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Most people would cheerfully agree that statistics is a useful subject – but 
how many would recognise that it also has many facets which are engaging, 
and even fascinating?

We have written this book for students and their teachers, as well as for 
practitioners  –  indeed, for anyone who knows some statistics. If this 
describes you, we invite you to come with us on a panoramic tour of the 
subject. Our intent is to highlight a variety of engaging and quirky facets of 
statistics, and to let you discover their fascinations. Even if you are only 
casually acquainted with statistical ideas, there is still much in this book 
for you.

This is not a textbook. In a lively way, it expands understanding of topics 
that are outside the scope of most textbooks – topics you are unlikely to find 
brought together all in the one place elsewhere.

Each of the first 25 chapters is devoted to a different statistical theme. 
These chapters have a common structure. First, there is an Overview, 
offering perspectives on the theme – often from several points of view. 
About half of these Overviews need, as quantitative background, only high 
school mathematics with a basic foundation in statistics. For the rest, it may 
be helpful to have completed an introductory college or university course in 
statistics.

Following the Overview, each chapter poses five questions to pique your 
curiosity and stimulate you to make your own discoveries. These questions 
all relate to the theme of the chapter. As you seek answers to these ques-
tions, we expect you will be surprised by the variety of ways in which statis-
tics can capture and hold your interest.

The questions are not for technical, numerical or web‐search drill. Rather, 
they seek to widen your knowledge and deepen your insight. There are 
questions about statistical ideas and probabilistic thinking, about the 
value of statistical techniques, about both innocent and cunning misuses 
of statistics, about pathbreaking inspirations of statistical pioneers, and 

Preface
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about making the best practical use of statistical information. Also, there 
are amusing statistical puzzles to unravel and tantalising statistical para-
doxes to resolve. Some questions have a single correct answer, but many 
more invite your reflection and your exploration of alternatives.

We invite you to plunge in and tackle the questions that you find appeal-
ing. Compare your findings with our own answers (including wide‐ranging 
commentary), which are collected together in Chapter 26.

To help you to choose questions that best match your current statistical 
background, we have labelled each question A, B or C. Questions labelled A 
(40% of the total) are well suited to those who are studying an introductory 
course in statistics at tertiary level. Good senior high school students should 
also find many of them within their capability. Questions labelled B (55% of 
the total) cover a wide spectrum of challenges and, in many cases, a knowl-
edge of statistics at the level of a second course will make the best starting 
point. The remaining 5% of questions are labelled C, and are for graduates 
in statistics, including professional practitioners.

In each chapter, the Overview and its five questions are extensively 
cross‐referenced to related material in other chapters. They also include 
suggestions for further reading, both in print and online. The web links are 
available live on this book’s companion website www.wiley.com/go/sowey/
apanoramaofstatistics. 

To make it clear when a mentioned Chapter, Question or Figure refers to 
a place elsewhere in this book (rather than to an external source), the words 
are printed in small capitals: Chapter, Question, Figure.

We hope that your time spent with this book will be enjoyable and 
enriching.

May 2016 Eric Sowey
Peter Petocz

www.wiley.com\go\sowey\apanoramaofstatistics
www.wiley.com\go\sowey\apanoramaofstatistics
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In the real world, little is certain. Almost everything that happens is influ-
enced, to a greater or lesser degree, by chance. As we shall explain in 
this  chapter, statistics is our best guide for understanding the behaviour 
of  chance events that are, in some way, measurable. No other field of 
 knowledge is as vital for the purpose. This is quite a remarkable truth and, 
statisticians will agree, one source of the subject’s fascination.

You may know the saying: data are not information and information is not 
knowledge. This is a useful reminder! Even more useful is the insight that it is 
statistical methods that play the major role in turning data into information 
and information into knowledge.

In a world of heavily promoted commercial and political claims, a familiarity 
with statistical thinking can bring enormous personal and social benefits. 
It  can help everyone to judge better what claims are trustworthy, and so 
become more competent and wiser as citizens, as consumers and as voters. 
In short, it can make ours not only a more numerate, but also a more accurately 
informed, society. This is an ideal we shall return to in Chapter 3.

Chance events are studied in the physical, biological and social sciences, 
in architecture and engineering, in medicine and law, in finance and 
 marketing, and in history and politics. In all these fields and more, statistics 
has well‐established credentials. To use John Tukey’s charming expression, 
‘being a statistician [means] you get to play in everyone’s backyard’. (There 
is more about this brilliant US statistician in Chapter 22, Figure 22.2.)

‐‐‐oOo‐‐‐

To gain a bird’s eye view of the kinds of practical conclusions this subject can 
deliver, put yourself now in a situation that is typical for an applied statistician.

Why is statistics such a fascinating subject?
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Suppose you have collected some data over a continuous period of 150 
weekdays on the daily number of employees absent from work in a large 
insurance company. These 150 numbers will, at first, seem to be just a jumble 
of figures. However, you – the statistician – are always looking for patterns in 
data, because patterns suggest the presence of some sort of systematic behav-
iour that may turn out to be interesting. So you ask yourself: can I find any 
evidence of persisting patterns in this mass of figures? You might pause to 
reflect on what sorts of meaningful patterns might be present, and how you 
could arrange the data to reveal each of them. It is clear that, even at this early 
stage of data analysis, there is lots of scope for creative thinking.

Exercising creativity is the antithesis of following formalised procedures. 
Unfortunately, there are still textbooks that present statistical analysis as no 
more than a set of formalised procedures. In practice, it is quite the  contrary. 
Experience teaches the perceptive statistician that a sharpened curiosity, 
together with some preliminary ‘prodding’ of the data, can often lead to 
surprising and important discoveries. Tukey vigorously advocated this 
approach. He called it ‘exploratory data analysis’. Chatfield (2002) excellently 
conveys its flavour.

In this exploratory spirit, let’s say you decide to find out whether there is 
any pattern of absenteeism across the week. Suppose you notice at once that 
there seem generally to be more absentees on Mondays and Fridays than on 
the other days of the week. To confirm this impression, you average the 
absentee numbers for each of the days of the week over the 30 weeks of data. 
And, indeed, the averages are higher for Mondays and Fridays.

Then, to sharpen the picture further, you put the Monday and Friday aver-
ages into one group (Group A), and the Tuesday, Wednesday and Thursday 
averages into a second group (Group B), then combine the values in each 
group by averaging them. You find the Group A average is 104 (representing 
9.5% of staff ) and the Group B average is 85 (representing 7.8% of staff ).

This summarisation of 30 weeks of company experience has demonstrated 
that staff absenteeism is, on average, 1.7 percentage points higher on Mondays 
and Fridays as compared with Tuesdays, Wednesdays and Thursdays. 
Quantifying this difference is a first step towards better understanding 
employee absenteeism in that company over the longer term – whether your 
primary interest is possible employee discontent, or the financial costs of 
absenteeism to management.

Creating different kinds of data summaries is termed statistical  description. 
Numerical and graphical methods for summarising data are valuable, 
because they make data analysis more manageable and because they can 
reveal otherwise unnoticed patterns.
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Even more valuable are the methods of statistics that enable statisticians 
to generalise to a wider setting whatever interesting behaviour they may 
have detected in the original data. The process of generalisation in the 
face  of the uncertainties of the real world is called statistical inference. 
What makes a statistical generalisation so valuable is that it comes with an 
objective measure of the likelihood that it is correct.

Clearly, a generalisation will be useful in practice only if it has a high 
chance of being correct. However, it is equally clear that we can never be 
sure that a generalisation is correct, because uncertainty is so pervasive in 
the real world.

To return to the example we are pursuing, you may be concerned that the 
pattern of absenteeism detected in 30 weeks of data might continue indefi-
nitely, to the detriment of the company. At the same time, you may be unsure 
that that pattern actually is a long‐term phenomenon. After all, it may have 
appeared in the collected data only by chance. You might, therefore, have 
good reason to widen your focus, from absenteeism in a particular 30‐week 
period to absenteeism in the long term.

You can test the hypothesis that the pattern you have detected in your 
data occurred by chance alone against the alternative hypothesis that it did 
not occur by chance alone. The alternative hypothesis suggests that the 
 pattern is actually persistent  –  that is, that it is built into the long‐term 
behaviour of the company if there are no internal changes (by management) 
or external impacts (from business conditions generally). As just mentioned, 
the statistical technique for performing such a hypothesis test can also 
 supply a measure of the likelihood that the test result is correct. For more on 
hypothesis testing, see Chapter 16.

When you do the test, suppose your finding is in favour of the alternative 
hypothesis. (Estimating the likelihood that this finding is correct requires 
information beyond our scope here, but there are ways of testing which 
optimise that likelihood.) Your finding suggests a long‐term persisting 
 pattern in absenteeism. You then have grounds for recommending a suitable 
intervention to management.

Generalising to ‘a wider setting’ can also include to ‘a future setting’, as 
this example illustrates. In other words, statistical inference, appropriately 
applied, can offer a cautious way of forecasting the future – a dream that has 
fascinated humankind from time immemorial.

In short, statistical inference is a logical process that deals with ‘chancy’ 
data and generalises what those data reveal to wider settings. In those wider 
settings, it provides precise (as opposed to vague) conclusions which have a 
high chance of being correct.
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‐‐‐oOo‐‐‐

But this seems paradoxical! What sort of logic is it that allows highly reliable 
conclusions to be drawn in the face of the world’s uncertainties? (Here, and 
in what follows, we say ‘highly reliable’ as a shorter way of saying ‘having a 
high chance of being correct’.)

To answer this pivotal question, we need first to offer you a short over-
view of the alternative systems of logic that philosophers have devised over 
the centuries. For an extended exposition, see Barker (2003).

A system of logic is a set of rules for reasoning from given assumptions 
towards reliable conclusions. There are just two systems of logic: deduction 
and induction. Each system contains two kinds of rules:

i) rules for drawing precise conclusions in all contexts where that logic is 
applicable; and

ii) rules for objectively assessing how likely it is that such precise conclu-
sions are actually correct.

The conclusions that each system yields are called deductive inferences 
and inductive inferences, respectively.

It’s worth a moment’s digression to mention that there are two other 
thought processes – analogy and intuition – which are sometimes used in 
an attempt to draw reliable conclusions. However, these are not systems of 
logic, because they lack rules, either of the second kind (analogy) or of both 
kinds (intuition). Thus, conclusions reached by analogy or by intuition are, 
in general, less reliable than those obtained by deduction or induction. 
You will find in Questions 9.4 and 9.5, respectively, examples of the failure 
of analogy and of intuition.

In what kind of problem setting is deduction applicable? And in what kind 
of setting is induction applicable? The distinguishing criterion is whether 
the setting is (or is assumed to be) one of complete certainty.

In a setting of complete certainty, deduction is applicable, and there is no 
need for induction. Why? Because if all assumptions made (including the 
assumption that nothing is uncertain) are correct, and the rules of deduction 
are obeyed, then a deductive inference must be correct.

If you think back to the problems you solved in school mathematics 
 (algebra, calculus, geometry and trigonometry), you will recall that, in these 
areas, chance influences were given no role whatever. No surprise, then, 
that deduction is the system of logic that underpins all mathematical 
 inferences – which mathematicians call ‘theorems’.

It is a great strength of deductively based theorems that they are universally 
correct (i.e. for every case where the same assumptions apply). For instance, 
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given the assumptions of (Euclidean) plane geometry and the definition of a 
right‐angled triangle, Pythagoras’s Theorem is true for every such triangle, 
without exception.

Now, what about reasoning in a setting of uncertainty? Here, induction is 
applicable, and you can see how it contrasts with deduction. In a setting 
of  uncertainty, even if all assumptions made are correct and the rules of 
induction are obeyed, an inductive inference might not be correct, because 
of chance influences, which are always at work.

Still, induction is more reliable in this setting than deduction, because the 
rules of induction explicitly recognise the influence of chance, whereas 
the rules of deduction make no mention of it whatever. In short, when the 
influence of chance is inescapable  –  as is the case in most real‐world 
 situations – induction is the system of logic that underpins all inferences.

If you head out one morning at the usual time to catch your regular 
7.30 am train to work, you are reasoning inductively (or ‘making an induc-
tive inference’). Train timetables are vulnerable to bad weather delays, 
signal failures, and accidents along the rail line. So, even if, on all previous 
occasions, the 7.30 am train arrived on time, it is not correct to conclude 
that it must arrive on time today. Of course, the train is highly likely to 
arrive on time. But you cannot logically say more than that.

It follows that inductive inferences that are highly reliable in one circum-
stance are not necessarily highly reliable in other circumstances, even where 
the same assumptions apply. That is because chance influences can take many 
different forms, and always (by definition) come ‘out of the blue’. For instance, 
even though the on‐time arrival of your 7.30 am train has turned out to be 
highly reliable, reliability may shrink when you are waiting for your train 
home in the afternoon peak hours  –  the most likely period (our Sydney 
 experience shows) in which unforeseen disruptions to train schedules occur.

‐‐‐oOo‐‐‐

We have now seen that it is inductive logic that enables inferences to be 
made in the face of uncertainty, and that such inferences need not be reliable 
in any particular instance. You may be thinking, ‘it’s no great achievement to 
produce unreliable conclusions’.

This thought prompts a new question: given that induction is the only 
system of logic that is applicable in chance situations, can rules of induction 
be configured to allow the conclusions it produces to be highly reliable in 
principle?

The answer is yes. Over the past century, statisticians have given a great 
deal of attention to refining the rules of induction that have come down to us 
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through the cumulative work of earlier logicians, beginning with Francis 
Bacon (1561–1626). These refined rules of induction, now designed expressly 
for quantitative inferences, are called the rules of statistical induction.

The distinction between an inductive inference and a statistical inductive 
inference may seem both subtle and trivial. For an excellent discussion of 
the distinction, see chapters 4 and 5 of Burbidge (1990). While it is a subtle 
distinction, it is definitely not trivial. Relative to alternative ways of specifying 
rules of induction, the rules of statistical induction have, in principle, the 
highest chance of producing reliable conclusions in any particular instance.

In other words, statistical inductive inference is the most reliable version of 
the most powerful logic that we have for reasoning about chance events. 
As statisticians, we find this both fascinating and inspiring.

For simplicity, we shall now drop the formal term ‘statistical inductive 
inference’ and revert to using its conventional equivalent  –  ‘statistical 
inference’.

Statistical description and statistical inference are the workaday roles of 
statistics. These two roles define the highways, so to speak, of statistical 
activity.

‐‐‐oOo‐‐‐

Statistics also has many byways. You will find them prominent in this book. 
Yet, they are not front and centre in statistics education curricula, nor are 
they part of the routine activities of applied statisticians. So, how do they 
come to attention?

Statistical theorists come upon several of these byways when refining 
and enhancing basic methods of analysis. In one category are paradoxes of 
probability and statistics (see, for some examples, Chapters 10 and 11). 
In  another are problems of using standard statistical techniques in non‐
standard situations (see Chapter 17). In a third are unifying principles: 
fundamental ideas that are common to diverse areas of statistical theory. 
Discovering unifying principles means identifying previously unrecognised 
similarities in the subject. Unification makes the subject more coherent, 
and easier to understand as a whole. Examples of unifying principles are 
the Central Limit Theorem (see Chapters 12 and 14) and the power law 
(see Chapter 24).

Another byway is the history of statistical ideas. Historians with this 
 special interest bring to life the philosophical standpoints, the intellectual 
explorations and the (sometimes controversial) writings of statistical pio-
neers, going back over several centuries. Though pioneering achievements 
may look straightforward to us in hindsight, the pioneers generally had to 
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struggle to succeed  –  first, in formulating exactly what it was they were 
trying to solve, and then in harnessing all their insight, knowledge and 
 creativity towards finding solutions, often in the face of sceptical critique 
(see, for instance, Chapters 18 and 22).

Yet another byway is the social impact of statistics. Here are three paths 
worth exploring on this byway: consequences of the low level of statistical 
literacy in the general community, and efforts to raise it (see Chapters 3 
and 6); public recognition of statisticians’ achievements via eponymy 
(see Chapter 23); and the negative effects of widespread public misuse of 
statistical methods, whether from inexperienced analysts’ ignorance, or 
from a deliberate intention to deceive (see Chapters 8 and 9).

These are by no means all the byways of statistics. You will discover others 
for yourself, we hope, scattered through the following chapters.

You may then also come to share our view that, to people who are curious, 
the lightly visited byways of statistics can be even more delightful, more 
surprising and more fascinating than the heavily travelled highways of 
standard statistical practice.

If, at this point, you would like to refresh your knowledge of statistical ideas 
and principles, we recommend browsing the following technically very acces-
sible books: Freedman, Pisani and Purves (2007), and Moore and Notz (2012).

 Highways and byways.
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Questions

Question 1.1 (A)

Figure 1.1 shows, on a logarithmic horizontal scale, the cumulative 
 percentage frequency of heads in a sequence of 10,000 tosses of a coin.

These 10,000 tosses were performed by a South African statistician, John 
Kerrich, who went on to be the Foundation Professor of Statistics at 
Witwatersrand University in 1957.

a) Where, and under what unusual circumstances, did Kerrich perform 
these 10,000 tosses?

b) Does the information in the graph help us to define ‘the probability of 
getting a head when a fair coin is tossed once’?

Question 1.2 (A)

When young children are asked about their understanding of probability, 
they quickly decide that the sample space for rolling a single die consists of 
six equally likely outcomes. When it comes to two dice, however, they often 
conclude that the sample space has 21 outcomes that are equally likely. 
Where does the number 21 come from?

Question 1.3 (A)

‘Most people in London have more than the average number of legs.’ Is this 
statement correct? Does it indicate some misuse of statistical methods?
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Figure 1.1 Scatterplot of Kerrich’s coin‐tossing results. Data from Freedman, Pisani and 
Purves (2007).
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Question 1.4 (A)

Based on thirty continuous years of recorded temperature data, the average 
temperature over the 12 months in a calendar year in New York is 11.7 °C, in 
New Delhi it is 25.2 °C, and in Singapore it is 27.1 °C. (To see the data – which 
may vary slightly over time – go online to [1.1], select the three cities in turn 
from the menu, and find the monthly average temperatures in the left‐hand 
frame for each city.)

Does this mean that it gets roughly twice as hot in New Delhi during the 
year as it does in New York? Does it mean that the climate in Singapore is 
much the same as that in New Delhi?

Question 1.5 (B)

The map in Figure 1.2 shows a part of London. By whom was it drawn and 
when? With what famous event in the history of epidemiology is it con-
nected? (Hint: note the street‐corner pump.)
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Figure 1.2 Extract from a map showing a part of London. Reproduced with the 
permission of Michael Rip.
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2

‘What’s the difference between mathematics and statistics?’ Many school 
students put this question to their teacher, aware that these subjects are 
related but not clear on what it is, exactly, that distinguishes them. 
Unravelling this puzzle is generally not made any easier for students by the 
fact that, in most schools around the world, it is the mathematics depart-
ment that normally teaches statistics. To these curious but bewildered 
students, ‘maths’ seems to be defined by the topics that the teacher and the 
textbook say are maths, and similarly for ‘stats’. So, algebra, calculus, geom-
etry and trigonometry are ‘maths’, while frequency distributions, averages, 
sampling, the normal distribution, and estimation are ‘stats’. That doesn’t 
go very far towards providing a convincing answer to our opening ques-
tion. Anyway, what about probability? Is that ‘maths’ or ‘stats’?

A thoughtful teacher will want to supply a better answer. Surprisingly, in 
our experience, a better answer is rarely found either in curriculum docu-
ments or in textbooks. So let’s see if we can formulate a better answer in a 
straightforward way.

A constructive start is to ask in what ways statistics problems differ from 
mathematics problems.

Here is something fairly obvious: statistics problems have a lot to do with 
getting a view of the variability in data collected from the real world. For 
example, a statistical problem may present 100 measurements (by different 
people) of the length of a particular object, using a tape measure, with the 
assigned task being to construct a frequency distribution of these measure-
ments to see whether measurement errors tend to be symmetrical about the 
correct value, or whether people tend to veer more to one side or the other. 
By contrast, in a mathematical problem involving the length of an object, 

How statistics differs from mathematics
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the single measurement stated is simply to be taken to be the correct one, 
and the assigned task goes on from there.

If we ask why 100 people don’t all produce exactly the same length meas-
urement for the same object, using the same tape measure, we are led to a 
fundamental realisation. There are many factors at work in the physical act 
of measurement that cause different results to be reported for the same task 
by different people. Among these factors are: the attentiveness with which 
the task is undertaken; the effect of parallax in reading the scale marks on 
the tape; possible tremor in the hand holding the tape measure; and eyesight 
variations in those reporting measurements. Some of these factors might 
lead a person to mismeasure in a way that exceeds the correct value, while 
other factors might cause that same person to fall short of the correct value. 
Moreover, different people might react differently to any particular factor.

While it would be theoretically possible to study systematically some, or 
all, of these causes of variation individually (and there are contexts where it 
would be important to do so), it is generally convenient to lump all these 
real‐world factors together and to refer to their net effect on measurement 
as chance (or random) variation around the correct value. This highlights 
the truth that chance influences are inseparable from almost all experience 
of life in the real world. (For more detail about the meaning of randomness, 
see Chapters 10 and 11.)

Chance variation has long been recognised. A famous passage in the bibli-
cal Book of Ecclesiastes, written some 2,200 years ago, shows how random 
events can have perplexing impacts: ‘… the race is not to the swift, nor the 
battle to the strong, nor bread to the wise, nor riches to the intelligent, nor 
favour to those with knowledge, but time and chance happen to them all.’

One may, of course, choose to abstract from chance influences (as the 
Public Transport Department does, for example, when it publishes a train 
timetable), but looking away from them should be understood as a deliberate 
act to simplify complex reality. In contexts where chance effects are ordinarily 
small (e.g. train journey times along a standard urban route), abstracting from 
chance is unlikely to cause decision errors to be made frequently (e.g. about 
when to come to the station to catch the train). However, where events are 
heavily dominated by random ‘shocks’ (e.g. daily movements in the dollar/
pound exchange rate on international currency markets), predictions of what 
will happen even a day ahead will be highly unreliable most of the time.

As we mentioned in Chapter 1, school mathematical problems are 
generally posed in abstract settings of complete certainty. If, on occasion, a 
mathematical problem is posed in an ostensibly real‐life setting, the student 
is nevertheless expected to abstract from all chance influences, whether 
doing so is true to life or not. Here is a typical example: try solving it now.
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According to the timetable, a container train is allowed 90 minutes for a 
journey of 60 miles over mountainous country. On a particular trip, the 
train runs into fog and its speed is reduced, making it 25 minutes late at its 
destination. Had the fog appeared six miles closer to its point of departure, 
the train would have been 40 minutes late. At what rate does the train travel 
through fog?

(The answer is 15 miles per hour. Did you see in which way the problem is 
unrealistic and where chance influences are ignored? The train, incidentally, 
is pictured on the cover of this book.)

However appealing such problems may be for exhibiting the ‘relevance’ of 
mathematics, they risk concealing from students its fundamental logical 
limitation. The great physicist, Albert Einstein (1879–1955), expressed it 
concisely: ‘As far as the propositions of mathematics refer to reality, they 
are not certain; and as far as they are certain, they do not refer to reality.’ 
(see Einstein (1921), online in the German original at [2.1] and in English 
translation at [2.2]).

We can elaborate Einstein’s aphorism like this. In solving a problem in a 
real‐life setting, the mathematical approach neglects all chance influences 
in that setting and, on that account, the mathematical solution is stated with 
certainty – but that solution is evidently an approximation to the solution in 
reality. Moreover, the error in the approximation is indeterminate. The sta-
tistical approach, by contrast, recognises the chance influences explicitly 
and, on that account, the statistical solution cannot be stated with certainty. 
The statistical solution, too, is an approximation to the solution in reality – but 
in the statistical approach, the error due to the chance influences can be 
dependably assessed within bounds.

Well, what about problems in probability? Self‐evidently, they are problems 
about chance events but, here, calculating the probability of occurrence of 
some random event is the entire goal: it is simply an exercise in arithmetic 
according to predefined rules. Moreover, within the scope of the problem, it 
is certain that the calculated probability is correct. Therefore such prob-
lems, too, are mathematical problems. However, were the random event 
embedded in some inferential context, then the inferential problem would 
thereby be a statistical problem.

‐‐‐oOo‐‐‐

So far, we have seen that the central focus of statistics is on variation and, in 
particular, on chance variation. Mathematics acknowledges variables, but 
it does not focus centrally on their variation, and it abstracts entirely from 
the influence of chance.
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The central focus of mathematics is on those general properties that are 
common to all the varying members of a set. Circles, for example, vary in 
their diameters, but circle theorems relate to the properties that all circles 
have in common, regardless of their particular diameter. Similarly, 
Pythagoras’s Theorem is true for all plane right‐angled triangles, regardless 
of their size.

While mathematicians’ prime objective is to prove general theorems, 
which then imply truths about particular cases, statisticians proceed in 
reverse. They start with the ‘particular’ (namely, a sample of data) and, from 
there, they seek to make statements about the ‘general’ (that is, the popula-
tion from which their data were sampled).

‐‐‐oOo‐‐‐

Finally, we come to the contrasting nature of numerical data in mathemati-
cal and in statistical problems. Data (literally, ‘givens’ – from the Latin) 
are indispensable inputs to any process of computational problem 
 solving. However, ‘data’ mean different things to mathematicians and to 
statisticians.

As we have seen, to a mathematician data are values of non‐random vari-
ables, and the task is to apply those numbers to evaluate a special case of a 
known general theorem –  for example, to find the equation of the (only) 
straight line that passes (exactly) through two points with given coordinates 
on a plane. To a statistician data are values of random variables, and the 
statistician asks, ‘How can I confidently identify the underlying systematic 
information that I think there is in these data, but that is obscured by the 
random variability?’ For example, what is the equation of the best‐fitting 
straight line that passes as near as possible to ten points with given coordi-
nates, scattered about on the same plane in a pattern that looks roughly 
linear, and how well does that scatter fit to that line? The statistician also 
asks, ‘How reliably can I generalise the systematic sample information to the 
larger population?’ A large part of a practising statistician’s work is the 
analysis of data – but a mathematician would never describe his or her work 
in this way.

As if practising statisticians did not have enough of a challenge in seeking 
out meaningful systematic information ‘hidden’ in their randomly‐varying 
data, they must also be prepared to cope with a variety of problems of data 
 quality – problems that could easily send their analysis in the wrong direction.

Among such problems are conceptual errors (a poor match between the 
definition of an abstract concept and the way it is measured in practice), 
information errors (e.g. missing data, or false information supplied by 
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survey respondents), and data processing errors (e.g. the digital transposi-
tion that records the value 712 as 172).

What follows from this perspective on the ways in which statistics differs 
from mathematics? Statistics is not independent of mathematics, since all 
its analytical techniques (e.g. for summarising data and for making statisti-
cal inferences) are mathematically derived tools (using algebra, calculus, 
etc). However, in its prime focus on data analysis and on generalisation in 
contexts of uncertainty, and in its inductive mode of reasoning (described in 
Chapter 1), statistics stands on its own.

Questions

Question 2.1 (A)

a)  Pure mathematics deals with abstractions. In geometry, for example, 
lines have length but no breadth, planes have length and breadth but no 
thickness, and so on. In this setting, we pose the problem: a square has 
sides 20 cm long; what is the length of its diagonal? How does the math-
ematician answer? Is this answer accurate?

b) Statistics deals with real‐world data – measurements of actual objects 
and observations of actual phenomena. On graph paper, construct, as 
precisely as you can, a square with sides 20 cm long. Then ask, say, 25 
different people to use their own millimetre‐scale rulers to measure the 
length of the square’s diagonal, taking care to be as accurate as possible. 
Record these measurements. In this setting, we pose the problem: what 
is the length of the diagonal? How does the statistician answer? Is this 
answer accurate?

Question 2.2 (A)

Mathematical induction is a versatile procedure for constructing a proof in 
mathematics. Explain the general approach underlying mathematical induction, 
and give an example of its use. Does mathematical induction use deductive logic 
or inductive logic? What is the implication of your answer to this question?

Question 2.3 (A)

Consider the mathematical expression n2 + n + 41. If n = 0, the expression 
has the value 41, which is a prime number. If n = 1, the expression has the 
value 43, also a prime number.
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a) Make further substitutions of n = 2, 3, 4, 5 and, in each case, check 
whether the result is a prime number. What does this suggest?

b) Repeat for n = 6, …, 10 (or further, if you like). What inference would you 
draw statistically from this accumulating information?

c) Is this inference actually correct? Can you prove or disprove it, 
mathematically?

Question 2.4 (A)

Sherlock Holmes, the famous fictional consulting detective created by the 
British novelist Sir Arthur Conan Doyle (1859–1930), solved crimes by 
reasoning from data in ways similar to a statistician’s reasoning. What 
similarities can you see in the following passage (from ‘The Five Orange 
Pips’ in the book The Adventures of Sherlock Holmes)?

‘Sherlock Holmes closed his eyes, and placed his elbows upon the 
arms of his chair, with his fingertips together. “… [W]e may start with 
a strong presumption that Colonel Openshaw had some very strong 
reason for leaving America. Men at his time of life do not change all 
their habits, and exchange willingly the charming climate of Florida 
for the lonely life of an English provincial town. His extreme love of 
solitude in England suggests the idea that he was in fear of someone 
or something, so we may assume as a working hypothesis that it was 
fear of someone or something which drove him from America. As to 
what it was he feared, we can only deduce that by considering the 
formidable letters which were received by himself and his successors. 
Did you remark the postmarks of those letters?” “The first was from 
Pondicherry, the second from Dundee, and the third from London” 
[replies Dr Watson]. “From East London. What do you deduce from 
that?” “They are all seaports. That the writer was on board a ship.” 
“Excellent. We have already a clue. There can be no doubt that the 
probability – the strong probability – is that the writer was on board 
of a ship.”’

Why is the word ‘deduce’ inappropriate in the above passage? What word 
should Conan Doyle have used instead?

Question 2.5 (A)

How can one find an approximation to the value of π, the ratio of a circle’s 
circumference to its diameter, by way of a statistical experiment that 
involves tossing a needle randomly onto a flat surface ruled with parallel 
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lines? What is the name of the 18th century polymath with whom this 
experiment is associated?

References

Online

[2.1] Einstein, A. (1921), Geometrie und Erfahrung. Erweiterte Fassung des 
Festvortrages gehalten an der Preussischen Akademie der 
Wissenschaften zu Berlin am 27. Januar 1921. Julius Springer, Berlin. 
Pages 3–4. At https://archive.org/details/geometrieunderf00einsgoog

[2.2] Einstein, A. (1921), Geometry and Experience. Lecture before the 
Prussian Academy of Sciences, January 27, 1921. Julius Springer, Berlin. 
In The Collected Papers of Albert Einstein. At http://einsteinpapers.
press.princeton.edu/vol7‐trans/225

https://archive.org/details/geometrieunderf00einsgoog
http://einsteinpapers.press.princeton.edu/vol7-trans/225
http://einsteinpapers.press.princeton.edu/vol7-trans/225


A Panorama of Statistics: Perspectives, Puzzles and Paradoxes in Statistics, First Edition.  
Eric Sowey and Peter Petocz. 
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd. 
Companion website: www.wiley.com/go/sowey/apanoramaofstatistics

20

3

Numeracy, also called quantitative literacy, is an undervalued skill that 
struggles for recognition among educators and the general public. It is only 
since the turn of the century that governments in many developed countries 
have come around to recognising that a numerate citizenry is as important 
an attribute of an advanced society as a literate citizenry. But there have 
been lone voices urging this recognition for a long time, among them John 
Allen Paulos, whose 1988 book Innumeracy: Mathematical Illiteracy and its 
Consequences made a considerable impact. Already more than a century 
ago, the British writer H.G. Wells foresaw that advancing numeracy would 
inevitably become a pressing need for society (for more on Wells’ predic-
tion, see Question 5.4).

By ‘numerate’, here, we mean ‘functionally numerate’. A basically numerate 
person is someone who recognises number symbols and correctly performs 
basic arithmetic. A functionally numerate person can also correctly inter-
pret and meaningfully evaluate a logical argument couched in numbers. 
It should be clear that one does not need to know any advanced mathemat-
ics to be functionally numerate.

However, what is needed is not what one finds emphasised in calls for 
reform of the traditional high school mathematics curriculum. That is to 
say, making traditional school mathematics topics more interesting, more 
relevant to a career such as engineering or accountancy, or more fun, 
will not necessarily produce highly numerate adults. A curriculum for effec-
tively developing functional numeracy looks rather different from a curricu-
lum, however thoughtfully it is enhanced, for teaching algebra, calculus, 
geometry and trigonometry.

Statistical literacy – essential in the 21st century!
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As we shall explain, it is topics in statistics, rather than topics in mathe-
matics, that lie at the heart of any effective movement to advance quantita-
tive literacy in the community. Quantitative literacy is, in essence, statistical 
literacy.

There were quantitative literacy movements even when government 
backing was hardly yet available. They developed out of the creative efforts 
of individuals and scholarly societies, who understood how essential it is in 
a liberal society to equip citizens with the knowledge to dissect the kinds of 
quantitative arguments increasingly levelled at them  –  in particular, by 
politicians and marketers set on persuasion. Among the consistently active 
advocates for a numerate society over the past 20 years have been Andrew 
Ehrenberg (in the UK) and Lynn Arthur Steen (in the USA).

Current numeracy projects are still mostly evolving within national 
boundaries, though some cross‐fertilisation is emerging as a result of initia-
tives by scholarly societies, and of interactions nurtured at international 
conferences.

At the school level, a particularly promising UK initiative that has now 
taken on an international dimension is a project called CensusAtSchool, a 
‘children’s census’ aiming to collect and disseminate data about, and rele-
vant to, students. CensusAtSchool started in 2000, with support from the 
Royal Statistical Society. It was initially run by the International Centre for 
Statistical Education at Plymouth University in the UK. Despite recent 
widespread funding cuts, several countries continue to participate. The 
website at [3.1] gives details of the UK project. The Irish site is at [3.2] and 
the Canadian site at [3.3]. School teachers and their students have access 
to data from their own and other countries. These data provide a rich 
context in which to develop a basic understanding of the uses and limita-
tions of numerical information, as a practical introduction to statistical 
literacy.

An international overview of projects and publications in statistical liter-
acy is maintained by the International Statistical Literacy Project, which is 
online at [3.4]. The ISLP operates under the auspices of the International 
Statistical Institute.

Another valuable website on this theme, at [3.5], is maintained in the 
USA by Milo Schield, who is committed to giving a lead on enhancing 
people’s statistical literacy and is, himself, a prolific writer on the sub-
ject. Schield’s website is a comprehensive source of information, aimed 
particularly at  adults. The home page has links to a large number of 
articles and books – popular as well as academic – on various aspects of 
statistical  literacy. There is enough reading there to keep anyone busy for a 
long time.
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We think it appropriate that current approaches to advancing quantita-
tive literacy in schools are focusing on statistical literacy, rather than on 
mathematical literacy. As we point out in Chapter  1, mathematical 
methods are not routinely applicable to interpreting and evaluating quan-
titative arguments about the real world, where the influence of uncertainty 
is generally inescapable. However, that is precisely the realm of statistics. 
A statistical approach to promoting adult numeracy appeals because it 
can embrace discussions of practical issues in society, such as the broad 
topic of social justice (see Lesser (2007) – online at [3.6]). Further, such 
discussions often spark new interest in quantitative matters among people 
who studied only (deterministic) mathematics in their schooldays, and 
puzzled at that time over the apparent disconnection between textbook 
problems and reality.

Together with these developments in school and adult education, there 
is a parallel growth of academic research interest in the area of statistical 
literacy. A comprehensive collection of publications in statistics education 
between 2010 and 2014 was studied by one of the present authors (PP). 
It revealed that 60% of articles referred to at least one of the terms ‘statistical 
literacy’, ‘statistical reasoning’ and ‘statistical thinking’. Since 1999, a group 
of scholars has been actively investigating these three topics. Some of the 
group’s activities are outlined on their SRTL (Statistical Reasoning, Thinking 
and Literacy) website at [3.7].

Our Questions 3.1 and 3.2, below, are based on items in the media. 
These questions hint at what a handicap statistical illiteracy can be to a 
competent understanding of public discussions on topics of social and 
community interest.

Questions

Question 3.1 (B)

A report on the BBC News (11 February 2005 – online at [3.8]), related the 
story of the number 53 in the Venice lottery. The Italian national lottery is a 
type of lotto, in which draws of five numbers from numbers 1 to 90 take 
place in each of ten cities across the country (a total of 50 numbers are 
selected). In the Venice lottery, the number 53 had not come up in 152 con-
secutive draws over 20 months, and Italians were in a frenzy betting on 53 in 
Venice, ever more utterly convinced on each occasion that it failed to appear, 
that it simply had to appear next time. Four people reportedly died, and 
many others were completely ruined in incidents related to this betting.
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a) What name is popularly given to the (invalid) principle which motivated 
the public’s conviction that 53 was ever more likely to appear, the longer 
the continuous run of its non‐appearance?

b) What is the probability that number 53 does not come up 152 times in a 
row in the Venice lottery? What is the probability that it does not come up 
152 times and then does come up on the 153rd draw (as actually hap-
pened)? In this context, where there are 90 numbers to choose from at 
each draw, what related lottery outcome might also have caused a betting 
frenzy, even though the probability of its occurrence is much larger?

Question 3.2 (A)

To judge from the frequency with which they turn up in news reports 
of  social research, statistical ‘league tables’ have a strong appeal to the 
 public – perhaps because they give each social group the  satisfaction of 
 seeing how many other groups they are ‘outperforming’. But such league 
tables can be a rich source of misconceptions.

Figure 3.1 shows data on the ‘Top 10 night‐owl nations’ from an interna-
tional survey of sleep hours in 28 countries in Europe and the Asia‐Pacific 
region, carried out in 2004 by a reputable agency. The survey procedure is 
described as follows: ‘a representative sample of consumers with internet 
access are asked questions relating to … their attitudes towards a variety of 
topics.’ On this occasion about 14,000 people were surveyed.

Conclusions are presented in the following terms: ‘the biggest night‐owls 
the world over are the Portuguese, with 75% not “hitting the sack” until 
after midnight … The second ranked global night‐owls are the Taiwanese, 
with 69% going to bed after midnight … Following closely behind are the 
Koreans (68%) …’

Rank Country Going to bed after midnight
1 Portugal 75%
2 Taiwan 69%
3 Korea 68%
4 Hong Kong 66%
5 Spain 65%
6 Japan 60%
7 Singapore 54%
8 Malaysia 54%
9 Thailand 43%
10 Italy 39%

Figure 3.1 Bedtime habits by country.
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What critical questions should occur to a statistically literate person, 
regarding this ‘league table’ and the survey information and conclusions, 
as described?

Question 3.3 (A)

You are asked a question by a beginner in statistics: ‘For valid inferences 
about a diverse population, why isn’t it more important to  have a repre-
sentative sample than a random sample?’ How do you reply?

Question 3.4 (A)

It is well known that the shape of a histogram will vary, depending on the 
number of class intervals used in its construction. What other features of 
its construction influence the shape of a histogram? Is there a ‘best’ choice 
for the number of class intervals to use in practice?

Question 3.5 (A)

The histogram in Figure 3.2 shows the ages of 282 of the 778 convicts 
who were transported on the First Fleet from England to Australia in 1788. 
Can you use this information to estimate the mean age of all the convicts 
on the First Fleet? If you can, what is the value of your estimate?
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Figure 3.2 Ages of a sample of convicts on the First Fleet. Data from ‘The First Fleet 
Convict Database’, Computer Education Unit, NSW Dept. of Education, 1986.
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As a discipline serving other disciplines, statistics has been ubiquitous in 
print for half a century, and its applications can be found reported in almost 
every field of human endeavour. Since 2000, statistics also appears widely 
across the web, in both closed‐access and open‐access documents.

It is relevant here to distinguish these two classes of web documents. 
The former (located behind some form of pay‐wall) are mostly documents 
produced by commercial organisations (book and journal publishers, soft-
ware designers, and consultancies of every kind). However, items that have 
traditionally been closed‐access are increasingly being made partially avail-
able in open‐access form. This is partly due to the encouragement of major 
online retailers and search engine companies, who propose that tempting 
readers with free access to a strictly limited number of document pages can 
elicit increased commercial sales in the long run. There is also a vigorous 
grass‐roots movement worldwide, pressing for the transformation of 
closed‐access scholarly journals to open‐access. Now that there are several 
models for publishers to recoup, in other ways, the income they would forgo 
by abandoning access charging, that transformation is gaining pace.

In what follows, we shall write only about the open‐access web.
It is quite impossible to give an overview of all the material on, or related 

to, statistics – in all its senses: the discipline, the techniques, and the numer-
ical data  –  that is currently on the web in English and other languages. 
However, some idea of the variety and scope of this material can be obtained 
by browsing some of the leading English language websites devoted to 
bringing together links to online statistical material of high quality.

Wide‐ranging, and for statisticians generally, is Gordon Smyth’s portal 
at [4.1]. A parallel site focused on probability is The Probability Web at [4.2]. 

Statistical inquiry on the web
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A detailed reference manual of techniques is Gerald Dallal’s The Little 
Handbook of Statistical Practice at [4.3]. Two extensive online textbooks are 
Keith Dear’s SurfStat at [4.4] and David Lane’s HyperStat at [4.5]. The fertility 
of statistical methods in a wide variety of fields is conveyed by the collection 
of videoed lectures on the Chance website at [4.6].

The field of statistics education is well served by the compendium of links 
on the US CAUSEweb organisation’s site at [4.7], and by the open‐access 
academic journals, Journal of Statistics Education at [4.8] and Statistics 
Education Research Journal at [4.9]. Full‐text access to hundreds of other 
academic journal articles on statistics is available via the Project Euclid 
searchable database at [4.10]. A portal to every country’s official national 
agency that collects and publishes demographic and economic statistics is 
linked at [4.11]. You can find several websites providing collections of links 
on the history of probability and statistics in Chapter 22.

As everyone knows, anything to do with the web changes fast, sometimes 
very fast! The rate at which new material appears is such that, for those who 
maintain sites like those just mentioned, keeping up is an enormous task. 
Even the most dedicated and persevering individual is eventually over-
whelmed. Regrettably, few of the online information repositories about 
statistics are assured continuity of staffing (not to speak of funding).

At the same time, countless documents are deleted from the web or have 
their uniform resource locator (URL) address changed without providing a 
forwarding link. That means that their links in online information reposito-
ries become ‘dead’. Dead links, especially those to valued and frequently 
accessed resources, are naturally a source of frustration to all.

To reduce the incidence of dead links among popular websites, it would be 
good to have a way of identifying a web document as ‘stable’ – that is, destined 
for permanent residence on the web, and automatically traceable by a search 
engine even if its URL address is changed. Several systems for stable docu-
ment identification are, indeed, currently available. The most widely adopted 
such system in the academic sphere is, at present, the Digital Object Identifier 
(doi), described online at [4.12]. However, since it is a fee‐based product, it is 
uncommon to find open‐access documents so identified.

‐‐‐oOo‐‐‐

What with the continual addition and deletion of web documents, two suc-
cessive searches using the same search terms – even just a day apart – may 
produce a different number of hits. How much more marked would this 
effect be if the interval between the searches were far longer? To explore 
this, we present a little case study that took us into a literary byway of 
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statistics. It contrasts what we found in a specific search in 2007 with exactly 
the same search done eight years later.

One of us remembered reading, in pre‐web days, some statistician’s 
claim to the effect that ‘we may not be able to use statistics to answer the 
question of what song the Sirens sang, but it can be used to answer just 
about anything else’. Might a web search enable us to rediscover who made 
that claim?

The Sirens, we remind you, were fabled creatures in Greek mythology 
who, from their island seat high on a rock beside the water, could lure sailors 
to their destruction on a reef below by the seductiveness of their singing. 
Statistical mariners were, however, distracted differently, it seems.

‘Don’t bother singing to this lot, girls. Just show them your figures.’

Using Google to search for the exact words ‘song the Sirens sang’  ultimately 
(i.e. after progressing to the last of the search result screens) generated 
about 80 hits. Among these we found two remarkable items. Firstly, the 
question ‘What song did the Sirens sing?’ was (so the Roman historian 
Suetonius reported) asked teasingly of visiting scholars of Greek by the 
Roman emperor Tiberius some 2000 years ago. This question has come 
down to us today as symbolic of all legendary enigmas (though what Tiberius 
was probably getting at was that the Sirens, usually portrayed in that era 
as  part‐woman and part‐bird, were more likely to have been warbling 
 alluringly rather than singing any song).

Secondly, Sir Thomas Browne, an eminent doctor and writer of Norwich, 
England, observed cautiously in 1658, ‘What song the Sirens sang, or what 
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name Achilles assumed when he hid himself among women, though 
 puzzling questions, are not beyond all conjecture.’ Thus, we discovered 
that the ‘song the Sirens sang’ is a much older allusion than we had 
believed.

Continuing with the additional search term ‘statistics’ narrowed the field 
to a mere 20 hits. None of these, alas, yielded a phrase resembling the 
 quotation whose author we were seeking.

Eight years later, we again made a Google search for the exact words ‘song 
the Sirens sang’. This time we scored about 210 hits. Adding the search term 
‘statistics’ reduced the number of hits to about 70 (we say ‘about’ because, 
as  already mentioned, web search hits fluctuate somewhat by the day). 
Once again, however, there was no success in identifying the author of the 
remembered quotation.

Nonetheless, this little experiment has revealed or confirmed some inter-
esting things.

Firstly, we note that, with the search terms unchanged, the number of hits 
increased substantially over the eight years in both searches – from 80 and 
20 to 210 and 70. This is hardly surprising, given the enormous annual 
growth rate of the internet. Looking specifically at the hits found in our 
particular searches lets us identify three prominent forces behind the 
growth in their numbers. These forces are the growth of blogging, the 
growth in numbers of websites with English language content originating 
from non‐Anglophone countries, and the growth in numbers of print 
 publications migrating – at least partially – to the open‐access web.

Next, we look at the quality of the harvested results relating to  statistics. 
About 20% of the hits in our most recent search, coupling Sirens and 
 statistics, were on documents dealing directly with statistical theory or 
applications (as opposed to literary speculations about the legendary 
Sirens). Most of these hits were either scholarly items or educational 
materials. Questions of the accuracy, meaningfulness and quality of 
explanation in these documents arise – as they do, of course, in regard to 
all information gleaned from the web. Except where the material has 
had some form of impartial peer review or has other scholarly standing, 
scepticism may be the most appropriate initial approach to the  information 
offered.

Further, the web hosts many publicly‐modifiable wiki‐type resources 
dealing with statistical topics, as well as websites where anyone can ‘vote’ 
(anonymously) for the ‘best’ of several (anonymously) submitted answers to 
someone’s uploaded statistical problem. Our search turned up one such 
site. We can only reiterate the routine warnings of statistics professionals to 
treat the information on these sites with extreme caution.
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‐‐‐oOo‐‐‐

And now, what about the half‐remembered quotation from a statistician 
about the almost universal utility of statistics? In a serendipitous moment 
while this chapter was in draft, the source came to mind, after half a lifetime, 
in a sudden flash of recollection. It was the first edition of Freedman, Pisani 
and Purves (1978), where the cautious words of Sir Thomas Browne 
(as already cited) appeared in the Preface. So it was not one statistician who 
claimed that statistics is almost universally useful, but three. Enlivened by 
Browne’s words, these authors declare ‘Statistics is the art of making numer-
ical conjectures about puzzling questions’ (page xiii), inviting the reader to 
understand that, though there may be questions about the world whose 
answers are ultimately unknowable, answers to the questions with which 
statistics is equipped to deal are, indeed, ‘not beyond all conjecture’.

The quotation from Sir Thomas Browne is a feature of all editions of the 
text by Freedman, Pisani and Purves, the latest having been published in 
2007. Why, then, was this location of Browne’s words not one of the hits of 
our web searches? Even though books in copyright are rarely on the  open‐
access web, many publishers (as mentioned earlier) see commercial merit in 
making their books partially open access. The Freedman, Pisani and Purves 
book is an example. Unfortunately, the page bearing the quotation turns out 
not to be among the open‐access pages.

Questions

Question 4.1 (A)

Which seventeenth century Italian physician and inveterate gambler wrote 
the following (given in translation), and in which book?

‘Even if gambling were altogether an evil, still, on account of the many 
people who play, it would seem to be a natural evil. For that reason, it ought 
to be discussed by a medical doctor like one of the incurable diseases.’

Question 4.2 (A)

In what theatre play do the protagonists toss coins repeatedly and obtain 
100 heads in a row? What do they philosophise about this occurrence?

Question 4.3 (A)

When was the earliest official census in England undertaken and how was it 
documented?
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Question 4.4 (B)

In 1935, a certain Dr Anderson, a botanist, wrote an article about a particu-
lar kind of flower. A year later, his botanical measurements were applied by 
a famous statistician to illustrate the development of a new statistical 
technique.

What was the flower and where were the data collected? Who was the 
famous statistician and what was the new statistical technique being 
illustrated?

Question 4.5 (B)

In the mid‐1700s, a famous Italian adventurer persuaded the French 
 government, with the help of the mathematician and philosopher Jean 
D’Alembert, to set up and run a government‐backed lottery to raise money 
for a military academy in Paris. Who was the adventurer? How long did the 
lottery survive? Although it was an early version of our contemporary lotto, 
there was an important difference – what was this?
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5

Statistics, as the term appears in this chapter’s title, are numbers relating to 
the real world that are collected systematically for a purpose. Have you 
noticed how often statistics are mentioned these days in the print and digi-
tal media, as well as on websites of every kind? These statistics are usually 
precise, and it is usually implied that they are accurate. We remind you that 
precision (i.e. exactness) and accuracy (i.e. correctness) are not the same 
thing.

Among headlined statistics, some are counts (‘world population passes 
seven billion’), some are averages (‘Australia’s population density among the 
world’s lowest’), some are league tables (‘the annual Rich List’), and some are 
estimates generalised from sample data (‘84% of us dislike eating offal’). 
These statistics serve many different purposes – to inform, to impress, to 
persuade and, sometimes, just to entertain. There is even an unthinking 

Trustworthy statistics are accurate, meaningful 
and relevant

Numbers you do need.
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fashion in some newspapers and magazines to embellish news items or 
feature articles on ‘boring’ subjects with a text box displaying supposedly related 
statistics (‘the numbers you need’), but arranged in no particular order, and 
 adding negligible value to the story. They are, in fact, numbers you don’t need!

This rain of numbers may be journalists’ over‐enthusiastic response to 
discovering that people seem to be fascinated by numerical statistics when 
they illuminate the context – and even when they don’t!

Unfortunately, because the general level of numeracy (also called ‘sta-
tistical literacy’) in the community is quite low, even in countries with 
comprehensive education systems, misinterpretations of statistics and 
misunderstandings of statistical methods are very common. This, then, 
opens a door to those who want to misuse statistics in order to mislead or 
to deceive. In Chapters 8 and 9, we review some of the ways in which 
statistics can be misleading.

Happily, increasing efforts are now being made in many countries to 
remedy the general public’s limited understanding of basic statistical ideas 
and their lack of experience in interpreting numerical statistics. Notable 
among these efforts are the active statistical literacy initiatives of the Royal 
Statistical Society, which can be found via the RSS website, online at [5.1], 
and the evolving International Statistical Literacy Project, online at [5.2].

For an inexperienced consumer of statistics, it can be difficult to discrimi-
nate trustworthy (i.e. accurate, meaningful and relevant) statistics from 
those that may be unreliable (at best) or deceptive (at worst). To come to a 
decision on this issue, one needs answers to these questions:

 ● Who produced these statistics? (the maker)
 ● How were they produced? (the method)
 ● Who is presenting them to me, and why? (the motive)

Asking about the maker and the method is a way of judging how accurate 
and meaningful the statistics are. Introspecting about the motive can prompt 
you to assess the relevance of statistics that are being used persuasively in 
support of a particular cause, and to help you to decide whether the declared 
cause is, in fact, the real cause.

Thus, the answers you get to these questions can not only identify untrust-
worthy aspects of the statistics, but also greatly enrich your understanding 
of what is trustworthy and why.

‐‐‐oOo‐‐‐

To illustrate, we shall look at three fundamentally important statistics – one 
global, one national, and one personal. The statistics are values of the 
 following variables: the concentration of carbon dioxide in the atmosphere; 
the national unemployment rate; and a person’s white blood cell count. 



5 Trustworthy statistics are accurate, meaningful and relevant 37

Whatever the source of his or her information, when a statistically literate 
person comes upon a value for any of these variables, he or she will want to 
know if it is accurate, meaningful and relevant.

As we indicated above, finding out about accuracy and meaningfulness is 
best done by learning something about the maker of the statistic and the 
method of measurement. Our experience is that these inquiries often turn 
up unexpectedly interesting information. About relevance, we have some-
thing to say at the end of this Overview.

(a) The concentration of carbon dioxide in the atmosphere

Where might we come across this statistic? Perhaps in a magazine article 
about environmental protection that announces that the concentration by 
volume of carbon dioxide (CO2) in the Earth’s atmosphere is approaching 
400 parts per million.

Here is some background. The Earth’s atmosphere is currently composed 
of 78.08% nitrogen, 20.94% oxygen, 0.93% argon and 0.04% CO2, by volume. 
The remaining volume (less than 0.01%) is a mixture of about a dozen other 
gases and water vapour, each present in minute quantities. Unlike nitrogen, 
oxygen and argon, CO2 is a ‘greenhouse gas’ – that is, it has the property of 
absorbing some of the sun’s heat that is reflected from the Earth’s surface 
and radiating it back to Earth. So, although it comprises only such a tiny part 
of the atmosphere, CO2 plays a large part in determining the ambient tem-
perature on the Earth’s surface. Even a quite minor rate of increase in the 
concentration of atmospheric CO2 could, if it were sustained, have major 
long‐term consequences for the planet, as a result of ‘global warming’.

Now to the makers (i.e. the data collection and processing agencies) and 
the methods of measurement – the two factors that are central to judging 
the accuracy and meaningfulness of the statistics. We leave it to you to make 
these judgements by following up the references in the next two paragraphs, 
together with others you may discover for yourself.

Detecting any change in the tiny atmospheric concentration of CO2 evidently 
needs very accurate measurement. Nowadays, high accuracy is achieved using 
spectrometers mounted on aircraft or satellites. These instruments measure 
changes in sunlight as it passes through the atmosphere. Good results can also 
be obtained spectrometrically by analysing air samples captured at ground 
level, whether on land or at sea. To ensure that the measurement is meaningful, 
it makes sense to select places where atmospheric gases are well mixed – that is, 
away from locations dense with CO2 generators, whether from human activity 
(e.g. burning of fossil fuels) or natural (e.g. the rotting of vegetable matter). 
A good overview of many current worldwide sites, their respective CO2 meas-
urement procedures, and the data they have yielded, can be found on the 
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website of the Carbon Dioxide Information Analysis Center at Oak Ridge 
National Laboratory, USA, online at [5.3]. A similar overview site is operated by 
the World Data Centre for Greenhouse Gases, Japan, online at [5.4].

To construct a monthly indicator for each data collection site, a daily aver-
age is calculated from hourly data, and a monthly average from averaging the 
daily averages. In this way, it is hoped to damp the influence of outliers in the 
initial measurements. Subsequently, monthly indicators from many loca-
tions are combined. A glimpse of how measurements from multiple sites are 
combined by complex methods of curve‐fitting can be obtained via the live 
link, labelled ‘more details on how global means are calculated’, on the web-
page of the Earth System Research Laboratory (ESRL), USA, online at [5.5].

Ultimately, a consensus monthly figure for global atmospheric CO2 
 concentration is settled upon, across multiple data collection agencies 
and multiple measurement sites. At the time of writing (in April 2016), this 
figure from the ESRL is 404.08 parts per million. Note that this is a point 
estimate. The ESRL provides an indication of uncertainty with a bootstrap‐
estimated standard deviation. Currently, this is 0.09 parts per million.

(b) The national unemployment rate (NUR)

Where might we come across this statistic? For example, in a newspaper 
report stating that Australia’s seasonally‐adjusted national unemployment 
rate (NUR) is currently 5.9%.

Here is some background. In Australia, the value of the NUR (i.e. the 
percentage of the labour force that is unemployed) is calculated by the 
Australian Bureau of Statistics (ABS, the national statistics office) from 
sample data that it collects around the country. Labour force statistics, 
including the value of the NUR, are given in the ABS monthly print publi-
cation 6202.0, Labour Force, Australia. This publication can also be down-
loaded (without charge) in page‐image form from the ABS website at [5.6].

Explanatory notes at the end of the publication (and also at the Explanatory 
Notes tab of the web page from which the publication can be downloaded) 
describe in some detail how the raw NUR figure is constructed, and how its 
seasonally adjusted value is derived. (Seasonal adjustment makes allowance 
for short‐term fluctuations in unemployment that are ‘built‐in’ to the 
 economic cycle over the year. For example, unemployment always rises for 
a month or two after the end of the academic year, when thousands of 
 secondary and tertiary students go looking for a job. It always falls around 
the time of major religio‐commercial festivals, such as Christmas.) There is 
also a 95% confidence interval for the true value of the NUR.

These many explanations and clarifications help statistics users to gauge 
the accuracy and meaningfulness of the ABS‐calculated value of this widely 
cited economic indicator.
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You may be able to find out how the official NUR is determined in your 
own country from the website of your national statistics office. Links to the 
websites of these offices can be found at [5.7].

(c) The white cell count

Where might we come across this statistic? In a patient’s blood test report, 
sent to his/her doctor, showing the actual white blood cell count, together 
with the annotation that the ‘reference range’ is 3.8 to 10.8.

Here is some background. The white blood cell count is expressed in 
thousands of cells per microlitre of blood. A microlitre is equivalent to a 
cubic millimetre. A person’s white cell count is determined from a sample of 
blood, generally by a registered pathology laboratory, using specialised 
equipment. The accuracy of the count depends on the quality of the equip-
ment and the competence of the technologist. In Australia, these are 
required to be reassessed regularly (commonly, at two‐yearly intervals) 
prior to official renewal of registration.

A white cell count that falls within the reference range is described as 
‘normal’, in the sense that no disease that markedly elevates or depresses the 
white cell count (relative to that of a healthy person) is likely to be present. 
However, even in a registered laboratory, it can happen that a white cell 
count is inaccurate. Then, the cell count might be a ‘false positive’ – signal-
ling that disease is present when, in fact, it is not. Or it might be a ‘false 
negative’  –  signalling that disease is not present when, in fact, it is. Of 
course, one hopes that such inaccuracies are rare.

What about meaningfulness? The meaningfulness of the white cell count as 
a diagnostic aid depends substantially on the reliability of the reference range 
as a demarcation criterion between what is normal and what is abnormal.

You may be surprised to learn that the limits of the reference range are 
not internationally agreed (in contrast, for example, to the world standards 
for units of length, mass and time). Rather, these limits are the endpoints of 
a 95% statistical confidence interval constructed by each pathology labora-
tory from its own records of the vast number of white cell counts it has 
performed. An approximate 95% confidence interval is given by the mean 
of all the laboratory’s recorded white cell counts, plus or minus twice the 
estimated standard error of the mean. It follows that slightly different refer-
ence ranges can be expected in reports from different laboratories. Indeed, 
our own experience over the years includes the following ranges: (3.5–11.5), 
(3.7–11.4) and (4–11).

This is one sign that the reference range has its limitations. Here are two 
further signs. The reference range is calculated using data from a mix of 
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healthy and unhealthy individuals. It would, clearly, not be useful as an indi-
cator of the ‘normal range’ if the proportion of the data coming from 
unhealthy individuals was high. Further, the ‘normal range’ of white cell 
counts differs between infants and all other individuals.

‐‐oOo‐‐‐

So far, we have considered issues of accuracy and meaningfulness in numerical 
statistics. Ensuring that a quoted statistic is also relevant to its context – say, a 
public policy debate on some controversial matter – is the third aspect of the 
trustworthiness of a statistic. It is in this connection that one must inquire into 
the presenter’s motive in quoting the statistic.

If the presenter is disinterested in (i.e. neutral about) the topic of debate, 
then an ulterior motive is unlikely. But a disinterested presenter is rarely 
encountered when the matter is controversial. Thus, it is important to 
check: on the source of the statistic; on whether the presenter has quoted 
the statistic correctly; on whether any weaknesses of the statistic have been 
deliberately glossed over; and on whether the statistic really does contribute 
to settling the argument, or only seems to do so. The possibility that the 
presenter’s stated motive for quoting the statistic may not be the real motive 
is a further factor to keep in view.

Questions

Question 5.1 (A)

‘Does she have a temperature?’ is the colloquial inquiry about someone who 
complains of feeling unwell. The temperatures 37.0°C or 98.6°F are associ-
ated with this question. Where do these numbers come from? Are they 
accurate? Are they meaningful?

Question 5.2 (A)

According to the Wikipedia article titled List of sovereign states and depend-
ent territories by population density, online at [5.8], the population density 
in persons per square kilometre, at the time of writing, is 409 in the 
Netherlands, 22 in Chile, 24 in Brazil and 3 in Australia. How accurate are 
these statistics? Is it meaningful to compare them?

Question 5.3 (A)

School reports for primary school children, giving a child either a ‘pass’ or a 
‘fail’ grade for each subject, together with a lengthy verbal description of the 
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child’s capacity to perform subject‐specific tasks, were much in the news in 
Sydney, Australia a few years ago. Such reports were described by some par-
ents as ‘impossible to understand’. The writer of a Letter to the Editor of a 
leading Sydney newspaper at that time was supportive of a government 
proposal to replace such reports by a simple letter grade assessment of per-
formance in each subject, on an A to E scale. He wrote (we have condensed 
the wording slightly):

‘The A‐to‐E ranking is the most logical form for a school report 
because most people are “average” or C on any measure (as is shown 
in the bell curve). It is also educationally justified because it does not 
label below‐average students perpetual failures and gives them some 
hope of improving. But the problem with any method of grading or 
ranking is that we cannot know to what extent it can be generalised 
to the whole state or nation. Anyone who believes that A‐to‐E rank-
ing of their child in a particular school is an indication of their state 
or national peer group relationship is being naïve. Aspirational par-
ents send their children to independent [i.e. private] schools because 
they are keen to see them progress at above the average rate to obtain 
A or at least B.’

What critiques can you make of the statistical thinking explicit or implicit 
in this letter?

Question 5.4 (A)

Good statistical work requires more than trustworthy data and methods of 
analysis. The statistician’s citation of the work of others must also be trust-
worthy. In many statistics textbooks, one can find this quotation from a 
1903 book by H.G. Wells titled Mankind in the Making: ‘Statistical thinking 
will one day be as necessary for efficient citizenship as the ability to read and 
write’. This is, however, a very inaccurate quotation. What did Wells actually 
write on this theme?

Question 5.5 (A)

In general, an average alone provides a minimally meaningful picture of a 
frequency distribution. However, for some shapes of  frequency distribution, 
the average may actually be quite uninformative, because few of the observed 
values are actually at or near the average. Can  you give some real‐world 
examples?



5 Trustworthy statistics are accurate, meaningful and relevant42

References

Online

[5.1] http://www.rss.org.uk
[5.2] http://iase‐web.org/islp/
[5.3] http://cdiac.ornl.gov/trends/co2/
[5.4] http://ds.data.jma.go.jp/gmd/wdcgg/
[5.5] http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html#global
[5.6] http://www.abs.gov.au/ausstats/abs@.nsf/mf/6202.0. Click the 

Downloads tab and then the pdf button under the heading ‘Publications’.
[5.7] http://www.unece.org/stats/links.html#NSO
[5.8] http://en.wikipedia.org/wiki/

List_of_sovereign_states_and_dependent_territories_by_population_
density

http://www.rss.org.uk
http://iase-web.org/islp/
http://cdiac.ornl.gov/trends/co2/
http://ds.data.jma.go.jp/gmd/wdcgg/
http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html#global
http://www.abs.gov.au/ausstats/abs@.nsf/mf/6202.0
http://www.unece.org/stats/links.html#NSO
http://en.wikipedia.org/wiki/List_of_sovereign_states_and_dependent_territories_by_population_density
http://en.wikipedia.org/wiki/List_of_sovereign_states_and_dependent_territories_by_population_density
http://en.wikipedia.org/wiki/List_of_sovereign_states_and_dependent_territories_by_population_density


43

A Panorama of Statistics: Perspectives, Puzzles and Paradoxes in Statistics, First Edition.  
Eric Sowey and Peter Petocz. 
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd. 
Companion website: www.wiley.com/go/sowey/apanoramaofstatistics

6

Every day there are averages mentioned in the press and other popular 
media. Occasionally, an average is accompanied by some information about 
the frequency distribution from which it was calculated, but mostly only the 
average is reported.

