeld (1950), cf. Henry and Lazarsfeld 

(1968). Early papers on estimation and identification problems are due to Andersson 

(1954) and McHugh (1956).The connection to modern contingency table theory and the 

introduction of the widely used EM-algorithm is due to Goodman (1974). 

An alternative and equivalent parameterization is in terms of the two-factor 

interactions between variables A, B, C, D and the latent variable Band the main effects 

of all five involved variables if the extended model (12.1) is log-linear. Since A®B®C®D I B, 

(12.4) AB DB A D B InJt" kI = T. + ... +T I + T. + ... +T I + T + TO' IJ m Im mim 

from which the marginal cell probability PijkI is derived as 

(12.5) 

The parameters of (12.2) are derived from (12.4) and (12.5) as 

'Pm = Jt .... m/n, 

since 7rA =7rB =7rC =7rD =1, and 
.m .m .m .m 

A 7r. 
Im 

Jt. 
I ... m 
n 

1 
-'P--' 

m 

D Jt •. • Im 1 7r =----
Im n 'Pm' 
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For the interpretation of the statistical results of a latent dass analysis, the par­

ameterization in (12.2) is, however, the most convenient one. 

It is a necessary condition for a proper estimation of the parameters and for testing 

the goodness of fit of the model, that the model is identifiable in the sense that the 

number of parameters is smaller than the number of cells. For a four-dimensional table 

with 2 levels for each variable, the number of free parameters in a multinomial model is 

15, while the number of parameters in (12.2) for M=2, 3 and 4 are 

2·4+1 = 9 for M=2 

3·4+2 = 14 for M=3 

4·4+3 = 19 for M=4 

Hence a latent dass model is only identifiable for M=2 and 3. If there are 3 levels for each 

of the four variables the number of free multinomial parameters is 80, while the number 

of parameters in (12.2) for M=2 to 9 are 

M=2: 2·2·4+1 = 17 

M=3: 2·3·4+2 = 26 

M=4: 2·4·4+3 = 35 

M=5: 2·5·4+4 = 44 

M=6: 2·6·4+5 = 53 

M=7: 2·7·4+6 = 62 

M=8: 2·8·4+7 = 71 

M=9: 2·9·4+8 = 80 

such that for a 3x3x3x3 contingency table a latent dass model with up to 8 dasses is 

identifiable. 

In many situations the relatively large number of parameters in a latent dass model 

is prohibitive for an effective testning of the model. Often, however, the problem at hand 

suggests a number of constraints linking parameters together. Goodman (1974), Dayton 

and Macready (1980) and Formann (1985), (1988) contains several examples hereof. 
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12.3. Continuous latent structure models 

The simple expression (12.2) for the ceH probabilities of an observed contingency table 

with a latent class structure is only valid when the latent variable is discrete. In the more 

general case, where 0 is a continuous variable, the probabilities !Pl, ... !Pm of the latent 

classes are replaced by a latent population density !p( 0), which describes the variation of 0 

over the given population. The interpretation of a latent population density is straight 

forward. For any given interval (a,b) on the latent scale, 

(12.6) P(a randomly selected individual from the population has Of(a,b)) 

= Jb!p( O)dO. 
a 

The function !p( 0) thus describes the distribution of individuals on the latent scale. Fig. 

12.2 shows a situation, where the latent population density is anormal density. 

0. 20 1 I 1\ CP(9) 
0. 18 1 / \ 
0. 16 1 1 / \ 

0. 14 1 1 / \, 
0. 12 1 1/ 
0. 10 1 11/ \\ 
0. 08 1 
0. 06 1 11 \ 
0. 04 1 / 1 \ 

:::~ j4-1 --.,;..----/---Ill--------.--"-------r 9 
-1 o 2 

Fig. 12.2. Anormallatent density. 

If the latent variable has a normal distribution, the distribution of 0 is adequately 

described by the latent mean value J.L and the latent variance (12. 

Let Pijkl( 0) be the probability of observing an individual in cell (ijkl) given that the 

value of the latent variable is (). 
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The basic assumption of latent structure analysis is conditional independence given 

the level of O. Hence for a four-way table 

(12.7) 

where 

(12.8) 

'Ir~(O) = P(variable A is at level i, given that the 
I 

latent variable has value 0). 

'Ir~ (0) = P (variable D is at level l, gi ven that the 

latent variable has value B). 

The marginal cell probabilities Pijkl are then obtained as 

(12.9) JA D 
Pijkl = 'Ir i (B)· .... 'Ir 1 (B)t.p( B)dB. 

The sum in (12.2) is thus replaced by an integral with the latent population density as 

integration factor. 

In constrast to (12.2), where all parameters are identifiable and can be estimated if 

M is sufficiently small, the parameters of (12.9) are functions of B with a continuous 

variation. Hence in order for (12.9) to be a parametric model, the functional form of t.p( B) 

must be known apart from a finite number of parameters. 

Model construction in latent structure analysis is thus tantamount to modelling the 

conditional probabilities (12.8) and to specify the functional form of the density t.p( B). 

Consider first the binary case, where I=J=K=L=2, i.e. where the contingency table 

is a 2x2x2x2-table. For variable A there are then two conditional probabilities 'Ir~( B) and 

'Ir~( B) to be determined. Since 

only 7r~( B) needs to be specified, however. 
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The arguments behind the choice of functional form for 7r~( 0) is illustrated by the 

following example. 

Example 12.1: 

In order to measure the consumer complain behaviour in a given population, a sampie of 

600 individuals were exposed to 6 situations, where a purchased item did not live up to 

the expectations of the consumer. Each individual in the sample was asked whether he or 

she (a) intended to complain to the shop, where the item had been purchased, (b) never 

was going to visite the shop again or (c) did not intend to take any measures. Table 12.1 

shows the observed distribution over all possible response patterns for the binary 

response, "complain", equal to response (a) and "no complain", equal to response (b) or 

(c), for four of these consumer situations. 

A latent structure model is reasonable in this case, since it may be theorized that the 

individuals can be ordered along a complain scale with people, who never would dream of 

complaining, at the lower end, and people, who complain if there is the slightest thing 

wrong, at the upper end. Such a theory would entail that the probabilities 7r~(0), ... ,7r~(0), 

where A,B,C, and D are the variables representing the 4 consumer situations, are 

increasing functions of 0, with values elose to 0 for low B-values and values approaching 1 

for high B-values. 

All 4 situations may not, on the other hand, have the same tendency to provoke a 

complaint. Hence we mayaiso theorize that 

(or some other order of the variables) for all values of O. Properly transformed, it may 

even be the case that the differences between the values of 7r~( 0) to 7r~ (0) can be des­

cribed by a set of parameters {A""'{D such that for a suitable function g 
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(12.10) 

Table 12.1. The observed distribution over all possible response patterns for four binary 
variables concerning consumer complain behaviour. 

Response pattern 
Variable 
AB CD 

1 1 1 1 
1 1 1 2 
1 1 2 1 
1 122 
1 2 1 1 
121 2 
1 22 1 
1222 
2 1 1 1 
2 1 1 2 
2 1 2 1 
2122 
221 1 
2 2 1 2 
222 1 
2222 

Source: Poulsen (1981). 

Observed numbers 

193 
227 
13 
58 
21 
40 
4 

20 
5 
5 
1 
3 
o 
2 
o 
8 

Should this be the case, the EiS can be interpretated as the complain level of the variable 

independently of the level of O. The response probabilities should thus satisfy: 

(i) The response probabilities 1r~(O), 1r~(O),1r~(O) and 1r~(O) are increasing 

functions with limits 0 for 0 -t -wand 1 for 0 -t +00. 

(ii) Equation (12.10) is satisfied for a suitable function g and suitable parameters 

In example 12.1 it was argued that the response probabilities should satisfy (i) and 

(ii). There are, however, many such functions. Among the most commonly used are 
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(12.11) 

and 

(12.12) 

where ~ is the cumulative distribution function for the normal standard distribution. In 

(12.11) the function gis the logistic function g(x)=ln(l~x)' In (12.12) g is the probitfunc­

tion g(x)=(f>-l(x). Model (12.11) is called the Rasch model (Rasch (1960)), and (12.12) 

the Lord-Lawley model (Lord (1952), Lawley (1943)). Model (12.11) is also referred to as 

the one-parameter logistic model, or for short the IPL-model. 

As in example 12.1 the purpose of formulating a latent structure model is often to 

construct an index from the observed discrete variables, which can be used as an instru-

ment to measure the underlying latent variable. Statistical models, where there for each 

individual exists a simple sufficient statistic for the latent variable are accordingly basic 

to latent structure analysis. One dass of models, which satisfy this requirement for the 

binary case is the Rasch-model (12.11). 

For a Rasch model the probability of response (ijkl) for an individual with latent 

variable 0 is 

where z(I)=I, z(2)=0 and 

t =z(i)+ ... +z(l). 

Hence the probability distribution of the response form an exponential family and the 

score t=z(i)+ ... +z(1), or the number of I-responses, is a sufficient statistic for O. 

The generalization to the polytomous case of the Rasch model is 

(12.13) lA 
7f. (0) = exp(fA.+w.O)/Eexp(fA.+W.O) 

I I I. I I 

~; 0) ~ exp( 'D1+W,0) l~exP( 'D1+W, 11) , 
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where iAi, ... ,im are item parameters and the w's known weights. If the parameters satisfy 

(12.13) the cell probabilities given the value 0 of the latent variable, become 

(12.14) 

Also in the polytomous case the distribution (12.14) of the response for an individual 

with latent variable 0 forms an exponential family. The sufficient statistic for 0 is the 

score 

t = wi+ ... +wr 

Since the weights wl' ... ,w1 are known quantities, the score t is a function of the response 

(ijkl) and hence an observable quantity. We return to models, where the weights are 

parameters to be estimated in section 12.9. 

From (12.14) the cell probabilities of the observed table are derived as 

(12.15) 

where <p( 0) is the latent population density. If the latent density belongs to a parametric 

family, then (12.15) represents a parametric model for the observed contingency table. 

Let for convenience 

then (12.15) can be written 

(12.16) 
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where rp(O)=';'(01 a,ß) depends on the two unknown parameters a and ß. We shall term a 

model with response probability (12.16) a score model. The parameterization in (12.13) is 

arbitrary up to linear transformations of the i'S and 0. The indeterminancies implicit in 

the sums iAi+WiO, ... ,im+W10 are usually resolved by letting 

and 

Although simple in form, the model (12.16) is complicated as a basis for statistical 

analyses, primarily because it contains two sets of parameters, which are different in na­

ture, but also because any statistical procedure rely on numerical evaluations of the 

integral in (12.16). 

The literature contains a number of suggestions for latent structure models that sim­

plifies the structure of the response probabilities 1l"~( 0), ... , 1l"~ ( 0). If the responses are bina­

ry, Le. if I=J=K=L=2, the most widely used models are the Rasch model (12.11) or the 

Lord-Lawley model (12.12). Both these models can be extended by allowing the response 

probabilities to depend on a third parameter Qs called the item discriminating power for 

item S. The resulting model 

~12.17) 

~orresponding to the Rasch model is called the Birnbaum model (Birnbaum (1968)), or 

;he two-parameter logistic (2PL) model. 

The Lawley-Lord model extended with item discriminating powers is 

Lord (1957) suggested also to include a guessing parameter w. If an individual can not 
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solve a problem in an aptitude test, he or she tries to guess the ans wer in which case the 

answer is correct with probability 0.5 in the binary case. If guessing is present and the 

Rasch model holds, when no guessing takes place, then 

(12.19) 7r~( 0) = 0.5w + (l-w)exp( ts+O)/ [1+exp( ts+O)]. 

Andrich (1978b), (1982) suggested to consider rating models, where the item para-

ameters are one-dimensional and the choice between response categories are reflected in 

rating parameters T1" .. ,T1 for the I response categories. The response prob ability for item 

S in Andrich's model is 

(12.20) 
s . i 1 

7r. (0) = exp(l( O+ts)- ~ T.)C ' 
1 j=1 J 

where 

1 i 
C = ~ exp(i(O+ts)- ~ T.). 

i=l j=1 J 

Masters (1982) suggested a partial credit model, where credit parameters 0S1, ... ,oSI 

are assigned to each of the categories, such that the response probability become 

(12.21 ) 
S 1 

7r.(0) = exp(iO+ ~ 0s.)/C, 
1 j=1 1 

where 

1 j 

C = ~ exp(iO+ ~ Os.). 
i=1 j=1 1 

Both the rating scale model (12.20) and the partial credits model (12.21) are special 

cases of (12.13), with the weights w1" .. ,w1 chosen as wj=i. In (12.20) the t'S are, however, 

assumed to have the structure 
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where the r's are independent of the item S. In (12.21) the credit parameters are connec­

ted to the t'S via the differences 

Fischer (1977), (1983) suggested to let the item parameters be linear functions of 

explanatory parameters ß'l, ... ,ß. such that 
1 Ip 

Samejima (1969) suggested to let the cumulative response probabilities 

satisfy the logistic form 

S I S 
w. (0) = ~ 11". (0) . 

1 . . 1 
J=I 

8 
Wi (0) = exp( t8i+ 0158)/ [I +exp( tSi+Ob"s)]. 

In this s~alled graded response model, differences between, rather than the response 

probabilities themselves, are logistic transformations of additive expressions, similar to 

the Birnbaum model. 

Useful surveys of different models for the response probabilities are due to Thissen 

and Steinberg (1986) and Masters and Wright (1984). 

In order to fully specify the probabilities (12.9), we must choose a suitable latent 

density IP( 0). Bock (1972), Andersen and Madsen (1977) and Sanathanan and Blumenthai 

(1978) all choosed anormal density. Bartholomew (1980) discussed varies choices 

including the inverse Cauchy distribution and listed criterions for how to choose IP( 0). He 
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argues that the logistic density, 

should be preferred. 

Muthen (1978), (1979), Christofferson (1975) and Christofferson and Muthen (1981) 

discussed models, where 0 is a multivariate latent variable, cp{ 0) the multivariate normal 

density and the response probabilities 1r~( 0) are generalized pro bit functions. 
1 

We now return to the score model (12.16). In order to simplify matters, consider the 

binary case I=J=K=L=2 and assume that rp( O)=rp( 01 j.t,i) is anormal density with mean 

value j.t and variance (12. In the bin~ry case one can without 10ss of generality put w 1 = 1 

and w2=O. The probabilities (12.13) then become 

f +0 f +0) 
1r~(0) = e A /(l+e A ) 

where fA =fA1 and fD=fDl . The cell probabilities Pjjkl(O) follow from (12.14) as 

(12.22) 

where 

and 

(12.23) 

(') _ {I for i=l 
z 1 - 0 for i=2 
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Since w1=1 and w2=O, the score t can be written 

(12.24 ) t = z(i)+ ... +z(l), 

i.e. the score is simply the number of I-responses. The cell probability Pijkl is in the bi­

nary case given by 

(12.25) 

It follows that the likelihood function is 

Xijk1 
(12.26) L = II II II II p .. kl = exp(fAEx. z(i)+ ... +fDEx lz(l)). 

i j k I lJ i 1... I ... 

where nt is the number of individuals in the sampie with score t. 

