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Preface

This book is intended for students at the advanced undergraduate level or PhD
level who want to develop professional skills in statistics with applications
towards finance. The basis for this book is lecture notes written for a course
“Statistics in Finance” at the Technical University of Denmark (DTU). Those
notes were also used later in a related course at Lund University, now as a part
of larger package of courses covering financial economics, risk management
and financial mathematics.

The purpose of this book is to bridge the gap between on one hand classical
books on financial mathematics that typically provide a rigorous treatment of
the topic, but rarely connects the data, and on the other hand books on econo-
metrics or time series analysis that do not cover the specific problems related
to option valuation. We also include examples on how the statistical tools can
be used to improve, e.g., Value at Risk calculations.

There is of course a risk that a book trying to cover several fields will
become a “Jack of all trades, master of none”, but our intention has been not
only to cover different fields, but also to integrate them through examples, case
studies and cross references throughout the book, thereby adding value beyond
each part. In fact, the extended version of that quote is

Jack of all trades, master of none
Often times better than a master of one

A consequence of this design choice is that complete formal proofs seldom
are presented. Instead, we either provide a reference to a source where the full
proof can be found or try to make it plausible by presenting the main ideas of
the proof, but skipping the technical details.

The book can be used for several different courses. It can be used for a
course on financial econometrics, starting with a brief introduction of stylized
facts in finance (Chapter 1), followed by statistical methods in discrete time
(Chapters 4, 5 and 6), continuous time (Chapters 12, 13) and, finally, partially
observed models in discrete and continuous time (Chapter 14).

It can also form the basis for a course on financial mathematics with an
introduction to the problems (Chapters 1, 2 and 3) and then move over to con-
tinuous time problems using Brownian motions or jump process (Chapters 7
and 8), followed by applications in security markets (Chapter 9) and interest
rate markets (Chapters 10 and 11). It would also be possible to include the

xv



xvi PREFACE

numerical schemes in Chapter 12 if that course also has some computational
elements. Chapter 14 also presents some cases on how options or bonds can be
calibrated to market data.

We still believe, however, that the book as a whole contains values that
are lost when using only a subset of the content. The integration of different
topics leads to new insights and will ideally inspire new research. For example
additional complexity in option valuation models can easily be motivated by
statistical findings in Chapter 1, while advanced option valuation models are
partly responsible for sparking an interest in statistics for partially observed
models in Chapter 14.

Many people have helped with the development of the text over the years,
Former students taking the course have been an especially excellent source
of constructive feedback. The text has also been improved on by suggestions
and feedback from former and current colleagues, where we especially would
like to thank (in alphabetical order) Stefan I. Adalbjörnsson, Carl Åkerlindh,
Mikkel Baadsgaard, Jan-Emil Banning-Iversen, Jingyi Guo, Jan Holst, Josef
Höök, Michael Preisel, Johan Svärd, and Magnus Wiktorsson. Without their
help, the text would not have been what it is today!
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Chapter 1

Introduction

In Théorie de la Speculation (1900), Louis Bachelier made the first attempt to
model the inherent randomness in stock prices using a continuous-time coun-
terpart of white noise, the Brownian Motion. For many years this modelling
approach was of purely academic interest as financial institutions used less
mathematically demanding methods. More than 70 years later the ideas pro-
posed by Bachelier were used in two seminal papers by Robert Merton on
continuous-time finance in general and Fischer Black and Myron Scholes on
the pricing of options and corporate liabilities. Contrary to their own expecta-
tions, this area has expanded enormously during the last decades, and Merton
and Scholes received the Nobel Prize in economics in 1997 for their research
(Black passed away in 1995). The amount of money involved today is reported
in Table 1.1, which can be compared to the US GDP which was about 15000
billion US dollar (USD) in 2012.

Companies use these new products to protect themselves against changes
in interest rates, foreign exchange rates and commodities prices. Mutual funds
and pension funds use them to protect their stocks and bond investments. Major
banks, brokerage firms and insurance companies write them for customers,
while inventing such exotic names as caps, collars and swaptions.

The complexity of the vast range of new financial products that are contin-
uously being introduced on the financial markets and the inherent uncertainty
associated with stock prices, interest rates and foreign exchange rates have
given rise to the emergence of a new scientific field: mathematical finance. This
area of research encompasses the theory of stochastic processes (stochastic

Contracts Notional value Market value
Foreign exchange 67358 2304

Interest rate 489703 18833
Equity-linked 6251 605
Commodity 2587 358

Credit default swaps 25069 848

Table 1.1: Notional and market value of outstanding OTC contracts in billions
in US dollars December 2012. Data from Bank for International Settlements.

1



2 INTRODUCTION

differential equations), partial differential equations, functional analysis and,
last but not least, economics and finance.

In contrast to many other books on mathematical finance, this course will
also cover the modern theory of financial derivatives from an empirical point
of view. Thus identification and estimation theory play an integral part of the
course. The reader should be able to utilize these methods in combination with
methods in operations research for risk assessment, risk management and op-
timal portfolio selection. This combination of mathematical finance, statistics
and operations research form the foundation of the science of financial engi-
neering.

The ambitious and broad scope of the book can only be obtained at the
expense of depth of coverage, so proofs and mathematical considerations of
purely technical interest will be omitted for brevity. Nevertheless, it is our aim
to bring the reader up to a level of understanding and managing empirical
research in this area.

1.1 Introduction to financial derivatives

Let us introduce the merits of one of the most important financial derivatives,
the European call option, by considering a fairly simple transaction between
two companies. Assume that the Danish company IDEA A/S today (t = 0)
orders 1 000 pieces of furniture from the American company Bench Inc. to be
delivered in exactly 6 months’ time (t = T ). They have agreed upon a price
of 500 000 USD, which should be paid upon delivery. We assume that the
exchange rate today is 6 DKK/USD.

Due to the 6 months between the order and delivery date, IDEA A/S faces
a serious risk regarding changes in the exchange rate between DKK and USD.
Today (t = 0) they are unable to determine the exchange rate upon delivery
(t = T ) and hence the amount in DKK they are going to pay upon delivery
is random. In the very unlikely case that the exchange rate should remain the
same, they should pay 3 000 000 DKK, but if the exchange rate should go up
to, say, 6.50 DKK/USD they will have to pay 3 250 000 DKK. From IDEA’s
point of view there is, of course, no problem associated with a possible lower
exchange rate. Thus IDEA is exposed to an asymmetrical risk. There are at
least three different ways of eliminating this risk.

I: The most naive approach would be to buy 500 000 USD today (t = 0)
at the known exchange rate 6 DKK/USD, which would enable IDEA to avoid
exposing themselves to a higher exchange rate at time t = T . This approach
eliminates the risk, but there are a couple of noticeable drawbacks. First of all,
a large amount of capital is tied up during the next 6 months, which might
be put to more profitable uses. Second, they have lost the opportunity to take
advantage of a lower exchange rate at time t = T .

II: A slightly more sophisticated approach would be to negotiate a forward
contract with a participant on the foreign exchange (FX) markets that enables
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IDEA to buy 500 000 USD at time t = T at an exchange rate K determined at
time t = 0. The exchange rate K (unit DKK/USD) is called the strike price and
it is clearly specified in the contract.

No transactions are made at t = 0 and the amount to be paid at time t = T
is fixed at K×500 000 DKK. As the writer of the contract is obliged to sell the
predetermined amount of USD at the predetermined strike price at time t = T ,
no matter what the exchange rate will be, this contract represents a value, and
it is possible to trade it as any commodity for 0 < t ≤ T .

Let us say that a contract with a strike price of K = 6.2 DKK/USD has
been negotiated, and that IDEA is obliged to pay 3 100 000 DKK in 6 months’
time to the writer of the contract. If the exchange rate ST at time t = T is 6.5
DKK/USD, IDEA may congratulate themselves by having (indirectly) earned
150 000 DKK, because they would have been forced to pay 3 250 000 DKK if
they had not written the contract. On the other hand, should the exchange rate
drop to, say, 5.9 DKK/USD, they lose 150 000 DKK.

Again, IDEA has eliminated the risk of a higher exchange rate, but they are
still unable to take advantage of a lower exchange rate.

III: Thus the question remains: Is it possible to write a contract that allows
the holder of the contract (IDEA) to eliminate the risk and at the same time
take advantage of a possible lower exchange rate? The answer is yes, and such
a contract is called a European call option.
Definition 1.1 (European call option). A European call option on the amount
of Y USD with exercise date T and strike or exercise price K is a contract,
signed at time t = 0, that

• gives the holder of the contract the right to buy an amount Y dollars at the
exchange rate K [DKK/USD] at time t = T , and

• allows the holder of the contract not to buy any dollars if the holder of the
contract does not want to.

Options of this type (and a number of variations hereof) are traded on the
international financial markets and the underlying asset can be anything from
exchange rates to stocks, apples or oranges.

Note that purchasing an option on, say, an AP Møller stock is not the same
as buying an AP Møller stock. The AP Møller stock is just the underlying asset
that the holder has the right to buy if he finds it favourable.

Returning to IDEA, it now follows that they may buy a European call
option on Y = 500 000 USD with exercise date T and strike price K = 6
DKK/USD. Should the exchange rate at time t = T exceed 6 DKK/USD, they
may use (or exercise) the option and purchase the 500 000 USD at 6 DKK/USD
from the writer of the contract. Conversely, should the exchange rate drop be-
low 6 DKK/USD they can purchase the required amount of USD on the market
and forget about the option.

Whereas the forward contract was, per definition, free, the option has a
price. This price is determined by supply and demand on the option markets
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and it depends on the exercise date T and the strike price K. A higher strike
price K gives rise to a lower price on the option, so IDEA is faced with the
interesting problem of determining whether it is worth buying the option or
not.

It is worth noting that this European call option is just one in an ever grow-
ing class of options that have at least two similarities:

1. An option is a contingent claim which means that the holder of the option
owns an uncertain claim on an underlying asset and that the value of the
contract is contingent (conditional) on the future development of the price
of the underlying asset.

2. An option is a financial derivative as it exists solely in terms of the underly-
ing asset and its value is derived from the (expected) value of this asset (in
our case USD).

A major part of the course is to clarify what is meant by the fair, theoretical
price of, e.g., a European call option and how to determine it. A brief overview
of this project is as follows:
1. We are considering a market with a number of given assets, such as stocks.

The prices of these assets are assumed to vary randomly in time.
2. We are going to introduce new financial products in terms of these given

assets. These new products are called derivatives and typical examples are
options, swaps, futures and forwards.

3. We will then examine how to price such derivatives. The clue is that the
derivatives are introduced in terms of already given assets with their own
price processes and markets, so the derivatives cannot be priced at will. The
complete market consisting of the given assets and the new derivatives must
be priced consistently. In other words, the market should be efficient.

4. It turns out that the valuation problem may be solved for a large number of
derivatives such that each derivative is assigned a unique price. This price
is called the arbitrage-free price of the financial derivative or financial in-
strument.

It is very important to remember that we are not going to determine the correct
price, because the term "the correct price" of a derivative does not necessarily
make any sense. We are just trying to determine the fair price in terms of the
underlying assets.

Let us consider a very simple market where the uncertainty is limited to
two different events in the sample space Ω = {ω1,ω2} with the probabilities
P(ω1) = 0.8 and P(ω2) = 0.2. We are only considering the market at time t = 0
and t = 1 year. The market consists of two papers or so-called securities:
• A bond with a deterministic price process given by

B0 = 100, B1 = 110. (1.1)
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This implies that the deterministic annual rate r is 10%. This can be seen by
solving

B1 = (1+ r)B0 (1.2)

with respect to r. Note that the price of the bond (which could be a Danish
Government bond) is used to determine the interest rate.
• A stock with the price process S where S0 = 100 and S1 is given by

S1(ω) =

{
125 if ω = ω1

90 if ω = ω2.
(1.3)

That is the initial price of the stock is 100. At time t = 1 the price will be 125,
if the outcome ω of our random process is ω1, or the price will be 90, if the
outcome is ω2. In other words, we know the values of the assets at time t = 0,
but the value of the stock depends on the outcome ω of the stochastic process.

We are now going to introduce a European call option with exercise date
T = 1 and strike price K = 105 DKK in this simple market. This implies that
the holder of the option has the right, but not the obligation, to buy a stock for
105 DKK. Assume that at t = 1, the random process generates the outcome ω1,
then the value of the stock is 125 DKK and we exercise the option. Thus we
have purchased a stock worth 125 DKK for 105 DDK and indirectly earned 20
DKK. Should the random process generate the outcome ω2, the value of the
stock is 90 DKK, so we buy the stock at 90 DKK and forget about the option.

By purchasing the option we are faced with the stochastic income at time
t = 1

X = max[S1−K1,0] = max[S1−105]. (1.4)

This is illustrated in the payoff diagram in Figure 1.1.

K

X

S

Figure 1.1: Payoff diagram for a European call option. For S < K, the option is
not used. For S>K, the option is exercised and the amount S−K is (indirectly)
earned.
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The question is now how to determine the price Π(t,X) of the option at
time t = 0. Two reasonable answers come to mind:

1. It seems reasonable to price the option such that the value of the option
equals expected value of the future incomes (properly discounted)

Π(0,X) = βEP [X ] (1.5)

or equivalently
Π(0,X)

B0
= EP

[
Π(1,X)

B1

]
(1.6)

where the β = B0/B1 = 0.91 is the discount factor determined by the bond
prices. It is important to note that the paper with the deterministic price
process, i.e., a paper where the price is known with certainty at all times, is
used to determine the present value of the payoff function X at time t = 1.
We say that the future price (t = 1) of the option is discounted to determine
the present value (t = 0) of this payoff. The discount factor β may be used
to determine the so-called implied interest rate from the bond prices. We
get the solution

Π(0,X) = β (P(ω1)(125−105)+P(ω2) ·0)
= 0.91(0.8 ·20+0.2 ·0) = 14.5 DKK .

In other words, the value of the option is expressed in terms of the bond
prices. In this case, we say that the bond is chosen as the numeraire.

2. From an economic point of view, it does not make any sense to talk about
a correct price, because the price is determined by supply and demand on
the market, and thus it depends on the perceptions of risk among the dealers
on the market, which vary greatly among individuals as well as financial
institutions.

As it will be shown later these answers are both right and wrong. Just to
give the basic idea, the expected value in (1.5) should be taken with respect
to another so called equivalent martingale measure Q than the objective prob-
ability measure P in order to obtain arbitrage-free prices, and this martingale
measure is determined uniquely in complete markets and in incomplete mar-
kets by the market participants (although they are probably not aware of it).
Besides these technicalities, it is obvious that the price should depend on the
uncertainty in the markets. This uncertainty is usually called the volatility and
it is associated with the standard deviation of the interest rates, foreign ex-
change rates or stock prices, e.g., pension funds tend to invest their members
payments in bonds which are less volatile than stocks.

1.2 Financial derivatives — what’s the big deal?

A large number of these exotic derivatives were developed by quants (a Wall
Street jargon for quantitative analysts) in the 1980s, where money was moving
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around the world as never before. This may partly be explained by historical
events: the demise of communism in Eastern Europe that expanded markets for
investors, the progression towards free enterprise in China, the liberalization
of economic policies in Latin America and the rapid economic growth of the
countries in the Far East.

Trespassing in such unchartered markets is a very risky business for west-
ern European and American companies. It is very difficult to assess whether
a newly established company in an Eastern European country is able to pay
the promised amount. The inflation, interest and foreign exchange rates may
vary enormously and in a manner that is essentially unpredictable. Thus, the
demand for security blankets or financial derivatives that were particularly de-
signed to protect companies against these uncertainties was high. Before 1973
all such derivative contracts were traded as "over-the-counter" (OTC) products,
i.e., a new derivative contract was individually negotiated by a broker on behalf
of two clients, one being the buyer and the other the seller. Trading on an offi-
cial exchange began in 1973 on the Chicago Board Options Exchange (CBOE)
with trading initially only in call options on some of the most heavily traded
stocks. Nowadays options are traded as "off-the-shelf" products on all of the
world’s major exchanges. They are no longer restricted to stock options but in-
clude options on indices, futures, government bonds, commodities, currencies,
etc. The OTC market stills exists, and specific options are written by institu-
tions to meet a client’s needs. This is where exotic options, such as Parisian,
Asian, Barrier and multi-asset options are created; they are very rarely quoted
on an exchange.

The fundamental advantage of derivatives is that you can buy the risk that
you want and eliminate (or hedge) the risk you do not want. Because there are
two sides of each transaction, one party will pass along the risk he or she does
not want to someone who wants to speculate. This also explains that derivatives
can be both conservative and highly speculative investments. Hedging is used
to spread the risk, but the implemented hedging strategies generate interlocking
commitments of trillions of dollars in a kind of financial cyberspace. If some-
thing goes wrong, it might spread fast due to the use of modern computers, and
the entire market may crash like a house of cards. This has happened several
times during the last decade, the most famous event being the Flash Crash that
occurred on May 6, 2010. The Dow Jones Industrial Average plunged almost
9% only to recover the losses within minutes when many market participants
realized something was seriously wrong with the market. Still crashes of this
type causes a lot of trouble; see Easley et al. [2011] for a discussion.

It’s one of the inherent paradoxes of derivatives that the market volatility
increases when each market participant aims at minimizing the volatility of his
portfolio.

Beside these speculative applications of financial derivatives, they may be
very valuable for more productive enterprises. The basic idea is that you can
buy, e.g., an option on a stock that you would like to purchase at some future
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date (maybe you do not have the money today) for only a limited amount of
money compared to the actual price of the stock; but you can choose not to buy
it if the price is not right.

Let us just for the sake of argument disregard the fact that the usual ex-
pected value of future payments is not an appropriate mean of computing the
price of a European call option.
Example 1.1 (Leverage). Assume that an investor would like to purchase an
AP Møller stock in six months’ time. He or she writes an European call option
on the stock with exercise date T (in six months) and exercise price 250p.1

If the AP Møller stock costs 270p at time T, then the investor would be able
to purchase the stock for the exercise price 250p. Thus he has immediately
made a profit of 20p, i.e., he or she can exercise the option and buy the stock
at 250p and sell at the market value of 270p (assuming that there are no trans-
action costs associated with these trades). On the other hand, if the AP Møller
stock is only worth 230p at time T , with equal probability, then the expected
profit to be made is

1
2
·0+ 1

2
·20 = 10p

Ignoring interest rates for the moment, it seems reasonable that the order of
magnitude for the value of the option is 10p.

Of course, valuing an option is not as simple as this, but let us suppose that
the holder did indeed pay 10p for this option. Now if the stock price rises to
270p at expiry the investor has made a net profit of

profit on exercise = 20p
cost of option = -10p

net profit = 10p

This net profit of 10p is 100% of the upfront premium (the price paid at
t = 0). The downside of this speculation is that if the stock price is less than
250p at expiry, the investor has lost all of the 10p invested in the option, giving
a loss of 100%. If the investor had instead purchased the stock for 250p at time
t = 0, the corresponding profit or loss of 20p would have been only ±8% of
the original investment. Option prices thus respond in an exaggerated way to
changes in the underlying asset price. This effect is called leverage.

Thus the price of the option may grossly affect the expected profit, and the
idea behind hedging is to fence off the risk and avoid paying the price of the
option by option replication. That is, we construct a collection or a portfolio
of papers (stocks, bonds and money accounts in the bank) such that we get
the same payoff diagram of this portfolio as the one associated with the call
option without actually buying the option. Option replication may also be used
to construct a portfolio that is less volatile (risky) than the original portfolio.
In other words, the option is essentially redundant, and this observation will be

1This is short for pence, but the choice of unit ($, DKK, etc.) is not important for the argument.
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used for valuation, because the price of the option should be the same as the
price of the replicating portfolio.

The moral is that financial derivatives should be used with caution, but
there are obvious advantages associated with their use. Otherwise they proba-
bly would not exist!

This discussion should demonstrate that there a number of important ques-
tions of technical interest that need to be addressed:
• Identification: We need statistical methods to identify the structure of the

models from time series data, mathematical concepts to analyze these mod-
els and the statistical tools to apply these models to observed data sets. One
of the most important concepts is the volatility.
• Volatility: We need to assess the volatility, i.e., we need to model the stock

prices, foreign exchange rates, etc. such that we can quantify the market and
portfolio volatility using statistical estimation methods.
• Valuation: We need to define markets where existing and new derivatives

may be priced consistently.
• Interest rates: It should be clear by now that the interest rate plays a funda-

mental role in determining the present value of future payments. Thus we
need to estimate the interest rates at these future dates using the information
that is available today. The bond market is used to express the market partic-
ipants’ expectations and the future interest rates are derived from the bond
prices. Hence, the modelling of bond prices and interest rates are inherently
important.

1.3 Stylized facts

Financial data have some pretty universal properties that differ from what we
know about data in physics, biology or engineering.

There are several nice papers summarizing these stylized facts (Rydén et al.
[1998], Cont [2001]). The most commonly mentioned are
• No Autocorrelation in returns
• Unconditional heavy tails
• Gain/Loss asymmetry
• Aggregational Gaussianity
• Volatility clustering
• Conditional heavy tails
• Significant autocorrelation for absolute value of the returns
• Leverage effects
We evaluate these claims on daily OMXS30 data from 1991–2014. The
OMXS30 is an index composed of the 30 largest companies on the Swedish
Stock market.
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Figure 1.2: Sample autocorrelation for returns on the OMXS30 (solid line) and
95% confidence bands.

1.3.1 No autocorrelation in returns

There is very little (linear) autocorrelation in returns (Figure 1.2). This fea-
ture may not be surprising as investors being able to predict future values of
assets would trade to benefit from the predictions. They would make a profit
(on average) at the expense of their counterparties, who would then revise their
forecasts or lose more money. The only long time surviving investors would
be those who are able to predict well and revise their forecasts when new in-
formations arrives.

Still some autocorrelation is often found in the first lags, due to trading
friction, etc.

1.3.2 Unconditional heavy tails

The Gaussian distribution may be fine for many applications, but it does not
represent the unconditional distribution of returns well. Large and extreme
events are much more common than predicted by the normal distribution (Fig-
ure 1.3).

1.3.3 Gain/loss asymmetry

It is often claimed that losses are bigger in absolute value than gains (Fig-
ure 1.4). The losses (compared to the overall upward sloping trend) are bigger
in amplitude and shorter in duration than the gains.

This would be consistent with risk averse investors and the leverage effect
discussed below.
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Figure 1.3: QQ-plot for the unconditional returns on the OMXS30.
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Figure 1.4: The evolution of the logarithm of OMXS30 between 1991 and
2014. Notice that losses are bigger and more rare than the gains.

1.3.4 Aggregational Gaussianity

Returns computed over long time periods are more Gaussian than returns com-
puted for short time periods (Figure 1.5). The return over a long period can
be written as a sum of returns over shorter periods. That suggests, under some
conditions, that the return over long periods should become increasingly Gaus-
sian.
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Figure 1.5: Returns the OMXS30 computed using one week (r), two weeks
(r2), four, eight, sixteen and thirty-two weeks of data.

This Central limit theorem type behavior indicates that the tails are heavy,
but not as heavy as some early studies would indicate.

1.3.5 Volatility clustering

The volatility in linear Gaussian time series is constant, meaning that the vari-
ability is the same. This is not true for financial data, as we are experiencing
calm periods and more volatile periods (Figure 1.6). Time varying volatility
contributes to the heavy tails.

Modeling time varying volatility is an important topic, and is covered in
Chapter 5.

1.3.6 Conditional heavy tails

The returns are heavy-tailed, even when applying a model that compensates
for the time varying volatility; cf. Figure 1.7. Events like earthquakes are ex-
tremely difficult to forecast, meaning that the volatility is going to be under-
estimated by virtually any volatility model during days when big unexpected
events occur.

1.3.7 Significant autocorrelation for absolute returns

The volatility clustering clearly shows that returns {r(t)} are not independent
and identically distributed, iid. Computing the autocorrelation for |r(t)| or r2(t)
reveals a different story (Figure 1.8). The effect can be found for power trans-
formations of the absolute returns |r(t)|θ , θ > 0 but is most pronounced when
θ = 1. This is known as the Taylor effect (e.g., Granger and Ding [1995]).
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Figure 1.6: Returns of the OMXS30. It is clear that the variability varies over
time.

There is a significant dependence in the volatility (ranging for at least 150
days), perhaps even long range dependence. Recent studies, however (e.g.,
Nystrup et al. [2014]), indicate that this is probably not the case, but rather
due to lack of stationarity. This would also explain why the dependence does
not drop to zero at any point in the Figure.

1.3.8 Leverage effects

The leverage effects are really due to bookkeeping in firms. A company expe-
riencing bad times will either take up additional debt or live off savings. The
financial status will deteriorate in either case, resulting in additional uncer-
tainty in future earnings. A decrease in stock price means that the company is
more leveraged since the relative value of their debt rises with respect to their
equity. The effect due to good news on the other hand is rarely of the same
magnitude as that of bad news (Christie [1982], for a through discussion).

All of this results in a negative correlation between returns and the volatil-
ity, known as the leverage effect. Several models in Chapter 5 will take this
stylized fact into account.
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Figure 1.7: Normplot of the conditional returns when prefiltered using a
GARCH(1,1) model.
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Figure 1.8: Sample autocorrelation for the absolute values of the returns, |r(t)|,
showing significant dependence.

1.4 Overview

Now that we have established some of the fundamental terms in mathematical
finance, we will sketch the contents of the remainder of this book.

Chapter 2, Fundamentals, will discuss applications of financial derivatives
with respect to risk assessment and elimination. Some methods for computing
the net present value of a future cash flow will be described using discount
factors. Finally, continuously compounded interest rates, which provide the
foundation of the remainder of the text, will be introduced.
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Chapter 3, Discrete time finance, will introduce the concepts of arbitrage,
probability measure transformations, self-financing portfolios and martingales
in a simple financial market.

Chapter 4, Linear time series models, briefly reviews linear time series
models and methods.

Chapter 5, Nonlinear time series models, extends the theory to nonlinear
and/or nonstationary time series. An overview of a number of model classes
is given. Emphasis will be placed on a description of the variance structure as
the variance of, e.g., interest rates varies with time and depends on the current
level of the interest rate. Such heteroscedastic behaviour cannot be described
by linear models.

Chapter 6, Kernel estimators in time series analysis, describes some sta-
tistical methods for identification of discrete and continuous-time models of
interest rates, foreign exchange rates, stock prices and other financial time se-
ries.

Chapter 7, Stochastic calculus, discusses the problem of introducing
stochasticity in mathematical modelling of dynamical systems by means of
the Wiener process. Focus is placed on Itō stochastic calculus.

Chapter 8, Stochastic differential equations, introduces stochastic dif-
ferential equations (SDEs) and the important Itō formula is presented. The
Feynman–Kac representation theorems establish a link between parabolic par-
tial differential equations and SDEs, which may be used as a mean of comput-
ing prices of financial derivates and solving SDEs. Finally the Girsanov mea-
sure transformation is introduced. The concepts in this chapter may be used in
many other areas of the natural and technical sciences.

Chapter 9, Continuous time security markets, provides a set of theoretical
tools that makes it possible to determine the arbitrage-free price of the large
variety of financial derivatives that are traded on the international markets.
The celebrated Black & Scholes model is covered in detail, and a number of
sensitivity parameters (the so called “Greeks”) are discussed.

Chapter 10, Stochastic interest rate models, uses the concepts of the previ-
ous chapter to describe a number of famous interest rate models.

Chapter 11, The term structure of interest rates, discusses the valuation
of bonds. Bonds are essentially simple options, but they are tremendeously
important for estimating the interest rate over a long period of time. This is
called the term structure of interest rates and it provides the foundation for
computing the present value of future payments.

Chapter 12, Discrete time approximations, provides sampling or discretiza-
tion schemes for computing a discrete-time approximation of SDEs, which is
required in the following chapters.

Chapter 13, Parameter estimation in discretely observed SDEs, intro-
duces a very general maximum likelihood method for parameter estimation
in continuous/discrete-time state space models. In addition the generalized
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method-of-moments (GMM) is discussed. The last method encompasses both
the well-known method-of-moments and nonlinear least squares methods.

Chapter 14, Inference in Partially Observed Processes, provides a consid-
erable extension of the estimation methods listed above which makes it possi-
ble to estimate parameters in multidimensional state space models (e.g., mul-
tifactor interest rate models). The Kalman filter is introduced for linear and
nonlinear continuous-time models. The topics covered in this chapter are of
general interest.

Appendix A, Projections in Hilbert spaces, provides a unified introduction
to a number of filtering and estimation methods, which may geometrically be
viewed as projections in Hilbert spaces.

Appendix B, Probability theory, covers the fundamentals of probability the-
ory from a measure-theoretical point of view.

Each chapter is closed with a number of problems that should support and
extend the material covered in the text. It is advised to solve as many problems
as possible while reading the text. Some problems in the early chapters require
very little mathematical skill and are intended to develop your intuition for
financial reasoning, which will be very important in later chapters, where the
mathematical concepts are significantly more difficult.



Chapter 2

Fundamentals

A first-time home buyer is typically not able to pay the price of the new home
up front, but will have to borrow against future income using the house as
collateral. A company which sees a profitable investment opportunity may not
have sufficient funds to launch the project (buy new machines, hire employees)
and will seek to raise capital by issuing stocks and/or borrowing money from
a bank. The home buyer and the company are both in need of money to invest
now and are confident that they will earn enough in the future to pay back loans
that they might receive.

Conversely, a pension fund receives payments from members and promises
to pay a certain pension once their members retire. Insurance companies re-
ceive premiums on insurance contracts and deliver a promise of future pay-
ments in the case of property damage or other unpleasant events which people
are willing to insure themselves against. The pension fund and the insurance
company are both looking for profitable ways of placing current income in a
way which provides income in the future.

Either way, a key role of financial markets is to find efficient ways of con-
necting the demand for capital with the supply of capital. The above examples
should illustrate the desire of various economic agents to substitute income
intertemporally (between now and some time in the future). Thus the chief
mechanism by which the markets allocate capital is determined through prices.
Prices govern the flow of capital.

The example on page 4 showed that interest rates play a fundamental role
in the valuation of financial derivatives as interest rates are used to determine
the present value of transactions, which will take place in the future, or the
future value of some investments made today.

Even though the concept of interest rates is familiar to most people, the
interest rate is not generally directly observable in the financial markets. Short
term interest rates are quoted on a daily basis in the money markets for maturi-
ties up to approximately one year, but longer term interest rates are traded only
indirectly through the bond market.

However, a lot of concepts need to be clarified before delving into this
fundamental relationship between interest and (bond) prices from both a theo-
retical and practical point of view, but we will get back to that in later chapters.

17
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nterm no.

time

3

0 1 2 3 n-1 n

1 2

Figure 2.1: Naming conventions for terms.

2.1 Interest rates

Basically, an interest rate is the payment that the borrower (debtor) pays to the
lender (creditor) at the end of each term for the right to use an amount that
rightfully belongs to the lender.

A term is some time interval measured in days, months or years. The terms
are numbered as shown in Figure 2.1. Usually transactions between the bor-
rower and the lender are only made at the predetermined terms.

The rate of interest of one unit of account (e.g., 1 DKK) is called the in-
terest rate, and it will henceforth be denoted by r. If r = 0.06, the borrower
should pay the lender 0.06 unit of account at the end of the term per borrowed
unit of account. Informally, the interest rate is the price of money.

In the following, we will assume that i) the interest rate r is deterministic
and constant, ii) the number of terms n is a positive integer, iii) the interest rate
is added to the capital instead of paid out at the end of the term and iv) the
compounded interest is treated as the original amount.

2.1.1 Future and present value of a single payment

Assume that an initial capital c0 is deposited in a bank account with the interest
rate r in n terms. It is fairly obvious that the future value of this account is

cn = c0(1+ r)n. (2.1)

Example 2.1 (Savings account). Assume that a student deposits 1000 DKK in
a savings account with the annual interest rate r = 0.12. Assuming that there
are no taxes, this amounts to in 10 years’ time

1000 · (1+0.06)10 = 1790.85 DKK .

Assuming that the semiannual interest rate is r = 0.03, we get

1000 · (1.03)20 = 1806.11 DKK .

Notice the difference between these two results, which is due to the fact that
the annual rate is not just twice the semiannual rate. For a semiannual rate of
3% the annual rate will be

((1.03)2−1) ·100% = 6.09%.

Please refer to Section 2.3 for a further discussion.
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Assume that we are promised cn unit of accounts at time n. The present
value or discounted value of this amount at time 0 is

c0 = cn(1+ r)−n. (2.2)

The factor (1+ r)−1 is called the discount factor.
Example 2.2. Assume that you are promised 50000 DKK in 2 years’ time and
that the annual rate is r = 0.06. The present value is

50000 · (1+0.06)−2 = 44499.82 DKK .

2.1.2 Annuities

An annuity is defined as a series of equal payments that are due at some
equidistant payment dates. Each payment consists of a principal and an in-
terest. The principal accounts for the actual loan, whereas the interest accounts
for the expenses associated with the loan. As we shall see in the following,
Danish Government bonds and house loans, etc., are examples of annuities.

Consider an annuity with n terms. The duration of an annuity is the time
elapsed from the time the loan contract has been negotiated to the last payment
has been made (the n’th term). The first payments consist mainly of the princi-
pal, whereas the last payments consist mostly of the interest. Do note that the
n payments are equal, but the distribution between principal and interest varies
with time. The first payment of unit of account is made at the end of the first
term.

2.1.3 Future value of an annuity

In the following, we will need the well-known result.
Proposition 2.1 (Finite geometric series). The sum of a finite geometric series
in q is

n−1

∑
i=0

qi = 1+q1 +q2 + . . .+q(n−1) =

{
1−qn

1−q if q 6= 1

n if q = 1.
(2.3)

Proof. By direct calculation, we get for q 6= 1

n−1

∑
i=0

qi =
n−1

∑
i=0

qi 1−q
1−q

=
1−qn

1−q

where we used that the terms in the telescopic sum cancel out. Computing the
sum when q = 1 is simply adding n terms.

Theorem 2.1 (Future value of a unit annuity). The future value of a unit an-
nuity as specified above is given by
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Figure 2.2: The evaluation of the future value of an annuity.

sn|r =

{
(1+r)n−1

r if r 6= 0
n if r = 0.

(2.4)

Proof. By referring to Figure 2.2, where all payments are transferred to time n
using the interest rate r, we get

cn = sn|r = 1+1(1+ r)+1(1+ r)2 + . . .+1(1+ r)n−1

=

{
(1+r)n−1
(1+r)−1 if r 6= 0

n if r = 0
(2.5)

where we have used Equation (2.3).

Corollary 2.1 (Future value of an annuity). The future value of an annuity
with equal payments c per term is

cn = csn|r. (2.6)

Proof. Follows readily from (2.5) by replacing the unit payments by payments
of amount c.

2.1.4 Present value of a unit annuity

Let us again consider an annuity with unit of account payments with a duration
of n terms and a constant interest rate r.
Theorem 2.2 (Present value of a unit annuity). The present value of an annuity
as specified above is
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Figure 2.3: The evaluation of the present value of an annuity.

αn|r =
1− (1+ r)−n

r
=

(1+ r)n−1
(1+ r)n · r

r 6= 0 (2.7)

where αn|r is called the annuity discount factor.

Proof. By referring to Figure 2.3, where all the payments are transferred to
time 0, we get

c0 = αn|r = 1(1+ r)−1 +1(1+ r)−2 + . . .+1(1+ r)−n (2.8)

= (1+ r)−1[1+(1+ r)−1 + . . .+(1+ r)−(n−1)]

= (1+ r)−1 1− (1+ r)−n

1− (1+ r)−1 r 6= 0

using Equation (2.3).

Corollary 2.2 (Present value of an annuity). The present value of an annuity
with equal payments of c units of account is

c0 = cαn|r. (2.9)

Proof. Follows readily from (2.7).

Table 2.1 shows how αn|r varies with n and r, where 1/r is called the cap-
italization factor.

2.2 Cash flows

In this section we will extend the annuities (with equal payments) from the
previous section to more general cash flows, where the payments at time i,



22 FUNDAMENTALS

αn|r

n→ ∞ 1/r
r→ 0 n
r→ ∞ 0

Table 2.1: Important limiting values of αn|r.

1 2

r c

time/years

r

c1

1
2
2

c0

0

n

c
r

n

n

Figure 2.4: Naming conventions for cash flows and interest rates.

i = 1, . . . ,n, and the interest rates ri may differ. Consider the cash flow diagram
in Figure 2.4, which should be interpreted as follows: An initial investment c0
is made at time t = 0. At time t = 1, an income c1 is obtained, which should
be discounted with the interest rate r1 to determine its present value, at time
t = 2, the income c2 should be discounted with the interest rate r2 for two time
periods, etc.
Theorem 2.3 (Present Value and Future Value). The present value (PV) of
a cash flow c = (c1, . . . ,cn)

′ discounted by the interest rates r = (r1, . . . ,rn)
′,

where n is the number of time periods, is

PV (c,r) =
n

∑
i=1

ci

(1+ ri)i . (2.10)

The future value (FV) is given by

FV (c,r) =
n

∑
i=1

ci · (1+ ri)
n−i. (2.11)

Example 2.3 (Duration). Let FV (c,r,N) denote the (future) value of the cash
flow c at time N if the interest rate is fixed at level r. Then

FV (c,r,N) = (1+ r)NPV (c,r) (2.12)

=
N−1

∑
i=1

ci(1+ r)N−i + cN

+
N

∑
i=N+1

ci

(1+ r)i−N . (2.13)
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A reasonable question to pose is how a change in the interest rate immediately
after time 0 will affect FV (c,r,N). There are important effects with opposite
directions which influence the risk.

1. Reinvestment risk: Assuming that r decreases, the first expression in the sum
(2.13) will decrease. This decrease is caused by reinvestment risk which is
due to the fact that the payments up to time N will have to be reinvested at
a lower interest rate.

2. Price risk: Conversely, the last sum in (2.13) will increase when the interest
rate r decreases. When the interest rate decreases the payments after time N
will be discounted by a smaller factor and thus the payments will be higher.
The payment af time N, cN , is unaffected by changes in the interest rate.

Theorem 2.4 (Net Present Value (NPV)). The net present value (NPV) is given
by

NPV (c,r) =
n

∑
i=1

ci

(1+ r)i − c0. (2.14)

Proof. Straightforward.

Example 2.4. Consider the following cash flow and interest rates:

time/years

3

6%
6% 6%

800 800

2250

1000

0

1 2

The present value is determined by (2.10);

PV (c,r) =
1000
1.06

+
800

(1.06)2 +
800

(1.06)3

= 943.40+712.00+671.70 = 2327.10

and the net present value follows from (2.14)

NPV (c,r) = PV (c,r)− c0 = 2327.10−2250.00 = 77.10.

Thus by investing 2250 DKK we can make a profit of 77.10 DKK measured at
time t = 0.
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It is an interesting problem to determine the interest rate that implies that a
given cash flow has the net present value 0. This implies that the present value
of, e.g., a loan is zero such that it is merely an intertemporal substitution of
money.
Definition 2.1 (Internal rate of return). The internal rate of return (IRR) y =
IRR(c0,c) of a cash flow c is a solution y >−1 of the equation

c0 =
n

∑
i=1

ci

(1+ y)i . (2.15)

For ci > 0, i = 0,1, . . . ,n, the internal rate of return is called the yield.

Remark 2.1. For a cash flow with both positive and negative future payments
the IRR is not uniquely determined. In fact the polynomial (2.15) may have as
many as n− 1 roots. However, IRR is uniquely determined provided that the
initial payment c0 > 0 and ci > 0, i = 1, . . . ,n.

Remark 2.2. Functions for determining NPV (c,r) and IRR(c0,c) for a given
cash flow may be found in most spreadsheets, but can easily be computed using
numerical methods (Quasi-Newton or Regula Falsi) in a general programming
language.

Example 2.5 (T-maturity bullet loan). A T-maturity bullet loan with face value
F and coupon rate c is essentially described by c = (cF,cF, . . . ,(1+ c)F)′.

Assuming that the price of a bullet loan is given by π = c0, we will show
later that the internal rate of return y is not a reasonable choice of a discount-
ing factor. It is unreasonable to assume that the interest rate will remain con-
stant during the entire duration of the bond. The variation of the bond prices
as a function of T is called the term structure of interest rates,1 and this subject
will be studied in detail in later chapters. A primary goal will be to determine
the interest rates r given an interest rate model and one (or possibly several)
time series of bond prices.

Note that an internal rate of return is defined without referring to the un-
derlying term structure. The internal rate of return describes the level of a flat
term structure (i.e., a constant interest rate) at which the NPV of the cash flow
is 0.

An application of the internal rate of return in capital budgeting is to com-
pare some projects that one may wish to initiate in order to choose the most
profitable. When this criterion is used the better project is the one with the
highest IRR. Another way of choosing among alternative projects could be to
compare their net present values.

1A constant interest rate implies that the term structure is flat.
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2.3 Continuously compounded interest rates

As the financial markets around the world trade continuously, a more frequent
quotation (than on, say, a daily basis) of interest rates is called for. Thus we
will introduce continuously compounded interest rates, i.e., interest rates in
continuous time, which will be used extensively in the remainder of the text.

Assume that we deposit 1 000 DKK in a bank account with an annual rate
of 6%. If the interest rate is calculated at the end of the year, the bank account
will contain

FV = 1000 · (1+0.06)1 = 1060 DKK

where (2.2) have been used.
Now assume that a semiannual rate of 6%/2=3% is added twice a year

FV = 1000 · (1+0.03)2 = 1060.90 DKK .

If a quarterly rate of 6%/4=1.5% is used, we get

FV = 1000 · (1+0.015)4 = 1061.36 DKK

and, if we use a monthly rate of 1% each month, we get

FV = 1000 · (1+0.005)12 = 1061.68 DKK .

Note that the number of interest additions during a year gives rise to a higher
future value of our deposit although the annual rate remains the same.

In general, assume that the annual rate is fixed at r and that we add interest
n times during a year. The future value of our deposit c0 at time 0 will in a year
be

FV = c0

(
1+

r
n

)n

which readily follows from the previous computations.
It is an interesting problem to determine the compounded interest if we let

the number of interest additions tend to infinity. This implies that interest is
added to your account at the end of every infinitesimally small time interval
during the entire year.
Theorem 2.5 (Continuously compounded interest rate). Let n denote the num-
ber of interest additions to an account with a fixed annual interest rate r and a
unit deposit at time 0. The continuously compounded interest rate is given by

lim
n→∞

(
1+

r
n

)n
= er (2.16)
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Proof. Consider the function

f (n) =
(

1+
r
n

)n
= exp

{
n log

(
1+

r
n

)}
= exp(g(n)).

Introduce the change of variable t = 1
n in g(n) such that

g
(

1
t

)
=

log(1+ rt)
t

.

A first-order Taylor expansion of log(1+ rt) yields

rt +o(t)
t

→ r for t→ 0+.

This implies that f (n)→ er for n→ ∞.

Let us illustrate the use of the continuously compounded interest rate with
a couple of examples.
Example 2.6. Assume that you deposit 1 DKK in the bank at the continuously
compounded interest rate r at time 0. The future value at time t is then ert .

If you wish to use 1 DKK at time t you should deposit e−rt at time 0.

Example 2.7. Assume that you deposit 1 DKK on a bank account with the
annual rate 6%. A year later this will be worth 1.06 DKK. The corresponding
continuously compounded interest rate is then

1.06 = er ⇔ r = ln(1.06) = 0.0586 = 5.86%.

This computation illustrates that one should carefully note whether it is the an-
nual rate (a discrete time entity) or the annualized continuously compounded
interest rate that is given in problems and other sources of information.

In the following we will need to be able to discount some amount C at time
t = T back to time t.

Let M(t) denote the contents of a bank account with the continuously com-
pounded interest rate r. At some time t = T , we know that the bank deposit will
be C, and we need to determine its value at time t, 0≤ t ≤ T .

The bank deposit will exhibit exponential growth with the growth rate r

dM
M

= rdt (2.17)

which has the solution
M(t) = cert (2.18)

where c is some constant. Using that M(T ) =C, we get

M(t) =Ce−r(T−t). (2.19)
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Assuming that the continuously compounded interest rate varies deterministi-
cally with time, we get

M(t) =C exp

− T∫
t

r(s)ds

 . (2.20)

We will also need to be able to determine the future value of some amount
using the continuously compounded interest rate. For this purpose we intro-
duce
Definition 2.2 (Money account). The money account process is defined by

B(t) = exp

 t∫
0

r(s)ds

 (2.21)

or

dB(t) = r(t)B(t)dt (2.22)
B(0) = 1 (2.23)

where r(t) denotes the continuously compounded interest rate at time t.

The money account is simply a formal way of saying “money in the bank,”
because the amount B(t) is compounded continuously with the interest rate
r(t). Note, in particular, that the interest rate may be described by a stochastic
process, and that we just plug in a given sample path of the interest rate in
(2.21). By reverting the time in (2.21) (in which case we get (2.20)), it also
serves as a simple model of bonds, such as Danish Government bonds or US
Treasury bills.

2.4 Interest rate options: caps and floors

So far we have assumed interest rates to be deterministic, but this is clearly
at odds with reality. Consider, e.g., the Copenhagen InterBank Offered Rate
(CIBOR) in Figure 2.5, which is the interest rate banks use when they loan
or borrow money from one another. These rates are quoted for a number of
maturity dates, i.e., they are interest rates associated with loans on a 1, 3 or 6
months basis.

Referring to Figure 2.5, the first 600 observations (1/2 1990 to 1/7 1992)
of the interest rates fluctuate around approximately 10% with slightly higher
values at both ends of the period. Following this stable period, the currency
turmoil begins in the fall of 1992. First, the pound drops out of the EMS (Eu-
ropean Monetary System) on 22/9 1992 where the CIBOR 1M2 is set at 35%,

2CIBOR 1M is short for the one-month CIBOR time series, etc.
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Figure 2.5: The complete data set for the period 1/2 1990 to 20/3 1995.

whereas the CIBOR 3M and 6M equal 14.875% and 12%, respectively. In
November 1992, the international currency traders turned their attention to-
wards the Scandinavian currencies. The first attack was on the Finnish markka
on 8th September, that also influenced the Norwegian and Swedish currencies.
This was followed by devaluations of the Italian lire on 14th September and the
Spanish peseta on 17th September and the pound dropping out of the EMS on
22th September. Attention was the redirected towards the scandinavian curren-
cies again, with the Swedish krona floating from 19th November an attacks on
the Norwegian krone peaking at 23rd November (this is the first peak in Figure
2.5). The speculation continued through the year (the second cluster of peaks
in Figure 2.5) with a third cluster in 2013. These attacks are easily seen in the
group of observations numbered around 700–750, i.e., November-December
1992. The first peak on the November 11, 1992 was due to an attack on the
Finnish markka, the second peak concerns the Norwegian Krone December
12 and finally attention was turned to the Swedish Krona around December
11. On this date, the CIBOR 1M was raised to 34%. During this period the
National Banks in the Scandinavian countries spent large amounts of money
trying to defend their currencies. Later, in February 1993, the Danish Krone
came under attack and the CIBOR 1M was raised to 32.75% on February 8.

Following this turmoil, the interest rates drop exponentially until the
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French Franc is brought into focus during July and August 1993, where the
CIBOR 1M is raised to 24.7% on August 3, 1993. Although the figures in this
last period do not seem to be as externally determined as the previous periods
of currency turmoil, which might indicate that a very high level of volatility is
present in the series/markets, it is deemed that some interventions are made by
the National Banks.

By considering the three time series as a collection of three-dimensional
stochastic variables, the correlation structure of the time series is easily
obtained:

[ρi j] =

1.0000 0.9356 0.8311
0.9356 1.0000 0.9611
0.8311 0.9611 1.0000

 . (2.24)

It is readily seen that the CIBOR interest rates for different maturities are
strongly correlated, although it can be seen graphically that the correlation
varies (decreases) over time. More specifically, the correlation between the in-
terest rate was stronger prior to the events described in the text above.

Although some of the large variations in the CIBOR series may be ex-
plained by interventions from the National Banks, it is clear that market par-
ticipants would like to protect themselves against such large variations in the
interest rates. Indeed, a large number of interest rate derivatives have been
derived with this application in mind. Some of these use the interest rate it-
self as the underlying asset. In the following we will consider two interest rate
derivatives: The cap is a contract that can be used to protect a borrower against
floating or stochastic interest rates being too high. A cap can be thought of as
a series of interest rate options (these are called caplets.) Conversely, a floor
is a contract that can be used to protect a lender against floating interest rates
being too low.
Example 2.8 (A simple interest rate option). We will consider a 6 Month
European-style Call option on the 6 Month LIBOR3 at a strike level of 8%
and a face value of 10 Million USD. We will assume that this option costs 30
000 USD, which corresponds to 3% of the face value (or 30 basis points of the
face value).

Let us adapt a tabular form of specifying the details of the option:

Option type: European-style Call option
Expiration date: 6 Months (183 days)
Underlying interest rate: 6 Month LIBOR
Strike level: 8%
Face value: 10 Million USD
Cost of the option: 30 000 USD

Current 6 month
LIBOR interest rate: 8%

3LIBOR is short for London InterBank Offered Rate.
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This call option gives the buyer the right but not the obligation to receive
the difference between the 6 Month LIBOR interest rate (the underlying) pre-
vailing in six months’ time (the expiration date) and the 8% strike level, if
the former happens to be greater. Thus the buyer of such an option receives a
higher payoff as interest rates rise. The face value determines the size of the
contract. The payoff function is as follows:

6 month LIBOR
interest rate Call option payoff
≤ 8% 0
>8% (r−8%) ·182/360· 10 Million USD

Thus, the payoff is determined by the difference between the actual interest
rate r in 6 months (expressed as an annual rate in percent) and the strike
level of 8%. This is multiplied by the actual number of days in the subsequent
six months period as a proportion of the 360 days in a year (!), and the face
value of the option. Note that this payoff is received on the maturity date of the
underlying interest rate, i.e., 183+182=365 days from today. Thus, the current
time (t = 0 days) is when the contract is written, the contract expires in 183
days and the payoff of the underlying face value will be received 365 days
from today. Assuming that the actual interest rate in 183 days’ time is 9%, the
following payoff is obtained:

(9%−8%) ·182/360 ·10 Million USD = 50555 USD

and this amount will be received 365 days from today. Let us compute the
break-even point, i.e., the interest rate i, where the total borrowing cost would
be the same with and without the call option. This is not the strike level of 8%,
because we have to take the price of the option 30 000 USD into account.

Assuming that we didn’t purchase the option, the cash flow on the repay-
ment date of the loan of $10 million on the maturity date would be

10 million USD · [1+(i% ·182/360)].

Using the call option, the interest rate will be limited by the strike level. Thus
the total payment on the loan on the maturity date would be

10 million USD · [1+(8% ·182/360)].

Recall that the option itself costs $30000 today, and we have to compute the
future cost on the maturity date. The interest rate for the first six months (183
days) is known today, but the interest rate for the second six month period
(182 days) is not known today. However this was denoted by i such that the
compounded cost of the option is

30000 USD · [1+(8% ·183/360)][1+(i% ·182/360)].
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Thus the break-even point may be found from the equation

10 million USD · [1+(i% ·182/360)] =
10 million USD · [1+(8% ·182/360)]
+30000 USD · [1+(8% ·183/360)][1+(i% ·182/360)].

By solving this with respect to i, we get

i = 8.64%.

This implies that the option starts to pay if the interest rate at the expiration
date exceeds 8.64%. If the interest rate is lower at the expiration date, we
would have been better off without the option.

An interest rate cap is a series of European call options. Let us consider an
example.
Example 2.9 (Caps). We consider a 5 year cap on 6 month LIBOR at 8% with
a face value of 100 million USD

Option type: Interest rate cap
Term: 5 years
Underlying interest rate: 6 Month LIBOR
Reset dates: January 13, July 13
Strike level: 8%
Trade date: January 13
Settlement date: January 15
Underlying amount: 100 Million USD
Upfront fee: 3 million USD

Essentially we wish to borrow 100 million USD and protect ourselves against
interest rates above 8%. This protection is obtained by purchasing a cap at the
cost of 3 million USD. Assume that we wish to pay this amount as a stream of
periodic payments. Since the term of the cap is 5 years, there are 10 periods of
6 months involved. However, since the interest rate for the first period is known
today, we need not purchase an option on this rate. Hence there are 9 options
in the cap (each of these is called caplets) with payoffs to be determined on the
reset dates: January 13 and July 13. The stream of periodic payments may be
considered as a cash flow which should be balanced against the upfront fee of
$3 million. Using a semiannual rate of 4%, we could determine the size of the
9 payments using (2.7)

c =
c0

αn|r
=

3 000 000
α9|4%

=
3 000 000
(1.04)9−1
(1.04)9·0.04

= 403 479 USD.

Thus we should pay 403 479 USD every 6 months for the next 4.5 years. How-
ever, these payments were computed under the assumption of equal interest
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rates during this period. We have to consider the multiperiod scenario of the
cap spanning over 4.5 years, where the interest rate will be floating or vary
randomly. If this is taken into account the payoffs from the cap depend on the
whole sequence of future interest rates. Again, it turns out that we need to know
something about future interest rates in order to price financial derivatives. An
assessment of these future rates will be based on the term structure of interest
rates.

2.5 Notes

The material in this chapter is based on Lynggaard [1993], which contains
a number of examples and exercises. In addition in the lecture notes, Lando
[1996] provides an excellent introduction to mathematical finance in general.
An excellent introduction to a wide class of financial derivatives is Figlewski
et al. [1991]. In particular, this book contains a large number of carefully
worked examples.

2.6 Problems

Problem 2.1
1. Show the limits in Table 2.1.

Problem 2.2
Consider an European call option on the amount Y of USD with exercise date
T and strike price K.
1. Explain why a higher strike price K gives rise to a lower price Π on the
option.

Problem 2.3
Consider an European call option on the amount Y of USD with exercise date
T and strike price K. Let co denote the arbitrage-free price of this option.
1. Draw the payoff diagram.

Problem 2.4
Consider the following cash flow:

Term Payment
1 80000
2 80000
3 75000
4 65000
5 50000
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Assume that the interest rate is r = 0.12.
1. Compute the present value c0 = PV (c,r).
2. Compute the future value c5 = FV (c,r).
3. Determine the initial payment c0 for this cash flow such that the net present
value is 0.

Problem 2.5
The Simpson family wish to have saved 100 000 in a bank account for a new
car in 5 years.
1. Determine the monthly deposits to a bank account assuming that the
monthly interest rate is r = 1%.

Problem 2.6
A man borrows 10 000 DKK at time 0 for three years, which should be paid
back as an annuity loan, i.e., as n = 3 equal payments a. The annual interest
rate is r = 0.06.
1. Compute the payment c per term. Each payment of equal amount consists
of a payment of principal and interest. The last two differ from one-period to
another.
2. Complete the following table:

Time Payment Interest Principal Remaining debt
0 10000
1 600
2
3

Problem 2.7
Show that

s−1
n|r = α

−1
n|r − r.

Problem 2.8
Consider the cash flow c = (c0,c1,c2)

′. The internal rate of return y is the
solution to the equation

c0 =
c1

1+ y
+

c2

(1+ y)2 (2.25)

as stated in Definition 2.1.
1. Show that there may exist two solutions (y1,y2) such that the internal rate
of return y is not uniquely specified.
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Problem 2.9
Consider the following cash flow:

800 800 800
1000

800

time/years

1 2 3 4 5

1. Assuming that the annual rate is 6%, what is the present value of this cash
flow?

Consider the same cash flow with different interest rates as shown below:

800 800 800 800

time/years

5%

1 2 3 4 5

1000
4%

5% 6% 6%

2. Determine the initial payment c0 such that the present value is 0.
Consider the following cash flow with net present value 3600.78.

800 800 800 800

time/years

1

3

2 3 4 5

1000
5%

5% 6% 5%r

3. Determine the interest rate r3.

Problem 2.10
Assume that you deposit 1 DKK in a bank account with an annual rate of 12%.
1. Determine the continuously compounded rate r.

Problem 2.11
Consider an annuity with n terms with equal payments c, a duration of n peri-
ods and the constant interest rate r.

If the first payment is made at the end of the first term the present value
is given by (2.7). Consider the more general case, where the first payment is
made at term k, where 0 < k < n.
1. Plot the cash flow in a diagram similar to Figure 2.3.
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2. Derive a formula for the present value in the more general case. The formula
should contain α·|r.

Problem 2.12
Consider the simple market on page 4.
1. Show that the discount factor β = B0/B1 is given by

β = (1+ r)−1

where r is the annual rate.
2. Now assume that the price of the bond at time t = 1 is fixed at B1. Explain
what will happen to the bond price at time t = 0, B0, if the interest rate r goes
up or down. Plot B0 as a function of r for reasonable values of r.

Problem 2.13
1. Show that (2.20) simplifies to (2.19) for r(t) = r, i.e., a constant rate.





Chapter 3

Discrete time finance

This chapter will describe discrete time models in order to introduce the reader
to some of the basic concepts to be used in subsequent chapters on continuous
time. The theory in discrete time is simpler as the proofs only require linear
algebra.

In this chapter we shall consider simple models of security markets and de-
scribe the basic principles of valuation of contingent claims (e.g., options, fu-
tures). The key idea behind valuation in markets with uncertainty is the notion
of absence of arbitrage. Roughly speaking, an arbitrage is a situation where an
investor, through buying and selling securities, takes a “position” in the market
which has zero net cost and which guarantees 1) no losses in the future and 2)
some chance of making a profit. In a model free of arbitrage such investments
are not possible.

3.1 The binomial one-period model

Consider a financial market with two securities, a stock and a bond, and two
time points t = 0 and t = 1. The bond is a riskless asset with initial price B0,
and price (1+ r)B0 at time t = 1, where r > 0 is the deterministic constant
interest rate and (1+ r)−1 is the discounting factor. The initial stock price is
given by S0 and the price at time t = 1 is assumed to be unknown. At time
t = 1 the market can be in either of two states. With probability p the stock
price will be S1

1 associated with state 1 (the upper index indicates the state),
and with probability 1− p the stock price is S2

1 at time t = 1.

S0

S1
1

S

0

2
1

p

1-p

time: 1time: 0

B (1+r)
0

time: 0 time: 1

B

Figure 3.1: The binomial branch for the stock and the bond.

37
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Suppose an investor is interested in a contract, e.g., an option which pays
c1 if state 1 is realized and c2 if state 2 is realized. What should such a contract
cost in the one-period financial market consisting of a stock and a bond? One
suggestion would be to price the contract as the expected value of future pay-
offs, discounted by the factor (1+ r)−1. Let V denote the price of the contract.
Then

V̂ = (1+ r)−1E[C] = (1+ r)−1(pc1 +(1− p)c2). (3.1)

We shall, however, see that this is not correct, at least not in the naive form; cf.
Harrison and Pliska [1981], Biagini and Cont [2006].

Consider instead a general portfolio (φ ,ψ) ∈ R2, consisting of φ units of
the stock and ψ units of the bond. The price of that portfolio at time t = 0 is
φS0 +ψB0.

At time t = 1 the value of that portfolio would be φS1
1+ψ(1+r)B0 in state

1 and φS2
1 +ψ(1+ r)B0 in state 2. To find the correct price of the contract we

could choose the portfolio (φ ,ψ) in a way that yields c1 in state 1 and c2 in
state 2. The principle of buying a portfolio with the same cash flow/payoff as
a contract is called replication. By solving the linear equations

φS1
1 +ψ(1+ r)B0 = c1 (3.2)

φS2
1 +ψ(1+ r)B0 = c2 (3.3)

the following portfolio is obtained

φ =
c2− c1

S2
1−S1

1
(3.4)

ψ =
1

(1+ r)B0

(
c2−

(c2− c1)S2
1

S2
1−S1

1

)
. (3.5)

If this portfolio is bought, the payoff at time t = 1 would be c j in state j = 1,2.
The price Ṽ of the portfolio at time t = 0 is

Ṽ = φS0 +ψB0 = S0

(
c2− c1

S2
1−S1

1

)
+

1
(1+ r)

(
c2−

(c2− c1)S2
1

S2
1−S1

1

)
. (3.6)

This is an other candidate to the price of the contract which differs from
(3.1), and this is the correct price as we shall see.

Consider some other market maker offering to buy or sell the contract for
a price P less than Ṽ . Anyone could buy the contract in arbitrary quantity, and
sell the portfolio (φ ,ψ) above to replicate it. At time t = 1 the value of the
contract would exactly cancel the value of the portfolio, whatever the stock
price would be — thus this set of trades carries no risk. But the trades were
carried out with a profit of Ṽ − P per unit of contract. By buying arbitrary
amounts anyone could make arbitrary risk-free profits, so P would not have
been a rational/fair price for the market maker to quote.



ONE-PERIOD MODEL 39

Similarly if the market maker quotes a price P greater than Ṽ , anyone could
again make arbitrary risk-free profits. Hence the price Ṽ is the rational/fair
price for that contract. In the next section a more general1 model will be con-
sidered, which includes this model as a special case.

3.2 One-period model

The model considered in this section is the simplest possible model of a se-
curity market with uncertainty — the Arrow–Debreu model. We assume that
there are N securities with the initial price vector S0 = (S1

0,S
2
0, . . . ,S

N
0 )

T , which
can be held in any positive or negative real number by any investor. An in-
vestor is said to hold a short position of a given security if he or she has a
negative amount of that security, and the position is long if the investor has
a positive amount. The security prices S0 are known at time t = 0 while the
future prices S1 are unknown at time t = 0. It is assumed that the market can
be in M different states ωi at time t = 1, and the security prices at time t = 1
can be represented by the cash-flow matrix D ∈ RN×M as follows

D =


S1

1(ω1) S1
1(ω2) · · · S1

1(ωM)
S2

1(ω1) S2
1(ω2) · · · S2

1(ωM)
...

...
. . .

...
SN

1 (ω1) SN
1 (ω2) · · · SN

1 (ωM)

 (3.7)

=
[

S1(ω1) S1(ω2) · · · S1(ωM)
]

where ω j is an outcome from the finite sample space Ω = {ω1,ω2, . . . ,ωM}
and S1(ω j) ∈ RN is the price vector at state j. Thus if the uncertainty in the
market generates the outcome ω j, the stock price will be S1(ω j).

The jth column of D is the price vector S1(ω j) ∈ RN associated with state
j and the ith row is the possible payoffs which are associated with holding one
unit of security j.

A portfolio of securities is represented by a column vector h = (h1,h2,
. . . ,hN)T , i.e., (h ∈ RN), where hi denotes the number of securities of type
i bought at time t = 0. The portfolio h is defined on RN , i.e., h ∈ RN . This
implies that the investor is allowed both to go short in any security and own a
noninteger number of any securities (e.g., 0.3). Assume, e.g., that h1 = −

√
2.

This means that at time t = 0 you get
√

2S1
0 and at time t = 1 you owe

√
2S1

1(ω),
which is a stochastic variable.

The wealth process Vt(h) is defined as

Vt(h) =
N

∑
i

hiSi
t = hT St for t = 0,1 (3.8)

1Although still very simple.
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and it equals the value of a given portfolio as a function of the time (t = 1,2), of
the initial price vector S0, and of the outcome of the stochastic variable S1(ω).
Definition 3.1 (Arbitrage in discrete time). An arbitrage portfolio is a portfo-
lio h such that hT S0 = 0 and

hT D· j ≥ 0 for all 1≤ j ≤M (3.9)

hT D· j > 0 for some 1≤ j ≤M (3.10)

where D· j denotes the jth column of D.
This means that an arbitrage portfolio is a zero investment portfolio (at t =

0) where losses are impossible (at time t = 1) and there is a positive probability
to make a profit (at time t = 1), provided that all ω j > 0.

3.2.1 Risk-neutral probabilities

As stated in the introduction, the value of a given security is in general not
given by the discounted expected value of future cash flows. In the following
we shall show that the right price of a security, in the sense of no arbitrage op-
portunities, is the discounted expected value of future cash flows. However, the
expectation should be computed with respect to an other probability measure
(possibly non-unique) called the risk-neutral probabilities q, which in general
differ from the objective probabilities p.
Theorem 3.1 (State price vector). If there exists a vector of strictly positive
numbers q ∈ RM

++

q = (q1,q2, . . . ,qM)T , (3.11)

called a state price vector, such that

S0 = Dq =
M

∑
j=1

q jD·j (3.12)

then no arbitrage portfolios exist. Conversely, if there are no arbitrage portfo-
lios, there exists a state price vector q with positive entries satisfying (3.12).

Proof. See Duffie [1996].

The theorem says that the initial price vector and the cash-flow matrix D
must satisfy certain conditions in an arbitrage-free model. Given a state price
vector π for the pair (D,S0), let q0 =∑

M
i=1 qi, and for any state j, let q̂ j = q j/q0.

The vector q̂ = (q̂1, q̂2, . . . , q̂M)T has positive elements and the sum is 1 by
construction; hence, it can be interpreted as a probability distribution.

By inserting q j = q̂ jq0 in (3.12) we obtain

Si
0 =

M

∑
j=1

q0q̂ jDi j = q0

M

∑
j=1

q̂ jDi j = q0EQ[Di·] (3.13)
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where EQ[·] denotes the expectation operator with respect to the risk-neutral
probabilities.

Suppose there exists an investment opportunity which guarantees a riskless
payoff of 1 USD at time t = 1. In terms of the model the payoff of this riskless
investment can be represented as a vector (1,1, . . . ,1) in RM . According to
Theorem 3.1 the value of such an investment must be ∑

M
j q j = q0. Since a

bond basically is a security that pays a certain amount — say 1 USD without
any loss of generality — at the expiry date (t = 1), the price of a bond in this
one-period model is q0. We call q0 the discounting factor because it tells us
how much 1 USD at time t = 1 is worth today t = 0.

Equation (3.13) states that the fair price of a security in a model free of ar-
bitrage is the discounted expected payoff at time (t = 1), where the risk-neutral
probabilities are used in the expectation. The change from the objective proba-
bilities p to the risk-neutral “probabilities” q thus incorporates the discounting
factor q0, as well as the real risk-neutral probabilities q̂.
Remark 3.1. We will see in the corresponding chapter on continuous-time
models that a slightly more general formulation is used. The definition there
is that a risk-neutral probability measure is a probability measure such that
ratios of traded assets are martingales

S0

B0
= EQ

[
S1

B1

]
. (3.14)

This definition will be helpful when valuing, e.g., interest rate derivatives.

3.2.2 Complete and incomplete markets

In the binomial model (with two states) presented in the beginning of this chap-
ter any vector of future cash flows, c = (c1,c2), can be replicated in terms of
a portfolio of a stock and a riskless bond. This property can be generalized to
the setting of N securities and M states.
Definition 3.2 (Complete market). A securities market is said to be complete
if, for any cash-flow vector c = (c1,c2, . . . ,cM), there exists a portfolio h =
(h1,h2, . . . ,hN)

T of traded securities, which has a cash-flow c j in state j, for
all 1≤ j ≤M.

Remark 3.2. Market completeness is therefore equivalent to the existence of
a solution h ∈ RN to the linear equations

hT D = c (3.15)

for any c ∈ RM , where D is the cash-flow matrix defined in (3.7). From linear
algebra it is well known that this property is satisfied if and only if

rank(D) = M (3.16)
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which is equivalent to saying that the rows of the matrix D span the entire RM

space.
Remark 3.3. A necessary condition for market completeness is that the num-
ber of traded securities must be at least as large as the number of states.
Proposition 3.1. Suppose that the market is complete and the model is free of
arbitrage. Then there exists a unique set of state prices (π1,π2, . . . , πM) and
hence a unique set of risk-neutral probabilities (π̂1, π̂2, . . . , π̂M). Conversely, if
there exists a unique set of state prices, then the market is complete.

Proof. Market completeness implies that the price of a contingent claim which
pays $1 in state j and 0 otherwise is determined for all j. Therefore, there can
be at most one set of state prices. Hence, if they exist they are unique.

The converse statement, that if there exists a unique state price vector (with
strictly positive elements) then the market is complete, is proved by a contra-
diction argument. Assume the market is not complete, then rank(D)<M. From
linear algebra, we know that the matrix D must have a non-empty nullspace,
i.e., there exists a vector λ = (λ1,λ2, . . . ,λM) such that

Dλ = 0.

Using the no arbitrage relation (3.12) we obtain

S0 = D(q+ρλ )

for all real numbers ρ . Since the entries of q are strictly positive, we can choose
ρ sufficiently small such that q j +ρλ j is positive for all j. Therefore we have
constructed a new state price vector, contradicting the hypothesis. We conclude
that in a market free of arbitrage, uniqueness of state prices implies that the
market is complete.

The concept of completeness is a convenient idealization of the behaviour
of securities markets. However markets — with many possible price structures
satisfying the no-arbitrage condition — are the rule rather than the exception.
Example 3.1 (The trinomial model). By adding one more state to the binomial
model in Section 3.1 we obtain the so-called trinomial model, which is an
incomplete market since the cash-flow matrix D is 2× 3. Due to the fact that
the state prices are not unique, the price of contingent claims can not in general
be determined uniquely.

Assuming that there is a riskless bond on the financial market, with a de-
terministic rate r and a value of one at time t = 1, and assuming no arbitrage
then we get from (3.13) that

1
1+ r

= q1 +q2 +q3 Bond price (3.17)

S0 = S1
1q1 +S2

1q2 +S3
1q3 Stock price (3.18)
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where we assume that
S1

1 < S2
1 < S3

1. (3.19)

Admissible sets of state prices π must satisfy Equations (3.17)–(3.18) and must
have strictly positive entries. By subtracting (3.18) from (3.17) we obtain

0 =

(
1+ r− S1

1
S0

)
q1 +

(
1+ r− S2

1
S0

)
q2 +

(
1+ r−

S3
1

S0

)
q3. (3.20)

Since q is strictly positive the equation above can only be fulfilled if

S1
1

S0
< 1+ r <

S3
1

S0
. (3.21)

With this condition the model is free of arbitrage, and the set of admissible state
prices can be visualized as a line segment corresponding to the intersection of
the planes described by (3.17) and (3.18) in the positive quadrant R3

++.
Since the state prices are strictly positive in all coordinates, the extreme

values at the line segments are

q1 =

S3
1

S0
− (1+ r)

(1+ r)( S3
1

S0
− S1

1
S0
)
, q2 = 0, q3 =

(1+ r)− S1
1

S0

(1+ r)( S3
1

S0
− S1

1
S0
)
, (3.22)

and

q1 = 0, q2 =

S3
1

S0
− (1+ r)

(1+ r)( S3
1

S0
− S2

1
S0
)
, q3 =

(1+ r)− S1
2

S0

(1+ r)( S3
1

S0
− S2

1
S0
)

(3.23)

if S2
1

S0
≤ (1+ r), or

q1 =

S2
1

S0
− (1+ r)

(1+ r)( S2
1

S0
− S1

1
S0
)
, q2 =

(1+ r)− S1
1

S0

(1+ r)( S2
1

S0
− S1

1
S0
)
, q3 = 0 (3.24)

if S2
1/S0 > (1+ r).
Due to the fact that the model is incomplete, the price of derivatives cannot

be determined uniquely. However, since the set of admissible state prices is
the line segment mentioned above, bounds on the value of derivatives can be
calculated. Since the value of the derivative is a linear function, and the line
segment is an open convex set, an infimum and supremum of the price can be
found. To illustrate this, consider the case of a call option on the basic security
S, with strike price K. Assume that S2

1 < K < S3
1. Then the cash flows for this

option are S3
1−K in state 3 and 0 in state 1 and 2. Its no-arbitrage value is
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C = π3(S3
1−K). According to the extreme values of the admissible line segment

the upper bound for the call option is

C+ = π3(s3
1−K) =

(1+ r)− S1
1

S0

(1+ r)( S3
1

S0
− S1

1
S0
)
(S3

1−K). (3.25)

If S2
1/S0 > (1+r) the lower bound of the price is C−= 0, and if S2

1/S0≤ (1+r)
the lower bound is

C− = π3(s3
1− k) =

(1+ r)− S2
1

S0

(1+ r)( S3
1

S0
− S2

1
S0
)
(S3

1−K). (3.26)

This example addresses two subjects. First, the example shows an impor-
tant application of state prices as a tool for valuation of derivatives in incom-
plete markets. State prices are not unique but they can nevertheless be used to
obtain partial information about fair prices. Second, the example shows that in
order to obtain complete markets, where the pricing of derivatives is uniquely
determined, the number of stocks must be at least as large as the number of
states.2 To get more realism in a model of a financial stock market, the number
of states must be large, because why should the stock take only two or three
possible values? However the drawback by increasing the number of states is
that the number of stocks must be increased as well. Fortunately, there is a
clever way out of this problem.

3.3 Multiperiod model

The idea is to divide the interval from 0 to T into equidistant smaller subinter-
vals, where T denotes the expiry date of a given derivative, and allow the stock
price to move up and down in each subinterval; cf. Figure 3.2. With this setup
the stock price can have 2T different prices at time T , if none of the nodes
at time t = T coincide. However, often a so-called recombinant tree is used,
where different branches can rejoin. Using the terminology of graph theory, a
recombinant tree is a graph where a given node can have more than one pre-
decessor. In the recombinant tree in Figure 3.2b the stock price can take T +1
possible values at time T .

Before we go into details with the mathematical technicalities, we provide
an example to guide the intuition.
Example 3.2 (Two period model). Consider a two period model consisting of
a riskless security, with initial value 1 and a deterministic interest rate r, and
a stock with uncertain values at time t = 1,2. The uncertainty of the stock is
modelled as a binomial tree, consisting of a binomial branch at the initial node

2This follows from Remark 3.2.



MULTIPERIOD MODEL 45

b

p

p

p

p

p

p

p

1-p

1-p

1-p

1-p

1-p

1-p

1-p

p

1-p

p

1-p

p

1-p

p

p

1-p

1-p

1-p

p

t=1 t=2 t=3 t=0           t=0           t=1 t=2 t=3

a

Figure 3.2: Two binomial trees — the one to the right is a so-called recombi-
nant tree, where a given node can have two predecessors.

at time t = 0, and binomial branches at the two possible nodes at time t = 1.
By truncating the tree in Figure 3.2 at time t = 2, the evolution of the value of
the riskless security and the stock price is given in Figure 3.3.

The initial value of the stock is assumed to be S. At time t = 1 we know
whether the state of the world is either (ω1 or ω2) or (ω3 or ω4). If the state
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Figure 3.3: The evolution of the value of the stock price in a two period model.
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of the world is (ω1 or ω2) the value of the stock is uS, and the value is dS
if the state is (ω3 or ω4). The value of the money market account is (1+ r)
independent of the state of the world. At time t = 2 the state is known, and
the value of the stock is listed in Figure 3.3. The value of the money market
account is (1+ r)2.