Here is a typical example, quoted from a newspaper: ‘It takes an average 
of 17 months and 26 days to get over a divorce, according to a survey 
released yesterday. That’s the time it takes to resolve contentious issues, 
such as child custody, property problems and money worries.’ Even 
 supposing that this survey was done in a way which permits valid generali-
sation to the whole community, and that we knew how this average was 
calculated, it is quite obvious that the average alone provides an incomplete 
and minimally informative picture of the time it takes people, in general, to 
get over a divorce.

To get something more useful from the survey results, we need to know, 
in addition – at the very least – the number of respondents to the survey, 
and some measure of the spread of values in the sample of the variable being 
studied. While the number of respondents is sometimes mentioned in 
media reports, a measure of the spread of the data on the survey variable is 
hardly ever given.

Why might this be? And what could be done to remedy the situation?
Let us start by reviewing how beginning students of statistics build their 

knowledge of the subject, and note some interesting sidelights along the 
way.

Anyone who has studied statistics at senior school level or beyond knows 
that a useful way of summarising a large set of quantitative data is by group-
ing the individual values in a frequency distribution. It is then a statistician’s 

Let’s hear it for the standard deviation!
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basic concern to find ways of representing the data in the frequency distri-
bution in a way that is more immediately informative than the detailed fre-
quency distribution table itself. One such representation is a graph of the 
frequencies, generally in the form of a histogram or frequency polygon. 
From this graph it is easy to get an impression of three fundamental charac-
teristics of the frequency distribution: where its centre is located, how 
spread out the data values are relative to the centre, and whether or not the 
values are distributed symmetrically about the central value.

Each of these characteristics is quantifiable, and the measures used are 
termed measures of centrality (or of central tendency or of location), 
measures of dispersion (or of spread or of scale), and measures of skewness 
(or of asymmetry), respectively. (There are other quantifiable characteris-
tics of a distribution, too, but their measures are less practically significant 
than the three just stated.)

If we want to compare two frequency distributions where the data have 
the same units of measurement, it is most obviously useful to compare 
them in their entirety (for example, by overlaying one graph with the other, 
ensuring that the scales on the horizontal axes are the same). But if neither 
the distribution tables nor their graphs are available, the best remaining 
option is to compare the distributions on their values of the three descrip-
tive measures just mentioned.

Students learn that there are alternative measures of centrality, of disper-
sion and of skewness. Each such measure has strengths and weaknesses; no 
measure is universally ‘best’. What is appropriate depends on the context in 
which the statistical work is being done, and on the level of statistical literacy 
of the audience being addressed. Two measures of centrality are common in 
textbooks: the arithmetic mean and the median (the mode is often included 
as well, but it is not strictly a measure of centrality, as the example ‘17 is the 
mode of the data set 7, 8, 11, 14, 17, 17, 17’ makes clear). Four measures of 
dispersion are mentioned routinely: the range; the semi‐interquartile range; 
the mean absolute deviation; and the standard deviation. For skewness, 
there are two common measures: the quartile measure and the moment 
measure.

Beginners in statistics generally have little trouble understanding the 
arithmetic mean, since they have known about it under the name ‘average’ 
from childhood. After all, everyone knows what an average is! However, 
not everyone knows that, in the technical vocabulary of statisticians, the 
term ‘average’ doesn’t refer only to the arithmetic mean. Rather, it is used 
as yet another generic name for ‘a measure of centrality’. It is also little 
known that all averages that are called ‘means’ form a family with this 
unifying characteristic: they each involve combining, in some arithmetic 
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way (e.g. by addition or multiplication), the specific values that are being 
averaged. A rich diagrammatic perspective over several members of the 
family of means  –  including the arithmetic, geometric and harmonic 
means – is found in Lann and Falk (2005).

The median, by contrast, is a ‘positional’ measure – that is, it occupies 
the middle position after all the numerical values have been ordered from 
smallest to largest (but in no way combined). Its straightforward derivation 
means that it, too, is easily understood by beginners.

What about measures of dispersion? Researchers in statistics education 
consistently find that the standard deviation – the measure most commonly 
used in professional work – is not easily understood by beginning students. 
It is a difficult concept for at least two reasons.

Firstly, the way the standard deviation is defined seems complicated, 
and  doesn’t accord with intuitive notions of variability, as is well illus-
trated in Loosen et al. (1985) and Pingel (1993). Secondly, it seems quite 
abstract – while it is easy to point to the mean on the graph of a frequency 
distribution, one cannot point to the standard deviation.

To overcome the first of these obstacles to understanding, it is essential 
that beginners understand why deviations from the mean, in the formula for 
the standard deviation, are squared, and why the square root is taken of the 
mean squared deviation. It is important also to be clear that the standard 
deviation measures the dispersion of a set of values around a central 
value – the arithmetic mean. An alternative explanatory path – presenting 
the standard deviation as related to a measure of variability among the val-
ues themselves, without reference to a central value – is more roundabout, 
though some people find it more intuitive. See Question 6.1.

Giving the standard deviation practical meaning can help resolve the 
second difficulty. One way to do this is to rescale the horizontal axis of 
the graph of a frequency distribution into ‘standard deviation units’, and 
then to call on Chebyshev’s Inequality. When students understand that, 
quite generally, no more than one‐quarter of the values in a frequency 
distribution lie beyond two standard deviations from the mean, no more 
than one‐ninth of the values lie beyond three standard deviations from the 
mean, and so on, the standard deviation becomes something ‘tangible’.

When it comes to interpreting and generalising survey information based 
on random sampling, students learn that, on various criteria, the sample 
mean produces the ‘best’ point estimate of the corresponding population 
mean, but that no reliable judgment can be made about how accurate that 
point estimate is likely to be without knowing the size of the standard error 
of the sample mean. It is relevant to mention this here, because the standard 
error of the sample mean is nothing but a standard deviation – the standard 
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deviation of the sampling distribution of the sample mean. Alas, the concept 
of a sampling distribution is yet another notion that beginners in statistics 
find difficult to comprehend.

It’s clear now why the standard deviation is so rarely encountered in the 
popular media: statistical literacy in the community is too low to make it 
constructive information. Our experience is that this is as true, generally, of 
journalists as it is of their audiences.

So, let’s hear it at last for the standard deviation! Or the semi‐interquartile 
range. Or, indeed, any measure of dispersion.

To improve matters globally, it is a good start to act locally. We propose 
that you, our readers, cease passively accepting media reports that quote the 
average of a data set – often even without clarifying which average – while 
giving no idea of the associated standard deviation (or standard error, as 
appropriate).

Engage with journalists and their editors. Emphasise to them how utterly 
minimal is the useful information about an entire distribution to be found 
in an average alone. Point them to the particularly striking illustration in 
Stephen Jay Gould’s 1985 essay, online at [6.1]. (Gould highlights his initial 
despair, as a statistical layman, when his doctor quoted only the median 
survival time after diagnosing him with cancer.) There is another telling 
example in Question 1.4.

Encourage journalists to go back to the source of the statistics they are 
reporting and to present a more informative picture, educating the public 
as they go. Draw their attention to tutorial resources in basic statistics and 
statistical literacy, both in print and online. Here are some good examples: 
Best (2001); Blastland and Dilnot (2007); Royal Statistical Society, 
Resources for Journalists, online at [6.2]; Robert Niles’ website, ‘Statistics 
Every Writer Should Know’, at [6.3]); (US) National Council on Public 
Polls, ‘20 Questions A Journalist Should Ask About Poll Results’, online at 
[6.4]; and open‐ended assistance for journalists via the American Statistical 
Association, online at [6.5].

Everyone knowledgeable in statistics has a part to play in raising the 
statistical literacy of our community.

Questions

Question 6.1 (A)

The textbook defines the standard deviation, a measure of the dispersion of 
the data in a population of N observations Xi (i = 1, 2 … N) with mean μ, as 
√[Σ(Xi – μ)2/N].
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‘Why should dispersion be measured relative to a central value?’, you may 
wonder, ‘It’s the variability among the observations themselves that we 
should be trying to capture.’ Let’s consider this idea for a population of three 
observations, X1, X2, X3. Then an intuitively meaningful measure of varia-
bility is √ [ ( ) / ]i j i jX X 2 3 , where the summation is over all three pairings 
of i = 1, 2, 3 and j = 1, 2, 3 with i < j.

For the three observations, evaluate algebraically A = Σ(Xi  –  μ)2/3 and 
B =  i j i jX X( ) /2 3. What is the relation between A and B?

Question 6.2 (A)

For a population of N values, Xi (i = 1, 2 … N) with mean μ, the variance is 
defined by Σ(Xi – μ)2/N, that is, the square of the standard deviation. Does 
deletion of the (single) largest value in any set of N values always reduce 
the variance?

Question 6.3 (A)

A BBC report of 15 August 2009, online at [6.6], brings together survey 
data on the average floor area in square metres of new homes (i.e. houses 
and flats) recently built in seven countries. The areas are UK 76, Ireland 
88, Spain 97, France 113, Denmark 137, Australia 206, USA 214. No stand-
ard errors are reported. What interesting questions could be answered 
had the standard errors been quoted? What further information would 
you like to have from the surveys in order to answer some even more 
interesting questions?

Question 6.4 (B)

Statistics students soon learn that the sampling variance of the mean of n 
values sampled with replacement from a normal distribution with mean μ 
and variance σ2 is σ2/n. But what is the corresponding result for the sam-
pling variance of the median?

Question 6.5 (C)

Beginners in statistics are often bewildered by the textbook definition of 
the ‘sample variance’, s2 = Σ(Xi – X )2/(n – 1), because it is so counterintui-
tive. (Note: n is the sample size and X  is the sample mean.) This definition 
is often accompanied by an assurance that ‘the reason for division by (n – 1) 
will become clear when we come to the topic of estimation’. It leaves many 
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learners puzzled. Their intuition is to define the sample variance as the 
sample analogue of the population variance, 2ˆ  = Σ(Xi – X )2/n.

Let’s see what we can discover ‘when we come to the topic of estimation’. 
If the X values are sampled randomly, with replacement from a population 
with mean μ and variance σ2, the standard error of X  is given by σ/√n and, 
therefore, the variance of X  is σ2/n. If σ2 is unknown, it could be estimated 
by s2 or by 2ˆ . It can be proved that E(s2) = σ2 and, if the population is 
normally distributed, that var (s2) = 2σ4/(n – 1). Also, E( 2ˆ ) = [(n – 1)/n]σ2 
and, if the population is normal, var( 2ˆ ) = 2σ4(n – 1)/n2.

(Proofs of the results relating to s2 and 2ˆ  can be found, for example, 
in  Wilks (1962), pages 199–200, and Cramer (1958), pages 347–349, 
respectively.)

What do these results say about the relative optimality of s2 and 2ˆ  for 
estimating σ2 on the criteria of (i) unbiasedness and (ii) efficiency? What 
conclusion do you draw about which is the ‘better’ estimator of the variance 
of X  in small samples drawn from a normal distribution?
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7

‘Everything seems to be getting dearer. I don’t know how I’m going to be 
able to make ends meet!’ This customer complaint has been heard for years 
in supermarkets and shopping centres. Well, how much dearer is everything 
getting? To answer this, you need to know how statisticians measure the 
general change in prices over time.

There are many alternative ways of defining such a measure; there is no 
single ‘correct’ way. Choosing the most informative measure in any particu-
lar setting needs an understanding of the strengths and weaknesses of each of 
the alternatives. This Overview shows how the statistician’s choices mush-
room out of what may seem, at first, to be a quite uncomplicated problem.

As the options multiply, it’s good to know that the measures are all never 
far from that most basic of tools for summarising a set of data – the average. 
They are all, indeed, averages travelling through time.

Yet, unexpected complications arise when defining these measures. For 
instance, averaging proportional changes in the values of a variable between 
two points in time should, you might think, be done in the same way as 
averaging a set of values of that variable at one point in time. It might sur-
prise you, then, that the average that is most appropriate for the former 
purpose is often not the one you might think of first … or second!

To explore these matters further, let us specify the context a little more 
precisely. Since it is retail customers who are grumbling, we shall assume that 
we are talking about consumer goods – both durable goods (such as cars, 
TVs, laptop computers and kitchen appliances) and non‐durable goods (such 
as food, clothing, magazines and soap) – and services (such as public trans-
port, medical consultations, electricity supply and home insurance). From 
here on, we shall use the term ‘products’ to include both goods and services.

Index numbers – time travel for averages
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How shall we begin? Given that actual retail price paid is the obvious 
measure of costliness to the customer, and that retailers compete for custom-
ers, we must look at the price of each product, not just in one particular shop 
but in many shops. We must take care each time to price the same quantity 
and quality of a product and, preferably, also the same brand (for manufac-
tures), or species (for raw foods), or type (for services) of that product. We 
must also ensure that any price discount offered is recorded. To condense 
the volume of data after lots of prices for the same product in different 
shops have been collected, it will be convenient to use an average price as a 
representative cost. The arithmetic mean will serve well for this average.

How can we tell whether or not a product is getting dearer over time? 
Clearly, it will be getting dearer if the ratio of its (average) price in a subse-
quent period (technically termed the ‘current period’) to its (average) price 
in an initial period (technically termed the ‘base period’) is greater than 
one. (We use the ratio, rather than the difference, of prices because we are 
aiming at a measure that has no units; the difference of prices is measured 
in units of currency.)

If we were to construct such price ratios for many different products, 
using the same base period and current period for each, what should we 
expect to find? Experience tells us that some products will have become 
dearer over time and some cheaper. For example, cars and home insurance 
will very likely be dearer, while laptop computers and microwave ovens will 
be cheaper.

There is something else we will be aware of: the quality of most products 
will have risen over time, and that will be true even of many products that 
have become cheaper. What explains this steady improvement in observed 
quality? Partly, it is due to steady advances in science and technology, and in 
industrial and commercial design; and partly, it is due to market competi-
tion, which spurs manufacturers to innovate with product features that 
outdo what their rivals can offer. How can it be that products of higher qual-
ity become cheaper? This could follow from expanding local sales to national 
and even international markets, thus gaining the benefits of economies of 
scale on the unit cost of production. It could also be the result of shifting 
production to a country where the pay structure is lower.

What is the next step in measuring the extent of price changes through 
time in retail products generally? There are subtleties here that can best be 
brought out by using some symbols.

Suppose we limit ourselves to considering n products. Denote the price of 
the ith product in the base period by p0i and in the current period by p1i. The 
values of i run from 1 to n. We will assume, for the moment, that the prod-
uct’s quality does not change between the two periods. Keep in mind that 
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what we are here calling the price of the ith product is, as already explained, 
actually the average of prices of that product recorded in a number of shops. 
The price ratio is p1i/p0i. For different products, this ratio may be greater 
than, equal to, or less than 1.

Then, a natural way to represent the general drift of prices between peri-
ods 0 and 1 is to average the price ratios over all the n products. For this 
average, we prefer a mean to the median, because the median is insensitive 
to outliers in the set of price ratios – while it is precisely the outliers (relat-
ing to the products with the biggest price changes) that are of the greatest 
concern to consumers.

But which mean? Non‐statisticians are likely to say the arithmetic mean 

(AM) of the ratios: ( )1 1 01
/n p pi i

n
, because that is the one they are 

most familiar with. But is that actually the best choice? Perhaps unexpect-
edly, the answer is no. A simple example will show why.

Suppose that, over a given length of time, the price of a loaf of bread dou-
bles, from $2 to $4, while the price of a kilogram of butter halves, from $6 to 
$3. Then, in the base period (before there were any price changes), the 
notional AM of price ratios was (1/2) [(2/2) + (6/6)] = 1.00. However, after 
the price changes, the AM of price ratios is (1/2) [(4/2) + (3/6)] = 1.25. So, for 
these two goods, the AM shows a logically unjustifiable (and hence spuri-
ous) 25% increase in the general price level. The increase is intuitively unjus-
tifiable, as well, for intuition insists that, ‘if the price of one good doubles and 
the price of the other halves, then surely the general price level is unchanged’.

Fitting better with intuition is the geometric mean (GM) of the price 
ratios. To write the GM of price ratios in symbols, we use the upper‐case 
Greek letter pi (Π), which corresponds to the first letter of the English word 
‘product’. The expression Π(…) means ‘find the product of the terms in the 
brackets’. This parallels the sigma notation Σ(…), which means ‘find the sum 
of the terms in the brackets’ (the Greek sigma corresponds to the first letter 

of the English word ‘sum’). The GM is 
1

1 0
1

)( /
nn

i ip p . After the price changes, 

our numerical example shows ( )( )4
2

3
6

 = 1.00, signifying a stable general 
price level, as intuition dictates. From this, we understand that the GM is 
more appropriate than the AM for averaging ratios.

A measure of the general change in prices, which is a pure number (i.e. it 
has no units), is called a price index. The AM and the GM formulae above 
are examples of simple price indexes (also called ‘indices’).

So far we have defined a ‘general change in prices’ index in terms of an 
average of price ratios. We first form the price ratio for each of n products, 
and then average these n ratios.
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‐‐‐oOo‐‐‐

Let’s look next at a logical alternative to this approach to measurement. 
Consider closely the following subtle contrast in wording. The alternative 
approach is a ‘change in general prices’ index, defined as a ratio of price 
averages.

For a ‘change in general prices’ index, we first average the n prices in 
period 0, then average the n prices in period 1, then form the ratio of these 
two average prices. If we use the AM, this alternative approach produces the 
price index: 1 0/i ip p

n n
, which can be simplified to 1 0/i ip p . There is, of 

course, a GM parallel.
The choice that is made between these two alternative designs for a 

price index – an average of price ratios and a ratio of price averages – can 
have far‐reaching consequences in practice, for they do not necessarily 
generate the same measured outcomes. See Question 7.1 for some 
insight on this.

We must now ask whether any of these simple price indexes, in fact, pro-
vides a satisfactory answer to the question we posed at the beginning of this 
chapter. We can get a clue about this from the wording of the consumer’s 
spontaneous lament: ‘I don’t know how I’m going to be able to make ends 
meet!’ The consumer is clearly thinking in terms of his or her household 
budget – that is, in terms of the range of products the household regularly 
consumes. The simple price indexes we have explored are not linked to a 
specific bundle of products that households regularly consume. Thus, they 
are inadequate for answering our opening question.

‐‐‐oOo‐‐‐

To produce a consumer price index (CPI), we need first to agree on the com-
position of the bundle of products that a representative household con-
sumes. The technical term for this bundle is the ‘regimen’. Guidance on 
defining the regimen usually comes from national surveys of household 
expenditure, covering many different types of household.

Next, we collect price data on the items in the regimen, both in the base 
period and in the current period. We create a weighted price index specifi-
cally linked to the regimen, by weighting the price per unit of each product 
in the regimen by the number of units of that product that the representa-
tive household consumes. Since households rarely consume the products in 
the regimen in the same proportions as time passes, we have to decide 
whether to weight by the number of units of product consumed in the base 
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period or in the current period. It could produce quite misleading results to 
use both in constructing a CPI – for example, to weight base‐period prices 
by base‐period quantities, and current‐period prices by current‐period 
quantities. It is price changes alone that we are seeking to measure. We must 
avoid mixing up (or ‘confounding’, in statistical language) changes in price 
with changes in quantities.

Writing p0i as the base‐period price per unit of the ith product in the regi-
men and q0i as the corresponding base‐period number of units of that prod-
uct in the regimen, and similarly for the current period, one version of a CPI 
can be defined by [(Σp1iq0i)/Σq0i]/[(Σp0iq0i)/Σq0i] = Σp1iq0i/Σp0iq0i. Summation 
is over all n products in the regimen. This index formula is in the form of ‘a 
ratio of weighted price averages using base‐period weights’. The average is the 
arithmetic mean. It is, in fact, a very widely‐used index, and is commonly 
called the Laspeyres price index, after the German statistician Etienne 
Laspeyres (1834–1913), who wrote in 1871 to advocate its use.

If, instead, we write [(Σp1iq1i)/Σq1i] / [(Σp0iq1i)/Σq1i] = Σp1iq1i/Σp0iq1i, we 
have defined a CPI that is ‘a ratio of weighted price averages using current‐
period weights’. This index, too, has its keen proponents. It is commonly 
called the Paasche price index, after the German statistician Hermann 
Paasche (1851–1925), who pioneered it in 1874. Because it is necessary to 
empirically re‐evaluate the current period quantities for every additional 
period for which the index is calculated, the Paasche index is more expen-
sive to maintain than the Laspeyres index.

In line with our earlier discussion, one can also define a CPI as ‘an aver-
age of weighted price ratios’. Here, too, there are two possibilities: one may 
use either base‐period weights or current‐period weights. Altogether, then, 
we have introduced four versions of a CPI – all based on the AM.

By analogy, there are four ways of defining a CPI using the GM: the ratio 
of weighted price averages and the average of weighted price ratios – in each 
case, using either base‐period or current‐period weights. Question 7.3 
invites you to discover for yourself the formula for one of these weighted 
price indexes.

Any one of these eight versions of a CPI is a possible way of measuring the 
general change in prices. Given that they may yield different values and, 
occasionally, very different values, what should the statistician do?

‐‐‐oOo‐‐‐

This question has preoccupied designers of index formulae for many years. 
Their response has been (a) to devise some formal tests for a good index 
formula (with some theorists claiming that the more such tests a formula 
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satisfies, the better it is), and (b) to acknowledge a number of informal 
selection criteria that have arisen spontaneously.

The formal tests all relate to logical properties of indexes. For example, 
the ‘time reversal’ test rests on the intuitively appealing presumption that 
a good index should have the property that the ‘forward’ and ‘backward’ 
changes it measures over any given time span are exactly inversely 
proportional.

Here is an illustration. Suppose period 0 is the base period, when an index, 
I, has the value 1.00. Now, looking forward to period 1: if there is a 25% 
increase between periods 0 and 1 in what I measures, I0,1 = 1.25. Next, rede-
fine period 1 as the base period, and look back to period 0. Then, the value of 
I1,0 is the solution of this mathematical problem in proportions: 1.25 : 1.00 :: 
1.00 : I1,0. The result is I1,0 = 0.80. This confirms that I1,0 = 1/I0,1. Not all index 
formulae satisfy the time reversal test – for example, neither the Laspeyres 
nor the Paasche index formula does. Since there are several formal tests, 
and no index that satisfies them all, there always seem to be index formula 
theorists arguing that ‘we must keep looking’.

Some informal selection criteria relate to the practicalities of acquiring, in 
the time available, all the trustworthy data needed for a particular index 
formula. (This is, incidentally, one reason why the official Australian CPI is 
published quarterly, rather than monthly.) Other informal selection criteria 
seek to ensure that the favoured index generates values with a meaningful 
interpretation. We have already seen, for instance, how using the AM to 
construct a simple price index generates spurious results. This can partly 
explain a widespread preference among applied statisticians for CPI formu-
lae that involve the GM, rather than the AM.

Here is a further problem that bedevils the use of either the Laspeyres or 
the Paasche price index in practice. Over a time span in which the general 
price level is steadily rising, the Laspeyres price index tends to overstate the 
true average price rise, and the Paasche price index tends to understate it. 
Why? Because when prices rise across a large range of products, consumers 
often protect the purchasing power of their incomes by switching their pur-
chases away from products that are in the (base period) regimen of the 
Laspeyres price index. Thus, the impact of lower consumption, over time, of 
items in the Laspeyres regimen means that the general price movements 
generated by the Laspeyres formula no longer reflect the price movements 
that consumers are actually experiencing. Analogous, but converse, reason-
ing applies in the case of the Paasche index.

This phenomenon makes it appealing (at least, in theory!) to consider 
some kind of compromise between the Laspeyres and Paasche indexes, in 
order to arrive at index values closer to the true general price rise. One such 
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compromise is the AM or the GM of the two indexes – more usefully the 
latter, for the reason we have already given. Another approach is represented 
by the Marshall‐Edgeworth price index (see Question 7.5). Needless to 
say, the substantially increased data collection effort (and cost), when both 
indexes are to be evaluated, works against the theoretical ideal.

These various issues by no means exhaust the complexity of deciding on 
an informative measure of the general change in consumer prices. We have 
not investigated here many elaborate variants of the foregoing CPI formu-
lae. We have also given no attention to the alternative ways there are for 
periodically updating the regimen of a price index – to allow both for qual-
ity change in the included products, and for the eventual introduction to 
sale or withdrawal from sale of specific branded items.

If you are interested in finding out more about these and other aspects 
that lie outside the scope of this Overview, you are likely to find a discussion 
of them among the publications of your national statistical authority. You 
can locate these authorities online, worldwide, by clicking on the links at 
[7.1]. For us in Australia, the authority is the Australian Bureau of Statistics, 
and we can recommend its publication no. 6461.0, titled The Consumer 
Price Index: Concepts, Sources and Methods. The latest edition can be read 
online on the ABS website at [7.2], or downloaded there without charge. A 
well‐written and not highly technical book on index numbers in general is 
Crowe (1965).

Questions

Question 7.1 (B)

For the numerical data on bread and butter prices given in this chapter’s 
Overview, evaluate the simple AM and GM price indexes in the form of a 
ratio of price averages. Comparing the indexes calculated using the AM – (i) 
average of price ratios, and (ii) ratio of price averages – do you have reasons to 
prefer one of these to the other? What can you say about the corresponding 
GM indexes?

Question 7.2 (B)

In the context of Question 7.1, we wrote in the Overview ‘[f]itting better with 
intuition is the geometric mean (GM) of the price ratios.’ The demands of 
intuition appear to be determining the statistician’s choice of best simple price 
index. Isn’t that an unusually powerful role for intuition in statistical theory?
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Question 7.3 (B)

What does the formula for a ratio of weighted price averages look like when 
the weights are base period quantities and the average is the geometric 
mean? (This is the GM analogue of the AM‐constructed Laspeyres price 
index.)

Question 7.4 (B)

Financial advisers traditionally enthuse about the ‘wonders’ of compound 
interest. ‘Imagine’, they will say, ‘that you have invested $100 every month 
over 40 years at 10% per annum, compounding monthly. At the end of this 
period, you will have put in $48,000 of your own money. But with the 
wonders of compound interest, these $48,000 will have grown to a stag-
gering $632,408. That means your own capital has been multiplied about 
13 times.’

This calculation is numerically correct, but unfortunately the statistic 
in the previous sentence is wildly misleading in practical economic 
terms. Why?

Question 7.5 (B)

The Marshall‐Edgeworth CPI index uses, as its weights, the AM of the base 
period and current period quantity weights that feature in the Laspeyres 
and Paasche indexes, respectively. The formula for this index is Σp1i(q0i + q1i)/
Σp0i(q0i + q1i), where the summations extend over all n items in the regimen. 
The index is named in recognition of two of its advocates, the English 
economist, Alfred Marshall (1842–1924), and the Anglo‐Irish economist 
and statistician, Francis Ysidro Edgeworth (1845–1926). You will find further 
mention of Edgeworth in Figure 22.1.

In this chapter’s Overview, we wrote: ‘… we have to decide whether to 
weight by the number of units of product consumed in the base period or 
in the current period. It could produce quite misleading results to use both 
in constructing a CPI – for example, to weight base‐period prices by base‐
period quantities and current‐period prices by current‐period quantities. 
It is price changes alone that we are seeking to measure. We must avoid 
mixing up (or ‘confounding’, in statistical language) changes in price with 
changes in quantities.’

The Marshall‐Edgeworth index clearly weights p0 in part by q0 and p1 in 
part by q1. Does that mean that this index confounds price change and 
quantity change?
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By bad statistics, we mean the incorrect or inappropriate use – either from 
insufficient knowledge or from a calculated intention to mislead – of statis-
tical data (and data displays) or statistical methods, in support of some 
arguable proposition, such as a scientific hypothesis, an advertising claim or 
a political point of view.

Many people find statistical data fascinating – even bewitching – when 
they understand the context. The long‐time popularity of Guinness World 
Records and Wisden Cricketers’ Almanack is clear evidence of this. However, 
even when they do not fully understand the context, the general public are 
still receptive when statistics are presented. True, that receptiveness is some-
times too trusting but, increasingly, people are resisting the notion – perhaps 
(mis)remembered from school arithmetic lessons – that ‘there’s no arguing 
with a number, especially a very precisely stated number’.

That is the bright side for everyone who would like to see published sta-
tistics better engaged with in our society.

But there is a darker side. People who know only a little about the princi-
ples of statistics may unintentionally mislead the public with inappropriate 
statistics or erroneous statistical arguments. More troublingly, there are 
individuals with a vested interest in capturing people’s trust who knowingly 
misuse statistics to bamboozle others for questionable ends.

How convenient it is that English has a single word that bridges the bright side 
and the dark side of statistics, with their very contrasting qualities – bewitching 
and bamboozling. That word is beguiling. Thus, our theme in this chapter and 
the next is the beguiling ways of bad statistics.

‐‐‐oOo‐‐‐

The beguiling ways of bad statistics I
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We wrote in Chapter 1 about the value of statistical methods, appropri-
ately used, for finding reliable meaning in data collected from the uncertain 
world that is our constant reality.

It is quite another matter if statistical data or statistical methods are used 
inappropriately to underpin an argument. At the least, such inappropriate 
use may simply yield obvious nonsense. An amusing example is the com-
plaint made by a defendant on a drink‐driving charge. ‘I’ve looked at the data’, 
he said, ‘and I’ve seen that 95% of road accidents are caused by sober drivers. 
Those sober drivers should really get off the road and let us drunk drivers get 
around in safety.’ (You’ll find further examples in Questions 1.3 and 9.1.)

More concerning are situations where the inappropriate use of statistics 
produces plausible but incorrect conclusions. Such a situation may arise 
from ignorance of what is appropriate. Sometimes, however, deliberate mis-
uses of statistics must be suspected. As you should expect, such misuses are 
not the work of ethical professional statisticians. Rather, they are the machi-
nations of a regrettable minority among skilled persuaders – people whose 
goal it is to bring the uncommitted around to a particular point of view, and 
who are not too concerned about using a little deception to achieve that 
goal. You will probably find it easy to bring to mind examples of deceptive 
statistics you have seen or heard about. It is such examples that get the pub-
lic saying, cynically, ‘you can prove anything with statistics!’

In Chapter  5, you will find our recommended approach to detecting 
deceptive statistics. It rests on adopting a sceptical frame of mind and ask-
ing four questions. Who produced these statistics? How were they pro-
duced? Who is presenting them to me? And why?

Probing in this way, you can become aware whether self‐serving interests 
lie behind the way the data were collected or summarised. You may discover 
that there has been fudging of the figures, or of the concepts behind the 
figures. You may also reflect on whether there are perhaps other interpreta-
tions of the statistics than those that are being urged on you.

‐‐‐oOo‐‐‐

Let’s look now at some inappropriately used statistical methods. They are all 
‘tried and true’ techniques for producing misleading conclusions, so a little 
irony from our side doesn’t seem out of place!

It’s important to impress, and a big statistic is always more 
impressive than a small one

An easy way to generate a big statistic is to quote the maximum of a set of 
values, rather than some typical or fairly representative value. This is a 
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favoured approach in the news media. We may learn, for example, that ‘up 
to 60 people were killed on each occasion in train crashes around the world 
last year’. That sounds absolutely horrific. Perhaps no more than 5 people 
were killed on each occasion, except for one occasion when 60 people were 
killed. The report is not, strictly speaking, inaccurate, but the interpretation 
we are likely to give it is certainly misleading.

To discuss a frequency distribution, all you need to do is talk about 
the average

We emphasise, in Chapter  6, the inadequacy of an average as the sole 
descriptor of a frequency distribution. In the absence of a drawn histogram, 
one can still get a fair idea of a distribution’s position and shape from a set 
of three measures: its average, its dispersion about the average, and its 
degree of skewness (i.e. departure from symmetry). Why are measures of 
dispersion and skewness so routinely missing in popular journalism? 
Because the community’s level of statistical literacy is not generally high 
enough to make these two measures informative – and, sadly, this is true 
everywhere. Questions 1.4, 5.5 and 6.3 show how easily misleading it is to 
provide only an average, when the context makes it clear that a fuller 
description of an entire distribution is important. Needless to say, this state 
of affairs suits very well anyone who has a motive for withholding the fuller 
picture.

League tables are a great way to show who’s simply the best … 
and who’s not

An institutional league table is a ranking of a set of (usually competing) 
institutions (e.g. schools in a district, corporations in an industry), accord-
ing to some (usually quantitative) criterion of excellence. If the table is ‘sim-
plified’ by suppressing each institution’s criterion score (as is often the case 
in popular reporting), all that is left is a list that reads simply: 1. A, 2. B, 3. C 
and so on, where A, B, C … are names of institutions. Superficially, it looks 
as if A is ‘simply the best’, and one really wouldn’t want to have anything to 
do with V, N, or even H, lower down the table! However, just as discussing a 
frequency distribution by referring only to the mean ignores valuable infor-
mation about the spread of the data, so publishing a ‘simplified’ league table 
conceals the valuable information to be found in the sizes of differences 
between criterion scores. If the criterion scores of institutions A and B (for 
example) are very similar, those institutions are, to all intents and purposes, 
both ‘simply the best’. Further revelations on the limitations of league tables 
can be found in Goldstein and Spiegelhalter (1996).
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League tables (especially ‘simplified’ ones) are beloved by institutional 
propagandists who want to promote their own institution over others. They 
will, of course, seek to influence the choice of ranking criterion, so that their 
institution will come out as high as possible in the ranking. All the more 
reason, then, for outside observers to ask themselves ‘is the criterion being 
used to rank the institutions the most appropriate one from my point of 
view? If not, how different would the ranking look if a more appropriate 
criterion were used?’ See Question 3.2 for an illustration.

Generalisations from a survey are reliable, irrespective 
of the response rate and of whether the sample is random

This is the subliminal message of countless survey and poll reports, pub-
lished in all the popular media, to justify the claims of some advocacy 
group or other. Statistically informed observers will recognise the failure to 
report the response rate or the sampling scheme as the deceptive stratagem 
that it often is. No statistical method can be correctly used to make reliable 
inferences about a population from the information in a non‐random sam-
ple, such as a self‐selection sample, a quota sample, or a convenience sam-
ple (the answer to Question 3.3 has more detail on this point). Similarly, 
a high rate of non‐response – especially if the cause of non‐response might 
be related to the objective of the survey  –  makes any generalisation 
unreliable.

‐‐‐oOo‐‐‐

These are four among the most commonly met ways in which disingenuous 
persuaders misuse statistics. There are more in Chapter 9, and even more 
in several books whose authors have concentrated specifically on highlight-
ing the damage that may be done by bad statistics.

The most widely known of these books is also one of the earliest – the 
whimsically titled How to Lie with Statistics by Darrell Huff (1954). This 
lively book, reprinted multiple times, and now among the ‘classics’ of the 
statistics literature, presents many memorable real‐world examples of 
inappropriately used statistical methods and deceptive statistics. More 
recent books in the same spirit, but revealing possibilities for deception on 
a far wider scale, are Spirer, Spirer and Jaffe (1998), Best (2001) and Best 
(2008). Further current examples can be found in the blog by David 
Spiegelhalter and colleagues at the Understanding Uncertainty website, 
online at [8.1].
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Questions

Question 8.1 (A)

It seems that people have been fascinated by numerical statistics for a long 
time: Wisden Cricketers’ Almanack, for example, began publication in 1864. 
The public’s appetite for such numerical facts was, no doubt, also fed by 
other popular compilations in that era, and perhaps even earlier. But we 
know of only one contributor who supplied statistics in verse! This 19th 
century British poet wove precise statistics into many of his poems, which 
he wrote with a masterly disregard for accurate scansion. Here is a sample of 
his work (the first, fifth and sixth of 23 stanzas). Who is the poet, and what 
is the poem’s title?

’Twas on the 18th of August in the year of 1798,
That Nelson saw with inexpressible delight
The City of Alexandria crowded with the ships of France,
So he ordered all sail to be set, and immediately advance.

…

The French force consisted of thirteen ships of the line,
As fine as ever sailed on the salt sea brine;
Besides four Frigates carrying 1,196 guns in all,
Also 11,230 men as good as ever fired a cannon ball.

The number of the English ships were thirteen in all,
And carrying 1012 guns, including great and small;
And the number of men were 8,068,
All jolly British tars and eager for to fight.

Question 8.2 (A)

Chapter 8 of How to Lie with Statistics, by Darrell Huff, is titled ‘Post hoc 
rides again’. ‘Post hoc’ is part of a longer Latin expression describing a logical 
fallacy. Explain this logical fallacy. Can you find some real‐world statistical 
examples of this fallacy?

Question 8.3 (A)

A news report says ‘Obesity is costing the country $56 billion a year’. Quite 
apart from the suspect accuracy of the specific number, there is a lack of 
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clarity in the meaning of the statement as a whole. What, exactly, do you 
understand the statement to mean? How might someone else interpret it 
differently? Reflecting on these alternative interpretations, what do you 
conclude about statements of this kind, whatever major medical or social ill 
they may refer to?

Question 8.4 (B)

The way a questionnaire is constructed – that is, the wording of the ques-
tions and the design of their flow – gives scope for manipulating the conclu-
sions that will be obtained. A classic British TV comedy series from the 
1980s demonstrated (satirically) how to achieve any desired result in an 
opinion poll. What is the title of this TV series, what was the political ques-
tion under consideration, and what questionnaire technique was used to 
obtain the desired result?

Question 8.5 (A)

On a summer day, a Sydney newspaper reported: ‘Food poisoning cases 
more than double over the summer months as people go back and forth to 
their fridge and overload it with food, increasing its temperature. A survey 
… found that some household fridges were twice as warm as they should be 
after groceries were transferred into them and they took four hours to 
return to a safe temperature. Harmful bacteria multiply when food is kept 
[above] 5 degrees [Celsius]. Of the 57 fridges checked in the study, almost 
23% had an average temperature of more than 5 degrees … The highest 
average temperature for one fridge was 9.5 degrees.’

The following day there was a Letter to the Editor: ‘You report that some 
domestic refrigerators are “twice as warm as they should be” when over-
loaded. A temperature change from 5 degrees to 10 degrees does not indicate 
a doubling of heat content – it represents an increase of about 1.8 per cent.’

What type of variable is being discussed in this exchange? Can you explain 
why the figure 1.8% is correct for the temperatures stated?
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In the previous chapter, we described four settings in which bad statistics 
can beguile us. Here, now, are four more.

When assembling evidence to support some controversial 
proposition (e.g. during a political debate), any number is better 
than no number

In beginning a public lecture in 1883, the British physicist William Thomson 
(later Lord Kelvin) offered the following dictum: ‘… when you can measure 
what you are speaking about, and express it in numbers, you know some-
thing about it; but when you cannot measure it, when you cannot express it 
in numbers, your knowledge is of a meagre and unsatisfactory kind …’ 
(online at [9.1]).

Thomson was underlining the indispensability of measurement to the 
progress of the physical and natural sciences. Today, however, his assertive 
message is being advanced indiscriminately  –  bewitching (for example) 
many of the social sciences and, in particular, the practice of government 
and public administration.

No social or economic policy proposal is felt to be adequately supported 
nowadays, unless there are numbers among the evidence. More unfortu-
nately, this sentiment has been reinterpreted by lax thinkers in many areas 
of public debate to imply that if there are numbers among the evidence, 
those numbers should suffice to clinch the matter. From such an illogical 
position, it is then only a short hop to the view that it is not the intrinsic 
fitness‐for‐purpose of the numbers that is the vital thing but, rather, 
whether the public can be convinced to accept whatever plausible numbers 
the proponents can find.

The beguiling ways of bad statistics II
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This situation brings with it two substantial dangers: firstly, that signifi-
cant factors which cannot be expressed in numbers (but could be perfectly 
well assessed in qualitative terms) will simply be ignored; and, secondly, that 
the temptation to bring forward seriously inappropriate numbers or meas-
urements (however plausible they can be made to look) will become irresist-
ible. These twin dangers are neatly encapsulated in a memorable aphorism: 
not everything that counts can be counted, and not everything that can be 
counted counts.

Let’s look at some examples.
The field of cost‐benefit analysis is rich in measurements. After all, the 

whole idea (in theory) is to measure all the costs and all the benefits of 
some planned project, and to proceed if the benefits exceed the costs by 
some pre‐specified margin. In order to compare costs and benefits straight-
forwardly, they need to be measured on a common basis. The technical 
term for such a basis is a ‘numeraire’. The usual numeraire in cost‐benefit 
analysis is money. It will be apparent that (in practice) an elaborate project, 
such as the installation of a national fibre‐optic network to give everyone 
reliable high‐speed internet access, will have many costs and benefits that 
are simply unforeseeable, and others that are not readily expressible in 
money terms. For both these reasons, the money values that are ultimately 
compared may be so inaccurate as to produce a conclusion that could, in 
hindsight, be seen to have been profoundly wrong.

Similar difficulties arise when economists evaluate the benefit to an indi-
vidual of a university education. The usual measure of ‘benefit’ is the differ-
ence between two monetary values – the discounted present value of the 
individual’s expected lifetime flow of annual earnings with a university 
qualification, and the parallel calculation for the individual without a uni-
versity qualification. Evidently, this approach ignores entirely a whole array 
of intellectual, cultural and social benefits that a university education can 
engender. It might be argued in response that annual income can serve as 
a  proxy for all these non‐material benefits  –  but this is, surely, a flimsy 
argument.

It should not be surprising that proxies play a prominent role in this era of 
‘measurement at any price’, for unmeasurable concepts abound in every area 
of public policy making. It is precisely because good measurable proxies are 
so hard to find that insisting on giving numbers the pivotal role in supportive 
evidence is so rash.

Several countries have, in recent years, launched initiatives to measure 
citizens’ well‐being (or ‘happiness’, as it is being popularly described). The 
concept of well‐being is easy to comprehend but by no means easy to measure. 
Proxies are needed. Will they be appropriate?
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When a statistic is politically needed but nobody knows its numerical 
value accurately, it’s OK to guess

This phenomenon is observable at every level of perspective. At the inter-
national level, we may take as an example the coordinated system of 
national economic accounts. The Statistics Division of the United Nations 
has agreed upon a standardised framework of national accounts for all its 
member nations. However, some countries may be too poor to invest in the 
elaborate procedures for data gathering that are needed to produce reliable 
national statistics of any kind. In such cases, those statistics may be wildly 
approximate. Some consequences are reviewed in Moll (1992). Many more 
examples, drawn from both developed and developing countries, are found 
in Alonso and Starr (eds, 1987).

At national level, professional standards within a country’s official statis-
tics office tend to constrain the extent of pure guesswork that goes into to 
the entire range of the statistical series it produces. Nevertheless, ‘heroic’ 
assumptions are sometimes made even in the most reputable of these 
offices. See the UK examples in Giles (2008).

In unofficial contexts, what we might call suspect statistics are not hard to 
find. A generic example, frequently met in the media, is a statistic that sum-
marises the financial burden imposed on the community by the prevalence 

‘I hear that 73% of statistics are made up on the spot.’
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of some disease or social ill. The following figures, recently reported in 
Australian media, are typical: ‘Divorce is costing the Australian economy 
$14 billion a year’, ‘Road congestion in Australia’s cities could cost the econ-
omy $20 billion by 2020’ (see also Question 8.3). You can easily find your 
own society’s examples by searching the web for simple variants of the 
phrase ‘costs the economy billions’.

What can be said of such statistics? Given the complexity of the surround-
ing issues, it is unlikely that they were estimated in some formal statistical 
way. How much might be due to guessing? We shall leave that to you to 
reflect upon. Once published, however, such statistics are rarely challenged 
publicly, and they soon take on a life of their own.

When a persuasive statistic is needed to advance an argument, there 
is no need to explain on what scale it is measured, even if that scale is 
unlikely to be familiar to the audience

An ethically principled argument based on (numerical) statistics uses the 
statistics in a way that is both meaningful to the audience and informative in 
the context in which it is quoted. To be meaningful, a statistic must obvi-
ously be appropriate to the purpose of the argument. Additionally, the scale 
on which the statistic is measured should be familiar to the audience. For 
example, ‘everyone knows’ that the body temperature of a healthy person is 
roughly between 36 °C and 37 °C, and that 41 °C, only four degrees higher, is 
already dangerously high.

A common way of making a statistic informative is to provide a reference 
base for comparison  –  for instance, the value of the same statistic in an 
earlier time period. That explains why percentage changes are more often 
quoted than absolute values. Even then, there are many possibilities for 
 misunderstanding (see Polito (2014), online at [9.2]).

If the audience is unfamiliar with the measurement scale (or the scale 
is  simply unmentioned), then meaning may be lost. A statistic with little 
meaning is hardly likely to be informative, even when a reference base is 
provided.

What is the reality? A scan of newspapers and other publications aimed at 
the general public readily reveals quoted statistics that are measured on 
scales very unlikely to be familiar to the public. Yet, in each case, the scale is 
explained poorly or not at all. Here are two examples we have seen recently.

The degree of inequality of personal income distribution in a country at a 
point in time can be measured by the Gini coefficient (this statistic is directly 
related to the Lorenz curve, which appears in Question 23.2). Its values are 
bounded by zero and one, the former signifying that everyone has the same 
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income, and the latter that all income is in the hands of a single individual. 
A newspaper report gives the Gini coefficient for Australia in 1994 as 0.336, 
but explains only that a higher number means a less even income distribu-
tion. There is no mention that the Gini scale is bounded by 0 and 1. So when 
the general reader is told next that the corresponding value for 2013–14 is 
0.333, there is no answer to the question in the reader’s mind: is that a major 
change or a minor change?

Global rankings of countries, based on a variety of indexes, are now pub-
lished annually. Wikipedia has, for instance, entries for the Global Peace 
Index, the Corruptions Perception Index and the Ease of Doing Business 
Index, and there are many more (see online at [9.3]). Each of the rankings is 
determined by the numerical values of the corresponding index. The index 
values, in turn, are determined by combining scores on a large number of 
relevant indicators. When any of these rankings is quoted in the media, the 
underlying index values are rarely given, much less the scale on which 
the index values lie. To the uninformed reader, the rankings therefore have 
very little meaning (for reasons explained in more detail in Chapter 8). 
Nor can much meaning be found in the index values (where they are given), 
since the measurement scale is a mystery to the reader  –  is the scale 
bounded; is it linear? In the end, all such rankings and index statistics 
have simply to be taken on trust. To the general reader, they mean what the 
journalist says they mean.

Statistical point forecasts are all you need; interval forecasts are too 
complicated

Media reports are full of forecasts. It is not always clear whether these fore-
casts were constructed by statistical methods, but it is almost universally 
the case that they are point forecasts, rather than interval forecasts. Seeing 
only point forecasts in the media, the public naturally believe that point 
forecasts are all you need (and, indeed, all that a statistician can possibly 
provide).

The precision of a point forecast is seductive. It bamboozles the mind, 
distracting it from asking about accuracy. A point forecast offers no sugges-
tion that it might be wrong, let alone how wrong it might be.

Here is an illustration. Discussing some statistical modelling by the 
Australian Treasury of the implications of an increase of 14 million in the 
Australian population by 2050, the editorial of a Sydney daily newspaper 
quotes government forecasts: ‘By 2050, Australia will need an additional 
173,000 kilometres of road, 3254 schools, 6.9 million homes, 1370 super-
markets, 685 department stores and 1370 cinemas.’ Neither more nor less!
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Given that these forecasts rest on statistical methods, an interval forecast 
would put each of them into perspective. Consider the needed number of 
schools. For any desired value of the probability that the statement ‘By 2050 
Australia will need an additional 3254 ± X schools’ is true, the statistical inter-
val forecast procedure provides the value of X. Now there is both a prompt 
that the forecast is uncertain, and an indication of how uncertain it is.

Of course, there are subtleties in both the derivation and the interpreta-
tion of an interval forecast (see Question 20.5). However, they are not so 
subtle as to preclude explanation to the public, if people are functionally 
literate in statistics.

‐‐‐oOo‐‐‐

These are by no means all the beguiling ways of bad statistics. Bad statistical 
graphics, for example, form a category all of their own. Inappropriate and 
misleading visual representations of data  –  especially politically‐sensitive 
data – turn up frequently in institutional reports, journalism and market-
ing. This is, however, too big a category to explore adequately here. 
Fortunately, there is a large critical literature. Anyone with a basic knowl-
edge of statistics should find these three books informative: Schmid (1983), 
Tufte (1983) and Jones (2006). Since 1990, Howard Wainer has written a 
column titled ‘Visual Revelations’ in each of issue of Chance magazine. 
Many of these columns critique flawed, and even misleading, statistical 
graphics that have appeared in public media. Wainer has collected these 
columns and other essays on related themes in several books, including 
Wainer (1997) and Wainer (2009).

As Chapter  3 makes clear, there is a key to creating resistance to all 
the negatively beguiling ways of bad statistics. It is advancing the growth of 
statistical literacy in the community.

Questions

Question 9.1 (A)

A naïve young man at a weekend party drank five shots of whiskey with iced 
water. The next day he awoke with a hangover. The following weekend at 
another party he drank five shots of brandy with iced water and had another 
hangover. At a third party, it was five glasses of white wine with iced water 
that gave him a hangover. He reflected on this melancholy chain of experi-
ences. ‘I’ll never drink iced water at a party again’, he decided.
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What specific cautions does this story imply about the causal interpreta-
tion of an observed association between two variables?

Question 9.2 (A)

A television announcer states that there is a 40% chance of rain on the follow-
ing day. As a person with statistical training, how do you interpret this state-
ment? How might it be interpreted by people without statistical training?

Question 9.3 (A)

Which eminent British scientist published, in 1872, a paper entitled 
‘Statistical inquiries into the efficacy of prayer’? What was the hypothesis 
about which the inquiries were made, and what was the conclusion of the 
investigation?

Question 9.4 (B)

A beguiling statistical strategy commonly used to market an apparently 
desirable investment (e.g. a house in a well‐to‐do suburb, or a painting by a 
famous artist) is to cite the documented purchase price of a closely similar 
investment at some distant date and its (far greater) recent selling price, and 
to highlight the percentage return that was achieved. How many ways can 
you think of in which this information may be misleading to a prospective 
investor, in judging his or her likely future success with the particular invest-
ment being marketed?

Question 9.5 (B)

A commonly used measure of bivariate correlation, r, is due to Karl Pearson. 
For sample data on two variables X and Y, r = Σxiyi /√(Σxi

2Σyi
2), where xi and 

yi are values of Xi and Yi in deviation from their sample means, and summa-
tion is over the number of sample values. The following data are, in order, 
the height in cm (X), weight in kg (Y) and age in years (Z) of individuals A, B 
and C: A (180, 86, 45), B (173, 82, 50), C (178, 77, 40). Find r(X,Y) and r(Y,Z).

From these results, what do you conjecture about r(X,Z)? Now find r(X,Z). 
Is this what you expected? What have you discovered?
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As you may already have discovered, there are lots of puzzles and paradoxes 
in theoretical and applied probability. In this chapter, we want to look a little 
more deeply into why this subject is so rich in difficulties. First, though, it’s 
good to be clear about who finds work with probability difficult. The answer 
is … everybody. Even statisticians! And that has been so for a long time.

In 1654, the French mathematician Blaise Pascal engaged his great con-
temporary Pierre de Fermat in a joint inquiry on two fundamental matters: 
how to assign numerical probabilities to chance events, and how to deter-
mine the probabilities of compound events. These tasks had always 
seemed so challenging that no real start had been made on them since, 
many centuries earlier, a profound realisation had been written into the 
Bible (Ecclesiastes 9:11): ‘… time and chance happen to all [mankind]’. 
However, whereas time has been measured for some 4000 years (these 
days, with supreme precision and accuracy), efforts to measure chance are 
hardly 400 years old, and the concomitant problems are still not solved to 
everyone’s satisfaction. For a short overview of some of these problems, see 
Good (1959).

It is mostly the finer aspects of these unsolved problems that give rise to 
puzzles in probability. Probability theory is full of subtleties. If they are 
neglected or unrecognised, difficulties of understanding and interpretation 
soon ensue. There is another obstacle, too – human intuition. Intuition has 
been neatly defined as ‘knowing without much thinking’ and (more strik-
ingly)  –  by Gigerenzer (2008)  –  as ‘the intelligence of the unconscious’. 
When someone’s intuition about something encounters accepted theory, 
what accepted theory says may come as a shock to his or her intuition. Thus 
a paradox is born.

Puzzles and paradoxes in probability
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A paradox is a proposition that (intuitively) ‘feels’ true (false), though 
accepted theory shows it to be false (true). To ‘explain’ (or ‘resolve’) a para-
dox is to clarify where, why and to what extent intuition needs to give way 
to accepted theory. (Another kind of paradox, which we shall not consider 
further here, arises from a self‐contradictory argument before it is recog-
nised to be self‐contradictory.) What is, perhaps, unexpected is the stub-
bornness of human intuition about chance when contradicted by results 
from probability theory – as our account in this chapter will illustrate.

‐‐‐oOo‐‐‐

Let’s look now at some concepts in probability theory, and see how they give 
rise to puzzles and paradoxes – sometimes very perplexing ones, especially 
to students of statistics.

Many technical terms in probability and statistics are also words used in a 
somewhat varied sense in ordinary English conversation. This is likely to be 
a source of confusion to lay people, and the fact that their intuition is rooted 
in the popular usage of these terms may deepen the confusion. Two such 
terms are ‘random’ and ‘independent’.

In popular usage, all the following words are ready synonyms for ‘ran-
dom’: accidental, arbitrary, chaotic, haphazard, patternless, unordered and 
unpredictable. The popular notion of randomness is, evidently, a rather 
fuzzy one!

To a statistician, randomness is a concept that is at once simpler and more 
complex than the popular notion. The statistician is concerned with ran-
domness in two particular settings:

a) defining randomness (as a theoretical underpinning of the concept of a 
‘random variable’); and

b) defining operational methods for generating sequences of random num-
bers (as the basis for selecting a random sample and for many other 
practical applications).

For these purposes, the required attributes of randomness are ‘pattern-
lessness’ and unpredictability (other fields, such as physics, mathematics, 
computer science and psychology, refer to further facets of randomness). 
Thus, at first sight, the statistician’s ‘randomness’ is simpler and more 
focused than the fuzzy popular usage. Moreover, we note, achieving pat-
ternlessness goes some way towards achieving unpredictability.

But then comes the need to devise practical mechanisms that it is hoped 
will generate patternless sequences of values – and also to define and assess 
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patternlessness in those generated sequences. Otherwise, we cannot judge 
progress towards our ultimate goal  –  to produce flawlessly random 
sequences. The layman’s intuition protests at such elaborateness. ‘I can 
 easily write down a sequence of patternless numbers’ is the layman’s para-
doxical cry. But once such ‘amateur’ efforts are scrutinised, the layman’s 
claim is generally soon repudiated.

It becomes clear that effective randomness‐generating mechanisms need 
to involve some kind of machine process, running with minimal human 
input. For the past 80 years, there have been intensive efforts to realise such 
hardware‐ or software‐based processes. Enormous progress has been made 
but perfection has not yet been attained.

This activity has, of course, had to proceed side‐by‐side with technical 
advances in pattern detection. To give a flavour of the technicality: we need 
to define the kinds of recurring patterns that we wish to have absent from a 
sequence of random data, then we need to devise reliable tests that will 
detect each such pattern, if it is present. Since the number of conceivable 
patterns is vast, you will see that certifying perfect patternlessness is actu-
ally an unachievable ideal. An imperfect compromise, in practice, is to test 
formally only for the presence of ‘obvious’ patterns.

Even accepting this kind of imperfection (which can, at best, result in 
‘near‐random’ sequences), there is yet a further challenge  –  this time 
related to unpredictability. Here is the essence of the problem: unpredict-
ability of the next value to be generated (given all the already‐generated 
values) is not assured from patternlessness alone. What is also required is 
independence of the generated values from one another. This is something 
qualitatively different; whereas patterns are deterministic forms, inde-
pendence is a probabilistic relation. To take an example: suppose we are 
trying to generate a long random sequence of the ten digits 0–9. One way 
of achieving independence is for the generating mechanism to meet the 
specification that the probability of the next digit generated being (say) a 5 
is fixed, regardless of the value of the digit that was generated immediately 
before.

There are also deeper technicalities in the statistical and philosophical 
literatures on randomness. They all point to one conclusion: perfectionist 
pursuit of randomness in data generation can, in practice, fall victim to its 
very complexity. You will find more about this in Chapter 11.

‐‐‐oOo‐‐‐

Mention of independence suggests a closer inspection of the concept. Here, 
too, popular intuition has its own unconscious knowledge: ‘things that are 
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independent are unconnected with (or unrelated to) each other.’ To a statis-
tician, however, this formulation is far too vague to be useful. Indeed, it can 
also be very confusing. To digress for a moment – many students’ confusion 
of mutually exclusive events with independent events may come from the 
fact that mutually exclusive events are represented by non‐overlapping 
(and, hence, unconnected) circles in a Venn diagram.

In probability theory, independence of two events, A and B, is defined 
quite concisely by the relation P(AB) = P(A).P(B), where P(AB), also written 
P(A∩B), is the probability of A and B both occurring. In formal terminology, 
this is ‘probabilistic independence’ or ‘stochastic independence’, but it is 
more commonly called ‘statistical independence’. This is to distinguish it 
from other senses of independence – as are found, for example, in mathe-
matics, logic and popular speech. Unless there is a risk of ambiguity, we 
shall continue here simply with ‘independence’.

The relation P(AB) = P(A).P(B) is both a necessary and sufficient con-
dition for independence. Moreover, it applies even to events whose 
probability of occurrence is zero. Unfortunately, working with events 
whose probability is zero creates many puzzles and paradoxes of its own, 
so it is generally convenient to avoid doing so. For instance, any event 
with probability zero is independent of itself. (Is that a shock to your 
intuition?) The proof is quite straightforward. Why not try it before 
reading on?

If we exclude events with probability zero, the above condition for inde-
pendence can be transformed into either of the following relations involving 
conditional probabilities: P(A|B) = P(A) and P(B|A) = P(B). Each of these 
versions is also a necessary and sufficient condition for the independence of 
A and B. To students of statistics, these new versions offer something 
appealing – the opportunity to remake their intuition to ‘know’ independ-
ence the way a statistician understands it. To take the first version, inde-
pendence means that the probability of event A occurring is the same, 
whether or not event B occurs.

However, even when they have assimilated this meaning, many students’ 
intuition remains committed to the popular notion of independence. 
Thus, if a probability problem involving events A and B has the formal 
solution that A and B are independent, students may insist that this result 
is paradoxical if there is any verbal statement within the problem that 
explicitly or implicitly indicates that the events are somehow logically 
connected.

For example, two coins are tossed randomly, one after the other. Event A 
is ‘the first coin shows a head’. Event B is ‘the coins fall alike’. Then, P(A) = 0.5, 
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P(B) = P(HH) + P(TT) = 0.5, P(AB) = P(HH) = 0.25. Thus P(AB) = P(A).P(B), 
and so the events are independent. But, intuition dictates, that cannot 
be! ‘When the first coin is a head and we are told the coins fall alike, the 
second coin no longer has a choice. It must come down as a head as well. 
Clearly, the way the second coin falls is logically constrained by (i.e. con-
nected to) how the first coin fell. These are dependent events, whatever the 
statistician says.’

Paradoxical in a different (and even astonishing) way is the following 
example from page 126 of Feller (1968). In a family with several children, 
define events A and B as follows. A: the family has children of both sexes, B: 
there is at most one girl. For a family with three children, A and B are inde-
pendent, since P(A) = 6/8, P(B) = 4/8 and P(AB) = 3/8. But for a family with 
two or four children, A and B are dependent events!

By now you may be thinking that probability theory can sometimes be so 
counterintuitive. Indeed so – and if you browse Székely (1986), you will have 
further confirmation.

Questions

Question 10.1 (A)

a) We draw cards at random, with replacement, from a pack of 52 playing 
cards. Show that the event A: an ace is drawn, and the event B: a spade is 
drawn, are statistically independent events. In what way are the state-
ments defining the events A and B logically connected?

b) What about a situation that is the converse of part (a) of this question? 
Can two events be statistically dependent, yet the statements that define 
those events be logically unconnected? If so, can you construct an illus-
trative example?

Question 10.2 (A)

Three coins are tossed once. What is the probability that all three coins 
show the same face?

If you think the answer is 0.25, how do you rebut the following argument? 
‘When three coins are tossed, two of them must show the same face. The 
third coin will show a head or a tail, in either case with probability 0.5. That 
means that the probability that it will show the same face as the two coins 
that came down alike is 0.5. So the probability that all three coins show the 
same face is 0.5.’
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Question 10.3 (A)

a) The famous ‘birthday problem’ shows that if N people are gathered in the 
same room, the smallest value of N for which two of the people will have 
the same birth day and month, with specified probability, is much 
smaller than intuition would suggest. It is, of course, certain if there are 
367 people! What is the smallest value of N for at least an even chance 
(probability ≥ 0.5) that two people have the same birth day and month? 
[Assume that births are uniformly distributed over the days of the year.]

b) Although they cannot be gathered in the same room, how many British 
Prime Ministers (going back from the present PM, in reverse chrono-
logical date order of first year as PM) must we consider before we find 
two who have the same day and month of birth?

c) Can you explain how the British Prime Ministers problem differs from 
the birthday problem?

Question 10.4 (B)

This question continues from the previous one.

a) Given a list of N people (whose birthdays may be considered randomly 
distributed through a year of 365 days), we look up their birthdays one 
by one in a reference book. What is the mean number of people whose 
birthdays have been looked up at the point where we find the first match 
in birthdays?

b) How do the Prime Ministers of Australia or the Presidents of the USA 
compare with this theoretical expectation?

Question 10.5 (B)

In 1893, a book called Pillow Problems was published. It contains 72 math-
ematical problems, of which 13 are problems in probability.

a) What was the name of the author as it appeared on the title page of the 
book, and what was the author’s real name? In what way are the author’s 
pen name and real name connected?

b) The Pillow Problems are stated in simple wording, but finding the cor-
rect answers is not so simple. See for yourself with this one:

A bag contains one counter, known to be either white or black. A 
white counter is put in, the bag shaken, and a counter drawn out, which 
proves to be white. What is now the chance of drawing a white counter? 
[Assume the bag is initially as likely to contain a white counter as a black 
counter.]
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11

In Chapter 10, we looked at some puzzles and paradoxes of probability 
arising from the subtle concepts of randomness and statistical independ-
ence. We want now to uncover some paradoxes of randomness.

We saw previously that statisticians are concerned with two aspects of the 
concept of randomness: defining the characteristics of a random sequence 
of numbers (as a theoretical underpinning of the concept of a ‘random vari-
able’), and then defining operational methods for generating sequences of 
numbers that have these characteristics (as the basis for selecting a random 
sample, and for many other practical applications). The first of these aspects 
we can summarise by saying that a random sequence is, over a ‘very long’ 
run of numbers, notionally patternless and that, in a random sequence, each 
number is unpredictable from knowledge of those that came before.

We say ‘notionally patternless’, because there is no formal definition of a 
‘very long’ run, and because there is no limit to the kinds of patterns we 
might want not to have in a random sequence. In practice, we have to limit 
ourselves to some small set of patterns to be excluded – specified so as to be 
appropriate to the practical context for which the random numbers are 
needed. We then look for a way of generating a sequence of numbers so that 
there is a low chance of such patterns turning up.