The likelihood function (12.26) depends, since z(2)=O, on two sets of statistics. 

(i) The sizes nt of the score groups. 

(ii) The item totals xl..., ... ,x .. .1" 

As seen from the likelihood function these statistics are jointly sufficient for the par­

ameters fA, ... ,fD, It and (i. Hence the data can for the score model in the binary case be 

summarizes in the score group totals and the variable totals. 

In the general case the likelihood function for the score model is 

(12.27) 
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where 

and nt is the size of the group of individuals for which the score is wi+ ... +wj=t. 

In the general case the sufficient statistics are accordingly the variable totals 

xi...,i=l, ... ,I, ... ,x .. .l' l=l, ... ,L and the score group totals. 

Example 12.1. (Continued. 

For the data in table 12.1, the sufficient statistics are 

and 

Xl... = 576 

x.i.. = 505 

x .. I. = 493 

x ... 1 = 237 

no = 8 

n1 = 25 

n2 = 108 

n3 = 266 

n4 = 193 

From these numbers inference about the parameters can be drawn. 6: 

In the binary case with I=J=K=L=2, the observed numbers can be viewed as a 

2x2x2x2-dimensional contingency table. An alternative way to view the table is, however, 

to regard the indices i,j,k and 1 of cell (i,j,k,l) as the response to the binary variables 

A,B,C and D. For each individual, we have thus observed a response vector (i,j,k,l). 

Table 12.1 is with this interpretation a list of the number of individuals for each of the 
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24=16 possible response vectors for a 4-dimensional table formed by four binary vari­

ables. For an individual with position 8 on the latent scale the probability Pijkl( 8) of the 

reponse (i,j,k,l) is thus given by (12.22). 

The probabilities 1r~( 8), ... ,1r~( 8) of response 1 as functions of 8 are called item char­

acteristic curves. The name has its origin in psychometrics, were variables are called 

items. 

In example 12.1 it was argued that the item characteristic curve should be an in­

creasing function of 8. This is the case for both the Rasch-model (12.11) where the item 

characteristic curve is logistic and the Lord-Lawley model (12.12), where the item charac­

teristic curve is the cumulative standard normal distribution function, often called the 

probit-function. An example of an item characteristic curve for the Rasch model is shown 

in fig.12.3. 

1 .0 -t---------------------------------II--------~~--~--~---~----------
0.9i I / 
0.81 V 
0.71 /I 
0.6 i/I 
0.5 +----------...,{ 

0.41 
0.31 
0.2 i 
0.1 ~/ 
0.0 --

-6 -5 -4 -3 -2 -1 0 

-EA 

Fig. 12.3. A logistic item characteristic curve 

2 3 4 5 6 

The parameter (. A is connected with variable A and is called an item parameter. It 

describes the tendency of the variable to provoke the response 1 rather than the response 

2, since the larger the value of (. A the further the item characteristic curve is located to 

the left on fig. 12.3, and the larger is the probability of the response 1 for all values of 8. 
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12.4. The EM-algorithm 

Latent structure models are typical examples of models, which can be extended by adding 

variables, such that the resulting model is less complicated and hence more tractable 

statistically. The original model is then a case of incomplete data within the framework of 

the extended model. Consider thus fig. 12.1 (b), where the model is a simple independence 

model if it is possible to observe 0 as a fifth variable. The observed distribution over the 

four observable variables then represents an incomplete dataset in relation to the model, 

which include the latent variable. 

If the extended model is log-linear, estimates of the parameters can be derived 

through the so-called EM-algorithm, whether the origina.l model is log-linea.r or not. The 

EM-algorithm was suggested in its most general form by Dempster, Laird and Rubin 

(1977). The basis for the algorithm, as used in this chapter, is the following theorem, first 

discussed by Sundberg (1974). 

Theorem 12.1. 

Let the random variables X and Y jointly follow a log-linear model with point probability 

(12.28) f(x,yl r) = ert(X,y)-K(r)h(x,y), 

such that r is the canonical parameter and t(x,y) the sufficient statistic. The 

ML-estimate for r, if only Xis observed, is then the solution to the equation 

(12.29) E[TIX] = E[T]. 

Proof: Since only xis observed the likelihood function is 

(12.30) L(r) = f(x) = e-K(r)~erth(x,y). 
y 
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Hence the likelihood equation become 

(12.31 ) {JmL(r)/or = -K'(r) + ~teTth(x,y)/~erth(x,y) = o. 
y y 

But since 

y 

equation (12.31) can be written as 

E[TIX] = K'(r). 

Equation (12.29) then follows from theorem 3.1, since T is sufficient for r in the complete 

model (12.28). D. 

For vector valued canonical parameters the likelihood equations are 

(12.32) E[T I X] = E[T ], m=l, ... ,M, m m 

when T 1' ... ,T M are the sufficient statistics for the canonical parameters r1'" .. ' r M and X 

the observable random variable. 

The EM-algorithm works if the likelihood equations are easy to solve in the ex-

* * t°'1ded model, Le. iffor known numbers tl' ... ,tM the equations 

,m=l, ... ,M 

are easy to solve in terms of the canonical parameters. 

The EM-algorithm contains two steps, an E-step and a M-step:. 

The E-step: For estimates ;~n), ... ,;~n) of the canonical parameter after n iterations, in­

termediate values 



426 

t (n) =E[T IX), m=l, ... ,M, 
m m 

are obtained by computing the M conditional expectations of the T 's given X. 
m 

The M-step: Given the intermediate values t~n), ... ,t~n) obtained in the E-step, the likeli­

hood function in the extended model is then maximized by solving the m equations 

(12.33) E[T ) = t (n), m=l, ... ,M, 
m m 

with respect to Tl' ..• ,TM . 

The solutions ;~n+l) , ... ,; ~ n+l) to (12.33) are then used as entries for the E-step of 

iteration n+1, etc. 

The solutions to the likelihood equations are reached when the estimates 

"(n) (n) d Tl , ... ,TM 0 not change. The rate of convergence is usually very slow and often 

critically dependent on the values chosen for the T'S in the initial E-step. Conditions for 

the convergence of the EM-algorithm are discussed in Dempster, Laird and Rubin (1977) 

and in Wu (1983). 

12.5. Estimation in the latent dass model 

For the latent dass model, the ML-estimates can either be obtained through the 

EM-algorithm or by an application of the Newton-Raphson procedure. 

The extended model needed for the EM-algorithm is the fivHimensional contingen­

cy table formed by the four observed categorical variables A,B,C,D and the discrete la­

tent variable (J. The observed numbers in the extended model are 

X" k1 = number of individuals from latent dass m observed in cell (i,j,k,l). 
IJ m 

The cell probabilities are given by 
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Hence the log-likelihood function become 

InL = ~I;x. 'kl In( 11". 'kl ) 
ijklm IJ m IJ m 

or 

(12.34) A D InL = Ex. In11". + ... + Ex 1 In 11" 1 + Ex Inrp. I ... m I m I'" m m m .... m m 

The model is thus log-linear in the extended model and the EM-algorithm applies. The 

canonical parameters are In11"~ , ... ,1n11"DI and Inrp and the corresponding sufficient Im m m 

statistics are xi ... m, ... ,x .. .lm'x .... m. 

It follows then from theorem 12.1, that the likelihood equations are 

(12.35) {
E [Xi ... m I x 111I'''''''u KLl : E [Xi ... m1 

E[X ... lmlxl111'···'~JKL] - E[X ... 1m] 

and 

(12.36) 

The left hand sides of (12.35) and (12.36) are obtained by observing that 

Xijkll"",XijkIM given Xijkl . =xijkl is distributed as a multinomial distribution with and 

probability parameters 

(12.37) 
* A D M A D 

11". 'kl = 11". 'kl / 11". 'kl = 11". . .. 11" 1 rp / E 11" . . .. 11" 1 rp , IJ m IJ m IJ' Im m m m= 1 Im m m 

* * Hence with JL. 'kl =x. 'kl11" "kl the likelihood equations (12.35) and (12.36) become IJ m IJ IJ m 
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(12.38) 

and 

(12.39) * p, In = cp • .... rn rn 

The EM-algorithm starts by selecting a set of initial values for 11"~ , ••• ,1I"Dj and cp • 
1m rn rn 

* These values are inserted on the right hand side of (12.37) and 1I".okl is computed for all 
IJ rn 

.. k 1 d B t·· t d· al t(l) t(l) d t(l) th I,J" an m. y summa Ion In erme late v ues i ... rn'···' .. .Irn an .... rn are en 

* * obtained from p,o °kl =xookl 1l"o 0kl as 
IJ rn IJ IJ rn 

t~l) = / In 
!. .. rn !. •. rn 

t(l) = / In 
.. .Irn .. .Irn 

and 

t(l) = p,* In 
.... rn .... rn 

in the E-step. In the M-step new values for 11"~ , ••• ,1I"D1 and cp are computed as 
1m rn rn 

11"~ = t~l) It(l) 
1m l ... rn .... rn 

according to (12.38) and 

c.p = t(l) , 
rn .... rn 

according to (12.39). 

Convergence is often very slow, but to compensate the computations in each 

iteration are extremely simple. It is thus a definite advantage to have good initial values, 
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but the EM-algorithm usually converges even when the initial values are far from the 

solutions. 

The EM-algorithm for the latent dass model was proposed by Goodman (1974), 

reprinted in Goodman (1978). 

The Newton-Raphson method also applies. With good initial values convergence is 

much more rapid than for the EM-algorithm. The Newton-Raphson procedure has the 

advantage, that it as a byproduct produces an estimate of the information matrix and 

hence estimates of the standard errors for the ML-estimates. How to deterrnine the 

information matrix, when using the EM-algorithm, was shown by Louis (1982). The 

application of the Newton-Raphson procedure to solve the likelihood equations was 

studied by Formann (1985). 

Example 12.1. (Continued) 

For the data in table 12.1 a latent dass model with 3 latent dasses have 14 parameters, 

such that the model is barely identifiable with 24-1=15 free multinomial parameters. 

With M=2 latent dasses, there are, however, only 9 parameters, leaving 15-9=6 degrees 

of freedom to check the model. Table 12.2 shows the estimates of the parameters of a 

2-class latent dass model. 

Table 12.2. ML-estimates of the parameters for a two-class latent dass model applied to 
the data in table 12.1. Standard errors are shown in parantheses. 

m=l 2 

"A 0.982 0.863 1r1m 
(0.009) (0.043) 

"B 0.893 0.619 1r1m 
(0.020) (0.070) 

"C 0.940 0.312 1r1m 
(0.027) (0.154) 

"D 0.471 0.065 1r1m 
(0.033) (0.065) 

" IPm 0.812 0.188 

(0.062) (0.062) 
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With the same initial values derived from a rather crude approximation, the 

EM-algorithm required 250 iterations, while the Newton-Raphson procedure reached the 

solutions in 46 iterations. The amount of time required on a medium size personal 

computer was about 30 seconds in both cases. 

A latent dass model thus divided the individuals into two dasses of sizes roughly 

80% and 20%. In dass 1 almost all individuals complain except in situation D, where less 

than half the individuals are expected to complain. Individuals in latent dass 2 act more 

differentiated in the 4 situations. In situation A 86% are expected to complain, while in 

situation D only 6% can be expected to complain. The parameter estimates in table 12.2 

suggest that the individuals can be ordered according to their tendency to complain, but 

also that the four situations corresponding to the four variables A,B,C and D can be 

ordered according to their tendency to provoke complaints. 

We pursue this in the next section. ~. 

Example 12.2. 

In 1984 the Danish Institute for Working Environment Research collected data on work 

hazards. All persons in a sampIe of some 6000 employees were interviewed. Among the 

quest ions posed was a battery concerning exposure to various work hazards. From among 

these we consider five questions, namely: 

Have you within the last year been exposed to: 

A: exhausting physical work. 

B: noise in the room or from machines. 

C: smoke. 

D: annoying chemical substances, not labelled as dangerous. 

E: organic dissolutors. 

The answers to these five questions from a subsampIe of 1200 workers are shown in 

table 12.3 as observed numbers for each of the 25=32 possible response patterns. 

The purpose of the study was among other things to form an index of degree of expo-
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sure to work hazards in order to compare the degree of exposure for different types of 

employment. A latent structure model, therefore, seems appropriate. It may for example 

be attempted to fit a latent dass model with M=3 latent dasses to the data. The 

solutions to (12.35) and (12.36) extended to five variables with two levels each are shown 

in table 12.4. 

Table 12.3. Observed response patterns for 1200 workers on 5 quest ions concerning 
work hazards. 

Response pattern 
Variable 
ABCDE 

1 1 1 1 1 
1 1 1 1 2 
1 1 121 
1 1 122 
1 121 1 
11 2 1 2 
11 2 2 1 
1 1 222 
12111 
12112 
1 2 1 2 1 
1 2 1 2 2 
12211 
12212 
1 222 1 
12222 
2 1 1 1 1 
21112 
2 1 121 
2 1 1 22 
2 1 2 1 1 
21212 
2 1 221 
2 1 222 
22111 
22 1 1 2 
2 2 1 2 1 
22122 
22211 
22212 
22221 
22222 

Observed numbers 

7 
2 
3 

18 
6 
7 
5 

73 
o 
2 
1 
7 
1 
6 
2 

118 
o 
2 
o 

25 
5 
8 
6 

136 
o 
o 
1 

18 
5 

14 
8 

714 

Source: Unpublished data from the Danish Institute for 
Working Environment Research. 
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Table 12.4. Estimated parameters for a 3-class latent class model fitted to the 
data in table 12.3, with standard errors in parantheses. 

m=l 2 3 

AA 
0.123 0.410 0.619 1r1m 

AB 
(0.021) (0.090) (0.099) 

1r1m 0.058 0.749 0.727 

AC 
(0.062) (0.141) (0.078) 

1r1m 0.014 0.202 0.290 

AD 
(0.011) (0.062) (0.075) 

1r1m 0.018 0.033 0.653 

(0.006) (0.054) (0.220) 
AE 

0.009 0.022 0.583 1r1m 
(0.004) (0.044) (0.218) 

A 
V?m 0.717 0.232 0.051 

(0.092) (0.093) (0.030) 

The population is thus divided into three latent classes. The largest one, covering 

roughly two thirds of the population, is rarely exposed to work hazards. A second group, 

covering about a quarter of the population, is more exposed to work hazards but mostly 

the mild types A, Band C. Finally there is a small group, about 5% of the population, 

which has a relatively high degree of exposure to all types work hazards. 