Now suppose we want to price a European call option on the stock with
exercise price K. The value of the option at time t = 2 is V = max(S2(ω)−
K,0), where ω indicates that the stock price depends on the state of the world.

In the one-period model the arbitrage-free price is found by the value of a
replicating portfolio (with the same cash flow at the end of the period). This
principle will be applied in a recursive manner to the two period binomial
model. We begin with the upper binomial branch at time t = 1. Let Cuu denote
the value of the call option in state ω1 and Cdu in state ω2. As in the one-
period model we want to determine a portfolio (φu,ψu) in the stock and the
money market account, which replicates the value of the option at time t = 2.
This is obtained by solving the linear system

φuu2S+ψu(1+ r)2 = Cuu, (3.27)
φuduS+ψu(1+ r)2 = Cdu. (3.28)

The solution is

φu =
Cuu−Cdu

uS(u−d)
, ψu =

uCdu−dCuu

(1+ r)2(u−d)
. (3.29)

The value Cu of this portfolio is

Cu = φuuS+ψu(1+ r)

=
1

1+ r

(
(1+ r)−d

u−d
Cuu +

u− (1+ r)
u−d

Cdu

)
, (3.30)

and this is what the call is worth at time t = 1 if the first move was up. If the
first move was down the value of the call Cd at time t = 1 can be determined in
a similar way, thus

Cd =
1

1+ r

(
(1+ r)−d

u−d
Cud +

u− (1+ r)
u−d

Cdd

)
, (3.31)

where Cdd and Cud denote the value of the call at state ω4 and ω3 at time t = 2.
Now we know what the call is worth at time t = 1 depending on which state
we are in at that time. Looking at time t = 0 we want to construct a portfolio
which gives us Cu if we are in state (ω1 or ω2) at time t = 1 and Cd is the state
in (ω3 or ω4). Again we have a one-period problem, which we can easily solve,
and the value of the replicating portfolio, which is equal to the value of the call
C0 at time t = 0, is given by

C0 =
1

1+ r

(
(1+ r)−d

u−d
Cu +

u− (1+ r)
u−d

Cd

)
. (3.32)



MULTIPERIOD MODEL 47

By inserting (3.30) and (3.31) in (3.32), and defining q = (1+r)−d
u−d , we get

C0 =
1

(1+ r)2

(
q2Cuu +2q(1−q)Cud +(1−q)2Cdd

)
. (3.33)

We recognize that this expression shows that the value of a call option is found
as the discounted value of the expected value of the payoff of the option at time
t = 2, where the expectation is taken with respect to the risk-neutral probabil-
ities. The risk-neutral probabilities denote the probabilities under the equiva-
lent martingale measure Q, which we will discuss later. Formally we have

C0 =
1

(1+ r)2 EQ[Ct=2]. (3.34)

The important thing to learn from this example is the following: Starting out
with the amount C0, an investor is able to form a portfolio of the stock and
the money market account which produces the payoffs Cu or Cd at time t =
1 depending on where the stock goes. Now without any additional cost, the
investor can rearrange his portfolio at time t = 1, such that the payoff at time
t = 2 will match that of the option. Therefore, at time t = 0 the price of the
option must be C0.

3.3.1 σ -algebras and information sets

In this section we shall present a general formula for derivative pricing in
multiperiod models. Some important concepts from probability theory, like
σ -algebras, probability spaces, partitions, etc., will be used. If the reader is not
familiar with these concepts please consult Appendix B for a brief overview.

Given a probability space (Ω,F ,P) with a finite sample space Ω, and F
the σ -algebra of all subsets of Ω, assume that P(ω) > 0 for all ω ∈ Ω (no
elements in Ω have probability zero). Also assume that there are T + 1 dates,
starting at date 0, ending at time T . In the general theory of multiperiods mod-
els it will be shown that the pricing of derivatives consists of a conditional
expectation, where the conditioning argument is the “information set” up to
the present time. It is therefore important to formalize the concept of infor-
mation, which is done by introducing σ -algebras. However, to illustrate how
information is revealed through time, we give an example.
Example 3.3 (Event tree). Consider the event tree in Figure 3.4 with three pe-
riods. In this example we shall only consider how we can represent knowledge
in terms of partitions/σ -algebras, and not study a particular financial market.
Suppose that an outcome ω ∈Ω is chosen by “someone” or “something,” but
the chosen state is unknown to us at time t = 0. We only know that one state has
been chosen. This is represented by a partition P0 containing one set, namely
the entire sample space, which can be interpreted as no information. At time
t = 1, we are in either state A or B, i.e., we know that the state is either (1)
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Figure 3.4: Event tree with three periods.

{ω1,ω2,ω3,ω4,ω5} or (2) {ω6,ω7,ω8,ω9}, which is formalized by the parti-
tion P1 in Figure 3.4. At time t = 2 the partition is even richer. Thus, we know
in which of the five subsets {ω1,ω2},{ω3},{ω4,ω5},{ω6,ω7} or {ω8,ω9} the
true state is. At time t = 3 we know exactly which of the states is the true state,
and it is represented by a partition P3 where each of the elements of P3 con-
tains one single state ωi; cf. Figure 3.4. Thus as times goes by we obtain more
information, and at time t = 3 we have complete information.

Although the “information set” from now on will be represented by σ -
algebras, it is fruitful to think of it in terms of partitions and information sets
that become more detailed as time goes by.

To formalize how information is revealed through time, we introduce the
notion of a filtration.
Definition 3.3 (Filtration). A filtration on (Ω,F ) is a family {Fi}T

i=1 of σ -
algebras in F such that

F0 ⊆F1 ⊆ . . .⊆FT . (3.35)

If F0 = (∅,Ω) and FT =F the filtration may be considered as a sequence
of information sets increasing from “no information” to “full information” —
similar to the interpretation of partitions in Example 3.3.
Definition 3.4 (Adapted process). A discrete time stochastic process
(Xt)t=0,...,T is a sequence of stochastic variables X0,X1, . . . ,XT . The process
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is said to be adapted to the filtration F if Xs is Fs-measurable, which is typi-
cally written as Xs ∈Fs.

3.3.2 Financial multiperiod markets

We are now ready to model financial markets as multiperiod models. Let
St(ω)= (S0

t ,S
1
t , . . . ,S

N
t ) be a vector of adapted processes of the securities avail-

able on the market. This means that Si
t(ω) is the price of security i at time t

in state ω . Suppose one of the securities S0 is a money market account with
initial value 1 and a deterministic interest rate r for all T periods. In the one-
period model we defined a portfolio as an N-dimensional vector h, where hi

denotes the number of security i bought at time t = 0. In a multiperiod model
this concept ought to be generalized because the portfolio might change over
time. Thus we obtain a portfolio vector at each time point. This is done in the
following definition.
Definition 3.5 (Trading strategy). A trading strategy is an (N)-dimensional
vector of adapted processes

h = (h1,h2, . . . ,hN) (3.36)

with the interpretation similar to that of a one-period model, so hi
t(ω) denotes

the number of security i held at time t in state ω .

The requirement that the trading strategy is adapted represents the very im-
portant idea that the strategy can only be based on the current level of knowl-
edge. To illustrate this we assume we are in node A in Figure 3.4 at time t = 1.
Then the trading strategy can base the number of securities on the fact that we
are in node A and not in B. Notice that the number of securities may not be
based on whether the true state is ω1, ω2, ω3, ω4 or ω5 (i.e., it is not allowed to
base a trading strategy on information released in the future, for example, fu-
ture values of the stocks). From an economical point of view, it clearly makes
sense to require that the trading strategy should be an adapted process.
Definition 3.6 (Value process). The value process at time t corresponding to
h is defined as

Vt(h) = htSt =
N

∑
i=1

hi
t(ω)Si

t(ω) for t = 0,1, . . . ,T. (3.37)

Definition 3.7 (Self-financing trading strategy). A trading strategy h is self-
financing if it satisfies

htSt = ht−1St for t = 1,2, . . . ,T. (3.38)

The interpretation of a self-financing strategy is that it is only allowed to
change the portfolio in a way such that the total value of the portfolio does not
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change. However, the value of the trading strategy can of course change over
time due to changes in the stocks. The definition of arbitrage in multiperiods
models is based on the definition of self-financing portfolios.
Definition 3.8 (Arbitrage). An arbitrage is a self-financing strategy for which

V0(h) = 0 (3.39)

and

VT (h)≥ 0, (3.40)
P(VT (h)> 0)> 0. (3.41)

In words this definition says that there are arbitrage possibilities in the
model if there exists a trading strategy with zero cost at the initial time with
the following two properties: (1) No risk of getting any losses at the future time
T ; (2) A positive probability of getting a strictly positive payoff. If no arbitrage
possibilities exist in the model, we say that the model is free of arbitrage. Com-
pared with the definition of arbitrage in the one-period model (3.1) it is readily
seen, that the above definition is a generalization.3

3.3.3 Martingale measures

The pricing of derivatives in discrete and continuous-time models is built on
so-called martingale measures which basically are probability distributions
that are related to the historical or objective probability distribution. In the one-
period model we saw that the price of a derivative, e.g., an option, was given by
the discounted value of the expected value of the payoffs at time t = 1, where
the expectation was taken with respect to the so-called risk-neutral probabili-
ties. In multiperiod models as well as continuous models, we basically use the
same procedure for pricing derivatives.

Since the pricing formulas stated in the following rely on conditional ex-
pectations it is necessary to be familiar with this concept, in the case where
the conditioning argument is a σ -algebra. In Appendix B a brief overview is
given.
Definition 3.9 (Martingale). A stochastic process X is a martingale with re-
spect to the filtration {Fi}T

i=1 if it satisfies

1. The best prediction is the current value

E [Xt |Ft−1] = Xt−1 (3.42)

for all t = 1,2, . . . ,T .

3In the one-period model two definitions of arbitrage were stated, where the first definition is
directly comparable with the multiperiod definition of arbitrage.



MULTIPERIOD MODEL 51

2. Xt is adapted to the filtration Ft for all t.

3. The process has finite expectation

E [|Xt |]< ∞ for all t. (3.43)

Remark 3.4. In applications we shall mainly be interested in the first property
in Definition 3.9, and just assume that properties 2 and 3 are fulfilled.

Let us consider two simple examples of martingales.
Example 3.4. Consider a collection of independent and identically dis-
tributed stochastic variables X1,X2, . . . with mean zero E[Xi] = 0. Let Fn =
σ{X1,X2, . . . ,Xn} denote the σ -algebra generated by X1,X2, . . ., Xn. Further-
more, we introduce the filtration {Fi}T

i=1 = {F1,F2,F3, . . .}.
We wish to show that the sum

Sn =
n

∑
i=1

Xi

is an F-martingale. From the linearity of the expectation operator, we get

E[Sn|Fn−1] = E[Xn|Fn−1]+E[Sn−1|Fn−1]. (3.44)

The latter Sn−1 is Fn−1-measurable, and the former has expectation zero.
Hence

E[Sn|Fn−1] = Sn−1 (3.45)

which shows that Sn is an {Fi}T
i=1-martingale.

Example 3.5. We consider the same setup as above with the exception that
E[Xi] = 1 and Xi > 0 for i = 1,2, . . ..

We wish to show that the product

Mn = X1 ·X2 · . . . ·Xn

is a {Fi}T
i=1-martingale. Thus we must show that

E[Mn|Fn−1] = Mn−1.

As X1 ·X2 · . . . ·Xn−1 is Fn−1-measurable, we get

E[Mn|Fn−1] = E[X1 ·X2 · . . . ·Xn|Fn−1]

= X1 ·X2 · . . . ·Xn−1E[Xn|Fn−1]

= Mn−1E[Xn] = Mn−1,

where the last equality sign follows from E[Xn] = 1.
Definition 3.10 (Equivalent measures). Two probability measures P and Q are
said to be equivalent if they assign zero probability to the same sets A in the
σ -algebra

P(A) = 0 ⇐⇒ Q(A) = 0. (3.46)
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Definition 3.11 (Equivalent martingale measure). An equivalent martingale
measure for the security market model S, defined on (Ω,F ,P,{Fi}T

i=1), is
a probability measure Q on Ω with Q(ω) > 0 for all ω ∈ Ω such that each
component in the vector of discounted price processes

Z = (Z0,Z1, . . . ,ZN) =

(
1,

S1

S0 , . . . ,
SN

S0

)
(3.47)

is a martingale, i.e.,

EQ[Zi
t |Ft−1] = Zi

t−1 for i = 1,2, . . . ,N and t = 1,2, . . . ,T. (3.48)

For the one-period model it was stated in Theorem 3.1 that a financial
model is free of arbitrage if and only if there exists a state price vector. Using
the concept of martingale measures we can state a similar, but more general,
theorem.
Theorem 3.2. In a discrete time security market with finite sample space the
following two statements are equivalent.
1. There are no arbitrage opportunities.

2. There exists an equivalent martingale measure.

Proof. See Lando [1996].

Remark 3.5. In Example 3.2 we found that the pricing formula for the call
option was given by

C0 =
C0

(1+ r)0 =
1

(1+ r)2

(
q2Cuu +2q(1−q)Cud +(1−q)2Cdd

)
, (3.49)

which exactly shows that Q = (q2,2q(1− q),(1− q)2) is an equivalent mar-
tingale measure since
1. Strictly positive probabilities are assigned to the three final states.

2. The stochastic process Zi =
Ci

(1+r)i has the martingale property under the
probability measure Q,

Z0 = EQ[Z2|F0]. (3.50)

This leads us to the following theorem which is extremely useful for pricing
various types of derivatives.
Theorem 3.3. Let a security model S = (S0, . . . ,SN) be defined on
(Ω,F ,P,{Fi}T

i=1), where S0 is a risk-free asset, and assume that S is
arbitrage-free and complete. Let Q denote the unique martingale measure for
S. An extended model consisting of S and a new security price process C is free
of arbitrage if and only if

Ct = S0
t EQ

[
CT

S0
T
|Ft

]
. (3.51)
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Proof. See Musiela and Rutkowski [1997].

In the case where the discount rate is deterministic and constant, S0
t = (1+

r)t , the expression simplifies somewhat.

Ct =
1

(1+ r)T−t EQ [CT |Ft ] . (3.52)

This arbitrage-free pricing formula can be applied to price options of various
types, e.g., European call and put options, American options, etc. In the prob-
lems some of these are considered.

3.4 Notes

If the reader is further interested in the theory of discrete time finance Lando
[1996] gives a excellent introduction and has some of the proofs that we have
omitted, and a lot more. There are in Duffie [1996] a few chapters on discrete
time finance which goes even further into the theory. This book is highly rec-
ommended, though it is written in a compact way.

3.5 Problems

Problem 3.1
Consider a one-period model with two states (M = 2) and the following three
securities:
1. A stock with initial price S1

0 and payoff D11 = GS0 in state 1 and payoff
D12 = BS0 in state 2, where G > B > 0.

2. A riskless bond with initial price S2
0 and payoff D21 = D22 = (1 + r)S2

0,
where (1+ r) is the riskless return and (1+ r)−1 is the discounting factor.

3. A call option on the stock, with initial price S3
0 = C and payoffs D3 j =

max[D1 j −K,0] for both states, where K ≥ 0 is the exercise price of the
option. (The call option gives its holder the right, but not the obligation, to
pay K for the stock, after the state is revealed.)

1. Show necessary and sufficient conditions on G, B and (1+ r) for the ab-
sence of arbitrage involving only the stock and the bond.
2. Assuming no arbitrage for the three securities, calculate the call-option
price C explicitly in terms of S1

0, G, (1+r), B and K. Find the risk-neutral prob-
abilities q̂1 and q̂2 in terms of G, B and R, and show that C = (1+ r)−1Ê[D3],
where Ê denotes the expectation with respect to (q̂1,q̂2)

Problem 3.2
Suppose we have a trinomial market free of arbitrage as described in Exam-
ple 3.1. We have seen that this model is not complete since there are more
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states than traded asset. Now assume that a European call option with the value
Ci

1 = max[S1
1−Kc,0] at time t = 1 is added to the market.

1. Determine the values of Kc, which completes the market consisting of the
bond, the stock and the European call option.
2. Now assume that the market is complete. Determine the price of a European
put option with the value Pi

1 = max[Kp−Si
1,0] at time time t = 1, in terms of

the bond, the stock and the call option.

Problem 3.3
A stock index is a weighted sum over some of the most important stocks traded
on a particular market. The C20-index is an example on the Danish stock mar-
ket which includes the 20 most traded stocks.

C20t =
20

∑
i=1

wiSi
t (3.53)

where ∑
20
i=1 wi = 1. Now assume we have a two period model with 20 states

and with the 20 most traded assets, and that the market is complete and free of
arbitrage. Assume that the following is known at time t = 0: the weights wi,
the initial prices of stocks S0, the payoff matrix D and a vector v indicating the
number of stocks vi that are currently on the market.
1. Determine the value of a future contract which gives the exact value of the
C20-index at time t = 1.

Now assume that the weights are unknown at time t = 0, but determined at
time t = 1 as the fraction of the total market value that at time t = 1 is placed
in stock i.

Problem 3.4
Consider a one-period model of a financial market with two securities: a stock
and a money market account with initial value B0 and a constant interest rate

t=0 t=1t=0

106

t=1

ω

ω

1

2

100

120

98

100

Figure 3.5: Event tree for Problem 3.4.
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r = 6%. Let Si
t denote the value of the stock in state i (i = 1,2) at time t

(t = 0,1).
We wish to replicate a contract that pays 115 in state 1 and 95 in state 2.

1. Determine the replicating portfolio (φ ,ψ), i.e., a portfolio that contains φ

units of the stock and ψ units of the bond.
2. Compute the fair price of the replicating portfolio at time 0.
3. Define the relative portfolio (φ ′,ψ ′) =

(
φ

φ+ψ
, ψ

φ+ψ

)
and fill out the table

r 2% 4% 6% 8% 10%
φ

ψ

ψ ′

V

Comment on the results.

Problem 3.5
Consider a two period model of a financial model with a stock and a money
market account with the constant interest rate r = 8%. Referring to Figure
3.3, the initial stock price is S = 100, S(ω1) = 121 and S(ω4) = 90.25. The
probability of an increasing stock price is p = 0.70 and 1− p = 0.30.
1. Determine the price in states 2 and 3. Is the event tree recombinant?

Now we wish to determine the arbitrage-free price of a European call op-
tion C0 with strike price K = 100, i.e., the payoff function is V = max(S2−
100,0) = (S2−100)+, by constructing a replicating portfolio.
2. Assuming that the first stock price movement was upwards, determine the
optimal portfolio.
3. Assuming that the first stock price movement was downwards, determine
the value of the portfolio.
4. Compute the value of the replicating portfolio at time t = 0.

The following questions concern sensitivity analysis, i.e., an analysis of the
changes in C0 due to variations in K and r.
5. Repeat the previous question for the strike prices K = 98 and K = 102.
6. Compute the arbitrage-free price of the replicating portfolio for r = 6%
and r = 10%. You may assume that K = 100.





Chapter 4

Linear time series models

4.1 Introduction

In this chapter we introduce the concepts of linear stochastic processes and
linear time series models. The description is rather condensed and far from
complete. The justification for the non-completeness is that a lot of other books
deal with the subjects, while the main motivation for including this chapter is
for references as well as for a brief overview. For a more detailed treatment of
linear time series models we refer to Box and Jenkins [1976], Brockwell and
Davis [1991], Shumway [1988] and Madsen [2007].

Most of the attention is devoted to an introduction of linear time series
models and a discussion of their characteristics and limitations. However, since
the prediction concept is of high interest in finance, the use of linear time series
models for prediction is also treated. The concept of modelling using linear
time series models is only briefly mentioned.

Let us introduce some of the concepts by a very simple example.
Example 4.1 (Prediction models for wheat prices). In this example we assume
that a model is needed for prediction of the monthly prices of wheat. Let Pt
denote the price of wheat at time (month) t.

The first naive guess would be to say that the price next month is the same
as in this month. Hence, the predictor is

P̂t+1|t = Pt . (4.1)

This predictor is called the naive predictor or the persistent predictor.
Next month, i.e., at time t +1, the actual price is Pt+1. This means that the

prediction error or innovation may be computed as

εt+1 = Pt+1− P̂t+1|t . (4.2)

By combining Eq. (4.1) and (4.2) we obtain the stochastic model for the
wheat price

Pt = Pt−1 + εt . (4.3)

If {εt} is a sequence of uncorrelated random variables (white noise), the pro-
cess (4.3) is called a random walk. The random walk model is very often seen
in finance and econometrics. For this model the optimal predictor is the naive
predictor (4.1).

57
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The random walk can be rewritten as

Pt = εt + εt−1 + · · · (4.4)

which shows that the random walk is an integration of the noise, and that the
variance of Pt is infinity, and therefore no stationary distribution exists. This is
an example of a non-stationary process.

However, it may be worthwhile to try to consider a more general model

Pt = ϕPt−1 + εt , (4.5)

called the AR(1) model (the autoregressive first-order model). A stationary dis-
tribution exists for this process when |ϕ| < 1. Notice that the random walk is
obtained for ϕ = 1.

Another candidate for a model for wheat prices is

Pt = ψPt−12 + εt , (4.6)

which assumes that the price this month is explained by the price in the same
month last year. This seems to be a reasonable guess for a simple model, since
it is well known that wheat price exhibits a seasonal variation. (The noise
processes in (4.5) and (4.6) are, despite of the notation used, of course not the
same.)

For wheat prices it is obvious that both the actual price and the price in the
same month in the previous year might be used in a description of the expected
price next month. Such a model is obtained if we assume that the innovation εt
in model (4.5) shows an annual variation, i.e., the combined model is

(Pt −ϕPt−1)−ψ(Pt−12−ϕPt−13) = εt . (4.7)

Models like (4.6) and (4.7) are called seasonal models, and they are used very
often in econometrics.

Notice, that for ψ = 0, we obtain the AR(1) model (4.5), while for ϕ = 0
the most simple seasonal model in (4.6) is obtained.

By introducing the back shift operator B by

BkPt = Pt−k (4.8)

the models can be written in a more compact form. The AR(1) model can be
written as (1−ϕB)Pt = εt , and the seasonal model in (4.7) as

(1−ϕB)(1−ϕB12)Pt = εt . (4.9)

If we furthermore introduce the difference operator

∇ = (1−B) (4.10)

then the random walk can be written ∇Pt = εt .
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It is possible for a given time series of observed monthly wheat prices,
P1,P2, . . . ,PT to identify the structure of the model and to estimate parameters
in that model.

The model identification is most often based on the estimated autocovari-
ance function, since, as it will be shown later in this chapter, the autocovari-
ance function fulfils the same difference equation as the model.

The models considered in the example above will be generalized in Sec-
tion 4.4. These processes all belong to the more general class of linear pro-
cesses, which again is highly related to the theory of linear systems. Therefore
linear systems and processes are briefly introduced in Section 4.2 and Sec-
tion 4.3, respectively. The autocovariance function is considered in Section 4.5,
and, finally, the use of the linear stochastic models for prediction is treated in
Section 4.6.

4.2 Linear systems in the time domain

The definition of linear stochastic processes is highly related to the theory of
linear systems (Lindgren [2012]). Therefore the most important theory for lin-
ear systems will be briefly reviewed.

The following functions are needed.
Definition 4.1 (Impulse functions). (Continuous time) Dirac’s delta function
(or impulse function) δ (t) is defined by∫

∞

−∞

f (t)δ (t− t0)dt = f (t0). (4.11)

(Discrete time) Kronecker’s delta sequence (or impulse function) is

δk =

{
1 for k = 0
0 for k =±1,±2, · · · . (4.12)

The following theorem is fundamental for the theory of linear dynamic
systems.
Theorem 4.1 (Existence of impulse response functions). For a linear,
time-invariant system there exists a function h such that the output is obtained
as the convolution integral

y(t) =
∫

∞

−∞

h(u)x(t−u)du (4.13)

in continuous time, or the convolution sum

yt =
∞

∑
k=−∞

hkxt−k (4.14)

in discrete time. The weight function, h, is called the impulse response function,
since the output of the system is y = h if the input is the impulse function.
Sometimes the weight function is called the filter weights.
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Proof. Omitted (see Madsen [2007]).

Often the convolution operator ∗ is used in both cases and the output is
then written as y = h∗ x.
Theorem 4.2 (Properties of the convolution operator). The convolution oper-
ator has the following properties:

a) h∗g = g∗h (symmetric).

b) (h∗g)∗ f = h∗ (g∗ f ) (associative).

c) h∗δ = h, where δ is the impulse function.

Proof. Left for the reader.

Remark 4.1. For a given (parameterized) system the impulse response func-
tion is often found most conveniently by simply putting x = δ and then calcu-
lating the response, y = h; cf. Theorem 4.2. This is illustrated in Example 4.2.

Definition 4.2 (Causality). The system is said to be physically realizable or
causal if

h(u) = 0 for u < 0, (4.15)
hk = 0 for k < 0, (4.16)

for systems in continuous and discrete time, respectively.

After introducing the impulse response function we have
Theorem 4.3 (Stability). A sufficient condition for stability is that the impulse
response function satisfy ∫

∞

−∞

|h(u)|du < ∞ (4.17)

or
∞

∑
k=−∞

|hk|< ∞. (4.18)

Proof. Omitted.

Example 4.2 (Calculation of hk). Consider the linear, time-invariant system

yt −0.8yt−1 = 2xt − xt−1. (4.19)

The impulse response is obtained by defining the external signal x as an im-
pulse function δ . We then see that yk = hk = 0 for k < 0. For k = 0 we get

y0 = 0.8y−1 +2δ0−δ−1 (4.20)
= 0.8×0+2×1−0 = 2, (4.21)
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i.e., h0 = 2. Going on we get

y1 = 0.8y0 +2δ1−δ0 (4.22)
= 0.8×2+2×0−1 = 0.6 (4.23)

y2 = 0.8y1 = 0.48 (4.24)
... (4.25)

yk = 0.8k−10.6 (k > 0). (4.26)

Hence, the impulse response function is

hk =


0 for k < 0
2 for k = 0
0.8k−10.6 for k > 0

which clearly represents a causal system; cf. Definition 4.2. Furthermore, the
system is stable since ∑

∞
0 |hk|= 2+0.6(1+0.8+0.82 + · · ·) = 5 < ∞.

Theorem 4.4 (Difference and differential equations). The difference equation

yt +a1yt−1 + · · ·+apyt−p = b0xt−τ +b1xt−τ−1 + · · ·+bqxt−τ−q (4.27)

represents a linear, time-invariant system in discrete time with the input {xt}
and output {yt}, where τ is an integer denoting the time-delay.

The differential equation

dpy(t)
dt p +a1

dp−1y(t)
dt p−1 + · · ·+apy(t) =

b0
dqx(t− τ)

dtq +b1
dq−1x(t− τ)

dtq−1 + · · ·+bqx(t− τ) (4.28)

represents a linear, time-invariant system in continuous time. Here τ is a time-
delay from the input x(t) to the output y(t).

Proof. The systems are linear because the difference/differential equation is
linear, and time-invariant because the coefficients and the time-delay are con-
stant.

Linear systems are often most conveniently described by the transfer func-
tion, in the z-domain or in the s-domain for discrete time or continuous time
systems, respectively.
Theorem 4.5 (Transfer function). A linear, time-invariant system in discrete
time with input {xt}, output {yt} and impulse function {hk} is described in the
z-domain by

Y (z) = H(z)X(z) (4.29)



62 LINEAR TIME SERIES MODELS

where H(z) = ∑
∞
t=−∞ htz−t is the transfer function. Here Y (z) and X(z) are the

output and input in the z-domain, which are obtained by a z-transformation of
the sequences, i.e., Y (z) = ∑

∞
t=−∞ ytz−t and X(z) = ∑

∞
t=−∞ xtz−t .

Proof. Use the Z-transformation on yt = ∑
∞
k=−∞

hkxt−k.

Notice that the convolution in the time domain becomes a multiplication in
the Z-domain.

For continuous time systems the corresponding relation is

Y (s) = H(s)X(s) (4.30)

where Y (s) = L {y(t)} =
∫

∞

−∞
e−sty(t)dt, H(s) = L {h(t)} and X(s) =

L {x(t)}, i.e., the Laplace transform of the various time domain functions.
Again H(s) is called the transfer function.

4.3 Linear stochastic processes

In the rest of this chapter we only consider stochastic processes in discrete
time. Stochastic processes in continuous time will be considered later on.

A linear stochastic process can be considered as generated from a linear
system where the input is white noise. White noise, which will be denoted
{εt}, is a sequence of uncorrelated, identically distributed random variables.
Discrete time white noise is therefore sometimes referred to as a completely
uncorrelated process or a pure random process. We assume in the following
that the mean of the white noise process is zero and the variance is σ2

ε .
Definition 4.3 (The linear process). A (general) linear process {Yt} is a pro-
cess which can be written as

Yt −µ =
∞

∑
i=0

ψiεt−i, (4.31)

where {εt} is white noise, and µ is the mean of the process. (However, if the
process is non-stationary then µ has no specific meaning except as a reference
point for the level of the process.)

By introducing the linear operator (see Madsen [2007])

ψ(B) = 1+
∞

∑
i=1

ψiBi, (4.32)

then (4.31) can be written as

Yt −µ = ψ(B)εt . (4.33)

Due to the close relation to linear systems ψ(B) is called the transfer function
for the process (Madsen [2007], Box and Jenkins [1976] and Lindgren [2012]).
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Theorem 4.6 (Stationarity for linear processes). The linear process given by
(4.33) is stationary if the sum

ψ(z) =
∞

∑
i=0

ψiz−i (4.34)

converges for |z| ≥ 1.

Proof. Omitted.

Notice the relation between stability of a linear system and Theorem 4.6.
Remark 4.2 (Cointegration). If a time series Xt shows a linear trend and Zt =
(1−B)Xt = ∇Xt is stationary, then Xt is said to be an integrated process of
order 1, which we write Xt ∈ I(1). If a time series Xt shows a quadratic trend
and Zt = ∇2Xt is stationary, then Xt is said to be integrated of order 2, which
similarly is written as Xt ∈ I(2).

In econometrics, additional variables are often introduced to model and,
eventually, predict the variations in the process Xt . Consider the case when Xt
is an I(1) process and an additional variable Yt is also an I(1) process. These
are said to be cointegrated if Xt −αYt is stationary and process (Xt −αYt) is
I(0) (see e.g. Johansen [1995] for an introduction to cointegration analysis).

Consider the data in Figure 4.1. It is clearly seen that the money series
should be differenced once to obtain stationarity. This also pertains to the bond
rate, although it is less clear. By comparing the plots to the left, it is seen that
the money demand decreases when the bond rate increases and vice versa.
Thus it is to be expected that these series are cointegrated.

4.4 Linear processes with a rational transfer function

A very useful class of linear processes consists of those which have a rational
transfer function, i.e., where ψ(z) is a rational function.

4.4.1 ARMA process

The most important process is probably the AutoRegressive-MovingAverage
(ARMA) process.
Definition 4.4 (ARMA(p,q) process). The process {Yt} defined by

Yt +ϕ1Yt−1 + · · ·+ϕpYt−p = εt +θ1εt−1 + · · ·+θqεt−q, (4.35)

where {εt} is white noise, is called an ARMA(p,q)-process.
By introducing the following polynomials in B

ϕ(B) = (1+ϕ1B+ · · ·+ϕpBp) (4.36)
θ(B) = (1+θ1B+ · · ·+θqBq) (4.37)
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Figure 4.1: The upper-left plot shows observations from 1974:1 to 1987:3 of
log real money (m2), where the log transformation has been applied to stabilize
the variance. The upper-right plot shows the differenced series. The lower-left
plot shows observations from the same time period of the bond rate, and the
lower-right plot shows the differenced series.

the ARMA process can be written as

ϕ(B)Yt = θ(B)εt . (4.38)

The ARMA(p,q) process is stationary if all the roots of ϕ(z−1) = 0 lie
inside the unit circle, and it is said to be invertible if all the roots of θ(z−1) = 0
lie inside the unit circle.

4.4.2 ARIMA process

As mentioned in the introductory example the random walk given by (1−
B)Yt = εt is a non-stationary process, since it is an integration of the white
noise input.

The AutoRegressive-Integrated-MovingAverage (ARIMA) process is very
useful for describing some non-stationary behaviours like stochastic trends.
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Definition 4.5 (ARIMA(p,d,q) process). The process {Yt} is called an
ARIMA(p,d,q)-process, if it can be written in the form

ϕ(B)∇dYt = θ(B)εt (d ∈ N), (4.39)

where {εt} is white noise, ϕ(B) and θ(B) are polynomials of the order p and
q, respectively, and both polymials have all the roots inside the unit circle.

It is clear from the definition that the process

Wt = ∇
dYt (4.40)

is a stationary and invertible ARMA(p,q) process.

4.4.3 Seasonal models

As a suggestion for a very simple model for the monthly wheat prices in the
introductory example we proposed to use the wheat price one year before as
an explanatory variable. Assume that the seasonal period is s, then this type of
seasonality can be introduced into the ARIMA model by making it multiplica-
tive, as also illustrated in Eq. (4.9) in the case of the wheat price.
Definition 4.6 (The multiplicative (p,d,q)× (P,D,Q)s model). The process
{Yt} is said to follow a multiplicative (p,d,q)× (P,D,Q)s seasonal model if

ϕ(B)ϕ(Bs)∇d
∇

D
s Yt = θ(B)Θ(Bs)εt (4.41)

where {εt} is white noise, and ϕ and θ are polynomials of order p and q,
respectively. Furthermore, ϕ and Θ are polynomials in Bs defined by

ϕ(Bs) = 1+ϕ1Bs + · · ·+ϕPBsP, (4.42)
Θ(Bs) = 1+Θ1Bs + · · ·+ΘQBsQ, (4.43)

and the seasonal difference operator is

∇s = (1−Bs). (4.44)

The roots of all the polynomials (ϕ,θ ,ϕ,Θ) are all inside the unit circle.
Example 4.3. The number of new cars sold on a monthly basis in Denmark
during the period 1955–1984 was investigated in Milhøj [1994]. The variance
turned out to depend on the number of sold cars. Therefore, in order to stabilize
the variance, the chosen dependent variable is

Yt = ln(Number of sold new cars in month t).

By considering, for instance, the autocovariance function, Milhøj [1994]
found that the following (0,1,1)× (0,1,1)12 seasonal model

∇∇12Yt = (1+θ1B)(1+Θ1B12)εt (4.45)

gave the best description of the observations.
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4.5 Autocovariance functions

In this section it is assumed that the considered processes are stationary – and
for simplicity it will also be assumed that the means of the involved processes
are zero.
Definition 4.7 (Autocovariance function). The autocovariance function for the
stationary process Yt is

γ(k) = Cov[Yt ,Yt+k] = E[YtYt+k], (4.46)

where the assumption about zero mean for Yt is used in the last equality. In
order to indicate to which process the autocovariance function belongs we
shall often use an index, as for instance γYY (k), for the autocovariance function
for {Yt}.
Definition 4.8 (Cross-covariance function). The cross-covariance function be-
tween two stationary processes Xt and Yt is

γXY (k) = Cov[Xt ,Yt+k] = E[XtYt+k]. (4.47)

The corresponding autocorrelation function ρ(k) and crosscorrelation
function ρXY (k) are found by normalizing the covariance functions using the
appropriate variances, i.e.,

ρ(k) = γ(k)/γ(0), (4.48)

ρXY (k) =
γXY (k)√

γXX (0)γYY (0)
. (4.49)

For a more thorough treatment of the covariance and correlation functions
we refer to Madsen [2007].

4.5.1 Autocovariance function for ARMA processes

Consider the ARMA(p,q)-process:

Yt +ϕ1Yt−1 + · · ·+ϕpYt−p = εt +θ1εt−1 + · · ·+θqεt−q. (4.50)

Remark 4.3. Notice that by multiplying the relevant polynomials the above
formulation also contains the (stationary) seasonal models.
Theorem 4.7 (Difference equation for γ(k)). The autocovariance function
γ(k) for the ARMA-process in (4.50) satisfies the following inhomogeneous
difference equation

γ(k)+ϕ1γ(k−1)+ · · ·+ϕpγ(k− p) =

θkγεY (0)+ · · ·+θqγεY (q− k) for k = 0,1, · · · (4.51)

where γεY is the cross-covariance function between εt and Yt .
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Proof. Multiply by Yt−k and take expectations on both sides of (4.50).

It is noticed that for p > q

γ(k)+ϕ1γ(k−1)+ · · ·+ϕpγ(k− p) = 0; k = p, p+1, · · · , (4.52)

i.e., the entire autocovariance function fulfils a homogeneous difference equa-
tion.

In general it is seen that from lag k = max(0,q+1− p) the autocovariance
function will fulfil the homogeneous difference equation in (4.52).
Remark 4.4. Since the process is stationary all the roots of the characteris-
tic equation corresponding to the difference equation for the autocovariance
function are inside the unit circle. This means that the autocovariance (and the
autocorrelation) function from lag k = max(0,q+ 1− p) consists of a linear
combination of damped exponential and harmonic functions.

4.6 Prediction in linear processes

Assume that an estimate of Yt+k(k > 0) is wanted given the observations avail-
able at time t, namely Yt ,Yt−1, · · · . The best estimate is then given by the con-
ditional mean. We have the following fundamental result.
Theorem 4.8 (Optimal prediction). Assume that the conditional distribution
of Yt+k given the information set (Yt ,Yt−1, · · · ) is symmetric around the condi-
tional mean m and nonincreasing for arguments larger than m. Let the loss
function be symmetric and nondecreasing for positive arguments. Then the op-
timal estimate is given by the conditional mean

Ŷt+k|t = E[Yt+k|Yt ,Yt−1, · · · ]. (4.53)

Proof. Omitted. See for instance Madsen [2007].

Consider now, as an example, the ARIMA(p,d,q)-process

ϕ(B)∇dYt = θ(B)εt , (4.54)

where {εt} is white noise with the variance σ2. All what follows can easily be
extended to, for instance, the seasonal ARIMA model.

By introducing ϕ(B) = ϕ(B)∇d the ARIMA-process is written

Yt +ϕ1Yt−1 + · · ·+ϕp+dYt−p−d = εt +θ1εt−1 + · · ·+θqεt−q (4.55)

where the coefficients ϕ1, . . . ,ϕp+d are found from the identity (4.54).
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If the k-step ahead forecast is wanted, we consider the equation

Yt+k +ϕ1Yt+k−1 + · · ·+ϕp+dYt+k−p−d =

εt+k +θ1εt+k−1 + · · ·+θqεt+k−q (4.56)

and simply take the conditional expectations (as prescribed by Theorem 4.8),
i.e.,

Ŷt+k|t = −ϕ1E[Yt+k−1|Yt ,Yt−1, · · · ]−·· ·
−ϕp+dE[Yt+k−p−d |Yt ,Yt−1, · · · ]
+E[εt+k|Yt ,Yt−1, · · · ]+θ1E[εt+k−1|Yt ,Yt−1, · · · ]
+ · · ·+θqE[εt+k−q|Yt ,Yt−1, · · · ]. (4.57)

In the evaluation of (4.57) we use that

E[Yt− j|Yt ,Yt−1, · · · ] = Yt− j ; j = 0,1,2, · · ·
E[Yt+ j|Yt ,Yt−1, · · · ] = Ŷt+ j|t ; j = 1,2, · · ·
E[εt− j|Yt ,Yt−1, · · · ] = εt− j ; j = 0,1,2, · · ·
E[εt+ j|Yt ,Yt−1, · · · ] = 0 ; j = 1,2, · · · .

Previously we have seen that the autocovariance function fulfils a homo-
geneous difference equation determined by the autogressive part of the model.
Exactly the same holds for the predictor Yt+k|t .
Theorem 4.9 (Difference equation for optimal predictor). For the
ARIMA(p,d,q)-process (4.54) the optimal predictor satisfies the homogeneous
difference equation

ϕ(B)∇dŶt+k|t = 0 (4.58)

for k > q.

Proof. Assume that we have observations until time t, write the ARIMA-
process for Yt+k, and take the expectations conditional on observations until
time t. Doing this the MA-part of the model will vanish.

This is illustrated in the following example
Example 4.4 (Prediction in the ARIMA(0,d,q)-process). Consider the
ARIMA(0,d,q)-process

∇
dYt = θ(B)εt . (4.59)

For k > q we obtain the homogeneous difference equation for the predictor

∇
dŶt+k|t = 0. (4.60)

The characteristic equation for the difference equation has a d-double root
in one. This means that the general solution is

Ŷt+k|t = At
0 +At

1k+At
2k2 + · · ·+At

d−1kd−1, (4.61)
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where the superscript t on the coefficients indicates that the particular solution
is found using the information set, Yt ,Yt−1, · · · at time t. That is, the predictor
is a polynomial of degree d−1.

4.7 Problems

Problem 4.1
Consider the linear, time-invariant system

(1−0.6B)(1−0.8B)yk = (2−B)xk

where it is assumed that yk = 0 and xk = 0 for k < 0.
1. Determine the impulse response function hk for k = 0, . . . ,6.
2. Is the system stable?

Problem 4.2
Consider the first-order autoregressive process

yk−ϕyk−1 = εk (4.62)

where |ϕ|< 1 and {εk} is zero mean white noise with variance σ2
ε .

1. Determine the mean of yk.
2. Determine the variance of yk.
3. Determine the autocovariance function for (4.62).

Now assume that bond prices may be described by the ARI(1,2) process

(1+ϕB)∇2yk = εk. (4.63)

4. To which order is yk defined when (4.63) is integrated?

Problem 4.3
Consider the linear, time-invariant system

(1−0.8B)2yt = (2−B)xt

where it is assumed that yt = 0 and xt = 0 for t < 0.
1. Determine the impulse response function ht for t ≥ 0.
2. Is the system stable?

Problem 4.4
Consider the linear system

ϕ(B)yt = θ(B)xt
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where ϕ(B) = (0.8B)(1−7.7B) and θ(B) = (4−B)(2−B). It is assumed that
yt = 0 and xt = 0 for t < 0.
1. Determine the impulse response function ht for t ≥ 0.
2. Is the system stable?

Now consider the linear stochastic process

ϕ(B)Yt = θ(B)εt

where {εt} is zero mean white noise with variance σ2
ε .

3. What is this process called? Is it stationary and/or invertible?
4. Determine and solve the difference equation for the optimal predictor Ŷt+k|t
for k > 2.

Problem 4.5
1. Calculate the autocorrelation for an AR(2)-process

Xt +a1Xt−1 +a2Xt−2 = εt (4.64)

where {εt} is zero mean white noise with variance σ2
ε .

2. Calculate the autocorrelation for a MA(2)-process

Xt = εt + c1εt−1 + c2εt−2. (4.65)

3. Calculate the autocorrelation for an ARMA(1,1)-process

Xt +a1Xt−1 = εt + c1εt−1. (4.66)

4. Determine a suitable model using the sample autocorrelogram below:
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Figure 4.2: Autocorrelation for a linear process.
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5. Guesstimate the parameter values (and model order) from the autocorrela-
tion figure.
6. It is common in technical analysis when trying to predict trends to filter
data using a short-length MA-filter (say an MA(5)) and a long-range MA filter
(say an MA(50)). Trading strategies are subsequently triggered when these
processes cross.

What are people relying on these technical analysis tools really doing in
terms of linear filters?





Chapter 5

Nonlinear time series models

5.1 Introduction

The linear models have some characteristics, which have been discussed in
Chapter 4, and which clearly might be a serious limitation. Some of the most
important characteristics and limitations of the linear models are that the dy-
namics is constant for all values of the process and for all time. Furthermore,
the variance of any forecast is constant. It is, however, well known that finan-
cial data tends to display heteroscedasticity (Section 1.3), which means that
the (conditional) variance changes over time and typically depends on the past
observations. In finance the variance is an expression of the risk or the volatil-
ity, and it is often found that large values of, for instance, interest rates lead to
larger fluctuations in subsequent observations. The distributions (conditional
and unconditional) are also often non-Gaussian; cf. Section 1.3.

In this chapter we only consider stationary discrete time models, as
continuous-time non-linear models will be treated in some subsequent chap-
ters. The focus will be on parametric models, even though some non-
parametric models will be described in this chapter. The non-parametric mod-
els lead to a generalization of the impulse response function, whereas the para-
metric models can be seen as generalizations of the ARMA models. Several
of the most important parametric non-linear models will be described, and it
turns out to be convenient to divide the models into two main classes of mod-
els depending on the purpose of the model (conditional mean or conditional
variance, although combinations are also possible).

Most of the attention in the Chapter will be devoted to models where the
conditional mean and variance can be explicitly computed. The description
takes place mostly in the time domain. Frequency domain methods, and fur-
ther information about non-linear time series models, can be found in Priestley
[1988], Tong [1990] and Madsen et al. [2007].

5.2 Aim of model building

A model should be able to extract or collect all the information given in the
information set, i.e., all the past and present data. If this is the case, then the
sequence of model’s errors does not contain further information about the fu-
ture, i.e., they should be stochastic independent.

73
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Non-linear modelling: For a given time series {Yt} determine a general
function f such that {εt} defined by

f ({Yt}) = εt (5.1)

is a strict white noise i.e., a sequence of independent random variables.
If the strict white noise process is a sequence of identically distributed ran-

dom variables, then the noise process is strictly stationary, or, if the mean and
variance are constant, then the noise process is weakly stationary or stationary.
Notice the difference between strict white noise and white noise, as defined on
page 62.

The task in non-linear modelling is thus to find some relationship f (·) be-
tween the past, present and future observations which reduces the sequence
of residuals to strict white noise. This relationship could be expressed using
either non-parametric models as Volterra series (generalized impulse response
functions), neural nets or using parametric models like the SETAR or STAR
model.

5.3 Qualitative properties of the models

From Section 4.3 it is known that linear and stationary stochastic models (or
processes) can be written

Yt −µ =
∞

∑
k=0

ψkεt−k, (5.2)

where {εt} is some white noise, and µ is the mean of the process. Suppose
that π(B) = ψ−1(B) exists, then the function f is simply given by the non-
parametric model π(B).

In the linear and stationary case, the modelling may be performed either in
the time domain or in the frequency domain (or z-domain). In the non-linear
case this twofold possibility does not exist in general and the concept of a
transfer function describing the system is therefore in general not defined.

However, in the following we shall see how (5.2) can be extended in order
to cover non-linear (stationary) models.

5.3.1 Volterra series expansion

Suppose the system is causal. In that case (5.1) can be reduced to find a func-
tion f such that

f (Yt ,Yt−1, . . .) = εt . (5.3)

Suppose also that the model is causally invertible, i.e., (5.3) may be
“solved” such that we may write

Yt = f ∗(εt ,εt−1, . . .). (5.4)
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Furthermore, suppose that f ∗ is sufficiently well behaved, then there exists
a sequence of bounded functions

∞

∑
k=0
|ψk|< ∞,

∞

∑
k=0

∞

∑
l=0
|ψkl |< ∞,

∞

∑
k=0

∞

∑
l=0

∞

∑
m=0
|ψklm|< ∞, ...

such that the right hand side of (5.4) can be expanded in a Taylor series:

Yt = µ +
∞

∑
k=0

ψkεt−k +
∞

∑
k=0

∞

∑
l=0

ψklεt−kεt−l

+
∞

∑
k=0

∞

∑
l=0

∞

∑
m=0

ψklmεt−kεt−lεt−m + . . . (5.5)

where

µ = f ∗(0), ψk = (
∂ f ∗

∂εt−k
), ψkl = (

∂ 2 f ∗

∂εt−k∂εt−l
), .... (5.6)

This is called the Volterra series for the process {Yt}. The sequences
ψk,ψkl , . . . are called the kernels of the Volterra series. For the non-linear
model the sequence is called the sequence of generalized impulse response
functions. It is now clear that there is no single impulse response function for
non-linear systems, but an infinite sequence of generalized impulse response
functions.

Notice that the first two terms in Equation (5.5) correspond to a linear
causally invertible model; cf. Equation (5.2).

5.3.2 Generalized transfer functions

The kernel based description in (5.5) is the basis for the derivation of a transfer
function concept. Let Ut and Yt denote the input and the output of a non-linear
system respectively. By using the Volterra series representation of the depen-
dence of {Yt} on {Ut} and omitting any disturbance (or regarding them as a
possible input signal) we get

Yt = µ +
∞

∑
k=0

ψkUt−k +
∞

∑
k=0

∞

∑
l=0

ψklUt−kUt−l

+
∞

∑
k=0

∞

∑
l=0

∞

∑
m=0

ψklmUt−kUt−lUt−m + . . . (5.7)

where the sequences {ψk},{ψkl}, . . . are given by (5.6).
Recall that for a stationary linear system the transfer function is defined as

H(ω) =
∞

∑
k=0

ψke−iωk (5.8)

and it is completely characterizing the system.



76 NONLINEAR TIME SERIES MODELS

For linear systems it is furthermore well known that
1. If the input is a single harmonic Ut = A0eiω0t then the output is a single

harmonic of the same frequency with the amplitude scaled by |H(ω0)| and
the phase shifted by argH(ω0).

2. Due to the linearity, the principle of superposition is valid, and the total out-
put is the sum of the outputs corresponding to the individual frequency com-
ponents of the input. Hence the system is completely described by knowing
the response to all frequencies — that is what the transfer function supplies.
Notice that the above defined transfer function is often (more appropri-

ately) called the frequency response function.
For non-linear systems, however, neither (1) or (2) holds. More specifically

we have that
1. For an input with frequency ω0, the output will, in general, also contain

components at the frequencies 2ω0,3ω0, . . . (frequency multiplication).
2. For two inputs with frequencies ω0 and ω1, the output will contain compo-

nents at frequencies ω0,ω1,(ω0 +ω1) and all harmonics of the frequencies
(intermodulation distortion).
Hence, in general there is no such thing as a transfer function for non-

linear systems. However, an infinite sequence of generalized transfer functions
may be defined as:

H1(ω1) =
∞

∑
k=0

ψke−iω1k (5.9)

H2(ω1,ω2) =
∞

∑
k=0

∞

∑
l=0

ψkle−i(ω1k+ω2l) (5.10)

H3(ω1,ω2,ω3) =
∞

∑
k=0

∞

∑
l=0

∞

∑
m=0

ψklme−i(ω1k+ω2l+ω3m) (5.11)

...

In order to get a frequency interpretation of this sequence of functions,
consider the input Ut to be a stationary process with spectral representation:

Ut =
∫

π

−π

eitω dZU (ω) (5.12)

when Zu(ω) is the spectrum of U . Using the Volterra series in (5.7) we may
write the output as

Yt =
∫

π

−π

eitω1H1(ω1)dZU (ω1)

+
∫

π

−π

∫
π

−π

eit(ω1+ω2)H2(ω1,ω2)dZU (ω1)dZU (ω2)

+.... (5.13)



PARAMETER ESTIMATION 77

When Ut is single harmonic, say Ut = A0eiω0t , then dZU (ω) = A0dH(ω−ω0),
where H(ω) = 1 for ω > ω0 and H(ω) = 0 for ω < ω0. (Note that the Steiltjes
integral is used here.) Hence Eq. (5.13) becomes

Yt = A0H1(ω0)eiω0t +A2
0H2(ω0,ω0)e2iω0t + . . . . (5.14)

The output thus consists of components with frequencies ω0,2ω0,3ω0, . . . , etc.

5.4 Parameter estimation

Most statistical software have routines for fitting linear time series models to
data, but this is rarely the case for any larger class of non-linear models. The
statistician must instead be prepared to implement the software him-/herself.

We will review some basic statistical theory in this section. Recall from
basic courses in statistics that an estimator is a function of data

θ̂N = T (X1, . . . ,XN). (5.15)

Estimators should ideally be unbiased E[θ̂N ] = E[T (X1, . . . ,XN)] =
θ0, where θ0 is the true parameter, or at least asymptotically unbiased
limN→∞ E[T (X1, . . . ,XN)] = θ0.

A related concept is consistency which means that

θ̂N
p→ θ0 weak consistency (5.16)

or
θ̂N

a.s.→ θ0 strong consistency (5.17)

where p mean convergence in probability and a.s. convergence almost surely
(see e.g. Shiryaev [1996] for definitions). Consistency is a stronger condition
than asymptotic unbiasness, as it also implies that the variance (when it exists)
of the estimator goes to zero; cf. the Chebyshev’s inequality.

5.4.1 Maximum likelihood estimation

A good estimator should optimize the fit of the model to data. This is done
in the least squares algorithm by minimizing the squared distance between
observations and the model predictions. It turns out, however, that the least
squares estimator is suboptimal in certain situation, such as Gaussian ARMA-
processes (Madsen [2007]), or when the data is heavy-tailed.

An alternative is to use the maximum likelihood estimator defined as the
argument that maximizes the joint likelihood

θ̂MLE = argmax
θ∈Θ

L(θ) (5.18)
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where

L(θ) =p(x0, . . . ,xN |θ) (5.19)

=

(
N

∏
n=1

p(xn|xn−1, . . . ,x0,θ)

)
p(x0|θ). (5.20)

The argument maximizing L(θ) is not affected by a logarithmic transforma-
tion, `(θ) = logL(θ). The optimization problem can then be written as

θ̂MLE = argmax
θ∈Θ

log p(x0|θ)+
N

∑
n=1

log p(xn|x1, . . . ,xn−1,θ) (5.21)

which is much nicer when trying to compute derivatives with respect to the pa-
rameters. The maximum likelihood estimator is consistent under rather general
conditions (see Van der Vaart [2000] for details). The estimates are asymptoti-
cally Gaussian converging according to

√
N
(
θ̂ −θ0

) d→ N(0, I−1
F ), (5.22)

where θ0 is the true parameter and IF is the so-called Fisher information matrix
defined as

IF = Var [∇θ log p(X |θ0)] (5.23)

or equivalently

IF = E
[
(∇θ log p(X |θ0))(∇θ log p(X |θ0))

T ] (5.24)

and
IF =−E [∇θ ∇θ log p(X |θ0)] (5.25)

where ∇θ is the gradient and ∇θ ∇θ is the Hessian with respect to the parame-
ters.

A nice feature of the Maximum Likelihood estimator is that it is invariant
under (nice) transformations, as the densities that are being used in the loss
function are transformed simultaneously with the data. This means that you can
typically transform log-Normal data (which can be hard to maximize the log-
likelihood for) to Gaussian data, which results in a much simpler optimization
problem.

5.4.1.1 Cramér–Rao bound

The maximum likelihood estimator is optimal among all asymptotically un-
biased estimators as the variance of any estimator θ̂ = T (x1, . . . ,xN) can be
bounded from below according to

Cov(T (X))≥ I−1
F . (5.26)

Some further analysis reveals that the only estimator achieving equality with
the Fisher information is the maximum likelihood estimator.
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5.4.1.2 The likelihood ratio test

It is well known how to use t-tests and F-tests when analysing linear, Gaus-
sian regression models. There is a more general likelihood based theory that
includes these tests as special cases.

Assume that we are interested in testing

H0 :θi = ai (5.27)
HA :some θi 6= ai (5.28)

where ai are some predefined values, typically 0 (the parameter is not needed).
The Likelihood Ratio (LR) statistic is defined as the logarithm of ratio be-

tween the likelihood when all parameters are optimized over and the likelihood
when some parameters are fixed (as in H0)

Λ = log

(
supH0

L(θ)
supH0∪HA

L(θ)

)
. (5.29)

The intuition is that a large Λ close to one indicates that the models are similar
while a Λ far from one suggests that the restriction of the parameter space is a
bad idea.

It can be shown that
−2log(Λ) d→ χ

2(d) (5.30)

where d is the dimension of the parameter vector that is being restricted.

5.4.2 Quasi-maximum likelihood

The optimality of the maximum likelihood estimator is only valid when the
correct distribution is being used. This is impossible to check empirically,
which is why it is good to know what happens when this is not true.

Using a Gaussian likelihood function even when the data are non-Gaussian
is a kind of quasi-likelihood method. The general result is that estimates are
still consistent, but no longer efficient in terms of the Cramér-Rao bound. If
we denote the density used by q(X |θ), then it can be shown that the estimates
converge according to

√
N
(
θ̂ −θ0

) d→ N(0,J−1IJ−1), (5.31)

where J=E [∇θ ∇θ logq(X |θ0)] and I=E[(∇θ logq(X |θ0))(∇θ logq(X |θ0))
T ].

It can be seen that J−1I cancels out when the correct model is being used, but
they will differ when q(X |θ) and p(X |θ) are different.
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5.4.3 Generalized method of moments

The generalized method of moments (GMM) (Hansen [1982]), is often used in
econometrics, but rather seldom within other fields. It is commonly said that
GMM is the only development in econometrics in the 80s that might threaten
the position of cointegration as the most important contribution to the theory in
the field of econometrics. In fact, Lars Peter Hansen, who proposed the GMM
framework, was awarded in 2013 The Sveriges Riksbank Prize in Economic
Sciences in Memory of Alfred Nobel for his work (GMM and other results).

For the GMM method no explicit assumption about the distribution of the
observations is made, but the method can include such assumptions. In fact, it
is possible to derive the maximum likelihood estimator as a very special case
of the GMM estimator.

5.4.3.1 GMM and moment restrictions

Assume that the observations are given as the following sequence of random
vectors:

{xt ; t = 1, · · · ,N}
and let θ denote the unknown parameters (dim(θ) = p).

Let f(xt ,θ) be a q-dimensional zero mean function, which is chosen as
some moment restrictions implied by the model of xt .

According to the law of large numbers the sample mean of f(xt ,θ) con-
verges to its population mean

lim
N→∞

1
N

N

∑
t=1

f(xt ;θ) = E [f(xt ;θ)] . (5.32)

The GMM estimates are found by minimizing

JN(θ) =

(
1
N

N

∑
t=1

f(xt ,θ)

)T

WN

(
1
N

N

∑
t=1

f(xt ,θ)

)
(5.33)

where WN ∈ Rq×q is a positive semidefinite weight matrix, which defines a
metric subject to which the quadratic form has to be minimized.

Most often the number of restrictions is larger than the number of unknown
parameters, i.e., q > p. This implies that different estimates are obtained by
using different weighting matrices. It can, however, be shown (Hansen [1982])
that:
• Under fairly general regularity conditions the GMM estimator is asymptot-

ically consistent for arbitrary positive definite weight matrices.
• The efficiency of the GMM estimator is dependent on the weight matrix.

The optimal weight matrix is given by the inverse of the covariance matrix
Ω of the disturbance terms f(xt ,θ).
• The efficiency can be highly dependent on the selected restrictions.
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The simplest weight matrix is simply an identity matrix having suitable
dimension. This would still lead to consistent estimates, and it is therefore
common practice to start with this matrix in order to obtain a first guess.

The optimal or near optimal matrix depends on the parameters and can be
computed (and recomputed) once estimates are available. This is either done
offline (optimizing the JN function with a fixed weight matrix) or with a matrix
that depends explicitly on the parameters (that version of GMM is often called
continuously updated GMM and is closely related to Martingale Estimation
Functions; see Bibby and Sørensen [1995]).

5.4.3.2 Standard error of the estimates

Assume that ΩN is a consistent estimator for the covariance matrix Ω (estima-
tors for Ω are discussed in Section 5.4.3).

Let

ΓN =
1
N

N

∑
t=1

∂ f(xt ,θ)

∂θ T (5.34)

be an estimator for

E
[(

∂ f(xt ,θ)

∂θ T

)]
. (5.35)

It then holds that √
N
(
θ̂N−θ0

)
→ N(0,Σ) (5.36)

where
Σ =

(
Γ

T
N Ω

−1
N ΓN

)−1
. (5.37)

5.4.3.3 Estimation of the weight matrix

If the sequences of the disturbance terms f(xt ,θ) are serially uncorrelated then
an estimate of the weight matrix W = Ω−1 is given by

Ω̂N =
1
N

N

∑
t=1

f(xt ,θ)f(xt ,θ)
T . (5.38)

In case of serial correlation (which is most often seen) we can use estima-
tions of the form:

Ω̂N =
N

N− p

N

∑
τ=−N+1

k
(

τ

SN

)
Φ(τ) (5.39)

where

Φ(τ) =
1
N

N

∑
t=τ+1

f(xt ,θ)fT (xt−τ ,θ) (5.40)

and k(·) is a kernel function (cf. Chapter 6), and SN is a bandwidth determin-
ing which values of the autocovariance function (cf. (5.40), that we are taking
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into account. The kernel acts as a lag window in spectrum analysis, and the
purpose is to weigh down higher lags in the autocovariance function. Also the
traditional lag windows, i.e., Bartlett, Parzen, Tukey-Hanning, may be used.
See Chapter 6 for more information.

5.4.3.4 Nested tests for model reduction

As in traditional maximum likelihood theory, a likelihood ratio type test is
also available in the GMM setup, to test nested models against each other. If
one starts by estimating a larger/unrestricted model, the test measures to what
extent the object function (5.41) is increased by considering a reduced model,
where some of the parameters are fixed — often by putting them equal to zero.
Formally the test is

L̃R = N
(

JN(θ̂
r)− JN(θ̂

u)
)
, (5.41)

where JT(θ̂
r) and JT(θ̂

u) are the value of the objective function for the re-
stricted and unrestricted model. Under a set of regularity conditions the like-
liood ratio type test statistic has asymptotic chi-square distributions with s de-
grees of freedom, where s denotes the number of parameter restrictions im-
posed by the restricted model

L̃R∼ χ
2(d), (5.42)

where d is the dimension of the parameter space being restricted; cf. Equa-
tion (5.30).

5.5 Parametric models

The parametric models considered here belong all to various generalizations of
the linear ARMA model, namely to models which are able to cover different
aspects of non-linearity.

For Gaussian processes it is well known that the conditional mean is linear
in the elements of the information set, i.e., it is linear in the past observa-
tions. Furthermore, it is known that the conditional variance is constant, and
hence independent of the information set. It can be shown that any Gaussian
process conforms to a linear process. See Chapter 1 in Madsen [2007] for a
further description of the conditional mean and variance in the Gaussian case,
and Madsen and Holst [1996] for a further discussion on the relation between
Gaussian processes and linearity.

For a non-linear process the conditional mean is, in general, not linear, and
the conditional variance is, in general, not constant.

The parametric non-linear models can be subdivided into three different
classes which will be introduced below. This separation is related to how the
information set enters the conditional mean and the conditional variance. The
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separation is useful for identification purposes which will be shown in Chap-
ter 6, since the conditional mean and variance part of the model can be identi-
fied using non-parametric estimates of those quantities. Furthermore, the sep-
aration illustrates and introduces some of the various non-linear models.

1. Conditional mean models, where the conditional mean depends on some
(external or internal) variables. This class of models contains the threshold
models and regime models, which are motivated by a desire to describe
changes in the dynamic part of the model.
Consider for instance the first-order model

Yt = f (Yt−1,θ)+ εt (5.43)

where f is a known function, θ an unknown parameter vector and {εt} is a
sequence of i.i.d. random variables. For this model the conditional mean is

E[Yt |Yt−1 = y] = f (y,θ). (5.44)

This model contains, for instance, first-order versions of some of the thresh-
old models. Models belonging to this class are further described in Sec-
tion 5.5.1.

2. Conditional variance models, where the conditional variance depends on
some (external or internal) variables. This class of models contains the con-
ditional heteroscedastic model, where the conditional variance depends on
past observations

Yt = g(Yt−1,θ)εt . (5.45)

As an example Engle [1982] suggested the pure AutoRegressive-Condition-
al-Heteroscedastic model (ARCH model) given by

Yt = εt

√
θ1 +θ2Y 2

t−1. (5.46)

For this model the conditional variance is

Var[Yt |Yt−1 = y] = (θ1 +θ2y2)σ2
ε . (5.47)

There is a considerable literature on various ARCH-like models, and in Sec-
tion 5.5.2 we shall go into more details. A survey article is Bera and Hig-
gins [1993] while Bollerslev [2008] provides a more updated overview of
the family of ARCH models.

3. Mixed models, which contain both a conditional mean and a conditional
variance component. A general model subclass consists of those models
where the conditional mean and the conditional variance can be expressed
using a simple and finite information set of past dependent variables, namely

Yt = f (Yt−1, . . . ,Yt−p;θ1)+g(Yt−1, . . . ,Yt−p;θ2)εt (5.48)
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where both functions are known. For these models

E[Yt |Yt−1 = y1, . . . ,Yt−p = yp] = f (y1, . . . ,yp;θ1), (5.49)

Var[Yt |Yt−1 = y1, . . . ,Yt−p = yp] = g2(y1, . . . ,yp;θ2)σ
2
ε . (5.50)

The bilinear models, like Yt = εt +Yt−1εt−1, belong to the class of mixed
models, though not to the subclass (5.48). For some models it is possible to
establish an explicit expression for both the conditional mean and variance;
but in some other cases, as, e.g., the bilinear model, this is not possible. The
bilinear models are, however, very flexible models, and they have been used
in several applications.

Given time series of observations, estimates for the conditional mean and
variances in models like (5.43), (5.46) and (5.48) can be computed. These es-
timates can then be used for identification of the structure of the non-linear
model. Non-parametric methods and their use for identification of non-linear
models are described in Chapter 6.

5.5.1 Threshold and regime models

Most of the models described in this section belong to the class of conditional
mean models; but some of them also show conditional heteroscedasticity, and
these models then belong to the class of mixed models.

The threshold models belong to a very rich class of models, which have
been discussed, e.g., in Tong [1983], and in the book Tong [1990]. It has proved
to be useful if, for instance, the dynamical behaviour of the system depends on
the actual state or process value. In such cases the threshold model may, for
instance, approximate the dynamics in some regimes by “simple” models (usu-
ally linear). Threshold values determine the actual regime (or mix of regimes).
We list and name below some versions of models with thresholds. The analysis
of the probabilistic structure of these types of models including, e.g., discus-
sions of stationarity and stability, is in general very complicated. Some results
on stochastic stability may be found in Kushner [1971] and Tong [1990].

5.5.1.1 Self-exciting threshold AR (SETAR)

Define intervals R1, . . . ,Rl such that R1∪·· ·∪Rl =R and Ri∩R j = /0 for all i, j.
Each interval Ri is given by Ri =]ri−1;ri], where r0 =−∞ and r1, . . . ,rl−1 ∈ R
and rl = ∞. The values r0, . . . ,rl are called thresholds.

The SETAR(l;d;k1,k2, . . . ,kl) model is given by:

Yt = a(Jt )
0 +

kJt

∑
i=1

a(Jt )
i Yt−i + ε

(Jt )
t (5.51)



PARAMETRIC MODELS 85

0 50 100 150 200

-3
-2

-1
0

1
2

3

SETAR (2,1,1)

Figure 5.1: A simulation of a SETAR model with two regimes, SETAR(2;1;1).

where the index (Jt) is described by

Jt =


1 for Yt−d ∈ R1
2 for Yt−d ∈ R2
...

...
l for Yt−d ∈ Rl .

(5.52)

The parameter d is the delay parameter. Hence the model has l regimes, a
delay parameter d and in the j’th regime the process is simply an AR-process
of order k j.

If the AR-processes all have the same order k we often write
SETAR(l;d;k).
Example 5.1 (SETAR(2;1;1) model). A simulation of the SETAR(2;1;1)
model:

Yt =

{
1.0+0.6Yt−1 + εt for Yt−1 ≤ 0
−1.0+0.4Yt−1 + εt for Yt−1 > 0

where εt ∈ N(0,1) is shown in Figure 5.1.
One of the reasons why SETAR models are popular is due to the fact that

the parameters in SETAR models are easy to estimate. The complexity is l
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times that of an AR model (you will have to run l regressions instead of only
one regression).

5.5.1.2 Self-exciting threshold ARMA (SETARMA)

The SETARMA model is an obvious generalization to different ARMA models
in the different regimes. The SETARMA(l;d;k1, . . . ,kl ;k

′
1, . . . ,k

′
l) is:

Yt = a(Jt )
0 +

kJt

∑
i=1

a(Jt )
i Yt−i +

k′Jt

∑
i=1

b(Jt )
i εt−i + εt (5.53)

where Jt is given as above in (5.52). It is, of course, possible also to let the
white noise process depend on the regime.

5.5.1.3 Open loop threshold AR (TARSO)

A second possible generalization of the basic SETAR structure above is to
choose an input signal Ut and let that external signal determine the regime, as,
e.g., in the TARSO(l;(m1,m

′
1), . . . ,(ml ,m

′
l)) model:

Yt = a(Jt )
0 +

kJt

∑
i=1

a(Jt )
i Yt−i +

k′Jt

∑
i=0

b(Jt )
i Ut−i + εt . (5.54)

Now the regime shifts are governed by

Jt =


1 for Ut−d ∈ R1
2 for Ut−d ∈ R2
...

...
l for Ut−d ∈ Rl

, (5.55)

i.e., for each value of the regime variable the system is described by an ordinary
ARX model. The extension of this structure to, e.g., ARMAX performance in
each regime, as well as to regime dependent white noise processes, is immedi-
ate.

5.5.1.4 Smooth threshold AR (STAR)

Now consider a class of models with a smooth transition between the regimes.
The STAR(k) model:

Yt = a0 +
k

∑
j=1

a jYt− j +

(
b0 +

k

∑
j=1

b jYt− j

)
G(Yt−d)+ εt (5.56)

where G(Yt−d) now is the transition function lying between zero and one, as
for instance the standard Gaussian distribution.
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In the literature two specifications for G(·) are commonly considered,
namely the logistic and exponential functions:

G(y) = (1+ exp(−γL(y− cL)))
−1; γL > 0 (5.57)

G(y) = 1− exp(−γE(y− cE)
2); γE > 0 (5.58)

where γL and γE are transition parameters, cL and cE are threshold parameters
(location parameters). The functions used in (5.56) lead to the LSTAR and
ESTAR model, respectively.

5.5.1.5 Hidden Markov models and related models

In this variant of general threshold models the selection scheme for the regimes
is determined by a stochastic variable {Jt}, which is independent of the noise
sources in the various regimes.

A simple example is the Independent Governed AR model, where the se-
lection of the regimes in the IGAR(l;k) model is given by:

Yt = a(Jt )
0 +

kJt

∑
i=1

a(Jt )
i Yt−i + ε

(Jt )
t (5.59)

where

Jt =


1 with prob. p1
2 with prob. p2
...

...
l with prob. 1−∑

l−1
i=1 pi.

(5.60)

The sequence {Jt} may be composed of independent random variables,
in which case it is denoted Exponential autoregressive model (EAR) in Tong
[1990], who also allows in an extension to Newer Exponential autoregressive
models (NEAR) for a delay in the model to be regime variable dependent.

A particular case appears when the regime variable Jt is given by a sta-
tionary Markov chain, i.e., when there exists a matrix of stationary transi-
tion probabilities P describing the switches between the basic autoregressions.
This type of l Markov modulated autogressive models of order k is denoted
(MMAR(l;k)). Analysis and inference for this type of models is given in, e.g.,
Holst et al. [1994].

These types of Markov modulations are typically used in description of
stochastic processes in telecommunication theory by giving a mechanism for
switches between different Poisson processes (cf. Rydén [1993]), but the class
is becoming increasingly popular (Cappé et al. [2005]).
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Figure 5.2: A Markov modulated regime model with two AR-processes and a
rather inert Markov chain–MMAR(2;2)-process.

Example 5.2 (MMAR(2,2)-process). Let the process be defined by

(a(1)1 ,a(1)2 ) = (1.1,−0.5)

(a(2)1 ,a(2)2 ) = (−1.2,−0.5)

ε
(1)
t ∈ N(0,1)

ε
(2)
t ∈ N(0,1)

and let the transitions between the different regimes be governed by the matrix

P =

(
0.95 0.05
0.05 0.95

)
. (5.61)

The performance of this system is shown in Figure 5.2. The example and the
figure are from Thuvesholmen [1994].

It is possible to extend the class further (MacDonald and Zucchini [1997]).
Zucchini and MacDonald [2009] or Cappé et al. [2005] provides a nice
overview on applications, theory and estimation methods for hidden Markov
models.
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Remark 5.1 (Transition mechanisms). For various threshold models the most
important difference is in the transition between the regimes:
• For SETAR the abrupt transition depends on Xt−d .

• For STAR the smooth transition depends on Xt−d .

• For HMM the transition is stochastic.

5.5.2 Models with conditional heteroscedasticity (ARCH)

The ARCH process is introduced by Engle [1982] to allow the conditional
variance to change over time as a function of past observations leaving the un-
conditional variance constant. Hence, the recent past gives information about
the one-step prediction variance.

This type of model has proven to be very useful in finance and economet-
rics for modeling conditional heteroscedasticity, i.e., the conditional variance
is not constant, but depends on past observations. In finance the risk is ex-
pressed using the actual (conditional) variability of, for instance, the interest
rate. The actual variability is called the volatility of the phenomena.

Another reason for considering models for the volatility is that this will in-
crease the statistical efficiency of the estimates in the conditional mean model;
cf. weighted least squares.

The general formulation of non-linear, conditional models is the following
class of models:

Yt = f (Yt−1,εt−1, . . . ,θ f )+g(Yt−1,εt−1, . . . ,θg)εt (5.62)

where ft = f (Y,w,θ f ) is the conditional mean, gt = g(Y,w,θg) the condi-
tional standard deviation and wt is white noise having unit variance.

Adding the assumption of normality, the model can be more directly ex-
pressed as

Yt |Ft−1 ∼ N( ft ,gtgT
t ) (5.63)

where Ft is the information set available at time t, and N is the multivariate
probability density function with mean ft and variance gtgT

t .

5.5.2.1 ARCH regression model

The pure ARCH models belong to the class of conditional variance models,
and the ARCH model suggested by Engle [1982] has been used in (5.46). The
observation made in Engle [1982] was that volatility is clustering temporally.

The basic specification of the ARCH(p) model is written as:

Yt = σtwt ,

σ
2
t = α0 +α1Y 2

t−1 + · · ·+αpY 2
t−p,

where the strict white noise sequence {wt} satisfies E[wt ] = 0, Var(wt) =
1 while αi > 0 is a sufficient but not necessary condition to ensure positive
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variances. Finally, ∑αi < 1 is required to ensure stationarity. Experience has
shown that the number of lags, p, has to be fairly large to fit real data.

The model was used to test whether the conditional volatility depends on
lagged values, i.e., if there is conditional heteroscedasticity. The tests are typi-
cally Lagrange multiplier or likelihood ratio type tests.

