
Making statistical modeling and inference more accessible to 
ecologists and related scientists, Introduction to Hierarchical 
Bayesian Modeling for Ecological Data gives readers a flexible and 
effective framework to learn about complex ecological processes 
from various sources of data. It also helps readers get started on 
building their own statistical models. 

The text begins with simple models that progressively become 
more complex and realistic through explanatory covariates and 
intermediate hidden states variables. When fitting the models to 
data, the authors gradually present the concepts and techniques 
of the Bayesian paradigm from a practical point of view using real 
case studies. They emphasize how hierarchical Bayesian modeling 
supports multidimensional models involving complex interactions 
between parameters and latent variables. Data sets, exercises, and 
R and WinBUGS codes are available on the authors’ website.

This book shows how Bayesian statistical modeling provides an 
intuitive way to organize data, test ideas, investigate competing 
hypotheses, and assess degrees of confidence of predictions. It 
also illustrates how conditional reasoning can dismantle a complex 
reality into more understandable pieces. As conditional reasoning 
is intimately linked with Bayesian thinking, considering hierarchical 
models within the Bayesian setting offers a unified and coherent 
framework for modeling, estimation, and prediction.
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Foreword

Statistics? Not for us! Surprisingly, this is still what can sometimes be
heard when discussing statistics with scientists from applied disciplines.
How is it that such people disregard the science of doubt? No doubt that
practitioners possess a deep understanding of phenomenological behav-
ior of the system under study. They also have an acute feeling of its
variability and its complexity. They have elaborated a mental image of
the phenomenon, with operational shortcuts and permanent reformula-
tions. Dare we say: the seed for a model is already set in their minds.
At the same time, they never blindly trust model outputs and agree
that statistics is necessary to depict things that happened in the past
and to make projections about what may occur in the future. However,
they also often complain that the basic statistical procedures are too
simple and not flexible enough to address real problems they have to
struggle with, and one has to acknowledge that instruction manuals for
more advanced statistical tools are rarely funny readings! The present
book might not be exactly a funny reading, but we hope that it could
contribute to make the first steps of statistical modeling and inference
more accessible, and tear-free, to a wide community of practitioners.

In Ecology, interestingly, complex issues have often been the hotbed
of development of innovative statistical methodology. Statistical Ecol-
ogy, a branch of ecological sciences, has proved incredibly productive
in the last thirty years. However, temptation remains to apply ready-
to-use statistical recipes, and frustration can be heavy when the data
and the problem at hand do not fit exactly into the mold of the clas-
sical statistical toolboxes. But, to sacrifice the model realism for the
sake of statistical tractability, or to defer to the sole mathematician the
inference of the more complex model formulation, is that the unavoid-
able dilemma? In both cases, the analyst is deprived from the exciting
intellectual adventures of model making!

This book was written because we believe that Hierarchical Bayesian
Modeling is like a golden key to be given to scientists in Ecology. This
avenue of thought should highly contribute to free their creativity in
designing statistical models of their own.

xix



xx Foreword

In this book, we first recall that the principles of Bayesian statistics
are not difficult to learn and can be intuitively understood. Bayesian
statistical inference is merely learning from data by updating prior prob-
abilistic judgments into posterior beliefs. Bayesian statistical modeling
offers an intuitive avenue to put structures on data, to test ideas, to
investigate several competing hypotheses and to assess degrees of confi-
dence of predictions.

We also illustrate how conditional reasoning is a way to dismantle
a complex reality into more understandable pieces. The construction
of complex models is achieved by assembling basic elements linked via
conditional probabilities that form the core of the hierarchical model
structure. As conditional reasoning is intimately linked with Bayesian
thinking, considering hierarchical models within the Bayesian setting
offers a unified coherent framework for modeling, estimation and predic-
tion.

Key ideas of this book have emerged through discussions with col-
leagues and PhD students. Étienne Prévost spent a whole research career
working on salmons and Bayes, and many chapters are inspired by our
collaborations. We are grateful that he allowed us to present in this book
a lot of examples and data from his work. For the Scorff databases, field
data collection has been carried out under his supervision by the per-
sonnel from the Moulin des Princes experimental station. Many thanks
to the team of Fisheries and Oceans Canada in Moncton, where it all
began. In 2005, we set up there a two-week Bayesian school with our
friend Étienne Prévost. Gerald Chaput, Hugues Benoit and their col-
leagues suggested we write this book. We heard again the same sugges-
tions during the 2006 and 2007 doctoral sessions that we organized for
the Marine Exploited Ecosystems Research Unit (UMR EME) in Sète,
France, to promote Bayesian thinking for modeling ecological data. We
are particularly grateful to Daniel Gaertner, Nicolas Bez, Jean-Marc Fro-
mentin and Frédéric Ménard who encouraged us on the way. We would
like to thank Jean-Luc Baglinière (INRA, UMR ESE, Rennes) without
whom the long series of data on A. salmon populations in the Oir and
Scorff Rivers would not exist, and all the staff of the Unité Expérimentale
d’Écologie et d’Écotoxicologie (INRA, U3E, Rennes), in particular Nico-
las Jeannot and Frédéric Marchand for their invaluable work in the field
collecting the salmon trapping data in the Scorff and Oir Rivers.

There are many people who also deserve our thanks, although they
did not know they were so actively influencing us and contributing to
this book, such as our families, our mentors, our PhD students and also
the many collaborators from our research institutions, which fostered a
nurturing environment for the whole lifetime of this book project. We
also had the great fortune of counting on our long-standing friendship
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with Jacques Bernier and Lucien Duckstein for useful discussions and
careful proofreading.

Jérôme Guitton patiently helped us to master enough html program-
ming language to implement our website hbm-for-ecology.org . This web-
site gives many of the datasets, R and WinBUGS or OpenBUGS codes
that we used to derive inference and figures in the book.

Éric Parent and Étienne Rivot
Paris, France
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Part I

Basic blocks of Bayesian
modeling and inference

for ecological data
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Chapter 1

Bayesian hierarchical models in
statistical ecology

Summary

The Salmon life cycle and the biomass production model exemplify
the key idea of this book: Hierarchical Bayesian Modeling (HBM) is a
Directed Acyclic Graph (DAG) modeling technique with the capacity to
cope with high-dimensional complex models typically needed for ecolog-
ical inferences and predictions ([64]; [65]; [67]; [75]; [313]).

HBM works through conditional decomposition of high-dimension
problems into a series of probabilistically linked simpler substructures.
HBM enables to exploit diverse sources of information to derive infer-
ences from large numbers of latent variables and parameters that de-
scribe complex relationships while keeping as close as possible to the
basic phenomena.

Based on these two motivating case studies from fisheries sciences,
we detail the three basic layers of hierarchical statistical models ([75];
[76]; [312]; [313]):

1. A data level that specifies the probability distribution of the ob-
servables at hand given the parameters and the underlying pro-
cesses;

2. A latent process level depicting the various hidden ecological mech-
anisms that make sense of the data;

3. A parameter level identifying the fixed quantities that would be
sufficient, were they known, to mimic the behavior of the system
and to produce new data statistically similar to the ones already
collected.

HBM stands out as an approach that can accommodate complex sys-
tems in a fully consistent framework and can represent a much broader
class of models than the classical statistical methods from ready-to-use

3



4 Introduction to Hierarchical Bayesian Modeling for Ecological Data

toolboxes. Finally, we use graphical modeling techniques as a guiding
thread to announce the contents of the book’s chapters, starting with
simple stochastic structures (elementary blocks) in Part I that will pro-
gressively be assembled to lead to the more elaborate hierarchical models
of Part II.

1.1 Challenges for statistical ecology

1.1.1 The three steps of quantitative modeling

Quantitative modeling is typically motivated by knowledge and ac-
tion: i) modeling seeks to improve our understanding of a phenomenon
(cognitive objective); ii) many applied ecological questions require mod-
els as a tool to derive predictions (applied objectives) (see Fig. 1.1).

FIGURE 1.1: The three steps of quantitative modeling. Steps 1 and 2
correspond to the learning phase. The little character on the left side is
inspired from the Ecological Detective in the book of R. Hilborn and M.
Mangel ([136]).

1. Step 1. Propose a tentative model for the process under consider-
ation.
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Models are used to synthesize knowledge and speculate about the
system of interest. But modeling is also governed by the objec-
tives of the study and some subjectivity from the analyst ([236]).
For instance, plants or animals in ecosystems can be represented
one by one by dynamically interacting rule-based agents (well-
documented examples of individual-based models for ecology can
be found in [125] and [122]). In such models, local heterogeneity
among entities is built in for studying, by simulation, the global
scale consequences of a particular trait of ecological interest, such
as body size or some behavioral characteristics such as an alter-
ation in reproductive strategy. On the contrary, in a population
model ([164]), like the biomass production model depicted in Fig.
1.2, the characteristics of the population are averaged together and
the model attempts to depict the evolution of the population as
a whole. Knowledge is generally understood as structural quanti-
tative knowledge with mathematical equations that formalize hy-
potheses and quantify interactions between variables. Models rely
on i) key variables of interest with respect to the objectives of the
modeling enterprise, and ii) the main cause-to-effects interactions
between these variables which are built from a deductive reasoning.
Interactions mimic either deterministic or stochastic cause-to-effect
relationships. Consider as an example, a π = 40% survival rate be-
tween two stages A and B of some population with size NA and NB
like the juvenile to smolt transition in the salmon life cycle of Fig.
1.4; a deterministic model would state that the population at stage
B is 40% of the one at stage A while a stochastic model would say
that population size NB is some random variable, distributed as
a Binomial with order NA and probability 0.4 (mathematical lay-
outs for the Binomial distribution are given in Chapters 2 and 4).
Because natural systems are often poorly understood, there may
be alternative competing hypotheses. Equations generally involve
unknown quantities (e.g., unknown parameters or hidden system
states) that must be estimated: for instance the survival rate π
from state A to state B in the previous example might be left un-
known and one would expect this quantity to be estimated from
the available data.

Knowledge also involves qualitative knowledge or expertise ([223]).
From past experience when dealing with a similar situation in an-
other location, use of proxies or a long life understanding of the
biological phenomenon, scientists may sometimes specify valuable
best guesses and credible intervals for unknown model quantities.
For instance, referring to the previous example, some probabilistic
judgment could be made a priori for the unknown survival rate π
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such as, “considering the number of potential predators and the
length of juveniles, the probability of survival π is most likely be-
tween 0.25 and 0.5, unlikely below 0.20, but extremely rarely above
0.8.”

2. Step 2. Learning from observations.

In the second step, one seeks to learn from the data at hand, i.e.,
to use the data to update the prior knowledge that has been coded
in Step 1. This is often referred to as confronting the model to
the data or more simply as model fitting or inference. Objectives
are i) to compare the credibility of alternative competing hypothe-
ses with respect to the observations; ii) to estimate the unknown
quantities of the model and the associated uncertainty condition-
ally upon the data at hand. This step relies heavily on statistical
science to infer pattern and causality from the data. By comparison
with the deductive way of thinking that works with cause-to-effect
relationships, inference relies on inductive reasoning and promotes
a reverse way of thinking, working on effect-to-cause relationships.
Depending on the field of application, it is sometimes termed in-
verse modeling (engineering), data assimilation (geosciences), sta-
tistical learning (neural networks), among others.

3. Step 3. Use the model in a deductive way as a decision tool.

In this third step, the model can be used in a deductive way as
a tool for prediction. This generally takes the form of simulations
designed to explore the response of the system under different sce-
narios. Typically, models for renewable resource assessment are
used to establish a diagnostic about past evolution and the present
state of the resource, to estimate key management reference points
such as the sustainable level of exploitation, and to predict the po-
tential evolution of the resource under several scenarios for future
exploitation or evolution of the environment. As an example of
choice, the 2000 special report of the International Panel on Cli-
mate Change of Working Group III includes a summary for policy
makers that describes long-term greenhouse gas emissions depend-
ing on different future storylines with contrasted demographic, so-
cioeconomic, technological and environmental developments.

However, as models become more complex, they require more pa-
rameters and they inevitably become more sensitive to parameter
values. Before using the model in a predictive mode, a critical issue
for the Ecological Detective ([136]) is to have a precise and rigorous
quantification of the uncertainties in the different components of
the model ([133]; [184]), not least because the general adoption of
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the precautionary principles and precautionary approaches to man-
agement of ecological systems ([67]; [106]) requires an assessment
of the risks that will occur as a result of the different scenarios.
Risk can be defined as the probability distribution of the conse-
quences of an undesirable event, (e.g., irreversible environmental
damage). As such, risks are inevitable consequences of uncertainty.
If there is no uncertainty, the concept of risk is irrelevant because
the probability of any event degenerates to either 0 or 1.

Here, the first two steps have been isolated for the purpose of clarity.
But this is somewhat artificial as they are practically embedded within
an iterative process in which the confrontation of the proposed model to
the available data (Step 2) may lead to reconsider the hypotheses that
were made in Step 1.

The relative importance of each of the three steps may vary depend-
ing upon the modeling objectives. Step 1 will receive primary attention
for fundamental ecological studies. If the management purpose is of pri-
mary interest, more modeling effort will be devoted to Step 3.

Throughout this book, we will exemplify how the Bayesian setting
enables one to combine these three steps (model design, model fitting
and predictive simulations) within a single unified and rigorous statistical
framework. A deeper discussion on the Bayesian setting is postponed to
Section 1.3.2.

1.1.2 Models are intrinsically complex, highly uncertain
and partially observed

The growing interest in solving ecological problems has provided a
new impetus for the development of complex models, which raised statis-
tical challenges for quantitative modeling analyses. Complexity in ecolog-
ical models arises from two main reasons: the motivation to get enough
realism and the need to account for various sources of uncertainty.

1.1.2.1 Increasing model realism and dimension

Improving the realism of ecological models inherently results in an in-
crease of model dimension and complexity. Various components are now
increasingly used in recent ecological models, such as dynamic or spatial
components (e.g., spatial heterogeneity, migration patterns), and multi-
ple interactions forms (e.g., nonlinear intra-specific density dependence,
inter-specific interactions) often combined with the effects of covariates
to trigger the main influences of the environment (e.g., changing forcing
conditions as a climate under global warming).
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1.1.2.2 Accounting for different sources of variability and un-
certainty

The field of environmental sciences is becoming increasingly aware
of the importance of accurately accounting for the multiple sources of
variability and uncertainty when modeling environmental processes and
making forecasts. This development is motivated in part by the desire
to provide an accurate picture of the state of knowledge of ecosystems,
and to be able to better assess the quality of predictions and decisions
resulting from the models. Models are functional caricatures of (com-
plex) natural systems which are not easily observed. Uncertainties in
ecological models are inherent to our incomplete knowledge, due to both
the difficulty to gather exhaustive observation data on natural systems
and to our relatively poor ability to propose mechanistic models with
good predictive power. Uncertainty is hence a rather difficult notion be-
cause it encompasses the elements that fluctuate due to unpredictable
or unaccessible varying factors (uncertainty by essence) and those that
are just partially known (uncertainty by ignorance).

In ecology, uncertainties stem from three main sources (see [63], [133],
and [173], but also [252] for a general discussion about uncertainty): i)
model errors; ii) process stochasticity; iii) observation errors.

1. Model errors

As any model is a functional simplification of a real process, it thus
provides an imperfect and a potentially misleading representation
of how the real system works. Model errors (also referred to as
structural errors) reflect our ignorance about the very nature of
the system. Model error may of course yield major consequences if
the model is used for forecasting (in particular when extrapolating
beyond the range of the data that have been collected). The role
of hypotheses is to restrict the number of plausible models. By
convention, a zero probability is put on the models that do not
belong to the set delimited by the hypotheses. The model error
term is to be quantified only for the members of this remaining
set.

2. Process stochasticity

Models with deterministic process are useful to learn from the in-
teraction of complex processes. However, when confronting models
with data, models must account for unpredictable variability or
stochasticity that cannot be explained by deterministic processes.
Process stochasticity can take different forms of which the most
common are demographic stochasticity (due to random differences
between individuals or statistical groups of individuals with the
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same characteristics) or environmental stochasticity (due to un-
predictable random variations of parameters) ([100]).

3. Observation or measurement errors

Observation or measurement errors stem inherently from the im-
possibility to accurately and exhaustively observe Nature. They
are the consequence of imperfection in the data records. Field ob-
servations are rarely issued from an optimized sample scheme, and
the expense of data collection restrict the collection of as much
data as might be desirable. Data are often incomplete, and the
amount of sampling and measurement errors resulting from either
sampling, measurement or estimation mistakes is often large and
unknown. In the words of J. Schnute ([272]), “counting fish is like
counting trees except they are invisible and they move.”Hence, the
Ecological Detective in Figure 1.1 has to cope with indirect, noisy
and incomplete observations which have to be put in coherence
with some hypotheses about the hidden process that underlines
the observed phenomenon.

In statistical ecology, uncertainty due to model errors generally rep-
resents the major source of uncertainty ([252]; [277]). Model weighting
or model averaging offers some tools to handle model errors ([139]; [182];
[287]). In statistical models, uncertainty due to process stochasticity is
generally irreducible, in the sense that it does not decline when the
sample size increases. The uncertainty due to estimation errors embed
uncertainty stemming from measurement errors, and results from impre-
cision (quantified by statistical inference) when estimating the unknown
of the systems from the available data. In contrast with the uncertainty
due to process stochasticity, estimation errors can be reduced by improv-
ing the data collection procedure. In theory, they decline asymptotically
when more data become available (only under the stringent hypotheses
of a perfect model and a stationary phenomenon).

1.1.3 Embedding ecological models within a statistical
approach

As these different sources of errors and variability are conceptually
and quantitatively different, modern statistical ecology seeks to propose
quantitative tools to separate out the uncertainty due to the process
stochasticity to the one due to the observation sampling process. This
requires flexible approaches to fusing models with data, approaches that
can accommodate uncertainties in the way ecological processes operate
and the way we observe them.
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1.1.4 Motivating examples

The Biomass production model

Biomass production models ([137]; [244]) have a long history in quan-
titative fisheries sciences and continue to prove useful in stock assessment
under a data-poor environment. Although they are based on a crude sim-
plification of the fish population dynamics, they remain a tool of choice
for providing fisheries management advice in situations in which:

• There are insufficient age- and size-composition data to permit the
use of assessment methods based on age- or size-structured models;

• One is mostly interested in estimating the maximum sustainable
yield (CMSY ), and its associated biomass (BMSY ) (mathematical
details about MSY calculations are postponed to Chapter 7, see
Fig. 7.5);

• It is worthwhile predicting the biomass levels and surplus produc-
tion for the future and sometimes in the past, to impute missing
data records. The latter is particularly important to test the perfor-
mance of alternative management scenarios when efforts are being
made to control the level of catches and promote a sustainable
harvest policy.

FIGURE 1.2: Biomass dynamics of an exploited fish stock.

The motivating example of the Biomass production model illustrates
the three complementary steps (Fig. 1.1).
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1. Step 1. Propose a tentative model for the process under concern.

The dynamic biomass production model is a crude but useful sim-
plification of the dynamics of a harvested fish population. The key
variable of interest is the total biomass of the population at each
time. The dynamics is modeled in discrete time, most often on a
year-to-year basis. The biomass at the beginning of time step t+1,
denoted Bt+1, is obtained from Bt through a rather simple balance
equation:

Bt+1 = Bt + g(Bt)− ct (1.1)

where ct is the observed harvest between t and t+1 and g(Bt) is the
production function. It quantifies the balance between recruitment
(arrival of new individuals in the stock biomass), growth (weight),
natural mortality, and possibly emigration-immigration. The most
classic choice for the production function is the logistic one with
two parameters, the population growth rate r and the carrying
capacity K, which are generally hypothesized constant over time
(see also Chapter 11 for more details):

g(Bt) = r ·Bt · (1−
Bt
K

) (1.2)

A Log-Normal random noise term is generally added to capture the
biological variability due to (unpredictable) environmental varia-
tions: {

Bt+1 = (Bt + g(Bt)− ct) · eεt+1

εt+1
iid∼ Normal(0, σ2)

(1.3)

with the ∼ sign meaning that εt+1 , the logarithm of the perturba-
tion, is a normally distributed N(0, σ2) random term standing for
the environmental noise. Mathematics for the Normal Distribution
will be developed in Chapters 3 and 6.

2. Step 2. Learning from observations.

Let t = 1, ..., n denote the epochs for which observations are
available. Available data in that case typically consist of a series
of observed catches c1, ..., cn and of abundance indices i1, ..., in,
the latter are often assumed proportional to the current biomass
it = q ·Bt, ∀t ∈ {1, ..., n}.
Abundance indices can be of different nature. They can be derived
from commercial data such as commercial catches per unit of fish-
ing effort, or from a scientific survey such as scientific trawling or
acoustic surveys. The abundance indices it=1:n are often assumed
proportional to the current biomass it = q ·Bt, ∀t ∈ {1, ..., n} with
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a catchability parameter q, hypothesized constant over time. A
common, although simplifying assumption is that observed catch
and abundance index of each year t are respectively related to the
unobserved true catch and unobserved biomass through stochastic
observation models: {

ct = Ct · eω1,t

it = q ·Bt · eω2,t
(1.4)

with ω1,t and ω2,t normally distributed N(0, τ1,o
2) and N(0, τ2,o

2)
random terms describing the uncertainty in the observed catches
and abundance indices due to measurement and sampling error
(observation error).

Fisheries scientists would typically rely on the available knowledge
(expertise and past data) and observation (data at hand) to pro-
vide answers to the following questions of interest: i) Is the logistic
growth function appropriate or does another form of production
function fit the observed data better? ii) What are the credible
values for the parameters (r,K) and the associated uncertainty?
Can the growth rate r and the carrying capacity K be elicited from
some probabilistic prior judgmental expertise? iii) What are the
credible values for the historical trajectory of the biomass level,
say B1, ..., Bn and what is the level of the Biomass depletion over
the time series Bn

B1
?

Figure 1.3 relies on a graphical representation based on different
layers to illustrate the conceptual difference between the stochas-
tic process for the biomass dynamics and the sampling model for
the observations. Statistical inference aims at using the informa-
tion contained in the data (it, ct)t=1:n to learn about the unknown
biomass dynamics.

3. Step 3. Use the model in a deductive way as a decision tool.

Quantities that interest the natural resources manager, such as the
management reference points related to long-term equilibrium, can
be directly derived from the parameters (r,K) of Eq. (1.2):

CMSY =
r ·K

4

BMSY =
K

2

(1.5)

What are credible values for the management reference points
CMSY and BMSY and their associated uncertainty? Do they match
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FIGURE 1.3: Biomass production model. Hierarchical representation
to explicitly disentangle the stochastic model for the hidden dynamics
from the sampling model for the observations. The arrow from the hidden
dynamic to the observations represents the sampling process giving rise
to observations (it, ct)t=1:n.

the common sense of fishery scientists? Fisheries scientists may
also be interested in deriving predictions of future trajectories
of the biomass and catches over time t = n + 1, ..., n + k un-
der alternative management scenarios. Simulations typically aim
at comparing different harvest control rules, e.g., different fishing
mortalities Fn+1, ..., Fn+k leading to a series of catches Cn+1 =
Fn+1Bn+1, ..., Cn+k = Fn+kBn+k. Implementation uncertainties
can also be modeled at this stage to evaluate the consequences
of the unavoidable discrepancies between a recommended manage-
ment policy and its actual implementation in operational practice.
Predictive simulations are also of interest to help implement ex-
perimental designs. Suppose for instance that, due to budget limi-
tations, only half of the scientific campaigns previously planned in
the next ten years will be undertaken. When and how should the
measurements be taken to make the best of the future information?
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Atlantic salmon stage-structured population dynamic model

As a second example, we develop a more elaborate model, based on
age-structured salmon data. Stage-structured population dynamics mod-
els have become standard tools for analyzing population dynamics ([50];
[51]; [300]). They are grounded on biological fundamentals and provide
some flexibility to mimic complex dynamic behavior. Such models can
also be employed to evaluate the performance of a wide range of manage-
ment options. Rivot et al. ([259]) consider a model for Atlantic salmon
populations dynamics in the northwest of France which focuses on two
of the fundamental events in the life history of A. salmon: Smoltification
and spawning migration (Fig. 1.4).

FIGURE 1.4: Simplified Atlantic salmon life cycle model with only one
sea-age class. Spawners Sp1 return and spawn one year before spawners
Sp2 of the same cohort.

Spawning occurs in the river in late fall and early winter and most
spawners die shortly after their first reproduction. Eggs hatch in the
gravel and alevins emerge during the next spring. After emergence,
young-of-the-year salmon (denoted 0+ in Fig. 1.4) spend one or sev-
eral years in the river before undergoing smoltification in the spring. At
this time, they migrate downstream to the sea as smolt. Adults return to
their home river for spawning after one or several years at sea. In France,
a major portion of the juveniles become smolts at one year of river age
(1+ Smolt, denoted Sm1 in Fig. 1.4), in the spring following their emer-
gence as young-of-the-year salmon, leaving behind the smaller juveniles
(Parr1) to spend an additional year in the river before seaward migra-
tion (2+ Smolt, denoted Sm2 in Fig. 1.4). Fish from the two smolt age
classes return as spawners after one or two years at sea. Other possible
life histories (early maturation in freshwater before seaward migration,
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adults spending more than 2 winters at sea, spawners surviving after
spawning) are rare and only have a negligible influence on population
dynamics.

In this motivating example, we will consider a simplified life cycle
model by forgetting the variability of sea age classes and consider that
fish from the two smolt age classes return as spawners after only one year
at sea as shown in Fig. 1.4 (Sp1 and Sp2, respectively). Two additional
simplifying hypotheses are made: i) We suppose that the life history is
not an inheritable characteristics; ii) We use a common life cycle for
male and female fish.

Below we illustrate what could be the three complementary steps of
the quantitative modeling approach (Fig. 1.1) applied to this A. salmon
population dynamics model.

1. Step 1. Propose a tentative model for the process under consider-
ation.

Hereafter a mathematical representation of the life cycle model is
proposed in Fig. 1.4. The model is built on a discrete, yearly basis
time step. The number of spawners, eggs, young-of-the-year, pre-
smolts, 1+ smolts and Parr 1 and 2+ smolts at each time step t
are denoted Spt (Spt = Sp1t + Sp2t), Wt, 0+t, PSmt, Sm1t, P1t
and Sm2t, respectively.

(a) Spawners→ Eggs. The number of eggs spawned by the adults
returning in year t, Wt, is modelled as a deterministic func-
tion of the number of spawners, the proportion of females pf
and of the mean fecundity of these females denoted fec, both
considered as known and constant over time:

Wt = Spt · pf · fec (1.6)

(b) Eggs → 0+ juveniles. A density-dependent process is used to
model the freshwater production of juveniles resulting from
the reproduction of the spawners returning in year t. Den-
sity dependence is modelled by the widely used dome-shaped
Ricker curve with unknown parameters (α, β). Environmen-
tal variability renders the stock-recruitment process stochas-
tic. Again, this is classically introduced via independent and
identically distributed LogNormal errors:{

0+t+1 = α ·Wt · e−β·Wt · eεt

εt
iid∼ N(0, σ2)

(1.7)

As in Eq. (1.3), εt is a normally distributed N(0, σ2) random
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term standing for the environmental noise (see also Chapter
7).

(c) 0+ juveniles → Smolts. The young-of-the-year 0+t+1 will
then survive to the next spring of year t + 2 as pre-smolts
PSmt+2, with probability γ0+ (considered as invariant over
time). Survival can be modeled as a Binomial process that
captures the demographic stochasticity:

PSmt+2 ∼ Binomial(0+t+1, γ0+) (1.8)

In each cohort, a proportion θSm1 (also assumed time invari-
ant) of the pre-smolts will migrate as 1+ Smolts, the remain-
ing part will stay one additional year as 1+ Parrs. Life history
choice for smoltification is also commonly modeled using a Bi-
nomial distribution:

Sm1t+2 ∼ Binomial(PSmt+2, θSm1) (1.9)

1+ Parrs will survive (with a survival rate γParr1) and will mi-
grate as 2+ Smolts. Demographic stochasticity in the survival
of resident parrs is also modelled using a Binomial distribu-
tion:

Sm2t+3 ∼ Binomial(Parr1t+2, γParr1) (1.10)

(d) Smolts→ Returning spawners. Hypothesizing a strict homing
of adults to their native stream, the smolt-to-spawner transi-
tion can be modeled as the result of Binomial processes with
γSm the survival probability at sea, considered as invariant
over time and between the two smolt age classes:{

Sp1t+3 ∼ Binomial(Sm1t+2, γSm)

Sp2t+4 ∼ Binomial(Sm2t+3, γSm)
(1.11)

The spawners returning in year t+ 3 and t+ 4 will contribute
to the reproduction of year t+ 3 and t+ 4, respectively.

2. Step 2. Learning from observations.

All parameters (α, β, σ, γ0+, θSm1, γParr1, γSm) in the A. Salmon
stage-structured population dynamic model are usually unknown.
They could ideally be estimated from time series of observations
of the number of fish in each of the development stages. However,
these numbers are generally not directly observable. For instance,
the true number of 1+ Smolt migrating downstream each year t
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is unknown. Typically, only partial knowledge is available through
a trapping experiment. The available observations will then con-
sist of a number of smolts caught in a downstream trap, denoted
CSm1,t. Assuming a standard Binomial trapping experiment with
trap efficiency πSm (considered constant), such an observation pro-
cess follows a Binomial distribution:

CSm1,t ∼ Binomial(Sm1t, πSm) (1.12)

Similar Binomial counting processes with eventually different cap-
ture efficiencies can be connected at stages Sm2, Spawners Sp1
and Sp and 0+ juveniles, thus providing information on the dy-
namics of all development stages but accounting for the sampling
uncertainty. Statistical inferences will consist of using this informa-
tion to learn about the A. salmon population dynamics. In other
words, we want a probabilistic judgment concerning the various
stages and parameters given the data. Chapter 11 is devoted to
this analysis.

3. Step 3. Use the model in a deductive way as a decision tool.

Although the recreational fishery (angling) is often the main source
of salmon exploitation, associated harvest rates could be rather
high (near 50%) and have different harvest control rules (limited
fishing periods, quotas, etc.) which can be used to regulate ex-
ploitation. Such a population dynamic model can be a useful tool
to assess the performance of different management strategies. This
will be developed extensively in Chapter 12.

1.2 Conditional reasoning, graphs and hierarchical
models

1.2.1 Use conditional probability distributions to model
probabilistic transitions

Conditional models are networks of components (variables, also
called nodes in graph theory jargon), but many of the nodes are un-
known. Those variables are linked by deterministic or probabilistic con-
ditional dependencies ([152]). In this book, conditional probability distri-
butions are used to mimic uncertainty and stochastic influences. We will
use the Gelfand’s ([115]) bracket notation for probability distributions.
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Let
[V1| V2]

denotes the probability of event V1 given the event V2 has occurred.
It states that, given V1, the issue V2 is uncertain and described by
probabilistic bets. The bracket notation will be used indifferently for
probability distributions of discrete variables and for probability density
functions (pdf) of continuous variables.

Example (continued): A. salmon population dynamic model

The A. salmon stage-structured model can be viewed as a conditional
model. Following our bracket notation above, the Eggs → 0+ juveniles
transition (Eq. (1.7)) can be written as a conditional probability dis-
tribution under the form [0 +t+1 |Wt, α, β, σ]. Here, the conditional pdf
represents Log-Normal environmental variability.

All mechanisms of the 0+ juveniles → Smolts transitions were mod-
eled as Binomial distributions that can be written as conditional prob-
ability distributions [PSmt+2|0+t+1, γ0+], [Sm1t+2|PSmt+2, θSm1] and
[Sm2t+3|Parr1t+2, γParr1]. Here, the conditional pdf represents demo-
graphic stochasticity.

The Binomial smolt-to-spawner survival transitions can also be writ-
ten as conditional probability distributions [Sp1t+3|Sm1t+2, γSm] and
[Sp2t+4|Sm2t+3, γSm].

1.2.2 Graphical models

Graphical models, which are often called Bayesian networks or Bayes
nets, are a useful metaphor for such conditional models ([73]). The use
of graphical models significantly improves the modeling process in two
ways: i) They are useful in the two tasks of statistical modeling ([285]),
deductive way of thinking when designing the model structure (cause-to-
effect) and inference when seeking to learn about the unknowns (effect-
to-cause); ii) They help visualize the factorization of complexity; subse-
quently, they proved a valuable tool for catalyzing interactions between
experts during the process of model building.

Figure 1.5 sketches the possible basic conditional relationships be-
tween three variables V1, V2, V3 (to get all configurations, consider all
permutations since the ordering 1, 2, 3 does not matter).

In graphical models, conditional reasoning is efficiently summarized
and pictured by means of ellipses, boxes and arrows. Graphical conven-
tions help to explain the statuses of the variables under the inferential
context, and the conditional dependencies and independencies between
the variables: i) Ellipses are reserved for variables that are defined by a
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FIGURE 1.5: Some acyclic conditional links between three variables.

probability distribution. Nonobserved variables are represented as white
ellipses, and observed variables (data) as shaded ellipses. An ellipse with
no parents is often called a parameter ; ii) Shaded rectangular boxes can
be used to represent fixed constant or covariates which may physically
help to understand the structure of the model; iii) Arrows are used to
model dependencies between the variables. Solid line arrows represent
stochastic transitions between variables, and dotted line arrows repre-
sent logical transition (deterministic). The direction of the arrows follows
the line of reasoning the modeling phase ([215]).

In these graphs, no cycle is allowed, so that nodes are unambigu-
ously defined conditionally to their parents, following the arrows. The
very stringent conditions for the existence of a joint distribution [V1, V2],
when the two conditionals [V1|V2] and [V2|V1] are given (i.e., there ex-
ists a cycle in the previous graph), are detailed in [8]. Graphical models
conveniently designed without cycle via successive conditioning links are
called Directed Acyclic Graphs (DAG). They have proved to be valuable
tools for many ecological studies ([34]; [127]; [167]; [171]; [188]; [203];
[239]; [255]; [257]; [259]; [303]; [304]).
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1.2.3 Conditional reasoning and factorization of the
complexity

Many components may interact in a model and global complexity
emerges from these local interactions. In a stochastic world, the com-
plete interactions are described by the full joint distribution of all the
components. If the model is formed from n components or random vari-
ables V1, ..., Vn , the full joint distribution of V1, ..., Vn is written as:

[V1, ..., Vn] (1.13)

However, the global complexity is made from a network of much sim-
pler local interactions. Each variable Vi has been introduced in turn by
considering its dependence directly upon only a reduced number of vari-
ables (the direct parents of Vi). The global complexity, materialized by
the full joint probability distribution of all the variables, becomes easily
tractable when seen as the combination of these small local interactions.
Following the arrows from these parameter nodes down to the other
nodes of the DAG, the joint distribution of Eq. (1.13) can be factorized
into more simple parent-child interactions:

[V1, ..., Vn] =
n∏
i=1

[Vi|pa(Vi)] (1.14)

The parameters have been previously defined as variables without
parents; hence, they cannot be defined as conditional distributions in
Eq. (1.14) and we must make the convention that pa(Vi) is the null set
for the i’s corresponding to parameters. Distributions for these entry
nodes of the graph are typically called a priori distributions or priors.
It is worth noting that the interpretation of probabilistic conditional
models combines naturally with the Bayesian paradigm that quantifies
uncertainty by means of probabilistic judgments ([26]; [82]; [153]; [268];
[299]). As random variables generated by priors, parameters naturally
appear as white ellipses in the DAG and the corresponding terms in
Eq. (1.14) collapse to [V ∗|pa(V ∗)] = [V ∗], and Eq. (1.14) writes:

[V1, ..., Vn] = [V ∗]×
∏

Vi 6=V ∗
[Vi|pa(Vi)] (1.15)

Finally, one will merely find the various elementary conditional con-
figurations illustrated in Fig. 1.5 as the small pieces of interaction issued
from such decomposition (Eq. (1.15)) of the joint distribution.

Constants and forcing conditions introduced into the analysis as de-
terministic covariates have no probabilistic status (conversely to the ran-
dom variables V1, ..., Vn) and should not in principle be considered in
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FIGURE 1.6: A simple example of DAG with four variables and one
covariate. V1 and V2 have no parents and are considered as param-
eters with independent unconditional distributions [V1] and [V2]. The
full joint distribution has been designed according to the factorization
[V1, V2, V3, V4|X] = [V1]× [V2]× [V3|V1, V2;X]× [V4|V3].

probabilistic computations. However, it is often useful to make them ap-
pear in a DAG in order to precisely detail the model structure. Yet, note
that we used shaded rectangular boxes instead of ellipses as graphical
conventions to emphasize their particular status. Once they appear in
the DAG, the full joint distribution of the model is implicitly conditioned
by the constants and covariates which are part of the deterministic model
structure. As far as the bracket notation is concerned, they will be subse-
quently mentioned in the conditioning side of a probability distribution
when necessary (but one may also wish to separate them by a semicolon
from the random variables). Figure 1.6 provides a very simple example
of conditional model with four variables (V1, V2, V3, V4) (in which V1 and
V2 are parameters) and one covariate X.

Example (continued): A. salmon population dynamic model

Figure 1.7 gives simple examples of DAG for the different demo-
graphic transitions that characterize the A. salmon life cycle, and pro-
vides the DAG for the full life cycle model running for one cohort orig-
inated from eggs spawned at year t. The DAG is built by connecting
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FIGURE 1.7: Step-by-step construction of a complex model by articu-
lating blocks to describe the full A. salmon life cycle model. Upper panel:
(a) Ricker stock-recruitment relationship with environmental noise; (b)
Survival from 0+ juveniles to pre-smolts; (c,d) Smoltification transitions
with demographic stochasticity; (e) Post-smolts marine survival rates.
Bottom panel: DAG for the entire life cycle describing the dynamic of
one cohort originated as eggs spawned at year t.
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the sub-modules that mimic the density-dependent eggs → 0+ juveniles
survival (Ricker relationship), the 0+ juveniles → pre-Smolts survival,
the smoltification phase and the marine survival of post-smolts. This
illustrates how models can be built step-by-step, by first building some
bricks independently that will be connected together in a second step.

The basic properties of DAGs simply derive from standard proba-
bility theory. Consider for instance the set of all variables in Fig. 1.7.
(α, β, σ,Wt, γ0+, θSm1) have no parents; the parents of 0+t+1 are Wt

and (α, β, σ); the parents of Sm1t+2 are PSmt+2 and θSm1 and so on
for the ongoing of each cohort. The full joint distribution of all unknown
variables for one cohort originated from eggs spawned at year t, denoted
Jt, can be factorized relying on probability theory. Following the local
dependencies in the DAG (Fig. 1.7), and assuming that all parameters
are independent, this factorization of the joint probability distribution
reads:

Jt =[α]× [β]× [σ]× [Wt]× [γ0+]× [θSm1]× [γParr1]× [γSm]

× [0 +t+1 |Wt, α, β, σ]× [PSmt+2|γ0+, 0+t+1]

× [Sm1t+2, Parr1t+2|PSmt+2, θSm1]

× [Sm2t+3|Parr1t+2, γParr1]

× [Sp1t+3|Sm1t+2, γSm]× [Sp2t+4|Sm2t+3, γSm] (1.16)

1.2.4 Embedding observation processes into a proba-
bilistic conditional model

Following the above section, the DAG is a graphical representation
of probabilistic cause-to-effect relationships. Looking at the graph by
following the direction of the arrows emphasizes the child-parent depen-
dence (and eventually conditional independence) of the variables. This
corresponds to the modeling way of thinking. The DAG depicts the ten-
tative structure that has been proposed for the model. The mathematical
(probabilistic) result is the factorization of the full joint distribution as
in Eq. (1.16).

Such a probabilistic conditional model can be further developed
by including probabilistic observation process. Indeed, observation pro-
cesses are rarely perfect, especially in ecological sciences. Sampling and
measurement errors may occur in many experimental protocols, and are
also modeled via conditional probability distributions. For instance, a
variable Vi in a model can be an observable, and the conditional dis-
tribution [Vi|pa(Vi)] stands for the observation process or a sampling
process, that is the stochastic mechanism that leads to an observation.
The DAG depicts the structure that is proposed for both the process and
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the observation model. As far as probability is concerned, the observa-
tion process is simply additional (observed) variables fully integrated
into the conditional probability model.

1.2.5 Hierarchical modeling: Separating out process
stochasticity from observation errors

Variables in a complex graphical model that include both a process
for state variables and an observation process, can advantageously be
classified into three categories to emphasize the so-called Hierarchical
Modeling structure.

Y

Z

θ Parameters

Latent 
variables

Observables

b) Hierarchical Modela) Simple model

Y

θ

FIGURE 1.8: Directed acyclic graph (DAG) of a prototype Hierarchi-
cal Model.

Nodes without any parent, nonobservable nodes with parents, and
observed nodes are denoted θ, Z, and Y, respectively. The nonobservable
nodes with parents, denoted Z, are also called latent variables.

The conventional notation (θ, Z, Y ) splits the DAG variables into
three layers as depicted in Fig. 1.8 where, conversely to DAG, we con-
sider each layer as a block. Using the generic set of variables from the
previous section V1, ..., Vn, let us for convenience sake suppose that the
p first nodes V1, ..., Vp are not observables, and that the last n− p nodes
Vp+1, ..., Vn are observables. We hence have distinguished Y , a block
notation for all the observables in the graph (those previously termed
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Vp+1, ..., Vn) and the other nonobserved quantities V1, ..., Vp=(θ, Z) that
are unknown. Among these unknown quantities, we further make the dis-
tinction between the parameters (suppose for convenient notation that
the k first variables V1, ..., Vk are nodes without parent) that are entry
points to the graph and are denoted θ and the p− k inner ones (the re-
maining Vk+1, ..., Vp) that are denoted Z. Parameters θ are often called
state of nature while latent variables Z are commonly named state of
the system. Such a three-layers structure as depicted by Fig. 1.8 is the
core of Bayesian Hierarchical Modeling (HBM).

Keeping in mind the groupings θ = (V1, ..., Vk), Z = (Vk+1, ..., Vp),
Y = (Vp+1, ..., Vn), and assuming that parameters have an unconditional
prior probability distribution [θ], the full joint distribution of the HBM
may be factorized as in Eq. (1.17):

[θ, Z, Y ] = [θ]× [Z|θ] times[Y |θ, Z] (1.17)

Equation 1.18 offers a more explicit interpretation of the factorization
of a hierarchical model, which is illustrated in Figs. 1.8 and 1.12:

[Parameters, Process, Observables] =

[Parameters]

× [Process|Parameters]
× [Observables|Process, Parameters] (1.18)

It is worth noting that [Z|θ] and [Y |Z, θ] are compact representations of
eventually highly complex probabilistic state and observation processes.
These process and observation equations might be constructed from the
combination of many more simple local interactions, which are them-
selves reorganized through parent-child conditional dependencies using
Eq. (1.14).

Example (continued): A. salmon population dynamic model

In the A. Salmon stage-structured population dynamic model, the
number of fish in each of the development stage are unknown but are
observed indirectly through capture experiments during migration in
downstream (for smolts) and upstream (for adults) traps and through
electrofishing experiments for freshwater resident 0+ juveniles. As de-
scribed previously, those capture experiments can be modeled by Bi-
nomial sampling probability distributions, with probabilities of capture
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denoted πSm, πSp, and π0+, and considered constant for all years t:

C0+,t+1 ∼ Binomial(0+t+1, π0+)

CSm1,t+2 ∼ Binomial(Sm1t+2, πSm)

CSm2,t+3 ∼ Binomial(Sm1t+3, πSm)

CSp1,t+3 ∼ Binomial(Sp1t+3, πSp)

CSp2,t+4 ∼ Binomial(Sp2t+4, πSp)

(1.19)

Equation (1.19) brings an additional block to be linked to the pre-
vious DAG. Figure 1.9 extends Fig. 1.7 where Binomial counting pro-
cesses have been connected at stages 0+ juveniles, smolts and spawners.
Following our graphical conventions, the corresponding ellipses for the
Binomial catches in the graph are shaded if the catches are observed,
and the catchabilities, considered known, appear in shaded boxes.

FIGURE 1.9: DAG describing the A. salmon life cycle model with
Binomial observation process. Parameters (θ following our notations)
appear in the upper layer. The middle layer describes the dynamics of
hidden states ([Z|θ]). The observation model ([Y |Z, θ]) is presented in
the bottom layer.

Keeping in mind our block notation (θ, Z, Y ) for a generic hierarchical
model, the vector of all the parameters θ would correspond to the vector
of transition probabilities between each stage (survival and mortality
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ratios, Ricker parameters, etc.). The latent states Z (the other nodes in
between parameters and observables) would be mainly the number of in-
dividuals in the possible stages for all time indices, and the observations
y will be the catches:

• Nodes without parents θ = (α, β, σ,Wt, γO+, γParr1, θSm1, γSm)

• Nonshaded nodes with parents Z = (O+t+1, PSmt+2, Sm1t+2,
Parr1t+2, Sm2t+3, Sp1t+3, Sp2t+4)

• Shaded observed nodes Y = (cO+t+1
, cSm1t+2

, cSm2t+3
, cSp1t+3

,
cSp2t+4

).

Note: In this example, all the catchabilities π are considered known.
But the π’s could also be estimated. This is easily performed by ex-
panding the observation process to include capture-mark-recapture ex-
periments designed to provide information on both capture efficiencies
π and total numbers (for details, see [255], [257] and [259]).

1.3 Bayesian inferences on hierarchical models

1.3.1 The intuition: What if a node is observed?

The main intuition for Bayesian statistical learning (in other words
Bayesian inference) can be advantageously presented via fluxes of in-
formation on a DAG. What happens when an observation becomes ac-
tually available? Let us, for convenience, suppose that the observable
nodes Y (e.g., the n− p last nodes in the graph Vp+1, ..., Vn, have been
observed and take the value y. Following our graphical conventions, the
corresponding ellipses in the graph then become shaded. Once the phe-
nomenon Y has been observed (note we are using latin capital letters
for the random phenomenon and lowercase ones for data), this certainly
impacts the probability distributions of all the other nodes in the graph.
When looking at the flow of information in the DAG, the information
contained in Y = y will propagate in the reverse direction of the ar-
rows. An effect was observed: How will the distribution of the differ-
ent parents of y be modified? This is the inferential way of thinking.
In other words, and following our block notations (θ, Z, Y ), observable
nodes in the block Y are no longer random but they have been set to
fixed observed values Y = y, and the range of possible values of the other
nodes (θ, Z) = (V1, ..., Vp) in the graph will subsequently be restrained
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to be probabilistically compatible with the observations y. The distribu-
tion [θ, Z, Y ] does not matter any longer; we are now interested in the
conditional distribution:

[theta, Z|Y = y] (1.20)

namely the distribution describing what we do not know (the nonshaded
nodes in the ellipses of the graph) given what we have seen (the shaded
ellipses). In the Bayesian rationale, [θ, Z|Y = y] stands for the a poste-
riori distribution, i.e., the joint posterior distribution of all unknowns
updated by the information conveyed by the recorded occurrence Y = y.

For instance, Fig. 1.10 illustrates how the information contained in
the observed variables V4 = v4 will propagate through the graph (fol-
lowing the inverse sense of the arrows) to update the distribution of
variables V1, V2, V3 into the so-called posterior [V1, V2, V3|V4 = v4].

V4

X

V1 V2

V3Modeling Inference

FIGURE 1.10: What happens when the variable V4 is observed? The
information will propagate through the graph following the inverse sense
of the arrows to update the distribution of variables V1, V2, V3 into the
posterior [V1, V2, V3|V4 = v4].

1.3.2 Getting the Bayesian posterior distribution

The previous section provided an intuitive explanation of how the
information brought by the observations are used to update the proba-
bility distribution of all unknowns in a probabilistic model. Clearly, such
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an updating only makes sense in the Bayesian paradigm. According to
Reverend Thomas Bayes in his famous post mortem paper [20], commu-
nicated to the Royal Society by his friend Richard Price: “The probability
of any event is the ratio between the value at which an expectation de-
pending on the happening of the event ought to be computed, and the
chance of the thing expected upon it’s happening.” In modern words (see
[82] or [268]), the probability of the event E is the price at which you
would buy or sell a bet that rewards you one currency unit if event E
happens, and nothing if it fails. Conversely to the frequentist definition
of probability, the limiting fraction of positive outcomes in a repetitive
experiment of Jacques Bernoulli (1654-1705), which restricts probability
to observable events only, the Bayesian definition directly quantifies the
degree of uncertainty of a scientific judgment.

FIGURE 1.11: The Bayes rule: an information processor. The idea of
Bayesian updating is represented here with data and unknowns denoted
by y and φ, respectively.

Bayesian inference (see Fig. 1.11) has been extensively discussed in
several classical books such as [26], [36] or [117] or [153]. The long story
of struggles between Bayesian scientists and frequentist ones is brightly
depicted in [201], putting forward the prominent role of Bayes’ rule in
turning points of scientific history. Funny enough, it seems that the many
revivals of the often overlooked Bayesian reasoning stemmed from scien-
tists in applied fields, mostly engineering. In ecology too, the Bayesian
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controversy, still a matter of serious discussion in the previous century
(see for instance [92]), is now becoming out of fashion. Yet, frequentist
arguments like the ones from [88] or [174] remain challenging because
they point out where Bayesian answers have to be developed and popu-
larized so as to conduct more convincing statistical analyses.

Although there are many frequentist methods to fit hierarchical mod-
els ([87]), Bayesian reasoning offers a convenient probabilistic rationale
to derive inference on hierarchical models. Following [64], we adopt in
this book the Bayesian approach for the following theoretical and prac-
tical advantages:

• An intuitive comprehension of the uncertain world in terms of pre-
dictive probability statements, which seems rather natural to many
life scientists. We are reasoning conditionally and, when facing new
pieces of information, coherence in our probability statements im-
plies that we should update our believes according to Bayes’ rule;

• A powerful toolbox for statistical inference based on modern Monte
Carlo algorithms;

• A broader view on statistical thinking by attaching a joint proba-
bility structure to both the space of unknowns and the algebra of
observable events.

In turn, hierarchical modeling offers many avenues for a better un-
derstanding of Bayesian data analysis ([116]). It has been widely applied
to the treatment of ecological data ([64]; [183]; [312]), with many appli-
cations in the context of fisheries ecology ([132]; [204]; [239]; [255]; [316]
and [317]). Hobbs ([138]) and most of the Ecological Applications’ spe-
cial issue on Hierarchical Modeling in 2009 (Vol. 19, Number 3) detailed
the great potential of the HBM framework in ecology. Here, we only
provide a summary of the key ideas of the mathematics that underline
the calculus of posterior distributions.

The full joint distribution [θ, Z, Y ] can be factorized as in Eq. (1.17)

[θ, Z, Y ] = [θ]× [Z|θ]× [Y |θ, Z]

but also in the following form by making the reverse conditioning:

[θ, Z, Y ] = [Y ]× [θ, Z|Y ] (1.21)

Once the observable Y have been observed, some data Y = y are
available, and combining Eqs. (1.17) and (1.21) yields the Bayes formula:

[θ, Z|Y = y] =
[Y = y, Z, θ]

[Y = y]
(1.22)
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with

[Y = y] =

∫∫
z,θ

[Y = y|θ, z]× [z, θ]dzdθ (1.23)

Using the hierarchical factorization of [Y = y, Z, θ] in Eq. (1.17) one
obtains the practical way to get to the Bayes rule:

[θ, Z|Y = y] =
[θ]× [Z|θ]× [Y = y|θ, Z]

[Y = y]
(1.24)

The denominator of Eq. (1.24) detailed in Eq. (1.23) is called the pre-
dictive prior pdf. It encodes the credibility degrees that can be rationally
given to any possible value of the observable y by integrating out the
prior uncertainty about the unknown parameter θ and the (unknown)
latent variable Z. When searching to specify the posterior distributions
[θ, Z|Y = y], [Z|Y = y] and [θ|Y = y], the quantity [Y = y] is to be
considered as a constant because it is not a function of θ nor of Z.
Consequently, the full joint posterior distribution (Eq. (1.24)) is often
written as proportional to the factorization (Eq. (1.17)):

[θ, Z|Y = y] ∝ [θ]× [Z|θ]× [Y = y|θ, Z] (1.25)

The joint conditional distribution [θ, Z|Y = y] in Eq. (1.25) is the
posterior joint posterior distribution of the unknowns. This is the cor-
nerstone of Bayesian inference of hierarchical models. It quantifies the
credibility levels of the state of nature θ and the state of the latent
variable Z given that the experimental result y has occurred.

Let us now comment on some of the key features appearing in
Eq. (1.24):

1. It is helpful to understand the Bayes formula as an information
processor. The prior knowledge about the unknowns (θ, Z) is up-
dated into a posterior knowledge [θ, Z|Y = y] thanks to the data
y that have been conveyed through the model by the complete
likelihood [Y = y|θ, Z]. As in Fig. 1.11, this formula is commonly

presented as [φ|Y = y] = [Y=y|φ]×[φ]∫
φ

[Y=y|φ]dφ
, simply writing φ for the

couple (θ, Z) of unknowns.

From a rather philosophical point of view, updating the prior
knowledge [φ] into a posterior distribution [φ|Y = y] combines
two different natures of uncertainty. One may say that φ in the
prior distribution [φ] is a random quantity by ignorance whereas
the data y is the realization of the variable Y that is random by
essence (according to [Y = y|φ]).
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2. [θ] is the prior distribution of the components in parameter vector
θ. Setting the a priori distribution [θ] is also modeling according to
the Bayesian school of thought, with the delicate task of summa-
rizing the knowledge available to the analyst about the unknown
θ prior to having observed y. Note that in the context of a DAG,
the joint prior distribution for the vector θ with k components may
itself be a network that also factorizes as [θ1, ..., θk] =

∏
[θi|pa(θi)].

Some nodes will be taken as parameters stricto sensu (i.e., nodes
without parents), and others will be defined conditionally upon the
already defined ones, following a prior model structure.

3. We call [θ, Z] = [Z|θ] × [θ] the joint prior knowledge for the un-
knowns. It combines expert knowledge (encoded in [θ], see below)
and phenomenological knowledge ([Z|θ] which encodes how to go
from state of nature θ to hidden system states Z).

4. [Y |θ, Z] defines the complete likelihood. Specifying likelihoods is the
essential task of modeling. It amounts to describing with mathe-
matical objects (probability distributions and deterministic func-
tions) how we go from the causes, i.e., the unknown quantity of
interest θ, to the nonobservable phenomenon of interest Z (the
latent layer), which in turn will give rise to the observable conse-
quences Y . In these most important tasks, the analyst introduces
theoretical hypotheses about the nature of the processes giving rise
to the observed data and the latent variables. The likelihood in the
classical sense of the term goes directly from the parameters to the
tangible quantities, which is:

[Y = y|θ] =

∫
z

[Y = y|θ, Z]× [Z = z|θ]dz

In the above expression, the hidden state variables Z are integrated
out. Indeed from a pure likelihood point of view, the possible values
taken by the hidden part of the system do not matter. Latent vari-
ables might be considered as statistical nuisance quantities since
they appear mostly as mental intermediate tools that help going
from the causes θ to the observed consequences y. They are nev-
ertheless meaningful in terms of model design and interpretation.

5. Suppose we were interested in new values Y new produced by the
model given the already observed data y. This time, the degree
of credibility [Y new|Y = y] that can be rationally given to any
possible value of the observable Y new is obtained by integrating
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out the posterior uncertainty against the unknown parameter θ :

[Y new|Y = y] =

∫
θ

∫
z

[Y new, θ, z|Y = y]dθdz

=

∫
θ

∫
z

[Y new|θ, z, Y = y]× [θ, z|Y = y]dθdz

Keeping in mind statistical sufficiency, i.e., that once θ and z are
known, it is no longer necessary to keep observed values y in the
conditioning terms to generate new ones Y new :

[Y new|y] =

∫
θ

∫
z

[Y new|θ, z]× [θ, z|Y = y]dθdz (1.26)

This pdf is known as the posterior predictive distribution and un-
derpins predictive analysis in the Bayesian setting. Equation (1.26)
shows that, with a random sample from the posterior distribu-
tion [θ, Z|Y = y] at hand, generating posterior predictive val-
ues is a sequential straightforward procedure: (i) draw at random
θnew, Znew ∼ [θ, Z|Y = y], (ii) given θnew and Znew draw at ran-
dom Y new ∼ [y|θnew, Znew].

1.3.3 Capturing the posterior distribution in practice

Equation 1.24 seems rather simple in appearance; unfortunately, it
can be a hard task to obtain the posterior for the unknowns θ and Z in
many real case studies. Although the complete likelihood [Y = y|θ, Z]
and the joint prior [θ, Z] = [Z|θ] × [θ] are directly handled by the ana-
lyst, getting the posterior becomes burdensome when the unknown θ or
Z are defined in a high-dimensional space. In such a case, performing
the multiple integrations to derive the predictive pdf [Y = y] may be
intractable, even numerically. The advent of the Markov chain Monte
Carlo algorithms (MCMC) makes getting samples of posterior distribu-
tions technically possible for hierarchical models ([38]; [117]; [120]; [260]).
The analyst can now have access to [θ, Z|Y = y] by means of a random
sample of replicates {θ(g), Z(g)}g=1:G of size G drawn from [θ, Z|Y = y].
Monte Carlo algorithms avoid the explicit computation of the Bayes for-
mula denominator since they only need to know the distribution from
which to sample, up to a constant. Some of them, like the Gibbs sampler,
take advantage of the conditional independence structures encountered
in the DAG of HBM to implement more efficient sampling in the param-
eters’ space ([170]).

The free software WinBUGS ([71]; [185]; [203]; [284]) is a tool of
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choice for Bayesian inference when the posterior distributions contain
high-dimensional system states and parameters, which is the case of
HBMs for ecological data ([68]; [121]). King et al. ([164]) is of special
interest for the practitioner because, for each case study, they provide
their inference routines both in R (as a stand-alone program) and in Win-
BUGS. Although only Chapter 17 makes recourse to Bayesian thinking
(indeed, the last chapter, WinBUGS being the ultimate tool in the hand
of the analyst to give solutions to problems not solved by other conven-
tional analyses), Zuur et al. ([321]) is an interesting book from the field
of statistical ecology with many programs detailed in R. Kery ([160])
delivers a remarkable step by step WinBUGS initiation course, recov-
ering parameters from simulated data that could have been met during
ecological studies; as a logical sequel, real data are analyzed in depth
with more elaborate model structures in [161]. Recent publications of
interest for the ecologist wishing on hierarchical modeling also include
[67], [181] or [265].

1.4 What can be found in this book?

What makes a statistical model especially adapted to the treatment
of ecological data? Many of the classical ready-to-use statistical tool-
boxes have technical limitations and are not able to cope with the kind
of models that the environmental scientists would like to have. Most
of the classical statistical modeling toolboxes propose data-driven mod-
eling approaches in which models are built under the data constraint
that variables of the model are often chosen such that the data can be
considered as direct realizations of the state variables. In other words,
state variables and observations are collapsed into a single layer. Such
an approach is frustrating because it stifles creativity. Indeed, the most
interesting and stimulating models are the ones that are built from the
interaction of state variables introduced because of their interest, rather
than because of their direct observation. Classical statistical toolboxes
have also introduced confusion in the origin of the randomness. Vari-
ability/stochasticity in the process and uncertainty arising from obser-
vations (e.g., the sampling process or observation errors) are most often
collapsed.

This book intends to illustrate how the HBM framework enables to
go beyond these caveats. One also has to reply on Ogle ([221]) whose
paper ends with the following warning: “The primary issues that the
field of ecology faces with respect to this exciting and powerful approach
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to ecological data analysis is adequate training and education. In the ab-
sence of sufficient training, these methods may be underutilized, misun-
derstood, or incorrectly applied.” We will emphasize how HBM supports
multidimensional models involving complex interactions between param-
eters and latent variables as well as various observation equations to be
connected with. In contrast with classical statistical toolboxes, both ob-
servation errors and process variability are explicitly acknowledged. The
framework offers an original way to learn about the complex ecological
process from various sources of data and information. In addition, when
following the HBM avenue of thought, the scientist recovers the freedom
to build models of his own.

Parameters

Process
[Z | θ,x]

Observations
[Y=y | Z,θ]

Covariates x

Modeling

[θ,Z,Y | x]

Inferences

[θ,Z | Y=y,x]

Prior
[θ ]

Parameters

Process
[Z | θ,x]

Observations
[Y=y | Z,θ]

Covariates x

Modeling

[θ,Z,Y | x]

Inferences

[θ,Z | Y=y,x]

Prior
[θ ]

FIGURE 1.12: Hierarchical modeling strategy. Factorization of the
complexity and Bayesian inferences.

The specific ecological features will be found in the observation layer
of Fig. 1.12 (for instance, some peculiar data collection technique such
as successive removals or capture-mark-recapture) or in its process layer
(e.g., the description of a complex life cycle), or in both. This book pro-
poses a structured progression through the design of models for ecolog-
ical data. We start with simple models that progressively become more
complex (and more realistic) by introducing explanatory covariates and
intermediate hidden states variables. When fitting the models to data,
we also progressively present the various concepts and techniques of the
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Bayesian paradigm, from a very practical point of view and on real case
studies. Most data and programs are available from our website, includ-
ing a companion booklet of exercises with research suggestions for each
chapter.

Part I: Basic blocks of Bayesian modeling and inference
for ecological data

Part I refers mainly to models without a latent layer. Working with
the elementary DAG depicted in Fig. 1.8-a might seem quite frustrating
at first look. However, the intent is to make the reader familiar with the
usual links between a set of parameters and another set of observables.
Such training models have to be understood as elements to be stored for
further use when assembling more elaborate models in Part II. Of course,
we assume a reader with the basics in differential and integral calculus
and some elementary knowledge in linear algebra and optimization. Had
he or she forgotten everything about probability and statistics, some
good revision can be found in reading [102] or, in a spirit more oriented
toward engineers as in [151] and [311].

In Chapter 2, we recall the elementary Beta-Binomial model for
which the Bayesian analysis can be performed explicitly. On that op-
portunity, the WinBUGS inferring device is presented. The unavoidable
Normal distribution is detailed in Chapter 3 to test whether or not a
salmon farm changes the growth characteristics of wild salmon (with
its fellow pdfs, the Gamma and Student or T-distribution). In Chap-
ter 4, the Beta-Binomial structure is extended to encompass larger use-
ful stochastic structures for which posterior distributions can no longer
be obtained analytically. We also complement the probabilistic toolbox
of the Bayesian apprentice with the Poisson and Negative Binomial dis-
tributions. General methods of inference are presented as well as the
Bayesian principles of model choice. Sticking to Binomial distributions
for observables and Beta pdfs for parameters, a rather elaborate model
with information conveyed by six different sources of observations is
sketched in Chapter 5. In that chapter, latent variables are determinis-
tic intermediate budget numbers for inferring Salmon population size.
Chapters 6, 7 and 8 make use of explanatory covariates in linear and
nonlinear models. The classical Normal linear model is given in Chap-
ter 6 with its Bayesian treatment. Among the stock recruitment models
introduced in Chapter 7, the Ricker model can be understood as a special
case of the well-known linear model. Simple stock-recruitment analysis
assumes that the stock (number of eggs) and the recruitment (number
of juveniles) are known without errors and the SR parameters are es-
timated with their associated uncertainty. Further advances on model
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choice are also presented in that chapter. More sophisticated parameter-
data links are developed in Chapter 8 where generalized linear models
are exemplified on fishery data: Binomial logistic regression on smolt
ages, and ordered probit model for skate presence. Additional material
on model choice is also given in that chapter.

Part II: Setting up more sophisticated hierarchical struc-
tures

In Part II, full HBM with latent layers of various nature are devel-
oped.

Chapter 9 focuses on random effect models (see Fig. 1.13). An ex-
changeable hierarchical structure as in Fig. 1.13 assumes that the Zk
(that could be random effects for instance) are sampled from a common
regional distribution [Zk|θ], conditional on some unknown parameters θ:

[Z1:n, θ|Y1:n = y1:n] ∝ [θ]×
k=n∏
k=1

[Zk|θ]×
k=n∏
k=1

[Yk = yk|Zk, θ] (1.27)

with yk = (y1
k, ..., y

pk
k ) the vector of observations for the unit k. For

instance Zk might characterize the density of a given species of marine
invertebrates within a homogeneous fishing zone k while (y1

k, ..., y
pk
k ) will

correspond to the number caught during the pk repetitions of the exper-
iment in zone k.

The hierarchical structure sets the dependency between the units by
expressing both similarity and heterogeneity among the Zk. It allows
for between-units variations among the Zk. The prior distribution on
the parameters θ will be updated by the observations in all units. This
updating of the regional parameters allows transferring of information
between units.