One advantage of a latent dass model is thus the easy interpret ability of the par­

ameters. A disadvantage is the relatively large number of parameters. In table 10.3 there 

are 17 free parameters to describe a contingency table with 32 cells of which many have 

small expected numbers. Since there is obviously some sort of structure in table 10.4, it 

should be possible to describe the data with considerable less parameters. L~: 

With the EM-algorithm it is easy to estimate the parameters of models with 

constraints on the probability parameters. Suppose for example that we want to estimate 

the parameters under the hypotheses 
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A B 
1l"lm = 1l"2m 

C D 
1l"lm=1l"2m 

C D 
1l"2m=1l"lm 

It then follows directly from the log-likelihood function (12.34) that the sufficient statis­

tic for 1l"~m is x1...m +x.2 .. m , for 1l"~m is x2 ... m +x.1..m' etc. According to equations (12.35) 

and (12.38) the EM-algorithm then applies, but with some of the equations merged. 

Estimation in a latent dass with linear parameter constraints is accordingly carried out 

by applying the linear constraints to the equations of the EM-algorithm. 

Example 12.3: 

The so-called Coleman-data (cf. Goodman (1978), p.285.) is an example of a data set, 

where a latent class model with constraints is appropriate. A sampie of 3398 schoolboys 

were asked about their membership of (yes or no) and their attitude towards (favourable 

01' not) the leading crowd in their school dass. The questions were asked at two different 

points in time. 

Table 12.5 show the number of schoolboys for each of the 16 possible response pat-

terns with 1 for "yes" and 2 for 11 no 11 on the membership question and 1 for "favourable" 

a.nd 2 for "unfavourable" on the attitude question. 

The analysis of the data, shown below is essentially due to Goodman (1974). With 15 

[ree parameters in a saturated model for the contingency table, the maximum number of 

latent dasses, for which the parameters of an unconstrained model can be identified, is 

M=3. For M=3 there are, however, 3·4=12 1l"I S and 2 rpls, so the model is almost satura-

ted. For M=2 the estimates obtained by the EM-algorithm are 
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AA 
11" 11 = 0.769 

AA 
11"12 = 0.101 

AB 
11" 11 = 0.645 

AB 
11"12 = 0.467 

AC 
11" 11 = 0.889 

AC 
11" 12 = 0.090 

AD 
11" 11 = 0.674 

AD 
11" 12 = 0.499 

A A 
'PI = 0.401 'P2 = 0.599 

As will be shown in the next section this model does not fit the data very weIl. 

Instead Goodman (1974) suggested that the questions were influenced by two latent va­

riables, (Jl which affects the response on the membership questions and 02 which affects 

the response to the attitude questions. One can then form four latent classes by assuming 

that each of the latent variables has two levels. The latent classes are described in table 

12.6. 

The two questions asked at two different points in time make up 4 binary variables: 

A: The membership at first interview 

B: The attitude at first interview 

C: The membership at second interview 

D: The attitude at second interview. 
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Table 12.5. The observed responses for a sampIe of 3398 schoolboys on two binary 
quest ions concerning membership and attitude towards "the leading 
crowd", asked at two successive points in time. 

First 
interview 

Membership Attitude 

1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 

1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 

Second 
interview 

Membership Attitude 

1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 

1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 

Observed 
number 

458 
140 
110 
49 

171 
182 
56 
87 

184 
75 

531 
281 
85 
97 

338 
554 

Table 12.6. Four latent classes formed by two latent variables: 81 affecting the 
membership questions and 82 affecting the attitude questions. 

Class 82 at level 
number 1 2 

1 1 2 
81 at level 

2 3 4 

Since 01 affects variables A and C and has the same level for latent classes 1 and 2 and for 

latent classes 3 and 4, we rnust have 

(12.40) 
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Similarly, since latent variable 02 affects variables B and C and has the same level for 

latent classes 1 and 3 and for latent classes 2 and 4 

(12.41 ) 

B B 
11"11=11"13 

D D 
11"11 = 11"13 

B B 
11"12=11"14 

Under the constraints (12.40) and (12.41), the corresponding equations of the EM- algo­

rithm are merged. In (12.38) the first and third equations for m=l and 2 are thus merged 

into 

The ML-€stimates obtained this way are shown in table 12.7, columns 2 to 5. 

Table 12.7. ML-€stimates of a 2-class latent class fitted to the data in table 
12.3 under to sets of constraints. 

Constraints Constraints 
(12.40) and (12.41) (12.40),(12.41) and (12.42) 
m=l 2 3 4 m=l 2 3 4 

AA 
0.754 0.754 0.111 0.111 0.827 0.827 0.096 0.096 Jr1m 

AB 
0.806 0.267 0.806 0.267 0.821 0.287 0.821 0.287 Jr1m 

AC 
Jr1m 0.910 0.910 0.075 0.075 0.827 0.827 0.096 0.096 
AD 
Jr1m 0.832 0.302 0.832 0.302 0.821 0.287 0.821 0.287 

A 
10m 0.272 0.128 0.232 0.368 0.271 0.130 0.228 0.371 
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A latent dass model with the constraints (12.40) and (12.41) fits the data weH. The in­

teresting problem for the data in table 12.5 is whether the schoolboys have changed their 

feelings of membership and their attitude towards the leading crowd. If no changes have 

taken place the conditional probabilities for variable A should be the same as those for 

variable C, and the same for variables B and D. The foHowing identities should thus hold 

in addition to (12.40) and (12.41) 

A C B D 
1l'11 = 1l'11' 1l'11 = 1l'11 

A C B D 
1l'12 = 1l'12' 1l'12 = 1l'12 

(12.42) 

Under these constraints, the parameters estimated by the EM-algorithm are also shown 

in table 12.7. 

As we shaH see later a model with these estimated parameters does not fit the data 

very weH and it can be conduded, that a change in attitude has in fact taken place. 6' 

Applications of latent dass model to mobility data was studied by Clogg (1981). 

Latent dass analysis when the data is from several distinct groups was discussed by Clogg 

md Goodman (1984), 1986) and by Formann (1985). 

l2.6. Estimation in the continuous latent structure model 

[i'or the continuous latent structure model (12.16), the EM-algorithm does not apply un­

.ess the extended model obtained by adding the latent parameter 0 to the observed res­

)onse is log-linear. The extended model is a mixed discrete/continuous model with prob-

1bility density 



438 

(12.43) 

defined as a function of 0 that satisfies 

() 

P(variables A to D at levels i to land 01 <0<(}2) = J 02 PijkIO d(}. 
1 

The likelihood corresponding to (12.43) is log-linear if 

In '1'( (}I a,ß) -lnH( (}) 

where 

H( 0) = ~ exp( (Ai+wi(})···~xP( (m+wI()) 

is linear in (Ai' ... '(m' a and ß· A density '1'(01 a,ß) which satisfies this requirement with­

out restrietions on the ('s does not exist. The likelihood equations are, however, easily 

derived if '1'( 0) is anormal density. From (12.27) follows that the log-likelihood function 

is 

Hence the likelihood equations pertaining to the ('S are of the typical form 

(12.44) ~ = x. - E ntJ [exP((A.+w. ())/Eexp((A.+w. 0)] eOtH-1(0)'P(01 fj,ri)d(}/ 
U(Ai I... t I I i I I 

while the derivatives with respect to fj and (12 become 
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(12.45) 

and 

(12.46) 

These likelihood equations are not so complicated to solve as they may seem to be at first 

glance. We note first that the density cp( 01 t) of 0 given the score t is equal to 

(12.47) 

Hence (12.44) can be written as 

Le. a weighted sum of conditional expectations. It follows moreover from (12.14) that 

E [x. 10] = ~p. 'kl( 0) = exp( fA·+w.O)/'Eexp( fA·+W.O). 
l. . • j k I IJ I I i I I 

The likelihood equations pertaining to the fiS thus have the form 

(12.48) 

Although more complicated than the equations (12.35) for the EM-algorithm they 

suggest that the likelihood equations can be solved by successively adjusting the item 

totals xi ... , ... ,x .. .!, for given values of J.t and (12. The likelihood equations obtained by 

setting (12.45) and (12.46) equal to zero can be solved by means of the EM-algorithm. 
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For fixed values of (Ai, ... ,fDl, the extended model (12.43) is namely log-linear if cp is a 

normal density. The sufficient statistics are EO and Er?, where the summations are over 

all individuals in the sampIe. Since t=wi+ ... +w j is sufficient for 0 for each individual, the 

conditional mean values of EO and Er? given the observations are computed as 

E [EOI the observations] = ~ntE[ 01 t] 

and 

The density of 0 given t was derived above as (12.47). Hence the likelihood equations ac­

cording to the EM-algorithm are 

(12.49) 

and 

(12.50) 

In the binary case I=J=K=L=2, w1=1 and w2=0. Hence 

( +0 [ f +'1 
E[X1...1 0] = e A / 1 +e A J 

E[X ... 1 10] = e D / 1+e D 
f +0 [ f +0] 

The likelihood equations (12.48), therefore, become 



(12.51 ) 

( A+ O 
xl... = ~ntfe ( A +0 eOtH-1( O)<p( O)dO/ fe OtH-1( O)<p( O)dO 

He 
... (D+ O 

x ... 1 = ~nJe (+OeOtH-1(0)<p(0)do/feOtH-1(0)r;?(0)dO 
t l+e D 
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Application of the EM-algorithm to solve the likelihood equations was suggested by Sa­

nathanan and Blumenthal (1978), cf. also Rigdon and Tsutakawa (1983). 

Example 12.1 (Continued): 

For the data in table 12.1, we found the values 

xl... = 576, 

x .. I. = 493 

no = 8, 

n2 = 108, 

n4 = 193. 

X.I.. = 505 

x ... 1 = 237 

n1 = 25 

n3 = 266 

Based on these numbers the solutions to (12.49) to (12.51) are 

'" 
f A =2.012 

'" 
f e = 0.107, 

'" Jt = 1.843, 

'" 
(B = 0.281 

'" 
f D = -2.400 
"'2 
(1 = 1.567. 

The estimated ('S confirm the results of the latent dass analysis, that consumer situation 

A can be expected draw most complains and situation D the smallest number of com­

plains. 

'" The value of Jt means that the O's have center of gravity weH above o. There is thus 

a general tendency to complain. The estimated value of the latent variance of (12 is 

evidence, however, of a rather large variation around the mean. Note that an individual 

with 0=0 will complain with probability 1/2 on a neutral item with f=O. The estimated 
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distribution has 7% of its mass below O. Hence the population contain only 7% consumers, 

who complain less often than they do not complain. 

Example 12.2. (Continued): 

For the data in table 12.3 the ML-estimates hecome 
A 

C = A 1.136 
A 

C = B 
1.426 

A 

Ce = -0.505 
A 

cD = -0.866 
A 

CE = -1.191 
A 

f.L = -2.983 

;2 = 2.544 

A A 

In accordance with fig. 12.3 the estimates cA to cE suggest that there is a relatively 

higher probability of an exposure to exhausting physical work and noise than to smoke 

and in particular to chemicals and dissolutors whatever the level of the latent variable. 

This is in accordance with the interpretation of the estimates in table 12.4 for the latent 

dass model. The very low estimate -2.983 of f.L indicate that most of the population is 

concentrated in the end of the kcale, where there is a low probability of an exposure to 

work hazards. Also this is in agreement with what was found in the analysis by a latent 

class model. Fig. 12.4 show the item characteristic curves for all five items A to E. 6: 

The fact that the score t for a given individual is a sufficient statistic for () can be 

used to derive an alternative way of estimating the item parameters (Ai to (Dr Consider 

the conditional probability Pjjkj(t) of response (i,j,k,l) given that the score is 

wi+ ... +wj=t. The probability of observing t is 

p(t) = ~ ~ PijkJ" 
w i + ... +wj=t 
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Fig.12.4. Item characteristic curves for four items of the work hazard data. 

443 



444 

1 . 0 t---------------------------------t--------------------~ 

0.91 I / 

~:~~ I // 
0.6 i 
0.5~--------------_+--7 

0.41 
0.31 
0.21 ./l 
0.11 . ~ 
0.0~~==T=~~r__._.--+_~--.__r_.--.__. 

-6 -5 -4 -3 -2 -1 0 2 3 4 5 6 

Fig.12.4. Item characteristic curves for item five of the work hazard data. 

Hence it follows from (12.1.5) that 

(12.52) 

where 

(12.53) g(t;f) = E E exp((Ai+ ... +fDl)' 
w i + ... wj=t 

If the conditional likelihood is defined as the probability distribution of the responses 

given the observed values of the scores, the conditional log-likelihood function then 

become 

(12.54) InLc( t:) = E(Aixi ... + .. ·+Ej (Dlx .. .! - ~ntlng(t;(). 
1 t 

Here nt is as before the number of individuals with score t. 

The log-likelihood function (12 . .54) does not depend on the density cp( B). Conse­

quently the ('S can be estimated independently of the form of cp( B). Since (12 .. 54) is log-
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linear with the fIS as canonical parameters and xi ... , ... ,x .. .l as sufficient statistics, the 

likelihood equations are 

(12.55) {~~:. = E[Xi ... 1 nt for all t] 

x .. .l = E[X .. .llnt for all t] 

The conditional expected values in (12.55) are derived from the g-functions as 

(12.56) E[X. Intfor all t] = EntOJ?:(t; t) /g(t;f) 1... t ----ar;:: 

and similarly for the other three equations. 

In the binary case, Le. when I=J=K=L=2, the weights can without loss of 

generality be chosen as wt =l and w2=0. The possible values of t are then 0, ... ,4 and the 

g-functions become 

(12.57) 

For t=2, we get for example 

f f 

where 0A=e A, ... ,on=e D. The derivative of 'P(2;fA, ... ,fn ) withTespect to f A is 

In general (12.57) yields 
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This means that the likelihood equations in the binary case have the simple forms 

(12.58) 

The g-functions necessary for the numerical solution of (12.58) are obtained by the itera­

tive procedure 

for t=l 

for t=O 

which produces g(t-1;tB,tc ,tD) and g(t;tA,tB,tc,tD) of the first equation in (12.58). The 

remaining g-functions are obtained by exchanging the sequence of variables in the proce­

dure. 