In the more general setup in Engle [1982] the following models are con-
sidered:

Yt |Ft−1 ∼ F(Xtβ f ,σ
2
t ), (5.64)

where F(·, ·) is some distribution (often but not exclusively Gaussian) with
mean Xtβ f and variance σ2

t , θ f = [αT β T
f ]

T is a vector of unknown parameters,
X a vector of variables included in the information set (lagged values of Y or
external signals) and

εt = Yt −Xtβ f , (5.65)

σ
2
t = α0 +

p

∑
i=1

αiε
2
t−i. (5.66)

Modelling the conditional mean is important as the variance is the second mo-
ment minus the first moment squared. Ignoring the conditional mean will there-
fore incorrectly inflate the conditional variance.

An appealing property due to the simplicity of the ARCH(p) model is that
it can be estimated using ordinary least squares, but the least square estimates
won’t be efficient. Maximum likelihood estimation is therefore often the esti-
mator of choice, using the least squares estimates as initial values for the nu-
merical maximization. The likelihood function for conditional Gaussian mod-
els can be found in Engle [1982].

An interesting interpretation of ARCH regression models mentioned
by Engle [1982] is that the model for the conditional variance picks up the
effect of variables not recognized or otherwise not included in the model.

The ARCH regression model is very useful in monetary theory and finance
theory. Portfolios of financial assets are often assumed to be functions of the
expected means and variances of the rates of return.

5.5.2.2 GARCH model

The GARCH model, proposed by Bollerslev [1986], is an extension to ARMA-
like structure for the model describing the conditional variance. For the ARCH
process the conditional variance is specified as a linear function of past sample
variances only, whereas for the GARCH process past values of the conditional
variance are used as well. The Generalized ARCH (GARCH) model is given by

εt |Ft−1 ∼ F(0,σ2
t ) (5.67)

σ
2
t = ω +

q

∑
i=1

αiε
2
t−i +

p

∑
i=1

βiσ
2
t−i (5.68)
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where all the coefficients (αi,βi) must be non-negative to ensure positive vari-
ances, and ∑

p
i=1 ai +∑

q
j=1 β j < 1 to preserve stability. It is also common to

add additional explanatory variables to the σ2 that are expected to be highly
correlated with the variance; cf. Asgharian et al. [2013].

The GARCH(p,q) can be rewritten as an ARMA process. Introduce ν =
ε2

t −σ2
t = σ2

t (w
2
t − 1) which is a sequence of white noise. The GARCH(p,q)

process can then be written as

(1−ψ(B))ε
2
t = ω +(1−β (B))νt (5.69)

where ψ(B) = α(B)+β (B). The ARMA representation of the GARCH model
can be used for identification of the order of the GARCH(p,q) model. It has
been argued that a GARCH(1,1) is often sufficient for most data sets (Hansen
and Lunde [2005]).

There are plenty of non-linear GARCH models (Bollerslev [2008]). Many
of these are using the connection between ARMA and GARCH models, ex-
tending the ARMA structure by features originating from SETAR or STAR
models.

Extending to the GARCH regression model is similar to the extension for
the ARCH model

Yt |Ft−1 ∼ F(Xtβ f ,σ
2
t ). (5.70)

It has been argued that a GARCH(1,1) is sufficient; cf. Hansen and Lunde
[2005]. They test a large number of alternative specifications and find, after
compensating for the asymmetrical test procedure, that they are unable to reject
the GARCH(1,1) in favor of more advanced ARCH/GARCH models.

5.5.2.3 EGARCH model

The GARCH model has a major limitation in that it is symmetric, i.e., it doesn’t
predict the volatility to behave differently depending on the sign of εt , contrary
to empirical observations on real data.

Another problem with the GARCH model is the requirements on the pa-
rameters, making the numerical optimization difficult. These arguments were
addressed in the introduction of the EGARCH model in Nelson [1991], speci-
fied as

εt = wtσt , (5.71)

σt = exp
(

1
2

ht

)
, (5.72)

ht = ω +
p

∑
i=1

αiwt−1 +
q

∑
i=1

βiht−i. (5.73)

The EGARCH-process addresses the symmetry problems and does also im-
pose less restrictions on the parameters, as the exponent of the conditional
variance equation is an ARMA-process.
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5.5.2.4 FIGARCH model

One of the more remarkable stylized facts is the dependence in squared or
absolute returns (Section 1.3.7). Long range dependence in ordinary time se-
ries is often modeled using ARFIMA models (Granger and Joyeux [1980]).
Their idea is introduce a fractional differentiation of the ARIMA model in
Section 4.4.2 according to

ϕ(B)(1−B)dYt = θ(B)εt , (5.74)

where d is some number between 0 and 1. This leads to a model that sits
somewhere in between the stationary ARMA model and the non-stationary
ARIMA model. They also show that the variance of the resulting process is
finite if d < 1/2. Requirements for the volatility process to imposed positivity
of the process can be found in Conrad and Haag [2006].

Similar ideas were employed on GARCH models in Baillie et al. [1996],
Bollerslev and Ole Mikkelsen [1996], as the GARCH model can be written as
an ARMA model (Equation (5.69)). Recall the ARMA representation of the
GARCH model

(1−ψ(B))ε
2
t = ω +(1−β (B))νt (5.75)

while the IGARCH representation is given by

Φ(B)(1−B)ε2
t = ω +(1−β (B))νt (5.76)

where Φ(B) = (1−α(B)− β (B))(1−B)−1 being of order m− 1 with m =
max(p,q). The FIGARCH is defined by replacing the first-order differentiation
by a fractional differentiation

Φ(B)(1−B)d
ε

2
t = ω +(1−β (B))νt (5.77)

with the process having finite variance if −.5 < d < 0.5. Fractional differenti-
ation can be expressed by the hypergeometric function

(1−B)d =
∞

∑
k=0

Γ(k−d)
Γ(k+1)Γ(−d)

Bk. (5.78)

The implications of the fractional integration in terms of memory of the pro-
cess are analyzed in Davidson [2004].

5.5.2.5 ARCH-M model

Several extensions of the basic ARCH model are possible. In Engle et al.
[1987] the ARCH model is extended to allow the conditional variance to affect
the mean. In this way changing conditional (co-)variances directly affect, for
instance, the expected return; cf. CAPM.
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The models are called ARCH-in-Mean or ARCH-M models. The ARCH-
M is obtained by a slight modification of Equation (5.63)

Yt |Ft−1 ∼ F(Xtθ f +δσ
2
t ,σ

2
t ) (5.79)

where the conditional variance σ2
t is given by the ARCH model. It is possible

to generalize the ARCH-M models by replacing the ARCH model by arbitrary
conditional variance models. Additionally, other mean specifications have also
been suggested such as

Yt |Ft−1 ∼ F(Xtθ f +δσt ,σ
2
t ) (5.80)

or
Yt |Ft−1 ∼ F(Xtθ f +δ log(σ2

t ),σ
2
t ) (5.81)

(Engle et al. [1987]).

5.5.2.6 SW-ARCH model

A further extension of the ARCH models is the switching ARCH model. The
idea of the switching ARCH model is to use a combination of different ARCH
models. One possible parametrisation is given by

εt =
√

g(St)σtwt , (5.82)

σ
2
t = α0 +

p

∑
i=1

(α(St)t−iεt−i)
2 (5.83)

where St is the state of a hidden Markov chain taking K different states, and
g(St) is a constant taking different values depending on St . The model can be
interpreted as an extension of the ordinary ARCH(p) process by using different
ARCH(p) processes for each state of the market.

Switching models are significantly more difficult to estimate than ordinary
(G)-ARCH models due to the large number of additional parameters and com-
plex likelihood function (see e.g. Henricsson [2002]), but it can be argued that
the states can be interpreted as states of the market, e.g., recession or boom,
giving an increased understanding of data.

5.5.2.7 General remarks on ARCH models

The performance of ARCH-like models can often be improved using a combi-
nation of the following three different strategies:
1. The AR or ARMA structure of the conditional variance can be extended

by introducing external signals (ARX or ARMAX), e.g., it is commonly
believed that the trading volume can be used to predict the volatility.
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2. The distribution of wt does not have to be Gaussian. In fact, it is often better
to use the t-distribution or the generalized error distribution, the latter being
specified (having zero mean and unit variance) as

f (x) =
vexp

(
− 1

2

∣∣ x
λ

∣∣v)
λ2(v+1)/vΓ(1/v)

, (5.84)

where λ is a constant given by

λ =

{
2−(2/v)Γ(1/v)

Γ(3/v)

}1/2

. (5.85)

Other alternatives include the variance gamma or the normal inverse Gaus-
sian (henceforth called the NIG) distribution. The NIG distribution is a
Gaussian mean variance mixture model (Barndorff-Nielsen [1977]), and
has been popular in econometrics (Jensen and Lunde [2001], Kiliç [2007])
as well as in the option valuation literature (Cont and Tankov [2004] and
Definition 7.11). The probability density function is given by

fNIG(x) =
αδK1(α

√
δ 2 +(x−µ)2)

π
√

δ 2 +(x−µ)2
eδγ+β (x−µ), (5.86)

where µ is a location parameter, α controls the tail heaviness, β is an asym-
metry parameter and δ is a scale parameter. Finally, K1 is a modified Bessel
function of the second kind.

3. Introducing a non-linear influence of old values of εt−i to account for the
the asymmetric response of volatility shocks. This can be done by replac-
ing lagged values of, e.g., ε2

t by a function f (εt−i/σt−i). The modified
EGARCH model would then be specified as

εt = σtwt (5.87)

σt = exp
(

1
2

ht

)
(5.88)

ht = α0 +
p

∑
i=1

f (wt−i)+
q

∑
i=1

βiht− j (5.89)

where f (wt−i) = λ (|wt−i|−E[|wt−i|])+ γwt−i. The response will then de-
pend on the sign of wt−i, allowing for different response to good and bad
news.
A related modification is the Glosten-Jagannathan-Runkle (GJR) GARCH
model (Glosten et al. [1993]), where the conditional volatility is given by

σ
2
t = α0 +

q

∑
i=1

(
αiε

2
t−i + γi1{εt−i<0}ε

2
t−i
)
+

p

∑
i=1

βiσ
2
t−i. (5.90)

Estimating a positive γi parameter means that additional volatility is found
due to bad news.
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5.5.2.8 Multivariate GARCH models

The are many multivariate GARCH models; see Silvennoinen and Teräsvirta
[2009b], for a review. These are defined similarly to the univariate models

rt = H1/2
t ηt , (5.91)

where ηt is an iid zero mean, unit covariance random vector. The log-
likelihood (when η is a Gaussian vector) for these models is given by

`t(θ) =−
1
2

T

∑
t=1

ln |det(2πHt)|−
1
2

T

∑
t=1

rT
t H−1

t rt . (5.92)

It is rarely possible to write down closed form expressions for the param-
eter estimates. Equation (5.92) must therefore be maximized using numeri-
cal optimization. Many models are overparametrized from a practical point
of view, which is why the CCC and DCC models (more on those below) are
popular.

The first multivariate GARCH model was the VEC-GARCH model
(Bollerslev et al. [1988]), which is a straightforward generalization of the uni-
variate version. The model, for a N-dimensional problem, is given by

vech(Ht) = c+
p

∑
j=1

A jvech(rt− jrT
t− j)+

q

∑
j=1

B jvech(Ht− j) (5.93)

where the vech(·) operator stacks the columns of the lower triangular part
of the matrix. Sufficient conditions for strictly positive variances are rather
restrictive, and the model is also haunted by the shear number of parame-
ters in it. It can be shown that the dimension of the Ai and Bi matrices is
N(N + 1)/2×N(N + 1)/2 and hence that the total number of parameters is
given by (p+q)(N(N +1)/2)2 +N(N +1)/2.

A restricted version of the VEC-GARCH model is the BEKK model (Engle
and Kroner [1995]). The number of parameters in this model is lower than for
the VEC-GARCH model, and the conditional variances are always positive by
construction. The conditional co-variance is given by

Ht =CC′+
q

∑
j=1

K

∑
k=1

AT
k jrt− jrT

t− jAk j +
p

∑
j=1

K

∑
k=1

BT
k jHt− jBk j, (5.94)

where Ak j, Bk j and C are N×N matrices, and C is lower triangular. The esti-
mation is still rather complicated as the number of parameters is (p+q)KN2+
N(N +1)/2.

A simpler model is the Constant Conditional Correlation-GARCH model
due to Bollerslev [1990]. Here the conditional covariance matrix is defined as

Ht = DtPDt , (5.95)
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where Dt = diag(h1/2
1t , . . . ,h1/2

Nt ) and P is a positive definite correlation matrix.
The models for the processes rit are given by univariate models, which, in

case of GARCH models, leads to the vector conditional variance process

ht = ω +
q

∑
j=1

A jrt− j� rt− j +
p

∑
j=1

B jht− j, (5.96)

where ω is a N×1 vector, A and B are N×N matrices and � is element-wise
multiplication.

The CCC-GARCH is often considered to be too simple, as it is unable to
capture varying correlations. The Dynamic Conditional Correlation-GARCH
(see Engle [2002]) replaces the fixed correlation matrix with a dynamics ma-
trix. Start by defining the matrix Qt as

Qt = (1−a−b)S+aεt−1ε
T
t−1 +bQt−1. (5.97)

The constants a and b are positive numbers satisfying a+b< 1, S is the uncon-
ditional correlation matrix of the standardized errors ε and the initial condition
Q0 is some positive definite matrix. This matrix is rescaled to obtain a dynamic
correlation matrix according to

Pt = (I�Q)−1/2Q(I�Q)−1/2. (5.98)

The additional flexibility is inexpensive from a computational point of view as
only two (a and b) new parameters were added. Several extensions of the DCC-
GARCH have been proposed (see e.g. Cappiello et al. [2006] and references
therein).

Another extension is the Smooth Transition Conditional Correlation-
GARCH suggested by Silvennoinen and Teräsvirta [2005, 2009a]; cf. Sec-
tion 5.5.1.4. Their idea is to use a smooth transition between fixed correlations

Pt = (1−G(st))P(1)+G(st)P(2), (5.99)

where P(1),P(2) are correlation matrices and G(·) is some smooth transition
function. A particularly nice feature with the STCC-GARCH model is the pos-
sibility to test for smooth transition effects, by using a Lagrange multiplier
test, starting from the standard CCC-GARCH (Silvennoinen and Teräsvirta
[2009a]).

5.5.3 Stochastic volatility models

A different class of models describing volatility changing over time is the class
of stochastic volatility models. The important difference between stochastic
volatility models and the class of ARCH models is that the stochastic volatility
models specify the volatility as a latent or unobservable process. This could
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be a significant advantage (but it is not for free as we will see soon) as the
volatility at time t + 1 is not completely determined at time t. This matters
when there are unexpected shocks, such as terrorist attacks.

A simple stochastic volatility model (Taylor [1982]) is given by

Yt = exp(Vt/2)wt , (5.100)
Vt = α +βVt−1 + et , (5.101)

where wt and et are white noise having unit variance. The class of stochastic
volatility models can be generalized to continuous time models, where they are
being used to derive improved option pricing formulas.

Parameters in discrete time stochastic volatility models can be approx-
imately estimated using Kalman filters (Quasi-Maximum Likelihood), cf.
Chapter 14, or using Monte Carlo methods, like MCMC or Sequential Monte
Carlo methods (Lopes and Tsay [2011]).

The stochastic volatility can be transformed into a nicer problem by con-
sidering ξt = log(Y 2

t ). This leads to

ξt = log(exp(Vt))+ log(w2
t ), (5.102)

Vt = α +βVt−1 + et , (5.103)

which is a linear model. The downside is that log(w2
t ) is non-Gaussian. It can

be shown that E[log(w2
t )]≈−1.27 and Var[log(w2

t )] = π2/2. Using a Kalman
filter to estimate the parameters is suboptimal (it is not a likelihood method),
but the estimates will still be consistent. The Quasi-ML estimates are therefore
useful as starting values for a likelihood based method, while modern Monte
Carlo methods can provide an approximate maximum likelihood estimate; see
Section 14.10 or (Cappé et al. [2005]).
Remark 5.2. Recall that for a normal distributed stochastic variable, X ∈
N(µ,σ2), it holds that

E[X ] = µ (5.104)
E[X2] = µ

2 +σ
2 (5.105)

E[X3] = µ
3 +3µσ

2 (5.106)
E[X4] = µ

4 +6µ
2
σ

2 +3σ
4 (5.107)

E[X5] = µ
5 +10µ

3
σ

2 +15µσ
4 (5.108)

E[X6] = µ
6 +15µ

4
σ

2 +45µ
2
σ

2 +15σ
6 (5.109)

E[(X−E[X ])n] = σ
2n(2n−1)!! (5.110)

for n ∈ N where n!! denotes the double factorial, i.e., the product of every odd
number from n to 1.
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Recall also that Y = exp(X) is lognormally distributed LN(µ,σ2), and that

E[Y ] = exp(µ +σ
2/2) (5.111)

E[Y n] = exp(nµ +n2
σ

2/2) (5.112)
Var[Y ] = E[(Y −E[Y ])2] = exp(2µ +σ

2)(exp(σ2)−1) (5.113)

for n ∈ N.

5.6 Model identification

Model identification of non-linear models is almost an art, as the number of
possible models grows rapidly with increasing dimension of the parameter vec-
tor. The mainstream approach to model identification is to discover the domi-
nant features in data without going into specific models.

This is done in Nielsen and Madsen [2001] and Lindström [2013a] where
it is shown how a linear model can be compared to a general non-linear model,
defined either as a non-parametric model (Nielsen and Madsen [2001]) or
semiparametric model (Lindström [2013a]). The latter even admits testing in
terms of adjusted F-tests.

Modern variable selection techniques, such as Lasso, LARS or elastic net
(Hastie et al. [2009]), make it possible to estimate and shrink complex models
without thinking too much about the exact model structure. This presents a
different approach as identification and model fitting procedure is merged into
a single step.

5.7 Prediction in nonlinear models

Under exactly the same conditions as for linear models (see Madsen [2007])
the optimal prediction is given as the conditional mean, i.e.,

Ŷt+k|t = E[Yt+k|Ft ] (5.114)

where Ft is the information set at time t.
One of the noticeable differences is, however, that the predictor is in gen-

eral not linear in the elements of the information set. This is illustrated in the
following simple example.
Example 5.3 (Prediction). Consider the first-order model

Yt = f (Yt−1,θ)+ εt (5.115)

where {εt} is a strict white noise.
For this model the optimal predictor is

E[Yt+1|ψt ] = E[Yt+1|Yt = y] = f (y,θ) (5.116)

where the fact that the model is a first-order Markov model has been used in
the first equality.
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The important difference between white noise and a strict white noise is
illustrated in the next example.
Example 5.4. Consider the process

Yt = εt +θεt−1εt−2 (5.117)

where {εt} is strict white noise.
The one-step predictor is

Ŷt+1|t = θεt−1εt−2. (5.118)

Let us for illustration consider the autocovariance function for {Yt}

γk = E[YtYt+k] = E[εtεt+k +θεt−1εt−2εt+k (5.119)
+ θεtεt+k−1εt+k−2 +θ

2
εt−1εt−2εt+k−1εt+k−2] (5.120)

= 0 for k 6= 0, (5.121)

i.e., {Yt} is white noise. Hence, a non-linear predictor has to be used in order
to use the information set for prediction.

5.8 Applications of nonlinear models

5.8.1 Electricity spot prices

Hidden Markov models are frequently used when modelling the electricity
spot price (these models are often called Independent Spike Models; see Huis-
man and Mahieu [2003], Janczura and Weron [2010], Regland and Lindström
[2012], Lindström and Regland [2012]) as these are often extremely volatile.
Renewable energy (e.g. wind power) is less predictable than classical sources
of energy. Surplus or lack of energy leads inevitably to large temporal varia-
tions in the price.

It is well known that electricity spot prices are mean-reverting and het-
eroscedastic, and there are also seasonal effects (yearly, weekly and daily) and
jumps (Escribano et al. [2011]). The independent spike models provide a sim-
ple and very efficient solution to this problem by modelling the spread between
the spot price and the forward price, as the forward price is essentially a robust,
low-pass filtered version of the spot price (Figure 5.3).

The spread accounts for virtually all seasonality, but there are still bursts
of volatility. The logarithm of the spot, yt , was modeled in Regland and Lind-
ström [2012] using a HMM regime switching model with three states, a normal
state with mean-reverting dynamics, a spike (upward jumps) state and a drop
(downward jumps) state. This is mathematically given by:

∆y(B)t+1 = α

(
µt − y(B)t

)
+σεt

y(S)t+1 = ZS,t +µt , ZS ∼ LogN (µS,σS)

y(D)
t+1 =−ZD,t +µt , ZD ∼ LogN (µD,σD)
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Figure 5.3: The electricity spot price (left) and spread, defined as the difference
between the logarithm of the spot and the logarithm of the forward (right). Data
from the German EEX market.

where µt is the logarithmic month ahead forward price.
The regimes are switching according to a Markov chain Rt = {B,S,D}

governed by the transition matrix

Π =

 1−πBU −πBD πBS πBD
πSB 1−πSB 0
πDB 0 1−πDB

 .
The resulting fit of the model is presented in Figure 5.4, where we see that the
regime switch captures the bursts well.

5.8.2 Comparing ARCH models

The performance of different models for conditional variance was evalu-
ated in Henricsson [2002]. Different ARCH(p), GARCH(p,q) and SW-ARCH
(with two regimes) models were evaluated on the Swedish stock index Af-
färsvärldens generalindex from 1980 to 2001 using a moving window of 4
years of data to estimate the models and the following year to evaluate the
forecasting performance. Some observations generated by the study were:
• The standardized residuals are not Gaussian, but are more heavy-tailed, pos-

sibly even student-t distributed.
• It is important to include a term in the volatility equation that captures the

asymmetric effect of lagged innovations εt−i.
• The persistence in volatility can only be captured in a satisfactory way using

the GARCH model, although the improvement using SW-ARCH over an
ordinary ARCH model is significant. Could a SW-GARCH capture both
the persistence and the switching regimes?
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Figure 5.4: Fit of the independent spike model applied to EEX data.

Recent studies (Nystrup et al. [2014]) indicate that as many as four states are
needed to to model equity returns, as two or three state regime switching mod-
els are unable to capture both the conditional distribution and the dependence
structure found in market data.

5.9 Problems

Problem 5.1
Consider a SETAR(3;1;1,1,2) model for a univariate time series Yt , where R1 =
]−∞,0], R2 =]0,15] and R3 =]15,∞[.
1. Specify the thresholds and the delay parameter.
2. Write down the model.
3. Does the model pertaining to the second regime R2 need to be stable for
the complete model to be stable?

Problem 5.2
Consider a STAR(2) with a delay parameter of 1.
1. Write down the model.
2. What is the major difference between SETAR and STAR models?

Problem 5.3
It is common to observe burst-like phenomena in financial time series, which
may be due to governmental interventions in the market, attacks on some cur-
rency in the foreign exchange markets, the effects of earthquakes in California



102 NONLINEAR TIME SERIES MODELS

and other unpredictable phenomena. Such phenomena may be described by
bilinear models.
1. Write down the bilinear model BL(2,0,1,1).
2. Write down the autocovariance function for this particular model.
3. Is it possible to uniquely identify a BL(2,0,1,1) model using this autoco-
variance function?

Problem 5.4
Consider the ARCH model (5.46) as a model of interest rates rt .
1. Which important characteristics do the ARCH models have compared to
linear ARMA models?
2. Write down an ARCH(3) model.

Problem 5.5
Consider the ARCH(1) process

Xt =
√

htZt

ht = a0 +a1X2
t−1.

1. Calculate the p’th moment of Xt for p ∈ N.
2. Can you use information about the moments to estimate parameters?
3. What about GARCH and EGARCH models?

Problem 5.6
Consider the stochastic volatility model

Xt = exp{Vt/2}Zt ,

Vt = a0 +a1Vt−1 + et ,

and assume Z and e are zero mean, unit variance independent random vari-
ables.
1. Calculate mean, variance and covariance of Vt .
2. Calculate E[X2

t ].
Hint: We can write the model as

lnX2
t = lnZ2

t +Vt , (5.122)

where E[lnZ2
t ] =−(ln(2)+ γ)≈−1.27 and Var[lnZ2

t ] = π2/2.
3. Calculate the autocovariance

Cov(lnX2
t , lnX2

t+k) = rV (k)+
π2

2
1{k=0}, (5.123)

where 1{k=0} is an indicator function, being 1 if k = 0 and zero otherwise.



Chapter 6

Kernel estimators in time series analysis

6.1 Non-parametric estimation

Non-parametric methods are widely used in non-linear model building. Such
methods are particularly useful if no prior information about the structure is
available, since the estimation procedure is free of parameters and model struc-
ture (apart from a smoothing constant).

In this chapter we concentrate on kernel estimation. Some other non-
parametric methods are based on splines, k nearest neighbour (k-NN) or or-
thogonal series smoothing. Each method has a specific weighting sequence
{Ws(x);s = 1, · · · ,N}. These weighting sequences are related to each other and
it can be argued (Härdle [1990]) that one of the simplest ways of computing
a weighting sequence is kernel smoothing. For more information about non-
parametric methods see Robinson [1983], Härdle [1990], Silverman [1986],
Ruppert et al. [2003] or Hastie et al. [2011].

6.2 Kernel estimators for time series

6.2.1 Introduction

This chapter considers kernel estimation in general and its use in time series
analysis. The non-parametric estimators are of particular relevance for non-
Gaussian or non-linear time series. From kernel estimates of probability den-
sity functions Gaussianity can be verified or the nature of non-Gaussianity can
be discovered. Thus non-parametric methods provide information that comple-
ments that given, for instance, by higher-order spectral analysis.

Non-parametric estimates of the conditional expectation can be used to de-
tect non-linear structures and to identify a family of relevant time series models.
Consider for instance the time series generated by the non-linear model:

Yt = g(Yt−1, . . . ,Yt−p)+h(Yt−1, . . . ,Yt−p)εt . (6.1)

For this model

E[Yt |Yt−1, . . .] = g(Yt−1, . . . ,Yt−p) (6.2)

Var[Yt |Yt−1, . . .] = h2(Yt−1, . . . ,Yt−p) (6.3)

where it is implicitly assumed that the variance of the white noise process εt is
unity in order to avoid identifiability issues.

103



104 KERNEL ESTIMATORS IN TIME SERIES ANALYSIS

Thus the non-parametric methods can be used to estimate, e.g., g(y) =
E[Yt+1|Yt = y] in the simple case p = 1. Using this non-parametric estimate a
relevant parametrization of g(·) can be suggested.

Furthermore non-parametric estimates can be used to provide predictors,
i.e., estimators of future values of the time series. Use of non-parametric esti-
mators for getting insight in the time-varying behaviour and a complex depen-
dency on exogenous variables will also be considered.

In this section we first introduce the most frequently considered non-
parametric estimators for time series, the kernel estimators. Next the kernel
estimators are described in more detail. Finally, some examples are given on
how to use kernel estimation in time series analysis.

6.2.2 Kernel estimator

Let {Yt ; t = 0,±1, · · ·} be a strictly stationary process. A realization is given
as a time series {yt ; t = 1, · · · ,N}, and that single realization of the process is
the basis for inference about the process.

Introduce Zt = (Yt+ j1 , · · · ,Yt+ jn) and Y ∗t = (Yt+h1 , · · · ,Yt+hm). In order to
simplify the notation we consider the case Y ∗t = (Yt) in the rest of this section.
It is obvious how to generalize the equations.

The basic estimated quantity is

E[G(Zt)|Yt = y] fY (y) (6.4)

where fY is the probability density function (pdf) of Yt and G is a known func-
tion.

The estimator of (6.4) is

[G(Zt);y] = (N′h)−1
N′

∑
t=1

G(Zt)k(
y−Yt

h
) (6.5)

where k(u) is a real bounded function such that
∫

k(u)du = 1, and h is a real
number. Here, N′ is some number which corrects for the fact that not all N
observations can be used in the sum, typically N′ = N − jn, and k(u) is the
kernel function and h is the bandwidth.

Let us consider two examples of using Equation (6.5). In the first example
it is illustrated that Equation (6.5) is a reasonable estimator.
Example 6.1 (Non-parametric estimation of a pdf). The pdf of Yt at y is esti-
mated by

f̂Y (y) = [1;y] =
1

Nh

N

∑
t=1

k
(

y−Yt

h

)
. (6.6)

Assume that Y has pdf f (y), then

f (y) = lim
h→0

1
2h

P(y−h < Y ≤ y+h) (6.7)
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when P is the distribution function at Y . An estimator of f (y) is

f̂ (y) =
1

2hN
[Number of observations in (y−h;y+h)]. (6.8)

Define the rectangular kernel

w(u) =
{ 1

2 if |u|< 1
0 otherwise.

(6.9)

Then the estimator (6.8) can be written as

f̂ (y) =
1
N

N

∑
t=1

1
h

w
(

y−Yt

h

)
.

Now consider the general kernel (
∫

k(u)du = 1). Then the estimator is

f̂ (y) =
1

Nh

N

∑
t=1

k
(

y−Yt

h

)
(6.10)

which clearly is equal to Equation (6.6).
Example 6.2. The estimator of the conditional expectation of G(Zt), given
Yt = y, is

Ê[G(Zt)|Yt = y] =
[G(Zt);y]
[1;y]

=
1

N′ ∑G(Zt)k(
y−Yt

h )
1
N ∑k(

y−Yt
h )

(6.11)

where [1;y] was found in the previous example.
Of special interest is the case G(Zt) = Yt+1, where (6.11) estimates

E[Yt+1|Yt = y].

6.2.3 Central limit theorems

Central limit theorems can be established under various weak dependence con-
ditions on the process {Yt}. Let F v

u be the σ -field of events generated by
Yt ;u≤ t ≤ v. Then introduce the coefficient

α j = sup
A∈F t

−∞,B∈F ∞
t+ j

|P(A∩B)−P(A)P(B)| : j > 0. (6.12)

Definition 6.1 (Strong mixing condition). The process Xt is said to be strongly
mixing if α j→ 0 as j→ ∞.

The strong mixing condition has been used frequently in the asymptotic
theory of estimators for time series; but the condition is often very difficult to
check.

Central limit theorems for non-parametric estimators of pdfs of a process
{Yt}, as well as of conditional pdfs and conditional expectations at continuity
points, are given by Robinson [1983] under the strong mixing condition.
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Figure 6.1: Different univariate kernel functions.

If we allow q > 1 in (6.14) a kernel of order q has to be used, i.e., a real
bounded function kq(x1, . . . ,xq), where

∫
k(u)du = 1.

By a generalization of the bandwidth h to the quadratic matrix h with the
dimension q×q the more general kernel estimator for g(X (1), . . . ,X (q)) is

ĝ(x) =
1
n ∑

n
s=1 Yskq[h−1(x−Xs)]

1
n ∑

n
s=1 kq[h−1(x−Xs)]

(6.17)

where x = (x1, . . . ,xq) and Xs = (X (1)
1 , . . . ,X (q)

1 ). This is called the Nadaraya-
Watson estimator.

6.3.2 Product kernel

In practice product kernels are used, i.e.,

kq(h−1x) =
q

∏
i=1

k(xi/hi) (6.18)

where k is a kernel of order 1.
Assuming that hi = h, i = 1, . . . ,q the following generalization of the

one-dimensional case in (6.14) is obtained

ĝ(x1, . . . ,xq) =
1
n ∑

n
s=1 Ys ∏

q
i=1 k{h−1(xi−X (i)

s )}
1
n ∑

n
s=1 ∏

q
i=1 k{h−1(xi−X (i)

s )}
. (6.19)
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If we allow q > 1 in (6.14) a kernel of order q has to be used, i.e., a real
bounded function kq(x1, . . . ,xq), where

∫
k(u)du = 1.

By a generalization of the bandwidth h to the quadratic matrix h with the
dimension q×q the more general kernel estimator for g(X (1), . . . ,X (q)) is

ĝ(x) =
1
n ∑

n
s=1 Yskq[h−1(x−Xs)]

1
n ∑

n
s=1 kq[h−1(x−Xs)]

(6.17)

where x = (x1, . . . ,xq) and Xs = (X (1)
1 , . . . ,X (q)

1 ). This is called the Nadaraya-
Watson estimator.

6.3.2 Product kernel

In practice product kernels are used, i.e.,

kq(h−1x) =
q

∏
i=1

k(xi/hi) (6.18)

where k is a kernel of order 1.
Assuming that hi = h, i = 1, . . . ,q the following generalization of the

one-dimensional case in (6.14) is obtained

ĝ(x1, . . . ,xq) =
1
n ∑

n
s=1 Ys ∏

q
i=1 k{h−1(xi−X (i)

s )}
1
n ∑

n
s=1 ∏

q
i=1 k{h−1(xi−X (i)

s )}
. (6.19)
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6.3.3 Non-parametric estimation of the pdf

An estimate of the probability density function (pdf) is Robinson [1983]

f̂ (xi1 , . . . ,xid ) =
1

n− id + i1

n+i1

∑
s=id+1

d

∏
j=1

h−1k{h−1(xi j −Xs−i j)}. (6.20)

6.3.4 Non-parametric LS

If we define the weight Ws(x) by

Ws(x) =
∏

q
i=1 k{h−1(xi−X (i)

s )}
1
n ∑

n
s=1 ∏

q
i=1 k{h−1(xi−X (i)

s )}
(6.21)

then it is seen that Equation (6.19) corresponds to the local average:

ĝ(x1, . . . ,xq) =
1
n

n

∑
s=1

Ws(x)Ys. (6.22)

The estimate is actually a non-parametric least squares estimate at the
point x. This is recognized from the fact that the solution to the least squares
problem

argmin
θ

1
n

n

∑
s=1

Ws(x)(Ys−θ)2 (6.23)

is given by

θ̂LS(x) =
∑

n
s=1 Ws(x)Ys

∑
n
s=1 Ws(x)

. (6.24)

This shows that at each x, the estimate ĝ is a scaled weighted LS location
estimate, i.e.,

ĝ(x) = θ̂LS
1
n

n

∑
s=1

Ws(x). (6.25)

6.3.5 Bandwidth

The bandwidth h determines the smoothness of ĝ. In analogy with smoothing
in spectrum analysis:
• If h is small the variance is large but the bias is small.
• If h is large the variance is small but the bias is large.
The limits provide some insight:
• As h→ ∞ it is seen that ĝ(x1, . . . ,xq) = Ȳ as all data are included and given

equal weights.

• As h→ 0 it is seen that ĝ(x1, . . . ,xq) = Yi for (x1, . . . ,xq) = (X (1)
i , . . . ,X (q)

i )
and otherwise undefined (or possibly 0 depending on how ratios of zeros
are defined).
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6.3.6 Selection of bandwidth — cross validation

The ultimate goal for the selection of h is to minimize the mean square error
(MSE)(see Härdle [1990])

MSE(h) =
1
n

n

∑
i=1

[ĝ(X (1)
i , . . . ,X (q)

i )−g(X (1)
i , . . . ,X (q)

i )]2× (6.26)

w(X (1)
i , . . . ,X (q)

i ) (6.27)

where w(. . .) is a weight function which screens off some of the extreme ob-
servations, and g is the unknown function. A solution is the “plug-in” method,
where Yi is used as an estimate of g(X (1)

i , . . . ,X (q)
i ) in (6.26).

Hence, the criterion is

M̂SE(h) =
1
n

n

∑
i=1

[ĝ(X (1)
i , . . . ,X (q)

i )−Yi]
2w(X (1)

i , . . . ,X (q)
i ) (6.28)

but it is clear that M̂SE(h)→ 0 for h→ 0, since yi− ĝ(x(1)i , . . . ,x(q)i )→ 0 when
h→ 0.

It is clear that a modification is needed! In the “leave one out” estimator
the idea is to avoid that (X (1)

i , . . . ,X (q)
i ) is used in the estimate for Yi. For every

data (X (1)
i , . . . ,X (q)

i ,Yi) we define an estimator ĝ(i) for Yi based on all data ex-

cept (X (1)
i , . . . ,X (q)

i ). The n estimators ĝ(1), . . . , ĝ(n) (called the “leave one out”
estimators) are written

ĝ( j)(x1, . . . ,xq) =
1

n−1 ∑s6= j Ys ∏
q
i=1 k{h−1(xi−X (i)

s )}
1

n−1 ∑s6= j ∏
q
i=1 k{h−1(xi−X (i)

s )}
. (6.29)

Now the cross-validation criterion using the “leave one out” estimates
ĝ(1), . . . , ĝ(n) is

CV (h) =
1
n

n

∑
i=1

[ĝ(i)(X
(1)
i , . . . ,X (q)

i )−Yi]
2w(X (1)

i , . . . ,X (q)
i ). (6.30)

It can be shown that under weak assumptions the estimate of the bandwidth
ĥ that is obtained by minimizing the cross-validation criterion is asymptotic
optimal, i.e., it minimizes (6.26) (Härdle [1990]). An example of using the CV
procedure is shown in Figure 6.7.

6.3.7 Variance of the non-parametric estimates

To assess the variance of the curve estimate at point x Härdle [1990] proposes
the pointwise estimator given by

σ̂
2(x) =

1
n

n

∑
s=1

Ws(x)(ĝ(Xs)−Ys)
2 (6.31)
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where the weights are given as shown previously by

Ws(x) =
∏

q
i=1 k{h−1(xi−X (i)

s )}
1
n ∑

n
s=1 ∏

q
i=1 k{h−1(xi−X (i)

s )}
. (6.32)

Remembering the WLS interpretation this estimate seems reasonable.

6.4 Applications of kernel estimators

6.4.1 Non-parametric estimation of the conditional mean and variance

Assume a realization of a stochastic process {X1, . . . ,Xn}.
Goal: Use the realization to estimate the functions g(·) and h(·) in the

model
Xt = g(Xt−1, . . . ,Xt−p)+h(Xt−1, . . . ,Xt−q)εt . (6.33)

For the conditional mean and the conditional variance we shall use the
notation

M(xi1 , . . . ,xid ) = E[Xt |Xt−i1 = xi1 , . . . ,Xt−id = xid ], (6.34)
V (xi1 , . . . ,xid ) = Var[Xt |Xt−i1 = xi1 , . . . ,Xt−id = xid ]. (6.35)

One solution is to use the kernel estimator (other possibilities are splines,
nearest neighbour or neural network estimates).

Using a product kernel we obtain

M̂(xi1 , . . . ,xid ) =

1
n−id ∑

n
s=id+1 Xs ∏

d
j=1 k{h−1(xi j −Xs−i j)}

1
n−id+i1 ∑

n+i1
s=id+1 ∏

d
j=1 k{h−1(xi j −Xs−i j)}

. (6.36)

Assuming that E[Xt ] = 0 the estimator for V (·) is

V̂ (xi1 , . . . ,xid ) =

1
n−id ∑

n
s=id+1 X2

s ∏
d
j=1 k{h−1(xi j −Xs−i j)}

1
n−id+i1 ∑

n+i1
s=id+1 ∏

d
j=1 k{h−1(xi j −Xs−i j)}

. (6.37)

If E[Xt ] 6= 0 it is clear that the above estimator is changed to

V̂ (xi1 , . . . ,xid ) =

1
n−id ∑

n
s=id+1 X2

s ∏
d
j=1 k{h−1(xi j −Xs−i j)}

1
n−id+i1 ∑

n+i1
s=id+1 ∏

d
j=1 k{h−1(xi j −Xs−i j)}

−M̂2(xi1 , . . . ,xid ). (6.38)

Example 6.3. Simulations of 10 independent time series have been generated
from the following non-linear models:

A : Xt =

{
−0.8Xt−1 + εt , Xt−1 ≥ 0

0.8Xt−1 +1.5+ εt , Xt−1 < 0

B : Xt =
√

1+X2
t−1εt .
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Figure 6.2: Estimated conditional mean M(x).
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Figure 6.3: Estimated conditional variance V (x).

The first model is a SETAR model with non-linear conditional mean and con-
stant conditional variance whereas the second model is an ARCH model with
constant conditional mean and state dependent conditional variance.

A Gaussian kernel with h = 0.6 is used to estimate the conditional mean
(Figure 6.2) and variance (Figure 6.3) in order to detect the nonlinearities.
The theoretical conditional mean and variance is shown with “+”.

6.4.2 Non-parametric estimation of non-stationarity — an example

Non-parametric methods can be applied to identify the structure of the existing
relationships leading to proposals for parametric model classes. An example of
identifying the diurnal dependence in a non-stationary time series is given in
the following.

Measurements of heat supply from 16 terrace houses in Kulladal, a suburb
of Malmö in Sweden, are used to estimate the heat load as a function of the
time of the day.
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Figure 6.4: Supplied heat to 16 houses in Kulladal/Malmö during February
1989.

The heat supply was measured every 15 minutes for 27 days. The transport
delay between the consumers and the measuring instruments is not more than
a couple of minutes.

Figure 6.5: Supplied heat versus time of day and night.
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Figure 6.6: Smoothing of the diurnal power load curve using an Epanechnikov
kernel and bandwidths 0.125, 0.625,. . . , 3.625.

It is assumed that the heat supply can be related to the time of day, and that
there is no difference between the days for the considered period. Then the
regression curve is a function only of the time of day, and it is this functional
relationship, which will be considered.

Figure 6.6 shows the Epanechnikov curve estimate calculated for a spec-
trum of bandwidths. It is clear that the characteristics of the non-smoothed
averages gradually disappear, when the bandwidth is increased.

When the cross-validation function is brought into action for bandwidth
selection on the original data we get the result shown in Figure 6.7. Obviously
the minimum of the CV-function is obtained for a bandwidth close to 1.3.

6.4.3 Non-parametric estimation of dependence on external variables — an
example

This example illustrates the use of kernel estimators for exploring the (static)
dependence on external variables. Data were collected in the district heating
system in Esbjerg, Denmark, during the period August 14 to December 10,
1989.
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Figure 6.7: CV-function applied on the original district heating data (Kul-
ladal/Malmö) using the Epanechnikov kernel.

The interest in this example is the heat load in a district heating system,
when the two most influential explanatory variables in district heating systems,
i.e., ambient air temperature and supply temperature, are included in the study.

For the estimation of the regression surface the kernel method is applied
using the Epanechnikov kernel (6.15). A product kernel is used, i.e., the power
load estimate, p, at time t, at ambient air temperature a and, for supply, tem-
perature s is estimated as

p̂ht ,ha,hs(t,a,s) =

3843

∑
i=1009

p(i)Kht (t− t(i))Kha(a−a(i))Khs(s− s(i))

3843

∑
i=1009

Kht (t− t(i))Kha(a−a(i))Khs(s− s(i))

(6.39)

where Kh(u) = k(u/h). The bandwidths were chosen using a combination of
Cross-Validation and visual inspection.

6.4.4 Non-parametric GARCH models

The very large number of parametric GARCH models makes model selec-
tion non-trivial (Bollerslev [2008] for a recent overview of different models).
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Figure 6.8: Heat load p(t) versus ambient air temperature a(t) and supply tem-
perature s(t) from August 14th to December 10th in Esbjerg, Denmark.

(a) Kernel estimate of the dependence
on time of day, td , ambient air tem-
perature, a, and supply temperature, s,
shown at td = 7.

(b) Pointwise estimate of standard de-
viation of the surface estimates as a
function of ambient air temperature, a,
and supply temperature, s .

Non-parametric GARCH models were introduced by Bühlmann and McNeil
[2002] as an alternative to the non-parametric models. Their model is defined
as

Xt = σtZt (6.40)

σ
2
t = f (Xt−1,σ

2
t−1) (6.41)
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where {Zt} is an iid sequence of zero mean, unit variance random variables.
Their basic idea is to start from a parametric GARCH model, and iteratively
improve the estimate of the volatility function. Their algorithm is given by:
1. Estimate a simple GARCH model, recovering an approximation of the

volatility {σt,0 : 1≤ t ≤ n}.
2. Regress X2

t against Xt−1 and σ2
t−1,m−1 to estimate the unknown function

f (·, ·), denoted f̂m(·, ·), for m = 1, . . .M.
3. Calculate σ̂2

t,m from the estimated function f̂m(·, ·).
The algorithm iterates between step 2 and 3 until the estimated function f̂ (·, ·)
has converged.

The method was evaluated in a simulation, where the volatility is given by

f (x,σ2) = 5+0.2x2 +(0.751{x>0}+0.1 ·1{x<0})σ
2. (6.42)

It was shown in Bühlmann and McNeil [2002] that the algorithm typically
converges in just a few iterations, but they also argue that it can be worthwhile
to iterate a few extra times, and use the average over the estimated volatility
surfaces as the final volatility forecast.

The non-parametric GARCH model was successfully used to forecast
crude oil price return volatility in Hou and Suardi [2012]. This is an excellent
application of the model, as the price dynamics of many commodities often are
more complex than those of, say, equities.

6.5 Notes

The reader is encouraged to dig into Härdle [1990] for a more complete
overview of non-parametric methods and Robinson [1983] for details on how
this can be applied to dependent data.

Alternatively, semiparametric methods are nowadays an options (Ruppert
et al. [2003]). The explanatory properties of semiparametric methods are sim-
ilar to non-parametric methods (Härdle [2004], Hastie et al. [2009]), but there
are times when these are easier to apply to data.



Chapter 7

Stochastic calculus

In this and the following chapter, stochastic differential equations will be for-
mally introduced. This exposition to stochastic calculus does not pretend to
be complete. The presentation will be guided by intuition, and important top-
ics and results from a practitioner’s point of view will covered at a reason-
able mathematical level. General measure theory and other technicalities of
a (purely) mathematical interest will be kept at a minimum, but the reader is
referred to Arnold [1974], Karatzas and Shreve [1996], Ikeda and Watanabe
[1989] and Øksendal [2010] for a detailed account. It should be emphasized
that the material in this chapter is not only of interest in mathematical finance.
To stress the broad applicability, this chapter does not contain new financial
concepts or ideas. A detailed account of these are deferred to the following
chapters.

As the successful application of stochastic differential equations in math-
ematical modelling requires quite a substantial mathematical and statistical
setup, we shall now argue why we should bother to consider them.

Application of the nonparametric methods (introduced in Chapter 6) on
financial time series revealed some characteristics (e.g., heteroscedasticity)
which linear time series models cannot explain, because their conditional mean
functions are linear and their conditional variance functions are constants. This
is clearly at odds with the small scale empirical studies reported in these notes
(and the adjacent exercises) and the large scale studies reported in the open
literature. A large number of nonlinear time series models were introduced (in
Chapter 5) to model heteroscedasticity. In particular, the GARCH-type models
and their numerous extensions performed reasonably well. However, there are
a number of important reasons for using differential equations augmented by
some kind of randomness or stochasticity.
• It is difficult to interpret the parameters of, say, an ARCH(3) model, whereas

the embedded parameters in a stochastic differential equation model may
have some physical or financial interpretation. A formal relationship be-
tween some SDEs and GARCH models may be derived, but that is outside
the scope of this book.
• Numerous financial products (stocks, foreign exchange rates, etc.) are

traded very often or very irregularly on the markets. Thus a reasonable

117
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approximation is to use continuous-time models, and stochastic differential
equations provide a framework for describing heteroscedasticity.
• Beside, being continuous in time, stochastic differential equations are also

continuous in state, e.g., a stock price may be any positive, real number.
As opposed to the finite number of states ωi considered in Chapter 3, the
uncertainty associated with a future stock price is modelled by considering
a continuous distribution. Although stock prices are often quoted in ticks or
units of, say, $1/8, we shall consider the number of possible prices as being
practically infinite. See Epps [1996] for a discussion of the discrete state
case.

Stochastic differential equations entail the best of two worlds, i.e., a combi-
nation of physical knowledge (laws of motion, preservation of energy etc.)
that may be used to develop a deterministic model of the system and statis-
tical methods for parameter estimation and model validation. This allows the
modeller to model causality as well as correlation, where causality may be con-
sidered as superior to the correlation functions used in traditional time series
analysis. There are a number of disadvantages associated with the use of SDEs;
one major disadvantage is the advanced probability theory involved. From an
empirical point of view, it is by no means trivial to estimate parameters in
SDEs, but we shall get back to that in later chapters.

The remainder of this chapter is organized as follows: Section 7.1 briefly
considers adding stochasticity to dynamical systems. Section 7.2 informally
introduces stochastic calculus while 7.3 considers stochastic integrals. Section
7.4 introduces concepts from stochastic processes and probability theory, and
formally introduces Itō calculus. Finally, Section 7.5 provides a brief overview
of jump processes and some convenient related mathematical tools.

7.1 Dynamical systems

Assume that we wish to model a general physical, chemical or technical sys-
tem. Mathematical modelling of such systems often leads to the formulation of
a system of coupled (nonlinear) differential equations, which may, in general,
be written on the form

dX(t)
dt

= Ẋ(t) = f(t,X(t)), (7.1)

where f(t,X(t)) describes the time-directed evolution of the so-called state
variables X(t) ∈ Rn. The state variables describe the state of the system at
time t in the state space.

The derivation of these equations is often based on a number of concep-
tual, mathematical and numerical approximations and the validity of these are
difficult to evaluate per se.

By adding a stochastic term to (7.1) to account for these approximations
random differential equations are obtained as illustrated in these examples.
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Example 7.1 (Money market account). Consider the simple money market
account introduced in Definition 2.2 on page 27, i.e.,

dB(t) = r(t)B(t)dt, (7.2)
B(0) = 1, (7.3)

where B(t) is the value of the money account at time t, and r(t) denotes the
relevant (there are many different ones!) interest rate.

It is very likely that the interest rate evolves randomly over time, i.e., we
have

r(t) = r̃(t)+σ"noise"(t) (7.4)

where r̃(t) is assumed to be deterministic. If we insert this in (7.2), we get

dB(t) = (r̃(t)+σ"noise"(t))B(t)dt, B(0) = 1 (7.5)

where σ denotes the standard deviation of the noise. The question is now how
do we formalize the concept of "noise" such that (7.5) makes sense and how do
we solve it?

Example 7.2 (Stock prices). We have previously argued that the volatility of
stock prices, foreign exchange rates and interest rates depend on the current
level, i.e.,

dS(t) = αS(t)dt + "noise"(t)S(t)dt, S(0) = s (7.6)

which is essentially similar to (7.5).
Example 7.3 (Simple Black–Scholes). Consider a simple financial market
with two assets:

1. A risky asset, where the price of the asset S(t) at time t is described by (7.6),
and

2. a safe asset, namely the money market account (7.2).
We propose the model

dS(t) = αS(t)dt + "noise"(t)S(t)dt, S(0) = s (7.7)
dB(t) = r(t)B(t)dt, B(0) = 1. (7.8)

We get the celebrated Black–Scholes model, when we choose the so-called
Brownian motion for the noise process in (7.7). This model will be described
in detail later.

The discussion above raises a number of questions about the mathematical
and statistical nature of the added stochastic term. This chapter is devoted to
answering these questions.
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7.2 The Wiener process

The point of departure in our search for a formal definition of the noise terms
in the previous examples will be the random difference equation (7.9) with
∆W (t) =W (t +∆t)−W (t).

X(t +∆t)−X(t) = µ(t,X(t))∆t +σ(t,X(t))∆W (t) (7.9)

where W (t) is a normally distributed random variable with zero mean and a
variance that is proportional to ∆t. Furthermore W (t) is assumed to be inde-
pendent of all prior values of the process Ws, s < t, and µ(·, ·) and σ(·, ·) are a
priori known functions.
Remark 7.1 (Other driving processes). The driving noise process W (t) in the
random difference equation (7.9) need not be a normally distributed random
variable. It could easily be, say, a Poisson process or a compound Poisson
process, which could account for completely unpredictable phenomena, such
as attacks on some currency in the foreign exchange markets or the effects of
earthquakes. We will present a brief introduction to jump processes in Sec-
tion 7.5.

In order to obtain a more mathematical description of (7.9), a more formal
definition of the noise process W (t) is required. In particular, we need a process
that generates mutually independent and identically distributed normal random
variables with zero mean and a variance that is proportional to ∆t. A definition
that also makes sense when we consider the limiting behaviour of (7.9) as ∆t
tends to 0.

One possibility is to consider a Brownian motion, named after the Scottish
botanist Robert Brown, who used the process to describe the irregular move-
ments of pollen suspended in water. This random movement, usually attributed
to the buffeting of the pollen by water molecules, results in a diffusion of the
pollen in the water. Brownian motion is thus a physical example of a random
and continuous stochastic process.

A standard Wiener process is an abstract mathematical description of the
physical process of Brownian motion. The mathematical properties defining a
Wiener process, {W (t), t ≥ 0}, are given in
Definition 7.1 (The Wiener process). A stochastic process [W (t); t ≥ 0] is said
to be a Wiener process if it satisfies the following conditions:

1. W (0) = 0 with probability 1 (w.p.1).

2. The increments W (t1)−W (t0),W (t2)−W (t1), . . . ,W (tn)−W (tn−1) of the
process for any partitioning of the time interval 0 ≤ t0 < t1 < .. . < tn < ∞

are mutually independent.
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3. The increments W (t)−W (s) for any 0≤ s < t are normally distributed with
mean and variance, respectively,

E [W (t)−W (s)] = 0, (7.10)
Var [W (t)−W (s)] = t− s, (7.11)

i.e., W (t)−W (s) ∈ N(0, t− s).

4. W (t) has continuous trajectories.

It follows from (7.10) that the mean of the process is zero for any time
interval, whereas the variance grows unboundedly as the length of the time
interval t− s is increased.

Using this definition of the Wiener process, we can write (7.9) as

X(t +∆t)−X(t) = µ(t,X(t))∆t +σ(t,X(t))∆W (t) (7.12)

where
∆W (t) =W (t +∆t)−W (t). (7.13)

Let us now try to formalize (7.9) slightly by dividing through by ∆t and then
letting ∆t tend to 0. Formally we should obtain

Ẋ(t) = µ(t,X(t))+σ(t,X(t))V (t), X(0) = x (7.14)

where we have added an initial value x and introduced V (t) as the formal time
derivative of the Wiener process.

Assuming that V (t) is a well defined process, it should now be possible to
solve (7.12) for every realization or trajectory of V (t). It can be shown that the
process V (t) is unfortunately not well defined as the Wiener process is nowhere
differentiable, although it is continuous. For illustration consider the limit

lim
h→0

E
[
(W (t +h))2

]
−E

[
(W (t))2

]
h

=
t +h− t

h
= 1.

Thus in a mean square sense the derivative of the Wiener process W (t) is not
the derivative process V (t) = Ẇ (t) as defined above.

The Wiener process is a Markov process as well as a martingale as we
shall see later. The sample paths (realizations) of the process are continuous
with probability one, but they are nowhere differentiable with probability 1
due to the (independent) increments (see e.g. Øksendal [2010] for a rigorous
proof).

Another approach is to let ∆t tend to zero in (7.12) without dividing through
by ∆t. Formally we get

dX(t) = µ(t,X(t))dt +σ(t,X(t))dW (t), X(0) = x (7.15)
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and it is natural to interpret (7.15) as a shorthand notation for the following
integral equation

X(t) = x+
t∫

0

µ(s,X(s))ds+
t∫

0

σ(s,X(s))dW (s). (7.16)

The ds integral may be interpreted as an ordinary Riemann integral, whereas
the natural interpretation of the dW (s) integral is as an Riemann-Stieltjes inte-
gral for every trajectory of W . Unfortunately this is not reasonable as it can be
shown that the process W (t) is of unbounded variation, i.e. the dW (s) integral
in (7.16) is divergent.

Strictly speaking, the notation in (7.15) does not make any sense as it de-
scribes the infinitesimal evolution of X(t), which is driven by a Wiener process
with unbounded variation. We shall, however, use the notation (7.15) for con-
venience repeatedly in the following, but it should be remembered that it is
only shorthand for (7.16).

The remaining questions are now
• how do we formalize the stochastic integral in (7.16),
• how do we define the adjacent stochastic calculus and
• how do we analyze (7.15) in this framework?

7.3 Stochastic Integrals

Although the Wiener process has some simple probabilistic properties it is
by no means simple to define stochastic integration with respect to a Wiener
process, because the trajectory of a Wiener process is very odd. Let us list some
of its peculiar properties
• As a Wiener process is of unbounded variation, it will eventually hit every

real value no matter how large or how negative.
• Once a Wiener process hits a value, it immediately hits it again infinitely

often, and then again from time to time in the future.
• It does not matter what scale you examine a Wiener process on — it looks

just the same. Thus a Wiener process or Brownian motion pertains to the
same self-similarity property as fractals.
Nevertheless, we intend to introduce the stochastic integral

I(t,ω) =

t∫
0

g(s,ω)dW (s), (7.17)

where g(t,ω) is some suitably, smooth (possibly random) function in the fol-
lowing scheme, which is identical to the definition of the Riemann integral:
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1. Partition the time interval [0, t] into n subintervals of equal length, i.e. define
the time instants 0 = t0 < t1 < .. . < tn = t.

2. Define for each trajectory ω an approximate integral In(ω) by

In(t,ω) =
n−1

∑
k=0

g(τk,ω)[W (tk+1,ω)−W (tk,ω)] (7.18)

where τk is some arbitrarily chosen time in the interval [tk, tk+1).
3. Finally, we let n tend to infinity and hope that In(ω) to some limit I, which

we shall use to define the integral (7.17).
The objective of the following discussion is to show that it is important

where in the time interval [tk, tk+1[ the function g(τk,ω) is evaluated. Recall
that various choices of τk,∈ [tk, tk+1) yield the same results in ordinary calcu-
lus. We shall now show that this does not hold for stochastic calculus.

As an example, let us consider the case g(t) =W (t), i.e. we wish to com-
pute the stochastic integral

I(t) =
t∫

0

W (s)dW (s) (7.19)

where we choose to compute the integral from t0 = 0 instead of the more gen-
eral t0, because we may use that W (0) = 0 to obtain a shorter formula.

As a preparation it is convenient first to consider the quadratic variation of
W (t) on the interval [0, t], i.e. we commence by considering the integral∫ t

0
(dW (s))2. (7.20)

Thus we introduce the notation ∆Wk =W (tk+1)−W (tk) and define the stochas-
tic variable

Sn =
n−1

∑
k=0

(∆Wk)
2. (7.21)

If the Wiener process was differentiable, we would expect that Sn would con-
verge to zero as n tends to infinity, because the time interval [0, t] is finite. Let
us introduce the subintervals ∆t = tk+1− tk, i.e. ∆t = t/n. From Definition 7.1,
it immediately follows that E

[
(∆Wk)

2
]
= ∆tk and thus

E [Sn] =
n−1

∑
k=0

E
[
(∆Wk)

2]= n−1

∑
k=0

∆tk = t.

The variance of Sn is found by direct calculation

Var [Sn] =
n−1

∑
k=0

Var
[
(∆Wk)

2]= 2
n−1

∑
k=0

(∆tk)2 = 2n
( t

n

)2
=

2t2

n
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where it is used that (∆Wk)
2 ∈ ∆tkχ2(1). It is well known that a sum of N χ2(1)

distributed random variables is a χ2(N) distributed variable with mean N and
variance 2N. In other words, we have

Var [Sn] = E
[
(Sn−E [Sn])

2]= E
[
(Sn− t)2]= 2t2

n

and thus
lim
n→∞

E
[
(Sn− t)2]= 0.

In this case, we say that Sn converges towards t in a mean square sense or in
the space L2(dP× dt). This result is the foundation of the so-called Itō for-
mula, which plays a fundamental role in stochastic calculus as the stochastic
counterpart of the well-known chain rule from ordinary calculus.

The main result may be restated in differential form as

(dW (t))2 = dt. (7.22)

Formally this metatheorem does not make any sense, but it is worth noticing
that it states that the square of a stochastic increment yields a purely determin-
istic property. Do, please, remember this result.

Let us return to the evaluation of (7.19). We proceed in a similar fashion
as above by constructing sums of the form (7.21). We consider two different
sums which evaluate the W (t) part at either the left hand side of the interval
[tk, tk+1[, τk = tk, or the right hand side τk = tk+1, i.e.

An =
n−1

∑
k=0

W (tk)(W (tk+1)−W (tk)) (τk = tk), (7.23)

Bn =
n−1

∑
k=0

W (tk+1)(W (tk+1)−W (tk)) (τk = tk+1). (7.24)

We immediately get the identities

An +Bn =W 2(t), (7.25)

Bn−An =
n−1

∑
k=0

(∆Wk)
2 = Sn, (7.26)

for n→∞, where Sn is given by (7.21). It immediately follows that Bn−An→ t
in L2 as n→ ∞. We therefore get the limits

An→ A,

Bn→ B,
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where

A =
W 2(t)

2
− t

2
, (7.27)

B =
W 2(t)

2
+

t
2
. (7.28)

These results show that the value of the stochastic integral (7.19) depends crit-
ically on the placement of τk in the interval [tk, tk+1), i.e. the integral depends
on where the integrand is evaluated in the interval [tk, tk+1). Needless to say,
this is not the case in ordinary calculus.

By choosing τk = tk, we get the enormously important Itō integral, which
yields

t∫
0

W (s)dW (s) =
W 2(t)

2
− t

2
. (7.29)

By choosing τk = tk+1, we get

t∫
0

W (s)dW (s) =
W 2(t)

2
+

t
2
. (7.30)

Note that in both cases, we get the additional term t/2 compared to ordinary
calculus. Finally, choosing tk = (tk + tk+1)/2 yields the Stratonovich integral

t∫
0

W (s)dW (s) =
W 2(t)

2
, (7.31)

which is similar to classical calculus. However, there is a consensus that the
Itō integral is the only appropriate integral for financial modelling.

7.4 Itō stochastic calculus

In this section we formally introduce the Itō stochastic integral. Therefore
some concepts from probability theory will be repeated for convenience.

We assume the existence of a filtered probability space (Ω,F ,P), where
F is a σ -algebra on the sample space Ω of possible outcomes, (Ω,F ) is a
measurable space and P : F 7→ [0,1] is some probability measure.
Definition 7.2 (Filtration). A filtration on (Ω,F ) is a family {F (t)}t≥0 of
σ -algebras F (t)⊂F such that

F (s)⊆F (t) for 0≤ s < t.

Generally speaking, F (s) denotes the set of events (or the information
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set) up to time s. The natural filtration {F (t)}t≥0 is increasing and right con-
tinuous, i.e. at time t, 0 ≤ s < t, more information is available (or, at least,
information is not lost) F (s) ⊂ F (t) than at time s and in the limit com-
plete information is obtained F (∞) = F . Application of the natural filtration
{F (t)}t≥0 implies that information about X(t) in (7.15) must be deduced from
observations of X(t) as opposed to, e.g., Y (t) = f (X(t)), where f : R 7→ R is
some nontrivial (possibly nonlinear) function.
Example 7.4. Consider the function Y (t) = |X(t)|. Here, the value of Y (t) is
known when knowing X(t), but the converse does not hold.

Remark 7.2. Consider a stochastic variable X(t) as a function X(t) : Ω 7→ R
that maps the sample space Ω into R. If {ω ∈Ω : X(t,ω)≤ x} ∈F for each
x ∈ R, then X(t) is said to be F (t)-measurable.

Definition 7.3 (Martingale). A stochastic process {X(t), t ≥ 0} on the prob-
ability space (Ω,F ,P) is called a martingale with respect to a filtration
{F (t)}t≥0 if

1. X(t) is F (t)-measurable for all t

2. E [|X(t)|]< ∞ for all t, and

3. E [X(t)|F (s)] = X(s) for all s≤ t.

Definition 7.4 (Adapted process). The stochastic process X(t) is adapted to
the filtration F (t) if X(t) is an F (t)-measurable random variable for each
t ≥ 0.

Remark 7.3 (Adaptedness). It is instructive to think of measurability and
adaptedness in the sense that if a function g(t) is said to be F (t)-measurable,
then it essentially means that g(t) is known at time t.

Example 7.5. A Wiener process W (t) that is adapted to a given filtration F (t)
possesses the property that

W (t)−W (s) is independent of Fs. (7.32)

The process W (t) is then said to be a Ft -Wiener process.

Please, refer to the Appendix for a more detailed exposition to these con-
cepts or consult the references given in the introduction to this chapter.
Definition 7.5 (The class L 2). Let L 2[a,b] denote the class of processes
g(s,ω) that satisfies the conditions:

• The function g(s,ω) is F (s)-adapted.

• The integral
b∫

a

E
[
(g(s,ω))2]ds < ∞ (7.33)

is finite.
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For some a≤ b we now define the stochastic integral

b∫
a

g(s,ω)dW (s) (7.34)

for all g ∈ L 2[a,b]. We shall only consider simple functions (to be defined
below) and leave the generalization to the interested reader.

Assume that g is simple, i.e. there exist deterministic time instants a = t0 <
t1 < .. . < tn = b such that

g(s,ω) = g(tk,ω) for s ∈ [tk, tk+1[

where
g(tk,ω) ∈F (tk) k = 0, . . . ,n.

In other words g(tk,ω) is F (tk)-measurable, i.e. g(tk) is known at time tk.
For a simple process g we define the stochastic integral by a sum similar to

(7.23)
b∫

a

g(s,ω)dW (s) =
n−1

∑
k=0

g(tk,ω)(W (tk+1)−W (tk)). (7.35)

It is inherently important that we define the incremental Wiener process in
terms of the forward differences W (tk+1)−W (tk).
Theorem 7.1 (Stochastic integration rules). Let g and h be simple processes
that satisfy (7.33) and let α,β be real numbers. The following rules apply

• Stochastic integrals are linear operators

b∫
a

(αg(s)+βh(s))dW (s) = α

b∫
a

g(s)dW (s)+β

b∫
a

h(s)dW (s). (7.36)

• The unconditional expectation of a stochastic integral when g ∈L 2[a,b] is
zero

E

 b∫
a

g(s)dW (s)

= 0. (7.37)

• Stochastic integrals are measurable with respect to the filtration generated
by the Wiener process, i.e.

b∫
a

g(s)dW (s) is F (b)−measurable. (7.38)
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• Stochastic integrals when g ∈L 2[a,b] are martingales

E

 b∫
a

g(s)dW (s)
∣∣∣∣F (a)

= 0. (7.39)

• The Itō isometry is a convenient way of computing variances when g ∈
L 2[a,b]

E


 b∫

a

g(s)dW (s)

2
=

b∫
a

E
[
g2(s)

]
ds (Itō isometry). (7.40)

• It also applies to covariance

E

 b∫
a

g(s)dW (s)

 b∫
a

h(s)dW (s)

=

b∫
a

E [g(s)h(s)]ds. (7.41)

Proof. That the Itō integral is a linear operator is trivial and is left as an exer-
cise for the reader.

To make the notation less cumbersome, we introduce the entities

gk = g(tk), ∆Wk =W (tk+1)−W (tk), ∆tk = tk+1− tk, Fk = F (tk). (7.42)

We get

E

 b∫
a

g(s)dW (s)

=
n−1

∑
k=0

E [gk∆Wk] . (7.43)

If we use the fact that the process gk is adapted to the filtration F (tk), we get

E [gk∆Wk] = E [E [gk∆Wk|F (tk)]] = E [gkE [∆Wk|F (tk)]] , (7.44)

where we have used the standard trick (iterated expectations) of introducing a
conditioning argument and taken the expectation with respect to that argument.
As the Wiener process has independent increments, we get

E [gkE [∆Wk|F (tk)]] = 0

and we have proved (7.37).
Next we shall prove (7.40). By introducing the well-known sum, we get

E


 b∫

a

g(s)dW (s)

2
= ∑

i, j
E [gig j(∆Wi)(∆Wj)]

where we need to consider two cases:
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1. For i = j, we get

E
[
g2

i (∆Wi)
2]= E

[
E
[
g2

i (∆Wi)
2|Fi

]]
= E

[
g2

i E
[
(∆Wi)

2|Fi
]]

= E
[
g2

i ∆ti
]

= E
[
g2

i
]

∆t.

2. For i 6= j with, say i < j, we get

E [gig j(∆Wi)(∆Wj)] = E [E [gig j(∆Wi)(∆Wj)|F j]]

= E [gig j(∆Wi)E [(∆Wj)|F j]] = 0

as the Wiener increment has the conditional mean 0.
Thus we have

E


 b∫

a

g(s)dW (s)

2
= ∑

i, j
E
[
g2

i
]

∆t =
b∫

a

E
[
g2

i (s)
]

ds. (7.45)

Equation (7.41) may be shown in a similar fashion. Eq. (7.38) follows imme-
diately from the definition of the stochastic integral, and (7.39) is shown as
(7.37).

Remark 7.4 (Itō isometry). Note that (7.40) establishes an isometry between
stochastic integrals and deterministic integrals. This is very useful for the cal-
culation of variances.

Remark 7.5. The rules in Theorem 7.1 may be extended to cover a larger class
of functions than the simple functions considered above by considering Cauchy
sequences in L 2 of simple functions, but we will not go into the details here.

Remark 7.6. It is possible to extend stochastic integration to all adapted pro-
cesses g which satisfy the condition

P

 t∫
0

g2(s)ds < ∞

= 1.

For all such g it is not guaranteed that (7.37), (7.40) and (7.39) are valid, but
the properties (7.38) and (7.36) still hold. These stochastic integrals are known
as local martingales.

It is easy to show that the Wiener process is in itself an P-martingale and it
is a very important consequence of Theorem 7.1 that the martingale property
is preserved with respect to integration of L 2-processes.
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Theorem 7.2 (Continuous trajectories). Assume that g∈L 2[0, t] for all t ≥ 0.
Define the process X by

X(t) =
t∫

0

g(s)dW (s). (7.46)

Then X(t) is a martingale with continuous trajectories.

Proof. By direct calculation we get

X(t) =
t∫

0

g(u)dW (u) =
s∫

0

g(u)dW (u)+
t∫

s

g(u)dW (u)

= Xs +

t∫
s

g(u)dW (u).

Using (7.37) we get

E [X(t)|F (s)] = Xs +E

 t∫
s

g(u)dW (u)
∣∣∣∣F (s)

= X(s).

The continuity of the trajectories is difficult to prove, but it should be intuitively
clear as the Wiener process lacks jumps.

7.5 Extensions to jump processes

It is possible to extend the theory on stochastic integration to discontinuous
processes, Cont and Tankov [2004] being a good start. The simplest example
of a discontinuous process with iid increments is the Poisson process.
Definition 7.6 (Poisson process). A Poisson process is an integer-valued
stochastic process {N(t), t ≥ 0} satisfying the following conditions:

• N(0) = 0 with probability 1 (w.p.1).

• The increments N(t)−N(u) is independent of N(s)−N(0) for t > u≥ s> 0.

• The distribution of N(t)−N(s) ∈ Po(λ (t− s)) where Po is the Poisson dis-
tribution and λ is the so-called intensity of the process.

• The process is continuous in probability.

There are obvious similarities (and differences) between the Wiener pro-
cess (7.1) and the Poisson process.

Jump processes are easier to analyse if we introduce some well-known
transform methods (Fourier transforms, etc.).
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Definition 7.7 (Characteristic function). The Fourier transform of a random
variable or process is called the characteristic function

ψX (u) = E
[
eiuX] . (7.47)

Characteristic functions are incredibly useful in probability, as, e.g., the
distribution of sums of iid random variables is computed using convolution of
the densities. A simpler alternative is to use Fourier methods. This can be seen
by computing the characteristic function for the sum

ψX1+X2(u) = E
[
eiu(X1+X2)

]
= E

[
eiuX1

]
E
[
eiuX2

]
= ψX1(u)ψX2(u), (7.48)

where we use the independence of the random variables to factor the expecta-
tion.
Example 7.6 (Gaussian). The characteristic function for a Gaussian random
variable X with mean µ and covariance Σ is given by

ψ(u) = E
[
eiuX]= eiµT u− 1

2 uT Σu. (7.49)

Example 7.7 (Poisson). The characteristic function for a Poisson random
variable with parameter λ is given by

ψ(u) = eλ(eiu−1). (7.50)

Example 7.8 (Compound Poisson process). A compound Poisson process is
defined as

S(t) =
N(t)

∑
n=1

Yn (7.51)

where N(t) is a Poisson process and {Yn,n ∈ N} are iid random variables
independent of N. The convention is that no terms are included in the sum
before N(t) reaches one

0

∑
n=1

Yn = 0. (7.52)

The compound Poisson process is a nice model for large, unexpected, rare
events such as government interventions, earthquakes, etc.
Theorem 7.3. The characteristic function for a compound Poisson process is
given by

ψS(t)(u) = eλ t(ψY (u)−1), (7.53)

where λ is the jump intensity and ψY (·) is the characteristic function for the
jumps Y .
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Proof. The characteristic function is computed, using iterated expectations as

ψS(t)(u) = E
[
eiuS(t)

]
(7.54)

= E
[
E
[
eiuS(t)|N(t)

]]
= E

[
E
[
eiu(X1(t)+...+XN(t))|N(t)

]]
(7.55)

= E
[
(ψY (u))N(t)

]
. (7.56)

Here, we recognize that this is in fact the probability generating function,
g(z) = E[zN(t)] = eλ t(z−1), for a Poisson random variable, evaluated at ψY (u),
concluding the proof.

Compound Poisson processes, as well as Wiener processes, are special
cases of a more general class of processes, namely Lévy processes.
Definition 7.8 (Lévy process). A cadlag1 process {X(t), t ≥ 0} is called a
Lévy process if it satisfies the following conditions
• X(0) = 0 with probability 1.

• The increment X(t)−X(u) is independent of X(s)−X(0) for t > u≥ s > 0.

• The increments are strictly stationary, i.e. X(t +δ t)−X(t) d
= X(t)−X(t−

δ t).

• The paths are continuous in probability,

lim
h→0

P(|X(t +h)−X(t)|> ε) = 0. (7.57)

Theorem 7.4 (Lévy-Khinchin representation). Let {X(t)} be a Lévy process
with a characteristic triplet (b,Σ,ν). Then

E
[
eiuX(t)

]
= etφ(u) (7.58)

with the characteristic exponent

φ(u) = ibT u− 1
2

uT
Σu+

∫ (
eiuT x−1− iuT x1{|x|<1}

)
ν(dx) (7.59)

where u,b ∈ Rd , Σ is a non-negative d× d matrix and ν is a measure on Rd

with ν({0}) = 0 and
∫

min(‖x‖,1)ν(dx)< ∞.
The first two parameters in characteristic triplet (b,Σ,ν) can be identified

as the drift and diffusion in a Brownian motion with drift; cf. (7.49). The mea-
sure ν is called the Lévy measure and controls the jumps. It is defined, for
some Borel set A ∈B(Rd), as

ν(A) = E [#{t ∈ [0,1] : ∆X(t) 6= 0,∆X(t) ∈ A}] . (7.60)

We will see in Section 9.6 how characteristic functions can be used to value
a large class of options, under rather general models.