When it comes to unpredictability, we are similarly up against a practical 
constraint. In its most general conception, unpredictability requires that a 
specific kind of pattern be absent: there must be no exact relation connect-
ing the nth random number to the (n–1)th, no exact relation connecting the 
nth random number to any combination of the (n–1)th and the (n–2)th, and 
so on. In practice, we usually limit ourselves to guarding against only the 
first of these. The discussion so far presumes that our context is one where 

Some paradoxes of randomness
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we choose to, or are obligated to, generate (what we shall call) ‘truly random’ 
numbers. As you will see, there are statistical contexts where truly random 
numbers are not necessarily the statistician’s first choice.

Well, then, how are truly random numbers generated and for what pur-
poses? An everyday instance is tossing a coin to resolve an ‘either‐or’ choice 
of action. Intuitively, we accept that the many small motions of the tossing 
hand, and chance variations in the forces applied to the coin, will ensure the 
unpredictability of the outcome at each toss, and an absence of systematic 
patterns in any long sequence of tosses. (It is assumed that there is no trick-
ery – for example, by catching the coin and glimpsing its face before it is slapped 
against the wrist.) Surprisingly, however, our intuition may be wrong: coin 
tosses are not typically random. Such, at least, is the finding of the careful 
(and mathematically advanced) study of the physics of coin‐tossing in 
Diaconis, Holmes and Montgomery (2007).

A quite different context is the public drawing of lottery prizes, where the first 
three prizes (say) are all substantial sums of money. Clearly, if these three prizes 
were won by three tickets purchased successively from the same ticket seller, 
questions would be asked about the integrity of the draw, even though such an 
outcome is perfectly compatible with true randomness over a ‘very long’ run of 
lottery drawings. Lottery winners must not only be chosen truly at ran-
dom – they must also be seen to be chosen truly at random. Thus, extensive 
precautions are taken. For the UK National Lottery, for instance, several bins for 
mixing balls are available, as are several ball sets. On any particular occasion, a 
chance‐selected bin is paired up with a chance‐selected ball set. A visibly thor-
ough mixing of the balls follows. Only then are the winning ball numbers drawn.

Despite similar precautions with all public lotteries, they are sometimes 
inadequate to ensure a truly random outcome. A prominent example is the 
1970 US draft lottery, by which men aged between 20 and 26 were con-
scripted for military service in Vietnam, according to the day and month of 
their birth. The departures from randomness in this lottery are informa-
tively analysed in Starr (1997), online at [11.1].

With few exceptions, it is only by ‘physical’ methods (i.e. methods based 
on a physical device, such as a lottery bin or a roulette wheel) that one can 
efficiently generate long sequences of the truly random numbers we have 
been referring to. It was, indeed, from such devices that statisticians gener-
ated random sequences in the 1930s – the early years of modern inferential 
statistics  –  for sampling and simulation studies. However, before these 
sequences could be (let’s use the term) ‘certified’ as random, they needed to 
pass statistical tests of randomness – that is, tests suggesting the absence of 
several kinds of unwanted patterns. It is not surprising, then, that several 
tests of randomness in number sequences were devised in the same era.
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Various physical methods were refined and automated in the following 
decades. This effort culminated in the US RAND Corporation’s produc-
tion, from 1949 onwards, of ‘a million random digits with 100,000 normal 
deviates’. These million digits had been carefully tested for randomness 
before they were published under the above title in 1955. When this unique 
book of some 600 pages appeared, whimsical book reviewers enjoyed 
themselves (‘how did they proofread it?’, ‘I can’t recommend it: there are 
thousands of characters but no plot’). Today, anyone can download a copy 
free of charge at [11.2].

However speedily such ‘certified’ random sequences could be generated 
in that era, the process of certifying them was actually quite cumbersome, 
especially when extremely long sequences of random numbers were 
needed (e.g. for lifelike simulation of the operation of a large industrial 
plant). Also, all these numbers needed to be stored long‐term – a challenge 
for the limited memory of computers of the time – because replicability of 
results was indispensable during the testing stage of software designed for 
simulation studies.

A more compact and more reliable method of generating random num-
bers was needed, perhaps from some kind of formula. But what kind of 
formula?

‐‐‐oOo‐‐‐

A remarkable formula was soon proposed  –  remarkable, because it is 
entirely deterministic! For this very reason, it is enmeshed in its own web of 
paradoxes. It was first convincingly demonstrated in a paper by the US 
mathematician D.H. Lehmer (1951). The formula Lehmer proposed is called 
a ‘multiplicative congruential generator’ (MCG). The (n + 1)th random inte-
ger is derived from the nth by the recurrence relation Xn+1 = k.Xn (mod M). 
Here, k and M are integer parameters: k is termed the ‘multiplier’ and M is 
termed the ‘modulo’. For given values of k and Xn, Xn+1 is the integer remain-
der after the integer quotient from dividing k.Xn by M is evaluated. An equa-
tion involving modulo arithmetic is called a ‘congruence’ – hence the name 
of the generator.

To start the generating process off requires an integer value X0, termed 
the ‘seed’. Here is a simple arithmetic example: put X0 = 9, k = 11, M = 13. 
Then X1 = 99 (mod 13) = 8, X2 = 88 (mod 13) = 10, and so on. Lehmer and 
dozens of subsequent writers investigated the best choices of values for k, M 
and X0 to ensure that the MCG produces sequences that will pass standard 
tests of randomness. However, it was clear from the outset that every MCG 
generates sequences that are periodic  –  that is, after a number of steps 
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(determinable in advance), the sequence repeats itself exactly. In the above 
simple example, for instance, the sequence repeats after X12.

If we choose to work with an MCG, we face two paradoxes. Unpredictability, 
we said above, is an indispensable attribute of a random sequence. How, 
then, can the MCG legitimately be described as a random number genera-
tor when it is obvious that, if the formula is known, all the successive values 
it generates are entirely predictable? A sensible way to resolve this paradox 
is to adapt the terminology: MCG generated numbers clearly cannot be 
called truly random, but they can be ‘pseudorandom’ – that is, MCGs can 
(for suitable parameter values) produce sequences that will pass standard 
tests of randomness, even though they are not unpredictable.

Then again, how can they be essentially patternless if they are periodic? 
This time, we cannot escape by changing the terminology. Instead, what we 
must seek are parameter sets for which the MCG generates a ‘certified’ 
sequence that is long enough for our needs in a particular application, but 
still shorter than the period of that MCG. Studies of the period length of 
different MCGs are common in the scholarly literature of the past 50 years, 
as are similar studies for the many deterministic alternatives to the MCG 
formula that have been proposed as pseudorandom number generators. 
Today, scientists in all fields use pseudorandom numbers to solve many dif-
ferent kinds of statistical and non‐statistical problems. It says a lot about the 
importance they attach to having suitable long‐period pseudorandom num-
ber generators with excellent randomness properties that this field of 
research continues to be fertile, though there are already well over 1000 
research papers on the theme.

Further insight on the MCG and its variants, as well as detail on some 
standard tests of randomness in generated sequences, can be found online 
at [11.3].

‐‐‐oOo‐‐‐

It will be clear from this discussion why winning numbers in public lotteries 
and in electronic gambling machines are not decided by the output of a pseu-
dorandom number generator, but rather by truly random numbers. Truly 
random numbers are also preferred by many in the field of cryptography for 
securely encoding messages. This last avenue of application of random num-
bers has developed so rapidly with the growth of online commerce, mobile 
telephony and electronic surveillance, that there has been a renewal in recent 
years of research effort on ways of producing reliable truly random sequences. 
Old ‘physical’ methods (e.g. intermittent capture of mid‐calculation values in 
computer memory; counts per unit time of atomic particles ejected from a 
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radioactive substance) are being reappraised, and new ‘physical’ methods 
(e.g. capture of atmospheric noise; counts of the impacts of cosmic radiation) 
are being explored. A rare non‐‘physical’ method has also found success, 
with the report that the successive digits of the decimal expansion of π form 
a truly random sequence – see Dodge (1966). This was no minor investiga-
tion; more than 6 billion digits of π passed multiple tests of randomness!

With so many viable sources of truly random sequences, there is now even 
a niche industry for the commercial supply of such sequences. A typical 
supplier can be found online at [11.4].

We saw above that pseudorandom number generators were devised to 
assure the replicability of results during the testing stage of software devel-
opment, without the need to store extensive arrays of generated numbers. 
This was in an era when computers had sharply limited memory capacity. 
There is no such restriction today. Thus, it has become feasible to work 
extensively with generators of truly random numbers. As a philosophical 
bonus, it avoids the need to grapple with the paradoxical characteristics of 
pseudorandom number generators.

Fortunately – or unfortunately, depending on your perspective – other 
paradoxes of randomness remain to tantalise and disconcert us! See, for 
example, Questions 11.3 and 11.5, below.

Questions

Question 11.1 (A)

Seventeenth‐century gamblers believed that when rolling three dice, a total 
of 9 and a total of 10 could each be obtained in six ways, so that rolling 9 and 
rolling 10 ought to have equal chances. Yet, their experience showed that 10 
was more likely than 9. Who discussed and resolved this problem in an 
essay about the theory of dicing? And how was the problem resolved?

Question 11.2 (B)

We remarked in the Overview that multiple congruential generators (MCGs) 
can (for suitable parameter values) produce sequences that will pass most 
tests of randomness. However, there is a pattern that is unavoidable in any 
sequence generated by an MCG, by virtue of its recursive structure (quite 
apart from its periodicity). What sort of pattern is this? Investigate the pat-
tern using the first 12 values generated by our illustrative MCG: Xn+1 = 11Xn 
(mod 13), with X0 = 9, by plotting them, using overlapping successive pairs 
of these values as Cartesian coordinates.
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Question 11.3 (B)

We quote from the work of a British mathematician and philosopher:

‘We have a randomizing machine that produces a series of ones and 
noughts. We require for experimental purposes a random series of 16 
ones and noughts. We start the machine which now gives us a series 
of 16 noughts. We of course reject this series as unsuitable and sus-
pect the machine of being biased. It is returned to the makers for 
adjustment. When it comes back we have a very long experiment for 
which we require a random series of 2,000,000 ones and noughts. We 
leave the machine running … but on checking through the 2,000,000 
ones and noughts it produces we are surprised to find not a single run 
of 16 noughts. Again we suspect it of being biased and send it back. 
But what is its designer to say to all this? First we send it back because 
it produces 16 noughts in a row. Very well: he puts in a device to 
prevent its doing this. We then send it back because it never produces 
16 noughts in a row … It seems we are never satisfied.’

Implicit here is another paradox of the notion of randomness. What is this 
paradox? How do you propose that it be resolved?

Question 11.4 (B)

A traditional die has six faces, numbered 1–6, but of course it is possible to 
use different numberings. Here is a set of four dice which have faces num-
bered 1–24, with each number appearing just once:

die A: 3, 4, 5, 20, 21, 22
die B: 1, 2, 16, 17, 18, 19
die C: 10, 11, 12, 13, 14, 15
die D: 6, 7, 8, 9, 23, 24

Aside from the unusual numbering, what else is interesting about these 
dice, and to whom do we owe the result?

Question 11.5 (C)

Two people, A and B, play a coin‐tossing game. They toss a fair coin repeat-
edly, with B taking over when A gets tired, and vice versa. After each toss, A 
scores a point if the result is a ‘head’, while B scores a point if the result is a 
‘tail’. What is the most likely value for the proportion of the time (i.e. the 
proportion of the total number of tosses) for which A is ahead on total 
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points scored? If their game lasts for 1000 tosses, and A is ahead for only 50 
of these, what should she conclude?

[Note: of course, at each toss, A is as likely to score a point as B, but some-
thing surprising happens as they keep track of their accumulating points, 
and thus of who is ahead. Indeed, most people would find the answers to 
these questions paradoxical. While the results can be stated simply, their 
mathematical demonstration is quite advanced!]
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Gambling, a passion for many people, has been around for as long as 
recorded history, and it shows no sign of fading away.

All gambling relates to an activity with an uncertain outcome, and with 
performance rules specified in advance. The activity is conventionally called 
a ‘game’, and ‘gaming’ is often used as a synonym (and, indeed, a euphe-
mism) for gambling. The chief characteristic of all the games we shall look 
at in this chapter is that money is bet on the outcome of the game. To bet, 
the gambler advances a sum of money – called a ‘stake’ – which is the entry 
fee for participation in the gamble, on pre‐agreed terms regarding winning 
and losing. After the game is played and the outcome is known, the gambler 
either loses the stake or regains it, together with some additional winnings. 
(In a few games, there is also a third possibility – see Question 12.1.)

The earliest such games needed no more than the simplest equipment – 
bones, dice or playing cards. Making use of bleached sheep bones, the game 
of knucklebones (or ‘jacks’) was supposedly invented by a Greek soldier 
during the Trojan War in the 12th century BC. The oldest known dice, in 
use 5000 years ago, were found as part of a backgammon set at an archaeo-
logical site in Mesopotamia. Playing cards were invented in Ancient China, 
with early examples dating from the Tang Dynasty in the 9th century.

Today, the most commonly seen gambling devices are electronic gaming 
machines (called ‘fruit machines’ in Britain, ‘slot machines’ in the US and 
‘poker machines’ in Australia). However, in our society, gambling is an 
inventive industry: it’s hard to think of any activity having an uncertain out-
come that does not have a gambling opportunity attached! One can, for 
example, bet on a horse race, a football match, share price movements, an 
election, or the winner of the next Oscar for best leading actor.

Hidden risks for gamblers
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You don’t need much experience to discover that, for games devised by 
the commercial gambling industry, the most common result of playing the 
same game repeatedly is to lose all of your money. The gambler’s desired 
outcome – to win a large sum – is far less likely than most gamblers would 
believe. Even when bitter experience has shown them that their desired out-
come is hardly probable, compulsive gamblers persist, spurred on psycho-
logically by irrational convictions: ‘a win must come to me – because I’m 
special, not like others’ and ‘I’m owed a big win because I’ve had so many 
losses lately’. Quitting is not contemplated, because to quit would be to 
unequivocally accept the losses, whereas continuing leaves open the door of 
possibility. (See also the answer to Question 3.1.)

The realities of protracted gambling have long been pointed out, some-
times quite memorably. Thus, the 16th century mathematician and inveter-
ate gambler Girolamo Cardano wrote, ‘the greatest advantage in gambling 
lies in not playing at all’, and the first prime minister of a unified Italy, Camillo 
di Cavour, is reported as speaking of lotteries as ‘a tax upon imbeciles’.

‐‐‐oOo‐‐‐

As in many other practical contexts, evaluating probabilities for gambling 
games can be perplexing. Even perceptive writers on this theme can be con-
fused. Adam Smith, a pioneering Scottish moral philosopher and econo-
mist, wrote this about lotteries (in Book 1, chapter  10 of his 1776 book, 
An Inquiry into the Nature and Causes of the Wealth of Nations, online at 
[12.1]): ‘Adventure upon all the tickets in the lottery, and you lose for cer-
tain; and the greater the number of your tickets, the nearer you approach to 
this certainty.’ This is a puzzling assertion, explored in Question 12.4.

Yet, Adam Smith correctly intuited the proposition we highlighted above: 
when you bet in any commercial game, you are more likely to lose than to 
win – and, as you continue betting, the likelihood that you will lose all your 
stake money approaches a certainty.

Let’s investigate this proposition in detail in the context of a ‘straight‐up’ 
bet at roulette – that is, a bet on a single number. A European roulette wheel 
is divided into 37 sectors, numbered from 0 to 36. Each sector is in the form 
of a shallow bin. The wheel is spun clockwise, and a small ball is tossed 
anticlockwise over the rotating wheel. After some bouncing around, the ball 
comes to rest in one of the sectors, which determines the winning number.

Suppose, at a casino, you bet $1 on the number 7. If any other number 
comes up, you lose your stake, and your profit is –$1; this will occur with 
probability 36/37 (=0.973). On the other hand, if 7 comes up, you will receive 
$36 and your profit is $35; this occurs with probability 1/37 (=0.027). (The 
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fixed prize for a winning roulette bet is calculated at a rate that would be fair 
if there were only 36 numbers, rather than 37.) This gives a mean ‘return to 
player’ (the proportion of wagered money that is on average paid back to the 
player) of 0.973, or 97.3% of the stake, and a margin of 2.7% for the casino. 
In other words, for every $1 you bet you will, on average, get back less than 
$1. (By the way, European casinos are really quite modest in their margin; 
US casinos extract twice as much by adding another sector, labelled 00, to 
the roulette wheel.)

So, what happens if you play roulette repeatedly, each time making a $1 
straight‐up bet on the number 7? Well, most of the time, you will lose your 
dollar – and occasionally, roughly once every 37 spins, you will win. If you 
wish to work out your chances over, say, 60 such bets, you can use the bino-
mial distribution. You are repeating your bet n = 60 times, the probability of 
success is p = 1/37 each time, and the results of successive spins are inde-
pendent. You can calculate, for instance, the probability that you will come 
out ahead. For this to happen with 60 bets, you will need to win at least twice.

Formulated more generally, X, the number of wins, has a binomial (n, p) 
distribution. Your profit is Y = 36X – n, and you will be ahead if Y > 0, that is, 
if X > n/36. The probability is obtained from a cumulative sum of binomial 
probabilities. For the case of 60 bets, it is found as 1 – [(36/37)60 + 60(1/37)
(36/37)59] = 0.484.

In this way, you can calculate your chance of coming out ahead after 
longer periods of betting. The third column of the table in Figure  12.1 
shows exact probabilities for larger numbers of bets, calculated using the 
statistical formulae in Excel. We also checked them using WolframAlpha, 
online at [12.2].

Number of 
bets made

Minimum number 
of wins needed

Exact probability 
of being ahead

Approximate probability 
of being ahead

60 2 0.484
120 4 0.408
240 7 0.472
480 14 0.424

1 000 28 0.451 0.442
2 000 56 0.413 0.418
3 000 84 0.386 0.400
5 000 0.372

10 000 0.322

Figure 12.1 Exact and approximate probabilities of being ahead on roulette bets.
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The probability of coming out ahead seems to be reducing as you play this 
game longer, though (perhaps unexpectedly) there are some increases along 
the way. Question 12.5 explores this behaviour further.

If you were to become addicted to roulette, you might, over many years, 
play this game a very large number of times. In that case, to work out the 
chance of coming out ahead at the end, it will be arithmetically simpler to 
move away from the binomial distribution and invoke the Central Limit 
Theorem (CLT), one of the most important theorems in statistics.

‐‐‐oOo‐‐‐

At its most basic, the CLT says that if you draw a sample randomly from a 
population that is not normally distributed, the sample mean will neverthe-
less be approximately normally distributed, and the approximation will 
improve as the sample size increases.

To bring out its significance, let’s amplify four aspects of this statement:

 ● First aspect: the CLT is about the distribution of the mean of a random 
sample from a non‐normal population. What is meant by ‘the distribution 
of the sample mean’? This is a shorthand expression for a more wordy 
notional concept – ‘the distribution of the means of all possible samples 
of a fixed size, drawn from the population’. The technical term for this 
concept is ‘the sampling distribution of the mean’.

 ● Second aspect: the CLT is about the distribution of the mean of a random 
sample from a non‐normal population. Which non‐normal population? 
The CLT applies to unimodal non‐normal populations, whether symmet-
ric or non‐symmetric. It even applies to bimodal populations. And – using 
a mathematical method to match up discrete and continuous probabili-
ties – it applies to discrete populations (such as the binomial), not just to 
continuous populations. Finally, it applies to empirical populations (com-
prising data values collected in the real world) as well as to theoretical 
populations (such as the binomial).

 ● Third aspect: the CLT says that the mean of a random sample from a 
non‐normal population will be approximately normally distributed (this 
behaviour is sometimes called ‘the CLT effect’). Does the CLT effect 
appear in the distribution of the sample mean from all populations of the 
kinds just listed? No – there are some theoretical populations for which 
the CLT effect is absent. There are examples of such populations in 
Chapter 24. A useful guide is this: if the population has a finite variance 
then the CLT applies. That is why the CLT certainly applies to all empirical 
populations.
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 (We note, in passing, that the CLT applies also to the sum of the sample 
values whenever it applies to the mean of the sample values. Indeed, we 
shall apply it below to ‘total profit’ from a roulette gamble. However, in all 
the later chapters of this book, we shall refer to the CLT only in applica-
tion to the sample mean.)

 ● Fourth aspect: the normal approximation will improve as the sample size 
increases. How big a sample is needed for the normal approximation to 
look good when graphed? That depends mainly on how far from sym-
metry is the non‐normal population from which samples are drawn. If the 
population is symmetric, the normal will be an excellent approximation 
for a sample size around 30. For a moderately skewed population, samples 
of size 50 will be needed. If the skewness is extreme, the CLT effect will be 
seen clearly only for samples of size several hundred.

The CLT effect, as the sample size increases, can be nicely illustrated 
graphically using one of the many CLT applets to be found on the web. 
A formal proof of the CLT is given in advanced textbooks.

You can see why the CLT is such a counterintuitive theorem. Who would 
think that the sample mean is approximately normally distributed, (almost) 
regardless of the form of the population being sampled? You can also now 
see why the CLT is such an important theorem. It unifies the theory of sta-
tistical inference regarding the mean. If there were no CLT, there would 
have to be a separate theory of inference for samples from every individual 
population. That would make it impossible to speak about the discipline of 
statistics.

‐‐‐oOo‐‐‐

Let us proceed now with calculating the probability of being ahead in rou-
lette betting, using the CLT’s normal approximation to the binomial.

As we have seen, your profit from a single straight‐up bet is a binomial 
random variable that can take values of –1 or +35, with probability 36/37 
and 1/37, respectively. The CLT declares that if you bet this way a very large 
number (N) of times, your total profit will be well approximated by a normal 
distribution. What are the mean and standard deviation of this normal dis-
tribution? The mean is –0.027 (= –1(36/37) + 35(1/37)), and it can be shown 
that the standard deviation is 5.838. Standard theory then tells us that the 
mean value of the total profit from N bets is –0.027 N, and the standard 
deviation is 5.838√N.

You will be ahead if your total profit is positive, so the probability of being 
ahead is represented by that part of the area under the normal curve that 
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corresponds to values of profit greater than zero. For N = 1000 games, this 
gives a probability of 0.442. Results for larger numbers of games are shown 
in the fourth column of Figure 12.1. These probabilities are close to, but 
not the same as, the exact binomial results.

You might think that, in reality, no gambler would ever play such a large 
number of games of roulette. But there are in our society games that gam-
blers could well play vast numbers of times, almost without noticing. For a 
particularly pernicious example, consider the electronic gaming machines 
that we mentioned above.

In Australia, a typical poker machine might realistically have a mean 
return to the player of 90% (State laws require at least 85%), with a ‘house’ 
margin of 10%, a standard deviation of 17.5 (betting units) and an average 
electronic spin time of five seconds per play, representing 12 spins per min-
ute. Single bets can be made in units of 1 cent or higher (frequently up to $5 
and sometimes even more), and on between 1 and 50 ‘lines’ (i.e. pre‐speci-
fied winning patterns of five symbols across the screen).

Imagine a gambler who plays for a whole evening at her local club, bet-
ting 10 cents per line, 25 lines at a time, for five hours. She will play the 
equivalent of 90,000 games that evening at 10 cents a game, representing 
an outlay of $9000. Her total profit will have a mean of –9000 and a stand-
ard deviation of 5250 (in betting units of ten‐cent games). In money terms, 
this is a mean of –$900 and a standard deviation of $525. Using the CLT 
approximation, her chance of being ahead at the end of the evening will be 
only 0.04. If she spends her evenings in this way fairly often, she will lose 
$900 on average each evening, and will come out ahead only on one even-
ing out of 25.

This scenario is derived from information in government reports and 
from machine manufacturers; it does not represent an extreme case (see 
[12.3] online for one such source of information). Little wonder that social 
welfare groups and government agencies are worried about the effects of 
widespread ‘problem gambling’ in the community. Clubs and casinos are 
also worried, but seemingly more so about the possible introduction of 
‘gambler pre‐commitment’ regulations that threaten to diminish one of the 
richest sources of their revenue.

Unfortunately for those who gamble regularly, it seems that knowledge of 
probability’s basic message about gambling is not widespread, nor is under-
standing of the power of the psychological pressures against quitting upon 
the gambler. If, as Cavour thought, lotteries are ‘a tax upon imbeciles’, then 
this form of high‐intensity gambling is surely an even more insidious exploi-
tation of the uninformed, the poor and the desperate.
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Questions

Question 12.1 (B)

We have said that the outcome of a bet is that the gambler either loses the 
stake or regains it together with some additional winnings. But there is a 
third possibility: the gambler regains the stake, but without any additional 
winnings. Can you identify a casino card game where this is a possible 
outcome?

Question 12.2 (B)

From an ordinary deck of playing cards I take five red and five black cards, 
shuffle them together well, and offer you the following bet. You start with an 
amount of $100 (call it your ‘pot’); your first bet is half of this, $50, and I 
match this amount. I deal out a card: if it is black, you win and take the 
money that we have bet ($100); if it is red, you lose and I take the money. We 
continue turning over the cards in the mini‐deck, and each time you bet half 
of your current pot on the colour of the next card and I match your bet. 
Since there are equal numbers of black and red cards, the game will be fair. 
Do you agree?

Question 12.3 (A)

Which 17th century statistician and economist (predating Cavour by 200 
years!) wrote in a chapter entitled ‘Of Lotteries’ that lotteries are an oppor-
tunity for people to tax themselves, though in the hope of gaining advantage 
in a particular case?

Question 12.4 (B)

Consider Adam Smith’s remark: ‘Adventure upon all the tickets in the lot-
tery, and you lose for certain; and the greater the number of your tickets the 
nearer you approach to this certainty.’ Can you suggest an interpretation of 
this remark that makes the statement valid or, at least, not so obviously 
incorrect?

Question 12.5 (C)

In the Overview, we investigated the results of repeated betting at roulette. 
We said that, in general, the more repeated bets you make, the lower is your 
probability of coming out ahead. However, Figure 12.1 shows that this is not 
uniformly true, as it indicates some increases in probability with increasing 
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numbers of bets. This effect is, indeed, more extreme than the table implies. 
For a straight‐up bet on a single number, most of the time simply playing 
one extra game will increase your chances of coming out ahead. Can you 
explain this paradox?
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‘Yes, the world is a complicated place.’ You have probably heard this in social 
conversation, and the speaker generally lets it go at that. But consider what 
it means for someone who is trying to understand how things actually work 
in this complicated world – how the brain detects patterns, how consumers 
respond to rises in credit card interest rates, how aeroplane wings deflect 
during supersonic flight, and so on. Understanding will not get very far 
without some initially simplified representation of whatever situation is 
being examined.

Such a simplified representation of reality is called a model. A neat defini-
tion of a model is ‘a concise abstraction of reality’. It is an abstraction in the 
sense that it does not include every detail of reality, but only those details 
that are centrally relevant to the matter under investigation. It is concise in 
the sense that it is relatively easy to comprehend and to work with.

A simple example of a model is a street map. It shows the layout and 
names of streets in a certain locality and represents, by a colour coding, the 
relative importance of the streets as traffic arteries. It is an abstraction of 
reality, in that it supplies the main information that a motorist needs, but 
little else. For example, it is two‐dimensional, and so does not show the 
steepness of hills, nor all the buildings that line the streets. The map is also 
concise in that it reduces the scale of reality to something much smaller 
(typically, 1 cm = 100 m).

Because there are many different kinds of things in the world that we seek 
to understand, there are many different kinds of models. There is a basic 
distinction between physical models and algebraic (also called computa-
tional) models. A physical model is, as the name suggests, some kind of 
object (whether in two or in three dimensions). The circuit diagram of a 
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digital radio receiver is evidently a physical model. So is an architect’s three‐
dimensional representation of a house as it will look when built, and so also 
is a child’s toy helicopter.

An algebraic model, on the other hand, uses equations to describe the 
main features of interest, as well as their interrelations, in a real‐world situa-
tion. If these equations describe relations that are certain, or relations where 
chance influences are ignored, the model is called a deterministic model or 
(alternatively) a mathematical model. Newton’s three ‘laws’ of motion and 
Einstein’s famous equation E = mc2 are examples of mathematical models.

If, however, the equations explicitly include the influence of chance, then 
the model is called a stochastic model or (alternatively) a statistical model. 
Thus, a statistical model, by definition, always includes a purely random (i.e. 
completely unpredictable) component, to represent the influence of chance 
upon the quantity being modelled.

A statistical model may additionally include a deterministic component, 
comprising one or more distinct systematic (i.e. either known or predictable) 
influences upon the quantity being modelled. We shall look at such statisti-
cal models later in this Overview.

We find it convenient here to refer to a statistical model which has no deter-
ministic component as a probability model. Though introductory textbooks 
of statistics may not highlight the fact, all the standard probability distribu-
tions (binomial, Poisson, normal, etc.) are, indeed, probability models.

‐‐‐oOo‐‐‐

To see the binomial distribution as a probability model, let’s take a real‐
world situation. A big bin of apricots is delivered and someone pulls out four 
apricots for us to eat. What is the probability (we may be interested to know) 
of getting three ripe apricots and one unripe apricot in a selection of four 
apricots? It is difficult to answer this question in the real world, because 
there are so many things about this situation that we don’t know. For exam-
ple, we don’t know (a) whether the apricots were selected deliberately or 
at random, (b) how, exactly, to tell a ripe apricot from an unripe one, and 
(c) how the ripe and unripe apricots are distributed through the bin.

We can simplify the problem if we make some assumptions. From the 
textbook, we learn that (i) if we select the apricots at random; and (ii) if we 
define a selected apricot as either ripe or unripe (that is, there are only two 
possible outcomes); and (iii) if the chance of selecting a ripe apricot from the 
bin is always the same, each time we select an apricot; and (iv) if the occa-
sions on which we select an apricot are unconnected with (that is, independ-
ent of ) each other, then there is a concise formula – the binomial probability 
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density function – for evaluating the probability of getting three ripe apricots 
and one unripe apricot in a selection of four apricots from the bin.

These four assumptions collectively imply a quite marked abstraction from 
the reality of the situation. Let’s see how. Firstly, there could be a third possi-
ble outcome: a selected apricot might look ripe, but be unripe inside. Secondly, 
once most of the apricots in the bin have been drawn out, it will not be very 
realistic to continue to assume that that the chance of selecting a ripe apricot 
is constant at each draw. After all, every time an unripe apricot is selected 
from the bin, that increases the chance that a ripe apricot will be selected 
from the remaining apricots at the next draw. Finally, selections – even if they 
are seemingly random  –  will not always be independent in practice. If an 
apricot is drawn for eating, but turns out to be unripe, another apricot will be 
immediately selected. That subsequent draw will occur precisely because the 
previously drawn apricot was unripe. That is not independence of draws!

Before analytical use is made of any statistical model – and that, of course, 
includes a probability model – it is clearly important to validate the model. 
This involves checking that the model captures all the characteristics of the 
real world that are essential for the purpose at hand. Checking the ‘fit’ of the 
model to the real world is a two‐stage process: ensuring that the model is 
practically suitable; and then testing that the model’s predictions of real‐
world data are a statistically close match to the actual real‐world data. Good 
applied statistical work requires careful attention to both stages.

Returning to our apricots example, if the four assumptions set out above 
are judged sufficiently realistic, then the binomial probability density func-
tion (for short, say simply ‘the binomial distribution’) will be a practically 
suitable model. On the other hand, if we judge it essential to take into account 
the possibility of three outcomes (apricot ripe, apricot unripe, or apricot 
looks ripe but is unripe), then a practically suitable model will be the trino-
mial distribution. Alternatively, if two possible outcomes are sufficiently 
realistic, but we are not comfortable with assuming that the probability of 
drawing a ripe apricot remains the same each time we select an apricot, then 
a practically suitable model will be the hypergeometric distribution. You may 
not be familiar with these standard probability distributions – the trinomial 
and the hypergeometric – but that need not be an obstacle to following this 
discussion.

The point is that when some standard probability model is not practically 
suitable, there is often another one already in the statistician’s tool kit that 
fits the bill more appropriately. However, if there is not, then it is usually 
possible to develop an improved model from scratch  –  see Gelman and 
Nolan (2002), pages 142–145, for an instructive example in the context of 
putting in golf.
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Suppose we decide to adopt the binomial distribution as a practically suit-
able model for finding the probability of x ripe apricots in a random draw of 
four apricots, where x runs from 0 to 4. Next, we have to test whether the 
model’s predictions of real‐world data are a statistically close fit to those 
real‐world data. To generate some real‐world observations, we perform, say, 
120 random draws of 4 apricots. Suppose we find:

No. of ripe apricots per draw  4  3  2  1  0
Observed no. of draws 10 30 42 26 12

The binomial distribution model defines the probability of x ripe apricots 
in a random draw of four apricots by the formula 4Cx px (1–p)4–x. To proceed, 
we need to estimate the parameter p, the probability of selecting a ripe apri-
cot at any one draw. We note the property of the binomial distribution model 
that the mean number of ripe apricots in selections of four apricots is 4p. 
Next, we calculate the weighted mean number of ripe apricots per draw from 
the above real‐world data. This is 2.0. Equating the model’s and the real‐world 
data’s mean values, 4p* = 2.0, we find an estimate of p to be p* = 0.5. We can 
now calculate model‐predicted probabilities, and frequencies over 120 draws:

No. of ripe apricots per draw 4 3 2 1 0
Predicted probability 0.0625 0.25 0.375 0.25 0.0625
Predicted no. of draws 7.5 30 45 30 7.5

The statistical fit of the binomial distribution model can then be tested by 
the chi‐squared goodness‐of‐fit test. The test statistic is K = Σ[(Oi – Pi)2/Pi], 
where O is the observed and P the predicted number of draws, and i = 1, 2, … 
5. Small values of K (implying O and P values close together) signal a good fit 
of the data to the model. The critical value of the chi‐squared statistic, with 
(here) 3 degrees of freedom and a 5% level of significance is 7.81. This means 
that if K > 7.81, there is a statistically significant difference between the mod-
el’s predictions and the real‐world observations – that is, the test suggests the 
data are a poor fit to the model. In other words, the model is a poor one.

However, if K ≤ 7.81, the model’s predictions do not contradict the data, so 
we may act as if the model is a good one. For these data, K = 4.27, so we 
conclude (with a 5% risk of a type I error) that probabilities in the real world 
are, statistically, a close fit to the model. We may, thus, use the binomial 
distribution model with some confidence in further analyses that may be of 
interest in connection with this crop of apricots – for example, to infer from 
a sample whether another bin of these apricots contains, on delivery, an 
unacceptable number of unripe ones.
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This has been an example of validation of a univariate probability 
model – a univariate statistical model with no deterministic component.

‐‐‐oOo‐‐‐

Statistics is also concerned with bivariate models (e.g. the simple regression 
model) and higher‐order (multivariate) models. Let’s look now at a bivari-
ate relation, and contrast the way it is represented by a mathematical mod-
eller and by a statistical modeller. An object, initially at rest, is struck by a 
momentary force. The object moves (in a straight line) a distance d (metres) 
in elapsed time t (seconds). The relation is that between d and t.

How does the mathematical modeller proceed to model this bivariate 
relation?

A plot of d against t, using n pairs of experimental (t, d) data, suggests that 
d approximates some curvilinear function of t. Guided by a theory in phys-
ics (i.e. one of Newton’s laws of the motion of a body moving from rest in a 
straight line), the modeller chooses the quadratic function d = bt2, where b is 
some constant, as a practically suitable deterministic model. It should be 
noted that a practically suitable model generally has a firm foundation in 
accepted theory.

A value of b is found by using some criterion of ‘best‐fit’ of the data 
to the model, say, the criterion of least squares. Thus, minimising the 
value of ( )d bti i

n 2 2
1

, the best‐fit value of b is calculated. Suppose it is 
3.72. The modeller then draws the graph of d = 3.72 t2. If this graph 
looks (to the eye) pretty close to the plot of the experimental data (a 
rather informal criterion!), then this deterministic model is considered 
validated.

Notice that, although the plot shows that the experimental data do not lie 
exactly along the quadratic curve d = 3.72 t2, the mathematical modeller 
does not model the discrepancies. The entire focus is on the deterministic 
function d = bt2.

What about the statistical modeller?
The statistical modeller begins in the same way as the mathematical mod-

eller, by plotting the n pairs of experimental (t, d) data and (from a theory in 
physics) settling on the practically suitable deterministic function of the 
form d = bt2. At this point, the procedures diverge.

The statistical modeller sees that the experimental data do not lie exactly 
along a quadratic curve, and asks what could be the reason for the discrep-
ancies. An immediate thought is that not all the influences that govern d 
have been taken into account. For instance, distance travelled will also 
depend on the nature of the surface over which the object is travelling – in 
other words, on the amount of friction. It will also depend on the mass and 
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shape of the object. Perhaps there is also wind assistance to the object’s 
travel. Further reflection might add to this list of influences – all of them 
ignored in Newton’s statement of his laws of motion, but all relevant to 
making the model more realistic.

The statistical modeller could attempt to measure individually each of 
these influences that disturb (or displace) the experimental values from the 
deterministic function d = bt2, but this would certainly complicate the analy-
sis. At the cost of some realism, it is open to the modeller to lump all the 
additional influences together and to refer to their net value, for a given 
value of t, as the disturbance corresponding to that value of t.

Denote the disturbance by the symbol e. Since each value of e is, in prin-
ciple, the net value of a large number of independent influences  –  some 
slowing the object down and some speeding it up – e behaves like a random 
variable. The statistical model is then: d = bt2 + e

Notice that this model has a deterministic component, involving the 
 systematic variable t, and a random component e.

In this example, it is realistic that the two components are added together, 
but in other contexts it may be more appropriate to combine them in 
another way – say, by multiplying them together. To make this statistical 
model operational, it is necessary to choose a probability model for e. Here, 
it is also realistic to use the normal distribution to model the values of e.

The mathematical modeller writes d = bt2, suppressing the random distur-
bance. What does the statistical modeller gain over the mathematical mod-
eller by explicitly modelling the disturbance? It is the possibility of formally 
evaluating the statistical model as an accurate representation of reality. 
There is no such possibility for the mathematical model.

The following steps of reasoning make clear what we mean by formal 
evaluation in this context.

Firstly, the statistician identifies the concept of a sample estimate of a 
population parameter, and highlights its important role in the modelling of 
observed data.

When the mathematical modeller finds the value 3.72 by least squares, based 
on the single sample of (ti, di) pairs, i = 1, 2, 3 … n, this value is treated as a fixed 
constant. And there the formal part of the modelling procedure concludes.

However, when the statistical modeller finds the value 3.72 by least squares, 
based on the single sample of (ti, di) pairs, i = 1, 2, 3 … n, it is with the insight 
that the least‐squares estimator (the formula that generates a numerical 
estimate for any set of sample data) could produce values somewhat differ-
ent from 3.72 when applied to other samples of n pairs of (ti, di) data.

Let’s use b̂  to represent the least‐squares estimator (formula). It follows 
that b̂  is a variable. Each value of b̂  is a sample estimate of the unknown 
population parameter, b.



13 Models in statistics 105

Secondly, the statistician recognises that b̂ is a random variable (with a 
specifiable form of probability distribution). This follows because b̂ can 
(easily) be shown to be a function of the random variable, e. The statistical 
distribution of the estimator b̂ is a transformation of the probability distri-
bution used to model e.

Given the statistical distribution of b̂, a test of statistical significance can 
be derived for formally evaluating the accuracy of the statistical model as a 
representation of reality.

To summarise, whether a statistical model is composed of a deterministic 
component and a random component, or of a random component alone, 
the procedure for validating the model is the same: first ensure that the 
model is practically suitable, then test formally that its predictions are sta-
tistically close to what is observed in the real world.

The British statistician George Box went straight to the heart of the 
 matter when he wrote ‘all models are wrong but some are useful’ (see Box, 
1979). With a valid and, therefore, useful statistical model, it may then 
become a little easier to understand how it works – this complicated place, 
the world.

Questions

Question 13.1 (A)

When a fair coin is tossed, we are accustomed to writing P(Head) = 0.5 and 
P(Tail) = 0.5. In what other ways could the coin toss turn out? What proba-
bility, then, is being assigned to those other outcomes? What conclusion do 
you draw from this exploration?
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Question 13.2 (A)

Under what circumstances will the normal probability distribution be a 
practically suitable statistical model for the heights of adult humans?

Question 13.3 (B)

Which probability model was originally developed from a consideration 
of the deliberations of juries in the early 19th century, and found to be of 
immense value in the mid‐20th century, in relation to the German V2 rock-
ets bombarding London towards the end of World War II?

Question 13.4 (B)

a) The exponential distribution is widely used as a probability model in the 
analysis of queuing problems. What particular property does it have that 
makes it useful in such contexts?

b) A tourist information office is staffed by two officers, and the time they 
spend serving any customer is exponentially distributed, with the same 
mean service time for each. When C walks into the office, she finds A 
and B each being served by one of the officers. As soon as an officer is 
free, she will be served. What is the probability that C is the last of the 
three customers to leave the office?

Question 13.5 (B)

When arrival probabilities in queuing problems are modelled by the Poisson 
distribution, the probability of two arrivals in two hours is not equal to twice 
the probability of one arrival in one hour; in fact, it is considerably less than 
twice the probability of one arrival in one hour. Can you give a straightfor-
ward and intuitively satisfying reason why this is so?
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When we began our statistical studies at university, last century, we bought, 
as instructed, a booklet of ‘Statistical Tables’. This booklet contained all 
the standard tables needed for a conventional undergraduate degree pro-
gramme in statistics, including the ‘percentage points’ of a variety of stand-
ard distributions, critical values for various statistical tests, and a large array 
of random numbers for sampling studies. We were soon made aware of one 
particular table, titled ‘Areas under the standard normal curve’, and were left 
in no doubt that we would be referring to it frequently. We used this booklet 
of tables in classwork throughout our studies, and had clean copies of it 
issued to us at every statistics examination. From our vantage point today, 
that booklet of Statistical Tables has become a rather quaint historical arte-
fact from the mid‐20th century, at a time when calculators were the size of 
typewriters (both of these, too, being artefacts of that era).

That vital standard normal area table was to be found also in the Appendix of 
every statistics textbook on the market at that time. That is still the case today. 
It suggests that this printed tabulation from the past is still being consulted by 
students and, perhaps, also by professional statisticians. Need this still be so?

‐‐‐oOo‐‐‐

Before considering this question, let’s look at the history of the normal dis-
tribution and of the construction of this enduring table.

The normal distribution of values of the variable x has probability density 
function (pdf):

f x x| , exp1
2

1
2

2

The normal distribution: history, computation 
and curiosities
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with parameters μ (the population mean) and σ (the population standard 
deviation). It is the most commonly met probability distribution in theoretical 
statistics, because it appears in such a variety of important contexts. If we 
follow the historical evolution of this distribution through the 18th and 19th 
centuries, we shall discover these contexts in a (somewhat simplified) sequence.

The normal distribution (though not yet with that name) first appeared in 
1733, in the work of the English mathematician Abraham de Moivre. De 
Moivre discovered that the limiting form of the (discrete) binomial distri-
bution, when the number of trials of the binomial experiment becomes 
infinitely large, is the pdf that we today call the (continuous) normal distri-
bution. Stigler (1986), pages 70–85, conveys, in some analytical detail, the 
satisfaction de Moivre gained from his hard‐won discovery.

In a book on planetary motion, published in 1809, the German mathema-
tician Carl Friedrich Gauss presented his pioneering work on the method of 
least squares estimation. It was in this context that he proposed the normal 
distribution as a good theoretical model for the probability distribution of 
real‐world random errors of measurement. Now, in a context different from 
de Moivre’s, Gauss rediscovered the pdf of the normal distribution by ask-
ing the question (translated into modern terminology): for what symmetric 
continuous probability distribution is the mean of a random sample the 
maximum likelihood estimator of the population mean? How he derived the 
pdf algebraically is sketched in Stigler (1986), pages 139–143.

It’s worth mentioning here that Gauss’s choice of a model for random 
errors of measurement was not the only candidate historically considered for 
that purpose. Gauss’s contemporary, the French mathematician Pierre Simon 
Laplace, had independently been looking for a suitable model since about 
1773. However, he tackled the problem in a way that was the converse of 
Gauss’s. Gauss simply sought the symmetric function whose mean was ‘best’ 
estimated by the sample mean. Happily, he hit upon a criterion of a ‘best’ 
estimator that produced a model with other far‐reaching virtues as well.

Laplace’s approach was to search ingeniously among mathematical func-
tions having the desired graphical profile – unimodal, symmetric and with 
rapidly declining tails – and to worry afterwards about how the parameters 
would be estimated. During the following dozen years, he came up with 
several promising models, but they all ultimately proved mathematically 
intractable when it came to parameter estimation. Some of the candidate 
functions that Laplace investigated are on view in Stigler (1986), chapter 3.

Though Laplace was familiar with the pdf of the normal distribution from 
de Moivre’s work, he somehow never thought of considering it as a model 
for random measurement errors and, after 1785, he turned his attention to 
other topics.



14 The normal distribution: history, computation and curiosities 109

Then, in early 1810 – shortly after Gauss’s rediscovery of the normal distri-
bution in 1809 – Laplace found the normal distribution turning up in his own 
work. This was, again, in a different context – his early proof of what we know 
today (in a more general form) as the Central Limit Theorem (CLT). You will 
find a statement of the CLT in the Overview of Chapter 12. To recapitulate: 
under very general conditions, the mean of a sample from a non‐normal dis-
tribution is approximately normally distributed if the  sample size is large.

These several important achievements prompted many 19th century 
mathematicians to call the normal the Gauss‐Laplace distribution. As time 
passed, however, that name gave way to simply the Gaussian distribution.

The name ‘normal’ for this distribution first appeared when Francis 
Galton pioneered it to a wide public in his 1889 book Natural Inheritance 
(online at [14.1]) – giving chapter 5 the title ‘Normal Variability’, while still 
occasionally using an earlier name, ‘law of frequency of error’. He and many 
of his scientific contemporaries were excited to confirm that biologically 
determined real‐world variables, such as species‐specific size and weight, 
are often approximately normally distributed. Thus, yet a fourth context for 
the significance of this distribution was identified. This last context is, logi-
cally, quite closely related to the normal as a model for random errors of 
measurement, as Gauss had earlier proposed.

Galton was so moved by his and his predecessors’ discoveries that 
he imbued the normal distribution with an almost mystical character (see 
Question 14.3). He writes (chapter 5, page 66): ‘I know of scarcely anything 
so apt to impress the imagination as the wonderful form of cosmic order 
expressed by the “Law of Frequency of Error”. The law would have been 
personified by the Greeks and deified, if they had known of it. It reigns with 
serenity and in complete self‐effacement amidst the wildest confusion. The 
huger the mob, and the greater the apparent anarchy, the more perfect is its 
sway.’ (See Question 22.1(b) for a 20th century tribute in only slightly less 
lyrical terms.)

From Galton’s time onwards, English‐speaking statisticians began to use the 
term ‘normal distribution’ routinely. Continental statisticians, on the other 
hand, continued for many years to refer to it as the ‘Gaussian distribution’.

For broader historical detail on this major strand in the history of statis-
tics, we recommend the introductory chapter of Patel and Read (1996).

‐‐‐oOo‐‐‐

What about the calculation of normal probabilities? As for any continuous 
probability distribution, (standard) normal probabilities are represented 
by areas under the (standard) normal curve. The equation of the standard 
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normal curve is 2( ) (1/ (2 ))exp( ½ )f x x . There is a practical obstacle to 
evaluating areas under this curve by straightforward application of integral 
calculus. This is because (as has long been known) there is no closed‐form 
expression for the indefinite integral of the right hand side function in the 
above equation – that is, no solution in terms only of constants; variables 
raised to real powers; trigonometric, exponential or logarithmic functions; 
and the four basic operators + – × ÷.

Happily, there are several alternative algorithms for numerically approxi-
mating the definite integral between any two given values of x, and thus 
finding the corresponding normal area to any desired degree of accuracy. In 
earlier times, such a calculation would be slowly and laboriously done by 
hand, with much checking of numerical accuracy along the way. Nowadays, 
numerical approximation software does the job swiftly and effortlessly.

Fortunately, the standard normal area table suffices for evaluating areas 
under any normal curve, since all normal curves have the same shape, rela-
tive to their location and spread. A random variable that has a normal dis-
tribution with a general mean μ and general standard deviation σ can be 
standardised (i.e. transformed into a standard normal random variable, 
having mean 0 and standard deviation 1) by subtracting μ and dividing by σ.

Normal area tables were first calculated in the late 18th century, and for a 
variety of purposes. In 1770–71 in Basel, Daniel Bernoulli compiled a table 
of areas under the function y = exp(– x2/100), essentially a multiple of a nor-
mal distribution function, for approximating binomial probabilities. In 1799 
in Strasbourg, Chrétien Kramp prepared a similar table to aid astronomical 
calculations of refraction. An overview of normal area tables published 
between 1786 and 1942, with insights on the different algorithms used, is 
given in David (2005). It is interesting to note that the normal area tables 
produced in 1903 by the Australian‐English statistician William Sheppard 
(1863–1936) have remained unsurpassed in scope and accuracy, with later 
reproductions of these tables differing mainly in their layout.

‐‐‐oOo‐‐‐

Do students of statistics still need booklets of statistical tables?
There is no doubt that they were indispensable until the microcomputer 

(also called a personal computer or desktop computer) became ubiquitous 
about 35 years ago. Thereafter, they became merely convenient, but even 
that is hardly the case today. We can see why by tracing the evolutionary 
thread of computing devices over the past century. (We are omitting men-
tion of mainframe and minicomputers, because these were not generally 
available to undergraduate statistics students.)
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During this period, the time interval between successive significant inno-
vations in computing technology has been shortening, the computing 
power of the devices has been growing, and their physical scale has been 
 shrinking – from the ‘transportable’, to the ‘portable’, to the ‘mobile’. For the 
practising statistician, complex computation without a mechanical calcula-
tor was unthinkable in the period 1900–1940. Electrically driven calculators 
gradually took over in the years 1940–1970. These were, in turn, superseded 
by hand‐held electronic calculators (first solely hard‐wired, then later pro-
grammable) over the period 1970–1985. These devices, with further refine-
ments such as graphics capability, then co‐existed with the evolution of 
computationally much more powerful, but bulkier, microcomputers (from 
around 1970) and laptop computers (from around 1990). Smaller‐sized net-
books emerged in 2007, and tablet computers in 2010. Today, mobile ‘smart’ 
phones and (even smaller) ‘wearable’ devices represent the latest reductions 
in scale.

From this overview, we see that it was only with the arrival of program-
mable calculators, around 1980, that devices powerful enough for automated 
statistical computation first became cheap enough for students to afford one 
for their own personal use.

Today, web‐enabled and app‐equipped tablets and phones have compre-
hensively displaced programmable calculators for the standard repertoire of 
statistical functions and analyses. With steady growth in the range of statis-
tical apps being made available, and seemingly endless expansion of statisti-
cal resources (including applets) on the web, these highly mobile personal 
devices can be very efficient tools for routine statistical computing, including 
finding ‘areas under the normal curve’.

Moreover, applets and apps introduce two improvements over printed 
standard normal area tables. The first is direct computation of any area 
under any normal distribution, using the option of specifying the mean and 
standard deviation of the required normal distribution. The second is 
graphical representation of the area calculated – that is, the probability. The 
first offers only convenient flexibility, but the second is an important aid for 
students learning about the normal distribution and finding normal proba-
bilities for the first time. As teachers, we know that this step in a first course 
in statistics is often a real stumbling block; visual representation in this, and 
many other contexts, can be a significant key to learning.

Here are two examples of these types of software. David Lane’s online 
textbook of statistics, HyperStat [14.2] includes an applet for finding the 
normal area corresponding to the value of a standard normal variable (or 
vice versa) [14.3]. A similar function is available in the modestly‐priced 
StatsMate app (see [14.4]), developed by Nics Theerakarn for a tablet 
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computer or mobile phone. Both sources also provide routines for a wide 
array of other statistical calculations, as their websites reveal.

We recognise that the limited availability and high expense of modern 
mobile technology in some countries may preclude access to the conveni-
ence this technology offers. For those to whom it is available and affordable, 
however, the era of statistical tables is, surely, past.

Questions

Question 14.1 (A)

Attributes of the normal distribution, some of which may surprise you.

a) As everyone knows, the standard normal distribution has points of 
inflection at z = –1 and +1. But where do the tangents at these points cut 
the z‐axis?

b) On the standard normal distribution, what is interesting about the  
z‐value, z = 0.35958?

c) Suppose we wish to draw a standard normal distribution accurately to 
scale on paper so that the curve will be 1 mm above the horizontal axis 
at z = 6. How large a piece of paper will be required? [Hint: how high will 
the curve be above the horizontal axis at the mode?]

Question 14.2 (B)

William Sheppard’s (1903) article, ‘New tables of the probability integral’, 
gives cumulative areas under the standard normal curve to 7 decimal places 
for values of z from 0.00 to 4.50 and to 10 decimal places for values of z from 
4.50 to 6.00. Why did he carry out his calculations to so many decimal 
places? Can you suggest any situation where knowledge of these values to 
such accuracy would be useful?

Question 14.3 (B)

In the Overview, we quoted Galton’s lyrical description of the normal distri-
bution as that ‘wonderful form of cosmic order’. Galton’s jubilation came 
from observing two phenomena. Firstly, that the distribution of measured 
values of variables which could be interpreted, in some way, as random errors 
(i.e. deviations from some biological or technical standard, or ‘norm’), seems 
to be (approximately) normal. And secondly, that the distribution of sample 
means drawn from non‐normal distributions becomes, as the sample size 
increases (‘the huger the mob’), more and more like the normal (‘the more 
perfect its sway’) – which is what the Central Limit Theorem (CLT) declares.
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However, there are exceptions – measured variables with distributions 
that do not look normal, and sampling distributions of sample means that 
do not conform to the CLT. Give examples of these two kinds of exceptions. 
Can they be brought within the ‘cosmic order’? Do you think Galton was 
wildly overstating his case?

Question 14.4 (B)

Some non‐normal data have a distribution that looks more like a normal 
after a logarithmic transformation is applied. Other non‐normal data look 
more like a normal after a reciprocal transformation is applied. What data 
characteristic(s), in each case, suggest that the mentioned transformation 
will be effective?

Question 14.5 (B)

Sketch on the same set of axes the frequency curve of a standard normal 
distribution and of a chi‐squared distribution with one degree of freedom. 
Do these two curves intersect? (Note: the chi‐squared distribution with one 
degree of freedom is the distribution of the square of a single standard 
normally‐distributed variable.)
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Part IV

Statistical inference
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There are two pillars of statistical theory, upon which all applied work in 
statistical inference rests. In this chapter we shall focus on estimation while, 
in the next chapter, we shall look at hypothesis testing. Among the most 
famous of past statisticians, Ronald Fisher, Jerzy Neyman and Egon Pearson 
(whose names appear in Figure 22.2) laid the foundations of modern meth-
ods of statistical inference in the 1920s and 1930s. They polished proce-
dures for estimation proposed by earlier thinkers, and invented terminology 
and methods of their own. This was an era of fast‐moving developments in 
statistical theory.

For relevant historical background, a valuable resource is Jeff Miller’s 
website at [15.1], titled Earliest Known Uses of Some of the Words of 
Mathematics. The entry for ‘Estimation’ informs us that the terms ‘estima-
tion’ and ‘estimate’, together with three criteria for defining a good estima-
tor – ‘consistency’, ‘efficiency’ and ‘sufficiency’ – were first used by Fisher 
(1922), online at [15.2]. Fisher defined the field in a way that sounds quite 
familiar to us today: ‘Problems of estimation are those in which it is required 
to estimate the value of one or more of the population parameters from a 
random sample of the population.’ In the same article, he presented ‘maxi-
mum likelihood’ as a method of (point) estimation with some very desirable 
statistical properties.

Neyman, who subsequently pioneered the technique of interval estima-
tion, referred to it as ‘estimation by interval’, and used the term ‘estimation 
by unique estimate’ for what we now call point estimation. It was Pearson 
who introduced the modern expression ‘interval estimation’.

These, and many earlier, pioneers of (so‐called) Classical estimation 
devised parameter estimators that use sample data alone. In addition to 

The pillars of applied statistics I – estimation
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maximum likelihood, Classical techniques include method of moments, 
least squares, and minimum‐variance unbiased estimation.

The pioneers’ successors pursued more complex challenges.
A salient example is devising estimators that are more efficient than 

Classical estimators, because they synthesise the objective (i.e. factual) 
information in sample data, with additional subjective information (e.g. 
fuzzy knowledge about parameter magnitudes) that may be available from 
other sources. For example, if we want to estimate the mean of a Poisson 
model of the distribution of children per family in Australia, we can expect 
to do so more efficiently by amending a Classical estimation formula to 
incorporate the ‘common knowledge’ that the mean number of children per 
family in Australia is somewhere between 1 and 3.

The most extensive array of techniques for pooling objective and subjec-
tive information to enhance the quality of estimation goes by the collective 
name Bayesian estimation. Methods of Bayesian estimation were first pro-
posed in the 1950s, by the US statistician Leonard Savage. See Chapter 20 
for an overview of the Bayesian approach.

Here is a second example of progress in estimation.
The Classical theory of interval estimation of any parameter – say, a popu-

lation mean – necessarily assumes a specific model (e.g. normal, exponential, 
Poisson) for the distribution of the population data. As you may know, con-
structing a confidence interval for a population mean requires a value both 
for the sample mean (or whichever other point estimator of the population 
mean is to be used) and for the standard error of the sample mean (or other 
estimator). Often, the theoretical standard error involves unknown param-
eters, so it is necessary, in practice, to work with an estimated standard 
error. The Classical approach uses the properties of the specific model cho-
sen for the data to derive an estimator of the standard error.

But how is such a model fixed upon in the first place? It may be suggested 
by theoretical principles of the field of knowledge within which the data are 
being analysed, or by the general appearance of the summarised sample 
data (e.g. a histogram or a scatter diagram).

Yet, what if the field of knowledge has nothing to say on the choice of a 
model for the data – and what if, moreover, the summarised sample data 
look quite unlike any of the well‐established statistical models? We would 
then need to find some way of estimating the standard error of the sample 
mean without having any explicit model as a basis. In 1979, the US statisti-
cian Bradley Efron invented a very effective way of doing just that. His 
 estimation procedure is known as bootstrapping. In the simplest version of 
this procedure, the sampling distribution of the sample mean is approxi-
mated by repeated sampling (termed ‘resampling’) from the original sample. 
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A  bootstrapped standard error of the sample mean can be constructed 
from this distribution and, thus, a bootstrapped confidence interval for the 
population mean can be obtained. For a fuller, non‐technical explanation 
(including an illustration of resampling), see Wood (2004) or Diaconis and 
Efron (1983).

Given the complexity of the real world, and the ever‐increasing number of 
fields in which statistical methods are being applied, it is hardly surprising 
that countless situations have turned up where no well‐defined model for 
the data is evident, or where statisticians are unwilling to assume one. This 
explains the enormous growth in popularity of estimation by bootstrapping 
over the past twenty years.

Lastly, a third direction in which estimation has moved in the post‐
Classical period: statisticians’ willingness to use biased estimators.

In Classical estimation, whenever it came to a conflict between the crite-
ria of unbiasedness and efficiency in the choice of a ‘best’ estimator, the 
unbiased estimator was inflexibly preferred over the more efficient, but 
biased, one. Question 6.5 illustrates such a conflict.

A more flexible way of resolving this kind of conflict is to see if there is an 
estimator that compromises between the conflicting criteria – that is, an esti-
mator which is a little biased, yet rather more efficient than the correspond-
ing unbiased estimator. There are several paths to finding such useful biased 
estimators. One is the method of minimum mean square error (MMSE) 
estimation. A context in which this is effective is seen in Question 15.4.

Unfortunately, the method of MMSE estimation is not immune to break-
down, even in some quite simple contexts. See Question 15.5(a) for an 
example.

Classical estimation methods break down, too, though more rarely. 
Maximum likelihood estimation, for instance, fails in any context where the 
likelihood function increases without limit, and thus has no maximum. 
A (quite technical) example is given in Konijn (1963).

You have read of paradoxes in earlier chapters. So it should come as no 
surprise that there are paradoxes to be found (and resolved!) in the theory of 
estimation as well. There are two in the answer to Question 15.5 (b).

Questions

Question 15.1 (B)

Suppose you are asked this question: ‘I’ve noticed that the best estimator of 
the population mean is the sample mean; the best estimator of the popula-
tion median is the sample median; and the best estimator of the population 
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variance is the sample variance. Is that a pattern I can rely on for finding 
best estimators?’ How would you answer?

Question 15.2 (B)

Given a sample mean and an initial numerical 95% confidence interval for 
the unknown population mean of a normal distribution, N(μ, σ2), based on 
that sample mean, what is the probability that a replication (i.e. an inde-
pendent repetition of the same sampling process) gives a sample mean that 
falls within the initial confidence interval? [For simplicity, assume that the 
value of σ2 is known.]

Question 15.3 (B)

We wish to estimate the mean μ of a normal distribution N(μ, σ2). Suppose 
we have two independent random samples from this distribution: one 
sample has size n1 and sample mean X1, and the other has size n2 and sam-
ple mean X2. As an estimator of μ, is it better to use the average of the 
sample means 1

2 1 2( )X X  or, alternatively, the mean of the pooled data 

[ / ( )]1 1 2 1
1 2n n Xii

n n ?

Question 15.4 (C)

When estimating the variance σ2 of a normal population with unknown mean 
from a sample of size n with mean X , we know (see, for example, Question 
6.5) that ( ) / ( )X X n2 1  is an unbiased estimator. But what sort of biased 
estimator is ( ) / ( )X X n2 1 , and why might we prefer to use it?

Question 15.5 (C)

a) In the case of the normal distribution N(μ, σ2), with σ2 assumed known, 
consider estimators of μ of the form c X  (c a constant), where X  is the 
sample mean. Find the value of c that will make c X  the MMSE estimator 
of μ, and show that this value of c means that here the method of MMSE 
estimation has failed.

b) In 1961, in the Proceedings of the 4th Berkeley Symposium on 
Mathematical Statistics and Probability, two US statisticians, Willard 
James and Charles Stein, published a very counterintuitive – and, indeed, 
paradoxical  –  theoretical result loosely to do with MMSE estimation. 
What is this result? And why is it paradoxical?
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In this chapter, we are looking at hypothesis testing – that peculiarly statisti-
cal way of deciding things. Our focus is on some philosophical foundations 
of hypothesis testing principles in the frequentist, rather than the Bayesian, 
framework. For more on the Bayesian framework, see Chapter 20.

The issues discussed here all relate to a single test. In the next chapter, we 
investigate some matters that may complicate the interpretation of test 
results when multiple tests are performed using the same set of data.

Let us begin with a brief refresher on the basics of hypothesis testing.
The first step is to set up the null hypothesis. Conventionally, this expresses 

a conservative position (e.g. ‘there is no change’), in terms of the values of 
one or more parameters of a population distribution. For instance, in the 
population of patients with some particular medical condition, the null 
hypothesis may be: ‘mean recovery time (μ1) after using a new treatment is 
the same as mean recovery time (μ2) using the standard treatment’. This is 
written symbolically as H0: μ1 = μ2.

Then we specify the alternative (or ‘experimental’) hypothesis. For 
instance, ‘mean recovery time using the new treatment is different from 
mean recovery time using the standard treatment’. We write this symboli-
cally as H1: μ1 ≠ μ2. Though we would usually hope that the new treatment 
generally results in a shorter recovery time (μ1 < μ2), it is conventional, in 
clinical contexts, to test with a two‐sided alternative. We must also specify 
an appropriate level of significance (usually 0.05, but see the answer to 
Question 16.1), and a suitable test statistic – for example, the one specified 
by the two‐sample t‐test of a difference of means.

Before proceeding, we must confirm the fitness for purpose of the chosen 
test. The two‐sample t‐test assumes that the data in each group come from 
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a normal distribution. If this is not a reasonable assumption, we may need 
to transform the data to (approximate) normality (see Question 14.4).