Examples developed in Chapter 9 ground the theory on the com-
monly encountered Binomial and Normal distributions. For instance,
how to design a model such that parameters of the Stock-Recruitment
relationships do depend on their own ecological system, but at the same
time some transfer of information is allowed between neighboring rivers.
Due to the historical significance of the shrinking effect ([286]), we feel
free to divert from ecological issues to revisit in appendix E the baseball
example detailed by Efron and Morris ([98]) as a simple introduction to
hierarchical modeling.

Chapter 10 keeps on playing with LEGO bricks to build more and
more complex hierarchical models by piling up several simple layers re-
sulting in complex and versatile models purposely tailored to solve a
scientific question. We show that hierarchical structures are fruitful to
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FIGURE 1.13: DAG with random effects in the latent layer of the
HBM.

integrate multiple and various sources of data to learn from characteris-
tics of ecological systems. The first example shows that HBM is flexible
and effective for the treatment of successive removal catch data intro-
duced in Chapter 4 to estimate A. salmon 0+ juvenile population size.
We show how to develop a general model to assess the effects of tempo-
ral variations and habitat type, on two latent quantities of interest: the
density of fish and the probability of capture. In the second example,
we show how to consider top layers of the HBM built in the first ex-
ample as a prior construction for juvenile abundance to be updated by
measurements taken further in the Salmon life cycle (the smolt phase).
Normal distributions are conveniently used for approximations in the
log scale. The third example turns to a more intriguing sophistication
where we extend the model with a level depicting a new rapid sampling
technique as a possible cheap alternative to the costly successive removal
procedure.

Chapter 11 is devoted to dynamic hierarchical models (see Fig. 1.14),
with discrete and continuous latent states of various dimensions. Such
models with a dynamic state transition in the latent layer of the hierar-
chical structure are commonly called state-space models.

At each time step t, let Zt denote the state vector, that is the vector
of all the unknown quantities of the model which are time dependent.
For instance the states may be the unobserved number of individuals in
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FIGURE 1.14: DAG for a generic state-space model with a dynamic
state transition in the latent layer of the HBM.

each class of an age-structured model. θ = (θ1, θ2) denotes the vector of
the parameters, that is all the time stationary unknowns involved in the
dynamics (θ1) and in the observation process (θ2). Typically θ1 will be
a vector of survival rates while θ2 will for instance describe catchability
and measurement dispersion. Conditionally on the parameters θ1, the
sequence of unknown states {Z}t=1,...,n (denoted Z1:n in the following)
is allowed to follow a multidimensional Markov chain. The transition
kernel of the Markov process is defined by the dynamic process equa-
tions: The time dependence between states is introduced by successively
conditioning the future states on the past and the parameters. Usually,
the dependence of the current state Zt only reduces to that on the most
recent state Zt−1. For instance this is the case if Zt+1 is the number of
individuals that survive from an age class (previously Zt) to the next
one. Then, the state process is first-order Markovian. Thanks to con-
ditional independence property, one can split the whole joint pdf into
the product of single unit time steps. Once a prior distribution [Z1] is
specified for the first state, the process equation can be written as:

[Z1:n, θ] = [θ1]× [Z1]×
t=n−1∏
t=1

[Zt+1|Zt, θ1] (1.28)

Such a formalization encompasses a wide class of dynamics in discrete
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time. Conditional dependence within the Markov chain is the most
general model used to describe a causal dependence between events.
There is no restriction on the model structure. Conditional distribution
[Zt+1|Zt, θ1] may represent any dynamic process from the most simple
linear deterministic to the most complex nonlinear and non-Gaussian
stochastic one. More complicated dynamics, involving time dependence
between variables greater than one unit time step, can be written under
the form of the previous Markov model by extending the definition of
the state variable to include several time steps.

The observation equation links the available data to the underlying
dynamics. yt denotes the quantities actually observed at time t. The
observation model is any probabilistic mechanism which would generate
data given the system states and parameters. It defines the likelihood
function, which gives the probability of the series of observations y1:n

conditionally on the actual states Z1:n and on the parameters related to
the observation model in θ. Conditionally on state Zt and parameters θ,
the observations yt are mutually independent, and the likelihood can be
written as:

[Y1:n = y1:n|Z1:n, θ2] =
t=n∏
t=1

[Yt = yt|Zt, θ2] (1.29)

This general framework enables the incorporation of data of a dif-
ferent nature and from different sources to perform inferences. In the
simplest case, yt is a noisy measure of the state Zt; however, observation
yt may be related to the states of interest by a more complex stochastic
process, (e.g., a capture-mark-recapture model). When the state vari-
ables are not directly accessible to measurement, latent variables are
introduced in Zt as intermediate steps for conditional modeling to relate
observations to parameters. The dimension of the observation vector can
be different between years (because of missing data or different obser-
vation processes) and can be different from the dimension of the state
vector.

Following the general factorization rule of a HBM in Eq. (1.25), com-
bining the joint prior equation (Eq. (1.28)) and the observation equation
(Eq. (1.29)) yields the posterior distribution:

[Z1:n, θ|Y1:n = y1:n] ∝ [θ]× [Z1]×
t=n−1∏
t=1

[Zt+1|Zt, θ]

×
t=n∏
t=1

[Yt = yt|Zt, θ] (1.30)

Surprisingly, estimation in the Bayesian setting of complex nonlinear
non-Gaussian state-space models remains easily tractable. In Part II,
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the flexibility of the Bayesian analysis of state-space models will be il-
lustrated using examples of the dynamic of the biomass of a fish stock,
and of the salmon life cycle.

Chapter 12 deals with decision making and natural resources plan-
ning. In this closing chapter, statistical decision theory ([178]; [246]) is
used as a natural extension of the Bayesian paradigm upon which we
relied throughout the book.
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Chapter 2

Introductory step into Bayesian
modeling: The Beta-Binomial
model

Summary

From a basic fisheries science perspective, this chapter illustrates
how:

1. A very simple Beta-Binomial model is built to mimic a mark-
recapture experiment. The conditional dependencies network of
this model are conveniently and efficiently summarized by means of
a directed acyclic graphical representation. For this simplest DAG,
only two nodes are necessary (one parameter and one observable,
probabilistically linked by a very simple conditional relationship)
with no latent layer involved.

2. The conceptual toolbox of probability distributions allows to build
models accounting for both substantive knowledge and uncertainty,
two sides of the same coin.

3. The interactions between the observed data, covariates and un-
known quantities governing probability distributions can be rigor-
ously, simply and comprehensively depicted by way of conditional
reasoning.

4. Bayesian analysis offers a coherent deductive framework for making
inferences about the unknown quantities (e.g., parameters) of a
model from observed data. It opens the door to the introduction
of quantified scientific expertise about unknowns of interest beyond
those already introduced through the conditional structure of the
model. This expertise is combined with information brought by
the data to derive relative degrees of credibility summarized by (a
posteriori) probability distributions.

43
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2.1 From a scientific question to a Bayesian analysis

The Scorff is one of the twenty rivers of Brittany (France) colonized
by Atlantic salmon. Juveniles migrate out of the Scorff in April and un-
dertake a long-range migration in the ocean. After having spent from 16
months to more than 2 years at sea, the adults come back to their native
river to spawn. During their stay in the river prior to reproduction, the
adults are exploited by a rod and line fishery. To avoid overexploitation
and collapse of the population, the fishery is regulated by management
measures (catch quotas, fishing periods, reserves, etc.). To assess the ef-
fect of these measures, the exploitation rate, i.e., the proportion of the
population removed by the anglers, needs to be assessed.

FIGURE 2.1: The Moulin des Princes trapping device on the Scorff
river (Brittany, France).

But how could one measure the exploitation rate? It is a conceptual
quantity stemming from the human brain to formalize a problem of re-
source management. However, it may be assessed indirectly by designing
an experiment whose outcome would be, in the fishery scientist’s mind,
dependent on the actual exploitation rate. Based on the observed re-
sults of his experiment, the fishery scientist would seek to make some
inductive statement about the exploitation rate.

A classical mark-recapture experiment can be set up to assess the
exploitation rate. At the Moulin des Princes (Fig. 2.1), the scientific
trapping facility (belonging to the French National Research Institute of
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Agriculture) located at the river mouth, adults are sampled and tagged
before being released into the river and submitted to the rod and line
exploitation. Thanks to the cooperation of fishermen who report their
catch, the number of tagged fish recaptured by angling is recorded. In
1999, n = 167 salmon were tagged at the trapping facility and y = 16
were recaptured by angling. What might have been the exploitation rate
π? Assuming the behavior of the tagged and untagged fish issimilar
with regards to the rod and line fishery, π̂ = y

n = 0.096 is certainly
an intuitively appealing guess for π. But is it the correct answer? How
confident are we about this value?

The reason we feel uncertain about the guess-timate y
n we just calcu-

lated is that we know angling is a rather random activity. Had we perfect
knowledge of the exploitation rate and of the number of tagged fish prior
to the opening of the fishing season, we could still not determine exactly
the number of fish that would be caught. The Bayes theorem provides
the link between the uncertainty about π knowing y (and n), and that
of y knowing π (and n) :

[π|y] =
[y|π]× [π]∫

π

[y|π]× [π]dπ
(2.1)

The statistical language distinguishes the following elements already
given in the introductory chapter:

• Y is the observable (phenomenon), y denotes the observation
(data).

• π, the parameter of the model which is here the only unknown.

It is important to understand that n, a quantity which helps for
the phenomenological explanation, is assumed to be known without any
uncertainty in the study. As such, n is called a covariate: Conversely
to y or π, it does not have any probability distribution attached to it.
Formally speaking, it should not appear as a conditioning term in the
DAG nor in the bracket notation which only deals with possibly varying
quantities of the model (in a way the number n is sort of embedded in
the model structure). To improve readibility when necessary, we suggest
to introduce covariates in the bracket notation in the conditioning term
after a semicolon to indicate its different (nonrandom) status. The Bayes
rule would consequently be written as

[π|y;n] =
[y|π;n]× [π]∫

π

[y|π;n]× [π]dπ
(2.2)
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This is a specific reformulation of the general Bayes’rule (Eq. (1.22))
with no latent variable. Provided that we can specify the two compo-
nents [y|π;n] (the likelihood), [π] (the prior) and perform the integration∫
π

[y|π;n]× [π]dπ = [y|n], Bayes theorem tells us that we shall be able to

infer our knowledge/uncertainty about π conditionally on the known
observation y (and the covariate n).

In the sequel, we will successively present in detail how we can achieve
the above three tasks. Then we will show how the three components
[y|π;n], [π] and [y|n] are combined according to Bayes theorem to get
the a posteriori distribution of ultimate interest [π|y;n] (or posterior).
Finally, we propose to guide the reader through a WinBUGS practical
session about Bayesian modeling and inference based on the previous
case study.

2.2 What is modeling?

2.2.1 Model making

Remember that n = 167 adult salmon were marked and released into
the Scorff River in 1999. The anglers catch these tagged fish with an
efficiency π. Suppose we know π = 0.15. In this section, we temporally
forget about the 1999 recorded catch, a number denoted hereafter by
y1999, and ask the reader to think of how many fish might be caught.

Again, no one can give a definitive answer to that question. A good
guess (before actually recording y1999) is some uncertain quantity Y
with probable values about n× 0.15. A model is a conceptual construct
to describe the phenomenon and quantify the uncertainty about the
possible outcomes of the mark-recapture experiment assuming we know
the number of tags available to the angling fishery and its exploitation
rate. Note that we use a capital letter for the random phenomenological
quantity Y to make a clear distinction with the actual number observed
y1999. The model relies on two fundamental hypotheses:

• We first assume that the fate of each salmon facing the angling ac-
tivity, i.e., being caught or escaping, is ruled by the same Bernoulli
mechanism. One after the other, the destiny of every individual i
of the population is picked by drawing at random a binary variable
Xi such that Xi = 1 with probability π = 0.15 (get caught) and
Xi = 0 with probability 1 − π = 0.85 (escape). The traditional
image of a Bernoulli trial is drawing a ball from an urn with black
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balls in proportion π and white balls in proportion 1−π. If a black
ball is drawn, the corresponding fish is caught, if it is a white ball,
the fish escapes.

• Second, we consider that the n tagged salmon behave indepen-
dently with regard to the rod and line fishing. Under this assump-
tion, the fate of fish i (Xi = 1 or Xi = 0) brings no information
on that of any other fish j (i.e., the possible value of Xj).

2.2.2 Discussing hypotheses

These two hypotheses have important features: they explicitly link
the unknown parameter of interest π and the covariate n with the ob-
servation y and they account for the randomness of the fishing success.
They correspond to the most common assumption of identical and inde-
pendent distribution (iid in the statistical jargon) for the fish behavior.
It is so frequently made that it is barely mentioned or interpreted with
regard to its ecological meaning. Although it makes inference about the
exploitation rate considerably easier, as will be shown later, this assump-
tion is a drastic simplification. Speaking against the identical distribution
assumption for instance, the adult salmons are caught at the trapping
facility over a period extending over several months and it could be ar-
gued that salmon tagged and released at the same time could exhibit
similarities in their ability to escape angling. They may stay grouped
together and spend a more or less prolonged period in the zone closed
to any fishing located just upstream from the trap. Such behavior would
violate the independence hypothesis, as the fate of a salmon tagged one
day would be informative about the fate of the other fish tagged the same
day. We can also wonder about a constant catchability π of a fish during
the experiment. Maybe when many fish have been captured, there re-
mains much more space to escape from the anglers and it gets easier for
the fish to escape, or the less resilient fish are captured in the beginning
and it becomes harder to catch the rest of the population.

2.2.3 Likelihood as a probabilistic bet on the outputs
given that the parameter is known

To sum up, a model is a conceptual representation of a phenomenon,
relying on explicit simplifying hypotheses while still capturing essen-
tial features, with the aim of providing a quantified version of the phe-
nomenon including its uncertainties. Here, the iid -Bernoulli model pro-

vides a probability distribution of all the possible outcomes Y =
n∑
i=1

Xi



48 Introduction to Hierarchical Bayesian Modeling for Ecological Data

from a recapture experiment of n = 167 released salmon with a fishing
efficiency of π = 0.15:

Y |n, π ∼ Binomial(n, π) (2.3)

And we can write the well-known Binomial formula for the corresponding
probability distribution

[Y = y|π;n] =
n!

(n− y)!y!
πy(1− π)n−y (2.4)

and its moments {
E(Y ) = nπ

V(Y ) = nπ(1− π)
(2.5)

Using an R-like notation, we will sometimes write in the following of
the book the Binomial formula 2.4 as dbinom(y, n, π). It is worth stress-
ing the nature of the various components of the probability distribution
[Y = y|π;n]:

• Y is the random variable of interest: it is unknown since it has not
been observed yet. Roughly speaking, Y describes all the possible
outcomes of the experiment, taking values from 0 to n with their
credible weights (probabilities). In this book, such observables will
be written using capital Latin letters. y represents any numerical
value, i.e., the possible observation of the phenomenon Y. Lower-
case Latin letters will be generally used for observations.

• π and n are on the right-hand side of the conditioning bar | of the
probability distribution. In the modeling step, they are assumed
to be known.

With such a model, the analyst is able to bet on the possible
experimental results. Figure 2.2 gives the probability distributions of
[Y = y |π = 0.15;n = 14] and [Y = y |π = 0.15;n = 167] as functions
of y (mind the different scales of the coordinates). Random draws from
this distribution can generate repetitions of the observations from the
phenomenon under study. The scientist can even make winning bets.
Given π = 0.15 and n = 167, the random event A = {20 ≤ Y ≤ 30} is
more likely than its complementary one Ā = {20 > Y or Y > 30}. Since
[A|π=0.15 ;n=167 ]
[Ā|π=0.15 ;n=167 ]

= 0.7677
0.2323 ≈ 3.30, odds such as 1 against 3 could even

be taken with confidence.
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FIGURE 2.2: Histograms of 10000 random draws from a Binomial
distribution Y |n, π ∼ Binomial(n, π) with (π = 0.15;n = 14) (left) and
(π = 0.15;n = 167) (right).

2.3 Think conditionally and make a graphical repre-
sentation

When thinking conditionally from n and π to the possible values of
Y (in capital letters because the random variable refers to all virtual
outcomes of the Binomial draw, i.e., the observable), we make a model
(see Eq.( 2.4)). More generally, one can equivalently understand a model
as a list of instructions that is able to output fake data with the same
(hypothesized) statistical properties as the observed sample.

When thinking conditionally from y (in lowercase letters because we
are talking about the actually observed value of Y ) and the complemen-
tary explanation n, to the unknown π, we develop an inferential point of
view. The Bayesian paradigm relies on the theory of conditional prob-
abilities to make full use of its internal mathematical coherence and to
exploit the symmetric nature of modeling and inference.

Figure 2.3 draws the corresponding Directed Acyclic Graph that of-
fers a graphical representation of the relations between variables using
nodes and arrows. The direction of the arrows follows the reasoning lines
of the modeling phase. Both n and π are necessary to get y (according



50 Introduction to Hierarchical Bayesian Modeling for Ecological Data

to the Binomial model). As n is not uncertain (see the above discussion
about covariates), it is shown in a rectangle while π is illustrated in an
ellipse. y has been drawn into an ellipse because it is a random outcome
of a Binomial experiment, and the ellipse has been shaded because the
issue is observed.

y

n=167 nnew=31π

ynew

y

n=167 nnew=31π

ynew

FIGURE 2.3: Directed Acyclic Graph (DAG) for a basic Beta-Binomial
model.

Figure 2.3 also includes an additional experiment to the previous
situation: nnew = 31 salmon are marked and released into the same
river. We wonder how many salmon ynew from the 31 new ones will be
recaptured with the same new fishing device.

2.4 Inference is the reverse way of thinking

The next problem does not differ much, at first look, from the pre-
vious one: 167 salmon are marked and released into an isolated portion
of a river. A recapture experiment is conducted using a (new) fishing
device. This time we tell you that y = y1999 = 16 fish are caught, and
the question now is: what can the efficiency of the fishing device be?

A rough empirical estimation of the fishing efficiency is 16
167 . But

once again, recourse to probabilistic concepts is unavoidable to quantify
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the reliability of this empirical estimation 16
167 . The analyst will again

describe the experiment by the same Binomial model leading to Eq. (2.4).
Conversely to the previous situation, the observation is now recorded:
y is known but the fishing efficiency π is not. The model maker simply
imagines that π has been set to a fixed value. Equation (2.4) is now to
be interpreted as: If the efficiency of the new fishing device were set to a
given value π, what is the probability that the experiment leads to y = 16
recaptured salmons? When thinking of [Y = y|π;n] as a function of π,
we refer to the likelihood of the model. Figure 2.4 gives the likelihood
profile [Y = 16|π;n = 167] as a function of π.

FIGURE 2.4: Likelihood profile for y = 16 and n = 167 as a function
of π between 0 and 1.

Making inference is describing our state of knowledge about the un-
known π once we have observed the data y. Bayesian inference interprets
this consideration under a full probabilistic framework and focuses on
the mathematical object [π|y;n] given by Eq. (2.2).

[π|y, n] is called the posterior, or the a posteriori probability distri-
bution of π.

Betting about possible values of π gives sensible interpretation to the
random nature of π in Eq. (2.2). The process began when we accepted



52 Introduction to Hierarchical Bayesian Modeling for Ecological Data

the idea of probabilistic bets to describe the state of knowledge about
the unknown π once we have observed the data y. As we will work with
this quantity as being observed, Fig. 2.3 shows this situation by means
of a shaded ellipse. On the other hand, we wonder about possible values
of ynew which therefore has the status of a latent variable in an ellipse
(unknown or missing data).

To go one step further, one has to describe the state of knowledge
about the unknown π before we observe the data y, i.e., how would one
bet about the possible values of π under the no data a priori state of
information? We first show in the following section that the prior state of
knowledge may make an important difference even with the same data.

2.5 Expertise matters

The following three conceptual situations (as exemplified in [26]) help
to understand the role of prior knowledge. The important point is that
these situations would all be modeled using the same Binomial model
[Y |π, n ] = dbinom(Y, n, π) (see Eq. (2.4)) with the same covariate n =
10 and the same data y = 10.

1. A lady used to drinking tea claims that she can distinguish whether
milk or tea has first been added to the cup. Ten trials were con-
ducted with tea and milk randomly ordered in each experiment.
She correctly determined the added ingredient.

2. A music lover says he is able to distinguish Haydn from Mozart.
He was asked to hear ten pieces composed by one or the other
composer. He gave the right answer each time.

3. After a night spent drinking with colleagues, a senior statistician
claimed he was a perfect forecaster. His colleagues flipped a coin
ten times and each time he guessed the right outcome.

In all situations, the unknown π refers to the skill of giving a correct
answer and the same iid conditions can realistically hold. Assuming π
greater than 1

2 means that human skill works at least as well as pure
randomness. After consideration of the results in situation 2, most people
would feel that π close to 1 is more likely than π in the neighborhood
of 0.5 which is not a surprise since the man claimed he was an expert.
In situation 3 conversely, the data do not help to make a convincing
statement and we do not feel at ease with the discrepancy between our
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prior belief and the experimental results. We still believe that the coin
is a fair coin and that π is 0.5. The lack of personal experience often
leaves us dubious to give a priori a strong statement under situation 1.
Most people (except perhaps the British) would confess that they do not
know and bet rather evenly on possible values of π between 0.5 and 1,
but the experimental results have somehow changed their mind in favor
of English lady’s skill in tea tasting.

How is it that the same Binomial models of occurrence with the same
data and the same hypotheses do not lead to the same conclusions? For
Bayesian statisticians, the answer is that the a priori state of knowledge
does matter; priors are definitely not the same in every situation, so
that, even through learning from the same data, the conclusions may
remain quite different a posteriori. In other words, the prior belongs
to the body of hypotheses. Changing the prior is changing the model
structure, which may in turn impact the outcomes.

FIGURE 2.5: Priors matter: Three possible unscaled priors explained.
Case 1: Lady drinking tea; case 2: Music lover; case 3: Flipping a coin.

2.6 Encoding prior knowledge

Unknown parameters are often “not as unknown” as they seem to
be at first glance; even without data, all subsets of possible values do
not bear the same prior belief. Unscaled representations of commonsense
prior distributions of knowledge for each of the three previous situations
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are depicted in Fig. 2.5. In situation 1, if we doubt the skills of the
English lady drinking tea with milk or milk with tea, a rather uniform
prior belief is assumed for all possible values. Conversely, in situation
3, the prior belief is highly concentrated around π = 0.5. Some people
would even put all the weight at 0.5 and nothing elsewhere. Some prior
weight is still kept on the left side of the interval in situation 2, but most
of our credibility is lent to values larger than 0.5.

In commonly encountered situations, prior information is available
through local expertise about the ecosystem, a meta-analysis based on
the scientific literature, past years of observations, and auxiliary infor-
mation collected in the field by other practitioners.

2.7 The Beta pdf is a conjugate distribution for the
Binomial model

It is convenient to pick a Beta distribution to encode (a large class
of) prior bets about the unknown π ruling the occurrence of a Bino-
mial experiment. Figure 2.6 shows the common unimodal shape of the
probability density function (pdf ) of such a Beta distribution. Two posi-
tive coefficients a and b govern the shape of a Beta distribution given by
Eq. (2.6). They are called hyperparameters since they are the parameters
of the parameter π.

[π] =
Γ(a+ b)

Γ(a)Γ(b)
πa−1(1− π)b−1 × 1[0,1](π) (2.6)

The function 1[0,1] means that 1[0,1](π) = 1 if π is within the interval
[0, 1] and 0 otherwise. Using an R-like notation, we will sometimes write
in the following of the book the Beta formula (2.6) as dbeta(π, a, b).
Past information such as a histogram of records of success ratio with a
similar fishing device can be used to empirically “fit”a Beta pdf. Most of
the time, the analyst is happy with an estimation of the first moments
or the median and a quartile. For instance, it can be shown that the
first two moments of the Beta distribution are simply related to the
hyperparameters:

E(π) =
a

a+ b

V(π) =
ab

(a+ b+ 1)(a+ b)2
=

E(π)(1− E(π))

a+ b+ 1
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FIGURE 2.6: Example of a Beta(a,b) pdf with parameters a=5 and
b=10.

For given values of the moments E(π) and V(π), the hyperparame-
ters a and b are simply estimated by inverting Eq. (2.7). The uniform
distribution correspond to the special case a = 1 = b. Values of a and b
below 1 provide U shaped pdfs.

When no data are available, the expert can be directly asked ques-
tions such as: “If a hundred fish were released, what would be the most
likely number of recaptured fish with the present fishing device? On
what number of fish would you bet with odds 3 against 1?” Note that
the mode and the quartile are also unubiquitously linked to a and b,
which can therefore be extracted with some algebra from the expert’s
answers.

In the special case of a Binomial likelihood with Beta prior, the quan-
tity [y], i.e., the denominator of the Bayes formula 2.2 can be analytically
found. Specifying a Beta prior (Eq. (2.6)) for [π] with a Binomial like-
lihood, Eq. (2.2) gives the following explicit posterior:

[π|y] =
Γ(a+ b+ n)

Γ(a+ y)Γ(b+ n− y)
πa+y−1(1− π)n+bπ−y−1 × 1[0,1] (2.7)

We notice that the a posteriori distribution of π remains within the
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same Beta family as the prior. That is why the Beta family of pdf is said
to be a natural conjugate of the Binomial likelihood. Updating the prior
into a posterior by the additional information Y = y is here encoded
through a mere change of hyperparameters:{

a→ a+ y

b→ b+ n− y
(2.8)

This conjugate probabilistic behavior is a most rarely encountered
situation, stemming from specific properties of the likelihood function
(belonging to the class of exponential family, see [30], page 265 or [153],
Chapter 8). Further details on this mathematical miracle will be given
in the next chapters. The posterior mean E(π|y)(a good guess once data
have been collected) lies between the prior mean E(π) and the empirical
estimate π̂ , and this Bayesian compromise between expertise and data
gets closer to the empirical mean as the number of experiments increase
since

a+ y

a+ b+ n
=

(
a+ b

a+ b+ n

)
× a

a+ b
+

(
n

a+ b+ n

)
× y

n

A dimension analysis of Eq. (2.8) suggests a useful interpretation
of the Beta prior in terms of equivalent data. Hyperparameter a cor-
responds to the number of prior successes in an experiment with a + b
virtual trials.

2.8 Bayesian inference as statistical learning

In Bayesian statistics, probabilistic bets can be made about un-
knowns. From a technical point of view, the explicit introduction of
probability distributions for unobservable quantities (the unknowns) is
the main difference between conventional statistics and the Bayesian ap-
proach that is developed in this book. In addition, this means that there
are only conditional probabilities because, depending on the available
knowledge, such bets may change. We denote [π |K ] such a probability
distribution putting weight on the probable values of the unknown π
when the state of knowledge is depicted here by the notation K. When
no data are available to convey information about the unknown, the
prior state of knowledge K will simply write the a priori distribution
[π |K = prior ] or more simply [π] (or prior). A prior is a probability dis-
tribution function representing the knowledge about the parameters at
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hand before the data are collected. When data y have been observed, the
state of knowledge has changed (K = {y}) and we deal with the a poste-
riori bet [π |y ] or posterior. To sum up, the Bayes rule given at Eq. (2.2)
(or more generally at Eq. (1.22)) is to be interpreted as an information
processor, relying on a model (here a Binomial one), that updates the
knowledge about the unknown π from the prior [π] into the posterior
[π |y ] by sort of crunching the data y. As such, Fig. 2.7 may suggest a
more convincing illustration of the statistical learning mechanism than
Figure 1.11 in Chapter 1.

A posteriori
judgement

[θ|Y=y]

Experimental
data

[Y=y|θ]

Prior 
knowledge

[θ]

A posteriori
judgement

[θ|Y=y]

Experimental
data

[Y=y|θ]

Prior 
knowledge

[θ]

FIGURE 2.7: The Bayesian crank: Bayes rule as a statistical learning
mechanism.

2.9 Bayesian inference as a statistical tool for pre-
diction

Suppose we are told that an additional number of nnew = 31 have
been marked and released in the Scorff River, with the same experi-
mental conditions. Given that we have already seen y = 16 recaptured
fish for n = 167 tagged fish, what can we predictively say about ynew?
We keep on making probabilistic bets about the unknown ynew (see
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Fig. 2.3). From a technical point of view, we place a condition on the
state of knowledge π|y and simply use probability theory to evaluate the
posterior predictive as in Eq. (1.26) from Chapter 1:

[ynew|y;n, nnew] =

∫ 1

0

[ynew, π|y;n, nnew]dπ

=

∫ 1

0

[ynew|π, y;n, nnew][π|y;n, nnew]dπ

=

∫ 1

0

[ynew|π;nnew][π|y;n]dπ (2.9)

The likelihood term [ynew|π;nnew] is associated with the posterior
[π|y;n]. A two line R program can generate posterior predictive values
ynew:

1. draw πnew ∼ [•|y;n] (Beta pdf) and

2. draw ynew ∼ [•|πnew;nnew] (Binomial distribution).

In this special case of the conjugate property for the so-called Beta-
Binomial model, the predictive distribution (Eq. (2.9)) can be expressed
analytically:

[ynew|y;n, nnew] =
Γ(nnew + 1)Γ(a+ b+ n)

Γ(ynew + 1)Γ(nnew − ynew + 1)Γ(a+ y)

× Γ(a+ y + ynew)Γ(b+ n− y + nnew − ynew)

Γ(b+ n− y)Γ(a+ b+ n+ nnew)

This is known as the Polya distribution in the statistical literature
([102]): starting from an urn with a+ y black balls and b+ n− y white
ones, one repeats nnew the following scheme: when a ball is drawn, it
is replaced and an additional one of the same color is put into the urn.
The random variable ynew is the number of black balls obtained at the
end of the experiment. Using again R-like notation:

dPolya(y, n, a, b) =

∫ 1

0

dbinom(y, n, π)× dbeta(π, a, b)dπ

With this notation, the posterior predictive distribution (Eq. (2.9))
is defined as dPolya(ynew, nnew, a + y, b + n − y). Due to a conjugate
property, the Bayes formula 2.2 for the Binomial model (see Eq. (2.7))
can also be specifically written as:

dbeta(π, a+ y, b+ n− y) =
dbinom(y, n, π)× dbeta(π, a, b)

dPolya(y, n, a, b)
(2.10)
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2.10 Asymptotic behavior of the Beta-Binomial
model

In this section, we see what happens if after n trials, we get y suc-
cesses (fish recaptured by the fishing device), with n being a very large
number, ideally infinite. Starting with a Beta prior as in Eq. (2.6) with
hyperparameters (a, b), Eq. (2.7) leads to:

Var(π |y;n ) =
1

n

n

(a+ b+ n+ 1)

(a+ y)/n

(a+ b+ n)/n

(b+ n− y)/n

(a+ b+ n)/n

=
1

n

1

(a+b+1
n + 1)

( an + y
n )

(a+b
n + 1)

( bn + 1− y
n )

(a+b
n + 1)

<
1

n

1

(0 + 1)

(1 + 1)

(0 + 1)

(1 + 1− 0)

(0 + 1)
if n > a+ b (2.11)

In other words, when n increases toward infinity, the posterior knowl-
edge about the unknown π gets more and more precise around a single
value, since its variance decreases as 1/n. As already mentioned in the
previous section, the distribution (Eq. (2.6)) narrows toward the empir-
ical mean y

n because:

E(π |y;n ) =
y

n
:

a
y + 1
a+b
n + 1

→ π̂ =
y

n

This points out a coherence property of Bayesian analysis: the more
information brought by the data, the less uncertainty left for the un-
known, whatever the prior might be. This result also holds for other
models: an asymptotic theorem in Bayesian analysis proves that, when
the prior does not systematically exclude values from the support of π,
the larger the sample size, the more concentrated on the unknown the
posterior distribution will become. This is a Bayesian version ([26]) of
the law of large numbers that states in the frequentist paradigm that the
empirical mean y

n tends to the theoretical mean π. In addition, the pos-
terior distributions can be asymptotically approximated by a Normal pdf
whose variance decreases proportionally to the inverse of sample size.
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2.11 Practical exercise: A simple Beta-Binomial
model with WinBUGS

In the following, we will simply illustrate how the Beta Binomial ex-
ample, which has been developed in this chapter, can be written with
WinBUGS. The aim is to estimate the probability of success π of a Bino-
mial process knowing the number of trials n and the number of success
y. We will illustrate how the DAG in Figure 2.3 is simply translated into
a WinBUGS code, and show some figures which can be easily derived
from R to illustrate posterior inferences and sensitivity to the choice of
prior.

The Beta-Binomial model of Figure 2.3 is merely declared within the
WinBUGS language by the following lines of code:

]Model
model
{
π ∼ dbeta(1, 1)
y ∼ dbin(n, π)
y new ∼ dbin(n new, π)
}

]Data
list(n = 167, y = 16, n new = 31)
]Inits
list(π = 0.15, y new = 3)

• A Uniform prior on the parameter π is specified by the line
π ∼ dbeta(1, 1), whereas the line y new ∼ dbin(n new, π) spec-
ifies the likelihood. It is worth stressing that although π and y
are of very different nature (π is random with a prior distribution
and y is observed), both appear at the left-hand side of a sign ∼).
π ∼ dbeta(1, 1) encodes that π is distributed a priori in a Beta
distribution. y new ∼ dbin(n new, π) means that y is to be con-
sidered as a random issue of a Binomial experiment (but y is fixed
in the dataset);

• list(n = 167, y = 16, n new = 31) is the dataset;

• list(π = 0.15, y new = 3) contains the initialization of the MCMC
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sampling process. MCMC for Markov chains Monte Carlo are the
main numerical methods in Bayesian computation, and references
are given at the end of the chapter. WinBUGS is a so-called MCMC
sampler (i.e., based on Markov chain Monte Carlo algorithms) that
outputs a sample from the posterior distribution of all the model
unknowns: the ith draw is random conditionally on the i − 1th

draw. The Markov chain needs to be initialized by specifying the
starting point for π = 0.15.

FIGURE 2.8: Prior and posterior distributions for the parameter π
obtained from the simple Beta-Binomial model in Figure 2.3. The prior
(dotted line) is Beta(1, 1). The posterior (solid line) is Beta(17, 152).

After the convergence of the MCMC chains to their ergodic distribu-
tion has been checked (WinBUGS offers some ready-to-use tools to check
convergence; other tests can be done using the coda or boa packages of
R), the posterior distribution of π is approximated by the MCMC sam-
ple. Figure 2.8 shows the posterior pdf which is estimated from a 10,000
MCMC sample, together with the Beta(1,1) prior. We invite the reader
to verify that the estimated posterior is a Beta(α′,β′) distribution with
updated parameters α′ = 1 + 16 = 17 and β′ = 1 + 167 − 16 = 152
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(see Eq. (2.8)). Thanks to the large sample size (n = 167, y = 16), the
posterior shows considerable concentration in comparison with the prior.

FIGURE 2.9: Joint and marginal posterior distributions for π and ynew

in the simple Beta-Binomial model in Fig. 2.3.

The joint posterior distribution of π and ynew is shown in Fig. 2.9.
The positive correlation between π and ynew is easily explained: the
greater the fishing efficiency π, the greater the number of future recap-
tured fish ynew among the nnew marked ones.

To conclude this first step in WinBUGS, we propose a simple ex-
periment to illustrate the sensitivity of the posterior distribution to the
prior and to the amount of data conveyed by the dataset. We will keep
on working with the same Beta-Binomial model, but change the prior
distribution and the dataset.

Three alternative prior distributions are tested:

• π ∼ Beta(1, 1) (little informative, uniform)

• π ∼ Beta(9, 1) (informative, optimistic: favoring high values of π)

• π ∼ Beta(1, 9) (informative, pessimistic)

These three priors are combined with Binomial likelihood using three
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FIGURE 2.10: Sensitivity of the Beta posterior pdf to prior and data.
Prior are shown as dotted lines, posterior are shown in solid lines.
Upper pannel: Uniform(0,1); Middle pannel: Beta(9,1). Lower pannel:
Beta(1,9). Dataset differs by column. Left column: n = 3, y = 1. Middle
column: n = 15, y = 5. Right column: n = 150, y = 50.

different datasets, which all have the same empirical ratio of success set
to 1

3 but with a different sample sizes:

• n = 3, y = 1 (weakly informative)

• n = 15, y = 5 (informative)

• n = 150, y = 50 (strongly informative)

Figure 2.10 shows the results obtained for the nine different estima-
tions performed independently by crossing the three different Beta prior
distributions with the three alternative datasets. The figure shows that
with a noninformative prior (upper pannels), the posterior gets more
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and more sharp around 1
3 as the datasets become more and more in-

formative (left to the right). The second prior (middle pannel) conflicts
with the data as it favors a priori high values of π when the data have
empirical success = 1

3 . The prior is dominated by the very informative
dataset (far right). The third prior (lower pannel) favors low values of
π but the third data set dominates the posterior (far right).

2.12 Further references

Berry ([31]) is a most remarkable book for beginners because it deliv-
ers the first concepts in probability and Bayesian inference relying only
on the simplest pdf, the Binomial distribution, with many case studies
in all the chapters.

We already provide on page 33 some references about WinBUGS in
ecology. We must add that the help menu from WinBUGS gives many
examples of case studies with data, programs and solutions. It is highly
worth reading through because in the HBM spirit, new models can be
made by assembling pieces and these WinBUGS examples provide many
inspiring (and proof checked) stochastic structures.

After a while of enthusiastic pointing and clicking using the interface
provided, WinBUGS practitioners quickly get bored with repeting the
same actions for their statistical analyses. Luckily, the statistical analyses
can be conducted from R using add-on packages. Chapter 5 of [160] is
a detailed session on how to run WinBUGS from R (and back) via the
package R2WinBUGS (see also [288]).

In the practicals of the companion site of this book (hbm-for-ecology.org),
we also call the package Brugs ([292]) that works in connection with
OpenBUGS, an open source companion version of WinBUGS.

Gamerman ([109]) and Robert and Casella ([260]) are reference text-
books to understand the Monte Carlo algorithms used to sample prob-
ability distributions known up to a constant as the posterior pdf given
by Eq. (1.25). At an intermediate level, the main ideas for posterior
sampling are developed in Box ([35]), Brooks ([37]), Chib and Green-
berg ([56]), Kass et al. ([156]), and Tierney ([296]). For readers with
only basic familiarity with probability, very accessible presentations of
MCMC algorithms can be found in Hoff ([140]) Chapters 6 and 10 or in
Chapter 10 of Kadane ([153]). The statistical revolution as termed by
Brooks ([38]) is still going on and the Bayesian toolbox is being continu-
ingly improved by a flourishing research stream of advanced probabilistic
methods for inference ([9]; [21]; [44]; [95]; [120]).



Chapter 3

The basic Normal model: A
Bayesian comparison of means

Summary

On a simple fish sampling experiment, we illustrate how to take ad-
vantage of the mathematical properties of conjugate distributions. After
the Beta-binomial distributions presented in Chapter 2, we now enrich
the toolbox of the ecological detective with the Gamma-Normal model.
No recourse to MCMC computation is needed here. We derive closed-
form expression of the posterior distribution of the difference between
the mean lengths of two groups of fish. Rather than focusing on the com-
plexity of the model itself, we point out the easy analytical derivation of
posterior pdfs.

3.1 Motivating example: does the salmon farm’s pol-
lutants influence the growth of juveniles?

In September 2000, the French National Institute for Agronomical
Research (INRA, Rennes, France) conducted a large survey to evaluate
the number of salmon juveniles in the Scorff River. The Scorff River,
located in Brittany, has long been colonized by wild salmon [225]. “Ju-
veniles” are fish that have stayed either one year or two years in the
river before getting ready for their sea migration. The two age classes
are easily separated according to the number of rings on their scales. As
the main part of the catch consists of one-year-old juveniles, to keep this
example simple we will not bother with the very few fish that have spent
two years in the river. Samples of one-year-old juveniles were regularly
taken on 38 spots sites along the river, by electrofishing, using the same
duration and with the same protocol at every site (see details about the

65
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sampling method in Chapter 4). The size (fork length) and weight of
the captured individuals (such as the one in Fig. 3.1) are recorded in
Table 3.1.

FIGURE 3.1: 0+ A. salmon juveniles caught by electrofishing on the
Scorff River.

In 2000, an issue was raised by the installation of a Salmon fish farm
on this river: does the aquaculture activity perturb the growth of the
natural wild salmon? By comparing records of wild juveniles upstream
and downstream of the fish farm, can we help to answer the question?

More precisely, Table 3.1 gives the lengths (in mm) of all fish cap-
tured downstream the site of the sampling farm, and upstream of the
fish farm. One denotes nd = 21, nf = 27, nu = 12 the number of fish cap-
tured at these three locations of interest. Index d, f and u denote the
position of the sites, downstream, immediate proximity and upstream
the fish farm, respectively. Let ysi be the length of the i juvenile cap-
tured at site s (s = d, f, u), and ys = (ys1, ..., y

s
ns) the vector of all fish

measured at site s. The full dataset is written as y = {yd,yf ,yu}.

3.2 A Normal model for the fish length

Fish length is subject to many sources of variation. Some may be
systematic: if we suspect the fish farm to release nutrients in the river,
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112 110 117 103 137 103 131 130
Downstream 120 116 117 116 104 136 108

130 131 122 116 102
112 114 131 92 105 126 85 111

Fish farm 110 131 101 128 124 76 102 119
124 129 124 100 129 119
128 90 116 94 111

Upstream 98 121 108 100 107 93 123 101
98 108 102 103

TABLE 3.1: Length (fork length in mm) of one-year-old juvenile
salmons sampled by INRA, downstream, on the site and upstream of
the fish farm at Pont Callec, on the Scorff River, in September 2000.

we would expect the wild fish downstream to be systematically bigger
than the ones upstream. Other variations are random due to natural (i.e.,
uncontrolled) genetic or environmental conditions. Even if the odds in
favor of such an event are likely to be fairly low, one cannot exclude that
all the bigger juveniles were captured upstream the salmon farm, or the
other way around, only by chance.

Histograms of salmon length (sampled by electrofishing all along the
river in September 2000) exhibit random variability (see Fig. 3.2). Re-
course is currently made to the Normal model to mimic the fish length
distribution. First, the Normal model is parsimonious: only one loca-
tion parameter µ and one dispersion parameter σ are required. It is
equivalent to write that Y ∼ Normal(µ, σ2) or to say that Y = µ + ε,
ε ∼ Normal(0, σ2), making clear that the phenomenon under study,
Y, is the combination of a systematic effect µ plus a random Normal
and centered perturbation ε. Second, the Normal structure is sometimes
adopted due to the central limit theorem that says that the sum of inde-
pendent random noises of the same possible magnitude (whatever their
distribution) becomes asymptotically Normal.

The natural variability of fish length in each site may stem from such
an addition of many environmental random noises. If we drew three
histograms, one for each subsample of Table 3.1, the well-known bell
shaped curve would not appear with any striking evidence due to the
limited size of the subsamples: consequently, the choice of the model is
left to the scientists but beware! All the subsequent results rely on this
model as long as no sensitivity analysis is performed.

In this example, six parameters (µu, σu, µf , σf , µd, σd) could be re-
quired to describe the unknown state of nature (we keep the indices u, f
and d to denote the three portions of the river). The simplifying hypoth-
esis σ = σu = σf = σd is added, reducing the dimension of the state of
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FIGURE 3.2: Histogram of the fork lengths from juvenile salmon
caught by electrofishing in the Scorff River during September 2000.

nature from six to four components θ = (µu, µf , µd, σ). The ecological
meaning of this hypothesis is that the three sites share the same random
conditions (and therefore produce the same natural variability between
salmon) but they only differ by the mean length of the animals that can
be captured at each spot (systematic effect due to the spot). With this
model, one could simulate the length Y s of a juvenile picked at random
in the river at site s:

Y s |µs, σ ∼ Normal(µs, σ2)

In this chapter, the reader is required to blow the dust, if any, from his
probabilistic toolbox. We recall the expression of the Normal pdf, that
we also called, using R-like notations, dnorm(y, µs, σ):

[Y s = y |µs, σ ] =
1

σ
√

2π
× exp

(
− 1

2σ2
(y − µs)2

)
(3.1)

All random variables Y u and Y f and Y d are defined similarly from
Eq. (3.1) (after changing the indices). Finally we state that Y u, Y f and
Y d are independent assuming the parameters θ = (µu, µf , µd, σ) are
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known: there is no statistical correlation between the various measure-
ments because data collection is made at random at each spot.

Finally, the probability distribution of the sampled data (also named
the likelihood when considered as a function of the parameters) can be
written as the product of pdf of Normal random variables:

[y |θ ] = [yd,yf ,yu
∣∣µu, µf , µd, σ ]

= [yu |µu, σ ]× [yf
∣∣µf , σ ]× [yd

∣∣µd, σ ]

=

(
1

σ
√

2π

)nd+nf+nu

× exp

− 1

2σ2

nu∑
j=1

(yuj − µu)2


× exp

− 1

2σ2

nf∑
j=1

(yfj − µ
f )2


× exp

− 1

2σ2

nd∑
j=1

(ydj − µd)2

 (3.2)

3.3 Normal-Gamma as conjugate models to encode
expertise

3.3.1 Encoding prior knowledge on µ

Although fish can theoretically take any possible length according
to Eq. (3.2), the researcher of the French National Research Institute
of Agronomy possesses some prior knowledge that does not rely on the
data collected around the fish farm only. As he has been working for a
long time on Salmon from Brittany, he won’t bet a priori equivalently
on any possible value µ for the population of one-year-old juvenile on the
river from which the data were recorded. By proposing various values
for µ, one can weigh the relative credibility that is granted to each pro-
posed value and sketch the a priori pdf [µ]. A comprehensive approach
for elicitation, i.e., the process of extracting expert knowledge about
some unknown quantity and formulating that uncertain judgment as a
probability distribution can be found in OHagan et al. ([223]). Another
way to encode the prior knowledge is to look for data stemming from
the same (or some similar) phenomenon. Luckily, on the same river, the
same year, there were 35 other spots not related to the fish farm. With
the 35 averaged lengths, we can draw a histogram (see Fig. 3.3) which
gives a good idea of a prior distribution of the mean µ. As a first ap-
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proach, this empirical distribution can be approximated by a parametric
pdf. With regard to the shape of the histogram of the mean estimates,
a simple idea is to take again a Normal pdf, but this time for [µ]:

[µ] =
1

sµ
√

2π
× exp

(
− 1

2s2
µ

(µ−mµ)2

)
(3.3)

When centered on mµ = 100 with a standard deviation sµ = 10, such a
Normal pdf fits well enough this prior knowledge of µ (see Fig. 3.3).

FIGURE 3.3: A priori knowledge about the mean length of salmon
juveniles of the Scorff River. A Normal distribution with mean 100 and
standard deviation = 10 was found to fit reasonably well the empirical
distribution (solid line).

As in the previous chapter, mµ and sµ are called the hyperparameters
(of the prior pdf of the parameter of interest µ).

3.3.2 Encoding prior knowledge on σ

Figure 3.4 shows a similar result for the empirical variances of the 35
same samples. The histogram of these variance estimates could be used
to get a prior for σ2. More specifically, we work with the precision (i.e.,
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the inverse of the variance, σ−2) and introduce the Gamma distribution,
parameterized by two coefficients a and b that we fit to the empirical
variances obtained with the 35 sites.

σ−2|aσ, bσ ∼ Gamma(aσ, bσ)

A good fit is obtained by adjusting the hyperparameters, aσ = 3.4 and
bσ = 250. The Gamma a priori distribution for σ−2 has the following
pdf (a new one to remember! dgamma(σ−2, a, b) using R-like notations),
with moments expressed as a function of the hyperparameters:

[σ−2] =
baσσ

Γ(aσ)
(σ−2)aσ−1 exp

(
−bσ × σ−2

)
E(σ−2) =

aσ
bσ

= 1.36× 10−2

V(σ−2) =
aσ
b2σ

=
E(σ−2)

bσ
= 5.44× 10−5

(3.4)

Working with the precision σ−2 instead of the standard deviation σ or
the variance σ2 is a matter of mathematical convenience that will be
justified in the next section.

3.3.3 Bayesian updating of the mean, a quick approxi-
mate solution

Suppose we knew σ, either because we do take for granted that the
sample variance σ2 ≈ 250

3.4 = 73.5 is precisely estimated from the data
(and check later if the results are sensitive to this estimation) or because
we work for the moment as if σ were known for probabilistic computa-
tions in a sort of mind experiment. We express the prior variance of the

mean as a fraction νµ of the sample mean: s2
µ = σ2

νµ
, i.e., νµ = 0.735. In

other words, the prior information on µ is worth a 0.735 virtual sample
size (a little less than one datum). The joint distribution of data up-
stream and downstream of the fish farm y = (yu,yd) and the unknown
means θ = (µu, µd) is written as:

[y,θ] =

(
1

σ
√

2π

)nd+nu
(

ν0.5
µ

σ
√

2π

)2

× exp

− 1

2σ2

 nu∑
j=1

(
yuj − µu

)2
+ νµ(µ

u−mµ)2


× exp

− 1

2σ2

 nd∑
j=1

(
ydj − µd

)2
+ νµ(µ

d−mµ)2

 (3.5)
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FIGURE 3.4: A priori knowledge about the precision of the length
of Scorff Salmon juveniles. A Gamma with parameters aσ = 3.4 and
bσ = 250 was found to fit reasonably well the empirical distribution
(solid line).

When focusing on (µu, µd) in Eq. (3.5), after some algebra, one finds
under the exponential, a quadratic form in (µu, µd), which reminds us
of a Normal pdf:

[y,θ] ∝ exp

−n
u + νµ
2σ2

µu −
nu∑
j=1

yuj + νµmµ

nu + νµ


2


× exp

−n
d + νµ
2σ2

µd −
nd∑
j=1

ydj + νµmµ

nd + νµ


2 (3.6)

The remaining terms from Eq. (3.5) do not involve θ = (µu, µd)
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neither do the missing terms
(

(nu+νµ)0.5

σ
√

2π

)(
(nd+νµ)

0.5

σ
√

2π

)
for the constant

of integration of the Normal pdf. Therefore as [y,θ] = [θ|y][y], we directly
see that: 

µu|y ∼ N(m′µu , s
′2
µu)

s′−2
µu = s−2

µu + nuσ−2

s′−2
µu ×m′µu = s−2

µu ×mµu + nuσ−2 × ȳu

Equivalently, by setting the posterior precision s′−2
µu = ν′µu σ

−2


ν′µu = νµu + nu

m′µu =
νµu ×mµu + nu × ȳu

νµu + nu

In other words, the posterior precision is the sum of the prior precision
and the sample precision while the posterior mean is a linear combina-
tion of the prior mean and the sample mean, with weights given by the
corresponding precisions. Of course, the Normal Bayesian updating of
µd follows the same rules. Numerically:{

ȳu = 105.2, nu = 12, ν′µu = 12.735,m′µu = 104.9

ȳd = 118.1, nd = 20, ν′µu = 20.735,m′µd = 117.5

In addition, the couple (µu, µd)|y is independent (bivariate Normal)
since the joint distribution (Eq. (3.6)) factorizes. As a consequence, the
difference µd−µu|y is also normally distributed with mean and variance
obtained as follows:{

E(µd − µu|y) = E(µd|y) + E(−µu|y) = m′µd −m
′
µu

V(µd − µu|y) = V(µd|y) + V(−µu|y) = s′2µd + s′2µu

Numerically m′µd −m
′
µu = 12.6mm and s′2µd + s′2µu = 250

3.4 × ( 1
12.735 +

1
20.735 ) = 9.32 = 3.052. A random variable with mean 12.6 and stan-
dard deviation 3.05 has practically no chance to be negative (remember
that 99% of the probability mass of a Normal pdf lies between ±3 stan-
dard deviations around the mean); therefore, the ecological detective
can make the following (posterior) probabilistic judgment with full con-
fidence: Given the experimental data and the Normal model with known
variance, the mean size of a juvenile fish downstream of the aquacul-
ture device is bigger that the corresponding reference measure upstream
the fish farm. Yet σ2 is not exactly known and this uncertainty may
blur the assessment. Will our previous probabilistic judgment change
much? The rest of the chapter is devoted to quantifying the uncertainty
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of σ2 by means of the inverse gamma distribution (taking into account
additional data from the third site) and evaluate the influence of this
additional uncertainty on the previous statement.

3.3.4 Joint prior for (µu, µf , µd, σ−2)

A first additional hypothesis can be made on the priors: they are the
same for the three spots and the prior knowledge on µ does not depend
on σ. Consequently, the prior distribution for θ = (µu, µf , µd, σ2) is the
product of each prior, a mathematical expression that can be written as
a function of the hyperparameters that the expertise yielded for the case
study:

[µu, µf , µd, σ−2] =

(
1

sµ
√

2π

)3
baσσ (σ2)−aσ−1

Γ(aσ)

× exp

−
∑

s=u,f,d

(µs −mµ)2

2sµ2
− bσ
σ2

 (3.7)

with mµ = 100, sµ = 10, aσ = 3.4 and bσ = 250.
Another common but somewhat different hypothesis is to assume

that:

• σ2 is again inverse-gamma distributed;

• But, given σ2, µu, µf , µd are normally independently distributed
with a variance s2

µ proportional to σ2, thus writing as in section
3.3.3 σ2 = νµs

2
µ. In other words, the variability of the sizes about

the mean, encoded by σ2, is proportional to the uncertainty about
the value of µ, here written as s2

µ. To assign a numerical value
to the additional hyperparameter νµ, one can notice from the 35
subsamples that the empirical variance for the µ estimates is s2

µ =
100, while the empirical mean of the estimates for σ2 is close to
250/3.4 = 73.5 (i.e., close to the inverse of the mean of the Gamma
pdf for the precision). The value of the hyperparameter νµ can be
selected as 73.5/100 = 0.735, which will be adopted to compute
the following results in the chapter.

This leads to a prior distribution for [µu, µf , µd, σ2] (Eq. (3.8)) which
differs from Eq. (3.7) since µu, µf , µd and σ2 are no longer indepen-
dent: the bigger σ2 tends to be, the more diffuse the prior judgments for
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µu, µf , µd.

[µu, µf , µd, σ−2] = [µu, µf , µd|σ2][σ−2]

=

(
ν0.5
µ

σ
√

2π

)3
baσσ
(
σ2
)−aσ−1

Γ(aσ)

× exp

−νµ
∑

s=u,f,d

(µs −mµ)2

2σ2
− bσ
σ2

 (3.8)

3.4 Inference by recourse to conjugate property

3.4.1 Bayesian updating in a closed-form

The likelihood (Eq. (3.2)) and the prior (Eq. (3.8)) exhibit common
structural features as function of the parameters. Details about conju-
gate priors in such exponential family models can be found for instance
on page 42 of Parent and Bernier ([224]) or in Chapter 8 of Kadane
([153]). Taking the prior in the conjugate family of the likelihood allows
for full analytical Bayesian computation. Indeed, with such a conjugate
prior, the posterior distribution also belongs to the same Normal-Gamma
parametric family, with new parameters which are obtained by updating
old (prior) parameters by the data. The joint distribution for unknown
and observed quantities is written as:

[y,θ] =

(
1

σ
√

2π

)nd+nf+nu
(

ν0.5
µ

σ
√

2π

)3(
baσσ
(
σ2
)−aσ−1

Γ(aσ)

)

× exp

(
− bσ
σ2

)

× exp

− 1

2σ2

nu∑
j=1

((
yuj − µu

)2
+ νµ(µ

u−mµ)2
)

× exp

− 1

2σ2

nf∑
j=1

((
yfj − µ

f
)2

+ νµ(µ
f−mµ)2

)
× exp

− 1

2σ2

nd∑
j=1

((
ydj − µd

)2
+ νµ(µ

d−mµ)2
) (3.9)
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Rearranging the terms with the sufficient statistics ȳs = 1
n

ns∑
j=1

ysj for

s = u, f, d yields the posterior:

[θ|y] =
[y,θ]

[y]
∝ [y,θ]

=
b′σ

a′σ
(
σ2
)a′σ−1

Γ(a′σ)

∏
s=u,f,d


√
ν′sµ

σ
√

2π


× exp

−ν
′
µ

∑
s=u,f,d

(µ
s−m′µ)2

2σ2
− b′σ
σ2

 (3.10)

with updated parameters
a′σ = aσ +

nd + nf + nu

2
ν′sµ = νµ + ns

m′s =
nsȳs + νµmµ

ns + νµ

and

b′σ = bσ +
1

2

∑
s=u,f,d

 ns∑
j=1

(ysj − ȳs)2 + ns(ȳs −m′s)2 + νµ(mµ −m′s)2


= bσ +

1

2

∑
s=u,f,d

 ns∑
j=1

(ysj − ȳs)2 +
nsνµ
ns + νµ

(ȳs −mµ)2


3.4.2 Does the fish farm perturb the growth of wild

salmon?

The main advantage of deriving the closed-form for the joint posterior
(Eq. (3.10)) is that this allows for full analytical Bayesian computation
to infer the effect of the fish farm.

From Eq. (3.10), using the same trick as in Section 3.3.3, it appears
that given σ, the three location parameters are independent and nor-

mally distributed, respectivelyNormal(m′u, σ
2

ν′u ),Normal(m′f , σ
2

ν′f
) and

Normal(m′d, σ
2

ν′d
). As a consequence, given σ, the marginal distribution

of the difference between any of the two location parameters is also Nor-
mal. In particular, given σ, the marginal posterior pdf of the difference
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δ = µd − µu is Normal:

µd − µu|σ2, Y ∼ Normal
(
m′d −m′u, σ2

(
1

ν′b
+

1

ν′h

))
(3.11)

Moreover, the marginal posterior distribution of the precision σ−2 is
Gamma with updated parameters a′σ and b′σ.

Appendix A details some additional statistical properties of the Nor-
mal distribution and its extensions. The most famous one is the Student
distribution or T distribution. If, conditionally upon (µ, σ2), Z is nor-
mally distributed with mean µ and variance σ2, and if the precision
σ−2 is distributed as a Gamma(a, b), then the distribution of Z−µ√

b/a
is a

standard Student with ν = 2a degree of freedom.
We can take advantage of this general result to derive the marginal

posterior distribution of the difference δ = µd − µu in a closed-form. In-
deed, the conditional posterior pdf of δ is Normal, and the marginal pos-
terior distribution of the precision σ−2 is Gamma. Hence, the marginal
posterior distribution of the difference δ is Student. More precisely, the
marginal posterior pdf of√

2
ν′hν
′
b

ν′h + ν′b

a′σ
b′σ

(δ − (m′b −m′h))

is a standard Student random variable with 2a′σ degrees of freedom.
Calling it in R-like notations, dStudent, we can write to make it math-
ematically short that:

dStudent(t, 2a) =
Γ( 2a+1

2 )

Γ(a)
√

2aπ

1

[1 + t2

2a ]
2a+1

2

Back to the INRA data of Table 3.1, one gets:

a′σ = aσ +
nd + nf + nu

2
= 3.4 +

20 + 26 + 12

2
= 32.4

and

b′σ = bσ+
1

2

∑
s=u,f,d


ns∑
j=1

(ysj − ȳs)2 +
nsνµ
ns + νµ

(ȳs −mµ)2
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with 

ȳd = 118.1, nd = 20, ν′d = 20.735,m′d = 117.5

ȳf = 111.6, nf = 26, ν′f = 26.735,m′f = 111.3

ȳu = 105.2, nu = 12, ν′u = 12.735,m′u = 104.9

nu∑
j=1

(yuj − ȳu)2 +
nf∑
j=1

(yfj − ȳf )2 +
nd∑
j=1

(ydj − ȳd)2

2
= 4777∑

s=u,f,d

{
ns(ȳs −m′s)2 + νµ(mµ −m′s)2

}
2

= 173

thus
b′σ = 250 + 4950 = 5200

With the updated parameters calculated above,√
2
ν′hν
′
b

ν′h + ν′b

a′σ
b′σ

(δ − (m′b −m′h))

is a standard Student random variable with 64.8 degrees of freedom.
For so many degrees of freedom, a Student distribution is practically
indistinguishable from the Normal one. Thus δ is approximately dis-
tributed as a Normal centered on 12.6mm with standard deviation of√

ν′h+ν′b
2ν′hν

′
b

b′σ
a′σ
≈ 3.2 mm. Compared to Section 3.3.3, here we have to take

into account a larger standard deviation (and a larger credible interval),
due to the fact that σ2 is no longer assumed to be perfectly known.
Figure 3.5 shows this bell-shaped pdf.

This distribution is highly concentrated toward positive values of δ,
which means that we are almost sure that the mean difference in length
between fish downstream and upstream the fish farm is greater than
5 mm (with a most probable value around 12.6 mm). In this example,
as the probability p that a Normal variable with mean 12.6 and standard
deviation 3.2 is larger than 5 is approximately 99%, the posterior odds
p

1−p are around 100 against 1 in favor of the preceding judgment: the
information conveyed by the dataset is strong enough to come to the
conclusion that there is a significant difference in salmon juvenile length
between two portions of the river separated by the fish farm.
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FIGURE 3.5: Marginal posterior distribution (approximated by a Nor-
mal pdf) of the length difference δ between Salmon living downstream
and upstream of the fish farm.

3.5 Bibliographical notes

Much has been written about Bayesian aspects of the Normal model.
An excellent introduction taking the reader by the hand from elemen-
tary notions to very advanced topics is Hoff ([140]). Lee ([172]) is a stan-
dard course in applied statistics (hypothesis test, comparison of means,
Anova, Linear model, etc.) at the Msc level. Its last edition includes
more advanced materials on hierarchical modeling and Bayesian compu-
tation. Sivia ([280]) is an intermediate Bayesian tutorial oriented toward
engineers and physicists. What can a physicist do when no model seems
available? This author also works out in depth Normal distributions
and their extensions for the practical reason that they are often met
as asymptotic approximations of posterior pdfs. At a more advanced
level, Bernardo and Smith ([30]) give theory-oriented explanations on
how to understand model construction; reference technical manuals in-
clude Raiffa and Schlaifer ([247]) with emphasis on decision theory and
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experimental planning and Box and Tiao ([36]) for statistical inference
based on noninformative priors. Although they need some strong math-
ematical background, Chapters 2 and 3 of Marin and Robert ([189]) are
also of great interest to get familiar with the Normal pdf. Reading Rue
and Held ([266]) helps understand why the precision is a much better
parameter to work with in the Bayesian setting and the close connection
between graphical Normal models and conditional independence.

3.6 Further material

Due to conjugate properties, it is easy to prove the closed form pos-
terior and predictive terms when writing Bayes formula 1.22 for the
Normal family:

• In Section 3.3.3, we rely on the case of a Normal likelihood as-
sociated with a Normal prior for the mean but a known variance
(θ = µ)

dnorm(y, µ, σ)×dnorm(µ,m, s) =

dnorm(µ,
m
s2 + y

σ2

σ−2 + s−2
,
(
σ−2 + s−2

)−0.5
)

× dnorm(y,m,
(
σ2 + s2

)0.5
)

• Alternatively, one can evaluate the case of a Gamma prior precision
with known mean (θ = σ−2)

dnorm(y, µ, σ)×dgamma(σ−2, a, b) =

dgamma(σ−2, a+
1

2
, b+

1

2
(y − µ)2)

× 1√
b
dStudent(

y − µ√
b
, 2a)

• In Section 3.4.1 and in Appendix A, we developed the case of a
Normal likelihood associated with a Normal prior for the mean
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conditioned on a gamma precision (θ = (µ, σ−2))

dnorm(y, µ, σ)× dnorm(µ,m,
σ√
λ

)× dgamma(σ−2, a, b)

= dnorm

(
µ,
λm+ y

λ+ 1
,

σ√
1 + λ

)
× dgamma

(
σ−2, a+

1

2
, b+

λ

2(1 + λ)
(y −m)2

)

×

√
λ

(1 + λ)b
× dStudent

 y − µ√
b(1+λ)
λ

, 2a


These closed forms allow shortcuts when writing conditional pdfs, which
is very useful for Bayesian computation.
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Chapter 4

Working with more than one
Beta-Binomial element

Summary

The quantitative assessment of fish population size is the main is-
sue for both scientific research and resource management. Describing
capture-mark-recapture and successive removal techniques, the classical
sampling methods for fish surveys in the wild, this chapter illustrates
Beta-Binomial constructions and model selection.

1. Beta-Binomial sub-models from Chapter 2 can be assembled to
describe capture-mark-recapture and successive removal experi-
ments. Now, we no longer deal with a single parameter: the un-
known state of nature becomes bidimensional. We also make a first
step toward more elaborate models in this chapter because we re-
call the Poisson distribution and introduce the Negative binomial
pdf.

2. Bayesian analysis offers a coherent deductive framework for model
selection and hypothesis testing. In the Bayesian setting, model se-
lection is nothing but making inference about the unknown model
index in a supermodel encompassing all possible models. The Bayes
Factor is the Bayesian criteria for model comparison that measures
the odds ratio of two competing models with regard to the data.
In this chapter, we take advantage of the Beta-Binomial conjugate
properties to derive a closed-form expression of Bayes Factors and
study its sensitivity to the choice of priors.