1Right continuous with left limits.
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Definition 7.9 (Merton). The Merton model (Merton [1976]), is a simple jump
process. The log spot price is modelled as a compound Poisson process with
Gaussian N (µ,δ 2) jumps with intensity λ

logS(t) = X(t) = logS(0)+ γt +σW (t)+
N(t)

∑
n=0

Yn. (7.61)

The conditional distribution generated by the Merton model is a mixture of
Gaussians. Option prices computed using the Merton model will therefore be
a mixture of Black & Scholes prices.

It follows from Equation (7.49) and Equation (7.53) that the characteristic
function (assuming S(0) = 1) is given by

E
[
eiuX(t)

]
= e

iγtu− σ2u2
2 t+λ t

(
eiµu− δ2u2

2 −1

)
(7.62)

= e
t

(
iγu− σ2u2

2 +λ

(
eiµu− δ2u2

2 −1

))
(7.63)

where the second line presents the characteristic exponent.
We can easily find how to choose the parameter γ such that the discounted

process becomes a martingale. Evaluating the characteristic function in u=−i
yields

φ(−i) = E
[
eiuX(t)

]∣∣∣∣
u=−i

= E
[
eX(t)

]
= E [S(t)] . (7.64)

Doing this for the Merton model gives

E[eS(t)] = exp
[

t
(

γ +
σ2

2
+λ

(
eµ+

δ 2

2 −1
))]

(7.65)

implying that

γ = r̃ = r− σ2

2
−λ

(
eµ+

δ 2

2 −1
)

(7.66)

transforms the discounted price process into a martingale.

Definition 7.10 (Variance Gamma process). The Variance Gamma (VG) pro-
cess (Madan and Seneta [1990]), is a time-shifted Wiener process, where the
time shift is controlled by a Gamma process Γ(t,1,ν). The Variance Gamma
process is then defined as

X(t) = θΓ(t,1,ν)+σW (Γ(t,1,ν)). (7.67)

This definition is very useful for Monte Carlo simulations.
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The characteristic function for a Variance Gamma process (Cont and
Tankov [2004], Hirsa [2013]) is given by

E
[
eiuX(t)

]
=

(
1

1− iuθν +σ2u2ν/2

)t/ν

. (7.68)

Lévy processes that are defined as time-shifted Brownian motions are com-
monly referred to as Subordinated Brownian motions.
Definition 7.11 (NIG process). The Normal Inverse Gaussian (NIG)
(Barndorff-Nielsen [1997]), is similar to the VG process, the difference be-
ing that the time shift process is an Inverse Gaussian (IG) process, rather than
a Gamma process. The corresponding characteristic function is given by

E
[
eiuX(t)

]
= e

(
κ−σ

√
κ2
σ2 +

θ2
σ4−

(
θ

σ2 +iu
)2
)

t
. (7.69)

Definition 7.12 (Time-shifted Lévy processes). The processes Defined in def-
inition 7.9–7.11 all have iid increments, while it is well known that real world
data typically exhibit time varying volatility. This can be achieved by another
time shift, this time using an integrated, positive process. One of the most pop-
ular time shifts is to use an integrated Cox–Ingersoll-Ross (CIR) model (Cox
et al. [1985]) (Stochastic differential equation will be introduced in Chapter 8).
The Cox–Ingersoll-Ross model is given by the stochastic differential equation

dy(t) = κ(η− y(t))dt +λ
√

y(t)dW (t). (7.70)

It is well known that this process is positive. Integrating this process

Y (t) =
∫ t

0
y(s)ds (7.71)

generates a time shift process.
A time-shifted Variance Gamma or NIG process would then be defined as

ZV G−CIR(t) = XV G(Y (t)). (7.72)

The characteristic function can be derived (see Hirsa [2013]), arriving at

E
[
eiuZV G−CIR(t)

]
= ψCIR (−i logψV G(u)) (7.73)

which is rather similar to Equation (7.53). Finally, the characteristic function
for the integrated CIR process is given by

ψCIR(u) = E[eiuY (t)] = A(t,u)eB(t,u)y(0), (7.74)
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where

A(t,u) =
e

κ2ηt
λ2(

cosh( γt
2 )+

κ

γ
sinh( γt

2 )
) 2κη

λ2

(7.75)

B(t,u) =
2iu

κ + γ coth( γt
2 )

(7.76)

with
γ =

√
κ2−2λ 2iu. (7.77)

Time-shifted Lévy processes provide a very good fit to market data (Lind-
ström et al. [2008]).

The characteristic function can also be derived for some stochastic volatil-
ity models, most notably the Heston model (Heston [1993]).
Definition 7.13. The risk-neutral version of the Heston stochastic volatility
model is given by

dS(t) = rS(t)dt +
√

V (t)S(t)dW (S)(t) (7.78)

dV (t) = κ (θ −V (t))dt +σv
√

V (t)dW (V )(t) (7.79)

where the driving Wiener processes are allowed to be correlated on an in-
finitesimal scale dW (S)(t)dW (V )(t) = ρdt.

It can be shown that the characteristic function for the logarithmic stock
price, X(t) = log(S(t)), is given by

ψHeston(u) = exp(iu(log(S(0))+ rt)+C(u)+D(u)V (0)) (7.80)

where

C(u) =
κθ

σ2
V

[
(κ−ρσV ui−d)t (7.81)

−2log
(
(κ−ρσV ui)(1− e−dt)+d(e−dT +1)

2d

)]
D(u) = (1− e−dt)

−iu−u2

(κ−ρσV ui)(1− e−dt)+d(e−dt +1)
(7.82)

d =
√

(ρσV ui−κ)2 +σ2
V (ui+u2). (7.83)

Extending the Heston characteristic function to the Bates model (Bates
[1996]), is rather straightforward.
Definition 7.14. The Bates model is a Heston model, with independent jumps
in the S component, formally defined as

dS(t) = γS(t)dt +
√

V (t)S(t)dW (S)(t)+St−dJ(t) (7.84)

dV (t) = κ (θ −V (t))dt +σv
√

V (t)dW (V )(t) (7.85)
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where the driving Wiener processes once again are allowed to be correlated,
dW (S)(t)dW (V )(t) = ρdt, while J(t) is a compound Poisson process with in-
tensity λ and lognormal distributed jumps of size k such that log(1 + k) ∈
N(µ,δ 2). The jumps are independent of the diffusion part, although it is still
possible to derive the joint characteristics function when the jump intensity is
a linear function of the state variables (Duffie et al. [2003]).

Computing the logarithm of the stock price X(t) = log(S(t)) leads to the
dynamics

dX(t) =
(

γ−λ

(
eµ+

δ 2

2 −1
)
− 1

2V (t)
)

dt +
√

V (t)dW (S)(t)+dJ(t).

(7.86)
The discounted price process will therefore be a risk-neutral martingale if the
risk-free rate in the Heston models is replaced by

r′ = r−λ

(
eµ+

δ 2

2 −1
)
. (7.87)

The characteristic function for the Bates model is, due to the independence
between the jumps and the Wiener processes, given by a multiplication of the

Heston characteristic function, replacing r with r−λ

(
eµ+

δ 2

2 −1
)

, while the

jump term given by

φJumps(u) = e
λ t

(
eiµu− δ2u2

2 −1

)
, (7.88)

leads to the joint expression

φBates(u) = φHeston(u)φJumps(u). (7.89)

7.6 Problems

Problem 7.1
1. Show (7.25).
2. Show (7.27).

Problem 7.2
Referring to (7.18), the important Stratonovitch integrals are obtained by in-
troducing

ξk =
tk + tk+1

2
,

i.e. the integrand is evaluated at the midpoint of the interval [tk, tk+1[.
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1. Compute the integral
t∫

0

W (s)dW (s)

in the Stratonovitch sense.
Although it may be shown that Stratonovitch integrals are neither Markov

processes nor martingales, they are important for theoretical work because the
ordinary chain rule applies for variable transformations.

Problem 7.3
Let B(t) denote a standard Brownian motion (a Wiener process) on the proba-
bility field (Ω,F ,P) and let F (t) be the natural filtration generated by B(t).
1. Show that B(t) is a martingale.
2. Show that only one of the following is a martingale

M(t) = B(t)2,

M̃(t) = B(t)2− t.

3. Use this result to give an intuitive explanation of the martingale property.
(Hint: Sketch a realization of the two processes.)
4. Show that N(t) = B(t)3−3tB(t) is a martingale.





Chapter 8

Stochastic differential equations

Having established stochastic calculus in the Itō sense in the last chapter, we
are now prepared to consider stochastic differential equations. For ease of no-
tation, we shall in general only state the important results for univariate SDEs,
but a few results will be generalized to multivariate SDEs.

We repeat that the notion of stochastic differential equations (SDEs) is
merely a shorthand notation for stochastic integral equations. The latter may
be defined in several ways, but we restrict our discussion to stochastic integrals
in the Itō sense. Unfortunately, this implies that the well-known chain rule for
variable transformations must be replaced by the so-called Itō formula, which
will be introduced in the multivariate case. This formula may be used to ob-
tain closed form solutions of some SDEs. Besides, it just makes Itō stochastic
calculus more tedious.

In the following exposition to stochastic differential equations, we shall
only use the Wiener process as the driving noise process. We recall that the
Wiener process is both a Markov process and a martingale, and that the mean
of the stochastic integral (in the Itō sense) of any square integrable, adapted
process with respect to a Wiener process, is zero.

Stochastic differential equations driven by, e.g., a Poisson process (or jump
processes, counting processes or marked point processes) are gaining ground
in the financial literature (Cont and Tankov [2004] for a gentle overview).
However, a considerable extension of the measure-theoretical concepts of
adaptedness and predictability is required, which is beyond the scope of this
book. It is duly noted that the topics covered in this chapter may be generalized
to cover the very general class of square integrable processes (see e.g. Björk
[2009], Karatzas and Shreve [1996], Ikeda and Watanabe [1989] for details).

The remainder of this chapter is organized as follows: Section 8.1 intro-
duces stochastic differential equations. Section 8.2 considers analytical solu-
tion methods. Section 8.3 considers a link between parabolic partial differential
equations (PDEs) and SDEs, which we shall use later in order to avoid solving
such PDEs. Section 8.4 introduces continuous measure transformations, which
will be used in later chapters.

139
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8.1 Stochastic Differential Equations

We assume the existence of a probability space (Ω,F ,P), where F is a σ -
algebra on the sample space Ω of possible outcomes, and (Ω,F ) is a measur-
able space and P : F 7→ [0,1] is a probability measure. Let the drift µ : R 7→R
and the diffusion σ : R 7→ R be Borel-measurable functions1 and assume that
Xt : Ω 7→ R is a solution to the time-homogeneous Itō stochastic differential
equation

dX(t) = µ(t,X(t))dt +σ(t,X(t))dW (t), X(0) = x0 (8.1)

where {W (t), t ≥ 0} is a standard Wiener process defined on the probabil-
ity space (Ω,F ,P) equipped with the natural filtration {F (t)} generated by
W (t).

The standard Wiener process is defined in Definition 7.1; the concepts of
filtration, martingales and adaptedness are defined in Definitions 7.2, 7.3 and
7.4. Please refer to Appendix A for a detailed discussion of these concepts.

Let us give a number of examples to illustrate the following discussion.
Example 8.1 (The Wiener process). Consider the Wiener process

dX(t) = σdW (t), X(0) = x0 (8.2)

where σ is the standard deviation of the process and x0 is a deterministic initial
condition, which is short for

X(t) = x0 +

t∫
0

σdW (s).

From the definition of the Wiener process (Definition 7.1), it immediately fol-
lows that

X(t) = x0 +σ(W (t)−W (0)) = x0 +σW (t).

Next we compute the mean of X(t), i.e.

E [X(t)] = E

x0 +

t∫
0

σdW (s)

= x0

1The functions µ and σ will, in general, depend on a p-dimensional parameter vector θ ∈Θ⊆
Rp, where Θ may be some constrained subset of Rp. For notational convenience this parameter
dependency will be suppressed in this chapter.
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which follows from (7.37). The variance is given by

Var [X(t)] = Var

x0 +

t∫
0

σdW (s)

= σ
2E


 t∫

0

dW (s)

2


= σ
2

t∫
0

E
[
12]ds = σ

2t,

where we have used the Itō isometry property (7.40). This shows that
Var [X(t)]→ ∞ as t→ ∞. However the process is still bounded in finite time.

Example 8.2 (Wiener process with drift). Let us compute the mean and vari-
ance of X(t), where X(t) is the solution to

dX(t) = µdt +σdW (t), X(0) = x0

where µ and σ are some constants. This SDE corresponds to

X(t) = x0 +

t∫
0

µds+
t∫

0

σdW (s).

As in the previous example, we get

E [X(t)] = x0 +E

 t∫
0

µds

+E

 t∫
0

σdW (s)

= x0 +µt,

Var[X(t)] = Var

 t∫
0

σdW (s)

= σ
2E


 t∫

0

dW (s)

2
= σ

2t.

We see that the mean of X(t) has a linear trend (or drift).

Example 8.3 (Stochastic exponential growth). Consider the SDE

dX(t) = µX(t)dt +σdW (t), X(0) = x0 (8.3)

where µ and σ are constants, which may describe unlimited growth in biolog-
ical systems or a stochastic money market account.

If we take expectations in the adjacent stochastic integral equation, we get

E[X(t)] = x0 +E

 t∫
0

µX(s)ds

+E

σ

t∫
0

dW (s)

 .
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Of course, the last term equals zero. Using Fubini’s theorem (which we nei-
ther state nor prove here), we may exchange the expectation and integration
operators, i.e.,

E[X(t)] = x0 +E

 t∫
0

µX(s)ds

= x0 +µ

t∫
0

E [X(s)]ds.

Compared to the last two examples the problem is now that E[X(t)] exists on
both sides of the equation. A standard trick is to introduce m(t) = E[X(t)] and
then take the expectation and derivative with respect to time t on both sides,
i.e.,

dm(t)
dt

= ṁ(t) = µm(t); m(0) = E[X(0)]

which clearly has the solution

E[X(t)] = m(t) = m(0)eµt .

We see that E[X(t)] grows exponentially as t→ ∞.

Considering the slightly more complicated Geometric Brownian Motion
(GBM)

dX(t) = αX(t)dt +σX(t)dW (t), (8.4)

where α and σ are positive constants, it is not clear if there is existence and
uniqueness of the solution for all t ≥ 0 or if the solution might blow up with
positive probability in finite time. Along the same lines we must examine
whether it is possible to determine a closed form solution or not. In the for-
mer case, we may have to impose some restrictions on the functions µ and σ

in (8.1) in order to obtain existence of the solution.
It is an interesting result that the answers to these questions only depend on

the properties of the infinitesimal characteristics µ and σ in (8.1) (and possibly
the initial condition X(0)).

8.1.1 Existence and uniqueness

As for ordinary differential equations (ODEs) Lipschitz and bounded growth
conditions must be imposed on the drift and diffusion terms in order to obtain
existence and uniqueness of solutions.

We must distinguish between weak and strong solutions to (8.1). A strong
solution is obtained if the driving Wiener process is given in advance as a part
of the problem such that the obtained solution to (8.1) is F (t)-adapted, where
F (t) is the σ -algebra generated by the Wiener process. On the other hand,
if we are just given the infinitesimal characteristics µ and σ in advance and
the solution should apply for all possible Wiener processes, then the obtained
solution is called a weak solution. It is clear that a strong solution is also a
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weak solution, because the particular Wiener process W (t) that resulted in the
strong solution is just one of infinitely many Wiener processes that will give a
weak solution. The converse is not true in general.
Theorem 8.1 (Strong uniqueness). Suppose that the infinitesimal characteris-
tics µ(x) and σ(x) are locally Lipschitz-continuous in the state variable; i.e.,
for every integer n ≥ 1 there exists a constant Cn such that for every t ≥ 0,
|x| ≤ n and |y| ≤ n:

|µ(x)−µ(y)|+ |σ(x)−σ(y)| ≤Cn|x− y|. (8.5)

Then strong uniqueness holds for (8.1).

Proof. Omitted. See Karatzas and Shreve [1996].

Let us consider an example that does not satisfy the condition (8.5).
Example 8.4. It is easy to verify that the differential equation

dx
dt

= 3x2/3

has several solutions, for any a > 0,

x(t) =

{
0 for t ≤ a,
(t−a)3 for t > a.

This ODE is excluded as µ(x) = 3x2/3 does not satisfy (8.5) for x = 0.

We need an additional assumption in order to obtain existence and unique-
ness of the solutions of (8.1).
Assumption 8.1 (Linear growth). The functions µ and σ satisfy the usual
linear growth condition

|µ(x)|+ |σ(x)| ≤ K(1+ |x|), ∀x ∈ R (8.6)

where K is a positive, real constant.

Example 8.5. The differential equation

dx
dt

= x2(t), x(0) = 1

corresponding to µ(x) = x2 has the solution

x(t) =
1

1− t
; 0≤ t < 1.

Thus it is impossible to find a solution for all t. This is due to the fact that
µ(x) = x2 does not satisfy Assumption 8.1.
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Next consider an example of a SDE.
Example 8.6 (Trespassing in a minefield). Consider as an example of the pro-
cess which satisfies (8.5), but not (8.6)

dX(t) =−1
2

exp(−2X(t))dt + exp(−X(t))dW (t).

For X(t) < 0, we get exponential growth, which is faster than linear growth,
and (8.6) is not satisfied. It may be shown that the solution is given by

X(t) = ln(W (t)+ exp(X(0))) .

It can be seen that the solution blows up when W (t) < −exp(X(0)), as we
would have to compute the natural logarithm of a negative number! If we define
the (stopping) time τ(X(0),ω) by

τ(X(0),ω) = inf{t ≥ 0 : W (t,ω) =−exp(X(0,ω))}, ω ∈Ω

it is clear that the solution only exists up to time τ(X(0),ω). This explosion
time depends on the stochastic initial condition and the actual trajectory of the
driving Wiener process.
Example 8.7 (Geometric Brownian motion). Consider the process given in
(8.4). In this case an explosion time e may be defined by

e = inf{t ≥ 0 : X(t) ∈ {0,∞}} (8.7)

which states that the explosion time e is the first (i.e., smallest) time, where the
process X(t) hits the boundary 0 or takes the value of ∞. Note that it is also
critical if X(t) attains the value 0 because the process X(s) will remain at zero
for s ≥ t. The value of X(t) as t → ∞ depends on the parameters µ and σ as
follows (this is illustrated in Example 8.10):
1. If µ > 1

2 σ2 then X(t)→ ∞ a.s. as t→ ∞.

2. If µ < 1
2 σ2 then X(t)→ 0 a.s. as t→ ∞.

3. If µ = 1
2 σ2 then X(t) will fluctuate between arbitrary large and arbitrary

small values a.s. as t→ ∞,
where a.s. is an abbreviation of almost surely. It may, however, be shown that
X(t) does not take either the value 0 or ∞ in finite time. Hence the geometric
brownian Motion does not explode. This is also clear as the infinitesimal char-
acteristics are linear in X(t) and thus fulfils the Lipschitz condtions (8.5) and,
in particular, the linear growth condition (8.6).

It may be shown that the conditions in Theorem 8.1 and Assumption 8.1
ensure the existence and uniqueness of solutions of (8.1). In particular (8.6)
ensures that the solution does not explode in finite time. These assumptions
may be generalized to the multivariate case (Karatzas and Shreve [1996]).
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For one-dimensional processes (8.1), the assumptions (8.5) and (8.6) are
not necessary to ensure nonexplosive solutions. The assumptions can be weak-
ened to the following theorem.
Theorem 8.2 (The Yamada conditions). Suppose that µ and σ are bounded.
Assume further that the following conditions hold:
1. There exists a strictly increasing function ν(u) : R+ 7→ R such that ν(0) =

0, and
∞∫
0

ν−2(u)du = ∞ and |σ(x)−σ(y)| ≤ ν(|x− y|) for all x,y ∈ R.

2. There exists an increasing and concave function κ(u) : R+ 7→ R such that

κ(0) = 0,
∞∫
0

κ−1(u)du = ∞ and |µ(x)−µ(y)| ≤ κ(|x− y|) for all x,y ∈ R.

Then the pathwise uniqueness of solutions holds for (8.1) and hence it has a
unique strong solution.

Proof. Omitted. See Ikeda and Watanabe [1989].

Remark 8.1. The usual Lipschitz condition requires that ν(u) = K1u and
κ(u) = K2u, where K1,K2 ∈ R+ are some constants, or even a unified con-
dition for µ and σ as shown in, e.g. Rydberg [1997].

There exist solutions to (8.1) which do not fulfil the linear growth condi-
tion (8.6). Thus we need to determine other conditions that ensure the nonex-
plosiveness of solutions, in particular conditions which are easier to check than
those in Theorem 8.2.

Consider the scale function

s(x) =
x∫

c

exp

− y∫
c

2µ(ξ )

σ2(ξ )
dξ

dy (8.8)

for some fixed c ∈ R+. This function may be used to establish sufficient con-
ditions on the parameters θ ∈Θ⊂ Rp so that the explosion will never occur.
Theorem 8.3 (Probability of an explosion). Let X(t) be described by (8.1), the
scale function s(x) by (8.8) and the explosion time e by (8.7).

1. If s(0) = −∞ and s(∞) = ∞, then the probability for no explosion in finite
time is one

P(e = ∞) = 1

for every X(t).

2. If s(0)>−∞ and s(∞) = ∞, then lim
t↑e

X(t) exists asymptotically and

P(lim
t↑e

X(t) = 0) = P(sup
t<e

X(t)< ∞) = 1

for every x. A similar assertion holds if the roles of 0 and ∞ are inter-
changed.
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3. If s(0)>−∞ and s(∞)< ∞, then lim
t↑e

X(t) exists asymptotically and

P(lim
t↑e

X(t) = 0) = 1−P(lim
t↑e

X(t) = ∞) =
s(∞)− s(x)
s(∞)− s(0)

.

Proof. Omitted. See e.g. Ikeda and Watanabe [1989].

Thus, if case 1) in Theorem 8.3 can be verified, the SDE in (8.1) does not
explode with probability 1 and the solution exists for all t. On the other hand,
if case 1) is not fulfilled, (8.1) may explode with positive probability in finite
time. A further generalization is required, and this is called Feller’s test for
explosions. We refer the interested reader to, e.g., Karatzas and Shreve [1996,
Section 5.1] for details.
Remark 8.2. For specific choices of µ and σ in (8.1) the integral (8.8) may
be difficult to evaluate. However, the computations may be simplified consid-
erably by a change of measure using Girsanov’s Theorem (see later) provided
that a unique equivalent Martingale measure exists under the new measure
(see e.g. Rydberg [1997] for the appropriate conditions in the one-dimensional
case2). Informally speaking, Girsanov’s Theorem simply introduces a measure
that moves along with the deterministic drift and thus, under the equivalent
martingale measure, the drift is removed.

The following example illustrates the use of the scale function.
Example 8.8. For the process (8.2), there is no drift µ(X(t)) = 0 and the
diffusion is simply σ(X(t)) = σ , i.e.,

s(x) =
x∫

c

exp

− y∫
c

0 dξ

dy =
x∫

c

exp(0)dy = x− c.

Thus we get s(0) =−c, which implies that

lim
c→∞

s(0) =−∞

and
s(∞) = ∞− c ∀c ∈ R+.

Thus condition 1) in Theorem 8.3 is fulfilled and the Wiener process (8.2)
does not explode. This may seem contradictory, but it is important to stress
that the trajectories of the Wiener process remain finite despite the fact that
Var[X(t)]→ ∞ as t→ ∞. Note that ∞ does not belong to the real line R.

In the remainder of this book (and the problems), we simply assume that a
unique solution exists. For brevity we shall not, in general, list the restrictions
on the parameters that must be imposed to ensure nonexplosiveness.

2These conditions do not immediately generalize to higher dimensions.
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8.1.2 Itō formula

An important feature of Itō stochastic differential equations is stated in the next
theorem, but first we need a definition.
Definition 8.1 (The C1,2 space). Let ϕ :R2 7→R be a function of two variables.
The function ϕ is said to belong to the space C1,2(R×R) if ϕ is continuously
differentiable w.r.t. the first variable and twice continuously differentiable w.r.t.
the second variable.
Theorem 8.4 (The Itō formula). Let X(t) be a solution to (8.1) and ϕ : R2 7→R
be a C1,2(R)-function applied to X(t)

Y (t) = ϕ(t,X(t)). (8.9)

Then the following chain rule applies

dY (t) =
[

∂ϕ

∂ t
+µ

∂ϕ

∂X(t)
+

1
2

σ
2 ∂ 2ϕ

∂X(t)2

]
dt +σ

∂ϕ

∂X(t)
dW (t) (8.10)

where the functions µ and σ are as defined prior to (8.1).

Proof. For notational brevity, we will leave out the argument in ϕ(t,X(t)),
X(t) and W (t) in this ad hoc proof. A second order Taylor expansion of dϕ

gives

dϕ =
∂ϕ

∂ t
dt +

∂ϕ

∂x
dX +

1
2

∂ 2ϕ

∂x2 (dX)2 +
1
2

∂ 2ϕ

∂ t2 (dt)2 +
∂ 2ϕ

∂ t∂x
dtdX .

From (8.1), we get

(dX)2 = µ
2(dt)2 +σ

2(dW )2 +2µσ(dt)(dW ).

Compared to terms with dt and dW , the terms containing (dt)2 and (dt)(dW )
are insignificant while (dW )2 ∼ O(dt). Thus we get

dϕ =
∂ϕ

∂ t
dt +

∂ϕ

∂x
(µdt +σdW )+

1
2

σ
2 ∂ 2ϕ

∂x2 (dW )2

=
∂ϕ

∂ t
dt +µ

∂ϕ

∂x
dt +σ

∂ϕ

∂x
dW +

1
2

σ
2 ∂ 2ϕ

∂x2 dt

=

[
∂ϕ

∂ t
+µ

∂ϕ

∂x
+

1
2

σ
2 ∂ 2ϕ

∂x2

]
dt +σ

∂ϕ

∂x
dW

where we have also used Metatheorem 1.

Remark 8.3 (Short form of the Itō formula). By introducing the notation ϕt =
∂ϕ/∂ t, etc., (8.10) may be written as

dϕ = (ϕt +µϕx +
1
2

σ
2
ϕxx)dt +σϕxdW, (8.11)

where we stress that ϕt should not be confused with ϕ(t).
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Remark 8.4 (Additional term in the Itō formula). As opposed to classical cal-
culus, (8.10) contains the additional term 1

2 σ2 ∂ 2ϕ(Xt)/∂X2
t , which makes

Itō calculus more complicated for theoretical considerations, although solu-
tions to (8.1) are both Markov processes and martingales.

Remark 8.5. It follows from the last remark that the diffusion term from (8.1)
enters the drift of (8.10). Another remarkable observation from (8.10) is that
the transformed variable Y (t) is also described by an Itō diffusion process.

Example 8.9. Consider the integral

I(t) =
∫ t

0
W (s)dW (s).

Choose X(t) =W (t), which implies that dX(t) = dW (t), ie. µ = 0 and σ = 1.
In addition choose the transformation ϕ(t,x) = 1

2 x2. Then

Y (t) = ϕ(t,W (t)) =
1
2

W (t)2.

Using (8.10), we get

dY (t) =
∂ϕ

∂ t
dt +

∂ϕ

∂x
dW (t)+

1
2

∂ 2ϕ

∂x2 (dW (t))2

= 0+W (t) ·dW (t)+
1
2
(dW (t))2

= W (t) ·dW (t)+
1
2
·dt.

This implies that

d(
1
2
(W (t))2) =W (t) ·dW (t)+

1
2

dt

or in integral form

1
2
(W (t))2 =

∫ t

0
W (s)dW (s)+

1
2

t

or
I =

∫ t

0
W (s)dW (s) =

1
2
(W (t))2− 1

2
t.

Example 8.10 (Geometric Brownian motion). We wish to solve the SDE given
by

dX(t) = µX(t)dt +σX(t)dWt , X0 > 0. (8.12)

This SDE is called the geometric Brownian motion and is considered exten-
sively in mathematical finance as a model for interest rates and stock prices.
This is mainly due to the fact that the solution X(t) is lognormally distributed
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and thus excludes negative interest rates (or populations in biology or concen-
trations in chemistry).

By introducing the transformation Y (t) = ϕ(t,X(t)) = ln(X(t)), we get

∂ϕ

∂ t
= 0,

∂ϕ

∂X(t)
=

1
X(t)

,
∂ 2ϕ

∂X(t)2 =− 1
X(t)2 .

Inserting these in (8.10) we get

dYt =

[
µX(t)

1
X(t)

+
1
2

σ
2X(t)2

(
− 1

X(t)2

)]
dt +σX(t)

1
X(t)

dW (t)

or
d(lnX(t)) = (µ− 1

2
σ

2)dt +σdW (t)

and, finally,

X(t) = X0 exp((µ− 1
2

σ
2)t +σW (t)). (8.13)

8.1.3 Multivariate SDEs

Let the state variable X(t) ∈ Rn be described by the multivariate SDE

dX(t) = µ(t,X(t))dt +σ(t,X(t))dW(t) (8.14)

where µ(t,X(t)) : R×Rn→ Rn, σ(t,X(t)) : R×Rn→ Rn×Rm and W(t) is
an m-dimensional standard Wiener process. Note that n need not equal m.

Alternatively, Eq. (8.14) may be written as

dXi(t) = µi(t,X(t))dt +
m

∑
j=1

σi j(t,X(t))dWj(t); i = 1, . . . ,n. (8.15)

For this process, we define the instantaneous covariances as

Σ(t,X(t)) = σ(t,X(t))σT (t,X(t)). (8.16)

Consider the following generalization of Theorem 8.4.
Theorem 8.5 (The multivariate Itō formula). Let X(t) be a solution to (8.14)
and ϕ : Rn 7→ Rk be a C1,2(R)-function applied to X(t)

Y(t) = ϕ(t,X(t)). (8.17)

Then the following chain rule applies

dϕ =

[
∂ϕ

∂ t
+

∂ϕ

∂X
µ +

1
2

trace
(

σσ
T ∂ 2ϕ

∂X∂XT

)]
dt +

∂ϕ

∂XT σdW(t) (8.18)

where ϕ = ϕ(t,X(t)), µ = µ(t,X(t)), etc.
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Proof. Omitted, but it is similar to the proof of Theorem 8.4.

Remark 8.6. The multivariate Itō formula may also be written as

dϕ =
∂ϕ

∂ t
dt +

n

∑
i=1

∂ϕ

∂Xi
dXi +

1
2

n

∑
i=1

m

∑
j=1

∂ 2ϕ

∂Xi∂X j
(dXi)(dX j) (8.19)

where (dWi)(dWj) = δi jdt (Kronecker’s delta), i.e.,

(dWi)(dWj) = 0 i 6= j, (8.20)
(dWi)(dWi) = dt, (8.21)
(dWi)(dt) = (dt)(dWi) = 0. (8.22)

The following example illustrates the use of Itō ’s formula.
Example 8.11. Consider the two-dimensional SDE

dS1 = α1S1dt +σ1S1dW1 S1(0) = S10, (8.23)
dS2 = α2S2dt +σ2S2dW2 S2(0) = S20, (8.24)

where α1,α2,σ1 and σ2 are constants, and W1,W2 are two uncorrelated, stan-
dard Wiener processes. (We have left out the time argument t for brevity.)

By introducing the transformation

ϕ = ϕ(S1,S2) =
S1

S2

in (8.19), we get

dϕ = 0 ·dt +
1
S2

(α1S1dt +σ1S1dW1)−
S1

S2
2
(α2S2dt +σ2S2dW2)

+
1
2

0 ·dS1dS1 +
1
2

S1(−(−2S−3
2 ))dS2dS2

+
1
2

(
− 1

S2
2

)
dS1dS2 +

1
2

(
− 1

S2
2

)
dS2dS1

=
(
α1−α2 +σ

2
2
) S1

S2
dt +(σ1dW1−σ2dW2)

S1

S2
.

The difference between two uncorrelated Wiener processes W1 and W2 with
standard deviations σ1 and σ2, respectively, may be expressed as one Wiener

process W with the standard deviation σ =
√

σ2
1 +σ2

2 (as for normally dis-
tributed random variables). Thus

d
(

S1

S2

)
=
(
α1−α2 +σ

2
2
) S1

S2
dt +σ

S1

S2
dW.
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Note that (8.23) may be solved independently and the solutions are given on
the form (8.13). Thus

S1(t)
S2(t)

=
S10

S20
exp
[(

(α1−α2)+σ
2
2 −

σ2
2 +σ2

1
2

)
t +
√

σ2
1 +σ2

2W (t)
]
.

Remark 8.7 (The sum of two Wiener processes). From the Example, it follows
that the sum of two standard Wiener processes W1(t) and W2(t) may be written
as one Wiener process

σ1W1(t)+σ2W2(t)≡
√

σ2
1 +σ2

2 W (t). (8.25)

This important result, which we state here without a formal proof, also applies
to the increments of the Wiener process, i.e.,

σ1S(t)dW1(t)+σ2S(t)dW2(t) =
√

σ2
1 +σ2

2 S(t)dW (t). (8.26)

These results will be very useful in some problems and applications.

8.1.4 Stratonovitch SDE

An alternative definition of SDEs that adhere to the classical calculus (e.g., the
chain rule) is given by the Stratonovitch SDE

dX(t) = µ̃(X(t))dt + σ̃(X(t))◦dW (t) (8.27)

where µ̃ : R 7→ R and σ̃ : R 7→ R are Borel-measurable functions and the ◦-
symbol is used to distinguish the Stratonovitch SDE from the Itō SDE (8.1).
Although (8.27) does not define neither a Markov process nor a martingale
(due to the definition of the Stratonovitch integral), this fact makes it unsuit-
able for, e.g., prediction and estimation purposes and it is more appropriate for
theoretical work, such as existence and uniqueness theorems, stability analysis,
bifurcation analysis (Baxendale [1994]) or Taylor series expansions (Kloeden
and Platen [1995]).

Fortunately there is a link between the stochastic integrals in the Itō and
Stratonovitch senses, namely

µ̃(X(t)) = µ(X(t))− 1
2

σ(X(t))
∂σ(X(t))

∂X(t)

where µ,σ and µ̃ are defined by (8.1) and (8.27), respectively. See, e.g., Kloe-
den and Platen [1995], Pugachev and Sinitsyn [1987], Øksendal [2010] for fur-
ther mathematical details, and Wang [1994], Nielsen [1996] for a discussion
of the appropriate application of SDEs (Itō or Stratonovitch) in mathematical
modelling.
Remark 8.8. Note that (8.1) and (8.27) coincide provided that σ(X(t)) =
σ̃(X(t)) is independent of X(t), because ∂σ(X(t))/∂X(t) = 0 in this special,
but important, case.
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8.2 Analytical solution methods

Generally, it is difficult to obtain closed form solutions to stochastic differential
equations. However, the Itō formula, that in all other aspects complicates an-
alytical calculations considerably, may be valuable as an intermediary step in
obtaining closed form solutions to (8.1). Some examples along these lines will
be given. As with linear ordinary differential equations, the general solution of
a linear stochastic differential equation can be found explicitly.

Closed form solutions for a number of SDEs (linear and nonlinear) are
listed in Kloeden and Platen [1995], where a very elaborate discussion of nu-
merical solutions may be found as well.

8.2.1 Linear, univariate SDEs

The general form of a univariate linear stochastic differential equation is

dX(t) = (µ1(t)X(t)+µ2(t))dt +(σ1(t)X(t)+σ2(t))dW (t) (8.28)
X(t0) = X0 (8.29)

where the coefficients µ1,µ2,σ1 and σ2 are given functions of time t or con-
stants. We assume that these functions are measurable and bounded on an in-
terval 0≤ t ≤ T such that the existence and uniqueness theorem from the pre-
ceding section applies and ensures the existence of a strong solution X(t) on
t0 ≤ t ≤ T for each 0≤ t0 < T .

When all the functions are constant the SDE is said to be autonomous and
its solutions are homogeneous Markov processes. Otherwise, the SDE is said
to be nonautonomous. When µ2(t) ≡ 0 and σ2(t) ≡ 0, the Equations (8.28)
reduce to the homogenous linear SDE

dX(t) = µ1(t)X(t)dt +σ1(t)X(t)dW (t); X(t0) = X0 (8.30)

which clearly has the solution X(t) ≡ 0. The so-called fundamental solution
Φt,t0 which satisfies the initial condition Φt0,t0 = 1 is much more important,
because any other solution may be expressed in terms of the fundamental so-
lution. To determine Φt,t0 , we consider the simple case where σ1(t)≡ 0, i.e.,

dX(t) = (µ1(t)X(t)+µ2(t))dt +σ2(t)dW (t); X(t0) = X0 (8.31)

where the Wiener process appears additively. In this case we say that the SDE
is linear in the narrow sense.
Theorem 8.6 (Solution to a linear SDE in the narrow sense). The solution of
(8.31) is given by

X(t) = Φt,t0

Xt0 +

t∫
t0

µ2(s)Φ−1
s,t0ds+

t∫
t0

σ2(s)Φ−1
s,t0dW (s)

 (8.32)
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where

Φt,t0 = exp

 t∫
t0

µ1(s)ds

 . (8.33)

Proof. The homogenous version (σ2(t)≡ 0) of (8.31) is an ordinary differen-
tial equation

Ẋ(t) = µ1(t)X(t) (8.34)

with the fundamental solution

Φt,t0 = exp

 t∫
t0

µ1(s)ds

 .

Applying the Itō formula (8.10) to the transformation ϕ(t,x) = x/Φt,t0 = Φ
−1
t,t0x

and the solution X(t) of (8.34), we get

d(Φ−1
t,t0X(t)) =

(
dΦ
−1
t,t0

dt
X(t)+(µ1(t)X(t)+µ2(t))Φ−1

t,t0

)
dt

+σ2(t)Φ−1
t,t0dW (t)

= µ2(s)Φ−1
t,t0dt +σ2(t)Φ−1

t,t0dW (t) (8.35)

as
dΦ
−1
t,t0

dt
=−Φ

−1
t,t0 µ1(t).

The right hand side of (8.35) can be integrated giving

Φ
−1
t,t0X(t) = Φ

−1
t,t0X(t0)+

t∫
t0

µ2(s)Φ−1
s,t0ds+

t∫
t0

σ2(s)Φ−1
s,t0dW (s).

We have thus obtained the solution (8.32) as Φ
−1
t0,t0 = 1.

Remark 8.9. Notice again that Φ
−1
t,t0 means 1/Φt,t0 and not the inverse func-

tion.
Theorem 8.7 (Solution to a linear SDE in the wide sense). The solution to
(8.28) is given by

X(t) = Φt,t0

Xt0 +

t∫
t0

(µ2(s)−σ1(s)σ2(s))Φ−1
s,t0ds (8.36)

+

t∫
t0

σ2(s)Φ−1
s,t0dW (s)
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where Φt,t0 is given as the solution to the SDE

dΦt,t0 = µ1(t)Φt,t0dt +σ1(t)Φt,t0 dW (t); Φt0,t0 = 1. (8.37)

Proof. Omitted. See Kloeden and Platen [1995, Section 4.3].

Theorem 8.8 (Moments of a linear SDE in the wide sense). The
mean m(t) = E [X(t)] of (8.28) satisfies the ordinary differential equation

ṁ(t) = µ1(t)m(t)+µ2(t); m(0) = m0 (8.38)

and the second order moment P(t) = E
[
X2(t)

]
satisfies

Ṗ(t) = (2µ1(t)+σ
2
1 (t))P(t)+2m(t)(µ2(t)+σ1(t)σ2(t))+σ

2
2 (t), (8.39)

P(0) = P. (8.40)

Proof. By proceeding as in Example 8.3, Equation (8.38) is readily seen. In
order to show (8.39), we apply the Itō formula (8.10) to the transformation
ϕ(t,x) = x2, i.e.,

dϕ =

(
0+(µ1X +µ2)2X +

1
2
(σ1X +σ2)

2 ·2
)

dt

+(σ1X +σ2)2XdW

=
(
2(µ1X2 +µ2X)+σ

2
1 X2 +σ

2
2 +2σ1σ2X

)
dt

+2(σ1X2 +σ2X)dW

where the arguments have been left out for brevity as in the following equiva-
lent stochastic integral formulation

X2(t) =X2(t0)+
t∫

t0

(
2(µ1X2 +µ2X)+σ

2
1 X2 +σ

2
2 +2σ1σ2X

)
ds

+

t∫
t0

2(σ1X2 +σ2X)dW.

By taking expectations the last term drops out; cf. (7.37). If we define P(t) =
E
[
X2(t)

]
and take derivatives, we obtain

P(t)
dt

= 2µ1(t)P(t)+2µ2(t)m(t)+σ
2
1 (t)P(t)+σ

2
2 (t)+2σ1(t)σ2(t)m(t)

which equals (8.39).

Remark 8.10. Recall that the variance Var [X(t)] may be determined from

Var [X(t)] = P(t)− (m(t))2. (8.41)
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In order to solve (8.39) the following result from calculus may be useful.
Remark 8.11 (A formula for solution of ODEs). The solution to the ODE

ẋ(t)+ψ(t)x(t) = ϑ(t), t ∈I , (8.42)

where ψ,ϑ : I → R are continuous in the interval I , is given by

x(t) = exp(−Ψ(t))
(∫

exp(Ψ(t))ϑ(t)dt + c
)
, t ∈I ,c ∈ R (8.43)

where
Ψ(t) =

∫
ψ(t)dt.

As an example consider the SDE from Example 8.3 again.
Example 8.12. Consider the Langevin equation

dX(t) =−µX(t)dt +σdW (t); X(0) = X0. (8.44)

Without loss of generality, we assume that t0 = 0. From (8.33), we immediately
get

Φt,0 = exp

− t∫
0

µds

= exp(−µt)

and thus (8.32) yields the solution

X(t) = exp(−µt)

X0 +σ

t∫
0

exp(µs)dW (s)


which is called the Ornstein-Uhlenbeck process.

The mean m(t) = E [X(t)] is obtained from (8.38), i.e.,

m(t) = m0 exp(−µt).

The second moment P(t) should fulfill

Ṗ(t)+2µP = σ
2.

Using Remark 8.11, we get

Ψ(t) =
t∫

0

2µdt = 2µt
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and insertion into (8.43) yields

X(t) = exp(−2µt)

 t∫
0

exp(2µs)σ2ds+P0


= P0 exp(−2µt)︸ ︷︷ ︸

Impact from initial variance

+
σ2

2µ
(1− exp(−2µt))︸ ︷︷ ︸

Response of the system

.

The variance may be found as stated in Remark 8.10, i.e.,

Var [X(t)] = P0 exp(−2µt)+
σ2

2µ
(1− exp(−2µt))−m2

0 exp(−2µt)

and the stationary value is

lim
t→∞

Var [X(t)] =
σ2

2µ
.

Note that it is not just σ2.

8.3 Feynman–Kac representation

In this section we shall describe a close relationship between stochastic differ-
ential equations and parabolic partial differential equations (PDEs).

Consider the following Cauchy problem

∂F
∂ t

(t,x)+µ(t,x)
∂F
∂x

(t,x)+
1
2

σ
2(t,x)

∂ 2F
∂x2 (t,x) = 0 (8.45)

F(T,X) = Φ(X) (8.46)

where the functions µ(t,x), σ(t,x) and Φ(T,x) are given and we wish to de-
termine the function F(t,x)

As opposed to solving (8.45) analytically, we shall consider a representa-
tion formula for the solution F(t,x) in terms of an associated stochastic differ-
ential equation.

Assume that there exists a solution to (8.45). Fix the time t and the state x.
Let the stochastic process X(t) be a solution to the SDE

dX(s) = µ(s,X(s))ds+σ(s,X(s))dW (s), X(t) = x (8.47)

where s is now the running time.
Remark 8.12 (Same µ(·) and σ(·)). The functions µ(t,X(t)) and σ(t,X(t))
in (8.45) and (8.47) are the same — except for the fact that the running time
variable in (8.47) is s.



FEYNMAN–KAC REPRESENTATION 157

If we apply the Itō formula (8.10) to the process F(s,X(s)) and write the
result in stochastic integral form, we get

F(T,X(T )) = F(t,X(t))

+

T∫
t

(
∂F
∂ t

(s,X(s))+µ(s,X(s))
∂F
∂x

(s,X(s))

+
1
2

σ
2(s,X(s))

∂ 2F
∂x2 (s,X(s))

)
ds

+

T∫
t

σ(s,X(s))
∂F
∂x

(s,X(s))dW (s). (8.48)

Let us further assume that the process

σ(s,X(s))
∂F
∂x

(s,X(s))

belongs to the space L 2[t,T ]; see Definition 7.5. If we use that F(t,x) solves
(8.45), then the ds integral drops out of (8.48). If we apply the boundary con-
dition F(T,x) = Φ(x), and the initial condition X(t) = x, and take the expected
value of the remaining parts of (8.48) then the last term also drops out; cf.
(7.37). The only remaining term is

F(t,x) = Et,x [Φ(X(T ))] (8.49)

where the subscript t,x on the expectation operator is used to emphasize the
fixed initial condition X(t) = x.

We state this important result in a theorem.
Theorem 8.9 (The Feynman–Kac representation). Assume that F solves the
boundary problem (8.45) and that the process

σ(s,X(s))
∂F
∂x

(s,X(s)) ∈L 2 for t ≤ T,x ∈ R (8.50)

where X(t) is defined by (8.47). Then F has the stochastic Feynman–Kac rep-
resentation

F(t,x) = Et,x [Φ(X(T ))] . (8.51)

Proof. Follows from the preceding derivation.

Note that the theorem simply states that the solution to (8.45) is obtained
as the expected value of the boundary condition.
Remark 8.13. A major problem with this approach is that it is impossible to
check the assumption (8.50) in advance as it requires some a priori information
about the solution F to do so. At least two things can go wrong:
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1. Eq. (8.45) does not have a "sufficiently integrable" solution, i.e., the process
(8.50) does not belong to the class L 2. If the latter is the case, the solution
offered by the Feynman–Kac representation is pure nonsense.

2. The solution of (8.45) is not unique. If there are more solutions, the
Feynman–Kac approach just supplies the "sufficiently integrable" solution.
The remaining solutions must be found using another technique.

In this book, we shall assume that all the functions in question are “sufficiently
integrable.” We shall not go into all the technical details (see e.g. Björk [2009],
Øksendal [2010]).

Let us consider an example of this remarkable approach.
Example 8.13. We wish to solve the following boundary problem in the do-
main [0,T ]×R:

∂F
∂ t

+µx
∂F
∂x

+
1
2

σ
2x2 ∂ 2F

∂x2 = 0

F(T,x) = ln(x2)

where µ and σ are assumed to be constants.
It is readily seen that the associated SDE is given by

dX(s) = µX(s)ds+σX(s)dW (s); X(t) = x.

We recognize this as the geometric Brownian motion from Example 8.10 on
page 148, where the solution was found to be

X(T ) = exp
(

ln(x)+(µ− 1
2

σ
2)(T − t)+σ [W (T )−W (t)]

)
.

Using Theorem 8.9, we get the result

F(t,x) = Et,x [2ln(X(T ))]

= 2ln(x)+2(µ− 1
2

σ
2)(T − t)

as the expected value of the Wiener increment W (T )−W (t) is zero.
We shall now consider a more general case.

Theorem 8.10 (The Feynman–Kac representation with discounting). Let the
functions µ , σ and Φ be given as above, and let r be a constant. The solution
to

∂F
∂ t

(t,x)+µ(t,x)
∂F
∂x

(t,x)+
1
2

σ
2(t,x)

∂ 2F
∂x2 (t,x)− rF(t,x) = 0

F(T,x) = Φ(x)

is given by
F(t,x) = exp(r(T − t))Et,x [Φ(X(T ))] (8.52)

where the process X(t) is given by (8.47).
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Proof. Omitted. See e.g. Björk [2009].

The Feynman–Kac representation theorems will be used extensively in the
following chapters. Further generalizations and examples are to be found in
the problems.

These theorems may be used to solve for the transition probabilities for
SDEs in order to obtain the conditional and unconditional probability density
functions (pdf) of X(t), where X(t) is the solution of (8.47). This is outside the
scope of this book.

8.4 Girsanov measure transformation

In this section we introduce the concepts of (probability) measures, the Radon–
Nikodym derivative and the Girsanov theorem, which enables us to change
(probability) measures in continuous-time models. The theory is much more
complicated than in the discrete time case (as described in Chapter 3), so this
exposition does not pretend to be complete. Whenever possible, mathematical
rigour will be substituted by intuitive arguments.

Note that a measure transformation is an inherently mathematical concept,
which greatly simplifies the pricing of financial derivatives, but it is very diffi-
cult to fully comprehend the concept.

The objective of this section is to provide the reader with an elementary
understanding of the concept of absolute continuous measure transformations,
which will be used extensively later to determine arbitrage-free prices of a
large class of financial derivatives. This is due to the fact that there exists
an intimate relation between arbitrage-free markets and absolute continuous
measure transformations. A particularly interesting problem is the existence
of equivalent martingale measures (EMM), because it may be shown that the
existence of an EMM yields arbitrage-free markets and vice versa.

8.4.1 Measure theory

Intuitively, a measure is a notion that generalizes those of the length, the area
of figures and the volume of bodies, and that corresponds to the mass of a set
for some mass distribution throughout the space. Please refer to Appendix B
for details.
Example 8.14 (Does 2 equal 1?). Consider two independent, normally distri-
buted stochastic variables X ,Y with zero mean and variance 1. If we interpret
(X ,Y ) as a point in R2 then we can introduce polar coordinates (R,φ), which
are also independent.
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Consider the conditional mean

E
[
R2|X = Y

]
= E

[
R2|φ =

π

4
or

5π

4

]
= E

[
R2]

= E
[
X2 +Y 2]= 1+1 = 2.

Now introduce the new variables Z = X+Y√
2

and W = X−Y√
2

which are both

N(0,1)-distributed. It is clear that Z2 +W 2 = X2 +Y 2 = R2 such that

E
[
R2|X = Y

]
= E

[
Z2 +W 2|W = 0

]
= E

[
Z2]= 1.

Obviously 2 6= 1 so there must be something wrong! The problem is that in
both conditional expectations we condition on a null set, W = 0, which does
not make any sense, whereas the expectation E

[
R2|X−Y = ν

]
makes sense

for almost all ν , i.e., we should consider the expectation as an integral with
respect to dν (as usual). Thus we need to consider conditional expectations in
a wider sense, and this is exactly what measure theory and the Radon–Nikodym
derivative enable us to do.

Let (X ,F ,µ) be a measurable space and let f : X → R be a positive F -
measurable function such that∫

X

f (x)dµ(x)< ∞. (8.53)

As an example consider a continuous stochastic variable X with the probabil-
ity density function f (x). We may define the Lebesgue measure by dµ(x) =
f (x)dx such that (8.53) takes the form∫

X

f (x)dx < ∞.

We may now define a new function ν : F → R by

ν(E) =
∫
E

f (x)dµ(x) for all E ∈F (8.54)

which is also a measure on (X ,F ).
It follows directly that the measure ν has the property

if E ∈F and µ(E) = 0 then also ν(E) = 0 (8.55)

which means that the ν has at least the same null sets as µ .
Definition 8.2 (Equivalent measures). Let (X ,F ) be a measurable space, and
let µ and ν be measures on (X ,F ). The measure ν is said to be absolute
continuous with respect to µ if (8.55) is fulfilled. In short, we write ν � µ . If
both ν � µ and µ � ν are true, the measures are said to be equivalent and
we write ν ∼ µ .
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Remark 8.14. That two measures are equivalent simply means that they have
the same null sets. Beside that there need not be any similarities.

Example 8.15. As an example consider an oil tanker that has run aground
and starts to leak oil. Let the space X be some limited area of the ocean (a
subset of R2). At each location x ∈ X, we define f (x) as the density of the oil
and the measure µ(x) as the depth of the oil. Then the measure ν(x) defined by
(8.54) measures the amount of oil at location x. These measures are equivalent,
because if there is not any oil at any depth at location x, expressed by µ(x) = 0,
then there is indeed no oil at location x, which means that ν(x) = 0, and vice
versa. As there is a limited amount of oil in the tanker, (8.53) is obviously
fulfilled.

8.4.2 Radon–Nikodym theorem

Assuming that µ is given and we define the new measure ν by (8.54), then ν is
absolute continuous with respect to µ . A very important result attributable to
Radon–Nikodym states that the converse is also true, namely that any measure
ν , where ν � µ , can be written on the form (8.54). We state this as a theorem
without proof.
Theorem 8.11 (Radon–Nikodym). Let (X ,F ,µ) be a finite measurable space
and let ν be a finite measure on (X ,F ) such that ν � µ . Then there exists a
positive function f : X → R which satisfies

f is F -measurable (8.56)∫
X

f (x)dµ(x)< ∞ (8.57)

ν(E) =
∫
E

f (x)dµ(x); for all Borel sets E ∈F . (8.58)

The function f is called the Radon–Nikodym derivative of ν with respect to
µ (on the σ -algebra F ). It is uniquely determined almost everywhere and we
write

f =
dν

dµ
or dν(x) = f (x)dµ(x). (8.59)

Example 8.16. A simple example of absolute continuity is obtained if we let X
be a finite set, i.e., X = [1, . . . ,N] and define the σ -algebra by F = 2X , i.e., the
family of all subsets of X. Let the measure µ on (X ,F ) be given by the point
masses µ(n = ([n])), n = 1, . . . ,N. The relation ν � µ means that ν(n) = 0
for all n where µ(n) = 0. If we assume that ν and µ are given and that ν � µ

then the Radon–Nikodym derivative is simply found from

ν(n) = f (n)µ(n), n = 1, . . . ,N
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or

f (n) =
ν(n)
µ(n)

.

Note that the special case µ(n) = 0 and ν(n) 6= 0 is excluded by ν � µ . If,
however, both µ(n) = ν(n) = 0 then we may define f (n) by

f (n) =

{
ν(n)
µ(n) for µ(n) 6= 0,

Not defined for µ(n) = 0.

The function f (n) is not uniquely defined for the n where µ(n) = 0, but the set
of these null point has the measure 0. We say that f (n) is uniquely determined
almost everywhere (with respect to µ).

It is important to note that the concept of absolute continuity is linked to
the specific σ -algebra that we are considering. If for example µ is defined on
(X ,F ) and F ⊇ G then it is possible that ν � µ on (X ,G ) is true, while it is
not true that ν � µ on (X ,F ).
Example 8.17. Consider the set X = [1,2,3] and the measure

µ(1) = 2, µ(2) = 0, µ(3) = 2

ν(1) = 8, ν(2) = 5, ν(3) = 13

and the σ -algebras F = 2X and G = [X , /0, [1] , [2,3]]. It is clear that ν� µ is
not true on F because ν(2) 6= 0 while µ(2) = 0. On the other hand, we have
ν � µ on G with the Radon–Nikodym derivative

f (n) =

{
8/2 = 4 for n = 1
(5+13)/(0+2) = 9 for n = 2,3.

By comparing F and G , it is clear that the absolute continuity property may
be lost, if we consider a finer σ -algebra. The σ -algebra G cannot distinguish
between [2] and [3].

We shall now consider measure transformations on filtered probability
spaces and we assume that the probability space (Ω,F ,P) augmented by the
filtration F (t) is given on the time interval [0,T ], where T is some fixed time.
Assuming that we have a non-negative F (T )-measurable stochastic variable
LT , we may construct a new measure Q on (X ,FT ) by

dQ= LT dP (8.60)

and if we further have that
EP [LT ] = 1 (8.61)

then Q is a new probability measure on (X ,F (T )).
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Measure transformations of this kind are closely related to martingale the-
ory. Let Pt and Qt denote the restrictions of P and Q on F (t), which implies
that knowledge about the probability measures is only based on information
up to and including time t. Then Qt is absolute continuous with respect to Pt
for all t, and the Radon–Nikodym Theorem 8.11 guarantees the existence of a
stochastic process [Lt ; 0≤ t ≤ T ] defined by

Lt =
dQt

dPt
or dQt = LtdPt . (8.62)

It also follows that Lt is adapted. Furthermore, we shall now show that Lt is
also a martingale with respect to (F (t),P).
Theorem 8.12. The stochastic process Lt is a (F (t),P)-martingale.

Proof. We need to show that

Lt = EP [LT |F (t)] ∀t ≤ T (8.63)

which is indeed the martingale property; namely that the expected value at time
t of a stochastic variable L at some future time T , t ≤ T , is simply the expected
value of L based on the information up to time t.

In other words we need to show that for all F ∈Ft , we have∫
F

LtdP=
∫
F

LT dP (8.64)

which follows from the following argument: As F ∈ F (t) it follows from
(8.62) that ∫

F

LtdP=Qt(F) =QT (F)

where the latter is due to Qt = QT on F (t). This simply states that our in-
formation about the probability measure QT given the information set F (t) is
limited to the restricted probability measure Qt . As the filtration is increasing
F ∈Ft ⊆FT , we finally get (8.64).

Remark 8.15 (Restricted probability measures). Think of a restricted
probability measure Pt in the following way: Assume that we gather informa-
tion about, say, stock prices in time. Each time we observe a price we obtain
more information about the probability density function (pdf) of stock prices
(by e.g., drawing a histogram). As t → ∞, we obtain complete information
about the pdf and our knowledge is no longer restricted to Pt .

It is sometimes convenient to exchange probability measures as we did
in Chapter 3 to compute arbitrage-free prices. We recall that the price of any
financial derivative may be expressed as the expected value of a (properly dis-
counted) payoff function under an equivalent martingale measure Q, Thus we
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need to establish a relation between expectations under different measures. We
will need an important term before we can state the main result.
Definition 8.3 (The L1-space). Let an integrable stochastic variable X be de-
fined on the probability space (Ω,F ,P). If

EP [X ]< ∞ (8.65)

then X is said to belong to the class L1. We write X ∈ L1(Ω,F ,P).
Theorem 8.13 (Expectation under the Q-measure). Let the probability
space (Ω,F ,P) and a stochastic variable X ∈ L1(Ω,F ,P) be given. Let Q
be another probability measure on (X ,F ) where Q � P with the Radon–
Nikodym derivative given by

L =
dQ
dP

.

Assume that X also belongs to L1(Ω,F ,Q) and that a G is a σ -algebra such
that G ⊆F . Then

EQ [X |G ] =
EP [LX |G ]

EP [L|G ]
Q−almost surely. (8.66)

Proof. Omitted. See Björk [2009].

We may apply this theorem to characterize martingales under the Q-
measure in terms of the characteristics under the P-measure.
Theorem 8.14. Consider the probability space (Ω,F ,P) augmented by the
filtration F (t) on the time interval [0,T ]. Let Q be another probability measure
such that QT � PT and define the process L as in (8.62). Assume that M is an
F (t)-adapted process with EQ [M(t)]< ∞ for all t ∈ [0,T ] such that

L ·M is a (P,F (t))-martingale. (8.67)

Then M is a (Q,F (t))-martingale.

Proof. Omitted. See Björk [2009].

Remark 8.16. The theorem simply states (under some additional conditions)
that if we apply the Radon–Nikodym derivative to a P-martingale M then we
get a Q-martingale. Thus (under some conditions) the martingale property is
preserved. This is a very important result.

8.4.3 Girsanov transformation

So far we have shown that is possible to introduce absolute continuous measure
transformations from the objective probability measure P (the real-world mea-
sure) to an equivalent martingale measure Q such that we can obtain arbitrage-
free prices of financial derivatives. We now show that such measure transfor-
mations affect the properties of the driving Wiener process and the infinitesi-
mal characteristics of a stochastic differential equation.
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As the mathematics is fairly complicated, one should at all times keep in
mind that the objective is to choose a particular new measure Q such that we
can obtain arbitrage-free prices.

The mathematical framework is as follows: We consider a Wiener process
X(t) defined on the probability space (Ω,F ,P) augmented by the natural fil-
tration F (t) for 0 ≤ t ≤ T , where T is some fixed time T (e.g., the maturity
time of a bond or the exercise date of a call option on a stock). We introduce a
nonnegative F (t)-measurable stochastic variable LT with E [LT ] = 1. We wish
to exchange measures by

dQ= LT dP (on F (T ))

and consider the problem how this change of measure affects the P-Wiener
process.

Let us consider a univariate stochastic differential equation (defined on
some probability space)

dY (t) = µ(t)dt +σ(t)dX(t) (8.68)

where X(t) is a P-Wiener process.
Heuristically, the functions µ and σ may be interpreted as

µ(t)dt = E [dY (t)|F (t)] (drift) (8.69)
σ

2(t)dt = E
[
(dY (t))2|F (t)

]
(diffusion) (8.70)

where dY (t) is short for Y (t+dt)−Y (t). In particular for the P-Wiener process
we have

EP [dX(t)|F (t)] = 0 ·dt (8.71)
EP [(dX(t))2|F (t)

]
= 1 ·dt (8.72)

under the P-measure. We wish to determine

EQ [dX(t)|F (t)] (8.73)
EQ [(dX(t))2|F (t)

]
(8.74)

under the Q-measure. To this end, we may use (8.66) from Theorem 8.13

EQ [dX(t)|F (t)] =
EP [L(t +dt)dX(t)|F (t)]

EP [L(t +dt)|F (t)]
(8.75)

where we must evaluate L at time t + dt, because we have defined dX(t) =
X(t +dt)−X(t). From Theorem 8.12, we know that L is a P-martingale such
that the denominator in (8.75) is simply L(t). For the numerator we get

EP [L(t +dt)dX(t)|F (t)] = EP [(L(t)+dL(t))dX(t)|F (t)]

= EP [L(t)dX(t)|F (t)]+EP [dL(t)dX(t)|F (t)] .
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As L(t) is F (t)-measurable, L(t) can move out of the first expectation, i.e.,

EP [L(t +dt)dX(t)|F (t)] = L(t)EP [dX(t)|F (t)]+EP [dL(t)dX(t)|F (t)]

As dX(t) is a Wiener-increment with zero mean, we finally get

EP [L(t +dt)dX(t)|F (t)] = EP [dL(t)dX(t)|F (t)] .

Thus (8.75) may be written as

EQ [dX(t)|F (t)] =
EP [dL(t)dX(t)|F (t)]

L(t)
. (8.76)

This is as far as we can get in general, but for very particular choices of the
likelihood process L(t), Equation (8.76) may be simplified considerably. We
recall that L(t) is a P-martingale and that we know the properties of the P-
Wiener process X . It is to be expected that (8.76) may be simplified if the
likelihood process takes the form

dL(t) = f (t)dX(t), L(0) = 1. (8.77)

It is by no means clear if there exist likelihood processes of the form (8.77).
The process L(t) does indeed become a martingale if f ∈ L 2, but we have
no a priori guarantee that L(t) remains non-negative for some choice of f . For
now we shall just assume that an f (t) process exists and that L(t) remains
non-negative. If we use (8.77) in (8.76), we get

EP [dL(t)|F (t)] = EP [ f (t)(dX(t))2|F (t)
]

= f (t)EP [(dX(t))2|F (t)
]
= f (t)dt

where we have used that f (t) is F (t)-measurable and that

EP [(dX(t))2|F (t)
]
= dt

because X(t) is a P-Wiener process. If we now choose f (t) of the form

f (t) = g(t)L(t)

and insert this into (8.76), we get

EQ [dX(t)|F (t)] =
EP [dL(t)dX(t)|F (t)]

L(t)

=
EP [g(t)L(t)(dX(t))2|F (t)

]
L(t)

=
L(t)EP [g(t)(dX(t))2|F (t)

]
L(t)

= g(t)dt

as g(t) is also F (t)-measurable.
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Using a similar argument, it may be shown that

EQ [(dX(t))2|F (t)
]
= dt.

By comparing these last results with (8.69), we see that the process X has the
infinitesimal characteristics µ(t) = g(t) and σ(t) = 1 under the Q-measure.
Thus under the Q-measure, X(t) may be described by

dX(t) = g(t)dt +dW (t) (8.78)

where W (t) is a Q-Wiener process.
It is seen that the P-wiener process obtains a drift term g(t)dt and a diffu-

sion term dW (t) which is a Q-Wiener process. The function g(t) is called the
Girsanov kernel. It plays a very important role in mathematical finance as we
shall see.

We shall now formalize these results. We start with a small lemma.
Lemma 8.1. Let g(t) be an F (t)-adapted process that satisfies

P

 T∫
0

g2(t)dt < ∞

= 1. (8.79)

Then the equation

dL(t) = g(t)L(t)dX(t), L(0) = 1 (8.80)

has the unique and strictly positive solution

L(t) = exp

 t∫
0

g(s)dX(s)− 1
2

t∫
0

g2(s)ds

 . (8.81)

Proof. Omitted. We leave it as an exercise for the reader.

Recall that it is important that EP [L(T )] = 1 for Q to be a probability mea-
sure. It is also important to note that it is not guaranteed that L(t) defined by
(8.80)–(8.81) may be applied as a Radon–Nikodym derivative because we do
not know if L(t) satisfies the condition EP [L(T )] = 1. If L(t) was a martin-
gale (i.e., if we knew a priori that g(t)L(t) ∈ L 2) then the initial condition
L(0) = 1 would ensure that L(t) is a martingale. Unfortunately, we can only
state that L(t) is a supermartingale, i.e., EP [L(T )]≤ 1 for functions satisfying
Lemma 8.1. We now state the main result in this section.
Theorem 8.15 (The Girsanov theorem). Let X(t) be a (P,F (t))-Wiener pro-
cess and let g(t) and L(t) be as defined in Lemma 8.1. Assume that

EP [L(T )] = 1 (8.82)
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and define the probability measure Q by dQ = L(T )dP on F (t). Then the
process W (t) defined by

W (t) = X(t)−
t∫

0

g(s)ds (8.83)

becomes a (Q,F (t))-Wiener process.

Proof. Omitted. See e.g. Björk [2009].

Remark 8.17. Note that (8.83) on differential form is

dW (t) = dX(t)−g(t)dt

or
dX(t) = g(t)dt +dW (t),

which is similar to (8.78).
The assumption (8.82) is obviously very important and we now state a the-

orem (without a very difficult proof) that establishes necessary and sufficient
conditions for g(t) such that (8.82) is satisfied.
Theorem 8.16 (The Novikov condition). Assume that g(t) satisfies

EP

exp

1
2

T∫
0

g2(t)dt

< ∞ (8.84)

then L(t) becomes a P-martingale and, in particular, we have

EP [L(T )] = 1. (8.85)

8.4.4 Maximum likelihood estimation for continuously observed diffusions

In this section, we introduce the Girsanov measure transformation as the theo-
retical foundation of a modern application of the well-known Maximum Like-
lihood method.

The intuition behind the classical maximum likelihood approach is that
• there is one measure (or one probability density function parametrized by a

parameter θ and we wish to estimate this θ ),
• there is one Wiener process or driving noise process and
• there are many processes X(t) and that we have only observed one of these.
The modern view is that
• there are several measures (one measure for each admissible parameter θ ),
• there are equally many Wiener processes and
• there is just one X(t) process, namely the one that we have observed.
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In the modern view the problem is thus to determine the measure given
only one set of observations X(t). To be specific, we fix the probability space
(Ω,F ,P), where the process X(t) is a Wiener process under the P-measure.
For each θ ∈ Θ ⊆ R, where Θ is the admissible parameter set (for e.g., the
exponential distribution only positive parameters are allowed Θ = R+), we
define the measure transformation

dLθ (t) = θLθ (t)dX(t), (8.86)
Lθ (0) = 1. (8.87)

Next we define the measure Pθ by the Radon–Nikodym derivative

dPθ = Lθ (t)dP on F (t)X , (8.88)

where F (t)X is the natural filtration generated by the process X(t) up to and
including time t. This is essentially the likelihood ratio as given in Newman-
Pearsons lemma. We see that the likelihood ratio should be evaluated using our
observations F (t)X . To be specific, the quantity Lθ (t) should be maximized
with respect to θ and we interpret the solution θ̂ as the most probable or the
most likely parameter given the observations.3

Our process X(t) is no longer a Wiener process under the P-measure, but
it is a Wiener process under the new Pθ -measure. We say that X(t) is a Pθ -
Wiener process.

The Girsanov theorem with the Girsanov kernel θ = g states that these two
measures are connected by

dX(t) = θdt +dWθ (t); Wθ (t)≡ X(t)−
t∫

0

θds (8.89)

where Wθ (t) is a Pθ -Wiener process, and that

dPθ (t) = Lθ (t)dP.

Thus there is one measure associated with each Pθ -Wiener process for θ ∈ Θ,
but there is only one observed process X(t), 0≤ t ≤ T , where T is some finite
time.
Example 8.18 (Maximum likelihood estimation 1). Assume that we wish to
estimate the parameter θ in the process

dX(t) = θdt +dW (t).

The L(t)-process is given by

dLθ (t) = θLθ (t)dX(t)

3In compact form our statistical model can be expressed as 〈[Pθ ]θ∈Θ⊆R ,Ω,F ,X〉.
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which according to (8.81) has the solution

Lθ (t) = exp

 t∫
0

θdX(s)− 1
2

t∫
0

θ
2ds


= exp

(
θX(t)− 1

2
θ

2t
)
.

As usual, we compute

lθ (t) = lnLθ (t) = θX(t)− θ 2

2
t

and solve
∂ lθ (t)

∂θ
|
θ=θ̂

= 0 ⇔ X(t)− θ̂ t = 0;

thus the maximum likelihood estimate of θ is

θ̂(t) =
X(t)

t

where the notation θ̂(t) emphasizes that the estimate of θ is based on F (t).
Consider a slightly more complicated example.

Example 8.19 (Maximum likelihood estimation 2). Consider the Langevin
equation

dX(t) = θX(t)dt +dW (t) (8.90)

where W (t) is a P-Wiener process. Assuming that we have observations of X(t)
for 0≤ t ≤ T , we wish to estimate the parameter θ .

The associated likelihood process (g(t) = θX(t)) is

dLθ (t)≡ θX(t)Lθ (t)dX(t), Lθ (0) = 1. (8.91)

Another way of posing the estimation problem is to state that we wish to deter-
mine the measure Pθ that maximizes the likelihood ratio

Lθ (T ) =
dPθ

dP
.

The likelihood process Lθ (t) should fulfill the condition (8.82), i.e.,

EP [Lθ (T )] = 1

in order for Lθ (t) to be a probability density function. In addition the process
should fulfil the square integrability condition

EP

exp

1
2

T∫
0

θ
2X2(t)dt

< ∞.
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This condition is fulfilled under the assumption that X(t) ∈L 2.
The Girsanov theorem 8.15 states that

dX(t) = θX(t)dt +dWθ (t)

where Wθ (t) is a Pθ -Wiener process.
The solution to (8.91) is, cf. (8.81),

Lθ (t) = exp

 t∫
0

θX(s)dX(s)− 1
2

t∫
0

θ
2X2(s)ds


= exp

θ

t∫
0

X(s)dX(s)− 1
2

θ
2

t∫
0

X2(s)ds

 .

Using the standard ML-approach, we get

∂ lnLθ (t)
∂θ

=

t∫
0

X(s)dX(s)−θ

t∫
o

X2(s)ds = 0

which has the solution

θ̂(t) =

t∫
0

X(s)dX(s)

t∫
0

X2(s)ds
=

X2(t)
2 −

t
2

t∫
0

X2(s)ds
=

X2(t)− t

2
t∫

0
X2(s)ds

where we have used the result from Example 8.9. The notation θ̂(t) is used to
emphasize that the estimate of θ is based on information up to time t.

These examples should just illustrate an application of the Radon–
Nikodym derivative and the Girsanov theorem. From these examples, it should
also be clear that this approach is not immediately applicable for empirical
work when dealing with more complicated models, although the approach in
Beskos et al. [2006] is building on this idea. More general methods will be
introduced in Chapter 13.

8.5 Notes

Some of the material in this chapter is inspired by the very readable Björk
[2009]. A more thorough treatment is given by, e.g. Arnold [1974], Kloeden
and Platen [1995], Øksendal [2010]. In particular the monograph by Kloeden
and Platen [1995] covers a large number of interesting topics – also of practical
interest. The often referenced books by Karatzas and Shreve [1996], Ikeda and
Watanabe [1989], Doob [1990] are also recommended, although they require
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some understanding of measure theory and other rather technical subjects. It
should, however, be clear from the preceding section that absolute continuous
measure transformations have some interesting applications, albeit the trans-
formations are a purely abstract mathematical concept. Thus, measure theory
is inherently important if one wishes to obtain a deeper understanding of the
theory of modern mathematical finance.

8.6 Problems

Problem 8.1
Compute the stochastic differential dX in the following cases:
1. X(t) = exp(αt).

2. X(t) =
t∫

0
g(s)dW (s), where g is an adapted stochastic process.

3. X(t) = exp(αW (t)).

Problem 8.2
Use the Itō formula (8.10) to show that

t∫
0

W 2(s)dW (s) =
1
3

W 3(t)−
t∫

0

W (s)ds. (8.92)

Problem 8.3
Let X(t) be a solution of (8.1).
1. Assuming that σ(x)2 > 0, for all x, determine a transformation ϕ(X(t)) us-
ing Itō ’s formula such that the diffusion term in the SDE for dY (t) = dϕ(X(t))
is constant.

Problem 8.4
Consider the two SDEs

dX(t) = αX(t)dt +σX(t)dW (1)(t), (8.93)

dY (t) = βY (t)dt +δY (t)dW (2)(t). (8.94)

Compute the SDE for dϕ(X ,Y ) in the following case:

ϕ(X ,Y ) = X
√

Y .

Problem 8.5

Let W(t) = (W1(t),W2(t)) be a two-dimensional Wiener process and define
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the distance from the origin

R(t) = |W(t)|= (W 2
1 (t)+W 2

2 (t))
1/2.

Assuming that W(0) = 0, show that

dR(t) =
W1(t)dW1(t)+W2(t)dW2(t)

R(t)
+

1
2R(t)

dt.

This process is called a Bessel process of order 2.

Problem 8.6
Consider the geometric Brownian motion

dXt = µXtdt +σXtdWt , X0 > 0. (8.95)

1. Determine the solution to (8.95).
2. Determine the mean.
3. Determine the variance.

Problem 8.7
Consider the one-dimensional SDE

dXt = (θ +ηXt)dt +ρdWt . (8.96)

1. Solve this SDE.
2. Determine the mean.
3. Determine the variance.

Problem 8.8
Consider the nonautonomous SDE

dX(t) =
(

2
1+ t

X(t)+σ(1+ t)2
)

dt +σ(1+ t)2dW (t); X(t0) = a. (8.97)

1. Show that the fundamental solution to (8.97) is

Φt,t0 =

(
1+ t
1+ t0

)2

.