Next, we collect data on the recovery times of some patients who have had 
the new treatment, and some who have had the standard treatment. It is 
important for the validity of conclusions from statistical testing that the 
data collected are from patients sampled randomly within each of the two 
groups. In performing the test, we gauge how different the mean recovery 
times actually are.

On the (null) hypothesis that the mean recovery times after the new and 
the standard treatments are equal, we calculate the probability (called the 
‘p‐value’) of finding a difference of means (in either direction) at least as 
large as the one that we actually observe in our sample data. If this p‐value 
is large, it’s very likely that there is no conflict with the null hypothesis that 
the two sets of recovery times have the same population means. However, 
we cannot be certain about this conclusion; it might be that the means really 
are not the same, and that our sample data are quite unusual. If, on the other 
hand, this p‐value is small, we would be inclined to the interpretation that 
the means are not the same and our null hypothesis is incorrect. Again, we 
cannot be certain; it might be that the means really are the same, and our 
sample data are quite unusual.

How small is ‘small’ for the p‐value? When the p‐value is less than the 
pre‐specified significance level. In that case, when we conclude that there is 
a difference between the population means, we could say equivalently that 
there is a (statistically) significant difference between the sample means. It 
is important to understand that ‘significant’, here, means ‘unlikely to have 
arisen by chance, if the null hypothesis is true’. It does not necessarily mean 
‘practically important’ in the real‐world context of the data.

As we indicated earlier, any conclusion we draw from a hypothesis test may 
be wrong. By choosing to use a 0.05 significance level, we admit a 5% chance 
of rejecting the null hypothesis when it is, in fact, true. Thus, were we to 
carry out a particular test multiple times with different data, we could expect 
to make this ‘type I error’ one time in every 20, when the null hypothesis is 
true. Mirroring the ‘type I error’ is the ‘type II error’, where we fail to reject 
the null hypothesis when it is the alternative hypothesis that is, in fact, true. 
In practice, it is rarely possible to fix the chance of making a type II error. In 
this example, that is because we do not know the actual amount by which μ1 
and μ2 differ. All we know is that they are not equal. This explains why fixing 
the chance of making a type I error is the focus of the test procedure, even 
where the type II error may be the more practically important one to avoid.

These are the salient theoretical aspects of a test of a single statistical 
hypothesis, as presented in introductory textbooks. The procedure seems 
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polished and easy to implement. However, with a little historical back-
ground, we shall see that it is by no means uncontroversial. Nor are the 
results always straightforward to interpret.

‐‐‐oOo‐‐‐

Statistical methods for testing hypotheses were developed in the 1920s and 
1930s, initially by Ronald Fisher, and subsequently by Jerzy Neyman and 
Egon Pearson – the same three statisticians whose pioneering role in the 
theory of estimation we highlighted in Chapter 15. In their work on testing 
hypotheses, these three introduced the terms null hypothesis, alternative 
hypothesis, critical region, statistical significance, power and uniformly most 
powerful test, which are today familiar to every statistician.

There is an important philosophical difference between the approaches of 
Fisher, on the one hand, and Neyman and Pearson on the other. At the time, 
it caused a great deal of polemical controversy and personal acrimony 
between these proponents.

Fisher developed what he called the theory of significance testing, which 
focuses exclusively on what we termed, above, the null hypothesis. The pur-
pose of significance testing, said Fisher, is to reach a conclusion about the 
truth of this hypothesis. To proceed, begin by tentatively assuming it is true. 
Then, under this assumption, compare (a) the probability of getting the test 
data (or data more extreme than the test data), with (b) a reference value, 
chosen at the statistician’s discretion. As already mentioned, the former 
probability is nowadays called the ‘p‐value’ and the latter reference value is 
called the ‘level of significance’. After some reflection, Fisher came to the 
view that it is quite appropriate for the level of significance to be chosen 
subjectively, even after the p‐value has been calculated.

If the p‐value is smaller than the level of significance, the test data are 
unlikely to have been generated under the stated hypothesis. Accordingly, 
the hypothesis is rejected. Only then, said Fisher, is there a search for another 
hypothesis to replace the one that has been rejected.

It is worth noting that Fisher offered no theoretical criteria for judging the 
merits of the test statistic he put forward in each of the hypothesis testing 
contexts he studied, in marked contrast to his theoretical work on estima-
tion (see Chapter 15). This omission by Fisher was remedied by Neyman 
and Pearson.

In their alternative to Fisher’s approach, labelled hypothesis testing, 
Neyman and Pearson argued that the testing procedure should keep the null 
and alternative hypotheses simultaneously in view. The purpose of hypoth-
esis testing, they said, is to make a decision between these two hypotheses. 
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They reasoned that a suitable decision procedure could be developed from 
appraising the relative risks (i.e. probabilities) of both kinds of possible deci-
sion errors mentioned above  –  namely, rejecting the null when it is true 
(the type I error), and failing to reject the null when the alternative is true 
(the type II error).

Fixing the risk of the type I error is achieved in the same way as Fisher did, 
for Fisher’s ‘level of significance’ is nothing but the probability of rejecting a 
true null hypothesis. However, Neyman and Pearson viewed the choice of 
level of significance as restricted to a set of standard values (e.g. 0.05, 0.01, 
0.001), rather than being open to discretion, as Fisher advocated. Fixing the 
risk of the type II error is not routinely feasible, since the alternative hypoth-
esis is not specified in exact numerical terms. Nevertheless, that risk can be 
tabulated for each of a set of parameter values, corresponding to a range of 
alternative hypotheses. Then, supposing that several competing test statis-
tics are available for the test in question, an optimal selection can be made 
among them by choosing the one that has  –  for a given size of type I 
error – the set with the smallest type II errors.

Biau et al. (2010), online at [16.1], contrast the approaches of Fisher and of 
Neyman and Pearson at greater length. Lehmann (1993) reviews the two 
approaches in insightful detail and concludes that, in practice, they are com-
plementary. For some statisticians, this is sufficient justification to declare 
the modern textbook account of testing to be a unification of the two 
approaches. Other statisticians are unconvinced, maintaining that, in theo-
retical terms, the two approaches will always be philosophically incompati-
ble. Thus, they refer – rather negatively – to the modern textbook treatment 
as a hybrid, rather than a unification, of the two approaches.

‐‐‐oOo‐‐‐

It seems to us that when most applied statisticians are at work, they rarely 
give much thought to the philosophical foundations on which their tech-
niques rest. This lack of attention applies, generally speaking, also to statis-
tics educators.

So, it is a rare statistics course where students learning about hypothesis 
testing are invited to reflect on questions such as the following. What is the 
worth of hypothesis tests carried out on non‐random samples, such as ‘vot-
ing’ data submitted by readers of online publications? How many missing 
data values may be tolerated before a standard hypothesis test is no longer 
worth doing? How common is it to have a uniformly most powerful test? 
What should be done if such a test is unavailable? What are the essential 
differences between the Bayesian and the frequentist approaches to 
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hypothesis testing? Why, in testing, is the principal focus of attention the 
null hypothesis – that is, the ‘no change, no effect or no difference’ situation –
which, some argue, is in practice almost never true?

Sometimes, the type II error is more serious than the type I error. This is 
the case, for instance, in mass screening for cancer, where the type II error 
of a test on an individual is deciding that the person doesn’t have cancer 
when, in fact, he or she actually does. So, is it ever possible to directly con-
trol the size of the type II error in testing?

Knowing how to answer these and similar philosophical questions is very 
important in developing a deep and secure understanding of statistics and 
its techniques. With such an understanding, it is easier to recognise and 
respond to valid criticisms of hypothesis testing.

Here is an example of such a criticism: a null hypothesis (that assigns a 
specific numerical value to a parameter) can always be rejected with a large 
enough sample. If, however, this finding represents a (type I) decision error, 
then this interpretation of the test result will send the investigator off in the 
wrong direction. That fundamentally limits the usefulness of every tech-
nique of hypothesis testing nowadays, since huge samples (‘big data’) are 
becoming common in more and more fields (e.g. banking, climatology, cos-
mology, meteorology, online commerce, telecommunications and analysis 
of social media). In such situations, it is more fruitful to replace testing by 
interval estimation, which is as meaningful with ‘big data’ as with ‘little data’.

There are, in fact, further reasons to prefer an interval estimate to a 
hypothesis test than the likely breakdown of testing in the case of big data. 
A sustained critique of hypothesis testing has evolved over at least 50 years 
in the literature of statistics in psychology. This critique has several strands.

Firstly, there is the evidence that test results are too often given erroneous 
interpretations through faulty understanding of the theory. Here are two 
examples of common mistakes: the failure to reject the null hypothesis 
means that the null hypothesis is certainly true; the p‐value is the probability 
that the null hypothesis is false.

Secondly, there is the view that a confidence interval achieves more than 
a hypothesis test. The reasoning runs like this. Given the endpoints of an 
appropriate confidence interval, the result of an associated hypothesis test 
can be deduced (see Question 16.2) but, given the result of a hypothesis 
test, we cannot deduce the endpoints of the associated confidence interval. 
Thus, the confidence interval gives more information and, at the same time, 
it is less liable to misinterpretation.

Krantz (1999) reviews and comments on these critiques and several oth-
ers. He concludes that, while a few criticisms are misjudged, most are mer-
ited, yet he hesitates to recommend the total abandonment of hypothesis 
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testing in favour of interval estimation. More recent writers are not so reluc-
tant. A textbook by Cumming (2012), aimed at psychologists and other 
scientists who produce meta‐analyses, shows how statistical inference can 
be carried out properly without hypothesis tests. The future implications for 
statistics education are reviewed in Cumming et al. (2002), online at [16.2].

Questions

Question 16.1 (A)

Most statistical hypothesis tests are carried out using a significance level of 
5%. But where does this choice of numerical value (almost a statistical icon!) 
come from?

Question 16.2 (B)

In many contexts, estimation and hypothesis testing can be viewed as two 
sides of the same coin. Let’s explore this proposition. Suppose you have con-
structed a 95% confidence interval for the mean μ of a population, based on 
a random sample of data. Now you decide that you would have preferred to 
use your sample to carry out a test of μ = μ0 against a two‐sided alternative. 
How can you use the confidence interval to obtain a result for the test? 
Could you use this confidence interval if you wanted to carry out a test 
against a one‐sided alternative?

Question 16.3 (B)

Consider the familiar test on the value of the population mean of a normal 
distribution with known variance, against the two‐sided alternative. The 
power curve for this test has been described as resembling ‘an upside‐down 
normal curve’. To what extent is this description correct?

Question 16.4 (B)

If a hypothesis test is carried out using a 5% level of significance against a 
specific alternative with a power of 90%, and the null hypothesis is rejected, 
what is the probability that it is actually true?

Question 16.5 (B)

Writing in about 1620 about the game of rolling three dice – at a time when 
there was as yet little in the way of formal probability theory  –  Galileo 
reported that gamblers experienced in this game told him that a total of 
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9 and 10 can each be obtained in six ways. Yet, it was their perception over 
the long run, that 10 is slightly more likely than 9. (Galileo’s resolution of this 
puzzle is set out in the answer to Question 11.1.)

Let us examine this perception formation over the long run, using mod-
ern statistical methods. If the dice are fair, the theoretical probabilities of 
9 and 10 are 25/216 and 27/216, respectively. In a long run of rolls of three 
dice, one would expect the empirical probabilities of observing a total of 
9 or 10 to closely approximate these respective values.

How many rolls of three dice would be necessary to conclude with reason-
able confidence that a total of 10 is more likely than 9?

Interpret this question as follows: for a test at the 5% significance level of 
the null hypothesis that the ratio of chances is 1 : 1, what sample size would 
give a 90% power of rejecting this, in favour of the alternative that the ratio 
of chances is 27 : 25?
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It is a fundamental precept of applied statistics that the scheme of analysis 
is to be planned in advance of looking at the data. This applies to all kinds of 
procedures. Let’s take fitting a statistical model as an example.

The point, in this context, is to ensure as far as possible that the model is 
vulnerable to rejection by the data. If the data were inspected first, they 
might suggest a form of model to the investigator, who might then become 
attached – and even committed – to that model. He or she might then, even 
subconsciously, twist the data or direct the analysis so that the initially 
favoured model also comes out best in the end. This kind of subtly biased 
analysis is especially likely when persuasion (whether social, political or 
commercial) is the ultimate purpose of the model builder’s activity.

To avoid such bias, it is important that the model’s form and structure 
be specified in the greatest detail possible before the data are examined. The 
data should then be fitted to the model, rather than the model fitted to 
the data. (For more on fitting a model, see Chapter 13.)

What applies to modelling also applies to hypothesis testing: the hypoth-
eses to be tested should be formulated before looking at the data. If the 
choice of hypothesis (or of statistical analysis, generally) is made after look-
ing at the data, then the process is described as data snooping.

In this chapter, we explore the statistical consequences of data snooping 
in hypothesis testing – in particular, when multiple tests are done using the 
same set of data. We show why statisticians should be wary of this practice 
and, yet, why it is almost impossible to avoid.

Data snooping is one of several kindred practices that go by different 
names in the statistical literature. Selvin and Stuart (1966) distinguish data 
snooping, data hunting and data fishing, which they refer to collectively as 

‘Data snooping’ and the significance level 
in multiple testing
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data dredging. Martha Smith’s website [17.1], ‘Common mistakes in using 
statistics’, has a nice section on data snooping. She writes ‘Data snooping 
can be done professionally and ethically, or misleadingly and unethically, or 
misleadingly out of ignorance.’ We hope to influence you to keep to the first 
of these alternatives in your statistical work.

We can summarise the textbook procedure for testing a single hypothesis 
test like this. A null hypothesis is set up, expressing a conservative (e.g. ‘no 
change’) position – for example, that a particular parameter has the value 
zero. This is the hypothesis that is to be tested. At the same time, an alterna-
tive hypothesis is set up in contrast to the null hypothesis – for example, 
that the parameter is greater than zero. This is the hypothesis which will be 
adopted if the null hypothesis is rejected by the test. The null hypothesis is 
always defined in exact numerical terms, while the alternative is, in general, 
numerically open‐ended.

Evidence is collected in the form of real‐world data. If this evidence is 
unlikely to have arisen if the null hypothesis were true, then the null hypoth-
esis is formally ‘rejected’ – otherwise, the formal conclusion is ‘the evidence 
is not strong enough to reject the null hypothesis’.

‐‐‐oOo‐‐‐

Scientific investigations rarely limit themselves to a single hypothesis. Let’s 
return to our clinical example in Chapter 16. Rather than collecting data 
solely on the recovery times of patients after treatment, we (as medical 
researchers) will usually gather much more information at the same time: 
patients’ age, sex, body mass index (BMI), blood pressure and pulse rate will 
be recorded; blood will be taken and cholesterol, glucose and insulin levels 
measured; and subjective assessments of the patients’ state of mind will be 
obtained via questionnaires. After all, recovery time may depend on many 
more variables than just the mode of treatment used. Ultimately, we will 
have a sizable database.

Then, as well as testing whether or not recovery times are different for the 
two modes of treatment, we may also want to test whether each of the other 
variables that we have available is related to recovery time – maybe as part 
of a comprehensive model, maybe as separate tests on individual variables. 
In this process, we will probably use particular data sets in the database 
multiple times. Let’s say that, in all, we do 25 tests, each with significance 
level 0.05.

Now we may have a new problem with our testing procedure. Assume, for 
the sake of illustration, that, in fact, none of the measured variables in the 
database is related to recovery time. Although for each test there is only a 
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5% chance of a type I error occurring, there is, in the complete set of 25 
tests, a higher probability of at least one type I error occurring. If the tests 
were independent (which is not so realistic here), this probability would be 
1 – 0.9525 = 0.72. With dependent tests, the probability is likely to be lower, 
but still well above 0.05. Thus, there is a probability of up to 0.72 of discover-
ing a ‘significant’ result at least once in the 25 tests. Yet, any finding of sig-
nificance is, by our assumption, illusory.

This illustration shows how multiple tests of hypothesis, performed using 
a common data set, can inflate the chance of making a type I error to a quite 
unacceptable level. To counteract this, we could adjust the significance level 
of each individual test so that the overall significance level remains at 0.05. 
A straightforward way to achieve this is to divide 0.05 by the number of tests 
to be done (this is known technically as a Bonferroni adjustment  –  see 
Question 17.3). Here, 0.05/25 = 0.002, so an individual test result will be 
significant if the p‐value is less than 0.002.

However, if a very large number of tests is to be carried out, this approach 
can produce a quite dramatically low value for the significance level of a 
single test. That will make it very difficult ever to reject the null hypothesis. 
Thus, Michels and Rosner (1996), writing in The Lancet about a situation 
involving 185 planned tests using the same database, where the overall sig-
nificance level was to be held to 0.05, say: ‘It defies any modicum of com-
monsense to require a significance level of 0.00027 from a study.’

And this is not the end of the story. Suppose that, after doing our 25 initial 
tests, we notice that, for female patients over the age of 70, the new treat-
ment seems to work much better than the standard treatment. So, we carry 
out a further hypothesis test on this subset of our sample, and find a p‐value 
of 0.00015 – surely a significant result, even assessed against the adjusted 
significance level of 0.002, and one that we could promote among practition-
ers as evidence for preferring use of the new treatment with older women.

But is this latest result, in truth, significant? Well, how many tests will 
have been done, explicitly or implicitly, when we consider our study con-
cluded? Let’s see: there are the initial 25 that we carried out earlier, plus this 
latest one. Now, let’s suppose we had picked out females over 70 as one of 
(say) eight subgroups to test (two sexes and four age groups). True, we didn’t 
actually do the other seven tests, because it was fairly obvious by inspection 
that there would be no significant result. Also, what about the other combi-
nations of explanatory variables that we reviewed (BMI, blood pressure, 
higher than usual lipid levels, etc.)? Maybe we should allow for testing these 
in the subgroups as well. But then, allowing for all these extra tests, the 
adjusted significance level would get too small, and our result for females 
over 70 would (unfortunately) no longer be significant. Better, then, to 
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forget about our many exploratory investigations that turned out insignifi-
cant, and report only those that are significant. We are much more likely to 
get such a report published!

Now we have slipped over the line into the statistically unethical behav-
iour that data snooping can represent! As the American Statistical 
Association says in its Ethical Guidelines for Statistical Practice, online at 
[17.2]: ‘Selecting the one “significant” result from a multiplicity of parallel 
tests poses a grave risk of an incorrect conclusion. Failure to disclose the full 
extent of tests and their results in such a case would be highly misleading.’

An honest (and professionally defensible) strategy is to do and report only 
the tests that we specify in advance, adjusting the significance level we use in 
each test for the number of tests. There is no objection to undertaking the 
fishing expeditions that tempt us as we proceed with our pre‐specified agenda 
of tests. Indeed, it may be hard to resist their allure. However, the results of 
fishing expeditions should be reported as such, and the process described, 
perhaps, as ‘hypothesis generation’ rather than ‘hypothesis testing’.

A valid way to test a hypothesis thrown up in a fishing expedition is to 
seek out a new set of data. Alternatively, if we initially have a large set of data 
(meaning many subjects, rather than many variables), we could divide the 
set randomly into two parts, using one part to generate hypotheses and the 
other to test them.

In recent years, there has been a movement in many professional fields 
(notably in medicine) towards evidence‐based practice. It ought to be a 
matter of deep public concern if the unethical pursuit of data snooping 
were widespread, for it would raise the suspicion that much of the evidence 
behind evidence‐based practice was, in fact, statistically insignificant. 
Indeed, there are outspoken researchers who claim that this state of affairs 
is already real, rather than merely speculative. A striking example is given 
by Ioannidis (2005), online at [17.3], in a publication provocatively titled 
‘Why most published research findings are false’. Another such example is 
given by Simmons et al. (2011). A web search of either title opens a deluge 
of supportive scientific commentary.

Questions

Question 17.1 (B)

A classic example of data snooping in the scientific literature appears in an 
article that examines the rhythms of metabolic activity of a mythical animal. 
The author started with a set of randomly generated data representing its 
metabolic activity, and used standard time series techniques to analyse 
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them. What is the animal, who is the author, and what are the conclusions 
of the study? And what was the point of doing it?

Question 17.2 (B)

In the context of cyber security, the term ‘data snooping’ has another mean-
ing. What is this, and what relation does it have to statistical data snooping?

Question 17.3 (B)

The Bonferroni adjustment for multiple testing consists of lowering the sig-
nificance level for each individual test to α/n (where n is the number of tests 
carried out, explicitly or implicitly) in order to achieve an overall signifi-
cance level of at most α for the group of tests as a whole. Explain, in the 
simplest case of just two tests, how the Bonferroni adjustment works when 
the tests are dependent (as will be the case when they are carried out using 
the data on exactly the same set of variables)?

Question 17.4 (B)

In the lead up to the Soccer World Cup in 2010, Paul the Octopus displayed 
his psychic powers by correctly predicting the outcomes of seven final‐
round games involving Germany, and then the final between Spain and The 
Netherlands. More detail about his feat is available online at [17.4]. Paul 
carried out his predictions by choosing between two identical containers of 
food marked with the flags of the competing countries. If this were set up as 
a hypothesis testing situation, what would be the null and alternative 
hypotheses? What is the p‐value from the test? To what extent does the 
result give evidence for Paul’s psychic abilities? In what sense is this result 
connected with data snooping?
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Question 17.5 (C)

In a situation where we carry out a large number of hypothesis tests, there 
is an unacceptably high chance of finding at least one ‘significant’ result by 
chance. Using a Bonferroni adjustment, the overall significance level 
remains low, but at the expense of requiring very small levels of significance 
for each individual test. In 1995, two Israeli statisticians put forward a com-
promise approach to tackling the problem of multiple testing. Who were the 
statisticians, and what did they propose?
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It has not been very long since the centenary of the death of one of the 
founders of our discipline – Francis Galton (1822–1911), student of medi-
cine and mathematics, tropical explorer and geographer, scientist and, 
above all, statistician. In this chapter, we shall bring to mind something of 
this truly remarkable man and his statistical contributions. A comprehen-
sive account of Galton’s life and work can be had from his own Memories 
of My Life (1908) and from Karl Pearson’s three volume The Life, Letters 
and Labours of Francis Galton (1914‐24‐30). These books, as well as a large 
collection of Galton’s scientific writings, can be read in facsimile at the 
website [18.1]. A further biography of Galton is cited in Chapter 22.

Galton was born into a well‐off manufacturing and banking family who 
were much involved with scientific and literary matters. Members of his 
immediate family were, in particular, interested in things statistical, his 
grandfather ‘loving to arrange all kinds of data in parallel lines of corre-
sponding lengths, and frequently using colour for distinction’, and his 
father ‘eminently statistical by disposition’ (Memories of My Life, pages 3, 
8). His half‐cousin was the naturalist Charles Darwin, author of On the 
Origin of Species (1859). Galton showed his high intelligence early. On the 
day before he turned five years old, he wrote a letter to his sister (quoted in 
Terman, 1917):

‘My dear Adèle, I am 4 years old and I can read any English book. 
I can say all the Latin Substantives and Adjectives and active verbs 
besides 52 lines of Latin poetry. I can cast up any sum in addition and 
can multiply by 2, 3, 4, 5, 6, 7, 8, 10. I can also say the pence table. 
I read French a little and I know the clock.’

Francis Galton and the birth of regression



18 Francis Galton and the birth of regression136

The story of Galton’s early life – particularly his travels and explorations 
in Eastern Europe and Africa – is a colourful one. After his marriage at age 
31 to Louisa Jane Butler, he settled down to a life of scientific studies that 
included such diverse areas as anthropology, anthropometry, psychology, 
photography, fingerprint identification, genetics and heredity.

One of his experiments concerned the sizes of seeds, and it turned out to 
be particularly important statistically, for it led to the birth of the concept of 
regression. Galton sent several country friends a carefully selected set of 
sweet pea seeds. Each set contained seven packets of ten equal‐sized seeds, 
with diameters from 15 to 21 hundredths of an inch. Each friend planted the 
seven packets in separate beds, grew the seeds following instructions, and 
collected and returned the ripe seeds from the new generation of plants.

Galton first reported the results in an article in Nature in 1877, and 
summarised them in 1886 in his far‐reaching paper Regression towards 
mediocrity in hereditary stature. In this paper (page 246), Galton states:

‘It appeared from these experiments that the offspring did not resem-
ble their parent seeds in size, but to be always more mediocre [today 
we would say ‘middling’] than they – to be smaller than the parents, 
if the parents were large; to be larger than the parents, if the parents 
were very small. … The experiments showed further that the mean 
filial regression towards mediocrity was directly proportional to the 
parental deviation from it.’

And, in the appendix to the paper (page 259), he writes more specifically:

‘It will be seen that for each increase of one unit on the part of the 
parent seed, there is a mean increase of only one‐third of a unit in 
the filial seed; and again that the mean filial seed resembles the 
parental when the latter is about 15.5 hundredths of an inch in diam-
eter. Taking then 15.5 as the point towards which filial regression 
points, whatever may be the parental deviation … from that point, 
the mean filial deviation will be in the same direction, but only one‐
third as much.’

Galton then repeated his heredity investigation with human heights. 
He obtained data on the heights of 930 adult children and their 205 pairs of 
parents, from family records that he collected by offering prizes. Since 
women are generally shorter than men, he adjusted the female heights to 
male equivalents by asking his ‘computer’ (in those days, a person!) to multi-
ply them by 1.08. Using only large families, with six or more adult children, 
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he tabulated the average height of a child in each family against the mid‐
parental height (the average of father’s and adjusted mother’s heights), and 
found essentially the same results as he had with his seed experiment. 
He determined that the ‘level of mediocrity’ (the point where the average 
height of all children equals the average mid‐parental height of all parents) in 
the population was 68¼ inches, and then defined what he called the ‘law of 
regression’ for this context (page 252): ‘… the height‐deviate of the offspring 
is, on the average, two‐thirds of the height‐deviate of its mid‐parentage.’

Galton had used the term ‘regression’ for the first time the year before, 
when he presented these results in person at a meeting of the Anthropological 
Institute. He had previously used the term ‘reversion’, but abandoned it 
because it suggested that the offspring went all the way back to the average 
of the parents, rather than only part of the way.

Figure  18.1, below, is reproduced from the facsimile of Galton’s 1886 
paper, from which we have been quoting, at www.galton.org. It shows adult 
child height on the horizontal axis, and mid‐parental height on the vertical 
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their Heights, and Deviations from 68¼ inches.
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Figure 18.1 Galton’s analysis of the relationship between child and parental height. 
Reproduced with the permission of Gavan Tredoux.
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axis (today, following the convention of putting the ‘dependent’ variable on 
the vertical axis, we would reverse these axes). The numbers of observations 
are shown in small digits within the diagram, and the ellipse represents a 
locus of roughly equal frequencies, in this case connecting the values 3 or 4. 
About this, Galton wrote (page 254): ‘I then noticed … that lines drawn 
through entries of the same value formed a series of concentric and similar 
ellipses.’

In modern terminology, the ellipses represent contours parallel to the 
base of a three‐dimensional bivariate normal distribution. Galton implicitly 
attributed a normal distribution to the measurement errors in his data. The 
line through N represents the regression of child height on mid‐parental 
height (see Question 18.5), and the line through M, the regression of mid‐
parental height on child height. We can see that these two lines are not the 
same – a point that did not escape Galton.

Initially Galton thought of his discovery of ‘regression towards medioc-
rity’ as simply a characteristic of heredity. However, by the time he published 
his book Natural Inheritance in 1889 he understood it for what it really 
is – a statistical artefact, that is, a change signalled by a fitted regression line 
that does not necessarily represent a change in the real world. This artefact 
appears not only in work (such as Galton’s) with heredity data – it is quite 
general in contexts involving repeated measures.

Consider a situation where measurements are made on two occasions 
(call them ‘before’ and ‘after’) on a particular attribute of the same population 
(or of closely similar populations, such as the heights of parents and of their 
adult children).We are referring here only to attribute populations that are 
stable, in the particular sense that the ‘before’ and ‘after’ (population) means 
are equal, and the ‘before’ and ‘after’ (population) variances are equal. We 
suppose, moreover, that all measurements are subject to random (normally 
distributed) measurement error – that is, they are not perfectly correlated 
between the two occasions. Then, when these repeated measurements 
are regressed on one another by the method of least squares, it is easy to 
show algebraically that the slope of the fitted regression line is always less 
than one.

It is this property of the regression line that produces the phenomenon of 
regression towards the mean (to give it its modern name). An introduction 
to the concept of regression towards the mean by Martin Bland is online at 
[18.2], a good non‐technical account can be found in Freedman, Pisani and 
Purves (2007), chapter 10, and a particularly interesting historical perspec-
tive is given in Stigler (1999), chapter 9.

If unrecognised for what it is, this artefact is likely to lead to false interpre-
tations of regression‐based results in experimental studies of a kind that is 
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very common in medicine, epidemiology and psychology. There is now an 
extensive literature showing how this artefact may be adjusted for or cir-
cumvented in such studies. A book‐length presentation for non‐statisticians 
is Campbell and Kenny (1999).

Galton’s studies of ‘regression towards mediocrity’ represent the begin-
nings of what we know today as regression analysis. Galton chose the term 
‘regression’ with great care for the quite specific notion he sought to 
describe, though this is now mostly unknown or forgotten. Regression was 
not Galton’s only contribution to statistics. Far from it; he made statistical 
contributions in at least a dozen fields, as well as introducing the fundamen-
tal statistical idea of correlation. The past hundred years have seen his huge 
contribution grow, through the work of countless others – possibly beyond 
even his wildest imaginings.

Questions

Question 18.1 (B)

A student regresses weight in kilograms on height in inches for a group of 
adult males. Having recorded the results, he decides that it was silly to mix 
metric and imperial units, and converts the heights to centimetres (using 1 
inch = 2.54 cm). Now he can regress weight in kilograms on height in centi-
metres. Which of the following results will be the same for the second 
regression as for the first: the intercept coefficient, the slope coefficient, the 
value of r2 (the coefficient of determination)?

Question 18.2 (B)

When the coefficient of determination, r2, equals 1, all the points in an (X,Y) 
data scatter lie on the least squares regression line of Y on X. When r2 = 0, 
the least squares regression line of Y on X is horizontal. Sketch the scatter of 
(X,Y) data points (1,3), (3,3), (5,3), (7,3), (9,3). For the regression of Y on X 
based on these data, is r2 equal to 1 or to 0?

Question 18.3 (A)

As a statistician, Galton often carried out statistical estimation (though 
the actual term was introduced several decades later by R.A. Fisher). 
Perhaps his strangest activity was to estimate the bodily measurements of 
‘Hottentot Ladies’ on his expedition to South‐West Africa (now Namibia) 
in 1850–1852. How did he carry out this estimation process?
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Question 18.4 (B)

The plot of a novel published in 2000 by an English writer: a postgraduate 
student decides to give up postmodern literary theory and write, instead, a 
biography about a famous (though fictional) biographer who left notes on 
three (real) subjects, identified only as CL, FG and HI. FG is Francis Galton, 
but who are the other two, who is the author of the book and what is its title?

Question 18.5 (B)

In Galton’s diagram (Figure 18.1, above), the regression line ON of child 
height on mid‐parental height is defined geometrically (N is the point where 
the tangent to the ellipse is horizontal). Would calculation using the usual 
least‐squares approach result in the identical regression line? Can you 
explain why or why not?
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As we highlighted in Chapter 2, the study of variation is at the heart of 
statistics. In almost all fields of mathematics, variation means non‐random 
(i.e. systematic) variation. Statisticians, however, take account not only of 
non‐random variation, but also of random (i.e. chance) variation in the real‐
world data they work with. This contrast, indeed, distinguishes statistics 
from mathematics. What’s more, the two types of variation that statisticians 
deal with are almost always present simultaneously. Sometimes, it is the 
influence of the random variation which is dominant in a particular data 
set – as, for example, in day‐to‐day movements in the price of a particular 
share on the stock exchange. Sometimes, it is the other way round – as, for 
example, in the monthly value of sales of ice cream in a particular city, where 
the regular seasonal pattern city‐wide dominates random local variation.

It is useful, for what follows, to think of the patternless chance variation as 
being overlaid, like a veil, on some underlying pattern of systematic varia-
tion. A prime goal of statistical analysis is to get behind this veil of random 
variation in the data, so as to have a clearer picture of the underlying pattern 
(i.e. the form) of systematic variation in the variable or variables of direct 
interest. This goal is pursued with reference not just to the data at hand, 
but  also (by using appropriate techniques of statistical inference) to the 
population from which the data came. Where more than one variable is of 
direct interest, there is an additional motive for getting behind the veil – to 
identify the degree of stability (i.e. the strength) of the pattern of relations 
between the variables.

It follows that the veil of random variation is actually a kind of obstructive 
nuisance. In most real‐world settings, there is also a second kind of nuisance 
variation. It is the variation of systematic variables that are not of direct 

Experimental design – piercing the veil 
of random variation
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interest, but whose influence is nevertheless present. Statisticians aim in 
various ways to neutralise the impact of both these kinds of ‘nuisance varia-
tion’, so that they can get on with their real objectives – to study the form 
and strength of the systematic variation in the variables that are of direct 
interest.

‐‐‐oOo‐‐‐

All practical statistical studies fall into one of two categories: non‐
experimental and experimental. Non‐experimental studies are sometimes 
termed observational studies (a rather inexpressive term, since the word 
‘observation’ also turns up in reports on experimental studies!). In an exper-
imental context, the effects of some intervention by the experimenter on a 
set of experimental units (which may be animate subjects or inanimate 
objects) are recorded. These data are then analysed to determine whether or 
not it is likely that the intervention affects the experimental units in some 
systematic fashion. In a non‐experimental context, by contrast, data on vari-
ables of interest are collected in the real world, however they occur; there is 
no intervention. Intuitively, it should be clear that there is greater potential 
to neutralise nuisance variation successfully when one can (at least partially) 
control both the source and the intensity of that nuisance variation – which 
is what a well‐designed intervention is intended to do.

We now focus on experimental contexts. Suppose we are interested to 
know whether a theoretical scale of difficulty that is used to classify particu-
lar cases of some task is valid  –  that is, that the tasks labelled ‘easy’ are 
actually found by people to be easy, and that those labelled ‘difficult’ are 
actually found to be difficult. To investigate this, we might take as a null 
hypothesis that the theoretical scale is not valid – that is, tasks labelled ‘easy’ 
and ‘difficult’ are actually perceived in much the same way. Then we are 
interested to see if the data we collect will reject this hypothesis in favour 
of the one‐sided alternative hypothesis.

Let’s take a specific context – Sudoku puzzles – and consider a tentative 
approach to developing the hypothesis test. If you are unfamiliar with 
Sudoku puzzles, there are countless websites where you will find them 
described.

Choose, say, 60 experimental subjects, and give each a Sudoku puzzle to 
solve, where these puzzles are drawn from a pool containing puzzles labelled 
‘easy’, ‘medium’, ‘hard’ or ‘diabolical’. For subsequent analysis, we shall proxy 
the four states of the ‘theoretical level of difficulty’ by numbers on an ordinal 
scale. It is common in such contexts to use values in arithmetic progression 
(e.g. 1, 2, 3, 4, respectively), though it could reasonably be argued that values 
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spaced progressively more widely (e.g. in geometric progression) will more 
realistically proxy the increasing theoretical level of difficulty of the four 
kinds of Sudokus. Next, we record how many minutes it takes each subject 
to complete his or her puzzle.

In this way, we collect a numerical observation for each subject on the 
variable ‘theoretical level of difficulty’ and on the variable ‘time taken’. If the 
scatter plot of time taken against (increasing) theoretical level of difficulty 
for these 60 subjects has a positive slope, it suggests that ‘time taken’ varies 
directly with ‘difficulty’. We would interpret this result to mean that the 
theoretical scale of Sudoku difficulty is valid.

If, on the other hand, the scatter plot is roughly horizontal (i.e. has zero 
slope), this suggests that there is no systematic relation between ‘difficulty’ 
and ‘time taken’. We would interpret this to mean that the theoretical scale 
of Sudoku difficulty is not valid.

These interpretations, specific to the sample of 60 subjects involved, 
could be generalised for the population of all Sudoku solvers by applying a 
formal significance test to the slope of a line of best fit to the sample scatter 
plot. If the slope of this line were significantly greater than zero, the null 
hypothesis (‘the theoretical scale of difficulty is not valid’) would be rejected.

Any formal significance test mentioned in this experimental context 
has, as its theoretical foundation, a statistical model of the experiment. 
It is worth recalling, from Chapter 13, that such a model includes both a 
deterministic component (comprising one or more systematic variables 
that influence the time taken to solve a Sudoku) and a random component 
(which we have likened here to an overlaid veil).

The foregoing interpretations would be entirely valid if slope in the scatter 
plot reflected solely an intrinsic population relation between time taken 
and theoretical level of difficulty. Unfortunately, this proposition is not 
necessarily true – and not only on account of random variation. Why not? 
Because, apart from the theoretical level of difficulty (our focus variable), 
there are also several systematic nuisance variables in this setting that 
have not been taken into account. Here is one such variable: how much 
prior experience, on a binary scale (more experienced/less experienced), 
each subject has in solving Sudokus. To see how this categorical variable 
could influence the test outcome, consider two contrasting scenarios.

If the more experienced solvers all happened to get easy puzzles, and 
the less experienced solvers all got diabolical ones, the scatter plot of time 
taken against theoretical level of difficulty would – already for this reason 
alone – have a positive slope.

Now suppose that the more experienced solvers all happened to be 
assigned diabolical Sudokus, and the less experienced solvers all assigned 
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easy ones. Then it could well be that the two groups take, on average, roughly 
the same amount of time to solve their puzzles. In that case – and already 
for this reason alone – the slope of the scatter plot might be close to zero, or 
even negative.

In other words, trend shape in the scatter plot could be the consequence of 
uncontrolled systematic nuisance variation, rather than a reflection of some 
intrinsic population relation solely between time taken and level of difficulty.

‐‐‐oOo‐‐‐

How might either of these two ‘extreme’ allocations of puzzles to subjects 
arise? If the experimenter is the one who does the allocation, there is always 
a risk of bias (even if it is only unconscious bias), and it is not hard to think 
of reasons why this might be so. A simple way to counter this risk is to take 
the allocation out of human hands, and use a computer‐generated set of 
random numbers (see Chapter 11) to randomly divide the set of subjects 
into four groups. A group is then chosen at random from the four, and all 
members of that group are assigned an easy Sudoku. The next group is 
randomly selected and assigned a medium Sudoku, and so on.

Now the tentative experimental approach we described initially has been 
improved. We have created, albeit in a simple way, a designed experiment 
that has neutralised (to a large extent) the influence of the ‘prior experience’ 
nuisance variable. How has it been neutralised? By nullifying its systematic 
influence in the statistical model of the experiment. In informal language, 
you can think of this as deleting the variable from the deterministic com-
ponent of the model and adding it into the random component. In the 
technical language of statistics, the influence of the ‘prior experience’ 
variable has been randomised.

The resulting improved procedure is called a completely randomised 
design with one factor. Now that the ‘prior experience’ nuisance variable has 
been effectively (we trust!) dealt with, the single factor relates to the variable 
of interest in the intervention used. In this case, the intervention is assigning 
a Sudoku puzzle to be solved, and the factor is the level of difficulty of the 
puzzle. This approach can be generalised to two (or more) factors, where 
each subject does two (or more) different tasks with parallel theoretical 
scales of difficulty, e.g. a 9 × 9 Sudoku puzzle and a 6 × 6 Sudoku puzzle.

You will have noticed that, in order to form the four groups, the randomised 
design just described needs no knowledge of the actual level of experience 
that each subject has. If the levels of experience are, in fact, known, then a 
more efficient design is available (i.e. one which is more likely to lead to rejec-
tion of an incorrect null hypothesis). As always in statistical inference, the 
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more correct information that is brought to bear on a problem, the more reli-
able the inference. The more efficient design is a randomised block design.

In the present context of a randomised block design with a single factor, 
the ‘blocks’ are two internally homogeneous groups of subjects  –  ‘more 
experienced solvers’ and ‘less experienced solvers’ – which must be set up 
first. The setting‐up process is called blocking. By an ‘internally homoge-
neous group of subjects’, we mean a group having less variability within the 
group – in the subjects’ puzzle‐solving experience – than in the population 
of all the subjects taken together. By an extension of this definition, if the 
population is divided into two non‐overlapping groups, each of which 
is internally homogeneous, the variability within each group is likely to be 
less than the variability between the groups.

Sudokus of all four levels of difficulty are then assigned at random to the 
subjects within each block. It is the lesser variability within the blocks, 
with regard to the subjects’ puzzle solving experience, relative to the 
variability between the blocks that gives this design its advantage. In the 
technical language of statistics, we say that the randomised block design 
avoids confounding the effect of the subjects’ puzzle solving experience 
with the effect of the level of difficulty of the Sudoku puzzle itself.

When there are two or more systematic nuisance variables to neutralise 
by blocking, a randomised block design can become very complicated, and 
may require a very large number of subjects for reliability of statistical 
hypothesis tests. Such a large number of subjects may be prohibitively 
expensive to seek out. For the case of one factor of interest and two nuisance 
variables, a more efficient experimental design is available  –  that is, one 
which requires fewer subjects than the corresponding randomised block 
design. It is called the Latin square design. For more on this design, showing 
also how it controls the influence of a nuisance variable, see Question 19.3.

To this point, we have been describing experimental designs for testing a 
null hypothesis in an experimental context involving a single relationship of 
direct interest – in our example, the relationship of level of puzzle difficulty to 
time taken to solve it. However, these same designs can be applied to testing a 
null hypothesis comparing two relationships, to assess whether they are, or 
are not, significantly different. Two examples of such contexts are: deciding 
which of two chemical processes for producing a particular compound pro-
vides the best quality product; and deciding whether a new drug is, or is not, 
more effective than an existing drug for treating a particular illness.

We might now go on to describe the statistical tests that are appropriate 
to testing hypotheses under each of these experimental designs, and to dis-
cuss some of the more elaborate designs that have been devised. However, 
the technicalities involved would quickly take us beyond the intended 
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purpose of this Overview. A good introductory treatment can be found in 
chapter 11 of Davies et al. (2005). A well‐regarded tertiary level textbook, 
with a bias to engineering applications, is Montgomery (2013).

Questions

Question 19.1 (B)

The pioneering statistical ideas and methods for the design of experiments 
are due to R.A. Fisher, one of the founders of modern statistical inference. 
On page 11 of his path‐breaking treatise, Fisher (1935), he introduced his 
subject in this memorable way:

‘A lady declares that by tasting a cup of tea made with milk, she can 
discriminate whether the milk or the tea infusion was first added to 
the cup. We will consider the problem of designing an experiment 
by means of which this assertion can be tested … Our experiment 
consists in mixing eight cups of tea, four in one way and four in the 
other, and presenting them to the subject for judgment in a random 
order … Her task is to divide the 8 cups into two sets of 4, agreeing, if 
possible, with the treatments received.’

Fisher did not entirely invent this setting – it refers to an actual occurrence. 
Who was the ‘lady tasting tea’? And what were the real circumstances on 
which Fisher’s account is based?
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Question 19.2 (B)

Where is the Rothamsted Agricultural Research Station? What part did it 
have in the development of modern statistical inference prior to 1940 – in 
particular, by R.A. Fisher?

Question 19.3 (B)

A scientist is interested in studying a particular agricultural relation – how 
crop yield varies with different amounts of a new chemical fertiliser, 
measured in grams per square metre. It is not adequate, for this purpose, 
simply to sow the crop in several plots of ground, then apply differing 
amounts of fertiliser to each plot, and then measure the weight of crop 
harvested from each plot. That is because there are inevitably other nui-
sance variables in the background that also affect the experimental 
outcome.

When there are two nuisance variables (for instance, the amount of 
moisture in the soil and the depth at which the seeds are sown), it is statisti-
cally efficient to use a Latin square experimental design. What is special 
about a Latin square design, and what is Latin about it?

Question 19.4 (B)

What is a ‘placebo’? In what kinds of experimental contexts is a placebo 
useful? Are there situations where there is a caveat on the use of a placebo? 
And, just by the way, what is the linguistic connection between the words 
‘placebo’ and ‘caveat’?

Question 19.5 (B)

Name three disciplines from the physical, biological or social sciences where 
relationships among variables of interest are most commonly examined via 
experimental studies. Name three scientific disciplines where relationships 
among variables are most commonly studied non‐experimentally. Name 
three scientific disciplines where experimental studies and non‐experimental 
(also called ‘observational’) studies are both common. Is anything interest-
ing revealed by this review?
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It is hard for us today to capture the intensity of the intellectual struggles 
that past pioneers in any field of knowledge engaged in as, with insight, 
creativity and sheer hard work, they laid the foundations of that field. 
However, we can improve our understanding of these struggles if we have 
some historical knowledge. That is why there are vignettes from the history 
of statistics in many places in this book.

Chapter 22, in particular, gives a broad perspective over some 400 years 
on the development of statistical inference. In the main, this is a history of 
frequentism in statistics.

Frequentism is a conceptual framework for statistical theory which takes 
its name from one of its fundamental axioms – that probability is best defined 
objectively as an empirical relative frequency. Unfortunately for any hope of a 
tidy intellectual evolution of the field, some 18th century statistical thinkers 
saw scope for an alternative framework for statistical theory, using as a fun-
damental axiom the subjective definition of probability. This conceptual 
framework has become known as Bayesianism, as we explain below.

Today, frequentism and Bayesianism are thriving as rival paradigms, both 
for designing theoretical techniques and for interpreting the results of 
applying those techniques to data. In this chapter, we look at the origins of 
Bayesianism and show why Bayesian inference is sometimes (its practition-
ers would say ‘always’) more appealing than the frequentist alternative.

‐‐‐oOo‐‐‐

It all began in 1654, the year that Blaise Pascal sought the aid of his 
great  mathematical contemporary, Pierre de Fermat, to solve at last a 

In praise of Bayes



20 In praise of Bayes150

fundamental question that had been studied only partly successfully for 
centuries: given an observed real‐world situation (call it the ‘cause’), where 
each of the possible outcomes (call it an ‘effect’) is a chance event, how can 
we systematically assign a quantitative measure  –  a probability  –  to the 
chance of occurrence of any one of these ‘effects’ of the observed ‘cause’?

During the following century, several alternative approaches to answering 
this fundamental ‘probability problem’ emerged. A major obstacle to arriv-
ing at a comprehensive general solution was that measurement is an elusive 
notion in the context of probability. Mathematical principles for assigning 
probabilities objectively were devised. However, the self‐evident fact that, 
in daily life, people commonly make their own subjective assessments of 
probabilities, could not be ignored; yet, there seemed to be no systematic 
principles that governed the formulation of such subjective probabilities. 
Worse still, there was no reason why subjective and objective probability 
assessments of the same event would be consistent with one another. Thus, 
by 1760, the hoped‐for comprehensive solution of the ‘probability problem’ 
was still rather in disarray.

At the same time, little headway had been made with another fundamen-
tal problem, dubbed the ‘inverse probability problem’. The fact that it was 
easy to state made the seeming intractability of its solution all the more 
galling to those who struggled with it.

The inverse probability problem can be expressed straightforwardly like 
this. Given an observed chance outcome (call it the ‘effect’) of some real‐
world situation (call it a ‘cause’), and knowing the full set of possible real‐
world situations (‘causes’) that could have given rise to this outcome (‘effect’), 
how can we systematically assign a probability to the chance that the 
observed ‘effect’ came from a particular one of the set of real‐world ‘causes’ 
that could have produced that ‘effect’?

If you contrast the relevant wording of the first and fourth paragraphs of 
this subsection, the reason for the name ‘inverse probability’ problem should 
be clear.

In 1763, a remarkable paper on probability was presented at a meeting of 
the Royal Society in London. It had been written by the Reverend Thomas 
Bayes (1702–1761), who had earned his living as a church minister in the 
English town of Tunbridge Wells. In company with many amateur mathe-
maticians and scientists of that era, his research was done in his spare time 
and was unpaid. Bayes’ paper was titled ‘An Essay towards solving a Problem 
in The Doctrine of Chances’ (he was referring to an early text on probability, 
The Doctrine of Chances, published by Abraham de Moivre in 1718). Bayes’ 
Essay was essentially complete (though perhaps not yet polished) at his 
death, when it came into the hands of his literary executor, Richard Price.



20 In praise of Bayes 151

Though Bayes’ discussion was difficult to grasp, Price understood that 
the problem on which Bayes had made progress was, in effect, the inverse 
probability problem. Price thought this important enough to bring it to 
the attention of the Royal Society, of which he was a member (as Bayes 
had been, too). You can see the original version of the essay online at 
[20.1].

To thinkers who followed Bayes, it seemed that Bayes had implicitly 
achieved more than to propose a constructive path to solving the inverse 
probability problem. He had also shown that there was scope, in prac-
tice, for synthesising objective and subjective numerical probabilities 
(so  troublesomely distinct as concepts). Bayes’ discussion implied that 
an initial subjectively‐evaluated probability could be ‘revised’ in the light 
of further objective probability information from the real world, thus 
producing a probability assessment that was a meaningful blend of both 
evaluations.

Many advances in probability theory – and, indeed, in statistical inference – 
grew out of Bayes’ Essay over the next 150 years. There is a comprehensive 
overview in a technical book by Dale (1999). Bayes would be astonished!

Here we shall focus only on a single very important formula in modern 
probability theory that can be traced back in spirit to Bayes’ Essay, though it 
does not actually appear there. This formula – now variously called Bayes’ 
formula, Bayes’ rule or Bayes’ theorem – is central to solving problems in 
inverse probability.

All such problems involve conditional probabilities. A conditional prob-
ability is the probability that an event A occurs, given that the ‘condition-
ing’ event B has occurred. This is written as P(A|B), and is formally defined 
as P(AB)/P(B)  –  the ratio of the probabilities of the joint event and the 
conditioning event (this definition requires that P(B) is not equal to zero). 
From this, we may write P(AB) = P(A|B)P(B), a useful way of expressing the 
probability of a joint event.

All problems in inverse probability involve inversion of event and condi-
tioning event. Let’s illustrate this inversion with a problem that Bayes 
himself posed. As a man of the Church, Bayes was interested in the ques-
tion, ‘What is the probability that God exists, given all that I see around me 
in the extant world?’ Bayes realised that P(world exists | God exists) = 1 
(since God can make whatever He likes), but what Bayes wanted to know 
was P(God exists | world exists).

Bayes’ formula, which expresses the relation of a conditional probability 
to the corresponding inverse conditional, can be written in various forms. 
We shall illustrate one of these in the context of forensic probabilities. 
A court of law is concerned with whether a suspect is guilty (G) or innocent 
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(I), given the presence at the scene of a crime of some form of evidence (E), 
such as a fingerprint, a bloodstain or a DNA sample.

With some reasonable assumptions, we can usually evaluate P(E|G) and 
also P(E|I), the probability of the evidence being present given the guilt, or 
the innocence, of the suspect. But what the court actually aims to assess is 
the inverse of this, P(G|E), the probability that the suspect is guilty given the 
evidence. To find an appropriate expression, we need a few steps of simple 
algebra.

We begin with the identity in terms of joint probabilities:

P GE P EG

We can rewrite this equation as

P G E P E P E G P G| |  (1)

Similarly, since

P IE P EI

we can write

P I E P E P E I P I| |  (2)

Then we can form the ratio of the left hand sides and the right hand sides 
of equations (1) and (2), cancelling the (non‐zero) term P(E), to show Bayes’ 
formula in the following form:

P G E
P I E

P E G
P E I

P G
P I

|
|

|
|

In this version, the formula has an interesting theoretical (as well as 
practical) interpretation. The second term on the right hand side is 
termed the prior odds of guilt – that is, the odds of guilt before any evi-
dence is considered. (You may recall that the odds of an event is the ratio 
of the probability that the event occurs to the probability that it does not 
occur. Odds is a measure of chance alternative to the usual 0 to 1 scale of 
probability.)

The first term on the right hand side is the ratio of the probability that the 
evidence is present, given that the suspect is guilty, to the corresponding 
probability, given that he is innocent. It is referred to as the likelihood ratio 
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for the presence of the evidence. The term on the left hand side is the odds 
of being guilty, rather than innocent, given the evidence that has been con-
sidered. This is referred to as the posterior (or revised) odds of guilt.

In summary, Bayes’ formula can be expressed as:

Posterior odds = Likelihood ratio × Prior odds.

To see how the formula is applied in a legal context, consider this scenario. 
A suspect is on trial for a murder committed in Australia. A bloodstain 
found at the murder scene is of type AB–. The victim did not have this blood 
type, but the suspect does have AB– blood. What can we conclude from this 
piece of evidence?

First, we can make an assessment of the prior odds of guilt. Suppose 
there are only 50 people who could conceivably have been responsible for 
the murder; thus, we shall take the prior odds of guilt as 1/50 or 0.02. Next, 
we can consider the strength of the evidence. In Australia, only around 1% 
of people have this rarest type of blood. So P(E|G) = 1, while P(E|I) = 0.01, 
and the likelihood ratio is 100, representing a moderate strength of evidence. 
The posterior odds of guilt is thus 100 × 0.02 = 2, indicating that, after taking 
the evidence into account, the suspect is twice as likely to be guilty as innocent. 
This is quite an increase on the prior odds!

An important strength of this technique is that it can be applied repeatedly 
to take account of further independent kinds of evidence – for instance, a 
witness report that the murderer was a man, or the discovery of a fingerprint 
on the murder weapon. In each step, the current odds of guilt is multiplied 
by the likelihood ratio of the evidence, to produce a revised posterior odds 
that the suspect is guilty.

However, the technique evidently cannot proceed without an initial estimate 
of the probability of guilt. It may be difficult to obtain agreement on such a 
prior probability. An objective ‘frequentist’ argument could provide a start-
ing point, as in our explanation above. However, for many events, such an 
initial assessment of chances has to be made in terms of subjective probabil-
ity, because there is simply no other reasonable way to determine their 
probability. For example, the probability that a particular swimmer will win 
a gold medal at the next Olympic Games can, in principle, only be assessed 
subjectively. To many people, including some statisticians, this seems 
‘unscientific’, and so the entire Bayesian procedure for revising odds ratios 
is dismissed. This seems quite an extreme reaction, given that – whatever 
element of subjectivity is injected first – that initial element is progressively 
synthesised with likelihoods evaluated from multiple pieces of accrued 
objective evidence.
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In the last century, the notions that prior probabilities can be assessed 
subjectively and that, more generally, the theory of statistical inference 
should embrace subjective probabilities were, regrettably, the cause of frosti-
ness and even acrimony among academic statisticians on many occasions. 
Rather  than collaborating intellectually, Bayesians and frequentists took 
refuge in separate ‘camps’, each side proclaiming the virtues of their own 
stance and criticising the other. One of us (PP) recalls, as a young academic, 
attending a conference at which a speaker announced that he would be 
presenting a Bayesian analysis of a problem. On hearing this, about half 
the audience stood up and left the room!

Today, the rift is no longer so wide. As the strengths of Bayesian techniques 
are more widely understood, closer engagement of the ‘camps’ in applied 
statistical work is on the horizon.

Indeed, the Bayesian approach to statistics has had many notable suc-
cesses. One spectacular example was the inferential approach taken by the 
team of British cryptologists, led by Alan Turing, that ultimately broke the 
code of the German Enigma message‐enciphering machines during 
the World War II. Winston Churchill claimed that Turing thus made the 
biggest single contribution to the Allied victory, and historians have estimated 
that the work of his team shortened the war by at least two years.

The methods of Turing’s team, and many other practical successes of 
Bayes’ formula, are described by Sharon McGrayne (2012) in her book, 
The Theory That Would Not Die. She shows strikingly how a simple rule 
that, in effect, formalises the notion of learning from experience, has been 
applied to a vast range of areas of human activity, from rational discussion 
about the existence of God to more efficient ways of keeping spam out of 
your mailbox.

Questions

Question 20.1 (A)

Where is Thomas Bayes buried, and what important statistical institution is 
located nearby?

Question 20.2 (B)

In this chapter’s Overview, we considered the following scenario: a suspect 
is on trial for a murder committed in Australia. A bloodstain found at the 
murder scene is of type AB–. The victim did not have this blood type but the 
suspect does have AB– blood.
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Knowing this information, the prosecutor says to the jury: ‘In Australia, 
only around 1% of people have type AB– blood. Hence, the chance that the 
blood came from someone else is very small – only around 1%. So the sus-
pect is fairly certain to be the murderer, with a probability of about 99%.’ 
What is wrong with the prosecutor’s argument?

Question 20.3 (B)

In textbooks of advanced probability you will find a section devoted to so‐
called ‘urn problems’. These are problems that involve selecting balls at ran-
dom from a collection of different numbers of coloured balls in an urn, as a 
statistical model for certain real‐life sampling situations. (An urn is an 
opaque vase‐like container with a narrow top. In its statistical role, it is 
another one of the physical artefacts that we write about in Chapter 25.)

Many urn problems can be instructively solved using Bayes’ formula. 
Here is one example. An urn contains ten balls, each of which is either red 
or black. One ball is selected at random and found to be red. What is the 
probability that it was the only red ball in the urn? [You will need to make an 
assumption about the process by which the urn was initially filled with red 
and black balls.]

Question 20.4 (B)

Working with his team of code breakers at Bletchley Park in England during 
World War II, Alan Turing developed the idea of a scale for measuring 
strength of evidence. What type of scale was this? What was the unit on this 
scale? And what was the origin of the name Turing coined for this unit of 
evidence?

Question 20.5 (B)

In the frequentist approach to interval estimation, a confidence interval for 
a parameter (e.g. the population mean) is constructed using a procedure 
that captures the true population mean a specified percentage of the time, 
in repeated sampling. Suppose that a 95% confidence interval for a popula-
tion mean is found to be (2.5, 3.5). Can we conclude that there is a 95% 
probability that the population mean is between 2.5 and 3.5?

What is the usual term for the Bayesian analogue of a confidence interval? 
What differences in interpretation are there between a numerical confi-
dence interval calculated using the frequentist approach and one using the 
Bayesian approach?
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Part V

Some statistical byways
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It seems to be obvious that statistics is a strictly quantitative discipline. 
However, that is not so, as we shall explain.

Certainly, statistics is a way of arriving at an understanding of the world 
using techniques for analysing numerical quantities, either measured or 
counted. ‘Numerical detective work’ is the way the great US statistician John 
Tukey described statistical analysis in his renowned book Exploratory Data 
Analysis.

Before the 19th century, statistics was literally ‘state‐istics’, that is, a 
description of the state (i.e. the nation) – a description which, moreover, 
focused heavily on qualitative (i.e. non‐numerical) analysis. Questions 
about a country’s productivity, wealth and well‐being were answered by 
analyses based on observed characteristics (without necessarily including 
any measurements), such as its progress in agriculture and industry and its 
accomplishments in the arts and architecture. An interesting historical 
essay by de Bruyn (2004) illustrates how this worked in practice.

Do qualitative analyses still have a place in modern statistics? Indeed, they 
do. Beginners in statistics may form the impression that it concerns itself 
only with quantitative data and quantitative analyses. However, qualitative 
data and qualitative analyses are a vital part of statistics, too.

What exactly do the terms ‘quantitative’ and ‘qualitative’ mean in this 
context? Dictionaries usually define these words by referring back to the 
terms ‘quantity’ and ‘quality’. The Macquarie Dictionary defines ‘quantity’ 
as ‘an amount or measure’, and ‘quality’ as ‘a characteristic, property or 
attribute’. Statisticians distinguish data on a quantitative variable from data 
on a qualitative variable by saying that the former are values, whereas the 
latter are states.

Quality in statistics
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The quantitative/qualitative distinction is a very basic one; there are 
more elaborate ways of classifying variables. One such classification 
scheme was devised in 1946 by the US psychologist Stanley Stevens. His 
scheme puts variables into four classes: categorical (also called ‘nominal’), 
ordinal, interval and ratio.

Categorical data are associated with a fixed set of non‐overlapping 
 categories. Examples of a categorical variable are city of birth and marital 
status. Ordinal data (as the name suggests) are assigned a place in an 
ordered scale according to some criterion. Examples of an ordinal variable 
are military rank and a composer’s opus numbers (that record the order of 
composition of musical works, without reference to the time elapsed 
between their dates of publication). Interval data are numerical values that 
have a precise position on a continuous scale, with an arbitrary zero. They 
are a step up from ordinal data, in that one can say how much further along 
a scale one item is than another. Examples of an interval variable are longi-
tude and temperature in degrees Celsius. Finally, ratio data are numerical 
values that have a precise position on a continuous scale with an absolute 
zero. Examples of ratio variables are length and weight.

It should be clear from these definitions that interval and ratio variables 
are quantitative variables. Further, a categorical variable is clearly a qualita-
tive variable. But what can we say about an ordinal variable? Is it quantitative 
or qualitative? This is a perplexing question, for some ordinal data appear to 
be quantitative (opus numbers, in our example), while others seem to be 
qualitative (e.g. military rank).

This issue has caused a great deal of controversy in statistics, especially in 
regard to psychological data. Psychologists routinely collect ordinal data in 
their experiments, and are accustomed to assigning numerical ranks to their 
observations before analysing them. Think, for instance, about the  following 
behavioural question and its numerically ranked responses: Do you smoke? 
(often 1, sometimes 2, rarely 3, never 4).

These rank data look like interval data, but not all statistical calculations 
(e.g. the arithmetic mean) that are valid with interval data are meaningful 
with rank data. Why? Because a rank coding of responses is an essentially 
arbitrary choice. After all, if rarely or never smoking were regarded as per-
sonally exceptionally beneficial, then the four responses might, for instance, 
be coded 1, 2, 4, 8. The subtleties of accommodating ordinal variables in 
statistical analyses are explained in more detail in a (fairly technical) paper 
by Velleman and Wilkinson (1993).

Let’s look now at some qualitative aspects of modern statistical work that 
go beyond simply including qualitative variables in analyses.

There are, for example, qualitative issues in defining a qualitative variable – 
that is, defining the ‘states’ (or ‘categories’) of the qualitative variable. 
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In many practical contexts, this can be complicated, and even controversial. 
For example, in Australia, a person is officially defined as ‘employed’ if he or 
she performed at least one hour of paid work in the week prior to the official 
employment survey. Such a definition has an obvious political implication. 
It enables the government to report a higher total employment than would 
be the case if a more stringent definition were adopted. In the world of 
sport, we distinguish amateurs from professionals. The categorisation of an 
athlete as ‘amateur’ was (until the 1980s) an indispensable requirement for 
participation in the Olympic Games. Not surprisingly, the definition of 
‘amateur’ in this context became a matter of the sharpest dispute.

A remarkable book by Bowker and Star (2000) shows how the definition of 
categories plays an important role in the outcomes of statistical investigations, 
with some striking examples involving medical and racial classification.

There are also qualitative issues in including a quantitative variable in a 
statistical analysis, for we need first to decide exactly what to measure and 
how to measure it.

For example, if we are carrying out a study comparing the effectiveness of 
two different approaches to learning statistics  –  a traditional classroom 
course and an online course – we might initially think of basing conclusions 
on students’ final examination results. However, we know that it is not 
straightforward to measure the outcomes of learning in this way. This leads 
us to a consideration of other variables or combinations of variables that 
might do better. We may, for instance, choose to compare students’  attitudes 
towards statistics at the beginning and at the end of their studies, using an 
instrument such as the Survey of Attitudes Towards Statistics, developed 
by Candace Schau (online at [21.1]). Again, in a medical context, if we wish 
to compare two treatments for brain tumours, we might measure survival 
times, or we might put more emphasis on the quality of life during the 
 survival time, and assess this using a quality‐of‐life survey – see Carr et al. 
(eds) (2002).

In both of these situations, you will notice that the alternative assessments 
proposed will produce ordinal data. As already noted above, we would need 
to be watchful that the statistical analyses applied to these data were practi-
cally meaningful.