83
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4.1 Bayesian analysis of smolt runs by capture-
mark-recapture

4.1.1 Motivating example

The Oir is a French index river for Atlantic salmon population dy-
namics and stock assessment in France and Europe ([17]; [239]).

FIGURE 4.1: The section of the Oir River considered in this study
appears in a solid black line.

It is a spawning tributary of the Sélune River, which flows into the
English channel (Fig. 4.1). It is 19.5km long with a drainage basin of
85km2. The main stream colonized by salmon extends over a 12.3km long
stretch from a trapping facility (the Cerisel station) at the river mouth
to an impassable dam (the Buat watermill). Atlantic salmon juveniles
born in the Oir river the previous year turn into smolts around April
and undertake a downstream seaward migration to reach the ocean and
start their long-distance oceanic migration.

At the Cerisel trapping facility, part of the flow is derived from the
river toward a trap (Fig. 4.3) where fishes can be counted (see [17], [255]
or [259] for more details). To assess the number of migrating smolts
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FIGURE 4.2: An anesthetized smolt will be marked and released up-
stream.

ν, records are taken following a capture-mark-recapture scheme at the
Cerisel trap (see also Fig. 4.3):

• A total of ν fish are migrating downstream (ν is the unknown
population size of primary interest).

• A part of these downstream migrating fish gets captured (y1 indi-
viduals) at the trapping facility.

• Fishery scientists put tags on y2 individuals taken from the y1

already removed (see Fig. 4.2) and bring them upstream the trap-
ping facility again (the remaining y2 − y1 are set free downstream
so that they can finish swimming to the sea).

• From the y2 tagged and released fish, y3 of them get caught a
second time in the same trap.

Based on the observed results from this experiment, fishery scien-
tists would like to make some deductive statements about the number of
smolts migrating that year, ν. For instance, the following records (pub-
lished in [255]) were collected in April 1996, by INRA Rennes, France:

y1 = 767

y2 = 76

y3 = 58

Of course, estimating the number of smolts in the year 1996 is of key
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Release site 
(marked smolts)

Upstream

Downstream

Downstream trap
(smolts)

Upstream trap
(spawners)

Electrified barrier
(spawners)

FIGURE 4.3: Scheme of the Cerisel trapping facility (Oir River, Lower
Normandy, France) working as a double downstream (for smolt runs)
and upstream (for spawner runs) partial counting fence. The black circle
at the top of the figure indicates the release site of tagged smolts and
spawners. The release site and the downstream trap are 1 km away from
each other.

importance when trying to understand and quantify the factors that
control the population dynamics. This also is a start to develop forecast
of the number of adults that will return into the river the following
years. To go from the present experimental situation to a formalized
mathematical model, one always has to bring answers to the same set of
questions:

1. What are the unknowns?

2. What are the observables? (So-called Y in the previous chapter.)

3. Which mechanisms can one imagine that generate the data? What
are the links from the unknowns to the observables?

4. What type of hypotheses can be made to model these mechanisms
in a probabilistic conditional reasoning framework?
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ν π

y2

y1

y3

FIGURE 4.4: Directed acyclic graph (DAG) for the capture-
mark-recapture model for smolts in the Oir River. Priors: ν ∼
Uniform(0, νmax), π ∼ Beta(a, b). Likelihood: y1|ν, π ∼ Binomial(ν, π)
and y3|y2, π ∼ Binomial(y2, π).

4.1.2 Sampling distributions and likelihood

Undoubtedly, the data y1 are the realizations of an observable Y1 that
one can conceptualize as the possible number of catches at the Cerisel
trap for nonmarked smolts (Fig. 4.3). Assuming a constant catchability π
over time (hypothesis H1) and a homogeneous and independent behavior
among individuals (hypothesis H2), we state that y1 is the realization of
the random binomial variable Y1 with probability of success π and trial
number ν:

Y1 |ν, π ∼ Binomial(ν, π) (4.1)

Therefore the unknowns1 are (ν, π). ν is the main quantity we want
to estimate, (i.e., the target parameter), π is here of less interest and was
introduced to conveniently design the model. Such a quantity is often
called a nuisance parameter.

The data y2 have a rather weird status. Given the catches y1, it

1We recommend as a good modeling practice to use Greek letters for the unknown
parameters.
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FIGURE 4.5: Posterior distributions of (π, ν) from the model in
Fig. 4.4. The shape of the joint posterior distribution is shown in the
central part (joint MCMC draws and smoothed isodensity contours).
The marginal distributions are shown in the top and right panels.

is a covariate, because only part of the catch is marked and released
upstream and no stochastic mechanism is involved during this operation:
the scientists do not want to put upstream the whole lot but at the
same time they will tag enough individuals so that the ratio y3

y2
will

be large enough to provide a good estimate of the trap efficiency π.
More precisely, a second observation equation is introduced to mimic
the recapture of marked individuals y3 as a random issue of Y3, a second
binomial process with the same trapping efficiency π:

Y3 |y2, π ∼ Binomial(y2, π) (4.2)

When writing Eq. (4.2), additional hypotheses are implicitly made.
H3: The population is closed during the migration time. There is neither
mortality induced by the capture/marking procedure nor natural mor-
tality between the time of marking and recapture for either marked or
unmarked smolts; H4: There is no tag shedding and all smolts marked
and released will migrate out; H5: All marked and released smolts have
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the same probability of being recaptured at the downstream trap. We
suppose that the capture and marking do not affect the behavior of the
smolts in a way that would change their vulnerability to the trap. Thus,
the probability of recapture of previously marked and released smolts
remains the same as the probability of capture of unmarked smolts ex-
posed to the trap for the first time. This is a crucial assumption for the
estimation procedure. Intuitively, Eq. (4.2) will be used to provide in-
formation about π, and Eq. (4.1) will be used to derive ν conditionally
on π.

From a crude empirical point of view, the main intuition of how
the data are used is that the two Eqs. (4.1) and (4.2) specify the two
unknowns ν and π (the unknown quantity of interest π is thought as the
cause in the modeling perspective) when observing the consequences,
i.e., the number of captured and recaptured fish (y1, y3). The likelihood
[y1, y3|π; y2] is obtained by assembling the two Eqs. (4.1) and (4.2) that
are conditionally independent: once taking out the common explaining
factors ν, π, and y2, the random events of Eq. (4.1) do not share anything
with the ones of Eq. (4.2).

[y1, y3|ν, π; y2] = [y1|ν, π]× [y3|y2, π]

=
Γ(ν + 1)Γ(y2 + 1)

Γ(ν − y1 + 1)Γ(y1 + 1)

× πy1+y3(1− π)y1−y3+ν−y1

Γ(y2 − y3 + 1)Γ(y2 + 1)
(4.3)

4.1.3 Prior distributions

To quantify the uncertainty about the unknowns (ν, π), we need the a
priori distribution [ν, π] (or prior) that encodes the knowledge available
to the analyst about the unknowns before observing the data. This prior
will be updated by Bayes theorem into a posterior, i.e., knowing the
data (y1, y3). We will assume for convenience a Beta distribution for π
and an independent uniform distribution for ν such that:

[ν, π] = [ν]× [π] (4.4)

with prior [π] and [ν] {
π ∼ Beta(a, b)

ν ∼ Uniform(0, νmax)
(4.5)

From an ecological expertise, scientists would only say that with
regard to food and living space, there is no room for more than
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νmax=10,000 smolts in the Oir River. Not to favor any value of π we
take the hyperparameters a = 1 and b = 1 so that the prior [π] is the
uniform distribution.

Specifying the priors completes the definition of the model. Figure
4.4 gives the directed acyclic graph (DAG) for this model.

4.1.4 Getting the posterior distribution

Bayes theorem updates the prior knowledge about π and ν into the
posterior distribution [ν, π|y1, y3; y2].

[ν, π|y1, y3; y2] =
[ν]× [π]× [y1|ν, π]× [y3|y2, π]

K

=
[ν, π]× [y1, y3|ν, π; y2]

K
(4.6)

The denominator K is the constant of integration to be calculated as
the double integral:

K =

1∫
π=0

νmax∑
ν=0

[ν, π|y1, y3; y2]dπ

At first look, its denominator is not straightforwardly computed (on
the book’s website hbm-for-ecology.org , a more detailed study is pro-
posed in a practical section corresponding to this chapter). But it is
easy to get draws from the posterior distribution of ν and π relying on
Markov chain Monte Carlo simulations. In practice, this can be obtained
from a very simple BUGS program:

]Model
model
{
π ∼ dbeta(1, 1)
nu ∼ dunif(0, nu max)
y 1 ∼ dbin(nu, π)
y 3 ∼ dbin(y 2, π)
}

]Data
list(y 1 = 767, y 2 = 76, y 3 = 58, nu max = 10000)
]Inits
list(π = 0.5, nu = 5000)
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Figure 4.5 shows the marginal posterior [π|y1, y3; y2] and [ν|y1, y3; y2]
as well as a scatter of (π, ν) draws from the joint distribution
[ν, π|y1, y3; y2].

Another practical exercise on the website suggests to check how the
results might be sensitive to prior specifications of ν, (e.g., the upper
bound νmax).

4.2 Bayesian analysis of juvenile abundance by suc-
cessive removals

4.2.1 Motivating example

FIGURE 4.6: An electrofishing team.

The Nivelle River is a well-studied river in France for Atlantic salmon
([97]). It is a coastal river, which flows from the Pyrennées into the
Atlantic Ocean near the Spanish border. Although its drainage basin
amounts to nearly 200 km2, the riverine habitat colonized by salmon
only extend to 25 km of the Nivelle River and its tributaries due to
impassable dams. In 2005, the 0+ juvenile production was surveyed in
autumn by successive removal sampling via electrofishing. Successive
removal by electrofishing is a commonly used method for deriving esti-
mates of abundance of riverine fish such as salmonids ([33]; [130]). At a
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single site in shallow waters (< 0.5 m), fish are repeatedly removed from
a closed population using constant effort on each pass of an electrode. Re-
moval is performed without replacement, i.e., fish caught during a pass
are removed and hold so that they are no longer subject to be caught
at the next pass. As an example, three successive passes on riffles with
an estimated habitat surface of 564 m2 gave the following series of fish
catches: c1 = 41, c2 = 28, and c3 = 15. Within the sphere of influence
(the electrical field created by a direct current generator), fish involun-
tarily swim toward the electrode, gets tetanized and captured. Members
of the fishing team (one electrode handler and two dip-netters and the
bucket carrier2) walk upstream and progressively sweep the whole sector
of the river (see Fig. 4.6). The anode operator carries a direct current
generator (200 W). The site is swept by progressing upstream to surprise
the fish. During the experiment, the sampling sites were not closed with
barrier nets. However, we will assume that immigration into or emigra-
tion out of the sampling site are negligible since the 2nd and 3rd passes
were performed shortly after the first one.

Based on the observed results of this successive removal experiment
(c1, c2, and c3), the scientist will seek to estimate the total number of
0+ juveniles which are present in the site.

4.2.2 Sampling distributions

In electrofishing removal experiments, fish caught during a pass are
removed and stored so that they cannot be caught at the next pass. In
addition to the closeness of the population between each pass, we make
the following assumptions as in Carle and Strube ([45]):

• For each removal event, all the fish have the same probability of
capture and are independent from each other regarding to the cap-
ture process.

• The probability of capture remains the same between successive
passes.

Based on these hypotheses, we set a binomial model with a con-
stant probability of capture π to mimic the removal experiment at each
pass. We refer the reader to Mäntyniemi et al. ([187]) for an interest-
ing Bayesian model relaxing this hypothesis. Following Peterson et al.
([229]), this author suggested that the probability of capture is likely to
decrease in successive removals because:

2Carrying the bucket is often the only but essential role awarded to the statistician
when he gets out of his office to understand how the data are collected on the field.
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FIGURE 4.7: Directed acyclic graph (DAG) for the successive removal
model with three passes.

1. fish may exhibit heterogeneous catchability, leading to the most
capturable fish being caught first ([93]; [187]);

2. changes in the fish behavior between successive passes and/or a
reduced susceptibility to electricity of fish having experienced an
electric shock but not been captured ([32]).

Schnute ([271]) proposed a more realistic approach that allows for a
decline in the probability of capture between passes. Wang and Lonera-
gan ([309]) developed an over-dispersed model where the probability of
capture varies randomly and independently among passes.

Of course, all the violations of a constant π hypothesis might be valid
but additional sophisticated assumptions and sometimes very tricky ad-
hoc hypotheses are necessary to develop such nonbinomial models. Mak-
ing simple assumptions as a first try and checking a posteriori the con-
sistency of the results is our preferred approach. We denote ct the catch
data from the pass t and ν the unknown population size before the sam-
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FIGURE 4.8: Posterior distributions of (π, ν) from the model depicted
in Figure 4.7. The shape of the joint posterior distribution is shown in
the central part (joint MCMC draws and smoothed isodensity contours).
The marginal distributions are shown in the top and right panels.

pling process began. The sampling distributions of the catch data are:
C1 ∼ Binomial(ν, π)

C2 ∼ Binomial(ν − C1, π)

C3 ∼ Binomial(ν − (C1 + C2), π)

(4.7)

4.2.3 Prior distributions

We will assume for convenience a Beta distribution for π (see
Eq. (2.6)) with coefficients a and b related to mean and variance by
Eq. (2.7). For instance a = 6 and b = 4 gives a reasonable prior guess
(E(π) = 0.6 and V(π) = 0.152) for the efficiency of common electrofish-
ing experiments in rivers.

We might also assume the population size ν to be uniformly dis-
tributed between 0 and some upper bound nmax. As the area S of the
sampling site is recorded, we favor an alternative prior model by consid-
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ering that the population size ν depends on the expected fish density δ
(fish per m2). We further assume the fish to be randomly distributed in
space within an infinitely large surface from which the site with finite
surface S is randomly picked. In other words, ν is hypothesized to be
Poisson-distributed with parameter δ × S:

ν ∼ Poisson(δ × S) (4.8)

The Poisson pdf dPois(ν, λ) of a random variable ν with parameter
λ is defined as:

dPois(ν, λ) =
(λ)

ν

Γ(ν + 1)
e−λ (4.9)

We further assign a prior distribution to the fish density δ, via a Gamma
distribution with a mean close to 1 fish per 10m2 as currently proposed
by biologists and a very large variance to allow for large uncertainty:

δ ∼ Gamma(c, d) (4.10)

By choosing d = c · (0.1)−1, the variance of that Gamma distribution
is such that Var(δ) = 0.01

c and a sensitivity analysis can be performed
by checking various values for c. c = 1 leads to the exponential distri-
bution, c close to 0 borders up some improper distribution with infinite
variance. From a mathematical point of view, if [ν|δ] = dPois(ν, δS) and

[δ|c, d] = dgamma(δ, c, d), [ν] =
∞∫
δ=0

[ν|λ]×[δ|c, d]dδ belongs to the family

of negative binomial distributions. One can easily perform the integra-
tion to get the explicit expression of this Poisson-gamma convolution
(that defines the negative binomial pdf):

[ν|S, c, d] =
Γ(ν + 1)

Γ(c)Γ(ν + c)

(
d

d+ S

)c(
1− d

d+ S

)ν
(4.11)

with mean and variance 
E(ν) =

c

d
S

V(ν) =
c(d+ S)

d2
S

For the ease of notations, we will write the pdf given by Eq. (4.11)
as dbinNeg:

[ν|c, d] = dbinNeg(ν, S, c, d)

Due to conjugate property, the Bayes formula for the Poisson-
Gamma model can be written as:

dgamma(δ, c+ ν, d+ S) =
dPois(ν, λS)× dgamma(δ, c, d)

dbinNeg(ν, S, c, d)
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Figure 4.7 gives the corresponding directed acyclic graph (DAG) for
the model described by Eqs. (2.6), (4.7), (4.8) and (4.10).

4.2.4 Full joint posterior

Updating the prior knowledge about π and ν into a posterior distribu-
tion is performed by Bayesian analysis using WinBugs. Figure 4.8 shows
the posterior marginals [π|c1, c2, c3], and [ν|c1, c2, c3] as well as a scat-
ter of the joint posterior distribution of (π, ν|c1, c2, c3). A posterior bet
about the number of juveniles would be around 110 fish (±20%) but note
that the fishing efficiency is not well known; more precise prior knowledge
or more data are required. Although they were a priori independent, both
quantities become rather correlated when updated through the informa-
tion conveyed by the data as suggested by the banana-shaped posterior
cloud.

4.3 Testing the efficiency of a new tag for tuna mark-
ing

4.3.1 Motivating example

Tagging (and recapture) experiments are widely used to study
fish biology and to estimate key biological parameters such as migra-
tions, survival and growth. The French Institut de Recherche pour le
Développement (IRD) has the scientific responsibility of large scale tag-
ging programs of tropical tuna in the Indian and South Atlantic Oceans.
The data used in this section are from Dr. Daniel Gartner, IRD, Sète,
France. Conventional “spaghetti”tags used for large tagging campaigns
and new tags originally designed for “sport fishing”(Betyp tags) were
compared during a tuna tagging program conducted on board Dakar
baitboats in 1999. Conventional “spaghetti”tags have a smaller head
with only one barb on one side and are generally chosen for tagging
large quantities of fish from the boat deck during scientific campaigns.
In contrast, Betyp tags have a bigger head with one hook on each side
which gives a firmer hold of the tag into the fish. This device is well
suited for tagging large sized tunas one at a time directly at sea during
sportfishery activities. Both types of tags were placed at the base of the
second dorsal fin of the fish in order to firmly attach the barbs of the
tag’s head into the bones supporting the fin.

The recapture rate of conventionally tagged skipjacks (see Fig. 4.9)
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FIGURE 4.9: A skipjack tuna.

is well known and has been estimated at π0 = 0.22, based on various
experiments with more than 4000 tagged individuals. In contrast, only
n = 297 skipjack tuna were tagged with Betyp tags, and y = 47 were
recaptured. Can we conclude from that study that Betyp tags have a
different (lower?) recapture rate from the conventional spaghetti tags?

4.3.2 Translating the question into a Bayesian problem

4.3.2.1 Setting a prior pdf for π

We denote π the recapture rate of the new Betyp tags. We seek to
compare two alternative prospects (H1 versus H2):

• H1: π = π0, i.e., the two tags have similar recapture rates.

• π 6= π0, i.e., the two tags have different recapture rates.

In a Bayesian analysis, these two hypotheses are to be associated
with the following prior distributions:

• H1: To formalize the prior assumption π = π0, the prior distribu-
tion for π is concentrated around the value π0 = 0.22.

• H2: To formalize the prior assumption π 6= π0, we would assign
a prior distribution (for instance a Beta(a, b) distribution) that
would reflect our prior beliefs on π. We postpone the discussion of
choosing (a, b) to the end of the section.

As we are indifferent between the two hypotheses H1:π = π0 and
H2:π 6= π0, we will initially give a weight of 1

2 to each of them so that
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the prior assignment of π can be written as a mixture of a Dirac and a
Beta distribution (using definition (Eq. (2.6)) in proportion 50%− 50%:

[π] =
1

2
1π=π0 +

1

2
dbeta(π, a, b) (4.12)

4.3.2.2 Posterior for π

After observing the result of the binomial recapture experiment for
the new Betyp tag (y = 47 recaptures (success) out of n = 297 marked
fish( trials)), the prior for the recapture rate is updated by Bayes rule
(see Eq. (2.2)), leading to:

[π|y, n] =
[π]× [y|π;n]

[y|n]

Let us first focus on the numerator of Eq. (2.2), which is easily ob-
tained through the multiplication of the mixture prior with the Binomial
likelihood. Remembering Eq. (2.10) and noting that dbinom(y, n, π0) =
dbinom(y, n, π)× 1π=π0

:

[π]× [y|π, n] =
1

2
dbinom(y, n, π0)

+
1

2
dbeta(π, a+ y, b+ n− y)× dPolya(y, n, a, b)

Let us now focus on the denominator of Eq. (2.2). Since
1∫

π=0

dbeta(π, a+ y, b+ n− y)dπ = 100%:

[y|n] =

1∫
π=0

[y, π|n][π]dπ

=
1

2
dbinom(y, n, π0) +

1

2
dPolya(y, n, a, b)

Turning back to the mixture prior to the Betyp recapture rate π, we
obtain as a posterior:

[π|y, n] =
1

[y|n]
{1

2
dbinom(y, n, π0)

+
1

2
dbeta(π, a+ y, b+ n− y)× dPolya(y, n, a, b)} (4.13)

Let us denote ω(y, n, a, b) the weighting factor:

ω(y, n, a, b) =
dbinom(y, n, π0)

dbinom(y, n, π0) + dPolya(y, n, a, b)
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Then the posterior (Eq. (4.13)) is written

[π|y, n] = ω(y, n, a, b)× 1π=π0

+ (1− ω(y, n, a, b))× dbeta(π, a+ y, b+ n− y) (4.14)

ω(y, n, a, b) is the posterior probability that the Betyp tag works the
same way as the conventional tagging device. It depends on the values
a, b that the fishery scientist would assign to depict the behavior of the
new tag, were it different from the old one. A first attempt could be
a = 1, b = 1 leading to a uniform distribution that can be considered as
poorly informative for which ω(y = 49, n = 297, a = 1, b = 1) = 0.35.
We therefore are prone to bet in favor of π 6= π0 in this case.

A more informative guess consists of expecting that the new device
works in the vicinity of π0, but pessimistically assume that our best guess
for the new tag recovery rate π1 is 90% of the regular one, e.g., choosing
a Beta prior with expected mean π1 = .9 × π0 = 0.2 for the recapture
rate of the new device. One degree of freedom remains for setting (a, b).
The prior variance σ2 = ab

(a+b)2(a+b+1) controls the acceptable distance

from the old device, and can be set by adjusting (a+b), a quantity that is
to be interpreted as a virtual number of prior trials in the context of the
Beta-Binomial model. For instance if the prior knowledge is equivalent to
a+ b = 100 virtual prior trials, the standard deviation is approximately
equal to the difference π0 − π1 (σ2 ≈ (.02)

2
, meaning that the prior

confidence interval of the expert for π does not discard at all π0) but
the posterior credibility drops from 0.5 to 0.077 in favor of an exactly
similar behavior for both tags. Since the choice of the variance seems
rather arbitrary, one should wonder about the sensitivity of the result
to this tuning parameter.

Figure 4.10 shows the posterior probability that the two tags are
identical (ω(y, n, a, b)) as a function of the relative variance for the prior
of π1, σ/π1. The U-shape of the curve indicates a strong sensitivity of
ω(y, n, a, b) to the prior variance. When σ is small, meaning a strongly
peaked prior, a Dirac at π1 as a limiting case, the posterior credibility

in favor of the hypothesis π = π0 turns to be Binom(n,π0)
Binom(n,π0)+Binom(n,π1) =

0.136 only: although we hypothesize a priori that π = π1 < π0, the data
try to speak partially against this prior assumption by putting weight
on π = π0. If the prior turns to be highly dispersed (as the uniform
distribution), not much prior confidence is granted to π close to π1; the
fuzziness around π 6= π0 for large σ/π1 blurs the results and prevents the
odds in favor of the hypothesis π 6= π0 from being too strong. Between
these two extremes, the posterior credibility in favor of the hypothesis
π 6= π0 passes through a maximum: the prior knowledge equivalent to
100 virtual additional tag trials allows for some uncertainty to get away
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FIGURE 4.10: Posterior probability that the two tags are identical
depending on the prior coefficient of variation σ/π− in the case n =
297, y = 47.

from π = π0 and let the data strongly speak in favor of π 6= π0 (with a
weight of 92%). As a conclusion, the graph shows that even in the range
of very pessimistic priors for π, the data provide strong evidence that
the Betyp tag works very differently from the conventional tag.

4.3.3 Hypotheses testing via Bayes Factors

Indeed, the recapture rate π0 for conventional tags is not exactly
known. In this section π0 is a random variable. We know that the fol-
lowing recapture rates have been observed during the previous tagging
trips with at least ten fish tagged by trip: 0.245, 0.245, 0.157, 0.103, 0.323
and that n0 = 1307 individuals have been tagged with conventional tags
during the comparison experiment, among which y0 = 249 were recap-
tured. A model for π0 would be elaborated first by fitting a beta prior
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(a0, b0) on the past recaptured rates by the method of moments:
a0

a0 + b0
= 0.215

a0b0
(a0 + b0)2(a0 + b0 + 1)

= 0.0073

leading to a0 = 4.7 and b0 = 17.2 and then updating this prior by using
the Beta-Binomial conjugate property:

[π0] ∼ Beta(a0 + y0, b0 + n0 − y0)

In this setting, we wonder for the Betyp tag experiment on skipjacks
with n = 297 tagged and y = 47 recaptured about which model M is to
be considered. Are the data stemming:

• from model M = M0, i.e., a binomial sampling distribution with
probability π = π0, or

• from model M = M1, π = π1 6= π0? Note that for model M1, a
prior Beta(a1, b1) distribution can also be taken for π.

From a Bayesian point of view, the model itself is to be considered
as a parameter to be estimated and such a question can be answered by
calculating the Bayes Factor of M0 versus M1, which is nothing more
than the odd ratio of the models M0 versus M1.

4.3.3.1 Bayes Factors

More generally, suppose that several competing model structures, Mi

with i = 1, ..., k, can be proposed with their own set of parameters. As-
suming a prior distribution over models structure [Mi] (this prior relates

only to the structure of model Mi, not to its parameters;
m=k∑
m=1

[Mm] = 1)

and a prior distribution [π|Mi] on parameters π for model Mi, Bayes’
theorem provides the a posteriori distribution for model Mi given the
data y:

[Mi|y] =
[y|Mi]× [Mi]

[y]
(4.15)

The first term of the numerator in Eq. (4.15), [y|Mi], is the marginal
likelihood in model Mi. It is also called the predictive for model Mi as
it could be used to predict new data from this model. [y|Mi] can be
rewritten as the integration of the likelihood [y|π,Mi] against the prior
[π|Mi] :

[y|Mi] =

∫
π

[y, π|Mi]dπ =

∫
π

[y|π,Mi]× [π|Mi]dπ
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The denominator in Eq. (4.15) is obtained by summation over all the
competing models:

[y] =
k∑

m=1

[y|Mm]× [Mm]

Comparing posterior distributions of the models is useful to find out
the most probable model structure among models i = 1, ..., k. Comparing
two models Mi and Mj is equivalent to computing the Bayes Factor Bi,j ,
i.e., ratios of marginal likelihoods between models Mi and Mj , corrected
by the ratio of priors since:

Bi,j =
[Mi|y]

[Mj |y]
=

[y|Mi]

[y|Mj ]
× [Mi]

[Mj ]
(4.16)

The Bayes Factor Bi,j evaluates the relative increase of evidence (from
prior to posterior, given the data) in favor of model Mi over model Mj .
When the two competing models are given the same a priori weight,
i.e., [Mi] = [Mj ], then the Bayes Factor Bi,j directly gives a comparison
between the posterior credibilities of each model.

4.3.3.2 Model selection for the tuna marking experiment

Let us now return to the tuna tagging experiment. The Bayes Factor
B0,1 can be calculated to compare the two hypotheses M = M0 and
M = M1. Let us further assume that both models M0 and M1 are
equiprobable a priori, that is [M = M0] = [M = M1] = 1

2 . The Bayes
Factor B01 directly gives a comparison between the posterior credibilities
of each model:

[y|M0]

[y|M1]
=

[M0|y]

[M1|y]
× [M1]

[M0]

The Beta-Binomial model is a favorable case to compute the Bayes
factor as the conjugate property allows for closed-form expressions of
the marginal likelihoods [y|M0] and [y|M1] :{

[y|M0] = dPolya(y, n, a0 + y0, b0 + n0 − y0)

[y|M1] = dPolya(y, n, a1, b1)

Hence

B01 =
dPolya(y, n, a0 + y0, b0 + n0 − y0)

dPolya(y, n, a1, b1)
×

1
2
1
2

=
Γ(a0 + y0 + y)Γ(b0 + n0 − y0 + n− y)Γ(a0 + y0 + b0 + n0 − y0)

Γ(a0 + y0)Γ(b0 + n0 − y0)Γ(a0 + y0 + b0 + n0 − y0 + n)

× Γ(a1)Γ(b1)Γ(a1 + b1 + n)

Γ(a1 + y)Γ(b1 + n− y)Γ(a1 + b1)
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For a uniform prior (a1 = 1, b1 = 1), one finds B01 = 7.12. Thus,
[M0|y] = B01

1+B01
= 0.88 and [M1|y] = 0.12. Not surprisingly, widening

the prior location possibilities for π0 unduly reinforces the credibility of
the hypothesis π = π0 as opposed to π 6= π0 and π uniformly distributed.
The prior mean 1

2 is far from what the data show ( yn = 0.158) and in
this noninformative case we would bet for π = π0 as a default choice. As
previously, one has to study the sensitivity of the posterior probability of
M0 (the two tags are identical) to the various possible values for (a1, b1).

4.4 Further references

Within the Bayesian framework, selecting a model is obtained by a
simple extension of the Bayes Theorem to estimate the posterior weight
of one additional discrete parameter, the model’s label. In the conjugate
situation, computing this weight is easy. Indeed, when the likelihood
[y|π] allows for conjugate prior [π] and posterior [π|y], the predictive [y]
is explicitly obtained in closed form since

[y] =
[y|π]× [π]

[π|y]

This conjugate property is exemplified in this chapter by the beta-
binomial structure, and it is also the case of the Normal-Gamma models
of Chapters 3 and 6. For more general structures, getting each com-
peting model’s weight is more challenging, because one has to compute
the denominator of the Bayes rule, i.e., a possibly intractable multi-
dimensionnal integral that we were happy to avoid evaluating when im-
plementing MCMC techniques. Some common importance sampling es-
timates are described in Appendix B. The interested reader is invited to
refer to [46] and [157] for an introduction to Bayes Factors and model se-
lection. Chapter 6 of King et al. ([164]) details the most popular methods
to compute posterior model probabilities. More technical papers explain-
ing how to evaluate the marginal likelihood for the purpose of Bayesian
model comparisons are found in Chib ([55]) and Chib ([57]). Burnham
and Anderson ([43]), Johnson and Omland ([148]) or Ward ([310]) give
interesting overviews of methods for multimodel inferences in ecology.
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Chapter 5

Combining various sources of
information to estimate the size of
salmon spawning run

Summary

Evaluating the spawners abundance is a major issue to model the dy-
namics of wild populations. Due to the small number of records or few
repetitions as well as many uncontrolled conditions, estimates of popu-
lation sizes and related demographic parameters are blurred with uncer-
tainty. Conventional statistical analyses can lead to a misrepresentation
of this uncertainty while they more often than not ignore additional
information readily available to the modeler. This chapter develops a
Bayesian analysis to take full advantage of all the information carried
by the data collected in the field and by the expertise derived from the
fishery manager.

This chapter details a model to estimate the size of A. salmon spawn-
ing run in the Scorff River. We point out that:

1. A directed oriented graph is convenient to model the various events
that may occur in a salmon population. This graphical represen-
tation is based on conditional reasoning and gives a formal repre-
sentation of the way that three types of quantities interact: Ob-
served variables, latent variables and population parameters. La-
tent variables represent unobserved or hidden quantities with phys-
ical meaning which complement the observed data (systematically
measured).

2. Much expertise about the local ecosystem and fishery is brought
into the analysis via informative priors.

3. As expected, the dispersions of the unknown quantities are greatly
reduced when additional information, such as inter-annual data, is
brought into the analysis.

105
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This chapter gives a flavor of the hierarchical models that will be
fully developed in Part 2. It is the first attempt to assemble elementary
bricks (Beta-binomial submodels describing the successive events during
A. salmon spawning run in the Scorff River) in order to design a rather
complex structure with many parameters and latent variables. Attention
is recentered on the realism of the model to mimic the fish behavior as a
probability tree. Bayesian analysis offers a coherent deductive framework
to study the various sources of uncertainty. Ecological inferences here are
grounded on various kinds of observed data and on local expertise.

5.1 Motivating example

Knowing how many adult salmon return to their native river to spawn
(see Fig. 5.1) is a major concern for both research programs on popu-
lation dynamics and stock assessment work for resource management
advice ([238]). Both scientists and managers need not only point esti-
mates of the population size (for instance the most likely value) but
also a description of their uncertainty. Precision of the population size
measurements is crucial to critically assess the reliability of scientific
knowledge gained or to propose management decisions based on a pre-
cautionary approach.

FIGURE 5.1: A spawner swimming back to its native river.
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In a natural, (i.e., uncontrolled) environment, only statistical knowl-
edge can be obtained to assess fish stock size. Several statistical tech-
niques are commonly used to estimate salmonids population sizes
through well-established ad hoc experimental design schemes: capture-
mark-recapture methods, successive removals and so on (see [69] or [278]
for a review of standard methods and models). Unfortunately many
stock size assessment problems do not conform to such standard aca-
demic models; founding hypotheses are violated, conditions required to
derive estimates do not match the data collected, all the information
available is not used. The mark-recapture experiment of the Scorff River
presented in the following section illustrates these problems. The hy-
pothesis of a closed population is violated, as unexpected losses occur
before marked individuals are recaptured. The conditions to use esti-
mates of variance based on asymptotic properties are not met as only
very few marks are recaptured. In addition to the numbers of fish marked
and recaptured, information is available through local expertise about
the ecosystem and the fishery. In the scientific literature, past years of
observations, auxiliary information collected in the field by technicians
or fishermen (reporting of dead fish, catch declarations, etc.) are avail-
able. Yet, traditional standard estimation procedures often ignore these
information sources and treat every yearly estimation as if it were the
first one ever done.

5.1.1 The dangerous run of spawners

After spending 14 months to 3 years in the Atlantic Ocean, the adult
salmon come back to their native river to spawn (see Fig. 5.1). A com-
plete description of the life cycle has been detailed in Chapter 1. On the
Scorff River, a management oriented research program is carried out;
the population abundance is assessed at several stages in the life cycle.
The adult returns are quantified by means of mark-recapture experi-
ments. Marking is done at a trapping facility located at the mouth of
the river. Estimation of the returns is conducted separately for the two
main age classes in the returns, grilse and spring salmons (which have
spent 14 months and 2 or 3 years in the sea, respectively). The case
study presented here deals with the grilse run only. Fig. 5.2 sketches the
fate of a salmon entering back its originating river when returning after
its trip in the Atlantic Ocean. Three main events are likely to occur to
the candidate spawner:

1. At their entry into the Scorff River, the salmon may be trapped,
marked and released as a first step of a standard stock estimation
procedure. Some of them escape from the trap and continue their
upstream migration.
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FIGURE 5.2: Path diagram showing what the future holds in store for
an A. salmon spawner entering the Scorff River.

2. A portion including both marked and unmarked individuals will be
removed by the anglers. French law requires that salmon catches
be officially declared but this commitment is not always respected.
An additional local survey is used to gather further information.
Crossing these two sources allow for a first evaluation of the number
of salmon “caught for sure.” Among the fish known to be caught,
some are brought to the research technicians for mark identifica-
tion.

3. The fish that escaped the angling fishery will have to survive until
the spawning season (around December). During spawning time,
scientists go to the field and complete the statistical survey by
a recapture phase. Some fish (marked or unmarked) are caught
during these recapture surveys.

5.1.2 Observed variables

The data presented in Table 5.1 consist of six years (in rows) and
of six variables (columns). The first year of data (1994) is known to
be significantly different from the others. The trap efficiency and the
recapture effort during the spawning period were much lower.

The observed variables carry the following information:
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• Y1 gives the number of individuals trapped, marked and released;

• Y2 and Y3 are the number of respectively marked and unmarked
fish removed by anglers and presented for marking detection;

• Y4 reports the total (marked+unmarked) removed for sure (con-
sequently Y4 > Y2 + Y3), as not all fish caught by anglers are
presented for mark detection;

• Y5 and Y6 present respectively the marked and unmarked fish that
survived and were recaptured during or after spawning.

Year Y1 Y2 Y3 Y4 Y5 Y6

1994 156 3 14 42 4 14
1995 500 39 10 75 31 28
1996 502 25 8 87 45 14
1997 320 17 7 33 19 9
1998 442 50 5 66 56 13
1999 167 16 4 24 16 11

TABLE 5.1: Data available to estimate spawning run in the Scorff
River. Only 1SW fish (grilse) are considered. Data are reproduced with
permission of Etienne Prevost, INRA, St.-Pée sur Nivelle, France.

5.2 Stochastic model for salmon behavior

In this section, we show how parameters, latent variables and ob-
servations can be articulated through conditional reasoning to build a
Bayesian model for salmon spawning run. The model is first built for
one year. Then, in Section 5.2.7 several years are combined within the
same model.

5.2.1 Bernoulli trials transfer individual behavior into
population features

On the basis of Fig. 5.2, a model should mimic the mechanism yield-
ing the data at hand. The observables Y1, Y2, . . . , Y6 are not directly
related to individuals; they should be considered as observable quan-
tities concerning the whole population of salmon in the Scorff River.
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The observables were modeled as probabilistic issues of Binomial exper-
iments. The underlying hypothesis is that they are probabilistic sums of
Bernoulli trials sketching the behavior of each individual, all individuals
being independent and sharing the same probability for the Bernoulli
event (see Chapter 2 and Eq. (2.4) in this chapter for more details about
the Binomial distribution). For instance, hypothesizing that spawners
are trapped with a stationary probability θ, Y1 can be considered as a
Binomial random variable. More precisely, denoting κ the unknown size
of the spawning run, Y1 is the sum of κ independent Bernoulli trials with
coefficient θ.

5.2.2 Parameters are assumed stationary

During the modeling task, unknown quantities are to be introduced
to describe the stochastic features that govern the behavior of an indi-
vidual. Such quantities are assumed to remain stationary from one fish
to another one. The following technical parameters are unknown but
conceptually essential to the methodologist:

• κ : the number of spawners to be swimming upstream;

• θ : probability that a spawner be trapped and marked at the trap-
ping facility;

• β : probability that a spawner be removed by anglers;

• τ : probability that a salmon caught by anglers be reported as a
“sure removal”;

• δ : probability that a reported salmon caught by anglers be de-
clared and checked for previous marking by research technicians;

• α : natural salmon survival probability until the reproduction pe-
riod;

• π : probability that a spawner be recaptured during or after the
reproduction period.

5.2.3 Prior expertise is available for the parameters

Unknown parameters are often “not as unknown” as they seem to
be at first glance; even without data, all subsets of possible values do
not bear the same prior belief. It is generally not justified to rely on
flat priors in stock size assessment, (i.e., noninformative equidistributed
bets) since practitioners always have some knowledge about the popu-
lation features under study (see [135], [198], [241] for arguments about
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the use of informative vs. noninformative priors). For the Scorff River,
prior knowledge (hereafter noted K

¯
) can be summed up as follows:

1. Considering the size of the river, the earlier data on juvenile pro-
duction ([15]) in the Scorff River and ranges of sea survival ([77]),
experts would bet with 9 odds against 1 that the number of spawn-
ers entering the Scorff (κ) stands in the interval [100, 3000] with
highly plausible values around 700 individuals.

2. Little is known about the trapping probability θ at the experimen-
tal facility: one would imagine a symmetric repartition with 0.5
as a median and only a 10% chance to be less than 0.1 or greater
than 0.9.

3. The first guess for salmon survival rate α in river is above 0.9. An
expert would even accept to bet up to 9 against 1 that α is greater
than 0.75.

4. The angling exploitation rate β is considered to be most likely
between 0.1 and 0.3. It is hardly credible (less than 10% chance)
that β stands above 0.7.

5. The most likely τ, the probability that a salmon catch is known
“for sure” is above 0.9 and it seems highly unlikely (5%) that it is
below 0.5.

6. Little is known about the probability δ that a salmon known to
be caught is presented for mark control. A symmetric repartition
with 0.5 as a median and only a 10% chance to be less than 0.1 or
greater than 0.9 would reflect this weak prior knowledge.

7. Considering the number of spawning sites covered and the survey
effort during the recapture events, the probability of recapture π is
most likely below 0.25, unlikely between 0.25 and 0.5 and almost
impossible above 0.5. In what follows, “most likely” was inter-
preted as a bet with 9 odds against 1, “almost impossible” was
quantified as less than 1% chance and the remaining probability
(around 9%) was used to assess the weight of “unlikely” values.

5.2.4 Prior elicitation

Figure 5.3 sketches an acceptable discrete pdf to represent prior be-
lief about κ given the expertise K

¯
. This curve has been obtained by a

(discrete) Gamma function in Eq. (5.1) with coefficients 2.4 and 1/500,
truncated to the interval [0, 4000]. The truncation below 4000 is for
computational convenience, but a sensitivity analysis shows that it is
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largely justified. As required when encoding the expertise, this curve ex-
hibits a maximum value around 700 and puts 90% weight on the interval
[100, 3000].

[κ |K
¯

] =
κ2.4−1 exp(− κ

500 )
z=4000∑
z=0

z2.4−1 exp(− z
500 )

(5.1)

FIGURE 5.3: Informative Gamma Prior pdf with parameters 2.4 and
500 (shape and scale parameters, respectively) for the stock size κ, the
mode is around 700 and 90% of the density stands between 100 and
3000.

The six other parameters θ, α, β, τ, δ, π are probabilities in Bernoulli
trials, therefore belonging to the interval [0, 1]. The Beta distribution (see
Eq. (2.7) in Section 2) with two fitting coefficients aK

¯
and bK

¯
already

introduced in Chapter 2 can mimic a wide variety of behaviors for a
random quantity between 0 and 1. Figure 5.4 and Table 5.2 show the
results of the elicitation of Beta(aK

¯
,bK

¯
) pdf to encode prior expertise for

the various technical parameters. The mode of this function occurs for
aK

¯
−1

aK
¯

+bK
¯
−2 , which gives a first linear relation between aK

¯
and bK

¯
when the

expert indicates the parameter most probable value. If a credible interval
is given for the prior pdf, the parameters are then adjusted so as to



Combining various sources of information 113

match the probability statement of the expertise by a (unidimensional)
procedure of trials and errors.

Parameter K
¯

={prior expertise} aK
¯

bK
¯

θ (trapping efficiency) p(θ |K
¯

) sym. 1.53 1.53
p(θ ∈ [0.1, 0.9] |K

¯
) = 0.9

α (survival rate) Mode(α |K
¯

) ≈ 0.9 10 1.5
p(α > 0.75 |K

¯
) = 0.9

β (angler efficiency) Mode(β |K
¯

) ≈ 0.2 1.3 2.2
p(β > 0.7 |K

¯
) ≤ 0.1

τ (prob. of reporting) Mode(τ |K
¯

) ≈ 0.9 5.5 1.5
p(τ < 0.5 |K

¯
) = 0.05

δ (prob. of declaring) p(δ |K
¯

) sym. 1.53 1.53
p(δ ∈ [0.1, 0.9] |K

¯
) = 0.9

π (recapture prob.) Mode(π |K
¯

) ≈ 0.2 1.6 11
p(π ≤ 0.25 |K

¯
) = 0.9

p(0.25 ≤ π ≤ 0.5 |K
¯

) = 0.09
p(π > 0.5 |K

¯
) = 0.01

TABLE 5.2: Informative Beta distributions for parameters
(θ, α, β, τ, δ, π).

As prior knowledge of each parameter is established independently
the joint prior is the product of all univariate priors:

[κ, θ, α, β, τ, δ, π |K
¯

] =[κ |K
¯

]× [θ |K
¯

]× [α |K
¯

]

× [β |K
¯

]× [τ |K
¯

]× [δ |K
¯

]× [π |K
¯

] (5.2)

5.2.5 Introducing latent variables

Unknown parameters and observed variables are not enough to de-
scribe the wanderings of salmons. Latent variables, i.e., intermediate
quantities related to unobserved variables with a physical meaning, are
thus introduced (see also Eq. (1.18) in Chapter 1 for a general intro-
duction of hierarchical modeling using latent variables). They are useful
to help understand the intermediate steps of the conditional modeling
scheme and will not induce any additional burden for the inference task.
Of course, the model should remain well defined: conditional distribu-
tions of latent variables given the parameters and the observable vari-
ables must be fully specified. The following latent variables are intro-
duced:

• Zuu: salmon untrapped, therefore unmarked;
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FIGURE 5.4: Informative Beta prior pdf for technical parameters
(θ, α, β, τ, δ, π). The characteristics of each prior are given in Table 5.2.

• Zmc and Zuc: respectively marked and unmarked individuals
caught by anglers;

• Zmf and Zuf : respectively marked and unmarked individuals re-
maining free during the fishing period;

• Zmr and Zur: respectively marked and unmarked salmon being
reported as sure removals;

• Zms and Zus: respectively marked and unmarked spawners surviv-
ing before reproduction.

Some latent variables combinations are important for scientific re-
porting. For instance, both scientists and fish managers would like to
assess the range of credible values for Zmc + Zuc, the total number of
salmon caught by anglers. As an other example Zms + Zus, which rep-
resents the escapement, appears as a key value to assess the spawning
stock status.

5.2.6 Stochastic model as a directed acyclic graph

Latent and observed variables and parameters are combined into a
stochastic model. The model equations include logical deterministic bal-
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ance equations and stochastic ones. They read as follows:

Zuu = κ− Y1

Zmc ∼ Binomial(Y1, β), Zmf = Y1 − Zmc
Zms ∼ Binomial(Zmf , α)

Zus ∼ Binomial(Zuf , α)

Zuc ∼ Binomial(Zuu, β), Zuf = Zuu − Zuc
Zur ∼ Binomial(Zuc, τ)

Zmr ∼ Binomial(Zmc, τ)

Y1 ∼ Binomial(κ, θ)
Y2 ∼ Binomial(Zmr, δ)
Y3 ∼ Binomial(Zur, δ)
Y4 = Zur + Zmr

Y5 ∼ Binomial(Zms, π)

Y6 ∼ Binomial(Zus, π)

(5.3)

Equations 5.3 allow for the construction of the directed graphical
model given in Fig. 5.5. Conditional reasoning with independence as-
sumptions makes the task of getting this posterior pdf easier when using
MCMC simulation algorithms such as the Gibbs sampler. As an exam-
ple, the special structure of the graph points out that Zmf , Y1, α, κ and
θ do not matter when expressing the conditional pdf of Y5:

[Y5 |Zms , Zmf , Y1, α, π, κ, θ] = [Y5 |Zms , π]

5.2.7 The interannual model is designed by “piling up
slices”of annual models

Figure 5.6 shows that no additional conceptual difficulty arises when
designing an interannual model. It must be underlined that a very strong
hypothesis of stationarity for basic parameters is made, allowing an in-
terannual coherence (and thus some transfer of information from year to
year) by sharing common values for θ, α, β, τ, δ and π. This assumption
is especially questionable for the trapping efficiency θ and the recapture
probability π that can vary from year to year depending on the river
flow and the hydrometeorological conditions.

As the first year of data (1994) is significantly different from the five
other ones (with very low trapping efficiency and recapture effort), it
was not included in the interannual model.
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τ

κθ

β

δ

α

π
y2

Population sizeTrapping efficiency

Anglers’ efficiency

Survival probability

Recapture probabilityProbability of declaring

Probability of reporting

y3 y5 y6

y4

y1 Zuu

Zmc Zuc Zmf Zuf

Zmr Zur Zms Zus

FIGURE 5.5: Directed graphical representation for the model describ-
ing the life of a spawner in the Scorff River.

5.3 Inference with WinBUGS

Inference consists in updating the prior parameter pdf [κ, θ, α, β, τ, δ, π |K
¯

],
(where bK stands for conditioning by the initial knowledge) into the
posterior pdf [κ, θ, α, β, τ, δ, π |K

¯
, Y1, Y2, . . . , Y6 ] by taking into account

the observations (Y1, Y2, . . . , Y6). As a multivariate joint conditional pdf,
this expression is untractable: even though it can be formally derived
from the model (Eqs. 5.3) and the prior pdf [κ, θ, α, β, τ, δ, π] given in
Table 5.2, it involves multidimensional normalizing integrals that come
from integrating out latent variables and denominators of Bayes formula.
Here we rely on WinBUGS programs to perform the Bayesian infer-
ence of the model. WinBUGS takes advantage of the model structure in
Fig. 5.5 to simplify MCMC sampling via the Gibbs algorithm ([118]; see
also [49], for a review). As an example, we simply would like to point out
that the Gibbs sampler will be favored for many nodes of Fig. 5.5 that in-
volve only Beta and Binomial distributions. As an example, the prior for
π is a Beta(aK

¯
, bK

¯
) pdf, with aK

¯
= 1.6 and bK

¯
= 11. Y5, Y6 are Binomial

variables with probability π and associated number of trials Zms and
Zus, respectively. Thus, the likelihood p(Y5 = y5, Y6 = y6 |π, Zms, Zus )
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τ

θ

δ

α

π
y2 y3 y5 y6

y4

y1 Zuu

Zmc Zuc Zmf Zuf

Zmr Zur Zms Zus

β

κ1κ1κ1
t=1,…,5

FIGURE 5.6: Directed acyclic graphical representation for the inter-
annual model describing several years of adult returns in the Scorff River
with the same behavior. All parameters except the κ’s are shared be-
tween years.

writes:

p(Y5 = y5, Y6 = y6|π, Zms, Zus)

= Γ(Zms + Zus + 1)× πy5+y6(1− π)Zms+Zus−y5−y6

Γ(y5 + y6 + 1)Γ(Zms + Zus − y5 − y6 + 1)

From Bayes theorem, the full posterior conditional of π can be expressed
as:

p(π|K
¯
, Y5 = y5,Y6 = y6, Zms, Zus)

∝ p(Y5 = y5, Y6 = y6|π, Zms, Zus)× p(π|K
¯

)

∝ πy5+y6+aK
¯
−1 × (1− π)Zms+Zus−y5−y6+bK

¯
−1

which is a Beta distribution with updated parameters y5 + y6 + aK
¯

and
Zms + Zus − y5 − y6 + bK

¯
. When nonexplicit full conditionals are en-

countered in this problem (consider for instance the node κ), WinBUGS
makes recourse to Metropolis-Hastings techniques.

The Bayesian approach treats latent variables as other parameters.
Their full conditional distributions are evaluated as well. Consequently
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FIGURE 5.7: Bayesian inference for basic parameters conditioned
upon year 1995 dataset. Dotted line: prior; solid line: posterior.

WinBUGS will provide a sample from the joint distribution:

[κ, θ, α, β, τ, δ, π, Z? |K
¯
, y1:5 ]

with
Z? = (Zuu, Zmc, Zuc, Zmf , Zuf , Zmr, Zur, Zms, Zus)

From this sample, one will simply extract the marginal posterior distri-
bution related to quantities of interest (see Table 5.3).

All results presented below were obtained from a MCMC sample of
size 1000 after a 5000 burn-in period. Only one sample over five was kept
so as to get rid of the autocorrelation between Gibbs sampler iterations.

5.4 Results

5.4.1 Estimation for the year 1995

Empirical posterior pdf estimates given in Figs. 5.7 and 5.8, and 95%
credible intervals in Table 5.3 are directly obtained based on a MCMC
sample generated by WinBUGS.
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Parameter Mean Sd 2.5% pct. 97.5% pct.
θ 0.53 0.04 0.45 0.62
α 0.86 0.10 0.61 0.99
β 0.12 0.04 0.07 0.22
τ 0.74 0.16 0.38 0.98
δ 0.65 0.05 0.54 0.75
π 0.09 0.02 0.06 0.13
κ 941 70 819 1097

Zmc+ Zuc 108 33 76 202
Zms+ Zus 716 108 487 924

TABLE 5.3: Main statistics of the marginal posterior pdfs of param-
eters based on year 1995 only. Zmc + Zuc measures angling catches.
Zms+ Zus measures spawning escapement.

Correlation (%) κ α β δ τ π θ
κ 100 2 -22 0 1 -40 -92
α 2 100 -1 0 1 -65 -1
β -22 -1 100 0 -86 29 20
δ 0 0 0 100 1 0 0
τ 1 1 -86 1 100 -20 0
π -40 -65 29 0 -20 100 37
θ -92 -1 20 0 0 37 100

TABLE 5.4: Posterior correlation matrix between parameters based on
data collected in 1995.

A simple look at the marginal prior and posterior pdfs for parame-
ters given by Figs. 5.8 and 5.7 shows that for most of the parameters,
prior distributions were greatly updated and that prior uncertainty was
greatly reduced. Figure 5.8 shows that the size of the grilse spawning
run in 1995 is estimated with little uncertainty, with a posterior mode
at about 1000 fish. The trap efficiency θ is certainly greater than 0.5.
The trapping device creates a strong flow stream which is preferentially
explored by the returning grilse. The ratio removed by anglers is around
10%. Only the survival rate α and the reporting efficiency τ remain fairly
imprecise and their posterior pdfs are essentially similar to their priors.
Explanations are given by returning to the influence diagram of Fig. 5.5:
no direct data provide information to infer about α and only Y4 is related
to the observable effects of τ .

The correlation matrix given in Table 5.4 shows that posterior eval-
uation of the survival rate α cannot be done independently from the
knowledge regarding the recapture efficiency π. As expected, the anglers
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FIGURE 5.8: Posterior distributions of (θ, κ) obtained with data of
year 1995 only. The shape of the joint posterior distribution is shown in
the central part (joint MCMC draws and smoothed isodensity contours).
The marginal distributions are shown in the top and right panels.

efficiency β and the probability of reporting τ are partly confounded.
The relation between θ and κ stems from the binomial assumption
E(Y1 |θ, κ) = κθ. Figure 5.8 shows how the Gibbs sample for (κ, θ) scat-
ters around the curve: y1 = κθ.

5.4.2 Inference when taking into account 5 years of data

Figures 5.9 and 5.10 report results when incorporating the last 5 years
of data (1995-1999) from Table 5.1 according to the interannual model
sketched in Fig. 5.6. Posterior distributions of run size in Figure 5.9
points out the between-year variability with posterior means ranging
from 256 (year 1999) to 773 (year 1996). A comparison of Table 5.3 and
Table 5.5 shows that standard deviations are generally reduced when
incorporating more information in the analysis. This is a snowball effect:
additional information is transferred from year to year via the common
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FIGURE 5.9: Posterior pdf of the stock size κ for years 1995 to 1999.
Dotted line: prior; solid line: posterior.

parameters (π, θ, α, β, τ, δ) to shrink the uncertainty domain attached to
the plausible values of the stock sizes.

5.5 Discussion and conclusions

This chapter exemplifies some key features of Bayesian modeling of
ecological data:

• Setting a probability model is the most subjective element in any
statistical analysis, may it be Bayesian or classical. Bayesian stud-
ies present the advantage of clearly identifying prior assumptions
so they can be criticized and their influence on the results, assessed.
From a methodological point of view, this is the main difference
between conventional statistics and Bayesian ones. Yet, there is
a modest literature on prior elicitation although some advances
are presented in [166] and [223]. Further effort should be made
to improve the elicitation of prior knowledge integration into the
analysis following Berger’s advice ([27]). Testing thoroughly how
other prior assumptions affect posterior probabilities was not ad-
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FIGURE 5.10: Posterior pdf for probability parameters obtained with
the 5-year dataset (1995-1999). Dotted line: prior; solid line: posterior.

dressed in this application to the Scorff data but interested readers
can refer to Gelman et al. [117].
Prior expertise and data from any source related to the prob-
lem, even not mentioned in standard experimental designs, provide
valuable information that should be used to reduce model uncer-
tainty. On the Scorff salmon example, the stock size of spawners
from year to year and their credible intervals can be evaluated
when incorporating such evidence into the study.

• Caution is necessary when handling parameters: there are many
of them, at least more than the data points collected during one
year of observation. This is a dangerous over-parameterization that
would yield some indetermination or confounding effects among
parameters in standard frequentist analysis. Luckily enough, in
the Bayesian setting, when proper priors are used, the inference
task would proceed without computational difficulty and the weak-
ness of the model structure appears only when comparing pri-
ors and posteriors. For instance, the model in Eq. (5.3) is over-
parameterized since no information except priors is given to assess
α and π separately from observations. The Bayesian setting can
cope with such a linked couple of parameters. More generally the
examination of the variance-covariance matrix helps to see which
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Parameter Mean Sd 2.5% pct. 97.5% pct.
θ 0.66 0.02 0.62 0.70
α 0.87 0.09 0.65 0.99
β 0.14 0.04 0.10 0.25
τ 0.75 0.16 0.40 0.97
δ 0.63 0.03 0.58 0.69
π 0.11 0.02 0.09 0.16

κ1995 772 26 723 827
κ1996 773 26 725 827
κ1997 474 18 441 512
κ1998 644 23 601 692
κ1999 256 12 235 281

TABLE 5.5: Main statistics of the marginal posterior distributions of
parameters obtained with the 5-year dataset (1995-1999).

parameters are confounded, but even severe confounding is not nec-
essary a problem in Bayesian analysis. Ecological modeling aims at
an uneasy balance between realistic but often over-parameterized
models, and parsimonious models that can be too rough or with
coefficients set to arbitrary values found in the literature without
possibilities of validation. Bayesian analysis offers a sensible and
coherent way of getting away from this dilemma.

• This chapter exemplifies how powerful advantages from conditional
structures described by a graphical model can be fully exploited
in practice within the Bayesian perspective. The modeling task is
simplified once latent variables, model parameters and observed
variables have been identified. The use of these three types of con-
stituting elements gives more freedom for designing models that
mimic the problem as it stands. Due to the limitations of the ob-
served data, some parameters of such “realistic” models can be con-
founded. This is not a major impediment for the statistical treat-
ment of the model as far as a Bayesian approach is employed. Di-
agnostics revealing confounding of parameters are easily obtained.
Marginal posterior distributions of quantities of interest account
for the uncertainty associated with confounding of parameters in
a consistent way. Most often standard statistical approaches solve
the problem of confounding of parameters by using fixed values.
The Bayesian approach proposes to replace such ad hoc solutions
by setting prior pdfs on the parameters grounded on the practi-
tioners’ expertise.
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Chapter 6

The Normal linear model

Summary

This chapter is devoted to the Bayesian analysis of the Normal linear
model. The Normal linear model is the backbone of data analysis. It is
used to explain how a continuous response variable depends upon one or
several explanatory variables. Explanatory variables can be either con-
tinuous (regression), categorical (analysis of variance) or both (analysis
of covariance).

A large part of the chapter is devoted to the construction of relevant
prior distributions (so-called Zellner’s priors) and to illustrating how to
take advantage of the mathematical properties of conjugacy to derive
closed-form expression for model parameter posterior distributions.

As a motivating example, we study the spatio-temporal variability
of Thiof abundance in Senegal (Thiof is a grouper fish typically caught
on the west coast of Africa).

6.1 Motivating example: The decrease of Thiof
abundance in Senegal

Thiof (Epinephelus aenus; Fig. 6.1) is a grouper species (between 40
and 90 cm long when captured; but see [169] for more details) caught
by both artisanal and industrial fisheries along the Senegal coast (Fig.
6.2).

This grouper fish is a cold-water species that can be found migrating
forward and backward along the Senegal coast under the influence of
marine currents. It is more abundant in periods of upwelling when it
migrates from the north. In the warmer season, it moves toward the
north. It seems that this fish belongs to a single stock ranging from Cap
Blanc in Mauritania to Cap Roxo in the south part of Senegal (Fig. 6.2).

125
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FIGURE 6.1: Top. A view of M’bour (Senegal) traditional fishery har-
bor (picture taken by Etienne Rivot). Bottom. A Thiof fish (Epinephelus
aenus) caught on the Senegal coast (picture taken by Martial Laurans,
Ifremer, France).

Because of its high economic value, the Senegalese stock of Thiof fish has
been heavily exploited for years, and the stock is now seriously depleted
(see [111] for a complete stock assessment of this species).

We will focus on the data from the artisanal fishery during the period
1974-1999. This artisanal fleet consists of pirogues (Fig. 6.1) using palan-
gra or fishing rods and provides an important part of the harvest since
those fish usually swim near the rocky places where industrial trawls
are not efficient. The data are from the Oceanographic Research Center
of Dakar Thiaroye (CRODT) and have been published in the doctoral
thesis of Martial Laurans ([169]).

The data at hand consist in 1870 records of catches collected every
year between 1974 and 1999 for the artisanal Thiof fishery along the
Senegalese coast (Table 6.1). Each record gives the total catches of Thiof
(in kg) for a particular harbor (11 harbors) along the fishing coast and
each month of the year, with the associated fishing effort measured as
the number of days spent at sea. Instead of taking into account the
harbors, a coarser geographical stratification is to consider the four zones
along the coast (numbered 1 to 4 from north to south; see Fig. 6.2).



The Normal linear model 127

FIGURE 6.2: Thiof fishing zones along the coasts of Senegal.

Similarly, instead of considering the 12 months of the year, a coarser
time stratification consists of considering two seasons: the cold one (from
November to May), and the warm one (from June to October). To keep
it simple, the data with zero catches are not modeled in what follows,
as they seriously complicate the analysis ([175], [190]).

In fisheries science, the ratio of Catches versus Effort (denoted catch
per unit effort or CPUE in the following) is classically interpreted as an
index of abundance (see [137]). A quick look at the data in Table 6.1
suggests that Thiof abundance has been seriously depleted over the time
series. However, not only the year might influence the abundance, but
the other covariates such as the season or the fishing zone could also
be influential covariates. What is the influence of regional and seasonal
covariates on this apparent decrease of the abundance over time? Is it
possible to disentangle the relative influence of these covariates in order
to extract the time-trend signal from this dataset? In the following, we



128 Introduction to Hierarchical Bayesian Modeling for Ecological Data

Year Month Season Harbor Zone Effort Catches
1974 1 1 2 2 4089 256632.1
1974 2 1 2 2 6311 73030.0
1974 2 1 1 1 1389 2366.0
1974 3 1 2 2 5377 10166.9
1974 3 1 1 1 708 1676.4
. . .

TABLE 6.1: Data from the Senegalese artisanal fishery between 1974
and 1999. Only the five first records are represented (the whole dataset
contains 1870 recods). Catches are in kilograms. Effort measures the
number of days spent at sea. Season: 1=Cold (from May to November);
2=Warm (from June to October). Zone: The four zones are numbered
from south to north (Fig. 6.2). Harbor : Numbered from 1 to 11. Data
are reproduced from [169].

propose to make recourse to the linear modeling framework to answer
these questions.

6.2 Linear model theory

6.2.1 Basics and notations

Let us first recall some basics about the Normal linear model. Many
statistical analyses in ecology deal with the linear model: a response vari-
able y (sometimes termed dependent variable or outcome) is a function of
some explanatory variables x = (x1, x2, . . . , xp). In our application case,
y represent the catches. Depending on the context, the explanatory vari-
ables x could also be called predictors, covariates, control variables or
independent variables; in our application case, x could be Effort, Year,
Season, Zone and Harbor). When only quantitative variables are used to
explain the response, the linear model belongs to the class of Regression.
When only qualitative variables (factors) are involved, the model belongs
to the class of analysis of variance (or ANOVA). If only one factor is
invoked, this is known as a one-way ANOVA. When both continuous and
qualitative covariates are used together, the model is sometimes referred
to as analysis of covariance (or ANCOVA).

The distribution of y given x is studied in the context of experimental
items i = 1, ..., n (also called statistical units or subjects or observations;
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in our case study, these are the 1870 records) on which both the vector
of outcomes y = (y1, y2, . . . , yn)′ and matrix of explanatory variables
X = (x1 ,x2 , . . . ,xp) are measured. The matrix X is commonly referred
to as the design matrix. As justified later in the chapter, we often make
the convention to set the first explanatory variable x1 to a column of 1′s
(what corresponds to adding an intercept in the linear predictor). Not
to bother with nonidentifiability, we also assume that n > p and that X
is of full rank (i.e., X′X can be inverted), which means that there is no
linear redundancy structure among the variables used for explanation.

X =


x11 x12 ... x1p

x21 x22 ... x2p

... ... ... ...
xn1 xn2 ... xnp


The Normal linear model is classically written as:

Y|X, θ, σ2 ∼ Normal(Xθ, σ2In) (6.1)

It is defined by

1. An expectation of the response y given the explanatory variables
X under a linear combination of parameters, thus writing in matrix
notations

E(Y|X, θ) = Xθ

with θ = (θ1, . . . , θp) the vector of parameters. Here, θ1 is the
intercept associated with the first column of 1’s, θ2 is the second
parameter associated with the second column of X, and so on.

2. Independent Normal random noise with the same variance for ev-
ery observation i

V(Yi|X, θ) = σ2

The basics of the frequentist treatment of this model by maximum
likelihood are recalled in Appendix A; many software routines such as
the lm() R-procedure are available to launch standard estimation.