2. Determine the general solution to (8.97).

Problem 8.9
Consider the SDE on t ∈ [0,T ] defined by

dX(t) = µ(t,X(t))dt +σ(t,X(t))dW (t) (8.98)



174 STOCHASTIC DIFFERENTIAL EQUATIONS

with starting value X(0) = u. Show that the dynamics of the Bridge Diffusion
Process when X(T ) = v is given by

dX(t) =
(
µ(t,X(t))+ [σσ

T ](t,X(t))∇x log pt,T (X(T ) = v|x)
)

dt (8.99)
+σ(t,X(t))dW (t). (8.100)

Bridge processes are very useful when deriving Monte Carlo-based estimators
for parameters; cf. Section 13.5.1.



Chapter 9

Continuous-time security markets

In this chapter we consider financial markets in continuous time, contrary to
the discrete time approach in Chapter 3. The multiperiod binomial model con-
sidered in Chapter 3 allowed the asset prices to take only one of two values
in the next period, which certainly contradicts the actual behaviour of stock
prices. In real financial markets, trading is not restricted only to take place at a
limited number of time points; hence, it seems reasonable to model the finan-
cial market in continuous time where the prices are allowed to change at any
time.1 The mathematical description of a stochastic process in continuous time
presented in Chapter 8 will be used to model the price of securities.

9.1 From discrete to continuous time

Consider a financial market with n securities, e.g., stocks. The objective of this
section is to derive, in an ad hoc manner, a formula for the wealth process of a
self-financing portfolio in the n securities in continuous time. However, in or-
der to obtain a formulation that is consistent with the definition of Itō stochastic
integrals in Chapter 7, the discrete time model of Chapter 3 is restated. Let
1. hi(t) = the number of stocks of type i held in the period [t, t + k[.
2. V (t,h) = the value of the portfolio h at time t.
3. Si(t) = price for one stock of type i in period [t, t + k[.
The interpretation is as follows:
1. At time t, i.e., at the beginning of period t, we are equipped with the port-

folio h(t− k) ∈ Rn from period t− k.
2. At time t we observe the stock prices Si(t) ∈ Rn for all i.
3. After observing the stock price, we decide the portfolio h(t) for the next

period t.

1It may be argued that it is misleading to model prices in continuous time as stock exchanges
are closed at night and during the weekends and that there is only a finite number of trades each
day. However, as the financial markets are becoming more internationalized and computerized,
there always exists an open stock exchange somewhere around the globe where the trading can be
effected.
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Figure 9.1: Illustration of how the periods are related to the time points.

At time t the value of the portfolio h(t− k) is given by

V (t,h) = hT (t− k)S(t) =
n

∑
i=1

hi(t− k)Si(t) (9.1)

and the value of the new portfolio bought at time t is

V (t,h) = hT (t)S(t) =
n

∑
i=1

hi(t)Si(t). (9.2)

If we assume that the portfolio is self-financing we have the following equality
according to the Definition 3.7.

hT (t− k)S(t) = hT (t)S(t). (9.3)

By introducing the lag operator ∆X(t) = X(t)−X(t−k) formula (9.3) may be
written as

ST (t)∆h(t) = 0. (9.4)

Since our aim is to obtain a model in continuous time, we consider ST (t +
k)∆h(t + k) = 0 and let k→ 0. We then get that

ST (t)dh(t) = 0. (9.5)

In Chapter 7 where Itō stochastic calculus was introduced, it was shown that
the value of a certain stochastic integral depends critically on where the inte-
grand is evaluated in the interval [t, t + k[. In the formulation above the inte-
grand is evaluated at the right endpoint of the interval, which means that the
results will be inconsistent with the definition of Itō integrals (and differen-
tials). In order to obtain Itō differentials the integral must be evaluated at the
left endpoint. By adding and subtracting S(t)∆h(t + k) in (9.4) we get

0 = ST (t)∆h(t)+ST (t)∆h(t + k)−ST (t)∆h(t + k) (9.6)
= ST (t)∆h(t + k)+∆ST (t + k)∆h(t). (9.7)
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For k→ 0 we obtain

0 = ST (t)dh(t)+dhT (t)dS(t) (9.8)

which might be interpreted as an infinitesimal budget restriction, since it says
that one is only allowed to change the portfolio according to (9.8). Otherwise
the portfolio (trading strategy) would not be self-financing. In order to obtain
a stochastic differential equation for the wealth process V (t,h) we apply the
Itō formula (8.10)

dV (t,h) = hT (t)dS(t)+ST (t)dh(t)+dhT (t)dS(t). (9.9)

For self-financing trading strategies the last two terms cancel out and we get

dV (t,h) = hT (t)dS(t), V (t) =
∫ t

0
hT (u)dS(u). (9.10)

The interpretation of the equation is that changes in the total value are gener-
ated by changes of the asset prices S(t). It is important to understand that the
differentials and the integral should be interpreted in the Itō sense, because if
we instead had used the concept of, e.g., Stratonovitch integrals, the SDE for
the wealth process would not be the same as (9.10).

Define the relative portfolio strategy as

ui(t) =
hi(t)Si(t)
V (t,h)

, for all i = 1, . . . ,n (9.11)

where
n

∑
i=1

ui(t) = 1 (9.12)

and where ui(t) denotes the fraction of the total wealth that is placed in asset i.
By substitution of hi(t) into the wealth process (9.2) we get

dV (t,h) =V (t,h)
n

∑
i=1

ui(t)
dSi(t)
Si(t)

(9.13)

which gives an expression of the wealth process we shall need in the following.

9.2 Classical arbitrage theory

In this section we consider a financial market consisting of a riskless asset with
a deterministic price process Bt , and a stock with the stochastic price process
St . The model we shall consider is the famous Black–Scholes model and we
will derive the Black–Scholes formula for pricing European call options.

The riskless asset is assumed to follow the following differential equation

dB(t) = rB(t)dt (9.14)
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where r is a constant interest rate. This asset is called the money market ac-
count. The solution is

B(t) = B(0)exp
(∫ t

0
rds
)
= B(0)exp(rt). (9.15)

The corresponding solution, if the short term interest rate was varying deter-
ministically, is simply given by

B(t) = B(0)exp
(∫ t

0
r(s)ds

)
. (9.16)

The price process of the stock is assumed to be stochastic in the following way

dS(t) = αS(t)dt +σS(t)dWt (9.17)

where α and σ are constants. Note that the price process has a deterministic
drift of magnitude αS(t). In Example 8.10 we found that the solution to (9.17)
is given by

S(t) = S(0)exp
(
(α− 1

2
σ

2)t +σW (t)
)
. (9.18)

It seems like the growth rate is reduced to α − 1
2 σ2 plus some random noise.

However by computation of the expected value we get

E [S(t)] = S(0)exp
(
(α− 1

2
σ

2)t
)

E [exp(σW (t))] = S(0)exp(αt) (9.19)

because exp{σW (t)} is lognormally distributed with mean exp{σ2t/2}. Thus
the solution gives a trajectory with random fluctuations around the determinis-
tic growth curve S(0)exp{αt}.
Remark 9.1 (Lognormal distribution). Assume that X(t) is normally dis-
tributed. Then E[exp(X(t))] = exp(E[X(t)]+Var[X(t)]/2).

The objective is now to find the "correct" price P(t) for a European call
option at time t ≤ T . As we have seen in a previous chapter, the value at time
t = T is given by P(T ) = max[S(T )−K,0] where K is the exercise price.
However it is not obvious what the price of a call option should be at time
t < T .

Since the solution of the SDE for the stock price is a Markov process it is
natural to assume that the price of a European call option is a function of time
and the actual stock price P(t)=F(t,S(t)). Similar to the approach taken in the
discrete time framework we now want to price the call option by constructing
a replicating trading strategy.
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Since the price of the option is a function of the stock price, we can apply
the Itō formula to obtain a stochastic differential equation for the price of the
call option.

dP(t) = [Ft +αS(t)Fs +
1
2

σ
2S(t)2Fss]dt +σS(t)FsdW (t) (9.20)

where

Ft =
∂F(t,S(t))

∂ t
, Fs =

∂F(t,S(t))
∂S(t)

, Fss =
∂ 2F(t,S(t))

∂S(t)2 . (9.21)

By defining

αP =
Ft +αS(t)Fs +

1
2 σ2S(t)2Fss

P(t)
and σP =

σS(t)Fs

P(t)
(9.22)

we get
dP(t) = αPP(t)dt +σPP(t)dW (t). (9.23)

Consider a trading strategy in the stock with price process (9.17) and the option
with the above price process. According to (9.13), the total wealth process of
such a trading strategy is given by

dV (t) =V (t)
([

u1
α +u2

αP
]
dt +

[
u1

σ +u2
σP
]
dW (t)

)
(9.24)

where u1 and u2 denote the fraction of the total wealth placed in the stock and
the option. If u1 and u2 are chosen such that

u1
σ +u2

σP = 0 (9.25)

it is readily seen that the stochastic part of the wealth process (9.24) cancels,
and the wealth process then becomes deterministic with the drift term (u1α +
u2αp). Since we know that u1 + u2 = 1 we can express the relative trading
strategy as

u1 =
S(t)Fs(t,S(t))

S(t)Fs(t,S(t))−F(t,S(t))
, (9.26)

u2 = − F(t,S(t))
S(t)Fs(t,S(t))−F(t,S(t))

. (9.27)

Since the stock price as well as the option price is a stochastic process, it is
obvious that the relative trading strategy is a stochastic process as well. By
choosing the trading strategy above we obtain a riskless return of u1α +u2αp.
Since the market consists of a riskless asset with interest rate r the riskless
return of the trading strategy above must be the same as the riskless asset;
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otherwise arbitrage is possible in the market. The argument goes like this: If
u1α+u2αp > r you borrow money in the bank (the riskless asset) at the interest
rate r, and reinvest the money in the trading strategy (u1,u2) with the riskless
return u1α +u2αP. Thus the trading strategy is an arbitrage. If u1α +u2αp < r,
a similar argument gives that the trading strategy is an arbitrage. This gives us
the following restriction

u1
α +u2

αP = r. (9.28)

By inserting u1 and u2 from (9.26) we get

1
2

σ
2S(t)2Fss(t,S(t))+S(t)rFs(t,S(t))+Ft(t,S(t))− rF(t,S(t)) = 0. (9.29)

We have now derived a parabolic partial differential equation (PDE) which
the price process F(t,S(t)) for the call option must fulfil in order to exclude
arbitrage possibilities in the market consisting of the riskless asset, the stock
and the call option. The boundary condition is

F(T,S(T )) = max(S(T )−K,0) (9.30)

where T denotes the time of exercise. Notice that the PDE and the boundary
condition do not involve the drift parameter α of the stock price. Contrary to
most PDEs it is possible to give an analytic solution, which we shall return to
later. In the derivation of the PDE above we did not use the fact that the price
process F(t,S(t)) was the price process of a call option. We only use it in the
boundary condition at time T . This gives rise to the following generalization:
Theorem 9.1 (Arbitrage-free pricing). Consider the financial market given by
(9.14) and (9.17) and a contingent claim with payoff Φ(S(T )) at time T . If the
market is free of arbitrage, the price Pt = F(t,S(t)) is given by the solution to
the following PDE:

1
2

σ
2S(t)2Fss(t,S(t))+S(t)rFs(t,S(t))+Ft(t,S(t))−rF(t,S(t)) = 0 (9.31)

with the boundary condition

F(T,S(T )) = Φ(S(T )). (9.32)

Proof. Follows from the above.

The theorem enables us to price contingent claims X = Φ(S(T )), where
the value at the exercise price T is a function Φ(·) of the underlying stock
S. The reader will now notice that the boundary value problem stated in The-
orem 9.1 is similar to the Cauchy problem considered in Section 8.3 where
some Feynman–Kac representation theorems were stated. According to Theo-
rem 8.10 the solution of the boundary value problem is given by

F(t,S(t)) = e−r(T−t)EQ [Φ(S(T )|S(t) = s)] (9.33)
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where S(u) has the following dynamics

dS(u) = rS(u)dt +σS(u)dW̃ (u) (9.34)
S(t) = s (9.35)

where s denotes the value of the underlying stock at time t and W̃ (u) is a
standard Wiener process.

9.2.1 Black–Scholes formula

We will now apply this representation theorem to derive the famous Black–
Scholes formula for pricing European call options, where Φ(S(T )) =
max(S(T )−K,0). The solution to the SDE for the stock (9.34) is given by

S(T ) = se
(
(r− 1

2 σ2)(T−t)+σ(W̃ (T )−W̃ (t))
)
. (9.36)

Since increments of the standard Wiener process are normally distributed with
zero mean and variance T − t, the exponent (r− 1

2 σ2)(T − t) + σ(W̃ (T )−
W̃ (t)) has the distribution N((r− 1

2 σ2)(T − t),σ2(T − t)). Let ξ ∈ N(0,1) be
a standard Gaussian random variable, then the value of the stock at time t = T
is given by

S(T ) = se
(
(r− 1

2 σ2)(T−t)+σ
√

T−tξ
)
. (9.37)

We now want to find which values of the random variable ξ give the call option
a positive value at the time of expiry.

S(T )> K (9.38)

⇔ se
(
(r− 1

2 σ2)(T−t)+σ
√

T−tξ
)
> K (9.39)

⇔
(

r− 1
2

σ
2
)
(T − t)+σ

√
T − tξ > ln

(
K
s

)
(9.40)

⇔ ξ >
ln(K/s)− (r− σ2

2 )(T − t)
σ
√

T − t
=−d. (9.41)

In this case we say that the call option is in the money. Later on it will become
clear why the entity −d is introduced. The price of the call option at time t is
given by

F(t,S(t)) = e−r(T−t)EQ [max(S(T )−K,0)]

= e−r(T−t)
∫

∞

−∞

max(S(T )−K,0)
1√
2π

e−
ξ 2
2 dξ

= e−r(T−t)
∫

∞

−d
(S(T )−K)

1√
2π

e−
ξ 2
2 dξ

= e−r(T−t)
[∫

∞

−d
S(T )

1√
2π

e−
ξ 2
2 dξ −

∫
∞

−d
K

1√
2π

e−
ξ 2
2 dξ

]
. (9.42)



182 CONTINUOUS-TIME SECURITY MARKETS

The last term is given by

e−r(T−t)
∫

∞

−d
K

1√
2π

e−
ξ 2
2 dξ = e−r(T−t)KΦ(d) (9.43)

where Φ(·) is the cumulative normal distribution function. By inserting the
solution (9.37) into the first term in (9.42) we get

e−r(T−t)
∫

∞

−d
S(T )

1√
2π

e−
ξ 2
2 dξ

= e−r(T−t)
∫

∞

−d
se
(
(r− σ2

2 )(T−t)+σ
√

T−tξ
) 1√

2π
e−

ξ 2
2 dξ

= s
∫

∞

−d

1√
2π

e
(
− σ2

2 (T−t)+σ
√

T−tξ− ξ 2
2

)
dξ

= s
∫

∞

−d

1√
2π

e−
1
2

(
ξ−σ

√
T−t)

)2

dξ

= sΦ(d +σ
√

T − t). (9.44)

From the calculations above we get the following theorem:
Theorem 9.2 (Black–Scholes formula for European call options). In the
Black–Scholes model the price of a European call option with strike price K
and time of expiry T is given by

Pt = F(t,S(t)) = sΦ(d +σ
√

T − t)− e−r(T−t)KΦ(d) (9.45)

where

d =
ln(s/K)+(r− σ2

2 )(T − t)
σ
√

T − t
. (9.46)

From this formula it is seen that the price of a European call option depends
on

1. Time to expiry T − t.
2. The actual value of the underlying stock s.
3. The strike price K.
4. The deterministic interest rate r.
5. The volatility parameter σ . Notice once again that the pricing formula does

not depend on the drift parameter α .

In Figure 9.2 the price of the call option is plotted for some specific choice
of the parameters. It is readily seen that the price of a call option with strike
price K = 100 is increasing in the actual price of the underlying asset, which
could be expected because as the actual price of the stock increases so does
the probability that the stock price at the time of expiry exceeds the strike
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Figure 9.2: The price of a European call option with the Black–Scholes model
with the following parameters: σ = 0.1, T = 1, K = 100 and r = 0.1.

price. Notice furthermore that the price as a function of the actual stock price
converges towards the payoff function max(S(T )−K,0) as the time to expiry
T − t decreases.

9.2.2 Hedging strategies

In the derivation of the partial differential equation for the Black–Scholes
model, we constructed a relative portfolio (u1,u2) in the stock and the call
option, which eliminated the stochastic part of the SDE for the price process
of the call option. This trading strategy is called Delta-hedging in the finan-
cial literature. Hedging means reduction of the sensitivity of a portfolio to the
movements of the underlying asset by taking opposite positions in different
financial instruments. The delta is defined as ∆ = ∂F(t,S(t))

∂S(t) . The idea behind
Delta-hedging is that the writer of a call option can eliminate the risk asso-
ciated with the call option by taking a position in the underlying asset (the
stock). If we look at the absolute portfolios h1,h2 instead of the relative ones
we immediately get from (9.26)

h1 = S(t)Fs(t,S(t)) = S(t)Φ(h+σ
√

T − t) (9.47)

h2 = −F(t,S(t)) =−(SΦ(h+σ
√

T − t)− e−r(T−t)KΦ(h)) (9.48)
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where F(t,S(t)) denotes the price of the call option. By holding this portfolio
the writer of the call option will automatically hold the correct amount (one or
zero units) of the stock at expiry. This should be expected since delta-hedging
is a risk-free strategy. If the option expires in-the-money (S(T ) > K), the re-
quired asset has been bought over the lifetime of the option, firstly in setting
the initial hedge and secondly in a series of transactions as S(t) change. Con-
versely, if the option expires out-of-the-money, the initial hedge is gradually
sold. Since the delta-hedging is only instantaneously risk-free, the portfolio
must be rebalanced continuously according to the movements of the underly-
ing stock, which make this strategy inefficient from a practical point of view
due to transaction costs in the underlying stock.

In delta-hedging the random component, the stock price, is eliminated.
However one can be more subtle and hedge against the dependency of some of
the parameters in the pricing formula. The following list is usually considered.

∆ =
∂F
∂S

= Φ(d +σ
√

T − t), (9.49)

Γ =
∂ 2F
∂S2 =

1
σS
√

T − t
Φ
′
(d +σ

√
T − t), (9.50)

Θ =
∂F
∂ t

=
SΦ

′
(d +σ

√
T − t)σ

2
√

T − t
− rKe−r(T−t)

Φ(d), (9.51)

ρ =
∂F
∂ r

= K(T − t)e−r(T−t)
Φ(d), (9.52)

ν =
∂F
∂σ

= SΦ
′
(d +σ

√
T − t)

√
T − t. (9.53)

These are for obvious reasons called the Greeks. Hedging against any of these
dependencies requires the use of other options as well as the call option and
the stock. It is beyond the scope of this book to go any further into the subject
of hedging.

9.2.2.1 Quadratic hedging

Hedging based on the Greeks (e.g., ∆ or ∆− Γ strategies) may be accurate
enough as long as then rebalancing is frequent and the asset paths are contin-
uous. An alternative that is more appropriate for advanced models in general
and jump processes in particular is to minimize the quadratic hedge error

{h1,h2}= argminE
[
(V (t +∆t)−h1B(t +∆t)+h2S(t +∆t))2 |F (t)

]
(9.54)

where we are deliberately vague regarding the probability measure; see Cont
and Tankov [2004] for a discussion on using the P measure or the Q measure.
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It turns out that quadratic hedging and adaptive calibration can be done si-
multaneously, as shown by Lindström and Guo [2013], Wiktorsson and Lind-
ström [2014]. This makes it computationally comparable to using Greeks,
while in general providing better hedge strategies (especially when there are
jumps in the asset dynamics).

9.3 Modern approach using martingale measures

In the following section we shall use some of the advanced techniques pre-
sented in Chapter 7 in order to derive a general pricing formula for contingent
claims in the Black–Scholes model. In the derivation of the partial differential
equation of Theorem 9.1, it was assumed that the price P(t) = F(t,S(t)) only
depended on the time and the actual value of the underlying asset. By using
a modern approach this assumption is not needed, which from a mathemati-
cal point of view is more satisfactory. However the primary object of deriving
the pricing formula for contingent claims once again is that it demonstrates
how the Girsanov measure transformation may be applied to a concrete finan-
cial model. Hopefully the reader will get a better understanding of the basic
idea of measure transformations, which will be used in a subsequent chapter
concerning the term structure of interest and bond pricing.

In the following the results are stated for the simple Black–Scholes model,
although they are valid for a larger class of financial models. To begin
with, the Black–Scholes model is restated. On the filtered probability space
(Ω,F ,P,{F (t)}t≥0), we have the following two assets

dB(t) = rB(t)dt, (9.55)
dS(t) = αS(t)dt +σS(t)dW̃ (t), (9.56)

where W̃ (t) is a Wiener process with respect to the probability measure P, and
B denotes a risk-free asset and S denotes a risky asset. As in discrete time we
shall need the concept of martingale measures.
Definition 9.1 (Martingale measure). We say that a probability measure Q is
a martingale measure if

1. Q∼ P i.e., the two measures are equivalent.

2. The discounted price process Z(t) = S(t)/B(t) is a martingale under the
measure Q.

The set of martingale measures is denoted by P . The denominator B(t) is
called the numeraire.

In the Black–Scholes model it is easy to find the class of equivalent mar-
tingale measures. The stochastic differential equation of the discounted price
process Z(t) = ϕ(S(t),B(t)) = S(t)/B(t) is found by applying the multivariate
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Itō formula stated in Theorem 8.5. The following derivatives are needed

∂ϕ

∂ t
= 0,

∂ϕ

∂S(t)
=

1
B(t)

,
∂ 2ϕ

∂S(t)2 = 0

∂ϕ

∂B(t)
=− S(t)

B(t)2 ,
∂ 2ϕ

∂B(t)2 =−2
S(t)

B(t)3 ,

∂ 2ϕ

∂S(t)∂B(t)
=− 1

B(t)2

which gives

dZ(t) =
[
− S(t)

B(t)2 rB(t)+
1

B(t)
αS(t)

]
dt +

1
B(t)

σS(t)dW̃ (t)

= (α− r)Z(t)dt +σZ(t)dW̃ (t). (9.57)

Thus the discounted price process is again a geometric Brownian motion,
where the drift is (α − r). In order to find the class of equivalent martingale
measures we perform an absolute continuous measure transformation by ap-
plying the Girsanov theorem (8.15). Define a new measure Q where

dL(t) = g(t)L(t)dW (t), (9.58)
L(0) = 1. (9.59)

According to the Girsanov theorem we have

dW̃ (t) = g(t)dt +dW (t) (9.60)

where W (t) is a Wiener process with respect to the probability measure Q. By
substituting dW̃ (t) into (9.57) we get the following dynamics of the Z-process
under the Q-measure

dZ(t) = (α− r+σg(t))Z(t)dt +σZ(t)dW (t). (9.61)

By choosing the Girsanov kernel g(t) to be

g(t) =
r−α

σ
(9.62)

the drift term in the Z-process is removed; hence the process is a martingale
under the measure Q. Since P and Q are equivalent measures the Q measure is
a martingale measure according to Definition 9.1.
Definition 9.2 (Wealth process). For a given portfolio strategy h we define the
wealth processes V (t,h) and V Z(t,h) as

V (t,h) = h1(t)B(t)+h2(t)S(t), (9.63)

V Z(t,h) =
V (t,h)

B(t)
= h1(t)+h2(t)Z(t). (9.64)
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Definition 9.3 (Self-financing portfolio strategy). A portfolio strategy h is self-
financing if

V (t,h) =V (0,h)+
∫ t

0
h1(u)dB(u)+

∫ t

0
h2(u)dS(u). (9.65)

The self-financing condition is intended to formalize the intuitive idea of
a trading strategy with no exogenous infusion or withdrawals of money, i.e.,
a strategy where the purchase of a new asset is financed solely by the sale of
assets already in the portfolio.
Lemma 9.1 (Self-financing portfolio strategy).
1. A portfolio strategy h is self-financing if and only if

dV Z(t,h) = h2(t)dZ(t). (9.66)

2. If h is a self-financing portfolio, the wealth process V Z(t,h) is a Q-
martingale.

Proof. Let h be a self-financing portfolio, then we want to prove (9.66). Since
V Z(t,h) = e−rtV (t,h), we can apply the Itō formula and get

dV Z(t,h) = d[e−rtV (t,h)] =−re−rtV (t,h)dt + e−rtdV (t,h)

=−re−rt(h1(t)B(t)+h2(t)S(t))dt

+ e−rt(h1(t)dB(t)+h2(t)dS(t))

= (α− r)h2(t)e−rtS(t)dt +h2(t)σe−rtS(t)dW (t) = h2(t)dZ(t).

The opposite implication is proved in a similar way.
By integration of (9.66) we get

V Z(t,h) = V Z(0,h)+
∫ t

0
h2(u)dZ(u)

= V Z(0,h)+
∫ t

0
h2(u)σZ(u)dW̃ (u). (9.67)

By taking conditional expectations under the measure Q on each side the
stochastic integral cancels and we get

EQ[V Z(t,h)|F (t)] =V Z(0,h) (9.68)

which shows that V Z(t,h) is a Q-martingale.

Definition 9.4 (Contingent claims). A contingent claim with expiry date T is
a F (T )-measurable random variable.2

2This means that the value of the contingent claim, e.g., an option, is known at time T.
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The set of contingent claims is called K . Now define a subset K + con-
sisting of contingent claims X ∈K such that

P(X ≥ 0) = 1, and P(X > 0)> 0. (9.69)

These two conditions ensure that X is non-negative and not all the probability
mass is assigned to the event X = 0.
Definition 9.5 (Arbitrage strategies). A trading strategy h∈H is an arbitrage
strategy if

V0(h) = 0, and VT (h) ∈K +. (9.70)

The definition says that a trading strategy is an arbitrage strategy if the
value of the portfolio initially is zero, and the value at time T is non-negative
and with a positive probability greater than zero. We recognize that the defini-
tion is similar to the one stated in discrete time financial models (3.1). A model
without any arbitrage strategies is free of arbitrage.
Theorem 9.3. Assume that there exists a martingale measure Q. Then the
model is free of arbitrage in the sense that there exist no arbitrage portfolios.

Proof. Assume that h is an arbitrage portfolio with P(V (T,h) ≥ 0) = 1 and
P(V (T,h)> 0)> 0. Then since Q∼ P we also have Q(V Z(T,h)≥ 0) = 1 and
Q(V Z(T,h)> 0)> 0 and consequently

V (0,h) =V Z(0,h) = EQ[V Z(T,h)]> 0 (9.71)

which contradicts the arbitrage condition V (0) = 0.

Since we have found an equivalent martingale measure in the Black–
Scholes model, it immediately follows that it is free of arbitrage.

We have seen that the existence of a martingale measure implies the ab-
sence of arbitrage, and a natural question is whether there is a converse to this
statement, i.e., if the absence of arbitrage implies the existence of a martingale
measure. For models in discrete time with a finite sample space, we have seen
that this is indeed the case. In continuous time there is not complete equiva-
lence between the existence of a martingale measure and absence of arbitrage.
Although it is somewhat unsatisfactory, the general consensus seems to be that
the existence of a martingale measure is (informally) considered to be more or
less equivalent to the absence of arbitrage.
Definition 9.6 (Complete markets).
1. A contingent claim X with expiry date T is said to be attainable if there ex-

ists a self-financing portfolio h, such that the corresponding wealth process
has the property that

V (T,h) = X , P-a.s. (9.72)

2. The market is said to be complete if every claim is attainable.
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Theorem 9.4. If the martingale measure Q is unique, then the market is com-
plete in the sense that every claim X satisfying

X
S0(T )

∈ L1(Ω,F (T ),Q) (9.73)

is attainable, with L1(Ω,FT ,Q) being the class of stochastic variables with
finite expected values under the measure Q. The class L1(Ω,F (T ),Q) is de-
fined explicitly in Definition 8.3.

Proof. Omitted. See e.g. Duffie [2010].

Remark 9.2. In the Black–Scholes model we found a unique martingale mea-
sure by Girsanov transformation of the objective probability measure P; thus
the model is complete.

9.4 Pricing

We now turn to the problem of determining a "reasonable" price process
Π(t,X) for a contingent claim with a fixed date of expiry T . Assume that
the market is free of arbitrage and the market is complete, i.e., a martingale
measure exists and it is unique for the market consisting of the money market
account B and the stock S. Then it seems reasonable to demand that the price
process Π(·,X) should be chosen such that the extended market [B,S,Π(·,X)]
is free of arbitrage possibilities. This can be obtained by requiring that the dis-
counted price process Π(t,X)/B(t) is a martingale under Q, where Q is the
martingale measure for the market [B,S]. Thus we have

Π(t,X(t))
B(t)

= EQ
[

Π(T,X(T ))
B(T )

∣∣∣∣F (t)
]
= EQ

[
X(T )
B(T )

∣∣∣∣F (t)
]

(9.74)

and since B(T ) is deterministic we get the following pricing formula

Π(t,X(t)) = B(t)EQ
[

X(T )
B(T )

∣∣∣∣F (t)
]
= e−r(T−t)EQ

[
X(T )

∣∣∣∣F (t)
]
. (9.75)

Notice that this is the same pricing formula as (9.33) where the classical
approach to arbitrage-free pricing was taken.
Example 9.1 (Binary option). A so-called binary option (or digital option) is
a claim which pays a fixed amount if the stock at certain dates lies within some
prespecified interval. Otherwise nothing will be paid out. Consider a binary
option which pays K $ to the holder at date T if the stock price at time T lies
in the interval [α,β ], i.e., the contingent claim X = 1[α,β ](S(T ))K where 1[·,·]
is the indicator function. The arbitrage-free price of the option is determined
by the pricing formula above. We get

Π(t,X) = exp−r(T−t) EQ[1[α,β ](S(T ))K|F (t)]. (9.76)
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Since the solution S(T ) under the equivalent martingale measure Q is given
by

S(T ) = S(t)exp
(
(r− 1

2
σ

2)(T − t)+σ(W (T )−W (t))
)

(9.77)

we notice that the exponent (r− 1
2 )(T − t)+σ(W (T )−W (t)) is normally dis-

tributed with mean mz = (r− 1
2 σ2)(T − t) and variance σ2

z = σ2(T − t)

S(T ) = S(t)exp(mz +σzz) . (9.78)

It is easily found that the option pays K $ if mz+σzz∈ [log(α/S(t)), log(β/S(t))].
Thus we have

Π(t,X) = e−r(T−t)
∫

∞

0
1[α,β ](S(T ))KdQ(S(T ))

= e−r(T−t)K
∫ log

(
β

S(t)

)
log
(

α

S(t)

) dQ(S(T ))

= e−r(T−t)K
∫ log

(
β

S(t)

)
log
(

α

S(t)

) 1√
2πσz

e−
(z−mz)2

2σz dz

= e−r(T−t)K

Φ

 log
(

β

S(t)

)
−mz

σz

−Φ

 log
(

α

S(t)

)
−mz

σz

 ,
(9.79)

where Φ(·) is the cumulative normal distribution function.
The standard Black & Scholes framework reduces the statistical problem

to a single parameter, the volatility parameter σ . This can be estimated from
either historical price data (the P measure) or from options (which in gen-
eral carries information about the Q measure) as the parameter coincides un-
der both measures. Calibration in a more general context is discussed in Sec-
tion 14.11.1.

It turns out, however, that the model fit is not perfect (it is still very good
compared to most models in social science!), something that should be rea-
sonable as few of the stylized facts reviewed in Chapter 1 were incorporated
into the model. Model extensions (or rather classes of models) are briefly in-
troduced in Section 9.5, but it is worth remembering that a good model is both
able to capture the relevant empirical properties and is computationally con-
venient to work with (for pricing, hedging and calibration purposes). Efficient
computational techniques are discussed in Section 9.6.

9.5 Model extensions

The risk-neutral framework is very general and applies for all extensions be-
low. Modern pricing theory has developed in several overlapping directions;
cf. Section 7.5.
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• Stochastic volatility (Hull and White [1987], Heston [1993]). Adding an
extra process means that the market becomes incomplete, but the complete-
ness of the market can be recovered by introducing a liquid vanilla option.
Some models, like the SABR model, even admit closed form expressions
for the price (Hagana et al. [2002], Larsson [2012]).
• Jump models (Merton [1976], Kou [2002]) introduce random jumps to cap-

ture the small, but non-zero risk of large price movements that are hard to
hedge. Cont and Tankov [2004] is a good starting point for further studies.
Mathematics needed for jump processes was developed in Section 7.5.
• Local volatility models define the volatility as a complex function of time

and the underlying asset (Derman and Kani [1994]) so that the market is
complete, and still provides perfect fit to the market. The approach is simi-
lar to fitting splines the observations, as the fit to data (in sample) is perfect
but there is a real risk for overfitting the data (Orosi [2010]). The overfitting
may lead to models that provides good fit in sample, but also introduces
arbitrage. Lindholm [2014] introduces a regularizaton through optimal con-
trol that forces the recovered local volatilty model to be free from arbitrage.
• Uncertain volatility models (Cont [2006], Lindström [2010], Lindström

and Strålfors [2012], Lindstrom and Wu [2014]) tries to account to the
imperfect-facing investors. Small, but consistent, improvements are found
correcting for uncertainty.

Some models, like the class of affine jump diffusions (Duffie et al. [2003]),
include both stochastic volatility and jumps, but still allow for computationally
efficient methods for pricing (Fourier methods, see Carr and Madan [1999],
Lindström et al. [2008], Hirsa [2013]).

9.6 Computational methods

There is a need to be able to compute prices, at least numerically, if we are
going to use option prices in a statistical model. There are roughly speaking
four main techniques used today
• Trees, typically binomial or trinomial tree (Cox et al. [1979]). Trees were

initially introduced as an easy alternative to the continuous-time derivation
of the Black & Scholes model, but have also found useful applications when
considering path dependent options, or local volatility models.
• Monte Carlo methods are very general, and therefore well suited for com-

puting expectations as convergence is ensured by the law of large numbers.
The method is very easy to implement for European type contracts, but can
also be used for path dependent contracts (least squares Monte Carlo) (see
Longstaff and Schwartz [2001]). Monte Carlo methods are often the only
feasible method for high-dimensional problems.
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• PDEs or PIDEs (for jump processes) are the equivalent formulation due
to the Feynman–Kac representation. Numerical methods for PDEs/PIDEs,
such as finite difference or finite element methods, are generally more ef-
ficient than Monte Carlo or binomial/trinomial trees for low-dimensional
problems (one or two dimensions), but they also work well for some multi-
asset options (Lötstedt et al. [2007]). The methodology can also handle
path-dependent problems well; see Hirsa [2013] for many schemes.
• Fourier methods that use the characteristic function of the log-price pro-

cess to obtain nearly analytical expressions. These approximations are mag-
nitudes more accurate and faster to compute than any of the others listed
here.

9.6.1 Fourier methods

The title of the section may be misleading as there are several similar methods,
using different transform methods, including several standard (Lindström et al.
[2008]), and Fast Fourier methods (Carr and Madan [1999]), fractional Fourier
methods (Hirsa [2013]) and cosine methods (Fang and Oosterlee [2008]); see
Hirsa [2013] for a general overview.

However, we will review some of the basic steps of the Fourier method
below. Assume that the characteristic function (cf. Section 7.5) of the log price
s(T ) = logS(T ) is known

ψ(u) = E
[
eius(T )

]
=
∫

eiusdQ(s). (9.80)

The risk-neutral measure is absolutely continuous with respect to the Lebesgue
measure in virtually every model we consider in this book, and we will there-
fore assume that we can use the density instead, dQ(s) = q(s)ds.

It is known from Section 9.4 that the price of a European call option is
given by

C(k) =
∫

∞

k
e−rT (es− ek)q(s)ds (9.81)

where k = log(K) is the log strike price. The option price is not a square inte-
grable (which is required by the Parseval’s theorem), but a modified version of
the price is

c(k) = eαkC(k) (9.82)

where α is some positive number. It is then possible to compute the Fourier
transform of modified price c(k) as

φ(v) =
∫

eivkc(k)dk. (9.83)
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This expression can be extend further accordingly

φ(v) =
∫

eivkc(k)dk (9.84)

=
∫

eivkeαk
∫

∞

k
e−rT (es− ek)q(s)dsdk (9.85)

=
e−rT ψ(v− (α +1)i)

α2 +α− v2 + i(2α +1)v
. (9.86)

It is also possible to compute the option price by applying the inverse
Fourier transform to (9.83)

C(k) =
e−αk

2π

∫
e−ivk

φ(v)dv =
e−αk

π

∫
∞

0
e−ivk

φ(v)dv. (9.87)

where the second equality holds as C(k) is real. Hence, call prices are given by
inserting Equation (9.86) into (9.87) arriving at

C(k) =
e−αk

π

∫
∞

0
e−ivk e−rT ψ(v− (α +1)i)

α2 +α− v2 + i(2α +1)v
dv. (9.88)

The integral can be computed using either Fast Fourier Transform (FFT)
or related fast transforms (Hirsa [2013]) or Gauss-Laguerre quadrature meth-
ods (Lindström et al. [2008]) as both types of methods provide very accurate
approximations with very limited computational efforts.

The modification, here parametrized by α , is needed due to Parseval, but it
can also be seen that choosing α = 0 would introduce a singularity in (9.88). It
can also be shown that the α parameter can dampen numerical oscillations in
the integrand, leading to better numerical approximations (Lee [2004], Lind-
ström et al. [2008]) for further details.

9.7 Problems

Problem 9.1
Consider a standard Black–Scholes model with the usual dynamics

dS(t) = αS(t)dt +σS(t)dW (t), (9.89)
dB(t) = rB(t)dt (9.90)

and T2 with 0 < T1 < T2, and consider the contingent claim X = S(T2)/S(T1).
The claim is to be paid out at T2.
1. Compute the arbitrage-free price.
2. Try to construct the replicating portfolio.



194 CONTINUOUS-TIME SECURITY MARKETS

Problem 9.2
Consider a standard Black–Scholes model with the usual dynamics

dS(t) = αS(t)dt +σS(t)dW (t), (9.91)
dB(t) = rB(t)dt. (9.92)

1. Determine the arbitrage-free price of a put option X = max[K− S(T ),0],
where K is the strike price and T is the time of expiry.
2. Express the value of a put option in terms of a call option, the underlying
stock and the money market account.
Remark. This formula is called the put-call parity.

Problem 9.3
Consider the standard Black–Scholes model. Fix the time of maturity T and
consider a so-called butterfly defined by

X =

{
K−S(T ) if 0 < S(T )≤ K,

S(T )−K if K < S(T ).
(9.93)

This contract can be replicated using a portfolio, consisting solely of bonds,
stock and European call options, which are constant over time.
1. Determine this portfolio.
2. Determine the arbitrage-free price of the contract.



Chapter 10

Stochastic interest rate models

In this chapter, we shall provide a catalogue of a number of well-known models
of interest rates as it is important to be familiar with these often referenced
models and, in particular, their properties. The main focus is on univariate
stochastic differential equations or one-factor models as they are called in the
financial literature because only one state variable (or factor), r(t), is used to
describe variations in the interest rate.

Conceptually r(t) is the continuously compounded interest rate of risk-free
financial securities, which was introduced in Section 2.3. Thus r(t) denotes the
instantaneous interest rate or the spot rate obtained by investing in a riskless
security in the time interval [t, t +dt].

Application of univariate SDEs is based on the assumption that the spot rate
contains all relevant information about the financial market, the expectations of
the market participants (agents), etc. For some time interest rates were assumed
to follow a random walk, which implies that the mean and variance structures
are independent of time and the current level of interest rate, i.e., there are no
level effects. The analysis of interest rates in the problems and exercises has
shown that this is clearly not the case.

Empirical studies have shown that at least 3–4 state variables are required
to explain the variations in observed interest rates (e.g. Braes and Larsen
[1989], Nielsen [1995], Piazzesi [2010]). The former reference uses multivari-
ate statistics (principal component analysis, etc.) and the latter uses the concept
of the fractal dimension of an attractor in state space and other methods from
deterministic chaos theory. The first component will typically capture parallel
shifts in the interest rate, the second difference between short and long term
interest rates, while the third will capture how intermediate rates will move
contrary to the movements of the short and long term rates.

In Section 2.3, we assumed that the interest rates were deterministic, but
our discussion of e.g., the CIBOR time series in Section 2.4 showed that inter-
est rates are indeed stochastic.

As we shall see interest rates models are inherently important for pricing
and hedging financial derivatives which should be clear from the definition of
a money market account (Definition 2.2). Recall that this is used to discount
future payments of some contingent claim to determine its present value. In
particular for fixed income securities, i.e., securities whose future payoffs are
contingent on future interest rates, it is important to model interest rates. As we
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have argued previously, interest rates are obtained from bond prices, and we
will briefly discuss this relation in order to view interest rate models in their
context. The bond pricing framework and a detailed study of the so-called term
structure of interest rates shall be postponed to later.

This chapter is organized as follows: Section 10.1 describes models that
give rise to normally distributed interest rates. Section 10.2 extends these mod-
els to non-Gaussian interest rates. Section 10.3 extends the last section by al-
lowing the drift and diffusion parameters to be time-dependent functions. Sec-
tion 10.4 provides a brief introduction to a very broad class of multivariate
SDEs or multifactor models, where additional variables are used to model the
interest rate. It also considers stochastic volatility models, where one aims at
modelling the volatility by considering a function of the volatility as a state
variable.

10.1 Gaussian one-factor models

We fix a standard Wiener process W (t) restricted to some finite time interval
[0,T ] on a given probability space (Ω,F ,P) augmented by the natural filtra-
tion {F (t)}t≥0. This establishes the structure of information in the considered
models. We assume that r(t) is F (t)-adapted and that it does not explode.

10.1.1 Merton model

The simplest, non-trivial model for spot interest rates was suggested by one of
the pioneers in continuous-time finance, Robert Merton (Merton [1993]) for an
overview of his work. The Merton model is a Wiener process with a constant
drift, i.e.,

dr(t) = θdt +σdW (t) (10.1)

where θ and σ are some constants and r(0) is a deterministic initial value. The
model is sometimes called the arithmetic Brownian motion.

This model was considered in Example 8.2, where we found that

E[r(t)] = r(0)+θ t (10.2)

Var[r(t)] = σ
2t. (10.3)

We see that there is a drift in the mean and that the variance grows with time.
The solution to (10.1) is given by

rr = r(0)+θ t +σW (t). (10.4)

As the Wiener process generates normally distributed stochastic variables, it is
clear that rt is also normally distributed with the parameters given in (10.2).
Thus the Merton model (10.1) does not exclude negative interest rates, which
renders the model unapplicable for empirical work. It is also unclear why the
interest rate should have a constant drift at all times.
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10.1.2 Vasicek model

The constant drift and unlimited variance of the Merton model (10.1) is not
found in the classical model attributable to Vasicek1 (Vasicek [1977]).

The Vasicek model is given by

drt = (θ +ηr(t))dt +σdW (t) (10.5)

where η < 0, θ and σ are some constants, r0 is a deterministic initial value
and Wt is a standard Wiener process.

The Vasicek model belongs to the class of linear SDEs in the narrow sense
considered in Section 8.2.1. Thus the solution is readily found from Theo-
rem (8.6), i.e.,

r(t) =
(

r(0)+
θ

η

)
eηt − θ

η
+σeηt

t∫
0

e−ηsdW (s). (10.6)

This stochastic process is also called the Ornstein-Uhlenbeck process.
The mean and variance are

E[rt ] =

(
r(0)+

θ

η

)
eηt − θ

η
, (10.7)

Var[rt ] =
σ2

2η

(
e2ηt −1

)
. (10.8)

It is seen that the process tends to the long term mean value −θ/η , and that
the variance is finite for η < 0.
Remark 10.1. A reparametrization of the Vasicek model, which is often seen
in the literature, makes the interpretation of the parameters more clear,

dr(t) = α(β − r(t))dt +σdW (t). (10.9)

With this parametrization the long term mean is β and the process is said to
mean-revert around this mean with the speed of adjustment α .

The Vasicek model is sometimes called an elastic Brownian motion, be-
cause the diffusion term is a Brownian motion, but the mean reverting drift
term pulls the process towards a long term mean if the short term rate is either
above or below the long term mean.

The mean-revertion property of the Vasicek model (10.5) is a very impor-
tant property of interest rate models, although it may be difficult to estimate
the two parameters in the drift term from financial time series.

Clearly the solution to (10.5) is also normally distributed and hence nega-
tive interest rates cannot be excluded. The probability of negative interest rates

1The original paper Vasicek [1977] is highly recommended reading.
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depends on the actual parameter values. This means that if there is a fast speed
of adjustment to a relatively high long term mean and a low level of volatility
in the market then negative interest rates are clearly highly unlikely, but still
negative interest rates can not be excluded.2 Thus the model is not considered
as a reasonable model for observed interest rates, but it is nonetheless often
used for theoretical work.

Thus we turn our attention to non-Gaussian models in the hope that nega-
tive interest rates may be excluded in some of these models. A more important
objective is to be able to model the state dependent diffusion, which is, per-
haps, the most important property of any interest rate model.

10.2 A general class of one-factor models

In this section, we consider a fairly general one-factor model class, which is at-
tributable to Chan et al. [1992]. With reference to the authors of this article this
model is typically called the CKLS model or the generalized Cox–Ingersoll–
Ross (CIR) model.3 The CKLS models has also been used to model mean
reverting commodities such as electricity (Regland and Lindström [2012]).

The CKLS model class is as follows

dr(t) = (θ +ηr(t))dt +σr(t)γ dW (t) (10.10)

where σ denotes a proportional rate of volatility and γ denotes the elasticity of
the volatility with respect to spot interest rate changes, and the specification of
the drift term is as in the Vasicek model (10.5).

Although this general model specification pertains to the important prop-
erties of a mean-reverting drift and a state dependent diffusion term, it is not
possible to solve it unless some parameter restrictions are imposed in (10.10).
An overview of the important models that belong to this model class is depicted
in Figure 10.1. The hierachical structure is well suited for statistical inference.
The models obtained by these parameter restrictions are listed in Table 10.1.
Theorem 10.1 (Existence and uniqueness for the CKLS model). A sufficient
condition for the existence and uniqueness of the solution to (10.10) is that the
parameters θ = (θ ,η ,γ) fulfil one of the conditions
1. γ = 1

2 , θ > 1
2 σ2, η < 0,

2. γ ∈ ( 1
2 ,1), θ > 0, η ≤ 0,

3. γ = 1, θ = 0, η = 1
2 σ2, or

4. γ = 1, (θ ,η ,σ) ∈ R+×R×R+.

Proof. The conditions are obtained using the scale function (8.8) and Theo-
rem 8.3. See Honoré [1996] for further details.

2Nevertheless the normal distribution is often applied as a reasonable model of the height,
weight, etc., of a population even though a negative height or weight is impossible.

3The reason for the latter will be clear later.
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dr = (t

Vasicek CIR 1 Courtadon C.E.V.

Unrestricted model

Dothan

G.B.M. X

CIR 2

Merton

γ=3/2

η=0θ=0

η=0

γ=1

γ=1

θ=0
γ=1/2 γ=1

γ=0

η=0

r )dt+θ+η t tdWγ
trσ

Figure 10.1: The nested models of the CKLS model class.

Remark 10.2. It is duly noted that the case γ > 1 is not covered by the theorem.
This will have some implications when estimating parameters in the model.
Figure 10.2 presents the US 3 month T-bill between 1983–1995. It can be seen
that the variance increases with increasing interest rates.

This empirical property will have some consequences. . . . The γ parameter
will typically be less than one if the interest rate is less than one and greater
than one when the interest rate is greater than one. A linear scaling (i.e., using
r = 0.05 or r = 5) will often change the estimates!

In the following some comments will be made to each of these models.
The Merton and Vasicek models have already been discussed, and they are
also members of the CKLS model class.

The Cox–Ingersoll–Ross model (Cox et al. [1985]), is possibly the most
popular one-factor model:

dr(t) = (θ +ηr(t))dt +σ
√

r(t)dW (t). (10.11)

It also has the mean-revertion property and it allows the interest rate level to
proportionally influence the variance of the process. Depending on the param-
eters the process will have a reflecting or an absorbing barrier at zero with the
appealing and obvious implication that interest rates will never become neg-
ative. The model is for obvious reasons also called the square root process.
The CIR model does not belong to the class of linear SDEs in the strong sense
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Figure 10.2: US 3 month T-bill between 1983–1995.

Author θ η γ Model
Merton 0 0 dr(t) = θdt +σdW (t)
Vasicek 0 dr(t) = (θ +ηr(t))dt +σdW (t)
CIR 1 1

2 dr(t) = (θ +ηr(t))dt +σ
√

r(t)dW (t)
Dothan 0 0 1 dr(t) = σr(t)dW (t)
Marsh & Rosenfeld 0 1 dr(t) = ηr(t)dt +σrtdW (t)
Courtadon 1 dr(t) = (θ +ηr(t))dt +σr(t)dW (t)
CIR 2 0 0 3

2 dr(t) = σr(t)3/2dW (t)
Cox (& Ross) 0 dr(t) = ηr(t)dt +σr(t)γ dW (t)

Table 10.1: By imposing restrictions on the parameters in (10.10) a large num-
ber of known models are obtained.

considered in Section 8.2, but it may nevertheless be solved in the sense that
the marginal distribution of the solution rt is known to be a gamma-distribution
(the conditional density is a non-central χ2-distribution).

The Marsh & Rosenfeld model is the well-known geometric Brownian mo-
tion (GBM) that has been applied as a model of stock prices in the Black &
Scholes model. However, it is highly questionable whether this model con-
forms to the characteristics that economic intuition would normally lead one
to expect from an interest rate model, as the interest would either grow towards
infinity or converge towards zero (at least under the P measure).

The Courtadon model is a combination of the Vasicek and Dothan model,
and it belongs to the class of linear SDEs in the strong sense considered in
Section 8.2.
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The Cox (& Ross) model is also called the constant elasticity of variance
(CEV) model, and it allows for a very general modelling of the volatility. How-
ever, the drift term does not seem reasonable.

An empirical comparison of these models shall be made in the following
chapters on parameter estimation in stochastic differential equations.

10.3 Time-dependent models

In this section, we introduce time-dependent counterparts to some of the mod-
els from the last section. The financial reasons for allowing the parameters in,
e.g., (10.10) to be time-dependent will be discussed later. It is, however, rather
obvious that a better fit to observed time series may be obtained by allowing
the parameters to be time-dependent.

10.3.1 Ho–Lee

The Ho–Lee model is simply obtained by allowing the drift term in the Merton
model (10.1) to be time-dependent, i.e.,

dr(t) = θ(t)dt +σdW (t). (10.12)

It can be shown that θ(t) can be chosen such that a perfect fit to all zero-coupon
prices can be obtained (Section 11.3.2).

10.3.2 Black–Derman–Toy

The Black–Derman–Toy model is obtained by allowing the parameters in the
Marsh & Rosenfeld model to be time-dependent, i.e.,

dr(t) = η(t)r(t)dt +σ(t)r(t)dW (t) (10.13)

where both the drift θ(t) and the diffusion σ(t) are allowed to be time-
dependent. This will make the model more flexible, but also more prone to
overfitting. The BDT model is often implemented in a trinomial tree.

10.3.3 Hull–White

The Hull–White model exists in two versions, namely as extensions of either
the Vasicek model (10.5) or the Cox–Ingersoll–Ross model. For brevity, we
will only list the latter, i.e.,

dr(t) = (θ(t)+η(t)r(t))dt +σ(t)
√

r(t)dW (t). (10.14)

This makes the model prone to overfitting as three functions are used to fit
a finite number of observations, but the model is still not able to account for
the dynamics of the term structure; cf. HJM models (Section 11.4).
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10.3.3.1 CIR++ model

A rather clever special case of the Hull–White model is the so-called CIR++
model (Brigo and Mercurio [2001, 2006] for a detailed analysis). The idea is
to introduce a time varying function such that a simple model (here a CIR pro-
cess) plus that time varying function provides perfect fit to the term structure.

Consider the model where the interest rate is a combination of a diffusion
process x(t) and a deterministic function of time φ(t)

r(t) = x(t)+φ(t). (10.15)

We focus on the case when x(t) satisfies a CIR process. It is then clear that all
we need to know in order to obtain a perfect fit to the current term structure is
knowledge about the model implied term structure of x(t). The time varying
function φ(t) can then be chosen such that perfect fit to the term structure is
obtained (Brigo and Mercurio [2006] for details on theory and implementa-
tion).

10.4 Multifactor and stochastic volatility models

An alternative approach to obtain more flexibility than in the constant param-
eter univariate case is to introduce additional state variables, such as the price
level, the inflation level, the money supply, etc.

One way to introduce the so-called multifactor models is to assume that
the spot interest rate is given by a function r(t) = R(t,X(t)), where the n-
dimensional state variable X(t) is described by the multivariate Itō stochastic
differential equation

dX(t) = µ(t,X(t))dt +σ(t,X(t))dW(t) (10.16)

where R : [0,∞)×Rn → R, µ : [0,∞)×Rn → R, σ : [0,∞)×Rn → Rn×n are
sufficiently well-behaved functions such that existence and uniqueness of the
solutions are guaranteed, and W(t) is a n-dimensional Wiener process.

We shall provide a few examples of multifactor models as the theoretical
analysis of such models is outside the scope of this book.

First, we extend the CIR model (10.11), which we choose to parametrize
slightly different in this case

dr(t) = α(µ− r(t))dt +σ
√

r(t)dW (t) (10.17)

where α is the speed of adjustment and µ is the long term. Although this model
contains the level effects discussed previously, it is unreasonable to assume that
the long term mean µ should be a constant. Thus we may model the long term
mean µ as another CIR model, i.e.,

dr(t) = α(µ(t)− r(t))dt +σ
√

r(t)dW (1)(t) (10.18)

dµ(t) = β (θ −µ(t))dt +δ
√

µ(t)dW (2)(t) (10.19)
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where β , θ and δ are constants, and W (1)(t) and W (2)(t) are two mutually in-
dependent standard Wiener processes. A problem with this model specification
is that the long term mean process µ(t) is unobservable. Conversely, that also
means that bond prices no longer will be perfectly correlated, an empirical fact
that is often observed.

Alternatively, we may choose to introduce additional explanatory vari-
ables. As an example we consider the model proposed by Pearson and Tong-
Schen [1994], i.e.,

dr(t) = κ1(θ1− r(t))dt +σ1
√

r(t)dW (1)(t) (10.20)

dp(t) = y(t)p(t)dt +σp p(t)
√

y(t)dW (2)(t) (10.21)

dy(t) = κ2(θ2− y(t))dt +σ2
√

y(t)dW (3)(t) (10.22)

where κ1, κ2, θ1, θ2, σ1, σ2 and σp (< 1) are positive constants; W (2)(t) and
W (3)(t) are correlated Wiener processes but both are independent of W (1)(t).
We see that the model is essentially two CIR models supplemented by a pro-
cess that couples y(t) and p(t). The interesting part is that the state variables
have an economical interpretation and may be observed on the market. The
state variable r(t) denotes the real interest rate, p(t) denotes the price level and
y(t) the inflation rate. This particular model specification has the advantage
that it is possible to solve the bond pricing equation as we shall see later.

Empirical studies have shown the interest rate and the volatility of the for-
mer are two of the most important factors in the financial markets. If we denote
the volatility by V (t), we may, e.g., consider the model proposed by Longstaff
and Schartz [1992], i.e.,

dr(t) =
(

αγ +βη− βδ − γζ

β −α
r(t)− ζ −δ

β −α
V (t)

)
dt

+α

√
β r(t)−V (t)

α(β −α)
dW (1)(t)+β

√
V (t)−αr(t)

β (β −α)
dW (2)(t) (10.23)

dV (t) =
(

α
2
γ +β

2
η− αβ (δ −ζ )

β −α
r(t)− βζ −αδ

β −α
V (t)

)
dt

+α
2

√
β r(t)−V (t)

α(β −α)
dW (1)(t)+β

2

√
V (t)−αr(t)

β (β −α)
dW (2)(t) (10.24)

where the parameters α , β , γ , δ , η and ζ are assumed to be constant.4 Again
this particular model parametrization has been chosen because it is possible to

4We have chosen to use the parametrization from the original paper.
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solve the bond pricing equation. Furthermore, it may be shown that

E[r(t)] =
αγ

δ
+

βη

ζ
(10.25)

Var[r(t)] =
α2γ

2δ 2 +
β 2η

2ζ 2 (10.26)

E[V (t)] =
α2γ

δ
+

β 2η

2ζ 2 (10.27)

Var[V (t)] =
α4γ

2δ 2 +
β 4η

2ζ 2 . (10.28)

It should be evident that an infinite number of multifactor models may be
proposed. So far the criterion in the financial literature has been that it should
be possible to determine closed form solutions to the bond pricing equation.
However, this may also be done by Monte Carlo simulation or another numer-
ical method such that this criterion is no longer valid. Instead the model that
provides the best fit (in some sense) to observed time series should be chosen,
but this is clearly a very difficult problem.

10.4.1 Stochastic volatility models

A stochastic volatility model is obtained by using a function of the time-
dependent volatility σt as a state variable. These models may be considered as
a continuous-time extension of the ARCH models considered in Section 5.5.2,
but we shall not go into the mathematical details here.

Empirical studies have shown that logσ2
t is an important state variable. As

a very general example consider the model

dr(t) = α1(µ(t)− r(t))dt +σ(t)r(t)γ dW (1)(t) (10.29)

d(logσ
2(t)) = α2(β − logσ

2(t))dt +ξ1
√

r(t)dW (2)(t) (10.30)

dµ(t) = α3(θ −µ(t))dt +ξ2
√

µ(t)dW (3)(t). (10.31)

We recognize (10.29) as the CKLS model (10.10), where the long term mean
µt and the volatility σt are now assumed to be time-dependent. The time de-
pendency of µt is simply modelled by (10.31), namely a Cox–Ingersoll–Ross
model (10.11). The interesting part compared to multifactor models is (10.30),
where the log volatility logσ2

t is modelled with the mean-reversion and state
dependent diffusion term that we have come to expect. In particular note that
the short term interest rate rt enters the diffusion term in (10.30). Although a
clear-cut definition of stochastic volatility models is hard to find, it is (at least)
required that (a function of) the volatility is modelled and that the short term
interest rate enters this model as in (10.30). Clearly, it is very difficult to de-
termine the parameter restrictions that must be imposed on (10.29)–(10.31) to
ensure existence and uniqueness of solutions.
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It is an unresolved question whether stochastic volatility models are su-
perior to general multifactor models. The latter aims at modelling the drift
by including additional (un)observable variables, whereas the former tends to
disregard the drift (except mean-reversion) and focuses on the diffusion. As
stochastic differential equations consist of both a drift term and a diffusion
term, it is hardly surprising that (at least two) different schools have emerged
in the financial community. The reader is encouraged to consider the funda-
mental difference between these two schools.

10.4.2 Affine Term Structure models

Computational considerations has caused much focus on models that are sim-
ple enough to admit a (semi-)closed form expression, and still be flexible
enough to capture stylized facts. Here we consider models given by a mul-
tivariate jump diffusion

dX(t) = µ(t,X(t−))dt +σ(t,X(t−))dW (t)+dJ(t) (10.32)

where J(t) is a compound Poisson process with jump distribution independent
of X(t−) having intensity λ (X(t)); cf Section 7.5.

The class of Affine Term Structure models (Piazzesi [2010] for an extensive
overview) requires the drift, squared diffusion and jump intensity to satisfy
certain conditions under the risk-neutral measure Q:
• The drift µ(t,X(t)) is affine in X(t).
• The squared diffusion σ(t,X(t))σT (t,X(t)) is affine in X(t).
• The jump intensity λ (X(t)) is affine in X(t).

It is then possible to show that the price of a zero-coupon bond, formally
computed as

p(t,T ) = EQ
[
e
∫ T
t −r(s)ds|F (t)

]
, (10.33)

can be expressed even when the model includes stochastic volatility and
stochastic long term mean, etc., as

p(t,T ) = eA(T−t)+B(T−t)T X(t) (10.34)

where A(·) and B(·) are solutions to some differential equations (Piazzesi
[2010] for examples). The solution here resembles the Fourier methods in Sec-
tion 9.6.1, explaining the computational advantages.

The class of Affine Jump Diffusions is very general, including the Vasicek
model and the Cox–Ingersoll–Ross model, as well as certain stochastic long
term interest rates and stochastic volatility models.
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10.5 Notes

Survey articles on interest rate models appear regularly in the financial litera-
ture, but we only list a couple, namely Chan et al. [1992] and Strickland [1996].
The first reference introduces an estimation method and compares univariate
SDE models empirically. We shall in later chapters discuss and extend their
work. The last reference is highly recommendable reading.

A theoretical analysis of interest models (or SDEs in general) may be found
in Karatzas and Shreve [1996], Ikeda and Watanabe [1989], but very few re-
sults are available on multifactor models.

An excellent discussion of stochastic volatility (SV) models may be found
in Musiela and Rutkowski [1997] and Andersen and Lund [1997]. The first
reference gives an overview of continuous time models whereas the latter dis-
cusses the relation between (G)ARCH models and SV models in detail, and
uses the Efficient Method of Moments for parameter estimation (Gallant and
Tauchen [1996]).

10.6 Problems

Problem 10.1
Show (10.4).

Problem 10.2
One-factor stochastic interest rate models are very popular for theoretical anal-
ysis and thus a huge range of models have been proposed in the financial liter-
ature through the years. We have considered the CKLS model class previously.
In this problem, we consider a slightly simpler model class (actually a subclass
of the CKLS model class) attributable to Courtadon, which gives rise to lin-
ear models in the narrow sense. Thus the model may be solved and the first
moments may be computed using the methods of Chapter 8.

Consider the one-factor stochastic interest rate model

dr(t) = (θ +ηr(t))dt +ρr(t)dW (t) r(0) = r0 (10.35)

where θ , η and ρ are constants, and W (t) is a standard Wiener process.
1. Solve (10.35).
2. Determine the mean E[r(t)]. In particular determine lim

t→∞
E[r(t)].

3. Determine the variance Var[r(t)]. In particular determine lim
t→∞

Var[r(t)].

Problem 10.3
For θ = 0 in (10.35), we get the geometric Brownian motion

dr(t) = ηr(t)dt +σr(t)dW (t) (10.36)
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which, according to Example 8.10, has the solution

r(t) = r(0)exp((η−σ
2/2)+σW (t)). (10.37)

It appears that the deterministic growth rate in (10.37) is (η −σ2/2) as op-
posed to the growth rate η in (10.36).
1. Determine E[eσW (t)].
2. Use this result to show that there is no discrepancy between the expected
growth rates in (10.36) and (10.37).

Problem 10.4
Show (10.25) and (10.27).

Problem 10.5
An even more general model of interest rates than (10.10) is considered
in Duffie [2010]. It takes the form

dr(t) = (α1t +α2tr(t)+α3tr(t) logr(t))dt +(β1t +β2tr(t))ν dW (t) (10.38)

where α1t , α2t , α3t , β1t and β2t are time-dependent functions, ν is a constant
and W (t) is a standard Wiener process. The reader is encouraged to make a
table of the parameter restrictions that must be imposed on (10.38) in order to
obtain the models discussed in this chapter.

Assuming that the functions α1t , α2t , α3t , β1t and β2t are constants, we
shall now shed some light on the reasonability of the logr(t) term in (10.38).

It might be useful (e.g., for numerical reasons or in order to obtain some
kind of variance homogeneity) to consider the process l(t) = logr(t), where lt
is described by a Vasicek model

dl(t) = (a+bl(t))dt +σdW (t).

Use the Itō formula (8.10) to determine the SDE for r(t) and compare the result
with (10.38).





Chapter 11

Term structure of interest rates

In this chapter the concept of no-arbitrage will be discussed in the interest
rate markets, which we also refer to as the bond market. Just to motivate the
discussion, it should be noted that trading in various types of bonds grossly
exceeds trading in the financial derivatives considered so far.

In Chapter 3, we considered pricing in complete (and incomplete) markets
in discrete time and showed that the existence of a state price vector resulted
in an arbitrage-free market. In Chapter 9, we presented a similar theory in
continuous time and the tremendously important result was the correspondence
between the existence and uniqueness of an equivalent martingale measure and
arbitrage-free prices.

In the Black & Scholes model it is possible to determine the arbitrage-
free price of a large class of financial derivatives. This result stems from the
fact that it was possible to trade in the underlying asset (the stock) and thus
generate replicating portfolios. However, this important result does not hold in
the interest rate (or bond) markets as it is not possible to trade directly in the
underlying asset, namely the interest rate itself. Nevertheless, a large number
of interest rate derivative products exist as discussed in Section 2.4.

It could be said that the concept of arbitrage in the Black–Scholes model
was based on a vertical argument across the underlying asset and the financial
derivative. In the bond markets, the concept of arbitrage is considered horizon-
tally through time.

In Chapter 2, we considered deterministic interest rates and introduced the
money market account in Definition 2.2 for continuously compounded interest
rates. In Chapters 7–8, we introduced stochastic calculus and stochastic dif-
ferential equations. These techniques were used in Chapter 9 to determine the
arbitrage-free price of any financial derivative under the basic assumption that
the interest rate was deterministic.

The objective of this chapter is to extend the theory to cover stochastic
interest rates. In particular, we wish to discuss various types of interest rates
such that we may determine the discounting factor in, e.g., (9.75) for stochastic
interest rates. Basically, we wish to answer the following questions:
Q1: How can one determine the interest rate at a future date when it is

stochastic, i.e., described by a stochastic differential equation?

209
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Q2: How can one discount future payments (i.e., the payoff of a financial
derivative) when the discounting factor is stochastic?

This chapter is organized as follows: Section 11.1 introduces a number of
important concepts. Section 11.2 derives the term structure of interest rates
using the classical approach. In Section 11.3 specific models of the term struc-
ture of interest rates are considered based on the interest rate models from
Chapter 10. Section 11.4 briefly considers the socalled Heath–Jarrow–Morton
framework for modelling the forward rates. As usual the chapter concludes
with some notes and problems.

It should be stressed that this exposition does neither go into institutional
details nor into the finer differences between the wide range of fixed income
securities such as corporate bonds, mortgage backed securities and collateral-
ized mortgage obligations (CMO). Some references will be given in the Notes.

11.1 Basic concepts

A bond is a contract, paid for up-front, that yields a known amount on a known
date in the future, called the maturity date, t = T . The main purpose of a bond
issue is to raise capital, and the up-front premium can be considered as a loan
to the government or the company. In Denmark, bonds are issued by the gov-
ernment (i.e., The National Bank), all the major banks and a few trade-specific
mutual funds.

A cash flow may be associated with the bond such that a cash dividend
(or coupon) is paid out to the holder of the contract at fixed times during the
lifetime of the contract. If there are no coupons the bond is known as a zero-
coupon bond or just a zero-bond.
Definition 11.1 (A zero-coupon bond). A (zero-coupon) bond with maturity
date T is a contract that gives the holder of the contract C units of account
(e.g., DKK) at time T . The price at time t of a T -bond is denoted by P(t,T ).

Example 11.1 (Zero-coupon bonds). On the Danish market, there will typi-
cally be three zero-coupon bonds in circulation. These are called skatkammer-
beviser and have been issued by the Ministry of Finance since 1st April 1990.
They have a relatively short lifetime of 3, 6 and 9 months, and the face value
C is 1 000 000 DKK. These zero-bonds are traded under circumstances that
differ from other bonds, e.g., the price is determined through an auction.

11.1.1 Known interest rates

We now derive an equation for the value of the bond P(t,T ) at time t prior
to the maturity date T . We assume that the interest rate r(t) and the coupon
payments K(t) are known functions of time. Thus we assume that cash coupon
payments may also be made continuously in time. Such payments are often
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called dividends. The change in the value of one bond P(t,T ) in the time inter-
val [t, t +dt[ is

dP
dt

dt.

If we have received a coupon payment K(t) during the time period dt, our
holdings (including the cash) change by the amount(

dP
dt

+K(t)
)

dt.

Alternatively, we may also choose to deposit our capital in a savings account
with the known interest rate r(t) and the value V (t). In order to exclude arbi-
trage possibilities, we must have

dP
dt

+K(t) = r(t)V (t) = r(t)P(t,T ). (11.1)

Otherwise a riskless profit may be made by moving our holdings from the sav-
ings account to the bond (>) or vice versa. With the final condition P(T,T ) =
C, this ordinary differential equation may be shown to have the solution

P(t,T ) = exp

− T∫
t

r(s)ds

C+

T∫
t

K(u)exp

− T∫
u

r(s)ds

du

 . (11.2)

Assuming that there are no coupon payments K(t) = 0, we get

P(t,T ) =C exp

− T∫
t

r(s)ds

 (11.3)

from (11.2). If the bond prices P(t,T ) are quoted today at time t for all values
of the maturity date T , then we know the left-hand side of (11.3) for all T .
Thus we may compute

−
T∫

t

r(s)ds = log[P(t,T )], (11.4)

where we have assumed that C = 1. This is a standard convention which states
that the bond pays out 1 unit of account at time T . This unit of account may be 1
000 000 DKK (e.g., skatkammerbeviser) or some other appropriate value. It is
merely a question of choosing a normalizing factor such that the mathematical
computations may be slightly simplified, i.e., we may exclude the log C term
because log1 = 0.
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Assuming that P(t,T ) is differentiable with respect to T , we get

r(T ) =− 1
P(t,T )

∂P
∂T

(t,T ). (11.5)

Thus assuming that the prices of zero-coupon bonds genuinely reflect a known
interest rate we may compute that interest rate at future dates T > t from the
bond prices.

Since interest rates r(t) are inherently positive, we must have

∂P
∂T

(t,T )< 0 (11.6)

which shows that the longer a bond has to live, the less it is now worth. In other
words, the longer you have to wait to get the payment of C DKK the less this
amount is worth to you today.

11.1.2 Discrete dividends

So far we have assumed that coupon payments were made continuously in
time. However, in practice, coupon payments are only made at discrete time
instants t = (t1, . . . , tN)′, i.e., every three, six or twelve months or so. With
respect to (11.1) this may be modelled using the Dirac delta “function”

dP
dt

+Kcδ (t− tc) = r(t)V (t) = r(t)P(t,T ) (11.7)

where we have assumed that only one coupon payment Kc is made at time tc
for simplicity. The solution is

P(t,T ) = exp

− T∫
t

r(s)ds

C+KcH (tc− t)exp

 T∫
tc

r(s)ds

 (11.8)

where the Heaviside function is given by

H (x) =
x∫

−∞

δ (s)ds =

{
0 for x < 0
1 for x≥ 0

or in other words
H ′(x) = δ (x).

Let us consider the effect of a discrete coupon payment Kc at time tc on the
price of the coupon bond. Prior to time tc, the bond has the value P(t−c ,T ) and
immediately after, at time t+c , the value of the coupon bond is decreased by the
coupon payment Kc:

P(t+c ,T ) = P(t−c ,T )−Kc. (11.9)



BASIC CONCEPTS 213

940802 1010  1219  950228 0515  0726  0908  
95

96

97

98

99

100

101

102

103

104

105

Date (yymmdd)

Bond prices for ISIN 7916

Figure 11.1: The graph shows the prices of a bond with the international code
ISIN 7916 (to be precise DK000997916) from the period 2/8 1994 until 8/9
1995 with a coupon payment of 6 DKK. The bond is a 6% Danish Government
bond (stående lån) that matured 10/2 1996 at which time the holder of the bond
obtained 106 DKK. The jump in the bond price given by (11.9) is clear. It is
also clear that the bond prices show random variations.

This will be called the jump condition, and it will still apply when we move on
to consider stochastic interest rates. The coupon payment also implies that the
bond price is not continuous. In turn this implies that the derivation of (11.5) is
not valid. The jump condition is illustrated in Figure 11.1 for real market data.

Remark 11.1 (Notation). As the maturity date T is a parameter, we occasion-
ally use the notation

PT (t) = P(t,T ).

Clearly we have
Pt(t) = P(t, t) = 1, for all t ≥ 0 (11.10)

which states the price of a bond at time t that matures at time t is 1.
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11.1.3 Yield curve

If we consider stochastic interest rates, P(t,T ) becomes a stochastic process
for every fixed T . Thus as a function of the time parameter t the trajectories
of P(t,T ) become highly irregular (Figure 11.1). For a fixed t (and a fixed
trajectory ω) the price process P(t,T ) is typically a smooth function and in
particular differentiable with respect to T . Thus we introduce the notation

PT (t,T ) =
∂P(t,T )

∂T
.

The objective is now to determine the price process P(t,T ).
Definition 11.2 (Forward rates). For t ≤ S ≤ T the forward rate for the time
period [S,T ] at time t is defined as

R(t,S,T ) =− log[P(t,T )]− log[P(t,S)]
T −S

. (11.11)

The instantaneous forward rate at time T seen from time t is defined as

f (t,T ) = lim
S→T

R(t,S,T ) =−∂ log[P(t,T )]
∂T

. (11.12)

We consider a special case of (11.11) in the following definition.
Definition 11.3 (The yield curve). The forward rate for the period [t,T ] is
defined as

Y (t,T ) = R(t, t,T ) =− log[P(t,T )]
T − t

. (11.13)

A plot of Y (t,T ) against T − t is called the yield curve.

In the following definition, we introduce the most important concept in this
chapter, namely the term structure of interest rates.
Definition 11.4 (The term structure of interest rates). The dependence of the
yield curve on the time to maturity T − t is called the term structure of interest
rates.

Remark 11.2. The terms “the yield curve,” “the term structure of interest
rates” and bond prices are used interchangeably in the financial literature due
to the following relationship.

From (11.13), we immediately get

P(t,T ) = exp[−Y (t,T )(T − t)] (11.14)

which shows that Y (t,T ) is the implied average interest rate for the time pe-
riod [t,T ]. The yield curve is another measure of future values of interest rates
than (11.5). The yield curve has a couple of advantages which are important
for empirical work, namely
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• The bond prices P(t,T ) need not be differentiable, and
• a continuous distribution of bonds with all maturities is not required.
Example 11.2 (The yield curve). Consider three zero-coupon bonds (skatkam-
merbeviser (SKBV)) with maturities T1 < T2 < T3 and a face value C of DKK
1 000 000. From (11.14), it follows that

P(t,T1) = exp

− T1∫
t

r(s)ds

= exp(−R1(T1− t)) (11.15)

P(t,T2) = exp

− T2∫
t

r(s)ds

= exp(−R2(T2− t)) (11.16)

P(t,T3) = exp

− T3∫
t

r(s)ds

= exp(−R3(T3− t)) (11.17)

where the yield is denoted by Ri, i = 1,2,3, after the continuous convention
used in Denmark.