Sometimes it happens that an investigator finds it too challenging to 
choose a measure for some particular real‐world variable, and so decides 
simply not to measure it at all. Then, regrettably, the influence of that vari-
able may just be ignored. Consider cost‐benefit analysis (already mentioned 
in Chapter 9). Faced with a proposal to ‘develop’ some land by harvesting 
the trees growing on it, and then building houses on the cleared land, it may 
be difficult for a project‐assessment authority to measure the benefits of 
continuing to have trees growing in that particular location – benefits in 
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terms of, say, their prevention of soil erosion, or their appeal as parkland. 
It  is all too tempting to make the decision to approve or to disallow the 
proposal on the basis of only those economic variables that can be  measured 
easily, such as the costs of harvesting the trees and of building the dwellings, 
and then weighing these costs against the benefit, evaluated solely as the 
amount that can be earned from sale of the timber and the dwellings.

As the Nobel Prize‐winning economist Joseph Stiglitz has written: ‘What 
we measure affects what we do. If we have the wrong metrics, we will strive 
for the wrong things.’

Questions

Question 21.1 (A)

Language text (which is qualitative information) can be analysed using 
 frequency counts of letters, words or phrases (that is, in a quantitative way) 
to attempt to resolve such matters as authorship disputes. Statisticians who 
contribute in the field of English textual analysis soon learn the order of 
letters by their frequency of occurrence in English prose. The first 12 letters 
of this ordered set have been used as a phrase in a variety of contexts. What 
is this phrase? Can you give a context in which it has been used?

Question 21.2 (A)

Figure 21.1 is part of an historic map of London from the late 19th century 
showing by different shadings (originally, colourings) the socio‐economic 
status of each household. Who created the map? How were the data collected? 
What current statistical marketing technique is its direct descendent?

Question 21.3 (B)

We have seen the perplexing position of ordinal variables, lying between the 
quantitative and the qualitative in statistical analyses. Let’s examine this fur-
ther. Suppose two groups of people – A and B – are suffering from the same 
illness. Those in group A receive treatment T1, and those in group B receive 
treatment T2. Afterwards, each person is asked to respond on a five‐point 
scale – strongly disagree, disagree, undecided, agree, strongly agree – to the 
statement ‘the treatment I received was completely effective’. These responses 
can be numerically coded as 1, 2, 3, 4, 5. We can use these response data to test 
whether people who receive T1 have the same perception of the effectiveness 
of their treatment as those who receive T2.
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a) If this hypothesis is tested using a chi‐squared test of independence, what 
assumption is being made about the nature of the response variable? 
What if an independent‐samples t‐test is used? What test would be more 
appropriate than either of these?

b) Do any of the tests in part (a) throw light on whether the two treatments 
are equally effective?

Question 21.4 (B)

In 1973, The American Statistician published a paper on sampling with 
this intriguing title: ‘How to get the answer without being sure you’ve 
asked the question’. What is the name for the type of sampling that 
the  authors were describing, and in what situations might this type of 
sampling be useful?

Figure 21.1 A map of central London (extract). Reproduced with the permission of 
David Thomas.
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Question 21.5 (B)

Statisticians have made many contributions in military settings. A famous 
example is an investigation, during World War II, of the survivability of 
military aircraft hit by enemy fire. Which eminent statistician estimated the 
probabilities of an aircraft surviving a single hit on different parts of its 
body? What aspect of the damage data did he particularly notice, and what 
insightful contribution did that lead to for improving aircraft survivability 
under fire?
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How much do you know about the historical development of today’s theory 
and practice of statistics?

The modern field of statistics is the cumulative intellectual achievement 
of hundreds of gifted thinkers over at least the past 400 years and, particu-
larly, since about 1860. To learn about the history of ideas in statistics is to 
discover the names of those gifted statistical personalities. The scholarly 
literature of statistics may concentrate on the ideas and give the names only 
passing regard, but we should not take this as a signal that the names are 
unimportant. The names are important – not in themselves but, rather, for 
who they were, these energetic and creative builders of modern statistics. 
Knowing something of the personalities of these statisticians, we can hope 
for insights on ‘how they did it’.

In this hope, we statisticians are certainly not unique. It has long been 
popular to seek, in the personalities and life‐paths of the gifted, clues to 
their remarkable achievements – whether the gifted are thinkers (philoso-
phers, historians, scientists, trainers, etc.) or doers (political leaders, explor-
ers, engineers, athletes, etc.).

Sometimes, this pursuit is disappointing. The lives of the composer 
Mozart and the painter Rembrandt, for instance, offer few insights on how 
they created the works of genius that we treasure today. However, there are 
many other historical personalities whose lives convey much about the 
sparks that ignited their great achievements. Our insights come principally 
from two kinds of sources: their own informal writings and revelatory 
exchanges with their intellectual peers (e.g. personal diaries and private let-
ters); and public documents (e.g. reports of debates and controversies, and 
biographical essays).

History of ideas: statistical personalities 
and the personalities of statisticians
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All of these sources are, unfortunately, far removed from the settings in 
which statistics is studied and practised today. Unless steered to these 
sources by a teacher or reference book, or propelled in their direction by 
incidental curiosity, few statisticians come upon them. The history of statis-
tical ideas remains a little‐visited byway.

Does it matter? You be the judge!
The history of statistical ideas since about 1600 is a grand saga of intel-

lectual endeavour. It tells of achievements in these major areas: how to con-
ceptualise, measure and analyse chance in human experience; how to detect 
authentic ‘big picture’ meanings in detailed real‐world (and, therefore, 
chance‐laden) data; and  –  from the knowledge gained in those inquir-
ies – how to evolve a set of inductive principles for generalising the detected 
meanings, as reliably as possible, to wider contexts.

Without a historical perspective, one has little idea which concepts and 
principles are recent and which long‐established, or which were easily 
established and which were, for a long time, intractable. Many statistics 
textbooks so neglect a historical perspective that it could well appear to 
beginning students that the entire body of theory was conceived just 
recently, and delivered soon afterwards – perhaps by a stork?

In fact, the evolution of modern statistics has been a slow journey with 
deeply human dimensions.

Three aspects of this journey are worth your attention. First, when, and in 
what practical circumstances, pivotal ideas were born; second, how chal-
lenging it often was for the pioneers of theory just to frame clearly the ques-
tions that they wanted to answer; and third, how much rethinking was 
called for before satisfactory solutions were arrived at. Once you have some 
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perspective over these matters – and, especially, the last one – you will, we 
feel sure, be cheered by just how much easier is the path to the same knowl-
edge today.

Figure 22.1 gives a schematic view of some of the major stages in the 
laying of the dual foundations on which modern statistical inference rests, 
together with the names of the scholars with whom the important progres-
sive ideas are associated. These foundations are probability theory, and 
methods of statistical data summarisation and display. We should empha-
sise that the contributions of all those mentioned in this table are far more 
extensive than what is shown. Only contributions relevant to the themes of 
the table are included here.

Figure 22.2 shows how the structure of statistical inference was erected, 
after 1860, on the dual foundations in Figure 22.1.

To enrich the story traced out in Figure  22.2, you may like to browse 
some of the following references. For each scholar mentioned, there are two 
items. The first summarises (without too much technicality) his contribu-
tions to statistical inference; the second offers insights into his personality 
and life‐path. We have selected these references from a profusion of mate-
rial, much of it dating from the last 25 years, a period which has seen a 
wealth of new research in the history of statistics.

Galton 1. Forrest (1974) 2. Galton (1908), online at [22.1]
Pearson 1. Magnello (2009) 2. Porter (2004)
Gosset 1. Plackett (ed, 1990) 2. McMullen (1939)
Fisher 1. Zabell (2001) 2. Box (1978)
Neyman & 
Pearson

1. Lehmann (1993) 2a. Reid (1982); 2b. O’Connor and 
Robertson, (2003), online at [22.2]

Savage 1. Lindley (1980), 
online at [22.3]

2. O’Connor and Robertson (2010), 
online at [22.4]

Tukey 1. Brillinger (2002), 
online at [22.5]

2. Anscombe (2003), online at [22.6]

Once you’ve caught the ‘bug’ on the history of ideas in statistics, where 
can you turn to go on exploring these ideas more generally? That depends, 
of course, on where you are currently in your knowledge of the discipline. 
Here are some suggestions.

If you are currently involved in undergraduate studies, you’ll find the book 
by Stigler (1986) particularly readable on the history of probability theory in 
the 18th and 19th centuries (the ideas of Bernoulli, de Moivre, Gauss and 
Laplace), the birth of the normal distribution (the work of de Moivre and 
Gauss), and the creation of correlation and regression theory (by Edgeworth, 
Galton and Karl Pearson).
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Themes from the evolution of 
probability theory 

Developments in statistical data summarisation
and display 

1600–1760 1600–1760

Galileo Galilei 
(1564–1642) 

Solved, by first principles 
reasoning, a probability 
problem on the roll of three 
dice (1620? – the date is 
uncertain). 

* (a) 

John Graunt 
(1620–1674) 
William Petty 
(1623–1687) 

Compiled the earliest 
systematic data for 
advancing citizen welfare. 
Graunt tabulated English 
public health and mortality 
statistics (1662) and Petty 
population statistics 
(1676).

* (e) 

Prior to 1600, and going back in time as far as the Greek 
philosophers, inquiry into the nature of chance focused 
primarily on uncertainty in the real world. This was the 
case, for instance, in assessing the correctness of 
scientific theories, the success of risky commercial 
ventures, and the trustworthiness of evidence given in a 
court of law. No formal principles for quantifying uncertain-
ty developed from these inquiries. After 1600, a new focus 
emerged. It followed from popular demands to quantify the 
chance of winning in various kinds of gambling games. 
This new focus shifted thinkers’ emphasis away from 
anchoring philosophical foundations, to devising rules for 
assigning a probability to a chance event and for 
combining probabilities. Yet, it left the foundations 
unsatisfactorily vague.

Throughout recorded history, those in power have 
collected data (both numerical and non-numerical) of 
importance to them as rulers – that is, in relation to 
such activities as military affairs, ownership of land, 
taxation, production and trade. There was little thought, 
until the late 1600s, of collecting data for advancing the 
welfare of the ruled classes. Also, beyond basic tabular 
presentation, little attention was paid until the late 
1700s to systematising data description and summari-
sation, whether in tabular or graphical form. In the 
mid-18th century, the established craft of using data to 
aid political administration of the State became known 
as ‘Statistics’. It was not until the 19th century that 
statistics was commonly understood as the discipline 
we know today.

Blaise Pascal
(1623–1662)
Pierre de Fermat 
(1601–1665)

Pioneers of modern 
probability theory, as 
systematic analysts of 
games of chance (1654–
1660). Proposed the ‘a 
priori’ definition of the 
probability of an event. 

Jacob Bernoulli 
(1655–1705)

The first to use ‘probability’
as a routine term in the
measurement of chance.
Adopted the ‘a posteriori’
(or relative frequency)
definition of the probability
of an event. Discussed a
limited version of the law of
large numbers (1713,
published posthumously).

Abraham de Moivre
(1667–1754)

Found that the normal 
distribution approximates 
well the limit of the 
binomial distribution for 
very many trials (1733). 
Invented the term 
‘modulus’ for a dispersion 
parameter in the equation 
of the normal (1738).

* (b)
Johann 
Süssmilch
(1707–1767)

Compiled historical 
statistics on births, deaths 
and marriages for cities 
and towns all over Europe, 
going back 80–100 years, 
and tabulated them at 
length. These form the 
first extensive array of 
demographic statistics 
(1741).

Figure 22.1 History of ideas I.
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1760–1860 1760–1860 

Thomas Bayes 
(1702–1761) 

Published the first 
attempt to resolve the 
‘inverse probability 
problem’. His idea was 
the precursor of the 
subjectivist paradigm of 
statistical inference, an 
alternative to 
Bernoulli’s frequentist 
approach (1763, 
published 
posthumously).

* (c)
William Playfair
(1759–1823)

The pioneer of modern 
statistical graphics. 
Devised bar, column and 
pie charts, and applied
the Cartesian coordinate 
system of pure 
mathematics to plotting 
line graphs of bivariate 
statistical data (1786–
1801).

Carl
Friedrich Gauss
(1777–1855) 

Invented ‘least squares’
as a way of fitting a 
mathematical function 
to data (around 1795). 
Identified the normal 
distribution as a good 
probability model for 
the distribution of 
random errors of 
measurement (1809). 
Explored the use of the 
normal model in many 
real-world data 
contexts. 

* (b)
Adolphe 
Quetelet
(1796–1874)

Attached great 
significance to the normal
distribution as expressing
(what he thought of as)
a universal systematic 
pattern in the population 
spread of each human 
physical attribute and 
behaviour. Regarded the 
mean as signifying 
‘perfection’ in whichever 
attribute was being 
graphed (1835). 

Pierre Simon de 
Laplace
(1749–1827)

Developed rules for 
calculating probabilities 
of compound events 
according to the 
frequentist paradigm. 
Proved the Central 
Limit Theorem (CLT) 
for the case of samples 
from the binomial 
distribution. Studied the 
properties of the normal 
distribution in detail
(1812).

* (b)

John Snow 
(1813–1858)
Florence 
Nightingale
(1820–1910)

Both Snow (a doctor) and 
Nightingale (a hospital 
reformer) used graphical 
displays to increase the 
impact of their statistical 
evidence of previously 
unrecognised sources of 
disease. Snow, in 1855, 
plotted cholera cases in 
Soho on a map,to 
highlight the likely role of 
a contaminated water 
supply. Nightingale, in 
1857, plotted polar area 
charts to show the benefits 
of clinical antisepsis on 
healing war wounds. 

* (f)

1860–1960 1860–1960

Alexsandr Lyapunov
(1857–1918)
Jarl Lindeberg
(1876–1932)
Paul Lévy
(1886–1971)
William Feller
(1906–1970)

Proved the CLT under 
ever more general 
conditions. 
Independent, identically 
distributed variables: 
Lyapunov (1901) and 
Lindeberg (1922). 
Independent, non-
identically distributed 
variables: Lévy-Feller 
(1935). All proofs 
require a finite 
population variance. 
Lévy also identified the 
family of stable 
distributions (1923). 

* (d)

Etienne 
Laspeyres
(1834–1913)
Hermann 
Paasche
(1851–1925)

Designed consumer price 
index formulae for 
averaging price changes 
through time: Laspeyres 
index with base period 
weights (1871), Paasche 
index with current period 
weights (1874). Both 
indexes are now widely 
used.

* (g)

Figure 22.1 (Cont’d) 
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For earlier ideas on chance and probability (from Galileo, Pascal, Fermat 
and Bernoulli in the 16th and 17th centuries), the engagingly written book 
by David (1962) can be thoroughly recommended. The contributions of 
some 20th century statistical pioneers are reviewed in lively fashion by 
Salsburg (2001).

Short but very informative biographies of most of the 19th and 20th 
century statisticians mentioned in Figures 22.1 and 22.2, together with 
those of a couple of dozen other statistical pioneers, can be found in the 
MacTutor History of Mathematics online archive (see the index of names 
at [22.7]).

If you are a postgraduate student in statistics, or in a field where statistical 
ideas are important, there are many gems to be found in the following three 
books. Hacking (1990) shows how the evolution of ideas about probability 
advanced 19th century European society and culture. Stigler (1999) is a col-
lection of 22 stimulating, and sometimes quirky, essays with settings rang-
ing from the 17th to the 20th century.

Also very valuable is Weisberg (2014), which (unusually in this field) is 
written by an applied statistician. It presents a non‐mathematical perspec-
tive over the history of probability and statistics, from Pascal’s beginnings to 
the situation today. What makes the book especially interesting is that it 
elicits, from this history, challenges for tomorrow. These include how to 
repair a growing gap between the activities, in their increasingly separated 
worlds, of academic researchers and statistical practitioners in government 
and business. Academics push forward the frontiers of statistical theory 

Andrei Kolmogorov
(1903–1987)

Emphasised probability 
theory as a branch of 
pure mathematics, by 
defining probability in 
terms of abstract axioms 
(1933). In this way, he 
sought to overcome 
philosophical objections 
to the ‘a priori’ and ‘a 
posteriori’ definitions, 
both of which rest on 
viewing probability as 
an empirical notion. 
Also, explored under 
what most general 
conditions the CLT is 
valid (1954).

Francis Ysidro 
Edgeworth
(1845–1926)

Slightly redefined de 
Moivre’s ‘modulus’ as his 
favoured measure of 
spread. Conceived the 
basic idea of the analysis 
of variance (1885). 
Advanced the ‘stochastic 
approach’ to index number 
theory (1887). Tentatively 
applied simple inferential 
methods to social science 
data.

* (h)

Footnotes
(a) See QUESTIONS 11.1 and 16.5.
(b) See CHAPTER 14.
(c) See CHAPTER 20.
(d) See CHAPTER 24.

(e) See QUESTION 12.3.
(f) See QUESTIONS 1.5 and 22.2.
(g) See CHAPTER 7.
(h) On Edgeworth’s modulus, see QUESTION 6.1;
on the Marshall-Edgeworth price index, see
QUESTION 7.5.

Figure 22.1 (Cont’d) 
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Themes from the evolution of statistical inference

1860–1935

Francis Galton (1822–1911)

Pioneered statistical methods in his extensive studies of 
heredity, genetics, anthropology and psychology. 
Introduced the analysis of bivariate statistical relations. 
Coined the terms: percentile rank, ogive (1875), 
interquartile range, correlation, regression to the mean 
(1886), and showed their empirical uses. Using the 
quincunx (1885), sought to build a statistical model for (his 
cousin) Charles Darwin’s notion of ‘natural selection’.

* (a)

Karl Pearson (1857–1936)

A pioneer of biometry and anthropometry. Coined the 
name ‘standard deviation’ for the now universal spread 
measure (1894). Devised a measure of skewness and of 
bivariate correlation (1896), and a repertoire of models for 
empirical frequency distributions. Made many advances in 
statistical inference, including the chi-squared test (1900).

* (b)

William Sealy Gosset (1876–1937)

Whereas Karl Pearson developed inferential theory for 
large samples, his advisee Gosset wanted to formalise 
inference about the mean from small samples, which were 
standard in his work as an industrial chemist. Gosset (pen 
name ‘Student’) partially solved (1908) this problem. R.A. 
Fisher completed the task (1923). 

* (c)

1935–2000

Ronald Aylmer Fisher (1890–1962)

Synthesised and reformulated the work of his predecessors 
on estimation – for example, on the method of maximum 
likelihood. However, it is his own ideas (which he 
defended vigorously against any criticism) that underlie 
most of the modern principles of estimation, especially for 
small samples. He created the needed theory as required by 
his analyses of agricultural and genetic data. His 
contributions also include the analysis of variance, 
experimental design, and discriminant analysis. In 
addition, he proposed systematic methods and protocols for 
significance tests. 

* (d)

In the 75 years after 1860, it was gradually realised that enough was understood about probability and about 
empirical data distributions (from work in progress since 1600) to attempt a grand synthesis of these two threads 
of knowledge. The goal was to construct, for the first time, a set of formal principles of data-based inductive 
inference (these principles would parallel the formal principles of deductive inference, which had been substantially 
worked out by Aristotle and his successors some 2000 years before). Progress with the synthesis was slow at first, 
given the maze of needed preliminaries – theorems that were easier to state than to prove, and conceptual gaps 
that were easier to identify than to fill. Since about 1935, progress on all fronts has been rapid. The theory of 
statistical inference in a frequentist probability framework and in a Bayesian probability framework is essentially 
complete (for testing the fit of data to pre-specified models), as are the principles of exploratory data analysis (for 
designing models that fit the data). Nevertheless, controversial issues still abound.

Jerzy Neyman (1894–1981)
Egon Pearson (1895–1980)

Collaborated (1926 to 1938) on providing a philosophical 
basis for the theory of hypothesis testing, different from 
Fisher’s. This included attaching importance (denied by 
Fisher) to the choice of alternative hypothesis, and to the 
power function for comparing alternative tests of the same 
null hypothesis. Neyman also developed the theory of 
interval estimation. Pearson was a prominent historian of 
statistics.

* (e)

Figure 22.2 History of ideas II.
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using established quantitative concepts of probability. Practitioners, how-
ever, confront very diverse situations, in which the element of uncertainty 
often has qualitative dimensions not fully captured by formalised probabil-
ity theory, making the application of academic statistical techniques a 
fraught matter. The author gives evidence for his views from contemporary 
statistical practice (e.g. in education, pharmacology, medicine and busi-
ness). He also urges theorists and practitioners to re‐engage, holding up as 
a model R.A. Fisher’s fruitful melding of his contributions to theory and 
practice (see also the answer to Question 19.2).

By the way, it can be very rewarding to dip into the original works of the 
statistical pioneers. English translations of most works by the French and 
German pioneers are available, if reading Latin, French or German is not 
among your skills. You may be surprised, for example, how directly and 
informally Galton and Karl Pearson share their thinking with the reader, 
even while they are still feeling their way towards their eventual technical 
achievements.

Leonard Jimmie Savage
(1917–1971)

A major early contributor in advancing the then novel 
notion of subjective probability as the basis of a theory of 
statistical inference, subsequently called Bayesian 
inference. This was a new paradigm, contrasting with the 
work of Edgeworth, Galton, Neyman and Pearson, who 
built their theory of inference on the frequentist definition 
of objective probability. Fisher had conceived something 
(fiducial inference) parallel to this novel approach, but did 
not succeed in progressing it.

* (f)

John Tukey (1915–2000)

Like Galton and Fisher, a polymath. Tukey’s fields were 
chemistry, physics, mathematics and statistics. His many 
roles in public policy conditioned him to seek out always-
practical analytical tools – that is, tools resilient to 
invalidity of their restrictive theoretical assumptions. Thus, 
he invented or promoted many new methods for vivid 
graphics (e.g. the box plot) and robust estimation (e.g. the 
jackknife). He recognised (1962) that statistical theory 
since 1930 had come far on confirmatory data analysis –
that is, on formally testing statistical hypotheses to see if 
they are supported by the data – but said very little on how 
those hypotheses were devised in the first place. This 
prompted his extensive work on exploratory data analysis, 
a field which he created almost single-handedly over the 
next 20 years, and which now underpins the modern field 
of large-scale data mining.

* (g)

Footnotes
(a) See CHAPTER 18 and QUESTIONS 9.3, 14.3, 18.3, 22.4 and 25.3. 

(b) See QUESTION 9.5. 

(c) See QUESTION 22.5.

(d) See CHAPTER 15 and 16 and QUESTIONS 4.4, 16.1, 19.1, 19.2, 19.3 and 22.5. 

(e) See CHAPTERS 15 and 16. 

(f) See CHAPTER 20. 

(g) See CHAPTER 1 and QUESTION 22.3

Figure 22.2 (Cont’d) 
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Finally, for the committed enthusiast about the history of statistical ideas, 
we recommend exploring Peter Lee’s extensive website, Materials for the 
History of Statistics, online at [22.8]. Among the diverse links brought 
together on this website, there are all kinds of unusual things to be discov-
ered. Cited on this website, but meriting separate mention for its rich 
detail, is John Aldrich’s website, Figures from the History of Probability and 
Statistics, online at [22.9]. The contributions of even more statisticians of 
the past, worldwide, can be found in Heyde and Seneta (eds, 2001). Among 
the editors and compilers just mentioned, John Aldrich and Eugene Seneta 
have made their own extensive, and always engaging, scholarly contribu-
tions on the history of probability and statistics. Further recent writers who 
cover this field broadly and whose works repay seeking out are Lorraine 
Daston, Gerd Gigerenzer, Anders Hald, Robin Plackett and Oscar Sheynin.

When it comes to appreciating the innovative ideas of contemporary stat-
isticians, the best source is often the perspective of the innovator him‐ or 
herself. Such perspectives can come to light nicely in informal conversations 
with the innovators, which are recorded and then transcribed for publica-
tion. Since the mid‐1980s, published ‘Conversations’ with leading contem-
porary statisticians have brought some remarkable ideas and personalities 
to life on the printed (or digitised) page. The journal Statistical Science has 
included a Conversation in most issues – you can search past issues online 
at [22.10]. There are (shorter) Conversations also in many issues of the non‐
technical magazine Significance, published jointly by the Royal Statistical 
Society and the American Statistical Association.

Questions

Question 22.1 (A)

Some statisticians have unexpected hobbies and interests. For example, the 
eminent British statistician, Maurice Kendall (1907–1983) applied his liter-
ary enthusiasm to writing an experimental‐design pastiche of Henry 
Wadsworth Longfellow’s poem, Hiawatha (reprinted as Kendall, 2003). W. 
Edwards Deming (1900–1993), the US statistician who promoted statistical 
quality control internationally, composed church music. And Persi Diaconis, 
Professor of Statistics at Stanford University, USA, is an expert conjuror.

a) Maurice Kendall is associated with another literary contribution of some 
repute, this time as ghost writer. It contains a now quite famous state-
ment about the nature of statistics, to the effect that it is not the num-
bers that matter but, rather, what you do with them. Where did this 
statement first appear, and who was the publicly credited author?
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b) Which US statistician, active during the 20th century, had typography as 
a hobby, and how did he apply that hobby to celebrating the importance of 
the normal distribution to scientific observation and experimentation?

Question 22.2 (A)

What is the historical context of the diagram in Figure 22.3? Who con-
structed the original version of the diagram, and for what purpose? What is 
the name of this type of diagram?

Question 22.3 (A)

a) An arithmetic mean combines all the numerical values of the data in 
calculating the average, while finding a median requires only that the 
values be arranged in order of size. But what type of average involves 
first ordering the values and then combining some of them? In what situ-
ation would such an average be useful?

b) In 1972, John Tukey was a co‐author of a major study of different sample 
estimators of the central value of a symmetric population distribution. 
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What was the title of this study, what was its objective, and what did it 
have to say about the average asked about in part (a)?

Question 22.4 (B)

The scene is an English country livestock fair about a hundred years ago. A 
large animal is displayed, and there is a competition to guess its weight when it 
has been slaughtered and dressed (i.e. prepared for cooking). For a small sum, 
anyone can submit a guess and compete for the prize for the most accurate 
guess. Later, a famous statistician examines the recorded guesses and writes a 
short article based on them. Who was the statistician, what type of animal was 
the centrepiece of the competition, and what was the statistician’s conclusion?

Question 22.5 (B)

a) The man who called himself ‘Student’ in almost all of his scholarly pub-
lications was William Sealy Gosset. What was Gosset’s day job when he 
partly solved the problem of finding the exact probability density func-
tion of what we know as Student’s t‐distribution? Why did he publish his 
result (Student, 1908) under a pseudonym?

b) But should it really be Student’s t‐distribution? Here is some historical 
perspective to clarify this question:

Given a random variable, X, normally distributed as N(μ, σ2), with σ2 
unknown, and given the mean, X, of a random sample of size n from this 
population, we know the t‐statistic for testing the null hypothesis H0: 
μ = 0 as t S nX / / , where S n2 2 1( )X X / . In his 1908 
paper, however, Student (i.e. Gosset) found the exact distribution of a 
different statistic, which he denoted by z, namely, z s( )X / , where he 
defined s2 as ( )X X /2 n. Comparing the t‐ and z‐statistics here, we 
see that t z n( )1 .

Several years later, R.A. Fisher, wanting a general test statistic that would 
unify tests on a single mean, on the difference of two means, on a regres-
sion coefficient and on the difference of two regression coefficients, worked 
out the exact distribution of the t‐statistic (exactly as defined above) – Fisher, 
himself, used the letter ‘t’ to denote the statistic – and published it in 1923. 
This exact distribution is a function involving a single parameter, which 
Fisher named ‘the degrees of freedom’. In symbols, his result was equiva-
lent to the distribution of z v , where v is the number of degrees of free-
dom. Whereas Gosset’s z‐statistic suits only the test on a single mean, 
Fisher’s t‐statistic generalises to suit each of the above tests, provided the 
appropriate numerical value is used for the degrees of freedom.
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So, if Fisher, with his t‐distribution, gave a complete solution for a class 
of hypothesis tests when the population variance is unknown, why is it 
today called Student’s t‐distribution, rather than Fisher’s t‐distribution?
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We are all familiar with things being named after people. It is very common 
in geography, with Constantinople (a city), Tasmania (a region), Everest 
(a  mountain) and Victoria (a lake) as examples. It’s also very frequent in 
science, technology, medicine and mathematics, where plants (fuchsia), 
chemical elements (einsteinium), temperature scales (Celsius), physical 
laws (Newton’s), industrial processes (pasteurisation), diseases (Alzheimer’s), 
mathematical theorems (Pythagoras’s), and codes (braille) are often named 
after people. Such naming of things after people is termed ‘eponymy’, and 
the person whose name is used is the ‘eponym’. A pleasant excursion through 
many contexts of eponymy can be found in a 1983 essay by the US informa-
tion scientist, Eugene Garfield, titled ‘What’s in a name: the eponymic route 
to immortality’ (online at [23.1]).

Statistical eponymy
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In this chapter, we shall look at eponymy in statistics. Statisticians’ names 
are attached to concepts, constructs and procedures in every facet of statis-
tical theory. In descriptive statistics we find, for example, the Winsorised 
mean, Spearman’s correlation coefficient and Kendall’s concordance coeffi-
cient. Many probability distributions carry the name of a statistician or 
mathematician. Most prominent is the Gaussian distribution (also called 
the normal distribution), and there are also, among others, the Bernoulli, 
Poisson, Cauchy, Weibull and Wishart distributions. Many fundamental 
theorems that underpin the theory of statistical inference are epony-
mous  –  for example, the Lindeberg‐Lévy Central Limit Theorem, the 
Neyman‐Pearson theorem and the Rao‐Blackwell theorem.

Eponymous estimators include the James‐Stein estimator (see Question 
15.5) and the Horvitz‐Thompson estimator. More numerous are epony-
mous hypothesis tests – for example, Fisher’s (exact) test, the Chow test, the 
Wald test and the Kolmogorov‐Smirnov test.

Eponymy has no formal rules and little consistency from case to case, as we 
note in the answer to Question 22.5 (b). Thus, oddities are to be expected.

There is no fixed time‐pattern in the emergence of eponymies. Some 
appeared shortly after the associated innovation, while others arose only 
decades later. Examples are found in this chapter’s questions.

Some eponymies have faded with time. Pearson’s measure of skewness is 
now more commonly known as the moment measure of skewness (in con-
trast to the quartile measure of skewness). Snedecor’s F distribution (an 
enhanced presentation by George Snedecor, in 1934, of a construct by R.A. 
Fisher) is nowadays simply the F distribution. And the Aitken estimator of 
1934 is, today, more usually termed the generalised least squares estimator.

In general, the eponym is someone who developed, or materially refined, 
the construct or procedure in question. However, he or she is not always the 
earliest among those with competing claims to be the originator. Indeed, 
Stephen Stigler goes so far as to declare that, regardless of the field, ‘no sci-
entific discovery is named after its original discoverer’. Stigler, rather 
tongue‐in‐cheek, dubs this dogmatic proposition, ‘Stigler’s Law of Eponymy’. 
(The essay with this title, which first appeared in 1980, is reprinted as chap-
ter 14 in Stigler, 1999.)

Of course, if Stigler’s Law is true then Stigler is not its originator! Who, 
then, has that distinction? A claim has been made for Carl Boyer, in his 
History of Mathematics (Boyer, 1968). See page 469 and examples, spread 
through chapters 18–24, of eponymy awarded to non‐originators in math-
ematics. That claim is documented in the article, ‘Who discovered Boyer’s 
Law?’ by Kennedy (1972) – see the entry on ‘eponymy’ (online at [23.2]), 
contributed by John Aldrich to Jeff Miller’s website on the early history of 
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terms in mathematics and statistics. Alas, as Kennedy’s title hints, there is 
now a new regress – for if there is a ‘Boyer’s Law’ then, presumably, Boyer 
cannot be its originator!

But Stigler is being whimsical. Indeed, he readily concedes that the reader 
need only ‘grant the frequent truth of the Law, and agree to the unreliability 
of eponyms as guideposts to original discovery’.

Stigler cites several statistical contexts in which his Law, even in its con-
cessional form, is demonstrably true. These include Poisson’s statement of 
what is today called the Cauchy distribution, more than a quarter of a cen-
tury before Cauchy (see Stigler, 1999, chapter 18), and de Moivre’s state-
ment of the formula for the Gaussian distribution in a work of 1733, well 
before Gauss first referred to it in 1809 (see Chapter 14).

One puzzle remains: why are some statistical concepts and techniques 
accorded eponymic descriptors, while others are not?

In a very few areas of the subject, we observe that eponymy for the origi-
nator of a useful method seems to be virtually automatic. These areas 
include price index numbers, parametric tests for heteroscedastic distur-
bances in regression models, and non-parametric testing. In other areas 
where a major innovator is readily identifiable (e.g. Chester Bliss for the 
probit, and Bradley Efron for the bootstrap), no eponymy has emerged. This 
only makes the process more intriguing.

Questions

Question 23.1 (B)

The following statistical tests are known by the names of their originators. 
In each case explain what purpose the test serves and briefly identify the 
statistician(s) involved:

i. the Behrens‐Fisher test;
ii. the Durbin‐Watson test;

iii. the Wilcoxon signed‐ranks test.

Question 23.2 (B)

Which of the following eponymous statistical constructs was actually origi-
nated by the person whose name it is given? If the eponym was not the 
originator, who was?

i. Chebyshev’s inequality;
ii. the Lorenz curve;

iii. Bayes’ theorem.
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Question 23.3 (B)

The German statistician Ladislaus von Bortkiewicz (1868–1931) is today 
best remembered for his presentation of a data set that is frequently used 
to demonstrate the chi‐squared goodness‐of‐fit test to a distribution that 
was not named after him. To what does the data set relate, what is the 
 distribution, and when did it get its name?

Question 23.4 (B)

In 1973, Herman Chernoff published an ingenious idea for representing 
multivariate data as a simple picture. What sort of picture is this?

Question 23.5 (B)

As a very young man in 1866, and before he became famous as the com-
poser for all the Gilbert and Sullivan operettas, Sir Arthur Sullivan wrote 
the music for a short operetta with only three singers in the cast. Almost 100 
years later, this operetta inspired two eminent statisticians to collaborate in 
publishing a now well‐known statistical paper. What is the title of the paper, 
who are the authors, and what is the connection with the operetta?
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When people speak of ‘the law of gravity’, they are generally referring to 
what is more exactly called ‘Newton’s Law of Universal Gravitation’. This law 
states that the gravitational force (that is, the mutual attraction) between 
any two physical bodies is directly proportional to the product of their 
 individual masses and inversely proportional to the square of the distance 
between them.

Why would such a scientific relationship be called a ‘law’? An analogy, 
while imperfect, may be helpful. Think about the word ‘law’ as it is used in 
parliament.

A law is a rule of behaviour that parliament has agreed is binding on 
 people everywhere in society. Parliamentarians agree on what behaviour 
should become law only after having clear evidence of the expected social 
benefits of the law. Similarly, a physical law is a rule of behaviour that 
 scientists have agreed to regard as binding on physical matter everywhere in 
nature. Scientists agree on what behaviour of matter should be called a law 
only after having clear evidence of its major scientific importance.

To this italicised characteristic of a scientific law, we can add five more. 
When a scientific law represents a relationship between variables, that 
 relationship can be expressed in simple terms: it relates the ‘response’ varia-
ble to just a few ‘stimulus’ variables. The relationship is usually causal: it 
implies not only a correlational connection between the stimulus variables 
and the response variable, but also a direct determining mechanism (for 
more on correlation and causation, see the answers to Questions 8.2 and 
9.1). The relationship is stable  –  that is, the determining mechanism is 
unchanging over time and/or place. And because those who are able to 
identify such simple and stable causal relationships in an otherwise complex 

Statistical ‘laws’
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and turbulent world are, for that reason, quite remarkable scientists, scien-
tific laws are mostly named in their honour – that is, they are eponymous, as 
the name ‘Newton’s Law’ illustrates (see Chapter  23 for more on 
eponymy).

Finally, because there can be no formal proof that a scientific law is 
 universally true, even long‐established scientific laws are always vulnerable 
to being shown to be only approximations. In other words, they may need 
modification as observation becomes more acute, measurement becomes 
more accurate, and confirmatory experiments are conducted in more 
 unusual or extreme situations. Newton’s Law is, again, a good example. 
Newton’s account of gravitational attraction implies that this force operates 
instantaneously, regardless of distance. This suffices as an excellent basis for 
Earth‐bound physics. However, this notion was contradicted by Einstein’s 
Theory of Relativity, a theory now empirically well confirmed over inter-
planetary distances.

Many other eponymous physical laws were established prior to 1900, 
including Boyle’s Law, Ohm’s Law, Hooke’s Law, and Kepler’s Laws. The 
20th century was an era of huge growth in the social and behavioural 
 sciences. It was natural, then, for scholars to ponder whether there are laws 
in these sciences, too. One way they could seek an answer was to search 
empirically for ‘law‐like’ relationships (that is, simple and stable relations 
among variables), using statistical methods.

Of course, a strong statistical correlation, together with a stable regres-
sion model, does not necessarily signal that a direct causal mechanism has 
been identified. However, it certainly is a constructive first step in that 
direction. Thereafter, one can theorise about a plausible general causal 
mechanism to explain the stability of the statistical findings. Just as impor-
tant, one can map out the limits beyond which the causal mechanism is not 
expected to apply. In this way, a new law may be tentatively proposed, to be 
subjected to further tests for confirmation. Examples of this approach are 
given in Ehrenberg (1968).

‐‐‐oOo‐‐‐

Not all scientific laws represent relationships between variables. There are 
also statistically discovered laws that relate to the frequency distribution of 
just a single variable. It turns out that, for certain measured variables, the 
relative frequency of their repeated measurement in the real world is very 
well approximated by some standard probability model (see Chapter 13 
for more on probability models). Indeed, that is precisely why such proba-
bility models became ‘standard’!
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If a model’s fit remains close when applied to repeated measurement data 
on a particular variable collected in widely different settings, statisticians 
may ‘promote’ the model to the status of a probability law for that variable.

Take, for instance, the ‘random error of measurement’ of some fixed 
quantity. This is the variable for which the first probability law in the history 
of statistics was designated. It was Gauss who, in 1809, first proposed the 
probability model; later, it became known as the ‘normal law of error’. It was 
soon well confirmed that repeated measurement of some fixed quantity 
produces a roughly symmetric distribution of random measurement errors, 
x, which is well approximated by a normal probability distribution of the 
form:

 
f x x| , exp0 1

2
1
2

2

where the parameter σ is the population standard deviation. We note that, 
in this context, it is reasonable to set the parameter μ (the population mean) 
to zero, since errors are equally likely to be positive or negative.

When Gauss proposed the normal as a probability model, its elaborate 
form must have astonished many. It can equally astonish beginning students 
of statistics today. How could such an unobvious and abstruse mathematical 
function (they must wonder) ever have been hit upon? That seems to us a 
perfectly understandable reaction, if students are introduced to the mathe-
matical function without any background.

It will be helpful background if students come to see that the function we 
know as the normal distribution was not plucked out of the air. It was 
already known to Gauss from work by de Moivre, several decades earlier, on 
the limit of the binomial distribution as the sample size increases without 
limit. Gauss favoured it in 1809 precisely because  –  as we mention in 
Chapter  14  –  it is the only symmetric continuous probability density 
 function for which the mean of a random sample has the desirable property 
of being the maximum likelihood estimator of the population mean. The 
normal also underpins appealing statistical properties of many statistical 
tools, including point and interval estimators, and significance tests.

However, the normal probability model has its limitations! Though it has 
served statisticians superbly for over 200 years, the normal is not necessarily 
the best probability model for every symmetrically distributed unimodal 
variable.

Nor is it necessarily the best probability model for the mean of a large 
sample drawn randomly from any non‐normal population – despite what 
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the Central Limit Theorem (CLT) promises. This powerful theorem 
(explained in Chapter 12) greatly widened the scope of the normal as a 
probability model after it was first established in 1809. Yet, the CLT has its 
limitations, too!

‐‐‐oOo‐‐‐

Let’s look now at a variable that will lead us to a probability law which is not 
the normal distribution. This is a law that has become increasingly  significant 
over the past 50 years.

Since the 1960s, there have been many statistical studies of Stock Exchange 
data. Among the statistics studied was the daily average of relative price 
changes, over all the shares in the category labelled ‘speculative’ (i.e. shares 
liable to frequent strong stochastic shocks to their prices). It was soon 
noticed that the frequency distribution of these average short‐term relative 
price changes had many extreme values, both positive and negative. These 
empirical distributions were unimodal, and roughly symmetrical about a 
mean of zero, but the frequency in their tails was greater than a normal 
distribution would imply. In other words, the tails of the empirical distribu-
tions were ‘fatter’ (or ‘heavier’) than those of the normal (Question 14.1 (c) 
shows just how ‘thin’ are the tails of the normal).

At first, attempts to model the mean of relative price changes proceeded 
by treating the extreme values as (alien) outliers, deleting these outliers 
from the data set and fitting the normal as a probability model to the central 
data values. Case‐by‐case explanations were then contrived, to account for 
the size and frequency of the outliers. The results of this piecemeal approach 
were not very satisfactory.

In 1963, Benoit Mandelbrot (1924–2010), a French‐American mathema-
tician, proposed a new approach to the modelling challenge. He drew on a 
family of probability distributions identified by the French mathematician 
Paul Lévy (1886–1971), known as ‘stable distributions’. We have more to say 
about Mandelbrot’s work shortly. First it is useful to have a brief look at what 
exactly a stable distribution is, and what Lévy found out about this family.

Lévy’s explorations in this area were a by‐product of his research, over 
the years 1920–1935, on proofs of the CLT under progressively relaxed 
conditions. Recall, from Chapter  12, that the CLT says ‘if you draw a 
sample randomly from a population that is not normally distributed, the 
sample mean will nevertheless be approximately normally distributed, and 
the approximation will improve as the sample size increases’. We note that 
there is one condition that cannot be relaxed. The CLT is valid only for a 
population with a finite variance.
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Means of random samples from a normal population have, of course, a 
normal distribution for every sample size. One might see this property of 
normal means as a sort of ‘trivial’ case of the CLT. But Lévy saw it differ-
ently! What he focused on was that here we have a case where the sample 
means have the same form of distribution as the individual sample values 
for every sample size. That made him wonder whether there might be a 
definable family of probability distributions that all have this property of 
‘stability’.

Other mathematicians (Poisson and Cauchy in the 19th century and 
Pólya, Lévy’s contemporary) had discovered some individual members of 
the family, but it was Lévy who (in two short papers in 1923) elegantly 
 characterised the entire family of stable distributions, both symmetric and 
non‐symmetric. Today, his results can be found in many advanced  textbooks 
of probability and statistics.

Here is a sketch, without mathematical derivations, of some attributes of 
the family of stable probability distributions that Lévy discovered.

All the stable distributions are unimodal. They are unified by a ‘character-
istic’ parameter (call it α) which lies in the range 0 < α ≤ 2. Stability is defined 
in a quite specific sense: if sample values are all drawn independently from 
the same stable distribution  –  say, the distribution with characteristic 
parameter value α* – then the sample mean will have the distribution with 
characteristic parameter value α* at every sample size.

Only two symmetric stable distributions have an explicit form of 
 probability density function (pdf): the normal (corresponding to α = 2) and 
the Cauchy (corresponding to α = 1). For all others, a probability is defined 
formally in terms of the convergent sum to infinity of a rather forbidding 
algebraic expression. In practice, these probabilities are calculated by evalu-
ating that sum up to any desired level of accuracy.

None of the stable distributions (except the normal) has a finite variance. 
It follows that none of the stable distributions with α in the range 0 < α < 2 
conforms to the CLT.

Lastly, here is the property that made the stable distributions so particu-
larly interesting to Mandelbrot: all the distributions with α in the range 
0 < α < 2 have fatter tails than the normal.

If you would like to read about the mathematics of stable distributions, we 
suggest you start with the accessible account of basic ideas in Borak et al. 
(2010), online at [24.1]. A rather more advanced, yet invitingly written, 
overview is given in chapter 9 of Breiman (1992).

‐‐‐oOo‐‐‐
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Let us pause for a moment to look at the Cauchy distribution – a  symmetric 
stable distribution that is perhaps less familiar to you than the normal. The 
Cauchy distribution has no finite mean or variance. That explains why its 
two parameters – a measure of centrality and a measure of spread – are 
positional measures. Its pdf is:

 
f x x| , 1 1

2 1

where π = 3.14159…, θ is the median and λ is the semi‐interquartile range. 
The standard Cauchy distribution is given by setting θ = 0 and λ = 1. Its pdf 
is f(x) = [π(1 + x2)]–1.

The standard Cauchy distribution is graphed together with the normal 
distribution having the same median and semi‐interquartile range (μ = 0, 
σ = 1.4827) in Figure 24.1.

You can see that beyond about ± 3, the Cauchy has fatter tails than the 
normal. This is the property that makes the Cauchy more useful than the 
normal for modelling financial data having multiple extreme values.

‐‐‐oOo‐‐‐
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Figure 24.1 Graphs of the density functions of the normal and Cauchy distributions.
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It was not until 40 years after Lévy announced the entire family of stable 
distributions – the first class of fat‐tailed distributions to be identified – that 
the importance of this theoretical work was recognised in applied research. 
As already mentioned, it was the study by Mandelbrot (1963) that first 
 demonstrated the need to accommodate the fat tails of empirical distribu-
tions of average short‐term relative changes in share prices. A better fitting 
model than the normal distribution was needed. Since the fat‐tailed stable 
distributions were to hand, Mandelbrot tried them out; it was their 
 pioneering empirical role.

In his 1963 article, Mandelbrot, a mathematician, writes mostly in alge-
braic terms about the modelling issues he confronted. You may find it easier 
to read Fama (1963). Eugene Fama, an economist and Mandelbrot’s younger 
colleague, commends the practical significance of Mandelbrot’s ideas to 
the journal’s readership of economists. Fama continued in this research 
direction (see, for example, Fama, 1965), even after Mandelbrot turned to 
different topics (most famously, the geometry of fractals). In 2013, Fama 
shared the Nobel Prize in Economics, in part for the lasting impact that 
these successful early studies have had on the evolution of financial math-
ematics and statistics.

Since this early work on modelling aspects of speculative share prices, 
many other risk‐related financial variables, including some that are non‐
symmetrically distributed, have been found to have fat‐tailed distributions. 
These, too, have been effectively modelled by members of the family of sta-
ble distributions.

To this literature can be added a remarkably extensive array of stable 
models of fat‐tailed variables in physics, geology, climatology, engineering, 
medicine and biology. There is also an array of multiple regression models 
where there are grounds for assigning the random disturbance a non‐nor-
mal stable distribution, rather than the more usual normal distribution.

With so many fat‐tailed variables, in such diverse contexts, well modelled 
by stable distributions, there is ample evidence for ‘promoting’ them to the 
status of stable laws.

There are, however, fat‐tailed variables  –  especially non‐symmetric 
ones –  for which the stable laws do not provide a well‐fitting model. For 
these cases, there are now several other theoretical distributions which may 
be deployed instead. They include the lognormal distribution, the general-
ised hyperbolic distribution, the geometric distribution, or one of the power 
laws investigated in Question 24.3.

For the important statistical law called the ‘law of large numbers’ and two 
misconceived laws – the ‘law of averages’ and the ‘law of small numbers’ – see 
the answer to Question 3.1.
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Questions

Question 24.1 (B)

The eminent French mathematician, probabilist, engineer and philosopher 
of science Henri Poincaré (1854–1912) taught at the Ecole Polytechnique 
in Paris at the peak of his career. At this time, he published a highly‐regarded 
textbook of probability (Poincaré, 1896). In chapter  10 of this book, 
Poincaré demonstrates algebraically how Gauss, in 1809, first obtained the 
probability density function of the normal law of error. To lighten the 
detailed mathematics, Poincaré interpolates an anecdote about himself and 
a colleague, the physicist Gabriel Lippmann. Perhaps they had been 
 discussing the scientific community’s lack of interest in the true nature of 
disciplinary foundations, for Poincaré writes, about the normal law of error, 
‘Everyone believes in it, Mr. Lippman once told me, since empiricists 
 suppose it’s a mathematical theorem and mathematicians that it’s an exper-
imentally determined fact.’

Which of these, would you say, is the true nature of the normal law of error?

Question 24.2 (B)

In a large collection of (say, five‐digit) random numbers, you would expect 
that the digits 1, 2, 3, 4 … 9, 0 would turn up with roughly equal frequency 
as the leading (that is, first) digit of those numbers. Surprisingly, however, in 
many real‐world collections of numbers (for example, the serial numbers of 
business invoices or the money amounts on electricity bills), some leading 
digits are actually more likely than others (zero is excluded as a leading 
digit). This phenomenon was stumbled upon in the 19th century from an 
incidental observation that earlier pages of books of logarithms were more 
‘worn’ than later pages.

What probability distribution is applicable, in these circumstances, for 
the frequency of occurrence of leading digits? How does knowledge of this 
distribution assist auditors looking for accounting fraud?

Question 24.3 (B)

Newton’s Law of Gravitation is an instance of a power law. Many physical, 
economic and social variables have a frequency distribution that follows a 
power law. What, in general, is a power law?

It has been found nowadays that aspects of website traffic on the internet 
follow a power law. Give an example in this context.
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Question 24.4 (C)

A particular power law that relates to discrete data is Zipf ’s Law. This was 
initially proposed as a probability law for the relative frequency with which 
individual words appear in an extended prose text, regardless of language. 
Who was Zipf, and what is the functional relationship that bears his name?

Subsequently, Zipf ’s Law has been found to apply in many other situations 
as well, notably the rank‐size distribution of the cities in any particular coun-
try. For your country, write down at least the first 15 major cities, in order by 
population size (measured in thousands), ranking the largest city 1, the next 
largest 2 and so on. Next, create a scatter diagram of the data, with the X‐axis 
showing the logarithm of population and the Y‐axis the logarithm of the city 
rank. What do you see? If the software is available, fit a least squares regres-
sion line to the scatter. What do you find? Relate your finding to Zipf ’s Law.

Question 24.5 (B)

In the 1950s, a French husband‐and‐wife team of psychologists/statisticians 
published their discovery of a remarkable phenomenon, that famous sports 
people are statistically significantly more likely to have been born when the 
planet Mars was in particular positions in the sky  –  the so‐called ‘Mars 
effect’. Who were they? Has their discovery a record of confirmation since 
then that would justify giving it the status of a law?
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The principal meaning of the word ‘artefact’, as given in the Macquarie 
Dictionary, is ‘any object made by man with a view to subsequent use’. If we 
stretch this definition somewhat, the earliest statistical artefact was surely 
the hand. Humans have been counting – a proto‐statistical task – since Stone 
Age times. From the first, it is likely that counting was performed using vari-
ous parts of the body, especially the fingers and toes, and this is still evident 
today in the traditional counting systems of some groups of people. A lasting 
record of a count could be produced by making notches on bones or sticks.

Also very old, but much more sophisticated as a counting record, is the 
yoked set of knotted strings, called a quipu, of the Inca civilisation in South 
America. In this chapter, we investigate the quipu as a statistical artefact, 
and follow with an overview of some other kinds of statistical artefacts.

Quipu is an unusual word in statistics, and one of very few that begin with 
the letter ‘q’ (see Question 25.3 for another one!). In fact, quipu is the 
Spanish spelling of the word and also the most common spelling in English. 
However, an alternative spelling that seems to be gaining prominence in 
anthropology is khipu, which is taken from the Quechua language. Quechua 
was the official language of the Inca Empire of the 15th and 16th centuries, 
and is still a living language today. Since the Spanish conquest of Peru in the 
mid‐16th century, Quechua has been written in the Latin alphabet. The 
khipu spelling is a better phonetic guide to the correct pronunciation, which 
has an initial aspirated kh, rather than the kw that the spelling quipu  suggests 
to an English speaker.

So, what type of statistical artefact is a khipu? Its knotted strings are  usually 
of llama or alpaca wool. Numerical and, possibly, qualitative information is 
encoded in the number and type of knots, and also in the colour and weave 

Statistical artefacts
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of the strings. Khipus record economic, financial and demographic informa-
tion. It seems that they contain, as well, a location indicator for the informa-
tion source. They were used to convey information back and forth between 
a local area and a central administration. They were created and interpreted 
by khipukamayuqs (or quipucamayocs) – that is, khipu experts – or, might 
we say, Inca statisticians!

You can see images of many of the 600 or so surviving khipus on the web. 
A particularly good site is [25.1], maintained by Carrie Brezine and Gary 
Urton of the Khipu Database Project at Harvard University. Ms Brezine is a 
mathematician and a weaver and Dr Urton is a professor of Pre‐Columbian 
Studies. The gallery at their website includes a ‘calendar khipu’, which is 
thought to record statistical information from a two‐year period.

On a visit to the Museo Chileno de Arte Precolombino (online at [25.2]), in 
Santiago, Chile in 2007, one of us (PP) saw a splendid example of a khipu, 
displayed with the primary cord in a curve and the several hundred pendant 
strings radiating from their points of attachment (see the image online at 
[25.3]). He was keen to photograph it, yet photography in the museum was 
banned. After he explained in hesitant Spanish that he was ‘un profesor de 
estadística’, the staff, maybe puzzling over the relevance of this declaration 
to his request, allowed him to take a photo. Perhaps he should simply have 
introduced himself as a khipukamayuq!

We should note that khipus are not solely ancient artefacts, nor are they 
found only in South America. Ifrah (1998) devotes chapter 6 of his fascinat-
ing book The Universal History of Numbers to a discussion of ‘numbers on 
strings’. He points out that relatives of the khipu are found in a variety of 
historical settings, including the Roman Empire and ancient China. Further, 
such artefacts are still used today by people in Bolivia and Peru, various 
Pacific Islands, Tibet and parts of Africa, to keep records of sizes of livestock 
flocks, amounts of money owed, and numbers of prayers recited.

Among many other statistical artefacts, the most powerful today are very 
familiar – the computers and computer programs that are used to carry out 
most statistical work, namely, data entry and organisation, graphical display 
of data, simple and complex statistical analyses, and even manipulation of 
complicated algebraic formulae in advancing statistical theory. It is an inter-
esting connection between the old and the new that, in the Quechua version 
of Windows, the word Kipu (spelled without an ‘h’) is used for ‘file’!

‐‐‐oOo‐‐‐

It is a small step to extend the definition of an artefact beyond physical 
objects to abstract ideas. Indeed, the Oxford English Dictionary (OED) 
includes, as a derivative sense of the word, the definition ‘a non‐material 
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human construct’. In statistics, we utilise a whole range of artefacts in this 
abstract sense, as well – for instance, the normal distribution and the  normal 
curve (though we might think of a printed table of areas under the normal 
curve as a physical artefact – see Chapter 14).

A further meaning of the word artefact is ‘a spurious result, effect, or find-
ing in a scientific experiment or investigation, especially one created by the 
experimental technique or procedure itself ’ (to quote the OED again). In 
this distinct sense, too, there are statistical artefacts, and it is essential for 
us, as statisticians, to recognise them for the ‘mirage’ that they are, and not 
be misled into thinking that they represent something authentic.

There are broadly two categories of statistical artefacts of this kind.
The first category groups together the results of inappropriate uses of 

statistical tools in practice. A particular use may be inappropriate, either 
because the tool is theoretically not designed for that use, or because it is 
simply unsuited to that use.

In our discussion of price indexes in Chapter 7 – especially Question 
7.1 – you can find a striking example of the arithmetic mean in use in a 
context for which it is not designed. There is another example in Question 
18.2, this time featuring the coefficient of determination.

Question 1.3 provides an example of the arithmetic mean applied where 
it is unsuited. There is a further example of an artefact appearing where a 
tool is unsuited to the context in Chapter 18. The artefact is ‘regression 
towards the mean’, which commonly arises in regression analyses of repeated 
measures data.

The second category of statistical artefacts is computational. Long chains 
of computer calculations are routine in statistical analyses, and it is well 
known that rounding error can then become quite serious.

An easily appreciated example of the consequences of rounding error is 
the calculation of a variance. Two alternative algorithms for finding the 
(population) variance of N values of a variable X, with population mean μ, are:

a) X Ni
2 /

and

b) ( )/X N Ni
2 2

In principle, (b) is more susceptible to rounding error than (a), because it 
involves the small difference of two large numbers. If the large numbers are 
both computed with insufficient accuracy, their difference may be seriously 
in error. This is unlikely to happen if (a) is used.
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Weisberg (1985), page 282, gives an instructive demonstration of the 
 consequences of choosing algorithm (b) rather than (a). Suppose you are 
using a calculator which preserves seven significant digit accuracy to find 
the variance of 12537, 12541 and 12548. The mean of these three values is 
12542. Then, using (a), the variance is (52 + 12 + 62)/3 = 62/3.

What happens if (b) is used? The values of Xi
2, rounded to seven significant 

digits, are, respectively, 157,176,400, 157,276,700 and 157,452,300.
Then, 2

iX  = 471,905,400.
The value of μ2, rounded to seven significant digits, is 157,301,800.
Then Nμ2 = 471,905,400.
Thus, the numerical result of this variance calculation is 0. Of course, this 

result is a computational artefact!
While it is instructive, this example is hardly realistic by current comput-

ing standards. After all, the result of a single arithmetic operation in today’s 
standard ‘quadruple‐precision binary’ representation of numbers preserves 
about 33‐digit accuracy when converted to the equivalent decimal value. 
However, when you consider that a multivariate statistical analysis may 
involve tens of thousands of arithmetic operations, and that even tiny initial 
rounding errors propagate cumulatively through successive rounds of com-
putation, then even quadruple‐precision binary arithmetic may not save us 
from computational artefacts.

Questions

Question 25.1 (A)

Thinking of our hands as statistical artefacts, we have known since child-
hood how to use them to count from 1 to 10. A mediaeval English monk 
devised a way of using finger counting to represent much larger numbers. 
Who was the monk, and how far did his counting system extend?

Question 25.2 (A)

At one of the early censuses in the United States in the 19th century, an 
important artefact for processing the data was first introduced. What was 
this artefact and who was its inventor?

Question 25.3 (A)

What sort of an artefact is a quincunx? What would a statistician use it for? 
Which British statistician brought it into use?
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Question 25.4 (A)

Dice are probabilistic artefacts and have been used for millennia in 
 gambling. In the 18th century, however, they were put to a surprising 
 purpose. A famous classical composer wrote a collection of musical 
 fragments and gave instructions for composing a dance from some of these 
fragments, selected according to the results of several rolls of two dice. Who 
was the composer and what type of dance resulted?

Question 25.5 (B)

A striking photograph of a histogram, composed of people arranged in 
groups by their height, was published in 1975 and has been reproduced 
many times since. Who was the author of the 1975 publication, and what 
name did he give to such a histogram? Was this the first time such a histo-
gram had been created and photographed?
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Answers – Chapter 1

Question 1.1

a) John Edmund Kerrich (1903–1985) was born in England, and emigrated 
to South Africa in 1904. After tertiary studies in South Africa and the 
UK, he joined Witwatersrand University as a Lecturer in Mathematics in 
1929, being promoted to Senior Lecturer in 1935. In 1934, he married a 
woman of Danish parentage, and was on a visit to her family in 
Copenhagen in 1940 when the Nazi invasion of Denmark occurred. He 
was interned by the Nazis in a prison camp in Jutland from 1940 to 1945. 
It was as a pastime during this period of internment that he performed 
the 10,000 coin tosses and other experiments for which he has become 
renowned in the statistical literature.

After the War, he published the results of these experiments in a short 
book (Kerrich, 1946). Reviews can be found in the Journal of the Royal 
Statistical Society, Series A of 1947 (page 74) and the Journal of the 
American Statistical Association of 1949 (page 147). The book was 
apparently later reprinted by the University of Witwatersrand Press. 
Kerrich became the Foundation Professor of Statistics at Witwatersrand 
University in 1957, retiring in 1971. A short biography, including a 
photo, was published in the South African Statistical Journal, 7(2), 1973, 
82–83.

b) We prepared Figure 1.1 from Kerrich’s original data, as given on page 
274 of Freedman, Pisani and Purves (2007). Over all the 10,000 coin 
tosses, these data show the relative frequency of heads to be 0.5067.

Answers to the chapter questions
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If we choose to define probability as ‘relative frequency of occurrence’, 
then we may say that an approximation to the probability of a head for 
the particular coin that Kerrich used in his experiment is 0.5067. Why is 
it just an approximation? It is clear that the empirical relative frequency 
of a head changes with each additional set of tosses. How can any one of 
these figures be said to be the (true) probability of a head for Kerrich’s 
coin? So how, then, might we define the true probability for that coin?

One mathematically appealing solution is to define that probability as ‘the 
limit of the relative frequency of a head as the number of tosses approaches 
infinity’. This may be mathematically appealing, but it is hardly edifying in 
practice. That is because, if we are asked ‘what is the numerical  probability 
of getting a head with Kerrich’s coin?’, the honest answer in the context of 
this rather abstract definition of probability can only be ‘we don’t know’!

To get a better understanding of another difficulty with this abstract 
definition of probability, look again at the graph of Kerrich’s empirical 
data. What it shows is that the deviation from 50% of the cumulative 
percentage of heads oscillates as the total number of tosses increases, 
and that it appears to be a damped oscillation. The graph suggests that 
‘in the long run’, the cumulative percentage of heads will converge to 
some value close to 50%. Statisticians call this apparent convergence 
‘statistical regularity’. Why does it happen? The best answer to this that 
we have heard is ‘that is how the world is’. We have no proof that there 
will actually be a convergence – or, in other words, that the limit  mentioned 
in the previous paragraph exists. Therefore, we should be cautious about 
any definition of probability that depends upon it.

Evidently, getting a clear‐cut definition of the probability of a head 
with Kerrich’s coin is mired in complications.

To get away from the problems that arise in defining probability empir-
ically with regard to a particular coin, statisticians have created an 
abstraction – a ‘fair coin’. A fair coin is one whose two faces are perfectly 
in balance. This idealisation is complemented by another abstraction – a 
‘fair toss’. A fair toss is one in which neither side is favoured when the coin 
falls, and the possibility of any outcome other than a head or a tail is 
excluded (see, for contrast, Question 13.1). Assuming fair tosses of a 
fair coin, it becomes much easier to define the probability of getting a 
head. Since the outcome of such an idealised experiment can only be a head or 
a tail, and they are equally likely outcomes, then the probability of a head 
must be exactly 0.5. Has Kerrich’s experiment provided any support for 
this ‘equally likely’ approach to defining the probability of a head? Only to 
the extent that this approach has been found to be closely consistent with 
Kerrich’s empirical result.
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You may recognise, in this brief discussion of three approaches to defin-
ing the probability of a head, the ideas of three of the pioneers of probabil-
ity theory – respectively, Bernoulli, Kolmogorov and Fermat. The fact that 
these alternative approaches still coexist today (together with a yet a 
fourth one, namely the subjective approach associated with Savage – see 
Chapter  20), more than 350 years after Blaise Pascal and Pierre de 
Fermat first felt their way in quantifying chance (see Chapter 10), is an 
indication of how complex a concept is probability. Even though we do 
not have one unanimously agreed definition of ‘the probability of a head’, 
we may perhaps draw comfort from the fact that the three alternative defi-
nitions we have considered lead to much the same numerical values, and 
not worry too much about their variation. (For a parallel conclusion about 
the concept of randomness, see the answer to Question 11.3.)

Question 1.2

When two dice are rolled, the sample space contains 36 outcomes, taking 
into account the order in which the spots appear. These 36 outcomes are the 
entries in the cells of a 6 × 6 square, in which all couplings of a 1‐spot up to 
a 6‐spot on one die are teamed with a 1‐spot up to a 6‐spot on the other. 
When young children are asked to say what the sample space is in this prob-
lem, they often do not think to take account of the order in which the spots 
appear. Their answer thus includes only the outcomes in the cells in the 
lower triangle (below the diagonal) of the 6 × 6 square just described, plus 
the outcomes on the diagonal itself. The number of outcomes is then 
1 + 2 + 3 + 4 + 5 + 6 = 21. Omitting to take into account the order in which 
outcomes may appear is also common among adults. Indeed, it is a  centuries‐
old oversight – see Question 11.1.