6.2.2 Bayesian updating of the Normal linear model

Appendix A details the complete Bayesian conjugate treatment of
the Normal linear model. To sum up, assuming a typical Gamma as a
prior distribution for the precision σ−2 and a multivariate Normal prior
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distribution with prior expectation m0 and covariance matrix σ2V0, for
θ given σ2 : σ−2 ∼ Gamma(

n0

2
,
S0

2
)

θ ∼ Normalp(m0, σ
2V0)

(6.2)

then the joint posterior distribution of (θ, σ−2) obtained with a dataset
y (y is a vector of size n) belongs to the same Gamma-Normal family
with updated parameters ny, Sy, θy and Vy:σ−2|y ∼ Gamma(

ny
2
,
Sy
2

)

θ|(σ−2,y) ∼ Normalp(θy, σ2Vy)
(6.3)

with
ny = n0 + n

θ̂ = (X′X)−1X′y

and 

θy = Vy

(
X′Xθ̂ + V −1

0 m0

)
V −1
y = X′X + V −1

0

Sy =S0 + (y −Xθ̂)′(y −Xθ̂)

+ (θ̂ −m0)′(V0 + (X′X)−1)−1(θ̂ −m0)

(6.4)

Further simplifications can be made assuming a simplified structure
for the prior variance matrix V0, notably useful in the case of vague prior
information (see more details in Appendix A).

6.2.3 Defining appropriate Zellner’s prior for θ

Some useful benchmarks for defining appropriate priors for parame-
ters θ in the Normal linear model have been proposed in the literature:
Fernandez et al. ([104], [105]) give comprehensive examples. These so-
called Zellner’s priors are especially useful when explanatory variables
for the response y include categorical covariates (such as Season or Zone
in the case study). In this section, we explain the seminal ideas of Zellner
([320]) that underline these priors.

6.2.3.1 Defining a system of constraints to ensure statistical
identifiability

As an example, let us consider a linear model applied to our case
study that would account for the effect of the categorical variable Zone
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to explain the variability of catches. The factor Zone takes four categor-
ical values (ranging from 1 to k = 4) that would be associated with four
coefficients representing the effect, α1, α2, α3 and α4. The usual cod-
ing of such effect in the linear model is to introduce dummy variables
that will represent the class belonging for each individuals. This could
be introduced within the linear model structure as an explanatory sub-
space of k dimensions generated by the linear combination of indicator
variables. The conditionnal expectation of y would then write:

Ey = α11(Zone=1) + α21(Zone=2) + α31(Zone=3) + α41(Zone=4)

Of course, as each statistical unit belongs to a zone and only one,

there is an identifiability issue since
4∑
z=1

1(Zone=z) = 1. Hence, we can-

not keep at the same time the first variable x1 in the design matrix
(corresponding to the vector of 1’s associated with the intercept) and
all the indicator variables. The standard coding imposes one linear con-
straint on the parameters as a remedy, for instance the omission of one

class (i.e., α4 = 0) or a zero mean effect (
4∑
z=1

αz = 0). Equivalently, this

implies considering a linear transformation (known as contrasts in the
statistical jargon) from the k−dimensional space generated by the indi-
cator variables into the k−1 dimensional sub-space to be complemented
by the constant vector x1 . For instance the R routine contr.sum() would
create the k − 1 new dummy variables x2 = 1(Zone=1) − 1(Zone=4),
x3 = 1(Zone=2)− 1(Zone=4) and x4 = 1(Zone=3)− 1(Zone=4) to be added
to the unchanged first column of X, x1 = 1 in order to get a set of k
vectors that generate the same explanatory space.

Using matrix notations, the linear operator

M =


1 1 0 0
1 0 1 0
1 0 0 1
1 −1 −1 −1


establishes a reversible linear mapping (M is invertible) such that:

(x1 ,x2 ,x3 ,x4) = (1(Zone=1),1(Zone=2),1(Zone=k),1(Zone=4))M

Consequently, the correspondence between the vectors of initial coeffi-
cients (α1, α2, α3, α4)′ and parameters (β1, β2, β3, β4)′ of the linear model
with an intercept β1 can be derived from simple matrix multiplication

(α1, α2, α3, α4)′ = M(β1, β2, β3, β4)′
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leading to the change of parameters
α1 = β1 + β2

α2 = β1 + β3

α3 = β1 + β4

α4 = β1 − (β2 + β3 + β4)

It is straightforward to obtain the reverse relationship

(β1, β2, β3, β4))
′ = M−1(α1, α2, α3, α4)′

with

M−1 =
1

4


1 1 1 1
3 −1 −1 −1
−1 3 −1 −1
−1 −1 −1 −1


Thus one can also write:

β1 =
1

4
(α1 + α2 + α3 + α4)

β2 =
3

4
α1 −

1

4
(α2 + α3 + α4)

β3 =
3

4
α2 −

1

4
(α1 + α3 + α4)

β4 =
3

4
α3 −

1

4
(α1 + α2 + α4)

There are many ways to introduce a reversible linear mapping M
between the set of indicator variables and a set composed by associ-
ation of the constant vector with new dummy variables. The parame-
terization (α1, α2, α3, α4) has four coefficients associated with the four
zones, but no intercept added. The (more classical) parameterization
(β1, β2, β3, β4), has a constant term β1 and three other coefficients that
must be interpreted as a whole. This is just a change of base in a vecto-
rial subspace; when qualitative variables are involved in a linear model,
the associated indicator variables do not mean anything by themselves,
the only important feature is the associated explanatory subspace that
must be considered as a whole.

6.2.3.2 Zellner’s priors for qualitative effects

Zellner’s priors are specifically designed for linear models in order
to obtain a posterior expectation of the response which is independent
from the system of constraints (or contrast) chosen by the modeler. In
a Bayesian setting, suppose we got two possible parametric expressions
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for the effect of qualitative variables in the linear model, leading to two
different expressions for the expected response:

E(Y|X0, θ0) = X0θ0

or alternatively
E(Y|X1, θ1) = X1θ1

with {
X0 = X1M

θ0 = M−1θ1

(6.5)

For instance, the previous reparameterization of the Zone influence
would be obtained with {

θ0 = (β1, β2, β3, β4)′

θ1 = (α1, α2, α3, α4)′

and {
X0 = (x1 ,x2 ,x3 ,x4)

X1 = (1(Zone=1),1(Zone=2),1(Zone=3),1(Zone=4))

Given σ, the analyst can impose a Normal conjugate structure on
θ0, drawing a priori θ0 ∼ N(m0, V0). But equivalently, another scientist
working with parametrization θ1, might consider a prior θ1 ∼ N(m1, V1).
To obtain the same posterior expectation of the response, regardless of
the parametrization used, the following coherence constraints on the
prior mean and variance must be verified:{

m0 = M−1m1

X0V0X
′
0 = X1V1X

′
1

(6.6)

Equation 6.6 is at the heart of the rule used to define Zellner’s priors.
Adopting Zellner’s priors (see Appendix A){

θ0 ∼ Normal(m0, σ
2V0)

θ1 ∼ Normal(m1, σ
2V1)

with zero mean, m0 = m1 = 0 and prior variances depending on the
design matrix {

V0 = c× (X′0X0)
−1

V1 = c× (X′1X1)
−1
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offers a coherent way to define priors that do not depend on the vecto-
rial base that was chosen for the explanatory subspace generated by a
qualitative variable because one can easily check from Eq. (6.5) that:

X0 (X′0X0)
−1

X0
′ = X1M

{
(X1M)

′
X1M

}−1
(X1M)

′

and
X1MM−1 (X′1X1)

−1
M ′−1M ′X1

′ = X1 (X′1X1)
−1

X1
′

We recall here that the orthogonal projection of y onto a linear sub-
space spanned by the columns of the (supposedly full rank) matrix X is
X(X′X)−1X′y. This linear operator is known in the linear model liter-
ature as the hat matrix and, despite its appearance, this projector does
not depend specially on X, the system of coordinates chosen to repre-
sent the vectors belonging to that space. Adopting Zelner’s priors and
following the appendix (Eqs. (A.5) and (A.6)), the posterior pdf given
by Eq. (6.4) can be rewritten as:

Vy =
c

1 + c
(X′X)

−1

θy =
cθ̂

1 + c

The constant c expresses the strength of the prior information; the stan-
dard frequentist analysis is obtained as a limiting case when c→∞.

6.3 Modeling the decrease of Senegal Thiof abun-
dance as a linear model

6.3.1 A first look at the data

We want to relate the CPUEs, or catch per unit of effort (the reported
catches divided by the number of days spent at sea, interpreted as an
indice of abundance), to the year considered and other possible factors
of variation such as the geographical locations and the seasonal effects.

A quick first trial reveals that considering the CPUEs as the depen-
dent variable is not a good idea. We performed a (frequentist) linear
model under R with the lm() procedure including all the explanatory
variables Year, Season and Zone and the plots of Fig. 6.3 indicate that
the estimated residuals behave very badly; although all covariates seem
to be interesting explanatory variables for the CPUEs, the variance of
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the residuals increases with the predicted values of CPUEs, which reveals
a clear deviation from the assumption that the variance of the random
noise is homoscedastic (does not vary with the levels of the response vari-
able nor explanatory variables). The model also predicts some negative
CPUEs, which is nonsense!

FIGURE 6.3: Residuals versus fitted values of CPUEs obtained from
a preliminary linear model analysis (using the lm() procedure of R)
without log-transform of the CPUEs.

To get more acceptable residual behaviors with regard to the lin-
ear model assumptions, we will therefore work from now on with log-
transformed CPUEs that will form the response variable y. An ex-
ploratory data analysis of log-transformed CPUEs reveals that a de-
clining trend since 1974 is observed on the data (Fig. 6.4). The analysis
also reveals that the intensity of the depletion (i.e., the slope) may well
depend on the season as shown by the top right panel of Fig. 6.4. Other
factors such as the location (Zones) seem also to matter when consider-
ing the bottom panels of Fig. 6.4.
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FIGURE 6.4: First graphic exploration of the log-transformed catch
per unit effort (CPUE) as a function of years, seasons and zones.

6.3.2 A first simple linear regression

Setting for every observation i, log(CPUEi) = yi, xi1 = 1, and
xi2 = Y ears, a first model (let’s call it M0) with p = 2 as the dimension
of the explanatory space can be designed as follows:{

yi = β1 + β2xi2 + εi

εi
iid∼ Normal(0, 1× σ2)

This is a standard regression model with β1 the intercept and β2 the
slope. We expect that β2 < 0 with regards to the decreasing trend that
was graphically identified in Fig. 6.4.

6.3.3 Explaining the abundance of Thiof with several
factors

This very first model M0 defined by Eq. (6.7) only accounts for Y ear
as a quantitative covariate to explain the variation of the CPUEs. How-
ever, Fig. 6.4 reveals that categorical covariates such as Season or Zone
seem also to matter when considering the variation of the CPUE.
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6.3.3.1 Selecting relevant covariates

One should avoid considering factors that are too correlated. For tem-
poral within year effects for instance, either a Month factor or a Season
factor can be taken into account, but not both! For spatial stratification,
one has to pick either a Harbor effect or a Zone effect.

The Year records range from 1974 to 1999 and can be included in
the model as a linear trend (continuous variable) or as a factor with
k = 26 indicator variables. The choice of coding the effect of the Year is
an important modeling issue. As we suspect a phenomenological change
following the ordering of Year, we will consider it as a continuous regres-
sor. This will help to predict future years not in the sample by following
the linear trend. Had we chosen a categorical representation, we would
be helpless to predict future values as categories not in the explanatory
space. This can be addressed using random effects but we delay this
treatment to the second part of the book where hierarchical models will
be explored.

Here, we first proceed with the following linear model with effect of
Season, Zone and Year plus an intercept. The model has six parameters
θ0 = (β1, β2, . . . , β6). Note that in this model M1, the decreasing trend
(β6) is considered as being independent upon the season:

yi = β1 + β2︸︷︷︸
Season

+
5∑
z=3

βzxi,z︸ ︷︷ ︸
Zone

+ β6 ∗Year︸ ︷︷ ︸
Y ear

+ εi

εi
iid∼ Normal(0, σ2)

(6.7)

6.3.3.2 Bayesian Inference

The Bayesian inference is performed using Zellner’s conjugate priors
θ0 ∼ Normal(m0, σ

2V0)

V0 = c× (X′0X0)
−1

σ−2 ∼ Gamma(1, 1)

(6.8)

with m0 = 0 and an informative prior information weighting only one
data record (c = n). The design matrix X0 is defined using the same con-
trast as in Section 6.2.3. A Gamma distribution with a large variance is
used as a rather vague prior for the precision σ−2. As a conjugate struc-
ture was chosen, the marginal posterior distribution of all parameters
are known exactly from Eq. (6.3) and no use of MCMC simulation is
needed. Results for model M1 are summarized in Table 6.2.

From this table, one can see that the analyst can bet on β6 < 0 with
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Param Effect Mean Sd 2.5%pct. 97.5%pct.
β1 Constant 156.589 8.647 173.882 139.295
β2 Season 0.412 0.028 0.468 0.357
β3 Zone 0.037 0.056 0.150 -0.075
β4 Zone 0.346 0.056 0.459 0.234
β5 Zone -0.328 0.042 -0.245 -0.412
β6 Year -0.078 0.004 -0.070 -0.087

TABLE 6.2: Posterior estimates of the parameters in the linear model
6.7 obtained from the closed-form expression of the posterior distribu-
tion.

great confidence. Hence, as expected, there is probably a negative linear
trend showing a decrease of the abundance, whatever the Season and
Zone. The Season and Zone factors are not easy to interpret because
the dummy variables created by its indicators must be considered as a
whole with the intercept. One can notice a great posterior probability
that β2 > 0, which corresponds to a greater abundance during season 1
(the cold season).

This model can be put into competition with other ones. For instance,
from Fig. 6.4, we see that the slope of the decreasing trend might be
considered as different between seasons; this is an example of interaction
between the continuous predictor Year and the factor Season. Thus, one
may compare the model M1 with Eq. (6.7) with another one, model M2

that includes a decreasing trend over time depending upon the Season:
yi = β1 + β2︸︷︷︸

Season

+

5∑
z=3

βzxi,z︸ ︷︷ ︸
Zone

+
7∑
s=6

βsxi,s︸ ︷︷ ︸
Season×Y ear

+ εi

εi
iid∼ Normal(0, σ2)

(6.9)

6.3.3.3 Model selection

Those two competing models (M1 and M2 are respectively defined by
Eqs. (6.7) and (6.9)) are compared using Bayes factors. Equation (4.16)
needs to evaluate [y|M ], the average of the likelihood with regard to
the prior pdf of the unknown, for M = M1 and M = M2. Fortunately
enough, because of conjugate properties in the linear regression case,
this prior predictive value to be evaluated at the observed data Y = y,
is available in closed form (see Eq. (A.3) of Appendix A). Therefore,
model comparison is rendered easy. In addition, as detailed in Chapter
3 of Marin and Robert [189], an improper prior can even be used for
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E( yi ) yi
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σ²
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i = 1,…,n
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X

i = 1,…,n

FIGURE 6.5: Simplified directed acyclic graph for the linear model
defined by Eqs. 6.7 or 6.9. The arrows between X (design matrix), σ2 and
θ indicate that Zellner’s prior for θ is a multivariate Normal distribution
Normalp(m0, σ

2V0) with V0 = c× (X′X)
−1
.

the weighting coefficient c of the Zellner priors providing the same c
is taken for all competing models. As the log-predictive for this new
model is only −7.0 × 1023, to be compared with −3.7 × 1019 for model
in Eq. (6.7), we clearly do not select this alternative model and prefer
the more parsimonious one in which the slope of the decreasing trend is
common for both seasons.

For readers who are reluctant to use the algebra in Appendix A, a
simple WinBUGS code for the model given by Eq. (6.7) can be straightly
written. A simplified directed acyclic graph for this model is presented
in Fig. 6.5. Once the design matrix has been built from the dataset (a
few lines of R−code), the short WinBUGS code takes only a few seconds
to be run and to get a reliable MCMC approximation of posterior distri-
butions. It is readily verified that the posterior statistics approximated
through MCMC sampling closely match those obtained from closed-form
expressions.

We also used WinBUGS to get posterior predictive distributions of
the log-CPUE derived from model in Eq. (6.7). Figure 6.6 shows the
posterior predictive distribution for the log-CPUE for the two seasons
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FIGURE 6.6: Posterior predictive distributions of the log-CPUE in
Zone 1 derived from model in Eq. (6.7). Light gray: Season 1; Dark
gray: Season 2.

and the first zone. As assumed in the model, the slope of the decreasing
trend is the same for the two seasons.

6.4 Further reading

6.4.1 Linear modeling

There is a huge body of frequentist literature devoted to the linear
model; if we were to cite just two authors, essential pieces of the theory
can be found in [96] and [270]. The Bayesian perspective on the linear
model is also abounding. Raiffa and Schlaifer [247] saw the benefits that
could be obtained from Normal-Gamma conjugate properties. Box and
Tiao [36] considered noninformative priors in Gaussian modeling; Zellner
[319] pointed out workable applications for economists; many aspects of
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regression techniques are dealt in [117], [140], [172] and [189], etc. It
is also worth mentioning a derived branch of rather theoretical investi-
gations, Bayes linear analysis ([123]), that considers partially specified
probability models and attempts to work with their linear approximation
through their first and second moments.

6.4.2 Model selection

Multimodel Bayesian inference is uneasy, but the task deserves ef-
forts. Choosing among models is essential to scientific assessment but it
cannot be solved in one snap. A good review can be found in Kadane
and Lazar [154]. Textbook treatments of model selection can be found in
[43] and [179]. There are an increasing number of applications relying on
Bayes factors to select models in applied ecology ([163], [218] and [257]).
In this book, we will favor Bayes factors because they are firmly grounded
on a coherent probabilistic judgement ([147], [157]). Even though none
of the models considered might be actually true, results from Bernardo
and Smith [30], Section 6, prove that proceeding that way is still clever.
The procedure asymptotically selects the true model if it exists, or the
one closest to the truth, using information-based the Kullback-Leibler
distance. Unfortunately, Bayes factors are not robust to the specifica-
tions of the prior ([177]). Even when this prior is not improper ([230]),
caution must be taken to specify good informative priors as a serious
part of the modeling task ([155]). Encoding expertise may be very diffi-
cult (sometimes, no expert is available by lack of time or interest!), and
many authors have searched for remedies to the use of Bayes factors in
the case of improper vague priors; their idea is to take into account some
slight part of the data to make the prior proper (fractionnal Bayes fac-
tors of [222]) or to take expectations on a virtual sample (the minimal
training set leading to the intrinsic Bayes factors of [28]). Last but not
least, Bayes factors techniques ([113], [129]) and procedures evaluating
the posterior probabilities of models ([46],[124]) are generally cumber-
some to implement (see also Appendix B), and many authors advocate
for other criteria that are easier to compute. Most methods try to find a
balance between parsimony (the simpler, the better) and goodness of fit
(enough complexity so as to reproduce the main features of the data).
The more acceptable from a Bayesian perspective is the BIC (Bayesian

Information Criterion), BIC = −2 × log([y|θ̂]) + dim(θ̂) × log(dim(y)),
which can be understood as an asymptotic approximation of the loga-
rithm of the Bayes factor ([112]) around some max-likelihood estimate θ̂.
The other popular criterion, because of its systematic evaluation when
running WinBUGS, is the DIC (see Eq. (B.7) of Appendix B).
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6.4.3 Variable selection

In a regression context, picking one model is equivalent to select-
ing a subset of explanatory variables. To give a privileged position to
the particular hypothesis that most regressor effects (the θj ’s) are null,
recourse can be made to Lasso techniques in order to penalize estima-
tion by a stringent L1 constraint ([295]). The Bayesian formulation (in
terms of a specific mixture of priors) given by Park and Casella [226] and
further elaborated by Kyung et al. [168] is an interesting matter of math-
ematical interpretation but remains challenging for practical implemen-
tation. Conversely, the Bayesian variable selection method of Mitchell
and Beauchamp [208] is straightly understandable in terms of proba-
bility that variable xj should be included in the model. This stochastic
search variable selection ([119]; [213]) tries to switch on and off the effect
of each variable xj during Bayesian computations. This is made clear by
considering a binary vector variable γ with spike and slab priors. Its
jth component is the index γj encodes whether xj is worth entering the
model (γj = 1) or if it can be discarded (γj = 0). A fifty/fifty odd can
be set a priori for each explanatory variable to be selected:

γj ∼ Bernoulli(0.5)

When the θj are a priori independent, one can make recourse to a two-
component mixture prior for θj

θ ∼ (1− γj)× πspike(θj) + γj × πslab(θj)
Distributions πspike(.) and πslab(.) are such that the variance of

πspike(.) is much smaller than the one of πslab(.), ensuring that θj belongs
to the close vicinity of 0 if γj = 0 , while variable xj can be classified as
a plausible explanation in the case γj = 1. Ideally, the convenient choice
is to adopt a Dirac function (i.e., a mass function at zero) for the spike
and some distribution with a large a priori variance for the slab distribu-
tion. However, implementing Dirac distributions might cause difficulties
in the proposals of the MCMC algorithm to constrain some coefficient to
be exactly zero, and in practice recourse can be made to a picky Normal
pdf and a very flat one, for instance:{

θj ∼ Normal(0, V )

V = (1− γj)× 10−8 + γj × 108

Strictly speaking, classification is only approximate for such a prior with
an absolutely continuous spike, because γj = 0 is not exactly equivalent
to θj = 0, but indicates only that θj is “relatively” close to 0 compared
to the other location for θj when γj = 1. Muntshinda et al. [213] inves-
tigated the demographic variation of moth species in response to global
warming with such a Bayesian variable selection technique.
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6.4.4 Bayesian model averaging

For prediction purposes, the prediction distribution can be obtained
by averaging over all models with the weights being the model probabil-
ities, rather than trying to select the best one ([139]). This has the effect
of combining the predictive capability advantages from all models under
consideration. Convincing examples are discussed in Section 9.3 of Hoff
[140] and in Section 6.7.3 of Marin and Robert [189]. Attention is drawn
to the fact that parameters are nothing but intellectual constructs whose
meaning and scale may be highly model dependent. Hence, caution must
be taken when averaging over the distributions of a parameter even if it
carries the same name, say ratio of efficiency for instance, for the various
competing models.
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Chapter 7

Nonlinear models for
stock-recruitment analysis

Summary

A considerable effort has been devoted in fisheries science to under-
stand the relationship between the stock (e.g., the spawning biomass, the
number of spawners, the number of eggs spawned, etc.) and the recruit-
ment (e.g., the number of juveniles issuing from the spawning stock).
The mathematical modeling of the stock-recruitment process (SR in the
following) is of fundamental importance in fish population dynamics. SR
relationships give a synthesis of the population renewal and are critical
for setting reference points for sustainable management.

A common pitfall in fisheries science is to consider SR models as
deterministic relationships explaining how the recruitment varies with
stock. We rather consider that SR models are conditional probability
distributions of the recruitment given the stock. Based on the example
of a stock-recruitment model for A. salmon in the Margaree River (Nova
Scotia, Canada) we illustrate that:

1. A model is a crude simplification to quantify how unknowns, co-
variates and observations interact. Probabilistic concepts are help-
ful to describe the part of randomness. Conditional reasoning pro-
vides a helpful interface between the analyst and the ecologist.

2. Choosing on which parameters the model should rely is often over-
looked. Encoding prior expertise about these parameters is also a
crucial step of the scientific analysis. SR models can be parame-
terized in a way that parameters can be readily interpreted to help
decision analysis for stock assessment and management purposes.

3. There is no best model. Visual inspection of model fit to obser-
vations, ecological knowledge, good sense and quantitative criteria
such as the Bayes factor are necessary to help picking a satisfactory
model.

145
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7.1 Motivating example: Stock-recruitment models
to understand the population dynamics and as-
sess the status of A. salmon stocks

FIGURE 7.1: Margaree River area.

The Margaree River mouth is located in the southeastern portion of
the Saint Lawrence Gulf, Canada (see Fig. 7.1). It flows across a recre-
ational park, famous for Salmon fishing (fly fishing only). The Salmon
fishing season begins June 1 and ends October 31. In 2007, nonresident
anglers paid up to $133 for a seasonal license or $54 for a 7-day license.
Fishing regulations such as bag limits are also enforced: 2 per day and 8
per season (only grilse up to 63 cm may be caught). The Margaree River
has been surveyed for a long time. Each year, capture-mark-recapture
experiments are made. The number of adult fish homing back to their
native river is recorded. These fish will reproduce and die the same year
in the Margaree River. Their eggs yield juveniles that will grow in the
river and migrate down to the sea as smolts. After their marine journey
(mostly one year but sometimes several), fish will ultimately swim back
home to their natal river, reproduce and a new cycle will start. In this
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context, fisheries scientists define the stock, denoted St as the number
of spawners in year t, and the recruitment, denoted Rt as the number
of spawners which are issued from the reproduction of the stock St. Ta-
ble 7.1 and Fig. 7.2 give the corresponding measurements of the stock
and recruitment in the Margaree River for years 1947 to 1990.

Considerable effort has been devoted in fisheries science to under-
stand the relationship between the stock and the recruitment ([137];
[216]; [244]). SR relationships give a synthesis of the population renewal.
They are critical for setting biological or management reference points,
especially for semelparous species such as salmons ([54]; [234]; [238];
[239]; [273]; [274]; [275]). In particular, the analysis of SR relationships
help to estimate biological reference points such as the spawning tar-
get, a biological reference point for the number of spawners which are
necessary to determine an optimal exploitation rate while ensuring the
long-term sustainability of the population.

In this chapter, we show how Bayesian analysis of stock-recruitment
models can provide some scientific advice to these issues.

Year Stock Recruitment
Cohort Spawners Returns
1947 1685 4852
1948 3358 7204
1949 1839 5716
1950 1744 4000
1951 2093 2440

...
1985 1378 5156
1986 3461 3484
1987 3899 6375
1988 1545 3358
1989 2164 2900

TABLE 7.1: Stock and recruitment data for the Margaree River from
1947 to 1990. (Data are reproduced by courtesy of the Department of
Fisheries and Oceans from the Canadian Data Report of Fisheries and
Aquatic Sciences No. 678.)
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FIGURE 7.2: Stock and recruitment data (see Table 7.1) for the Mar-
garee River (Nova Scotia, Canada) from 1947 to 1990. The dotted line
is the replacement line (one recruited spawner per spawner).

7.2 Searching for a SR model

A common pitfall in fisheries sciences is to consider SR models as
deterministic relationships explaining how the recruitment varies with
stock. Rather, SR models are conditional probability distributions of
the recruitment given the stock. From a pure statistical point of view,
we are interested in the covariation between the quantities R and S. In
mathematical terms, we would speak of the joint pdf [R,S]. However,
most of the time, biologists will be reluctant to adopt this symmetrical
point of view. There is some knowledge about the causal relationship
“S gives R”: given the number of spawners, biological knowledge may
help to predict the corresponding numbers of juveniles R. Therefore, in
mathematical terms, biologists will favor the conditional decomposition

[R,S] = [S]× [R|S]
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FIGURE 7.3: Typical shape for Ricker and Beverton-Holt stock-
recruitment relationships. If S and R are expressed in the same unit,
then the SR relationship is directly comparable with the replacement
line S = R.

and, assuming that S is perfectly known (as a covariate), focus onto the
modeling of [R|S].

One may imagine R as a smooth function of S, say f(S). We would
like to have the mathematical relationship R = f(S) idealizing how the
phenomenon works, such that the number of recruits would be roughly
proportional to the stock, at least when R is small and maybe reaching a
plateau or even decreasing when too many spawners, or for that matter
recruits, are competing for resources.

But even knowing S, R remains uncertain for many reasons. Essen-
tially, the process connecting R to S is so complex that only probability
distributions can adequately capture the variation. Let’s call ε the hand
of nature, summing up all the unexplained random factors; as a con-
sequence, we can no longer write R as a function of S only. Including
the unidentified sources of variation ε plus the identified explanation
variable S, one should rather write in a very symmetrical way:

R = f(S, ε) (7.1)

This functional relationship is formally equivalent to the conditional
probability [R|S] since, by a mere change of variable, the random dis-
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tribution of ε is transferred onto the stochasticity of R given the only
available explanatory variable S. When proceeding that way, we break
the symmetry of Eq. (7.1), because we hope that the identified variable S
provides more explanation than the unknown term ε about the way the
response R may vary. The stochastic term ε is considered as a (wishfully
small) random perturbation. A look at Fig. 7.2 enlightens the analyst
and shows the importance of the random term ε. In that example, ε is
a brown box for all forcing conditions influencing recruitment and, as
shown in Fig. 7.2, they remain quite important.

One step further is achieved when picking the conditional probability
[R|S] within a parametric pdf for the sake of parsimony (see Munch et
al. [211] for an example of non-parametric SR relationship). It means
that we agree to restrict the range of the search for the conditional
probability distribution inside a finite dimensional family of functions. A
small number of parameters will rule the shape of the pdf. For instance
if [R|S] is chosen to be a Normal pdf, two coefficients (the so-called
mean µ and standard deviation σ) will be enough to depict the whole
Normal family of probability density functions. Of course, both µ and σ
will themselves be functions (to be defined) of the conditioning term S.
Relying on the Normal pdf given on page 68, one might write:

[R|S] = dnorm(R, f(S), σ(S))

Although specifying f(S, ε) or [R|S] are formally equivalent, we may
keep on working for a while with Eq. (7.1). For mathematical conve-
nience, it is often assumed that the effects of the explanatory variable S
and those of the uncontrolled factors can be disentangled, under either
additive form

f(S, ε) = f1(S) + f2(ε) (7.2)

with f2(ε) being a Normal random variable centered at zero or sensibly
modeled as a multiplicative effect:

f(S, ε) = f1(S)× f2(ε) (7.3)

with log(f2(ε)) being a Normal random variable centered at zero1.
It is not difficult to show that this latter LogNormal multiplicative
model is equivalent to defining [log(R)|S] as a Normal random vari-
able with parameters such that µ(S) = log(f1(S)) and σ(S) = σ =√
V ar(log(f2(ε))).
Different parametric functions can be proposed to model the sys-

tematic effect of the stock S on the recruitment R, f1(S). Competing

1There is a tricky technical point for readers unfamiliar with the change of random
variables: E(log(f2(ε)) = 0 does not imply that E(f2(ε)) = 1...
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ecological interpretations (e.g., linear relationship between R and S, lin-
ear relationship for small values of S only, and then a saturation effect)
lead to competing formulations (see [137], [216] or [244] for a review).
Here again, a step further is made when picking µ(S) into a parametric
family, so as to restrict the number of degrees of freedom of the un-
known µ(S) to a small dimensional space. For the sake of clarity, we
only consider here the most widely used models:

• Beverton-Holt form with two parameters (α, β) taking into account
a saturation effect. With this so-called Beverton-Holt model, the
replacement rate R

S is slowly decreasing as the stock increases:
R = αS/(1 + βS) (see Fig. 7.3);

• Ricker form considering that when too many adults are spawning
in the river, the replacement rate R

S is an exponentially decreasing
function of the stock: R = αSe−βS (see Fig. 7.3). Appendix C
provides some bio-mathematical justification for such a choice on
page 348.

7.3 Which parameters?

7.3.1 Natural parameters

In this section we adopt the Ricker model with a multiplicative ran-
dom term: 

Rt = f(α, β, St)e
εt

f(α, β, St) = α · Ste−β·St

εt
iid∼ Normal(0, σ2)

(7.4)

Figure 7.4 shows the Directed Acyclic Graph of such a simple SR model
with natural parameters α, β and σ. From a biological perspective, σ2

is the variance of the log-ratio of the replacement, i.e., σ is the relative
standard error of replacement ratio. α is the slope close to the origin
S = 0, when the relation between S and R is nearly linear. The inverse
of the second parameter β−1 is the stock that produces the maximum
recruitment and could be interpreted as (an indicator of) the carrying
capacity Smax. The maximum recruitment is f(Smax) = Rmax = α

β e
−1.

A first suggestion is to use flat noninformative priors for log(α),β,
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FIGURE 7.4: Directed Acyclic Graph for the Ricker model with nat-
ural parameters θ = (α, β, σ) in Eq. (7.4).

and the precision 1
σ2 :

log(α) ∼ Uniform(−10, 10)

β ∼ Uniform(−10, 10)

σ−2 ∼ Gamma(1, 0.25)

(7.5)

Bayesian analysis was simply run through a WinBUGS code2 translating
the DAG given in Fig. 7.4. Three different chains were launched from
different initial seeds. Visual inspection of the three chains indicates
that convergence was acceptable after 5000 replicates. These runs were
discarded as a burn-in phase and a new chain was started with 50,000
replicates that were thinned 1 over 10 to get a 5000 posterior sample of
parameters. Results are summed by the main marginal posterior features
given in Table 7.2.

These results show that:

• The Margaree Salmon population has a good replacement ratio; in
the vicinity of the origin, 1 adult will be replaced by 6 juveniles

2Although the inference of such a model could benefit from an explicit solution
following the approach detailed in Chapter 7 (see Eq. (7.15)).
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Parameters Mean Sd 2.5% pct 97.5% pct
α 6.07 0.64 4.91 7.42
β 0.00049 0.00007 0.00036 0.00062

Rmax 4600 433 3874 5562
Smax 2084 298 1613 2777
σ 0.43 0.05 0.34 0.54

TABLE 7.2: Main features of marginal posterior distributions obtained
with a Ricker-type recruitment function, noninformative prior on natural
parameters (see Eq. (7.5)) and logNormal random variations. Smax is the
value of stock producing the maximum recruitment Rmax.

and we will bet that this ratio stands between 5 and 8 with high
confidence;

• The knowledge of the carrying capacity Smax remains rather un-
certain (a 95% posterior credible interval spans between 1628 and
2760) with a posterior mean around 2100 adults;

• The environmental stochasticity is quite high. Recalling that the

coefficient of variation of a logNormal distribution is
√(

eσ2 − 1
)
≈

σ when σ2 is small, a standard deviation of σ = 0.4 for the log-value
is roughly equivalent to a 40% standard deviation for the relative
error between the quantity of interest R and its phenomenological
prediction!

7.3.2 Working with management parameters

Fisheries scientists often prefer working with reformulations of SR
relationships given by Eq. (7.4) involving parameters directly related to
management. For instance, Schnute and Kronlund [274] (also used by
[258] and [275]) suggested that the Ricker and the Beverton-Holt func-
tions could advantageously be rewritten in terms of management-related
parameters such as the stock, S∗, producing the maximum sustainable
yield, C∗. Let us consider a sustainable population (i.e., α > 1), with
a SR relationship that is stable over time (constant parameters), and
submitted each year to a constant exploitation of recruitment equal to
C that produces an equilibrium state R − C = S, where S and R are
expressed in the same unit (adults, eggs, . . .) (see Fig. 7.5). There is a
single equilibrium state for which captures are maximum, denoted C∗,
obtained for a stock S∗, verifying R∗ − C∗ = S∗. The transformation
is one-to-one: for each parameter vector (C∗, S∗) in ]0,+∞[×]0,+∞[, a
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FIGURE 7.5: Management-related parameters for the Ricker stock-
recruitment relationship (S and R expressed in the same unit).

unique pair (α, β) can be deduced through a closed transformation. Al-
ternatively, one might prefer working with the couple (S∗, h∗) instead of
(S∗, C∗), where h∗ = C∗

C∗+S∗ is the harvest rate at equilibrium. (S∗, C∗)
or (S∗, h∗) are reference points for stock assessment and management.
Under a fixed escapement strategy, S∗ is the spawning escapement that
should be reached to maximize the average long-term catch (see Ap-
pendix C for a sketch of the proof). Thereby, reformulating SR rela-
tionships as a function of (S∗, C∗) or alternatively of (S∗, h∗) leads to
straightforward inferences on reference points helpful to fisheries man-
agers.

For the Ricker model, the natural parameters (α, β) are linked to the
management parameters (S∗, C∗) and (S∗, h∗) by the following relations:

α =
(S∗ + C∗)

S∗
· e

C∗
S∗+C∗

β =
C∗

S∗(S∗ + C∗)

(7.6)
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or equivalently 
α =

1

1− h∗
· eh

∗

β =
h∗

S∗

(7.7)

Equations (7.6) and (7.7) are obtained by searching ((S∗, C∗)) as
solutions of the system:

Equilibrium conditions : R− C = S

Maximization of catches :
∂(R− S)

∂S
|S=S∗ = 0

(7.8)

Working with management parameters makes it easier to define an
informative prior. For instance, the biologist would a priori (i.e., without
seeing the data) say:

• that his best guess for the Margaree River stock at maximum sus-
tainable yield is S∗ = 1000 individuals,

• that S∗ lies between 700 and 1300 as a 70% credible set,

• and that the optimal sustainable exploitation rate h∗ is likely to
lie around 0.75.

We may tentatively model these prior knowledge by the following prior
structure: {

h∗ ∼ Beta(3, 1)

S∗ ∼ Normal(1000, 3002)
(7.9)

The full prior structure must be completely specified by adding a
prior on the variance σ2. The Gamma distribution Gamma(p, q) is com-
monly chosen for the precision σ−2 . Improper priors are obtained by
letting p and q go toward zero. However, we will assume in the following
sections p = 1; q = 0.25, i.e., an exponentially decreasing precision but
still some possibly large environmental noise (with an essential relative
possible variation not far from 50% of the signal as a prior bet).

Relying on these informative priors, Bayesian inference of the same
Ricker model with logNormal error is obtained through WinBUGS with
the same MCMC configuration than the one used in Section 7.3.1. Fig-
ure 7.6 shows the shape of the posterior distribution for the main pa-
rameters (S∗, h∗, σ), and the main statistics of marginal posterior pdf
are summed up in Table 7.4.

When comparing the prior and posterior distributions for the stock
S∗ at sustainable yield and for the sustainable harvest ratio h∗, one can
see that the data are compatible with the expert prior but they make us
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Parameters Prior
S∗ ∼ Normal(µ = 1000, σ = 300)
h∗ ∼ Beta(3, 1)
1
σ2 ∼ Gamma(p, q), p = 1, q = 0.25
α = 1

1−h∗ · e
h∗

β = h∗

S∗

TABLE 7.3: Prior distribution on management related parameters ap-
plied to the Margaree stock-recruitment data.

Parameters Mean Sd 2.5% pct 97.5% pct
C∗ = R∗ − S∗ 2862 288 2330 3459

R∗ 4209 351 3571 4948
α 6.2 0.62 5.08 7.50

Smax 1989 229 1596 2488
S∗ 1347 124 1132 1621
h∗ 0.68 0.02 0.63 0.72
σ 0.43 0.05 0.34 0.54

TABLE 7.4: Main features of marginal posterior distributions obtained
with a Ricker-type recruitment function, informative priors on manage-
ment parameters (see Table 7.3) and logNormal random variations.

more confident when considering the range of uncertainties. Compared
with Table 7.2, Smax tends to be smaller and the environmental noise
level σ remains in the same range.

Figure 7.7 visualizes the main results from the Bayesian inference
of the Ricker model with logNormal noise. Uncertainty about the mean
Ricker model f(S) = αSe−βS stems from the posterior pdf of parameters
α and β and a light gray band is formed by the 90% credible interval for
each value of S. The upper 95% and lower 5% quantiles of the posterior
predictive distribution of the Ricker model with lognormal noise have
also been drawn in Figure 7.7 and theses two lines encompass 90% of
the possible values for the data (indicated by crosses). These lines are not
as smooth as they theoretically should be since they have been derived
empirically from the MCMC sample from [α, β, σ|R,S]. A cloud of 5000
simulated values of (S∗, R∗) locates the management parameters on the
graph with their bivariate posterior distribution. Figure 7.7 points out
that the multiplicative logNormal model is a rather poor (over-dispersed)
choice for the environmental noise; there is an unexplained hump of S
in the neighborhood of S∗ and no data at all is laying out of the 95%
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FIGURE 7.6: Posterior distributions of key parameters (C∗, h∗, σ) ob-
tained using the Ricker-type SR model with logNormal random varia-
tions. Marginal distributions are shown in the diagonal. Joint MCMC
draws are shown in the lower part. The upper part shows linear correla-
tions between the MCMC draws.

predictive range (although it should concern approximately 5% of the
sample).

7.4 Changing the error term from logNormal to
Gamma

Under the standard logNormal formulation (Eq. (7.4)), the recruit-
ment variance is proportional to the square of the Ricker function f(S) =
αSe−βS . Consequently, for S > 1

β , i.e., for large values of S, the recruit-

ment variance behaves like f(S) does, that is, it decreases with S. We
are willing to explore an alternative hypothesis to render the recruit-
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FIGURE 7.7: Ricker model fitted with logNormal noise. The gray zone
shows the 90% credible interval for the model (uncertainty around pa-
rameters (S∗, h∗) only), the upper and lower lines (dotted) gives a 90%
posterior predictive interval for the data (including the environmental
noise σ.) The joint posterior distribution of management parameters ap-
pears as a cloud showing the uncertainty about (S∗, R∗).

ment variance proportional to S for the whole range of S, something like
σ2(R) = δS with δ an unknown constant. Implementation is easy when
assuming a Gamma distribution for the recruitment given the stock. The
gamma pdf also belongs to a two-parameter family of distributions, with
parameters usually denoted by a (shape) and b (inverse scale). They are
uneasy to interpret directly, but they are related to the expectation µ
and the variance σ2 by the following relationships:µ =

a

b

σ2 =
a

b2
=
µ

b

(7.10)

Therefore, if we want the mean recruitment to be the Ricker function
and the recruitment variance proportional to the stock, we simply have
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to take: 
µ(R) =

a(S)

b(S)
= f(S) = α · S · e−β·S

σ2(R) =
µ(R)2

a(S)
= δ · S

(7.11)

so that: 

R ∼ Gamma(a(S), b(S))

with

a(S) =
α2 · S · e−2β·S

δ

b(S) =
α · e−β·S

δ

(7.12)

Table 7.5 contains the Bayesian inferences obtained with the for-
mulation (7.12). The same priors as previously were used. We chose
δ
S∗ ∼ Gamma(1, 4) to keep with the prior belief that the relative error

ratio σ(S∗)
S∗ stands around 50% since σ2(S∗)

S∗2 = δS∗

S∗2 will be expected to lie

around the mean value of a Gamma(1, 4) distribution, i.e., 1
4 = (0.5)

2
.

Parameters Mean Sd 2.5% pct 97.5% pct
C∗ = R∗ − S∗ 2972 301 2426 3623

R∗ 4295 411 3570 5151
α 6.54 0.66 5.33 7.93

Smax 1916 285 1408 2525
S∗ 1323 164 1018 1660
h∗ 0.69 0.02 0.64 0.74
σ 0.86 0.12 0.64 1.09

TABLE 7.5: Main features of marginal posterior distributions obtained
with a Ricker-type recruitment function, informative priors on manage-
ment parameters (see Table 7.3) and a Gamma random variations as-
suming the variance is proportional to the stock.

Once again, prior and posterior distributions for the stock S∗ at
sustainable yield and for the sustainable harvest ratio h∗ do not point out
major discrepancies between expert judgment and information conveyed
by the data (see Table 7.5 which is quite comparable to Table 7.4). But a
much better fit of environmental noise is shown in Fig. 7.8. The data look
much more in agreement with their predictive distribution when working
with the gamma error term than with the logNormal noise. The hump
around S∗ has vanished and the environmental noise increases with the
number of spawners, not with the number of recruits; unfortunately,
there few data with a large number of spawners to strongly validate this
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FIGURE 7.8: Ricker model fitted with Gamma random variations. The
gray zone shows the 90% credible interval for the model (uncertainty
around parameters (S∗, h∗) only), the upper and lower lines (dotted)
give a 90% posterior predictive interval for the data (including the en-
vironmental noise σ.) The joint posterior distribution of management
parameters appears as a cloud showing the uncertainty about (S∗, R∗).

hypothesis. Additionally, for large values of the stock, the distribution
is highly skewed: the curve of the posterior mean for recruitment (solid
line) lies out of the 90% credible interval for the model.

7.5 Changing the explanatory structure from Ricker
to Beverton-Holt

In this section, we turn back to Eq. (7.1) and its multiplicative
simplification Eq. (7.3). We seek to incorporate a saturation effect
R = αS/(1 + βS) as a guideline (Beverton-Holt) for the explanatory
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structure f1(S). Consider a logNormal model for the unexplained part
of the phenomena f2(ε) :R =

α

1 + β · S
· eε

ε ∼ Normal(0, σ2)
(7.13)

The management parameters can be derived from the following rela-
tionship: 

α =
R∗2

S∗2

β =
R∗ − S∗

S∗2

(7.14)

Parameters Mean Sd 2.5% pct 97.5% pct
C∗ = R∗ − S∗ 2294 206 1918 2719

R∗ 3191 319 2622 3883
α 13.75 5.02 8.11 26

Rmax 4453 596 3416 5772
S∗ 897 185 559 1292
h∗ 0.72 0.04 0.65 0.80
σ 0.39 .05 0.31 0.49

TABLE 7.6: Main features of marginal posterior distributions obtained
with a Beverton-Holt recruitment function, informative priors on man-
agement parameters (see Table 7.3) and logNormal random variations.

Table 7.6 sums up the Bayesian inference for the Beverton-Holt model
with a logNormal noise. For the management parameters S∗ and h∗ and
the environmental noise σ, the same informative priors as previously have
been used. The sustainable stock S∗ for this model seems to be much
lower than the other models with a more intensive harvest ratio h∗ (see
Tables 7.4 and 7.5). But compared to the Ricker model with logNormal
noise, a lower posterior estimate of σ seems to indicate a better fit of the
environmental noise. Shapes of the posterior distribution for the main
parameters (C∗,h∗,σ) are shown in Fig. 7.9.

Figure 7.10 shows how the model behaves: the general shape differs
much from the Ricker structure since there is an asymptotic number
of recruits around 4000 individuals (with a rather large posterior uncer-
tainty), the predictive confidence interval increases with S (and R which,
on average, increases monotonically as S), but the 95% predictive quan-
tile might be far from the data and rather overpessimistic.
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FIGURE 7.9: Posterior distributions of key parameters (C∗, h∗, σ) ob-
tained using the Beverton-Holt SR model with logNormal random vari-
ations. Marginal distributions are shown in the diagonal. Joint MCMC
draws are shown in the lower part. The upper part shows the linear
correlation between the MCMC draws.

7.6 Model choice with informative prior

One may wish to consider a formal test to choose between the three
proposed models: Beverton-Holt-type with logNormal random variations
(M1), Ricker-type and logNormal random variations (M2), Ricker-type
and Gamma random variations (M3). Such comparisons can be made
through Bayes Factors. Bayes Factors were already introduced in Chap-
ter 4 (Section 4.3.3.1). The Bayes Factor Bi,j given in Eq. (4.16) is the
tool of choice to evaluate the relative increase of evidence (from prior to
posterior, given the data) in favor of model Mi over model Mj . Indeed,
given the data y, Bi,j is calculated as the ratio of marginal likelihoods
between models Mi and Mj , corrected by the ratio of priors. The pa-
rameters θ = (S∗, h∗, σ−2) have the same meaning for the three com-
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FIGURE 7.10: Beverton-Holt model fitted with logNormal random
variations. The gray zone shows the 90% credible interval for the model,
the upper and lower lines gives a 90% posterior predictive interval for
the data. The posterior of management parameters appears as a cloud
showing the uncertainty about (S∗, R∗).

peting stock-recruitment models; they are management reference points
and relative environmental noise level. Informative prior knowledge is
encoded via proper priors for θ given in Table 7.3; therefore, the predic-
tive [y|Mi] (for models i = 1, 2, 3) themselves will also be proper. For
Beta-Binomial or Normal models presented respectively in Chapter 4
or 6, a closed-form of the marginal likelihood was available thanks to
the conjugate properties (recall the mathematical miracle happening in
Section 4.3.3.2 for the Beta-Binomial model and Section 6.3.3.3 for the
Normal one). For stock-recruitment models, no closed-form expression
for the marginal likelihoods is available. An estimation of the marginal
likelihood must be derived through numerical integration of the likeli-
hood via a Monte Carlo sampling methods ([157]). As [θ|Mi][y|θ,Mi] is
proportional to [θ|Mi,y], a good numerical approximation can be ob-
tained by importance sampling techniques as follows:
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1. For each model i, approximate [θ|Mi,y] by the multi-Normal distri-
bution π(θ) with mean and covariance matrix given by the empir-
ical estimates computed from the MCMC sample of the posterior
[θ|Mi,y];

2. Let the importance distribution π appears by rewriting [y|Mi] =∫
θ

(
[θ|Mi][y|θ,Mi]

π(θ)

)
π(θ)dθ;

3. Generate a G− sample drawn from π, (θ(g))g=1,...,G;

4. Compute the weighted sum [̂y|Mi] =
∑G
g=1 ω(θ(g))[y|θ(g),Mi]dθ,

with importance weights given by:

ω(θ(g)) =

[θ(g)|Mi]
π(θ(g))

1
G

∑G
g=1

[θ(g)|Mi]
π(θ(g))

This algorithm is applied to the previous three models. If the impor-
tance distribution is well chosen, the weights should not exhibit large

variance, allowing for a stable computation of [̂y|Mi]. As an example,
Figure 7.11 shows that the 5000 weights obtained for the logNormal
Ricker model are relatively balanced since, when plotting their cumula-
tive distribution, one can see that it is not too far away from the Uniform
distribution (first diagonal). Similarly good computational behavior is
observed for the other models (not shown here). Finally, Table 7.7 points
out that the Beverton-Holt model with LogNormal environmental noise
appears to be the best choice among the three competing proposals.

Model Rank Log([̂y|Mi]) BF1vsi

Beverton-Holt + LogNormal noise 1 −335.75 1
Ricker + LogNormal noise 2 −340.23 88
Ricker + Gamma noise 3 −340.56 123

TABLE 7.7: Marginal likelihood [̂y|Mi] for the three competing models
with informative priors. Bayes Factors of model M1 (Beverton-Holt-type
with logNormal random variations) versus all other models were calcu-
lated.



Nonlinear models for stock-recruitment analysis 165

FIGURE 7.11: Checking the IS computation for the Ricker model
with logNormal noise. Cumulative distribution of the importance weights
(solid line) compared with cumulative distribution of a Uniform distri-
bution (dotted line).

7.7 Conclusions and perspectives

Ecological models have to account for the environmental stochastic-
ity. When investigating the Margaree River case study, the part due to
the noise in the data can amount up to 40% of the signal! In the present
stock-recruitment model, noise is a convenient all-in-one-bag concept for
unexplained variations; it encompasses both:

1. Stochasticity in survival of eggs that may vary due to environmen-
tal factors such as water temperature or high and low riverflows;

2. Experimental or observation errors when counting the recruits,
such as the ones resulting from successive removal techniques and
extrapolation of abundance estimates from a few sampling sites to
the whole river.
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The SR Ricker model with logNormal noise is a linear regression
model in disguise since Eq. (7.4) can be rewritten as

log

(
Rt
St

)
= log(α)− βSt + εt (7.15)

This appealing statistical form should not incite the ecologist to loosely
embrace such a model only as a matter of (linear) mathematical conve-
nience. Competing models can be designed to depict different ecological
behavior. Here different density dependence relationships were encoded
in the different marginally decreasing production of recruits. Unfortu-
nately, there is not enough data (although many ecological time series
data sets are shorter than the respectable 38 years of the Margaree data
collection!) nor enough contrast between the stock values to really make
a difference between the Beverton-Holt compensation (see Fig. 7.10) and
the Ricker overcompensation (as in Fig. 7.8). The choice of the noise dis-
tribution also matters and once the data have been observed, there ap-
pears a correlation between the noise parameter σ (or δ for the Gamma
noise) and the more ecologically meaningful parameters. The posterior
predictive distribution allows to explain the discrepancy between a ten-
tative model and the data. We feel more satisfied with Fig. 7.8 than
Fig. 7.7, while a formal Bayes factor helps to make a choice between a
set of competing models.

In this chapter, we focused on the estimation of stock-recruitment
parameters but we deliberately forgot two important sources of bias:

• The errors in variable problem. In the DAG of Fig. 7.4, we put the
stock values within a shaded box, which means that we hypoth-
esize that these explanatory variables are known without error.
Indeed, these stock data are not covariates, they are observations
of stock (that may be far from the “true ” value stock itself), i.e.,
stemming from an experiment. In a more realistic model, such ob-
served stock values should themselves be put within shaded ellipses
and linked to unknown “true” stock that would influence the re-
production phenomenon. In other words, we forgot to take into
account a source of randomness which might lead to a complete
misconception of the whole structure of the stock recruitment rela-
tionship. In turn, the influence of these neglected observation errors
can be damaging when performing the estimation of the unknown
(α, β, σ2).

• The time series bias. We cut the ecological dynamics into suppos-
edly independent pieces. Indeed, there is a temporal link between
the recruits of one year and the adults of the same cohort returning
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to their home river to spawn (via a survival rate). These overlooked
dynamic aspects might cause dangerous overestimation of the sus-
tainable harvesting rate.

We postpone exploring these important issues until Chapter 11,
which we devote to a discussion of dynamic structures and state-space
models. We conclude the present chapter by urging the reader to tackle
exercises which are available at our website hbm-for-ecology.org . This
will help the reader to further understand the consequences of model
mispecification, a common problem encountered by ecological detectives.
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Chapter 8

Getting beyond regression models

Summary

This chapter exemplifies how to go beyond the limitations imposed
by Normal linear models (see Chapter 6); the Normal distribution cannot
handle binary or count data, for instance. The trick is to use so-called link
functions to transform a linear combination of the explanatory covariates
into the location parameter of the appropriate response distribution.

In previous chapters, we learned how to handle Bernoulli and Bi-
nomial pdfs for categorical variables, Poisson distributions for discrete
quantities, and Normal, Gamma and Beta distributions for continuous
ones. Let’s play again, this time by linking a linear regression-like expla-
nation term and

• Bernoulli observables (the so-called logistic and Probit regres-
sions);

• Poisson observables (Poisson regression);

• Ordered categorical responses (ordinal Probit regression).

The remarkable feature is that such hybrid structures do not require
much additional effort for inference, especially in the Probit case which
can be interpreted as working with a hidden Gaussian layer in the model.

8.1 Logistic and Probit regressions

8.1.1 Motivating example: Changes in salmon age at
smoltification

Atlantic Salmon populations are characterized by an intra-population
variation in the reproductive life span. In particular, juveniles spend one

169
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or several years in their home river before running to the sea as smolts,
and adults may spend one or several winters at sea before returning to
their home river as spawners (see the salmon life cycle in Fig. 1.9, page
26 and Table 8.1).

We only care about the four main life histories encountered in the
Northwest of France (Table 8.1). Almost all juveniles smoltify after 1 or
2 years spent in freshwater ([15]), they are denoted as 1+ and 2+ smolts,
respectively. Fish from the two smolt age classes can return as spawners
after one or two winters spent at sea (1SW or 2SW ).

Sea age 1 year (1SW ) 2 years (2SW )
River age

1 + Smolts n11,t n12,t

2 + Smolts n21,t n22,t

n1,t n2,t

TABLE 8.1: 1+ and 2+ smolts spend either one or (at least) two years
at sea; see the complete life cycle in Fig. 1.9 of Chapter 1. nij denotes
the number of adults in the river-age class i and sea-age class j that
return for spawning.

Inter-annual variation of environmental conditions is known to influ-
ence Atlantic salmon demography by changing the balance point between
these various anadromous reproductive strategies. In particular, early
growth conditions of juveniles are known to influence the probability of
smoltification ([15]; [220]; [294]; [302]). Studying the time variations of
the age at smoltification helps to understand how Salmon populations
react to potential changes in juvenile growth performance, for instance
in response to warming (climate change) or in response to local nutrient
enrichment and stream productivity due to eutrophication.

For each cohort born on year t, the proportions of returning spawners
that have migrated as 1+ smolts relative to the total returning spawners
(that have migrated as 1+ and 2+ smolts) are considered as indicators
of the mean age of smoltification (MAS). These proportions were con-
sidered for both sea-age classes, and are then estimated as n11

n11+n21
and

n12

n12+n22
for 1SW and 2SW fish, respectively (see Table 8.1). Data used

to compute these proportions were collected as part of the survey of the
A. Salmon rod-and-line fishery in Brittany rivers. The original dataset is
composed of more than 24, 500 reported catches of salmon (and associ-
ated archived scales) caught during their spawning migration in rivers of
the Armorican Massif (Northwest France; denoted AM in the following)
from 1972 to 2005 (see Fig. 8.1). The proportions of 1+ smolts were
directly computed from the number of reported catches.
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FIGURE 8.1: The three geographical units for the rivers in the Ar-
morican Massif, Brittany, France.

Detailed information is available on each captured fish. The date and
the place (river) of capture are recorded. The size and weight of each fish
are also known, and scale reading ([14]) provides key information on the
life history of each fish. The river age (1 + Smolt, 2 + Smolt), sea age
(1SW or 2SW ) and other biological information from which the birth
date (cohort) of each captured fish can be easily inferred (Fig. 8.2).

We assume that the survey of the rod-and-line fishery of migrating
spawners provides a representative random sample for the proportion of
1+ smolts in each sea-age class (this hypothesis will be discussed later
in the chapter).

Figure 8.3 shows an increasing trend of the proportion of adults that
have migrated as 1+ smolts over the period. It also shows some syn-
chronous fluctuations between the two sea-age classes. By the end of the
period, the proportion of 1+ smolts in the 2SW component seems to be
greater than in the 1SW component.

As shown in Fig. 8.1, the data have been grouped according to three
geographical units of the Armorican Massif in France. These rivers are
located at the southern edge of the species distribution in Europe, which
offers a good opportunity to study life history variants in a changing en-
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FIGURE 8.2: An archived scale from the database. (Picture from J-
Luc Bagliniere, INRA, Rennes.)

vironment (local and global) where unfavorable conditions may occur
rapidly. Figure 8.4 shows that the proportion of 1+ smolts is different
between regions, with region A (lower Normandy) exhibiting larger pro-
portions of 1+ smolts than regions B (northern and western Brittany)
and C (southern Brittany).

The catches were declared by fishermen on a voluntary basis prior
to 1986, and they have become mandatory since that date. Figure 8.5
highlights how the sample sizes n(r, a, t) subsequently increased over
time.

8.1.2 Formalization: The Binomial-logit model

In this section, we propose a Binomial-logit model for the variability
of the proportion of 1+ smolts as a function of time (year of cohort birth,
between 1973 and 2002, sea-age classes and regions).

Let’s call π(r, a, t) the probability that a Salmon, born in year t, with
a sea age a (1SW or 2SW ), from region r (A,B or C), has left its native
river as a 1+ smolt. Note that in the sequel, t is the year of the cohort
birth: t = 1 stands for year 1973 and t = 30 stands for year 2002.

The observables are the numbers of fish caught corresponding to the
ones in Table 8.1 decomposed by regions. nr,a,t denotes the total number
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FIGURE 8.3: Proportion of fish (empirical values) that have migrated
as 1+ smolts for both sea-age classes, for the cohorts born between 1973
and 2002.

of fish born in year t with a sea age a, from region r, among which n1,r,a,t

are 1+ smolts. Under the classical (but questionable) assumption that
all fish are independent n1,r,a,t is considered as the result of a Binomial
sampling process with nr,a,t trials and a probability of success πr,a,t.

n1,r,a,t ∼ Binomial(π1,r,a,t, nr,a,t) (8.1)

Note that in this model, because the sample sizes n(r, a, t) increased
over time (Fig. 8.5), a poor precision is to be expected from the data in
the very beginning of the time series.

We now propose a logit relation to assess how π(r, a, t) varies depend-
ing on year t (quantitative), and according to the categorical covariates
Region r and Sea-age class. The logit function maps the interval ]0, 1[
into ]−∞,+∞[ such that:

p ∈ ]0, 1[7−→ logit(p) = log

(
p

1− p

)
(8.2)

It can be interpreted as the log-odds ratio of the event; it is negative
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FIGURE 8.4: Proportion of fish (empirical values) that have migrated
as 1+ smolts for the three regions of the Armorican Massif, Brittany,
France, for the cohorts born between 1973 and 2002.

when the odds against the event are bigger than the odds in favor of the
event, balanced when p = 0.5, and positive otherwise (p > 0.5).

As a baseline model M0, the systematic effects of the three covariates
are modeled as a linear function in the logit scale without any interac-
tions:

logit(πr,a,t) = µ+ αt +Aa +Br (8.3)

We assume a linear trend with years:

αt = α× t

The age at sea effect will be centered such that:{
Aa = +β if a = 1SW

Aa = −β if a = 2SW
(8.4)
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FIGURE 8.5: The sample sizes drastically increased over time, driven
by the increase in the catch declaration rate over the period.

The regional effect will be modeled as:
Br=A = γ

Br=B = δ

Br=C = −γ − δ
(8.5)

It is worth noting that the model M0 described above can be viewed
as an extension of the classical linear model such as the one analyzed
in Chapter 6. Considering the vector θ such that θ′ = (µ, α, β, γ, δ), the
relationship 8.3 for each record i (a record i is defined by a combination
of the three covariates (r, a, t)) can be put under the form of a linear
regression-like expression in the logit scale:

logit(πi) = (Xθ)i (8.6)

in which the design matrix X is such that each of its five columns xj , (j =
1, ..., 5) corresponds to an explanatory variable and each row will depict
a record. For instance, the column x1 will correspond to the constant,
the ith row of the vector x2 to the birth year of the ith record, the third
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column vector x3 will take values +1 or −1 depending on the sea-age
class of the ith record and so on.

x1 =


1
1
1
...
1

 ,x2 =


t1
...
tj
...
tn

 ,x3 =


1
1
−1
...
−1

 , ...

Considering for brevity that the ith record is encoded xi,j for the jth

explanatory variable, with a total number of 1+ smolts n1,i among ni,
the logistic model can be written using matrix notations:{

logit(π) = Xθ

n1,i ∼ Binomial(πj , ni)

In the theory of Generalized Linear Models, Xθ is the linear predictor,
the logit() function is the link function and logit−1(Xθ) is the predictor
in the scale of the response (see [199] and Section 8.1.5.2 in this chapter).

8.1.3 Bayesian inference

8.1.3.1 Noninformative Zellner priors for parameters

The expression Xθ in the previous equation includes both qualitative
factors (belonging to a region, member of a sea-age class) that would be
encountered in classical analysis of variance models and quantitative ex-
planatory variables (trend with birth year of the cohort) as in standard
regression models. As in the linear model (see Chapter 6, Section 6.2.3),
we wish that prior distributions on parameters θ do not depend upon
the system of constraint assigned to the parameters (Eqs. 8.4 and 8.5).
We therefore set a Zellner multivariate Student distribution on the pa-
rameters θ (see Appendix D):

The model was run using conjugate Zellner’s prior distributions
θ ∼ Normal(m0, σ

2V0)

V0 = c× (X′0X0)
−1

σ−2 ∼ Gamma(1, 1)

(8.7)

with m0 = 0 and an informative prior information weighting only one
data record (c = n). The design matrix X is defined using the zero-
mean system of constraints as defined in Section 6.2.3. The Gamma(1,1)
distribution used for the precision σ−2 is an exponential pdf with mean
1, which scales the prior variance to the range of the data.
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8.1.3.2 Posterior distributions

Posterior distributions were obtained through WinBUGS (see the
DAG of the model in Fig. 8.6).

logit(πj ) n1,j

θX

j = 1,…,n

nj

logit(πj ) n1,j

θXX

j = 1,…,n

nj

FIGURE 8.6: Directed acyclic graph for the model defined in Eq. (8.7)
with Zellner prior distributions (Eq. (8.7)). The arrows between X (de-
sign matrix) and θ indicate that Zellner’s prior for θ is a multivariate

Normal distribution Normalp(m0, σ
2V0) with V0 = c× (X′X)

−1
.

Table 8.2 presents the marginal posterior statistical features of the
components of θ. Figures 8.7 and 8.8 also show the posterior predictive
of the proportion of 1+ smolts over time, for the two sea-age classes
and the three regions. The posterior predictives are plotted along with
the empirical proportions of 1+ smolts. Unsurprisingly, these empirical
curves exhibit a larger variability than the corresponding predictions
for the proportion of 1+ smolts. This variability depicts the natural
dispersion attached to Binomial experiments.

Time trend. The posterior variance of the effect of the parameter α is
very low since nearly 40 years are employed to fit the linear trend. This
indicates that this parameter is well known a posteriori. The effect of
the year is positive for sure, indicating an increasing linear trend of the
proportion of A. salmon smolts that smoltify after one year only spent
in the rivers of Brittany.