The estimates to be shown below were obtained by a Newton Raphson procedure, 

which also provided standard errors of the estimators. Such a procedure usually requires 

only 3 to 4 iterations and is relatively fast due to the simple iterative procedure for 

computing the g-functions. 
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The properties of conditional ML-estimators in this context was studied by Ander­

sen (1970). The asymptoti<: properties are not covered by the theorems of chapter 3 since 

the reference prob ability space changes with increasing samp1e size. Theorem 3.6 is, how­

ever, still valid. Because the observed distribution of t-va1ues no, ... ,n4 are assumed to be 

known constants, the interior of the convex extension of the support is, however, a bit 

complicated. The following resu1t is due to Fischer (1981). 

Theorem 12.2: 

For a four-way table with binary variables the likelihood equations have a unique set of 

solutions if (assuming that the margina1s are ordered xl... ~x.l.. ~x .. 1. ~x ... 1) the marginals 

satisfy 

Proof: 

The support is from below 

xl... ~ 0 

x ... 1 ~ 0 

In addition the item totals can not exceed the marginals obtained in the extreme situation 

where the on1y observed responses are (1,1,1,1), (1,1,1,2), (1,1,2,2), (1,2,2,2,) and 

(2,2,2,2). For this case we obvious1y have 

Xl... = n1+n2+n3+n4 

x.l.. = n2+n3+n4 
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As is easily seen any deviation from this extreme situation will diminish xl... ,x. I.. and 

x .. 1.' provided xl... ~x.I..~x .. 1.~x ... 1· Hence 

(12.59) 

(12.60) 

and 

(12.61 ) 

while the sum of all four marginals satisfy 

The inequalities (12.59), (12.60) and (12.61) are the constraints on the support due to the 

given values of nO, ... ,n4• They on the other hand form the boundary of a convex set in the 

three-dimensional space spanning xI...' x.I.. and x .. 1.' Hence the likelihood equations 

have a unique set of solutions, if none of the inequalities (12.59), (12.60) and (12.61) are 

sharp. D. 

If the scoring of the response categories is equidistant, i.e. w 1=1-1, w 2=1-2, ... ,wr=0, 

the conditional likelihood equations are almost as simple as in the binar'y case. The 

derivatives in (12.56) can then be expressed by the g-functions due to the formula 
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w hieh follows directly from (12.53). 

Hence the likelihood equations (12.55) become 

(12.62) 

If the item parameters are estimated by the conditional ML-method, it is normal 

practice to obtain estimates for J.L and (12 from equations (12.49) and (12.50) with the 

CML--€stimates inserted for the ('s. 

Exa.mple 12.1. (Continued): 

For the complain data the CML--€stimates of the ('S and the solutions to (12.49) and 

(12.50) are compared to the direct ML--€stimates in table 12.8. 

Table 12.8. Comparison of CML-estimates and ML--€stimates for the data in table 12.1. 

CML-estimates ML-estimates 

A 

fA 2.106 2.012 
A 

fB 0.227 0.281 

" (C 0.055 0.107 

" (D -2.388 -2.400 

" 
P, 1.854 1.843 
"2 1.536 1.567 (J 

The differences between the two sets of estimates is obviously minimal. L.'::!:..' 

Example 12.2. (Continued) 

For the work hazard data in table 12.3 the CML--€stimates and the direct ML--€stimates 

are compared in table 12.9. 
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Table 12.9. CML-estimates and direct ML-estimates compared for the work hazard 
data in table 12.3. 

CML-estimates ML-estimates 

A 
EA 1.132 1.136 
A 
ER 1.422 1.426 
A 
EC ~.494 ~.505 
A 
ED ~.861 ~.866 
A 
EF -1.199 -1.191 

A 

P, -2.979 -2.983 
A2 

2.536 2.544 (J 

For this data set the differences are even smaller than for the complain data. In general 

the differences tend to diminish when the number of items increase. 6.: 

The numerical problems connected with the joint ML-estimation of the item par­

ameters and the parameters of the latent density was discussed by Bock and Aitkin 

(1981). The Bock-Aitkin paper deals with the two-parameter logistic model (12.17). 

Thissen (1982) shows how the results apply to the one-parameter logistic model, Le. to 

the solution of the likelihood equations (12.49) to (12.51). Bock and Aitkin suggested to 

* reparametrize the model by the transformation 0 =( O-p,) / (j of the latent variable, such 

that (12.25) becomes 

(12.63) 

* * where cp(O) is the standard normal density, fA =fA +/L, ... ,fD=fD+/L and 

* * * * * f A +(jO fD+(jO 
H(O ) = (l+e ) ... (I+e ). 
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The likelihood derived from (12.63) has of course the same solutions as those derived 

from (12.25), but now 

Bock and Aitkin computed the integrals appearing in the likelihood equations (12.49) to 

(12.51) by Gauss-Hermite quadrature using only a few nodes. Thissen (1982) reports that 

eleven nodes seem to perform quite weH. In addition Bock and Aitkin recommended an 

EM-type algorithm for obtaining the solution of the likelihood equations. They finally 

suggested to characterize the density distribution of the latent variabel by computing the 

posterior density of 0 given the data, derived above as (12.47) at the nodes of the 

quadrat ure formula. Thus if 0l' ... ,OQ are the nodes, the density ip( 0) is estimated as 

(12.64) 
A 0 Q 0 
ip( 0 ) = e qH-1( 0 )~ 0 )/ ~ e qH-1( 0 )~( 0), q=l, ... ,Q, 

q q q q=l q q 

where ~(O ) is the weight used at 0 in the quadrat ure formula. The procedure can be 
q q 

* * repeated by estimating the parameters fA, ... ,fD and (J using a quadrat ure formula based 

on the empirical density (12.64) and use these estimates to obtain a new empirical density 

(12.64), until it stabilizes. The obtained values (12.64) then give an empirical character­

ization of the latent density ip( 0). Similar ideas are contained in Mislevy (1984), who also 

gives a useful survey of various methods for estimating the fIS and ip jointly. In Mislevy 

(1987) it is shown how to incorporate auxiliary information into the latent density ip( 0). 

In some situations one would like to estimate the item parameters and investigate 

the fit of the model without specifying the latent density. For the score model (12.16) this 

can be done by observing that the score 

is a sufficient statistic for the latent parameter O. This means that the observed distribu-
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tion of individuals over score-values contains the necessary information about the density 

cp( 8). 

Without specifying the density cp( 8), the logarithm of the likelihood (12.27) is 

(12.65) InL(tA, .. ·,tD,CPO'''·'~T) = I:tA·x. + ... +I:tD1X I + ~ntlnCPt' 
i 1 I... I ... t 

where 

and T is the maximal score value. 

Hence the canonical parameters in a log-linear representation of (12.65) are the tlS 

and the logarithms of the CPtIS. 

The ML-€stimates for the CPtlS regarded as pa.rameters a.re 

(12.66) 

A 

such that the tlS that maximize (12.65) together with the estimates (12.66) can be re-

garded as ML-€stimates for a model, where the form of cp( 8) is not specified. 

In this formulation it is assumed that the variation of the (I S in H( 8) a110w for a11 

possible vectors CPt for which ~CPt=l. We return to this question in the next section. 

It should be noted that (12.65) is not a latent dass model since the assignment of an 

individual to a latent dass is determined by the response. 

If the contingency table formed by variables A,B,C,D is extended by a categorical 

variable with observed values t, the log-likelihood function (12.65) obviously forms a 

log-linear model. This five-dimensional table is incomplete, but applying the theory in 

chapter 7, the tlS and w t =lnCPt can be estimated. This approach was discussed by Kelder­

man (1984), cf. also Fienberg (1980), chapter 8. 
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12.7. Testing the goodness of fit 

Since all models pertain to an observed contingency table, the fit of a given data set is in 

general obtained through a goodness of fit test based on the test statistic 

(12.67) 
_ A ) 

Z - 2 L;L;L;L;X. ·klln(X. 'klf /1. 'kl 
i j k I IJ IJ IJ 

where 
A A 

(12.68) 

A 

and Pijkl is the cell probability estimated under the given model. Thus for the latent dass 

model (12.2), the goodness of fit test statistic is (12.67) with 

M AA A D A 

:12.69) P"kl = L; 'Tr. ···'Tr l cP . 
IJ m=1 1m m m 

3ince there are (HJ+K+L-4)M+M-1 estimated parameters, the number of degrees of 

:reedom for the approximating i-distribution is 

)2.70) df = IJKL - (HJ+K+L-3)M. 

~xample 12.3. (Continued) 

for the Coleman data in table 12.5 consider the following three latent dass models. 

\!lodel I: 

\!lodel II: 

Two latent dasses, no constraints. 

Four latent dasses and constraints correspondding to two binary latent 

variable, 01 affecting the membership items and 02 affecting the attitude 

items, i.e. constraints (12.40) and (12.41). 

\.fodel III: Same as model Ir, but with same response probabilities on the membership 

items at both occassions and with the same response probabilities on the 

attitude items at both occasions, i.e. constraints (12.40), (12.41) and 

(12.42). 
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The observed values of the test statistic (12.67) are shown in table 12.10 with the 

appropriate degrees of freedom and levels of significance. 

Table 12.10. Observed value of the goodness of fit test statistic for three latent 
class models fitted to the Coleman data. 

Model Test De~rees Levelof 
statistic of reedom signif icance 

I 249.50 6 <0.0005 
II 1.27 4 0.866 
III 40.74 8 <0.0005 

In table 12.11 the expected values are shown for each of the three models together 

with the observed values. 

Table 12.11. Observed numbers for each response pattern and expected numbers for 
each of the three invest igated models. 

Response Observed Expected numbers 
pattern numbers 

Model I Model II Model III 

1 1 1 1 458 408.30 454.87 455.72 
1 1 1 2 140 199.73 144.20 157.78 
1 1 2 1 110 94.34 109.14 148.33 
1122 49 68.49 48.85 64.50 
121 2 171 227.71 172.27 157.78 
1212 182 112.71 179.56 179.88 
1 2 2 1 56 77.92 58.25 64.50 
1 222 87 63.80 85.72 94.14 
2 111 184 159.64 188.64 148.33 
2 1 1 2 75 97.12 68.80 64.50 
2121 531 403.04 530.68 530.59 
2122 281 397.34 283.11 310.40 
221 1 85 110.58 82.12 64.50 
2212 97 76.22 101.38 94.14 
2221 338 451.47 337.32 310.40 
2222 554 449.60 553.06 552.51 

In accordance with the results in Goodman (1974) a four-dass latent dass model 

thus fits the data, where the latent classes are formed by two binary latent variables 81 

affecting the membership items and 82 affecting the attitude items. 6: 
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A 

For the continuous latent structure model, (12.16), the expected values are nPijkl' 

with 

(12.71) 
A A A f {}tA -1 A A 

Pijk' = exp( (Ai+···+ (D')· e H (O)cp( 01 o:,ß)dO, 

and 
A A A 

H(O) = ~exP«(Ai+wiO) ... rexp«(DI+wIO). 

Due to the constraints imposed, there are I +J + K + L-5 free ( parameters. Hence the ap­

proximating x2-distribution to (10.67) has 

df = IJKL -1 - (I+J+K+L-5)-2 = IJKL - (I+J+K+L)+2 

degrees of freedom. 

For four binary items the number of degrees of freedom is thus df=16-8+2=10. 

As an alternative to the test statistic (12.67), Andersen (1973a) and Andersen and 

Madsen (1977) suggested a two stage procedure for testing the goodness of fit. 

Since (12.54) is valid for any set of individuals, it is in particular valid for a subset 

formed by a11 individuals in score group t, i.e. a11 individua.ls for with score wi+ ... +w,=t. 

Let 

be the marginals xi ... , ... ,x .. .! if summation is only over individuals in score group t. Lc ( f) 

then factorizes as 

(12.72) 

where 

(12.73) 

Lc( () = II L~t)( f), 
t 

(t) A D / )ß t L (f) =exp(~(.Ax. + ... +~(DIXlt) g(t;f . 
eil I t I 
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From this likelihood function the fiS cau estimated except for extreme score groups e.g. 

t=O aud t=4w1, where L~t)(f)=l for aH fiS because only one response (i,j,k,l) cau be ob­

served. If ~ is the set of over-all CML-estimates obtained from (12.55) aud ~(t) is the set 

of score group estimates obtained from maximizing (12.73), it was proved in Andersen 

(1973a), for the binary case, and in Andersen (1973b), for the general case, that the test 

statistic 

(12.74) 

is approximately i -distri buted wi th 

df = (T-1)(I+J+K+L-5), 

degrees of freedom, when T is the number of score groups for which estimates ~(t) are 

obtained. 

If the model fits the data the score group estimates (~111, ... ,~~1)) approximates the 
A A 

true values of the fiS as weHs as the over-all estimates (fAi' ... ' fm). If the model does not 

fit the data, however, the likelihood (12.73) will depend on the latent parameters of the 

individuals in score group t. Since the observed value z of (12.74) is 0 if ~A( 9= ~A.' ... ' 
C I I 

~m = f~1) for aB i, ... ,l and t, the observed value of Zc is an indicator of discrepancies 

between model and data. The larger the observed value z of Z , the less is the fit of the 
c c 

model. Hence the fit can be judge from the significance level 

where Q - i((T-1)(I+J+K+L-5)). 

The goodness of fit test statistic Z can be supplemented with a graphical check 
c 

A(t) A A(t) A 
where for each score t, f Ai is plotted against f Ai' fBj against fBj etc. 

Gustavsson (1980), van den Wollenberg (1982) and Molenaar (1983) has criticized 

the test statistic (12.74) for being insensitive to certain departures from the model as­

sumptions. Thus van den Wollenberg suggests to use tests statistics that are more sensiti­

ve to violations of (a) the one-dimensionality of the latent variable 0 and (b) the condi­

tional independence of the responses given the latent variable. 
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If a goodness of fit test of the model is only based on the conditional likelihood 

(12.72), the remaining factor of the compete likelihood, is 

(12.75) 

where 

(12.76) 

A A 

If a and ß are the ML-estimates of a and ß the test statistic (12.74) can then be supple-

mented by the statistic 

(12.77) 

where 

(12.78) 

A 

ZT = 2 Ent(ln(nt)-ln(np(t))) 
t 

A JOt 1 AA p(t) = g(t;t) e Ir (8)<p(81 a,ß)d8. 

For known values of the t'S, ZT is approximately i -distributed with T -1-2 degrees of 
A 

freedom. The expression p(t) is, however, relatively insensitive to changes in the t's. 

Hence if the t'S in (12.76) are replaced by the CML-estimates one can still with caution 

apply the i-approximation. 

The significance level of Z primarily measure if the data supports that the response 
c 

probability Pjjkl(8) given the latent variable has the structural form (12.14) required in 

the score model. The significance level of ZT on the other hand measure the extent to 

which the latent density <p( 81 a,ß) describes the variation of 8 in the population. 