It is not incorrect to list only these 21 points as the sample space, but 
there is a disadvantage. By contrast with the 36 points, the 21 points are not 
equally likely and, hence, their probabilities cannot be calculated using the 
‘equally likely’ approach to defining probability.

Question 1.3

Most people in London have two legs, but a few have one leg and even fewer 
have no legs. If the average (of the number of legs per person) is the median 
or the mode, both of which have the value 2 in this context, then there are 
no surprises  –  most people in London have the average number of legs. 
However, if the average in question is a mean, then we get the  paradoxical – 
but logically correct – result that most people in London have more than 
the average number of legs. That is because the mean number of legs per 
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person, calculated over all the people in London, will be a number very close 
to, but smaller than, 2.

How can we explain this paradox? By pointing out that the mean is an 
inappropriate average in this situation. This does not necessarily signal mis-
use of statistics, if ‘misuse’ is understood as implying a deliberate intention 
to deceive. However, it reminds us to be always vigilant when assessing the 
conclusions of statistical analyses done by others.

(If you are not familiar with the notion of a paradox, see Chapter 10.)

Question 1.4

The monthly average temperature bar charts for New York and New Delhi 
have similar profiles But, if you look closely, you will see that between July 
and September, New Delhi is only a little hotter on average than New York. 
In the remaining months, New Delhi is clearly the hotter city.

To give an informative account of the relative temperatures in these two 
cities, you should not limit yourself to a comparison of whole‐of‐year average 
temperatures. A better picture will emerge if you also contrast the relative 
spreads of monthly temperatures over the year in these cities. To generalise, 
two data distributions are more informatively compared numerically by com-
paring their means and their standard deviations, rather than by comparing 
their means alone (see Chapter 6). This principle is even more  vividly illus-
trated in a comparison of monthly temperatures in New Delhi and Singapore. 
While these cities have essentially the same whole‐of‐year mean temperature, 
the spreads of monthly temperatures across the year are strikingly different!

Note: the question wording suggests that New Delhi (average tempera-
ture 25.2°C) is roughly twice as hot as New York (average temperature 
11.7°C). If you think this is a reasonable interpretation of the data, see the 
answer to Question 8.5 to dispel that thought.

Question 1.5

Outbreaks of cholera occurred in London irregularly from the 1830s to the 
1850s, causing massive public health crises. Without an understanding of 
the epidemiology of cholera, doctors could treat their patients only sympto-
matically. In that era, long before the advent of antibiotics, severe infection 
with the cholera bacterium generally proved fatal.

When cholera struck in central London’s Soho district in 1854, John Snow 
(1813–1858), a London medical practitioner, investigated the locations of 
homes where cholera deaths had occurred. His previous experience with 
cholera had led him to the hypothesis that it was carried by impurities in 
water. Snow found a dramatic clustering of deaths around a particular street 
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water pump – the Broad (today called Broadwick) Street pump, located near 
the corner of what is, today, Lexington Street. Most homes in that area had 
no alternative domestic water supply. Therefore, by disconnecting this 
pump and noting that the number of new cholera cases locally dropped off 
markedly, Snow had strong support for his hypothesis. This event laid a 
foundation for research on polluted drinking water to identify what exactly 
caused cholera infections.

It has long been considered that Snow was led inductively from his map 
of cholera deaths to postulate the Broad Street pump as a major source of 
the infection. A fascinating account along these lines is given in chapter 3 
(‘Snow on Cholera’) of Goldstein and Goldstein (1978). However, Brody 
et al. (2000) offer evidence for their belief that Snow’s hypothesis came first, 
and was tested by investigating the location of deaths, and that the map was 
drawn only for his final report in December 1854. The picture we present in 
Figure 1.2 comes from Brody et al. It is a small part of Snow’s map, showing 
the position of the Broad Street pump in relation to nearby cholera deaths, 
coded as parallel dark dashes.

The internet is rich in documents on John Snow. A particularly compre-
hensive site is maintained by the School of Public Health at the University of 
California, Los Angeles (see [1.2]). The Brody article just mentioned is also 
included there, at [1.3].

Snow’s map was one of the first half dozen efforts of this kind to track down 
the source of epidemic diseases in Britain, as Gilbert (1958) describes. Because 
Snow went on to research in greater depth the relation between the spread of 
cholera and the contaminated water supply, he is sometimes spoken of as the 
founder of the field of epidemiology in Britain, if not also worldwide.
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Answers – Chapter 2

Question 2.1

a) Applying Pythagoras’s Theorem, the mathematician states that the 
length of the diagonal is 20√2 cm. This is the accurate (i.e. true) length 
of the diagonal. However, it is an abstract representation: √2 is not a 
scale mark on any measuring tape. Given that √2 = 1.41421…, you can 
represent the length in concrete numerical terms as 28.0 cm or 28.20 cm 
or 28.280 cm, depending on how many decimal places you use to pro-
gressively approximate √2. These are all inaccurate statements of the 
length, but they are successively more accurate approximations.

b) The statistician knows that the arithmetic mean of a random sample of 
length measurements is, on several criteria, a good estimator of the true 
length. (Think of the true length here as the mean of the population of 
‘all possible’ careful measurements of the diagonal. ‘All possible’ implies 
that this population is infinitely large; it is a notional population, rather 
than a countable one.)

Suppose a sample of 25 measurements of the square’s diagonal, 
recorded to the nearest tenth of a millimetre by 25 randomly chosen 
people, shows a mean length of 28.26 cm. Then 28.26 cm is the statisti-
cian’s (point) estimate of the length of the diagonal. This procedure may, 
or may not, produce an accurate statement of the length (in this particu-
lar case, you can see, from part (a), that it is, in fact, inaccurate). However, 
no other way of combining the information in the 25 measurements is 
sure, in general, to give a single number that is a more accurate approxi-
mation to the true length.

While a point estimate provides no insight as to how accurate it is, an 
interval estimate is more constructive. Thus, if the 25 measurements are 
used to derive a 95% confidence interval for the length of the square’s 
diagonal, then one may act in practice as if this interval contains the true 
length, since such an interval, calculated repeatedly over a long run of 
samples of 25 measurements, has a 95% success rate in capturing the 
true length. Note that a confidence interval can be obtained, whether 
the sample data come from a finite or an infinite population.

http://www.ph.ucla.edu/epi/snow.html
http://www.ph.ucla.edu/epi/snow/mapmyth/mapmyth.html
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Question 2.2 

Mathematical induction is a method for proving the truth of propositions 
about the properties of integers. It is a two‐step procedure whose validity 
rests on this syllogism of deductive logic:

The proposition is true for n = n0.
If it is true for n = ni, then it is true for n = ni + 1, where ni ≥ n0.
Therefore it is true for all n ≥ n0.

The first step corresponds to the first premise in the syllogism: we show the 
truth of the proposition for some base value, n0, of the index, n. This base 
value is commonly 0 or 1, but sometimes a larger value is appropriate (see 
proposition (ii) below). In the second step, corresponding to the second 
premise, we show the truth of the logical recurrence over two successive 
values of the index. The conclusion then follows necessarily as a matter of 
valid deductive logic. (By ‘valid deductive logic’, we mean that it is impossi-
ble for the conclusion to be false if the premises are true.)

You could try out your understanding of mathematical induction by 
proving each of the following two propositions:

i) 12 + 22 + 32 + … + n2 = n(n + 1)(2n + 1)/6 for n ≥ 1;
ii) 2n > n2 for n ≥ 5.

Despite its name, mathematical induction clearly does not use inductive 
logic – which is (as explained earlier in this chapter) the logic of statistical 
inference. It is a purely mathematical technique, and not at all statistical. To 
put an end to any confusion, it would be better if it were always called by its 
alternative name, proof by recurrence  –  as proposed many years ago by 
Tobias Dantzig in Appendix 12 of his book (Dantzig, 1947).

Question 2.3

Having discovered, for a few successive values of n, that the expression 
n2 + n + 41 is prime, you might conjecture (wildly) that n2 + n + 41 is prime 
for all values of n. As accumulating evidence keeps being entirely supportive, 
you might want to take up your initial conjecture as a plausible hypothesis. 
In technical language, we say ‘on the accumulating evidence, this hypothesis 
is inductively strong’. The more values of n there are that yield a prime value, 
the greater the inductive strength of the hypothesis, and the more likely it is 
that the hypothesis is true.
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In a probabilistic context, this is the line of reasoning that a statistician 
follows in testing a hypothesis. Because the statistician cannot neglect the 
influence of chance, he or she can never be certain that a hypothesis is true 
(i.e. cannot prove it is true), no matter how inductively strong it is.

However, our problem here is not stated in a probabilistic context, so it is a 
mathematical problem, not a statistical one. And we want to know not whether 
it is likely that the hypothesis is true (for all values of n), but whether it is true.

An obvious way to try to decide this is to go on evaluating the expression 
for ever larger values of n, to see whether, eventually, a composite (i.e. non‐
prime) value is generated. If such a composite value does turn up, the 
hypothesis is clearly false. This would be ‘proof by contradiction’ (or, alter-
natively, ‘proof by counterexample’). If you proceed in this way, you will 
discover that for n = 40, the expression has the value 1681, which is 412. 
Thus, the hypothesis is actually false.

An alternative approach is to notice that substituting n = 41 will result in 
a composite number, since all three terms will have 41 as a factor.

Note: The expression n2 + n + 41 as a consecutive generator of primes for 
n up to 39 was first given by the great Swiss mathematician, Leonhard Euler, 
in 1772. For more on this and other expressions that consecutively generate 
primes, see Beiler (1966), pages 219–221.

Question 2.4

Noting how extraordinary it seems for Colonel Openshaw to have swapped 
an appealing lifestyle in America for an unappealing one in England, Sherlock 
Holmes forms a ‘working’ (i.e. tentative) hypothesis that Openshaw left 
America in fear of someone or something. Similarly, a statistician, encoun-
tering some surprising (i.e. out of the ordinary) numerical facts, formulates a 
tentative hypothesis that there is some good reason for these facts.

Holmes seeks to test his hypothesis by seeing how plausible it is. One 
way to do this is to try to establish whether there was, indeed, someone or 
something consistently threatening Openshaw. His attempt to identify 
the writer (or writers) of some threatening letters is his first step in this 
process. Similarly, a statistician seeks to test his or her hypothesis by col-
lecting some more data, and checking to see whether they continue to 
be surprising (i.e. whether they are consistently ‘out of the ordinary’, and 
not what might have been thrown up on a random occasion by chance 
influences alone).

Both Holmes and the statistician are working in conditions of uncertainty. 
No conclusion (i.e. inference) is sure; everything is probabilistic – as Holmes, 
himself, acknowledges.
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Deductive logic provides systematic rules for drawing conclusions that 
must, on the basis of true premises, be true. However, in conditions of 
uncertainty, deductive logic is inapplicable. Instead, it is inductive logic that 
provides systematic ways of drawing conclusions that are highly likely to be 
true. Therefore, under uncertainty, it is inappropriate to speak of ‘deducing’ 
a conclusion from the evidence. The best that can be done is to ‘induce’ a 
conclusion from the evidence.

Interestingly, the verb ‘to infer’ (meaning ‘to conclude’) is used in both 
deductive and inductive logic. Thus, there is deductive inference, and there 
is inductive inference – though, of course, they operate according to differ-
ent rules.

Throughout all the Sherlock Holmes stories, Conan Doyle makes Holmes 
say that he excels at observation and deduction but, in every instance, it is 
observation and induction that Holmes practises. Clearly, Conan Doyle was 
neither a statistician nor a logician!

Question 2.5

Because it is so counterintuitive, many people find it surprising to learn that 
the value of the constant π can be approximated by the results of a random 
experiment. The probabilistic result underlying this experiment was estab-
lished by the French polymath and nobleman Georges Louis Leclerc, Comte 
de Buffon (1707–1788). The source is his Essai d’Arithmétique Morale, 
 published in Paris in 1777.

Buffon posed and solved the following problem: if a needle of length m units 
is tossed at random onto a surface ruled with parallel straight lines d units 
apart, with d > m, what is the probability that the needle will lie across a line? 
Buffon approached the solution geometrically, so initiating the field now 
known as ‘geometrical probability’ (in contrast to the arithmetic approach, 
now known as ‘combinatorial probability’, which had been pioneered a century 
earlier by Pascal, Fermat and Bernoulli).

Buffon found the probability to be 2m/πd. So, if d = m, the probability is 
simply 2/π. Proving this involves a relatively simple use of integral calculus. 
Proofs are widely published. There is one by George Reese, online at [2.3]. 
The larger the number of tosses, in theory, the better is the resulting 
approximation of π.

By exploiting the speed of a computer, a huge number of random tosses of 
a needle may be very quickly simulated by means of software incorporating 
a suitable random number generator (on random number generators, see 
Chapter 11). The web now offers many sites where an applet, designed for 
such simulations, will generate an approximation of π on request. Reese, 



Answers to the chapter questions208

online at [2.3], is among them. It is interesting to investigate (i) whether the 
accuracy of approximation depends in any systematic way on the size of m 
relative to d, and (ii) how many tosses are required to obtain an approxima-
tion accurate to, say, four significant digits – that is, 3.142.

Many variants of Buffon’s version of the needle problem have subse-
quently been devised. One of the earliest was presented in 1812 by Laplace, 
who generalised Buffon’s surface, ruled with a set of parallel lines, to a grid 
of rectangles, with a second set of parallels running perpendicular to the 
first. The approximation to π obtained in this version is derived by Arnow 
(1994) and, online, by Eric Weisstein at [2.4].
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Answers – Chapter 3

Question 3.1 

a) The ‘gambler’s fallacy’ is the popular name given to the insistent belief 
that the chance of an event happening increases or decreases depending 
upon recent occurrences, when rationally it is known that the probabil-
ity of that event occurring is fixed, and that successive occurrences of 
the event are independent. Our example of this fallacy relates to the 
long‐term non‐appearance of the lottery number 53. The gambler’s fal-
lacy can also be found operating in symmetric fashion: had a continuous 
run of the number 53 turned up in the lottery, there would be gamblers 
who were ever surer that a number other than 53 was ‘due’ to appear. 
This subjective conviction, regarding the ‘dueness’ of particular 
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outcomes in a long sequence of random occurrences (as in a gambling 
game played continuously), arises from faith in an empirically unsound 
principle dubbed ‘the law of averages’.

Now, it is true that the observed relative frequencies of all the possible 
outcomes of a random experiment (e.g. a lottery) will approximate well 
the underlying theoretical probabilities over a long run of plays, so long as 
the experiment is conducted fairly (that is, in line with the rules according 
to which the theoretical probabilities are determined). This empirically 
sound proposition is known by statisticians as the ‘law of large numbers’.

However, believers in the law of averages give little thought to the 
meaning of ‘a long run of plays’. They observe the outcomes of what 
amount to short runs, but still expect to see what the law of large numbers 
predicts. Thus, if one outcome (say) is persistently under‐represented 
early in the observed run of plays, they think there must be some 
sort of ‘force’ at work, compelling that outcome to appear dispropor-
tionately more often in later plays. In fact, there is no such force, and 
consequently no law of averages. It is worth adding that, philosophically 
speaking, ‘a long run of plays’ can never be equated with any specific 
number: it is simply a run long enough for the observed relative fre-
quencies of outcomes to approximate well the underlying theoretical 
probabilities!

All this amounts to saying that those who trust in the gambler’s fallacy 
and, by implication, in the law of averages, are actually believers in a ‘law of 
small numbers’. Putting it slightly differently, belief in the law of small 
 numbers leads people to exaggerate the degree to which any particular 
small sample resembles the population from which it was drawn. 
Empirically unsound as this ‘law’ may be, it has a powerful grip on the psy-
che of many people, and governs their behaviour in the face of uncertainty 
in many situations. This remarkable phenomenon was first studied closely 
by Amos Tversky and Daniel Kahneman. Their seminal paper (Tversky and 
Kahneman, 1971) is titled ‘Belief in the law of small numbers’. They gave a 
broader exposition of their ideas three years later in Tversky and Kahneman 
(1974). Their work has generated much subsequent research on how 
 people actually behave in the face of uncertainty.

For further interesting reading on the gambler’s fallacy and the law of 
small numbers, we suggest: (i) the Wikipedia entries for these two sub-
jects, online at [3.9] – the entry for ‘law of small numbers’ points out use-
fully that there are now at least three different senses in which the term is 
used in mathematics and statistics; and (ii) Bruce (2002), a Sherlock 
Holmes pastiche in which the gambler’s fallacy comes under scrutiny.
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b) The probability that a specific number, such as 53, does not come up in a 
single drawing in the Venice lottery is 89C5/90C5 = 17/18. Thus, the prob-
ability that it does not come up in 152 (independent) draws is (17/18)152 = 
1.7 × 10–4, or about 1 chance in 6000. The probability that 53 does not 
come up 152 times and then comes up on the 153rd draw is (17/18)152 × 
1/18 = 9.4 × 10–6, or just less than one chance in 100,000 – obviously, 
a very unlikely event.

Of course, there are 90 numbers available for selection, and any of 
them could have been the number that didn’t turn up 152 times and then 
turned up on the 153rd draw. Furthermore, while 152 ‘misses’ in a row is 
surprising, so too would be 130, or even 100. The chance that at least 
one number is missing in a long sequence of draws would have a much 
higher and therefore less surprising probability, yet it would have been 
likely to set off a similar betting frenzy among a public that were not 
accustomed to weighing probabilities.

In fact, there have been several long ‘losing streaks’ in the 400‐plus 
year history of Italian lotteries. The longest may have been 201 draws in 
1941, during which the number 8 did not turn up, raising suspicions that 
Mussolini was fiddling the results to help finance Italy’s entry into World 
War II (see online at [3.10]).

Question 3.2

The first question is: how representative of the nations’ sleeping behaviours 
are the sleeping behaviours in the corresponding samples? Given that the 
survey was carried out via the internet, it will have missed people who 
lacked access to this medium. Perhaps the people who were reached were 
more likely to be interested in the internet than the rest of the population, 
and it is web surfing that is keeping them up late at night!

The second question is: is the sample randomly selected from its popula-
tion? If it is not, then generalising on the basis of the sample information is 
likely to produce misleading results. In particular, the conventional statistical 
confidence interval formula would be unreliable

Bearing these issues in mind, but proceeding to the results nevertheless, 
we might next ask: how many respondents were there in each country? All 
we are told is that there were about 14,000 respondents from the 28 coun-
tries. Because these are countries with vastly different populations, a survey 
of this kind should ideally be conducted by stratifying the sample according 
to relative population sizes. In the absence of specific information, let us sim-
ply suppose that 500 people were sampled in each country. Assuming (rather 
doubtfully) that sampling was random, let’s construct an approximate 99% 
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confidence interval around each of the sample proportions ( p̂) given, using 
the formula ˆ ˆ2.58 1 50ˆ / 0p p p . On this basis, the population propor-
tion for Portugal could be expected to lie in the interval (0.70, 0.80), for 
Taiwan in (0.64, 0.74), for Korea in (0.63, 0.73), for Hong Kong in (0.60, 0.72), 
and for Spain in (0.59, 0.71). The overlapping intervals for these five  countries 
suggest that national differences in the sample proportions of those who go 
to bed after midnight may be due to chance variation alone.

Though we have done these calculations under some doubtful assump-
tions, they nevertheless reveal two major weaknesses of all league tables that 
are based on sample data. These are, firstly, that if we look only at the column 
of rankings, we are ignoring valuable information – namely, the actual differ-
ences between the scores of the ranked entities. Secondly, if the scores are 
made available (and sometimes, regrettably, they are not!), it is often the case 
that some differences are so small as to be statistically insignificant. What 
this means is that the ranking is actually much fuzzier, both than the ranking 
scores indicate, and than the authors of the ranking may want to imply. 
(There is more about deficiencies of league tables in Chapter 8.)

Question 3.3 

For making valid statistical inferences, isn’t it more important to have a rep-
resentative sample than a random sample? The short answer is no, because 
randomness is indispensable for valid statistical inference. A sample, once 
selected, may turn out to be representative but, first and foremost, it must 
be randomly selected. To see why randomness is so fundamental, let us look 
at a specific context.

Suppose the manager of a dental practice with 1500 adult patients wants 
to survey these patients on their oral hygiene activities (brushing, flossing, 
etc.). She settles on a sample size of 200 adult patients, and her initial thought 
is to survey the first 200 that come into the practice. After a little reflection, 
she realises that oral hygiene practices very likely differ with age, and so 
decides to survey patients in four age groups: 16–24, 25–39, 40–59, 60 and 
over. She also recognises that she will not get reliable results if she simply 
approaches the first 200 adults who arrive. Why? Because it is possible that a 
particular age group will be very under‐represented in her sample.

So, to guide her data collection systematically, she decides to use a repre-
sentative sample – that is, one where the sample size in each age group is the 
same proportion of 200 as the number of adult patients in each age group is 
of 1500. From patient records, she finds the following percentages of patients 
in the respective age groups: 16%, 37%, 35% and 12%. Thus, she seeks sam-
ples of size 32, 74, 70 and 24 in the corresponding age groups.



Answers to the chapter questions212

She asks the age of each patient on arrival, and then administers the ques-
tionnaire. Proceeding this way, she will very likely need to interview more 
than 200 patients, because they will not necessarily arrive in numbers that 
immediately fill her quota for each age group. In due course, she produces a 
statistical report showing what proportion of patients in each sampled age 
group brush twice a day, and so on. She interprets these statistics as valid 
point estimates of the corresponding proportions for all adult patients in 
the practice, and constructs confidence intervals around these point esti-
mates. Unfortunately, as already mentioned, these various estimates are not 
valid, because they are based on data from non‐random samples.

It may seem paradoxical that sample randomness is prioritised over 
sample representativeness in statistical inference. There are two reasons 
for prioritising randomness – one is theoretical, the other practical. The 
theoretical reason is that all the optimal properties of confidence intervals 
(and other statistical inferences) are based on probability distributions 
valid only for random samples. The practical reason is that any systematic 
procedure for sample selection risks inadvertently including in the sample 
(or excluding from it) particular data values. Each of these actions may 
bias the conclusions.

Consider the manager’s intention to construct her representative sample 
only from among those who come into the practice. Her database is likely to 
be deficient in data from those whose dental health is either very good 
(because they brush conscientiously) or very bad (because of long‐term 
neglect). Lacking data from the ‘extremes’, her statistical analyses may well 
lead to biased conclusions.

A statistically appropriate procedure for the manager to follow in this 
context – were she to adopt simple random sampling – would be to use a 
table of random numbers to draw a random sample of 200 from all 1500 
patient record numbers. However, she has decided to use stratified random 
sampling, where the strata are the four age groups. Then it is quite in order 
for her to use sample sizes of 32, 74, 70 and 24 in the respective strata (as 
explained above), but she must draw these four separate samples randomly 
from the corresponding four lists of all 1500 patients classified by age group.

The multiple meanings of the expression a ‘representative sample’ were 
investigated by two eminent US statisticians, William Kruskal and Frederick 
Mosteller. So extensive was their exploration, it was reported in no fewer than 
four articles (see Kruskal and Mosteller, 1979–80). If you enjoy discovering 
subtlety and richness in language, all four are worth your attention. We rec-
ommend, in particular, the third of these articles, which focuses on statistical 
contexts. The authors discern nine senses in which statisticians have used 
a ‘representative sample’, none of which is identical to the formal definition of 
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a ‘random sample’. It becomes clear that to deliberately confuse a representa-
tive sample with a random sample can be an effective ploy to mislead the 
public on the validity of statistical inferences. Regrettably, this happens often.

We look at more such ploys, and other inappropriate uses of statistical 
techniques, in Chapters 8 and 9.

Question 3.4 

Apart from the number of class intervals, two other features of a histogram 
influence its shape, namely the choice of widths for the class intervals, and 
the specific values that are imputed as the absent boundaries of the first and 
last class intervals, if they are open‐ended.

Several decades ago, statistics textbooks used to mention Sturges’ Rule 
for defining the most practical number of class intervals for grouping data. 
Sturges’ Rule (which assumes that class intervals have equal width) says: 
choose the number of class intervals to be the integer nearest in value to 
1 + 3.3 log10n, where n is the number of observations to be grouped. This 
rule of thumb seeks a compromise between choosing very few class intervals 
(when too much information on the variability of the data will be lost in the 
grouping) and very many class intervals (when too little data summarisation 
will be achieved). The reasoning behind this formula can be followed in the 
original paper by Herbert Sturges (1926).

Question 3.5 

Can we estimate the mean of a (finite) population from values in a nomi-
nated sample? Yes, but the task in the context of this question is not straight-
forward, and the result is not obviously dependable.

Firstly, we need a way of finding the mean of a sample of data presented 
not individually, but already grouped in a histogram. This can be done by 
making a thin card cut‐out of the histogram, and finding where it balances 
on a laterally‐movable knife edge set at right angles to the horizontal axis. In 
this way, we estimate the sample mean value to be close to 26 years.

Secondly, we know nothing about the way the sample was selected. The 
ages given are recorded for only around one‐third of the convicts (see 
Cobley, 1970). There is no evidence of any deliberate bias in the selection of 
those whose ages were recorded, but there is also no certainty that the 
recorded ages comprise a random sample. So, while it is perfectly possible 
to use these data to estimate the mean age of all the convicts on the First 
Fleet, the estimate will be unreliable unless the sample is indeed random.

Note: in the first two paragraphs of this answer, we turned up two uses of 
the word ‘estimate’. Initially, we used ‘estimate’ in the technical statistical 
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sense of ‘the inductive step of passing from a sample value to a population 
value’. Thereafter, ‘estimate’ appeared in its more common meaning of 
‘approximate measurement or calculation’. You will find the same dual usage 
in the wording of Question 18.3.
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Answers – Chapter 4

Question 4.1 

The writer is Girolamo Cardano (1501–1576) in his Liber de Ludo Aleae, 
published posthumously in 1663. The passage from Cardano’s work is 
quoted by Anders Hald in his book, A History of Probability and Statistics 
and Their Applications before 1750. Cardano was well qualified to com-
ment, since he admitted to being an inveterate gambler: ‘During many 
years – for more than forty years at the chess boards and twenty‐five years 
of gambling – I have played not off and on but, as I am ashamed to say, every 
day.’ (Hald, 1990, page 38). Attitudes today to the treatment of compulsive 
gambling seem to have caught up with his ideas!
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Cardano was also an able mathematician, who wrote several treatises 
summarising the mathematical knowledge of his day. His life and contribu-
tions to the early understanding of probability are interestingly reviewed in 
chapters 5 and 6 of David (1962).

Question 4.2 

The play is Rosencrantz and Guildenstern are Dead by Tom Stoppard. As 
the play opens, the coin tossing is in progress and already a run of 69 heads 
has been obtained. Stoppard writes in the stage notes, ‘the run of “heads” is 
impossible’, which is clearly false! As the audience watches, the run of heads 
continues to 100. Guildenstern comments: ‘A weaker man might be moved 
to re‐examine his faith, if in nothing else at least in the law of probability.’ 
Behind the characters’ further philosophising, based on half‐remembered 
and only partially accurate ideas about probability, is the notion that this 
highly unusual event (the long string of heads) suggests something is wrong 
with the world. There is also a film of the play, Stoppard (1990).

Question 4.3 

A census was commanded at Christmas 1085 by William the Conqueror 
(1028?–1087), who had invaded England from Normandy in 1066. The cen-
sus took a little over a year to complete but the written record, known as the 
Domesday Book, was never completed in full detail. Probably on account of 
changed priorities following the death of William in 1087, some of the later 
entries were just summaries of the data collected.

Today, the Domesday Book is held in the UK National Archives. There 
are, in fact, two books – Great Domesday and Little Domesday – totalling 
about 1000 parchment pages. These books record, in Latin, the ownership 
and other details of all land in over 13,000 places in England and Wales.

An ingenious reanalysis of some of the rich data in the Domesday Books, 
using modern econometric methods, is described in McDonald and Snooks 
(1985), subsequently expanded by the authors into a most unusual book 
(McDonald and Snooks, 1986).

Question 4.4 

The article was by Edgar Anderson (1935), entitled ‘The irises of the Gaspé 
Peninsula’. The Gaspé Peninsula (in French, Péninsule Gaspésienne) is in 
Quebec, Canada, south of the St. Lawrence River. The data consist of length 
and width measurements of sepals and petals in samples of 50 of each of 
three species of iris (Iris setosa, Iris virginica and Iris versicolor). This set of 
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data was used soon after by R.A. Fisher (1936) to illustrate his newly‐
developed technique of discriminant analysis. Fisher used only the meas-
urements on Iris setosa and Iris versicolor, but the whole data set is widely 
available on the web  –  for instance, at the Wikipedia site [4.13]. Fisher’s 
1936 paper can be found in his Collected Papers, online at [4.14].

Question 4.5 

The Loterie de France was first proposed by Giacomo Casanova (1725–1798) 
to Louis XV, and ran from 1758 to 1836. In the earliest version, players bet 
on a single number (an extrait), a pair of numbers (an ambe) or a triple of 
numbers (a terne). Five winning numbers were then officially drawn from 
the numbers 1 to 90. The gambler won if all his or her selected numbers 
were among the winning numbers. An engaging 2003 article by Stephen 
Stigler about the history of the Loterie is online at [4.15].

In contemporary games of lotto, winners are paid from a ‘pari‐mutuel 
pool’, that is, a certain proportion of the money collected from the sale of 
tickets. In the Australian OZ Lotto, for example, this dividend pool com-
prises 56.5% of the total collected from ticket sales. In Casanova’s Loterie, 
the prizes were backed by the French Government, and Louis XV ran the 
risk of losses of up to a hundred million francs – although, of course, the 
odds were very much against this happening.
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Answers – Chapter 5

Question 5.1 

As everyone has experienced when feeling unwell, sometimes this feeling is 
accompanied by a fever  –  a rise in bodily temperature above one’s ‘normal’ 
 temperature. So at ease are we with how it feels to be at ‘normal’ temperature, we 
register our bodily temperature only when it rises (or falls) abnormally – hence, 
the otherwise illogical question, ‘does she have a temperature?’

In fact, however, there is no single ‘normal’ temperature for a well person. 
There can be any number of ‘normal’ temperatures, depending on the cir-
cumstances! Just as an indication: a well person’s temperature varies with the 
site of measurement (in the armpit, in the mouth, etc.), with the person’s 
emotional state, with the time of day, and with the ambient temperature and 
humidity. Even if the temperatures of many individuals in identical circum-
stances are averaged, the averages also differ systematically across different 
circumstances, by as much as 1.5 Celsius degrees. It follows that 37.0°C (or 
its Fahrenheit equivalent, 98.6°F) is no more than a conventional demarcator 
between what is normal and what is abnormal. It would seem to be more 
meaningful to have international agreement on a range for what is called 
normal: 35.8–37.2°C appears plausible to us.

Question 5.2 

Population statistics are changed from time to time on the cited Wikipedia 
page. These changes presumably reflect official estimates of population 
change – estimates which can be no more accurate than the statistical mod-
els and methods used to generate them. Area statistics are United Nations 
evaluations, presumably from satellite mapping. Population density is the 
ratio of population to area.

Populations and areas vary enormously among the world’s countries, and 
the same population density (ratio) can arise from very diverse numerators 
and denominators. For example, Chile and Brazil have closely similar 
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population densities (22 and 24 persons per square kilometre, respectively) 
but their populations are vastly different, as are their areas. Density com-
parisons are likely to be more meaningful between countries with similar 
populations, or with similar areas. Thus, the Netherlands and Chile are 
similar in population size, but have very different areas. Again, Brazil and 
Australia have similar areas, but very different populations. It is also very 
relevant to consider countries’ topographies in interpreting a comparison of 
population densities. While Canada and the USA have similar areas, much 
more of Canada, than of the USA, is inhospitable to human habitation.

Question 5.3 

The letter contains an array of muddled statistical and non‐statistical ideas. 
Taking the writer’s points in the order he makes them, we find the following 
problems.

First, an A‐to‐E grading system is, by itself, neither more nor less logical 
than a pass/fail grading system. The former is generally conceived as an 
assessment on a relative standard – that is, relative to what others at the 
same level of education know and understand; while the latter is an assess-
ment on an absolute standard – that is, as judged against some mandated 
minimally acceptable level of understanding. In any case, an A‐to‐E grading 
system is not more logical because it has a five letter range, rather than (say) 
a seven letter range; the five letter range is simply more familiar.

Second, the sweeping statement that ‘most people are “average” or C on 
any measure (as is shown in the bell curve)’ is not necessarily correct. If: 
(i) the measure were continuous; (ii) values on the measure were approxi-
mately normally distributed; and (iii) the grades A to E corresponded to equal 
intervals on the measure, it would be correct to say that more people would be 
in category C than in any other category – though, even then, this may still not 
be ‘most people’!

Third, the statement that an A‐to‐E ranking gives below‐average students 
‘some hope of improving’ may be well‐intentioned, but logically it is no 
more meaningful than to say that students who have received a ‘fail’ grade in 
a pass/fail framework can have some hope of improving.

Fourth is the concern that a letter grade received in one school may not 
be equivalent to the same letter grade received in another school. This 
depends, of course, on the criteria for assigning the grades. If the criteria 
were state‐ or nationwide, the concern would be resolved.

Finally, there is the writer’s confident presumption that attending an 
independent school allows students to earn letter grades higher than they 
would if attending a government school. This view ignores the fact that 
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student learning is dependent, in part, on a whole range of factors (such as 
interest, commitment, family background, standard of living) that are not 
necessarily related to the auspices of the school.

Question 5.4 

The truth about the quotation widely attributed to Wells is investigated in 
Tankard (1979). Tankard shows how Wells’ original words became trans-
formed, as several later writers – perhaps a little impatient at Wells’ prolix 
writing style – progressively misquoted him, presumably so as to sharpen 
the central point that they wanted to make.

You can find Wells’ original words on this theme by searching for the 
relevant occurrence of the phrase ‘read and write’ in any of the online edi-
tions of Mankind in the Making (for example, that of Project Gutenberg, 
online at [5.9]). Tankard, of course, gives these words as well.

This is what Wells actually wrote (in his chapter 6, entitled Schooling): 
‘The great body of physical science, a great deal of the essential fact of finan-
cial science, and endless social and political problems are only accessible 
and only thinkable to those who have had a sound training in mathematical 
analysis, and the time may not be very remote when it will be understood 
that for complete initiation as an efficient citizen of one of the new great 
complex world‐wide states that are now developing, it is as necessary to be 
able to compute, to think in averages and maxima and minima, as it is now 
to be able to read and write.’

Note particularly that, while Wells mentions ‘averages’, the term ‘statisti-
cal thinking’ does not appear at all!

Question 5.5 

There are two forms of frequency distribution in which few observed values are 
likely to be found at or near the average: bimodal distributions and U‐shaped 
distributions. Bimodal distributions are common in real‐world contexts. For 
example, the frequency distribution of the age of pedestrians killed in road traf-
fic accidents is strongly bimodal, with the youngest not yet understanding that 
moving vehicles are dangerous, and the oldest unable to get out of the way in 
time, despite understanding this all too well! Genuinely U‐shaped distributions 
are more unusual in practice. An example is the distribution of the percentage 
of a city’s residents in a particular age group requiring full‐time care.

Why does an average alone provide only a minimally meaningful picture 
of a frequency distribution? Because it cannot provide any information 
about the shape of the distribution. One source of information about shape 
is a measure of how spread out the values are across the distribution. Oddly, 
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such a measure is rarely provided when data, implicitly from a frequency 
distribution, are presented in the popular media. Chapter 6 agitates for 
change in this state of affairs.
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Answers – Chapter 6

Question 6.1 

By direct substitution, A = 2
9

[X1
2 + X2

2 + X3
2 – X1X2 – X1X3 – X2X3] and  

B = 2
3

[X1
2 + X2

2 + X3
2 – X1X2 – X1X3 – X2X3]. So here, B = 3A. In general, for N 

observations from a discrete distribution, B = [2N/(N – 1)]A. Thus, as N 
increases, B approaches 2A from above. It follows that, for values of N usual 
in practice, the square of the intuitive measure of variability is systematically 
just about twice the square of the standard deviation. In symbols (where M 
is the intuitive measure, and σ the standard deviation), M ≈ σ√ 2. When the 
data are from a continuous distribution with an infinite range, it can be 
shown that the relationship is exact, i.e. M = σ√2.

Historical note: our intuitive measure of variability was recognised by 
Francis Edgeworth in 1885 as a logically meaningful measure of dispersion. 
He called it the ‘modulus’ (adopting a term that had been introduced by de 
Moivre in 1738, but with a slightly varied definition), and it continued in use 
until the end of the 19th century. The concept of the standard deviation was 
known in Edgeworth’s time  –  not by that name (which was first used in 
print by Karl Pearson in 1894) but, rather, by the names ‘root mean square 
error’ or, less intelligibly, ‘error of mean square’.

These two measures of dispersion, distinct but closely related, were 
among several others in circulation at that time. In particular, a measure 
called the ‘probable error’ was introduced by the mathematician Friedrich 
Bessel in 1815, and became more prevalent than the modulus. It was defined 
for symmetric distributions (notably the normal distribution), and it is 

http://www.gutenberg.org/etext/7058
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identical to what we today call the semi‐interquartile range. Thus, for the 
normal distribution, in symbols (where P is the probable error), P = 0.67σ.

Such was Pearson’s standing in the field of statistics that, soon after 1900, 
the standard deviation (both the concept and the name) swept away the 
modulus and the probable error. It was R.A. Fisher who, in 1918, coined the 
term ‘variance’ as a shorthand for ‘square of the standard deviation’.

Question 6.2 

No, the variance may decrease, remain the same, or increase. Deletion of the 
largest value of X always reduces Σ(Xi – μ)2, but N also reduces by 1, so the 
ratio will not necessarily fall.
Example:

a) for the set [1, 13, 13, 13, 16] the variance is 27.36, while for the set [1, 13, 
13, 13] the variance is 27.00, so the variance decreases;

b) for the set [1, 13, 13, 13, 15.81], the variance is 27.00, so deleting the 
largest value leaves the variance unchanged;

c) for the set [1, 13, 13, 13, 15] the variance is 25.60, so deleting the largest 
value increases the variance.

Question 6.3 

If the standard errors had been reported, we could construct a confidence 
interval for the actual mean floor area of homes in each country. We could also 
test for significant pairwise differences in mean floor area between countries.

If we knew, further, (i) whether the definition of a ‘home’ was the same in 
each country, and (ii) what proportion of homes in each country had 1, 2, 3, 
or more bedrooms, we would gain insight on the extent to which cross‐
country comparisons were actually comparing like with like.

Question 6.4 

The sampling variance of the median of n values, drawn with replacement 
from a normal distribution with mean μ and variance σ2, is approximately 
(π/2)(σ2/n). Details of this result and its technically‐advanced derivation are 
given in Stuart and Ord (1994), chapters 10.10 and 14.6.

Question 6.5 

We are considering two alternative estimators of the population variance, 
σ2: s2 denotes the sample variance, and 2ˆ  the sample analogue of the popu-
lation variance. The information given shows that s2 is unbiased for σ2, while 

2ˆ  is biased. Perhaps that is why introductory textbooks of statistics prefer 
the counterintuitive s2 over the more intuitively appealing 2ˆ   –  starting, 
indeed, from the early chapter on descriptive statistics?
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But there is more to discover. How do s2 and 2ˆ  compare on efficiency of 
estimation? Comparing the given variances of these estimators in the nor-
mal case, it is easy to show that var( 2ˆ ) < var(s2). In other words, 2ˆ , though 
a biased estimator, is more efficient than s2.

When two estimators of the same parameter show themselves alternately 
superior, in this way, on the criteria of unbiasedness and efficiency, it is con-
structive to compare them on their mean square error (MSE). The MSE of 
an estimator is defined as its variance plus the square of its bias. In the 
 normally distributed case, MSE(s2) = 2σ4/(n – 1) + 02 = 2σ4/(n – 1). And 
MSE( 2ˆ ) = 2σ4(n – 1)/n2 + [–σ2/n]2 = σ4(2n – 1)/n2. It can readily be shown 
that MSE( 2ˆ ) < MSE(s2).

One may now really wonder why s2 gets the accolade so comprehensively 
in introductory statistics, when 2ˆ  has both greater efficiency and smaller 
MSE. See Sahai and Misra (1992).

There is a further complication to be faced in practice when constructing 
an interval estimate of a population mean. This requires an estimate of the 
standard error of the sample mean, σ/√n, and that, in turn, needs an estimate 
of the ‘nuisance’ (i.e. impeding) parameter σ. Even though s2 is unbiased for 
σ2, unfortunately neither s nor ˆ  is unbiased for σ (this is a quite general situ-
ation: unbiasedness is not preserved under square root transformation). 
Despite the availability of several unbiased estimators of σ (see, for instance, 
Cureton (1968), and D’Agostino and Cureton (1973)), textbooks invariably 
adopt s as the estimator of σ in this context. How totally puzzling!

What is the explanation? The key to the preference for s2 and s in these 
contexts is the superior tractability of the statistical distribution theory for 
any consequent inference – involving an interval estimator or test statistic – 
regarding the population mean. This is simply one example of a  phenomenon 
familiar to experienced statisticians  –  an arguably suboptimal theoretical 
choice of ‘nuisance’ parameter estimator along the way may be tolerated, 
because it ultimately produces a more workable practical inferential  procedure 
for the parameter of principal interest.
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Answers – Chapter 7

Question 7.1

The simple AM index, calculated as an average of price ratios shows spuri-
ously, as we saw in this chapter’s Overview, that the general price level is 
rising. The simple AM index, calculated as a ratio of price averages, is [(4 + 3)/2]/
[(2 + 6)/2] = 0.875. This indicates, spuriously, that the general price level 
is falling. The simple GM index, calculated as a ratio of price averages, is 

4 3 2 6 1/ . This indicates (like the simple GM average of price 
ratios) no change in average price level.

For constructing a meaningful price index, neither of the alternative 
measures involving the AM is appropriate. As for the alternative GM‐
constructed indexes, in every situation they both always give the same 
result.

You may have noticed that, by choosing self‐servingly among these for-
mulae, it is possible to demonstrate any of the following: average price up, 
average price down, or no change. As with many other statistical tools (see, 
especially, Chapters 8 and 9), there is scope for deliberate misuse of price 
index formulae.

Question 7.2

The intuition underlying this question is quite a simple one: if there are two 
goods and an increase in one good’s price is accompanied by an equal 
decrease in the other good’s price, then there has been no change in the 
average price of the two goods. In the split second of deciding whether to 
trust this intuition, most people would probably think of a fixed absolute 
(dollar amount of ) increase or decrease in price. Their past experience with 
the average everyone knows – the arithmetic mean – would then immedi-
ately signal that this intuition could be trusted.

However, the context of this question is actually that of a fixed propor-
tional increase or decrease in price. Even if they notice the different context, 
it is still highly likely that most people will unhesitatingly go on trusting the 
same intuition. So the fundamental question here is, ‘is this unhesitating 
carry‐over of trust justified?’ The answer is ‘yes’; but there is more to this 
answer, as the following discussion shows.
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Suppose there is a fixed proportional increase, k, in the price of one good 
between two points in time (say, from price p1 to price kp1), and the same 
proportional decrease, written (1/k), in the price of the other good (say, 
from price p2 to (1/k)p2). The ratios of prices are kp1/p1 and (1/k)p2/p2. Since 
each number has a unique logarithm, we may equally well work with 
log[kp1/p1] and log[(1/k)p2/p2].

The arithmetic mean is already accepted as a trustworthy way of finding 
the average price. Thus, if we find the arithmetic mean of the two log price 
ratios and then the antilog of this arithmetic mean, we expect also to have a 
trustworthy average price. It is highly unlikely, of course, that a non‐statistician’s 
intuitive thinking would actually proceed along this chain of thought!

Thus, while the carry‐over of trust in intuition about an average is justi-
fied, the intuition is not, in this context, true about the average that most 
people have in mind – that is, the arithmetic mean (AM) of price changes. 
Instead, the reasoning we have just spelled out has generated the geometric 
mean (GM) of price changes. Recall that the logarithm of the GM of a set of 
numbers is the AM of the logarithms of those numbers. This example illus-
trates how one’s intuition may not always be a completely trustworthy guide 
in statistical work.

There are, indeed, lots of counterintuitive results in both statistical theory 
and probability theory. The Central Limit Theorem (see Chapter 12) is a 
prime example. Paradoxes are, by definition, another source, and there are 
many examples in Chapters 10 and 11. In these examples, most people’s 
intuitions turn out to be entirely wrong

What makes the context of the present question unusual is that, while 
most people’s intuition about the in‐principle trustworthiness of an average 
is right, the specific average that turns out to be trustworthy is unforeseen.

Should statisticians trust their intuition? Our view is that it depends on 
the scientific and personal attributes of the statistician. Someone who is 
already deeply knowledgeable in the subject and its intellectual history, and 
who is by nature cautious about making too‐hasty presumptions, may be 
well served by his or her intuition. It is now well known, for instance, that 
R.A. Fisher’s pioneering work on the theory of experimental design grew 
out of his intuitive reaction to a real‐life event, as we invite you to discover 
in Question 19.1.

Question 7.3

A weighted GM of the n values Xi, each value having the weight wi, (i = 1, 2 
… n), has the general form:
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Question 7.4

If you invest $48,000, at the rate of $100 per month over 40 years, and watch 
this sum grow by compound interest to $632,408, why is it practically mis-
leading to declare that your capital has been multiplied about 13 times? 
Because in any real‐world context, a given amount of money will not con-
tinue to buy the same quantity of products as time goes by. Consider this: in 
1976 in Australia, the cost of a six‐cylinder family car was of the order of 
$5,500 – but today, such a car costs around $40,000. Evidently, a dollar today 
buys much less car than a dollar in 1976. Not all of the price rise in cars 
reflects technological improvements. Some of it echoes the gradual rise, 
over time, in the prices of most goods we buy as consumers. This general 
rise in the price level over time is termed inflation.

To abstract from the pervasive influence of inflation on consumer prices, 
we compare money amounts in terms of ‘fixed‐year’ dollars. For this, we 
need a consumer price index. Such an index is calculated by the national 
statistical office in most countries.

Let’s suppose that the investment described in this question took place in 
Australia between 1976 and 2015. Using the Australian consumer price 
index for these 40 years, we can estimate the value, in terms of 1976 dollars, 
of $100 deposited monthly over 480 months. This is approximately $18,000. 
Similarly, we can work out the value, in terms of 1976 dollars, of a lump sum 
of $632,408 collected in 2015. That is approximately $111,000. So, in terms 
of 1976 dollars, your capital has not been multiplied about 13 times, but 
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only about 6.2 times. The ‘wonders’ of compound interest are evidently not 
as wonderful as all that!

It will be clear now that, when it comes to comparing money amounts 
over time, comparisons which do not take into account the effects of infla-
tion on the purchasing power of those amounts flagrantly neglect a funda-
mental principle of valid data analysis in economic statistics.

Question 7.5

The Marshall‐Edgeworth (M‐E) index does not confound price change and 
quantity change. To see why, consider the general form of a price index 
which is (like the M‐E index) a ratio of weighted means of prices (of n prod-
ucts). When the mean is the AM and the weights are wi (i = 1, 2, … n), the 
equation of such an index is [(Σp1i wi)/Σwi]/[(Σp0iwi)/Σwi] = Σp1iwi/Σp0iwi. 
What is significant about this form is that exactly the same set of values 
appears as weights in the numerator and the denominator. Then, regardless 
of how the wi are defined, the index value generated reflects only the varia-
tion in prices.

In the case of the M‐E index, wi = (q0i + q1i)/2, and this set of weights is 
common to numerator and denominator. Hence, an M‐E index generated 
value reflects only the variation in prices. What, then, is an example of a 
confounded index? Here is one: Σp1iq0i/Σp0iq1i.

[Note: it is not hard to prove that, for a fixed set of data, the value of the 
Marshall‐Edgeworth index always falls between the values of the Laspeyres 
and the Paasche indexes.]

Answers – Chapter 8

Question 8.1

The poem is The Battle of the Nile by William McGonagall (1825–1902), the 
self‐styled Poet and Tragedian of Dundee (in Scotland). On Chris Hunt’s 
website [8.2], McGonagall is said to be ‘widely hailed as the writer of the 
worst poetry in the English language’. This website presents the complete 
text of this and other poems, as well as an autobiography.

Question 8.2

How to Lie with Statistics is described, rather extravagantly, as ‘the most 
widely read statistics book in the history of the world’ in Steele (2005), 
online at [8.3]. In chapter 8 of his book, Huff explains and illustrates the 
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logical fallacy ‘post hoc ergo propter hoc’ (‘following this, therefore because 
of this’). The name of this fallacy says it all! We may fall into fallacy if we 
attribute causality to the interaction of two (or more) variables simply 
because we observe that their values are correlated through time. Before a 
correlation can be (even tentatively) labelled as causal, it is necessary first to 
have a theory which postulates a causal mechanism (defining both its direc-
tion and its degree of stability), and then to confirm this theory in a variety 
of settings where the correlation is observed. (See also the answer to 
Question 9.1.)

Quite often nowadays, one comes upon a press report of someone’s claim 
to have discovered (or corroborated) a causal relation in some scientific 
field. These reports frequently publicise recent articles in the scholarly lit-
erature. At times, however, the supposedly causal relation seems so aston-
ishing that one wonders whether this isn’t just the ‘post hoc’ fallacy in action. 
Here are two examples. First, researchers from the University of Cambridge 
report that a longer ring finger than index finger predicts a more successful 
financial trader – see Coates, Gurnell and Rustichini (2009). Second, a sys-
tematic US study concludes that frequent attendance by women aged 50–79 
at religious services reduces their risk of death from all causes by as much as 
20%, compared with those not attending services at all – see Schnall et al. 
(2010). We leave you to decide whether these papers have succeeded in 
eliminating the possibility that the ‘post hoc’ fallacy is lurking.

Of course, there are many, and more straightforward, situations where 
observing people’s behaviour in daily life strongly suggests that they have 
fallen prey to the ‘post hoc’ fallacy.

Question 8.3

At first sight, the statement ‘obesity is costing the country $56 billion a year’ 
might appear to refer simply to the direct costs of medically treating obesity, 
and the many other conditions (e.g. high blood pressure, diabetes and 
arthritis) that commonly follow.

With a little further thought, it will be apparent that there are also indirect 
costs of obesity in the community, such as the cost of providing offices and 
hospitals with more robust furniture to accommodate obese individuals, 
and the cost of running public education programmes on the dangers of 
obesity. Indirect costs are not necessarily actual financial outlays; some 
indirect costs are implicit losses to society from the value of economic out-
put forgone by obese people on account of their obesity, such as loss of 
output from extended periods of sick leave. In addition, there are 
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opportunity costs – that is, costs to other social welfare and medical pro-
grammes (e.g. on homelessness or mental illness) imposed by the urgency of 
directing scarce research funds towards new treatments for obesity and its 
complications, rather than to those other programmes.

Without further clarification, it is impossible to know whether the state-
ment on the cost of obesity to the nation – and similar statements regarding 
the cost of other personal and social ills that impact heavily on society – refer 
to all, or just to some, of the categories of costs just mentioned. Moreover, 
there is no way of knowing how comprehensive is the array of different costs 
within each category that have been evaluated in coming to the final total, 
nor how accurately they have been evaluated. In other words, such state-
ments are only as trustworthy as the organisation under whose auspices 
they were produced.

Question 8.4

The series was Yes, Prime Minister, written by Jonathan Lynn and Antony 
Jay. The episode was The Ministerial Broadcast (series 1, episode 2), first 
broadcast in January 1986. In a crisply‐worded exchange, Parliamentary 
Permanent Secretary, Sir Humphrey Appleby, reveals to the PM’s Principal 
Private Secretary, Bernard Woolley, how to devise opinion polls to elicit 
diametrically opposed responses to the question, ‘Would you be in favour of 
reintroducing National Service?’ The technique is to build up to the crucial 
question by two alternative paths. Each path employs a sequence of ques-
tions which predisposes an uninformed (or unthinking) interviewee to 
express exactly the view that the interviewer has ‘coached’ the interviewee 
to state. The full text of the exchange is available online at [8.4], and the clip 
can be watched on YouTube at [8.5].

Question 8.5

Temperature can be measured using any one of several different 
scales – Celsius and Fahrenheit are the most common ones – but to cor-
rectly measure thermal energy (i.e. the amount of heat), degrees on the 
Kelvin scale are used. That scale has an absolute zero, as opposed to the 
Celsius and Fahrenheit scales, each of which has an arbitrary zero. Zero on 
the Kelvin scale represents the complete absence of thermal energy. On the 
Kelvin scale, a doubling of the temperature indicates a doubling of thermal 
energy. There is a simple connection to the Celsius scale shown by the equa-
tion °K = °C + 273.15. So 5°C = 278.15°K and 10°C = 283.15°K, representing 
a 1.8% increase in thermal energy.

There is more in Chapter 21 on alternative scales of measurement.
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Answers – Chapter 9

Question 9.1

As the wording of the question hints, this is an illustration of the ‘post hoc ergo 
propter hoc’ fallacy described in Question 8.2. Whimsical though it is, this 
example is useful for analysing the serious question: how does one actually 
decide whether an observed association is, or is not, a sign of a causal process?

Suppose an association is observed between two variables, A and B. It 
might be an entirely coincidental association, or there may be a causal rela-
tion between A and B, or a third variable, C, might be acting separately on 
A and on B at the same time.

If there were, in fact, a direct causal relation between A and B, it would 
not be clear without further investigation which of the following was true: 
(i) change in A causes change in B; or (ii) change in B causes change in A; or 
(iii) A and B cause change in one another all at the same time. How can 
these three possibilities be discriminated?

General scientific theories often embody causal relationships, and usually 
specify the direction of causation. If such a theory is validated by testing it 
formally using real‐world data, the causation is also validated.

In narrower contexts it might, alternatively, be possible to establish that a 
relationship is causal, by informal observation or experiment. We observe, 
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for example, that people get sunburned more quickly in the southern hemi-
sphere, where there is a hole in the atmospheric ozone layer, than in the 
northern hemisphere, where there is not. It is ‘obvious’, moreover, that it is 
the hole in the ozone layer that is accelerating sunburn, rather than the 
other way round. However, identifying the direction of causation is not 
always so straightforward. For example, when the prices of two‐bedroom 
apartments in a particular region rise, intending buyers will generally seek 
to borrow more money from banks or other finance sources. However, if 
housing finance is more generously available, property vendors will hold out 
for higher prices. Is there here a dominant direction of causality?

Our naïve young man’s informal experiments showed him that, when he 
consumes bottled drinks plus iced water, he has a hangover. (Here, we may 
think in terms of three interacting variables – the bottled drinks, the iced 
water, and the hangover – so there are several pairwise associations to con-
sider.) He senses that there is some causation among these associations. It is 
obvious to him that the hangover is not causing him to drink, and he cannot 
(we shall assume) think of any other influence in his life that is pushing him 
to drink and to having hangovers. Three possibilities remain: the bottled 
drinks are causing the hangover; or it is the iced water; or perhaps the com-
bination of bottled drinks and iced water. Unaware, apparently, of the criti-
cal constituent that is common to whiskey, brandy and wine, the young man 
decides instead (but without further experiment!) to avoid the other ingre-
dient that is common to his experiences.

We learn from this example that appraising any set of observed associa-
tions for evidence of causality is best done in two stages. First, consider, on 
the basis of established (scientific) knowledge, whether each association is 
plausibly causal, and then investigate empirically (i.e. statistically) each 
plausible case and combination of cases.

Question 9.2

Many statisticians would interpret the statement ‘there is a 40% chance of 
rain on the following day’ to mean that it will rain on 40% of the days for 
which such a prediction is made. This is, essentially, a frequentist interpre-
tation of the stated probability. Some statisticians might, instead, use a sub-
jectivist interpretation – 40% is the degree‐of‐belief of the weather forecaster 
that it will rain. When pushed to explain ‘degree‐of‐belief ’, they may say that 
this can be assessed by how willing the forecaster is to bet on his forecast 
turning out to be right. Further interpretations (generally offered by non‐
statisticians) are that it will rain on the following day for 40% of the time 
(that is, for almost 10 hours), or that it will rain in 40% of the area covered 



Answers – chapter 9 231

by the forecast. (There is more on subjectivism vs. frequentism in 
Chapter 20.)

This array of interpretations is discussed by Gerd Gigerenzer in the 
course of his plenary address at the Eighth International Conference on 
Teaching Statistics (ICOTS8), held in Slovenia in 2010. He also mentions a 
really inventive interpretation: from a panel of ten weather forecasters, four 
believe that it will rain tomorrow, while the other six disagree! A video of the 
address is online at [9.4]. Gigerenzer’s associated ICOTS8 paper underlines 
the unfortunate consequences of statistical illiteracy in our society. This 
paper is online at [9.5].

Question 9.3

The British scientist was Francis Galton (1822–1911). The efficacy of 
prayer was investigated by looking at whether kings lived longer than 
 commoners, since so many people, in effect, prayed for the king every time 
the words of the (British) national anthem were sung. The null hypothesis 
(that kings and commoners lived for the same length of time) was not 
rejected. Galton’s paper may be read online at [9.6]. Further history is given 
by Brush (1974), who describes the controversy to which Galton’s inquiry 
was a contribution.

A modern randomised double‐blind trial of the efficacy of prayer is 
described by Byrd (1988). This study is summarised online at [9.7]. It was 
subsequently criticised by Tessman and Tessman (2000).

Question 9.4

Marketing strategies for commercial investments often compare money 
amounts at two points in time that are separated by a long interval, and 
highlight the magnitude of the increase over time – for persuasive impact, it 
is invariably an increase! Such a comparison may be entirely misleading in 
several ways.

a) The comparison will be misleading over the stated time period, unless 
the change in the value of money (i.e. the general level of price inflation) 
between the two points in time is taken into account. Whether by over-
sight or by design, this kind of adjustment of money amounts in sales 
promotional material is (in our experience) the exception, rather than 
the rule. To adjust a money amount for the effect of inflation requires an 
appropriate price index, and the consumer price index is not always the 
most appropriate. It also requires familiarity with the technique of 
‘deflating’ money amounts using the price index, as the answer to 
Question 7.4 illustrates.
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b) The comparison may be misleading (even after adjustment for inflation) 
if it is implied that the same benefit will accrue from making the identi-
cal investment over an identical time period into the future. In a stochas-
tic world, it is rarely true that the future will be substantially like the 
past, especially in the generally volatile world of commercial invest-
ments. Indeed, a published warning to this effect is legally required in 
many countries for investments marketed to the public via a formal 
document of offer (also called a prospectus).

c) The comparison may be misleading (even after adjustment for inflation) 
if it is implied that the investment being marketed now, and the invest-
ment that was successful in the past, are so alike in their nature that – just 
on the account of their similarity – the currently marketed investment 
will repeat the success of the past investment. This could be described as 
misleading by defective analogy. Two nearby apparently similar houses 
may generate quite different sales histories. The same is true for two 
similarly sized paintings by the same prominent artist.

Question 9.5

Direct calculation from the formula for Pearson’s correlation coefficient 
yields r(X,Y) = 0.22 and r(Y,Z) = 0.55. It is intuitively appealing to think: ‘if X 
is positively correlated with Y, and if Y is positively correlated with Z, then 
X will be positively correlated with Z’? In fact, r(X,Z) = –0.69. Thus, you 
have made a counterintuitive discovery: the direction of pairwise correla-
tion is not (necessarily) transitive among three (or more) variables.

Allowing – and even encouraging – people to follow their intuitive, but 
incorrect, ideas about statistics is another way of deliberately producing 
misleading statistics. Question 10.2 is a further example of this.

An (advanced) algebraic proof of the nontransitivity of pairwise correla-
tions in general is given in Langford, Schwertman and Owens (2001). The 
data in this question are adapted from that paper. Students’ misapprehen-
sion of this counterintuitive result is explored in Castro Sotos et al. (2009), 
online at [9.8].
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Question 10.1

a) P(A) = 4/52 = 1/13. P(B) = 13/52 = 1/4. P(AB) = P(ace and spade) = 1/52. 
Then P(AB) = P(A).P(B), and so the events are statistically independent. 
This is true by definition. The fact that there is a logical connection (or 
dependence) between drawing an ace and drawing a spade, in the sense 
that there can be an outcome that is both an ace and a spade, is irrelevant 
to the statistical independence of events A and B.

b) Yes, the converse is true also. For example, call A the event that a student 
has gained a total greater than 490 out of 500 over all sections of a 
national entrance exam for undergraduate study to a country’s universi-
ties. Call B the event that a student is doing undergraduate study at the 
highly‐regarded University of X. Then, in principle, P(A|B) > P(A). 
However, the statements defining A and B are logically unconnected, in 
the sense that neither implies the other.
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Question 10.2

When three coins are tossed once, the probability that each shows a head is 
(0.5)3 = 0.125. The probability that each shows a tail is the same. Because the 
event ‘three heads’ and the event ‘three tails’ are mutually exclusive, the 
probability that the coins all show the same face is 0.125 + 0.125 = 0.25.

Where is the logical flaw in the alternative (incorrect) line of reasoning 
that leads to the answer 0.5? It can be detected most directly by enumerat-
ing the eight possible cases:

(H, H, H), (H, H, T), (H, T, H), (H, T, T), (T, H, H), (T, H, T), (T, T, H), 
(T, T, T).

Consider now the statements, ‘when three coins are tossed, two of them 
must show the same face. The third coin will show a head or a tail, in either 
case with probability 0.5.’ The first statement is clearly true. However, the 
second is false. To see this, focus on the cases with two heads. Four of the 
above‐listed cases include two heads. In three of these cases, the third face 
is a tail, but in only one case is it a head. So it is, in fact, three times as likely 
that the third coin will be a tail as a head.

The crux of the paradox is that the argument that produces the incorrect 
answer subtly induces the mind to limit attention to the outcomes (H, H, H), 
(H, H, T), (T, T, H) and (T, T, T) alone.

This paradox is presented by Northrop (1961), page 165 (online at [10.1]), 
who traces its origin to a paper by Francis Galton (1894).

Question 10.3

a) Assuming first that a year has 365 days, each equally likely to be a birth-
day (thus ignoring the observed fact that, in many countries, there are 
more births in some months than in others), the probability of no match 
in the birthdays of N randomly selected people is:
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Then the chance that there will be at least one matching birthday 
among these N people is VN = 1 – UN. Taking N as 22 and 23 gives values 
for VN of 0.476 and 0.507, respectively.

For a year of 366 days, we replace 365 by 366 in the formula for VN 
(while admitting that the assumption that each day of a leap year is 
equally likely to be a birthday is implausible). Then, for N equal to 22 and 
23, VN is 0.475 and 0.506, respectively.

Hence, the smallest number of people for at least an even chance of a 
match in birthdays is 23, whether or not the year is a leap year.
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There is an extensive literature on this counterintuitive result, some of it 
exploring variants of the original problem. Falk (2014) is of interest, 
because she includes a discussion of the question why intuitive answers 
to the problem deviate so much from the correct answer.

b) Figure 26.1 shows the birth dates of British Prime Ministers, arranged 
in reverse chronological order of their first year as PM, beginning with 
David Cameron, who was PM at the time of writing. The dates can be 
found online at [10.2]. The table reveals that we need to consider 28 PMs 
to find a match in birth dates. Both John Major and Edward Smith‐
Stanley have the birth date 29 March.