In practice the yield is the interesting quantity when discussing zero-
coupon bonds rather than the integral over continuously compounded interest
rates as the latter cannot be observed in the market. A selection of real prices
and yields is presented in Table 11.1.

An interesting and important observation from Table 11.1 is that the yield is
not constant. The yield varies with the maturity of the bonds. This should come
as no surprise, since this is exactly the same situation as in the bank where a
savings account pays a higher interest than a check account. In other words,
the longer your investment horizon the higher the return. This observation,
that the interest rate depends on the investment horizon, is expressed by the
zero-coupon term structure of interest rates (or, in short, the term structure). It
is clear that only a limited number of points on the term structure is available,
and our problem is basically to determine a reasonable interpolation method.
We also note that the prices and the maturities confirm (11.6), namely that the
price and the yield move in adverse directions.

Zero-coupon bond Price (DKK) Maturity (years) Yield
SKBV 97/III 991218 0.2417 0.0365
SKBV 97/IV 981640 0.4917 0.0377
SKBV 98/I 968117 0.7417 0.0437

Table 11.1: Skatkammerbeviser quoted at the Copenhagen Stock Exchange
April 3, 1997.
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Y(t,T)

T-t

Figure 11.2: Typical yield curves.

From empirical market data it is observed that yield curves typically come
in three distinct shapes (as illustrated in Figure 11.2), each associated with
different economic conditions:
• Increasing: this is the most common form for the yield curve as it shows that

future interest rates are higher than the short interest rate, since it should be
more rewarding to tie money up for a long time than for a short time. E.g.,
the interest rate of a savings account is typically larger than for a check
account.
• decreasing: this is typical of periods when the short rate is high but expected

to fall.
• humped: again the short rate is expected to fall, although in a more compli-

cated manner.
Now the last type of interest rates to be considered in these notes is defined.

Definition 11.5 (The spot interest rate). The instantaneous (spot) interest rate
at time t is defined by

r(t) = f (t, t) (11.18)

where f (t, t) is given by (11.12).
Note that the spot interest rate (for which a number of SDE models were

proposed in Chapter 10) is connected to the forward rate. The spot interest rate
r(t) is simply the forward rate obtained by investing our money in a bond in
the time interval [t, t +dt]. For obvious reasons the spot rate is also called the
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Y(t,T)

S T

r(t)

time

t

f(t,T)

R(t,S,T)

Figure 11.3: A graphical interpretion of the interest rate concepts in Defini-
tions 11.2, 11.3 and 11.5. The eye should indicate that all the interest rates are
evaluated as they are seen at time t regardless of the time (interval) for which
the interest rates apply.

instantaneous rate of interest or the short rate. The process of continuously
investing our holdings at the spot rate r(t) is referred to as rolling over the
money (see the discussion later on page 220).

All of the considered interest rate concepts are illustrated in Figure 11.3.

11.1.4 Stochastic interest rates

In the following we assume that the spot rate, the bond price and the forward
rate may be described by the univariate Itō SDEs

dr(t) = µ(t)dt +σ(t)dW (t) (11.19)
dP(t,T ) = m(t,T )P(t,T )dt +ν(t,T )P(t,T )dW (t) (11.20)
d f (t,T ) = α(t,T )dt +σ(t,T )dW (t) (11.21)

where W (t) is a standard Wiener process defined on the usual filtered proba-
bility space (Ω,F ,P).

The functions µ(t) and σ(t) may depend on r(t), while m(t,T ) and ν(t,T )
may depend on P(t,T ) and so forth; we use this slightly more sloppy notation
for convenience. The functions µ and σ are adapted processes, defined for all
t ≥ 0. For every fixed T , the functions m(·,T ), ν(·,T ), α(·,T ) and σ(·,T ) are
adapted processes defined for 0≤ t ≤ T .
Assumption 11.1. In situations where some of the SDEs (11.19)–(11.21) are
given, we assume that the involved processes are continuous functions of t and
twice differentiable continuous functions of the parameter T . Furthermore we
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assume that
ν(T,T ) = 0, for all T ≥ 0. (11.22)

Remark 11.3. The assumption (11.22) is a necessary condition for (11.20)
to satisfy the boundary condition (11.10). It may be shown that this boundary
condition also implies that the drift term m(t,T )P(t,T ) in (11.20) should be
finite with probability 1.

From the definitions of the bond prices, spot rates and forward rates, it is
clear that the infinitesimal characteristics in (11.19)–(11.21) are related to one
another.
Lemma 11.1 (From P(t,T ) to f (t,T )). Let P(t,T ) for every fixed T be de-
scribed by (11.20). Then f (t,T ) for every fixed T is described by (11.21) where

α(t,T ) = ν(t,T )νT (t,T )−mT (t,T ) (11.23)
σ(t,T ) = −νT (t,T ) (11.24)

where νT (t,T ) = ∂ν/∂T (t,T ), etc.

Proof. First, we write (11.20) in stochastic integral form

P(t,T ) = P(0,T )+
t∫

0

m(s,T )P(s,T )ds+
t∫

0

ν(s,T )P(s,T )dW (s). (11.25)

Taking derivatives with respect to T yields

PT (t,T ) = PT (0,T )+
t∫

0

{mT (s,T )P(s,T )+m(s,T )PT (s,T )}ds

+

t∫
0

{νT (s,T )P(s,T )+ν(s,T )PT (s,T )}dW (s) (11.26)

or in SDE form

dPT (t,T ) = {mT (t,T )P(t,T )+m(t,T )PT (t,T )}dt

+{νT (t,T )P(t,T )+ν(t,T )PT (t,T )}dW (t). (11.27)

From (11.12), it follows that

f (t,T ) =−PT (t,T )
P(t,T )

= ϕ(PT (t,T ),P(t,T )) (11.28)

where the function ϕ(·, ·) has been introduced.
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In order to apply the multidimensional Itō formula (8.18) to this function,
we need

∂ϕ

∂ t
= 0,

∂ϕ

∂P
=

PT

P2 ,
∂ϕ

∂PT
=− 1

P
,

∂ 2ϕ

∂P∂PT
=

1
P2 ,

∂ 2ϕ

∂P2 =−2
PT

P3 ,
∂ 2ϕ

∂P2
T
= 0,

∂ 2ϕ

∂PT ∂P
=

1
P2 .

Now (8.18) yields

dϕ = 0 ·dt +
PT

P2 dP− 1
P

dPT +
1
2

1
P2 dPdPT +

1
2
(−2)

PT

P3 (dP)2

+
1
2

1
P2 dPT dP+

1
2
·0(dPT )

2 (11.29)

where the shorthand notation should be clear.
By inserting (11.20) for dP and (11.27) for dPT herein, we get, after some

trivial computations,

dϕ =

[
m

PT

P
−mT −m

PT

P
+νν

T +ν
2 PT

P
−ν

2 PT

P

]
dt

+

[
ν

PT

P
−νt −ν

PT

P

]
dW (t). (11.30)

Now the results in (11.23) readily follow.
The reader is encouraged to perform all the computations in this proof in

detail. The results in Remark 8.6 on page 150 may be helpful.

Lemma 11.2 (From f (t,T ) to r(t)). Assume that f (t,T ) for every fixed T is
described by the SDE in (11.21). Then r(t) may be described by (11.19) where

µ(t) = fT (0,T )+α(t, t)+
t∫

0

αT (s, t)ds+
t∫

0

σT (s, t)dW (s)(11.31)

σ(t) = σ(t, t). (11.32)

Proof. This proof is omitted as it is of purely technical nature and quite hard.
See Björk [2009].

Lemma 11.3 (From f (t,T ) to P(t,T )). Let f (·,T ) be described by (11.21) for
every fixed T . Then P(t,T ) may be described by the SDE

dP(t,T ) = (r(t)+b(t,T ))P(t,T )dt +a(t,T )P(t,T )dW (t) (11.33)
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where the functions a(t,T ) and b(t,T ) are given by

a(t,T ) = −
T∫

t

σ(t,s)ds (11.34)

b(t,T ) = −
T∫

t

α(t,s)ds+
1
2

a2(t,T ). (11.35)

In relation to (11.20), we have

m(t,T ) = r(t)+b(t,T ) (11.36)
ν(t,T ) = a(t,T ). (11.37)

Proof. Omitted. See Björk [2009].

The forward rate R(t,S,T ) is the return over the time period [S,T ], t ≤ S≤
T , of a bond purchased at time t, and f (t,T ) is the instantaneous return at time
T of a bond purchased at time t (see Figure 11.3).

From (11.18), we get that r(t) = f (t, t), which shows that we may inter-
pret the spot rate r(t) as the instantaneous return of a bond with expiry t + dt
purchased at time t. Thus the spot rate is the return of the following trading
strategy: At every time instant t, we invest our entire wealth in a bond that is
just about to mature. Such a strategy is called a roll-over strategy. Formally the
value process V (t) of the roll-over strategy is

dV (t) =V (t)u(t)
dP(t, t)
P(t, t)

where u(t) denotes the fraction of our wealth invested in the bond at time t. A
roll-over strategy is thus defined by u(t) = 1 for all t. From (11.33), we get

dP(t,T )
P(t,T )

= {r(t)+b(t,T )}dt +a(t,T )dW (t).

It follows immediately from (11.125) that a(t, t) = b(t, t) = 0 such that we get

dV (t) =V (t)r(t)dt. (11.38)

Thus the possibility of using a roll-over strategy on the bond markets implies
the existence of a locally riskless paper with the stochastic interest rate r(t).
Note that the paper is riskless although the interest rate is a stochastic pro-
cess, because the interest rate process r(t) is adapted, which means that r(t) is
known at time t (recall that the pricing formulas for financial derivatives are
conditioned on F (t)). To be precise, it should be said that future interest rates
are stochastic.
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So far we have considered the internal relations between bond prices and
various types of interest rates. We have yet to determine the fair price of a
bond.

Thus we wish to answer the following questions:
Q3: Assume that the dynamics of the short rate r(t) is known. Which bond

prices will be consistent with this particular choice of r(t) and is it pos-
sible to determine unique bond prices from r(t) and the no-arbitrage re-
quirement?

Q4: Which restrictions must be imposed on P(t,T ), 0 ≤ t ≤ T , in order to
obtain an arbitrage-free money market?

Q5: Which restrictions must be imposed on f (t,T ), 0 ≤ t ≤ T , in order to
obtain an arbitrage-free money market?

Q6: What can we say about the prices of financial derivatives in an arbitrage-
free money market? Is it, e.g., possible to determine the arbitrage-free
price of a European call option on a bond?

11.2 Classical approach

Let us now model the short rate of interest r(t) by the univariate Itō stochastic
differential equation

dr(t) = µ(t,r(t))dt +σ(t,r(t))dW (t) (11.39)

where µ and σ are adapted processes, and W (t) is a standard Wiener process
defined on the usual probability space (Ω,F ,P).

The only possibility of investing our capital a priori is to invest it in the
bank using a roll-over strategy. As argued above this implies that our capital
evolves according to the ordinary differential equation

dB(t) = r(t)B(t)dt. (11.40)

We have considered this money market account repeatedly before, but we
should now take into account that the interest rate is stochastic. As argued
previously the possibility of using a roll-over strategy implies the existence of
a paper with the price process given by (11.40). Now we formalize this as an
assumption.
Assumption 11.2 (Price process B(t)). On the capital market, there exists
a financial security, B(t), with a price process given by (11.40), where the
interest rate dynamics of r(t) is given by (11.39).

The value of a bond clearly depends on the (expected value of the) future
evolution of the short rate of interest r(t), so we may consider a bond as an
interest rate derivative.

Our primary interest is now to discuss what can be said about the structure
of the prices of bonds P(t,T ) with different maturity dates (Q3). We are faced
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with the difficulty that it is not possible to trade in the underlying asset, namely
the interest rate.

Recall that the arbitrage-free price of a financial derivate in the Black–
Scholes model was determined by ∆-hedging a portfolio consisting of a bond
and a stock (the underlying asset). In particular, we could trade in both the
bond and the stock, and thus generate a replicating portfolio. With respect to
bond pricing, there is no underlying asset to trade in, thus we must make the
arbitrage argument using at least two bonds with different maturity dates T1
and T2.

Before we formalize this approach, let us consider if we can expect to ob-
tain a complete market and if we can determine unique, arbitrage-free prices
in this market.

Let us for a moment consider a financial market with M securities (bonds,
options, etc.) and N independent sources of noise (Wiener processes). For in-
stance in the Black–Scholes model, we have M = 2 and N = 1 and we recall
that this market is complete and arbitrage-free. We see that M = 2 and N = 1
satisfies the relation M = N +1 and we may wonder if this relation is generic
or if it is merely a coincidence. What happens if M ≤ N +1 or M ≥ N +1?

The first important observation is that the concepts of no-arbitrage and
completeness introduce diametrically opposite restrictions on M versus N.
If for instance we fix the number of random sources, N, then each new se-
curity yields arbitrage possibilities, which imply that the number of papers
should be small compared to the number of random sources, which means that
M ≤ N + 1. On the other hand, each new paper allows us to replicate a given
financial derivative X using a replicating portfolio. Thus completeness requires
a large number of securities compared to the number of random sources, i.e.,
at least M ≥ N +1.

We state these results in a metatheorem, which does not have a pre-
cise mathematical meaning. In each particular case, we should rephrase the
metatheorem as a genuine theorem.
Theorem 11.1 (No-arbitrage and completeness metatheorem). Let M denote
the number of a priori given securities (including the risk-free paper, if any).
Let N denote the number of independent random sources. Then we have

• The market is arbitrage-free if and only if M ≤ N +1.

• The market is complete if and only if M ≥ N +1.

• The market if arbitrage-free and complete if and only if M = N +1.

Proof. The proof is far from trivial in the general case (Delbaen and Schacher-
mayer [1994, 1998] for details). However, the arguments presented above
should make it plausible that this holds for diffusion processes.

Remark 11.4 (Geometrical interpretation). Let M′ denote the number of secu-
rities excluding the riskless paper B(t), i.e., M′ = M−1. Then we should have



CLASSICAL APPROACH 223

M′ = N in order to obtain an arbitrage-free and complete market. Interpret a
realization of the N random sources at time t as a point in the N-dimensional
Euclidean space. If M′=N then we have a sufficient number of papers to reach
this point (to eliminate the randomness, so to speak).

For the financial market described by (11.39) and (11.40), it follows that
there is one security M = 1 and one random source N = 1. Thus the market is
arbitrage-free, but it is not complete. Thus it should be expected that we can-
not price a bond uniquely in terms of the riskless paper B(t). The number of
securities is simply too limited to enable us to construct a replicating portfolio.
However, this does not imply that the fair price of a bond can be an arbitrary
value. On the contrary, the point is that in order to obtain arbitrage-free prices,
bonds with different maturity dates must satisfy some internal consistency con-
ditions.

In other words, if we assume that the fair price of one bond with a fixed
maturity date T is given, then all other bonds may be priced uniquely in terms
of this bond (and the short rate of interest).

This statement is in complete accordance with (Meta)theorem 11.1 because
the market consists of the riskless paper B(t), the short rate of interest model
and the bond yields N = 1 and M = 2. The particular bond given above is called
the benchmark and it is very important to note that the price of all other bonds
are given conditioned on the price of the benchmark bond. In practice, it is, by
no means, a trivial task to determine the benchmark.

In order to make the arbitrage argument, we replace the previous assump-
tion by the following.
Assumption 11.3. Assume that there exists a financial market consisting of the
riskless paper B(t) described by (11.40) and bonds for every choice of maturity
date T ≥ 0. In addition, assume that the market is arbitrage-free and that the
price of a T -bond may be written on the form

P(t,T ) = F(r(t), t,T ) (11.41)

where F is only a function of three real valued variables, and r(t) is given
by (11.39).

As T is a parameter, we may also write FT (r, t) = F(r, t,T ). It follows
immediately from (11.10) that

F(r,T,T ) = 1 for all r. (11.42)

Given this boundary condition, we will now determine the properties of the
function F , see (Q4). In the following derivation, we write µ for µ(t,r(t)), and
FT for F(r(t), t,T ), etc., for simplicity.

In order to obtain portfolios consisting of bonds with different maturity
dates, we need to determine the dynamics of each T -bond. By applying the
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Itō formula (8.10) to (11.41) and (11.39), we get

dFT =

(
FT

t +µFT
r +

1
2

σ
2FT

rr

)
dt +σFT

r dW (t) (11.43)

where FT
t = ∂FT/∂ t, etc.

By introducing the following in (11.43)

αT =
FT

t +µFT
r + 1

2 σ2FT
rr

FT (11.44)

σT =
σFT

r

FT , (11.45)

we get
dFT = FT

αT dt +FT
σT dW (t). (11.46)

Note that αT does not mean the partial derivative of α with respect to T .
Next we consider a self-financing portfolio (uS,uT ), where uS denotes the

fraction of bonds with maturity date S, and uT denotes the fraction of bonds
with a different maturity date T in the portfolio. The associated value process
V (t) is given by

dV =V
(

uT dFT

FT +uS dFS

FS

)
. (11.47)

By inserting (11.46) for FT and a similar formula for FS, we get

dV =V (uT
αT +uS

αS)dt +V (uT
σT +uS

σS)dW (t). (11.48)

If the portfolio is constructed such that

uT
σT +uS

σS = 0,

then the stochastic part of (11.48) drops out. Under the natural assumption that
uS +uT = 1, we get (after some tedious calculations)

dV =V
(

αsσT −αT σS

σT −σS

)
dt. (11.49)

Now we have constructed a portfolio without a stochastic element and for the
market to be arbitrage-free we must have that the relative growth in V (t) equals
the short rate of interest r(t), i.e.,

αsσT −αT σS

σT −σS
= r(t) for all t (11.50)

or equivalently
αS(t)− r(t)

σS(t)
=

αT (t)− r(t)
σT (t)

. (11.51)
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Note that the left hand side of (11.51) does not depend on T and the right hand
side does not depend on S. Thus we have obtained a property that does not
depend on the particular choices of S and T . We restate this important result in
a theorem.
Theorem 11.2 (The market price of risk). Assume that the bond market is
arbitrage-free. Then there exists a process λ (t) such that

αT (t)− r(t)
σT (t)

= λ (t) (11.52)

for every choice of maturity date T ≥ 0.

Proof. Follows from the preceding discussion.

Although the term the market price of risk should not be taken too literally,
it plays an important role in the following. By inserting (11.52) into (11.46),
we get

dFT = FT (r+λσT )dt +FT
σT dW (t). (11.53)

We see that the return (the relative growth in FT ) of a T -bond differs from the
return of the riskless paper B(t) by the term λσT . This term is called the risk
premium as it is required to exclude arbitrage opportunities. The risk premium
is simply the additional return that the holder of the bond should have in order
to take on the risk associated with σT diffusion, which is not present in the
price process (11.40) for the riskless paper B(t). As σT denotes the volatility,
λ is also called the risk premium per unit of volatility.

It is important to note that λ (t) does not depend on T , which implies that
all bonds have the same risk premium per unit of volatility (regardless of the
maturity date T ).

Eq. (11.52) also gives rise to the most important equation in this theory.
Theorem 11.3 (The term structure equation). In an arbitrage-free market
PT = P(t,T ) = F(r(t), t,T ) satisfies the term structure equation

∂PT

∂ t
+(µ−λσ)

∂PT

∂ r
+

1
2

σ
2 ∂ 2PT

∂ r2 − rPT = 0 (11.54)

P(T,T ) = 1. (11.55)

Proof. The boundary condition follows immediately from (11.42). From (11.52),
we get

λ (t)σT (t) = αT (t)− r(t).

Inserting (11.44) herein yields

FT
t +µFT

r +
1
2

σ
2FT

rr − r(t)F = λ (t)σFT
r

which completes the proof using the fact that P(t,T ) = F(r(t), t,T ).
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Two important concepts are related to the solution of the term structure
equation (11.54).
Definition 11.6 (The duration). The duration of a security with the price
P(t,T ) is defined as

D̃(t,T ) = D̃T =
∂P(t,T )

∂ r
(11.56)

and the modified duration is

D(t,T ) = DT =
∂P(t,T )

∂ r

/
P(t,T ). (11.57)

Definition 11.7 (The convexity). The convexity of a security with the price
P(t,T ) is defined as

C̃(t,T ) = C̃T =
∂ 2P(t,T )

∂ r2 (11.58)

and the modified convexity is

C(t,T ) =CT =
∂ 2P(t,T )

∂ r2

/
P(t,T ). (11.59)

Rewriting (11.54) we get

PT =

(
∂PT

∂ t
+(µ−λσ)

∂PT

∂ r
+

1
2

σ
2 ∂ 2PT

∂ r2

)/
r (11.60)

or
r = θ +(µ−λσ)D(t,T )+

1
2

σ
2C(t,T ) (11.61)

where we have introduced θ = ∂PT

∂ t /PT , the durations and the convexity.
Thus it is possible to give each term in (11.61) an economic interpretation:

The first term accounts for the time-dependency of the price. The second term
accounts for the interest rate dependency of the price, and we call this term the
modified duration. The last term accounts for the interest rate dependency of
the duration and we call this term the modified convexity.
Remark 11.5 (Approximating the bond price). If we consider two zero-cou-
pon bonds with different maturity dates T1 and T2 with the prices P1 and P2,
then it is possible to obtain a fairly accurate price by using the associated
durations and convexities as opposed to solving (11.54). If we assume that the
bonds have the same duration D then Equation (11.61) yields

r = θ
1 +(µ−λσ)D(t,T )+σ

2C1(t,T ), (11.62)
r = θ

2 +(µ−λσ)D(t,T )+σ
2C2(t,T ). (11.63)

Arbitrage possibilities may be excluded by equating (11.62) with (11.63), from
which

σ
2(C1−C2) = θ

2−θ
1. (11.64)

Notice the inverse relations between the convexities and time dependencies.
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Whereas durations are available from the Copenhagen Stock Exchange
(Københavns Fondsbørs), this is not the case for the convexities. Thus in order
to use this simple approximation, one must compute the convexities (e.g., using
a finite-difference approximation based on the duration). The approximation is
fairly accurate provided that the interest rate changes are small.

11.2.1 Exogenous specification of the market price of risk

The term structure equation is clearly related to the Black–Scholes equation,
but it is more complicated to solve due to the presence of the market price
of risk, λ (t). From (11.52), it follows that λ is a function of both t and r(t),
which implies that (11.54) is a partial differential equation in the usual sense.
The problem is that λ (t,r) is not specified within the modelling framework. It
must be specified exogenously and this is an important observation.

It is possible to obtain a Feynman–Kac representation theorem for a closed
form solution of the term structure equation (11.54) by studying the process

exp

− t∫
0

r(s)ds

 ·F(r(t), t,T ). (11.65)

Applying the Itō formula (8.10) to this process and using that F(r(t), t,T ) sat-
isfies (11.54) the following theorem may be proved.
Theorem 11.4 (The bond pricing equation). The bond price P(t,T ) is given
by the formula

P(t,T ) = F(r(t), t,T ) = EQ

exp

− T∫
t

r(s)ds

 |F (t)

 (11.66)

where the martingale measure Q implies that the expectation should be taken
with respect to a martingale measure conditional on F (t) and that the short
rate of interest r(t) has the dynamics

dr(s) = (µ(s,r(s))−λ (s,r(s))σ(s,r(s)))ds+σ(s,r(s)dW (s) (11.67)
r(0) = r0. (11.68)

Proof. The proof is sketched prior to the theorem, and the (purely technical)
details are omitted.

Equation (11.66) has a very natural interpretation, which becomes clear if
it is written as

F(r(t), t,T ) = EQ

exp

− T∫
t

r(s)ds

 ·1|F (t)

 .
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We see that the bond price is simply the expected value of the payoff X = 1
at time T discounted until today. The expectation should not be taken with re-
spect to the objective probability measure P. Instead the socalled risk-adjusted
martingale measure Q should be used. Recall from the Black–Scholes model

dS(t) = αS(t)dt +σS(t)dW (t)

that the absolute continuous measure transformation from P to Q was obtained
by replacing the drift term α by the short rate of interest r. The elimination of
arbitrage opportunities is connected to transformations of the drift term, i.e.,
the drift term should be equal to the short rate of interest r(t). From (11.66)–
(11.67) it readily follows that a new martingale measure Q is associated with
each particular choice of λ (t,r(t)), that is, the martingale measure Q is not
uniquely determined. Thus the model is not complete, and the bond price may
not be uniquely determined from the short rate of interest r(t). As previously
discussed the market price of risk should be specified exogenously. In other
words, there exists a multitude of arbitrage-free bond prices that are consistent
with the interest rate r(t). The particular market price of risk (or martingale
measure Q) is determined by supply and demand in the bond market. Thus the
market participants select the appropriate market price of risk and the associ-
ated martingale measure Q (although they are probably not and need not be
aware of it).

In conclusion: the market participants select a market price of risk by trad-
ing a particular T -bond (the benchmark bond mentioned before). Thereby they
select the martingale measure Q and the arbitrage-free prices of all other bonds
may then be determined uniquely from (11.66)–(11.67). The point is that the
other bond prices are given in terms of the benchmark.

11.2.2 Illustrative example

Now we shall apply the presented techniques to a very simple model of the
term structure. It is assumed throughout that the spot interest rate r(t) follows
the univariate Itō stochastic differential equation (or the single-factor model
using the terminology from Chapter 10)

dr(t) = µdt +σdW (t); r(0) = r0 (11.69)

where µ and σ are constants and W (t) is a standard Wiener process. This
model is called the arithmetic random walk or the Merton model. It was con-
sidered in Section 10.1.1 (with different parameters), where it was shown that
the solution is

r(t) = r0 +µt +σW (t) (11.70)

and the mean and variance readily follow

E[r(t)] = r0 +µt, (11.71)

Var[r(t)] = σ
2t. (11.72)
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It is seen that there is a drift in the mean, the variance grows with time and
negative interest rates cannot be excluded. This model is merely chosen here
for its simplicity.

We further assume that the market price of risk is a constant λ (t,r(t)) = λ .
These assumptions lead to the following term structure equation

∂PT

∂ t
+(µ−λσ)

∂PT

∂ r
+

1
2

σ
2 ∂ 2PT

∂ r2 − rPT = 0 (11.73)

P(T,T ) = 1 (11.74)

where µ , σ and λ are constants compared to (11.54). It is duly noted that the
introduction of the market price of risk implies that the riskless spot interest
rate is described by

dr(t) = (µ−λσ)dt +σdW (t) (11.75)

which follows from (11.73) using the connection between parabolic PDEs and
SDEs provided by the Feynman–Kac representation theorems (discussed in
Section 8.3). To be precise, the factor in front of the ∂PT/∂ r term in (11.73) is
the drift term in the associated SDE. Similarly the (squared) diffusion term is
written in front of the ∂PT/∂ r term.

In order to determine P(t,T ), we assume that it takes the following form

P(t,T ) = exp[A(τ)+B(τ)r(t)], τ = T − t (11.76)

where A(τ) and B(τ) are functions that only depend on the constants µ , σ and
λ and the time-to-maturity τ = T − t. Next, we compute the derivatives given
in (11.73)

∂P
∂ r

= B(τ)P(t,T ) (11.77)

∂ 2P
∂ r2 = B2(τ)P(t,T ) (11.78)

∂P
∂ t

= −∂P
∂τ

=−(Aτ(τ)+Bτ(τ)r(t))P(t,T ) (11.79)

where Aτ(τ) denotes the derivative of the function A(τ) with respect to τ .
Inserting these in (11.73) we get[
−(Aτ(τ)+Bτ(τ)r(t))+(µ−λσ)B(τ)+

1
2

σ
2B2(τ)− r(t)

]
·P(t,T ) = 0

(11.80)
or

−(Bτ(τ)+1)r(t)+
1
2

σ
2B2(τ)+B(τ)(µ−λσ)−Aτ(τ) = 0 (11.81)
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which shows that (11.76) is indeed a solution to (11.73). If this equation is to
be satisfied for all r(t) the following two ordinary differential equations must
clearly be satisfied

−Bτ(τ)−1 = 0 (11.82)
1
2

σ
2B2(τ)+B(τ)(µ−λσ)−Aτ(τ) = 0. (11.83)

The initial conditions A(0) = 0 and B(0) = 0 follow immediately from (11.76)
as the initial condition P(T,T ) = 1 should hold for all r(t). By simple integra-
tion of (11.82), we get

B(τ) =−τ (11.84)

which is then substituted into (11.83). As A(0) = 0, the solution to (11.83) is
easily obtained

A(τ) =
τ∫

0

(
−(µ−λσ)s+

1
2

σ
2s2
)

ds =−1
2
(µ−λσ)τ2 +

1
6

σ
2
τ

3. (11.85)

This implies that the bond price P(t,T ) is given by

P(t,T ) = exp
(
−(T − t)r(t)− 1

2
(µ−λσ)(T − t)2 +

1
6

σ
2(T − t)2

)
.

(11.86)
From (11.13), we get the adjacent term structure of interest rates

Y (t,T ) =− logP(t,T )
T − t

= r(t)+
1
2
(µ−λσ)(T − t)− 1

6
σ

2(T − t)2. (11.87)

This expression illustrates a flaw in single-factor spot interest rate models,
namely that the entire term structure is shifted if r(t) shifts. Thus if r(t) in-
creases, the entire term structure is shifted upwards. This implies that longer
interest rates should rise with the same order of magnitude as the short rate of
interest, which is clearly at odds with empirical findings. The long interest rate
should clearly be less sensitive to changes in the short rate, i.e., the dynamics
of the long interest rates should be slower.

From Definitions 11.6–11.7, we get

D(t,T ) =−τ =−(T − t), (11.88)

C(t,T ) = τ
2 = (T − t)2. (11.89)

The shape of the term structure is generally determined by a mixture of
(i) future adjustment of the short rate and (ii) the volatility effects. Thus it is
possible to give each term in (11.87) an economic interpretation as follows:
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The future adjustment effect stems from the fact that the larger the drift µ ,
the more upward sloping is the yield curve. The interest rate volatility exerts
two influences on the term structure. First, there is the drift adjustment −λσ ,
whose effect is similar to the (pure) adjustment effect discussed above. As
empirical studies show that the market price of risk λ is generally negative,
the first volatility effect tends to increase the drift µ−λσ , which causes lower
bond prices (and higher interest rates).

The second volatility effect is the term proportional to σ2 in (11.87), but
its influence is more complicated than the adjustment effect.

If the risk adjusted drift µ − λσ = 0, it seems natural to assume a flat
term structure, but from (11.87) it is seen that the term structure is uniformly
downward sloping which is caused by the socalled second volatility effect. The
intuitive argument is that the price reaction to interest rate changes is asymmet-
rical. The percentage increase from a drop in the short rate (and hence Y (t,T ))
is greater than the drop in P(t,T ) followed by a similar increase in interest
rates, and the difference is again positively related to the variance of interest
rates. The mathematical reason for the second volatility effect is that the bond
price is a convex function of future spot interest rates, and if f (x) is a convex
function of x then E[ f (X)] is greater than f (E[X ]) (this follows from Jensen’s
inequality). This phenomenon is called the convexity of the bond. Therefore the
present bond prices are higher, the higher the interest rate volatility, because
they are potentially higher in the future.

Generally, the first and second volatility effects have opposite signs, but it
is not possible to say which one dominates the other. In (11.87), the second
effect clearly dominates as P(t,T )→∞ as T →∞. In this model the bond price
is not bounded from above by 1 (as it should be), but 0 is still a lower bound
for the bond price. As the interest rate can become arbitrarily negative for long
periods of time, the bond price may tend to infinity due to the convex rela-
tion between short rates and bond prices. Whereas the convexity and the two
volatility effects apply in general, the last remarks about the (un)boundedness
of the bond price only apply for this (too) simple model.

11.2.3 Modern approach

The results in this section may be derived using the modern approach (basically
the Girsanov theorem) along the same lines as in Section 9.3, where a general
pricing formula for a large class of financial derivatives was presented. We do
not choose so, because it is merely an academic exercise that does not reveal
anything new. The main result is, of course, the same as in this section. In
particular, the Girsanov kernel turns out to be equal to (minus) the market price
of risk, which clearly illustrates the close relation between the market price of
risk and the martingale measure Q. See the Notes for references.
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Author Model
Merton dr(t) = θdt +σdW (t)
Vasicek dr(t) = (θ +ηr(t))dt +σdW (t)
CIR 1 dr(t) = (θ +ηr(t))dt +σ

√
r(t)dW (t)

Dothan dr(t) = σr(t)dW (t)
Courtadon dr(t) = (θ +ηr(t))dt +σr(t)dW (t)
CIR 2 dr(t) = σr(t)3/2dW (t)
Cox (& Ross) dr(t) = ηr(t)dt +σr(t)γ dW (t)
Ho–Lee dr(t) = θ(t)dt +σdW (t)
Black–Derman-Toy dr(t) = η(t)r(t)dt +σ(t)dW (t)
Hull & White dr(t) = (θ(t)+η(t)r(t))dt +σ(t)

√
r(t)dW (t)

Table 11.2: An overview of one-factor spot interest rate models. Not all of
these gives rise to an affine term structure.

11.3 Term structure for specific models

In this section we consider an immediate generalization of the example given
above, which gives rise to the socalled affine term structure models. This gen-
eral model class is not empirically founded. It is merely used because it is
possible to determine solutions in a closed form of the term structure equa-
tion (11.54), which enables us to discuss its properties. We shall provide the
general framework and use the Vasicek, Ho–Lee and CIR models as exam-
ples. Other examples will be given in the Problems. For an easy reference, the
one-factor models considered in Chapter 10 are repeated in Table 11.2.

As argued in Section 11.2.3, the introduction of the market price of risk
λ (t,r(t)) is equivalent to an absolutely continuous measure transformation
from the objective probability measure P to a martingale measure Q. Accord-
ing to the bond pricing equation (11.66), the bond price may be expressed as
an expectation under Q. This implies that we could consider a model of the
spot interest rate r(t) under Q. In order to limit the amount of tedious calcu-
lations, we will simply assume that the models in Table 11.2 are formulated
under Q, which thus accounts for the market price of risk. Should we wish to
specify the spot interest rate model under P, the market price of risk must be
inserted explicitly.1 Please note that the actual interest rates r(t) under Q have
no economic interpretation. They are a mathematical abstraction (at least for
λ 6= 0).

Now we define the affine term structure of interest rates.

1In order to remember this we have chosen to use the notation r(t) as opposed to rt in Chap-
ter 10.



TERM STRUCTURE FOR SPECIFIC MODELS 233

Definition 11.8 (Affine term structure). If the term structure of interest rates
P(t,T ) takes the form

P(t,T ) = F(r(t), t,T ) (11.90)

where the function F has the property

logF(r(t), t,T ) = A(t,T )−B(t,T )r(t) (11.91)

then the term structure is said to be affine in r(t).
Remark 11.6. Note that the example in Section 11.2.2 gave rise to an affine
term structure. We choose to parametrize the functions A(t,T ) and B(t,T ) in
t,T in this more general discussion. The sign in front of B(t,T ) is also changed.
This notation is the most often applied in the literature. However, the previous
notation may also be found.

The class of affine term structure models is associated with a number of
nice properties. It is, e.g., possible to determine simple formulae for the dura-
tion and convexity, so it is important to determine the particular infinitesimal
characteristics µ and σ in the spot interest rate model

dr(t) = µ(t,r(t))dt +σ(t,r(t))dW (t) (11.92)

which gives an affine term structure. On the other hand, if A(t,T ) and B(t,T )
are given a priori then it is an interesting question whether there exist uniquely
defined infinitesimal characteristics µ and σ which give rise to this particular
term structure. In short, we need to determine the relations between (A,B) and
(µ,σ).

First, we consider the restrictions that need to be imposed on µ and σ in
order to obtain an affine term structure. Assume that the term structure is of
the form (11.91) such that

F(x, t,T ) = exp(A(t,T )−B(t,T )x). (11.93)

As F should satisfy the term structure equation (11.54), we get

At(t,T )−{1+Bt(t,T )}x−µ(t,x)B(t,T )+
1
2

σ
2(t,x)B2(t,T ) = 0 (11.94)

where the boundary condition P(T,T ) = 1 implies that

A(T,T ) = 0, B(T,T ) = 0. (11.95)

Assuming that (µ,σ) are given a priori then (11.94) provides a differential
equation for the determination of (A,B) and vice versa. We state an important
result as a lemma.
Lemma 11.4 (Unique µ(t,x)). Given a particular set of functions σ(t,x),
A(·,T ) and B(·,T ) for every T ≥ 0, then there exists a unique choice of µ(t,x)
such that µ and σ yield the term structure described by A and B.
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Proof. Follows immediately by solving (11.94) with respect to µ(t,x).

If µ and σ are affine functions in x then (11.94) is separable with respect
to A and B. Thus we obtain two ordinary differential equations which might be
solved as in Section 11.2.2.
Lemma 11.5. Assume that A, B, µ and σ satisfy (11.94). Then µ is affine in x
if and only if σ2 is affine in x.

Proof. Trivial.

Assume that both µ and σ2 are affine in x, i.e.,

µ(t,x) = a(t)x+b(t), σ(t,x) =
√

c(t)x+d(t), (11.96)

where a(t), b(t), c(t) and d(t) are sufficiently well-behaved functions.
Then (11.94) takes the form

At(t,T )−b(t)B(t,T )+
1
2

d(t)B2(t,T )

−{1+Bt(t,T )+a(t)B(t,T )− 1
2

c(t)B2(t,T )}x = 0. (11.97)

As this equation should be valid for all t and x, it may be separated and written
as a system of two ODEs

Bt(t,T ) =−a(t)B(t,T )+
1
2

c(t)B2(t,T )−1, (11.98)

At(t,T ) = b(t)B(t,T )− 1
2

d(t)B2(t,T ), (11.99)

which should be solved subject to the boundary conditions A(T,T ) = 0 and
B(T,T ) = 0.

Equation (11.98) is called a Riccati equation. This is used extensively in
control and filtering theory. Once B(t,T ) has been determined A(t,T ) may be
determined by integration of (11.99).
Remark 11.7 (An important trick). In order to solve (11.99) by direct integra-
tion it is necessary to reverse the signs on the two terms in (11.99), because
the time-derivative of At(t,T ) = ∂A(t,T )/∂ t is computed with respect to the
lower integration limit t. This also implies that the initial condition A(T,T )= 0
is automatically fulfilled and we need not introduce (and determine) additional
integration constants.

Lemma 11.6. Assume that µ and σ are given by (11.96). If the equa-
tions (11.98)–(11.99) are solvable for 0 ≤ t ≤ T for every T ≤ 0, then the
model has an affine term structure of the form (11.93) with the coefficients
given by (11.98)–(11.99).
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Proof. Follows from the preceding discussion.

An interesting question is whether it is only affine functions µ and σ2 that
yield an affine term structure. In general this is not the case. However, if we
assume that µ and σ are independent of time, then it may be shown that affine
functions µ and σ2 are necessary conditions for an affine term structure. (See
the Problems for a proof.)

One of the advantages of affine models (from a mathematical point of view)
is that the dynamics of the bond prices (11.20) and the forward rates (11.21)
becomes very simple.
Theorem 11.5. Assume that the model is affine. Then the following holds un-
der the martingale measure Q.

dP(t,T ) = r(t)P(t,T )dt−σ(t,r(t))B(t,T )P(t,T )dW (t) (11.100)
d f (t,T ) = σ

2(t,r(t))B(t,T )BT (t,T )dt +σ(t,r(t))BT (t,T )dW (t)

where BT (t,T ) = ∂B/∂T (t,T ).

Proof. Omitted. See Björk [2009].

In the next four sections, we give examples of the theory described above.

11.3.1 Example 1: The Vasicek model

We wish to determine the term structure for the Vasicek model, which we
choose to parametrize under the measure Q as

dr(t) = α(β − r(t))dt +σdW (t). (11.101)

Compared to (11.96), we have a(t) =−α , b(t) = αβ , c(t) = 0 and d(t) = σ2.
Eq. (11.98) takes the form

Bt(t,T ) = αB(t,T )−1; B(T,T ) = 0

which has the solution

B(t,T ) =
1
α
(1− exp(−α(T − t))) .

Eq. (11.99) takes the form

At(t,T ) = αβB(t,T )− 1
2

σ
2B2(t,T ); A(T,T ) = 0
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which has the solution (using the trick in Remark 11.7)

A(t,T ) =−αβ

T∫
t

B(s,T )ds+
σ2

2

T∫
t

B2(s,T )ds

=

(
σ2

2α2 −β

)
(T − t)+

1
α
(1− exp(−α(T − t)))

(
β − σ2

α2

)
+

σ2

4α3 (1− exp(−2α(T − t)))

where we have left out a number of tedious calculations. Thus the term struc-
ture is

Y (t,T ) =− logP(t,T )
T − t

=

(
β − σ2

2α2

)
+

1
α(T − t)

(
1− e−α(T−t)

)(
r+

σ2

α2 −β

)
− σ2

4α3(T − t)
(1− exp(−2α(T − t))) .

It is easily seen that the term structure tends to

Y (∞) = lim
T→∞

Y (t,T ) = β − σ2

2α2 .

It may be shown that the yield curve is monotonically increasing for r(t) and
smaller than or equal to

Y (∞)− σ2

4α2 .

For values of r(t) larger than that but below

Y (∞)+
σ2

2α2

it is a humped curve. When r(t) is equal to or exceeds this last value, the yield
curves are monotonically decreasing; see Figure 11.2 for a sketch.

Note that these results are given under the arbitrage-free martingale mea-
sure Q. In order to obtain the results under the objective probability measure
P, we should introduce the market price of the risk λ , which we assume is
a constant (for simplicity). Recall from the previous discussion that the drift
term µ in the spot interest rate model under P is replaced by µ − λσ under
Q. Now we go from Q to P, which implies that we should add λσ to the drift
term. Due to the specific parametrization of the Vasicek model in this exam-
ple, we could substitute β for β̃ +λσ/α , where β̃ is the long term mean of the
spot interest rate r(t) under the measure P. The reader is encouraged to make
this substitution such that the results above are available under P for future
reference.
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11.3.2 Example 2: The Ho–Lee model

We now will consider the slightly more complicated Ho–Lee model, which has
the Q-dynamics

dr(t) = φ(t)dt +σdW (t) (11.102)

where the drift term φ(t) is allowed to be a deterministic function of time t
and σ is a constant. A typical application of this model is to estimate σ from
historical data of the spot interest rate, whereas the function φ(t) is chosen
such that the theoretical term structure fits the observed yield curve.

Although the model (11.102) is specified under the measure Q and the
spot interest rates are observed under the objective probability measure P, it
is actually reasonable to estimate σ directly from historical data, because the
diffusion term is not affected by a measure transformation from Q to P and
vice versa.

The Ho–Lee model gives rise to an affine term structure, where B(t,T ) and
A(t,T ) should satisfy

Bt(t,T ) = −1, B(T,T ) = 0

At(t,T ) = φ(t)B(t,T )− 1
2

σ
2B2(t,T ), A(T,T ) = 0.

It is easy to show the solutions of these ODEs are

B(t,T ) = T − t, (11.103)

A(t,T ) =

T∫
0

φ(s)(s−T )ds+
σ2

2
(T − t)3

3
. (11.104)

Thus we have determined the theoretical term structure which we wish to fit
to the observed initial yield curve, i.e., the observed bond prices at time t = 0.
Now we are going to discuss estimation of φ(t). We denote observed entities
by a ∗ such that the observed bond prices at time t = 0 are denoted by P∗(0,T )
and the associated forward rates by f ∗(0,T ).

It is easy to show that the forward rates are given by

f (0,T ) = r(0)+
T∫

0

φ(s)ds− σ2

2
T 2. (11.105)

Derivation with respect to T yields

fT (0,T ) = φ(T )−σ
2T. (11.106)

As σ2 is estimated from historical data, and fT (0,T ) may be observed in the
market at time t = 0, we have that the deterministic function φ(t) may be
determined from

φ(t) = f ∗T (0, t)+σ
2t. (11.107)
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Thus we have estimated both σ and φ(t) from market data and we may com-
pute the estimated theoretical term structure by inserting (11.103) into (11.93).
However, this is computationally rather demanding. However, it turns out that
it is easier to proceed using the forward rates. From Theorem 11.5, we get

d f (t,T ) = σ
2(t,r(t))B(t,T )BT (t,T )dt +σ(t,r(t))BT (t,T )dW (t).

As B(t,T ) = T − t, this SDE is readily solved and we get

f (t,T ) = f (0,T )+σ
2t(T − t/2)+σW (t). (11.108)

From (11.12), it follows that

P(t,T ) = exp

− T∫
t

f (t,s)ds

 . (11.109)

Inserting (11.108) herein we get

P(t,T ) = exp

− T∫
t

f (0,s)ds− σ2Tt
2

(T − t)−σ(T − t)W (t)

 . (11.110)

By computing P(0,T ) and P(0, t) from this expression and using (11.109), we
obtain

P(t,T ) =
P(0,T )
P(0, t)

exp
(
−σ2Tt

2
(Tt)−σ(T − t)W (t)

)
. (11.111)

In order to remove the Wiener process from this result we use a little trick.
From Definition 11.5 it follows that

r(t) = f (t, t) = f (0, t)+
σ2t2

2
+σW (t). (11.112)

Isolating W (t) herein and inserting the result in (11.111) we get the final result

P(t,T ) =
P∗(0,T )
P∗(0, t)

× exp
(
(T − t) f ∗(0, t)− σ2

2
t(T − t)2− (T − t)r(t)

)
.

Although this result does not look very handy, it is important. As P∗(0,T ),
P∗(0, t), f ∗(0, t) and σ are determined from market data, this result allows us
to determine the price of any T -bond.

11.3.3 Example 3: The Cox–Ingersoll–Ross model

In this example, the famous Cox–Ingersoll–Ross model is considered with re-
spect to bond pricing. The spot interest rate model is

dr(t) = κ(θ − r(t))dt +σ
√

r(t)dW (t) (11.113)
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where κ,θ > 0 and σ > 0. It is clear that the drift µ(t,r(t)) = κ(θ − r(t))
and the squared diffusion σ2(t,r(t)) = σ2r(t) are affine in r(t). Let us repeat
the properties of the CIR model. Negative interest rates are ruled out because,
loosely speaking, the drift will force the interest rates to rise when it is very
small. The line r(t) = 0 as a function of t is called a barrier.2 The drift term
is mean reverting, meaning that the interest rate reverts around the long term
mean θ .

This model also gives rise to an affine term structure and it may be shown
that

A(t,T ) =
2κθ

σ2 ln
[
2γe(κ−γ)(T−t)/2/g(t,T )

]
, (11.114)

B(t,T ) = 2(e−γ(T−t)−1)/g(t,T ), (11.115)

γ =
√

κ2 +2σ2, (11.116)

g(t,T ) = 2γ− (κ− γ)(e−γ(T−t)−1). (11.117)

The forward rate is

f (t,T ) = r(t)+κ(r−θ)B(t,T )− 1
2

σ
2r(t)B2(t,T ). (11.118)

It may be shown that the long term yield is

Y (∞) = lim
T→∞

Y (t,T ) =
2κθ

κ + γ
. (11.119)

This steady-state value implies that the interest rate volatility decreases as a
function of T .

For different sets of parameter values, it is possible to obtain yield curves
as sketched in Figure 11.2 for the CIR model.

So far we have only considered the yield curve Y (t,T ) as a function of
T − t (or T ), which gave rise to the term structure of interest rates. This is also
referred to as the zero-coupon term structure because it is based on the yield
of zero-coupon bonds. The forward rate f (t,T ) as a function of T gives rise to
another term structure, namely the forward rate term structure.

11.3.4 Multifactor models

In this section, we have only considered one-factor models of the term struc-
ture and we have stated that they have a number of flaws. As an example of
multifactor models, we briefly discuss the term structure implied by the two-
factor model proposed by Longstaff and Schartz [1992], which was discussed

2The precise behavior at the barrier depends on the relation between the drift and diffusion
parameters (Feller [1951]).
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in Section 10.4. Another example is the class of affine term structure models
discussed in Section 10.4.2. Despite the nice properties of multifactor models,
we do not pursue the topic any further in this book (see the Notes for refer-
ences). We shall now move on to an alternative framework, where the spot
interest rate model may be considered as infinite-dimensional.

11.4 Heath–Jarrow–Morton framework

Our discussion of the bond pricing framework in Section 11.2 was essentially
based on a specification of a univariate SDE model of the short rate of interest
r(t). Although multifactor models may also be considered, only a limited num-
ber of parameters are available. This makes it impossible to make a perfect fit
of the term structure, because a parsimonious parametrization imposes some
restrictions on the shape of the term structure. The Ho–Lee model, which was
considered in Section 11.3.3, contained an infinite number of parameters as
the drift term was allowed to be time-dependent. It turned out that it was more
tractable to obtain important results using the forward rates. It should also be
clear that this approach will be very difficult to complete for more complicated
spot interest rate models.

We will now provide an introduction to a formal analysis based on the
forward rates, which has been suggested by Heath et al. [1992]. It is therefore
often referred to as the HJM-framework.

We commence by repeating some important results.
Assumption 11.4. For every fixed T ≥ 0, we assume that the forward rates
f (t,T ) are described by the Itō SDE

d f (t,T ) = α(t,T )dt +σ(t,T )dW (t) (11.120)

where α(·,T ) and σ(·,T ) are adapted processes. The initial forward curve
{ f (0,T ); T ≥ 0} is assumed to be given a priori.

Once the infinitesimal characteristics α and σ , and the initial forward curve
{ f (0,T ); T ≥ 0}, have been specified, the entire forward structure f (t,T ) is
given. Due to the relation

P(t,T ) = exp

− T∫
t

f (t,s)ds

 (11.121)

the entire term structure is also given.
The problem is now to determine the infinitesimal characteristics α and σ

such that (11.120) and (11.121) give rise to a financial market that generates
arbitrage-free bond prices.

As usual, we assume that we have access to a money market account or a
riskless paper with the dynamics

dB(t) = r(t)B(t)dt, B(0) = 1 (11.122)

where the short rate is defined by r(t) = f (t, t).
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In order to obtain an arbitrage-free market, we wish to establish conditions
that guarantee the existence of a measure Q under which all processes Z(t,T )
on the following form become martingales

Z(t,T ) =
P(t,T )

B(t)
. (11.123)

Remark 11.8. As the solution to (11.122) is

B(t) = exp

 T∫
t

r(s)ds

 ,

we may refer to the Z(t,T )-process as the discounted bond price process.
Lemma 11.3 states that the forward dynamics (11.120) implies that the

bond prices have the dynamics

dP(t,T ) = (r(t)+b(t,T ))P(t,T )dt +a(t,T )P(t,T )dW (t) (11.124)

where the functions a(t,T ) and b(t,T ) are given by

a(t,T ) = −
T∫

t

σ(t,s)ds, (11.125)

b(t,T ) = −
T∫

t

α(t,s)ds+
1
2

a2(t,T ). (11.126)

It follows from (11.123) that Z(t,T ) has the dynamics

dZ(t,T ) = b(t,T )Z(t,T )dt +a(t,T )Z(t,T )dW (t). (11.127)

Thus the question of the existence of a martingale measure Q is reduced to
determining whether there exists a Girsanov transformation g(t) such that the
drift term in (11.127) may be eliminated for all T simultaneously.

We fix T and choose a Girsanov kernel g. As discussed in Section 8.4, we
may exchange measure from P to Q using

dP= L(T )dQ on FT (11.128)

where the likelihood process L(t) is given by

dL(t) = g(t)L(t)dW (t); L(0) = 1. (11.129)

This transformation implies that

dW (t) = g(t)dt +dV (t), (11.130)

where V (t) is a Q-Wiener process.



242 TERM STRUCTURE OF INTEREST RATES

Inserting (11.130) into (11.127) yields

dZ(t,T ) = {b(t,T )+g(t)a(t,T )}Z(t,T )dt +a(t,T )Z(t,T )dV (t). (11.131)

It is readily seen that if Z(t,T ) should be a Q-martingale (i.e., the drift term
should drop out) we must choose the Girsanov kernel g(t) such that

g(t,T ) =−b(t,T )
a(t,T )

(11.132)

where we have stressed that the choice of g(t,T ) depends on the fixed T .
Thus, if we fix T , then we may choose the Girsanov kernel given

by (11.132), which generates a measure QT under which Z(t,T ) is a martin-
gale. As both the Girsanov kernel and the measure depend on T , we have no
guarantee that a process Z(t,S), S 6= T , becomes a QT -martingal. However, we
wanted to determine a Girsanov transformation that generated a measure under
which Z(t,T ) would become a martingale for all T ≥ 0. This implies that the
Girsanov kernel may not depend on the choice of T .

We state this result as a theorem.
Theorem 11.6. The following conditions are equivalent:

(i) There exists a measure Q under which every Z(t,T )-process becomes a
martingale.

(ii) For every choice of T and S, we have

b(t,T )
a(t,T )

=
b(t,S)
a(t,S)

, P-almost surely (11.133)

for all t ≤min(T,S).
(iii) The process g(·,T ) does not depend on the choice of T .

(iv) For every choice of S and T , we have

α(t,T ) =−σ(t,T )

g(t,S)−
T∫

t

σ(t,s)ds

 . (11.134)

Proof. Omitted.

We state an important result in the following theorem.
Theorem 11.7. Assume that one of the conditions in Theorem 11.6 is fulfilled.
Then the market is arbitrage-free.

Proof. See Björk [2009].
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As stated earlier the Girsanov kernel is sometimes referred to as the mar-
ket price of risk for T -bonds. It follows immediately from condition (iii) in
Theorem 11.6 that the market price of risk does not depend on T .

Assume that one of the sufficient conditions in Theorem 11.6 is fulfilled.
Then we may define a measure Q under which all discounted bond price pro-
cesses are martingales. The implications of this statement on the relations be-
tween the infinitesimal characteristics α(t,T ) and σ(t,T ) are remarkably sim-
ple and are stated in the following important theorem.
Theorem 11.8 (Unique drift term). Let the forward dynamics under P be given
by

d f (t,T ) = α(t,T )dt +σ(t,T )dW (t) (11.135)

and assume that one of the conditions in Theorem 11.6 is fulfilled. Then the
dynamics of the forward rates f (t,T ) under the martingale measure Q is given
by

d f (t,T ) = ᾱ(t,T )dt +σ(t,T )dV (t) (11.136)

where the process ᾱ(t,T ) is given by

ᾱ(t,T ) = σ(t,T )
T∫

t

σ(t,s)ds. (11.137)

Proof. After the Girsanov transformation the Q-dynamics of (11.135) is

d f (t,T ) = {α(t,T )+g(t)σ(t,T )}dt +σ(t,T )dW (t) (11.138)

and then (11.137)–(11.138) follows from (11.134).

Let us illustrate this setup in a simple example.
Example 11.3 (The Heath–Jarrow–Morton framework). Consider the simple
process

σ(t,T ) = σ > 0.

From (11.137), it follows that

ᾱ(t,T ) = σ
2(T − t)

such that forward rate process is

f (t,T ) = f ∗(0,T )+
t∫

0

ᾱ(s,T )ds+
t∫

0

σ(s,T )dV (s)

= f ∗(0,T )+
t∫

0

σ
2(T − s) ds+

t∫
0

σ
2dV (s)

= f ∗(0,T )+σ
2t(T − t/2)+σV (t).
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We see that this solution is equal to the solution of the Ho–Lee model
in (11.108), and we may proceed as we did in Section 11.3.3.

Remark 11.9 (Comparison with the classical approach). We note that the
HJM-framework is based upon a specification of the initial forward curve
f (0,T ), which may be determined from market data at time 0. This initial for-
ward curve corresponds to the determination of the market price of risk from a
benchmark bond in the classical approach. In addition, we should just specify
the diffusion term. Theorem 11.8 states that the drift term is uniquely specified
in order to obtain an arbitrage-free market.

If one wishes to use a more complicated volatility structure than in the
previous example, then it is rather straightforward to assume that the volatility
depends on the forward rate, i.e.,

σ(t,T, f (t,T )) : R3→ R.

Given such a function, we must solve

d f (t,T ) = α(t,T )dt +σ(t,T, f (t,T ))dV (t), (11.139)
f (0,T ) = f ∗(0,T ), (11.140)

where

α(t,T ) = σ(t,T, f (t,T ))
t∫

0

σ(t,s, f (t,s))ds. (11.141)

The question is now which restrictions must we impose on σ(t,T, f (t,T ))
in order to obtain a solution that does not explode. Such restrictions exist and
they are given in the following theorem for completeness.
Theorem 11.9. Let σ(t,T, f (t,T )) : R3→R be a given function with the prop-
erties that

(i) σ is Lipschitz-continuous in the third variable.

(ii) σ is uniformly bounded.

(iii) σ is positive.

Then there exists a solution of (11.139) for every choice of the initial forward
curve f (0,T ).

Proof. Omitted.

It is clear that the solution of (11.139) is a difficult problem, which may,
in general, only be solved numerically. We shall not go into such methods of
solution in this book.
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11.5 Credit models

Most models is this book implicitly assume that there is no counterparty risk.
However, there is counterparty risk in most over the counter (OTC) trades.

Counterparty risk is the risk that the other party in a derivatives trade is
unable to fully pay its debt. It is common that the defaulting party will pay
a small fraction (“the recovery”) of the debt, but the size of the recovery is
typically not known beforehand and will vary from time to time.

Regulatory institutions are currently requiring banks to include this type of
risk in the overall risk management; cf. the Basel II and Basel III framework.3

This section will introduce counterparty risk in a risk-neutral framework,
which can be used to price the basic credit derivative, the Credit Default Swap,
but can equally well be used to value hybrid derivatives combining credit and
market risks. Specifically, we will focus on so-called reduced form models,
also known as intensity models, as these share some nice features with interest
rate models.

11.5.1 Intensity models

Default is a binary process (default/no default). Hence, we introduce the de-
fault time τ as the stochastic time when a company no longer will be able to
pay its debt.

The default time can be thought of as the time when a Poisson process
increases from 0 to 1. Poisson processes can have deterministic or stochastic
(Cox process) intensity.

A Poisson process is a stochastic process with stationary and independent
increments, increasing in unit steps. The risk-neutral probability for default
(i.e., the probability for the time inhomogeneous Poisson process to jump)
within a (to be infinitesimally) small time interval δ t, conditional that the pro-
cess has not defaulted, is

Q(τ ∈ [t, t +δ t)|τ > t) = λ (t)δ t. (11.142)

Integrating this quantity is known as the Hazard function

Λ(t) =
∫ t

0
λ (u)du. (11.143)

It is well known that the jump time, transformed with the Hazard function,
is a standard exponential random variable η

Λ(τ)
d
= η ∼ Exp(1). (11.144)

Hence, we find that

Q(τ > t) =Q(Λ(τ)> Λ(t) =Q(Λ(τ)> η) = e−
∫ t

0 λ (u)du. (11.145)

3http://www.bis.org.
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This can be extended to stochastic intensities, arriving at

Q(τ > t) = EQ
[
e−

∫ t
0 λ (u)du

]
. (11.146)

The similarity with short rate interest models is remarkable!
We can use this framework for defaultable bonds, which will be denoted

by P̄(t,T ). It follows that

1{τ>t}P̄(t,T ) = EQ [D(t,T )1{τ>T}|F (t)
]

(11.147)

where D(t,T ) = exp(−
∫ T

t r(s)ds) is a stochastic discount factor. It is rather
common that some value is recovered during the default; this is modelled
through the recovery rate RR. The value of the bond, when assuming that the
recovery is paid out at time T , would then be

1{τ>t}P̄(t,T ) = EQ [D(t,T )1{τ>T}+RR ·D(t,T )1{τ≤T}|F (t)
]

(11.148)

= EQ [D(t,T )(1−1{τ≤T})+RR ·D(t,T )1{τ≤T}|F (t)
]

(11.149)

= EQ [D(t,T )(1−1{τ≤T}(1−RR))|F (t)
]

(11.150)

= P(t,T )(1−PD ·LGD) (11.151)

where we used that probability of default is given by PD = EQ [1{τ≤T}|F (t)
]

and Loss Given Default is given by LGD = 1−RR.

11.6 Estimation of the term structure — curve-fitting

Clearly the term structure of interest rates plays an important role in our at-
tempts to model financial markets. So far we have discussed it from a theoret-
ical point of view and deduced some properties that pertain to a term structure
model.

It should be clear from the material in this chapter that it is by no means a
simple task to estimate the term structure, especially not if one wishes to gain
some understanding of the properties of the term structure with minimal effort.
The estimation methods to be presented differ mainly by their application of a
priori knowledge about the term structure of interest rates.

In this section, we describe a number of methods for estimating the term
structure from empirical market data. In the financial literature this is some-
times referred to as calibration, the inverse problem or inversion of the yield
curve. Here the statistical term estimation of the term structure will be used
throughout.

In Section 14.11.3, the Extended Kalman filtering technique from Chap-
ter 14 will be used, where the spot interest rate model describes the underly-
ing process and the solution of the bond pricing equation is the measurement
equation. Thus the method enables us to estimate both parameters and implied
interest rates directly from observed bond prices.
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11.6.1 Polynomial methods

In practice it is fairly common to assume that the yield curve may be approxi-
mated by a polynomial in T of order s, i.e.,

Y (T ) = α−1+α1T +α2T 2 + . . .+αsT s. (11.152)

This is a reasonably general formulation. A number of estimation methods
exist and have been implemented in statistical packages, which we shall not
discuss here.

A program package called RIO, which is based on cubic splines, has been
developed at the Aarhus School of Business. This package is also used today
in a number of financial institutions, because it allows the modeller to split the
term structure into a number of segments. The package can also calculate other
types of information.

11.6.2 Decay functions

Decay functions are very useful for term structure estimation if the term struc-
ture should converge to a constant interest rate for T →∞. The simplest possi-
ble decay function is

Y (T ) = α0 +α1 exp(−α2T ). (11.153)

In the next section, we discuss in some detail an extension of this model.

11.6.3 Nelson–Siegel method

The relation between the price of a zero-coupon bond, P(t,T ), and the instan-
taneous forward rate, F(t,T ), is given by (11.109), i.e.,

P(t,T ) = exp

− T∫
t

f (t,s)ds

 . (11.154)

The yield curve follows from (11.13), i.e.,

Y (t,T ) =− log[P(t,T )]
T − t

=
1

T − t

T∫
t

f (t,s)ds. (11.155)

Today, at t = 0, we may observe the yield of a number of bonds with different
maturities. In accordance with Nelson and Siegel [1987], we define

Y (T ) = Y (0,T ) =
1
T

T∫
0

f (0,s)ds. (11.156)
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We assume that the instantaneous forward rate at time is given by

f (0,T ) = β0 +β1 exp(−T/τ)+β2(T/τ)exp(−T/τ)) (11.157)

where β0, β1, β2 and τ are constants. Note that τ is not related to the time-to-
maturity T − t. By direct integration of (11.157) in (11.156), we get

Y (T ) = β0 +β1
1− exp(−T/τ)

T/τ
+β2

(
1− exp(−T/τ)

T/τ
− exp(−T/τ)

)
.

(11.158)
The three components of this equation represent the level, scope and curvature
of the yield curve. Assuming that a number of yields for bonds with different
maturities are given, the parameters in (11.158) may be estimated by a nonlin-
ear least squares method.

For τ = 1, β0 = 0 and β1 =−1, we get

Y (T ) = 1− (1−β2)(1− exp(−T ))/T −β2 exp(−T ). (11.159)

For β2 ∈ [−6,12] and T up to 10 years, the yield curves in Figure 11.4 are
obtained. It is seen that the Nelson–Siegel model is able to fit a large variety of
yield curves, increasing, decreasing and humped yield curves.
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Figure 11.4: A variety of the term structures encompassed by the Nelson–
Siegel model.
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Figure 11.5: An illustration of the short, medium and long term components of
the Nelson–Siegel model.

Another way to see the shape of the attainable yield curves is to inter-
pret the terms in (11.159) as measuring the strength of the short, medium and
long-term components (or segments) of the yield curve. The contribution of
the long term component is β0, that of the short term components is β1 and β2
indicates the contribution of the medium term component. This is depicted in
Figure 11.5. Thus estimation of the yield curve is merely a question of obtain-
ing parameter estimates that weigh these three contributions simultaneously.

It can be shown that the Nelson–Siegel model does not give rise to
arbitrage-free prices, but there are arbitrage free extensions (Christensen et al.
[2011]). Nevertheless the Nelson–Siegel method is used today in a number of
financial institutions.

11.7 Notes

For an introduction to the large variety of bonds on the Danish market (Jensen
et al. [1994] and Christensen [1995]). In these notes, we have only considered
univariate models for the short rate of interest and the forward rates. Extensions
to multivariate SDEs may be found in Strickland [1996], Jørgensen [1994],
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Duffie [1996], Brennan and Schwartz [1979], Longstaff and Schartz [1992],
Chen [1996] or the original paper by Heath et al. [1992] with respect to forward
rates.

Multivariate affine models are considered in an excellent article by Duffie
and Kan [1996]. See Björk [2009] for the derivation of the term structure equa-
tion using the modern approach. A more thorough analysis of the CIR model
from a PDE point of view is given by Feller [1951].

Whether one chooses to build the bond pricing framework on the short
rate of interest or the forward rate, the pricing equations turn out to be
parametrized in (t,T ) with T being the fundamental parameter in spite of the
fact that the initial discussion showed that a more natural choice would be the
time-to-maturity T − t. The latter approach is taken in the socalled Musiela
parametrization (Björk [1996] for further details and references). See Wilmott
et al. [1995] and Brigo and Mercurio [2006] for two different but excellent
overviews of interest rate and credit derivative products.

11.8 Problems

Problem 11.1
Consider a coupon bond with N payments c = (c1, . . . ,cN)

′ at discrete time
instants T = (T1, . . . ,TN)

′ and maturity date T = TN .
1. Show that the price of a coupon bond is given by

P(t,c,T) =
n

∑
i=1

ciP(t,Ti) (11.160)

by direct application of (11.2).

Problem 11.2
1. Show that the following applies for t ≤ s≤ T

P(t,T ) = P(t,s)exp

− T∫
s

f (t,u)du

 (11.161)

and in particular

P(t,T ) = exp

− T∫
t

f (t,u)du

 . (11.162)

Problem 11.3
Show that the zero-coupon bond and forward rate term structures are equal
for the time-to-maturity τ∗, where the zero-coupon term structure reaches its
highest value in the following special cases:
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1. The Merton model.
2. The Vasicek model.
3. The Cox–Ingersoll–Ross model.

Can you give an intuitive or financial explanation of this property?

Problem 11.4
Consider an affine term structure.
1. Show that the duration D(t,T ) is −B(t,T ).
2. Show that the convexity C(t,T ) is B2(t,T ).

Problem 11.5
Consider the CIR model

dr(t) = κ(θ − r(t))dt +σ
√

r(t)dW (t). (11.163)

Assume that the term structure is affine, i.e.,

P(t,T ) = eA(τ)+B(τ)r(t). (11.164)

1. Determine A(τ) and B(τ).

Problem 11.6
Consider the Ho–Lee model

dr(t) = θ(t)dt +σdW (t), (11.165)

which gives rise to an affine term structure

P(t,T ) = eA(t,T )−B(t,T )r(t). (11.166)

1. Determine A(t,T ) and B(t,T ).
2. Determine the forward rates f (0,T ).
3. Determine the forward rates f (t,T ).
4. Use the relation

P(t,T ) = exp

−
T∫

t

f (t,u)du

 (11.167)

to show that

P(t,T ) =
P(0,T )
P(0, t)

exp
{
−σ2Tt

2
(T − t)−σ(T − t)W (t)

}
. (11.168)

5. Determine the spot interest rate r(t) from f (t, ·).
6. Use this result to eliminate the Wiener process in (11.168).
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Problem 11.7
Consider the Nelson–Siegel model described in Section 11.6.3.
1. Show (11.158).
2. Determine lim

T→∞
Y (T ) and lim

T→0
Y (T ). Use these limits to explain why it is

reasonable to impose the constraints β0 > 0 and β0 +β1 > 0.
3. Plot (11.156) and (11.157) as a function of T .
4. Show that the curvature component of (11.158) reaches its maximum for
T = τ .

In Svensson [1994], an additional term, β3(T/τ2)exp(−T/τ2), τ2 > 0, is
added to (11.157) to add flexibility to the model and to allow for better fits to
real data. The resulting model is called the Nelson–Siegel-Svensson model.
5. Compute (Y (T ), defined by (11.156), for the Nelson–Siegel-Svensson
model.
6. Determine lim

T→∞
Y (T ) and lim

T→0
Y (T ) for the Nelson–Siegel-Svensson model.

In Gilli et al. [2010] and Annaert et al. [2013] some of the problems re-
lated to estimating the parameters in the Nelson–Siegel and Nelson–Siegel-
Svensson models are discussed.



Chapter 12

Discrete time approximations

In this chapter we introduce some basic issues concerning discrete time ap-
proximations of stochastic differential equations, which are used in a later
chapter to estimate the parameters in SDEs using the Generalized Method of
Moments (GMM). Furthermore the methods are used to simulate discrete ob-
servations from a continuous time system, which, for example, can be used
to determine the price of a financial derivative in cases where no closed form
solution of the pricing formula exist.

12.1 Stochastic Taylor expansion

The stochastic Taylor expansion is a stochastic counterpart of the Taylor ex-
pansion in a deterministic framework, and it is essential for the discrete time
approximation of stochastic differential equations to be described later in this
chapter. The stochastic Taylor expansion is based on an iterated application of
the Itō formula. Due to the high complexity of the multi dimensional case we
shall only consider one-dimensional stochastic differential equations (Kloeden
and Platen [1995]).

Consider the integral form

X(t) = X(t0)+
∫ t

t0
µ(X(s))ds+

∫ t

t0
σ(X(s))dW (s) (12.1)

for t ∈ [t0,T ], where it is assumed that the functions µ and σ are "sufficiently"
smooth in the neighbourhood of X(t0). If we apply the Itō formula to the func-
tions µ and σ , and assume that the functions are time homogeneous, we obtain
the following

X(t) = Xt0 +µ(X(t0))
∫ t

t0
ds+σ(X(t0))

∫ t

t0
dW (s)+R (12.2)

R =
∫ t

t0

∫ s

t0
L 0

µ(X(z))dzds+
∫ t

t0

∫ s

t0
L 1

µ(X(z))dW (z)ds

+
∫ t

t0

∫ s

t0
L 0

σ(X(z))dzdW (s)

+
∫ t

t0

∫ s

t0
L 1

σ(X(z))dW (z)dW (s) (12.3)

253
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where the operators L 0 and L 1 are defined as

L 0 = µ
∂

∂X
+

1
2

σ
2 ∂ 2

∂X2 , (12.4)

L 1 = σ
∂

∂X
. (12.5)

This is the most simple Taylor expansion, where Itō’s formula is only used
once. The deterministic integral in the Taylor expansion (12.2) is equal to the
length of the discretization interval t− t0, and the stochastic integral is Gaus-
sian with distribution N(0, t− t0).

By continuously expanding the integrands of the multiple integrals in the
remainder R, multiple integrals with constant integrands will appear. For ex-
ample if we use the Itō formula on the integrand L 1σ(X(z)) in (12.2) we get
the following

X(t) = X(t0)+µ(X(t0))
∫ t

t0
ds+σ(X(t0))

∫ t

t0
dW (s)

+L 1
σ(X(t0))

∫ t

t0

∫ s

t0
dW (z)dW (s)+ R̄ (12.6)

where the remainder R̄ is a sum of multiple integrals with non-constant inte-
grands.

In Section 12.3 the Itō-Taylor expansion is used to obtain discrete time
approximations with different degrees of accuracy. In the same manner, we
can obtain more accurate Taylor approximations by including more multiple
stochastic integrals in the Taylor expansion, because these integrals contain
additional information about the sample path of the stochastic process.

12.2 Convergence

In order to get a measure of the amount of error introduced in the discrete
time approximation, two definitions of convergence are stated in the following.
The distinction between the two definitions refers to whether the continuous-
time discretized stochastic process approximates the sample paths of (12.1)
pathwise for all t, or if it just approximates the moments or some probabilistic
properties of (12.1).

To measure the magnitude of the approximation error introduced by the
pathwise approximation {Y δ (t)}, with maximum step size δ , of an Itō process
{X(t)}, consider the absolute error criterion

ε = E[|X(T )−Y δ (T )|] (12.7)

where the error is expressed as the expectation of the absolute value of the
difference between the Itō process and the approximation at a finite terminal
time T .
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Definition 12.1 (Strong convergence). A general time discrete approximation
Y δ (t) with maximum step size δ converges strongly to X at time T if

lim
δ→0

E[|X(T )−Y δ (T )|] = 0, (12.8)

and if there exists a positive constant C, which does not depend on δ , and a
finite δ0 > 0 such that

ε(δ ) = E[|X(T )−Y δ (T )|]≤Cδ
α (12.9)

for each δ ∈ (0,δ0), then Y δ is said to converge strongly of order α > 0.

In many practical situations we do not need such a strong convergence as
the pathwise approximation considered above. For instance, we may only be
interested in the computation of moments, probabilities or other functionals
of the Itō process. Since the requirements for such a simulation are not as
demanding as for the pathwise approximations, it is natural and convenient
to classify these approximations separately. For that purpose we define the
concept of weak convergence.
Definition 12.2 (Weak convergence). A general time discrete approximation
Y δ with maximum step size δ converges weakly to X, at time T as δ ↓ 0, with
respect to a class C of polynomials g : Rd → R if we have

lim
δ→0

∣∣∣E[g(X(T ))]−E[g(Y δ (T ))]
∣∣∣= 0, (12.10)

and if there exists a positive constant D, which does not depend on δ , and a
finite δ0 > 0 such that

ε(δ ) =
∣∣∣E[g(X(T ))]−E[g(Y δ (T ))]

∣∣∣≤ Dδ
β (12.11)

for each δ ∈ (0,δ0), then Y δ is said to converge weakly of order β > 0.

In Kloeden and Platen [1995] it is shown that the strong and weak conver-
gence criteria lead to the development of different discretization schemes. As
we shall see in the following a given dicretization scheme usually has different
orders of convergence with respect to the two criteria.