A two-stage procedure based on applying first Zc and then ZT thus makes it possible 

the check two in nature very different aspects of the model structure. 

One may decide to disregard any prior assumptions on the form of <p( 8). In this case 

the probabilities p(t) are estimated by the frequencies nt/no The estimated cell 

frequencies (12.71) are then computed as 
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A A 

Pjjkl = Pjjk1( t )ntfn. 

A 

where Pjjk1(t) is the estimated conditional probability (12.52) of being in cell (i,j,k,l) given 
A 

score t, and the estimated expected numbers npjjk1 become 

(12.79) 

If (12.79) are the expected numbers in (12.67), Z is approximately i-distributed with 

df = IJKL-1 - (I+J+K+L-5)-(T-1) = IJKL-(I+J+K+L)-T+5, 

degrees of freedom, where T is the number of score groups. 

The question arises, of course, if there exists a density cp( 0) such that the probabili-
A 

ties p( t) can be expressed as 

A A Ot 1 
p(t) = g(t;() Je H- (O)cp(O)dO. 

In Tjur (1982) it was shown that if such a density exists, then cp( 0) and the CML-Bs­

timates for the ('S jointly maximizes the log-likelihood function 

(12.80) 

corresponding to (12.27) for an arbitrary density cp. 

The problem of a non-parametric maximalization of InL has been further discussed 

by de Leeuw and Verhelst (1986), by Lindsay (1987), by Lindsay, Clogg and Gregg (1989) 

and by Engelen (1987). 

Cressie and Holland (1983) discuss the fact that (12.80) is a log-linear model, if the 

expressions 



459 

are regarded as parameters to be estimated. 

Example 12.1. (Continued) 

We shall now compare the application of three latent structure models to the complain 

data in table 12.1. The models are: 

Model I: A two dass unrestricted latent dass model. 

Model II: A latent structure model with an unrestricted continuous latent density. 

Model III: A latent structure model with anormal latent density. 

The estimated parameters of model I are shown in table 12.12, while the estimated 
A 

parameters of model III and the ('S of model II are shown in table 12.9. The estimates 
A 

p(t) of the score group probabilities are shown in table 12.14. Before proceeding to com-

pare all three models, we shall discuss the two-stage procedure for testing the goodness of 

fit of model III. 

With four binary items and the score weights chosen as w 1 = 1 and w 2=0, the pos­

sible values of the score t are 0,1,2,3 and 4. The scores t=O and t=4 are extreme scores, 

since t=O can only be obtained for i=j=k=I=2 and t=4 can only be obtained for 

i=j=k=l=1. The ~(t),s that maximize (12.73) are shown in table 12.13 together with the 

over-all CML-estimates of the ('s. Score groups 1 and 2 are merged because one of the 

item totals is zero in score group 1. 

Table 12.12. The estimated parameters of an unrestricted two-class latent class 
model applied to the data in table 12.1. 

Latent class 
m=1 2 

AA 
0.983 0.864 11" 1m 

AB 
11" 1m 0.894 0.619 
AC 
11" 1m 0.940 0.316 
AD 

0.472 0.066 11" 1m 

A 

'Pm 0.810 0.190 
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Table 12.13. Score group CML-est imates and over-all CML-est imates (w i th standard 
errors in parantheses) of the i tem parameters for the data in table 
12.1. 

Score group Over-all 
t=1-2 3 

A 

ElA 2.273 1.552 2.106(0.200) 
A 

E1ß 0.273 0.116 0.227(0.120) 
A 

E1C -D.119 0.596 0.055(0.117) 
A 

E1D -2.427 -2.264 -2.388(0.132) 

Apart from ~~~), the score group estimates match the over-all estimates weIl. The 

observed value of the test statistic Z is 
c 

z = 7.3l. 
c 

With df=(2-1)(8-5)=3 degrees of freedom, the significance level is 

p = P(Q~zc) = 0.063. 

The Rasch-model thus seems to fit the data weIl. 

Table 12.14 shows the observed distributed of persons over the five score groups to-
A 

gether with the frequencies nt/n and the estimated expected numbers np(t) under the 

assumption of normal latent density, i.e. 

'" '" ()t'" 1 '" "'2 p(t) = g(t;f)Je H- (B)cp(BI/1,(J )dB, 

where cp( BI /1,(J2) is the density in the normal distribution with mean /1 and variance i. 
The estimates ~ and (J2 are shown in table 12.8. 
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Table 12.14. Observed numbers and frequencies for a11 score groups and expected numbers 
A A2 

given anormal latent density with mean JL=1.854 and variance (! =1.536. 

Score Observed Frequencies Expected 
nurnbers nurnbers 

A 

nt nt/n np(t) 

t=O 8 0.013 3.88 
1 25 0.042 32;00 
2 108 0.180 109.73 
3 266 0.443 258.18 
4 193 0.322 196.22 

Total 600 1.000 600.01 

The observed value of the test statistic ZT is 

ZT = 5.32. 

With df=5-1-2=2 degrees of freedom the significance level is 

p = 0.070, 

which indicate that a normal latent density describe the data weIl. Together the two tests 

thus show that a Rasch model fits the data. 

The test statistic (12.67) based on the observed distribution over response pattern 

a110w us, however, to compare aB three model. Under model I, the expected numbers are 

computed as (12.68) with estimated response probabilities (12.69). Under model II, the 

expected numbers are computed as (12.79) and under model III the expected numbers are 

computed as (12.68) with the estimated response probabilities given by (12.71), where 

cp( BI ~,ß)=cp( BI ~,;2) is anormal density function. Table 12.15 exhibit the observed num­

bers for each response pattern and the expected numbers under each of the three models. 

In all three cases the fit seems reasonable good. 
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Tahle 12.15. Observed numbers for each response pattern and expected numbers 
und er three latent structure models. 

Response Observed Expected numbers 
pattern numbers Model I Model II Model III 

1 111 193 190.63 193.00 195.60 
1 112 227 229.96 227.12 223.61 
1 1 2 1 13 14.86 19.74 18.23 
1 2 1 1 21 23.36 16.61 15.32 
2 1 1 1 5 3.57 2.54 2.71 
1 122 58 52.36 52.34 52.21 
1 2 1 2 40 36.20 44.03 43.86 
1 22 1 4 3.12 3.83 3.58 
2 1 1 2 5 6.58 6.73 7.76 
2121 1 0.65 0.58 0.63 
22 1 1 0 0.52 0.49 0.53 
122 2 20 25.51 19.34 23.72 
2122 3 6.39 2.96 4.20 
2212 2 2.18 2.49 3.53 
222 1 0 0.29 0.22 0.29 
2222 8 3.82 8.00 4.22 

The observed values of the test statistic (12.67), the degrees of freedom and the sig­

nificance levels are shown in table 12.16. 

Tahle 12.16. Observed values Z of (12.67) and corresponding significance levels 
for models I, II and IIr. 

Model 

I 
II 
III 

Z 

9.79 
7.16 

12.01 

4 
6 
8 

p 

0.044 
0.306 
0.151 

1) Because of the small expected numbers in table 12.15, response patterns 
2112,2121 and 2211 are grouped as are response patterns 2212 and 2221. 

The levels of significance in table 12.16 show that both the models based on a conti­

nuous latent density fits the data weH. The latent dass model does not fit the data quite 

weH in spite of the fact that as many as 9 parameters are allowed to vary. 

12.8. Diagnostics 

If a given model fails to fit the data, it is necessary to have tools to detect the directions 

of the model departures and if possible the courses of the lack of fit. Such tools are called 
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diagnostics. The literature contain a number of suggestions for such diagnostics applied to 

latent structure models. For the binary score model, or the Rasch model, of section 12.5, 

van den Wollenberg (1982), Molenaar (1983) and Glas (1988) contain a number of diag­

nostics. The most direct form of diagnostics are residuals based on the observed and ex­

pected numbers for each response pattern. Let, as in section 12.7, xijk1 be the observed 

number of persons with response pattern (ijkl) and Xjjkl the corresponding random vari­

able. The expected numbers are then given by 

where the response probabilties can be determined by a latent dass model (12.69) or by a 

continuous latent structure model (12.71). Let furt her 0l, ... ,OR denote all the parameters 

of the model, i.e. 7r~ , .•• ,7rDI ' 'P for all i,j,k,l and m in case of a latent dass model and 
Im m m 

fAi' ... ,fDI for all i,j,k,l and a,ß in case of a continuous latent structure model. The ex­

pected numbers can then be written on the common form 

According to the general formula (3.40) the standardized residuals are then given by 

A A 

(12.81 ) r. 'kl = (X" kl - /l"kl)/ (J"kl' IJ IJ IJ IJ 

where 

A A A A 

/lijkl = nPijkl( 0l' ... ,oR) = nPijkl 

and 
A A 

A 2 A AAl Bp. 'kl Bp. 'kl _ (1 \'\' - IJ IJ .rs) 
(J ijkl - /lijkl - Pijkl - fj fj Pijkl or ---alJ I , 

r s r s 
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with irs being the element in cell (r,s) of the information matrix. If the ML-estimates 
A A 

t51, ... ,t5R are computed USillg a Newton-Raphson procedure, the residuals (12.81) are ob-

tained as by-products of the procedure. Glas (1988) also derived standardized residuals. 

Example 12.4. 

Clogg (1979) applied a latent dass model to the 3-dimension contingency table shown in 

table 12.17. The three variables represent aspects of life satisfaction. Variable A is 

"satisfaction with hobbies", variable B "satisfaction with residence" and variable C 

"satisfaction with the family". The original 7 response categories were recoded, such that 

the responses 1,2 and 3 in table 10.17, below are 

1. "a very great deal" or "a great deal" 

2. "quite a bit" or "a fair amount" 

3. "some" , "a little" or "none". 

The data shown in table 12.17 are the observed responses from a sample of 1472 indivi­

duals obtained as part of the 1975 US General Social Survey. 

Table 12.17. The observed responses for 1472 individuals in the 1975 US General Social 
Survey on three trichotomous variables concerning life satisfaction. 

C 
A B 1 2 3 

1 1 466 27 16 
1 2 191 38 14 
1 3 64 18 5 
2 1 126 31 5 
2 2 117 58 12 
2 3 45 23 3 
3 1 54 12 7 
3 2 49 26 11 
3 3 23 16 15 

Source: Clogg (1979), table 1. 

Clogg applied various latent dass models to the data in table 12.17. We shall now 

try to fit a score model (12.16) to the data, assuming that the scoring of the three res­

ponse categories is equidistant, Le. w 1 =2, w 2=1 and w 3=0. With this scoring the possible 
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values of the score t are 0,1,2,3,4,5 and 6. The ML-estimates of the parameters are shown 

in table 12.18 together with the item totals. 

Table 12.18. Item totals and ML-estimates of the parameters for a score model applied to 
the data in table 12.17. 

Item 

A 

B 

c 

P, 
"'2 
(J 

Response category 

1 
2 
3 

1 
2 
3 

1 
2 
3 

Item total I tem parameter 

839 --{).666 
420 --{).013 
213 0.000 

744 --{).877 
516 +0.181 
212 0.000 

1135 +0.873 
249 +0.504 
88 0.000 

1.308 

0.859 

The estimated numbers are shown in table 12.19 together with the observed numbers 

and the standardized residuals. 

The goodnes of fit test statistic (12.67) based on the observed and expected numbers 

in table 12.19 has observed value 

z = 60.46, 

which with 19 degrees of freedom has a significance level of 

p < 0.0005. 

The score model does not accordingly fit the data. 

The standardized residuals in table 12.19 show that the fit is relatively good as a 

whole, since most residuals are small. In fact only 7 out of 27 residuals are larger than 2. 

These residuals correspond to cells 111,112,113,121,211,222, and 233. The lack of fit in 

cell 222 is most likely due to the weil known fact that many individuals choose to use a 

rniddle category whatever the issue. The significant residuals in cells 111,112,121 and 211 

with an overrepresentation in cell 111 and underrepresentations in cells 112,121 and 211 
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are due to a tendency to go aH the way to score t=6 if the score is already t=5. This 

shows that individuals, who are satisfied except with one of the items, will tend to claim 

that they are satisfied also with the last item. The last two ceHs with significant residuals 

are not so easy to explain, but with 27 cells in the table a few residuals are allowed to be 

significant and the values of the residuals for cells 113 and 233 are at any rate not among 

the largest residuals. 

Table 12.19. Observed numbers, expected numbers and standardized residuals under 
a score model with equidistant weights 

Response 
pattern 
Variabel 
ABC 

111 
1 1 2 
113 
121 
122 
123 
131 
132 
133 
211 
212 
213 
221 
222 
223 
231 
232 
233 
311 
312 
313 
321 
322 
323 
331 
332 
333 

Observed 
numbers 

466 
27 
16 

191 
38 
14 
64 
18 

5 
126 

31 
5 

117 
58 
12 
45 
23 

3 
54 
12 

7 
49 
26 
11 
23 
16 
15 

Expected Standardized 
numbers residuals 

436.47 
53.53 
8.94 

213.14 
41. 74 
10.61 
53.44 
15.93 
5.97 

147.43 
28.87 

7.34 
114.96 
34.26 
12.84 
43.86 
19.27 
10.48 
44.08 
13.14 
4.92 

52.31 
22.99 
12.50 
29.43 
18.76 
14.76 

4.502 
-4.490 

2.658 
-2.408 
--0.676 

1.151 
1.976 
0.566 

--0.420 
-2.562 

0.444 
--0.929 

0.225 
4.669 

--0.260 
0.206 
0.948 

-2.554 
1.973 

--0.338 
0.982 

--0.568 
0.713 

--0.476 
-1.374 
--0.746 

0.077 

The conclusion of the analysis seems to be that a score model with equidistant scores 

and a normal latent density fits the data relatively weIl. The main model departures 
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seem to be associated with a weH known effect for questionnaire data, where the 

"diagonal" responses 111,222, and 333 tend to be overrepresented. 6: 

Standardized residuals can also be used in connection with the two-stage procedure 

suggested in section 12.7. The conditional likelihood is composed of a product of inde­

pendent likelihood functions (12.73), where each factor covers a section of the list of pos­

sible response patterns, namely those patterns (ijkl) for which 

Within this section the expected numbers are computed as 

where Pjjkl(t) is the conditional probability of the response ijkl given wj+w/wk +wl=t. 

For the score model, the conditional probability P"k!(t) is given by (12.52). The estimated 
IJ 

expected numbers are obtained by inserting the CML-€stimates of the f'S in (12.52) 

yielding 

A A 

ILjjkl (t) = ntPjjkl (t). 