David Cameron 9 Oct 1966

Gordon Brown 20 Feb 1951

Tony Blair 6 May 1953

John Major 29 Mar 1943

Margaret Thatcher 13 Oct 1925

James Callaghan 27 Mar 1912

Edward Heath 9 Jul 1916

Harold Wilson 11 Mar 1916

Alec Douglas-Home 2 Jul 1903

Harold Macmillan 10 Feb 1894

Anthony Eden 12 Jun 1897

Clement Attlee 3 Jan 1883

Winston Churchill 30 Nov 1874

Neville Chamberlain 18 Mar 1869

Ramsay MacDonald 12 Oct 1866

Stanley Baldwin 3 Aug 1867

Andrew Bonar Law 16 Sep 1858

David Lloyd George 17 Jan 1863

Herbert Asquith 12 Sep 1852

Henry Campbell-Bannerman 7 Sep 1836

Arthur Balfour 25 Jul 1848

Archibald Primrose, Lord Rosebery 7 May 1847

Robert Cecil, Marquis of Salisbury 3 Feb 1830

William Gladstone 29 Dec 1809

Benjamin Disraeli 21 Dec 1804

Henry Temple, Lord Palmerston 20 Oct 1784

George Hamilton-Gordon, 4thEarl of Aberdeen 28 Jan 1784

Edward Smith-Stanley, 14th Earl of Derby 29 Mar 1799

Figure 26.1 Birthdates of British Prime Ministers.
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c) The fundamental distinction between the ‘birthday problem’ and the 
‘prime ministers problem’ is that in the former we are looking at a fixed 
number of people and asking for the probability that there is at least one 
match, while in the latter we are looking at a situation where there is an 
indeterminate number of people, whom we are examining one by one 
until a particular condition is satisfied (namely, that the first match 
occurs).

Feller (1968) discusses the birthday problem (page 33) and (the gen-
eral setting of ) the prime ministers problem (page 47); then he shows 
(page 49) that these two problems, while theoretically distinct, have 
some numerically identical characteristics. Thus, the probability that a 
fixed number (call it k) of people all have distinct birthdays in the birth-
day problem is the same as the probability that one will not find a match 
of birthdays after examining k people’s birthdays in the prime ministers 
problem.

A theoretical analysis of the prime ministers problem follows in the 
answer to Question 10.4.

Question 10.4

a) Let N be the number of birthdays to examine to find the first match 
(possible values from 2 to 365). Using a standard approach for calculat-
ing the expected value of a random variable, we write N as a sum 
of  ‘indicator’ variables: N = 1 + N1 + N2 + N3 + … + N365 where Nn = 1 
if the first n birthdays are distinct, = 0 otherwise. Now,
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This calculation is best carried out by a computer! It can be done 
directly in a program such as Mathematica, where the appropriate 
expression is:

 
N n n nnSum Binomial , ,365 365 0 365, !/ ,

 
giving the result 24.6166.

In the (free) online WolframAlpha [10.3], a little experimentation 
shows that the expression Sum(Combin(365,n)*n!/365^n) n=0 to 365 
also results in 24.6166.

In Excel, there is a problem with direct evaluation, as n!/365n gets very 
large quickly, and by n = 121 it is being reported as [#NUM!] rather than 
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a numerical value. An alternative approach is to express each term of the 
sum as a multiple of the previous term, obtaining the recursion relation-
ship Tn+1 = Tn (365 – n)/365. Since T0 = 1, it follows that T1 = 1, T2 = 1 × 
(364/365) = 0.997, etc. With this approach, Excel can be used to find the 
sum, given as 24.6166 to four decimal places and, indeed, this result 
is obtained if the sum is taken only to n = 100 rather than all the way to 
n = 365.

b) In the case of Australia (which has had 29 Prime Ministers since 
Federation in 1901, up to the year of writing, 2016), going back in order 
from the current PM, a match of birthdays is found only after all 29 
birthdays have been examined – see the data online at [10.4]. The 24th 
PM, Paul Keating, has the same birthday (18 January) as the very first 
PM, Edmund Barton.

For US Presidents, going back in order from the current President (in 
early 2016), Barack Obama, a match is found after 33 birthdays have 
been examined. Warren Harding (in office 1921–23) and James Polk (in 
office 1845–49) both have their birthday on 2 November.

Question 10.5

a) The full title of the book is Pillow Problems Thought Out During 
Sleepless Nights. The author of this work is shown on the title page as 
Lewis Carroll. This was the pen name of the English mathematician and 
writer Charles Lutwidge Dodgson (1832–1898). Dodgson described the 
creation of his pen name as follows: his first names Charles Lutwidge, 
translated into Latin, become Carolus Lodovicus. Transposing these 
Latin names, and retranslating freely into English, produces Lewis 
Carroll. Pillow Problems has been republished as Carroll (1958), in a 
collection of his writings with the title Mathematical Recreations of 
Lewis Carroll.

A short biography of Carroll, and a summary of his mathematical con-
tributions, may be found online at [10.5]. Nowadays, he is known world-
wide not for his mathematical works, but for his vivid books for children, 
including Alice’s Adventures in Wonderland, Through the Looking‐Glass 
and The Hunting of the Snark.

The 13 probability puzzles among the Pillow Problems are reviewed 
and dissected in Eugene Seneta’s enjoyable essay, Seneta (1984). A broader 
overview is in Seneta (1993), online at [10.6].

b) This is the fifth of the 72 Pillow Problems. The hint given in the question 
was not supplied by Lewis Carroll but, without it (as later writers have 
pointed out), the problem is incompletely formulated. A neat solution is 
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reproduced from a reader’s letter by Martin Gardner on page 189 of his 
book (Gardner, 1981). The following is quoted from this source: ‘Let B 
and W(1) stand for the black or white counter that may be in the bag at 
the start and W(2) for the added white counter. After removing a white 
counter there are three equally likely states – W(1) in bag and W(2) out-
side; W(2) in bag and W(1) outside; B in bag and W(2) outside. In two of 
these states a white counter remains in the bag, and so the chance of 
drawing a white counter the second time is 2/3.’

A naïve approach to the problem, which observes that the state of the 
bag at the end of the experiment is the same as it was at the beginning 
and, therefore, leads to the incorrect answer 1/2, fails to take into 
account the conditioning that is essential to arriving at the correct 
answer.

A note on incompletely formulated probability problems: Dodgson is 
not the only mathematician who sought to invent challenging probabil-
ity puzzles, only to have it made clear later that some of the headaches 
these problems caused others were the result of incomplete or ambigu-
ous wording in their initial formulation which the inventor overlooked. 
It is worth bearing this in mind when a probability problem next gives 
you a headache!

Three such problems, including another one of Dodgson’s Pillow 
Problems (‘the obtuse problem’), are analysed by Martin Gardner in 
chapter 19 (‘Probability and Ambiguity’) of Gardner (1966). Ruma Falk 
and her colleagues have devoted a lot of care to revealing the ambiguity 
embedded in many familiar probability problems. See, for example, 
 Bar‐Hillel and Falk (1982), Falk and Samuel‐Cahn (2001) and Falk and 
Kendig (2011). There is a further incompletely formulated probability 
problem in Question 20.3.
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Answers – Chapter 11

Question 11.1

Sopra le scoperte dei dadi (‘On the outcomes of [rolling] dice’) is a short 
essay written by Galileo Galilei (1564–1642). It is of uncertain date, but gen-
erally thought to be sometime between 1613 and 1630. Galileo wrote (in the 
English translation cited below): ‘Using three dice, 9 and 10 points can each 
be obtained in six ways. How is this compatible with the experience that, 
based on long observation, dice players consider 10 to be more advanta-
geous than 9?’ His essay resolved this long‐standing gambling problem.

Galileo used the notation (123) to mean a 1 spot on one die, a 2 spot on 
another die and a 3 spot on a third die. Then, if order is not taken into 
account, a total of 9 can indeed be obtained in six ways: (126), (135), (144), 
(234), (225), (333). A total of 10 can also be obtained in six ways: (145), 
(136), (226), (235), (244), (334). However, Galileo reasoned insightfully that 
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order must be taken into account for correctly determining relative frequen-
cies of occurrence. Thus, 10 is actually obtainable in 27 ways, while 9 is 
obtainable in only 25 ways. Since the total number of outcomes (taking 
account of order) when three dice are rolled is 63 = 216, the probability of 
rolling 10 is 27/216 = 0.125, which is marginally greater than the probability 
of rolling 9, which is 25/216 = 0.116. In this brief pioneering excursion into 
the quantification of chance, Galileo anticipated by at least 25 years a gen-
eral principle formulated in 1654 by Fermat, in correspondence with Pascal, 
for the correct calculation of probabilities of compound events.

An English translation of Galileo’s essay can be found in Appendix 2 
(pages 192–195) of David (1962). Galileo’s solution is discussed on pages 
64–66 of the same book, and also on pages 239–240 of Freedman, Pisani 
and Purves (2007).

Question 11.2

The example of a multiplicative congruential generator (MCG) we gave in 
the Overview was Xn+1 = 11Xn (mod 13), with X0 = 9. This yields the follow-
ing sequence of pseudorandom values, beginning at X1: 8, 10, 6, 1, 11, 4, 5, 3, 
7, 12, 2, 9, 8, 10 … Observe that this sequence is periodic, with period length 
12, and that all integers in the range 1–12 are present in a ‘pseudorandom’ 
order. All MCGs are periodic, though the period length is not always maxi-
mal. (Because there is no 0 in the above sequence, this example does not 
have the maximum possible period length of an MCG with modulo 
13 – namely, 13.) Clearly, an MCG with a short period will not be very useful 
as a pseudorandom number generator in practice. We must choose an MCG 
with values for the multiplier, modulo and seed that jointly guarantee a 
period longer than the total number of ‘random numbers’ we need, as well 
as producing a sequence that passes standard tests of ‘patternlessness’. 
There are mathematical theorems to guide us to suitable choices.

However, there is one systematic pattern in the sequence of values gener-
ated by any MCG (within its period) that is inescapable. This pattern is 
revealed if we plot the overlapping successive pairs of generated values on a 
graph. A plot of the 12 points with (X,Y) coordinates (8,10), (10,6), (6,1), 
(1,11) … (9,8) shows that they all lie on one of two parallel lines in the (X,Y) 
plane. Every MCG produces values that, when plotted in this fashion, lie 
without exception along a relatively small number of parallel straight lines in 
the (X,Y) plane, leaving other areas devoid of points. If the generated values 
were truly random, that would not happen: the points would scatter evenly 
over the entire (X,Y) plane. An alternative way of stating this is that succes-
sive pairs of MCG‐generated pseudorandom numbers are linearly correlated 
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and, thus, are not statistically independent. It is possible to design an MCG 
so that this correlation, over the full period of the generator, is quite 
small – but it will never be zero.

Question 11.3

The author is George Spencer Brown, and the passage quoted is from page 
57 of his book Probability and Scientific Inference (1957). Several chapters 
of this very readable, but quite unsettling, book are devoted to penetrating 
discussions of the meaning of randomness and the validity of defining the 
probability of an event, in terms of the frequency of occurrence of that event 
in a sequence of random trials.

Spencer Brown points out first an ambiguity in conventional thinking 
about random sequences. We say that a sequence of digits is random (in the 
abstract) if it is ‘patternless’, and if any particular digit in the sequence is not 
predictable from knowing the digits that have been generated before. We 
also say that a sequence of digits is random (in operational terms) if it has 
satisfactorily passed a predefined set of statistical (and, perhaps, other) tests 
of randomness. Clearly, neither of these definitions implies the other.

Focusing next on the operational notion of a random sequence, in the 
context of (0,1) random digit generation, Spencer Brown shows that it is 
liable to produce the self‐contradiction highlighted in the passage quoted in 
this question. This self‐contradiction, in turn, points to a paradox. Whether 
a sequence is called random is not only a property of the entire sequence 
that the generator might generate (call it ‘global randomness’); it depends 
also on how much of the sequence we have actually inspected (call it ‘local 
randomness’).

To resolve this paradox, we could imagine (suggests Spencer Brown) 
interposing a metering device that regulates the maximum number of 
noughts in a row that a random generator is allowed to produce for a given 
sequence length, and permits that number to increase progressively as the 
generated sequence lengthens. Suppose it is agreed – as one of the criteria 
for randomness in a sequence  –  that, at most, six noughts in a row are 
 permitted by the meter if the sequence is less than 30 digits long. Then if, 
say, the 15th to the 20th digits generated are noughts, we know for certain 
that the 21st digit must be a one (because the meter is operating). In that 
case, the 21st digit cannot be said to be randomly generated. Thus, this 
attempted resolution of the paradox has failed.

After further unsuccessful approaches to resolving the paradox, Spencer 
Brown concludes that no resolution is possible: it is actually not a paradox 
at all. In other words, the general concept of a random sequence is simply 
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not operationally definable in any consistent way. (This has gloomy conse-
quences, of course, for the practical viability of the relative frequency defini-
tion of probability.)

Some years later, the probabilist Mark Kac (1914–1984) came to a similar 
conclusion, but offered this (paradoxical) reassurance: ‘The discussion of 
randomness belongs to the foundations of statistical methodology and its 
applicability to empirical sciences. Fortunately, the upper reaches of science 
are as insensitive to such basic questions as they are to all sorts of other 
philosophical concerns. Therefore, whatever your views and beliefs on ran-
domness … no great harm will come to you. If the discipline you practice is 
sufficiently robust, it contains enough checks and balances to keep you from 
committing errors that might come from the mistaken belief that you really 
know what “random” is.’ (Kac, 1983).

Question 11.4

Given three random events, X, Y and Z, it is intuitively appealing (but false!) 
to believe that, if X is more likely than Y, and Y is more likely than Z, then it 
must be the case that X is more likely than Z – in other words, that probabil-
ity orderings are transitive. These four dice are interesting because they can 
be used to illustrate the nontransitivity of probability orderings.

When these dice are rolled, A is likely to yield a higher face number than 
B, B than C, C than D, but D is likely to yield a higher number than A! In each 
case, the long‐run probability is 2/3. To see this in the first case, for example, 
write the face numbers on dice A and B across the top and down the side, 
respectively, of a 6 × 6 array. Fill the array with + and – symbols, according 
as (A–B) is positive or negative. 24 cells will be found to contain a +, show-
ing that, in the long run, the A face number will exceed the B face number 
with probability 2/3.

Another way of putting this is as follows: if you and your friend are play-
ing a game in which you each roll one of the dice and the higher number 
wins then, after your friend has selected his or her die, you can always 
select another die that will give you the greater (long‐run) chance of 
winning.

The original idea of nontransitive dice is due to the US statistician Bradley 
Efron, although this particular set was designed by the US physicist Shirley 
Leon Quimby (1893–1986). Efron’s nontransitive dice are shown by Martin 
Gardner in one of his Mathematical Games columns in Scientific American 
(Gardner, 1970). A web search will turn up many other examples of sets of 
nontransitive dice.

Transitivity in a different context is investigated in Question 9.5.



Answers – chapter 11 243

Question 11.5

Feller (1968) discusses the coin‐tossing game on pages 78–88 of chapter  3 
(‘Fluctuations in coin tossing and random walks’) in his book. He writes (page 
78): ‘According to widespread beliefs a so‐called law of averages should ensure 
that in a long coin‐tossing game each player will be on the winning side for 
about half the time, and that the lead will pass not infrequently from one 
player to the other.’ However, ‘the amazing fact’ is that these propositions – 
both so intuitively plausible – are incorrect.

Feller proceeds to explain why by analysing an equivalent situation – a 
symmetric random walk, starting at the origin, in which a person takes steps 
independently, with equal chance to the right or the left. We can say that a 
‘head’ corresponds to a step to the right, and a ‘tail’ to a step to the left. A is 
ahead if the current position is to the right of the origin, and B is ahead if the 
current position is to the left of the origin. Feller demonstrates (page 82) the 
surprising result that the most likely value for the proportion of time spent 
on the right side of the origin is 0 or 1, and the least likely result is 0.5. It 
follows that it is naïve to suppose that A will be ahead around 500 times in 
any particular game of 1000 tosses.

The U‐shaped distribution of the proportion of time that person A is 
ahead is referred to as the (discrete) arcsine distribution. (Incidentally, it is 
a further statistical example of a U‐shaped distribution, as mentioned in the 
answer to Question 5.5.)

Conventionally, if the probability of an event or of one that is more 
extreme is below 0.05, we conclude that it is unlikely to have occurred by 
chance. Is A’s experience of being ahead for just 50 tosses in 1000 such an 
extreme event (suggesting, for example, that the coin may be biased)? 
Feller calculates (page 81) that the chance of A being ahead for 200 tosses 
or fewer is 0.295, while for 100 tosses or fewer, it is 0.205, and for 50 tosses 
or fewer it is 0.144. Only when A is ahead for six tosses or fewer does the 
probability fall to 0.049. Thus, even though A may be surprised at being 
ahead for only 50 tosses in 1000, this still suggests that she is playing in a 
fair game.

As to the intuitive proposition that ‘the lead will pass not infrequently 
from one player to the other’, Feller’s analysis shows (page 81) that ‘contrary 
to popular notions, it is quite likely that, in a long coin‐tossing game, one of 
the players remains practically the whole time on the winning side, the other 
on the losing side’.

Feller sums up (page 72): ‘if even the simple coin‐tossing game leads to 
paradoxical results that contradict our intuition, the latter [i.e. our intuition] 
cannot serve as a reliable guide in more complicated situations.’ As we 
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pointed out at the beginning of Chapter 10, even statisticians find proba-
bility theory difficult!

An interesting application of these results forms the basis of a paper by 
Denrell (2004). The author considers a situation where Firm 1 consistently 
outperforms Firm 2 in profitability over time. This difference in perfor-
mance is usually attributed to characteristics of the firms, with the conclu-
sion that Firm 1 is better than Firm 2. However, it may be that there is no 
real difference between the firms, and that such a consistent difference is an 
instance of the chance phenomenon of long leads in random walks. In the 
world of business (as elsewhere), spurious theories may be put forward to 
account for essentially random phenomena.
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Question 12.1

In the casino game Blackjack (also known as Vingt‐et‐un or Twenty‐one), 
the gambler aims to score a higher total with his or her cards than the dealer, 
but no more than 21. Face cards (kings, queens, jacks) are counted as 10, an 
ace can be counted as 1 or 11, and other cards are counted at face value. A 
successful gambler is paid the amount of his or her original stake, plus the 
return of the stake. However, if the gambler and the dealer have the same 
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point total, this is called a ‘push’, and the gambler neither wins nor loses 
money on that bet. The gambler could then retrieve the stake and quit, or 
could use it to bet on the next round.

Question 12.2

Despite the symmetry in the description, the game is not fair. This may 
come as a surprise. Even more surprising, then, might be the discovery that 
(despite all the card shuffling) this is not actually a gambling game at all – the 
end result is always the same! Why? Each win will multiply your current pot 
by 1.5, and each loss will multiply it by 0.5. Five wins and five losses, regard-
less of order, will multiply your original pot by (1.5)5(0.5)5 = 0.2373, leaving 
you with $23.73 – a loss of more than 75%.

If you were to bet the same amount, rather than the same proportion of 
your pot, at each stage – say, $10 – the game would be fair (but the outcome 
is still deterministic). Over the course of the ten plays, your initial pot would 
increase by 5 × $10 and decrease by 5 × $10.

The game described in the question would become a gamble if the 10 
cards were shuffled again after each card is turned over (equivalent to ‘sam-
pling with replacement’). In this version, the game would be fair, since your 
expected pot after each card is turned over would be 100 × (0.5 × 1.5 + 0.5 × 
0.5) = 100.

A deeper look at this gamble highlights a fundamental truth about many 
commercially‐offered gambles. That truth is revealed when we ask: how 
does the complete probability distribution of your winnings look if you play 
this game many times?

Perhaps surprisingly, it is skewed. You have a high chance of losing some 
of your money, though you cannot lose more than your initial $100. On the 
other hand, you have a low chance of making a lot of money. For instance, 
if  you play ten times, you will have a probability of 0.83 of losing money 
(if  a  black card is turned over 0–6 times), but you would win money if 
a black card were turned over seven or more times – as much as $5000, if a 
black card were turned over ten times. If you play 50 times, the results are 
even more extreme. You have a 0.97 probability of losing money (if a black 
card is turned over up to 31 times), and only a 0.03 probability of winning 
money. Indeed, you would make more than $1 million if a black card were 
turned over 43 times (or more). These probability calculations are based on 
the binomial distribution.

This asymmetry  –  a large chance of losing a small amount and a very 
small chance of winning a large amount – is what is so characteristic of the 
gambling ‘industry’.
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This question is also discussed on pages 72–73 of chapter 6 (‘Random 
Walks and Gambling’) in Gardner (1981), and by Nalebuff (1989).

Question 12.3

The author referred to is Sir William Petty (1623–1687), an economist and 
a founding member of The Royal Society, who pioneered the field of ‘politi-
cal arithmetic’ (or economic statistics, as we call it today). His name is 
prominent in the history of statistical ideas (see Figure 22.1).

Here is Petty’s blunt assessment of lotteries (online at [12.4]): ‘Now in the 
way of lottery men do also tax themselves in the general, though out of 
hopes of advantage in particular. A lottery therefore is properly a tax upon 
unfortunate self‐conceited fools … Now because the world abounds with 
this kinde of fools, it is not fit that every man that will, may cheat every man 
that would be cheated; but it is rather ordained, that the sovereign should 
have the guardianship of these fools, or that some favourite should beg the 
sovereign’s right of taking advantage of such men’s folly, even as in the case 
of lunaticks and idiots.’

Question 12.4

The first of Adam Smith’s two assertions is, in practice, always correct: if 
you buy all the tickets in a lottery you will win all the prizes but they will, in 
total, be of lower value than the amount you have spent – otherwise, the 
people running the lottery would make no money. The second assertion 
appears incorrect: if you buy an extra ticket it would, in fact, increase your 
chance of winning a prize, until you had bought so many tickets that you had 
paid out more than the total of the available prizes. Perhaps Smith was 
thinking of a particular context where ticket prices are unequal, so that the 
tipping point specified in the italicised words of our previous sentence 
might be reached with the acquisition of only relatively few tickets.

Alternatively, Smith may have been thinking intuitively, for there is a 
frame of reasoning – unrecognised in Smith’s day – in which his statement, 
slightly adapted, makes sense. Our adaptation is to switch attention from a 
focus on chance (i.e. the probability of a return from buying tickets) to a 
focus on the money amount that might be won or lost as a result of the play 
of chance (i.e. the expected return from buying tickets), and then to reason 
in terms of expected return.

Suppose 1000 tickets are sold at £1 each in a lottery where there is only 
one prize – £500. Then the expected return if you buy N tickets is defined 
by ‘N chances in 1000 of winning £500 less £N, the cost of the tickets’. In 
symbols we write: expected return (in £) = 500(N/1000) – N = –(N/2). In a 
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commercial lottery, the expected return will always be negative and, the 
more tickets you buy, the greater will be your expected loss in money terms. 
In this example, the expected loss will rise to £500 when you buy all the 
tickets.

Question 12.5

As noted in the Overview, the result of repeated straight‐up bets at roulette 
can be modelled using the binomial distribution. Let n be the number of 
bets made, and p = 1/37 the success probability. Then, the number of wins, 
X, will have a binomial (n, p) distribution. Since each bet costs $1 and each 
successful bet returns $36 (including the original $1 bet), your total profit 
from n bets will be Y = 36X – n, and you will be ahead if this is positive. Now 
let us consider the probability of being ahead as a function of n, the number 
of plays.

Important preliminary: it is because the number of plays is a discrete vari-
able that the paradox highlighted in the question arises.

To be ahead at any time during the first 35 plays, you need to win only 
once. Each extra play will give you an added chance of winning, so your 
probability of being ahead will increase with n. During the plays from 36 to 
71, however, you will need two wins to be ahead. Thus, when you make the 
36th play, your probability of being ahead will go down. For plays from 37 to 
71, the probability will increase, but it will go down again when you make 
the 72nd play, since you will now need three wins to be ahead. As a function 
of the number of plays, the chance of being ahead increases for every play, 
except for those that are a multiple of 36. At these points, your chance of 
being ahead decreases.

Using the binomial distribution, we have calculated the numerical proba-
bilities of being ahead: (a) at an exact multiple of 36 plays; and (b) at one less 
than the next multiple of 36. These probabilities are graphed in Figure 26.2 
for selected multiples of 36 (‘circles’), and for 35 plays later, just before the 
next multiple of 36 (‘triangles’). As the number of multiples of 36 increases, 
you can see that each of these sets of probabilities forms a decreasing 
sequence, reflecting the basic gambling truth that ‘the longer you play, the 
less likely you are to be ahead’.

Figure 26.3, which plots the binomial probability of being ahead for all 
values of n between 500 and 600, lets you see in close‐up how this probabil-
ity behaves. The function displays a sawtooth pattern, increasing for every 
value of n except for the ones that correspond to the next multiple of 36, 
when the probability drops. This illustrates clearly that most of the time, 
playing one extra game will increase your chances of coming out ahead.
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Figure 26.3 Probability of being ahead at roulette for consecutive plays from 500 
to 600.
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Figure 26.2 Exact and approximate probability of being ahead at roulette for 
selected plays.
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Note: the normal approximation to the binomial probability of being 
ahead treats the number of plays as a continuous variable. Then the (approx-
imate) probability of being ahead has no sawtooth pattern; rather, it declines 
monotonically. This can be seen graphically in Figure 26.2, where the nor-
mal approximation to the binomial probability of being ahead is plotted 
with crosses.
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Question 13.1

The coin might land on its edge – very possible if it were tossed in a muddy 
field  –  or it may not land at all  –  conceivable if the glint of its spinning 
attracts a hungry passing bird! To each of these outcomes, textbooks gener-
ally assign zero probability. From this, two things become clear: firstly, that 
textbook models of statistical experiments (like all models of real‐world 
processes) are always, in some way, abstractions of reality; and, secondly, 
that an assigned probability of zero does not automatically mean that an 
outcome is impossible. In other words, zero probability is a necessary, but 
not sufficient, condition for impossibility.

Question 13.2

Two obvious shape characteristics of the normal distribution are its sym-
metry and the ‘thinness’ of its tails – only 1.2% of the area under any normal 
curve lies outside the range, mean ± 2.5 standard deviations (see also 
Question 14.1(c)). The normal distribution will be a practically suitable 
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model for real‐world data that have a histogram that approximates these 
shape characteristics.

The brilliant mathematician Carl Friedrich Gauss (1777–1855) was one 
of the first to investigate the approximate correspondence of the normal 
distribution to real‐life phenomena. Gauss surmised that any physical or 
biological real‐life variable is likely to be symmetrically distributed, with 
quite ‘thin’ tails, if its values are determined by a large number of independ-
ent random causes, each individual cause having only a small role in the 
process. This quite aptly describes the processes that determine the varia-
tion of individual adult heights around the population mean height for 
adults of a single gender. Thus, the distribution of a population of male or 
female adult heights can be expected to resemble a normal distribution, 
provided that the population: (a) is not limited in any way that is implicitly 
height‐related (for example, only professional basketball players); and (b) is 
large, so that there is a good chance that some very short and some very tall 
individuals will be represented.

What if the population comprises both genders? In most societies, women 
have a smaller mean height than men. Given that the normal distribution is 
a suitable model for the heights of each gender individually, a population 
composed of both genders would be modelled by a mixture of two normals 
with different means (and, perhaps also, different standard deviations). 
Would such a mixture of normals appear bimodal, or might it turn out uni-
modal? This puzzle is investigated in Schilling et al. (2002).

Question 13.3

The probability model is the Poisson distribution, named after the French 
mathematician Siméon‐Denis Poisson (1781–1840). In the years 1835–37, 
Poisson investigated the effect of the rule for jury verdicts (either unanimity 
or some particular required majority), and of jury size on the probability of 
a correct verdict. His approach is outlined on pages 186–194 in Stigler 
(1986). This was one of the earliest appearances of the probability model 
that bears his name.

Between September 1944 and March 1945, London was bombarded by 
more than a thousand V2 rockets, launched by German forces from conti-
nental Europe. These rockets travelled faster than the speed of sound and 
so struck without audible warning, causing civilian deaths on a large scale. 
It was immediately a matter of importance to the British authorities, seek-
ing to protect civilians, to know whether these rockets were guided missiles 
or whether they struck the ground at random. It proved impossible for 
quite some time to find an unexploded rocket and inspect it directly. 
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A different approach was needed, and a probability model provided that 
approach.

After several months of the rocket barrage, when 537 rockets had already 
fallen on South London, a statistical analysis involving the Poisson distribu-
tion was undertaken to discover whether the rockets had a guidance mecha-
nism. A 24 × 24 grid of lines, 500 metres apart, was superimposed on a map 
of South London, and the number of V2 rockets striking each of the 576 
resulting map squares was counted. The good fit of the Poisson model to the 
observed frequency distribution of rocket strikes per map square enabled 
the authorities to conclude that the rockets were falling at random – or, in 
other words, that they could not be aimed precisely. After the war ended, 
the data and calculations from this study were made public by Clarke (1946), 
online at [13.2].

Question 13.4

a) The exponential distribution – which, confusingly, some writers call the 
negative exponential distribution – has probability density function f(y) = 
λe–λy (with y ≥ 0) and distribution function F(y) = Pr(Y ≤ y) = 1 – e–λy. This 
distribution is commonly used as a probability model for the length of 
‘service time’ in the statistical study of queues. The exponential distribu-
tion has the (mathematical) property of ‘memorylessness’. In the queuing 
context, this means that, having already spent s minutes being served, a 
person has the same probability of a further t minutes of  service as a 
person who has just begun to be served. In symbols, if Y represents the 
time being served, then Pr(Y > s + t | Y > s) = Pr(Y > t) for s > 0 and t > 0.
The proof is direct:

– – –Pr( | ) Pr( )/Pr( ) / Pr( ).s t s tY s t Y s Y s t Y s e e e Y t

Service times are not ‘memoryless’ in all real‐world queues (for exam-
ple, queues at traffic lights), but this property turns out to be realistic 
enough to make it a useful assumption in a broad class of practical situ-
ations. The exponential distribution is the only continuous probability 
distribution with the memoryless property  –  hence its importance in 
this applied context. For more detail on the memoryless property, see 
Vaughan (2008), online at [13.1].

b) If we assume that ‘memoryless’ service time is a realistic assumption in 
this queuing problem, we can find the solution immediately. When the 
first of the currently‐served customers (say A) finishes being served, 
and C starts to be served, the other customer, B, has the same 
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distribution for the time that she continues being served as does C. 
Hence, the probability that B finishes before C – and, thus, that C is the 
last to leave – is 0.5.

Question 13.5

If the proposition (which comes from a student’s mistake at an examination) 
were correct, then it would follow that the probability of three arrivals in 
three hours is three times the probability of one arrival in one hour, that 
the probability of four arrivals in four hours is four times the probability of 
one arrival in one hour, and so on. Eventually, irrespective of the value of the 
Poisson mean arrival rate per hour, λ, the ‘probability’ would exceed one, 
which is obviously nonsensical. Hence, it seems reasonable that the proba-
bility of two arrivals in two hours is less than twice the probability of one 
arrival in one hour.

Let’s take this analysis further. Why might it be suggested that the prob-
ability of two arrivals in two hours is twice the probability of one arrival in 
one hour? Adding probabilities is correct only in the context of finding the 
probability of an event which is the union of two mutually exclusive events. 
What might these mutually exclusive events be? Perhaps the student was 
thinking that one arrival in the first hour and one arrival in the second hour 
are mutually exclusive – but, clearly, they are not. In fact, under the assump-
tion of Poisson arrivals, all arrivals are independent events, and independ-
ent events cannot be mutually exclusive, unless one of them is the null event.

If this were pointed out, the student might say, ‘Of course! I should have 
multiplied the probabilities.’ This would then imply the result that the prob-
ability of two arrivals in two hours is the square of the probability of one 
arrival in one hour. Unfortunately, this is also wrong, and gives a probability 
that is too small.

To show explicitly the relation between a number of arrivals in two hours 
and a number of arrivals in one hour, we may reason as follows. The event 
‘two arrivals in two hours’ can be realised as one arrival in each of two con-
secutive hours, but it can also be obtained in two other ways – namely, two 
arrivals in the first hour and none in the second hour, or no arrivals in the 
first hour and two in the second hour. The probabilities of these three mutu-
ally exclusive events can now be summed to find the probability of two 
arrivals in two hours.

If you prefer to see the result algebraically:

 

Pr( ) Pr( ).Pr( ) Pr( ).Pr( )
Pr( ).Pr(

N N N N N
N N

2 2 1 2 1 0 1 1 1 1
1 0 11 2)
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where N1 represents the number of arrivals in one hour (either the first 
hour or the second hour) and N2 represents the number of arrivals in two 
hours.

Evaluating first the left hand side of this equation, a probability from the 
Poisson distribution with parameter 2λ: Pr( ) ( )N e e2 2 1

2
2 22 2 2 2 .

Next, the right hand side:

Pr .Pr Pr .Pr

Pr Pr

N N N N

N N

1 2 1 0 1 1 1 1

1 0 1 2 1
2

2. ee e e e e e
2 2 2 21

2
2

Note that P(N2 = 2)/P(N1 = 1) = 2λe–λ, and this is always less than 2, 
whatever the value of λ.
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Question 14.1

a) The tangents intersect the z‐axis at z = –2 and +2.
b) The ordinate at z = 0.35958 cuts off an upper tail area of (approximately) 

0.35958. In other words, this value is the unique solution of the equation 
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z = 1 – Φ(z), where Φ is the (cumulative) distribution function of the 
standard normal density.

c) When z = 6, 1
2

1
2

2exp z  = 6.076 × 10–9, approximately.

When z = 0 (at the mode), 1
2

1
2

2exp z  = 3.989 × 10–1, 
approximately.

To find the scaled height of the curve at the mode, we must solve the 
proportionality problem 6.08 × 10–9 : 1 mm : : 3.99 × 10–1 : x mm

We find x = 65,659,969 millimetres = 65.7 kilometres approximately.
Evidently, it is impossible to draw the standard normal distribution to 

this scale on paper as far as z = 6.

Question 14.2

Sheppard’s tables of areas under the normal curve give, for example, the 
following values of the cumulative standard normal distribution: P(Z < 2) = 
0.9772499; P(Z < 4) = 0.9999683; P(Z < 6) = 0.9999999990. The correspond-
ing values from WolframAlpha (online at [14.5]) are: 0.97724987; 0.99996833; 
0.99999999901. Sheppard’s achievement is impressive, all the more so 
because his calculations were done by hand!

Sheppard wanted his results to be practically useful for mathematically 
interpolating cumulative probabilities for values of Z that he had not tabu-
lated. His paper gives detailed formulae for this procedure, and notes that 
interpolation calculations unavoidably involve some loss of accuracy. He 
showed that his normal area tabulations to seven decimal places would 
enable calculation of interpolated values to an accuracy sufficient for all 
practical purposes.

It is interesting to note in this connection that there was, in the century 
1850–1950, a competitive spirit in the air that was quite unmindful of prac-
ticality. This was prior to the era of the electronic computer – when a ‘com-
puter’ was actually a person! At that time, there were many who celebrated 
computation to extremely high accuracy (e.g. of the value of π) as an achieve-
ment in itself. In his 1872 book, A Budget of Paradoxes, volume II, online at 
[14.6], the mathematician Augustus de Morgan commented: ‘These tre-
mendous stretches of calculation … prove more than the capacity of this or 
that computer for labour and accuracy; they show that there is in the com-
munity an increase in skill and courage’ (pages 63–64).

The achievements of human computers reached their zenith in the US in 
the so‐called ‘Mathematical Tables Project’ (see online at [14.7]), that 
extended over the decade 1938–48. The many participants in this project 
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evaluated a large number of mathematical functions to very high accuracy. 
These detailed tabulations were progressively published in 28 volumes, cul-
minating in a hugely cited reference volume, Handbook of Mathematical 
Functions, which was compiled by Milton Abramowitz and Irene Stegun 
(1964), two veterans of the project.

Question 14.3

Galton delighted in his empirical confirmation that so many variables, plotted 
as frequency distributions of ‘raw’ measurements, closely follow the (theoreti-
cal) normal distribution, even in its very ‘thin’ tails. What such variables turn 
out to have in common is that their values can be interpreted as small random 
deviations from some fixed standard (or ‘norm’). (Incidentally, some histori-
ans of statistics think that Galton settled on the term ‘normal distribution’ 
because of its connection to the idea of a norm in just this context.)

However, there are lots of variables that cannot be interpreted in this 
way – for instance, variables with highly skewed or bimodal empirical data 
distributions. The distribution of numbers of taxpayers by their taxable 
income is highly skewed in most countries. The distribution of numbers of 
drivers who die in car accidents by age is typically bimodal. Then there are 
symmetric and unimodal distributions that have ‘fat’ tails (compared with 
the normal distribution), meaning that the occurrence of large outliers is 
not improbable. The relative price changes of speculative shares listed on 
the Stock Exchange can (by definition) swing about wildly, even in the short 
run. A plotted distribution of the daily average of relative price changes of a 
set of speculative shares is usually fat‐tailed.

For variables with a skewed distribution, mathematical transformations 
of their raw data to approximate normality are available. An example is 
found in the answer to Question 14.4. However, there are no such trans-
formations for bimodal or fat‐tailed empirical distributions. They must be 
modelled by other kinds of statistical distributions – see Chapter 24 for 
examples.

Galton was also thrilled by the ‘cosmic’ dependability, as he thought of it, 
of the Central Limit Theorem (CLT) effect, whereby the mean of samples 
from seemingly any population distribution has a distribution that approxi-
mates the normal ever better as the sample size increases. The dependabil-
ity of the CLT effect is certainly extensive; it applies to samples from all 
finite populations.

But it is different when one thinks in terms of a model for a finite popula-
tion. If one chooses, as a model, one that is valid also for a (theoretically) infi-
nite population, one discovers that there are some such models for which the 
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CLT fails. Thus, the CLT effect is not, in fact, universal. For example, the 
Cauchy distribution, which has an infinite range, is one choice of model for the 
distribution of a symmetric fat‐tailed variable (see Chapter 24 for details). 
The distribution of the mean of samples from a Cauchy‐distributed popula-
tion is never better approximated by the normal distribution as the sample 
size increases. Instead, the mean is always exactly Cauchy‐distributed.

So, was Galton wildly overstating his case? Given what a large proportion 
of practical situations in data analysis, across all disciplines, conform to 
Galton’s celebration of a ‘cosmic order’, there is really little cause to quibble 
with his assessment. Without the wide applicability of the normal distribu-
tion and the CLT effect, statistics could not be the unified set of principles 
and techniques for analysing real‐world data from almost any source that it is.

Question 14.4

In practical statistical work, what we call (approximately) ‘normally distrib-
uted data’ are data for which the histogram is symmetric and has a charac-
teristic ‘bell’ shape. The symmetry is judged from a skewness measure of 
(close to) zero, and the ‘bell’ shape translates into a kurtosis measure, using 
the standard definition, of (close to) 3.

If the original data consist only of positive values, and show a mild posi-
tive skewness, then a logarithmic transformation may result in a distribu-
tion that is more like a normal. This is because taking logarithms ‘shrinks’ 
the larger positive values to a greater extent than the smaller positive values. 
If the original data are very highly skewed, a reciprocal transformation may 
achieve the desired normality. In both cases, the transformation will change 
not only the skewness, but also the kurtosis of the data distribution.

In general, it is difficult to decide in advance which of these transforma-
tions will produce a better approximation to normality but, with modern 
statistical packages, it is easy to try them both. Rather than trying to judge 
the approximation to normality from the histogram, it is easier to use a nor-
mal probability plot – a graphical tool that yields a straight line for perfectly 
normal data.

Question 14.5

The density function of the standard normal distribution is f(x) = [1/√(2π)] 
exp(–½x2) and that of the chi‐squared distribution with 1 degree of freedom 
is g(x) = [1/√(2π)] (1/√x) exp(–½x). These two density functions are plotted 
in Figure 26.4 (note that the chi‐squared distribution is defined only for 
x > 0). The plot shows that the two graphs intersect at x = 1.

We can prove that these two graphs have no other intersection points 
and, therefore, that at x = 1 the graphs are actually tangential.
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The two graphs intersect where f(x) = g(x), that is, where exp(–½x2) = 
(1/√x) exp(–½x).

Taking natural logs of both sides and simplifying, we find x2 – x = ln(x). 
This condition is satisfied when x = 1. Figure 26.5 shows that x(x–1) is 
concave up, while ln(x) is concave down. Thus, there are no other intersec-
tion points of the two density functions, which implies that the density 
functions are tangential at x = 1.
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Figure 26.4 Density functions of N(0,1) and chi‐squared (1 df ).
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Figure 26.5 Graphs of x(x–1) and ln(x) vs x.
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Question 15.1

It is important at the outset to define the sense in which an estimator is 
judged to be best. This example shows why.

It is certainly true that the sample mean (except in the case of a few out‐
of‐the‐ordinary theoretical probability distributions) is the minimum‐
variance unbiased (MVU) estimator of the population mean, and is in this 
sense the ‘best’ estimator. However, it is not true, in general, that the sample 
median is the MVU estimator of the population median. For example, in 
the case of the normal distribution, N(μ, σ2), both the sample median and 
the sample mean are unbiased estimators of the population median (which 
is identical to the population mean). But, whereas the sample median has 
variance (π/2)(σ2/n) when the sample size, n, is large (see Question 6.4), 
the sample mean has variance σ2/n. Thus, the sample mean is more efficient 
here than the sample median for estimating the population median. In fact, 
the sample mean is the MVU estimator in this case, too, and is in this sense 
the ‘best’ estimator.

So, the best estimator of a particular population parameter is not neces-
sarily the corresponding sample statistic.

Question 15.2

The correct answer is (approximately) 0.83, not the ‘obvious’ value 0.95.
The population distribution is normal N(μ, σ2), with unknown mean μ 

and known variance σ2. In the expression ‘a 95% confidence interval for μ’, 

http://www.wolframalpha.com
http://www.gutenberg.org/ebooks/26408
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http://en.wikipedia.org/wiki/Mathematical_Tables_Project
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the confidence coefficient 95% refers to the percentage of confidence inter-
vals in a large number of replications that will, in theory, contain μ. The 
formula for the confidence interval depends directly on the distribution of 
the sample mean around the population mean. This distribution is N(μ, σ2/n), 
where n is the sample size.

However, the probability that the mean (call it m2) of a replicated sample 
will fall within a 95% confidence interval constructed around the mean (call 
it m1) of the initial sample depends directly on the distribution of m2 around 
m1. Since the expectation of (m2 – m1) is 0, the distribution of m2 around m1 
is equivalent to the distribution of (m2 – m1) around zero. Because the two 
samples are independent, the population variance of (m2 – m1) = var(m2) + 
var(m1) = σ2/n + σ2/n = 2σ2/n. So (m2 – m1) is distributed as N(0, 2σ2/n).

A little reflection should make it apparent that the probability that m2 will 
lie within the 95% confidence interval for μ based on m1 is the probability 
that (m2 – m1) falls between –1.96σ/√n and +1.96σ/√n on N(0, 2σ2/n). That 
probability is P(|z| < 1.96/√2) = P(|z| < 1.386), where z is a standard normal 
variable. Its value is approximately 0.83.

For an account of the importance of this result to statistical practice, see 
Cumming et al. (2004), and also Cumming (2006), online at [15.3].

Question 15.3

Each estimator is unbiased. However, the mean of the pooled data is more 
efficient – that is to say, its variance is lower unless the two sample sizes are 
equal, in which case the two estimators are the same. To prove this result on 
relative efficiency, confirm that the variance of the average of sample means 
is ¼(σ2/n1 + σ2/n2), and that the variance of the mean of the pooled data is 
σ2/(n1 + n2). Then show that the former variance exceeds the latter unless n1 = n2.

Question 15.4

If a variable, X, is distributed as N(μ, σ2), with μ assumed to be unknown, 
and X  is the mean of a random sample of size n from this population, then 
s X X n2 2

1/  is the (unique) minimum‐variance unbiased (MVU) 
estimator of σ2. The formal proof of this result is by no means elementary. 
An accessible, though necessarily technical, account is given, for example, in 
Mood and Graybill (1963), pages 175–178, as well as in Roussas (1997), 

pages 284–292. In contrast to s2, 
22 / 1X X n  is a minimum 

mean squared error (MMSE) estimator of σ2, and is evidently biased.
Clearly, these estimators,  2  and s2, will produce very similar numerical 

values in practice, unless the sample size is quite small. In principle, then, a 
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formal choice between them will be made on theoretical grounds. First, we 
shall explore these theoretical grounds, and then make the formal choice.

As mentioned in the answer to Question 6.5, the mean square error 
(MSE) of an estimator is defined as the sum of the estimator’s variance and 
the square of its bias. In symbols, if  ̂is an estimator of some parameter, θ, 
of a distribution, based on a sample of a fixed size, then the MSE of  ̂ is 
defined as E(  ̂– θ)2, its variance as E(  ̂– E )̂2, and its bias as (E  ̂– θ). By 
writing the MSE in the form E[( ˆ–E )̂ + (E  ̂– θ)]2, you can easily confirm 
that E(  ̂– θ)2 = E(  ̂– E )̂2 + (E  ̂– θ)2, that is, MSE = variance + (bias)2.

As outlined in this chapter’s Overview, once the MVU (i.e. the most effi-
cient unbiased) estimator of a parameter has been identified, it is natural to 
ask whether there might be a biased estimator that is yet more efficient than 
the MVU estimator. Then, rather than being concerned about a perceived 
‘conflict’ of criteria (between unbiasedness and efficiency) in choosing an 
estimator, one could accept some bias in an estimator, if it had an overcom-
pensating increase in efficiency over the MVU. Why? Because the estimates 
generated by that estimator would, on average, lie closer to the parameter 
than the MVU estimator. Given the definition of the MSE, the method of 
MMSE estimation is an obvious path to discovering such an estimator if 
there is one (i.e. if the method doesn’t fail).

Let’s see where MMSE estimation leads in this normal distribution con-
text. A logical beginning is to ask whether there is an estimator of the form cs2 
(where c is a positive constant), which (though biased) has a variance suffi-
ciently smaller than that of s2 as to make its MSE smaller than that of s2 as 
well. The answer to Question 6.5 gives the results E(s2) = σ2 and var(s2) = 
E(s2 – σ2)2 = 2σ4/(n – 1). From these two results, we find E(s4) = σ4[(n + 1)/
(n – 1)]. The MSE of cs2 is E(cs2 – σ2)2. Expanding, we get MSE = c2E(s4) – 2cσ2E(s2) 
+ σ4. To find the value of c which yields the minimum of this MSE, we differ-
entiate with respect to c, and set the result to zero: 2cE(s4) – 2σ2E(s2) = 0. 
Substituting for the expected values, we find c = [(n – 1)/(n + 1)]. Thus, the 
MMSE estimator of σ2 here is  2 2 1( ) ( )X X n/ .

There are two things worth noting about  2 :

a) Its bias is –2σ2/(n + 1), which diminishes as the sample size increases.
b) Its MSE is 2σ4/(n + 1), which is smaller than the MSE (= variance) of s2, 

i.e. 2σ4/(n – 1). So, despite its bias,  2  is, on average, closer to σ2 than is 
s2. The relative MSE advantage that  2  has over s2 is (n – 1)/(n + 1). This 
is greatest when n is small.

What should now be our formal conclusion in the comparison between 


2  and s2?  2  is a little biased, but it is so much more efficient than s2 that 
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the MSE of  2  is smaller than that of s2. On the MSE criterion,  2  is the 
preferred estimator.

Question 15.5

a) We follow the same procedure as we did in the answer to Question 15.4 
when estimating σ2. Denote by X  the estimator of μ that is of the form 
cX . Then the bias of X  is E(cX  – μ) = μ(c – 1) and the variance of X  is 
c2 varX  = c2σ2/n. Thus, the MSE of X  = c2σ2/n + [μ(c – 1)]2 = c2[μ2 + 
σ2/n]  –  2cμ2 + μ2. Differentiating with respect to c and equating the 
result to zero yields the value of c that minimises the MSE, namely, 

c = 
2

2
2

n

. So, X

n

X
2

2
2 .

Because X  is a function of μ, the parameter to be estimated, X  is use-
less as an estimator of μ. This is the sign that the method of MMSE 
estimation has failed.

b) James and Stein’s counterintuitive result arises in the context of estimat-
ing the population means of several independently‐distributed normal 
variables, when the population variances are known and are all equal 
and when we have a sample of data on each one of the variables. We shall 
approach their result from what we assume is already familiar territory 
for you.

When an estimator is needed for the mean of a single normal distribu-
tion with known variance, all of the standard criteria of a good estimator 
point to the sample mean. That is because, in this context, the sample 
mean is the MVU estimator. It is also the maximum likelihood estimator.

If the criterion of minimum mean square error (MMSE) is added (so 
as to admit consideration of the possibility that a biased estimator may 
have a yet smaller variance), the superiority of the sample mean is unaf-
fected since (as the answer to Question 15.5(a) shows) MMSE estima-
tion fails to provide an estimator in this context. So, there is no biased 
estimator of the population mean that improves on the (unbiased) sam-
ple mean. Expressing this in technical language: the sample mean is here 
an ‘admissible’ estimator in terms of MSE.

If, now, this estimation problem is generalised to that of estimating 
the population means of several independently distributed normal vari-
ables, when the population variances are known and are all equal, it 
seems intuitively clear that each sample mean will be an admissible esti-
mator (in terms of MSE) of its corresponding population mean.
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James and Stein, however, proved a powerfully counterintuitive 
result – see James and Stein (1961), online at [15.4]. They showed that the 
sample mean is admissible when there are one or two means to be esti-
mated. However, in the case of three or more means, the sample mean is 
inadmissible! We alert you that to follow this paper (and the papers cited 
by those authors) in detail requires advanced statistical knowledge.

The authors also presented a biased estimator, now unsurprisingly 
called the James‐Stein estimator, of each mean. For a set of more than 
two means, this estimator has the property that the sum of the mean 
square errors of its estimates is less than the sum of the mean square 
errors (= variances) of the individual (unbiased) sample means.

In symbols, suppose we have n observations on each of k indepen-
dently distributed normal variables, Xi,j (i = 1, 2, … k; j = 1, 2, … n), the 
variables having distinct means, μi, but a common variance, σ2 (assumed 

known). The sample mean for each variable, X Xi ijj

n

1 . The means 

Xi (i = 1, 2, … k) are independently distributed, each being N(μi, σ2/n). 

The James‐Stein estimator of μi is, then, 
2

2

1

2
1i ik

i

k
X X

X
, for  

k ≥ 2. If k > 2, the sum of the MSEs of the k estimators  iX  is shown to be 
less than kσ2/n, which is the sum of the variances of the k estimators Xi.

Note the italics in the previous sentence: the optimality criterion 
under which the James‐Stein estimator is derived is minimising the sum 
of the MSEs of the k estimators  iX . This does not imply that each  iX  

has a lower MSE than the corresponding Xi. Some  iX  will have a lower 

MSE and some a higher MSE. Nor can one determine exactly which of 
the μi has been better estimated by the James‐Stein estimator. What is 
established is that, on average, the μi are better estimated (in terms of 
MSE) by using the James‐Stein estimator, rather than the sample mean.

The widespread interest which the James and Stein paper created 
among statisticians was not solely because of its potential, in practice, to 
yield an estimate with much reduced MSE. Two theoretical paradoxes of 
the James‐Stein estimator, in the context in which it first appeared, were 
far more responsible.

The first of these paradoxes is the finding that the sample mean is 
admissible in this context if k = 1 or k = 2, but not if k > 2. Why should 
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optimal accuracy of estimation call for the James‐Stein estimator when 
three or more independent means are simultaneously estimated, but 
not when only one mean or two independent means are estimated?

This paradox made the James‐Stein estimator as astonishing to 20th 
century statisticians as the Central Limit Theorem (discovered by 
Laplace, see Chapter 12) was to their 19th century predecessors.

The second paradox is embedded in the estimator formula. Each  iX  
is seen to depend (mathematically) not only on the corresponding sam-
ple mean Xi but also, through the element 2

1

k
iX , on the sample means 

of all the other (statistically) independent variables. This is puzzling 
indeed! Why should optimal accuracy of estimation of a particular 
population mean depend, in part, on the behaviour of a completely 
unrelated variable?

The first paradox is clarified heuristically in a creative way by Stigler 
(1990), online at [15.5]. The source of the second paradox is, rather 
obviously, that the optimality criterion, under which the James‐Stein 
estimator is derived, is minimising the sum of the MSEs of the k estima-
tors  iX . However, that simply prompts the question, why would one 
choose to estimate jointly the means of a set of independent variables? 
With empirical examples, Efron (1975) responds insightfully to this 
question.

A non‐technical account of James‐Stein estimation, with some perspec-
tives beyond those we have presented here, is given by Efron and Morris 
(1977).

Since 1961, hundreds of articles have appeared on James‐Stein esti-
mation, some seeking to generalise the approach to cases where the 
initial assumptions (normality, independence, known and equal popula-
tion variances, and use of the sum of MSEs as the optimality criterion) 
are varied, and others extending James‐Stein estimation to wider 
 contexts, including regression modelling. Similarities between James‐
Stein estimation and Bayesian inference have also been extensively 
investigated.

There is a small, but cogently argued, literature of ‘dissent’, which 
argues that the claims made for the theoretical superiority of James‐Stein 
estimation are, in certain contexts, philosophically shaky and/or quantita-
tively exaggerated. It is well acknowledged, even by advocates of the 
James‐Stein approach, that this is not a tool to be applied mechanisti-
cally – there are many traps for the unwary. Perhaps that is why James‐
Stein estimation does not seem, to us, to have revolutionised statistical 
practice in non‐academic settings.



Answers to the chapter questions264

References

Print

Cumming, G., Williams, J. and Fidler, F. (2004). Replication and researchers’ 
understanding of confidence intervals and standard error bars. 
Understanding Statistics 3, 299–311.

Efron, B. (1975). Biased versus unbiased estimation. Advances in Mathematics 
16, 259–277.

Efron, B. and Morris, C. (1977). Stein’s paradox in statistics. Scientific 
American 236(5), 119–127.

Mood, A and Graybill, F. (1963). Introduction to the Theory of Statistics, 2nd 
edition. McGraw‐Hill.

Roussas, G. (1997). A Course in Mathematical Statistics. Academic Press.

Online

[15.3]  Cumming, G. (2006). Understanding replication: confidence intervals, p 
values, and what’s likely to happen next time. Proceedings of the Seventh 
International Conference on Teaching Statistics (ICOTS7). At: http://
www.stat.auckland.ac.nz/~iase/publications/17/7D3_CUMM.pdf

[15.4]  James, W. and Stein, C. (1961). Estimation with quadratic loss. 
Proceedings of the Fourth Berkeley Symposium on Mathematical 
Statistics and Probability 1, 361–379. At: http://projecteuclid.org/
euclid.bsmsp/1200512173

[15.5]  Stigler, S.M. (1990). A Galtonian perspective on shrinkage estimators. 
Statistical Science 5, 147–155. At http://projecteuclid.org/euclid.
ss/1177012274

Answers – Chapter 16

Question 16.1

It was initially R.A. Fisher, in 1925, who gave the 5% significance level spe-
cial weight, though later he adopted a more flexible view – urging that the 
context of the hypothesis test be considered in choosing a significance level. 
In fact, it was Neyman and Pearson who subsequently insisted on limiting 
the choice of significance levels to a standard set, and on treating the cor-
responding significance points as if they objectively demarcated rejection 
from acceptance of the null hypothesis.

In the chapter ‘Why P = 0.05?’ in his book, The Little Handbook of 
Statistical Practice (online at [16.3]), Dallal quotes from Fisher’s 1925 book 
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Statistical Methods for Research Workers: ‘The value for which P = 0.05, or 
1 in 20, is 1.96 or nearly 2; it is convenient to take this point as a limit in 
judging whether a deviation ought to be considered significant or not. 
Deviations exceeding twice the standard deviation are thus formally 
regarded as significant.’

Later writers have suggested that Fisher’s rather dogmatic choice, how-
ever firmly he stated it in 1925, was essentially arbitrary. This is convinc-
ingly contradicted by Cowles and Davis (1982). They show that reasoning 
similar to Fisher’s is traceable back to de Moivre and Gauss in the early 19th 
century.

Question 16.2

We assume the confidence interval (CI) for μ is two‐sided and equal‐tailed. 
If the value μ0 is outside the 95% CI, then the null hypothesis μ = μ0 will be 
rejected by the test at the 5% level of significance. This can be shown in a 
straightforward way from the formulae for the confidence interval and the 
rejection region of the test. Alternatively, here is a heuristic argument: 
the CI contains all the values of μ that are ‘reasonable’ at the 95% level, given 
the value obtained for the sample mean, and excludes those values that are 
‘not reasonable’ – that is, the most extreme 5% of values. So, if the particular 
value μ0 is not in the 95% CI, then the hypothesis that μ = μ0 should be 
rejected as ‘unreasonable’, with a risk of decision error (that is, a level of 
significance) of 5%. In this way, the equal‐tailed 95% CI corresponds to the 
two‐sided test at the 5% level of significance. If we wanted to use the equal‐
tailed 95% CI to carry out a test of μ = μ0 against a one‐sided alternative, the 
procedure in this case would imply a 2.5% level of significance.

Though hypothesis tests and confidence intervals are analytically equiva-
lent, subject to the interpretational refinements just given, the Overview 
explains that there are circumstances where the CI has greater practical 
utility than the equivalent test. In these circumstances, the CI is clearly 
preferable.

Question 16.3

The power curve for the equal‐tailed test of H0: μ = μ0 against H1: μ ≠ μ0, 
based on the mean of a random sample drawn from a normal population, 
N(μ, σ2), where the value of σ2 is known, typically has the shape of the solid 
line in Figure 26.6. The level of significance (corresponding to the ordinate 
at the minimum value) is 0.05, or 5%.

This figure is occasionally shown in statistics textbooks, sometimes with 
the comment that is resembles an upside‐down normal distribution.
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It is, however, not an upside‐down normal distribution. Accurately 
expressed, it is the sum of the ordinates of two S‐shaped curves – a cumula-
tive normal distribution and a decumulative normal distribution (i.e. a later-
ally reversed cumulative normal distribution) – that cross at the point where 
μ = μ0, and where each has an ordinate value of 0.025.

The cumulative normal distribution is the power curve of the one‐sided 
test of H0: μ = μ0 against H1: μ > μ0 at the 2.5% level of significance. The 
decumulative normal distribution is the power curve of the one‐sided test 
of H0: μ = μ0 against H1: μ < μ0 at the 2.5% level of significance. The power 
curve for the two‐sided test is the sum of these, in the same way as the prob-
ability of a type I error in the two‐sided test is the sum of the probabilities of 
a type I error in each of the one‐sided tests.

A graphical alternative to this verbal explanation is found in Shoesmith 
(1983). Shoesmith shows that, when the power curve for the two‐sided test 
is plotted on normal probability paper, it looks like a blunted V – two diago-
nal lines, joined by a curve around the null hypothesis value μ = μ0.

Question 16.4

Denote the null hypothesis by H0 and the alternative hypothesis by H1. It 
should be made clear, first of all, that the level of significance is not simply 
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Figure 26.6 Power curves for two‐sided (solid line) and one‐sided (dotted lines) 
hypothesis tests of a normal mean.
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the probability that H0 will be rejected. Rather, it is the probability that H0 
will be rejected (erroneously), given that H0 is actually true. Thus, 0.05 = 
P(H0 rejected | H0 true). The other piece of information we have is the power 
of this test, the power being the probability that H0 will be rejected (cor-
rectly), given that H0 is actually false. Thus, 0.90 = P(H0 rejected | H0 false) = 
P(H0 rejected | H1 true)

The question is now expressible as ‘what is the value of P(H0 true | H0 
rejected)?’. This can be found by means of Bayes’ Theorem (see Chapter 20 
for some background on this theorem):

P true rejected

P rejected true P true

P reje

H H

H H H

H

0 0

0 0 0

0

|

| .

ccted true P true P rejected true P true| |H H H H H0 0 0 1 1. .

We have the values of the conditional probabilities in the expression on 
the right hand side of this relation. But the expression can be fully evaluated 
only if values for P(H0 true) and P(H1 true) are known. All we can say about 
the probability that H0 is true is that this probability is, in general, smaller 
when we incorporate the information that the test has actually rejected 
H0 – as we do when we evaluate P(H0 true | H0 rejected) – than it would be 
without incorporating that information.

Thus, our conclusion must be that the question is unanswerable numeri-
cally without further information, as indicated.

Question 16.5

Firstly, we can assume that only rolls of 9 and of 10 with the three dice will 
give any information on the relative probabilities of 9 and 10. Since Pr(9) = 
25/216 and Pr(10) = 27/216, Pr(9 or 10) = 52/216, so only that proportion of 
observations on average will be useful for our purpose (one could, alterna-
tively, use a symmetry argument and include also rolls of 11 and of 12).

Secondly, we shall interpret the question as an empirical test of the null 
hypothesis that Pr(10) = Pr(9), against the alternative that Pr(10) > Pr(9) – though 
one could argue for a two‐sided alternative. Putting Pr(10)/Pr(9 or 10) = π, 
we write H0: π = 0.5 and H1: π > 0.5. Given that the true value of π = 27/52 = 
0.51923, and that we set the level of significance at 0.05, we will need 
5786 sample observations on π to obtain a power of 0.90 in this test. This 
number can be obtained by direct calculation (the normal approximation 
to the binomial is excellent here) or, more easily, from Russ Lenth’s power 
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and sample size website at [16.4] (or by using Minitab’s ‘power and sample 
size’ option, if you have access to that statistical package). This means that 
we would expect to require 5786 × 216/52 = 24,304 observations of the 
roll of three dice to establish our result (or half that many – 12,152 – if the 
 symmetry argument were used).

Could anyone really have noticed such a tiny difference of 2/216 (=0.0093) 
between the chance of a 9 and a 10? Galileo implies that someone had! It 
suggests that inveterate gamblers of that era acquired a quite uncanny per-
ceptiveness about chances from their experience of tens of thousands of 
rolls. The source of this perceptiveness is all the more intriguing, since such 
gamblers are hardly likely to have kept meticulous written records of the fall 
of the dice.

Note: this question was originally posed in Hald (2003), page 41.
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Answers – Chapter 17

Question 17.1

The mythical animal is the unicorn, and its diurnal metabolic activity was 
‘investigated’ in Cole (1957). A set of random data was transformed by 
 moving averages and other seemingly reasonable techniques until, lo and 
behold, a cycle appeared. This cycle the author interprets, deadpan, in these 
words: ‘Eliminating the effect of the lunar periodicity shows that the peak of 
endogenous activity occurs at “3 a.m.” and that the minimum occurs exactly 
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12 hours later. The unicorn obviously tends to be active in the early morning 
and quiescent in midday. The “midmorning” dip in activity indicated in the 
figure remains unexplained but may possibly be a subject for future research.’

A more recent study, similarly provocative but in a different analytical 
setting, was carried out by Bennett et  al. (2009), whose research report 
poster is online at [17.5]. It concerned an ‘investigation’ of the neural activity 
of a dead salmon, as measured by functional magnetic resonance imaging. 
According to the results, the salmon appeared to be responsive to the psy-
chological task it was set, but this was only the case when the data were 
analysed without any correction for multiple testing. When such a correc-
tion was applied, the salmon (not surprisingly!) showed no significant 
results. A brief perspective on the impact this study has had on the field of 
imaging in neuroscience appeared in Nature and is online at [17.6].

Both of these whimsical studies have a serious message – without vigilant 
scrutiny of the meaningfulness of the data and the validity of the statistical 
procedures used, data snooping can readily produce plausible conclusions 
that are actually nonsense.

Question 17.2

In the context of cyber security, data snooping means collecting online 
information about individuals from supposedly secure archives, either by 
transgressing limited access rights or by illicit hacking. The term is particu-
larly used in situations where disparate sources of data on an individual are 
merged by the snooper, often for commercial gain. The term shares with the 
statistical use of the term the implication that something improper is being 
done. Professional statisticians would usually have ethical concerns about: 
(a) collecting personal information; (b) matching up different sources of 
personal information; and (c) using personal information for financial gain. 
Before doing (a) or (b), they would expect to specify an ethics protocol 
regarding confidentiality and informed consent, and they would usually 
avoid (c).

Question 17.3

For a single hypothesis test where the null hypothesis is actually true, call 
the probability of rejecting the null hypothesis α. This defines the level of 
significance of the test and equals the size of the type I decision error.