Effect of sea-age classes. The effect of sea age is also markedly as-
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Param. Mean Sd 5% 25% 50% 75% 95%
µ −0.367 0.051 −0.452 −0.401 −0.367 −0.332 −0.282
α 0.056 0.001 0.053 0.055 0.056 0.058 0.059
β −0.261 0.016 −0.288 −0.271 −0.261 −0.249 −0.234
γ 0.457 0.026 0.416 0.439 0.457 0.475 0.500
δ −0.196 0.020 −0.229 −0.210 −0.196 −0.182 −0.162

−δ − γ −0.262 0.022 −0.297 −0.276 −0.262 −0.248 −0.225

TABLE 8.2: Posterior statistics for the parameters θ of model M0 ob-
tained with noninformative Zellner prior computed with c = n.

sessed: no reasonable bet could be taken against the event that β is neg-
ative, which is confirmed by Fig. 8.7. The proportion of fish that have
migrated down to the sea as 1+ smolts is greater in the 2SW fish com-
ponent than in the 1SW fish component. This is an interesting ecological
result. When looking at the return of adult fish, the two components of
their life history, i.e., the time spent in river before smoltification and
the time spent at sea before spawning return are not independent.

Effect of regions. Results highlight that the proportion of smolts 1+
is always greater for the region A (lower Normandy). Credible intervals
made from Table 8.2 also show that the values of γ and −δ − γ may
overlap,suggesting a common effect for the last two regions (B: northern
Brittany and C: southern Brittany) as opposed to the first one, the lower
Normandy. This is confirmed by Fig. 8.8 that presents the prediction of
the proportion of 1+ smolts over time by region.

8.1.4 Model comparison

In the baseline model M0 described in the previous section, the sys-
tematic effect of the three covariates was modeled as a linear function
on logit(π(r, a, t)) without any interactions (Eq. (8.3)). A strong a priori
linear behavior underlines this model structure, and one could suspect
the model M0 not to be the right one. Would a simpler model collaps-
ing the effects of the first two regions within a single one work better?
Would a more complicated model allowing for different time trends for
the three regions work better? As seen in the previous chapters, a proper
comparison of models requires Bayes factors. In this section, we compare
the following models:

• Model M1 is like model M0 but without a regional effect;

• Model M2 is like model M0 but without a sea-age effect;
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FIGURE 8.7: Posterior predictive and empirical values of the propor-
tion of 1+ smolts over time, for the two sea-age classes 1SW and 2SW.

• Model M3 includes a common mean effect, a linear trend with year
for each of the sea age and a shared region influence;

• Model M4 is like model M3, but allows for different mean effects
corresponding to each sea-age component.

The importance sampling technique described in Section 7.6 of Chap-
ter 7 (see also Appendix B) works well to compute the predictive [y|M ]
for M = M1, ..M4. As an example, Fig. 8.9 checks the empirical cumu-
lative distribution of the weights used to compute the predictive distri-
bution of model M4: as expected, the weights cumulate along the first
diagonal confirming that they are rather uniformly distributed.

As Bayes Factors are known to be sensitive to prior distributions,
therefore, we computed the Bayes Factors for two contrasted Zellner
priors. The first Zellner prior structure (c = n) gives much weight to the
data. In the second one (c = 1/n), the prior is much more informative,
weighting less than the data. Table 8.3 shows the values of the log-
predictive distributions for all competing models for the two alternative
Zellner priors. Results highlight that whatever the sensitivity to the prior
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FIGURE 8.8: Posterior predictive of the proportion of 1+ smolts over
time, for the three regions A, B and C. Empirical values are not drawn
for the sake of clarity.

choice, the model M4 is the best choice among the competing models
(see Table 8.4).

8.1.5 Discussion

8.1.5.1 Ecological implications of the results

In the analysis, we assumed that the survey of the rod-and-line fishery
of migrating spawners provides a representative random sample for the
proportion of 1+ smolts in each sea-age class. The fishing process is
indisputably selective for the sea-age character. However, the hypothesis
we made is likely to be verified, since for a given sea-age class, one can
hardly think about a reason why fishing could be considered as a selective
sampling process for the river-age characteristics.

However, the proportion of 1+ smolts in returning spawners is not
necessarily a good indicator of the proportion of 1+ smolt measured at
the smolt stage. Indeed, 1+ and 2+ smolts have different survival rates
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FIGURE 8.9: Model M4. Cumulative distribution of the importance
weights (solid line) compared with cumulative distribution of a Uniform
distribution (dotted line).

during their sea sojourn. The survival rate of 2+ post-smolts during the
first months at sea is likely to be higher than for 1+ post-smolts. As a
consequence, the proportion of 1+ smolts in returning adults is likely to
be a negatively biased estimate of the proportion of 1+ smolts measured
at the smolts stage. Moreover, the survival rate of 1+ post-smolts during
the first months at sea is likely to be more variable than the survival rate
of 2+ post-smolts. Hence, the short- to medium-term fluctuations of the
proportion of 1+ smolts observed at the spawners stage could rather
result from fluctuations of the post-smolts survival rate at sea than from
real fluctuations in the demographic composition at the smolt stage.

Beyond these remarks, results highlight that an important change
has occured in the A. salmon populations of the Armorican mountain
range over the last 30 years. In the Armorican mountain range, the time
trend of the proportion of 1+ smolts per cohort over the period 1973-
2002 (year of cohort birth) combines a long-term increasing trend with
medium-term fluctuations that are synchronous across the three regions
and across sea-age classes (not analyzed here but clearly visible in the
series). The increasing trend observed in the proportion of 1+ smolts is
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Log marginal likelihood M0 M1 M2 M3 M4

c = n −1801 −1962 −1914 −1827 −1792
c = 1/n −1808 −1970 −1922 −1835 −1799

TABLE 8.3: Marginal likelihoods (predictive distributions) for all com-
peting models computed for two alternative Zellner priors. Model M4 is
the preferred one since the marginal likelihood is the higher one, no
matter the prior used.

Bayes Factors M0 M1 M2 M3 M4

M0 1
M1 8.5E − 71 1
M2 6.2E − 50 7.3E + 20 1
M3 4.8E − 12 5.7E + 58 7.8E + 37 1
M4 8.9E + 03 1.0E + 74 1.4E + 53 1.8E + 15 1

TABLE 8.4: Bayes Factors for all competing models computed with
the Zellner prior c = n. Bayes Factors are Bi,j with i=model in line,
j=model in column.

similar for both 1SW and 2SW sea-age class components, and cannot
be explained by the increasing proportion of the 1SW component in
the samples. Indeed, the proportion of 1+ smolts is greater in the 2SW
component than in the 1SW component, and the decreasing trend of
the 2SW component in the sample would rather have caused the pro-
portion of 1+ smolts to decrease. The synchrony of the medium term
signal between the three regions suggests a response to an environmental
forcing variable acting at the regional scale, such as climate. Moreover,
the synchrony between the two sea-age classes suggests the response to
an environmental forcing acting during a period when 0+ juveniles or 1+
post-smolts, respectively experience the same environmental conditions
at the same time, i.e., the first year of the fresh-water phase (0+ juve-
niles) or during the first year at sea for 1+ post-smolts. Following these
results, further analysis and model development could be initiated to-
ward the research of a biological or ecological mechanism explaining the
response of A. salmon populations to fluctuations of the environmental
variables.

8.1.5.2 About GLM

This section tries to integrate the model previously developed in a
more general perspective and may be skipped at first reading. The pre-
vious models M0, ...,M4 belong to the so-called family of GLM, i.e.,
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Generalized Linear Models ([199]). The Bayesian approach to handle
such models is presented in Dey et al. [89]. More generally a GLM is
specified by two functions:

1. µ(X) = E(y|β,X) depends on a linear function of the covariates
X and the parameters β through a so-called link function g:

g(µ) = Xβ

For an identifiability reason, g is a one-to-one mapping and equiv-
alently, one can write µ as a function of the linear predictor Xβ

µ = g−1(Xβ)

2. The random component specifying the distribution of the observed
variable Y with mean E(y|β,X) = µ(X) and possibly another
parameter to tune dispersion. Standard models include Poisson
for counts, Binomial for binary (or sums of binary) data, Nor-
mal as a special case for continuous data. Only in the latter case,
a second parameter is required for the variance. The previous
pdfs belong to the exponential family. This family encompasses
most of the pdfs presented in introductory probability courses: no-
tably the Normal, exponential, Binomial, geometric and Poisson
distributions. The practical section of this chapter (see our web-
site hbm-for-ecology.org) proposes to study other GLMs, in partic-
ular the Poisson model with a logarithm link function. The general
representation of a pdf belonging to the exponential family with
parameter θ is

[y|θ] = exp(a(y) + b(θ) + c(y)d(θ))

c(y) is the sufficient statistics, b(θ) is defined by the constraint that∫
[y|θ]dz = 100%. Note1 that attention is not necessarily focused

onto the mean and there are many ways of parameterizing such
an expression. When c(y) = y, an interesting reparametrization

1One can demonstrate with a bit of algebra that

E(c(Y )) = −
∂b(θ)
∂θ
∂d(θ)
∂θ

Var(c(Y )) =
− ∂2b(θ)

∂θ2
∂d(θ)
∂θ

+
∂2d(θ)

∂θ2
∂b(θ)
∂θ(

∂d(θ)
∂θ

)3
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known as the natural parameter is to make the transformation
φ = d(θ). Of course, one may also choose to adopt the mean µ
as the model parameter. In such a case, the canonical link is the
function d (µ) of the mean parameter that then appears in the
exponential form of the probability density. Following tradition, a
logistic link function has been used in models M0, ...,M4 with a
Binomial likelihood (the canonical link!). There is nothing espe-
cially compelling about using the canonical link, only remarkable
for its mathematical aesthetics. Other link functions could have
been chosen; any member of the general class of the reciprocal of
continuous cumulative distribution functions mapping the interval
]0, 1[ into ]−∞,+∞[ could have been used as a link function. Tak-
ing the N(0, 1) cumulative function Φ leads to the so-called Probit
model that will be developed in the next section.

8.2 Ordered Probit model

8.2.1 Motivating example: Which skate species can be
seen at various depths?

We consider here skate fish caught during 5 years of September scien-
tific surveys (1980-1985) in the Gulf of St. Lawrence (courtesy of Hugues
Benoit, Fisheries and Ocean Canada, Moncton). Three types of skates
inhabit the Gulf: thorny, winter and smooth stakes (see Fig. 8.10). Ma-
rine scientists know that these categories are naturally ordered accord-
ing to water depth: winter skates (Leucoraja ocellata) tend to occur in
shallow waters, thorny skates (Amblyraja radiata) can be encountered at
intermediate depths while smooth skates (Malacoraja senta) seem to feel
at ease in deeper waters. In the following, we seek to build an ordered
Probit model to quantify these habitat preferences according to water
depth.

The available dataset consists of a bottom trawl survey of 310 sites
t = 1, ..., T , T = 310. For each site t, we will consider the logarithm of
the water depth as the explanatory variable Xt. Here only one covariate
is considered for possible explanation, i.e., the water depth, but one can
think of many other covariates (prey abundance, sediment composition,
year effect, etc.) favoring the presence or the absence of a given species.
In Fig. 8.11, the water depth has been grouped into bins corresponding
to 21 classes of logarithmic depth. For each site, the response variable
Yt consists of the type of skates that was observed. Yt is a categorical
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FIGURE 8.10: Winter, thorny and smooth stakes. (Pictures have been
taken by Éric Parent and Claude Nozère. Courtesy of Fisheries and
Ocean Canada.)

variable which can take on values j = 1, 2..., J , with J=3 because only
3 species of skates can be encountered. We aim at linking the category
of skates Yt with the covariate Xt.

It is worth noting that only the sites where at least one skate was
seen are retained in the analysis. All sites where no skates were seen
were discarded. In other words, the model will not seek to explain the
presence/absence of skates, but rather to explain the probability that an
observed skate belongs to species j, as a function of depth. Moreover,
for each site, the response variable does not account for the quantity
of skates that was seen. For instance, a response yt = (0, 1, 0) at site t
indicates that skates of type 2 were seen, but not the observed quantity.
In other terms, the model is designed to explain the variability of the
various skate species presence according to depth, but not the skate
abundance.

Figure 8.11 displays empirical presence frequencies of these 310 ob-
servations grouped to bins corresponding to 21 classes of logarithmic
depth. In addition, the bottom panel of Fig. 8.11 gives the number of
observations in each bin, which indicates that the shape of the curves of
presence is not that reliable in shallow or in deep waters. We therefore
need a model to depict the presence of each species.
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FIGURE 8.11: Empirical frequencies of the three skate species accord-
ing to 21 classes of logarithmic depth. Square: winter; triangle: smooth;
diamond: thorny.

8.2.2 Formalization

The data augmentation approach presented in Albert and Chib [3]
provides a general framework for analyzing ordered multinomial response
models. The basic idea for the model is to imagine that for every site
t, there is an explanation summed up in the quantity µt, that depends
upon the covariates Xt and which characterizes the skates’ strength of
presence and takes continuous values on the subsequent intervals defined
by parameters γ0 = −∞ < γ1 < ... < γJ−1 < γJ=+∞. As a first try,
we may suggest a linear two-parameter relationship with the logarithmic
depth X:

µt = β0 + β1Xt

but there are many other possible competing structures. We are search-
ing for a probabilistic allocation mechanism of Yt to a category j such
that the larger µt, the more likely Yt will take on a large categorical
value. Consider πtj , the probability that observation t fall into category
j obtained by inverting a cumulative probability function. Take for in-
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FIGURE 8.12: Random mechanism for an ordered categorical response
with three levels depending on the explanatory covariate µt.

stance a Normal distribution N(0, 1) with cumulative density function
Φ such that

[a < Z < b |Z ∼ N(0, 1) ] = Φ(b)− Φ(a)

and consider the multinomial trial

[Yt = j |µt ] = πtj (8.8)

with

πtj = Φ (γj − µt)− Φ (γj−1 − µt) (j = 1, . . . , J)

For the skate application, we take of course J = 3, γ0 = −∞; γ3 =
+∞. There appears to be four parameters (β0, β1, γ1, γ2) in the model
and the likelihood reads:

[Y |µ ] =
T∏
t=1

(
Φ
(
γy(t) − µt

)
− Φ

(
γy(t)−1 − µt

))
with

µt = β0 + β1Xt
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But one can actually check that only three matter θ = (β1, δ1 = γ1 −
β0, δ2 = γ2 − β0). Fig. 8.12 shows the probabilities that observation
yt belongs to modality j depending on the value of µt. To interpret
this figure, one has to imagine that the bounds γi are fixed and that
the Gaussian bell curve moves back and forth with µt depending on
experiment t.

Param. Mean Sd 2.5% 25% Med. 75% 95%
β1 1.27 0.09 1.11 1.20 1.27 1.33 1.43
γ1 4.24 0.37 3.62 3.98 4.23 4.49 4.86
γ2 6.99 0.45 6.25 6.68 6.98 7.29 7.75

TABLE 8.5: Posterior statistics for the parameters of the ordered multi-
nomial Probit model.

Now let’s look at some other random mechanism defined as follows:

• Draw Zt at random as a Normal variable, with mean β1Xt and
variance 1,

• See where zt will occur (on which of the intervals bounded by the
δ′js, δ0 = −∞ < δ1 < ... < δJ−1 < δJ = +∞),

• Take Yt = j if δj−1 < zt ≤ δj .

From a statistical point of view, this latter event and the model
defined by Eq. (8.8) are identical. Indeed

[Yt = j |δ, β1Xt ] = [δj−1 < zt < δj |δ, β1Xt ] =

z=δj∫
z=δj−1

[z |β1Xt ] dz

and we find [Yt = j |δ, β1Xt ] = πtj since

z=δj∫
z=δj−1

[z |β1Xt ] dz = Φ (δj − β1Xt)− Φ (δj−1 − β1Xt) = πtj

To sum up, we have introduced a latent Normal variable Zt centered on
β1Xt that drives the categorial phenomenon (described by Eq. (8.8)).{

Zt = β1Xt + ut

ut ∼iid N(0, 1)
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One can rewrite the likelihood as:

[Y |β1Xt, δ ] =
T∏
t=1

∫
zt

[yt, zt |β1Xt, δ ] dzt

=
T∏
t=1

(∫
zt

dnorm(zt, β1Xt, 1)× 1δy(t)−1<zt<δy(t)
dzt

)
We are just adding a layer of categorical data generation to a linear
model. Conversely to the categorical Yt, the latent Zt is not observable.
The so-called complete likelihood is defined as the joint probability of
latent and observable variables:

[Y,Z |δ, β1,X ] =
T∏
t=1

(
dnorm(zt, β1xt, 1)×1δy(t)−1<zt<δy(t)

)
(8.9)

FIGURE 8.13: Joint a posteriori distribution for β1, δ1, δ2. Marginal
pdfs are shown in the diagonal. Joint MCMC scatters are shown in the
lower part. The upper part points out strong correlations among the
components of the posterior parameter pdf.
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8.2.3 Bayesian inference of the ordered multinomial
Probit model

Priors can be set as Normal distributions for β1, δ1 and δ2 so as
to benefit from conjugate properties. Appendix A shows that a Gibbs
sampler can be easily implemented in that case. A WinBUGS program
has been used here to perform the posterior inference with flat priors for
δ1, δ2 and β1. The model parameters (see Eq. (8.8)) of Table 8.5 have
been estimated with the 100,000 last MCMC iterations after a 50,000
burn-in period. Figure 8.13 shows that the three parameters (β1, δ1, δ2)

FIGURE 8.14: Posterior distribution of the presence probabilities for
each of the three species with regards to depth; predictive probabilities
versus data: How well does the model fit?

of the ordered Probit model are a posteriori highly correlated. From the
MCMC iterations, one can also evaluate the posterior distribution of the
presence probabilities for each skate species. The boxplots of Fig. 8.14
show their statistical features with large ranges of uncertainty corre-
sponding to depths levels with scarce data.
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8.3 Discussion

Many questions have not been treated in this chapter, in particular:

• How can we test that a model is significant? More specifically
Fig. 8.14 also includes data (frequencies by depth levels) versus the
corresponding predictive probabilities. Some observations stand
out of their confidence bounds, shall we conclude that the model
is to be rejected?

• How robust to prior specifications are the results?

• How can one use such results to develop sampling plans? Can the
next scientific campaign be optimized?

All these questions are noteworthy, but in this chapter we rather focus on
the model making issue from real case studies. For many aspects, it is like
a game of LEGO and it is not difficult! One has to think conditionally;
complex models are built by adding latent structures that bring into the
analysis conceptual key variables. In the following chapters of part 2,
we keep on assembling LEGO blocks of elementary model components,
but the game gets more sophisticated with temporal, hierarchical and
spatial aspects to be taken into account.
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Chapter 9

Hierarchical Bayesian Modeling I:
Borrowing strength from similar
units

Summary

In this chapter, two different examples, both issued from our research
experience in salmon ecology, are developed to introduce Hierarchical
Bayesian Models (HBM), that make up the backbone of today’s Bayesian
modeling. Hierarchical (also called multilevel or random effect) models
assume that the dataset being analyzed consists of a hierarchy of differ-
ent groups within which records look more alike than between groups.
Random effects or latent variables are probabilistic objects which are
introduced to capture the variability between those groups. They are
considered to be a priori drawn from a probability distribution with
parameters (typically mean and variance) that will adjust to the data.
A small variance will express a strong resemblance between groups, a
large one will mean that the groups do not look like one another. This
probability structure ties together the various layers of such a multilevel
construction.

In the first example, we revisit the Binomial analysis of capture-
mark-recapture data introduced in Chapter 4. Here, a model to estimate
the number of salmon spawners returning each year in the Oir River is
developed within the hierarchical framework.

The second example extends the salmon stock-recruitment analysis
developed in Chapter 7 so as to design hierarchical analysis of stock-
recruitment models and study a group of 13 rivers in Europe with
datasets varying from data-rich to sparse situations. The hierarchical
structure between rivers is designed conditionally on some available co-
variates, namely the latitude and the riverine wetted area accessible to
salmon. In both examples, we show how the hierarchical structure orga-
nizes the transfer of information between different units. It successfully
accommodates large but sparse datasets containing poorly informative

195
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data for some units, and its conditional structure enables to borrow
strength from data-poor to data-rich units.

9.1 Introduction

HBM have been paid considerable attention in statistical ecology
([75]; [183]; [312]). For instance, in forestry or fisheries sciences, HBM
should reveal fruitful in the hands of a skilled ecological detective to
distinguish between population (e.g., forests, fish populations) and in-
dividuals (e.g., trees, fish) with eventually some grouped data effects
that will not be nested into the previous ones (such as tree species or
sub-populations of fish). The key idea is to express also dispersion be-
tween units by conditional probabilities (it is worth noting that up to
this chapter, pdfs were rather mimicking variations within a statistical
unit). Such models are for instance useful to depict:

• Cohort effects in correlated or familial survival data as opposed to
individual behaviors within a group;

• Site effects in meta-analyzes or in spatially structured phenomena.

Due to its historical importance in the hierarchical Bayesian modeling
approach, we detail in Appendix E the mathematical treatment of the
famous baseball example from [98], pointing out Stein’s paradox ([286]).
We do encourage the reader to take some time to work out this example
even though it has nothing to do with ecology! Stein’s article brought an
irreversible change of mind among the statistical community: computing
the average of past events had long been considered by many statisticians
as the best guess about the future but this example was highlighting
random effect circumstances in which Bayesian thinking helped devise
much better estimators! Winning bets exploited the so-called shrinkage
effect (that pulls back empirical estimates toward the grand mean and
“dampers” the sample size effects).

Simple hierarchical (or multilevel) models as sketched in Fig. 1.13
assume that the dataset being analyzed consists of different groups
k = 1, ..., n with differences in some characteristics modeled within a
hierarchical structure. Random effects Z1:n = (Z1, ..., Zn) are latent
variables used to capture both the variability (or speaking positively
the similarity) between the n groups. The Z1:n are independently drawn
from the same distribution (let’s call it the urn of resemblance) with
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parameter θ tuning that resemblance between groups:

[Z1:n|θ] =
n∏
k=1

[Zk|θ] (9.1)

Each latent variable Zk is associated with a data subset yk through a
(partial) likelihood term [yk|θ, Zk], so that the likelihood can be obtained
as:

[y1:n|θ] =

∫
Z1:n

n∏
k=1

[Zk|θ]×
n∏
k=1

[yk|Zk, θ] : dZ1:n (9.2)

Knowing Z1:n, the yk’s are independent because

[y1:n|θ, Z1:n] =
n∏
k=1

[yk|Zk, θ].

When Z1:n is unknown, the yk’s are exchangeable: as shown by Eq. (9.2),
any permutation of the group indices 1 : n will leave the joint distribu-
tion [y1:n|θ] unchanged. This is why this simple hierarchical structure
is named an exchangeable hierarchical model (see also Appendix E).
The joint posterior distribution of all unknowns (parameter θ and latent
variables Z1:n) writes:

[Z1:n, θ|y1:n] ∝ [θ]×
n∏
k=1

[Zk|θ]×
n∏
k=1

[yk|Zk, θ] (9.3)

As emphasized in Figures 1.12 and 1.13 in Chapter 1 , random vari-
ables Z1:n constitute a latent layer that ties together the parameters θ,
common to all groups, and the data specific to each group. The hier-
archical structure captures the variability between groups by the latent
variable Z1:n but also the similarity by organizing the transfer of infor-
mation between groups thanks to the vector of parameters θ. As devel-
oped in Rivot and Prévost [255], the data of all groups k = 1, ..., n are
included to estimate the latent variable for any particular group k. As
shown in Eq. (9.4), the marginal posterior [Zk|y1:n] can be written as an
average (or an integral) of the conditional distribution [Zk|θ] over the
posterior distribution of the parameters θ conditioned on observed data
for all units k = 1, ..., n:

[Zk|y1:n] =

∫
θ

[Zk, θ|y1:n] : dθ

=

∫
θ

[Zk|θ]× [θ|y1:n] : dθ (9.4)
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Hierarchical models also propose a consistent probabilistic rationale
for prediction. Inferences about the random effect for a new group, Znew,
can be derived through the predictive distribution conditional on the
observed data ([117]). It is an average of the conditional population
distribution [Z|θ] over the posterior distribution of the parameters θ
conditioned on all observed data:

[Znew|y1:n] =

∫
θ

[Znew, θ|y1:n] dθ

=

∫
θ

[Znew|θ]× [θ|y1:n] dθ (9.5)

The difference between the marginal prior predictive [Z] =
∫
θ

[Z|θ]×[θ]dθ

and the posterior predictive[Z|y1:n] =
∫
θ

[Z|θ] × [θ|y1:n] dθ in Eq. (9.5)

reflects the amount of information brought by the data y1:n of all groups
k = 1..n to update the prior distribution common to all groups. Ad-
ditionally in the examples, writing yk =(y1

k, ...y
pk
k ), the number pk of

elementary data may differ between groups.

9.2 Hierarchical exchangeable Binomial model for
capture-mark-recapture data

This section is a natural followup to Chapter 4. The main idea is
to link the capture-mark-recapture (CMR) models for yearly observa-
tions together by a hierarchical structure as the one represented by the
DAG of Fig. 1.13. In this case study inspired by the article of Rivot and
Prévost ([255]), the years are the statistical units that look alike and
that hypothesized resemblance allows for transferring information from
a given year to the other years. The only differences with the baseball
players’ model from Appendix E are that the data structure is a lit-
tle more sophisticated and that the latent variables are two component
vectors instead of simple real numbers.

9.2.1 Data

Relatively long but sparse (small sample size) series of data are quite
common when dealing with CMR surveys aimed at estimating the abun-
dance of wild populations over a series of years. For instance on the Oir
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FIGURE 9.1: Marking a spawner entering the Scorff River.

River, already presented for the smolt runs in Chapter 4, the rangers
from the French National Research Institute for Agronomy (INRA) and
from the National Office of Water Management (ONEMA) have col-
lected CMR data about adult salmon that swam back to spawn in the
Oir River for the years 1984–2000.

Data are shown in Table 9.1. For each year t from 1984 to 2000,
y1,t denotes the number of fish trapped at the Cerisel station (close to
the mouth of the river, see Fig. 4.3 of Chapter 4 for more details about
the trapping device). y2,t + y3,t individuals from the captured ones are
not replaced upstream, either because they died during manipulation or
because they are removed for experimental use or for hatchery produc-
tion. Let y4,t = y1,t − (y2,t + y3,t) the number of (tagged) fish released.
These spawners are individually marked before they keep on swimming
upstream (Fig. 9.1). The recapture sample is gathered during and after
spawning (see more details on recapture conditions hereafter). Let us
denote as y5,t and y6,t the number of marked and unmarked fish among
recaptured fish, respectively.

9.2.2 Observation submodels for the first phase (Cerisel
trapping place)

Let denote νt the unknown of interest, i.e., the population size of
spawners at year t and π1

t the unknown trapping efficiency. Assuming all
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Years y1 y2 y3 y4 y5 y6

1984 167 10 3 154 12 10
1985 264 37 11 216 21 4
1986 130 28 9 93 5 4
1987 16 3 1 12 2 22
1988 226 35 8 183 12 0
1989 235 31 5 199 56 0
1990 15 4 4 7 2 15
1991 44 0 0 44 23 1
1992 31 10 1 20 4 5
1993 100 17 2 81 4 3
1994 32 12 2 18 1 4
1995 109 6 1 102 39 7
1996 70 13 2 55 25 57
1997 56 19 3 34 12 3
1998 34 3 1 30 6 30
1999 154 5 1 148 13 22
2000 53 0 0 53 4 33

TABLE 9.1: Capture-mark-recapture data for spawners by spawning
migration year in the Oir River. y1: Number of fish trapped at the count-
ing fence during the upstream migration time; y2, y3: One sea-winter
(resp. two sea-winter) fish removed from the population; y4: Tagged and
released fish; y5, y6: Number of marked (resp. unmarked) recaptured
fish.

of the νt spawners are independently and equally catchable in the trap,
with a probability π1

t considered constant over the migration season,
the migration of the νt spawners are independent Bernoulli experiments
with probability of “success” π1

t . Accordingly, y1,t is the observed result
of a Binomial experiment as given by Eq. (9.6):

y1,t ∼ Binomial(νt, π
1
t ) (9.6)

9.2.3 Observation submodels for the second phase (re-
collection during and after spawning)

The fate of a salmon swimming upstream to spawn is described in
great detail in Chapter 5. The recapture sample is obtained by three
methods: electrofishing on the spawning grounds, collection of dead fish
after spawning, and trapping of spent fish at the downstream trap of
the Cerisel facility. Due to the available data here, we adopt a simplified
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FIGURE 9.2: Directed Acyclic Graph representation of the hierarchical
structure for the joint modeling of capture-mark-recapture experiments
for the 17 years.

version of the model. As a first approximation to this rather complicated
scheme, recapture Binomial experiments with efficiency π2

t for marked
fish and untagged ones are acceptable, providing one is willing to assume
the three following hypotheses: No spawner runs downstream after get-
ting over the trap (H1); there is no tag shedding (H2); the recapture
probability π2

t is the same for all the fish whether or not marked (H3):{
y5,t ∼ Binomial(y4,t, π

2
t )

y6,t ∼ Binomial(νt − y1,t, π
2
t )

(9.7)

9.2.4 Latent layers

Writing latent vector Zt = (νt, π
1
t , π

2
t ) and observation yt =

(y1,t, y5,t, y6,t) to cope with the notations of Fig. 1.13, we are now in
search of a hierarchical structure to express that, to some extent, years
may look like one another. The natural choice for the latent distributions
are the Beta distribution (see Eq. (2.6), page 54) for π1

t and for π2
t{

π1
t ∼ Beta(a1, b1)

π2
t ∼ Beta(a2, b2)

(9.8)
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FIGURE 9.3: Box and whisker plots of a size-15, 000 MCMC sample
from the marginal posterior distribution of the trapping efficiency at the
Cerisel trap by migration year obtained under two model configurations,
the model in which years are treated independently (light gray) and
the hierarchical model (dark gray). The boxes indicate the interquartile
range and the median.

and the Negative Binomial distribution (already met at Eq. (4.11)) for
νt

νt ∼ NegBinomial(c, d) (9.9)

Figure 9.2 shows a DAG representation of the exchangeable hierar-
chical model for the joint modeling of the capture-mark-recapture for
the 17 years. The higher level parameters (a1, a2, b1, b2, c, d), denoted
θ consistently with notations of Fig. 1.13, are generally assigned a dif-
fuse prior distribution to reflect some ignorance about them. A common
practice is to set a prior on some appropriate one-to-one transformed
parameters and then to go back to the original parameters via the in-
verse transformation. Most often, the transformation recovers the mean
and variance because of their well-understood meaning. Sometimes, the
mean can be assigned a rather informative prior but it is generally not
the case of the variance (that describes between years variability), an
uppermost unknown quantity.



HBM I: Borrowing strength from similar units 203

FIGURE 9.4: Box and whisker plots of a size-15, 000 MCMC sample
from the marginal posterior distribution of the number of spawners by
migration year obtained under two model configurations, the model in
which years are treated independently (light gray) and the hierarchical
model (dark gray). The boxes indicate the interquartile range and the
median.

For the capture and recapture efficiencies, a diffuse (noninforma-
tive) prior can be put on the mean µa,b = a

a+b and variance σ2
a,b =

ab
(a+b)2(a+b+1) of the Beta distributions. But this transformation intro-

duces some unnecessary difficulty in order to ensure that both parame-
ters a and b are positive, the variance must satisfy the constraint

σ2
a,b < µab(1− µab)

We used a rather simpler transformation by considering the transforma-
tion µa,b = a

a+b and ua,b = (a+ b) and by drawing µa,b in a diffuse prior
distribution (we took a Beta(1.5, 1.5)) and log(ua,b) in a Uniform(0, 10)
distribution. Keeping in mind the interpretation of Beta coefficients (a, b)
as prior distributions for Binomial trials (see Chapter 2), a and b are to
be interpreted as prior number of success and failures, respectively. Then,
u = (a+b) is interpreted as a prior sample size that scales the variance of
the Beta prior distribution, and a Uniform distribution on the log-scale
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is appropriate for a diffuse prior (see also [187] for another utilization of
such a parameterization).

For the number of spawners varying between years, the mean and
variance of the Negative Binomial distribution are respectively µc,d = c

d

and σ2
c,d = c(d+1)

d2 . We assigned to µc,d a bounded Uniform distribu-
tion over ]0, µmax]. In the case study, µmax is set to 3000 individuals, a
reasonable upper bound for a salmon fish population on the Oir River
due to bio-ecosystemic constraints. To ensure that (c, d) are positive, we
draw log(σ2

c,d) in a diffuse Uniform distribution over the bounded range

[log(µc,d), log(σ2
max)] with σ2

max = 12 since we do not believe that the

standard deviation might exceed 400 fish (400 ≈
√

exp(12)).
Of course more informative priors should be used when available and

robustness to the choice of prior must be investigated as in Rivot and
Prévost [255].

9.2.5 Results

To show how a transfer of information between years is organized
by the hierarchical model, we compare its results with the model as-
suming independence between years. For the models with independence,
independent prior distributions with known parameters were set on
(νt, π

1
t , π

2
t ): 

π1
t ∼ Beta(1.5, 1.5)

π2
t ∼ Beta(1.5, 1.5)

νt ∼ Uniform(1, 3000)

(9.10)

Inference has been performed via WinBUGS (see the supplementary
material available from the book’s website hbm-for-ecology.org).

Results highlight that hierarchical modeling has no effect on the in-
ferences on the capture efficiencies (Fig. 9.3), but greatly improves pos-
terior inferences for the number of spawners migrating back to the Oir
River (Fig. 9.4).

Posterior mean values of the capture probabilities π1
t do not seem to

shrink much toward their overall grand mean (Fig. 9.3) and the recapture
probabilities π2

t ’s (not shown) are only slightly subjected to the shrinkage
effect. In Fig. 9.3, there remains a lot of between-year variability in the
experimental conditions at the Cerisel trapping facility.

Conversely, the hierarchical structure hypothesized on νt’s strongly
reduces the skewness and uncertainty in the estimation of the number of
spawners. The grey boxplots of Fig. 9.4 clearly point out that the most
precise inferences are obtained under the hierarchical model, especially
for the years with sparse CMR data, i.e., low number of marked released
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FIGURE 9.5: Marginal posterior distribution of the number of spawn-
ers ν2000 obtained under two model configurations, the model in which
years are treated independently (thin line) and the hierarchical model
(bold line).

or, more importantly, low number of recaptures of previously marked fish
yield (e.g., years 1987, 1990, 1994 and 2000). For this latter year, the
upper bounds of the 95% Bayesian credibility intervals obtained with
the model assuming independence between years appears unrealistically
high given the size of the Oir River and the available knowledge on the
biology and ecology of Atlantic salmon as exemplified for year 2000 in
Fig. 9.5.

A straightforward result of the hierarchical model are the pos-
terior predictive distributions of the trapping or recapture efficien-
cies and of the number of returns , denoted [π1,new|data1984:2000] and
[π2,new|data1984:2000], and [νnew|data1984:2000], respectively. The poste-
rior predictive of the trapping efficiency is an informative distribution
with a mean value 0.124 and 95% of its density in the range [0.016, 0.567]
(Fig. 9.6). The posterior predictive of the returns has a mean value
around 230 fish and 95% of its density in the range [40, 610] (Fig. 9.6).
Thus, the data of all years combined allow discarding a priori the pos-
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FIGURE 9.6: Posterior predictive distribution of of a) the trapping
efficiency [π1,new|data1984:2000], and b) adult returns [νnew|data1984:2000].

sibility of very high trapping efficiency (i.e., greater than 0.5) or high
spawner population size (i.e., greater than a thousand) in any additional
year.

In addition, the posterior inferences derived under the hierarchical
model are rather insensitive to changing priors on µa,b, whilst the model
assuming independence is not, especially for the spawner stock of the
sparse data years ν1987, ν1990, and ν1994 (results not shown). In-depth
sensitivity analyses and another observation model for the recaptures
can be found in Rivot and Prévost [255].

9.3 Hierarchical stock-recruitment analysis

This section develops a hierarchical extension of the Ricker Stock
Recruitment model introduced in Chapter 7. The data and models are
based on a published paper by Prévost et al. [239]; but see also [238].

We show that the hierarchical assemblage of several salmon pop-
ulations (the biological analogs of baseball players from Appendix E)
which we model as exchangeable units appears once again as the work-
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ing solution to transfer information and borrow strength from data-rich
to data-poor situations. The main difference with the previous models
is that the data structure gets more sophisticated with Normal latent
vectors (instead of Beta and Negative Binomial ones as in the previ-
ous section), and that the probabilistic structures have to be designed
conditionally on some available covariates, namely the latitude and the
riverine wetted area accessible to salmon, following Fig. 1.12.

9.3.1 Data

As already explained in Chapter 7, the analysis of stock and recruit-
ment (SR) relationships is the most widely used approach for deriving
Biological Reference Points in fisheries sciences. It is particularly well
suited for anadromous salmonid species for which the recruitment of ju-
veniles in freshwater is more easily measured than the recruitment of
marine species. SR relationships developed in Chapter 7 are critical for
setting reference points for the management of salmon populations, such
as the spawning target S∗, a biological reference point for the number
of spawners which are necessary to guarantee an optimal sustainable
exploitation, or the maximum sustainable exploitation rate h∗.

River Country Latitude
(◦N)

Riverine wetted
area accessible
to salmon (m2)

Number of SR
observations
(years)

Nivelle France 43 320995 12
Oir France 48.5 48000 14
Frome England 50.5 876420 12
Dee England 53 6170000 9
Burrishoole Ireland 54 155000 12
Lune England 54.5 4230000 7
Bush N. Ireland 55 845500 13
Mourne N. Ireland 55 10360560 13
Faughan N. Ireland 55 882380 11
Girnock Burn Scotland 57 58764 12
North Esk Scotland 57 2100000 6
Laerdalselva Norway 61 704000 8
Ellidaar Iceland 64 199711 10

TABLE 9.2: Location, size and SR time series length of the 13 mon-
itored Atlantic salmon index rivers (from [239]; see also map in Fig.
9.7).

There are several hundreds of salmon stocks in the northeast Atlantic
area, each having its own characteristics with regard to the size and
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FIGURE 9.7: Location of the 13 index rivers with available stock-
recruitment datasets for A. salmon (from [239]).

productivity of the salmon populations. But resources to collect SR data
are limited and suitable SR series (both in terms of length and reliability
of observations) such as the ones in Table 9.2 (see also map in Fig. 9.7)
are only available for a handful of monitored rivers spread throughout the
European area of distribution of the species. These so-called index rivers
are a representative sample from the salmon rivers located in western
Europe and under the influence of the Gulf Stream. This sample covers
a broad area including Spain, France, UK, Ireland, Norway, the western
coast of Sweden and the southwestern coast of Iceland (Fig. 9.7). The
collection and pre-processing procedures used to obtain the data ready
for SR analysis presented in Table 9.2 and Fig. 9.8 are described in detail
in [77] or [239].

Here, hierarchical modeling will be used to address two questions:

• How is the SR information transferred from the monitored data-
rich rivers to set Biological Reference Points for other sparse-data
salmon rivers, while accounting for the major sources of uncer-
tainty?

• How can the joint analysis of the SR relationship for the 13 in-
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dex rivers be used to forecast biological reference points for a new
river without any SR data but for which relevant covariates are
available?

9.3.2 Model assuming independence (and no covariate)

Latitude and riverine wetted surface area accessible to salmon are rel-
atively easily obtained from map based measurements. These variables
given in Table 9.2 are candidate covariates for explaining variations in
SR parameters among rivers. Because the eggs represent the end product
of a generation and the starting point of the next, both stock and re-
cruitment are expressed in terms of eggs for each of the 13 rivers. When
standardized by riverine wetted surface area accessible to salmon, they
provide meaningful measurements expressed in eggs/m2 with regards to
Atlantic salmon ecology (mainly territorial behavior and competition for
resources spatially limited at both juvenile and adult stages).

9.3.2.1 Likelihood

Let us denote k = 1, ..., 13 the indices for the 13 rivers as ordered
in Table 9.2. Within a river k, the recruitment process is modeled by
means of a Ricker function with independent logNormal process errors
such as in Eq. (7.4). We use the reformulation with management param-
eters (S∗, h∗ = R∗−S∗

R∗ ) defined by Eq. (7.7) as in [274]. For river i, one
relates the recruitment Rk,t of the cohort born in year t to the associated
spawning stock Sk,t:

log(Rk,t) = h∗k + log(
Sk,t

1− h∗k
)− h∗k

S∗k
Sk,t + εk,t

εk,t
iid∼ Normal(0, σ2

k)

(9.11)

where σk is the standard deviation of the Normal distribution of
log(Rk,t), S

∗
k and h∗k are respectively the stock which are necessary to

guarantee an optimal sustainable exploitation and the associated opti-
mal exploitation rate for the river k.

9.3.2.2 Prior

The informative priors of Chapter 7 defined in Table 7.3 encoded
the available knowledge about the productivity of the Margaree River
Salmon population. In the present situation, much fewer is known about
h∗ and S∗ apart that 200 eggs/m2 is definitively an upper limit for
salmon egg density in any river. Therefore we adopt the following diffuse
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FIGURE 9.8: The Atlantic salmon SR series on the 13 index rivers
and fitted SR relationships. S (x -axis) and R (y-axis) are the stock and
recruitment variables after standardization for river size expressed in
eggs per m2 of riverine wetted area accessible to salmon. The SR Ricker
curves are graphed for two model configurations, the model assuming
independence between rivers (thin line) and the hierarchical model (bold
line). SR curves are graphed with parameters (S∗, h∗) set at the median
of their marginal posterior distributions.
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priors, independently for each river k:{
h∗k ∼ Beta(1, 1)

S∗k ∼ Uniforn(0, 200)
(9.12)

A more refined elicitation of S∗ would specify the expectation to be
about µS∗ = 40 eggs per m2 with a standard deviation of the same order
(σS∗ = 40 and CVS∗ = σS∗/µS∗ = 1), thus leading to a Normal prior
distribution with mean µS∗ = 40 and variance σ2

S∗ = 1600. Equivalently
but taking into account the positiveness of S∗, one may prefer a Gamma
pdf with shape parameter a and scale parameter b such that µS∗ = a

b ,
CVS∗ = 1√

a
and constrained to the range ]0, 200] :

µS∗ = 40 eggs/m2; CVS∗ = 1

a =
1

CV 2
S∗

; b =
1

µS∗ × CV 2
S∗

S∗k ∼ Gamma(a, b)1S∗k<200

(9.13)

The full prior structure is completely specified by adding a prior on
the variance of the environmental noise σ2

k for each river k. We assume
σ2
k is constant across all the rivers in the study, and a Gamma prior

distribution was assigned on the precision:{
∀k, σk = σ

σ−2 ∼ Gamma(p, q)
(9.14)

The Gamma distribution Gamma(p, q) is commonly chosen for the pre-
cision σ−2. Since information conveyed in all the datasets will be used
to make posterior inference about σ (instead of possibly short series if
we had kept different σk for each location), we can here afford to use
diffuse prior by letting p and q being very small.

9.3.2.3 Posterior inferences on the model assuming indepen-
dence between rivers

Bayesian inference of the monitored rivers SR series was first per-
formed on a river by river basis according to likelihood (Eq. (9.11)) and
priors (Eqs. (9.12)-(9.14)). The fitted SR relationships drawn for each
river with the point estimates of parameters (set to their posterior me-
dian) reported in Fig. 9.8 (thin line) show a large variety of shapes.

The marginal distributions of parameters S∗ and h∗ are reported in
Figs. 9.9 and 9.10 (light gray). All distributions exhibit quite heavy tails,
but depending on the river, the number of observations, and on the con-
trast between the S values in the observation sample, uncertainty range
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FIGURE 9.9: Marginal posterior distribution of log(S∗) (in eggs per
m2) for the 13 index rivers obtained under two model configurations:
the model assuming independence between rivers (light gray) and the
hierarchical model (dark gray).

in the posterior inferences may differ from several orders of magnitude.
The boxplots of the parameters’ posterior pdfs on Figs. 9.9 and 9.10 are
drawn in the same order than in Table 9.2, i.e., by increasing latitude.
They reveal an increasing latitudinal gradient in the S∗k ’s. Although less
evident, the same pattern seems to exist for the exploitation rate h∗k’s.

9.3.3 Hierarchical model with partial exchangeability

Figure 9.11 gives a Directed Acyclic Graph representation of a hierar-
chical structure for the joint modeling of stock-recruitment relationships
for the 13 rivers. The hierarchical structure is designed to improve the
estimation of parameters S∗ and h∗ for data-poor rivers by borrowing
strength from data-rich to data-poor rivers. Second, it is designed to
capture the between-rivers variability of the parameters (S∗, h∗) condi-
tionally on the latitude.

The gradient on Sk with increasing latitude can be incorporated in
the model by writing a log-linear relationship between the expectation of
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FIGURE 9.10: Marginal posterior distribution of h∗ for the 13 index
rivers obtained under two model configurations: the model assuming in-
dependence between rivers (light gray) and the hierarchical model (dark
gray).

S∗k and the latitude of river k denoted xk. As no information is available
on the slope (α) and intercept (β) of the linear regression in the log
scale, they will be given a flat prior, for instance uniform pdfs with large
bounds: 

log(µS∗k ) = α× xk + β

α ∼ Uniform(−5, 5)

β ∼ Uniform(−50, 50)

(9.15)

Given the expected mean µS∗k , parameter S∗k for the river k is drawn
a priori in a Gamma distribution as in Eq. (9.13), but with parameters
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FIGURE 9.11: Directed Acyclic Graph representation of a hierarchical
structure for the joint modeling of stock-recruitment relationships for
the 13 rivers designed to capture the between-rivers variability of the
parameters (S∗, h∗) conditionally on the latitude xk.

ak and bk depending upon the latitude xk:

CVS∗ ∼ Uniform(0, 20)

ak =
1

CV 2
S∗

bk =
1

µS∗k × CV
2
S∗

S∗k ∼ Gamma(ak, bk)1S∗k<200

(9.16)

Because h∗k varies between 0 and 1, the logit(·) transform of h is used
to introduce some covariates (see also Chapter 8). The logit(·) transfor-
mation ((logit(h) = log h

1−h )) will output values ranging from −∞ to∞.
It is therefore convenient to express the gradient with increasing latitude
as a linear regression on µh∗ in the logit scale. Given the expected mean,
a specific river contribution is modeled as a Normal distribution with
variance τ2

h∗ that depicts the residual degree of similarity between rivers
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once the latitude gradient is accounted for:
logit(µh∗k) = δ × xk + κ

δ ∼ Uniform(−5, 5)

κ ∼ Uniform(−50, 50)

(9.17)

And given the expected mean in the logit scale, logit(h∗k) for each river
k is drawn in a Normal distribution with expected mean logit(µh∗k) and

precision τ−2
h∗ . A diffuse prior was set on the precision:{

logit(h∗k) ∼ Normal(logit(µh∗k), τ2)

τ−2
h∗ ∼ Gamma(0.001, 0.001)

(9.18)

9.3.4 Results from the hierarchical approach

Salient features of the marginal posterior parameter pdfs represented
in Fig. 9.12 are that the posterior probability P (α < 0|data) is null while
that of δ < 0 is 0.05, which indicates that the covariate latitude offers a
good statistical explanation of positive variations between rivers in both
h∗ and S∗. A more formal model comparison could be set (computing
Bayes factors to test the present model versus the one with α = 0 and
δ = 0) to definitively validate this choice.

Figures 9.9 and 9.10 give boxplot representations of what is known
for the Biological Reference Points given data and the hierarchical model.
The posterior distributions of S∗ and h∗ for the monitored 13 rivers
reveal:

• Considerable within-river uncertainty in some cases despite SR
data being available (e.g., the Lune R. and the Laerdalselva R.);

• Significant variations among rivers, even within a relatively nar-
row latitudinal range (e.g., the Bush R., the Mourne R. and the
Faughan R., all located in Northern Ireland);

• An increasing trend with latitude.

h∗ is often poorly estimated (Fig. 9.10) and the increasing latitudi-
nal gradient is less evident that for S∗. However, hierarchical modeling
allows to improve data-poor rivers’ inference as seen when comparing
the inferences of the hierarchical model with those obtained under the
model with independent rivers (Figs. 9.9 and 9.10). The reduction in
posterior uncertainty is particularly visible for rivers with very poor SR
data, such as the Laerdalselva River (with only 8 observations). Thanks
to the transfer of information through the hierarchical structure, a more
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FIGURE 9.12: Marginal posterior probability shapes of the parameters
α, β, δ, κ, σ and τ from the hierarchical model.

precise knowledge of the biological reference points is gained with a more
acceptable expected shape of the Ricker relationship (Fig. 9.8). As a con-
sequence, a sensible diagnosis on the past working conditions of the river
with regards to the ecological conservation limits (probable overexploita-
tion) can be re-assessed.

9.3.5 Prediction of S∗ and h∗ given the latitude

The distributions of ultimate interest are the posterior predictive dis-
tributions, which represent our uncertainty/knowledge for sparse-data
rivers without SR observations. The marginal posterior predictive distri-
bution of h∗new and S∗new at various latitudes covering the salmon distri-
bution range in the northeast Atlantic area (46◦, 52◦, 59◦ and 63◦ north)
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have been added to Figs. 9.13 and 9.14. They indicate that when mov-
ing north, salmon stocks can sustain higher exploitation rates h∗, can
produce higher recruitment at MSY (R∗ = S∗

1−h∗ ), but at the same time
should be set at higher conservation limits S∗. However all the posterior
predictive distributions are rather wide, suggesting that there remains
great uncertainty in the spawning stock, the recruitment and the ex-
ploitation rates at MSY for a sparse data river; important residual vari-
ations stem from other explanatory covariates than the riverine wetted
area and the latitude.

FIGURE 9.13: Marginal posterior distributions of log(S∗) for the 13
index rivers obtained under the hierarchical model with latitude as co-
variate (light gray). The posterior pdfs are graphed as a function of the
latitude. The thin line is the regression in Eq. (9.15) with parameters
(α, β) set to their posterior medians. Boxplots in dark gray are the pos-
terior predictive for log(S∗) obtained with latitudes 46◦N, 52◦N, 59◦N
and 63◦N.



218 Introduction to Hierarchical Bayesian Modeling for Ecological Data

FIGURE 9.14: Marginal posterior distributions of h∗ for the 13 index
rivers obtained under the hierarchical model with latitude as covariate
(light gray). The posterior pdfs are graphed as a function of the lati-
tude. The thin line is the regression in Eq. (9.17) with parameters (δ, κ)
set to their posterior medians. Boxplots in dark gray are the posterior
predictive for h∗ obtained with latitudes 46◦N, 52◦N, 59◦N and 63◦N.

9.4 Further Bayesian comments on exchangeability

An infinite sequence Y1, ..., Yn, ... of random variables is said to be
exchangeable if for all n, the joint pdf [Y1, ..., Yn] remains invariant un-
der any permutation of {1, 2, ..n}. If Y1, ..., Yn, ... are independent and
identically distributed, they are exchangeable, but not conversely. La-
tent variables and observables from hierarchical structures with a DAG
such as the one of Fig. 1.13 (or Fig. E.2 for the baseball players’ example
in Appendix E) are exchangeable random variables (see [30]). Recipro-
cally, De Finetti [82] shows that for all exchangeable binary sequences
Y1, ..., Yn, there exists a probability distribution F on [0, 1] such that

[Y1, ..Yn] =

∫ 1

θ=0

θ

n∑
i=1

yn
× (1− θ)

n−
n∑
i=1

yn
: dF (θ)
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When the probability distribution F is diffuse, with pdf [θ] (we can
then use for instance parametric models like the Beta pdf), one recov-
ers the standard Bayesian predictive equation such as in Eq. (1.26) in
Chapter 1. Hewitt and Savage [134] have generalized de Finetti’s results:
For all exchangeable sequences Z1, ..., Zn, their joint distribution can be
written as a fully exchangeable hierarchical structure such as Eq. (9.2)
(or some generalization if the distribution function of their empirical
measure does not admit a pdf).

The concept of exchangeability stands at the core of statistical mod-
eling, because it provides a marginal interpretation of conditional inde-
pendence. For Bayesians, in addition to uncertainties by ignorance (as
in priors) and by essence (as in likelihood), it simply brings a third type
of uncertainty (by resemblance) to be modeled by probability distribu-
tions: using a biological metaphor, the basic idea is that if phenotypes
Ykj and Ykj′ of unit k look alike, they must share something in common
(Zk), to be drawn from an urn of genotypes.

One should not overlook the very important frequentist literature on
mixed effect models, the frequentist appellation for exchangeable hierar-
chical models. The required statistical basic background for linear mixed
model methodology with some extensions can be found in books such
as [70], [200] and [305]. Fahrmeir and Tutz [101] cover multivariate sta-
tistical approaches. Since Rao and Toutenburg [249] gave a theoretical
treatment of linear models including extensions to GLM (binary data)
and missing data, there is a recent flourishing literature about mixed
effect models from a Bayesian viewpoint ([89]; [281]).
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Chapter 10

Hierarchical Bayesian Modeling II:
Piling up simple layers

Summary

In this chapter, we keep on playing with LEGO bricks to build more
and more complex hierarchical models by piling up several simple lay-
ers. We show that hierarchical structures are fruitful to integrate mul-
tiple and various sources of data so as to learn from characteristics of
ecological systems.

The first example of such cocktail models is inspired from Rivot et al.
[257]. The example shows that Hierarchical Bayesian Modeling (HBM) is
flexible and effective for the treatment of successive removal catch data
introduced in Chapter 4. We perform the estimation of the population
of Atlantic salmon juveniles in the Oir River (France) with ten inventory
sites sampled by one or two removals over the period 1985-2005 given in
Rivot et al. [257]. We show how to develop a general model to assess the
effects of temporal variations and habitat type, on two latent quantities
of interest: the density of fish and the probability of capture. Ecological
expertise and Bayesian model comparison techniques are used to keep
the model credible, parsimonious and realistic. Predictions of the total
number of 0+ juveniles in the entire river reach can be derived, while
accounting for all sources of uncertainty involved in this extrapolation.
Finally, we show how to pile up the HBM built for estimating the 0+
population size with a rough observation model for the number of smolts
(of the same cohort) migrating to the sea in order to estimate a survival
rate between the 0+ juveniles and the smolts stage.

The second example is inspired from Brun et al. [39]. We develop a
three-pass successive removal hierarchical model to estimate A. salmon
juvenile abundance in the Nivelle River, and extend the model by con-
necting a second observation module depicting a rapid sampling tech-
nique as a possible alternative to the costly present successive removal
procedure. We showed how simultaneously integrating these two differ-

221
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ent observation models within a single HBM can contribute to improve
estimates of the total 0+ juvenile abundance.

10.1 Hierarchical model for successive removal data
with habitat and time covariates

10.1.1 Why sampling freshwater juveniles?

The estimation of salmonid juvenile abundance matters both for the
analysis of stock (i.e., egg deposition by spawners) and for recruitment
(i.e., juvenile production of the subsequent generation) relationships.
The transition from the egg to the 0+ juvenile (see Chapters 1 and 11)
is a major bottleneck for Atlantic salmon populations ([99]; [207]). From
a management perspective of salmon stocks, the freshwater juvenile is
the earliest, and the most widely used, but often the sole, development
stage which can be monitored prior to, and independently from, fisheries
(see Chapters 7 and 9 for an estimation of biological reference points from
stock-recruitment analysis and Chapter 12 for some insights on salmon
stock management policies).

This chapter falls within the perspective of building a detailed ob-
servation sub-model of a general state-space model for A. Salmon life
cycle. In a state-space life cycle model like the one introduced at the
beginning of this book in Chapter 1 and developed further in Chapter
11, linking successive removal data to parr abundance can be used as an
observation process to update the hidden population renewal process.

Two steps are required to estimate riverine fish population size:

1. Estimate population size (or density) at the sampling site level;

2. Predict the population on the whole river stretch relying on these
sampling sites estimates. But only a small proportion of the wetted
area is generally sampled. As a result, the uncertainty due to the
extrapolation process may represent the most important part of
the overall uncertainty ([130]; [209]).

This chapter revisits the HBM approach of successive removal data
via electrofishing of Rivot et al. [257] to estimate salmon juvenile pop-
ulation size (Fig. 10.1 illustrates an electrofishing campaign of the 0+
juvenile population from the Oir River, Lower Normandy, France). Sim-
ilar modeling approaches can be found in recent papers ([39]; [81]; [316];
[317]). There are conceptual difficulties very specific to the case study:
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FIGURE 10.1: Electrofishing of 0+ A. salmon juveniles in the Oir
River.

1. The available data set may seem large: 7 to 10 sites are sampled
over a series of 20 years (1985 to 2005; year 1990 is missing) with
typically two successive removals by site. Yet, it is a sparse dataset,
as the number of fish caught is often very low with many missing
data in the second pass.

2. Special care must be taken to check that the hierarchical structure
of the proposed models depicts satisfactorily the multiple sources
of variability (e.g., between sites, between years). Variable selection
is needed to make sure that habitat and sector covariates explain
both the probability of capture and the fish density. Model compar-
ison will discard unduly sophisticated models. Posterior checking
will help exploring the dispersion allowed by the various model
structures.

3. Predicting the population size of the entire river reach relies on
extrapolation; the targeted values are blurred by many interfering
sources of uncertainty.

10.1.2 Study site, sampling design and data

The survey covering all the areas colonized by A. Salmon in the Oir
River network, has already been presented in Fig. 4.1 in Chapter 4. With
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Years (i) Habitat type (h)
h=1 h=2

Site (k) Site (k)
1 2 3 4 1 2 3 4 5 6

1985 316 355 666 360 342 - - 286 - 398
1986 316 355 666 360 342 - - 286 - 398

...
2005 340 355 172 - 137 131 111 262 154 -

TABLE 10.1: Surface area (m2) of the sampling sites. Habitat type
1: Rapid/riffle; 2: Run. The symbol − indicates that the site was not
sampled. Note that year 1990 is missing.

regard to the ecology of A. salmon, habitat was classified into three cat-
egories, known as rapids/riffles, runs and pools ([16]). Pools (only 3.5%
of the water surface area) were neglected owing to the evidenced absence
of 0+ salmon in this type of habitat. Rapids/riffles and runs are identi-
fied based on a combination of depth (< 25cm, between 25 and 60cm,
respectively), water velocity (> 40cm·s−1, between 20 and 40cm·s−1, re-
spectively) and bottom substrate (a mixture of sand, gravel, and pebbles
with a higher proportion of coarse material in the rapid/riffles compared
to the runs). Owing to the habitat preferences of A. salmon ([19]), this
classification has been shown to explain a significant part of the spatial
variability of the 0+ juveniles density in French rivers ([15]).

Since 1985, the 0+ juvenile production of the main stream is sur-
veyed every year in autumn over a 12.3-km-long stretch extending from
the trapping facility to an impassable dam (see Fig. 4.1). The data are
collected according to a two-stage sampling scheme:

• 1st stage: Depending upon the year, 7 to 10 sampling sites (in-
ventory sites, also called experimental repetitions in the following)
were selected within the area of interest (Table 10.1). Their lo-
cation and habitat remain the same every year during the study
period, but their surface area may vary between years. Each site
is a section of the river associated with a unique habitat type, i.e.,
rapid/riffle or run. Each sampling unit is identified by three in-
dices (i, h, k) : i = 1, ..., 20 for the year (1985 to 2005; year 1990
is missing); h = 1, 2 for the habitat type (rapid/riffle, run) respec-
tively; k stands for the repetition per stratum (i, h) (the number
of repetitions varies among strata).

• 2nd stage: In each unit (i, h, k), the 0+ salmon population was
sampled by electrofishing with two successive removals. From 1985
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Years (i) Habitat type (h)
h=1 h=2

1 ... 4 1 ... 6
1985 7/0 ... 73/5 25/3 ... 16/0
1986 35/2 ... 22/3 15/- ... 3/-
1987 3/0 ... 20/1 0/0 ... 0/0
1988 20/5 ... 30/2 14/1 ... 0/0
1989 19/1 ... 57/6 11/1 ... 0/0

...
2001 74/27 ... 49/- 15/3 ... -/-
2002 21/8 ... -/- 0/0 ... -/-
2003 31/4 ... 62/12 4/- ... 2/-
2004 24/5 ... 0/0 12/1 ... 0/-
2005 40/9 ... 22/1 6/- ... 5/-

TABLE 10.2: Number of fish captured at the first and second passes
(C1/C2). /−: Second pass not completed. Symbol −/− indicates that
the site was not sampled at all. Habitat type: 1 = rapid/riffle; 2 = run.
Note that year 1990 is missing.

to 2005, the survey was conducted according to a similar operating
protocol (the one described in Section 4.2) and with essentially the
same staff. The 2nd pass was always realized shortly after the first
one. The complete dataset consists of the numbers of fish captured
at the first and the second pass for 190 sampling units (Table 10.2).

There is quite a lot of missing data for the second pass. The sampling
rate (measured as the proportion of the wetted area sampled) in each
stratum (i, h) varies between 2.9% and 12.2% (see Table 10.4).

10.1.3 General model formulation

10.1.3.1 Observation model for successive removals

We stick to the classical assumptions of the successive removal
method ([45]), already detailed in Chapter 4. Keeping the same nota-
tions, we denote, for each unit (i, h, k), C1

i,h,k and C2
i,h,k the catch data

of the first and the second pass, respectively, πi,h,k the probability of
capture, νi,h,k the initial population size. There are only two passes and
the sampling distributions of the catch data are given by the following
Binomial equations:{

C1
i,h,k ∼ Binomial(νi,h,k, πi,h,k)

C2
i,h,k ∼ Binomial(νi,h,k − C1

i,h,k, πi,h,k)
(10.1)
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10.1.3.2 Role of the sampling area on fish number

The population size νi,h,k depends on the expected fish density δi,h,k
(fish per m2) and on the surface area Si,h,k of the sampling sites. As
in Eq. (4.8) and for the same reasons, we assume that νi,h,k is Poisson-
distributed with parameter scaled by the sampling area δi,h,k × Si,h,k:

νi,h,k ∼ Poisson(δi,h,k × Si,h,k) (10.2)

10.1.3.3 A Normal hierarchical structure for the latent vari-
ables δ and π

The density δ and the catchability π are latent variables depending
on the year i, the habitat category h and the sites sharing the same
habitat conditions (repetition k). Because they are convenient to work
with real numbers, log(·) and logit(·) transformations on the density and
catchability respectively were used. A general model formulation would
decompose the various sources of variability for the latent variables by
introducing year and habitat effects. The influence of these covariates
is introduced via additive effects on the expected mean of log(·) and
logit(·) transformations of the density and catchability, respectively:{

E(log(δi,h,k)) = µδ + αδi + βδh
E(logit(πi,h,k)) = µπ + απi + βπh

(10.3)

µδ and µπ are the overall mean of log-density and logit-catchability re-
spectively, αδi and απi are the effects of year i, and βδh and βπh are the
effects of habitat type h.

Two sites sharing the same habitat conditions and recorded the same
year may still differ due to uncontrolled conditions. Because the density
and the catchability are likely to be correlated, a bivariate Normal distri-

bution on

(
log(δi,h,k)
logit(πi,h,k)

)
was used to capture the residual variability

once the systematic effects of years and habitat have been accounted for:(
log(δi,h,k)
logit(πi,h,k)

)
∼ Normal2

((
E(log(δi,h,k))
E(logit(πi,h,k))

)
,Σδπ

)
(10.4)

with a variance-covariance matrix Σδπ:

Σδπ =

(
σ2
δ ρδπσδσπ

ρδπσδσπ σ2
π

)
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10.1.4 From a general mathematical formulation to a
model that makes ecological sense

10.1.4.1 Correlation between δ and π

No spatial dependence between adjacent sites is introduced in this
model and we interpret the variance-covariance matrix Σδπ as a degree of
similarity between sites (after subtracting the effects of year and habitat
conditions). For instance, σδ = 0 would mean that the density at two
sites sampled the same year with the same habitat would be strictly the
same. The role of a correlation ρδπ 6= 0 is much more questionable. ρδπ >
0 would mean that sites with fish density estimated above the average
are also sites with a better estimated probability of capture, which would
not really match the independence assumptions of the successive removal
method (see Section 4.2 in Chapter 4 ).

10.1.4.2 Effects of year and habitat on the density

There are potentially many factors causing yearly variations in fish
recruitment but they are mostly not identified, uncontrolled and not
monitored ([99]; [159]; [207]). Within a given year, the spatial variabil-
ity of the density is high and correlated with riverine physical habitat
([6]; [19]). Ecological expertise would therefore deny considering models
without year and site effects on fish density.

Linear additive effects of Eq. (10.3) for the logarithm of the density
turn into multiplicative effects when getting back to the original variable.
This should cause no trouble since recruitment of 0+ juveniles is known
to be highly variable between years.