Standardized residuals corresponding to the test statistic Z are then derived as 
c 

A A 

(12.82) rjjkl( t) = (Xjjkl-lLjjkl(t))/ O'jjkl( t), 

A 2 .. . A A 2 
where O'jjkl(t) JS an estJmate of the vanance of Xjjkl-lLjjk{t). The exact form of O'jjkl(t) can 

be obtained from (3.40), section 3.5. Note that the residuals (12.82) are independent of 

the form of the latent density. An inspection of these residuals can, therefore, be used to 

evaluate if a lack of fit of the model is in the latent structure of the model, rather than in 
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the form of the latent density. 

Residuals to evaluate if the lack of fit is due to the form of the latent density can be 

derived from the distribution over scores t=O, ... ,T. The observed number of individuals 

with score t is nt' while the expected number is equal to 

JL(t) = np(t), 

where p( t) is the probability (12.76). Hence standardized residuals are obtained as 

A A 

(12.83) r t = (nt - JL(t))f a(t), 

""2 A A A A 

where a (t) is an estimate of var[nt-JL(t)] and JL(t) = np(t) with p(t) given by (12.78). 

As the score is an estimate of the latent variable B, an inspection of the residuals rt, 

t=O, ... ,T, can provide information about the range of B's values where the lack of fit 

occurs. 

Example 12.4 (Continued) 

The joint use of the residuals {12.82) and (12.83) can be illustrated by the data in table 

12.17. Table 12.20 show the observed numbers for each response pattern together with the 
A 

estimated expected number /lijkl(t) for response pattern (ijkl) given score t and the 

standardized residual rijkl(t). In the table the response pattern are ordered according to 
"-

score group. Note that the JLijkl(t) add up to nt within each score group. Below the section 

of response patterns with score t in table 12.20 is shown the observed number nt, the ex-
A 

pected number JL(t) and the standardized residual rt. 

Table 12.19 reveals that the lack of fit is mainly in the form of the latent density 

apart from the overrepresentation of pattern 222. The significant residuals are concen­

trated at the upper end of t.he score scale. 6. . 
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Table 12.20. Observed nurnbers, expected nurnbers and standardized residuals for 
the two-stage procedure applied to the data in table 12.17. 

Response Score Observed Expected Standardized 
pattern nurnber nurnber residual 

111 466 466.0 

6 466 435.33 4.581 

1 1 2 27 43.31 -3.178 
121 191 180.35 1.833 
211 126 120.34 0.976 

5 344 416.76 -4.670 

113 16 9.82 2.258 
122 38 46.77 -1.649 
131 64 56.47 1.503 
212 31 31.21 -0.044 
221 117 129.98 -2.182 
3 1 1 54 45.75 1.740 

4 320 291.33 2.204 

123 14 12.68 0.433 
132 18 17.52 0.130 
213 5 8.46 -1.323 
222 58 40.33 3.637 
231 45 48.69 -0.750 
312 12 14.19 -0.648 
321 49 59.12 -2.005 

3 201 176.64 2.173 

133 5 6.07 -0.474 
223 12 13.97 -0.648 
232 23 19.30 1.029 
313 7 4.92 1.006 
322 26 23.44 0.676 
331 23 28.30 -1.328 

2 96 94.73 0.154 

233 3 7.71 -2.057 
323 11 9.36 0.680 
332 16 12.93 1.234 

1 30 42.15 -2.328 

333 15 15.00 

0 15 15.07 -0.021 
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The test statistic (12.74) was based on a comparison of score group estimates 
,"( t ) A( t ) . A A 

f jA , ... ,fID for each score group t and the over-all CML-estlmates fiA, ... ,fm. As men-

tioned one can supplement the test statistic with a graphical check if the score group esti­

mates are plot ted against the over-all estimates with one plot for each score group. On 

such plots the points should cluster randomly around the identity line. These plots are 

helpful in determining if the lack of fit is due to certain score groups or to certaill of the 

variables. 

Example 12.5. 

In psychiatrics so called rating scales are often used to measure the degree of psychiatric 

disturbance. Such ratings are based on batteries of items, each reflecting an aspect of a 

persons vulnerability. On each item a person can score positively or negatively. The ra­

ting is the number of negative scores. We consider data from a battery of six such items. 

If the items are labeled A,B,C,D,E and F, the data consists of six binary measurements 

for each person thus forming a 6-dimensional contingency table. With 6 binary variables 

the number of response pa.tterns is 64 and we shall not show the complete data set. In 

table 12.21 the observed numbers are shown for a selection of response patterns. Table 

12.22 summarize the within score groups a.nd over-all estimates of the item parameters. 

In fig.12.5 the score group estimates are plot ted against the over-all estimates. On 

all five plots the points corresponding to the variables cluster to some extend around 

identity lines. The standard enor is about 0.1 for all six over-all estimates. Hence we 

should allow deviations of the magnitude + 0.2 around the identity lines. 



471 

t=l 

-, 

-2 -, 
OVER.~~ 

t=2 t=3 

Gt---------------------~~~--------- G+-----------------------~~-----------

-I -, 

-2~--------__ ~------------~----------~ -2~----------~------------+_----------~ -2 -I -2 -, 
OVERA~~ OVERALL 

t=4 t=5 

-I -I 

-2~----------~------------~----------~ -2~----------~------------r_----------~ 
-2 -I -2 -I 

OVERA~L OVERA~L 

Fig.12.5. Score group estimates of the item parameter plotted against over-all 
CML-estimates for all five non-trivial score groups. 
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Table 12.21. Observed and expected numbers for a Rasch and a Birnbaum model for 
selected response patterns. 

Response 
patterns 

111111 
111211 
112111 
121111 
211111 
221111 
221112 
221121 
221122 
221211 
221212 
221221 
221222 
222111 
222112 
222122 
222211 
222212 
222221 
222222 

Observed 
numbers 

50 
15 
13 
14 
10 
22 

9 
9 

11 
9 
9 
9 

13 
11 

9 
13 
10 
13 
22 
74 

Expected numbers 
Rasch model Birnbaum model 

50.64 
6.99 
7.47 

16.81 
18.84 
14.09 

5.91 
7.13 
5.64 
8.58 
6.79 
8.18 

12.81 
9.16 
7.25 

13.69 
10.52 
16.47 
19.85 
72.18 

53.78 
10.31 
11.14 
14.72 
9.63 

10.87 
6.44 
7.74 
7.70 
9.17 
8.47 
9.86 

16.86 
9.72 
8.92 

17.63 
11.63 
17.98 
20.18 
68.07 

Source: Data obtained from the Institute for Psychiatry Demography. University of Aarhus. 

Table 12.22. CML-estimates for the item parameters both over-all and within 
scoregroups. For the overall est imates, standard errors are shown 
in parantheses. 

Variable 
Score A B C D E F 
group 

t=l -1.519 -0.420 0.353 0.353 0.353 0.879 
2 -1.419 -0.372 0.383 0.338 0.644 0.427 
3 -1.169 -0.995 0.227 0.488 0.724 0.724 
4 -0.491 -.{).683 0.201 0.409 -0.092 0.656 
5 -0.101 -0.437 -0.363 -0.506 0.815 0.592 

Over-all -0.761 -0.648 0.163 0.229 0.415 0.602 
(0.111) (0.109) (0.105) (0.106) (0.106) (0.107) 

There are obviously some marked discrepancies on fig. 12.5. A closer inspection re­

veals that the most obvious ones are connected with variable A and with score group 5. It 

is thus worth checking the nature of variable A, and what is characteristic otherwise of 

persons with a high rating. In the next section we shall return to the role of variable A.b,: 
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12.9. Score models with varying discriminating powers. 

We now return to the two-parameter logistic model (12.17), where the binary 

probabilities have the forms 

The probability of response (ijkl) then becomes 

with 

where z.=1 for response i=1 and Z.=O for response i=2. After some algebra it turns out 
1 1 

that the likelihood function has the form 

(12.84) 

where 

(12.85) 

and 

(12.86) 
«(}H )5 «(}H )5 

H((}) = (l+e A A) ... (I+e D D) 

The score is thus the weighted average of the l-answers with the item discriminating 

powers as weights. If the 8s are not multipla of a few integers, there will almost certainly 

be only one response pattern for each score value. In this case the sum over t in (12.84) 

has as many terms as there are response patterns. 

It is straight forward to maximize (12.84) with respect to all the parameters al-
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though the integral 

must be evaluated numerically for each score value. 

In order to remove the obvious arbitrarinesses in the parametrization, we introduce 

the constraints 

and 

Including tt and (i, there are accordingly 2+6=8 parameters in the model. 
A A A A A ""2 

Given ML-estimates (A""'(D' bA,···,bD, tt and (J for the parameters, the fit of the 

model can be checked through the test statistic (12.67), which in the binary case 

I=J=K=L=2, considered here, has 

degrees of freedom. 

If the variables are not binary there are I+J+K+L-5 unconstrained ('S and 3 

unconstrained 8s, such that (12.67) has 

df = IJKL-1-(l+J+K+L-5)-3-2 = IJKL-(l+J+K+L)-l 

degrees of freedom. 

If there are more than four variables, say M, and the M variables are binary, there 

are M-1 unconstrained f'S and M-1 unconstrained b's. Hence the degrees of freedom for 

(12.67) is 

M ) M df = 2 -1-2(M-1 -2 = 2 -2M-I. 

Example 12.5. (Continued) 

Table 12.23 show the estimates of the parameters of a one-parameter logistic or Rasch 

model applied to the data in example 12.5. Note that there are six variables denoted A, 

B,C,D,E and F. As suggested by fig.12.5 the Rasch model does not fit the data. As an 
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alternative eonsider the two-parameter logistie or Birnbaum model (12.17). The last two 

columns of table 12.23 show the estimated parameters of this model. The estimates of the 

item discriminating powers suggest that an assumption of equal item discriminating 

powers is not likely to hold. 

Table 12.23. Parameter estimates for the Rasch model and the Birnbaum model 
applied to six variables from a psychiatrie rating battery. 

Variable Raseh model Birnbaum model 
A A A 

( ( 0 

A -0.762 -0.504 1.919 
B -0.648 -0.535 1.111 
C 0.164 0.247 0.750 
D 0.230 0.325 0.760 
E 0.415 0.524 0.878 
F 0.602 0.712 0.938 

A 

J.L -0.219 -0.316 
(12 2.943 3.159 

The fit of Birnbaum model can be tested by the test quantity (12.67), but due to the 

large number possible response patterns many expected numbers are small. In order to 

make the i-approximation valid all together 27 response patterns were merged into 4 

groups of response patterns. The test statistic (12.67) then has observed value 

z = 50.58 

with df=64-23-1-5-5-2=28 degrees of freedom. The significance level is 

p = P(Q ~ 50.58) = 0.006. 

The fit is clearly better than for the Rasch model where, after 25 response patterns have 

been merged into 3 groups, (12.67) has observed value 

z = 72.10 

with 64-22-1-5-2=34 degrees of freedom. The significance level for the for of the Rasch 

model is thus 

P(Q ~ 72.10) = 0.0001. 

Table 12.21 shows the expected numbers under the Birnbaum model. 
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In cases like this it is tempting to exclude variable A as an item for the rating of 

psychiatrie disturbance. Practitioners claim, however, that variable A in this particular 

case covers a very important psychiatrie aspect and hence must be included. The estima­

tes in table 12.23 then strongly suggest to use a rating, where variable Ais assigned 

weight 2, while variables B,C,D,E and F are assigned weights 1. A. 

12.10. Comparison of latent structure models 

In several of the examples we have applied a latent dass model as weH as a latent struc­

ture model with a continuous latent density to the data. Often both types of models fit 

the data weH and a comparison is caHed for. There are two main differences between the 

models 

(i) In the continuous latent structure model the latent variable can vary freely 
over the real axes, while for a latent class model it is assumed that all 
persons in the sampIe can be dassified into a few groups with the same value 
of the latent variable within the group. 

(ii) In a latent class model there are no constraints on the conditional distribu­
tion of the response given the value of the latent variable, while in a 
continuous latent structure model it is necessary to assurne a certain 
structure in the conditional probability of the response given the latent 
variable. 

These differences mean that it is quite possible that for some data sets one model fits 

best, while for other data sets the other model fits best. It turns out on the other hand 

that in case the estimated conditional probabilities in a latent dass model exhibite the 

same structure as the estimated conditional probabilities for a continuous latent structure 

model, then the two sets of parameters are directly comparable and can be given the same 

type of interpretation. It is even possible to formulate a latent class model, where the 

conditional probabilities have the same structure as in the Rasch model, Le. 

(12.87) A A A 
'Ir. = exp( 0 + f.. )/'f.exp( ° + f.. ) Im m I. m I 

I 

and similar expressions for the other items. In formula (12.87) 0l' ... ,OM are parameters 
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connected with the M latent classes, which represent average values of the latent variable 

within the latent classes. Such models were considered by Formann (1985) and by Rost 

(1988). 

Example 12.2. (Continued) 

Consider again the data in table 12.3. The test statistic (12.67) has observed value 

z = 8.91 

for a three--dass latent class model. Since several expected numbers are very small 13 

response patterns has been merged into 5 groups, leaving 24 observed and expected 

numbers in the test statistic. The degrees of freedom are accordingly 

df = 24-1-3·5-2 = 6. 

The significance level is thus 

p = 0.179. 

For a Rasch model the test statistic (12.67) with the same grouping as for the latent class 

model has observed value 

z = 43.41. 

The degress of freedom are here 

df = 24-1-4-2 = 17, 

and the significance level 

p = 0.0004. 

A latent class model thus fits the data bett er than a Rasch model. 

In order to compare the parameters of the latent dass model with the parameters of 

the Rasch model, one can obtain average values °1, 02 and 03 for the latent dasses by 

minimizing the sum 
AA A 2 AE E 2 

(71"1 - 71"1 (0 )) +···+(71"1 - 71"1 (0 )) , m m m m m m 

where 7I"~m(O) is the right hand side of (12.87) and ~mthe estimate from the latent dass 

analysis. This yields the values °1=-4.170, 02=-1.264 and 03=0.260. 
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For these values of 8 it is possible to evaluate the extent to which the estimates 
rn 

based on a Rasch model and a latent dass model are in agreement. In table 12.24, 
"'A E A E 7r Im, .. ·,7r 1m and 7r 1 (8rn),···,7r 1 (8m) are compared for all three latent dasses. The amount 

of agreement is substantial but there are also dear disagreements, especially in the 

smallest latent dass, where the conditional probabilities of the latent dass model does not 

show the variation to be expected under a Rasch model structure. 6: 

Table 12.24. The item response probabilities 7rt(8), ... ,7r~(8) evaluated at 
81=-4.170, 82=-1.264 and 83=0.260 compared with the latent class 
response probabilities. 