12.3 Discretization schemes

12.3.1 Strong Taylor approximations

12.3.1.1 Explicit Euler scheme

The simplest strong Taylor approximation is the Euler scheme, also called the
Euler-Maryama scheme. It utilizes only the first two terms in the simple Taylor
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expansion (12.2), and it attains the order of strong convergence γ = 0.5. In the
one-dimensional case the Euler scheme has the form

Yn+1 = Yn +µ(Yn)∆+σ(Yn)∆W (12.12)

where
∆ = τn+1− τn (12.13)

is the length of the time discretization interval, and

∆W =Wτn+1 −Wτn (12.14)

is the N(0,∆) increment of the Wiener process W .

12.3.1.2 Milstein scheme

If we add one additional term to the Euler scheme, we obtain a scheme pro-
posed by Milstein [1974], which is of order 1.0 strong convergence.

Yn+1 = Yn +µ(Yn)∆+σ(Yn)∆W +
1
2

σ(Yn)σ
′
(Yn)[(∆W )2−∆] (12.15)

where the prime denotes the derivative with respect to the state variable. It
is readily seen that the Euler scheme and the Milstein scheme coincide if the
diffusion term σ is independent of the state variable, because then the last term
in (12.15) drops out. Due to the fact that the multiple integral can be expressed
as ∫ t

t0

∫ s

t0
dW (z)dW (s) =

1
2
[(∆W )2−∆] (12.16)

the Milstein scheme appears to correspond with the stochastic Taylor expan-
sion (12.6) — refer to Kloeden and Platen [1995] for details.

12.3.1.3 The order 1.5 strong Taylor scheme

The order 1.5 strong Taylor scheme is given by

Yn+1 = Yn +µ∆+σ∆W +
1
2

σσ
′
[(∆W )2−∆]

+µ
′
σ∆Z +

1
2
(
µµ

′
+

1
2

σ
2
µ
′′)

∆
2

+
(
µσ

′
+

1
2

σ
2
σ
′′)
[∆W∆−∆Z]

+
1
2

σ
(
σσ

′′
+(σ

′
)2)[1

3
(∆W )2−∆

]
∆W (12.17)

where µ and σ are evaluated at Yn and ∆Z is a random variable representing
the double stochastic integral

∆Z =
∫

τn+1

τn

∫ s

τn

dW (s)ds. (12.18)
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In Kloeden and Platen [1995] it is shown that ∆Z is normally distributed with
zero mean and variance equal to 1

3 ∆3. The covariance between ∆W and ∆Z is
1
2 ∆2.

12.3.2 Weak Taylor approximations

As with the strong approximations, the desired order of convergence deter-
mines where the Taylor expansion must be truncated. However, the weak con-
vergence criterion only concerns probabilistic aspects of the sample path and
not the sample path itself. Therefore, for a certain degree of convergence, the
required number of terms of the expansion is less for the case of weak conver-
gence than for the case of strong convergence if a certain degree of convergence
is desired.

For example it can be shown that the Euler approximation attains the order
of weak convergence β = 1.0, whereas it only attains the order α = 0.5 of
strong convergence.

12.3.2.1 The order 2.0 weak Taylor scheme

The order 2.0 weak Taylor scheme is given by

Yn+1 = Yn +µ∆+σ∆W +
1
2

σσ
′
[(∆W )2−∆]+

µ
′
σ∆Z +

1
2
(
µµ

′
+

1
2

σ
2
µ
′′)

∆
2 +(

µσ
′
+

1
2

σ
2
σ
′′)
[∆W∆−∆Z]. (12.19)

Compared with the order 1.5 strong Taylor scheme the order 2.0 weak Taylor
scheme is simpler, even though the degree of convergence is higher.

12.3.3 Exponential approximation

Some attention has recently been given to so-called exponential schemes
(Mora [2005]) as these are generally better for stiff systems. The methodol-
ogy does only apply to models where the diffusion is independent of the state,
reducing the applicability somewhat.

The idea is to approximate the diffusion by an Ornstein-Uhlenbeck pro-
cess, rather than an arithmetic Brownian motion (cf. the explicit Euler scheme).
This idea is far from new, as it was used in Madsen and Melgaard [1991], Kris-
tensen and Madsen [2003]. The advantage of approximating using an Ornstein-
Uhlenbeck process is increased stability and, for some schemes, increased rate
of convergence. Here, we present the Euler-exponential scheme

Yn+1 = eJ(µ)δ (Yn +(µ− J(µ)Yn)∆+σ∆W ) (12.20)
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where J(µ) is the Jacobian of µ . This is a first-order scheme, but a similar,
second order version can be found in Mora [2005].

12.4 Multilevel Monte Carlo

Consider the standard problem of approximating an expectation, E [Φ(S(T ))],
with some numerical scheme, say the Euler-Maruyama scheme, {Sδ

t }t∈[0,T ],
with δ = T/M. The error between the numerical approximation and the exact
value is then given by

ε =
1
N

N

∑
n=1

Φ(Sδ (T ))−E [Φ(S(T ))] . (12.21)

This error can be decomposed into

ε =

(
1
N

N

∑
n=1

Φ(Sδ (T ))− 1
N

N

∑
n=1

Φ(S(T ))

)
︸ ︷︷ ︸

Discretization bias

+

(
1
N

N

∑
n=1

Φ(S(T ))−E [Φ(S(T ))]

)
︸ ︷︷ ︸

Variance
(12.22)

where the bias from the first term is O(δ ) and the variance from the second
term is O(1/N), leading to a mean squared error (MSE) of

MSE = c1δ
2 +

c2

N
. (12.23)

Balancing these terms means that δ 2 ∝ 1/N. If the MSE equals ε2, the δ 2 =
O(ε2) and 1/N = O(ε2) which means that the complexity needed for a root
mean squared error of size ε is

Complexity = Mε Nε = O(ε−1)O(ε−2) = O(ε−3). (12.24)

It turns out that this complexity can be reduced substantially to
O(ε−2(log(ε))2) by organizing the computations in a clever way (Giles
[2008]), called MultiLevel Monte Carlo (MLMC).

Consider a simple approximation computed at the crudest possible scale,
δ0 = T , computed using N0 samples. That approximation, called P0, will be
severely biased but the complexity is low as only a single step is taken. The
idea behind multilevel Monte Carlo is to compute a series of corrections with
δl = M−1T (M being an integer) to this crude level. Denote the Monte Carlo
approximation at level l using Nl samples by Pl . It then follows that the ex-
pected value of the sequence of approximations is

E

[
P0 +

L

∑
l=1

(Pl−Pl−1)

]
= E [PL] (12.25)
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which is the accuracy of the finest level of approximations. The question is if
the sequence of approximations can be computed in a less expensive way. This
can in fact be done, provided that ideas related to so-called control variates are
used.

The correction term, Yl = Pl −Pl1 , is computed from two different levels
of discretization using the same Brownian path, as this will introduce a strong
coupling between these approximations. The paths should be independent of
the other levels of approximation. Straightforward calculations (Giles [2008]
for details), show that the variance of the sequence of corrections ∑

L
l=1 Yl is

given by

Var [Yl ] =
L

∑
l=1

N−1
l Vl (12.26)

where Vl is the variance computed for a single Brownian path while the com-
putational cost is given by

Cost =
L

∑
l=1

Nlδ
−1
l . (12.27)

It can be shown that the variance is minimized for a fixed computational cost
when Nl ∝

√
Vlδl , and that Vl = O(δl).

The number of samples Nl needed to obtain an overall variance of ε2

is Nl = O(Lδlε
−2) while the corresponding bias, provided that an Euler-

Maruyama scheme is used, is O(δL). Hence, we can compute the number of
levels needed as

O(M−LT ) = ε (12.28)

leading to L = log(ε−1))/ log(M) +O(1). The total computational cost for
achieving a MSE of at most 2ε2 would then be

Cost =
L

∑
l=1

Nlδ
−1
l =

L

∑
l=1

O(Lδlε
−2)δ−1

l = O(ε−2L2) = O(ε−2(log(ε))2).

(12.29)
This is a remarkable result as the cost for a perfect algorithm without bias
would be O(ε−2). Variations of the multilevel Monte Carlo method have been
applied to, e.g., American options (Belomestny et al. [2013]). For simulation
of exit times, see Higham et al. [2013].

12.5 Simulation of SDEs

Since explicit solutions of stochastic differential equations do only exist in a
limited number of cases, numerical solution methods must be used. Different
numerical approaches have been proposed, such as Markov chain approxima-
tions where both the state and the time variables are discretized. However for
simulation purposes we shall use discrete time approximations because they
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have been presented in this chapter. By choosing a sufficiently small length
of the subinterval ∆, the discretization schemes above can be used to generate
discrete observations of a continuous-time system.

To illustrate some aspects of the simulation of a time discrete approxima-
tion of an Itō process we shall examine a simple example.
Example 12.1. Consider the geometric Brownian motion

dX(t) = µX(t)dt +σX(t)dW (t), X(0) = x0 > 0. (12.30)

We know from Example 8.10 that the solution of (12.30) is given by

X(t) = x0 exp
((

µ− 1
2

σ
2
)

t +σW (t)
)
. (12.31)

The knowledge of the explicit solution gives us the possibility of comparing
the discretization schemes with the exact solution and to calculate the error.
To simulate a trajectory of the Euler approximation of the geometric Brow-
nian motion we simply start from the initial value Y (0) = X(0) and proceed
recursively to generate the next value from

Yn+1 = Yn +µYn∆+σYn∆Wn (12.32)

where ∆Wn is the N(0,∆) increment of the Wiener process in the interval with
length ∆ = τn− τn−1, which we assume constant. The Milstein approximation
of the Geometric Brownian Motion is given by

Yn+1 = Yn +µYn∆+σYn∆Wn +
1
2

σ
2Yn((∆Wn)

2−∆). (12.33)

For comparison, we can use (12.31) to determine the corresponding values of
the exact solution for the same sample path of the Wiener process, obtaining

Xτn = x0 exp

((
µ− 1

2
σ

2
)

τn +σ

n

∑
i=1

∆Wi−1

)
. (12.34)

In Figure 12.1 the exact process as well as the Euler and Milstein approxima-
tion are plotted for different values of the interval length ∆. It is readily seen
that the approximations become better as the number of subintervals increases.
Furthermore it is seen, as expected, that the Milstein scheme provides a better
approximation than the Euler scheme.
Example 12.2. Valuation of European call options in the Black & Scholes
universe was covered in Chapter 9. Here, we have valuation options using
Monte Carlo. The model we consider is given by

dS(t) = rS(t)dt +σS(t)dW (t) (12.35)

with S0 = 100, r = 0.4 and σ = 0.3. The time to maturity was T = 0.5, while
the strike was varied between 80 and 120 in steps of 10. We consider four
different cases:
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Figure 12.1: Euler and Milstein approximation and the exact solution to (12.31)
with initial value X(0) = 1, drift parameter µ = 1 and diffusion parameter
σ = 1 for ∆ = 1

5 (upper plot) and ∆ = 1
15 (lower plot).

• Exact value, computed using Equation (9.45) and (9.46).
• Crude Monte Carlo, using Euler-Maruyama without subsampling.

• Monte Carlo simulation using exact simulation, i.e., using the solution to
the geometric Brownian motion.

• Multilevel Monte Carlo, using M = 4.

All Monte Carlo algorithms used the same number of random samples (in all
N = 21 760 samples) in order to make the results comparable.

The resulting call prices are presented in Figure 12.2. It can be seen that
the exact Monte Carlo is unbiased, the multilevel Monte Carlo is virtually un-
biased, while the crude Monte Carlo is clearly biased (but the sign of the bias
depends on the contract). The variance is roughly the same for all methods.

The convergence of the multilevel Monte Carlo for different levels of refine-
ment is shown in Figure 12.3. It can be seen that just a few correction terms
are usually enough to obtain nearly unbiased results.
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Figure 12.2: Prices for a European call option computed using the exact for-
mula, an Euler-Maruyama scheme without subsampling, exact Monte Carlo
and multilevel Monte Carlo.
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Figure 12.3: Convergence of multilevel Monte Carlo to the exact price (dashed
line) as a function of the number of correction terms used.





Chapter 13

Parameter estimation in discretely
observed SDEs

13.1 Introduction

This chapter describes methods for estimating parameters in stochastic differ-
ential equations (SDEs). A brief introduction to the GMM method is given,
but a major part of the presentation is devoted to a class of maximum likeli-
hood methods which can be used for estimation parameters in both linear and
non-linear SDEs.

It is clear that a method for estimating parameters of non-linear stochastic
differential equations can also be used for estimating the parameters of a linear
stochastic differential equation. If a linear model is considered, it is, however,
advantageous to take the linearity into account at the estimation procedure.
Likewise it is beneficial to simplify the method if it is known that the model is
time invariant.

In this section we shall briefly introduce the various types of models which
will be considered in the subsequent sections.

There are several reasons why it is advantageous to consider the
continuous-discrete time state space approach:
• If any physical knowledge is available it is easily included in the model,

since the system equation is described in continuous time.
• The estimated parameters are readily interpreted by experts in the field.
• Multivariate models are easily considered.
• Time varying models can be handled.
• Missing observations, as well as time varying sampling times, can be han-

dled.
• It is often the case that less parameters are needed for the continuous time

formulation than for the traditional discrete time formulation.
• The solution of the Itō equation is a Markov process.

The main limitation is the difficulty to derive estimators, or, rather, deriving
the Maximum Likelihood estimator in closed form. Instead, we have to rely on
approximations of the Maximum Likelihood estimator.

265
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There are some perhaps unexpected results1 regarding asymptotic proper-
ties of the estimators that are useful to know.
Example 13.1 (Estimating parameters in the drift and diffusion). Consider the
arithmetic Brownian motion

dX(t) = µdt +σdW (t). (13.1)

The solution is well known, X(tn+1)− X(tn) = µ(tn+1 − tn) + σ(W (tn+1)−
W (tn)), implying that each difference of observations is an independent Gaus-
sian random variable. All that is needed is to compute the mean and covari-
ance! The drift is estimated by computing the mean, and compensating for the
sampling δ = tn+1− tn

µ̂ =
1

δN

N−1

∑
n=0

X(tn+1)−X(tn). (13.2)

Expanding this expression reveals that the MLE for µ is given by

µ̂ =
X(tN)−X(t0)

tN − t0
. (13.3)

The only thing that matters is the lengths of the observation window; recording
measurements inside the sample is of no use whatsoever for the drift parameter.

The situation is different for the diffusion (σ ) parameter, as the MLE is
given by

σ̂
2 =

1
δ (N−1)

N−1

∑
n=0

(X(tn+1)−X(tn)− µ̂δ )2 d→ σ
2 χ2(N−1)

N−1
(13.4)

which converges to the correct quantity. The σ parameter can be well esti-
mated by either having a short sampling interval and sampling frequently, or
by having a fixed sampling frequency and sampling for a very long time.

13.2 High frequency methods

It should be clear from Example 13.1 that the variance term can be estimated
using high frequency data. In fact, that variance estimator is closely linked to
the convergence of the stochastic integral and the Itō formula. Here we assume
that the process we study is a compound Poission Jump Diffusion

dX(t) = µ(t,X(t))dt +σ(t,X(t))dW (t)+dZ(t) (13.5)

with Z(t) = ∑
N(t)
n=1 Jn where J are the stochastic jumps and N(t) is the Poisson

process.

1Similar results exist in the theory on discrete time series analysis.
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Let πN = [0 = τ0 < τ1 < .. .τN = T ] be a partition of the interval [0,T ],
where sup |τm+1− τm| → 0, and define

RV =
N

∑
n=1

(X(τn)−X(τn−1))
2 . (13.6)

Then it follows the statistic RV , called the Realized Variance estimator, con-
verges to the Quadratic Variation (QV) of the process, cf. Section 13.7.

RV
p→
∫

σ(s,X(s))2ds+
N(t)

∑
n=1

J2
n = QV (13.7)

while a small modification called the bipower estimator defined as

BPV =
π

2

N

∑
n=1
|X(τn+1)−X(τn)| |X(τn)−X(τn−1)| (13.8)

converges to the continuous component

BPV
p→
∫

σ(s,X(s))2ds. (13.9)

Shifting the computations a single step will eliminate jumps as the jumps only
contribute to one of the terms, while the other term will be very small when
the partitioning gets finer and finer.

The implication of these methods (Barndorff-Nielsen [2002], Barndorff-
Nielsen and Shephard [2004]) is that high frequency data can be used to es-
timate the variance and jump parts with very good accuracy. However, mar-
ket microstructure (Hansen and Lunde [2006], Zhang et al. [2005]), generally
prevents us from going to the limit, and there seems to be a consensus that
sampling too often will contaminate the data more than the additional variance
reduction obtained due to the larger data set.

We illustrate the realized volatility by computing it on simulated data from
a geometric Brownian motion; see Figure 13.1. The constant volatility of the
log returns implies that the integrated squared volatility grows linearly.

Computing the realized variance and bipower variation on index returns on
the Swedish OMXS30, as shown in top graph in Figure 13.2, reveals that the
variance is not constant; cf. Section 5.5.2 and 5.5.3.

These statistics can also be used to investigate whether there are jumps as
the difference RV −BPV should equal to the sum of the squared jumps

RV −BPV
p→

N(t)

∑
n=1

Jn. (13.10)

This difference is computed in the lower graph in Figure 13.2, where some
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Figure 13.1: Realized variance computed on simulated log returns from a geo-
metric Brownian motion
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Figure 13.2: Realized variance and bipower variation computed on log returns
on the OMXS30 index (top graph) and the difference between the bipower
variation and realized variance (bottom graph).

evidence for jumps is presented. Notice that most jumps are rather modest in
size, and also that the jumps often seem to cluster to periods of high variance.

Realized volatility was used in Phillips and Yu [2009] to derive Maximum
Likelihood estimators for some diffusion processes by first estimating the in-
tegrated volatility and then using methods like those in Section 8.4.4.
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13.3 Approximate methods for linear and non-linear models

The complexity estimating parameters in discretely observed diffusions, i.e.,
estimating parameters when the full state vector is observed as discrete time
points, depends on a number of factors, most important being the dynamics of
the process and the sampling frequency.

Many data sets are sampled at high frequency, compared to the dominant
dynamics of the stochastic system, making the bias due to discretization of the
SDEs using any of the schemes in Chapter 12 acceptable.

The simplest discretization, the explicit Euler method, would for the
stochastic differential equation

dX(t) = µ(t,X(t))dt +σ(t,X(t))dW (t) (13.11)

correspond to the Discretized Maximum Likelihood (DML) estimator given by

θ̂DML = argmax
θ∈Θ

N−1

∑
n=1

logφ (X(tn+1),X(tn)+µ(tn,X(tn))∆,Σ(tn,X(tn))∆)

(13.12)
where φ(x,m,P) is the density for a multivariate normal distribution with ar-
gument x, mean m and covariance P and

Σ(t,X(t)) = σ(t,X(t))σ(t,X(t))T , (13.13)

and ∆ = tn+1− tn is the time between two consecutive observations.
Note that the Euler scheme and the Milstein scheme coincide when the

diffusion term is independent of the state vector. Similarly, it was shown in
Chapter 12 that higher order method can readily be derived when the diffusion
term is independent of the state vector, which indicates that transformations to
get rid of state dependence are generally a good idea.

13.4 State dependent diffusion term

If the SDE contains a state dependent diffusion term then the methods de-
scribed in the previous section cannot be used directly. Frequently it is, how-
ever, possible to transform the SDE into an equivalent SDE where the diffusion
term is independent of the state vector. The equivalent SDE contains the same
parameters and describes a relation between the same input and output vari-
ables.

13.4.1 A transformation approach

We shall only consider the scalar case here. The transformation approach is
based on the Itō formula which we restate here for convenience.
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Theorem 13.1 (The Itō formula). Let X(t) be a solution to

dX(t) = µ(t,X(t))dt +σ(t,X(t))dW (t) (13.14)

and ϕ : R2 7→ R be a C1,2(R2)-function applied to X(t)

Y (t) = ϕ(t,X(t)). (13.15)

Then it holds that

dY (t) =
[

∂ϕ

∂ t
+µ

∂ϕ

∂X(t)
+

1
2

σ
2 ∂ 2ϕ

∂X(t)2

]
dt +g

∂ϕ

∂X(t)
dW (t). (13.16)

Proof. See page 147.

Notice that the diffusion term in the new Itō process dY (t) is equal to the
product of g and ∂ϕ/∂x. This leads us to the following lemma.
Lemma 13.1. Let X(t) and ϕ be defined as above, then by choosing the trans-
formation

ϕ(xt , t) =
∫ 1

σ(t,X(t))
dX(t) (13.17)

the new process Z(t) = ϕ(X(t), t) will be an Itō process with a constant diffu-
sion term.

The procedure is easily generalized to the multivariate case where the ma-
trix g(X(t), t) only contains non-zero values on the diagonal, but is far more
complicated in the general case (cf. Aït-Sahalia [2008]).
Example 13.2 (Transformation of the CKLS-model). Consider the CKLS-
model (Chan et al. [1992]):

dX(t) = α(θ −X(t))dt +σX(t)γ dW (t) (13.18)

where X(t) is the short term interest rate, and α and θ are parameters related
to the drift term and δ and γ are related to the diffusion term.

The drift term represents a tendency to pull the process back towards its
long-term mean θ with the rate of adjustment determined by α . The diffusion
term describes that the variability (the volatility) is increasing with x if γ > 0.

Some important models used in the field of finance are obtained as a special
case of the CKLS-model:

γ = 0 we get the Vasicek model (Vasicek [1977])

γ =
1
2

we get the Cox–Ingersoll–Ross model (Cox et al. [1985])

By applying the lemma, the following transformation is suggested in order
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to obtain a constant diffusion term in a new process which contains the same
parameters and relates the same input and output.

Z(t) = ϕ(xt , t) =
∫ 1

X(t)γ
dX(t) =

1
1− γ

X(t)1−γ . (13.19)

The SDE for Z(t) is found by using the Itō formula. Hence we need

∂ϕ

∂ t
= 0 ,

∂ϕ

∂x
= X(t)−γ ,

∂ 2ϕ

∂x2 =−γX(t)−γ−1. (13.20)

Insertion into the Itō formula leads to the following SDE for Z(t)

dZ(t) =
[

αθ ((1− γ)Z(t))
γ

γ−1 −α (1− γ)Z(t)− γσ2

2(1− γ)Z(t)

]
dt (13.21)

+σdW (t). (13.22)

13.5 MLE for non-linear diffusions

It is rarely possible to do full maximum likelihood estimation for non-linear
diffusions, but the likelihood function can often be approximated arbitrarily
well. Some technical difficulties are avoided if the class of models is restricted
to discretely observable models.

There are at least three types of competing algorithms that are compu-
tationally efficient. The most general, and also the computationally least effi-
cient class of algorithms, are the Monte Carlo simulation based estimators. The
Fokker-Planck based estimators are computationally more efficient (at least in
low dimensions). Finally, the series expansion approach is the computationally
most efficient algorithm but it is also the most restrictive estimator. Common
for all estimators is that their computational efficiency is usually improved if
the diffusion term is independent of the states of the process; cf. Section 13.4.

13.5.1 Simulation-based estimators

The class of simulation based estimators can be applied to virtually any con-
tinuous time Markov process, for which a numerical scheme has been de-
rived. The basic idea is to calculate the unknown transition probability density
p(xt |xs) by successive approximations. Assume that s < τ1 < τi < τN−1 < t.
The transition probability density is then (due to the law of total probability
and the Markov property) given by

p(xt |xs) =
∫

p(xt |xτi)p(xτi |xs)dxτi .

This can be iterated N times, and the following expression is derived

p(xt |xs) =
∫

p(xt |xτN )
∫

. . .
∫

p(xτ1 |xs)dxτ1 . . .dxτN .
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The N×dX dimensional integral (dX = dim(X(t))) is easily calculated us-
ing Monte Carlo methods (e.g. Pedersen [1995]). An implementation of this
algorithm is actually quite easy as the numerical representation of the integral

p(xt |xs) =
∫

p(xt |xτ)p(xτ |xs)dxτi

is given by

pK(xt |xs) =
1
K

K

∑
k=1

p(xt |xk
τ)

where xk
τ was generated from p(xτ |xs), see Chapter 12 for numerical schemes.

However, the simple Monte Carlo approximation is usually too inaccurate to be
useful (e.g. Durham and Gallant [2002]), and variance reduction is regularly
applied. An efficient version was introduced in Durham and Gallant [2002],
and uses a combination of antithetic variables, moment matching and impor-
tance sampling (so-called Brownian bridge sampler, see Problem 8.9). Lind-
ström [2012a] improves that Brownian bridge sampler further by introducing a
regularization term that improves the performance for sparsely sampled mod-
els.

The simulation based estimators converge as 1/
√

K regardless of dimen-
sion. This leads to relatively slow convergence in low dimensions but is very
competitive in higher dimensions.

13.5.1.1 Jump diffusions

Similar methods have been developed for jump diffusions and Lévy driven
SDEs (e.g. Hellquist et al. [2010], Lindström [2012b]). A computationally at-
tractive alternative to direct maximization of the likelihood function is to use
the EM algorithm (e.g. Sundberg [1974], Dempster et al. [1977]).

The EM algorithm finds the Maximum Likelihood estimate by iteratively
alternating between computing the Expectation of the intermediate quantity

Q(θ ,θ ′) = E
[
log pθ (X ,Y )|Y,θ ′

]
(13.23)

where X are some latent variable and Y the observations, and maximizing that
quantity

θm+1 = argmaxQ(θ ,θm). (13.24)

Computing the posterior distribution is similar to the simulated maximum
likelihood methods. Define Y as the observations (Y = Yt1 , . . . ,YtN ) and X =
(Xτ1 , . . . ,XτN−1) as latent values of the process in between the observation (t1 <
τ1 < .. . < τN−1 < tN). The posterior is then given by

p(Xτn |Ytn ,Ytn+1) ∝ p(Ytn+1 |Xτn)p(Xτn |Ytn). (13.25)

It is therefore possible (this is very similar to what is done in the bootstrap
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filter, see Section 14.10) to use resampling of particles generated from the
naive dynamics to compute a sample from the posterior distribution (Lind-
ström [2012b]).

The intermediate quantity will typically be easy to maximize as the tran-
sition density for a short time interval is well approximate using even simple
discretization schemes (cf. Chapter 12), typically leading to a sum of loga-
rithms of Gaussian densities.

13.5.2 Numerical methods for the Fokker–Planck equation

The Fokker-Planck based estimators apply deterministic numerical schemes to
the Fokker-Planck equation, a parabolic partial differential equation governing
the evoluation of the transition probability density.

The Crank-Nicholson scheme was applied in Lo [1988] while Lindström
[2007] used higher order schemes as well. It is usually computationally effi-
cient to use higher order finite difference schemes. The Fokker-Planck equation
is typically solved by defining a grid in the domain of the process and approx-
imating the derivatives in the domain with central differences on the grid. This
reduces the partial differential equation

∂ p
∂ t

(x, t) =− ∂

∂x
(µ(xt)p(x, t))+

1
2

∂ 2

∂x2

(
σ

2(xt)p(x, t)
)

to a system of linear differential equations

dp
dt

(t) = Ap(t)+b

which has a closed form solution. It was shown in Lindström [2007] that
the rate of convergence of the Fokker-Planck based estimators is significantly
faster than, i.e., simulation based estimators, but it is known the rate deterio-
rates as the dimension increases.

The partial differential equation approach can also be used to compute mo-
ments or eigenfunctions, which could lead to substantial computational sav-
ings as fewer PDEs need to be solved numerically. These can be used to derive
GMM or Quasi-likelihood estimators (see Höök and Lindström [2014] for de-
tails).

13.5.3 Series expansion

The Aït-Sahilia estimator (Aït-Sahalia [2002, 2003]) derives a closed form
expression of the transition probability density. This is achieved by approxi-
mating the true transition probability density by a standard Gaussian random
variable and correcting for the deviations using Hermite polynomials (Hermite
polynomials are orthogonal polynomials associated to the standard Gaussian
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density). Unfortunately the correction only does converge if the true density is
similar to the standard Gaussian density.

The solution in Aït-Sahalia [2002] is to transform the process dX(t) =
µX (X(t))dt+σX (X(t))dW (t) to a new representation where the diffusion term
is independent of X(t); cf. Section 13.4. This can be achieved by introducing

Y (t) = γ(X(t)) =
∫ X(t) du

σX (u)

resulting in

dY (t) =
(

µX (γ
−1(Y (t)))

σX (γ−1(Y (t)))
− 1

2
∂σX

∂x
(γ−1(Y (t)))

)
dt +dW (t).

The second step is to normalize Y (t) by its approximative standard devia-
tion

Z(t) =
Y (t)−Y (s)√

t− s
.

The density for Z(t) is then expanded in Hermite polynomials (orthogonal
polynomials with respect to the Gaussian density) as

pZ(z|ys) = φ(z)

(
1+

∞

∑
j=1

η
( j)
Z (t− s,ys;θ)H j(z)

)
,

where the formula to calculate η
( j)
Z = 1/( j!)EZ [H j(Z)] is given in Aït-Sahalia

[2003], H j(z) are Hermite polynomials and φ(z) is the density of a standard
Gaussian random variable. The closed form expression for pZ(z|ys) is then
used to calculate pX (xt |xs). It is not guaranteed that the Hermite expansion
will generate a pdf (i.e., a density that ≥ for all function values and integrates
to one). Another approach is then to work with log densities (log p) rather than
densities (p) (Aït-Sahalia [2002]). That would eliminate the risk for negative
densities, but the approximation will still not integrate to one, unless infinitely
many terms are included in the expansion.

The estimator is very efficient from a computational point of view when
t − s is small. A multivariate version of the algorithm was presented in Aït-
Sahalia [2008], but the generalization is not as smooth as one could hope; the
expansion is only valid for so-called reducible diffusions, which excludes many
models in financial economics such as stochastic volatility models.

13.6 Generalized method of moments

The Generalized Method of Moments is a method attributable to Hansen [1982]
which can be used for estimating parameters in stochastic differential equa-
tions. Similar ideas (called estimation function) can be found in Bibby and
Sørensen [1995]; see Sørensen [2012] for a recent overview.
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For the GMM method no explicit assumption about the distribution of the
observations is made, but the method can include such assumptions. In fact, it
is possible to derive the ML estimator as a special case of the GMM estimator.

The standard version of the GMM method requires that all the state vari-
ables are observed directly. This is clearly a drawback of the method, since
it dramatically limits the complexity of the models which can be considered.
In the modeling of spot interest rates, this is a severe restriction, due to the
fact that the spot interest rate is not observed directly, but only implicitly via
the bond prices. Furthermore, the estimation does not take place directly in
the continuous-time model; the stochastic differential equations must be dis-
cretized (see Chapter 12), before using the GMM method, and the sampling
time must be constant. The best reference to discretization techniques so far
is Kloeden and Platen [1995] and Platen and Bruti-Liberati [2010]; see also
Chapter 12.

13.6.1 GMM and moment restrictions

We shall introduce the moment restrictions by first considering an example
which is of great interest in statistical finance.
Example 13.3 (GMM estimates of the CKLS model). Consider the following
stochastic differential equation

dr(t) = (θ +ηr(t))dt +σr(t)γ dW (t) (13.26)

where W (t) is a standard Wiener process. This model, which is called the CKLS
model (Chan et al. [1992]), is often used to model the short term risk-less
interest rate. The structure of the CKLS model implies that the conditional
mean and variance of the short term rate depend on the level of r(t).

The observations are in general given in discrete time. Hence the model
(13.26) has to be formulated in discrete time before setting up any moment
restrictions which can be evaluated using the discrete time data.

In financial and economical applications the Euler approximation method
(see Chapter 12) is most often used to formulate the discrete time equivalent
of the continuous time model. Using the Euler approximation of model (13.26)
we obtain the following discrete time model

rk+1 = rk +(θ +ηrk)∆+ εk+1 (13.27)

where

E[εk+1|Bk] = 0 (13.28)

E[ε2
k+1|Fk] = σ

2r2γ

k ∆ (13.29)

and where Fk denotes the information set at time tk.
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Under the assumption that the restrictions implied by the model, i.e., by
(13.27), (13.28) and (13.29) are true, the following moment restrictions follow

E[εt+1−E[εt+1|Ft ]] = 0, (13.30)

E[ε2
t+1−E[ε2

t+1|Ft ]] = 0. (13.31)

The GMM procedure consists of replacing the expectation E[·] with its sample
counterpart, using the N observations available {r(k) ; k = 1, · · · ,N}.

Now we are ready to formulate the GMM method more formally. Assume
that the observations are given as the following sequence of random vectors:

{xt ; t = 1, · · · ,N}

and let θ denote the unknown parameters (dim(θ) = p).
Let f(xt ,θ) be a q ≥ p-dimensional zero mean function, which is chosen

as some moment restrictions implied by the discretized model of xt .
The GMM estimates are found by minimizing

JN(θ) =

(
1
N

N

∑
t=1

f(xt ,θ)

)T

WN

(
1
N

N

∑
t=1

f(xt ,θ)

)
(13.32)

where WN ∈ Rq×q is a positive semidefinite weight matrix, which defines a
metric subject to which the quadratic form has to be minimized. The key ob-
servation is that any remaining bias in the moment conditions (e.g., (13.30) or
(13.31)) is going to increase the JN function.
Example 13.4 (GMM estimates of the CKLS model (cont.)). Consider
again the CKLS model given in Eq. (13.26), and the Euler approximative dis-
crete time equivalent model given by (13.28)–(13.29). The unknown parame-
ters are θ = (θ ,η ,γ,σ)T .

In order to use the GMM method we may use the moment restrictions given
by

f(rk,θ) =


εk+1−E[εk+1|Fk]

(εk+1−E[εk+1|Fk])rk
ε2

k+1−E[ε2
k+1|Fk](

ε2
k+1−E[ε2

k+1|Fk]
)

rk



=


εk+1

εk+1rk

ε2
k+1−σ2r2γ

k ∆

(ε2
k+1−σ2r2γ

k ∆)rk

 . (13.33)

Note that in the second and fourth equation the variable rk is used as an
instrumental variable. Those equations are justified by the fact that rk is inde-
pendent of the entities (εk+1−E[εk+1|Fk]) and

(
ε2

t+1−E[ε2
k+1|Fk]

)
.
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Some extensions of the GMM for diffusions include Simulated GMM of-
ten called Simulated Method of Moments (SMM) (McFadden [1989]). Monte
Carlo simulations can be used to compute arbitrarily accurate approximations
of moments, thereby eliminating the bias caused by the discretization scheme.
Solving PDEs is a computationally attractive alternative in many cases (Höök
and Lindström [2014]).

The characteristic function is known for a fairly large class of processes,
as presented in Section 7.5. These can be used to construct suitable moments
without having to use any discretization scheme (Singleton [2001] and Chacko
and Viceira [2003]). It can be useful to add many moment conditions (Carrasco
et al. [2007]), who showed that Maximum Likelihood efficiency is achieved
when a continuum of moments is employed in the estimation, although there
is a practical upper limit when employing the method on real data (for example,
the number of conditions has to be smaller than the number of observations).

Another approach suitable for diffusion (or Markov processes in general)
is to use eigenfunctions of the generator as moments (Kessler and Sørensen
[1999]). The downside is that these can be tricky to compute, and other meth-
ods may be preferred (i.e., maximum likelihood methods) for simple models
where eigenfunctions are computable in closed form.

13.7 Model validation for discretely observed SDEs

Model validation for linear, discrete time models is a well known subject. Not
only do we know how to estimate the parameters in most models, but there is
also a large variety of suggestions on how we can validate the models.

Continuous-time models based on stochastic differential equations are
harder to validate except for linear models, where validation techniques devel-
oped for discrete time models can be applied. Instead, we are often restricted
to techniques telling us whether one model is better than another using e.g. LR
and Wald tests, which is based on general theory on likelihood functions, not
the models per se.

13.7.1 Generalized Gaussian residuals

Discrete time residuals are usually defined as standardized martingale incre-
ments, i.e.,

εk =
Xk−E[Xk|Fk−1

σ(Xk|Fk−1)

where {εk}k≥0 is assumed to be a sequence of iid random variables. This def-
inition is only valid for discrete time models, and using this definition on data
generated by a diffusion process will not (in general) generate an iid sequence.

The difficulties encountered when working with validation of diffusion
processes can be attributed to the (unknown) transition probability density,
p(xs,s;xt , t), implying that {εk}k≥0 is not an iid sequence.
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Let us, however, assume that we know (or can calculate) the transition
probability density. We could then transform all innovations to a sequence of
identically distributed random variables with a known distribution, making the
validation problem easier.

This is done by calculating the conditional distribution function for all pairs
of observation, FXk|Xk−1

(x)=P(Xk ≤ xk|Xk−1)=
∫ xk
−∞ p(xtk−1 , tk−1;x, tk)dx. Hav-

ing calculated the distribution function, we use the fact that the distribution
function applied to the stochastic variable is a uniformly distributed random
variable

Uk = FXtk |Xtk−1
(Xtk ;θ).

It can also be shown that the sequence {Uk}k≥0 is pairwise independent (e.g.
Lindström [2004, 2003]). Note that we have not assumed stationarity of the
process, i.e., time variations, non-linearities and non-equidistantly sampled
data are allowed. Stationarity will, however, often simplify the calculations of
the cumulative transition probability density. The sequence can be used to ob-
tain generalized Gaussian residuals by transforming the sequence once more:

Yk = Φ
−1(Uk).

The sequence {Yk}k≥0 will inherit the nice properties of {Uk}k≥0 but the Gaus-
sian residuals offer many advantages to uniform residuals. Most important is
the property that uncorrelated Gaussian random variables are independent ran-
dom variables, but it may also be argued that there are other advantages of
using Gaussian residuals for validation (e.g. distributional tests and outlier de-
tection).

The Gaussian residuals may be difficult to calculate as the inversion of the
standard Gaussian distribution function is numerically sensitive. It is thus im-
portant that the transition probability density can be calculated accurately for
all pairs of observations. It is recommended to approach this problem by solv-
ing the Fokker-Planck equation (see Section 13.5.2) numerically to calculate
the transition probability density. Simulation could also be used but importance
sampling would be needed to preserve the accuracy in the tails.

13.7.1.1 Case study

The first set of data used is simulated data from the Cox–Ingersoll–Ross model
(Cox et al. [1985]). The model is widely used in the finance community as a
model for short interest rates, but it has also been used as a model for volatility.
The model is specified by the stochastic differential equation

dXt = α(β −X(t))dt +σ
√

X(t)dW (t).

The data were simulated using a Milstein scheme using equidistant observa-
tions. The distance between the observations is ∆t = 1 and the parameters used
were chosen as α = 0.17, β = 0.05 and σ = 0.07. The simulation produced
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Figure 13.3: Simulated Cox–Ingersoll–Ross process (left) and corresponding
normal probability plot.

500 observations, where 100 intermediate steps between each observation have
been simulated to decrease the bias (Figure 13.3).

The sample autocorrelation and QQ plot for the generalized Gaussian
residuals are presented in Figure 13.4. These are uncorrelated and Gaussian
(and thus independent) which is not surprising since the data were simulated
using the correct model.

The benchmark for stocks is the geometric Brownian motion, dS(t) =
µS(t)dt + σS(t)dW (t). Let ∆k = tk − tk−1 be the sampling interval and let
∆Wi = Wtk −Wtk−1 , µ̃ = (µ −σ2/2). The solution to the stochastic differen-
tial equation is given by Stk = Stk−1eµ̃∆k+σ∆Wk . We obtain Uk by applying the
distribution function. The conditional distribution of Stk is given by

P(Stk−1eµ̃∆k+σ∆Wk ≤ sk|Stk−1) = Φ

(
log
(
sk/Stk−1

)
− µ̃∆k

σ
√

∆k

)
.

By applying the inverse of the distribution function of the standard Gaus-
sian random variable, we find that

Yk = Φ
−1(Uk) =

log
(
sk/Stk−1

)
− µ̃∆k

σ
√

∆k
.

The generalized Gaussian residuals are consistent with the ordinary stan-
dardized residuals (for linear diffusions) but the technique is also able to han-
dle non-linear models. We have calculated the generalized Gaussian residuals
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Figure 13.4: Sample autocorrelation and QQ plot for the generalized Gaussian
residuals computed for the Cox–Ingersoll–Ross process.
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Figure 13.5: Generalized Gaussian residuals (left) and QQ plot (right) for con-
tinuously compounded returns on the S & P 500.

for the S & P 500 using weekly data from 1983–2002. The residuals are pre-
sented in Figure 13.5. It can be seen that the residuals are non-Gaussian and
heteroscedastic, reaffirming the well-known fact that the S & P 500 is not gen-
erated by a geometric Brownian motion.

13.8 Problems

Problem 13.1
Consider the stochastic variable X ∈ N(µ,σ2).
1. Specify two moment conditions that can be used for estimating the param-
eters µ and σ2.
2. Specify an additional moment condition.



PROBLEMS 281

3. Simulate 100 observations of X . Estimate the parameters and their covari-
ances based on these observations using the two moment conditions. Estimate
the parameters and their covariances based on these observations using the
three moment conditions. Comment on the results.

Problem 13.2 Consider the GARCH model (5.67) for p = 1 and q = 1, i.e.,
the GARCH(1,1) model.
1. Write down suitable moment conditions for estimating the parameters.
Illustrate the choice of moment conditions!

Hint: Use (5.69).

Problem 13.3 Consider the CKLS model

dX(t) = κ(θ −X(t))dt +σX(t)γ dW (t).

1. Calculate the simple estimation functions obtained from choosing h(x) =
x, x2,x3, x4.
2. Do an Euler approximation of the CKLS model with timestep ∆. Use this to
derive suitable moment conditions for a GMM estimation of the parameters.





Chapter 14

Inference in partially observed processes

14.1 Introduction

This section concentrates on filtering (state estimation) and prediction theory
related to state space models. There are several reasons for considering state
space models. The primary reason is probably that the process described by
the system equation of the state space model is a (first-order) Markov process
(assuming that the Itō interpretation is used). Furthermore, the state space for-
mulation contains a measurement equation which allows for a rather flexible
structure of the observations (aggregation of the state variables, missing mea-
surements, etc.).

More specifically we shall assume that the system is described by the conti-
nuous-discrete state space model, which will be introduced in the next section.
The evolution of the state vector of the model will be described by a vector
Itō stochastic differential equation, which is the system equation of the state
space model. The observations are taken at discrete time instants, and the mea-
surement equation of the state space model describes how the observations are
obtained as a function of the states plus some measurement noise.

In many references on filtering for SDE (as for instance Øksendal [2010]) a
continuous-continuous time setup is used. The continuous-discrete-time setup
is, however, the most relevant setup in practice, since the changes of the sys-
tem most often take place in continuous time, whereas the observations are
obtained at discrete time instants.

Assume that we want to estimate the state of the system at time t based
on measurements until time tk. Then this chapter describes some estimation
methods which might be useful:
• State interpolation (t < tk)
• State filtering (estimation) (t = tk)
• State prediction (t > tk)
In particular the methods are needed for estimating parameters in the stochastic
differential equations.

283
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14.2 Model

In the most general case we shall assume that the system equation is the vector
Itō stochastic differential equation

dX(t) = µ(X(t),U(t), t)dt +σ(X(t), t)dW(t) (14.1)

with {W(t)} being a vector Wiener process with incremental covariance Q(t),
and U(t) some input vector valued function. The observations yk are taken at
discrete time instants, tk, as described by the measurement equation:

yk = h(xk,uk,θ , tk)+ ek (14.2)

where {ek} is a vector Gaussian white noise process independent of W(t), for
all t,k, and ek ∼ N(0,Sk). (The super- or subscript k is a shorthand notation for
tk.)

However, occasionally a scalar version of the above model will be con-
sidered. From the deterministic settings it is well known that a solution to a
differential equation ∂X(t)/∂ t = µ(t,X(t)) with initial condition X(0) exists
and µ(t,X(t)) is unique if µ(X(t), t) satisfies the Lipschitz conditions in X(t),
and is bounded with respect to t for every X(t). Similar conditions are relevant
for the SDE in Equation (14.1).
Condition 14.1 (Lipschitz and growth conditions). Suppose the real functions
µ and σ , and initial condition X(0), satisfy the following conditions. The func-
tions µ and σ satisfy the uniform Lipschitz conditions in x :

‖µ(x2, t)−µ(x1, t)‖ ≤ K‖x2−x1‖,
‖σ(x2, t)−σ(x1, t)‖ ≤ K‖x2−x1‖.

The functions µ and σ satisfy Lipschitz conditions in t on [t0,T ] :

‖µ(x, t2)−µ(x, t1)‖ ≤ K|t2− t1|,
‖σ(x, t2)−σ(x, t1)‖ ≤ K|t2− t1|.

Furthermore, assume that the drift and diffusion term satisfies

‖µ(x, t)‖2 +‖σ(x, t)‖2 ≤ K(1+‖x‖2). (14.3)

The initial condition X(0) is a random variable with E[‖X(0)‖2] < ∞, in-
dependent of {W(t), t ∈ [t0,T ]}.

If condition 14.1 is satisfied then {X(t)} is a Markov process, and, in
the mean square sense, is uniquely determined by the initial condition X(0)
(Jazwinski [1970], Øksendal [2010]).

The Lipschitz condition in x guarantees that the equation has a unique so-
lution, while the Lipschitz condition in t guarantees that the solution does not
explode, i.e., it is a restriction on the growth of the functions. The latter is
illustrated in the following example.
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Example 14.1 (Growth restriction on µ). Consider the deterministic differen-
tial equation

dx(t)
dt

= x(t)2. (14.4)

The general solution is

x(t) =
1

C− t
, (14.5)

where C is an arbitrary constant. For the initial condition x0 = 1 the solution
is

x(t) =
1

1− t
(14.6)

which is defined only for 0≤ t < 1.
Given this initial condition no solutions exists for t ≥ 1, and we see that

the solution explodes for t ↑ 1.

14.3 Exact filtering

In the general case exact filtering requires that the whole distribution is used.

14.3.1 Prediction

We start by analysing the Scalar case to build some intuition, before proceeding
to the multivariate case.

14.3.1.1 Scalar case

Let us first consider the scalar SDE

dX(t) = µ(X(t), t)dt +σ(X(t), t)dW (t). (14.7)

From a previous chapter it is well known that (given the Itō interpretation,
which will be adapted in the following) X(t) is a Markov process. Being
Markov, the process is then characterized by the density p(x, t) and the tran-
sition probability p(x(t)|x(s)) (s < t), and the key issue is to find out how
this transition probability propagates in time. Note that we use the shorthand
notation p(x(t)|x(s)) instead of the more correct notation p(x(t), t|x(s),s).

Let us consider the process at times s < t < t + δ t. For a Markov process
we have the Chapman–Kolmogorov equation

p(x(t +δ t)|x(s)) =
∫

∞

−∞

p(x(t +δ t)|x(t)) p(x(t)|x(s))dx(t) (14.8)

where it is used that p(x(t +δ t)|x(t),x(s)) = p(x(t +δ t)|x(t)) because of the
Markov property.



286 INFERENCE IN PARTIALLY OBSERVED PROCESSES

Using the Chapman–Kolmogorov in a Taylor expansion of p(x(t)|x(τ) (see
Maybeck [1982a] p. 192–196) we get the Fokker–Planck equation (F-P) (or the
forward Kolmogorov equation)

∂ p(x(t)|x(τ))
∂ t

=−∂ p(x(t)|x(τ))µ(x, t)
∂x

+
1
2

∂ 2 p(x(t)|x(τ))σ2(x, t)
∂x2 (14.9)

for the Scalar case (14.7).
Example 14.2 (Einstein’s 1905 paper on Brownian motion). As an example
of the F-P equation and its solution we might consider the 1905 paper of Ein-
stein where he treated the Brownian motion. Take µ = 0 and σ = 2D in Equa-
tion 14.7. Then Einstein proved that the density p conditioned on a known
initial state x0 satisfies

∂ p(x(t)|x(τ))
∂ t

= D
∂ 2 p(x(t)|x(τ))

∂x2 . (14.10)

This is the heat diffusion equation with diffusion coefficient D. Notice that this
equation is a special case of the F-P Equation 14.9.

It is well known and easy to check that the solution is

p(x(t)|x(0) = 0) =
1√

2π2Dt
exp
(
− x2(t)

2(2Dt)

)
(14.11)

which is the Gaussian density with mean zero and variance 2Dt.

14.3.1.2 General case

For the general state space model (14.1)–(14.2) the evolution of the proba-
bility density p(X(t)|Fk), t ∈ [tk, tk+1[ is described by Kolmogorov’s forward
equation or the Fokker–Planck (F-P) equation:

dp(x(t)|F (0) = L(p)dt (14.12)

where

L( ·) =−
n

∑
i=1

∂ ( ·µi)

∂xi
+

1
2

n

∑
i, j=1

∂ 2( ·(σQσT )i j)

∂xix j
(14.13)

is the forward diffusion operator (Jazwinski [1970], Maybeck [1982b]). This is
the evolution between observations. The initial condition, at tk, is p(xk|F (0)).
We assume this density exists and is once continuously differentiable with re-
spect to t and twice with respect to x.
Example 14.3 (The F-P equation used on a linear system). Consider the linear
system

dX(t) = A(t)X(t)dt +σt dW(t) (14.14)

where W(t) is a Wiener process with incremental covariance Q(t).
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If we assume that the initial density is Gaussian, then the density for X(t)
will be Gaussian. Hence also the conditional densities will be Gaussian. The
Fokker–Planck equation gives the following equation for the conditional den-
sity

∂ p
∂ t

=−ptr(A(t))− ∂ p
∂x

T

A(t)x+
1
2

tr
(

σQσ
T ∂ 2 p

∂x2

)
. (14.15)

Since it is known that the solution is the Gaussian density, the (conditional)
characteristic function for the solution can be written as

φ(u, t) =
∫

∞

−∞

exp(iuT x)p(x)dx (14.16)

= exp(iuT mt −
1
2

uT Ptu) (14.17)

where mt and Pt are the conditional mean and covariance, respectively.
Using a similar Fourier transformation of the Fokker–Planck equations

and comparing the terms with the terms in (14.16) we get (after some calcula-
tions — see McGarty [1974]):

dm(t)
dt

= A(t)m(t), (14.18)

dP(t)
dt

= A(t)P(t)+P(t)A(t)T +σ(t)Q(t)σ(t)T . (14.19)

This gives the exact solution for linear systems driven by a Wiener process,
but for non-linear systems it is not sufficient to consider only the conditional
mean and covariance. However, some approximative solutions involving only
the first and second moment will be considered in some subsequent sections.

14.3.2 Updating

Now, we also assume that the observation mapping h, given in (14.2), is con-
tinuous in x and in t, and bounded for each tk with probability 1.

An integrating of the Kolmogorov’s equation yields p(xk+1|F (tk)). When
a new measurement is available at tk+1, the distribution can be updated through
Bayes’ rule yielding p(xk+1|F (tk+1)). This is used in turn as the new initial
condition for Kolmogorov’s equation.

The updating equation is therefore

p(xk|F (tk)) =
p(yk|xk)p(xk|F (tk−1))∫

[xk]
p(yk|ξ )p(ξ |F (tk−1))dξ

. (14.20)

Note that the denominator is simply p(yk|F (tk−1)). Conceptually, we now
have the analytical tool to solve the state filtering problem, but in practice the
tool is in general not feasible. Therefore some approximations or truncated
expansions are often used. One possibility is to concentrate on only the first
moments of the entire distribution. This will be considered in the next section.
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14.4 Conditional moment estimators

What we have achieved so far is that by defining a suitable integral (Itō inte-
gral), we presented a solution to the transition (prediction) distribution of the
state (Kolmogorov’s equation). Then we used the observation equation and the
Bayes’ rule to update the distribution after each measurement. Thus, we have
the whole posterior probability distribution of the state. We often like to reduce
the distribution to some numbers that are much easier to work with.

A very common approach is to look only upon the first and second mo-
ments of the posterior distribution. In fact, it can be shown that choosing the
posterior mean of the state as an estimate for the value of the state, we have
minimized a Bayesian risk. More precisely, we have the following theorem:
Theorem 14.1 (Optimal state estimation). The estimate that minimizes
E[(X(t)− x̂t)

T W(X(t)− x̂t)], is the conditional mean. Here W is some positive
definite weight matrix and x̂t a functional on F (tk) for t ≥ tk.

Proof. See Jazwinski [1970].

14.4.1 Prediction and updating

Let Ek[·] denote the conditional mean of [·] given F (tk). Also, let x̂t|k and
Pt|k denote the conditional first and second (central) moments given F (tk),
respectively.

The time propagation (prediction) and the update of the conditional mean
and covariance are described by the following theorem:
Theorem 14.2 (Conditional moment estimators). Assume the conditions re-
quired for the derivation of the conditional density in (14.12) and (14.20).

Prediction: Between observations, the conditional mean and covariance
satisfy

dx̂t|k
dt

= µ̂(X(t), t) (14.21)

dPt|k
dt

= x̂t µT − x̂t|k µ̂
T + µ̂ xT

t − µ̂ x̂T
t|k + σ̂QσT (14.22)

for t ∈ [tk, tk+1[, where [̂ · ] = E[·|F (tk)], i.e., the conditional mean with respect
to F (tk).

Updating: When a new observation arrives at tk we have

x̂k|k =
E [xk p(yk|xk)|F (tk)]
E [p(yk|xk))|F (tk)]

, (14.23)

Pk|k =
E
[
xkxT

k p(yk|xk)|F (tk)
]

E [p(yk|xk)|F (tk)]
− x̂k|kx̂T

k|k. (14.24)

Predictions x̂t|k and Pt|k, with t > tk, based on Fk, also satisfy (14.21) and
(14.22).
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Proof. Is found, e.g., in Maybeck [1982b].

The theorem provides the complete solution to the state filtering problem,
but an evaluation of the conditional expectations requires knowledge of the
entire conditional density. In order to obtain a computationally realizable filter,
some approximations must be made. First, we restrict our attention to a special,
though at the same time, very important class of models, namely, linear models.

14.5 Kalman filter

The exact solution of the state filtering problem for linear dynamic models,
i.e., models described by stochastic differential equations of the form

dX(t) = A(U(t), t)X(t)dt +B(U(t), t)dt +σ(t)dW(t)

yk = C(uk, tk)xk +D(uk, tk)uk + ek

where W(t) is a Wiener process with incremental covariance Q(t), and ek is
the Gaussian white noise, given by the Kalman Filter.
Theorem 14.3 (Continuous-discrete Kalman filter). The Kalman filter (KF)
consists of recursive equations for updating and prediction. In the following
the dependencies of time and external input of the matrices in the Kalman
filter equations have been suppressed for convenience.

The formulas for predicting the mean and covariance of the state-vector
and observations are given by,

dx̂t|k
dt

= Ax̂t|k +But , (14.25)

dPt|k
dt

= APt|k +Pt|kAT +σQσ
T , t ∈ [tk, tk+1[. (14.26)

The initial conditions are x̂1|0 = µ0 and P1|0 = V0.
Having the moments for predicting the state vector, the mean and covari-

ance of the next observation are readily found:

ŷk+1|k = Cx̂k+1|k +Duk+1, (14.27)

Rk+1|k = CPk+1|kCT +S. (14.28)

The formulas for updating the mean and the covariance are given by the
following equations:

x̂k|k = x̂k|k−1 +Kk(yk− ŷk|k−1), (14.29)

Pk|k = Pk|k−1−KkRk|k−1KT
k , (14.30)

Kk = Pk|k−1CT R−1
k|k−1. (14.31)

Proof. See e.g., Maybeck [1982b].
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14.6 Approximate filters

The derivation of the standard Kalman filter is done under the assumption of
linearity and Gaussian distributions. However, it can be shown using Hilbert
space formalism, (Appendix A) that these predictions and updates are the op-
timal linear updates, even when the distributions are non-Gaussian.

14.6.1 Truncated second order filter

Let us for simplicity first consider the scalar SDE

dX(t) = µ(X(t), t)dt +σ(X(t), t)dW (t). (14.32)

Furthermore, let φ(·) be some function of x(t). It is well known that
E[φ(X)] =

∫
∞

−∞
φ(x)p(x, t)dx. Hence

d
dt

E[φ(X)] =
∫

∞

−∞

φ(x)
∂ p
∂ t

dx

= −
∫

∞

−∞

φ(x)
∂

∂x
(pµ)dx+

1
2

∫
∞

−∞

φ(x)
∂ 2

∂x2 (pσ
2)dx

= E[
dφ(x)

dx
µ(X(t), t)]+

1
2

E[
∂ 2φ(x)

∂x2 σ
2(X(t), t)] (14.33)

where the first equality follows from the F-P equations for (14.32), whereas
the second one follows by using partial integration.

Equation (14.33) is fundamental for finding the truncated second order fil-
ter. Choosing φ(x) = x, then (14.33) implies that m(t) = E[X(t)] and

dm(t)
dt

= E[µ(X(t), t)]≈ µ(m(t), t) (14.34)

which describes the time propagation of the conditional mean, or the condi-
tional first moment when the process X(t) and the conditional mean m(t) are
similar. Note that the time propagation depends on the entire distribution for x.

Now, by taking φ(x) = x2 and again using (14.33) we get

d
dt

E[x2](t) = E[2X(t)µ(X(t), t)]+E[σ2(X(t), t)]. (14.35)

A first-order approximation of this expression is given by

d
dt

E[x2](t)≈ 2m(t)µ(m(t), t)+2Pt
∂ µ(mt , t)

∂x
. (14.36)

Since d(m2
t ) = 2mt

dm(t)
dt dt ≈ 2m(t)µ(m(t), t)dt we finally get the predic-

tion equation for the conditional variance

d
dt

Pt = 2(E[X(t)µ(X(t), t)]−mt µ(m(t), t))+E[σ2(X(t), t)] (14.37)

≈ 2Pt
∂ µ(mt , t)

∂x
+σ

2(mt , t) (14.38)

where the second line is the first-order linearized dynamics.
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These equations for the conditional (on F (tk)) mean and variance are valid
for times t > tk. These prediction equations are generalized to the vector case
in (14.21)–(14.22).

The prediction equations of the truncated second order filter are now ob-
tained by approximating the various expectations above by using a Taylor se-
ries representation, truncating to second order and taking conditional expecta-
tions for the resulting terms:

dmt

dt
= µ(mt , t)+

1
2

Pt
∂ 2µ(mt , t)

∂x2 (14.39)

dPt

dt
= 2Pt

∂ µ(mt , t)
∂x

(14.40)

+

(
σ

2(mt , t)+Pt

(
∂

∂x
σ(mt , t)

)2

+Ptσ(mt , t)
∂ 2

∂x2 σ(mt , t)

)

which clearly is a system of non-linear differential equations.

14.6.2 Linearized Kalman filter

In the general non-linear case, a very common approach is based on lin-
earization of the functions around a nominal trajectory. Thus, we can use the
Kalman filter derived for the linear model. The matrices are calculated by
A(W(t),θ , t) = ∂ µ/∂x

∣∣
x=x∗ , B(W(t),θ , t) = ∂ µ/∂u

∣∣
x=x∗ , etc., where x∗ is

some reference signal.
There are different ways to calculate the reference trajectory. One way is

integrating the state equation after setting the noise equal to zero. This method,
called the linearized Kalman filter, will only converge if the noise levels are
sufficiently small.

14.6.3 Extended Kalman filter

Consider now the slightly simplified, vector-valued, non-linear state space
model

dX(t) = µ(X(t), t)dt +σ(t)dW(t) (14.41)

with {W(t)} being a Wiener process with incremental covariance Q(t). The
observations yk are taken at discrete time instants, tk,

yk = h(xk, tk)+ ek (14.42)

where {ek} is a Gaussian white noise process independent of W(t), for all t,k
and ek ∼ N(0,Sk).
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Compared to the state space model (14.1)–(14.2) the simplification is
mainly obtained by assuming that the diffusion term is independent of the state
vector.

The extended Kalman filter (EKF) is a better choice for the linearization
trajectory. The EKF uses the current estimate of the state in the linearization
and applies then a Kalman filter to the resulting linearized model.
Theorem 14.4 (Continuous-discrete extended Kalman filter). For the
continuous-discrete state space model (14.41)–(14.41) the (linearized) predic-
tion equations are

dmt

dt
= µ(mt , t), (14.43)

dPt|k
dt

= F(mt , t)Pt|k +Pt|kFT (mt , t)+σQσ
T , (14.44)

F(mt , t) =
∂ µ

∂x

∣∣∣∣
x=mt

, (14.45)

for t > tk. Remember that mt = x̂t|k denotes the conditional mean.
The update at time tk is given by

Kk = Pk|k−1HT
k [HkPk|k−1HT

k +S]−1, (14.46)

x̂k|k = x̂k|k−1 +Kk(yk− ĥ), (14.47)
Pk|k = Pk|k−1−KkHkPk|k−1, (14.48)

Hk =
∂h
∂x

∣∣∣∣
x=x̂k|k−1

. (14.49)

The conditional expectations are calculated as if xk were Gaussian with mean
x̂k|k−1 and covariance Pk|k−1.

Proof. See Jazwinski [1970]. It is seen that, e.g., the prediction equations are
obtained as a simplification of the truncated second order filter.

Performance improvement for the extended Kalman filter may be obtained
by local iterations (over a single sample period) on nominal trajectory redefi-
nition and subsequent re-linearization.

The algorithm called the iterated extended Kalman filter (IEKF) is obtained
by iterating the equations for the measurement update, where we replace Equa-
tion (14.29) with the following iterator

ηi = x̂k|k−1 +Kk(yk−h(ηi−1, tk)−C(x̂k|k−1−ηi−1)) (14.50)

with C= (∂h/∂x)
∣∣
x=ηi−1

, and Kk =Kk(ηi−1), iterated for i= 1, · · · , l, starting
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evolution of states

filter subsampling
Extended Kalman

observations
Discrete time

Continuous-time

Figure 14.1: The continuous-time and discrete time scales considered for the
iterated extended Kalman filter.

with η0 = x̂k|k−1, and terminating with the result x̂k|k = ηl . The algorithm is
illustrated on Figure 14.1. Linearizing often leads to significant improvements
when the observations are informative; cf. Lindström et al. [2008].

14.6.4 Statistically linearized filter

In this approach, we approximate µ(X(t), t) by a linear approximation of the
form

µ(X(t), t) = µ0(t)+F(t)X(t)+ εt (14.51)

which has the minimum mean square error

J = E[εT
t Wεt |Fk−1] (14.52)

for all t ∈ [tk−1, tk[, where W is a positive definite weight matrix. Calculating
the partial derivatives of (14.52), with respect to µ0(t) and F(t) and setting
them to zero, we get by using the notation of Theorem 14.2

µ0(t) = µ̂−F(t) x̂t (14.53)

F(t) = (µ̂X(t)T − µ̂ x̂T
t )P−1

t|t (14.54)

where µ̂X(t)T notation indicated that the quantity is an approximation of
E[µ(X(t), t)X(t)T ], with Pt|t being the conditional covariance of X(t).

Similarly for the measurement equation:

h(xk, tk)∼= h0(tk)+H(tk)xk (14.55)
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with the coefficients statistically optimized to get

h0(tk) = ĥ−H(tk) x̂k−1 (14.56)

H(tk) = (ĥxT
k − ĥx̂T

k−1)P−1
k|k−1. (14.57)

The issue now is the computation of µ̂ , ĥ, F(t) and H(tk). They all depend
upon the conditional probability density function of x, which in general is not
available. We therefore assume that the density is Gaussian.

We obtain the statistically linearized filter, with the following equations
for the time propagation

dx̂t|k
dt

= µ̂(xt|k, t) (14.58)

dPt|k
dt

= F(t)Pt|k +Pt|kFT (t)+σQσ
T , t ∈ [tk, tk+1[ (14.59)

with F(t) given by (14.54), and the conditional expectations involved calcu-
lated under the assumption that xt is Gaussian with mean x̂t|k and covariance
Pt|k. The measurement update at time tk is given by

Kk = Pk|k−1HT (tk)[H(tk)Pk|k−1HT (tk)+S]−1 (14.60)

x̂k|k = x̂k|k−1 +Kk(yk− ĥ) (14.61)
Pk|k = Pk|k−1−KkH(tk)Pk|k−1. (14.62)

The conditional expectations are calculated as if xk were Gaussian with mean
x̂k|k−1 and covariance Pk|k−1. The equations for the gain and covariance are the
same as those for the EKF, with the changes F(t) replacing (∂ µ/∂x)

∣∣
x=x̂t|k

and

H(tk) replacing (∂h/∂x)
∣∣
x=x̂k|k−1

.

14.6.5 Non-linear models

Let us first introduce the most general class of models which will be consid-
ered, namely the non-linear models where the system equation is the Itō equa-
tion

dX(t) = µ(X(t),U(t),θ , t)dt +G(U(t),θ , t)dW(t), (14.63)

where the state vector x is d-dimensional. The r-dimensional input u is as-
sumed to be known. The functions µ and G are continuous and given up to the
unknown parameter θ ∈ Θ ⊆ Rp, and Wt is a standard Wiener process. The
solution X(t) of the Itō equation is a Markov process. The initial state X(0) is
assumed to be Gaussian with mean m0 and covariance P0.

The observations are taken at discrete time instants, tk, as described by the
measurement equation

yk = h(xk,uk,θ , tk)+ ek (14.64)
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where y is m-dimensional and e is a Gaussian white noise process independent
of w, and ek ∼ Nm(0,Sk(θ)). (The super- or subscript k is a shorthand notation
for tk.)

Note that the state dependence of the σ matrix is discarded, which makes
the state filtering much simpler than described in Section 14.3. Furthermore,
it will be shown that if the actual system contains a state dependent diffusion
term, then a transformation approach might be used to transform the equations
into an equivalent state space model where the diffusion term is independent
of the state. It is equivalent in the sense that it contains the same parameters
and relates the same input and output.

14.6.6 Linear time-varying models

If the model is linear in the state variable, then a considerable simplification is
obtained in the estimation procedure. Hence, consider the linear time-varying
stochastic differential equation

dX(t) = A(U(t),θ , t)X(t)dt +B(U(t),θ , t)U(t)dt +σ(U(t),θ , t)dW(t).
(14.65)

The measurement equation is

yk = C(uk,θ , tk)xk +D(uk,θ , tk)uk + ek. (14.66)

The specifications of the noise terms are the same as for the non-linear models
in the previous section.

There are different approaches leading to the model (14.65)–(14.66). The
model may be formulated directly in this form. Alternatively the model may
typically be formulated as a linear model, only with coefficients varying
according to some known external signal. Yet another approach leading to
this class of models is a linearization of the general Itō differential equation
around some reference signal x∗. In this case the matrices are calculated by
A(W(t),θ , t) = ∂ µ/∂x

∣∣
x=x∗ , B(W(t),θ , t) = ∂ µ/∂u

∣∣
x=x∗ , etc.

14.6.7 Linear time-invariant models

A further simplification is obtained if the model is linear and time-invariant.
Hence, the system equation is

dX(t) = A(θ)X(t)dt +B(θ)U(t)dt +σ(θ)dW(t) (14.67)

and the measurement equation is

yk = C(θ)xk +D(θ)uk + ek. (14.68)

Note that the matrices in (14.67)–(14.68) are now constant, and thus indepen-
dent of t and W(t).
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14.6.8 Case: Affine term structure models

The price of a zero-coupon bond valued in the affine term structure framework,
(Section 10.4.2), is given by an exponentially affine function of latent variables
such as the infinitesimal interest rate r(t), stochastic volatility v(t), etc.

p(t,T ) = exp(A(t,T )+B(t,T )r(t)+C(t,T )v(t)) . (14.69)

This form makes it easy to estimate the latent factors within the Kalman filter
framework by defining the measurement equation using log prices

yk = log pk(t,T ) = A(t,T )+B(t,T )r(t)+C(t,T )v(t)+ ek (14.70)

while the latent processes are given by diffusion models for the short term
interest rate and stochastic volatilty.

14.7 State filtering and prediction

In order to estimate the embedded parameters of the various continuous-
discrete time state space models introduced in the previous section, we need
the one-step prediction errors of the measurements and the associated covari-
ance.

The one-step prediction error or innovation is

εk(θ) , yk− ŷk|k−1 (14.71)
ŷk|k−1 = h(x̂k|k−1,uk,θ , tk) (14.72)

where the predictor, g(tk,θ ,yk−1,uN) is a function of old outputs, the parame-
ters and the inputs. In the following the input sequence uN is skipped for con-
venience, but since we are considering off-line methods the inputs are assumed
to be known.

The issue now is to formulate the predictor corresponding to the various
models. For the Gaussian maximum likelihood method, which will be consid-
ered in subsequent sections, we also need the covariance of the predictions, for
evaluation of the likelihood function. For non-Gaussian maximum likelihood
methods higher order moments or even the whole distribution p(yk|Fk−1,θ)
is needed.

To solve these problems, we must establish the conditional density for xk
conditioned on the measurements p(xk|Fk) up to and including time tk. If this
objective can be accomplished, then various estimators can be defined, optimal
with respect to some specified criterion, such as the conditional mean or the
conditional mode.

Gaussian maximum likelihood methods will be used for parameter esti-
mation. For linear models the Gaussianity follows directly from the Wiener
and Gaussian noise assumption, whereas for non-linear models the Gaussian
method is an approximation.
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As indicated in Eq. (14.72) a prediction of the state vector is needed in
order to predict the output. For the different state space models this prediction
is provided by either an ordinary or an extended Kalman filter. Let us first
consider the ordinary Kalman filter, which can be used for linear models.

14.7.1 Linear models

14.7.1.1 Linear time-varying models

It is known from Section 14.5 that for linear models the ordinary Kalman filter
provides an exact solution of the filtering problem. Hence, for the linear models
(14.65)–(14.66) and (14.67)–(14.68), the updating formulas are

x̂k|k = x̂k|k−1 +Kkεk (14.73)

Pk|k = Pk|k−1−KkRk|k−1KT
k (14.74)

Kk = Pk|k−1CT R−1
k|k−1 (14.75)

and the prediction formulas for the conditional mean and covariance of the
state vector are

dx̂t|k
dt

= Ax̂t|k +But t ∈ [tk, tk+1[, (14.76)

dPt|k
dt

= APt|k +Pt|kAT +σσ
T t ∈ [tk, tk+1[. (14.77)

Then the one-step prediction of y and the associated covariance are finally
obtained

ŷk+1|k = Cx̂k+1|k +Duk+1, (14.78)

Rk+1|k = CPk+1|kCT +S. (14.79)

The dependencies of time and external input of the matrices in the Kalman
filter equations have been suppressed for convenience. This implementation
of the Kalman filter thus involves the solution of a set of ordinary differential
equations between each sampling instant.

14.7.1.2 Linear time-invariant models

If the matrices in the system equation, i.e., A, B and σ , are time invariant, then
it is possible to find an explicit solution for (14.25) and (14.26), by integrating
the equations over the time interval [tk, tk+1[ and assuming that ut = uk in this
interval, thus obtaining

x̂k+1|k = Φ x̂k|k +Γuk (14.80)

Pk+1|k = ΦPk|kΦ
T +Λ (14.81)
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where the matrices Φ, Γ and Λ are calculated as

Φ(τ) = eAτ (14.82)

Γ(τ) =
∫

τ

0
eAsBds (14.83)

Λ(τ) =
∫

τ

0
Φ(s)σσ

T
Φ(s)T ds (14.84)

and τ = tk+1− tk is the sampling time. This implementation of the Kalman
filter thus involves the calculation of the exponential of a matrix. In the time
invariant case this is done only once for each set of parameters.

14.7.2 The system equation in discrete time

Let us first consider the linear and time invariant case.
Assuming that the sample interval is [tk, tk + τ[= [tk, tk+1[ the discrete time

model corresponding to the continuous-time model (14.67) is in the same way
given as

xk+1 = eAτ xk +
∫ tk+1

tk
eA(tk+τ−s)Bu(s)ds+

∫ tk+1

tk
eA(tk+τ−s)dW(s). (14.85)

Under the assumption that W(t) is constant in the sample interval the sam-
pled version can be written as the following discrete time model in state space
form

xk+1 = φ(τ)xk +Γ(τ)uk +vk(τ) (14.86)

where

φ(τ) = eAτ , Γ(τ) =
∫

τ

0
eAsBds , (14.87)

vk(τ) =
∫ tk+1

tk
eA(tk+τ−s) dW(s). (14.88)

On the assumption that W is a Wiener process, vk(τ) becomes Gaussian
distributed white noise with zero mean and covariance

R1(τ) = E
[
vk(τ)vk(τ)

T ]= ∫ τ

0
φ(s)Rc

1φ(s)T ds (14.89)

where Rc
1 is the incremental covariance of the Brownian motion; cf. the

Itō isometry. If the sampling time is constant (equally spaced observations),
the stochastic difference equation can be written

xk+1 = φxk +Γuk +vk (14.90)

where the time scale now is transformed such that the sampling time becomes
equal to one time unit.
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If the time dependence is slow compared to the dominating eigenvalues of
the system, this implementation of the Kalman filter may also be used for time
varying systems, by evaluating (14.88) for each sampling instant, assuming
that A, B and σ are constant within a sampling time. This solution requires less
computations and is more robust than integrating (14.25) and (14.26) (Moler
and van Loan [1978], van Loan [1978]).

14.7.3 Non-linear models

Let us now consider the non-linear model defined by (14.63)–(14.64). In this
case the extended Kalman filter is used as a first-order approximative filter.
Being linearized about x̂t the state and covariance propagation equations have
structures similar to the Kalman filter propagation equations for linear systems.
Hence, we are able to reuse the numerical stable routines implemented for the
Kalman filter.