The effect of years are considered as a sample drawn from an infinite
set of years that are exchangeable regarding their effect on density and
catchability. Thus, the αδi ’s are modeled as random effects, drawn from
a common distribution. A Normal pdf with mean= 0 and variance σ2

αδ
is the generic choice for representing the occurrences of these 20 latent
variables (one vector for each year):

αδi ∼ Normal(0, σ2
αδ

) (10.5)

In contrast with years, the habitat types are two mutually exclu-
sive categories and the βδh ’s are modeled as fixed effects. In French
rivers, the 0+ juveniles salmon densities in autumn are notably higher
in riffles/rapids compared to runs ([15]; [17]; [97]). The βδ(h)’s must a
priori keep to the constraint βδ1 > βδ1 . To meet this requirement, βδ1
can be drawn from a half-positive Normal prior with large variance, say
V = 100, and a sum-to-zero constraint is imposed to avoid confusion
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with the overall mean µδ :{
βδ1 ∼ Normal(0, V = 100)I(0,+∞)

βδ2 = − βδ1
(10.6)

10.1.4.3 Model comparison for testing the effects of year and
habitat on the probability of capture

The probability of capture πi,h,k can also vary among units. In
stream-dwelling salmonids, many influential factors have been identified
(e.g., river width, depth, water velocity, temperature, water conductiv-
ity, fish size, habitat complexity), but the results are not fully consistent
across studies ([229]; [264]; [282]).

Sticking back to the terms of the general structure in Eqs. (10.3) and
(10.4), we do not want to consider σπ = 0. Yet, it is not clear whether the
year or the habitat type would a priori cause systematic variations of
the probability of capture. Consequently, four models denoted M0, M1,
M2, and M3 can be designed as indicated in Table 10.5. They can be
compared according to Bayes Factors or Deviance Information Criteria
(see Appendix B).

All models have year (random) and habitat (fixed) effects on the
density. The simplest model M0 is called the “reference model” and has
no year and habitat effect on the probability of capture. M1 considers
year effect on the probability of capture, but no habitat effect. The year
effect απi ’s are also modeled as random effect:

απi ∼ Normal(0, σ2
απ ) (10.7)

M2 considers habitat effect on the probability of capture but no year
effect. The βπh ’s are modeled as fixed effects. But conversely to habitat
effect on the density in Eq. (10.6), no order would be introduced a priori
(the prior on βπ1

is not restricted to positive values):{
βπ1 ∼ Normal(0, V = 100)

βπ2 = − βπ1

(10.8)

All models are nested in the full model M3 that considers both year
effects (as in Eq. (10.7)) and habitat effects (as in Eq. (10.8)) on the
probability of capture.

10.1.5 Directed Acyclic Graph and prior specification
on hyper-parameters

Figure 10.2 provides a Directed Acyclic Graph representation of the
baseline model M0 with the conventions of Chapter 1. All the free pa-
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FIGURE 10.2: Directed Acyclic Graph of the baseline model M0 (year
and habitat effects on the density only); shaded rectangles: known con-
stant; shaded ellipse: observed probabilistic nodes; white ellipse: nonob-
served probabilistic nodes; arrow: conditional dependencies between
nodes; solid arrow: probabilistic dependency; broken arrow: logical de-
pendency; frame: repetition of structure over units.

rameters of the model, i.e., those not conditioned by any quantity, are
assigned weakly informative and independent prior pdfs (Table 10.3). In
agreement with Gelman’s statement ([116]), we follow the approach of
Bernardo ([29]) and consider so-called noninformative priors as “refer-
ence priors” to be used as a standard of comparison or starting point
in place of the proper, informative prior distributions that would be
appropriate for a full Bayesian analysis.

The first idea for setting a prior on the three parameters σδ, σπ and
ρδπ would be to independently pick a Uniform(−1, 1) for ρδπ and vague
Gamma distributions for the precisions σ−2

δ and σ−2
π . The Wishart distri-

bution, a multivariate generalization of the Gamma distribution, could
also be considered as a prior pdf for the 2 × 2 precision matrix Σ−1

δπ .
Advanced mathematical properties justify the classical recourse to this
sophisticated prior ([140], page 257; [164], page 373). It is the conjugate
prior for the inverse of a variance-covariance matrix when working with
a multivariate Normal likelihood. µδ and µπ are the mean effects for the



230 Introduction to Hierarchical Bayesian Modeling for Ecological Data

Parameter Prior
µδ ∼ Normal(E = 0, V = 100)
µπ ∼ Normal(E = 0, V = 100)
σαδ ∼ Uniform(0, 10)
σαπ ∼ Uniform(0, 10)

Σ−1
δπ ∼ Wishart

(
Ω =

(
10 0
0 10

)
, p = 2

)

TABLE 10.3: Prior distributions of parameters. Standard deviation pa-
rameters for random effects σαδ and σαπ are assigned Uniform prior on a
sufficiently large range, as recommended by Gelman [116] for hierarchical
models.

log-density and the logit-catchability, respectively. As nothing is known
about these parameters, it is common practice to give each of them a
diffuse Normal prior with large variance and assume a priori indepen-
dence between µδ and µπ. The standard deviation for the random effects
of years on the densities and catchability were a priori picked in Uniform
distributions.

10.1.6 Extrapolation to the whole river stretch

Years Hab. type
1 2 1 2 1 2 1 2 1 2
Ssi,h S̄si,h Sei,h nei,h S̄ei,h

1986 1697 1026 424 342 12181 26078 29 76 420 343
...

2005 1031 860 258 143 12847 26244 50 183 257 143

TABLE 10.4: Sampled and not sampled (extrapolation) surface area
(m2) by habitat type. Ssi,h : total sampled area in year i and habitat
type h. S̄si,h : mean area of sampling sites. Sei,h : total extrapolation area.
nei,h : number of sites for the extrapolation (see text). S̄ei,h : mean area of
the extrapolation sites. Habitat type: 1 = rapids/riffles; 2 = runs. Total
surface area (m2) of the river by habitat type: Type 1: 13878; type 2:
27104.

The ultimate goal of the study is to assess the total 0+ juvenile
population in the surveyed section of the Oir River (Figure 4.1 in Chapter
4) for each year i, denoted νi. It is the sum of the population size νsi
estimated on the sampling sites with the population size νei predicted
on the non-sampled area, where νsi and νei are calculated as a sum over
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the habitat types:

νi =
2∑

h=1

νsi,h +
2∑

h=1

νei,h (10.9)

The population sizes νei,h have to be extrapolated for the (i, h) strata.

It can definitively not be computed simply as νei,h = νsi,h×
Ssi,h
Sei,h

since the

between sampling unit variability σδ is of the same order of magnitude
of the mean site effect µδ (see Table 10.6 in the Results section) and
thus the many unidentified factors in addition to the habitat and year
cannot be neglected at all!

To mimic the spatial variability of the original experiment, we assume
that the nonsampled surface area Sei,h (Table 10.4) is divided into nei,h
of sites of equal surface area S̄ei,h , as close as possible to the mean surface
of the sampled sites in the habitat h during year i and consider virtual
repetitions k′ = 1, ..., nei,h for the nonsampled section. Two sources of
uncertainty are attached to the random variable νi:

1. One source of uncertainty is the partial knowledge of the parame-
ters, which is encoded in the posterior distribution of the unknowns
of the model of interest for fish density, i.e., (σδ, µδ, αδi , βδh , νsi,h);

2. Another part of uncertainty arises from the fact that we have no
data to update the nonsampled units and we must take into ac-
count the between sampling unit variability: for each of the virtual
repetitions k′ = 1, ..., nei,h , we first draw the density δ′i,h,k in its
posterior predictive:{

µδ′i,h,k = µδ + αδi + βδh

log(δ′i,h,k) ∼ Normal(µδ′i,h,k , σ
2
δ )

(10.10)

and finally generate a Poisson number of fish:

ν′ei,h,k ∼ Poisson(S̄ei,h × δ′i,h,k) (10.11)

The latter source of uncertainty must not be forgotten in the ex-
trapolation term νei =

∑
h,k′

νei,h,k′ ). It depends on the sampling rate and

on the spatial variability σδ of the density. If the sampling rate is low
and the density is highly variable, it can represent the greatest source of
uncertainty in the estimation of νi.

10.1.7 Linking the 0+ population size to the smolts run

The estimates of the total 0+ juveniles population size in the Oir
River obtained from the procedure defined above in Section 10.1.6 can
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FIGURE 10.3: Directed Acyclic graph of the model combining the two
blocks. The first block is the model built to estimate the 0+ density and
to extrapolate the total 0+ population size νi. The second block is de-
signed to estimate the 0+→ smolts survival rated ηi. The cut(·) function
between the two blocks allows the information for flowing downward to
estimate the ηi’s, but information conveyed by the smolts estimates ψi
is prevented from flowing upward model structure to update the number
of 0+ juveniles.

be compared with those of the smolts production of the corresponding
cohorts. Linking the 0+ number with the smolts number of the corre-
sponding cohort would be a first step toward building a population dy-
namic model as it would enable us to estimate the 0+ to smolts survival
rate for each cohort for which data are available. As a first approach
to estimate the 0+ → smolts survival rate, one could simply stick to
the ratio of points estimates of the number of 0+ and smolts. How-
ever, we would then neglect the uncertainty attached to the estimates
of the number of 0+ juveniles (see the results of this chapter in Section
10.1.12) and smolts (see Section 4.1 in Chapter 4 for a description of the
capture-mark-recapture model built to infer the smolts run).

To achieve such a transfer of information and estimate the survival
rate within a full Bayesian scheme, one has to devise an additional layer
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in the hierarchical structure described in Fig. 10.2 to link the juvenile
population size νi at year i to the corresponding smolts run, denoted
ψi in the following. The trick is to consider the whole hierarchical elec-
trofishing model detailed in Fig. 10.2 which provides a prior for the
population size νi before it is linked to the smolts run ψi, and then to
propose a conditional model for the number of smolts conditioned by νi.
Figure 10.3 presents a simplified DAG for such a model.

Let us denote ηi the survival rate from 0+ juveniles to smolts for
the cohort i. The ηi’s could be taken a priori from a Beta distribution.
From the capture-mark-recapture model built in Chapter 4, it is possible
to obtain a posterior distribution of the number of smolts ψi for each
cohort i. As a realistic synthesis of the results, one could consider that the
posterior distribution of the ψi’s are log-Normally distributed with mean
indicated in Fig. 10.9 and an average coefficient of variation CVψ = 0.1
(supposed constant for all cohorts i). Hence, conditionally upon ηi and
νi, a simple probabilistic model for the survival including observation
error on the total number of smolts (which magnitude is scaled by CVψ)
would be:

log(ψi) ∼ Normal(ηi × νi −
1

2
σ2
ψ, σ

2
ψ) (10.12)

with σ2
ψ = log(CV 2

ψ + 1). 1
2σ

2
ψ is a correction factor ensuring that the

expected mean of ψi is ηi × νi.
To complete this additional block added to the full model, an ex-

changeable hierarchical prior structure is set up on the ηi’s to capture
the between years variability of the survival rate. Instead of considering
the ηi’s as a priori independently sampled from conditional Beta dis-
tribution with parameters common to all years (as detailed in Section
9.2 of Chapter 9), the logit-transform of the ηi’s are a priori drawn in
a Normal distribution with mean and variance parameters µη and ση
shared between years.

logit(ηi) ∼ Normal(µη, σ
2
η) (10.13)

The ηi’s are then calculated by the inverse transformation logit−1(·). µη
and ση are a priori drawn in a Normal(0, 100) and Uniform(0, 10) prior
distribution, respectively.

10.1.8 Bayesian computations

10.1.8.1 Missing data

Some of the C2
i,h,k catch data are missing. The missing data mecha-

nism can be realistically assumed to be ignorable, in the sense defined
by Gelman [117]. The Missing At Random conditions can be checked:
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• The missing process parameter priors must be independent from
those ruling the observation mechanism,

• The probability that a data is missing should not depend on the
value of the missing data to be observed.

When missing at random, the treatment of missing data in the
Bayesian setting is straightforward and can be done by data augmenta-
tion techniques (see Gelman [117] for more details and various examples
about the Bayesian treatment of missing data and Rivot et al. [257] for
a discussion in the case of electrofishing data). They are then considered
as any other unknown quantity of a model. Posterior inference about any
set of unknowns of interest is obtained by integrating over the posterior
pdf of the missing data. Such an integration is painless when MCMC
sampling methods are used to derive the posterior inferences.

10.1.8.2 Controlling the flow of information in the DAG

In the full model defined in Fig. 10.3, we do not wish that the es-
timates of the smolt numbers contribute to the estimation of unknown
variables defined in the first block (the one defined in Fig. 10.2). We
rather want to use the first block of the model to form a prior distri-
bution for the number of 0+ juveniles, and then in the second block
to combine this prior information with estimates of the smolts run to
estimate the 0+ → Smolts survival rate, but we do not want any in-
formation feedback from the second block to the first one. To achieve
such a unidirectional flow of information, we use the cut(·) function of
OpenBUGS R© that forms a kind of one-way pipe in the model. Instead
of Eq. (10.12), we rather write

log(ψi) ∼ Normal(ηi × cut(νi)−
1

2
σ2
ψ, σ

2
ψ) (10.14)

In Eq. (10.14) that uses cut(νi) instead of νi, information is allowed
to flow downward through the cut to estimate the ηi’s, but information
conveyed by Eq. (10.14) is prevented from flowing upward model struc-
ture to update the number of 0+ juveniles (see the OpenBUGS manual
for more details).

10.1.8.3 MCMC sampling

As in the previous chapters, all the posterior inferences are performed
by means of the OpenBUGS software. Convergence of the MCMC chains
is checked via the Gelman-Rubin (GR) diagnostics as implemented by
OpenBUGS. We used three independent chains, and the first 10,000 it-
erations are discarded as an initial burn-in period. Then, 100,000 further
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iterations are performed. Inferences are based on a 30,000 MCMC sam-
ple obtained from pooling the three chains after thinning by a factor of
10 to reduce autocorrelation in the final sample.

10.1.9 Results of the comparison between M0,...,M3

Based on the guidelines proposed by Kass and Raftery [157], both
models M2 and M3 are clearly discarded by the BF (and also by the
DIC , see Spiegelhalter et al. [283] and Appendix B), while the more
parsimonious models M0 and M1 appear as good candidates (see Table
10.5).

In what follows, we focus on the baseline model M0, the most parsi-
monious and most credible one. When necessary, the robustness of our
findings can be checked against the results provided by model M1 as a
possible alternative.

Models Effect on the Effect on the prob. DIC BFM0vsMi

density of capture (log scale)
Year Habitat Year Habitat

M0 + + - - 924 0
M1 + + + - 919 1.2
M2 + + - + 982 3.7
M3 + + + + 972 5.6

TABLE 10.5: Alternative competing models differing by the way year
and habitat effects are introduced in the probability of capture, and
criteria for model selection. Values are computed with the prior configu-
ration described in the Material and Methods section; “+”: The effect of
the corresponding covariate is introduced; “-”: No effect is introduced;
DIC : Deviance Information Criterion. BF : Bayes Factors. DIC and BF
were calculated as explained in Appendix B.

10.1.10 Estimation with model M0

The estimation of the overall mean density in the log scale (µd) is
fairly precise (Table 10.6). As shown in Fig. 10.6, the posterior distri-
bution of the correlation between the density and the probability does
not indicate a strong negative or positive correlation between π and δ.
Results are then compatible with the common sense that δ and π do not
vary with a strong systematic positive or negative correlation.

The posterior pdfs of the αδi ’s (Fig. 10.4) point out the high between
years variability of the 0+ salmon density without any particular trend.
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FIGURE 10.4: Box and whisker plots of a size-30,000 MCMC sample
from the marginal posterior pdfs of the αδi ’s in model M0 (year and
habitat effect on the density only).

Year 1998 (see data in Table 10.2 and estimates of αδ1998
in Fig. 10.4)

has been noticeably poor. When getting back to the 1998 data, the total
number of captures for the ten locations at the first pass were only six
individuals and none was caught during the second pass.

The variability between the αδi ’s (the mean of the posterior pdf of σαδ
is 0.97; Table 10.6) seems much higher than the within-year uncertainty
of estimated effects (the standard deviation of the posterior pdf of the
αδi ’s range from 0.42 to 0.58 according to the year). In the natural scale
of the density, the mean of the posterior predictive pdfs of the density
on a rapid/riffle habitat in a given year ranges from 2 fish per 100 m2

(year 1998) to 38 fish per 100 m2 (year 2001).
The effect of the habitat type on the density is very strong (Fig.

10.5). The mean of the posterior pdf of the density ratio in the habitat
types 1 versus 2, calculated as eβδ1 /eβδ2 , is 6.5. Even after accounting for
the effects of the year and the habitat type, the between-site variability
of the density, σδ, remains high when compared to the overall mean µδ
or the between-year standard deviation σαδ (Table 10.6).

The overall mean probability of capture in the logit scale, µπ, is
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FIGURE 10.5: Box and whisker plots of a size-30,000 MCMC sample
from the marginal posterior pdfs of the βδh ’s under model M0 (year and
habitat effect on the density only).

estimated with a good precision (Table 10.6). In the natural scale, the
mean of the posterior predictive pdf of the probability of capture is 0.82,
confirming that a good job is done by the fishing team! The between-
units standard deviation of the probability of capture (σπ) is rather low
compared to the overall mean µπ (Table 10.6). Consistently, even for
units with missing or little informative data, the probability of capture
(not shown) is rather precisely estimated (the πi,h,k’s have dome-shaped
posterior densities close to 0 around 0 and 1) and appear rather high
(the mean of the posterior pdf of the probability of capture ranges from
0.64 to 0.90 according to the sampling unit). The results obtained under
model M1 as summed in Table 10.6 are quite comparable to the ones of
M0.

10.1.11 Posterior checking

Many sources of variability were hypothesized: fish densities vary
according to sampling units and years, so do probabilities of capture.
This creates 2×(190+20) = 420 latent variables for models M3 and M2,
and 400 ones for models M1 and M0. Given the density on a sampling
site, an additional Poisson stochastic behavior entails the number of fish,
still a latent variable. The database contains 190 records for the first pass
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FIGURE 10.6: Marginal posterior distribution of ρδπ under model M0.

and 125 records for the second one. Once Bayesian inference has been
performed, what means do we have to check that the variability observed
in the data has been correctly represented in the deeper layers of the
HBM? Bayesian statisticians have devised various statistical tools.

Replicate the data and work out posterior predictive checks as ad-
vocated as an efficient method to track for inconsistency in hierarchical
models ([74]; [117]). Gelman et al. [117] suggest to use the omnibus χ2-
discrepancy as a summary statistics to measure the consistency between
the model and data. As the experiments are Binomial, we evaluate for
each sampling unit (i, h, k), the following omnibus χ2-discrepancies:

χ2
(1)(C

1, π, ν) =

(
C1 − νπ√
νπ(1− π)

)2

χ2
(2)(C

1, C2, π, ν) =

(
C2 − (ν − C1)π√
(ν − C1)π(1− π)

)2
(10.15)

and sum these quantities on all sampling units (with χ2
(2) = 0 when

the second pass is missing). We did the same work by replacing C1 and
C2 with replicates C1,rep and C2,rep drawn from their predictive distri-
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Mean Sd 2.5% 5% 25% med 75% 95% 97.5%

M0

µδ 0.87 0.25 0.37 0.46 0.71 0.87 1.03 1.27 1.35
σδ 1.09 0.09 0.93 0.95 1.03 1.09 1.15 1.25 1.29
µπ 1.62 0.11 1.41 1.44 1.55 1.62 1.70 1.81 1.85
σπ 0.61 0.13 0.37 0.41 0.52 0.60 0.69 0.84 0.89
σαδ 0.97 0.22 0.63 0.67 0.82 0.95 1.10 1.36 1.47

M1

µδ 0.61 0.12 0.36 0.41 0.53 0.61 0.69 0.81 0.84
σδ 1.09 0.09 0.93 0.95 1.03 1.09 1.15 1.25 1.29
µπ 1.55 0.17 1.26 1.31 1.42 1.52 1.64 1.85 1.93
σπ 0.26 0.14 0.06 0.06 0.12 0.25 0.35 0.51 0.67
σαδ 0.93 0.20 0.60 0.64 0.78 0.90 1.03 1.28 1.38
σαπ 0.79 0.15 0.55 0.58 0.68 0.77 0.87 1.06 1.12
ραδ -0.01 0.3 -0.56 -0.48 -0.23 -0.02 0.19 0.47 0.54

TABLE 10.6: Main statistics of the marginal posterior pdfs of the free
hyperparameters in model M0 (year and habitat effect on the density
only) and M1 (year and habitat effect on the density and year effect on
the probability of capture).

bution conditional to (π, ν). The Bayesian p−values are the probability
that χ2

(1)(C
1,rep, π, ν) > χ2

(1)(C
1, π, ν) and χ2

(2)(C
1,rep, C2,rep, π, ν) >

χ2
(2)(C

1, C2, π, ν). If the model fits appropriately, replicated data should

look similar to observed ones; consequently the χ2-discrepancy calcu-
lated with replicated data should not be too different from the ones cal-
culated with observed data, and the p-values should not be too different
from 0.5. When p is markedly too small or too large, serious warnings are
cast about the consistency between model and data since the amplitudes
of their possible variations do not match.

The two panels of Fig. 10.7 show reasonable behavior of model M0:
p = 0.42 for the χ2

(1)-discrepancy and p = 0.57 for the χ2
(2)-discrepancy.

10.1.12 Estimation of the total number of 0+ juveniles

Results of the extrapolation method are given in Figure 10.8. The
posterior predictive pdfs of the νi’s are almost identical both in terms
of expected values and precision, whether model M0 or M1 is used (not
shown).
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FIGURE 10.7: Posterior predictive checks of (a) omnibus χ2
(2)(C

1, π, ν)

discrepancy (p-value=0.42), and (b) omnibus χ2
(2)(C

1, C2, π, ν) discrep-

ancy (p-value=0.57), both obtained under the model configuration M0

(year and habitat effects on the density only).

The between-year variability of the estimated population size is high
with no particular trend. The best estimates (posterior mean) for νi
ranges from 310 (year 1998) to 6760 (year 2001). The contrast in the
total uncertainty about the yearly population size estimates is large as
well. As expected when using log-Normal distributions for the densities,
the uncertainty about the population size estimates increases with their
means.

As the fish density is extrapolated over 95% of the study area with
high spatial variability of the density, a high price is paid in terms of un-
certainty for the very low sampling rate: the population size νi does not
have good precision (although it may vary from one year to the other).
In addition, Fig. 10.8 helps to visually disentangle the uncertainty stem-
ming from the between-site variability alone (the inner grey area gives
an 80% confidence interval assuming no parameter uncertainty but var-
ious perturbations and Poisson draws for the sites where extrapolation
is needed) and the total predictive uncertainty stemming from all un-
knowns (the larger bounds).

10.1.13 Linking 0+ juveniles to smolts run to estimate
survival rates

The estimates of the 0+ population size (posterior means of the νi’s,
years 1985-2005 obtained from model M0) can be compared with those
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FIGURE 10.8: 80% confidence intervals of the posterior predictive
distribution of the total 0+ juveniles population size obtained under the
model configuration M0 (note that year 1990 is missing). The shaded
inner area points out the 80% confidence intervals assuming only between
sites variability but no parameter uncertainty. The wider uncertainty
area (dotted line) cumulates all sources of uncertainty.

of the corresponding smolt run (from capture-mark-recapture data) pro-
vided by Baglinière et al. [17] (Fig. 10.9). Resulting estimates of the sur-
vival rates from 0+ juveniles to smolts of the corresponding cohort are
shown in Fig. 10.10.

Results are consistent with the previous knowledge about the value of
the 0+-to-smolt survival rates in French rivers. The solid line in Fig. 10.9
shows that a linear model between the two estimates might be consistent
with moderate yearly fluctuations of the 0+-smolt survival rate in the
Oir River (around 50% in average).

Figure 10.9 confirms that the 0+ population size in 1998 was excep-
tionally small because the corresponding smolts run was also very small.
The thick dotted line corresponds to a survival rate of 100%, which casts
special attention on the results associated with the 1994 cohort. Can un-
usual measurement errors explain that the estimated number of smolts
exceeds the estimated number of juveniles? Although some part of the
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FIGURE 10.9: Estimates of the smolts run size by cohort (from
capture-mark-recapture data [17]) plotted against the corresponding 0+
juveniles population size (posterior means of the νi’s, years 1985-2005)
estimates.

80% confidence interval lies below the limits, the corresponding survival
rate is surprisingly assessed very close to 100%.

10.1.14 Discussion

10.1.14.1 Changing prior assumptions?

No sensitivity analysis to the choice of priors is provided in this chap-
ter but the interested reader will find in Rivot et al. [257] that the out-
comes of the model comparison and the posterior estimation are robust
to the choice of the prior configuration.

Nonconstant capture probability between successive pass is likely to
cause underestimation of the population size ([187]; [229]; [254]; [264]),
but also underestimation of the uncertainty and overestimation of spatio-
temporal variability ([187]). In the case study, the probability of capture
is high (on average from 0.68 to 0.9 according to the year; not shown).
In addition, the 0+ salmon juveniles are mainly found in open, shallow
waters in the middle of the river channel and their size range is limited.
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FIGURE 10.10: Box and whisker plots of a size-30,000 MCMC sample
from the marginal posterior pdfs of the survival rate from 0+ juveniles
to smolts by cohort (ηi) under model M0 (year and habitat effect on the
density only).

Such conditions favor robustness against the violation of the constant
catchability hypothesis that we adopted.

Fish densities have been assumed to be log-Normally distributed.
We did not formally test for the relevance of this modeling hypothesis,
which is both convenient and classical. It allows to introduce multiplica-
tive effects of covariates on the density by means of standard linear-
normal modeling of the log-density. Log-Normal distribution as a com-
mon model for fish population abundance has been critically examined
by Halley and Inchausti [126] that plead for the Gamma pdf as the most
valuable alternative, not difficult to implement under the HBM frame-
work (see Brun et al. [39] for a recent example; see also the hierarchical
stock-recruitment model in Section 9.3 of Chapter 9 for an application
using the Gamma distribution within a hierarchical context). No spatial
dependence between densities at adjacent sites was introduced in this
chapter. Further development of spatially structured models is certainly
warranted as it has been demonstrated that juvenile salmon densities
are spatially auto-correlated ([86]). The spatially explicit model coupled
with a GIS developed by Wyatt [317], is an interesting development in
that direction.
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10.1.14.2 Improving the assessment of population size and dy-
namics

The results derived from the database given in Table 10.2 are quite
insightful for the dynamics and the management of Atlantic salmon pop-
ulations. They highlight that the probability of capture varies among
units. Several factors, both abiotic, e.g., river width, depth, water veloc-
ity, temperature, water conductivity, habitat complexity, or biotic (e.g.,
fish size, fish density) could explain this variability ([229]; [248]; [254];
[263]; [264]; [282]). For instance, the location along the river stream (a
categorical variable coded as upstream, middle, downstream) may also
be worth studying. Systematic variations of these variables may translate
into an effect of the year and the habitat type. But our results indicate
that once the influence of these covariates on the density has been taken
into account, there is no significant effect of the habitat type on the
probability of capture (since models M2 and M3 have been discarded).
This can be explained by two facts: (i) In spite of the variability of the
salmon habitat, many physical characteristics of the stream remain rel-
atively homogeneous along the stretch of interest; (ii) the electrofishing
crew is trained to operate in a consistent manner in order to maximize
the capture efficiency whatever the habitat type. The conclusions with
regard to the effect of the year on the probability of capture are less clear-
cut, but as far as prediction of the total population size is concerned,
models M0 and M1 cannot be distinguished. Variations of the hydrolog-
ical conditions between years during the electrofishing campaigns may
also explain part of the observed pattern. The 0+ salmon density fluctu-
ates widely between years as seen in Fig. 10.8. This is a typical result for
juvenile salmonid recruitment which is highly sensitive to environmental
fluctuations ([17]; [99]; [207]). On average, the density of 0+ juveniles on
rapid/riffle habitat is 6.5 times higher than on the run habitat. These fig-
ures are in agreement with previous findings on the habitat preferences of
Atlantic salmon ([6]; [19]) and with the inter-habitat ratios established
for French rivers ([17]). In conclusion, HBM is a flexible step-by-step
methodology: it can accommodate an additional observation submodel
to the model of Chapter 10 devised for the successive removal data. The
Bayesian learning procedure progressively improves the estimation of de-
mographic parameters of the Salmon life cycle and the predictions about
the future of the population. But the HBM framework for the estimation
of 0+ population size can also serve to incorporate information into a
more complex age-structured population dynamic model as illustrated
in Section 11.3 of Chapter 11.
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10.2 Combining different observations processes of
the same unknown quantity

10.2.1 Hierarchical model for electrofishing Salmon ju-
veniles with successive removal technique

In this section, we turn again to the successive removal Salmon data
from the Nivelle, a 40-km river flowing from the Spanish Pyrenées to the
bay of Saint Jean de Luz. Details about the fishing procedure have been
already given in Section 4.2 from Chapter 4, page 83. Similarly to the
previous part of this chapter, we work with a complete dataset involving
3 years (2003-2005) with 11 sites located from the Nivelle River mouth to
impassable upstream dams on the main stream and one of its tributaries.
For each of the 33 experiments the number of fish caught were recorded
for the first (C1), second (C2) and eventually third pass (C3) of the
electrofishing experiment (Fig. 10.11). In addition, Table 10.7 provides
the area S in m2 that was fished each time.

FIGURE 10.11: Electrofishing of 0+ A. salmon juveniles.

It makes sense to share information between experiments about the
probability of capture as well as the densities of juveniles, therefore
leading to a hierarchical version of the successive removal model with-
out changing the core of the model already composed of the equations
(Eqs. (4.7)+(4.8)+(4.10)). The statistical status of the unknown π and
δ changes from parameter to latent variable (and from scalar to vector
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Site S C1 C2 C3

1 608 23 14 3
2 294 35 7 NA
3 565 38 17 NA
4 564 41 28 15
5 229 17 8 NA
...
29 667 73 10 NA
30 606 104 28 NA
31 712 190 43 NA
32 341 16 2 NA
33 632 17 4 NA

TABLE 10.7: Three passes during successive removal electrofishing on
the Nivelle River (11 sites, years 2003-2005; NA = Not Available).

as far as their numerical status is concerned). It is tempting to recycle
part of the previous model prior structure as a hierarchical additional
layer that ties the experiments together (i.e., the intersite variability
submodel). We will assume that for each site i ranging from 1 to 33:{

πi ∼ Beta(a, b)

δi ∼ Gamma(c, d)

As nodes without parents in the DAG (see Fig. 10.12), a, b, c and
d are the parameters of the hierarchical model: they are unknown and
must be assigned prior distributions. How to design such priors?

The prior used in Section 9.2.4 can be recycled for the parameters
(a, b). We used a rather simpler transformation by considering the trans-
formation µa,b = a

a+b and ua,b = (a + b) and by drawing µa,b in a
diffuse prior distribution (we took a Beta(1.5, 1.5)) and log(ua,b) in a
Uniform(0, 10) distribution. Keeping in mind the interpretation of Beta
coefficients (a, b) as prior distributions for Binomial trials (see Chapter
2), a and b are to be interpreted as prior number of success and fail-
ures, respectively. Then, u = (a+ b) is interpreted as a prior sample size
that scales the variance of the Beta prior distribution, and a Uniform
distribution on the log-scale is appropriate for a diffuse prior.

Following the same line of reasoning, a change of variables (mean µδ
and standard deviation σδ) is worth considering for parameters c and d

µδ =
c

d

σδ =

√
c

d
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FIGURE 10.12: A hierarchical model for successive removals.

The mean density of juveniles µδ could be assigned a noninformative
gamma distribution as in Eq. (4.10) or an informative prior. Prior knowl-
edge about juvenile Salmon density suggests a Gamma(1,1): most of the
occurrences of this latter distribution adequately lies between 0.025 and
3.6 individuals per m2. As no definitive idea can be given about the
standard deviation, a quasi-uniform Gamma(1,10−3) can be a reason-
able choice for σδ. {

µδ ∼ Gamma(1, 1)

σδ ∼ Gamma(1, 10−3)

We therefore obtain the hierarchical successive removal model depicted
by the DAG given in Fig. 10.12.

We have to point out that missing data occurring during the third
capture in many sites (see Table 10.7) should bother the analyst. As
in Section 10.1.8.1, it is important to note that the Missing At Ran-
domconditions ([117]) can be realistically assumed. When these condi-
tions are fulfilled, no further modeling of the missing data process is
needed: the missing data can be considered as latent variables whose
posterior distribution is to be directly inferred without changing the
DAG of Fig. 10.12. The posterior results from the Bayesian analysis are
graphed in Fig. 10.13.



248 Introduction to Hierarchical Bayesian Modeling for Ecological Data

FIGURE 10.13: Posterior distributions of parameters for the hierar-
chical successive removal model.

The expected efficiency of capture µπ lies around 0.7 and the π’s are
dispersed among sites approximately like a Beta(7, 3). We get a good
posterior knowledge about the expected density: µδ is about 13 individu-
als per 100m2. In addition, one obtains a rather small standard deviation
σδ of fish densities among sites but, locally, the densities δi ’s are gen-
erally not precisely estimated. Missing data are assigned a predictive
posterior distribution; for instance, had a third pass been achieved on
site 26 where C1 = 142 and C2 = 81 , one would have expected to catch
around 38 fish (with a standard deviation of 10). Figure 10.14 compares
the distribution of fish densities between the hierarchical (grey boxplots)
and the independent models (white boxplots).

Figure 10.14 makes clear the shrinkage effect due to hierarchical mod-
eling: with the hierarchical model, the densities are less dispersed around
the grand mean. At the same time, sharing information between sites
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FIGURE 10.14: Marginal posterior distributions of salmon densities.
White boxplots are for the independent successive removal model, grey
ones for hierarchical model. Black boxplots are obtained when taking
into account the information from abundance indices.

allows for more precise estimations of the local fish densities. In addition,
the hierarchical model borrows strength from neighbors. Consequently
the problem of banana-shaped joint distribution between π and d (al-
ready met in Fig. 4.8, page 94) is reduced when recourse is made to
hierarchical modeling. As an example, when considered solely, site 5 ex-
hibits poor determination of π and δ. Figure 10.15 shows that the data
at site 5 alone are insufficient to opt for a large capture efficiency π as-
sociated a small population size or for a small capture efficiency with a
high local population density δ. Under the hierarchical model though,
sufficient transfer of information between sites helps specify the probable
joint domain where π and δ are to be expected (see Fig. 10.16).

10.2.2 Combining successive removals and a rapid sam-
pling technique

Removal sampling by electric fishing is time and manpower consum-
ing, because it is difficult to store the removed fish and to go thrice in
the field for a large number of sites. To increase the number of sites
sampled with limited budget and diminishing human resources, recourse
can be made to rapid electric fishing assessment techniques. A 5-mn
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FIGURE 10.15: Model consid-
ering independence between sites.
Joint posterior distribution of fish
density and capture efficiency at
site 5.

FIGURE 10.16: Hierarchical
model with sites sharing informa-
tion. Joint posterior distribution of
fish density and capture efficiency
at site 5.

sampling technique requires a single-timed sample for each site under a
lighter protocol but only provides relative abundance measures. To be
used for absolute population abundance estimation, abundance indices
(AI) need to be first calibrated with another method of population size
estimation. Table 10.8 gives such AI’s performed on the same sites with
the successive removal sampling data already depicted in Table 10.7.

Site 1 2 3 4 5 ... 6 7 8 9 10
AI 6 17 12 17 11 ... 21 41 44 NA 5

TABLE 10.8: Abundance indices on the Nivelle River (11 sites, years
2003-2005).

To perform such a calibration in a consistent Bayesian framework, we
need to model jointly successive removals and AI’s. Figure 10.17 shows
that there is a strong link by plotting these observed abundance indices
versus the mean of the posterior pdf of δ that we take as an estimate
of the fish density from each site: one can figure out a linear trend but
with an increasing dispersion. Conversely to the homoscedastic behavior
of the linear regression model, the variance should depend on the mean.
Keeping these clues in mind, we relate the vector of Salmon juveniles’
density δi’s to the vector of abundance indices IAi’s as follows:
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FIGURE 10.17: Posterior means of Salmon juvenile density (under the
HBM model) versus observed Abundance Indices.

• As we are counting events, we hypothesize for each site i, a Poisson
distribution for AI around a mean value µAI :

AIi ∼ Poisson(µAIi)

• In turn, this true mean value µAI will be drawn from a Gamma
distribution.

µAIi ∼ Gamma(αAIi , βAIi)

Such a choice can be hypothesized for two reasons:

1. The convolution of a Poisson by a Gamma distribution makes a
negative Binomial pdf, a common model for overdispersion in a
counting experiment;

2. By setting βAIi = f, αAIi = k×f×δi, one can describe a variance
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FIGURE 10.18: DAG of the hierarchical model for successive removals
including abundance indices as an additional source of information for
the 0+ juveniles density.

increasing (linearly) with the mean since:
E(µAIi) =

αAIi
βAIi

= kδi

V(µAIi) =
αAIi
β2
AIi

=
E(µAIi)

f

The additional parameters k and f must be assigned a prior pdf.
Parameter k is given a flat noninformative gamma prior:

k ∼ Gamma(1, 10−3)

It is convenient to work with φ such that F = φ
1−φ . φ is the probabil-

ity parameter from the Negative Binomial and we naturally opt for a
uniform pdf:

φ ∼ Beta(1, 1)

The complete model with the additional brick from the AI obser-
vation submodel is sketched in Fig. 10.18 (to be compared with Fig.
10.12).
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The statistical Bayesian learning machinery provides informative
posterior distribution for φ and k (see the lower panels of Fig. 10.19):

• φ is far from uniform, its posterior pdf can be approximated by a
Beta(3.81, 2.07)

• k varies close to 140 with a small standard deviation (a good ap-
proximation is a Gamma(235.7, 1.7))

FIGURE 10.19: Posterior distributions of parameters for the full AI
+ successive removal model.

Figure 10.19 provides posterior estimates of the parameters in the
hierarchical model combining successive removals and rapid sampling
techniques. The black boxplots from Fig. 10.14 depict the posterior pdf
of fish density δ when modeling jointly the successive removals and the
AI’s. When compared to the previous model without taking into account
the information conveyed by the abundance index (grey boxplots), we
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see that there is only a small shrinkage effect: although the 50% credible
intervals are generally narrower, i.e., we learn something from the AI
sample but not that markedly. Site 26 bears a noticeable exception that
can be explained by contradictory information brought by successive
removals and by AI. If we were to trust the successive removal model
only, the juvenile density for site 26 should be around 0.3 and, as k is
close to 140, we should expect a value of 140× 0.3 = 42 individuals for
the abundance index, but we actually observed 63 juveniles in the AI
data!

FIGURE 10.20: Predictive posterior distribution of Salmon juvenile
densities as a function of the Abundance Index. The grey (resp. light-
grey) polygon gives a 95% (resp. 50%) credible interval.

10.2.3 Predictive efficiency of the 5-mn standardized
sampling technique

Modeling jointly AI and successive removals allows for the calibra-
tion of the 5-mn standardized sampling technique. Based on posterior
knowledge from the joint calibration, predictive estimates of 0+ juvenile
salmon density can now be obtained from abundance index data alone.
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From consideration of Fig. 10.19, φ and k have already been respectively
approximated by Beta and Gamma independent distributions. Unfortu-
nately µδ and σδ exhibit strong dependence a posteriori but µδ and µδ

σδ
do not. Their posterior can be approximated by Gamma distributions
with coefficients (89, 668) and (60, 104), respectively. These distributions
are used to design a prior for 0+ juvenile salmon density, that one can
update by the observation of various abundance index from the 5-mn
standardized sampling protocol. As a result, Fig. 10.20 shows that the
index of abundance alone allows for differentiation between contrasting
levels of fish density without recourse to the successive removal tech-
nique in the future. Yet fairly imprecise, this rapid sampling technique
also provides the corresponding confidence bounds that match the cloud
made by the posterior means of Salmon juvenile density (under the HBM
model) and the Abundance Indices observed in the dataset.
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Chapter 11

Hierarchical Bayesian Modeling III:
State-space models

Summary

This chapter is devoted to state-space models, i.e., models with dy-
namic state transition in the latent layer of the hierarchical structure.
Conversely to the examples presented in the previous chapters, unknown
quantities of interest (e.g., the number of fish, the biomass of a fish stock)
evolve with time while observables only give a noisy piece of informa-
tion about these latent variables. From a graphical modeling perspective,
state-space modeling consists of adding arrows between variables within
the hidden layer of a DAG so as to create the temporal link between
these variables. To go one step further, state-space modeling consists of
defining two key equations: the process equation with process noise that
captures the stochastic dynamics of the hidden state variables, and the
observation equation that relates the data at hand to the state variables,
which may involve some observation noise. Surprisingly enough, statisti-
cal estimation under the Bayesian setting of (even complex) state-space
models remains easily tractable. The flexibility of Bayesian analysis of
state-space models is exemplified through two examples of growing com-
plexities; both present educational qualities for illustrating the strengths
and limits of the Bayesian analysis of state-space models. The first ex-
ample sketches the dynamics of the biomass of a fish stock under fishing
pressure. The model is used to derive estimates of key management pa-
rameters and to forecast changes in biomass under different management
scenarios. The second example is an aged-structured population model
for A. salmon. The model mimics the salmon life cycle with all its de-
velopment stages, represented through a multidimensional state-space
model.

257
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11.1 Introduction

Modeling the system state dynamics is a critical issue encountered in
many ecological applications such as population dynamics. Identifying
the factors that control the system dynamics and being able to forecast
its future evolution are key issues for the modeler.

In a state-space model, transition equations between state variables
are used to sketch the dynamics of the system, and observation equa-
tions link the state variables to some observables. Such models with
dynamic state transition in the latent layer of the hierarchical structure
are encompassed in the general family of state-space models sometimes
also referred to as hidden Markov models ([40]; [41]; [65]; [75]; [136];
[259]). From a graphical modeling perspective, the sophistication is a
simple matter of adding arrows between variables within a hidden layer
of a DAG to sketch the temporal link between the variables (see Figs.
1.12 and 1.14 in Chapter 1). Surprisingly enough, estimation under the
Bayesian setting of (even complex) state-space models remains easily
tractable.

To go further into details, state-space modeling consists of ascertain-
ing two key equations (or set of equations): the process equation with
parameters θ1 and identically independently distributed process noise
ε(t) that captures the stochastic dynamics of the hidden (not observed)
state variables, Zt, and the observation equation that relates the data
at hand yt to the state variables Zt through an observation function
involving parameters θ2 and eventually some iid observation noise ω(t)
(see also Chapter 1): {

Zt+1 = f(Zt, θ1, ε(t))

yt = g(Zt, θ2, ω(t))
(11.1)

Using the convenient bracket notation of Chapter 1, Eq. (11.1) can
also be written as: {

[Zt+1|Zt, θ1]

[yt|Zt, θ2]
(11.2)

where [Zt+1|Zt, θ1] denotes the conditional pdf of state vector at time
step t + 1 given the state vector at time step t and parameters θ1, and
[yt|Zt, θ2] denotes the conditional distribution of observation yt given
the state vector at time t and parameters θ2.

As shown in Chapter 1 (Eq. (1.28)), once a prior [Z1] is specified
for the state vector at the first time step, the joint prior distribution of
θ1 and Z1:n = (Z1, ..., Zn) can be written as in Eq. (11.3) below, thus
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emphasizing the Markovian property in the state dynamics which defines
the prior structure in the latent layer Z:

[Z1:n, θ1] = [θ1]× [Z1]×
n−1∏
t=1

[Zt+1|Zt, θ1] (11.3)

Conditionally upon states Zt and parameters θ2, observations yt are
mutually independent and the observation equation also factorizes:

[y1:n|Z1:n, θ2] =
n∏
t=1

[Yt = yt|Zt, θ2] (11.4)

Following the general factorization of the joint posterior distribution
for a Bayesian hierarchical model given in Eq. (1.25), the joint distribu-
tion of all state variables and parameters θ = (θ1, θ2) is straightforwardly
obtained:

[Z1:n, θ|Y1:n = y1:n] ∝ [θ]× [Z1]×
n−1∏
t=1

[Zt+1|Zt, θ1]

×
t=n∏
t=1

[Yt = yt|Zt, θ2] (11.5)

11.2 State-space modeling of a Biomass Production
Model

11.2.1 Motivating example: The Namibian hake fishery

Let us consider as a first example the data from the Namibian hake
fishery. Two hake species (Merlucius capensis and Merlucius paradoxus)
are targeted by this fishery. The data analyzed here concern the fishery
operating in zones 1.3 and 1.4 of the International Commission for the
South-East Atlantic Fisheries (ICSEAF) from 1965 to 1988. For further
details about the fishery shown in Fig. 11.1, we refer to the report from
the International Commission for Southeast Atlantic Fisheries ([144]) or
to [136] and [196].

The catch-effort data are presented in Table 11.1. The two targeted
species are pooled in the dataset. The catches concern the total annual
commercial catches of hakes (in thousand tons) realized by large ocean-
going trawlers operating in the ICSEAF zones 1.3 and 1.4. The catches
per unit effort data (CPUEs) are the catches per hours of fishing for a
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FIGURE 11.1: Location of the ICSEAF fishery areas 1.3 and 1.4 in
the Southeast coast of Africa.

specific class of Spanish trawlers. As the CPUEs are standardized, they
are considered here as a reliable index of abundance for the Namibian
hake stock.

We rely on these data to model the dynamics of hake stock biomass
through dynamic Biomass Production Models (BPM) (see also Fig-
ure 1.2, page 10). A dynamic BPM is a voluntarily crude but useful sim-
plification of some harvested fish population dynamics ([137]; [244]) that
only aims at helping fisheries scientists to interpret the data (e.g., catches
and abundance indices in Table 11.1). Analyzing data through BPMs al-
lows to assess how the fishery pressure has impacted the biomass. For
instance, it provides answers to questions such as:

• What is the maximum sustainable yield (CMSY ) and what are the
past and current levels of yield sustainable with regards to the
CMSY ?
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Years Catches CPUE
1964 1.8 NA
1965 93.5 1.78
1966 212.4 1.31
1967 195.0 0.91
1968 382.7 0.96

...
1984 228.7 0.64
1985 212.2 0.66
1986 231.2 0.65
1987 136.9 0.61
1988 212.0 0.63

TABLE 11.1: Catches and abundance indices for the Namibian Hake
fishery in the ICSEAF Divisions 1.3 and 1.4 ([144]). Catches are in thou-
sand tons. Catches per unit effort (CPUE) are in tons per standardized
trawler hours. The data are reproduced after McAllister and Kirkwood
[196].

• How large was the abundance in year 1988 (the last year for the
dataset) with reference to its level when the fishery began?

• Could biomass level increase and yield be improved if more restric-
tive fishing quotas are imposed in the future?

The latter question is particularly important to test the performance
of alternative management scenarios when efforts are being made to
control the level of catches and promote sustainable harvest.

11.2.2 A state-space model for the biomass surplus pro-
duction

The backbone of state-space modeling (SSM) of a BPM is to consider
the time series of abundance indices as noisy observations of an under-
lying hidden process which mimics the dynamics of a fish stock biomass.
Designing a SSM involves four steps:

1. Propose a mathematical model for the biomass dynamics including
fishery removals;

2. Propose a model that sketches the noisy observation process;

3. Link these two components by a conditional structure;

4. Derive inferences using inverse (i.e., Bayesian) reasoning.
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11.2.2.1 Process equation for the underlying dynamics of the
Biomass

The process equation models the underlying dynamics of the
Biomass. The variable of interest is the total biomass in the popula-
tion at each time t, denoted Bt. In BPMs with continuous time, the
instantaneous change in the biomass level is modeled thanks to a dif-
ferential equation which, when no exploitation occurs, can be written
as:

dBt
dt

= h(Bt) (11.6)

where h(Bt) is the production function. It quantifies the balance between
recruitment (arrival of new individuals in the stock biomass), growth
(weight), natural mortality, and eventually emigration-immigration.

Maybe the most classical choice for the production function is the
logistic equation, first proposed as a population model by P. F. Verhulst
in 1938:

h(Bt) = r ×Bt × (1− Bt
K

) (11.7)

For simplifications of Eq. (11.7), the two parameters – the population
intrinsic growth rate r and the carrying capacity K – are generally con-
sidered constant over time. The ecological theory behind such a model is
that the production rate 1

Bt
× dBt

dt will be maximum when the population
stands at a very low level, and will decrease continuously (e.g., because
of intra-specific competition for the resource) when the size of the pop-
ulation increases. As no production occurs when B = K, K stands for
the carrying capacity of the habitat. The dynamic BPM with the logistic
production function is also known as the Schaefer biomass production
model.

The dynamics can be modeled in discrete time, most often on a year-
to-year basis. When fishing occurs, the biomass at the beginning of time
step t + 1, denoted Bt+1, is obtained from Bt through a rather simple
budget equation:

Bt+1 = Bt + h(Bt)− ct (11.8)

where ct is the observed harvest (in weight) between t and t+ 1. When
no catch occurs, it is easy to see that the biomass will stabilize at the
virgin equilibrium level B = K.

A LogNormal random noise term is generally added to capture the
biological variability due to (unpredictable) environmental variations.
Hence, the stochastic version of the deterministic Eq. (11.8) is:

Bt+1 = (Bt + h(Bt)− ct)× eεt+1 (11.9)

with εt+1 a Normally distributed N(0, σp
2) random term standing for the

environmental noise (process error) with variance σp
2 in the log scale.
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In a first approach, catches can be considered as observed without
errors, and entered into the process equation (Eq. (11.9)) as observed
covariates (hence the notation ct with a lowercase letter). But catches
could more realistically be considered as observed with some errors, or
landings statistics can be systematically lower than true catches because
many fish are discarded, landed illegally or the catches are simply mis-
reported (see Hammond and Trenkel [128] for an example of a biomass
surplus production model accounting for censored catches).

Equation 11.9 defines a stochastic Markovian transition which can
alternatively be written as the probability distribution of the state vari-
able Bt+1 conditionally upon the previous state Bt, some parameters
θ1 = (r,K, σp) and the observed catches ct. Following the notation used
in Chapter 1, this Markovian transition will be written as:

[Bt+1|Bt, θ1; ct] (11.10)

nothing more than the general process Eq. (11.2) adapted to the biomass
dynamics example.

To reduce the number of unknowns in the model and ensure statisti-
cal identifiability, one must set a constraint for the initial condition B1.
It is often assumed that the biomass at the beginning of the time series
is a known proportion of the carrying capacity K. In the hake fishery,
because catches were very low before the year 1964, it was assumed that
the stock was not fished at the beginning of the time series. To be con-
sistent with Eq. (11.9), the biomass of the first year was considered as
LogNormally distributed around the carrying capacity K:

B1 = K × eε1 (11.11)

Let t = 1, ..., n denote the time series for which observations are
available (in what follows, we will often use 1:n to denote the indices
of the time series t = 1, ..., n). Conditionally upon the parameters
θ1 = (r,K, σp) (e.g., those involved in the process) and upon the catches
c1:n, the sequence of unknown states B1:n follows a first-order Markov
chain. The chain is initialized by Eq. (11.11). The transition kernel of the
Markov process is defined by the dynamic process Eq. (11.10). Thanks
to the conditional independence property, one can split the whole joint
pdf into the product of single unit time steps. Once a prior distribution
is specified for the parameters θ1 and for the first state B1 (condition-
ally upon θ1, the prior [B1|θ1] is fully defined from Eq. (11.11)), the
process equation can be factorized as Eq. (11.12) which is a specialized
reformulation of the general process Eq. (11.3):

[B1:n, θ1] = [θ1]× [B1|θ1]×
t=n−1∏
t=1

[Bt+1|Bt, θ1; ct] (11.12)
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11.2.2.2 Observation equation to link the data to the hidden
process

The abundance indices it=1:n are often assumed proportional to the
current biomass it = q×Bt, ∀t ∈ {1, ..., n} with a catchability parameter
q, considered constant over time. A common, although simplifying, sup-
plementary assumption is that the relative abundance index of each year
t is related to the unobserved biomass through a stochastic observation
model:

it = q ×Bt × eωt (11.13)

with ωt a Normally distributed N(0, σo
2) random term representing the

uncertainty in observed abundance indices due to measurement and sam-
pling error (observation error). In addition, the ωt are considered as
mutually independent.

The observation Eq. (11.13) links the available data to the underly-
ing dynamics. Following the notation used in Chapter 1, it defines the
probability distribution of any abundance indice it conditionally upon
the biomass Bt and the parameters θ2 = (q, σo):

[it|Bt, θ2] (11.14)

Equation 11.14 also defines the likelihood function, which gives the
probability of the series of observations i1:n conditionally on the actual
states B1:n and on the parameters θ2. Conditionally on state Bt and
parameters θ2, the observations it are mutually independent, and the
likelihood can be factorized as already shown in the general case in
Eq. (11.4):

[i1:n|B1:n, θ2] =
t=n∏
t=1

[it|Bt, θ2] (11.15)

It is not rare that fisheries scientists get more than one series of abun-
dance indices to fit the model. For instance, as an additional source of
information to the catch-per-unit-effort data in Table 11.1, other fishery-
independent abundance indices might be available such as standardized
CPUE from scientific surveys or abundance indices from acoustic scien-
tific surveys. The information provided by additional abundance indices
i′1:n can be easily integrated in the analysis by supplementing the ob-
servation Eq. (11.15) with conditional distributions [i′t|Bt, θ′2] associated
with abundance indices i′1:n (see [195] or [197] for examples of SSM fitted
to several abundance indices).

11.2.3 Deriving inferences and predictions

Combining the prior on the parameters [θ] = [θ1, θ2] with the pro-
cess and the observation Eqs. (11.12) and (11.15) yields the full joint
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distribution of the model. One recognizes the general factorization of a
hierarchical model as explained in Eqs. (1.17) and (1.18):

[Parameters,Process,Observables]

= [Parameters]

× [Process|Parameters]
× [Observables|Process, Parameters]

Applying Bayes’ rule, the full joint posterior distribution of all un-
knowns is decomposed under the previous three terms as follows:

[B1:n, θ|i1:n; c1:n]

∝ [θ]

× [B1]×
t=n−1∏
t=1

[Bt+1|Bt, θ1; ct]

×
t=n∏
t=1

[it|Bt, θ2] (11.16)

The DAG of the model in Eq. (11.16) is given in Fig. 11.2. A sample
of the full joint posterior distribution (Eq. (11.16)) can be easily ob-
tained from MCMC sampling using WinBUGS software. The posterior
distribution can be used to answer the following questions:

• What are the best guesses for the parameters (r,K) and the asso-
ciated uncertainty?

• What are the credible values for the historical trajectory of the
biomass B1:n and what is the level of the Biomass depletion over
the time series Bn

B1
?

• What are the estimates for the management reference points CMSY

and BMSY (directly derived from the parameters (r,K) following
Eq. (1.5)) and their associated uncertainty?

Posterior predictive distributions can also be used to derive predic-
tions of future trajectory of the biomass and catches over a time series
t = n+1, ..., n+k under alternative management scenarios. Simulations
typically aim at comparing different harvest control rules, e.g., different
level of catches cn+1:n+k.
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FIGURE 11.2: Directed acyclic graph of the state-space biomass pro-
duction model.

11.2.4 Application to the dynamics of the Namibian
hake stock

11.2.4.1 Additional hypotheses, priors and computational de-
tails

Back to the application to the Namibian Hake fishery, we now detail
the additional hypotheses and some technical tricks that were made to
fit the model.

To ensure that all parameters can be estimated, an additional hy-
pothesis was formulated: the variance of the process and the observation
errors were set to be equal. Indeed, the magnitude of process and ob-
servation errors σp and σo can hardly be specified a priori. But in the
absence of any prior information on σp and σo, uncertainty in the data
can be all transferred either in the process noise or to the observation
noise, making it difficult to identify both variances precisely if they are
totally set free a priori. Fixing the ratio of variances λ =

σp
σo

is a classi-
cal additional trick used to reduce the number of unknown parameters.
In the Bayesian setting λ would be equipped with a reasonably infor-
mative prior. However, it is worth noting that inferences in SSM are
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seldom sensitive to the value of λ, unless it strongly favors observation
or process error ([162]; [240]; [275]; [276]). Therefore, in the absence of
any particular information on the relative magnitude of process versus
observation error in the case of the Namibian hake fishery, λ = 1 was
used as a default choice.

Fixing the process error variance σ2
p to 0 yields to the so-called ob-

servation error model, whereas fixing the observation error variance σ2
o

to 0 yields to the so-called process error model ([240]; [275]).
As the data look informative, rather diffuse priors were set on the

parameters θ = (r,K, q, σ2) (Table 11.2).

Parameter Prior
r ∼ Uniform(0.01, 3)
K ∼ Uniform(100, 15000)

log(q) ∼ Uniform(−20, 20)
log(σ2) ∼ Uniform(−20, 20)

TABLE 11.2: Prior distributions on parameters of the biomass produc-
tion state-space model applied to the Namibian hake fishery. The unit of
the carrying capacity is in thousand tons. Following Millar [205], diffuse
priors were assigned on q and σ2.

Following Meyer and Millar [203], the dynamic state-space
Eqs. (11.10) and (11.11) were reparameterized using the state variable
Pt = Bt

K . Indeed, the parameter K and the latent state variables Bt are
unknown but are in the same scale, i.e., the scale of the absolute stock
size. The constraint B1 = K× ε1 in Eq. (11.11) shows that conditionally
upon a value of K, the scale of the whole time series of the biomass B1:n

is fully determined. This dynamical structure induces a strong depen-
dency between K and the whole biomass trajectory, which impedes an
efficient exploration of the support of the posterior distribution by the
Gibbs sampler. As shown by [202] and [203], using the new parameteri-
zation Pt = Bt

K drastically improves the efficiency of the Gibbs sampler
and the mixing speed of the MCMC chains.

For all estimations, three MCMC independent chains with dispersed
initialization points were used. For each chain, the first 50,000 iterations
were discarded. After this “burn-in” period, only one in 10 iteration steps
(thinning) was kept to reduce the MCMC sampling autocorrelation. In-
ferences were then derived from a sample of 30,000 iterations obtained
from three chains of 10,000 iterations. All the modeling results have
undergone tests to assess convergence of MCMC chains. It is therefore
assumed that the reported probability density functions are representa-
tive of the underlying stationary distributions, i.e., the posterior pdf.



268 Introduction to Hierarchical Bayesian Modeling for Ecological Data

11.2.4.2 Inferences using the Schaefer-type production func-
tion

The posterior distributions of the key parameters are shown in Fig.
11.3 along with their main statistics in Table 11.3.

FIGURE 11.3: Posterior distributions of the key parameters obtained
using the Schaefer-type production function. The marginal distributions
are shown in the diagonal. Pairwise MCMC plots are shown in the lower
part. The upper part shows the linear correlation between the MCMC
draws.

The annual intrinsic growth rate is about 0.3 (Table 11.3), which is
rather high and indicates that the stock should exhibit a high resilience
to exploitation. The posterior median of CMSY is about 268 (thousand
tons), thus indicating that the stock was exploited above its optimal
sustainable harvest rate during 10 years between 1968 and 1977.

Parameters (K, q) and (r,K) are highly negatively correlated, as
shown by the joint MCMC samples in Fig. 11.3. The negative corre-
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Parameter Mean Sd 2.5% pct. Median 97.5% pct.
r 0.29 0.12 0.066 0.29 0.52
K 4500 2343 2225 3729 11790
q 0.00034 0.00012 0.00012 0.00034 0.00058
σ2 0.0093 0.0032 0.0049 0.0087 0.017

CMSY 266 53 152 268 364
BMSY 2250 1172 1112 1864 5894
FMSY 0.14 0.058 0.033 0.14 0.26

TABLE 11.3: Main statistics of the marginal posterior distributions of
the key parameters obtained using the Schaefer-type production func-
tion.

FIGURE 11.4: Prior and marginal posterior distribution of the Maxi-
mum Sustainable Yield (CMSY ) estimated using the Schaefer-type pro-
duction function.

lation between K and q results from the structure of the observation
Eq. (11.13). As the abundance indices i1:n are known, the data convey
information about the product q × Bt (for the whole biomass trajec-
tory B1:n). As the biomass trajectory B1:n is scaled by parameter K,
the parameters q and K can hardly be identified individually. Had an
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informative prior been available for q or K, better inferences would have
been obtained.

The negative correlation between r and K indicates that the data
alone do not enable to clearly disentangle a very abundant population
(large K) with a rather low growth rate r from one with a lower K but
a higher r. However, the posterior distribution of the CMSY (CMSY is
calculated from the product r ×K) is clearly updated by contrast with
the prior (Fig. 11.4).

FIGURE 11.5: Quality of fit of the model with the Schaefer-type pro-
duction function. The posterior predictive distributions of the abundance
index (boxplot) are to be compared with the observed abundance index
(solid line). No observed abundance index is available for year 1964.

To check whether the model reasonably fits the data, the posterior
predictive of the abundance index for the whole time series (denoted
[̃ı1:n|data]) were plotted together with the observed series of abundance
index (Fig. 11.5). The joint posterior predictive of the abundance index
was computed as:

[̃ı1:n|data] =

∫
θ,B1:n

[̃ı1:n|θ,B1:n]× [θ,B1:n|data]× d(θ,B1:n) (11.17)
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with

[̃ı1:n|θ,B1:n] =
t=n∏
t=1

[ĩt|θ,Bt] (11.18)

and
log(̃ıt)|θ,Bt ∼ Normal(q ×Bt, σ2) (11.19)

As highlighted in Figure 11.5, the fit is pretty good. The fluctuations
of the observed abundance indices over the time series are well captured
by the predicted abundance indices. For the whole time series, the ob-
served abundance indices are almost always contained in the predictive
50% Bayesian credibility intervals.

FIGURE 11.6: Marginal posterior distributions of the Biomass esti-
mated using the Schaefer-type production function. Boxplots in gray
fonts show the posterior predictive of the Biomass assuming a 100,000
tons constant quotas management option during 5 years after the year
1988, whereas boxplots in dark-gray are for quotas of 500,000 tons.

As a very interesting result, the model also provides estimates of the
whole time series of the latent biomasses together with an appreciation of
their uncertainty (Fig. 11.6). As previously shown, the shape of the time
series of abundance indices is well reproduced. In 1964 (first year), the
estimated biomass was about 4 million tons. From this time to the year
1972, the catches increased up to 606, 000 tons in 1972, and remained
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higher than the estimated maximum sustainable yield up to 1977. Con-
sequently, the Biomass decreases by a factor 2 and was estimated as less
than 2 million tons in 1978. By this time, the catches were reduced by
more restrictive management rules and the biomass started to rebuild.

As an additional result, two illustrative scenarios were run which
enable to forecast the evolution of the biomass during 5 years (after
1988, the last year for which data are available) under two contrasted
harvest rules (Fig. 11.6). The first one mimics constant catches of 100
thousand tons during 5 years, and the second one sketches constant
catches of 500,000 tons. Forecasting indicate that harvesting 100,000
tons during 5 years will allow the biomass to increase again and lead
to a very low risk of being at a biomass level less than BMSY in 1993
([B1993 < BMSY |Scenario 1] = 12%), whereas harvesting 500,000 tons
(scenario 2) strongly affects the stock renewal and lead to a very high
risk of serious depletion ([B1993 < BMSY |Scenario 2] = 94%).

11.2.4.3 Comparing the Schaefer-type versus Fox-type pro-
duction function

FIGURE 11.7: Marginal posterior distributions of the Biomass esti-
mated using the Schaefer-type production function (gray font) and us-
ing the Fox-type production function (dark gray). The last 5 years are
obtained assuming a 100, 000 tons constant quotas management option.
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Consider now an alternative form for the production h(Bt), the so-
called Fox model ([137]; [244]):

h(Bt) = r ×Bt × (1− log(Bt)

log(K)
) (11.20)

and its associated fisheries management reference points:
CMSY =

r ×K
e1 × log(K)

BMSY =
K

e1

(11.21)

Figure 11.7 shows how the model behaves when the Fox-type produc-
tion function is used instead of the Schaefer-type. The overall shape of
the estimated biomass trajectory only differs slightly; the biomass esti-
mated with the Fox production function being systematically lower than
with the Schaefer one.

FIGURE 11.8: Marginal posterior distribution of the Maximum Sus-
tainable Yield (CMSY ) estimated using the Schaefer-type (solid line) and
the Fox-type (dotted line) production function.
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As shown in Figure 11.8, both production functions lead to minor
differences in the marginal posterior distributions of the maximum sus-
tainable yield.

It is worth noting that both the Schaefer and the Fox production
functions are particular cases of a more general equation with 3 param-
eters known as the Pella-Tomlinson production function ([244]):

h(Bt) = r ×Bt × (1− Bt
K

m−1

) (11.22)

Setting m = 2 yields to the Schaefer type production function
(Eq. (11.7)), and m = 1 yields to the Fox production (Eq. (11.20)).
However, only poor information generally exists in the dataset to esti-
mate the parameter m, and the particular forms (Eqs. (11.7) or (11.20))
are generally preferred to Eq. (11.22).