Item Latent Response probability 
class Latent class Latent structure 

S: m 8m 
"'S 7r1m 7r~ (8m) 

A 1 -4.170 0.122 0.046 
2 -1.264 0.403 0.468 
3 0.260 0.619 0.802 

B 1 -4.170 0.052 0.060 
2 -1.264 0.741 0.541 
3 0.260 0.727 0.844 

c 1 -4.170 0.013 0.025 
2 -1.264 0.197 0.319 
3 0.260 0.290 0.682 

D 1 -4.170 0.018 0.006 
2 -1.264 0.033 0.106 
3 0.260 0.652 0.353 

E 1 -4.170 0.009 0.005 
2 -1. 264 0.021 0.079 
3 0.260 0.583 0.282 

Another example of an empirical comparison of a Rasch model and a latent dass 

model is due to Masters (1985). 
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12.11. Estimation of the latent variable 

If a latent dass model or a latent structure model with a continuous latent variable is 

accepted, the value of the latent variable can be estimated for each individual in the 

sample. 

For a latent dass model the probability of belonging to latent dass m given the re­

sponse is according to (12.1) 

(12.88) ABCD jM AB CD 
7r "'kl = 7r. 7r. 7rk 7r I r.p ~ 7r. 7r. 7rk 7r I r.p • 

m IJ Im J m m m m m= 1 Im J m m m m 

For an individual with response (ijkl) the dass m, which maximizes (12.88), is the most 

likely dass for the individual to belong to. Thus each individual can based on the response 

be assigned to a latent dass, he or she most likely belongs to. This assignment to latent 

dasses represents an estimation of the value of the latent variable for each individual in 

the sample. 
"-

For a latent structure model, the value 8 of the latent variable for a given individual 

can be estimated with or without knowledge of the latent density r.p. Apriori without 

knowledge of the functional form of r.p( 8), 8 can be estimated as the value, which maxi­

mizes the conditional probability of the response (ijkl) given 8, Le. according to (12.7) the 

probability 

For the Rasch model (12.11) this probability is equal to 

t8 
(12.89) Pjjkl( 8) = e jH( 8), 

"-
such that there is one estimate 8 for each value of the score t. The expression (12.89) is 

easily maximized by numerical methods. 
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If the form of cp is known and the parameters of cp( 0) estimated, 0 can be estimated a 

posteriori. The aposteriori distribution of 0, given the response (ijkl), is 

Hence an estimate of 0 can be obtained as the expected value of 0 given the response, or 

A 

(12.90) 0= E [01 ijkl] = J Ocp( 01 ijkl)dO. 

For the Rasch model, (12.90) is equal to 

Example 12.2. (Continued) 

For the data on work hazards in table 12.3, the assigned latent dass based on maximizing 

(12.88) is for each response pattern shown in table 12.25. The table also shows for each 

score t the apriori estimate of 0 based on maximizing (12.89) and the aposteriori esti­

mate of 0 based on (12.90). Note that the extreme scores t=O and t=5 does lead to a 

priori estimates of 0, since (12.89) in these cases is independent of O. 
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Table 12.25. Assigned latent class for each response pattern and apriori and a 
posteriori estimates of e for each score t. 

Response Assigned 
pattern latent class 

11111 
11112 
11121 
11122 
11211 
11212 
11221 
11222 
12111 
12112 
12121 
12122 
12211 
12212 
12221 
12222 
21111 
21112 
21121 
21122 
21211 
21212 
21221 
21222 
22111 
22112 
22121 
22122 
22211 
22212 
22221 
22222 

3 
3 
3 
2 
3 
3 
3 
2 
3 
3 
3 
2 
3 
3 
3 
1 
3 
3 
3 
2 
3 
3 
3 
2 
3 
3 
3 
1 
3 
1 
1 
1 

Est imate of e 
Score Apriori 

o 
1 
2 
3 
4 
5 

-1. 725 
-0.497 

0.549 
1.710 

Aposteriori 

-3.763 
-2.381 
-1.362 
-0.515 

0.269 
1.049 

The fact that the values of e estimated aposteriori are considerable lower than the a 

priori estimated values is a reflection of the negative value of the latent mean value. 6 . 

12.12. Exercises 

12.1. The questionnaire of the Danish Welfare Study contain a number of items related to 

the same background variable. Three examples are work hazards, psychic inconve­

niences and physical inconveniences. Among the items related to work hazards the follow­

ing five are selected here: "At your work are you often exposed to (1) noise, (2) bad light, 
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(3) toxic substances, (4) heat, (5) dust. The five selected items for psychic inconveniences 

are: "Do you suffer from (1) neuroses" (2) sensitivity to noise, (3) sensitivity towards 

petitessen, (4) troubling thoughts, (5) shyness. The five selecteditems for physical incon­

veniences are: "Are you often troubled by (1) diarrhoeas, (2) pains in your back, (3) colds, 

(4) coughing, (5) headaches. 

For each variable the item is scored in a dichotomous way. For work hazards as 

Yes, always =1, 

Yes, sometimes = 1, 

No= 2, 

for psychic inconveniences as 

Yes = 1, No = 2, 

and for physical inconveniences as 

Yes =1, No = 2. 

The table below show for each of the three variables the observed number of 

respondents in the welfare study for each response pattern. 

(a) Try to fit a latent dass model with three latent dasses to each of the three data 

sets. 

(b) If a latent dass model fits, interprete the parameters. 

(c) Try to fit a Rasch model to the three data sets both with and without assuming a 

normal latent density. 

(d) If the models in (c) do not fit the data, use standardized residuals to describe 

which response patterns contribute most to the model departures. 



Response pattern 

11111 
11112 
11121 
11122 
11211 
11212 
11221 
11222 
12111 
12112 
12121 
12122 
12211 
12212 
12221 
12222 
21111 
21112 
21121 
21122 
21211 
21212 
21221 
21222 
22111 
22112 
22121 
22122 
22211 
22212 
22221 
22222 

Observed numbers 
Work Psychic in-

hazards conveniences 

70 
15 
34 

6 
39 
21 
38 
49 

103 
39 

129 
66 

115 
116 
217 
409 

4 
8 
7 
3 

12 
22 
16 
60 
24 
27 
54 
99 
63 

193 
168 

1499 

34 
10 
21 
17 
17 

4 
15 
20 
63 
21 
45 
38 
42 
29 
65 
92 
14 
4 

35 
32 
21 
12 
99 

172 
46 
27 

115 
176 

98 
107 
776 

2746 

Physical in­
conveniences 

16 
5 

24 
16 
11 
12 
79 
98 
18 
11 
19 
15 
9 
9 

54 
97 
37 
38 
73 
82 
55 
70 

365 
689 

30 
61 
84 

178 
44 

131 
454 

2267 
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12.2. Goodman (1975) used three famous data sets to illustrate latent class analysis. The 

table below is the data as presented by Goodman. For furt her information on the 

background of the data sets, the reader should consult Goodman's article. 

(a) If there are no constraints on the parameters, how many latent classes can be 

estimated from these data sets. 

(b) Estimate the parameters of a latent class model with the highest number of classes 

from (a) and interprete the parameters. 

(c) Evaluate the fit of a latent dass model for each of the data sets. 
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Response 
pattern 

AßeD 

1111 
1112 
1121 
1122 
1211 
1212 
1221 
1222 
2111 
2112 
2121 
2122 
2211 
2212 
2221 
2222 

Stouffer-Toby 
questionnaire 

42 
23 
6 

25 
6 

24 
7 

38 
1 
4 
1 
6 
2 
9 
2 . 

20 

Data set 

McHugh 
test 

23 
5 
5 

14 
8 
2 
3 
8 
6 
3 
2 
4 
9 
3 
8 

34 

12.3. Consider again the three data sets in exercise 12.2. 

Lazarsfeld-Stouffer 
questionnaire 

75 
69 
55 
96 
42 
60 
45 

199 
3 

16 
8 

52 
10 
25 
16 

229 

(a) Fit a Rasch model to each of the data sets and estimate the parameters of the 

models. 

(b) If the model fit the data interprete the parameters. 

(c) If the model does not fit the data, use standardized residuals to identify reasons for 

the lack of fit. 

12.4. The data below is from the Danish Welfare Study. The respondents were asked if 

they possessed (1) a freezer, (2) a dish washer, (3) a black and white TV-set, (4) a colour 

TV-set and (5) a swimming pool. The table below show with Yes=l and No=2 the num­

ber of respondents for each response pattern. The pur pose of analysing this data set was 

to study if an index for wealth could be derived from the responses. 

An analysis by a latent structure model with a normal latent density reveals that 

the best fit is by a normal distribution with variance equal to zero. 
A A 

The item parameters of a Rasch model are estimated to ((1' .... (5)=(1.997, -0.508, 

1.166, 0.566, -3.220). The mean value of the best fitting normal density (with ;2=0) was 
A 

estimated to jL=-o.915. 



485 

Response Number of Score Number of 
pattern respondent respondent 

11111 5 t=O 182 
11112 63 1 1048 
11121 12 2 2980 
11122 328 3 849 
11211 22 4 100 
11212 398 5 5 
11221 0 
11222 23 
12111 2 
12112 97 
12121 10 
12122 1739 
12211 12 
12212 1149 
12221 2 
12222 94 
21111 1 
21112 1 
21121 1 
21122 19 
21211 2 
21212 26 
21221 0 
21222 5 
22111 0 
22112 18 
22121 2 
22122 670 
22211 2 
22212 279 
22221 0 
22222 182 

(a) Show that the probability of obtaining score tin this case become 

(b) Using (a) find the expected number of respondent for each score value. 

(c) Evaluate the fit of the distribution derived in (a). 

(d) Describe the way the observed score distribution differ from the expected dis­

tribution. 
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12.5. Formann (1985) presented the second part of the Coleman-data, which was 

analyzed in example 12.3, and which only include the boys in the school classes, The table 

below, taken from Formann's paper, show the corresponding data for girls. 

Response pattern Number of girls 

1111 
1112 
1121 
1122 
1211 
1212 
1221 
1222 
2111 
2112 
2121 
2122 
2211 
2212 
2221 
2222 

484 
93 

107 
32 

112 
110 
30 
46 

126 
40 

768 
321 

74 
75 

303 
536 

(a) Analyze these data by a suitable latent class model. 

(b) Compare with the results obtained in sections 12.5 and 12.7. 

12.6 Formann (1988) presented the responses to five items concerning the attitude toward 

nuclear energy. The sampie consisted of 600 germans, who could ans wer each item with 

"agree"=l and " do not agree"=2. The formulations of the five items were: (1) "In the 

near future, alternate sources of energy will not be able to substitute nuclear energy." (2) 

"It is difficult to decide between the different types of power stations if one carefully 

considers all their pros and cons." (3) "Nuclear power stations should not be put into 

operation before the problems of radioactive waste have been solved." (4) "Nuclear power 

stations should not be put in operation before it is proven that the radiation caused by 

them is harmless." (5) "The foreign power stations now in operation should be closed 

down." 

(a) Fit a latent class model to the data. 

(b) Interprete the parameters of the model. 
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Response Number of 
pattern respondents 

11111 24 
11112 52 
11121 2 
11122 18 
11211 2 
11212 2 
11221 0 
11222 3 
12111 15 
12112 37 
12121 2 
12122 22 
12211 5 
12212 3 
12221 0 
12222 6 
21111 61 
21112 65 
21121 1 
21122 22 
21211 16 
21212 2 
21221 2 
21222 6 
22111 118 
22112 41 
22121 1 
22122 14 
22211 39 
22212 3 
22221 11 
22222 3 

12.7. Clogg and Goodman (1984) presented a data set originally due to Solomon, based on 

the responses to four items concerning the attitude towards science and a scientific career. 

Responses were obtained from a group of students with high IQ and from a group with 

low IQ. The data set is shown below. 

(a) Analyse the responses from each of the two groups of students by a latent dass 

model. 

(b) Compare the parameters estimated from the two data sets. 

(c) Analyse the data set obtained by combining the two groups of students to one 

group. 

(d) Compare the results of (a), (b) and (c). 
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Number of students with 

Response 
pattern High IQ Low IQ 

1111 122 62 
1112 68 70 
1121 33 31 
1122 25 41 
1211 329 283 
1212 247 253 
1221 172 200 
1222 217 305 
2111 20 14 
2112 10 11 
2121 11 11 
2122 9 14 
2211 56 31 
2212 55 46 
2221 64 37 
2222 53 82 

12.8. In an American study from 1947, a sampie of 1729 individuals were cross~lassified 

according to four items regarding general knowledge. The four items were: (1) read 

newspapers, (2) listen to radio, (3) read books and magazines, (4) attend lectures. The 

responses were Yes=l and No=2. The number of respondents for each response pattern is 

shown below. 

Response 
pattern 

1111 
1112 
1121 
1122 
1211 
1212 
1221 
1222 
2111 
2112 
2121 
2122 
2211 
2212 
2221 
2222 

Number of 
respondents 

31 
169 

12 
94 

4 
32 

7 
63 
45 

378 
13 

231 
11 

150 
12 

477 



489 

(a) Try to describe the data by a log-linear model for a four way contingency table 

with as few as possible interactions. 

(b) Analyse then the data by a latent dass model or a latent structure model with a 

continuous latent variable. 

(c) Compare the results of (a) and (b). 

12.9. The Law School Admission Test (LSA T) used extensively in the Uni ted States 

consists of a number of dichotomous iteros, which can be answered correctly or 

incorrectly. The table below show the observed distribution over response patterns for 

two sections of the LSAT, each compromising five items. The purpose of the LSAT is to 

produce a score for each respondent, which estimate his or her general ability to solve the 

problems presented as items in the test. These problems are constructed such that the 

higher the likelihood of solving them, the more probable it should be that the student 

taken the test will complete a law school with a good result. 

(a) For each of the sections formulate a latent structure model. Explain the parameters 

of the chosen model and relate the parameters and their estimates to the purpose of 

the LSAT. 

(b) Check the fit of the chosen model and estimate the parameters for each section. 

(c) Make a recommendation as to which of the 10 items to indude in the test. 