Now consider two independent tests. In the case where each null hypoth-
esis is true, the probability of rejecting a null hypothesis at least once is 
1 – (1 – α)2 = 2α – α2. For small values of α (such as the commonly used 
levels of significance α = 0.05 or 0.01), 2α – α2 is very slightly less than 2α, 
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and so is well approximated by 2α. This approximation is the logical basis of 
the Bonferroni adjustment. If we then apply the Bonferroni adjustment, and 
carry out each individual test using a significance level of α/2, the overall 
level of significance (and, hence, the size of the type I error) of the ‘family’ of 
two tests will be at most α.

If the two tests are, for instance, performed using the same data, they will 
be dependent tests, in the sense that the events ‘reject null hypothesis 1’ and 
‘reject null hypothesis 2’ are dependent events.

Assume, as above, that each null hypothesis is true, and that each test is 
carried out with level of significance α. Then, on a Venn diagram, the two 
events just mentioned will be represented by circles with an overlap cor-
responding to a joint probability not of α2 (which is the case for independ-
ent tests), but of α2 – θ, where θ is a value that lies between 0 (where the 
circles do not overlap at all, so both null hypotheses cannot be rejected at 
the same time) and α (where the two circles coincide, so rejection of one 
null hypothesis implies rejection of the other). Correspondingly, the prob-
ability of rejecting a null hypothesis at least once will vary between 
1 – (1 – α)2 = 2α – α2 and 1 – (1 – α) = α. So, the overall level of significance 
for both tests is still less than 2α. For small values of α, these limits are 
approximately 2α and α. Thus here, too, carrying out each test at a signifi-
cance level of α/2 will ensure that the overall significance level is, at most, 
α. Martin Bland, (online at [17.7]), provides a useful complementary dis-
cussion with examples.

Question 17.4

The null hypothesis is that Paul has no psychic ability or, equivalently, that 
he has an equal chance of choosing the winning or the losing team. (The 
number of times he chooses the winning team has a binomial distribution, 
with π = 0.5.) The alternative hypothesis is that Paul has psychic ability – that 
is, he has a greater than even chance of choosing the winning team. 
(Assuming a one‐sided test, the number of times he chooses the winning 
team has a binomial distribution, with π > 0.5.) Since Paul chose eight out of 
eight correctly, the p‐value for the test is 0.58 = 0.004. This gives evidence for 
Paul’s psychic ability at better than the conventional 0.05 level for a statisti-
cal test. However, there may have been other reasons for Paul’s success that 
are not due to psychic ability. For instance, Paul’s favourite food may have 
been placed – by chance or by design – only in the box corresponding to the 
team that was more likely to win.

If we believe – as seems reasonable – that octopuses are generally unable 
to predict the results of soccer matches, how do we explain the surprise of 
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Paul’s success? Maybe it is simply due to selective reporting. There were 
probably many thousands of attempts to predict all the results of the 2010 
World Cup. Some of these may have been made using animals (including 
other octopuses). Many of the people, and most of the animals, would have 
had limited success, but a few – by chance or (human) skill – will have ended 
up with a complete set of correct predictions. These few (including Paul) 
became the only ones to be very widely reported. Were they, however, to be 
viewed against the huge number of attempts at the outset to predict all the 
results accurately, this small number of completely correct predictions 
would be seen as being compatible with the notion that they were achieved 
just by a run of good luck.

Selecting one correct prediction from an unmentioned large number of 
(less successful) predictions is akin to data snooping, in the sense that 
snooping describes the situation where multiple statistical procedures are 
performed on a set of data, but only the ‘best’ result that achieves statistical 
significance is reported.

We note that selective quoting of optimal results is difficult for others to 
detect, unless there is a commitment by published authors to make all their 
empirical results (as well as their data) publicly accessible – and not only the 
results that appear in their published work. In other words, studies that 
showed no significant results, or that were, in some other way, not of inter-
est to academic referees or journal editors, should also be preserved – perhaps 
on a dedicated online database. These actions are, in fact, expected of all 
scientists who adhere to the principles of the modern Open Science move-
ment (see online at [17.8]). The purpose goes far beyond detecting selective 
quotation, of course. Every competently produced empirical finding has 
something informative to offer future researchers seeking a widely compre-
hensive view.

Question 17.5

The statisticians were Yoav Benjamini and Yosef Hochberg, both of Tel Aviv 
University. In Benjamini and Hochberg (1995), they proposed a procedure 
that limited the proportion of ‘significant’ results that were, in fact, due to 
chance. The ‘false discovery rate’ (or FDR) is controlled using a sequential 
procedure that depends on the number of tests carried out. The significance 
level of each individual test is reduced, but not as much as when a Bonferroni 
adjustment is used. The result is an ability to make statements such as ‘of the 
100 rejected null hypotheses, at most 5% are falsely rejected (though we 
don’t know which ones they are)’. An article by McDonald, online at [17.9], 
gives a good discussion of the principles.
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Incidentally, the authors of the dead salmon study, referred to in the 
answer to Question 17.1, referenced their use of the Benjamini‐Hochberg 
correction for multiple testing to demonstrate the truth that dead salmon 
don’t respond to social cues.
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Answers – Chapter 18

Question 18.1

If we denote the original equation by Kg = a + b Inch, and then let Inch = 
2.54 cm, we can see that the new equation will be Kg = α + β Cm, where 
α = a and β = 2.54b. Thus, we can see that the intercept is the same in both 
regressions, but the slope is different. The values of r2 will also be the same, 
since r2 is calculated using standardised data, which have no units of 
measurement.
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Question 18.2

The given data points all lie on the horizontal line y = 3. If you attempt to 
calculate r2, you will find that both the numerator and the denominator 
expressions are zero. The value of the ratio 0/0 is undefined. In other words, 
the coefficient of determination is, here, undefined. You can come to this 
conclusion without any calculation if you view r2 from another perspective. 
The coefficient of determination measures strength of linear association 
between two variables. In the given dataset, X is a variable but Y is a con-
stant. Hence, the coefficient of determination is here an invalid measure.

Question 18.3

Many women of the Khoikhoi people (called ‘Hottentot’ by early European 
colonisers) were observed to have steatopygous (i.e. protruding) buttocks, 
which seemed to be a source of fascination for Europeans in the 19th cen-
tury. Galton, apparently fascinated himself, measured the contours of local 
women in a way which permitted him to remain at a proper ‘Victorian’ dis-
tance during the process! In a letter dated 23 February 1851 to his older 
brother, Darwin Galton, he explained effusively how he did it:

‘I am sure you will be curious to learn whether the Hottentot Ladies 
are really endowed with that shape which European milliners so 
vainly attempt to imitate. They are so, it is a fact, Darwin. I have seen 
figures that would drive the females of our native land desperate… 
[A]s a scientific man and as a lover of the beautiful I have dexterously, 
even without the knowledge of the parties concerned, resorted to 
actual measurement… I sat at a distance with my sextant, and as the 
ladies turned themselves about, as women always do, to be admired, 
I surveyed them in every way and subsequently measured the dis-
tance of the spot where they stood – worked out and tabulated the 
results at my leisure.’ (Reprinted in Pearson (1914), pages 231–232.) 

Note: milliners apparently also made bustles in the 19th century!

Question 18.4

The book is The Biographer’s Tale, published in 2000 by the British author 
A.S. Byatt, who may be better known for her earlier novel, Possession. The 
character identified as CL is the Swedish botanist, Carl Linnaeus, today 
regarded as the founder of scientific taxonomy. The person identified as HI 
is the Norwegian playwright, Henrik Ibsen. Byatt’s book is a wonderfully 
intriguing and erudite mix of fact and fantasy. You can read an interesting 
review (and a collection of quotes from other reviews) online at [18.3].
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Question 18.5

Galton’s diagram has child height (the ‘explained’ variable) on the horizontal 
axis, and mid‐parental height (the ‘explanatory’ variable) on the vertical 
axis. If, as is nowadays conventional, we swap the axes, so that the ‘explained’ 
variable is on the vertical axis, then we must show that the regression line of 
child height on mid‐parental height corresponds to the line joining the ori-
gin to the point where the tangent to the ellipse is vertical. Let X = child 
height and Y = mid‐parental height. It will simplify the algebra of our dem-
onstration, with no loss of generality, if we first transform X and Y into 
standardised variables, x and y, in each case by subtracting its mean and 
dividing by its standard deviation.

It is then reasonable, following Galton, to represent the population joint‐
distribution of x and y as a standard bivariate normal distribution with 
 correlation coefficient ρ – that is, (x, y) ~ N(0, 0, 1, 1, ρ). Standard formulae 
(see, for instance, page 6 online at [18.4]) give the equation of the elliptical 
contours as x2 – 2ρxy + y2 = c (c is a constant). The tangent to a contour 
ellipse will be vertical where dy/dx is infinite (i.e. dx/dy = 0).

Applying d/dy to the equation of the ellipse (using implicit differentiation 
where needed) gives 2x(dx/dy) – 2ρ(x + y dx/dy) + 2y = 0. Setting dx/dy to 
zero results in – 2ρx + 2y = 0, that is, y = ρx for the locus of intersection 
points of the elliptical contours of the standard bivariate normal and their 
respective vertical tangents. The line y = ρx will be recognised as the equa-
tion of the population regression line in the theory of simple regression 
analysis of y on x.

Applying the method of least squares to data on x and y will evaluate the 
sample regression line of y on x, y = rx, where r is none other than the sam-
ple correlation coefficient between x and y and, evidently, an estimator of ρ.
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Answers – Chapter 19

Question 19.1

The ‘lady tasting tea’, whose confident assertion prompted R.A. Fisher to 
consider how to incorporate the design of experiments into his developing 
framework of techniques of statistical inference, was Dr Muriel Bristol‐
Roach. Fisher’s biographer, his daughter, describes the historic teatime at 
the Rothamsted Agricultural Research Station in Hertfordshire, apparently 
in 1921 or 1922:

‘It happened one afternoon when [Fisher] drew a cup of tea from the 
urn and offered it to the lady beside him, Dr. B. Muriel Bristol, an 
algologist. She declined it, stating that she preferred a cup into which 
the milk had been poured first. “Nonsense,” returned Fisher, smiling, 
“Surely it makes no difference.” But she maintained, with emphasis, 
that of course it did. From just behind, a voice suggested, “Let’s test 
her.” It was William Roach who was not long afterward to marry Miss 
Bristol. Immediately, they embarked on the preliminaries of the 
experiment, Roach assisting with the cups and exulting that Miss 
Bristol divined correctly more than enough of those cups into which 
tea had been poured first to prove her case.

‘Miss Bristol’s personal triumph was never recorded, and perhaps 
Fisher was not satisfied at that moment with the extempore experi-
mental procedure. One can be sure, however, that even as he con-
ceived and carried out the experiment beside the trestle table … he 
was thinking through the questions it raised: How many cups should 
be used in the test? Should they be paired? In what order should the 
cups be presented? What should be done about chance variations in 
the temperature, sweetness, and so on? What conclusion could be 
drawn from a perfect score or from one with one or more errors?’ 
(from Box (1978), page 134).

For further insights on the people involved and the rich statistical conse-
quences of the occasion, see Lindley (1993) and Senn (2012).

Question 19.2

The Rothamsted Agricultural Research Station, called Rothamsted Research 
since 2002, lies outside the town of Harpenden in Hertfordshire, England. It 
was founded in 1843 on the extensive grounds of Rothamsted Manor.
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The website of Rothamsted Research, online at [19.1], says about the 
institute’s origins: ‘The Applied Statistics Group continues to build on the 
strong tradition of statistical contributions to the research at Rothamsted, 
which started with the appointment of Ronald A. Fisher in 1919 and contin-
ued with many other distinguished statisticians, including Frank Yates, John 
Nelder, John Gower and Robin Thompson.’ To this list we can add William 
Cochran, Oscar Irwin and John Wishart.

Indeed, Fisher founded the Statistical Laboratory at Rothamsted and 
worked there until 1933. It was there that research questions he faced in his 
empirical work led him to many of his towering theoretical contributions to 
statistical inference. His immediate access to large quantities of real‐world 
data from agricultural field experiments at Rothamsted – especially from 
the so‐called ‘Classical Experiments’ (in progress since the 1850s)  –  was 
helpful to him in trialling his new techniques in practice.

These techniques include the analysis of variance, the method of maxi-
mum likelihood estimation, the randomisation test, and the theory of exper-
imental design. On the last of these, see his daughter’s account in Box (1980). 
Fisher’s extensive involvement with agricultural data generated a series of 
papers with the general title ‘Studies in crop variation’, and culminated in the 
publication of his practical manual Fisher (1925), as well as the theoretical 
text Fisher (1935). Both books have subsequently had multiple editions.

On leaving Rothamsted for a professorship at University College, London, 
Fisher summed up his fifteen years’ work at Rothamsted in a chapter of its 
1933 Annual Report. This is entitled, ‘The contributions of Rothamsted to 
the development of the science of statistics’, and is available online at [19.2].

Question 19.3

For every value of n, it is possible to construct an n × n square array of cells in 
which n different symbols are arranged so that each symbol appears only once 
in each row and in each column. If the symbols are letters of the Latin (today, 
we say ‘Roman’) alphabet, then the array is known as a Latin square. For n = 3, 
there are six different Latin squares, for n = 4 there are 576, and so on. Some 
of the mathematical properties of Latin squares up to order n = 6 were inves-
tigated in 1782 by the Swiss mathematician Leonhard Euler (1707–1783). 
R.A. Fisher introduced Latin squares into the design of statistical experiments 
in 1934, using letters to symbolise experimental treatments, so that each 
treatment is allocated just once to each row and just once to each column.

In the agricultural context of this question, suppose there are four treat-
ments  –  that is, four different levels of fertiliser (in gm/square metre) 
applied to plots of ground. Call these levels a, b, c, d. A Latin square 
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corresponding to these four letters is shown in Figure 26.7. The corre-
sponding 16 cells of the figure may be thought of as plots of ground.

The nuisance variables are soil moisture and depth of sowing. To use the 
Latin square design, the number of levels of each of the two nuisance vari-
ables must equal the number of levels of treatment in the factor of chief 
interest (here, the levels of fertiliser applied to the plots).

Across the columns for each row is one of four levels of soil moisture 
(measured as the percentage of a fixed volume of soil that is water): 5%, 20%, 
35%, 50% (you could imagine this steady increase as reflecting a moisture 
gradient on a downhill slope). Across the rows for each column is one of the 
depths of sowing (measured in cm): 1, 3, 5, 7.

The Latin square design effectively controls the influence of soil moisture 
on crop yield, because each level of fertiliser is applied once at every level of 
soil moisture. This enables the influence of soil moisture to be computa-
tionally ‘averaged out’ of the multivariable relation linking crop yield to 
fertiliser, soil moisture, and depth of planting. The same reasoning applies 
to this design’s control of the influence of depth of planting on crop yield.

Fisher thought that the Latin square used in any particular experiment 
should be chosen at random from all the squares of the appropriate order, 
though he did not have an objective way of doing so. Today, a common 
method is simply to pick a square and permute its rows or columns a couple 
of times. Montgomery (2013) fully explains the statistical analysis of the 
Latin square design.

A striking real‐life example of a 5 × 5 Latin square experiment, designed by 
Fisher to study the weathering of different species of trees, is given in Plate 6 
of Box (1978). This photo may also be viewed online at [19.3]. It shows an 
aerial view of a huge hillside field in Wales, planted with five different tree 
species. Plantings are on an altitude gradient across rows within each column 
and (apparently) on a soil fertility gradient across columns within each row.

Depth (in cm) of
sowing the seed → 1 3 5 7

Natural soil
moisture
gradient of
the land ↓

5% a b c d

20% c d a b

35% d c b a

50% b a d c

Figure 26.7 A Latin square design.
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Question 19.4

In the field of medicine, a placebo is a pseudo‐treatment with no clinically 
expected therapeutic effect on the patient’s specific condition. When clini-
cians seek to test statistically the effectiveness of a treatment (be it a drug or 
some other kind of therapy) for a particular condition, a standard aspect of 
the experimental design is to compare the effect of ‘treatment’ against ‘no 
treatment’. ‘No treatment’ can be interpreted literally as overt omission to 
treat, or treatment can be simulated by administering a placebo.

It is often easier to get patients’ cooperation to participate in the experi-
ment by offering all participants some intervention. That is why such a clini-
cal experiment most commonly involves a comparison between the two 
groups of patients, of treatment versus placebo. Because it has been observed 
that patients receiving a placebo often feel better, and sometimes even show 
an actual physiological improvement in their condition (the so‐called ‘pla-
cebo effect’, whose mind‐body mechanism is still not well understood), the 
experiment may be done ‘single‐blind’ – that is, a patient is not told whether 
he or she is receiving the treatment or a placebo. This approach has been 
shown to lessen the intensity of any placebo effect that might arise. In addi-
tion, to avoid possible clinician bias in allocating each patient to the treat-
ment or the placebo group, the experiment may be done ‘double‐blind’.

Administering a placebo, rather than a clinical treatment, to an unaware 
patient evidently represents an act of deception by the clinician. This has nega-
tive ethical implications, which are all the more serious if the patient’s condi-
tion is life‐threatening. In such circumstances, a code of medical ethics ought 
certainly to impose a caveat (i.e. a warning or caution) on the use of a placebo.

Both ‘placebo’ and ’caveat’ are Latin verb forms taken directly into English. 
‘Placebo’ (I shall please) is the future indicative of ‘placere’, to please. This 
meaning hints at the fact that doctors sometimes prescribe a placebo to 
keep a patient happy that ‘something is being done’ when symptoms are 
minor and self‐limiting. ‘Caveat’ (let him beware) is the present subjunctive 
of ‘cavere’, to beware. This reflects its historical origin as a legal warning.

Question 19.5

Some disciplines where experimental studies predominate are chemistry, 
physics, psychology, pharmacology and agriculture. Some disciplines where 
observational studies predominate are cosmology, meteorology, climatol-
ogy, sociology and ornithology. Some disciplines where experimental and 
observational studies are both common include medicine, biology, geology, 
economics and education.

What can we conclude? All the sciences have a strong preference for 
 controlled experimentation (for example, comparing the effects of an 
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intervention with the effects of no intervention, while neutralising nuisance 
variation as far as is possible). Controlled experimentation assists: (i) in 
clarifying which variables are directly influential in observed relationships; 
and (ii) in exploring the direction of causality in such observed relation-
ships. Observational studies are inferior for achieving these ends. Fields 
where observational studies predominate are those where experimentation 
is either impossible or very difficult.
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Question 20.1

Thomas Bayes is buried at Bunhill Fields Burial Grounds, City Road, in the 
heart of the City of London. Some 200 metres to the west is Errol Street, 
where the Royal Statistical Society has its office. There are more details 
online at [20.2].

http://www.rothamsted.ac.uk
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Question 20.2

In Australian courts, and those of many (but not all) other countries, the 
accused is presumed innocent until a verdict is announced after a trial. 
Thus, when the prosecution’s evidence is first presented, the finding of AB– 
blood at the scene is appropriately expressed as P(E|I) = 0.01. In the prose-
cutor’s statement this is incorrectly switched to mean P(I|E) = 0.01, and 
therefore P(G|E) = 0.99. That certainly enhances the prosecution’s case! 
However, it is a logical mistake, quite reasonably called the ‘prosecutor’s 
fallacy’. Unless the mistake is picked up by others involved in the trial, it may 
lead to a miscarriage of justice. Examples of the prosecutor’s fallacy in some 
famous trials are given in the Wikipedia article at [20.3].

Question 20.3

Let Ai be the event that there are initially i red balls in the bin. The answer 
to this question depends on what assumption we make about the value of 
the prior probabilities P(Ai) for i = 0, 1 …, 10.

Since we have no prior information on how the bin was initially filled, 
a  simple option is to follow the ‘principle of insufficient reason’ (alterna-
tively known as the ‘principle of indifference’), and assume that all the 
events, A0, A1, …, A10, are equally likely. Then P(Ai) = 1/11. Next, using r to 
denote the selection of a red ball, we apply Bayes’ theorem: P(A1|r) = 
P(r|A1).P(A1)/Σ[P(r|Ai).P(Ai)]. Substituting assumed values:

 
P A r i( | ) . / / [( / ) / ] /[ ] ( )1 0 1 1 11 10 1 11 1 55.

 
Another possibility for defining the values P(Ai) is to assume that the bin 

was initially filled with a random selection of 10 balls from some vast reser-
voir containing red and black balls in equal numbers. This implies a bino-
mial distribution for Ai, with P(Ai) = 10Ci (0.5)i (0.5)10–i = 10Ci (0.5)10. Again 
applying Bayes’ Theorem:

 
P A r C i Ci( | ) . . / [( / ) . ] /[ ( ) ] ( )1

10
1

10 10 100 1 0 5 10 0 5 1 512.
 

(See the note on incompletely formulated probability problems in the 
answer to Question 10.5(b).)

Question 20.4

As mentioned in the Overview, the brilliant British logician Alan Turing 
(1912–1954), with other gifted colleagues, broke several increasingly elabo-
rate coding mechanisms of the Enigma text‐enciphering machine, used to 
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convey orders to the field by the German Military High Command through-
out World War II. This work was done in top secret offices located in a 
mansion, known as Bletchley Park, in the English county of Buckinghamshire. 
Its successes remained secret, moreover, until the 1970s. The task was 
accomplished by an extended process of trial‐and‐error hypothesising. At 
each stage, the strength of evidence favouring some particular coding 
mechanism was revised (in Bayesian fashion) in the light of accumulating 
evidence (e.g. from newly intercepted Enigma messages).

Turing’s invented scale for measuring strength of evidence was the loga-
rithm (base 10) of the odds ratio in favour of a particular hypothesis about 
the coding mechanism. The unit on this scale corresponds to odds of 10 to 1. 
This, Turing called ‘1 ban’. Work on this project often involved rather lower 
favourable odds – for example, 5 to 4, equivalent to 0.10 ban, or 1 deciban. 
When the odds of a particular hypothesis strengthened to 50 to 1, or 1.70 
ban, the analysts decided that they were close enough to be sure that they 
were correct.

Jack Good, Turing’s statistical assistant at Bletchley Park, reveals in his 
memoir (1979, p. 394) the marvellous information that ‘a deciban or half‐
deciban is about the smallest change in weight of evidence that is directly 
perceptible to human intuition.’

The name ‘ban’ derived from the nearby town of Banbury, where a 
printing shop supplied large quantities of stationery to the Enigma decod-
ing project. McGrayne describes the whole project in detail in chapter 4 of 
her book. For a short overview of events at Bletchley Park, see Simpson 
(2010).

Question 20.5

In the frequentist theory of inference, the population parameter to be esti-
mated (e.g. the mean) is treated as a fixed value. The sample mean is treated 
as a random variable. Values of the sample mean are generated by repeated 
sampling from the population. These values compose the sampling distri-
bution of the sample mean. Then, a 95% confidence interval (CI) for the 
population mean is determined by finding a range of values that embraces 
95% of sample means. (Note: a 95% CI constructed in this way is not unique. 
A further restriction is required to make it so – e.g. equal tails.) The fre-
quentist approach to interval estimation is characteristically tied to the 
notion of a probability distribution of sample means.

Since the population mean is regarded as a fixed value, it is not valid to 
interpret a 95% CI (e.g. 2.5 to 3.5) by saying there is a 95% probability that 
the population mean lies between 2.5 and 3.5. Either it does or it doesn’t. 
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The probability is one or zero. Instead, the 95% CI may be interpreted as 
follows. We do not know whether the population mean lies within the cal-
culated interval but we may act, in practice, as if it does, because the interval 
estimator (formula) is successful in capturing the mean in 95% of samples 
from the population to which it is applied.

In the Bayesian theory of inference, the population parameter to be esti-
mated (e.g. the mean) is treated as a random variable. At the outset, there 
may be extrinsic factual evidence or personal hunches (i.e. subjective ideas) 
as to the value of the population mean. All such diffuse information can be 
summarised in a prior distribution of values of the population mean (if no 
specific prior information is available, the uniform distribution will serve as 
the prior distribution). Next, a fixed (i.e. single) sample is obtained from 
the population. Given the value of the sample mean, the prior distribution 
of popu lation mean values can be revised by applying Bayes’ theorem to the 
prior probabilities. The revision is termed the posterior distribution of 
population mean values. Finally, a 95% probability interval for the popula-
tion mean is defined directly on the posterior distribution. Such a Bayesian 
probability interval is commonly termed a ‘credible interval’ (note: as before, 
this interval is not unique). The Bayesian approach to interval estimation is 
characteristically tied to the notion of a probability distribution of likely 
values of the population mean.

Because the 95% credible interval is a probability interval obtained 
directly on the posterior distribution of population means, it is valid to say 
that the probability is 95% that the population mean lies within the credible 
interval. True, the Bayesian interval may be more complex to construct than 
the frequentist interval, but it has a simpler and more intuitively appealing 
interpretation.

For a broader and reasonably accessible account of Bayesian inference, 
see O’Hagan (2008), online at [20.4]. For evidence of growing harmony in 
the views on inference of frequentists and Bayesians, see Kass (2009), online 
at [20.5].
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Question 21.1

The phrase is ETAOIN SHRDLU, the 12 most frequent letters in English 
prose, in order. SHRDLU was used (sometimes repeatedly) by linotype 
operators to close off a line of type as soon as they saw they had made a 
typographical error. This acted as a signal to proof readers to remove that 
line physically from the page form. (English language linotype 
machines – used until the 1970s for ‘hot metal’ typesetting of newspapers 
and other printed publications – had a keyboard layout differing from the 
conventional QWERTY keyboard, in that adjoining keys bore letters in their 
frequency order of occurrence. SHRDLU could be set by a deft downwards 
glissando of a finger over six keys, all in a single column!)

The phrase, or parts of it, have appeared in many other contexts for more 
than a century. Shrdlu was the name of an early artificial intelligence system 
developed, as part of his doctoral studies, by Terry Winograd at MIT in the 
late 1960s (see [21.2]) and, a decade later, Douglas Hofstadter (1979) 
included in his book Gödel, Escher, Bach a dialogue between a computer 
programmer Eta Oin and the Shrdlu program. Other uses are mentioned by 
Michael Quinion on his World Wide Words site at [21.3], and there is also 
an extensive list in the Wikipedia entry at [21.4].

Question 21.2

The map was created by Charles Booth (1840–1916), an English business-
man and social reformer. Booth had a deep Victorian sense of obligation 
towards the poor and the improvement of their living conditions. In his 
youth, he was dissatisfied with the quality of contemporary data on social 

http://bayesian.org/bayes
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http://www.sagepub.com/upm-data/18550_Chapter6.pdf
http://www.sagepub.com/upm-data/18550_Chapter6.pdf
https://projecteuclid.org/euclid.ss/1307626554
https://projecteuclid.org/euclid.ss/1307626554


Answers to the chapter questions284

affairs so, from 1886 to 1903, he organised his own extensive survey, and 
published the results in several volumes under the title Inquiry into the Life 
and Labour of the People in London. The data were collected by a small team 
of investigators who visited every part of London, interviewing people in 
their homes or workplaces. Booth was the first to use the phrase ‘line of 
poverty’ (now called the ‘poverty line’), and concluded that as many as 35% 
of the population were at or below this line.

The Maps Descriptive of London Poverty are an early example of social 
cartography, with each street coloured to show the socio‐economic status of 
the inhabitants. Much more information (and an alternative version of the 
map) is available at the Charles Booth Online Archive at [21.5]. Volume 1 of 
Booth’s report can be read online at [21.6].

We took the map from David Thomas’ website, ‘Charles Booth’s 1889 
descriptive map of London poverty’ at [21.7], and the partial view repro-
duced in Figure 21.1 is from [21.8]. It depicts the area north of Piccadilly, 
and was chosen whimsically for its inclusion of Broad Street, a street made 
famous by events referred to in Question 1.5.

The current statistical marketing technique of geodemographic segmen-
tation  –  dividing a market into groups, according to geographic location 
and demographic and economic variables (such as level of education and 
family income) – seems to be a direct descendant of Booth’s work. See, as an 
example, a technical briefing paper by Abbas and colleagues at [21.9].

Question 21.3

a) The chi‐squared test of independence does not use any information 
about the order in the responses, which is equivalent to treating the 
response as a categorical variable. The t‐test uses the numerical values 
of the responses, which is equivalent to treating the response as a quan-
titative variable. Neither of these is appropriate, strictly speaking, since 
the response is actually an ordinal variable. The non‐parametric Mann‐
Whitney test is preferable for comparing two independent groups on an 
ordinal variable.

b) All of the tests in (a) would throw some light on whether the two treat-
ments were equally effective, assuming that the patients’ responses rep-
resented the actual level of effectiveness (as opposed to perceived 
effectiveness). If the null hypothesis of the chi‐squared test were rejected, 
we would have evidence that the pattern of effectiveness was different in 
the two groups. If the null hypothesis of the t‐test or the Mann‐Whitney 
test were rejected, we would have evidence of different average effective-
ness in the two groups. It is important to recognise that a failure to reject 
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the null hypothesis in any of the three tests could be due to a lack of 
statistical power to distinguish any actual difference in effectiveness, 
and should not be immediately interpreted as evidence that the treat-
ments are equally effective.

Question 21.4

The paper is by Campbell and Joiner (1973). The type of sampling described 
in this paper is called ‘randomised response’. This technique is a way of get-
ting information on ‘difficult’ questions (such as recreational drug taking or 
sexual habits) without having respondents incriminate or embarrass them-
selves. Two questions are posed by the interviewer – the difficult one and a 
harmless one – and a reply to one of these questions is requested. The actual 
question which the respondent answers is chosen by the outcome of a 
chance experiment (such as the toss of a coin) that is performed by the 
respondent but is not revealed to the interviewer. More information on the 
randomised response technique can be found in Fox and Tracy (1986).

Question 21.5

During World War II, the statistician Abraham Wald (1902–1950) was 
employed within a US Government research group based at Columbia 
University. In 1943, Wald undertook a statistical modelling project designed 
to improve the survivability of military aircraft in combat, by determining 
which specific parts of an aircraft’s structure would most benefit from 
increased armour‐plating. The analysis was greatly complicated by two fun-
damental factors:

i) little was known in reality about the pattern of vulnerability of different 
regions of an aircraft’s structure to assured destruction from a single 
bullet strike, and

ii) no data were available from those aircraft that did not return from their 
missions. A further obstacle was the difficulty, in that pre‐computer era, 
of performing the nonlinear constrained optimisation calculations to 
which Wald’s analysis led him.

In the course of this work, Wald determined approximate confidence 
intervals for the probabilities that an aircraft would survive a hit on each of 
several of its structural parts. Inspection of the returned aircraft revealed 
that the parts of their structure corresponding to the lowest probability of 
aircraft survival were, in fact, significantly less damaged than other parts of 
those aircraft. Wald surmised that the aircraft that did not return were lost 
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precisely because they were hit in those theoretically vulnerable places that 
were found in practice to be mostly undamaged in the aircraft that returned. 
To the initial consternation of many, Wald recommended that the surviving 
aircraft be reinforced in those places that had gone mostly undamaged in 
previous missions.
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Question 22.1

a) The statement (its exact words are italicised below) first appeared in a 
passage ostensibly extracted from a longer (but, in fact, non‐existent) 
literary work titled ‘The Undoing of Lamia Gurdleneck’ and authored by 
K.A.C. Manderville. Here is the text:

‘You haven’t told me yet,’ said Lady Nuttal, ‘what it is your fiancé does for 
a living.’ ‘He’s a statistician,’ replied Lamia, with an annoying sense of 
being on the defensive. Lady Nuttal was obviously taken aback. It had not 
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occurred to her that statisticians entered into normal social relation-
ships. The species, she would have surmised, was perpetuated in some 
collateral manner, like mules. ‘But Aunt Sara, it’s a very interesting pro-
fession,’ said Lamia warmly. ‘I don’t doubt it,’ said her aunt, who obviously 
doubted it very much. ‘To express anything important in mere figures is 
so plainly impossible that there must be endless scope for well‐paid 
advice on how to do it. But don’t you think that life with a statistician 
would be rather, shall we say, humdrum?’ Lamia was silent. She felt reluc-
tant to discuss the surprising depth of emotional possibility which she 
had discovered below Edward’s numerical veneer. ‘It’s not the figures 
themselves,’ she said finally, ‘it’s what you do with them that matters.’

This passage is a sharp‐eyed parody of 19th century fiction, as well as 
an elaborate joke. It was concocted by Maurice Kendall and Alan Stuart, 
authors of The Advanced Theory of Statistics (in three volumes), to serve 
as a whimsical epigraph to volume 2 of that treatise. Multiple anagrams 
are present here. ‘Lamia Gurdleneck’ is revealed as ‘Maurice G. Kendall’ 
in another guise, just as ‘K.A.C. Manderville’ is an alter‐ego of ‘Mavrice 
Kendall’. Similarly, ‘Sara Nuttal’ turns out to be none other than ‘Alan 
Stuart’ in disguise.

b) The US statistician W.J. Youden (1900–1971) spent the first half of his 
scientific career as a plant chemist, and the second half as an applied 
statistician at the US National Bureau of Standards. He created a lyrical 
typographic tribute to the normal distribution. In Figure 26.8, we rep-
licate his wording, if not also the perfection of his typesetting.

The original appears on page 55 of his nontechnical book for students, 
Youden (1962). Scanned reproductions of this book can be found at 
 several sites on the web.

THE
NORMAL

LAW OF ERROR
STANDS OUT IN THE

EXPERIENCE OF MANKIND
AS  ONE  OF  THE  BROADEST

GENERALIZATIONS OF NATURAL
PHILOSOPHY  •  IT SERVES AS THE

GUIDING INSTRUMENT IN RESEARCHES
IN THE PHYSICAL AND SOCIAL SCIENCES AND

IN MEDICINE AGRICULTURE AND ENGINEERING •
IT IS AN INDISPENSABLE TOOL FOR THE ANALYSIS AND THE

INTERPRETATION OF BASIC DATA OBTAINED BY OBSERVATION AND EXPERIMENT

Figure 26.8 Youden’s tribute to the normal.
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Question 22.2

The original diagram was constructed in 1858, following the Crimean War 
of 1854–56, by Florence Nightingale (1820–1910), nurse, administrator, 
hospital reformer, public health advocate and applied statistician, to per-
suade the British government that improvements in hospital hygiene could 
save lives (in particular, the lives of soldiers). The diagram contrasts, month 
by month, the number of soldiers who died in battle with the much greater 
number who died subsequently in military hospitals of preventable causes 
(chiefly, sepsis of their wounds). In this diagram, invented by Nightingale 
and now technically termed a polar‐area diagram, magnitudes are repre-
sented by areas. The result is a more dramatic display of the data than a bar 
chart presents.

In some accounts of Nightingale’s contributions to effective statistical 
graphics, the diagram has been called a ‘coxcomb’, apparently because this 
term occurs in her own correspondence. However, her biographer, Hugh 
Small, has shown that this is a misattribution. In a paper for a 1998 confer-
ence organised by the Florence Nightingale Museum in London, Small 
refers to the diagram as a ‘wedge diagram’. The paper is online at [22.11]. We 
constructed Figure 22.3 using the R programming language and the infor-
mation in the notes on the HistData package, maintained by Michael 
Friendly [online at 22.12].

A captivating account of Nightingale’s statistical activities, structured as 
an imagined dialogue with her, is in Maindonald and Richardson (2004), 
online at [22.13].

It is worth noting that Nightingale was the first female Fellow of the Royal 
Statistical Society.

Question 22.3

a) The ‘trimmed mean’ is obtained by ordering the data by size, discarding 
some extreme values at each end, and then calculating the arithmetic 
mean of the remaining values. For example, to find the 10% trimmed 
mean, one discards the largest 5% and the smallest 5% of the data values, 
and calculates the arithmetic mean of those that remain. Clearly, a 
trimmed mean is less sensitive (i.e. more robust) than the arithmetic 
mean to outliers in the data. That can be an advantage when the data are 
suspected to contain large observational or measurement errors.

b) In 1972, Tukey, who had already had an interest in robust estimation for 
more than a decade, published (with five co‐authors) a book‐length 
study, titled Robust Estimates of Location (see Andrews et  al., 1972). 
Because this group of researchers were all, at that time, affiliated with 
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Princeton University, the study became known as the Princeton 
Robustness Study. The objective of the study was to examine more than 
60 alternative point estimators of the central value of a symmetrically 
distributed population in order to determine how robust they are under 
various departures from the ‘well‐behaved’ estimation contexts of statis-
tics textbooks. These departures included populations defined by 
non‐normal standard distributions (including some asymmetric distri-
butions) and mixtures of standard distributions; and different patterns 
of outliers among the sample data.

About a third of the estimators reviewed were trimmed means or 
elaborate variants of trimmed means. Other statistics evaluated included 
maximum likelihood‐type estimators for populations of known form, 
the median, and elaborate variants of the median. The estimators were 
compared on several criteria, including: asymptotic bias and efficiency; 
bias and efficiency in small samples; and ease of computation. In a sum-
mary (page 254) of the mass of results in the book, the 10%, 15% and 25% 
trimmed means and several maximum likelihood‐type estimators were 
found to have performed very well in the widest array of contexts. In 
sharp contrast, the sample mean, which is optimal on so many criteria in 
textbook estimation of the mean of a normal population, was actually 
the worst performer of all in ‘messy’ data!

Question 22.4

The statistician was Francis Galton and the fair at which he came upon an 
ox as the subject of a weight‐guessing competition took place in 1906. 
Galton (1907), online at [22.14], reported what he discovered when he ana-
lysed the guesses that were submitted, in an article titled Vox populi. From 
the 787 weight guesses that he had, he found the median to be 1207 pounds. 
Galton reasoned that the median was, in this context, the best estimate one 
could use of the unknown dressed weight of the ox, for there would, in prin-
ciple, be a majority opinion against any other estimate as being either too 
high or too low. The ox’s dressed weight was actually 1198 pounds. Thus, 
the median was in error by less than 1%. This finding was, he concluded, 
‘more creditable to the trustworthiness of democratic judgment than might 
have been expected’.

In the past ten years, Galton’s simple investigation, prompted by nothing 
more than casual curiosity, has been elaborately reinterpreted. That an 
average of many people’s quantitative evaluations in any sampling situation 
(random or not) should prove more accurate than that of most of those 
people individually has been dubbed ‘the wisdom of crowds’. An extensive 
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literature, both scholarly and popular, has emerged, seeking to put this sup-
posedly substantial phenomenon on a firm theoretical foundation in the 
fields of psychology, economics and even genetics. This literature includes 
enormously controversial claims and similarly robust rebuttals. It is not yet 
clear what the net judgment will be on the wisdom of crowds.

Question 22.5

a) Gosset began work as a chemist at the Guinness Brewery in Dublin in 
1899, and spent his entire career with that company. The formal title of 
his position was ‘Brewer’, and it was a job of great status for Guinness 
was initially the only Irish brewery to engage trained scientists to over-
see production. Between September 1906 and June 1907, he studied 
statistics in London with Karl Pearson, then a professor at University 
College. In taking this time out for academic study, Gosset had a particu-
lar goal (among several others). It was to be able to test hypotheses about 
a mean based on a small sample of data, which was all that he had in his 
work on improving methods of beer brewing. Since no one had yet 
explored this topic in statistical inference (because everyone relied on 
the use of large sample normal approximations), Gosset set out to do the 
pioneering work himself.

When he first contemplated publishing the fruits of his research in 
scholarly journals, he sought the consent of his employer. The Guinness 
Board agreed, provided that he adopted a pseudonym and included no 
data identifiable as from Guinness. This demand for secrecy was dictated 
by the fact that his work was regarded as (what we today term) ‘com-
mercial in confidence’. This Board ruling applied to all Guinness’ scien-
tifically‐skilled employees. Gosset adopted the pseudonym ‘Student’ 
when he published his first paper in 1907 (we may now guess) precisely 
because he saw himself at that time as a student of statistics. There is 
much vivid detail about Gosset in this era in Box (1987), online at [22.15].

b) It should be clear that this question is not about which letter, z or t, was 
used in the work done by Student and by Fisher. It is a question about the 
process of eponymy in statistics  –  how some concepts, constructs or 
techniques become named after people. Eponymy is evidently intended 
as a way of honouring the contributor, but the process has no formal 
rules, and little consistency from case to case. You might, at first sight, 
think that the originator of some influential advance in theory or prac-
tice would become the eponym. But what if: (i) it subsequently turns out 
that some other person had earlier made the same advance, which was 
then lost to view and has been independently rediscovered; or (ii) the 
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originator had a remarkable insight or intuition that later proved to be 
very fertile, though he or she did not realise it, or did not succeed in 
demonstrating it? In such cases, who should be the eponym? There are, 
indeed, many contexts in statistics where the eponym is not at all the 
person you might think it should be, but few contexts in which collective 
disapproval actually resulted in an alteration of the eponym.

On the centenary of Student’s 1908 paper, Zabell (2008) reviewed these 
issues (and others) in the eventful technical and interpersonal history of 
the t‐distribution. The ‘Discussion’ published in the pages immediately 
following Zabell’s article is also particularly informative. It turns out that 
both the circumstances mentioned in the previous paragraph apply.

In his work on inference from small samples, Student had two forerun-
ners –  the German statistician Jacob Lüroth (1844–1910) in 1876 and 
Francis Ysidro Edgeworth,  mentioned in Figure  22.1, in 1883. And 
Student (in working out the distribution of his z‐statistic) did not provide 
a complete formal proof. Fisher supplied that in 1923. Nor did Student 
foresee the possibility of unifying a whole class of hypothesis tests, as 
Fisher demonstrated with his t‐distribution. So, though it has been 
Student’s distribution in every textbook now for at least 75 years, should 
it be Fisher’s … or Lüroth’s? Once again, we invite you to be the judge.

On the meaning of ‘probable error’, as it appears in the title of Student’s 
1908 paper, see the historical note following the answer to Question 6.1.

There is more in Chapter 23 about eponymy in statistics.
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Answers – Chapter 23

Question 23.1

i) The Behrens‐Fisher test is a parametric test of the difference of means 
of two normal populations with unknown but unequal variances, based 
on data from two independent random samples. Devising such a test is 
a more intractable problem than in the case where the unknown vari-
ances are equal. In 1929, a German agricultural scientist, Walter Behrens 
(1902–1962), explained why it was difficult to construct an exact test in 
the unequal variances case and suggested a possible solution. Fisher 
(1939), online at [23.3], citing Behrens, offered a different solution. The 
joint eponymy became established in the 1940s. See ‘Behrens‐Fisher’ on 
Jeff Miller’s website on the early history of terms in mathematics and 
statistics, at [23.4].

ii) The Durbin‐Watson test is a small‐sample bounds test for first‐order 
autoregression in the disturbances of a regression model. The test sta-
tistic is calculated from the regression residuals after ordinary least 
squares estimation. The theory underlying the test was published in two 
articles in Biometrika in 1950 and 1951. The joint eponymy originated 
shortly after these articles appeared. The English statistician James 
Durbin (1923–2012) collaborated in developing the test with the 
Australian‐born statistician Geoffrey Watson (1921–1998), who worked 
for many years at Princeton University. Durbin describes the back-
ground to their work in Phillips (1988). An exact small‐sample test of 
the same hypothesis is now available.

iii) The Wilcoxon signed‐ranks test, introduced in Wilcoxon (1945), is a 
non‐parametric test of the difference of means of two populations, 
using matched samples. Thus, it is a non‐parametric alternative to 
Student’s paired t‐test. Frank Wilcoxon (1892–1965) was a chemist and 
statistician in US industry and academia.
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Question 23.2

i) The Russian statistician Pafnuti Lvovich Chebyshev (1821–1894) was 
not the originator of Chebyshev’s inequality. Stigler, on page 283 of his 
book Statistics on the Table, points out that Chebyshev was anticipated 
by the French statistician Irénée‐Jules Bienaymé (1796–1878), who 
established the same inequality some 15 years earlier, and in greater gen-
erality than Chebyshev. For further detail on Bienaymé’s priority in this 
area, see Heyde and Seneta (1977), pages 121–124.

ii) In the late 19th century, the usual way of analysing the income distribu-
tion within a country was by fitting an appropriate statistical model to 
the empirical frequency distribution of numbers of income earners by 
level of income. This approach, however, is inadequate to show income 
relativities – that is, the degree to which total personal income is con-
centrated among those at the top of the income scale, relative to those 
lower down. Income relativities became important where economic 
policy‐makers wanted to restrain the growth of income inequality across 
the nation.

One can show income relativities graphically by plotting cumulative 
income against cumulative numbers of income earners. To permit inter‐
country comparisons, where currencies differ, the cumulations need to 
be in percentage terms (so freeing them of the unit of measurement). 
The end result is the curve of cumulative percentage of total income, 
plotted against cumulative percentage of income earners (arranged in 
order from the lowest earners to the highest).

Inventing this plot (it is found in Lorenz, 1905) was the valuable sta-
tistical contribution of Max Lorenz (1876–1959), a US applied econo-
mist and statistician. It became known quite quickly as the Lorenz curve 
(see, for example, Watkins (1909), page 172), and continues today to be 
a standard tool in the study of national distributions of both income and 
wealth.

Was Lorenz the originator of the Lorenz curve? He seems to have 
been the first to announce it in print. Others (apparently independently) 
presented similar diagrams soon after. Derobert and Thieriot (2003) and 
Kleiber (2007) cite work by Chatelain in France in 1907, and by Pietra in 
Italy in 1915. So this is likely to have been an instance of what Merton 
(1973), chapter 16, calls ‘multiple discovery’.

iii) Stigler (1983) casts doubt on the proposition that Thomas Bayes (1702–
1761) is the originator of Bayes’ theorem, but Stigler’s ingeniously‐
elicited evidence in favour of the English mathematician Nicholas 
Saunderson (1682–1739) is suggestive, rather than conclusive.
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Question 23.3

Von Bortkiewicz’s data, collected from official sources in 1898, relate to the 
number of deaths, per individual army corps, of Prussian Army soldiers 
from horse kicks. His data span the 20 years 1875–1894 for each of 14 cav-
alry corps. The full data set of 280 values is given in Hand et al. (1994). Von 
Bortkiewicz argued heuristically that the Poisson probability model was a 
good fit to 200 of these data values (excluding four heterogeneous corps). It 
was not until 1925 that R.A. Fisher demonstrated the good fit via the chi‐
squared test.

Poisson so underestimated the broad practical value of the probability 
distribution that bears his name, says Good (1986, page 166), online at 
[23.5], that it ought to have been named the von Bortkiewicz 
distribution.

When did the Poisson distribution get its name? The entry for ‘Poisson 
distribution’ (online at [23.6]) on Jeff Miller’s website, already referred to in 
the answer to Question 23.1, indicates that this term was first used in a 
1922 journal article, of which R.A. Fisher was the primary author. Thus, 
Poisson, who first presented his distribution in 1830 (see Dale, 1988), had to 
wait almost a century to acquire his status as an eponym.

See Question 13.3 for more on this remarkably versatile probability 
model.

Question 23.4

Chernoff ’s picture is a cartoon of a human face, with the possibility of vary-
ing different facial features so as to represent in two dimensions a vector of 
measurements in up to 18 dimensions (see Chernoff, 1973).

There are now many websites where ‘Chernoff faces’ are described, illus-
trated and critiqued. Several software packages have add‐ons for producing 
these faces, including Mathematica –  see online at [23.7]. Other ways of 
plotting multivariate data as familiar images have been surveyed by Everitt 
and Nicholls (1975).

Question 23.5

The paper is Box and Cox (1964), titled ‘An analysis of transformations’. It is 
the work of the British statisticians George Box and David Cox. The novel 
technique introduced by these authors is now universally known as the Box‐
Cox transformation. The operetta is Cox and Box, first performed publicly 
in 1867. Its main characters are James John Cox and John James Box. You 
can enjoy the music on YouTube. How this operetta led to the statistical 
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collaboration is recounted on pages 254–255 of DeGroot (1987), online at 
[23.8]. The allusion evoked by their coupled names was, it seems, compel-
ling, as it was the initial spark for the Box‐Cox collaboration. The paper’s 
content was decided thereafter!

Incidentally, this case of authors joining together opportunistically for 
whimsical effect has a precedent – but there, the paper’s content was com-
pleted first. In 1948, at George Washington University in the USA, a doc-
toral student in physics, Ralph Alpher, was about to submit for publication 
a research paper written with his thesis adviser, George Gamow. Gamow, 
clearly an aficionado of the Greek alphabet, could not resist co‐opting, as a 
third author, the physicist Hans Bethe (apparently overriding Alpher’s 
objection). This led to the publication of Alpher, Bethe and Gamow (1948), 
subsequently a highly cited paper in cosmology. The ‘Alpher‐Bethe‐Gamow 
paper’ now has its own entry in Wikipedia.
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Answers – Chapter 24

Question 24.1

As we mention in Chapter 14, Gauss and Laplace both advocated the nor-
mal as a probability model for the distribution of random errors of measure-
ment, because its main shape characteristics matched those of corresponding 
empirical frequency distributions. Many statisticians confirmed that the 
normal was an excellent model for such data. On that evidence, they dubbed 
it the normal ‘law of error’.
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However, we should not overlook that Gauss also favoured the normal 
distribution because it has desirable properties for statistical theory that are 
mathematically provable. As stated in this chapter’s Overview, it is the only 
symmetric continuous pdf for which the mean of a random sample is the 
maximum likelihood estimator of the population mean. That made choos-
ing the normal as the ‘law of error’ doubly appealing to Gauss.

Thus, the normal law of error was not solely deduced from some abstract 
mathematical theorem; nor was it solely induced from some experimentally 
determined facts. Gauss endorsed it as a happy fusion of both.

Incidentally, you can read the original version of Poincaré’s anecdote on 
the online page at [24.2].

Question 24.2

The fact that there is a markedly unequal distribution of leading digits in 
many large real‐life collections of numbers seems quite counterintuitive – 
all  the more so, when other collections (e.g. lottery results and national 
postcodes) do not display the same behaviour. The mathematician Simon 
Newcomb was, in 1881, the first to write about this phenomenon, which he 
inferred from the more worn early pages of books of logarithm tables. There 
the topic rested, until it was explored at length by the physicist Frank 
Benford in 1938. Thereafter, various approaches to proving a probability law 
for the observed unequal relative frequencies of leading digits were tried.

Both Newcomb and Benford conjectured the following result (now 
known as Benford’s Law): the probability that the first digit in a very large 
collection of numbers from diverse sources is n is log10[(n + 1)/n]. Thus, the 
probability of 1 is 0.30, of 2 is 0.18, and so on. It is only relatively recently 
that a formal proof has confirmed the validity of this surprising result – see 
the (advanced) paper by Hill (1995), online at [24.3]. A non‐technical 
account of some ideas behind this proof is in Hill (1998), online at [24.4], 
and a popular overview of Benford’s Law is in Walthoe (1999), online 
at [24.5].

How can you know in advance whether a particular collection of numbers 
will or will not follow Benford’s Law? This is still an open question, to which 
Fewster (2009) offers some constructive answers.

Incidentally, the naming of this law for Benford, after it was first 
announced by Newcomb 57 years earlier, is another confirmation of Stigler’s 
Law of Eponymy, which you will find in Chapter 23.

Ever since financial data were found to align well with Benford’s Law, it 
has found a fertile field of application in forensic accounting. Commercial 
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fraud may involve the creation of false business data, which perpetrators 
hope to pass off as genuine. However, such data are likely to have leading 
digits in proportions that diverge from those predicted by Benford’s Law. 
Hence, statistical tests on digit frequency may point auditors to anomalous 
data worth deeper investigation. A proponent of using statistical analysis, 
and Benford’s Law in particular, to detect fudged accounts is the US 
 academic Mark Nigrini. He popularised his approach in Nigrini (1999) and 
subsequently published a reference book for professionals, Nigrini (2012).

The practical value of Benford’s Law for detecting numerical fudging in 
other scientific fields is currently being explored.

Question 24.3

The remarkable versatility of the normal distribution as a statistical model 
for observed frequencies of many continuous real‐world variables is well 
known. It serves well for roughly symmetrical raw data in the physical and 
biological sciences, and – through the CLT – for the large‐sample distribu-
tion of sample means, even from non‐symmetric populations. However, 
real‐world variables – both continuous and discrete – that are clearly not 
(even approximately) normal are also common, especially in the social and 
behavioural sciences. As this chapter’s Overview shows, some such continu-
ous variables have a two‐tailed distribution, with tails that are fatter than the 
normal’s. These are often modelled by one of the family of stable 
distributions.

Then there are other – typically, discrete – variables that have a distribu-
tion comprising many small values but few very large values, and (in con-
trast to the normal) few values that fall near the mean. Such a distribution is 
one‐tailed with a roughly L‐shaped profile.

Since the 19th century, it has been known that a good model for the fre-
quency, f(x), of a discrete random variable, x, with such a distributional pro-
file, is likely to be found in the general form f(x) = abx, where x ≥ 0, a is a 
positive constant of proportionality (to convert f(x) into a pdf – i.e. to make 
the probabilities sum to 1) and b is a parameter in the range 0 < b < 1. This 
model is known as the geometric distribution. It follows from this definition 
that the geometric distribution is likely to be a good model for a set of 
empirical data if the plot of log(f(x)) against x resembles a straight line. 
Other long‐established models with a related general form are the Poisson 
distribution (for discrete variables) and the exponential distribution (for 
continuous variables).

However, while data often fit well to a geometric distribution near the 
mode of the empirical distribution, the fit in the tail is sometimes poor. In 
the decades before 1960, several researchers, each in a separate field, 
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discovered independently that a better overall fit than the geometric distri-
bution provided could be had by using an alternative model. This alternative 
also generated a broadly L‐shaped profile, but one with a subtly different 
curvature. In some applications, this model was fitted to a raw frequency 
distribution, and in others to a cumulative frequency distribution. Again, 
sometimes it was used to model a discrete variable, and sometimes a con-
tinuous variable. In each field, the model received a different name. Some 
examples are Lotka’s Law, Pareto’s Law and Bradford’s Law.

By 1960 it was realised that all these individual probability laws were sim-
ply variants of a common form. It was time for a unified terminology! Today, 
the common form is known as the power law (or, more correctly, the family 
of power laws).

If a discrete or continuous random variable, x, has a distribution that fol-
lows a power law, then its frequency or density function, respectively, is 
given by f(x) = ax–b, where x > 0, a is a positive constant of proportionality, 
and b is a parameter in the range b > 0. It follows from this definition that a 
power law distribution is likely to be a good model for a set of empirical data 
if the plot of log(f(x)) against log(x) resembles a straight line. It is quite 
amazing what a wide variety of variables in the physical, biological and 
social sciences has now been usefully modelled by a power law.

As everyone knows, the growth in the number of servers on the internet 
since the mid‐1990s has been spectacular. In studies of the network of web-
sites and of the behaviour of internet users at a point in time (say, a particu-
lar month), several statistics have turned up that have markedly L‐shaped 
frequency distributions. Two examples are the number of links across the 
internet that point to a particular website, and the number of visits to a 
particular website. Everyday experience confirms that there are many web-
sites which are very sparsely linked to, while a very few websites are pointed 
to from hundreds of thousands of other locations. Similarly, there are many 
websites which receive hardly any visits over a particular month, while a 
very few receive millions of hits.

In the former context, some successes and failures of a power law model 
are displayed in Pennock et al. (2002), online at [24.6]. In the latter context, 
a numerical example of fitting a power law model to an empirical frequency 
distribution can be found in Adamic (2002?), online at [24.7].

Question 24.4

George Zipf (1902–1950) was a linguistics professor at Harvard, whose ini-
tial use of statistics was for modelling word frequencies in English prose. In 
this connection, the statistical model that now bears his name proved very 
successful. Good insight into this aspect of his work is given by Alexander 
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et al. (1998). Zipf went on to seek other variables whose frequency distribu-
tion he could represent well with the same probability model. One of these 
variables is the size of cities.

Clearly, the frequency distribution of a nation’s cities by population size is 
likely to be highly skewed. The degree of skewness will probably differ in 
every country, so a model that would be suitable for all countries would 
probably require multiple shape parameters. Is there a way to view the mod-
elling problem so that it needs very few parameters? Zipf found a way: his 
model has only one parameter. His approach was to transform any such 
skewed frequency distribution into a strictly L‐shaped distribution. Then he 
could try to fit a model in the mathematical form of a power law. His solu-
tion was to use city rank as a proxy measure of frequency, rather than using 
the actual frequency (i.e. number of cities having a particular population 
size).

To follow Zipf ’s method, first rank the cities in diminishing order of popu-
lation, then construct a ‘frequency’ distribution, the variable being popula-
tion size and the proxy for frequency being city rank. For example, if r cities 
are ranked 1, 2, … R, the smallest population value (on the X‐axis) will cor-
respond to the value R (on the Y‐axis), the next smallest population value 
will correspond to (R – 1), and so on. Do you see that using city ranks in this 
way produces exactly the same L‐shaped distribution as constructing a 
cumulative frequency distribution of number of cities having a particular 
population size or more?

Zipf ’s Law states that the empirical distribution of city size, p, according 
to city rank, r(p), is to be modelled by the power law r(p) = ap–b, where a is 
a positive constant of proportionality and b is a parameter, with b > 0.

(We should mention that some writers present the Zipf model with the 
axes interchanged, so that city rank is on the X‐axis and population is on the 
Y‐axis. Adamic (2002?), online at [24.7], does this. She then explains how, in 
her formulation, the power law model and the Zipf Law model are algebrai-
cally related.)

In early empirical studies of Zipf ’s Law applied to cities, it was repeatedly 
found that b was very close to 1.0. This prompted some writers to claim 
that, in the city size context, the value b = 1 is some kind of global regularity! 
There has been much speculation in the statistical literature about why such 
a regularity should even be expected, let alone how it can be explained. 
Gabaix (1999) gives an informative perspective, comparing past explana-
tions with a new one of his own. It is a technically advanced article, but its 
leading points are clearly made. There are now dozens of published studies 
of Zipf ’s Law in this application, though not all of them find that b is close 
to one. Soo (2005) offers an excellent overview.
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Are you curious to know whether Zipf ’s Law is yet another confirmation 
of Stigler’s Law of Eponymy (see Chapter 23)? Well, in its application to 
the size of cities it seems that it is. Zipf was anticipated in 1913 by Auerbach, 
whose work is cited, with some background, by Diego Rybski, online at 
[24.8].

Figure 26.9 shows a plot of ln(city rank) against ln(city population) for 
the 35 largest Australian cities, using the latest available census data from 
2011. The scatter is clearly close to linear, as Zipf ’s Law predicts. Indeed, the 
value of the coefficient of determination for the fitted least squares regres-
sion line is 0.98. However, the estimated slope here is –0.63, and this value 
is statistically significantly different from –1.

Question 24.5

The two French researchers are Michel and Francoise Gauquelin (MG and 
FG). MG (1928–1991) and FG (1929–2007) each had an interest in astrol-
ogy from an early age. Both before and after his marriage, MG pursued a 
lifelong agenda of statistical studies of correlations between certain configu-
rations of the stars and planets in the heavens, and real‐life events on Earth. 
Though critical of the often fatuous or bogus claims of astrologers, he pro-
posed that if such a correlation were shown to have strong statistical 
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Figure 26.9 An illustration of Zipf’s Law – Australia 2011.
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significance in large samples of observations, it should be at least tentatively 
accepted by the orthodox scientific community as plausible evidence of a 
previously unrecognised true causal astrological relation.

MG first wrote about the ‘Mars effect’ in 1955 in his book L’Influence des 
Astres (The Influence of the Stars). The subsequent convoluted history of 
multiple attempts to sustain and to demolish the statistical evidence under-
pinning this supposedly real phenomenon has been traced over 40 years by 
Nienhuys (1997), online at [24.9]. An essay by Ertel and Irving (1999?), 
online at [24.10], dissents in minute detail from Nienhuys’ commentary. 
Clearly, this has been an intensely contested proposition, though it never 
much engaged the scientific community at large. With MG’s death in 1991, 
his claim is now hardly mentioned. There seems to be no basis here for a 
probability law.
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Question 25.1

The mediaeval English Benedictine monk was the Venerable Bede (673–735), 
writing in the first chapter of his book De temporum ratione (On the reckoning 
of time), published in 725. His system of dactylonomy (Greek: daktylos finger + 
nomos law) or finger counting is able to represent numbers up to 9999. It was 
based on methods used by Arabs and Romans over many thousands of years. 
In his blog, Laputan Logic, John Hardy reproduces a 15th century illustration 
of Bede’s finger counting system (see [25.4]). How Bede’s system works in prac-
tice is explained on pages 201–207 of Karl Menninger’s book Number Words 
and Number Symbols – A Cultural History of Numbers (1969). For more on 
this and other historical counting systems, see chapter 3 of Ifrah (1998).

Question 25.2

From 1879 onwards, Herman Hollerith (1860–1929) experimented – first at 
the US Census Bureau, and then at the Massachusetts Institute of 
Technology – with punched paper tape and, later, with punched cards, as 
ways of recording data that could be read and tabulated by machine. In 
1887, he received a patent for an electric punched card reader. By 1890, he 
had devised an Electric Tabulating System, comprising punching, reading, 
sorting and tabulating machines. These machines were used to prepare the 
results of the 11th census of the United States in 1890. This work was 
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completed in one‐eighth of the time needed for obtaining manually the 
results of the previous census in 1880. Pictures of Hollerith’s machines can 
be seen online at [25.5]. An interesting article on Hollerith’s system by Mark 
Howells, with further pictures, is online at [25.6].

Question 25.3

A quincunx is any pattern of five objects arranged as in the five‐spot on a die 
(with an object at each corner of a square and one in the middle). ‘Quincunx’ 
is the Latin word meaning ‘five‐twelfths’ (‘quinque’ is ‘five’ and ‘uncia’ is 
‘one‐twelfth’). The Roman quincunx was a coin worth five‐twelfths of an ‘as’ 
(another coin). It had such a five‐spot pattern on its reverse.

In statistics, the quincunx appears in a device to demonstrate the normal 
approximation to the binomial distribution. Such a device was first shown 
by Francis Galton in London in 1874. Several rows of pins were driven hori-
zontally into a vertical backing board in the quincunx pattern. In use, small 
steel balls were allowed to cascade from an upper hopper through this array 
of pins to produce a symmetric histogram in several bins along the bottom 
of the board. A photo of Galton’s device (he called the whole thing a ‘quin-
cunx’) is included in the historical discussion in Stigler (1986), pages 275–281. 
A diagrammatic representation is given online at [25.7], and a video simula-
tion (one of many on the web) is at [25.8].

Question 25.4

The Musical Dice Game (Musikalisches Würfelspiel) was published in 
Germany in 1793 and attributed by the publisher to Wolfgang Amadeus 
Mozart. Successive rolls of two dice select 16 individual bars of music from 
a compendium of bars. These selected bars, when assembled in the random 
order in which they were chosen, produce a harmonious minuet (a slow 
dance in waltz time, popular in the 17th and 18th centuries) every time. 
More details can be found in Ruttkay (1997). There are several computer 
versions of the game (for instance, one by Chuang, online at [25.9]), where 
you can try out the process yourself.

Question 25.5

A photograph of people (actually, female university students) arranged in 
groups by their height is the first of four photos in Brian Joiner’s (1975) 
article ‘Living histograms’. A second photo shows a bimodal ‘living histo-
gram’ – Joiner coined this term – composed of both male and female stu-
dents. A paper by Schilling, Watkins and Watkins (2002) reproduces Joiner’s 
bimodal photo, and also provides a photo and citation from 1914, as 
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evidence that Joiner was not the first to think of this informal creative way 
of illustrating a histogram. This earlier photo was published by Albert 
Blakeslee, a US plant geneticist.

More recently, Robert Jernigan (online at [25.10]) has drawn attention to 
an even earlier ‘living histogram’ photo. That photo comes from an article 
by Charles Davenport, published in 1901. Its educational appeal was subse-
quently recognised by Willard Brinton, who included it on page 165 of his 
1914 textbook Graphic Methods For Presenting Facts. The complete book, 
including this particular page, can be viewed online at [25.11].
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