11.3 State-space modeling of A. salmon life cycle
model

In this section, we illustrate the flexibility of the Bayesian state-space
modeling approach for stage-structured population dynamics models fit-
ted to series of sequential observations of different nature. The example
is inspired from Rivot et al. [259].

The method is applied to a fully stage-structured model for the At-
lantic salmon life cycle with multiple life histories. The model describes
the dynamics of the numbers of individuals at various life stages, with
a discrete annual time step. It includes nonlinear regulation and has a
probabilistic structure accommodating for both environmental and de-
mographic stochasticity. The model is fitted to a dataset resulting from
the comprehensive survey of the salmon population of the Oir River
(Lower Normandy, France) between 1984 and 2001. Observation models
are constructed to relate the field data to the hidden states at the various
life stages. The observation process corresponds essentially to capture-
mark-recapture (CMR) experiments for the evaluation of migrating ju-
venile and spawner runs and random sampling for demographic features.
The ecological significance of the inferences is discussed at the end of the
section.

Here, we largely rely on the A. salmon population ecology described
in Chapter 1, but we take into consideration a more complete description
of life histories: fish from the two smolt age classes (1+ Smolts and 2+
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FIGURE 11.9: Atlantic salmon life cycle model including the four main
life histories encountered in French populations. Eggs spawned at year t
give rise to spawners Sp11 returning year t+3, Sp12 and Sp21 returning
year t+ 4 and Sp22 returning year t+ 5.

Smolts) can either spend one or two winters at sea (1SW and 2SW in
the following) before returning as spawners (Fig. 11.9). One and two sea
winter spawners resulting from 1+ Smolts are denoted Sp11 and Sp12,
respectively, and those issued from 2+ Smolts are denoted Sp21 and
Sp22, respectively. Both Sp11 and Sp21 are 1SW fish but with different
smolt-ages, and Sp12 and Sp22 are 2SW fish with different smolt-ages.

11.3.1 Process equations describing the hidden popula-
tion dynamics

In such population dynamics state-space models, the general pro-
cess Eq. (11.2) giving [Zt+1|Zt, θ] is fully defined by the probabilistic
demographic transitions used to describe the population dynamics. The
stage-structured A. salmon life cycle model can be viewed as a condi-
tional model. The following Eqs. (11.23)-(11.33) mimic the transition of
the number of individuals from one development stage to the next one,
on a discrete, yearly basis time step. Most of the transitions are built
on a probabilistic rationale to capture demographic or environmental
stochasticity. For the sake of clarity, equations are written with time
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FIGURE 11.10: DAG of the hidden dynamics for the Atlantic salmon
life cycle including the observation process on both the smolt and
spawner runs. All probabilistic equations for the population dynamics
are given in Eqs. (11.23)-(11.33). For the sake of clarity, the observtion
process is represented by shaded boxes and the observation Eqs. (11.37)-
(11.42) are not detailed in the figure.

indices following the fate of a cohort issued from eggs spawned in year
t. The DAG of the model presenting the hidden population dynamics is
shown in Fig. 11.10.

1. Spawners → Eggs

Each year, four age classes of spawners return from the sea and re-
produce in the river. The number of eggs laid by females spawning
in year t, Wt, is a deterministic function of the number of spawners
in the two sea-age classes, the proportion of females in 1SW and
2SW fish, denoted pf1,t and pf2,t respectively, and of the mean
fecundity of these females denoted fec1 and fec2, both considered
as known and constant over time:

Wt = (Sp11t + Sp21t − ySp2,t)× pf1,t × fec1
+ (Sp12t + Sp22t − ySp3,t)× pf2,t × fec2 (11.23)

ySp2 and ySp3 are known numbers of fish (defined in the dataset
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Model component Parameter Prior

Population dynamics

Proportion of females µpf1 ∼ Normal(0, 100)
σpf1 ∼ Uniform(0, 5)
µpf2 ∼ Normal(0, 100)
σpf2 ∼ Uniform(0, 5)

Eggs → 0+ Juveniles (Ricker) log(α) ∼ Uniform(−10, 0)
β ∼ Normal(0, 100)
log(σ2) ∼ Uniform(−20, 20)

0+ Juveniles → Pre-smolts γ0+ ∼ Beta(15, 15)
Probability to smoltify as 1+ Smolts µθSm1

∼ Normal(0, 100)
σθSm1

∼ Uniform(0, 5)
1+ Parrs → 2+ Smolts γParr1 ∼ Beta(20, 10)
Survival 1+ Smolts µγSm1

∼ Normal(0, 100)
σγSm1

∼ Uniform(0, 5)
Survival 2+ Smolts δγ ∼ Uniform(0, 10)
Probability to mature as 1SW θm1 ∼ Beta(3, 2)
Survival of nonmaturing adults at sea γRes ∼ Beta(3, 2)

Initial states variables 0+∗t=1 ∼ Uniform(0, 1)
Psm1t=1 ∼ Uniform(1, 10000)
Sm2t=1 ∼ Uniform(1, 300)
PostSm1t=1 ∼ Uniform(1, 1000)
PostSm2t=1 ∼ Uniform(1, 1000)
Sp12t=1 ∼ Uniform(1, 100)
Sp21t=1 ∼ Uniform(1, 50)

Observation process

Smolts capture probability µπSm ∼ Normal(0, 100)
σπSm ∼ Uniform(0, 5)

Spawners capture probability µπSp,1 ∼ Normal(0, 100)
σπSp,1 ∼ Uniform(0, 5)

Spawners recapture probability µπSp,2 ∼ Normal(0, 100)
σπSp,2 ∼ Uniform(0, 5)

TABLE 11.4: Prior distribution on parameters.

(see Tables 11.6 and 11.7)) which are retrieved from the returning
adults after trapping, either because they die during manipula-
tion or because they are removed for experimental use or hatchery
production.
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2. Eggs → 0+ juveniles

A density dependent Ricker relationship with unknown parame-
ters (α, β) models the freshwater production of juveniles resulting
from the reproduction of the spawners returning in year t. Envi-
ronmental variability is introduced via independent and identically
distributed LogNormal errors, so that the logarithm of the number
of 0+ juveniles can be defined as arising from a Normal probability
distribution with variance σ2 (see also Chapter 7):

0+∗t+1 ∼ Normal
(
log(W ∗t × α× e−β×W

∗
t ), σ2

)
(11.24)

where 0+∗t = 0 +t /h and W ∗t = Wt/h are the number of eggs and
0+ juveniles standardized by the surface area of habitat available
for juveniles production, h = 25229m2 (see [237] or [258] for more
details).

3. 0+ juveniles → Smolts

As detailed in Chapter 1, survival and life history choices during
the freshwater phase of the life cycle can all be modeled by Bino-
mial distributions to capture the demographic stochasticity. The
young-of-the-year 0+t+1 will survive to the next spring of year
t + 2 as pre-smolts PSmt+2, with probability γ0+ (considered as
invariant over time):

PSmt+2 ∼ Binomial(0+t+1, γ0+) (11.25)

A proportion θSm1,t+2 of the pre-smolts PSmt+2 will migrate as
1+ Smolts, the remaining part will stay one additional year as 1+
Parrs: {

Sm1t+2 ∼ Binomial(PSmt+2, θSm1,t+2)

Parr1t+2 = PSmt+2 − Sm1t+2

(11.26)

Resident 1+ Parrs will survive with probability γParr1 (considered
constant) and survivors will migrate as 2+ Smolts with probability
1:

Sm2t+3 ∼ Binomial(Parr1t+2, γParr1) (11.27)

4. Smolts → Returning spawners

After reaching the sea in spring, 1+ Smolts (Sm1t+2) will survive
as post-smolts (denoted PostSm1t+3) up to the end of the first
winter at sea with probability γSm1,t+2:

PostSm1t+3 ∼ Binomial(Sm1t+2, γSm1,t+2) (11.28)
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Hypothesizing a strict homing of adults to their native stream
([238]), a proportion θm1 of the post-smolts PostSm1t+3 will ma-
ture and return as one sea-winter fish Sp11t+3 in the following
summer:{

Sp11t+3 ∼ Binomial(PostSm1t+2, θm1)

Res1t+3 = PostSm1t+3 − Sp11t+3

(11.29)

Nonmaturing fish (denoted Res1t+3) will stay one additional year
at sea, will survive with probability γRes (considered constant over
time) and return as two sea-winter spawners (Sp12t+4) in the fol-
lowing spring:

Sp12t+4 ∼ Binomial(Res1t+3, γRes) (11.30)

2+ Smolts have a symmetric life history. Sm2t+3 survive as post-
smolts (denoted PostSm2t+4) up to the end of the first winter at
sea with probability γSm2,t+3:

PostSm2t+4 ∼ Binomial(Sm2t+3, γSm2,t+3) (11.31)

Post-smolts PostSm2t+4 will mature with the same probability
θm1 and return as 1SW spawners Sp21t+4 in the following summer:{

Sp21t+4 ∼ Binomial(PostSm2t+3, θm1)

Res2t+4 = PostSm2t+4 − Sp21t+4

(11.32)

Nonmaturing fish (Res2t+4) will survive with the same probabil-
ity γRes and return as 2SW spawners (Sp22t+5) in the following
spring:

Sp22t+5 ∼ Binomial(Res2t+4, γRes) (11.33)

Finally, spawners reproducing in any year t (and used to calculate
the number of eggs in Eq. (11.23)) are obtained by the mass bal-
ance equation Spt = Sp11t+Sp12t+Sp21t+Sp22t. This generates
complex dynamics as returns in year t involve three different co-
horts. Indeed, Sp11t are from eggs spawned in year t − 3, Sp12t
and Sp21t are from eggs spawned in year t−4, and Sp22t are from
eggs spawned in year t− 5.

In Eq. (11.3) describing the general process equation for a state-
space model, the state vector Zt is the state of the system at time step t.
Here, Zt is a multidimensional vector with each component equal to the
number of fish in each development stage at time step t, i.e., demographic
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characteristics which are unknown and variable in time. Because of the
cohorts overlapping due to the complex life history of A. salmon, Zt
involves 6 different cohorts. In Eq. (11.3), each Markovian transition
[Zt+1|Zt, θ1], is fully defined by factorizing Eqs. (11.23)-(11.33) after re-
indexing accordingly.

Because of the time dependence between the state variables, initial
prior distributions must be specified on most variables composing the
state vector for the first year Z1. Diffuse priors are assigned on 0+t=1,
Psmt=1, Sm2t=1, PostSm1t=1, PostSm2t=1, Sp12t=1 and Sp11t=1 (Ta-
ble 11.4), all other state variables for the first year being defined condi-
tionally on those ones and parameters.

θ1 is the vector of all parameters involved in the dynamics, formally
all the quantities which are unknown and constant over time. It contains
vital rates (such as the proportion of fish maturing as one sea-winter
fish θm1) and for which prior distributions have to be specified (see
Table 11.4), but also parameters of the hierarchical structures used to
represent the between-year variability of some vital rates (such as the
proportion of juveniles migrating as 1+ Smolts θSm1,t).

11.3.2 Modeling the priors on vital rates through an ex-
changeable hierarchical structures

The model encompasses both demographic and environmental
stochasticity by allowing an interannual random variability of the pro-
portion of smolts migrating as 1+ Smolts and the marine survival rate
of post-smolts. Interannual random variations are modeled through an
exchangeable hierarchical structure ([117]), by assuming that the param-
eters of all years t are randomly drawn from the same probability dis-
tribution conditioned by unknown parameters common to all years. Hi-
erarchical structures allow to probabilistically share information among
the different years and can improve the estimation of key parameters
([194]; [204]; [255]). Here, an exchangeable hierarchical structure is used
to mimic a between-year variability that is assumed to be random, with-
out any particular time trends or covariates (i.e., climate) to explain the
variations. More advanced hierarchical structures such as an autocorre-
lated random walk can also be used to capture fluctuations in vital rates
caused by gradual changes in environmental conditions (see [262] for an
example).

An exchangeable hierarchical structure is used to capture the
between-year variability of the probability for a pre-smolt to smoltify as
1+ smolt. Instead of considering the θSm1,t’s as a priori independently
sampled from conditional beta distribution with parameters common to
all years (as detailed in Section 9.2 of Chapter 9), the logit-transform
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of the θSm1,t’s are a priori drawn in a Normal distribution with mean
and variance parameters φ1 = (µθSm1

, σθSm1
) shared between years. The

θSm1,t’s are then calculated by the inverse transformation logit−1:

logit(θSm1,t) ∼ Normal(µθSm1
, σθSm1

) (11.34)

The same procedure was applied for the survival rate of one year
river-aged post-smolts, γSm1,t, with mean and variance parameters
shared between years (Eq. (11.35)). The survival rates of two year river-
aged post-smolts, γSm2,t, are defined based on the reasonable a pri-
ori constraint that the survival rate of two year river-aged post-smolts
is always greater than for one year river-aged post-smolts, but with
the same time variations. This constraint is specified in the logit scale
(Eq. (11.35)). 

logit(γSm1,t) ∼ Normal(µγSm1
, σγSm1

)

logit(γSm2,t) = logit(γSm1,t) + δγ

δγ ≥ 0

(11.35)

Finally, the logit-transform of the proportions of females in 1SW and
2SW fish, pf1t and pf2t are a priori independently drawn in Normal
distributions with mean and variance parameters shared between years:{

logit(pf1t) ∼ Normal(µpf1, σpf1)

logit(pf2t) ∼ Normal(µpf2, σpf2)
(11.36)

Informative beta distributions based on prior ecological expertise are
set for γ0+ (survival rates of 0+ Juveniles) and γParr1 (survival rate
of 1+ Parrs), with mean 0.5 and 0.66, respectively. All the remaining
parameters of the population dynamics are considered constant over time
with rather diffuse prior distribution (Table 11.4).

11.3.3 Data and observation equations

Yearly noisy observations of both smolt and spawner runs were
recorded between 1984 and 2001. However, no observations for eggs (W ),
0+ juveniles (0+), pre-smolts (PSm), resident 1+ Parrs (Parr1), 1+ and
2+ post-smolts at sea (PostSmolts1, PostSmolts2), and nonmaturing
fish (Res1, Res2) are available for these 18 years. The DAG of the model
with a simplified representation of the observation models is given in
Fig. 11.10. Below we describe the probabilistic models used to sketch
the stochastic observation process. Each likelihood term [yt|Zt, θ2] in
the general observation equation as written in Eq. (11.4) is obtained by
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Years ySm1 ySm2 ySm3 ySm4 ySm5

1984 NA NA NA NA NA
1985 439 NA NA 439 232
1986 887 135 91 887 848
1987 283 31 24 283 146
1988 307 59 43 307 282
...
1997 205 63 31 205 186
1998 511 91 44 511 438
1999 195 59 45 195 43
2000 1849 300 232 1849 1835
2001 688 264 123 688 636

TABLE 11.5: Capture-mark-recapture and sampling data for smolts at
the downstream trap by migration year. ySm1,t : number of smolts caught

in the downstream trapping facility during the migration time; ySm2,t :

tagged and released smolts; ySm3,t : number of smolts recaptured among

ySm2,t ; ySm4,t : number of smolts examined for river-age; ySm5 : number of 1+

Smolts in ySm4,t .

multiplying together the probabilistic observation Eqs. (11.37)-(11.42)
given below.

The observations (1984 - 2001) have been gathered under an ho-
mogeneous experimental design and few data are missing. Each annual
survey provides two complementary sources of information, the num-
ber of smolts and spawners in each annual run, and the demographic
structure (age classes and sex-ratio) in smolts and adult runs.

11.3.3.1 Updating the population size at the various life
stages

Available information to estimate the size of smolt and spawner runs
does not distinguish between the age classes. For both the smolts and
the spawners, a proportion of the migrating population is captured at a
partial counting fence and marked for further recapture (see Figure 4.3
in Chapter 4; the interested reader can also refer to Rivot and Prévost
[255] for more details). CMR experiments provide data to update the
total number of smolts migrating in year t, Smt = Sm1t + Sm2t, and
the total number of spawners returning in year t, Spt = Sp11t+Sp12t+
Sp21t + Sp22t.
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Years ySp1 ySp2 ySp3 ySp4 ySp5 ySp6

1984 167 10 3 154 12 10
1985 264 37 11 216 21 4
1986 130 28 9 93 5 4
1987 16 3 1 12 2 22
1988 226 35 8 183 12 0
...
1997 56 19 3 34 12 3
1998 34 3 1 30 6 30
1999 154 5 1 148 13 22
2000 53 0 0 53 4 33
2001 160 1 0 159 31 4

TABLE 11.6: Capture-mark-recapture and sampling data for spawners
at the upstream trap by migration year. ySp1 : number of fish trapped at

the counting fence during the upstream migration time; ySp2 , ySp3 : one

sea-winter (resp. two sea-winters) fish removed from the population; ySp4 :

tagged and released fish; ySp5 , ySp6 : number of marked (resp. unmarked)
recaptured fish.

Smolt run

CMR data used to update the unknown number of smolts Smt each
year t between 1984 and 2001 are given in Table 11.5 (note that there
are missing data for the first two years). CMR experiment modeling
principles have already been presented in Section 4.1 of Chapter 4,
page 84. Here we only recall the main outlines of the model.

CMR experiments for smolts are analogous to the two-stage Petersen
experiment ([278]). For each year t between 1986 and 2001, let us denote
ySm1,t the number of smolts caught in the downstream trapping facility

during the migration time. Among the ySm1,t smolts captured, a number

ySm2,t have been tagged and released upstream from the trapping facility
used for capture (see Fig. 4.3). Some of these tagged and released smolts,
denoted ySm3,t (ySm3,t < ySm2,t ), will be recaptured at the same downstream
trap. Under the hypotheses H1-H5 detailed in Section 4.1, the capture
and recapture data for each year t can be modeled by two successive
Binomial distributions with the same capture probabilities πSmt (inter-
preted as the trapping efficiency that may vary between years):{

ySm1,t ∼ Binomial(Smt, π
Sm
t )

ySm3,t ∼ Binomial(ySm2,t , π
Sm
t )

(11.37)

Intuitively, the second Binomial equation will contribute to specify
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Years ySp7 ySp8 ySp9 ySp10 ySp11 ySp12 ySp13 ySp14 ySp15

1984 159 113 20 23 3 141 40 26 21
1985 211 116 50 43 2 203 69 61 42
1986 111 61 19 24 7 93 31 37 26
1987 16 13 2 1 0 15 1 1 1
1988 197 85 74 36 2 182 63 44 31
...
1997 52 47 4 1 0 55 21 1 1
1998 28 22 5 1 0 33 10 1 1
1999 140 105 18 12 5 136 43 18 13
2000 51 45 2 2 2 49 26 4 2
2001 140 120 14 5 1 151 51 9 3

TABLE 11.7: Capture-mark-recapture and sampling data for spawners
at the upstream trap by migration year (continued). ySp7 : number of fish

examined for sea and river-age; ySp8 , ySp9 : number of one sea-winter fish

issued from 1+ and 2+ Smolts respectively among ySp7 ; ySp10 , ySp11 : number
of two sea-winter fish issued from 1+ and 2+ Smolts respectively among
ySp7 . ySp12 , ySp14 : one sea-winter and two sea-winter fish examined for sex

identification; ySp13 , ySp15 : number of fish identified as females among ySp12

and ySp14 .

the trapping efficiency πSm,t, while the first one brings information to
update the total number of downstream migrating smolts Smt.

Spawner run

The experimental design, the trapping methodology and the CMR
model used for spawner runs are described in detail in Chapter 9 (see also
Rivot and Prévost [255] for comments on the experimental procedure).

The CMR data for the spawners are shown in Tables 11.6 and 11.7.
Conversely to smolts, CMR experiments for spawners cannot be assim-
ilated to a simple Petersen experiment. For each year t from 1984 to
2001, ySp1,t denotes the number of fish trapped at the counting fence (see
Fig. 4.3 of Chapter 4 for more details about the trapping device). Among

these ySp1,t fish, ySp2,t one sea-winter and ySp3,t two sea-winter fish are re-
moved from the population (as detailed in Section 11.3.1). A number

ySp4,t = ySp1,t − (ySp2,t + ySp3,t) of fish are tagged and released upstream from
the trap. The recapture sample is gathered during and after spawning
by three methods (electrofishing on the spawning grounds, collection of
dead fish after spawning, and trapping of spent fish at the downstream
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trap). Let us denote as ySp5,t and ySp6,t the number of marked and unmarked
fish among recaptured fish, respectively.

CMR experiments can also be modeled via Binomial distributions.
Assuming classical hypotheses (all spawners behave independently and

are equally catchable by the upstream trap, with a probability πSp,1t

considered constant over the migration season), ySp1,t can be modeled
as the observed result of a Binomial experiment with the total num-
ber of spawners Spt as the number of trials and a probability πSp,1t

(Eq. (11.38)). Assuming that (i) no spawner runs downstream after get-
ting over the trap; (ii) there is no tag shedding between mark and recap-
ture; (iii) the recapture probability is the same for all the fish whether or

not marked, the recapture of marked (ySp5 ) and unmarked fish (ySp6 ) can
be modeled as the result of Binomial experiments with number of trials
ySp4,t (marked and released fish) and Spt−ySp1 (unmarked fish in the pop-

ulation) respectively, but with probabilities πSp,2t different from πSp,1t as
recapture experiments do not involve directly the trapping facility with
efficiency πSp,1t . 

ySp1,t ∼ Binomial(Spt, π
Sp,1
t )

ySp5,t ∼ Binomial(ySp4,t , π
Sp,2
t )

ySp6,t ∼ Binomial(Spt − ySp1,t , π
Sp,2
t )

(11.38)

The reasoning underlying how the information contained in the data
is used in the three lines of Eq. (11.38) is as follows: the second line essen-

tially conveys information to estimate the recapture probability πSp,2t .
Both the third and the first line carry information on the total number
of spawners Spt.

11.3.3.2 Hierarchical prior on the trapping efficiencies

The between-year variability of the probabilities of capture πSmt ,

πSp,1t and πSp,2t is modeled through exchangeable hierarchical structures
with hyper-parameters denoted φSm, φSp,1 and φSp,2 respectively. As
already illustrated in Chapters 9 and 10 (and also detailed in many
publications such as [204], [239], [255] or [262]), hierarchical structures
significantly improve the inferences as they organize the transfer of in-
formation between years to estimate the total population size in years
for which CMR data are rather poor (i.e., because of small recapture

sample size such as in 1994 for the spawners for which ySp5 = 1 and

ySp6 = 4).
In Section 9.2, the probabilities of capture and recapture for spawners

for each year t were considered as independently sampled from condi-
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tional beta distribution with parameters of the beta distributions com-
mon to all years. Here, slightly different hierarchical constructions are
proposed. Instead of drawing the π’s in beta distributions, the logit-
transform of the π’s are drawn from Normal distributions with mean
and variance parameters shared between years. The π’s are then calcu-
lated by the inverse transformation logit−1.

logit(πSmt ) ∼ Normal(µπSm , σπSm)

logit(πSp,1t ) ∼ Normal(µπSp,1 , σπSp,1)

logit(πSp,2t ) ∼ Normal(µπSp,2 , σπSp,2)

(11.39)

θ2 = (µπSm , σπSm , µπSp,1 , σπSp,1 , µπSp,2 , σπSp,2) is the vector of param-
eters for the observation process. Diffuse prior distributions were set on
parameters in θ2 (Table 11.4).

11.3.3.3 Updating the demographic structure

In addition to the CMR data, sampling among the fish caught at the
trap enables us to update the yearly proportions of the age classes in
the smolt and spawner runs Smt and Spt, and the mean sex ratio in the
spawner run. Aging of the smolts (river age) and the spawners (river and
sea-age) is done by scale reading ([14]; [237]). The sex of the spawners is
identified visually based on the sexual dimorphism of salmon at the time
they are caught at the trap. We suppose that age and sex determinations
are performed without error. The data are given in Tables 11.5, 11.6 and
11.7. For each demographic feature, sampling is modeled by independent
Binomial or multinomial processes, detailed in Eqs. (11.40)-(11.42).

11.3.3.4 River age in smolt run

ySm4,t denotes the sample size of smolts examined for river-age in the

run of year t and ySm5 is the number of 1+ Smolts among them. The
proportion of 1+ Smolts in year t, denoted ρSm1,t is updated by modeling
ySm5 as the result of a Binomial sampling with a sample size ySm4,t and a
probability ρSm1,t: ρSm1,t =

Sm1t
Sm1t + Sm2t

ySm5,t ∼ Binomial(ySm4,t , ρSm1,t)

(11.40)

11.3.3.5 Sea and River-age in spawner run

ySp7,t denotes the sample size of spawners examined for sea and river-

age in the run of year t. ySp8,t and ySp9,t are the number of 1SW fish resulting
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from 1+ and 2+ Smolts, respectively among ySp7,t , and ySp10,t and ySp11,t are
the number of 2SW fish issued from 1+ and 2+ Smolts, respectively
among ySp7,t . The proportions of the four different age classes in each
spawning run (summing to 1) are updated through a multinomial model: ρSp,t = (

Sp11t
Spt

,
Sp21t
Spt

,
Sp12t
Spt

,
Sp22t
Spt

)

(ySp8,t , y
Sp
9,t , y

Sp
10,t, y

Sp
11,t) ∼ Multinomial(ySp7,t , ρSp,t)

(11.41)

11.3.3.6 Sex ratio in spawner run

Sex-ratio in spawner runs are updated each year t through Binomial
sampling experiments considered independent for one and two sea-winter
fish. Each year t, ySp12,t 1SW fish (resp. ySp14,t 2SW fish) are examined for

sex identification and ySp13,t (resp. ySp15,t) are identified as females among
them. Proportion of females in the two sea-age classes pf1,t and pf2,t are
updated through Binomial sampling:{

ySp13,t ∼ Binomial(ySp12,t, pf1,t)

ySp14,t ∼ Binomial(ySp15,t, pf2,t)
(11.42)

11.3.4 Results

11.3.4.1 MCMC simulations

Three MCMC independent chains were used. For each chain, the
first 50,000 iterations were discarded. After this “burn-in” period only
one in 10 (thinning) iterations was kept to reduce the MCMC sampling
autocorrelation. Inferences were then derived from a sample of 30,000
iterations processed from three chains of 10,000 iterations.

11.3.4.2 Spawner returns and smolt production

Posterior estimates of the total number of spawners returning each
year t and of smolts migrating downstream each year t are characterized
by a high between-year variability (Fig. 11.11). Posterior medians of
the returns Spt’s range between 46 (year 1991) and 330 (year 1987).
Posterior medians of the smolts Smt’s range between 202 (year 1991) and
2380 (year 2000). The uncertainty around the estimates of the Spt’s and
Smt’s varies between years and partly stems from CMR experiments.
Imprecise inferences about Spt in 1987 are due to sparse mark-recapture
data (low recapture sample size, see Tables 11.6 and 11.7). No data were
available for smolts in 1984, which leads to the large imprecision about
the estimation of Smt’s that year.
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FIGURE 11.11: Marginal posterior distributions of (a) the number of
migrating smolts (Sm) by year of downstream migration and (b) the
number of returning spawners (Sp) by year of upstream migration. The
boxes indicate the interquartile range and the median.

Estimates of the downstream (smolts) and upstream (spawners) trap-
ping efficiencies are given in Fig. 11.12. Trapping efficiencies for spawners
exhibit a huge between-year variability (overall mean = 0.67), whereas
those for smolts are more constant in time (overall mean = 0.73). De-
tailed interpretation of the CMR experiments and further results con-
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cerning trapping efficiencies are given in Chapter 9 and in Rivot and
Prévost [255].

FIGURE 11.12: Marginal posterior distributions of trapping efficien-
cies for (a) downstream migrating smolts by year of migration and (b)
upstream migrating spawners by year of migration. The boxes indicate
the interquartile range and the median. Boxplots in dark gray fonts at
the end of the time series show the posterior predictive of the trapping
efficiency.

The posterior pdfs of the main demographic features of the returning
spawners exhibit moderate within- and between-year variability. Thus,
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we only comment on the weighted average calculated across the years.
Most of the returning spawners are 1SW fish (posterior median = 87%).
Returning spawners resulting from 1+ Smolts represent the main part
of the spawning population. Those fish represent 78% and 75% of 1SW
and 2SW fish, respectively. The proportion of female in 1SW and 2SW,
respectively, pf1t and pf2t, are quite constant between years. Averages
across years have posterior median at 0.34 and 0.68, respectively. On
average, 69% of the eggs spawned are from 1SW females.

11.3.4.3 Eggs spawned and subsequent production of 0+ ju-
veniles

FIGURE 11.13: Relationship between the posterior medians of the
number of eggs spawned and of the subsequent number of 0+ juveniles.
The year of upstream migration is indicated near each point. Years 2000
and 2001 are not represented because the number of smolts cannot be
updated due to incomplete data. The Ricker curve (solid line) corre-
sponds to parameters α and β set to their posterior medians, 0.01 and
0.047, respectively (Table 11.8).

The relationship between the number of eggs spawned Wt and the
subsequent number of 0+ juveniles 0+t+1 is characterized by a great vari-
ability around the mean deterministic Ricker relationship (Fig. 11.13).
As Wt is calculated from the number of spawners, the time series of the
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Wt’s exhibits within- and between-year patterns similar to that of the
Spt’s. The 0+t exhibit the same pattern of between-year variations than
the Sm+1’s because survival rate between 0+ juveniles and pre-smolts
has been considered constant and the pre-recruitment essentially con-
sists of 1+ smolts. The number of 0+ juveniles for the last two years
(2000 and 2001) are predictions because the number of smolts in the
corresponding cohort are not updated by any data.

FIGURE 11.14: Posterior distributions of the key demographic param-
eters considered as constant between years. The marginal distributions
are shown in the diagonal. Pairwise MCMC plots showing the correlation
structure between parameters are shown in the lower part. The upper
part shows the linear correlation between the MCMC draws.

The main statistics of the posterior pdfs of the recruitment process
parameters (α, β and σ2) are given in Table 11.8. The large standard
deviation (in log scale) σ reflects the wide dispersion around the Ricker
curve (Fig. 11.13). The parameters of the Ricker curve (α, β) are highly
correlated a posteriori (Fig. 11.14). The posterior pdf of β seems to be
non-null in the neighborhood of 0. The average egg-to-juveniles survival



292 Introduction to Hierarchical Bayesian Modeling for Ecological Data

rate calculated across year is 0.006 with a 95% credible interval ranging
from 0.004 to 0.01.

Parameters Mean Sd 2.5% pct. Median 97.5% pct.
α 0.010 0.005 0.003 0.009 0.024
β 0.047 0.029 −0.011 0.046 0.105
σ2 0.71 0.33 0.31 0.64 1.54
γ0+ 0.50 0.09 0.32 0.50 0.67
γParr1 0.66 0.09 0.48 0.66 0.82
θm1 0.84 0.08 0.55 0.86 0.90
δγ 0.22 0.19 0.01 0.18 0.69
γRes 0.70 0.22 0.16 0.76 0.97

TABLE 11.8: Main statistics of the marginal posterior distributions of
the key demographic parameters considered constant across years.

11.3.4.4 Smolt production

The marginal posterior distribution of the survival rates of 0+ ju-
veniles to pre-smolts (γ0+) and of resident 1+ parrs to 2+ smolts
(γParr1) are very close to their prior distributions (beta(20, 10) and
beta(15, 15), respectively; Table 11.8). The probability to smoltify as
1+ Smolts has a low between-year variability with no particular trend
over time (Fig. 11.15a). On average, pre-smolts have a probability of 0.84
to smoltify as 1+ Smolts. The recruitment success essentially depends
upon a single age class of smolts.

11.3.4.5 Smolt to spawner transitions

Posterior pdfs of the γSm1,t’s, i.e., the marine survival rates of 1+
post-smolts, are highly variable between years (Fig. 11.15b). The poste-
rior medians of the γSm1,t’s vary without any time trend. The estimated
posterior medians range between 0.05 (year 1989) and 0.61 (year 1997).

The marine survival rate of 2+ Smolts has the same time variation
than for 1+ Smolts, but with a differential measured by δγ in the logit
scale (which translates to Table 11.8). The posterior median of δγ is
about 0.18 (Table 11.8), which represents an average survival rate of
0.33 for 2+ Smolts versus 0.28 for 1+ Smolts.

On average, post-smolt survivors have a probability of 0.86 to mature
after their first winter at sea and return as 1SW fish. Survival rates of
fish that do not mature as 1SW is high (post. median = 0.76). However
Fig. 11.14 also highlights the high positive correlation between θm1 and
γres, thus pointing out the difficulty to disentangle maturation and sur-
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FIGURE 11.15: Marginal posterior distributions of (a) the probability
to smoltify as 1+ Smolt (θSm1,t) (versus delaying the smoltification as 2+
Smolt) by year of smoltification; (b) 1+ Post-smolts marine survival rate
γSm1,t by year of smolts migration. The boxes indicate the interquartile
range and the median. Boxplots in dark gray fonts show the posterior
predictive of θSm1.

vival in the marine phase of salmon, since no intermediate observation
exists between smolts and returns.
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FIGURE 11.16: Ability for one step ahead forecasting. Marginal pos-
terior distributions of (a) the number of migrating 1+ Smolts by mi-
gration year (Sm1t) and (b) the number of returning spawners Sp11t
by migration year. Light gray font: posterior distributions obtained with
the complete data set; dark gray font (only for year 2001): posterior dis-
tribution obtained after deleting all the CMR and other sampling data
for the last year 2001 (forecasting).

11.3.4.6 Forecasting ability

To assess the model ability for one step ahead forecasting, we per-
formed statistical tests analogous to cross-validation tests. We assess
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the ability in forecasting the smolt production and the number of re-
turning spawners by comparing the estimates of Sm12001 and Sp112001

obtained after deleting all the CMR and other sampling data for the last
year 2001. When no CMR and sampling data for smolts are available
in 2001, Sm12001 is directly derived from the forecasts of 0+ juveniles
and pre-smolts from Eqs. (11.24)-(11.26) with parameters drawn from
their posterior or posterior predictive distributions (such as for θSm1)
derived from the dataset with data of year 2001 deleted. Similarly, when
no CMR and sampling data for smolts are available in 2001, Sp112001 is
predicted from Eqs. (11.28)-(11.29) with γSm1 drawn from its posterior
predictive distribution and θm1 from its posterior distribution.

Figure 11.16 emphasizes the poor forecasting ability of the model.
The posterior distribution of Sm12001 and Sp112001 obtained after delet-
ing the data for year 2001 are more dispersed and highly biased compared
to the posterior updated by data of year 2001.

11.3.5 Discussion

11.3.5.1 A powerful data synthesis method

The state-space modeling approach relies on a rigorous and coherent
probabilistic framework to fit a realistic life cycle model for A. salmon.
Embedding the model within a statistical approach enables us to synthe-
size the 18-year time series of field data from the Oir River with regards
to the structure and the functioning of its salmon population. The pa-
rameters of the various between-stage transitions are estimated, and in
some cases their inter-annual variation is assessed. Given the Southern
European location of the Oir River, the results are consistent with the
ecological knowledge on A. salmon life history ([42]; [97]; [143] ).

11.3.5.2 Balancing ecological realism with available data

The model tries to balance biological realism and parsimony to en-
sure that all parameters are statistically identifiable. Some intermedi-
ate development stages (e.g., 0+ juveniles or resident 1+ Parrs) have
been represented to improve biological realism, although no direct ob-
servations are available to update the number of fish in these stages
and parameters of the associated transitions. Informative priors on the
associated parameters have been used to compensate for the lack of in-
formation in the data. Other parameters have been considered constant
over time so as to ensure all parameters are identifiable. For instance, in
some two-step transitions, such as the smolt-to-spawner transition that
depends upon both the post-smolt marine survival rate γSm1,t and the
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probability to mature as one sea-winter fish θm1; the latter parameter
has been considered constant.

Our analysis also stresses the limited ability of our model to repro-
duce the evolution of the population abundance over time. The cross-
validation tests show that the predictive power of our model concerning
the smolt outputs and the spawner returns is rather poor. The cumu-
lative effects of two types of misspecification explain this lack of fit.
First, the influence of nonmodeled environmental factors blurs the de-
mographic relation between some stages. Second, some critical processes
may have been forgotten. The results are useful in setting priorities for
model enhancement because they point out the portions of the model
which particularly failed and should be improved.

In particular, we restrict our analysis to the dome-shaped Ricker
curve with constant parameters and an i.i.d. LogNormal error structure.
The variance around the Ricker function is very large (Table 11.8 and
Fig. 11.13). This dispersion points out a departure from the specified
LogNormal Ricker model. One needs to better understand and improve
the modeling of the density-dependent regulation mechanisms during the
juvenile phase. The posterior pdf of the β parameter does not provide
strong evidence for over-compensatory mortality of the eggs. Alternative
shapes could be tested, such as the Beverton-Holt, the Deriso-Schnute
or the Shepherd curve (see Chapter 7 but also [275] or [207]). But what-
ever the deterministic function used, the variation around it will remain
large. Hence, it is clearly another major challenge to unravel the density-
independent mechanisms which influence the egg-to-smolt survival rate
([150]; [207]). Using the available data on the abundance of 0+ Juveniles
as developed in Chapter 10 could provide insight on the dynamics of the
juvenile phase of the life cycle.

The estimates of the γSm1,t’s are characterized by a large between-
year variability. This variability is considered purely random in our
model, and it plays a major role in its poor prediction power as revealed
by the cross-validation tests (Fig. 11.16). Some key demographic pro-
cesses explaining these yearly variations in the smolt-to-spawner transi-
tion may have been missed. The γSm1,t’s, result from at least three com-
bined processes: (i) the natural mortality of smolts during their stay at
sea; (ii) the fishery mortality; (iii) the emigration/immigration processes
when the adults return to freshwater. Unfortunately, the data available
do not enable us to unambiguously disentangle these three components.
But our results stress that the emigration/immigration processes are
likely to be non-negligible at the spatial scale of our study. In particular,
return rates exceeding 30% (Fig. 11.15) are extremely unlikely, and a
significant net positive immigration of fish issued from other rivers than
the Oir River might be accounted for to explain these high values ([259]).
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11.4 Epilogue: A powerful reasoning logic for the
Ecological Detective

Beyond the limitations of the illustrative case studies discussed in
Sections 11.2 and 11.3, these two examples illustrate how the Bayesian
state-space modeling framework can make a major contribution regard-
ing the following two important challenges for the Ecological Detective.

11.4.1 Handling the link between population dynamics
models and field data

State-space modeling is a highly flexible framework for analyzing
sequential data which can handle both process and observation errors
within a single consistent probabilistic rationale. Multiple examples can
be found in the statistical ecology literature and illustrate the capacity
of Bayesian state space modeling (BSSM) for embedding population dy-
namics within a statistical inferences framework ([40];[41]; [121]; [164];
[219]; [259]; [293]). BSSM has been widely applied for age- or stage-
structured fish population dynamics models ([103]; [176]; [196]; [206];
[279]; [290]), but also for modeling population dynamics in a context of
conservation ([53]), harvest regulation ([298]; [318]) or animal invasions
([141]). BSSM also proved successful to analyze multiple mark-recapture
data ([42]), animal movements ([149]; [210]; [227]) or even trajectory of
fishing boats ([307]).

Thanks to the flexibility offered by Bayesian modeling methods cou-
pled with MCMC inferential techniques, complex system dynamics in-
cluding many latent variables can be combined with sophisticated de-
scriptive statistical models for various sources of information. Hence, it
becomes workable to analyze a wide range of state-space models with
nonlinear relationships in the dynamic and observation equations, and
non-Gaussian error structure as well. The Ecological Detective can treat
their data with the model they actually want to use rather than with a
model that has been imposed by some mathematical convenience. Be-
cause BSSMs free the Ecological Detective from many modeling restric-
tions, they encourage the investigation of several competing models.
It is possible to improve, extend or even replace the dynamic model
while keeping the data assimilation scheme unchanged. Supplementing
the data does not cause any further complication as it requires only the
specification of their relations to the state variables by means of stochas-
tic observation equations. Incomplete series of data can be used as well.

The two examples in this chapter show a progression in the dimen-
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sion and complexity of both the process and observation equations. The
biomass production model example describes the dynamics of a highly
aggregated state variable, namely the A. salmon population dynamics
model is a stage-structured model of higher dimension including multi-
ple life histories and complex stage-structured interactions. The specific
observation model developed in the A. salmon example avoids the sim-
plifying assumptions which are made in traditional filtering methods to
ensure the observation errors and the process stochasticity can be dis-
entangled. The form of the distribution of observation errors is often
assumed known and constant across the years, a LogNormal structure
being a classical choice such as in the Biomass production model ex-
ample. The ratio of the process versus the observation error variances
is often fixed arbitrarily (the ratio σp/σo = 1 is fixed in the Biomass
production model example). These hypotheses are hardly justified; the
measurement errors may vary over time, particularly if sample sizes or
the data gathering methods change during the observation period. In
the detailed observation model developed in the A. salmon example, ob-
servation errors are specified on a yearly basis from a realistic stochastic
observation model, based on a random sampling process and CMR ex-
periments.

11.4.2 Setting diagnostics and management decisions in
a consistent probabilistic framework

In recent years, BSSM has been increasingly applied as a quantita-
tive tool to synthesize information and quantify uncertainty in decision
analysis ([94]). Applications in fisheries sciences have been numerous.
This is most likely related to the prevalence of uncertainties stemming
from stochasticity in the dynamics of the system and measurement and
sampling errors in the data, and to the potentially disastrous biological
and socio-economical consequences of overlooking major uncertainties
([133]; [184]).

The framework offers many advantages for dealing with uncertainty
and is naturally connected to the assessment of population status and of
management actions within a formal decision theoretic approach. Pos-
terior pdfs provide readily interpretable probability statements of any
quantities derived from the model. The Bayesian approach is well suited
for simulation based studies that aim to predict possible results of alter-
native management actions in a probabilistic framework that accounts
for all sources of uncertainty. MCMC samples from the joint posterior
pdfs of parameters (such as in Figs. 11.3 and 11.14) can be used as direct
inputs for Monte Carlo forward projections, thus allowing for an honest
incorporation of our remaining partial ignorance about the parameters.
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The BSSM framework is also well suited for the introduction of control
variables within the dynamic model and for finding the optimal control
conditionally on the data. Chapter 12 reconsiders the Atlantic salmon
life cycle model in a formal decision analysis to answer questions such
as: (i) How many returning spawners can be harvested without signifi-
cantly impacting the population dynamics? or (ii) How can the relative
performances of competing harvest strategies be assessed?
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Chapter 12

Decision and planning

Summary

In this closing chapter, we illustrate how models can be used in a
deductive way as a tool for prediction, by using simulations designed to
explore the response of the system under different scenarios. Statistical
decision theory is used as a natural extension of the Bayesian paradigm
that we relied on throughout the book.

As a case study, we reconsider the decision analysis from the case
study of Rivot and Prévost [256]. We use the dynamics of the A. salmon
population in the estuary of two coastal rivers forming the Sée-Sélune
River network located in Mount Saint Michel Bay (France). Angling
takes place all along both river banks during spawning migration be-
tween March and October. Population dynamics modeling allows to es-
timate key management reference points such as the sustainable level
of exploitation, and to predict the dynamics of the resource under al-
ternative scenarios for future exploitation. We develop a model to simu-
late the response of the system under 10 alternative management rules
(limited fishing periods, quotas, etc.) and try to evaluate and compare
their performances. The alternative management strategies are com-
pared through performance criteria designed to balance objectives of
preserving natural heritage in the long range and of optimizing the cap-
tures in the short term.

12.1 Introduction

The quantification of impacts of human activities on ecosystems and
their consequences on related resources and services has generated in-
creasing scientific and social interests ([72]; [314]). A better understand-
ing of the mechanisms driving the response of wildlife populations to

301
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various natural and human-induced stresses remains both a fundamen-
tal ecological question and a requirement for sound management. This
requires appropriate tools to unravel the underlying mechanisms and
accurately predict the response of populations under plausible future
scenarios with a fair appraisal of all sources of uncertainties ([66]; [94];
[133];[184]). Considerable attention has been paid to alterations of ma-
rine ecosystems. Human pressures like fishing mortality or the degrada-
tion of marine and coastal habitat are responsible for dramatic drops
of fish populations ([58]; [79], [315]), alteration of biodiversity ([228];
[314]) or even regime shifts in marine ecosystems ([142]; [214]). Various
examples of deeply adversely affected species resulting from inappro-
priate and ineffective regulation strategies raise many questions among
scientists. Keeping a very modest scale with Salmon as our species of
preference, this chapter exemplifies some mathematical contributions to
ecosystem-based management of fish stocks.

In Chapter 11, dynamic models for fish stocks appear under the gen-
eral formalism of a Markov chain:

Zt+1 = f(Zt, θ1, εt) (12.1)

with transition function f(·) driving the dynamics of the system. θ1 de-
notes the parameters of the dynamics with εt the process noise (in order
to simplify the mathematical content of this book, models and methods
are restricted to discrete time case). Equation 12.1 is also often writ-
ten in the equivalent compact form of the conditional pdf [Zt+1|Zt, θ1],
sometimes called the stochastic transition kernel.

As a rather sophisticated example, the components of the state vector
Zt for the salmon life cycle model in Section 11.3 are essentially the
number of individuals at year t belonging to the different life stages:

• 0+ juveniles born in year t or older resident juveniles;

• Smolts of one and two years migrating to the sea year t;

• Nonmature or mature returning adults at year t with the four
different life histories (one or two years spent in freshwater before
the smolt migration combined with one or two winters spent at
sea).

The transition function f(·) stands for the structural form of the
transition between time steps with the strong stationary assumption that
the underlying ecological mechanism of population dynamics does not
change with time. The multidimensional parameter θ1 essentially con-
tains the coefficients of the eggs → 0+ juveniles Ricker stock-recruitment
relationship, the variance of the logNormal environmental noise, several
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FIGURE 12.1: Recreational fly fishing on a salmon river (photo credit
to Gabriel Gerzabek).

survival rates as well as transition probabilities governing the life his-
tory choices modeled as Binomial trials. The process noise εt arises from
the random nature of the stock-recruitment relationship as well as the
randomness of the life history traits.

Equivalently, Eq. (12.1) says that, were the parameter θ1 and present
state Zt known, the analyst would be able to describe the future
state Zt+1 by making draws from the conditional pdf [Zt+1|Zt, θ1].
Starting from initial condition Zt=0 = Z0, successive draws Z0:T =
(Z0, Z1, ..., ZT ) obtained by iterating Eq. (12.1) can be understood as
a scenario describing some possible trajectory of the uncertain future
states hypothesizing perfect knowledge of θ1 and conditioned upon ini-
tial state Z0.

Most often, the homogeneous Markov chain given by iterating
Eq. (12.1) along successive periods will be only partially observed, with a
noisy observation Yt|Zt or, equivalently an observation equation at time
t:

Yt = g(Zt, θ2, ωt) (12.2)

In the salmon cycle example given in Section 11.3, the observation
vector Yt consists mainly of captures of adult returns and smolt runs. The
function g(·) corresponds to the experimental protocol for capture-mark-
recapture (for migrating smolts or spawners) or successive removals (for
juveniles) experiments with observation errors ωt conveying randomness
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into its experimental results. Unknown parameters from Eq. (12.2) such
as the trap or the electrofishing efficiencies must also be added under
the banner of the vector θ2. In the joint formulation for the process and
observation model given by Eqs. 12.1 and 12.2, the state variable Zt
becomes latent, (i.e., hidden since not observed directly) and when a
prior [θ] is provided for the parameters θ = (θ1, θ2) and initial state Z0,
Bayesian inference allows to infer the hidden states and the parameters
through the joint posterior distribution [Z0:T , θ|Y0:T ].

Yet, the intervention of man, although often dramatically influen-
tial, seems to be absent from this abstract mathematical formulation.
Eq. (12.1) must be complexified by introducing covariates Dt that depict
the influence of some forcing variables to be considered as deterministic,
such as known harvests or known catches from fisheries:

Zt+1 = f(Zt, Dt, θ1, εt) (12.3)

The conditional pdf for the Markovian transition is now written
[Zt+1|Zt, θ1;Dt], and conditioned upon initial state Z0, parameters
θ1 and the series of decisions D1:T−1 = D1, ..., DT−1, the joint
distribution of all hidden states is then written [Z0:T |θ1;D1:T−1].
Given the observations Y0:T , the joint posterior distribution is written
[Z0:T , θ|Y0:T ;D1:T−1].

In this chapter, we focus on Dt in Eq. (12.3) to be considered as a set
of control variables (e.g., harvesting; Fig. 12.1). From a decision anal-
ysis perspective, the way the conditional pdf [Zt+1|θ1, Zt, Dt] responds
to the possible variations of the control variable Dt is of special inter-
est. However, considering a predetermined open loop control through the
mapping t 7→ Dt is rarely efficient or even realistic. Rules of manage-
ment are indeed feedback loops in reaction to the state of the system
Zt. Therefore, a more general framework is to consider a policy as a
management rule δ that allows for a certain decision Dt (e.g., an upper
limit for the number of fish that could be harvested) as a function of the
system state Zt (e.g., the abundance of fish at time t):

Dt = δ(Zt) (12.4)

In practice, however, decisions can rarely be made depending upon the
true state of the system: instead of Zt, mostly unknown, only some
clues - i.e., Yt - can be observed from the system via the observation
Eq. (12.2). In addition, there may be implementation error χt when
trying to control a natural system (e.g., some departure between fishing
quotas and harvest that actually takes place, etc.):

Dt = δ(Yt, χt) (12.5)
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Consequently, the general formulation of a controlled state-space sys-
tem is rather given by assembling Eqs. 12.3, 12.2 and 12.5 to yield the
conditional pdf [Zt+1|Zt, δ, θ] under the form:

Zt+1 = f(Zt, θ1, εt, δ(g(Zt, θ2, ωt, χt))) (12.6)

Here, we reconsider the decision analysis from the case study of [256],
and illustrate three issues:

1. Given a management rule δ that impacts the life cycle, what are
its consequences on the returns?

2. What can be said about the mid- and long-term behavior of the
system under strategy δ?

3. Considering K competing strategies (δ1, δ2, ..., δK), how to recom-
mend the “best” one?

12.2 Case study: Managing salmon harvest in the
Sée-Sélune River network

The estuary of two coastal rivers forming the Sée-Sélune River net-
work is located in Mount Saint Michel Bay (Fig. 12.2), where both rivers
flow into the eastern Channel. Their watersheds cover 1010 km2 and 459
km2 for the Sélune and Sée Rivers, respectively. These two small rivers
are colonized by Atlantic salmon (the whole stream for Sélune but only
the first 16 kilometers for Sée due to an impassable dam).

Angling takes place all along both river banks during spawning mi-
gration between March and October. Different management strategies
(limited fishing periods, quotas, etc.) have been tested during the last
20 years, with frequent changes, making it difficult if not impossible to
assess their consequences on the system in the past. Comparing the rel-
ative performance of alternative management actions is also useful for
future management plans. We hereafter develop a model to simulate
the response of the system under various management rules and try to
evaluate and compare their performances.

As in many cases, the management of salmon exploitation casts light
on conflicting objectives. Roughly speaking, from the point of view of
resource conservation, leaving the fish alone is a matter of preserving
natural heritage in the long term (several decades). From the point of
view of the exploitation, it is often rather a question of optimizing the
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FIGURE 12.2: The Sée-Sélune River network. The river sections col-
onized by A. salmon appear in a bold line.

captures over a much shorter term (a few years). This conflict between
conservation and exploitation is exacerbated by the rarefaction of the
biggest individuals, the two sea winter salmon (2SW) that are the most
sought-after fish but also the most precious spawners for the renewal of
generations.

12.3 Salmon life cycle to model the dynamics of the
resource

Figure 12.3 recalls the main stages of the A. salmon life cycle. The
dynamics are quite similar to the ones depicted in Section 11.3, although
most of the transitions were simplified to remain focused on the four main
life histories and most of the parameters have been considered constant
through time. Male and female are not distinguished and the date of each
phase is to be read in years starting from year t (i.e., the egg stage). D1,t
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and D2,t are the control variables standing for the harvest of one and
two sea-winter fish, respectively (detailed hereafter).

FIGURE 12.3: Atlantic Salmon cycle as a controlled Markov chain.
D1,t and D2,t are the control variables standing for the harvest of one
and two sea-winter fish, respectively.

12.3.1 Production of 0+ juveniles

The transition between eggs Wt and juveniles 0+t+1 , i.e., the recruit-
ment process, is modeled as a mixture between two different regimes, a
high recruitment success regime and a low recruitment success regime.
These two regimes are captured by two Ricker models (see Eq. (7.4),
page 151) with slope at the origin α1 (low) and α2 (high; α2 > α1) re-
spectively, but with the same parameter ruling the density dependence
β1 = β2 = β. We denote p the probability of being in the lower re-
cruitment regime (such as a flood washing out most of the eggs, or very
low flows in the tributaries that prevent the adults from reaching the
upstream zones of spawning). As in Chapter 7, an environmental noise
blurs the expected value provided by the Ricker model. Recourse is made
to a logNormal variable identically and independently distributed over
the years.

To sum it up, the number of juveniles 0+t+1 appears under the form
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of the mixture of two Ricker models with τt defining a Bernoulli indicator
variable taking the value 0 (low recruitment regime) with probability p
and 1 with probability 1− p (high recruitment regime):

0+t+1 = Wt × ((1− τt)α1 + τtα2)× e−βWt × eεt−σ
2

2

εt ∼ Normal(0, σ2)

τt ∼ Bernoulli(p)

(12.7)

Of course, as eggs and juveniles are integers, real outputs from
Eq. (12.7) are rounded to the nearest integer. From a probabilistic point

of view, since eεt−
σ2

2 is a logNormal random variable with expectation
E = 1, such a transformation W → 0+ provides in average an expected
number of juveniles:

E(0 + |W ) = W × ((1− p)α1 + pα2)× e−βW (12.8)

This equation for the expected recruitment is a Ricker model with pa-
rameters (α′, β′) such that{

α′ = ((1− p)α1 + pα2)

β′ = β
(12.9)

12.3.2 Smolts

After spawning at the end of year t, we assume all the adults die.
Juveniles 0+t+1 emerge in the spring of year t+1 from the spawning sites
where Wt eggs were deposited. The description of intermediate stages
(e.g., pre-smolts) is skipped here for the sake of simplicity, and survival
from 0+ to smolts is assumed to be 100%. Some juveniles will migrate
as 1+ Smolts in the spring of year t + 2. The remaining juveniles will
spend one additional year in the river and migrate downstream as 2+
Smolts in year t+ 3. Transition from 0+ Juveniles to Smolts is modeled
via a Binomial probability distribution with parameter γSm1 , to be
interpreted as the probability that a 0+ Juvenile survive and takes part
in first smolt run. Assuming a 100% survival rate during the additional
year in the river, the number of 2+ Smolts is obtained via a simple
balance equation:{

Sm1t+2 ∼ Binomial(γSm1, 0+t+1)

Sm2t+3 = 0 +t+1 −Sm1t+2

(12.10)
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12.3.3 Marine phase

As described in Section 11.3, salmon spend one or two winters at
sea before getting back to their native river to spawn. Survival at sea
and life history choices are simply modeled as Binomial distributions
with parameters (γ11, γ12, γ21, γ22). These parameters are interpreted
as return rates for each life history that incorporate both survival at sea
and life history choices:

Sp11t+3 ∼ Binomial(γ11, Sm1t+2)

Sp12t+4 ∼ Binomial(γ12, Sm1t+2)

Sp21t+4 ∼ Binomial(γ21, Sm2t+3)

Sp22t+5 ∼ Binomial(γ22, Sm2t+3)

(12.11)

12.3.4 A bivariate decision for angling

In Eq. (12.11) above, Sp11, Sp12, Sp21, and Sp22 denote the number
of adults homing back to their native river before they are exploited by
a professional fleet in the estuary or by anglers along the river. Here
we consider harvesting through catches of one or two sea-winter fishes.

Catches are to be understood as a bivariate vector Dt =

(
D1,t

D2,t

)
. No

matter the smolt age class from which they arose, fish that have spent
only one winter at sea (1SW fish or grilse), denoted R1 (see Fig. 12.3)
return mainly from June to August of year t:

R1,t = Sp11t + Sp21t

Out of these one sea-winter returning adults R1,t, anglers will take D1,t

and we denote by h1 the exploitation rate for 1SW fish:

h1,t =
D1,t

R1,t

Bigger fish (2SW fish or spring salmon) that have spent two winters at
sea, denoted by R2,t (see Fig. 12.3) return earlier in spring of year t:

R2,t = Sp12t + Sp22t

We denote D2,t the removals from the home water recreational fishery
and h2,t the corresponding exploitation rate:

h2,t =
D2,t

R2,t
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As detailed in Section 11.3, as the reproduction occurs after the fish-
ery, the number of eggs Wt spawned by the females of both age classes
in year t is calculated as:

W (t) =(R1,t −D1,t)× pf1 × fec1
+ (R2,t −D2,t)× pf2 × fec2

(12.12)

with pfi and feci denoting the proportion of females and their fecundity
in returns of sea-age i (i = 1 for grilse and i = 2 for spring salmon).
Overall, with values of pf1, fec1, pf2 and fec2 given in Table 12.1, the
average fecundity of a one spring salmon is worth a little more than three
times the fecundity of a grilse.

12.3.5 Assessing parameter values

The parameter values considered in this application are given in Ta-
ble 12.1. Parameters have been estimated from the retrospective analysis
of the data available for this river network ([256]). The full inference of
the state-space model follows the ideas developed in Section 11.3. It is ob-
tained by adding an observation layer 12.2 to link the dynamic submodel
12.3 to the available data in this system (20 years of observations). This
provides the posterior pdf of parameters, but here we only consider point
estimates (posterior means), i.e., simulations for the controlled Markov
chain given in Eq. (12.6) will be run as if perfect knowledge (no uncer-
tainty) were attainable for these parameters. However, it is worth noting
that most of the uncertainty in the dynamics stems from the stochas-
ticity of the recruitment process in Eq. (12.7) (random mixture of two
recruitment regimes and LogNormal distribution with variance σ2). The
90% confidence interval for a logNormal distribution (with standard de-
viation σ = 58% as given in Table 12.1) spans from 10% to 300% of its
mean! This gives the order of magnitude of the natural variability of the
natural cycle (given a hypothesized value of θ). Furthermore, Eq. (12.8)
indicates that its mean is ruled by p, the probability of a catastrophic
event. p is itself poorly known: with only twenty years of data, the poste-
rior distribution for p should remain fairly diffuse. That is why p happens
to be the component of parameter θ that is subject to the highest un-
certainty, and we only focus our attention on the uncertainty attached
to this component. In what follows, we perform a sensitivity analysis on
p, the most uncertain parameter of the system 12.6 considered in this
application. Up to now, we pick p = 0.155 as a representative value in
Table 12.1. We will further assess the sensitivity of the results to alter-
native values of p in {0.01, 0.09,0.13,0.155,0.19,0.24}.
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Parameters Value Unit

Adults → Eggs
pf1 0.34 Female ratio in 1SW
pf2 0.68 Female ratio in 2SW
fec1 4635 Eggs per female 1SW
fec2 7965 Eggs per female 2SW

Eggs → 0+
α1 0.0043 Ricker coeff. (good year)
α2 0.0012 Ricker coeff. (bad year)
β 7.75× 10−08 Ricker coeff.
p 0.155 Prob. of a bad year
σ 0.58 LogNormal std. deviation

0+ → Smolts
γSm1 0.89 0+ → 1+ Smolts

Smolts → Adults
γ11 0.13 1+ Smolts → 1SW
γ12 0.03 1+ Smolts → 2SW
γ21 0.22 2+ Smolts → 1SW
γ22 0.04 2+ Smolts → 2SW

TABLE 12.1: Point estimates for parameters used for the Salmon cycle
in the Sée-Sélune system.

12.4 Long-term behavior: Collapse or equilibrium?

For a given operating rule δ (e.g., fixed exploitation rates h1 and
h2 over years) and a known parameter vector θ, Eq. (12.6) defines the
transition for the homogeneous Markov chain [Zt+1|Zt, δ, θ].

We know from statistical theory that the long-term behavior of most
dynamic stochastic systems is to quickly forget their initial conditions
and to visit states Zt according to some limiting distribution known as
the ergodic distribution ([253],[297]). If there were such a stable distribu-
tion l(.) in the present case study, then starting from Zt, one (marginal)
draw at random from l(·), Zt+1, obtained via the (conditional) random
transition [Zt+1|Zt, δ, θ] could also be considered as a (marginal) draw
at random from l(·). Conversely to most deterministic cases, the steady
state will not be represented here by an equilibrium at a single point,
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FIGURE 12.4: Probability of extinction on a 1000 year period for the
Salmon Markovian cycle as a function of the exploitation rate. Solid
line: With overlapping generations; Dotted line: Without overlapping
generations (only 1+ smolts giving returns of 1SW).

but rather by this ergodic probability distribution l(·), to be interpreted
as the long-run frequency of visits of the possible state values of the
population.

Unfortunately in the present case study defined by Eqs. 12.7-12.12,
the states are countable (the stocks in each age class are integer quanti-
ties) and there exists a trapping state which precisely corresponds to no
individual left in any of the possible stages of the system. Indeed, even
with h = 0, the extinction of the population can be reached from any
state with a very small (but theoretically not null) probability: Imagine
that all Binomial stochastic links depicted in Fig. 12.3 provide zero as
draws! The mathematical fate of such system is therefore known to col-
lapse to that absorbing null state, and it can be mathematically proven
that this extinction asymptotic behavior is the only ergodic distribution
l(·).

From a given starting state, assuming a given rule δ of stock ex-
ploitation, one can estimate the probability of collapse over some period



Decision and planning 313

of the future by simulation, and this probability can obviously be high
for some strategies not leaving enough fish in the system to guarantee its
natural renewal. Figure 12.4 estimates this probability per millennium
as the ratio of collapsing trajectories under contrasted exploitation rates
(assuming h = h1 = h2). A thousand initial stocks have been launched
and followed over 1000 successive years for exploitation rates h varying
between 0 and 40%. But in the present case study, the influence of ini-
tial conditions is rather low, and Fig. 12.4 has been drawn with initial
conditions equal to the abundance at the reference points given in the
next section (see Table 12.2).

The very strong robustness observed for low and medium exploita-
tion rates, stems from the various life strategies of the Atlantic Salmon:
every year, three generations of animals (born 3, 4 and 5 years before)
contribute to the egg deposition, dampening spawner variability, since
catastrophic events occurring in the early stages of the cycle would then
reduce only one component of the four life histories that form the yearly
spawner runs. For the sake of comparison, we can assess the same col-
lapse probability by running simulations with a life cycle having only a
single life strategy (1+ Smolts giving one sea-winter fish) but keeping
all other parameters as in Table 12.1. As shown in Fig. 12.4, only by as-
suming reproduction without any mixing of generations, the extinction
probability increases by several orders of magnitude. This first simula-
tion exercise points out that keeping the variability in the life histories
portfolio is critical for long term conservation of the resource.

But rather than following this avenue of thought that questions the
concept of a sustainable population (see Reed [250] for instance), in what
follows, we will simply undertake stochastic simulations of the system
given by Eq. (12.6) to study the impact of various policies for the near
future, for instance the next century.

12.5 Management reference points

Parameter values from Table 12.1 are meaningful quantities for the
population dynamics, but do not speak much to the decisionmaker that
could be more interested in management reference points such as the
optimal spawning escapement or the optimal harvest rate as defined in
Section 7.3.2 of Chapter 7.

The approach described below is similar to the one detailed in Sec-
tion 7.3.2 except that the Ricker stock-recruitment model is included
within a stage-structured life cycle model. In order to suggest manage-
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ment reference points for the model in Fig. 12.3, let’s imagine a simplified
deterministic version of the stochastic system given by Eqs. 12.7-12.12.
When ignoring stochasticity and considering the expectation of all tran-
sitions, the equilibrium behavior of the system is driven by the shape of
the expectation of the mixture Ricker model in Eq. (12.8) with parame-
ters α′ and β′ defined in Eq. (12.9). Then, on average, W eggs spawned
will produce <(W,α′, β′) 0+ juveniles, with

<(W,α′, β′) = W × α′ × e−β
′W (12.13)

Now how many eggs will these 0+ juveniles spawn once they have
completed their life cycle? A number N of juveniles will produce on av-
erage N × Ψ eggs in the future, where Ψ is a coefficient representing
the average number of eggs that will be spawned when averaging over
all possible life histories from juveniles to spawners (see [50] for more
detailed considerations on life cycle). For a harvested population with
exploitation rates h1 and h2 of 1SW and 2SW fish, respectively, Ψ de-
pends on h1, h2. Given the life cycle in Fig. 12.3 and parameters in Table
12.1: 

Ψ(h1, h2) = (1− h1)×Ψ1 + (1− h2)×Ψ2

Ψ1 = (γSm1 × γ11 + (1− γSm1)× γ21)× pf1 × fec1
Ψ2 = (γSm1 × γ12 + (1− γSm1)× γ22)× pf2 × fec2

Because our model does not consider any inheritance of life histories, an
egg is worth an egg whatever the life history of the spawners they are
coming from. Thus, the significant harvest rate in terms of population
dynamics is the weighted average of h1 and h2:

h =
h1 ×Ψ1 + h2 ×Ψ2

Ψ1 + Ψ2

and
Ψ(h1, h2) = (1− h)× (Ψ1 + Ψ2) (12.14)

Now, given the eggs → 0+ juveniles Ricker relationship in
Eq. (12.13) and the average 0+ → eggs coefficient in Eq. (12.14), the
average number of eggs that will be produced when W eggs are spawned
is

<(W,α′, β′)× (1− h)× (Ψ1 + Ψ2).