(d) For the five items in section 6 estimate for each of the possible score values the 

value of the latent parameter. 
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Number of students 

Response pattern Section 6 Section 7 

11111 298 308 
11112 28 32 
11121 61 136 
11122 11 18 
11211 173 35 
11212 21 7 
11221 56 25 
11222 16 6 
12111 80 90 
12112 15 15 
12121 28 51 
12122 3 14 
12211 81 34 
12212 14 11 
12221 29 39 
12222 10 7 
21111 15 28 
21112 2 8 
21121 3 23 
21122 0 7 
21211 16 7 
21212 0 3 
21221 8 5 
21222 1 10 
22111 4 17 
22112 3 3 
22121 1 19 
22122 1 3 
22211 11 7 
22212 2 1 
22221 6 19 
22222 3 12 

12.10. Engelen (1987) used the responses from 395 Dutch students on five items from a 

test in mathematics, called the IEA, to illustrate the use of latent structure models. He 

claimed that a Rasch model fitted the data well. 

(a) Formulate a Rasch model for the data and check if Engelens claim is correct. 

(b) Assurne a normal latent density, estimate its parameters and interprete their 

meaning in the given context. 

(c) Make a comparison applying a Rasch model and applying a latent class model to 

the data set. 
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Response Number of 
pattern students 

11111 74 
11112 46 
11121 1 
11122 1 
11211 20 
11212 21 
11221 0 
11222 4 
12111 2 
12112 7 
12121 0 
12122 0 
12211 2 
12212 9 
12221 3 
12222 0 
21111 18 
21112 28 
21121 2 
21122 3 
21211 22 
21212 62 
21221 2 
21222 10 
22111 0 
22112 11 
22121 0 
22122 4 
22211 3 
22212 26 
22221 0 
22222 14 

12.11. Cox, Przepiora and Plackett (1982) analysed the data shown below by various mo­

dels. The data is described in the paper by Cox et al. as follows. 

IISeven pathologists independently classified histological slides made from cold knife 

cone biopsies of the uterine cervix. Lesions on each of 118 slides were classified into five 

broad histological categories: 1, negative; 2, atypical squamous hyperplasia; 3, carcinoma 

in situ; 4, squamous carcinoma with early stromal invasions; 5, invasive carcinoma. These 

categories represent an ordering of the "involvement ll of the lesion, 1 being the least in­

volved and 5 the most involved. A complete slide is classified into one of the five catego­

ries on the basis of the most involved lesion identified. The study was designed to obtain 

information about variability in classification. 1I 
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Slide Pathologist Slide Pathologist 
No. A B C D E F G No. A B C D E F G 

1 4 3 4 2 3 3 3 60 1 1 2 1 1 1 1 
2 1 1 1 1 1 1 1 61 1 3 2 1 2 1 1 
3 3 3 3 3 3 3 3 62 4 3 3 3 3 2 3 
4 4 3 3 4 3 3 3 63 1 3 2 2 2 1 2 
5 3 3 3 3 3 3 3 64 2 3 2 2 3 2 3 
6 2 1 2 1 1 1 1 65 4 3 3 3 3 3 3 
7 1 1 1 1 2 1 1 66 3 3 3 4 3 2 4 
8 3 3 2 3 2 2 3 67 1 1 1 1 1 1 1 
9 2 2 2 2 3 1 2 68 2 3 2 2 3 2 2 
10 1 1 1 1 2 1 1 69 3 3 2 3 3 1 3 
11 5 5 5 4 5 5 5 70 1 1 1 1 1 1 1 
12 1 1 1 1 2 1 1 71 4 3 3 3 3 3 3 
13 3 3 3 2 3 3 3 72 3 3 3 2 3 1 3 
15 2 2 2 1 1 1 2 73 3 3 3 3 3 2 3 
16 4 3 3 2 3 2 3 74 4 3 1 3 3 2 3 
17 3 3 2 3 3 3 3 76 1 2 1 1 1 1 1 
18 2 3 2 2 3 2 3 77 2 2 1 2 2 1 2 
19 2 1 2 1 2 1 1 78 2 3 2 1 3 2 2 
22 2 3 2 2 2 1 3 79 2 1 1 2 1 1 1 
23 1 1 2 1 1 1 1 80 4 4 3 2 4 1 3 
24 4 3 3 4 3 3 3 81 1 1 1 1 1 1 1 
25 1 1 2 1 2 1 1 82 4 4 3 3 4 3 3 
26 1 1 1 1 1 1 1 83 5 5 1 4 5 5 4 
27 2 1 2 2 2 1 2 84 2 3 2 2 2 1 2 
28 4 4 4 2 4 3 3 85 4 4 4 2 5 1 3 
29 3 3 3 2 3 2 3 86 3 3 2 3 3 3 3 
30 3 3 3 3 3 2 3 87 4 3 3 3 3 3 3 
31 1 1 1 1 1 1 1 88 4 2 3 2 3 2 3 
32 4 3 3 3 3 2 3 89 2 3 2 2 4 1 3 
33 3 3 3 3 3 3 3 90 3 3 3 2 4 2 3 
34 1 1 1 1 1 1 1 91 3 3 2 1 3 2 2 
35 3 3 3 2 3 1 3 92 4 4 3 2 4 1 3 
36 2 2 2 2 3 1 2 93 3 3 2 2 3 2 2 
37 3 3 2 2 3 1 3 94 1 1 2 1 2 1 1 
38 5 3 3 3 4 1 3 95 3 3 3 2 4 3 3 
39 2 1 1 1 2 1 1 96 4 3 1 1 2 1 2 
40 3 3 2 2 3 1 3 98 4 3 3 4 4 3 3 
41 3 3 3 3 3 2 3 99 1 2 2 1 2 1 2 
42 5 5 5 5 5 5 5 100 3 3 3 2 4 2 3 
43 5 3 3 2 3 2 3 101 4 4 3 4 4 3 4 
44 3 2 2 2 2 1 2 102 3 3 2 2 3 3 3 
45 1 1 1 1 2 1 1 103 1 1 1 1 1 1 1 
46 2 3 1 2 3 1 3 104 2 3 2 2 4 1 2 
47 4 4 4 3 3 3 3 105 3 3 3 3 3 2 3 
48 3 3 3 2 3 2 3 106 2 3 1 1 3 1 1 
49 3 2 2 2 2 1 1 107 3 3 2 2 3 2 3 
51 2 3 2 2 2 2 2 108 3 3 2 2 3 1 3 
52 3 3 3 4 3 2 3 110 2 2 1 1 2 1 1 
53 4 3 3 3 3 5 3 111 1 1 1 1 2 1 1 
54 3 3 2 2 4 2 3 112 3 3 2 2 2 2 3 
55 3 3 3 3 3 2 3 113 3 3 2 2 2 1 2 
56 2 2 2 1 2 2 2 114 2 3 1 1 2 1 1 
57 2 3 2 2 3 1 3 115 3 3 2 2 3 2 3 
58 1 1 1 1 1 1 1 116 1 1 1 1 2 1 1 
59 3 3 3 3 3 3 3 117 3 3 3 2 3 2 3 
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Cont. A B C D E F G 

118 3 3 2 2 3 1 3 
119 1 1 1 1 2 1 1 
120 1 1 1 1 1 1 1 
121 2 2 1 1 2 1 2 
122 5 3 4 2 3 4 3 
123 4 3 4 2 4 1 3 
124 1 1 1 1 2 1 1 
126 2 3 1 1 2 1 2 

(a) YOUf first task is to summarizes the data in two ways. 

Table 1. Form a two-way contingency table with the seven pathologists as rows 

and the 5 response categories as columns. 

Table II. Merge response categories 1 and 2 into a new response category 1 and 

response categories 3,4 and 5 into a new category 2. Then form a table of number of 

observed slides for each response pattern of the seven pathologists. 

(b) Analyze table I by a suitable association model from chapter 10 or by corres­

pondance analysis (chapter 11). 

(c) Although table II is rather sparse, try to analyse it by a latent dass model. 

(d) Is i t possible to compare the resul ts obtained in (b) and (c)? 

12.12. In 1982 the Department of Defense in the USA sampled 776 young people in con­

nection with a sUfvey called the Profile of American Youth. The table below show the 

responses from this sampie on fOUf items from the Arithmetie Reasoning Test of the 

Armed Serviees Vocational Aptitude Battery, Form 8A. The observed numbers is shown 

for the complete sampie alld for the sampie broken down into fOUf subsampies based on 

demographie criteria. In the table a correct answer is indieated by 1 and an incorrect 

answer by O. 

(a) Try to fit each of the five data sets by a suitable latent structure model. 

(b) Compare the results from the fOUf demographie subsampies. 



494 

SubsampIe 

Response Total 
pattern 1 2 3 4 sampIe 

0000 23 20 27 29 99 
0001 5 8 5 8 26 
0010 12 14 15 7 48 
0011 2 2 3 3 10 
0100 16 20 16 14 66 
0101 3 5 5 5 18 
0110 6 11 4 6 27 
0111 1 7 3 0 11 
1000 22 23 15 14 74 
1001 6 8 10 10 34 
1010 7 9 8 11 35 
1011 19 6 1 2 28 
1100 21 18 7 19 65 
1101 11 15 9 5 40 
1110 23 20 10 8 61 
1111 86 42 2 4 134 

Total 263 228 140 145 776 
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likelihood function 9 
likelihood equation 10 11 74 320 333 

339 346 344 353 
likelihood ratio 16 
likelihood equation,solution to 30 32 42 43 45 

53 74 
likelihood eq., for RC-association model 346 
likelihood equation for symmetry model 320 322 
likelihood equation for mobility table 333 
likelihood equation for uniform ass. model 339 
likelihood equation for row effects 

ass. model 344 
likelihood equation for dumn effects 

assoc. model 344 
likelihood equation for log-linear 

ass. model 353 
likelihood equation for contingency table 110 141 188 
likelihood equation for latent dass model 427 
likelihood equation for continuous latent 

structure model 439 
linear predictor 72 
link function 72 
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log-likelihood ratio 38 
log-likelihood ratio,asymptotic 

distribution of 39 46 54 58 69 
log-linear model 25 179 
log-linear parameterization 105 131 179 
log-linear association model 352 353 
log~dds ratio 96 
logistic regression model 49 73 269 273 
logistic model 417 
logit model 239 
logit transformation 240 
Lord-Lawley model 415 423 
M-step of EM-algorithm 426 
main effects 115 132 180 
marginal quasi-symmetry 329 
marginal homogeneity 329 
Markov chain 325 
maximal subset of graph 187 
maximum likelihood method 10 
maximum likelihood estimator 10 36 42 45 53 69 
McNemar test statistic 332 
measure of contribution 378 
ML~stimation for incomplete data 424 
ML~stimator 10 36 42 45 53 69 
ML~stimator, asymptotic distribution of 36 42 45 53 69 
ML-method 10 
mobility table, model for 333 398 
model check 19 
models for interactions 320 
multinomial distribution 46 
multinomial model 90 131 
multiple test procedure 150 
multiple correspondance analysis 387 
multiplicative Poisson model 108 
nested hypothesis 119 
Newton-Raphson procedure 74 348 353 428 
odds ratio 96 
orthogonality constraints 364 399 
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outlier 290 
over-all level 106 
over-all effect 180 
parameter 9 
parameter space 9 
parametric multinomial distribution 10 21 62 374 

partial solution method 79 
partial credit model 418 
Pearson test statistic 21 66 
Pearson residual 67 
Poisson distribution 40 59 
Poisson model 90 131 
polytomous explanatory variable 254 
polytomous response variable 305 
prediction in logistic regression 303 
probit function 423 
profile 362 
prospective study 94 249 
quasi-complete separation 275 
quasi-independence 216 
quasi-symmetry model 322 :328 
random variabel 9 
random zero 212 
Rasch model 415 423 
rating model 418 
RC-association model 336 345 
RC-association model, type I 353 
regression diagnostics 286 
regularity of parametrie m1llt. distr. 64 
residual 19 288 
residual plot 20 
residual, standardized 20 67 120 168 199 288 
residual analysis 66 120 
residual matrix 365 
residual, standardized 424 427 
response variable 239 
response vector 422 
retrospective study 94 250 
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roweffect 106 
row effects association model 343 354 
row scores 364 
row-column association model 336 345 
sampie function 10 
sampie 10 
saturated model 23 134 
scaled residual matrix 366 
score values 254 
score model 417 473 
score group estimates 456 
score model with item discriminating powers 473 
search for a model 191 
separability 212 220 
separability 212 220 
separable contingency table 217 220 
separation, quasi-complete 275 
sequential Bonferroni procedure 151 161 
significance level 15 
simple hypothesis 18 
single value decomposition 366 
sparse multinomials 66 
sparse tables 66 
standardized residual 20 67 120 168 199 288 
standardized residual 424 427 
statistical model 9 
statistical hypothesis 14 
statistics 10 
stratified sampling 91 
structural zero 212 
sufficient statistic 16 27 
sufficient marginal 142 
support of exponential family 31 44 
support of logistic regression model 273 
symmetry model 320 
test statistic 14 
test 14 
three-factor interaction 132 
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transformed LR-test statistic 21 
transition probability 326 
two-by-two table 94 
two-factor interaction 132 
two-parameter logistic model 417 473 
two-stage procedure 455 467 
two-way contingency table 51 89 
unbiased estimate 11 
uniform association model 337 354 
weigted least square method 81 



Examples With Data 

age distribution in Denmark 5 
air pollution and lung cancer 113 118 
attitude towards pension systems 120 218 254 293 298 
attitude towards the EEC 323 327 
components of life satisfaction 464 468 
consumer complain behaviour 7 413 429 441 449 
consumer complain behaviour 459 
criminal cases with charges dropped 340 
distribut.ion of traffic on week days 2 
effect of safety measure on trucks 195 201 
effects of speed limits 101 159 
fathers and sons social rank 334 
headache, social rank and occupation 222 258 
income and wealth distribution 6 
income and wealth far renters 350 
income and occupation 379 
income, wealth and ownership of dwelling 392 
indoor climate 279 292 304 
job satisfaction for blue collar workers 3 155 
lay-offs and Iength of empIoyment 166 168 
membership of Ieading crowd 433 453 
non-response in survey sampling 101 171 
private and public empIoyment 247 296 
rating of psychiatrie disturbances 470 474 
self rating of health 331 
sodal rank and attending meetings 384 
survival after cancer operation 99 192 231 251 
traffic accidents involving pedestrians 58 
unempIoyment, sex and urbanization 260 309 
work hazards 430 442 449 477 480 
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The aim of this book is to enable the student to understand 
the reasoning underlying a statistical analysis and to apply 
statistical methods to problems likely to be met within the 
fields of economics, public administration and business 
administration. The topics covered by the book are: 

- methods for exploratory data analysis 

- probability theory and standard statistical distributions 

- statistical inference theory 

- and three main areas of application: regression analysis, 
survey sampling and contingency tables. 

The treatment of exploratory data analysis, regression 
analysis and the analysis of contingency tables are based on 
the most recent theoretical developments in these areas. 
Most of the examples have never been presented before in 
English textbooks. 