The necessary modifications of the equations in the previous section are
the following. The matrix C is the linearization of the measurement equation,

C(x̂k|k−1,uk,θ , tk) =
∂h
∂x

∣∣∣∣
x=x̂k|k−1

, (14.91)

and A is the linearization of the system equation,

A(x̂(t),U(t),θ , t) =
∂ µ

∂x

∣∣∣∣
x=x̂t

, (14.92)

and Φ is the discrete system matrix calculated as a transformation of A, (Equa-
tion (14.88)). The prediction of the output, Eq. (14.78), is replaced by

ŷk+1|k = h(x̂k+1|k,uk+1,θ , tk+1). (14.93)

The formulas for prediction of mean and covariance of the state-vector are
normally given by

dx̂t|k
dt

= µ(x̂t|k,U(t),θ , t) (14.94)

dPt|k
dt

= A(x̂t|k,U(t),θ , t)Pt|k +Pt|kAT (x̂t|k,U(t),θ , t)

+σ(θ , t)σT (θ , t) (14.95)

where A is given by (14.92) and t ∈ [tk, tk+1[. In order to make the integra-
tion of (14.94) and (14.95) computationally feasible and numerically stable for
stiff systems, the time interval [tk, tk+1[ is subsampled and the equations are
linearized about the state estimate at the given subsampling time. For the state
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propagation the equation becomes

dx̂t

dt
= µ(x̂ j)+A(x̂ j){x̂t − x̂ j}

= A(x̂ j) x̂t +{µ(x̂ j)−A(x̂ j) x̂ j} , t ∈ [t j, t j+1[ (14.96)

where [t j, t j+1[ is one of the subintervals of the sampling interval [tk, tk+1[, and
we assume that the sampling interval has been divided in ns subintervals. In
these derivations only the state dependency is given for simplicity. Equation
(14.96) is a linear ordinary differential equation which has the exact solution

x̂ j+1 = x̂ j +(eA(x̂ j)τs − I)(A(x̂ j)
−1

µ(x̂ j)) (14.97)

= x̂ j +(Φs(x̂ j)− I)(A(x̂ j)
−1

µ(x̂ j)) (14.98)

where τs = t j+1− t j = τ/ns, and τ is the sampling time. Correspondingly the
equation for the state covariance becomes

P j+1 = Φs(x̂ j)P jΦs(x̂ j)
T +Λs(x̂ j) , (14.99)

which is similar to (14.81). The algorithm to solve (14.94) and (14.95) uses x̂k|k
and P̂k|k as starting values for (14.98) and (14.99) and then performs ns itera-
tions of (14.98) and (14.99) simultaneously. This algorithm has the advantage
of being numerically stable for stiff systems and still computationally efficient,
since the fast and stable routines of the linear Kalman filter can be used.

14.8 Unscented Kalman Filter

The approximations in Section 14.6 can sometimes be a bit crude, and/or can
be complicated to compute in practice. Specifically, the covariances can be
poorly approximated, and may even become negative definite under certain
circumstances which would lead to a diverging filter.

An alternative is to use the unscented Kalman filter (UKF) which computes
second order (third if the density is Gaussian (Julier and Uhlmann [1997],
Julier et al. [2000])) accurate approximation of the first and second central
moments; see also Nørgaard et al. [2000] for a related idea called central dif-
ference Kalman filter.

The idea is to approximate the joint distribution of two random vectors X
and Y when

X ∈ N(m,P) (14.100)
Y = g(X) (14.101)

where g : Rn 7→ Rm is some non-linear function. This can of course be com-
puted using standard quadrature methods, but the unscented transform is doing
it in a computationally convenient way.
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The unscented transform approximates the joint density of X and Y accord-
ing to (

X
Y

)
= N

((
m
µU

)
,

(
P CU

CT
U RU

))
. (14.102)

This is rather straightforward (perhaps a bit tedious though) to compute.
Define the Cholesky factorization of the covariance matrix P as

P = LLT . (14.103)

This will be used to compute the sigma point and associated weights as

x(0) = m (14.104)

x(i) = m+
[√

(n+λ )L
]
, i = 1, . . . ,n (14.105)

x(i) = m−
[√

(n+λ )L
]
, i = n+1, . . . ,2n (14.106)

and

w(m)
0 =

λ

n+λ
, (14.107)

w(c)
0 =

λ

n+λ
+(1−α

2 +β ), (14.108)

w(m)
i =

1
2(n+λ )

, i = 1, . . . ,2n (14.109)

w(c)
i =

1
2(n+λ )

, i = 1, . . . ,2n (14.110)

where λ = α2(n+κ)− n. These parameters can be used to tune the filter (α
and κ control the spread of the sigma points while β is related to the distribu-
tion of X), but a common choice is α = 10−3, κ = 0 and β = 2.

Each sigma point is propagated through the non-linear function g according
to

y(i) = g(x(i)), i = 0, . . . ,2n. (14.111)

The parameters in Equation (14.102) are then computed as

µU =
2n

∑
i=0

w(m)
i y(i), (14.112)

RU =
2n

∑
i=0

w(c)
i

(
y(i)−µU

)(
y(i)−µU

)T
, (14.113)

CU =
2n

∑
i=0

w(c)
i

(
x(i)−m

)(
y(i)−µU

)T
. (14.114)
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The unscented transform, taking a function g, a mean m and covariance P, will
be denoted UT (g,m,P) for the remainder of the text.

The resulting filter is then given by iterating the prediction and update
steps. Assume that the discrete time model is given by

yk = h(xk)+ ek, ek ∈ N(0,S), (14.115)
xk = f (xk−1,uk−1)+ vk, vk ∈ N(0,Q). (14.116)

Starting from a Gaussian density at time k, i.e., xk ∈ N(mk|k,Pk|k), the pre-
diction step is then given by

[mk+1|k, P̃k+1|k] =UT ( f ,mk|k,Pk|k) (14.117)

Pk+1|k = P̃k+1|k +Q (14.118)

where the last line is needed to correct for the fact that the function f is ignor-
ing the additive noise.

The update step is similar, computing predictions as

[µU , R̃U ,CU ] =UT (h,mk+1|k,Pk+1|k) (14.119)

RU = R̃U +S (14.120)

where the variance of the measurement noise S is added to the variance of y in
the second line. No noise is added to the covariance, however, as the measure-
ment noise is independent of the latent state xk. Finally, the state is updated
using the standard Kalman filter equations

Kk+1 =CU R−1
U , (14.121)

mk+1|k+1 = mk+1|k +Kk+1 (yk+1−µU ) , (14.122)

Pk+1|k+1 = Pk+1|k−Kk+1RU KT
k+1. (14.123)

The near optimality (the equations are optimal in the class of linear updates)
of these equations is proved using Hilbert space methods in Appendix A.

The unscented Kalman filter is generally seen as more robust than the ex-
tended Kalman filter (Van Der Merwe [2004], Lindström and Strålfors [2012],
Wiktorsson and Lindström [2014]). The unscented Kalman filter has also been
extended further to continuous-discrete models in Sarkka [2007].

14.9 A maximum likelihood method

This section describes how the embedded parameters of the linear and non-
linear continuous-discrete state space models can be estimated using a maxi-
mum likelihood method. We stress that much of these results presented in this
Section carries over to the unscented Kalman filter, even though the results are
presented for a simple class of processes.
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First it is assumed that the evolution in time of the states of the system is
described by the diffusion process

dX(t) = AX(t)dt +BW(t)dt +σdW(t), t ≥ 0 (14.124)

where X is d dimensional, and the process W(t) is assumed to be a Wiener
process with the incremental covariance Rc

1(t). Furthermore it is assumed that
X(0) is Nd(m0,P0).

As described in Section 14.7.2 the evolution of the states in discrete time
is under some conditions exactly described by the following discrete time
stochastic process

Xk = ΦkXk−1 +ΓkUk +vk, k = 1, . . . ,N (14.125)

where {Xk}N
k=0 are random d×1 vectors, and {Uk}N

k=0 are non-random r×1
input vectors, and x0 is Nd(m0,P0) and vk ∼ Nd(0,Pv

k),k = 1, . . . ,N. The ran-
dom vector x0 and the system noise v1, . . . ,vN are all assumed to be stochastic
independent. Here, {Φk} and {Γk} are non-random d× d and d× r matrices,
respectively.

The relation between the continuous-time matrices and the discrete time
matrices are described in Section 14.7.2.

If we assume that the functions A, B and Rc
1(t) are continuous and given up

to the unknown parameter θ ∈Θ⊆Rp, then we can write down the likelihood
function for θ

Lx(θ) = p(x0,x1, . . . ,xN |θ)

=

( N

∏
k=1

px
k|k−1(xk|xk−1,θ)

)
px(x0|θ) (14.126)

where px
0(·;θ) is the density for the distribution of x0 and px

k|k−1(·|·;θ) the
density for the conditional distribution of xk given xk−1. Hence

logLx(θ) = log(px
0(x0|θ))+

N

∑
k=1

log(px
k|k−1(xk|xk−1;θ)). (14.127)

However, often we do not observe the state vectors x0,x1, . . . ,xN directly. We
assume that the state vector is only partially observed and possibly with mea-
surement errors. We assume that the measured quantities are given by the mea-
surement equation

yk = Ckxk +Dkuk + ek,k = 0,1, . . . ,N (14.128)

where {Ck} and {Dk} are non-random matrices of dimensions m× d and
m× r (m≤ d). For the measurement error we assume that ek ∼ Nm(0,Sk),k =
0, . . . ,N. Finally, we assume that x0,v1, . . . ,vN ,e0,e1, . . . ,eN are stochastically
independent.
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In the following let all the non-random elements in (14.124) and (14.128)
including m0 and the unknown variance parameters be given up to some un-
known parameter θ ∈ Θ ⊆ Rp where Θ is some compact set. Furthermore,
recall that

Fk = [yk,yk−1, . . . ,y1,y0]
T (14.129)

is the information set containing all the observations up to and including time
tk.

The likelihood function is

L(θ) = p(y1, . . . ,yN |θ)

=

(
N

∏
k=1

pk|k−1(yk|Fk−1,θ)

)
p0(y0|θ) (14.130)

where p0(y0|θ) is the density for the distribution of y0 and pk|k−1(yk|Fk−1,θ)
the density for the conditional distribution of yk given Fk−1. Hence

logL(θ) = log(p0(y0|θ))+
N

∑
k=1

log(pk|k−1(yk|Fk−1;θ)). (14.131)

Note that due to the incomplete observation of the state variable we now
need to condition on all previous observations and not only the previous obser-
vation as in (14.127).

Furthermore, note that the unknown vector m0 can be a part of θ . Even the
conditional log-likelihood function (conditioned on y0) for θ

logL(θ |y0) =
N

∑
k=1

log(pk|k−1(yk|Fk−1;θ)) (14.132)

depends on m0. This is also clear from the fact that m0 is needed as an initial
value for calculating pk|k−1(yk|Fk−1;θ) (see for instance the filtering approach
described in Section 14.7.1). In the literature, however, the initial value is often
chosen at random (Pedersen [1993]).

Since vk, ek and x0 are all Gaussian distributed, the conditional density
pk|k−1(yk|Fk−1;θ) is also Gaussian. The Gaussian distribution is completely
characterized by the mean and covariance.

Hence, in order to parameterize the conditional distribution, we introduce
the conditional mean and covariance as

ŷk|k−1 = E[yk|Fk−1,θ ], (14.133)
Rk|k−1 = Var[yk|Fk−1,θ ], (14.134)

respectively. It is noticed that (14.133) is the one-step prediction and (14.134)
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the associated covariance. Furthermore, it is convenient to introduce the one-
step prediction error (or innovation)

εk = yk− ŷk|k−1. (14.135)

Using (14.132)–(14.135) the conditional log-likelihood function becomes

logL(θ |y0) = − 1
2

N

∑
k=1

(
log detRk|k−1 + ε

T
k R−1

k|k−1εk

)
+ const (14.136)

where m is the dimension of y.
The conditional mean ŷk|k−1 and covariance Rk|k−1 are calculated recur-

sively by using the state filtering techniques described previously in Sec-
tion 14.7.1.

The maximum likelihood estimate (ML estimate) is the set θ̂ , which max-
imizes the likelihood function. Since it is not, in general, possible explicitly to
optimize the likelihood function, a numerical method has to be used.

An estimate of the uncertainty of the parameters is obtained by the fact
that the ML estimator is asymptotically normally distributed with mean θ and
covariance

D = H−1 (14.137)

where the matrix H is given by

{hlk}=−E
[

∂ 2

∂θl∂θk
logL(θ |y0)

]
. (14.138)

However, this is not necessarily true if the filter is not exact. Then Quasi-
Maximum likelihood asymptotics should be used instead of this approxima-
tion.

An estimate of D is obtained by equating the observed value with its ex-
pectation and applying

{hlk} ≈ −
(

∂ 2

∂θl∂θk
logL(θ |y0)

)∣∣∣∣
θ=θ̂

. (14.139)

The above equation can be used for estimating the variance of the parameter
estimates. The variance also serves as a basis for calculating t-test values for
test under the hypothesis that the parameter is equal to zero. The correlation
between the estimates is readily found based on the covariance matrix.

The maximum likelihood method described in this section is implemented
in a software tool called CTSM (Kristensen et al. [2004]).

14.10 Sequential Monte Carlo filters

Recent advances in computational resources have made Monte Carlo methods
viable. Sequential Monte Carlo methods (or particle filters) approximate the
filter problems by Monte Carlo sampling and resampling; see Lopes and Tsay
[2011], Creal [2012], for an overview.
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14.10.1 Optimal filtering

The optimal filtering problem for general state space models is non-trivial, as
we will see soon. Let us consider a model where the latent system equation is
a Markov process, and hence is defined by the transition kernel

pθ (xn+1|xn) . (14.140)

We remind the reader that this is not a severe restriction as, for example, an
AR(p) model (which is non-Markovian) can be rewritten as an VAR(1) model
with dimension p which is a Markovian model. Other models, like fractional
AR processes, can also be approximated by Markovian models.

Observations are thought of as noisy and/or incomplete readings of the
latent state vector, formally expressed through the measurement kernel

pθ (yn|xn) . (14.141)

The observations are assumed to be independent, when conditioning on
the latent state vector. We are now ready to compute (at least theoretically) the
log-likelihood for the observations

`(θ) =
N

∑
n=1

log pθ (yn|y1:n−1), (14.142)

where y1:n−1 is used as shorthand notation for y1, . . . ,yn−1.
The likelihood for observation yn conditional on the history can be ex-

pressed as

pθ (yn|y1:n−1) =
∫

pθ (yn|xn) pθ (xn|y1:n−1)dxn (14.143)

where we used the law of total probability and the conditional independence
of the observations. The likelihood for observation can be seen as the measure-
ment kernel, weighted by the prediction of the latent state pθ (xn|y1:n−1).

The prediction can in turn be computed using the law of total probability
and the Markov property, according to

pθ (xn|y1:n−1) =
∫

pθ (xn,xn−1|y1:n−1)dxn−1 (14.144)

=
∫

pθ (xn|xn−1) pθ (xn−1|y1:n−1)dxn−1, (14.145)

where we see that the prediction is derived from the transition kernel and the
filter density, pθ (xn−1|y1:n−1). What remains is to compute the filter density,
which is found by using Bayes’ formula, arriving at

pθ (xn−1|y1:n−1) =
pθ (yn−1|xn−1) pθ (xn−1|y1:n−2)

pθ (yn−1|y1:n−2)
(14.146)

=
pθ (yn−1|xn−1) pθ (xn−1|y1:n−2)∫

pθ (yn−1|xn−1) pθ (xn−1|y1:n−2)dxn−1
. (14.147)
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This closes the recursion if we also know the initial distribution for the la-
tent Markov process, pθ (x0), as shown in Algorithm 1. The algorithm is similar
to the Kalman filter, but this should not to surprise anyone as the Kalman filter
is a very well-known special case of the general optimal filtering equations.

Algorithm 1 Optimal filtering recursion

Require: p(X0), p(Xn|Xn−1), p(Yn|Xn)
for n = 1 : N do

Compute prediction using Equation (14.145)
Update using Equation (14.147)

end for

14.10.2 Bootstrap filter

The main problem with Equation (14.145) and (14.147) is the difficulties to
solve them in practice. There are two well-known cases where we can solve
them: the linear Gaussian case (leading to the Kalman filter) and the Hidden
Markov model with a discrete and finite state space (as all integrals will be
finite sums).

The main idea behind the bootstrap filter is to approximate the general
state space model with a Hidden Markov model. This allows for very general
results concerning stability and convergence of the approximate filters (Künsch
[2005]).

Replacing a measure p(x) with a Monte Carlo sample from that measure
pK(x)=∑

K
k=1

ω̃k
∑

K
l=1 ω̃l

δ (x−x(k))=∑
K
k=1 ωkδ (x−x(k)) (sometimes referred to as

the empirical measure, cf. theoretical statistics) will introduce some unwanted
variability, but it will also make computations easier. It is worth noticing that
the empirical measure can be written, using the law of total probability as

p(x) = ∑
k

p(x,k) = ∑
k

p(x|k)p(k) (14.148)

where p(x|k) = δ (x− x(k)) and p(k) = ωk.
Computing the expectation (assuming that the expectation is finite)

E [ f (X)] =
∫

f (x)p(x)dx (14.149)

is potentially very difficult whereas the Monte Carlo approximation

Ê [ f (X)] =
∫

f (x)pK(x)dx =
K

∑
k=1

ωk f (x(k)) (14.150)

is a trivial to computation. The law of large numbers ensures that the approxi-
mation converges (a.s.) as K→∞. The convergence is more complicated when
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the samples are dependent, but the results still hold under rather general con-
ditions (Douc and Moulines [2008]).

It is possible, given some minor modifications, to solve the optimal fil-
tering problem (cf. Section 14.10.1) for arbitrary distributions when they are
replaced with empirical samples. It should not be a problem (direct sam-
pling, accept-reject, etc.) to sample from the initial distribution, generating
pK(x0) = ∑

K
k=1 ωkδ (x0− x(k)0 ).

What remains in Algorithm 1 is to alternate between prediction and updat-
ing. Predicting is simple as

pK(xn+1|y1:n) =
∫

p(xn+1|xn)pK(xn|y1:N)dxn (14.151)

=
∫

p(xn+1|xn)
K

∑
k=1

ωkδ (xn− x(k)n )dxn

=
K

∑
k=1

ωk

∫
p(xn+1|x(k)n ).

A common choice is simply to sample x(k)n+1 from p(xn+1|x(k)n ) leading to the
empirical measure

pK(xn+1|y1:n) =
K

∑
k=1

ωkδ (xn+1− x(k)n+1). (14.152)

Updating is less trivial, as the empirical filter measure is given by

pK(xn+1|y1:n+1) =
p(yn+1|xn+1)pK(xn+1|y1:n)∫

p(yn+1|xn+1)pK(xn+1|y1:n)dxn+1
(14.153)

=
p(yn+1|xn+1)pK(xn+1|y1:n)

∑l ωl p(yn+1|x(l)n+1)
.

It should be clear to the reader that this new empirical measure only takes
values where there is a Dirac measure, meaning that the expression can be
simplified as follows

pK(xn+1|y1:n+1) =
∑k ωk p(yn+1|x(k)n+1)δ (xn+1− x(k)n+1)

∑l ωl p(yn+1|x(l)n+1)
(14.154)

= ∑λkδ (xn+1− x(k)n+1

where

λk =
ωk p(yn+1|x(k)n+1)

∑l ωl p(yn+1|x(l)n+1)
(14.155)

which ensures that the weights sum to unity.
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A practical problem, which can be shown theoretically, but is more easily
seen in a “trial and error” Monte Carlo simulation, is that the weights tend to
become unevenly distributed after only a few iterations, i.e., the largest weight
will be close to one and the rest close to zero. This is called particle degeneracy,
as the original K particles act as there is only one particle.

However, this is solved by resampling, thus creating a new empirical mea-
sure with equal weights. That prevents serious particle degeneracy as there will
be plenty of particles with non-zero weight even if the weights are updated un-
equally.

The Sequential Importance Sampling with Resampling (SISR) algorithm
(also known as the bootstrap filter) is presented in Algorithm 2, where we also
consider using an importance sampler in order to improve the performance of
the Monte Carlo approximations.

Algorithm 2 Sequential Importance Sample with Resampling

Require: p(x0), p(xn|xn−1), p(yn|xn)

At time n=0, draw x(k)0 ∼ q0(x0) and set ω
(k)
0 =

p(x(k)0 )

q0(x
(k)
0 )

for n = 1 : N do
Draw x(k)n ∼ qn(xn|x(k)n−1,yn) and compute ω̃

(k)
n = ω

(k)
n−1

p(yn|x
(k)
n )p(x(k)n |x

(k)
n−1)

qn(x
(k)
n |x

(k)
n−1,yn)

Normalize the importance weights to get ω
(k)
n = ω̃

(k)
n

∑
K
l=1 ω̃

(k)
n

Draw (with replacement) K indices I(k)n ∼ω
(k)
n to get a new equally weight

empirical measure with particle x(I
(k)
n )

n .
end for

14.10.3 Parameter estimation

A major problem with particle filters is that the straightforward approximation
of the log-likelihood is only a pointwise approximation. It can also be shown
that the approximation is discontinuous in the parameter space, due to the re-
sampling of the particles (Figure 14.2). That graph shows the log-likelihood
function for the model

yk = xk + ek (14.156)
xk = axk−1 + vk (14.157)

where ek and vk are standard Gaussian random variables, and a = 0.6 in the
example. The simulation is based on N = 500 observations and K = 1 000 par-
ticles. Still, the Monte Carlo approximation is sharing the same global features
of the exact log-likelihood, and the Monte Carlo error can be controlled by
using sufficiently many particles.
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Figure 14.2: Log-likelihood function for a partially observed AR(1) model
(N = 500 observations) with true parameter a = 0.6. The maximum likeli-
hood estimate is shown with a pentagon, and 95% confidence intervals are
shown with the dotted line. The solid line is the log-likelihood function com-
puted using a Kalman filter, and the dots are 3 independent estimates of the
log-likelihood function using a particle filter, each using K = 1 000 particles.

It is argued in Spall [2005] that derivative-free optimization methods, such
at the Nelder-Mead simplex (e.g., fminsearch in MATLAB R©), often are
quite capable of optimizing a noisy function, often reaching a point close to
the true optima of the function.

Other methods include Expectation-Maximization methods (Cappé et al.
[2005] and references therein), but this requires the smoothing distribution (as
opposed to the filter distribution). Simple (typically slightly biased) approx-
imations include fix lag smoothers (Olsson et al. [2008]) while Briers et al.
[2010], Fearnhead et al. [2010], Douc et al. [2011] present computationally
efficient algorithms for asymptotically unbiased approximations of smoothing
distribution. The EM algorithm will have to be replaced by either a Monte
Carlo EM (MCEM) algorithm (Cappé et al. [2005]) or a Stochastic Approxi-
mation EM algorithm (Ditlevsen and Samson [2014] for an example).

An alternative is to augment the state space with the parameters. This is in
general not a consistent estimation technique, but Ionides et al. [2006, 2011]
derived a version where consistency is proved. Their algorithm was later re-
fined in Lindström et al. [2012] and fine-tuned in Lindström [2013b].

14.11 Application of non-linear filters

14.11.1 Sequential calibration of options

Non-linear Kalman filters have successfully been used to calibrate vanilla S
& P 500 index options in Lindström et al. [2008]. The most common method
for calibrating options to market data today is some non-linear weighted least
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squares estimator

θ = argmin∑
i

λi

(
cMarket

t (Si,Ki,ri,τi)− cModel
t (Si,Ki,ri,τi;θ)

)2
(14.158)

where cMarket(Si,Ki,ri,τi) are the market price that depends on the underlying
asset Si, strike level Ki, interest rate ri and time to maturity τi and λi are weights
(it is statistically optimal to relate the weight of an observation to the inverse of
the variance of the measurement error for that observation — i.e., observations
that we trust are given more weight than the others).

There are two main (implicitly related) problems with this approach:
• The parameter estimates are noisy,
• Old data are typically discarded, as only the most recent data are used.
Old data are discarded as adaptivity is sought, but this comes at a price. If
yesterday’s data are of little use today, then today’s data will be of little use to-
morrow! Lindström et al. [2008] rewrites the calibration problems as a filtering
problem, augmenting the latent states with the parameter vector

cMarket
t (Sn,Ki,ri,τi) = cModel

t (Sn,Ki,ri,τi;θn)+ηn, (14.159)
θn = θn−1 + en. (14.160)

This decomposes the change of the option prices into changes in the under-
lying state variables (i.e., the index level), changes in the parameters (which
is captured by the random walk dynamics) and pure noise due to the ask-bid
spread.

It is sometimes worthwhile to include the underlying asset in the calibra-
tion as well. The algorithm was extended further in Lindström and Guo [2013]
where it was shown that quadratic calibration strategies are found for free
when using this algorithm. A computational refinement of the simultaneous
calibration and hedging algorithm was presented in Wiktorsson and Lindström
[2014]. The extended calibration mode is given by the measurement equations

cMarket
t (Sn,Ki,ri,τi) = cModel

t (Sn,Ki,ri,τi;θt)+η
(c)
n , (14.161a)

SMarket
n = Sn +η

(S)
n , (14.161b)

and the latent states

θn = θn−1 + en, (14.162a)
Sn = p(Sn|Sn−1). (14.162b)

The performance of the non-linear filter, when changing some parameters, is
evaluated in Figure 14.3 for the Heston model.

The non-linear filter is able to track the changing parameters (smooth vari-
ations are tracked well, jumps in the parameters are assimilated after a few
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Figure 14.3: Adaptive calibration of the Heston model to simulated data, when
parameters are changing. The true parameter value is the solid line, non-linear
filter estimate is the dotted line and the triangles are daily non-linear least
squares estimates.
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consecutive observations), while the non-linear least squares using only the
current observations are quite noisy but generally adapt somewhat quicker.

The performance of the sequential calibration algorithm, when calibrating
a Heston model to S & P 500 data between late 2001 and 2003, is presented in
Figure 14.4. The cloud of non-linear least squares estimates is again scattered
around the filter estimates.
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Figure 14.4: Calibration of the Heston stochastic volatility option valuation
model to S & P 500 index options.
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14.11.2 Computing Value at Risk in a stochastic volatility model

Value at risk is a popular measure of risk; cf. Embrechts et al. [2005], Hult et al.
[2012]. It is well known that volatility varies over time (cf. Chapter 1), so some
sort of stochastic volatility model is needed. The standard GARCH family of
model (Section 5.5.2), is very popular, but is unable to cope with unexpected
events as the volatility (according to the model) at time n+1 is perfectly known
at time n. An alternative is the stochastic volatility model (Section 5.5.3),

yn = exp(Vn/2)zn (14.163)
Vn = a0 +a1Vn +σen (14.164)

where zn and en are independent standard Gaussian random variables.
A stochastic volatility model was fitted to OMXS30 (a Swedish stock index

consisting of the 30 largest companies listed) with data from March 30th, 2005
to March 6th, 2009. The parameters were found by optimizing the likelihood
using MATLAB’S fminsearch routine, which is a (derivative free) Nelder-
Mead simplex method. The returns and estimated log-variance are presented
in Figure 14.5 and 14.6.

More interesting is the computation of the Value at Risk (VaR) statistic. It
is defined as the quantile

VaRα = inf{u ∈ R :
∫ u

−∞

p(yn|y1:n−1)dyn = α}. (14.165)

This is rather easy to compute as we know that the measurement kernel is
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Figure 14.5: Returns on the OMXS30 from March 30th, 2005 to March 6th,
2009.
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Figure 14.6: Estimated volatility on the OMXS30 from March 30th, 2005 to
March 6th, 2009.

Gaussian and we have a particle representation for p(xn|y1:n−1). It follows that∫ u

−∞

p(yn|y1:n−1)dyn =
∫ u

−∞

p(yn|xn)p(xn|y1:n−1)dyn (14.166)

≈
∫ u

−∞

∫
Rx

p(yn|xn)pK(xn|y1:n−1)dyndxn (14.167)

=
∫ u

−∞
∑ω

(k)
n p(yn|x(k)n )dyn. (14.168)

We know from the model specification that the measurement kernel is Gaussian
with zero mean and variance v2

n. Computing the VaR simply comes down to
numerically solving Equation (14.165) with the measurement kernel plugged
into Equation (14.168). The result in shown in Figure 14.7 where 61 returns
were below the VaR level when computing VaR at the 5% level.

This deviation is not statistically significant as an approximate interval of
the number of observations that is expected to end up below the VaR level is
(36,64) observations.

14.11.3 Extended Kalman filtering applied to bonds

In this section, we utilize the modelling framework from Chapter 14 consist-
ing of the state space model (14.1) and the measurement equation (14.2). In
this particular case, the state space model will describe the spot interest rates
and the measurement equation will be the solution of the bond pricing equa-
tion (11.66) (plus some additive white noise). This framework allows us to
estimate both the parameters in the state space model and the implied interest
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Figure 14.7: Value at Risk computed for the OMXS30 between March 30th,
2005 and March 6th, 2009. Approximately 5% of the returns are lower than
the computed VaR at the 5% level.

rates. The term implied is used, because the estimated interest rates (obtained
by utilizing the extended Kalman filter) are the interest rates implied by the
bond prices and not the interest rates that are quoted in the financial markets.

It should be noted that this framework is only applicable for Gaussian in-
terest rate models, although they may be multivariate. Thus it is not possible
without some modification to use this method for, e.g., the Cox–Ingersoll–Ross
model. This restriction may be overcome by introducing the transformation of
the diffusion term with that was discussed in Section 13.4. In addition, it is
a necessary requirement that an explicit solution to the bond pricing equa-
tion (11.66) is available.

For the large class of models, where this solution is not available, one has
to resort to, e.g., Monte Carlo simulation. In this case, the measurement equa-
tion is estimated on the basis of a bond price which is obtained by a Monte
Carlo simulation of the expectation in (11.66). Due to the Feynman–Kac rep-
resentation theorem, the bond price may also be obtained by solving the PDE
associated with (11.66) numerically. Although both methods are conceptually
simple, they are extremely demanding from a computational point of view. We
will not go into more details here, but a number of references are listed in the
Notes.

Let us sketch the procedure that we wish to use:
• Given an interest rate model (or state space model),
• the bond pricing formula (11.66) is solved analytically. The solution consti-

tutes a measurement equation.
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ISIN Bond Maturity
DK0009915035 9% Danske Stat St. Laan 15/11 1996
DK0009915548 9% Danske Stat St. Laan 11/11 1998
DK0009916439 9% Danske Stat St. Laan 15/11 1995
DK0009917916 6% Danske Stat St. Laan 10/2 1996
DK0009918054 5.25% Danske Stat St. Laan 10/8 1996
DK0009918567 6.25% Danske Stat St. Laan 10/2 1997

Table 14.1: The considered Danish Government Bonds

• Input series are designed to model the payout of coupons and the time to
maturity
• This is implemented in a program, and
• the model parameters are implemented using the conditional maximum

likelihood method discussed in Chapter 14.9.

Data description

The method is applied to time series of daily observed prices for Danish Gov-
ernment Bonds1 listed in Table 14.1 for the period 2/8-94 to 8/9-95. Each time
series consists of 282 observations. These bonds pay out a coupon once a year
and the size of the coupon c is constant throughout the lifetime of the bond. At
maturity the bond pays out a coupon c and the amount C, where C = DKK 100
for Danish Government Bonds.

Certain conventions are associated with trading of Danish Government
Bonds: A “bond year” consists of 12 months each containing 30 days. There-
fore months with 31 days are cut one day short and February is extended by 2
days (or 1 day in leap years). This is not taken into account in this thesis. Fur-
thermore the day of settlement is 3 days later than the day of agreement, but
this is not deemed to be relevant as we are modelling the actual bond prices.

Bonds are not traded during weekends, so bond prices for weekend days
are not available, but the model should take these “missing” prices into account
as the underlying stochastic process that generates the spot interest rate evolves
in continuous time. The extended Kalman filter is used to predict the missing
prices using the dynamics of the interest rate model (rather than replacing bond
prices for the weekends by some interpolation scheme). Hence each time series
is expanded to cover a period of 402 days.

Should a bond be traded less than 30 “bond days” prior to the coupon
being payed to the holder of the bond. Hence the bond price is reduced by the
coupon value c 30 prior to the maturity date. Furthermore the time-to-maturity

1The ISIN number is an international coding used for bonds. Only the last four digits will be
used in the following.
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Figure 14.8: The designed input variables.

T − t in the measurement equation has to be incorporated into the estimation
procedure. These conventions have been implemented by incorporating two
designed input variables U= [u1 u2] in the measurement equation as illustrated
in Figure 14.8, where u1 models the time to the first coming payout T1− t and
u2 models the payout of a coupon. If bond prices were available for a longer
period of time spanning n coupon payouts, n similar input variables should be
incorporated.

14.11.4 Case 1: A Wiener process

A simple Wiener process is considered initially

dr(t) = σdW (t) (14.169)

where σ(r, t) = σ implies constant volatility. The solution to (14.169) is given
by

r(t) = r(t0)+σW (t) (14.170)

where r(t0) is the implied interest rate at time t0.
Using this model, it may be shown that the price of a coupon bond should

satisfy the equation

P(t,TN ,r(t)) = c
N

∑
n=1

exp
(
−(Tn− t)(r(t)− 1

6
σ

2(Tn− t)2)

)
+C exp

(
−(TN − t)(r(t)− 1

6
σ

2(TN− t)2)

)
, (14.171)
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or, by adding a noise term to account for measurements errors,

Yk = c
N

∑
n=1

exp
(
−(Tn− tk)(r(tk)−

1
6

σ
2(Tn− tk)2)

)
+C
(
−(TN− tk)(r(tk)−

1
6

σ
2(TN− tk)2)

)
+ ek (14.172)

where {ek} is a white noise with zero mean and variance σ2
2 .

ISIN r̂(t0) σ̂2 σ̂2
2 σ̂r

DK0009916439
0.06562
(39.9924)

1.1941e-4
(12.3497)

0.1311e-8
(0.2282) 16.7%

DK0009917916
0.06649
(46.1670)

0.9004e-4
(14.8825)

0.1223e-8
(0.7197) 14.3%

DK0009918054
0.06748
(47.4841)

0.7502e-4
(13.5571)

0.1686e-8
(1.0042) 12.8%

DK0009918567
0.06927
(32.0052)

0.7801e-4
(12.4275)

0.4450e-8
(1.4287) 12.8%

Table 14.2: Estimation results for the Wiener process. The values given in
parentheses are asymptotic t-test values for the hypothesis that the parameter
is equal to zero. It is seen that σ̂2

2 does not differ significantly from zero, i.e.,
there are no measurement errors. Similar results are obtained by reestimation
without the variance parameter σ2

2 .

14.11.5 Case 2: The Vasicek model

Again, we consider the Vasicek model

dr(t) = α(γ− r(t))dt +σdW (t) (14.173)

where α , γ and σ are constants, and W (t) is a standard Wiener process.
In the literature, it is reported that it is very difficult to estimate the adjust-

ment parameter α , unless a long time series is available (i.e., at least several
times longer than the half life of the process implied by α parameter). A long
time series might give rise to other problems on its own, namely that the time
series structural breaks, regime shifts or other nonlinear phenomena render the
model 14.173 unappropriate. We had serious difficulties in obtaining reason-
able and consistent estimates of the model parameters with the parameterisa-
tion of the original model suggested by Vasicek [1977].

In Jørgensen [1994], an alternative parameterisation of the model is sug-
gested, but the bond pricing framework is not worked through with this new
parameterisation:
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dr(t) = (θ −ηr(t))dt +σdW (t). (14.174)

The complete framework will be reported in this section. The bond pric-
ing framework for this spot interest rate model is established by making the
transformations

α = η (14.175)
γ = θ/α = θ/η (14.176)

in the framework introduced in Vasicek [1977].
This yields the bond pricing formula

P(t,T,r) = exp

{(
1
2

(
σ

η

)2

− θ

η

)
(T − t)+

1
η

(
1− e−η(T−t)

)
×(

θ

η
− r−

(
σ

η

)2
)
+

1
4η

(
σ

θ

)2(
1− e−2η(T−t)

)}
. (14.177)

The conditional mean and variance of the interest rate is

E[r(s)] =
θ

η
+

(
r− θ

η

)
e−η(T−t), (14.178)

Var[r(s)] =
σ2

2η

(
1− e−2η(T−t)

)
. (14.179)

Especially, in the limits, we get

E[r(s)] =

{
r for t = T
θ

η
for T → ∞

(14.180)

Var[r(s)] =

{
0 for t = T
σ2

2η
for T → ∞

. (14.181)

It is seen from (14.181) that the variance is zero at maturity t = T , i.e., the
instantaneous rate of return is exactly the spot interest rate r. This is in com-
pliance with the deterministic nature of the partial differential equation that
the individual bond prices must satisfy and the adjacent boundary condition
P(T,T,r) = 1.

The results in Table 14.3 are obtained.2 The estimates of θ are not shown
as the obtained estimates did not differ significantly from zero. Therefore the
estimation procedure was repeated for each time series with η fixed at zero.
This also applies for the variance of the measurement noise.

2Unless stated otherwise, the values in parentheses are asymptotic t-test values for insignificant
parameters.
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5548 8054 8567

η̂
4.44167E-04

(13.7703)
5.70140E-04

(94.5229)
5.11133E-04

(1.5214)

r̂(t0)
0.0728404
(49.1246)

0.0675208
(43.9797)

0.0693201
(44.9230)

σ̂2 2.27742E-07
(12.8445)

2.06625E-07
(12.7473)

2.15661E-07
(13.1400)

σ̂r 12.4308% 12.7734% 12.7109%
χ2

(α)
47.77

(44.1%)
59.06

(11.2%)
49.17

(38.6%)

ρ

1.00 −.06 .00
−.06 1.00 −.01
.00 −.01 1.00

 1.00 .00 .00
.00 1.00 −.02
.00 −.02 1.00

 1.00 .02 .00
.02 1.00 .02
.00 .02 1.00


Table 14.3: Results for the Vasicek model

A first examination of the listed correlation matrices shows that the param-
eter estimates are uncorrelated, and, hence, each parameter may be interpreted
independent of the others.

The estimates of η are very small, and similar across time series, but it
should be kept in mind that η is a continuous-time parameter. The estimates of
r(t0) seem reasonable and are well determined. Based on these estimates, the
annual relative volatility σr is determined for each time series. As discussed
previously, the σr should be within the range 10–20%, and this is indeed the
case.

14.12 Problems

Problem 14.1
Let (

X
Y

)
∈ N

((
µX
µY

)
,

(
ΣX ΣXY
ΣY X ΣY

))
be a vector of jointly multivariate Gaussian random variables.
1. Derive the distribution for p(X |Y ).
2. Show that

E[X |Y = y] = µX +ΣXY Σ
−1
Y (y−µY ),

Var[X |Y = y] = ΣX −ΣXY Σ
−1
Y ΣY X .
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Problem 14.2
Let yt = m+ εt , where εt ∈ N(0,σ2

ε ).
1. Derive the conditional distribution for m̂t = p(m|y1:t) using a Kalman filter,
assuming some Gaussian density for m0, e.g., p(m0) = N(µ0,Σ0).

Hint: Design a latent process such that the distribution of mt can be found.
2. Relate the result to prior knowledge in statistics.



Appendix A

Projections in Hilbert spaces

A.1 Introduction

In many situations we want information about variables that are not directly
measured, assuming that we have information about some variables which are
correlated with the unmeasured variable. If this (cross)correlation is known
or estimated, then it can be used for estimating the value of the unmeasured
variables.

Consider for instance the interest rates. Short term interest rates are quoted
on a daily basis in the money markets for maturities up to, say, one year; but
longer term interest rates are traded only indirectly through the bond markets.
Theoretically, options dependent on interest rates are priced according to a
stochastic process describing the evolution in continuous time of the short term
interest rate even though this process is not directly observable. The observed
(or measured) variables, when modelling interest rate processes, are the bond
prices.

The Wiener filter (see Madsen [2007]) is an example where the known
cross-correlation is used together with the projection theorem to estimate an
unmeasured time series based on a measured time series. The Kalman filter,
which will be introduced in this appendix, is some sort of online version of the
Wiener filter.

The main goal of this appendix is to present the projection theorem, and to
illustrate the wide range of applications of this theorem. Finally the theorem is
used to formulate the (ordinary) Kalman filter. The contents of this appendix is
basically based on Madsen [1992] and Brockwell and Davis [1991], and more
information about the theory and applications of the projection theorem can be
found in those references.

One of the advantages by considering the projection theorem as it is for-
mulated in this appendix is that many of the well-known concepts from two-
and three-dimensional Euclidean geometry, such as orthogonality, carry over
to the more general Hilbert spaces considered in the following.

By using the projection theorem it can be realized that a unified set of
equations can be used in different contexts. Hence it can be shown that many
of the methods used in time series analysis, such as prediction, filtering and
estimation, are seen in a unified context.

323
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A.2 Hilbert spaces

A Hilbert space is simply an inner-product space, i.e. a vector space supplied
with an inner product, with an additional property of completeness. The in-
ner product is a natural generalization of the inner (or scalar) product of two
vectors in n-dimensional Euclidean space. Since many of the properties of Eu-
clidean space carry over to the inner-product spaces, it will be helpful to keep
Euclidean space in mind in all that follows.

Let us first consider a well-known inner-product space, namely the Eu-
clidean space.
Example A.1 (Euclidean space). The set of all column vectors

x = (x1, ...,xk)
T ∈ Rk (A.1)

is a real inner-product space if we define

〈x,y〉=
k

∑
i=1

xiyi. (A.2)

It is a simple matter to check that the conditions above are all satisfied.
Definition A.1 (Norm). Let ‖x‖> 0, if x 6= 0, then the norm of an element x of
an inner-product space is defined to be

‖x‖=
√
〈x,x〉. (A.3)

In the Euclidean space Rk the norm of the vector is simply its length.
Definition A.2 (The angle between elements). The angle θ between two non-
zero elements x and y belonging to any real inner-product space is defined
as

θ = arccos[〈x,y〉/(‖x‖‖y‖)]. (A.4)

In particular x and y are said to be orthogonal if and only if 〈x,y〉= 0.
Now let us define the Hilbert space:

Definition A.3 (Hilbert space). A Hilbert space H is vector space, equipped
with an inner product, in which every Cauchy sequence xn converges in norm
to some element in x∈H . The inner-product space is then said to be complete.
Example A.2 (Euclidean space). The completeness of the inner-product space
Rk can be verified. Thus Rk is a Hilbert space.
Example A.3 (The space L2(Ω,F ,P)). Consider a probability space
(Ω,F ,P) and the collection C of all random variables X defined on Ω and
satisfying the condition E[X2]≤ ∞. It is rather easy to show that C is a vector
space.

For any two elements X ,Y ∈C we now define the inner product

〈X ,Y 〉= E[XY ]. (A.5)
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Figure A.1: Projection in R3.

Norm convergence of a sequence Xn of elements of L2 to the limit X means

‖Xn−X‖2 = E[|Xn−X |2]→ 0 as n→ ∞. (A.6)

Norm convergence of Xn to X in an L2 space is called mean-square con-
vergence and is written as Xn

m.s.→ X.
To complete the proof that L2 is a Hilbert space we need to establish com-

pleteness, i.e. that if ‖Xn−X‖2→ 0 as m,n→∞, then there exists X ∈ L2 such
that Xn→ X (see Brockwell and Davis [1991]).

A.3 The projection theorem

Let us start by considering two simple applications which illustrate the projec-
tion theorem in the two types of Hilbert spaces.
Example A.4 (Linear approximation in R3). Suppose three vectors are given
in R3.

y = (1/4,1/4,1)T , (A.7)
x1 = (1,0,1/4)T , (A.8)
x2 = (0,1,1/4)T . (A.9)

Our problem is to find the linear combination ŷ = α1x1 +α2x2 which is
closest to y in the sense that S = ‖y−α1x1−α2x2‖2 is minimized.

One approach to this problem is to write S in the form S = (1/4−α1)
2 +

(1/4−α2)
2+(1−1/4α1−1/4α2)

2 and then to use calculus to minimize with
respect to α1 and α2. In the alternative geometric approach we observe that
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the required vector ŷ = α1x1+α2x2 is the vector in the plane determined by x1
and x2 such that y−α1x1−α2x2 is orthogonal to the plane of x1 and x2 (see
the figure). The orthogonality condition may be stated as

〈y−α1x1−α2x2,xi〉= 0 i = 1,2 (A.10)

or equivalently

α1〈x1,x1〉+α2〈x2,x1〉 = 〈y,x1〉 (A.11)
α1〈x1,x2〉+α2〈x2,x2〉 = 〈y,x2〉. (A.12)

By solving these two equations for the particular values of x1, x2 and y speci-
fied, it is seen that α1 = α2 = 4/9, and ŷ = (4/9,4/9,2/9)′.
Example A.5 (Linear approximation in L2(Ω,F ,P)). Now suppose that X1,
X2 and Y are random variables in L2(Ω,F ,P). Only X1 and X2 are observed
and we wish to estimate the value of Y by using the linear combination Ŷ =
α1X1 +α2X2 which minimizes the mean square error,

S = E|Y −α1X1−α2X2|2 = ‖Y −α1X1−α2X2‖2. (A.13)

As in the previous example there are at least two possible approaches to the
problem. The first is to write

S = E[Y 2]+α
2
1 E[X2

1 ]+α
2
2 E[X2

2 ]−2α1E[Y X1]−
2α2E[Y X2]+α1α2E[X1X2] (A.14)

and then to minimize with respect to α1 and α2.
The second method is to use the same geometric approach as in the previ-

ous example. Our aim is to find an element in Ŷ in the set

M = {X ∈ L2(Ω,F ,P) : X = α1X1 +α2X2(α1,α2 ∈ R)} (A.15)

which implies that the mean square error ‖Y − Ŷ‖2 is as small as possible. By
analogy with the previous example we might expect Ŷ to have the property that
Y − Ŷ is orthogonal to all elements of M . Applying it to our present problem,
we can write

〈Y −α1X1−α2X2,X〉= 0 for all X ∈M (A.16)

or, equivalently, by the linearity of the inner product,

〈Y −α1X1−α2X2,Xi〉= 0, i = 1,2. (A.17)

These are the same equations for α1 and α2 as in the previous example,
although the inner product is of course defined differently in (A.17). In terms
of expectations we can rewrite (A.17) in the form

α1E[X2
1 ]+α2E[X2X1] = E[Y X1] (A.18)

α1E[X1X2]+α2E[X2
2 ] = E[Y X2] (A.19)

from which α1 and α2 are easily found.
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Before establishing the projection theorem for a general Hilbert space we
need to introduce some new terminology.
Definition A.4 (Closed subspace). A linear subspace M of a Hilbert space
H is said to be a closed subspace of H if M contains all of its limit points
(i.e. if xn ∈M and ‖xn− x‖→ 0 imply that x ∈M ).
Definition A.5 (Orthogonal complement). The orthogonal complement of a
subset M of H is defined to be the set M⊥ of all elements of H which are
orthogonal to every element of M . Thus

x ∈M⊥ if and only if 〈x,y〉= 0 (written x⊥ y) (A.20)

for all y ∈M .
Theorem A.1. If M is any subset of a Hilbert space H then M⊥ is a closed
subspace of H .

Proof. Omitted.

Theorem A.2 (The projection theorem). If M is a closed subspace of the
Hilbert space H and x ∈H , then
1. there is a unique element x̂ ∈M such that

‖x− x̂‖= inf
y∈M
‖x− y‖ (A.21)

and

2. x̂∈M and ‖x− x̂‖= infy∈M ‖x−y‖ if and only if x̂∈M and (x− x̂)∈M⊥.
The element x̂ is called the (orthogonal) projection of x onto M .

Proof. Omitted — see Brockwell and Davis [1991].

Theorem A.3 (The projection mapping of H onto M ). If M is a closed
subspace of the Hilbert space H and I is the identity mapping on H , then
there is a unique mapping PM of H onto M such that I−PM maps H onto
M⊥. PM is called the projection mapping of H onto M .

Proof. By the projection theorem, for each x ∈H there is a unique x̂ ∈M
such that x− x̂ ∈M⊥. The required mapping is therefore

PM x = x̂ x ∈H . (A.22)

Theorem A.4 (Properties of projection mappings). Let H be a Hilbert space
and let PM denote the projection mapping onto a closed subspace M . Then
1. PM (αx+βy) = αPM x+βPM y.

2. ‖x‖2 = ‖PM x‖2 +‖(I−PM )x‖2.



328 PROJECTIONS IN HILBERT SPACES

3. each x ∈H has a unique representation as a sum of an element of M and
an element of M⊥, i.e.

x = PM x+(I−PM )x. (A.23)

4. PM xn→ PM x if ‖xn− x‖→ 0.

5. x ∈M if and only if PM x = x.

6. x ∈M⊥ if and only if PM x = 0.

7. M1 ⊆M2 if and only if PM1PM2x = PM1x for all x ∈H .

Proof. Omitted — but rather obvious from a geometrical point of view.

A.3.1 Prediction equations

In the following a set of equations, the so-called prediction equations will be
derived. The equations describe how to find the projection that gives the mini-
mum mean square error (Minimum MSE).

Given a Hilbert space H , a closed subspace M and an element x ∈H ,
then the projection theorem shows that the element of M closest to x is the
unique element x̂ ∈M such that

〈x− x̂,y〉 = 0 for all y ∈M . (A.24)

Compare the general equation above with the special cases in the examples
prior to projection theorem.

The quantity, x̂ = PM x, is frequently called the best predictor of x in the
subspace M .
Remark A.1. It is helpful to visualize the projection theorem in terms of Figure
A.1, which depicts the special case in which H = R3, and M is the plane
containing x1 and x2, and ŷ = PM y. The prediction equation (A.24) is simply
the statement that y− ŷ must be orthogonal to M . The projection theorem tells
us that ŷ = PM y is uniquely determined by this condition for any Hilbert space
H and closed subspace M .

The projection theorem and the prediction equations play fundamental
roles in time series analysis, especially for estimation, approximation, filter-
ing and prediction. Examples will be given.
Example A.6 (Minimum MSE linear prediction).
Let {Xt , t = 0,±1, ...} be a stationary process on (Ω,F ,P) with mean zero
and autocovariance function γ(·), and consider the problem of finding the best
linear combination

X̂n+1 =
n

∑
j=1

φn jXn+1− j (A.25)

which best approximates Xn+1 in the sense that E[(Xn+1−∑
n
j=1 φn jXn+1− j)

2]



CONDITIONAL EXPECTATION AND LINEAR PROJECTIONS 329

is minimum. This problem is easily solved with the aid of the projection theo-
rem by taking H = L2(Ω,F ,P) and M = {∑n

j=1 α jXn+1− j : α1, . . . ,αn ∈R}.
Since minimization of E[|Xn+1 − X̂n+1|2] is identical to minimization of the
squared norm ‖Xn+1− X̂n+1‖2, we see at once that X̂n+1 = PM Xn+1. The pre-
diction equations are

〈Xn+1−
n

∑
j=1

φn jXn+1− j,Y 〉= 0 for all Y ∈M (A.26)

which, by the linearity of the inner product, are equal to the n equations

〈Xn+1−
n

∑
j=1

φn jXn+1− j,Xk〉= 0 k = n,n−1, ...,1. (A.27)

Recalling the definition 〈X ,Y 〉 = E[XY ] of the inner product in L2(Ω,F ,P),
we see that the prediction equations can be written in the form

Γnφn = γn (A.28)

where φn = (φn1, ....,φnn)
′, γn = (γ(1), ...,γ(n))′ and Γn = [γ(i− j)]ni, j=1. The

projection theorem guarantees that there is at least one solution φn to the prob-
lem. If Γn is singular then there are infinitely many solutions, but the projection
theorem guarantees that every solution will give the same (uniquely defined)
predictor.

A.4 Conditional expectation and linear projections

It is well known that the conditional expectation plays a central role in time
series analysis, as the optimal prediction (under some mild assumptions) is
found using the conditional expectation.

Consider the random variables Y and X from L2.
Definition A.6 (The conditional expectation). The conditional expectation of
X given Y = y is

E[X |Y = y] =
∫

∞

−∞

x fX |Y=y(x)dx (A.29)

where fX |Y=y(x) is the conditional density function for X given Y = y.

Remember that E[X |Y = y] is a number, whereas E[X |Y ] is a stochastic
variable.

It can be shown that the operator E[X |Y ] on L2 has all the properties of a
projection operator, in particular

E[cX +dZ|Y ] = cE[X |Y ]+dE[Z|Y ],
E[1|Y ] = 1.
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Theorem A.5 (Best mean square predictor). The conditional expectation
E[X |Y ] is the best mean square predictor of X in MY , i.e. the best function
of Y for predicting X.

Proof. Follows from the projection theorem.

However, the determination of projections on MY is usually very difficult.
On the other hand it is relatively easy instead to calculate the projection of X
on span{1,Y} ⊆MY , i.e. the linear projection

E[X |Y ] = a+bY (A.30)

which gives a subset of the best function of Y (in the mean square sense) for
predicting X .

The linear projection (A.30) is a projection of X onto a subspace of MY .
Therefore it can never have a smaller mean square error than E[X |Y ]. However
it is of great importance for the following reasons:

• The linear projection (A.30) is easier to calculate.
• It depends only on the first and second order moments, E[Y ], E[X ], E[Y 2],

E[X2] and E[XY ], of the joint distribution of (Y,X).
• If (Y,X)′ has a multivariate normal distribution then the conditional expec-

tation is linear, i.e.
span{1,Y}= MY . (A.31)

Let us now consider two multivariate stochastic variables X and Y and the
corresponding second order representation (first and second order moments for
(X ,Y )′)

µY ,µX ,ΣXX ,ΣXY ,ΣYY . (A.32)

Theorem A.6 (Linear projection in L2). Given the second order representation
for (X ,Y )′ the linear projection is given by

E[X |Y ] = µX +ΣXY Σ
−1
YY (Y −µy) (A.33)

and the variance is

Var[X−E[X |Y ]] = ΣXX −ΣXY Σ
−1
YY ΣY X . (A.34)

Furthermore
Cov[X−E[X |Y ],Y ] = 0, (A.35)

i.e. the error X−E[X |Y ] is uncorrelated with Y.

Proof. From the prediction equations:

〈X−E[X |Y ],Y 〉 = 0,
〈X−E[X |Y ],1〉 = 0,
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or

〈a+bY,Y 〉 = 〈X ,Y 〉,
〈a+bY,1〉 = 〈X ,1〉.

Using the fact that in the multivariate case the inner product in L2 is
〈X ,Y 〉= E[XY T ] we get

aE[Y ]T +bE[YY T ] = E[XY T ],

a+bE[Y ] = E[X ].

By solving these equations and using the fact that ΣXY = E[XY ′] −
E[X ]E[Y ]′ we obtain

b = ΣXY Σ
−1
YY , (A.36)

a = µX −ΣXY Σ
−1
YY µy. (A.37)

Hence the linear projection is

E[X |Y ] = µX −ΣXY Σ
−1
YY (Y −µY ). (A.38)

The variance follows immediately

Var[X−E[X |Y ]] = Var[X−a−bY ]

= ΣXX +bΣYY bT −bΣY X −ΣXY bT

= ΣXX −ΣXY Σ
−1
YY ΣY X .

The orthogonality between the error X −E[X |Y ] and Y follows directly
from the projection theorem.

Theorem A.7. If (X ,Y )T has a normal distribution then X |Y is normal dis-
tributed with mean

E[X |Y ] = µX −ΣXY Σ
−1
YY (Y −µy) (A.39)

and variance

Var[X |Y ] = Var[X−E[X |Y ]] = ΣXX −ΣXY Σ
−1
YY ΣY X . (A.40)

The error X−E[X |Y ] and Y are stochastic independent.

Proof. Omitted.

Let us illustrate the importance of the equations above by a couple of ex-
amples.
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Example A.7 (Regression). Let us consider the regression in L2 of Y on X

E[Y |X ] = Xθ (A.41)

and assume that E[X ] = E[Y ] = 0.
Note that — compared to the discussion above — we have interchanged

X and Y . And in order to compare the results directly with the ordinary LS
estimator for the general linear model in Rn we have also interchanged X and
θ .

The best estimator is found by the prediction equations

〈Y −E[Y |X ],X〉= 0 (A.42)

or
〈Y −Xθ ,X〉= 0. (A.43)

Then we get
ΣY X −θ

T
ΣXX = 0 (A.44)

or
θ̂ = Σ

−1
XX ΣXY . (A.45)

Compare this result with the well-known LS estimator in Rn.

Next an example where the formulation of the linear projection above is
used directly. As this example is very important it is embedded in a section.

A.5 Kalman filter

As mentioned in the introduction, the Kalman filter can be used for estimat-
ing some variables, which are not directly measured, by using some measured
variables, which are correlated with the unmeasured variables. In the case of
the Kalman filter the correlation between the unmeasured variables X and the
measured variables Y is described by a linear state space model.

Consider the linear stochastic state space model

Xt = AtXt−1 +Btut−1 + e1,t , (A.46)

Yt =CtXt + e2,t , (A.47)

where Xt is a m-dimensional state vector, ut is the input vector and Yt is the
measured output vector. The matrices At , Bt and Ct are known and have appro-
priate dimensions.

The two white noise sequences {e1,t} and {e2,t} are mutually uncorrelated
with variance Σ1,t and Σ2,t , respectively.

The matrices At , Bt , Ct , Σ1,t and Σ2,t might be time varying, as indicated by
the notation. However, in the rest of this example we skip the index t although
all the given results are valid in the time varying case.
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Let us consider the problem of estimating Xt+k given the observations
{Ys;s = t, t−1, . . .} and input {us,s = t−1, . . .}. In the case k = 0 the problem
is called reconstruction or filtering. The solution to this problem is given by
the linear projection theorem.

It is clear that the linear projection theorem also is valid for the conditioned
stochastic variable (Y X)′|Z. If the stochastic variables have a normal distribu-
tion we get

E[X |Y,Z] = E[X |Z]+Cov[X ,Y |Z]Var−1[Y |Z](Y −E[Y |Z]), (A.48)

Var[X |Y,Z] = Var[X |Z]−Cov[X ,Y |Z]Var−1[Y |Z]CT [X ,Y |Z]. (A.49)

Let us now introduce
Yt = (Y1, · · · ,Yt), (A.50)

which is a vector of all observations until time t. The input is assumed to be
known.

Further introduce

X̂t+k|t = E [Xt+k|Yt ] , (A.51)

Ŷt+k|t = E [Yt+k|Yt ] , (A.52)

and the variances

Σ
xx
t+k|t = Var [Xt+k|Yt ] , (A.53)

Σ
yy
t+k|t = Var [Yt+k|Yt ] , (A.54)

Σ
xy
t+k|t = Cov [Xt+k,Yt+k|Yt ] , (A.55)

then we have the Kalman filter
Theorem A.8 (Kalman filter — Optimal reconstruction). The reconstruction
X̂t|t which has the smallest mean square error is given by

X̂t|t = X̂t|t−1 +Σ
xy
t|t−1

(
Σ

yy
t|t−1

)−1 (
Yt − Ŷt|t−1

)
(A.56)

and the variance of the reconstruction error is

Σ
xx
t|t = Σ

xx
t|t−1−Σ

xy
t|t−1

(
Σ

yy
t|t−1

)−1(
Σ

xy
t|t−1

)T
. (A.57)

Further the construction error and the observations are orthogonal, i.e.

Cov [Xx+k−E [Xt+k|Yt ] ,Yt ] = 0. (A.58)

Proof. Let X = Xt , Y =Yt and Z =Yt−1 and use the linear projection theorem.
See e.g., Madsen [2007] for details.

Together with equations for making one-step predictions in the state space
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model the above equations give the Kalman filter. It is readily seen that the
prediction equations are

X̂t+1|t = AX̂t|t +But , (A.59)

Σ
xx
t+1|t = AΣ

xx
t|tA

T +Σ1, (A.60)

Σ
yy
t+1|t =CΣ

xx
t+1|tC

T +Σ2 (A.61)

with initial values
X̂1|0 = E [X1] = µ0, (A.62)

Σ
xx
1|0 = Var [X1] =V0. (A.63)

We now leave the projections in L2 and continue by considering projections
in Rn.

A.6 Projections in Rn

Previously we showed that Rn is a Hilbert space with the inner product

〈x,y〉= xT y. (A.64)

In many statistical applications it is convenient to consider the weighted inner
product

〈x,y〉
Σ−1 = xT

Σ
−1y (A.65)

where Σ is a positive definite symmetric matrix.
For both definitions of the inner product we have the norm

‖x‖=
√
〈x,x〉. (A.66)

Consider a closed subspace M of the Hilbert space Rn. The following
theorem enables us to compute PM x directly from any specified set of vectors
{x1, . . . ,xm} (m < n) spanning M .
Theorem A.9. If xi ∈ Rn, i = 1, . . . ,m, and M = span{x1, . . . ,xm} then

PM x = Xβ (A.67)

where X is the n×m matrix whose jth column is x j and

XT Xβ = XT x. (A.68)

Equation (A.68) has at least one solution for β but the prediction Xβ is the
same for all solutions. There is exactly one solution of (A.68) if and only if X ′X
is non-singular and in this case

PM x = X(XT X)−1XT x. (A.69)
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Proof. Since PM x ∈M , we can write

PM x =
m

∑
i=1

βixi = Xβ . (A.70)

The prediction equations (A.24) are equivalent in this case to

〈Xβ ,x j〉= 〈x,x j〉, j = 1, . . . ,m (A.71)

or in matrix form
XT Xβ = XT x. (A.72)

The existence of at least one solution for β is guaranteed by the existence of
the projection PM x. The fact that Xβ is the same for all solutions is guaranteed
by the uniqueness of PM x — see the projection theorem.

Remark A.2. If {x1, . . . ,xm} is a linearly independent set then there must be
a unique vector β such that PM x = Xβ . This means that (A.68) must have a
unique solution, which in turn implies that X ′X is non-singular and

PM x = X(XT X)−1XT x for all x ∈ Rn. (A.73)

The matrix X(XT X)−1XT must be the same for all linearly independent
sets {x1, . . . ,xm} spanning M since PM is uniquely defined.

Remark A.3. Given a real n× n matrix M, how can we tell whether or not
there is a subspace M of Rn such that Mx = PM x for all x ∈ Rn? If there
is such a subspace we say that M is a projection matrix. Such matrices are
characterized by the next theorem.

Theorem A.10. The n×n matrix M is a projection matrix if and only if

(a) MT = M, and

(b) M2 = M, i.e. the matrix M is idempotent.

Proof. Omitted — but it is easily verified that (a) and (b) are satisfied for the
matrix X(XT X)−1XT .





Appendix B

Probability theory

In this appendix it is the intention to give a brief overview of probability theory.
Some of the concepts introduced are widely used in the lecture notes. It is not
necessary to understand all the technical details, but an intuitive understanding
of the concepts introduced is important.

B.1 Measures and σ -algebras

Let Ω denote a finite sample space which contains all the elementary outcome
ωi for i = 1,2, . . . ,N. In a two period binomial model the elementary outcome
is the state of the world at time t = 2, which determines the stock price at that
time.
Definition B.1 (σ -algebra). Let Ω be a set of points ω . A family F of subset
of Ω is called a σ -algebra if
1. ∅ ∈F

2. A ∈F ⇒ Ac ∈F

3. An ∈F for n = 1,2, . . .⇒
∞⋃

n=1
An ∈F .

The definition says that (1) the empty set is an element of F . (2) If A ∈
F , then the complement of A is in F as well. As an example the entire set
Ω ∈F since the empty set is in F . (3) Countable unions of elements of F
are elements of F as well.
Example B.1. The family of all subsets of Ω is an example of an σ -
algebra, and it is denoted by 2Ω. In the two period binomial model with
Ω = (ω1,ω2,ω3,ω4) we have

2Ω = {∅,ω1,ω2,ω3,ω4,{ω1,ω2},{ω1,ω3},{ω1,ω4},{ω2,ω3},
{ω2,ω4},{ω3,ω4},{ω1,ω2,ω3},{ω1,ω2,ω4},
{ω1,ω3,ω4},{ω2,ω3,ω4},{ω1,ω2,ω3,ω4},Ω}. (B.1)

Definition B.2 (Measurable space). A pair (Ω,F ), where Ω is a set and F is
a σ -algebra on Ω, is called a measurable space, and the subsets of Ω which
are in F are called F -measurable sets.
Definition B.3. A probability measure P on a measurable space (Ω,F ) is a
function P : F −→ [0,1] such that

337
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1. P(∅) = 0, P(Ω) = 1.

2. If A1,A2, . . . ∈F and {At}∞
i=1 is disjoint (i.e. Ai∩A j =∅ if i 6= j) then

P
( ∞⋃

i=1

Ai

)
=

∞

∑
i=1

P(Ai). (B.2)

The triple (Ω,F ,P) is called a probability space.

B.2 Partitions and information

Definition B.4 (Partition). A partition P of a set Ω is a finite family
{Ai, i = 1,2, . . . ,K} of subsets of Ω, such that

1.
K⋃

i=1
Ai = Ω.

2. i 6= j⇒ Ai∩A j =∅.
Consider a sample space Ω and a given partition P = {Ai; i = 1,2, . . . ,K}

of Ω. We can then interpret P intuitively in terms of “information" in the
following way.
1. "Someone" chooses an outcome ω of the sample space Ω, which is un-

known to us.
2. However, we are assumed to know which component of P that ω lies in.
With this interpretation of a partition the trivial partition P = {Ω} corresponds
to “no information.” If we assume that the sample space Ω = {ω1,ω2, . . . ,ωr}
is finite, and the partition P = {{ω1},{ω2}, . . . ,{ωr}} then we have “full
information,” since we know exactly which ω is chosen.
Example B.2. Let Ω = {ω1,ω2,ω3,ω4} denote the sample space, and define
two partitions P1 = {{ω1,ω2},{ω3,ω4}} and P2 = {{ω1,ω2},{ω3}, {ω4}}.
Then intuitively speaking the partition P2 contains more information than
partition P1, since one of the elements in P1 {ω3,ω4} is partitioned into
“smaller” elements in partition P2.

This leads to the following definition:
Definition B.5. A partition S is said to be “richer” than a partition P if S
and P are partitions on the same sample space Ω, and each component of P
is a union of components of S .

Although the more general concept of σ -algebras is used to denote the
“information set,” it might help to think of it as a partition. In the next section
we need the following definition:
Definition B.6 (σ -algebra). A σ -algebra G generated by a partition P is the
smallest σ -algebra that includes P , i.e.
1. P ⊆ G .

2. G is a σ -algebra.
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3. If F is a σ -algebra such that P ⊆F then G ⊆F .

The generated σ -algebra is denoted G = σ{P}.
Example B.3. Consider a sample space Ω = {ω1,ω2,ω3,ω4} and a partition
P = {{ω1,ω2},{ω3,ω4}}. The σ -algebra generated by that partition is then
given by

G = {∅,{ω1,ω2},{ω3,ω4},Ω}. (B.3)

Example B.4. Let the sample space Ω consist of the real numbers in the in-
terval [0,1]. Define the partitions

P1 = {A1,A2,A3,A4} P2 = {B1,B2,B3}

where

A1 =

[
0,

1
3

[
, A2 =

[
1
3
,

1
2

[
, A3 =

[
1
2
,

3
4

[
, A4 =

[
3
4
,1
]

B1 =

[
0,

1
3

[
, B2 =

[
1
3
,

3
4

[
, B3 =

[
3
4
,1
]
.

It is intuitively appealing to state that P1 contains more information than P2,
because P1 is partitioned into smaller parts.

B.3 Conditional expectation

The objective of this section is to define the conditional expectation E[X |G ]
where G is a σ -algebra, which should be interpreted as the expectation of
X given the information represented by the σ -algebra. However, we begin
with the elementary definition of conditional expectation, given the probability
space (Ω,F ,P) and two stochastic variables X and Z.
Definition B.7 (Conditional probability). The probability of X conditioned on
Z is given by

P(X = xi|Z = z j) =
P(X = xi∩Z = z j)

P(Z = z j)
. (B.4)

The intuition behind this definition is as follows.
1. The probability of a given event xi is the fraction of the total probability

mass that is assigned to that event, e.g.,

P(xi) =
P(xi)

P(Ω)
. (B.5)

2. When we have conditioned on the event z j, we know that z j has occurred,
hence z j now is the sample space. This explains the normalisation by P(Z =
z j) in (B.4).
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3. The fraction of xi that can occur, given the fact that z j has occurred, is given
by xi∩ z j.

The definition of the conditional expectation for discrete stochastic variables
is

E[X |Z = z j] = ∑xiP(X = xi|Z = z j). (B.6)

The (unconditional) expectation of a stochastic variable X is given by

E[X ] =
∫

Ω

X(ω)dP(ω) (B.7)

where the integration is taken over the entire sample space, with respect to the
measure (distribution) P. This covers the case where no prior knowledge of the
outcome ω is available. Now assume that we know that ω ∈ B, and P(ω)> 0.
As a preliminary definition of conditional expectation we have the following:
Definition B.8 (Conditional expectation given a single event). Given a prob-
ability space (Ω,F ,P) assume that B ∈ F with P(B) > 0. The conditional
expectation of X given B is defined by

E[X |B] = 1
P(B)

∫
B

X(ω)dP(ω). (B.8)

Note that this definition is very similar to the definition of conditional prob-
abilities given in (B.4), and with a similar interpretation. This definition is now
generalized to the case where the conditioning argument is a partition. Let
P = {A1, . . . ,AK} be a partition of Ω with P(Ai) > 0, then we know from
Section B.2 that this could be interpreted as if we know in which set Ai the
true ω lies. This leads to the following preliminary definition of conditional
expectation:
Definition B.9. Let P = {A1, . . . ,AK} be a partition of Ω with P(Ai)> 0, then
the conditional expectation is given by

E[X |P] =
K

∑
n=1

I{ω ∈ An}E[X |An] (B.9)

where I{·} denotes the indicator function.

The problem with this definition is that it assumes that each set must have
positive probability, which is a unnecessary restriction as we shall see. To give
an idea of the interpretation of the final definition of conditional expectation,
based on σ -algebras, consider the following.

Let Z be a partition of Ω into Z-atoms,1 where the random variable Z is
constant. The σ -algebra G = σ(Z ) generated by this consists of exactly 2n

possible unions of the Z-atoms. It is clear from the elementary definition of

1If the sample space is finite an atom is a set which only consists of one element.



CONDITIONAL EXPECTATION 341

conditional expectation that the conditional expectation Y is constant on the
Z-atoms, or to be more precise

Y is G -measurable. (B.10)

Since Y takes the constant value yi on the Z-atom {Z = z j}, we have∫
{Z=z j}

Y dP= yiP(Z = zi). (B.11)

Applying the elementary definition of conditional probability and expectation
(B.4) and (B.6) we get∫

{Z=z j}
Y dP = ∑

i
xiP(X = xi|Z = z j)P(Z = z j)

= ∑
i

xiP(X = xi∩Z = z j)

=
∫
{Z=z j}

XdP. (B.12)

If we write G j = {Z = z j}, this says that E[Y IG j ] = E[XIG j ], where I denotes
the indicator function. Since IG is a sum of IG j for every G ∈ G we have
E[Y IG] = E[XIG], or∫

G
Y dP=

∫
G

XdP, for all G ∈ G . (B.13)

This leads us to the final definition of conditional expectation.
Definition B.10 (Conditional expectation). Let (Ω,F ,P) be a probability
space, X a stochastic variable on this space and let G ⊆F be a σ -algebra
on Ω. If Y is a stochastic variable such that
1. Y is G -measurable

2. ∫
G

Y (ω)dP(ω) =
∫

G
X(ω)dP(ω) for all G ∈ G (B.14)

then Y = E[X |G ] is the conditional expectation of X given G .
To give an intuitive understanding of conditional expectation given a σ -

algebra consider the following example.
Example B.5. Suppose we have a finite sample space Ω = (ω1,ω2,ω3,ω4)
with four possible outcomes. Define three stochastic variables X, Y1 and Y2
: Ω→ R with the following values

ω1 ω2 ω3 ω4
X 1 2 3 4
Y1 1 2 1 2
Y2 1.5 10 1.5 10
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Since the stochastic variable X takes different values for all outcomes ωi,
the σ -algebra generated by that variable is given by

σ{X} = {∅,ω1,ω2,ω3,ω4,{ω1,ω2},{ω1,ω3},{ω1,ω4},{ω2,ω3},
{ω2,ω4},{ω3,ω4},{ω1,ω2,ω3},{ω1,ω2,ω4},
{ω1,ω3,ω4},{ω2,ω3,ω4},{ω1,ω2,ω3,ω4},Ω} (B.15)

which corresponds to full information. The σ -algebra generated by Y1 and Y2
contains less "information" since these variables take the same value for ω1
and ω3 and the same values for ω2 and ω4. The two generated σ -algebras

σ{Y1}= σ{Y2}= {∅,{ω1,ω3},{ω2,ω4},Ω} (B.16)

contain the same information about X despite the fact that Y1 and Y2 take dif-
ferent values. Assume that each outcome has probability 1

4 . By the elementary
definition of conditional expectation we have

E[X |Y1 = 1] =
1
2
·1+ 1

2
·3 = 2 (B.17)

E[X |Y1 = 2] =
1
2
·2+ 1

2
·4 = 3 (B.18)

which summarize to

E[X |Y1](ω) =

{
2 ω ∈ {ω1,ω3}
3 ω ∈ {ω2,ω4}.

(B.19)

We shall now check whether the two conditions stated in Definition B.10
are fulfilled. Since E[X |Y1](ω) is constant on the two subsets {ω1,ω3} and
{ω2,ω4} the conditional expectation (B.19) is measurable with respect to
σ{Y1}.
The other condition says that∫

{ω1,ω3}
E[X |Y1](ω)dP(ω) =

∫
{ω1,ω3}

X(ω)dP(ω) (B.20)∫
{ω2,ω4}

E[X |Y1](ω)dP(ω) =
∫
{ω2,ω4}

X(ω)dP(ω) (B.21)

which are also fulfilled. It is easy to show that E[X |σ{Y1}] = E[X |σ{Y2}],
since the generated σ -algebras are the same.

Some of the most important properties of conditional expectation are given
in the following list, where G and H denote sub-σ -algebras of F :
1. If X is G -measurable, then E[X |G ] = X a.s.
2. E[a1X1 +a2X2|G ] = a1E[X1|G ]+a2E[X2|G ] a.s.
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3. If H is a sub-σ -algebra of G , then

E[E[X |G ]|H ] = E[X |H ] a.s. (B.22)

4. If Z is G -measurable and bounded, then

E[ZX |G ] = ZE[X |G ] a.s. (B.23)

Remark B.1. Intuitively, the statement that X is G -measurable simply means
that X is known, and thus E[X |G ] = X a.s. Item 2 simply states that the ex-
pectation operator is linear. Eq. (B.22) is often called the Tower Property,
and it states that the most coarse sub-σ -algebra H overrules the finer sub-σ -
algebra G . Eq. (B.23) states that we can take out what is known (namely Z)
from the expectation operator.

B.4 Notes

Should you wish to pursue these (purely) mathematical topics, a number of
books are available (Grimmett and Stirzaker [1992], Karatzas and Shreve
[1996], Williams [1995], Royden [1988]). The first reference provides an ex-
cellent and readable introduction to stochastic processes and probability theory
in general. The other references are given in an increasing order of difficulty
and the topics considered herein are outside the scope and aim of these lecture
notes.
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