This defines an eggs→ eggs Ricker average relationship with parameters
αeggs and βeggs that now depend upon the exploitation rate h:{

αeggs(h) = α′ × (1− h)× (Ψ1 + Ψ2)

βeggs = β′
(12.15)
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The equilibrium condition of such an eggs → eggs relationship cor-
responds to a quantity of eggs such that:

W (h) = αeggs(h)×W (h)× e−βeggsW (h) (12.16)

Reasoning as in Section 7.3.2, special reference points (W ∗, h∗, R∗)
can be obtained (see Table 12.2). For instance, the optimum exploitation
rate h∗ yielding the maximum sustainable yield (see Eq. (7.7), page 155),
is the solution of:

h∗ − log(1− h∗) = log(αeggs(h
∗))

The corresponding egg stock at maximum sustainable yield is such that
W ∗ = W (h∗) calculated from Eq. (12.16). The corresponding expected
returns for adults are respectively R∗1 for grilse and R∗2 for spring salmon:

R∗1 =
W ∗

Ψ1 + Ψ2
× (γSm1 × γ11 + (1− γSm1)× γ21)

R∗2 =
W ∗

Ψ1 + Ψ2
× (γSm1 × γ12 + (1− γSm1)× γ22)

Reference Point Value
Ψ1 + Ψ2 389 eggs per 0+ juvenile
α′ 0.00456
β′ 7.78 · 10−08

W ∗ 3.4 · 106 eggs
h∗ 0.265
N∗ 8 759 0+ juveniles
R∗1 1 225 1SW spawners
R∗2 272 2SW spawners
R∗ = R∗1 +R∗2 1 497 spawners
S∗ 1 100 spawners

TABLE 12.2: Reference points for the Salmon cycle in the Sée-Sélune
system.

As shown in Appendix C, these reference points are meaningful quan-
tities in a scale understandable by the system manager, but do not cor-
respond to remarkable features of the stochastic behavior of the system
dynamics, such as the mean or the median of some equilibrium distribu-
tion.
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12.6 Management rules and implementation error

In Chapter 5 of Prévost et al. [238], Hilborn and Walters suggested
a general linear framework for formulating harvest strategies:

Dt = α+ β ×Rt
Of course, the catch Dt must be positive and cannot be greater than
the total returns Rt. In what follows, we focus on three classical types
of management rules:

1. Fixed harvest rate h∗: β = h∗; α = 0,

2. Constant catch C∗: β = 0, α = C∗,

3. Constant escapement S∗ : β = 1, α = −S∗.

We know from optimal control theory (see simple models in Ap-
pendix C) that constant escapement policies allow for the maximum
cumulated returns under a wide family of cost functions. In real life,
however, overlapping generations and impossibility to reliably or fully
implement those control rules in practice (implementation uncertainty)
may invalidate these theoretical results. Indeed, in practice, management
authorities have to set their management rules under unknown returns
of adults of many age classes and noninstantaneous records of catches.
Also, one of the main tools the manager has in hand for this recreative
fishery is the opening and closing dates of the fishery. In the case of
migratory fishes like salmon, opening and closing dates have to be con-
sidered in interaction with the migration phenology of 1SW and 2SW
spawners.

Let’s first assume that the weekly rates of salmon returns (r1,w, r2,w)
are invariant between years (using indices w for week, i = 1 for grilse
and i = 2 for large salmon). The cumulative return rates shown in Fig.
12.5 have been obtained from a long series of observations collected on
all the nearby sites of the region. A multinomial trial can mimic the
weekly return variability between years. Each cohort of returning adults
(R1,t, R2,t) will be split within the weeks as:

(Ri,t,1, ...,Ri,t,w, ..., Ri,t,52)

∼Multinomial(Ri,t, (ri,1, ..., ri,w, ..., ri,52))
(12.17)

In the remainder of this section, we take for granted that, under the
present fishing pressure, the probability that a one-sea winter (respec-
tively two-sea winter) returning spawner caught is p1 = 0.05 (respec-
tively p2 = 0.051) every week of the fishing period. As a consequence,
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fixing the opening and closing dates of the fishery controls the harvest
rate on the returning stock. We rely on this hypothesis to illustrate how
Monte Carlo simulations can help evaluate 10 alternative management
policies (in Table 12.3) by accounting for some specificities of the case
study.

FIGURE 12.5: Cumulative return rates for one- and two-sea winter
salmon.

• Fixed exploitation rate policies

Fixed exploitation rate policies (but with implementation noise)
can be controlled by the opening and closing dates of the fishery,
wi,open and wi,close, that may differ for grilse i = 1 and large salmon
i = 2. For any week w in between the opening and closing dates,
captures for grilse C1,t,w and for large salmon C2,t,w can be mod-
eled as Binomial trials in the escapements (E1,t,w−1 and E2,t,w−1)
from the previous weeks augmented by the incoming adults at cur-
rent week w :{

Ci,t,w ∼ Binomial(Ei,t,w−1 +Ri,t,w, pi)

Ei,t,w = Ei,t,w−1 − Ci,t,w +Ri,t,w
(12.18)
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Policy wopen w1,close w2,close

Constant harvest rate policies E(h1) E(h2) E(h)
δ1 - - - 0% 0% 0%
δ2 March 15 June 15 June 15 1% 28% 22%
δ3 March 15 July 31 July 31 12% 46% 38%
δ4 March 15 Aug. 24 Aug. 24 26% 55% 49%
δ5 March 15 Oct. 31 Oct. 31 50% 71% 66%

Floor policies TAC1+2 TAC2

δ6 March 15 Oct. 31 Oct. 31 397 −
δ7 March 15 Oct. 31 Oct. 31 200 −
δ8 March 15 Oct. 31 Oct. 31 397 72
δ9 March 15 Oct. 31 Oct. 31 200 40

Fixed escapement policies TAC1+2 TACnew1+2
δ10 March 15 Oct. 31 Oct. 31 397 Readjusted

TABLE 12.3: δ1-δ5: Fixed exploitation rate policies sketched by fixing
the opening and closing dates of the fishery. Cumulated harvest rates
h1 and h2 are calculated as % of fish removed, and harvest rate h is
calculated as % of eggs removed. δ6-δ9: Floor policies defined by the
opening and closing dates of the fishery and additional Total Allowable
Catch TAC, for both sea-age classes (TAC1+2) or specific for 2SW fish
(TAC2). δ10: Fixed escapement policy defined by a rule for TAC adjust-
ment at week 26 (Eq. (12.20)).

In the past, management authorities often applied the same pol-
icy to the two types of spawners, setting w1,open = w2,open and
w1,close = w2,close. Table 12.3 gives the opening and closing dates
of the fishing season under various possible strategies that have
already been tested in the past. They range by increasing exploita-
tion rates (computed by % of eggs removed) between rule δ1 corre-
sponding to the absence of exploitation (indeed we allow only one
week of harvest to mimic poaching) and rule δ5 corresponding to
the largest fishing period, between week 12 (March 15) and week
43 (October 31). Making here the difference between grilse (i = 1)
and larger spring salmon (i = 2), one can evaluate the effective



Decision and planning 319

exploitation rates at the end of the fishing season as:

hi,t =

wi,close∑
w=wi,open

Ci,t,w

Ri,t

Although the corresponding rules are called fixed exploitation rate
policies, implementation randomness stemming from randomness
in return rhythms (Eq. (12.17)) and in catch rates (Eq. (12.18))
renders catches and harvest rates hi,t random.

• Floor policies

Floor policies correspond to variable harvest rates as their catches
are limited by total allowable catches (TAC). In addition to the
opening and closing dates wi,open and wi,close of the fishery, one
introduces a total allowable catch TAC1+2 for spawners. Once this
amount is reached, the corresponding fishing season is closed. Im-
plementation of floor policies assumes that anglers declare their
catches without cheating to the management authority, as required
by fishing regulations concerning wild Salmon on the Sée-Sélune
rivers.

In what follows, we consider policy δ6 as trying to comply to the
Ricker sustainable stock by controlling catches at the level of the
maximum sustainable yield

TAC1+2 = (R∗1 +R∗2)× h∗

= 397 salmon

and policy δ7 that considers a less optimistic total TAC1+2 = 200
salmon.

In the past, fishing authorities often apply variant policies by con-
sidering an additional specific TAC2 for the most sought after
spring salmon. δ8 and δ9 are similar to δ6 and δ7, respectively,
except that an additional TAC2 for spring salmon has been set at
72 (= R∗2 × h∗) and 40 fish, respectively.

• Fixed escapement policy

Fixed escapement policies imply that the catches are adapted each
year to ensure that the spawning escapement at the end of the
fishing season matches as close as possible the spawning target S∗.
In theory (e.g., without any implementation bias and uncertainty),
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they are defined by the following rule:{
R1,t +R2,t < S∗ ⇒ C1,t = C2,t = 0

R1,t +R2,t > S∗ ⇒ C1,t + C2,t = (R1,t +R2,t)− S∗
(12.19)

However, given that the fishery can only be managed through fixing
the opening and closing dates and that the total returns R1,t+R2,t

remain largely unknown at the time of the decision (even if the
catches have been declared), fixed escapement strategies remain
largely inapplicable as such in the present application.

The rules that were enforced after 2003 on the Sée-Sélune sys-
tem consist of adapting the catches to the interannual variations
of returns by gaining information about the total return during
the first part of the fishing season. Early in the season, a ten-
tative TAC∗1+2 is set (mostly equal to the maximum sustainable
yield (R∗1 + R∗2) × h∗). Then the cumulated catches at week 26
C1,t,1:26 + C2,t,1:26 are compared to TAC∗1+2. If they are greater,
the fishing season is immediately closed. Otherwise, a readjust-
ment of the TAC is eventually made and the closing date will
be decided later when the readjusted TAC is reached. The read-
justment rule is based on the comparison between the estimated
spawning escapement at week 26 (Ê26) and the optimal spawning
escapement S∗ = (R∗1 +R∗2)×(1−h∗). Given the cumulated return
rhythm in Fig. 12.5 and the weekly exploitation rate (p1 = 0.05
and p2 = 0.051), it is easy to show that cumulated catches at week
26 should represent on average 20% of the cumulated returns at
the same date. One can therefore estimate the total escapement at
week 26 from the catches:

Ê26 =
1− 0.20

0.20
· (C1,t,1:26 + C2,t,1:26)

Management rule δ10 is based on the principle that the readjusted
TAC, denoted TACnew1+2 should be reduced if Ê26 is low and could

eventually be increased if Ê26 is high with regards to the reference
S∗ :

Ê26 < 0.5× S∗ ⇒ TACnew1+2 = 0.66× TAC∗1+2

0.5× S∗ < Ê26 < S∗ ⇒ TACnew1+2 = TAC∗1+2

S∗ < Ê26 < 1.5× S∗ ⇒ TACnew1+2 = 1.5× TAC∗1+2

1.5× S∗ < Ê26 ⇒ TACnew1+2 = 2× TAC∗1+2

(12.20)
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12.7 Economic model

12.7.1 Cumulative discounted revenue

In this chapter, it is convenient to adopt the fiction of a sole owner,
who may be imagined as the management authority, searching for a sat-
isfying management rule. This implies that the single stakeholder adopts
the same objective as a public social manager attempting to maximize so-
cial welfare, the stock being an open access fishery resource. Few present
day naturally renewable resources satisfy these idealized conditions com-
pletely. Additionally, we assume the objective J(δ, θ) can be quantified as
the expectation of the sum (defined in a long period of time t = 1, ..., T )
of discounted revenues Lt (Dt, Zt) depending both on the unknown nat-
ural resource Zt and the harvest Ct governed by the decision Dt under
the management rule δ from Eq. (12.5):

J(δ, θ) = EZ

[(
T∑
t=1

e−λ·(t−1) × Lt(Dt, Zt)

)
|θ

]
(12.21)

Note that Eq. (12.21) is written using conditioning by θ explicit to keep
in mind that parameters θ are to be known to simulate the dynamics
of the resource over the period t = 1, ..., T . The parameter λ ∈ θ in
the objective function J is the discount factor detailed below. In what
follows, values of the objective function were calculated by summing over
100 years (T = 100).

12.7.2 Revenue per time period

The discount factor λ allows for intertemporal trade-offs. We will
also use it here to weigh the conflicting objectives between maximiz-
ing harvest in the short term and ensuring conservation of the natural
resource in the long term. A large value of λ in Eq. (12.21) will favor
short-term income whereas a low value of λ will give more weight to
long-term income and thus promotes more conservative harvest rules
that preserve escapement to ensure the renewal of the resource. For nu-
merical applications, we take λ = 0.03, which is commonly considered
in civil engineering, yielding an equivalent discounted return period of
∞∑
t=1

e−λ(t−1) ≈ 34 years. The sensitivity of the results can also be assessed

by considering lower (λ = 0.01) and higher (λ = 0.07) discount rates.
One can find in the economic literature many possible expressions of
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the benefit from the catch. For the case study, we will simply assume an
expression under the form

Lt (Dt, Zt) =q1 × (h1,t ×R1,t) + q2 × (h2,t ×R2,t)

− q3 × (h1,t + h2,t)
(12.22)

as if q1 and q2 were the prices (independent from the resource) obtained
when selling grilse and large Spring salmon on the market and q3 was
a constant marginal investment cost for a unit fishing effort. Of course,
such assumptions of a hypothetical market and constant prices are highly
specialized but allow for a simple expression. Much more sophisticated
expressions making recourse to utility theory can be found in [7], [94],
[133], [165], [180], [289]. For the numerical applications of the next sec-
tion, to take into account that Spring salmon are the most sought after,
both for conservation and sport, we try q3 = 0, q1 = 1, q2 = 10 (Spring
salmon catches highly valued) and q3 = 0, q1 = 1, q2 = 2 (Spring salmon
catches only moderately rewarded).

12.7.3 Uncertainties

The expectation in Eq. (12.21) is to be taken on all future revenues
that are random quantities due to the stochastic nature of the dynamic
system (Eq. (12.6)). For the application in this chapter, the main source
of stochasticity in the salmon cycle stems from the stock-recruitment
submodel given by Eq. (12.7). We used the standard deviation σ = 0.58
for the logNormal randomness in the recruitment. Up to now, we have
worked within a perfect information situation, i.e., the estimations of
Table 12.1 are adopted as true values for the components of the param-
eter θ. But after a Bayesian analysis of the data collection, we assume
that judgmental uncertainty about θ is encoded by a pdf, noted as usual
[θ]. Therefore the optimal policy should result from the integration of
Eq. (12.21) over the pdf [θ] :

J (̄δ) = Eθ [J(δ, θ)] =

∫
θ

J(δ, θ, λ)× [θ]× dθ

= Eθ

[
EZ|θ

(
T∑
t=1

e−λ·(t−1) × Lt(Dt, Zt)

)]
(12.23)

In this application, however, instead of considering a pdf [θ] and
evaluating Max

δ
J (̄δ), we assess the sensitivity of δ∗(θ), the argument of

Max
δ
J(δ, θ), to alternative values of p, the most uncertain component of

the vector parameter θ, as explained in Section 12.3.5.
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12.7.4 Other indicators of performance

In addition to the criterion J (̄δ) to be optimized, indicators of perfor-
mance are quantities designed to capture the key concerns about yield,
variability of the stock, average number of spawners and sustainability
of the population. Simply by iterating Eq. (12.6), it is easy to obtain the
distributions for:

• Number of eggs and juveniles;

• Number of spring salmon and grilse returning for spawning;

• Catches of spring salmon and grilse.

We extracted meaningful statistics (expected values, variance, quan-
tiles, etc.) from each quantity of interest. We also focused on the average
harvest of spawners (particularly spring salmon) and their variability, the
average stock size and its variance, as well as on probability of extinction,
all calculated over T = 100 years.

12.8 Results

Simulations over 100 years were performed given the management
policies δ1−δ10 and the previous hypotheses. Below are summarized the
main results.

12.8.1 Extinction probabilities

Each line of Table 12.4 gives the estimated probability of extinction
resulting from adopting each of the 10 policies.Clearly, for all strategies,
extinction becomes more likely with the various values for the probability
p of a catastrophic recruitment (from left to right). Because of the early
closure of the fishing season, some advantage is given to constant harvest
rate policies δ2-δ3. Policies δ4 and δ5 must be discarded because they
authorize harvest rates that are too high and could lead to the mid-term
extinction of the population. Floor policies also give quite high extinction
probabilities, although some advantage can be given to δ7 and δ9 that
both have more precautionary TAC. The constant escapement policy δ10

generates only the very small probability of extinction even with high
values of p.
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Policy p = 0.01 p = 0.09 p = 0.13 p = 0.155 p = 0.19 p = 0.24

Constant harvest rate policies
δ1 0 0 0 0 0 0
δ2 0 0 0 0 0 0
δ3 0 0 0 0 0 0
δ4 0 0 0 0 0 0.01
δ5 0 0.03 0.03 0.12 0.26 0.61

Floor policies
δ6 0 0.97 1 1 1 1
δ7 0 0.3 0.61 0.77 0.91 0.96
δ8 0 0.72 0.8 0.95 0.97 1
δ9 0 0.05 0.16 0.26 0.45 0.79

Fixed escapement policies
δ10 0 0 0 0 0.01 0.07

TABLE 12.4: Extinction probabilities estimated under various policies
and for a range of values for the probability p (occurrence of a catas-
trophic recruitment).

12.8.2 Indicators of performance

The detailed features in the performance indices have been computed
for the value of p = 0.155 and are illustrated in Figs. 12.6 and 12.7.
Policy δ1 (no exploitation except a little poaching) provides the most
important average adult run, with a large variability for both grilses
and spring salmon (see Fig. 12.6). Increasing the harvest rate (δ1 →
δ5) yields a decrease in the mean escapement together with an increase
in the between-years variability of the returns. Strategy δ5 strongly ex-
ploits both grilses and Spring salmon (Fig. 12.7), leaves the smallest
escapement for both sea-age classes and triggers a strong variability in
returns. Mean catches decrease progressively when increasing the harvest
rate (Fig. 12.7) but mean catches seem to reach a maximum for δ2-δ3
(grilses) or δ3 (spring salmon) and then decrease to 0 for δ5, which is a
typical response for population dynamics governed by a density depen-
dent production function like the Ricker stock-recruitment relationship.
Fixed quota strategies have weak performances, except δ9 which allows
for a better escapement of Spring salmon (TAC2=40 fish). The fixed
escapement strategy δ10 produces good results in terms of catches and
returns and low extinction probability (Fig. 12.7).
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FIGURE 12.6: Coefficient of variation of returns as a function of the
mean escapement (calculated with p = 0.155) for (a) grilse, and (b)
Spring salmon.

12.8.3 Cumulated benefits

Table 12.5 shows the cumulated benefits calculated with discount rate
λ = 0.03 for each of these strategies under increasing values for the main
unknown p and high reward of spring salmon catches. We note that in-
creasing frequencies of catastrophic years for the stock-recruitment yield
degrade the overall performance but does not significantly change the
relative ranks of the competing strategies. Therefore, averaging over p
to compute the expected integrated benefit would not modify the results
obtained with p = 0.155. Strategies δ3 and δ4 (constant exploitation rate
with 31st of July and 24th of August as a closing dates for the fishing sea-
son) and δ10 (escapement policy with cautious TAC and reevaluation)
seem to overcome the other competitors when the reward for Spring
salmon is high (q1 = 1, q2 = 10). These rankings remain robust when
considering the other discounting factors λ = 0.01 and λ = 0.07 (figures
not shown here).

As a conclusion of this decision analysis, fixed harvest rate policies
δ3 or δ4 would be in practice the best choice because of their good
performance and their ease of implementation with only the closing date
to be enforced.
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FIGURE 12.7: Exploitation rate (Captures versus Returns; calculated
with p = 0.155) for (a) Spring salmon, and (b) all sea-age classes in the
spawning run.

12.9 Discussion

The aim of this chapter was to illustrate how stochastic simulations
can be used to compare harvesting management strategies through the
eyes of the specific case of A. salmon recreational fisheries. We hope that
the statistical models and methods exposed in this book could provide
useful tools for people diving in the stream of research needed to im-
prove the population ecology and management. Obviously, modeling of
probabilistic tools as exposed here is only one of the issues in the much
wider problematic natural resources and ecosystems management. Ad-
mittedly, our coverage of the topic of HBM has been far from complete.
To go many steps further, the interested reader should now work and
strengthen his skills in various important domains: (i) There are compu-
tational issues to develop MCMC algorithms of his own. There comes a
time when relying on WinBUGS for inference is no longer satisfactory.
Among others, books like [2], [164] and [261] can help writing R programs
so as to understand MCMC techniques in depth by practice. However
R may be too slow, and when requiring minimal run-time support for
large dataset modeling, the experienced analyst will turn to faster pro-
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Policy p = 0.01 p = 0.09 p = 0.13 p = 0.155 p = 0.19 p = 0.24

Constant harvest rate policies
δ1 0.2 0.2 0.2 0.2 0.2 0.2
δ2 10.8 9.2 8.5 7.9 7.2 6.1
δ3 20.5 16 14.1 12.3 10.7 8.5
δ4 19.1 12.4 10.5 8.9 7.2 5.0
δ5 2.3 1.3 1.1 1 0.7 0.5

Floor policies
δ6 12.6 8.2 6.4 5.1 4.2 2.9
δ7 10.5 9.3 8.3 7.7 6.6 5.3
δ8 13.2 10.8 9.6 8.2 6.9 5.2
δ9 6.8 6.8 6.7 6.5 6.3 5.4

Fixed escapement policies
δ10 16.6 11.3 9.1 7.6 6.2 4.1

TABLE 12.5: Cumulated benefits under sustainable policies and for
a range of values for the probability p (occurrence of a catastrophic
recruitment) with a discount rate λ = 0.03 and a strong reward for
spring salmon (q1 = 1, q2 = 10).

gramming languages, like C. (ii) Ecological data are nowadays mostly
georeferenced and we see an explosion of spatial statistical research in
environmental studies with considerable computational demands. Such
statistical models try to express the idea that nearby observations tend
to be more alike. Studying [91], [13], [18] and [114] provides excellent en-
try points in the corresponding literature. (iii) Time also plays a major
role in ecological processes and getting background knowledge in multi-
variate random time series and non linear system dynamics reveals most
fruitful when elaborating efficient models in ecology. Books that we find
particularly helpful in understanding such a perspective are [65], [67]
and [76].

Below we conclude with some bibliographic notes to enlarge the con-
cepts of decision analysis illustrated in this chapter.

12.9.1 Optimum solution?

We have used stochastic simulation to compare competing policies
and pick the best one. These realistic policies are submitted to imple-
mentation randomness but consist of rules easily enforced (opening and
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closing dates for the fishing season, total allowable catches, etc.). Of
course, a better solution can certainly be found outside this limited pre-
fixed set of potential strategies. There are advanced mathematical tech-
niques ([108], [291]) to obtain the optimal refined solution of Eq. (12.21):
dynamic programming ([23]) is the most popular procedure to derive a
closed loop feedback control (i.e., a management rule) for discrete time
models ([24]). Appendix C makes recourse to this backward recursion
algorithm to show that escapement policies are optimal in the case of a
stochastic Ricker model with nonoverlapping generations. Walters [308]
applied this procedure to obtain optimal harvest curves for the Skeena
River Sockeye and suggested to approximate them by simplified strate-
gies not requiring close monitoring of escapement during the fishing sea-
son which are difficult to apply in the field and are error prone. Opti-
mal control application in fisheries include [22], [59], [61], [62]. But an
exponential computational burden occurs as soon as system states be-
come multidimensional (the so-called curse of dimensionality in dynamic
programming) and various ad hoc approximation methods must be in-
vented (see for instance [146]). This computational task brings trouble
when searching for the optimal solution as soon as one considers age-
structured populations like the Atlantic salmon’s cycle of this chapter, or
multispecies models mimicking more complex representations of ecosys-
tems (for instance a marine food web with prey, predators, competitors
and planktonic organisms) not addressed in this book.

12.9.2 Expected utility

12.9.2.1 Decisionmakers’ behavior

The key feature of simulation is to consider all possible futures and
evaluate the expected benefit of a policy by weighting the return of
each scenario by its probability of occurrence. Furthermore, it makes no
difference whether these probabilities are representing judgmental un-
certainty about possible values of parameters or natural stochastic vari-
ations of unknowns. The principle that decision makers behave in risky
situations as optimizers of Eq. (12.21) and that their state of knowl-
edge can be described by the means of a random variable is grounded
on the five mathematical axioms of Pratt et al. [235]. During the last
50 years, experiments on behavior under risk have exhibited a series
of “paradoxes”([4]; [5]) mostly linked to discrepancies between observ-
able rationality of a decisionmaker under risk ([231]) and the expected
utility optimization principle. New models of behavior have been devel-
oped ([186], [243]; [301]), trying to take into account these other types
of rationality under risk ([212]).
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However, many reasons advocate to keep the rationale associated
with Eq. (12.23), since:

1. It agrees with common actuarial practice for public works;

2. It guarantees an always positive value of information ( i.e., a better
state of information can never worsen the decision in a sequential
setting);

3. It works coherently within the Bayesian statistical framework ([26])
for ecological modeling developed in this book.

12.9.2.2 Robustness

In the Salmon case addressed in this chapter, the ranks of the com-
peting strategies do not change significantly when p (the probability of
bad recruitment) varies. Therefore the recommended policies are quite
robust with regards to the choice of the prior pdf encoding the uncer-
tainty of this parameter. In general, the influence of priors should be
carefully checked. The techniques to correctly “elicit” experts’ prior be-
liefs, i.e., to encode their knowledge as probabilistic judgements (see
[155]) are becoming a mature field of research at the interface between
psychology and probability (see [223]).

Symmetrically, the influence of the criterion to be optimized should
also be examined with great care. In this case study, changing the dis-
count factor λ within reasonable ranges does not change the decision for
the family of cost functions from Eq. (12.21) but other utility-based cri-
teria – including a deformation of costs and benefits to take into account
explicitly risk aversion– such as in [158] or [256] could also have been
tried. Theoretical work have shown some robustness of optimal decisions
with regard to a relatively large class of loss functions ([1]). All this study
suggests that the main results from this risk analysis can be used with
reasonable confidence for monitoring the Atlantic salmon cycle, even if
important efforts remain to be done to understand the stock recruit-
ment variations and to improve our knowledge about environmental and
implementation noises.

12.9.3 Viability theory

Viability models do not lead to optimizing a time-related criterion as
in Eq. (12.23), but instead try to encompass all viable evolutions of the
system in Eq. (12.6). As detailed in Delara and Doyen [83], viable here
means being able to satisfy at each future time step specified constraints,
such as keeping the spawning stock biomass above some reference point
or restricting the fishing effort so that the fish mortality remains below
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a threshold. Viability theory is based on the formal mathematical treat-
ment given in Aubin [10] and [11]. The set fulfilling constraints includes
the viability kernel, a key notion of the theory. The viability kernel con-
tains all initial states from which at least a sequence of decisions can
drive a trajectory that never violates the constraints. Stakeholders have
to adjust their requirements so as to check that the viability kernel is a
nonempty subset, allowing for a workable multi-criteria decision aid. This
mathematical notion provides an interesting quantitative and formal link
between sustainability and stewardship issues, decision and precaution
problems in the management of natural resources. Its application con-
cerning fisheries, is advocated ([80]) and developed ([25], [84], [191]). One
promising outcome of viability theory is that sustainable yields need not
be defined species by species (contrarily to current practice) but may
jointly depend on the whole ecosystem dynamics, in the spirit of the
Ecosystemic Approach to Fisheries ([78]; [85]; [110]; [232]).

12.9.4 More than one player in the field

Real life no longer holds the assumption of a sole owner, working
for the common welfare by making trade-offs between long-term conser-
vation and myopic catches. Many actors interplay at various scales but
overexploitation of the resource is more often the rule than the exception.

12.9.4.1 The tragedy of commons

Diamond [90] points out five factors triggering societal collapse: dam-
age to the environment, climate change, hostile neighbors, decay of trade
partners and cultural beliefs. Fisheries provide a worldwide damage to
the environment from present societies. It can be understood as a clas-
sic example of the tragedy of the commons ([131]). The access to the
resource is open, it is difficult to establish and to enforce rights to fish
in the sea. Therefore the selfish rule of capture prevails. Why should a
fishing boat not try to maximize its harvest today, knowing that other
competitors might benefit from its efforts to maintain abundance tomor-
row?

12.9.4.2 Cooperation

In addition to playing against nature as in optimal control theory, the
many players involved in the search for fish play one against another.
Recourse to game theory ([217]) can help to better understand such
behaviors. Some economists argue that the waste associated with this
problem could be alleviated by privatizing the commons, that is, creating
individual private property rights for common-pool resources. Optimum
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regulation is then equivalent to the search for a standard general eco-
nomic equilibrium. Other game scientists think that fish exploitation
rather belong to a family of problems known as the iterated prisoner’s
dilemma. Axelrod [12] formalized this problem by the means of a tour-
nament of computer algorithms simulations. He discovered that when
encounters of many players are repeated over a long time period, selfish
strategies tend to do very poorly in the long run while more altruistic
strategies work better. Practical experiments tend to prove that such a
cooperation emerges when the group is small enough so that everyone
can known many other members of the community. In the fisheries con-
text, such evolution toward fruitful cooperation behavior may occur by
learning from experience and by self-regulation of the group of fishers.
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Appendix A

The Normal and Linear Normal
model

The two parts of this appendix can help understand the detailed calcu-
lations for Chapters 3, 6 and 7:

• The first part describes the Student distributions (centered and
noncentered). They have also received the name of T-distributions.
This distribution appears in many problems related to Normal
models such as the salmon fish farm example (Chapter 3), the Thiof
abundance ANCOVA of Chapter 6 and the regression approach in
the stock/recruitment model in Chapter 7.

• The second part recalls the essentials of the Bayesian approach for
the linear Gaussian model and its convenient priors.

A.1 Centered and Noncentered Student distribu-
tions

A.1.1 Student distributions as a ratio

Let U be a Gaussian random variate N(0, 1) and Y a Gamma random
variate with a unit scale parameter Y ∼ Gamma(a, 1). We take U and
Y independently, so that the joint distribution reads:

[u, y] ∝ ya−1e−y−
u2

2

We consider the random variable T , a function of U and Y such that:

t =
√
a
u
√
y

Changing variables, from (u, y) to (t, y) with Jacobian D(u,y)
D(t,y) =

333
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y/a, leads to the joint distribution of T and Y :

[t, y] ∝ ya−1/2e−y(1+ t2

2a )

The marginal distribution for T is obtained by integrating y out:

[t] = const× 1

[1 + t2

2a ]
2a+1

2

The constant is such that
∫

[t]dt = 1, so that:

[t] =
Γ( 2a+1

2 )

Γ(a)
√

2aπ

1

[1 + t2

2a ]
2a+1

2

(A.1)

Equation (A.1) for the pdf of T is referred to as dStudent(t, ν), the Stu-
dent distribution with ν = 2a degrees of freedom. It exhibits a symmetric
distribution with variance defined only for a > 1

V(T ) =
a

a− 1
.

This distribution can be extended to the case when the numerator of
the ratio defining T is a Normal variate centered on δ, i.e., U ∼ N(δ, 1)
(with U and Y remaining independent). In this case, [t] is said to follow
a decentered Student distribution with δ as a decentered parameter.
The analytical expression for the decentered Student pdf does not write
nicely but it can be computed by all statistical packages and, of course,
generating a decentered Student random variable is easily programmed
in any scientific software language.

A.1.2 Student distributions as a mixture

There is another way to generate Student distributions ; the most in-
teresting results are obtained by conditioning. Consider Y again Gamma
distributed with a unit scale parameter

Y Gamma(a, 1)

but the random variable U is now conditionally Normal with precision
(inverse of the variance) y:

U Normal(0, y−
1
2 )

If we look for the marginal pdf of U , we write for [U, Y ] formula
very similarly to the previous section, and it is straightforward to show
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that the rescaled version of U, T =
√
aU is marginally Student dis-

tributed with ν = 2a degrees of freedom. Consequently, one can obtain
the marginal pdf of U :

[u] = [t]
dt

du
= dStudent(

√
a(u− δ), 2a)×

√
a

A.1.3 Multivariate Student distributions

The multivariate Student-distribution for a random vector t with
dimension p, depends on the following parameters:

• ν: degrees of freedom

• Σ: variance-covariance matrix

This pdf is the multivariate extension of the same Gamma-Normal
mixture following the very same conditional construction in two steps:

• First consider Gamma distributed with a unit scale parameter Y ∼
Gamma(a, 1)

• Given Y = y, take the random variable U as a multinormal distri-
bution with precision matrix y × Σ−1:

U simMultiNormal(δ,
Σ

y
)

Marginally, the rescaled version of U , T =
√
a(U−δ) is a multivariate

Student distribution with ν = 2a degrees of freedom. The probability
density function [t|ν,Σ] =dmStudent(t,Σ, ν) is obtained as the multi-
variate generalization of Equation (A.1):

[t|ν,Σ] = (νπ)−
p
2

Γ(ν+p
2 )

Γ(ν/2)
√
|Σ|

[1 +
t′Σ−1t

ν
]−

ν+p
2 (A.2)

and
[u|δ,Σ, a] = dmStudent(

√
a(u− δ),Σ, 2a)× a

p
2

The variance-covariance matrix ν
ν−2Σ of the multivariate Student ran-

dom vector is only defined for ν > 2.
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A.2 The linear Normal regression model

A.2.1 Likelihood

Consider n independent Normal random variables Yi with the same
variance parameter σ2 but different expectation depending linearly on
p covariates Xij (with 1 ≤ j ≤ p). We define Y as the vector whose
components are the n quantities Yi (with 1 ≤ i ≤ n) and X the model
matrix with n row and p columns. The first column is commonly made of
1′s (constant effect) and the other columns for j = 2 to p are obtained by
taking the n coordinates of the remaining explanatory variables. With
theses notations, the expectation vector is expressed as:

µ = E(Y ) = Xβ

with β =


β0

β1

...
βp

, a p -dimension vector. This model belongs to the

exponential family and is parameterized by p+1 unknowns, θ = (β, σ2).
The likelihood is thus obtained, using matrix operations:

[Y |X, θ] =
1

(
√

2πσ)n
exp(− (Y −Xβ)′(Y −Xβ)

σ2
)

=
1

(
√

2πσ)n
exp(−

∑n
i=1(Yi −

∑
j βjX

(j)
i )2

σ2
)

We consider the max-likelihood statistics β̂ and assume that X is of
full rank:

β̂ = (X′X)−1X′Y

Every component of β̂ is a linear combination of the elements X′Y
whose coefficients are the rows of the inverse matrix (X′X)−1.

One can prove that:

(Y −Xβ)′(Y −Xβ) = (Y −Xβ̂)′(Y −Xβ̂) + (β − β̂)′X′X(β − β̂)

Working with the precision parameter h = 1
σ2 , the likelihood for

the Normal linear model relies on the two sufficient statistics β̂ and
(Y −Xβ̂)′(Y −Xβ̂):

[Y |X, β, h] = (

√
h

2π
)n exp(−h(Y −Xβ̂)′(Y −Xβ̂)

2
−h(β − β̂)′X′X(β − β̂)

2
)
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In the frequentist setting, an unbiased estimator of σ2 is provided by

σ̂2 = (Y−Xβ̂)′(Y−Xβ̂)
n−p and σ̂2(X′X)

−1
is the common estimation for the

covariance matrix of β̂.

A.2.2 Conjugate prior

The exponential form of the likelihood shows that natural conjugate
priors can be found for this model:

1. A gamma distribution for the precision h = 1
σ2 ,

h ∼ Gamma(
n0

2
,
S0

2
)

2. Given the precision, a conditional p−multivariate Normal distri-
bution for β, with prior expectation β0 and p × p covariance (in-
vertible) matrix σ2V0,

β ∼= MultiNormal

(
β, β0,

V0

h

)
With such a prior on (β, h), the a posteriori distribution [β, h|Y,X]

is derived:

• Given h, Y, and X, the posterior conditional distribution for β is
a MultiNormal

β|h, Y,X ∼MultiNormal

(
βy,

Vy
h

)
with updated parameters:{

(Vy)−1 = X′X + V −1
0

(Vy)−1βy = X′Xβ̂ + V −1
0 β0

This is interpreted in terms of a gain in precision and a barycen-
tric position for the posterior mean because of the equality
0 =X ′X(βy − β̂) + V −1

0 (βy − β0).

• Given β, Y, and X, the posterior for the precision h is

h|β, Y,X ∼ Gamma(
ny,β

2
,
Sy,β

2
)
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such that:

ny,β = n0 + n+ p

Sy,β = S0 + (Y −Xβ̂)′(Y −Xβ̂)

+ (β − β̂)′X′X(β − β̂) + (β − β0)V −1
0 (β − β0)

• Given Y and X, but unconditionally to β, the posterior for the
precision h is

h|Y,X ∼ Gamma(
ny
2
,
Sy
2

)

such that:

ny = n0 + n

Sy = S0 + (Y −Xβ̂)′(Y −Xβ̂) + Ey

In other words, σ2 = 1
h is a posteriori distributed according to an

inverse gamma pdf, with

Ey = β̂′X′Xβ̂ + β′0V
−1
0 β0 − β′y(Vy)−1βy

= β̂′X′Xβ̂ + β′0V
−1
0 β0 − β′y(Vy)−1(Vy)(Vy)−1βy

= β̂′X′Xβ̂ + β′0V
−1
0 β0 −

(
X′Xβ̂ + V −1

0 β0

)′
Vy(X′Xβ̂ + V −1

0 β0)

= β̂′X′Xβ̂ + β′0V
−1
0 β0+(

−X′Xβ̂ + V −1
0 (β̂ − β0)− V −1

0 β̂
)′
Vy(X′X

(
β̂ − β0

)
+ V −1

0 β0 + X′Xβ0)

= β̂′X′Xβ̂ + β′0V
−1
0 β0+(

V −1
0 (β̂ − β0)− V −1

y β̂
)′
Vy(X′X

(
β̂ − β0

)
+ V −1

y β0)

= β̂′X′Xβ̂ + β′0V
−1
0 β0+(

β̂ − β0

)′
V −1

0 VyX
′X
(
β̂ − β0

)
+
(
β̂ − β0

)′
V −1

0 β0 − β̂′X′Xβ̂ − β̂′V −1
0 β0

=
(
β̂ − β0

)′
V −1

0 VyX
′X
(
β̂ − β0

)
=
(
β̂ − β0

)′
V −1

0 (V −1
0 + X′X)−1X′X

(
β̂ − β0

)
This expression makes it clear that the term Ey is positive. Providing

X′X is invertible, some algebra leads to the expression given in Marin
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and Robert [189] page 54:

Ey = (β̂ − β0)′(V0 + (X′X)−1)−1(β̂ − β0)

Consequently, since given h, βj the jth component of β is a pos-

teriori distributed according to the Normal(βy(j),
Vy(j,j)
h ) . Therefore

βj−βy(j)√
Vy(j,j)

Sy

is Normal(0, 1
Syh

), with Sy × h Gamma distributed. Taking

into account the results from the previous section, we deduce that
√
n0 + n× (βj−βy(j))×

√
Sy

Vy(j,j) is marginally distributed as a Student

pdf with 2ny degrees of freedom.

Because of the conjugate property, the prior predictive, useful for
model choice, is explicitly obtained:

[Y |X] =
[Y |X, β, h][β, h|X]

[β, h|X, Y ]

=
dmnorm(y,Xβ, I/h)× dmnorm

(
β, β0,

V0

h

)
× dgamma(h, n0

2 ,
S0

2 )

dmnorm
(
β, βy,

Vy
h

)
× dgamma(h,

ny
2 ,

Sy
2 )

= (

√
h

2π
)n exp(−h(Y −Xβ̂)′(Y −Xβ̂)

2
− h(β − β̂)′X′X(β − β̂)

2
)

× (

√
h

2π
)p
√∣∣V −1

0

∣∣ exp(−h(β − β0)V −1
0 (β − β0)

2
))

×
h
n0
2 −1 exp(−hS0

2 )

Γ(n0

2 )

(
S0

2

)n0
2
(
Sy
2

)−ny2 Γ(
ny
2 )

h
ny
2 −1 exp(−hSy2 )

× 1

(
√

h
2π )p

√∣∣V −1
y

∣∣ exp(−h(β−βy)V −1
y (β−βy)
2 ))

=

(√
1

π

)n √
|Vy|√
|V0|
×

Γ(
ny
2 )

Γ(n0

2 )
× (S0)

n0
2

(Sy)
ny
2

(A.3)

It is not obvious to see that Eq. (A.2) reveals that [Y |X] is indeed a
n−multivariate Student with n0 degrees of freedom, a mean vector Xβ0

and a variance covariance matrix Σ = S0

2 (In + XV0X
′) . Given σ2, one

can consider that Y = Xβ + ε, β = β0 + η with ε ∼ Normal(0, σ2I)
and η ∼ N(0, σ2V0). Marginalizing over β, Y = Xβ0 + ε + Xη i.e.,
Y |σ−2 ∼ Normal(Xβ0, σ

2(I + XV0X
′)). Setting h = S0

2 σ
−2, Y is ob-

tained following the Gamma-multivariate Normal mixture construction
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given page 335 with a = n0

2
Y |h ∼ Normal(Xβ0,

1

h

S0

2
(I + XV0X

′))

h ∼ Gamma(
n0

2
, 1)

Therefore, T =
√

n0

2 (Y −Xβ0) is a multivariate Student distribution

with ν = 2× n0

2 = n0 degrees of freedom and Σ = S0

2 (I + XV ′0X′) and

[y|X,β0,Σ, n0, S0] =

dmStudent(

√
n0

2
(y −Xβ0),Σ, n0)×

(n0

2

)n
2

=
(n0

2

)n
2

(n0π)
−n2 Γ(n0+n

2 )

Γ(n0/2)
√
|Σ|

× [1 +

√
n0

2 (Y −Xβ0)′Σ−1
√

n0

2 (Y −Xβ0)

n0
]−

n0+n
2

=

(
2

2πS0

)n
2 Γ(n0+n

2 )

Γ(n0/2)
√
|I + XV ′0X′|

× [1 +
(Y −Xβ0)′(I + XV0X

′)−1(Y −Xβ0)

S0
]−

n0+n
2 (A.4)

Getting back to notations ny = n0 + n, V0V
−1
y = V0

(
X′X + V −1

0

)
so that |I + XV0X

′| = |V0|
|Vy| , one get

[y|X,β0,Σ, n0, S0] =
S
−n0

2
0 π−

n
2 Γ(

ny
2 )

Γ(n0/2)

√
|V0|
|Vy|

×
(
S0 + (Y −Xβ0)′(I + XV0X

′)−1(Y −Xβ0)
)−ny2

One could check that Sy = S0 +(Y −Xβ0)′(I+XV0X
′)−1(Y −Xβ0)

so that Eqs. (A.4) and (A.3) are identical but (A.3) is computationally
the most efficient form (only a p× p matrix inversion instead of a n× n
one).

A.2.3 Zellner’s G-prior

Zellner’s G-prior relies on a conditional Normal prior for β, with
V0 = c × (X′X)−1. As c increases, the prior becomes more and more
diffuse. Making the prior variance depends on the explainatory variables
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X has sometimes been argued as cheating because the prior should not
be data dependent, but anyway the whole model is conditioned on X.

[β|h] ∝ h
p
2 exp(

h(β − β0)(X′X)(β − β0)

2c
)

and an improper (Jeffreys) prior for h, i-e a limiting form of the Gamma
pdf with n0 −→ 0 and S0 −→ 0

With this particular prior, the posterior simplifies into

• h = 1
σ2 is a posteriori distributed according to an inverse Gamma

pdf dgamma(h, n2 ,
(Y−Xβ̂)′(Y−Xβ̂)+ c

c+1 (β̂′(X′X)β̂)

2 )

• Given h, the posterior conditional distribution for β is a multivari-
ate Normal(βy,

Vy
h ) with updated parameters:

Vy =
c

1 + c
(X′X)

−1
(A.5)

and

βy =
c

1 + c
(X′X)

−1
(

X′Xβ̂ +
X′X

c
β0

)
=
β0 + cβ̂

1 + c
(A.6)

These equations highlight the role of c which expresses the strength
of the prior information: setting c = 1 is equivalent to putting the same
weight on the prior information and on the sample, setting c = n means
that the prior information is worth only one data record.

A.3 The Zellner Student as a prior

Let h = c
σ2 and consider the following distributionβ|h,X ∼ Np

(
β0, (h× (X ′X))

−1
)

h ∼ Gamma(a, 1)

As shown in Eq. (A.1), the marginal (predictive prior) distribution
for
√
a(β−β0) is a multivariate Student distribution, which we may call

here a Zellner Student prior:
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[β|X] =
( a

2πa

) p
2 √|X ′X|Γ(a+ p

2 )

Γ(a)

(
1 +

(β − β0)′(X ′X)−1(β − β0)

2a

)−a− p2
and E(β) = β0

V(β) =
a

a− 1
(X ′X)−1



Appendix B

Computing marginal likelihoods
and DIC

B.1 Computing predictive distribution

In any case, one requires a numerical evaluation of the predictive
distribution of the data, denoted [y], which is obtained by the integration
of the likelihood over the whole parameters space (one also speak about
the marginal likelihood):

[y] =

∮
[y, θ]dθ.

Such an integration can be approximated by Monte Carlo methods
as shown below.

B.1.1 Method of Marin and Robert

Importance sampling methods can be used to compute a Monte Carlo
estimation of [y]. Let π(θ) be the importance distribution from which
a sample of size G of parameters theta,

{
θ(g)

}
g=1:G

, can be generated.

Using the importance sampling distribution π(θ), the marginal likelihood
[y] can be written:

[y] =

∮ (
[y, θ]

π(θ)

)
π(θ)dθ (B.1)

The integral (B.1) can be estimated from the Monte Carlo sample in
π(θ) as: 

θ(g) ∼ π(·)

[y] ≈
1

G

G∑
g=1

[y, θ(g)]

π(θ(g))

(B.2)

Since [y] =
∮

[y, θ]dθ =
∮

[θ|y][y]dθ, the best candidate for the sam-
pling distribution π would of course be the posterior distribution [θ|y].

343



344 Introduction to Hierarchical Bayesian Modeling for Ecological Data

Unfortunately, [θ|y] is analytically unavailable (otherwise its normaliz-
ing constant [y] would be known!). But a good approximation of [θ|y] is
available from the posterior MCMC runs.

A classical way to proceed consists in fitting a multi-Normal pdf on

the posterior sample
{
θ̃(k)

}
k=1:M

(e.g., by the method of moments), and

using the fitted multi-Normal as the importance distribution in (B.2).
If no MCMC sample in [θ|y] is available, the asymptotic Normal

distribution of the frequentist estimate for θ is generally a good candidate
for π. In this method, the posterior sample is of no use by itself, but is
needed to design some reasonable importance function π, in particular
the number of importance replicates G can be much bigger than the
posterior sample size M .

B.1.2 Extension of the method of Raftery

When the size of the available sample
{
θ̃(k)

}
k=1:M

is not big enough

to ensure a good Normal approximation of the importance function, one
would rather like to rely on the posterior draws directly, i.e., use the
posterior pdf [θ|y] itself as importance distribution.

From the Bayes’ theorem, it is easy to obtain

[y]−1 =
[θ|y]

[θ]
[y|θ]−1 (B.3)

This equality (B.3) holds whatever the value of the parameter θ. It holds
for all values of θ taken in the support of any distribution π(θ). Conse-
quently,

[y]−1 =

∮
[y]−1π(θ)dθ

=

∮
[θ|y]

[θ]
[y|θ]−1π(θ)dθ

=

∮
π(θ)

[θ]
[y|θ]−1[θ|y]dθ

Based on samples of θ in the posterior [θ|y], a Monte Carlo approxima-
tion of [y]−1 can then be computed as follows:

[y]−1 ≈
1

M

M∑
k=1

π(θ(k))

[θ(k)]
[y|θ(k)]−1

θ(k) ∼ [θ|y]

(B.4)
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Taking π(θ) equal to the prior [θ], Raftery et al. ([245]) considered
that “the predictive is the posterior harmonic mean of the likelihood”:

[y] ≈

(
1

M

M∑
k=1

[y|β(k)]−1

)−1

θ(k) ∼ [θ|y]

(B.5)

Therefore, provided that one can evaluate the likelihood for each value of
the posterior sample (for instance the WinBUGS Deviance instruction
computes minus two times the loglikelihood), the posterior draws of
the MCMC algorithm can straightforwardly be re-used to obtain the
predictive [y].

Unfortunately this estimate is known to be unstable since small val-
ues of the likelihood (this can sometimes occur even though the likeli-
hood and the posterior are close to one another) would make rare but
big jumps of the successive levels of the estimation as M tends to infin-
ity. This may hinder the comparison of two models when their difference
in credibility is low. If the contrast between the credibility of the differ-
ent models is high, the approximation gives results which are accurate
enough for identifying the most credible model(s).

A more efficient method of estimation is then to rely on
[y] ≈

(
1

M

M∑
k=1

π(θ(k))

[θ(k)]
[y|θ(k)]−1

)−1

θ(k) ∼ [θ|y]

(B.6)

with π() a probability distribution that behaves like the likelihood in
the regions that are not likely (such a Normal approximation of the
posterior) or cut off the tails of it (such as a triangular distribution
centered on the posterior mean).

In any case, as the marginal likelihood (and then the BF ) is known
to be sensitive to the prior choice, it a good idea to check the robustness
of alternative prior configurations when ranking models.

B.2 The Deviance Information Criterion

The Deviance Information Criterion (DIC ; [283]) is a measure of
complexity and fit designed to compare hierarchical models of arbitrary
structure. Its rationale and interpretation are different than those of
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the BF and are more analogue to the frequentist Akaike Information
Criterion: the smaller the DIC the more favoured is a model. It combines
a measure of the goodness of fit, defined as the posterior mean of the
deviance Dev(θ) (where the deviance is −2 times the loglikelihood), with
a measure of the model complexity pD, acting as a penalty term:

DIC = Dev(θ) + pD (B.7)

pD is defined as Dev(θ) minus the deviance calculated at the pos-

terior mean of the parameter vector Dev(θ̂). We approximate pD by
1
2 V ar(Dev(θ)) as proposed by Gelman et al. [117]. The DIC is easily
calculated by sampling techniques and its computation avoids the in-
stability that may occur when estimating BF . To interpret DIC values,
Spiegelhalter et al. [283] suggest to adopt the rule of thumb proposed by
Burnham and Anderson [43], for Akaike Information Criterion.

An explanation of the success of the DIC criterion among the com-
munity of applied statisticians is that it gives a pragmatic solution to the
problem of model choice, and is now routinely available in the softwares
WinBUGS, OpenBUGS, or JAGS, but many criticisms remain about its
interpretation, as shown by the discussion of Spiegelhalter et al. [283] or
in [233]. Celeux et al. ([52]) point out many of its flaws in the context of
missing data models, with special emphasis on mixture models.



Appendix C

More on Ricker stock-recruitment

This supplementary material is an appendix to Chapters 7 and 12 that
can help to understand useful Ricker stock-recruitment concepts.

C.1 A closer look at the Ricker model

C.1.1 Origin

The Ricker stock-recruitment relationships (see Fig. 7.3 in Chapter 7)
stems from the hypothesis that the per capita mortality rate (due to pre-
dation, disease, cannibalism, etc.) of larvae during their growing phase
(0 < t < T ) is linearly dependent on the population size of spawners (St)
with slope and intercept function of the fluctuating environment ([244]):

1

Nt

dNt
dt

= k1(t)− k2(t)× St

Hypothesizing:

1. no mortality of adults during the larval growing phase,i.e.,St =
S0 = S,

2. initial condition that the eggs are proportional to the number of
spawners N0 ∝ S,

3. terminal condition yielding the recruitment R = Nt,

the previous equation can be solved as

NT = N0 × exp

{∫ T

0

(k1,t − k2,t × S) dt

}

= N0 × exp

(∫ T

0

k1,tdt− S ×
∫ T

0

k1,tdt

)
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leading to the classical Ricker form already given by Eq. (7.4)

R = αS × exp(−β × S) (C.1)

C.1.2 A deterministic controlled state equation

Therefore an elementary model with nonoverlapping generations can
be made of a simple deterministic Ricker stock-recruitment cycle with
recruits R, surviving as adults with a natural mortality π and becoming
spawners S after catch C. This is depicted by the following equations:{

Rt = αSt−1 × exp(−βSt−1)

St = πRt − Ct

Rearranging the terms it comes:

Rt+1 = α×
(
Rt −

Ct
π

)
× exp

(
log(π)− βπ

(
Rt −

Ct
π

))
Thus

βπ

log(α) + log(π)
Rt+1 =

βπ

log(α) + log(π)
×
(
Rt −

Ct
π

)
× α× exp

(
log(π)×

(
1− βπ

log(α) + log(π)

(
Rt −

Ct
π

)))
and rescaling variables x = R × βπ

log(α)+log(π) , r = α × exp(log π) and

u = C× β
log(α)+log(π) for the ease of notations, one highlights the special

role played by the intrinsic log-survival rate r:

xt+1 = (xt − ut)× e−r×{1−(xt−ut)} (C.2)

Note that this simplified deterministic salmon cycle with nonover-
lapping generations is a particular member of the general class of deter-
ministic models in discrete time ([24]):

xt+1 = F (xt − ut) (C.3)

with F (z) = z × e−r×(1−z).
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FIGURE C.1: Ricker stock-
recruitment behavior with r =
1.7 (stable equilibrium point).

FIGURE C.2: Ricker stock-
recruitment behavior with r = 2
(limit cycle of period 2).

FIGURE C.3: Ricker stock-
recruitment behavior with r =
2.6 (limit cycle of period 4).

FIGURE C.4: Ricker stock-
recruitment iterations with r =
2.9 (chaotic behavior).

C.1.3 Attractors and chaos

Setting u = 0 in the previous equation, the idealized representation
of a renewable resource system unaffected by human influence starts by
studying the recursive equation:

xn+1 = F (xn) (C.4)

Equilibrium points x∗ = F (x∗) are of special interest. Among the many
dome-shaped functions F, May ([193]) considered simple ones such as
the rescaled Ricker recursion having equilibrium point x∗ = 1,

F (x) = x× er(1−x)
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and proved the following theorem ([192]):

• if 0 < r < 2 then x∗ = 1 is a stable equilibrium as seen in Fig.
C.1 (since F ′(x∗) = 1− r is less than 1 in module);

• if 2 = r1 < r2 < ...rk < ...r∞ = 2.6924, the series {xn} undergoes
limit cycle oscillation of period 2k. Figure C.2 shows a cycle (period
2), while a double cycle (period 4) is illustrated in Fig. C.3;

• if r > r∞, then chaos happens as in Fig. C.4, i.e., there exist cycles
of every period 2, 3, 4... along with an uncountable number of initial
population levels for which the system does not eventually settle
into any finite cycle.

Elements about the chaotic behavior theory for dynamics systems
following Eq. (C.4) can be found in textbooks such as Iooss [145] or
Ruelle [267].

C.2 Optimal harvesting with Ricker deterministic
behavior

C.2.1 Standard optimization of a dynamic system

For dynamic systems, it is sometimes convenient to express f(xt, ut,
the increase of population state xt from one time step to the next one
under the control ut:

f(x, u) = F (x− u)− x

Control theory deals with the search of a sequence of successive controls
u1:T = {ut}t=1:T so as to optimize cumulated benefits encountered by
the trajectory of a dynamic system xt+1 = xt + f(xt, ut) (starting at
time 0 from initial state x0 ) until a final time T.

J(u1:T ) = Max
u1:T

T∑
t=1

Lt(xt, ut) (C.5)

Cumulated benefits are mostly discounted quantities of the same re-
ward so that Lt(x, u) = ρt−1(B(x, u)). In fishery economic literature,
benefits often exhibit two components corresponding to selling the har-
vest u at constant price p and implementing the fishing effort necessary
to harvest the stock s from s = x to s = x− u.
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C.2.2 Hamiltonian in the discrete case

To find the optimal sequence, the mathematical trick is to work
with a dual variable λt, the so-called Lagrange multiplier to be
interpretated as shadow price. The Lagrangian

∑T
t=1 Lt(xt, ut) +∑T

t=1 λt {xt+1 − xt + f(xt, ut)} corresponds to the discrete time opti-
mization given by Eq. (C.5) under constraints given by Eq. (C.3). Its
partial derivatives with regards to u and λ have to be set to zero. Intro-
ducing the Hamiltonian Ht(x, u, λ) as :

Ht(x, u, λ) = ρt−1(Bt(x, u)) + λt × f(x, u)

necessary conditions for optimality are derived as follows:

∂Ht(x, u, λ)

∂u
= 0

− ∂Ht(x, u, λ)

∂x
= λt − λt−1

∂Ht(x, u, λ)

∂λ
= xt+1 − xt

As a consequence, the first derivative of the Hamiltonian yields to:

∂Ht(x, u, λ)

∂u
= ρt−1(

∂B(xt, ut)

∂u
)− λtF ′(xt − ut)

0 = ρt−1 ∂B(xt, ut)

∂u
− λtF ′(xt − ut) (C.6)

and the second one yields to:

−∂Ht(x, u, λ)

∂x
= −ρt−1 ∂B(xt, ut)

∂x
− λt (F ′(xt − ut)− 1)

λt − λt−1 = −ρt−1 ∂B(xt, ut)

∂x
− λt (F ′(xt − ut)− 1)

−λt−1 = −ρt−1 ∂B(xt, ut)

∂x
− λt (F ′(xt − ut))

Combining with Eq. (C.6), this can be simplified as:

λt−1 = ρt−1 ∂B(xt, ut)

∂x
+ ρt−1 ∂B(xt, ut)

∂u
(C.7)

and we can rewrite Eq. (C.6) at time t− 1 if we later want to get rid of
λt−1 :

λt−1 × F ′(xt−1 − ut−1) = ρt−2 ∂B(xt−1, ut−1)

∂u
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C.2.3 Searching for a stationary decision rule

Equations (C.6) and (C.7) can be solved with a singular solution if
we let T → ∞ and admit some equilibrium point (x∗, u∗) of the stock-
recruitment model with harvest u∗ such that u∗ = cste, F (x∗−u∗) = x∗.
This asymptotic behavior obtained by Clark [60], page 237, is such that

ρ−1 = F ′(x− u)
∂B(x,u)
∂x + ∂B(x,u)

∂u
∂B(x,u)
∂u

There are many expressions for the fishing effort. Among other possibil-
ities, we can imagine a (decreasing) marginal cost c(s) so that the last
fish are the most costly to extract. In what follows, we assume:

B(x, u) = p× u−
∫ x

x−u
c(s)ds

=

∫ x

x−u
{p− c(s)} ds

and 
∂B

∂u
= p− c(x− u)

∂B

∂x
= −c(x) + c(x− u)

With the previous hypotheses, the long-term optimal escapement x∗−u∗
is such that:

ρ−1 = F ′(x∗ − u∗)p− c(F (x∗ − u∗))
p− c(x∗ − u∗)

(C.8)

C.2.4 Special cases

If there is no exploitation cost (c(s) = 0):
x∗ = F (x∗ − u∗)

F ′(x∗ − u∗) = 1 +

(
1− ρ
ρ

)
F ′−1(ρ−1) gives the optimum escapement, with

(
1−ρ
ρ

)
being the interest

rate.
The mean sustainable yield is a very special sub-case obtained for

ρ = 1, i.e., weighting present and future linear benefits of harvests equiv-
alently. By setting S∗ = x∗−u∗ and C∗ = u∗, one retrieves the equations
already presented in Chapter 7, page 154.{

F ′(S∗)− 1 = 0 = α× exp(−βS∗){1− βS∗} − 1

α× S∗ exp(−βS∗)− S∗ = C∗
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or, equivalently:
β =

1

S∗
{ C∗

C∗ + S∗
}

log(α) = log(
C∗ + S∗

S∗
) + { C∗

C∗ + S∗
}

C.3 Stochastic Ricker model

C.3.1 A stochastic controlled state equation

Let’s introduce stochasticity on the stock-recruitment phase of the
Atlantic Salmon cycle. Equation (7.4) actually belongs to some more
general situation proposed by Reed [250] with Eq. (C.9), where ζ is a
stochastic multiplier with mean 1. The random variables {ζt}t=1:T are
assumed iid with probability distribution function φ.

xt+1 = ζt × F (xt − ut)
ζt ∼ φ()

E(ζt) = 1

(C.9)

The optimization program (see Eq. (C.5)) is to be modified by an ex-
pectation operator so as to take into account the stochastic terms:

J(u1:T ) = Max
u1:T

(
Eζ1,ζ2,...

(
T∑
t=1

Lt(xt, ut)

))

C.3.2 Dynamic stochastic programming

The common approach to solve the previous equation is to make re-
course to dynamic programming ([23]) and consider some piece of an
optimum trajectory from current state xt to the terminal period T .
The Bellman function Vt(xt) is the cumulated optimum expected benefit
along this path when starting from state xt at time t.

Vt(xt) = Max
ut+1:T

(
Eζt+1,ζt+2,...

(
T∑

k=t+1

Lk(xk, uk)

))
It is straightforward to show that optimum is fulfilled thanks to the

sequential backward Bellman equation:

Vt(x) = Max
u
{Eζt (B(x, u) + ρVt+1 {ζt × F (x− u)})}
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Assuming regular smooth behavior with regard to expectation and
differentiability of the Bellman function, the following recursive differ-
ential Bellman equation is of very special interest:

∂B(x, u)

∂u
− ρ× F ′(x− u)×

∫
z

V ′t+1 {z × F (x− u)}φ(z)dz = 0

Eζ
(
V ′t+1 {ζ × F (x− u)}

)
= ρ−1 ×

∂B(x,u)
∂u

F ′(x− u)
(C.10)

C.3.3 Dynamic stochastic programming gives optimal
escapement level

In what follows, we keep on with the hypothesis B(x, u) =∫ x
x−u {p− ct} dt = K(x)−K(x−u). Starting from terminal condition at
t = T, the optimal control is obviously to harvest all the possible stock,
i.e., u∗(T ) = xt since B(x, u) is an increasing function of u:

V (xT ) = ρT {K(xt)−K(0)}

At time step t = T −1, Eq. (C.10) provides the optimal decision u as
a function of some equilibrium escapement e = xt−ut. Equation (C.11)
below is the stochastic counterpart of Eq. (C.8).

0 = {p− c(x− u)} − ρ× F ′(x− u)×

p− ∫
ζ

c {ζ × F (x− u)}φ(ζ)dζ


ρ−1 = F ′(e∗)

(p− Eζ (c {ζ × F (e∗)}))
p− c(e∗)

(C.11)

u∗ =

{
x− e∗ if x > e∗

0 otherwise

As in the deterministic case, it can be recursively proven that the
optimal control sequences for time steps t < T − 1 are to enforce, inas-
much as the constraints allow, the same e∗ escapement policy given by
Eq. (C.11). If there is no cost of exploitation (c = 0), the stochastic
optimal escapement, if any, takes the same value as in the deterministic
case.

C.3.4 Stochastic case: theoretical and practical issues

There are subtle issues inherent to the stochastic case (see [251]).
For instance, the mathematical derivations in Eq. (C.11) and above are
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grounded on the principle that recruitment is greater than escapement.
To achieve such self sustainability, one must assume for any time step t:

ζtF (xt − ut) > (xt − ut)

which needs ad hoc features for the replacement function F and the
stochastic perturbation ζ.

In current practice, in addition to the discrete nature of the states,
there are many limitations to work with the theoretical optimal policy
obtained by Eq. (C.11). First, the current stock is unknown at the time
when optimal escapement is specified! Second, such policy is optimal
only in error free configurations with no implementation perturbations
nor parameter uncertainty. Finally many of the costs and benefits, and
even sometimes decisionmakers themselves may remain hidden to the
naive mathematical analyst.

C.4 The Ricker management point is not the mean
of (quasi) equilibrium distribution l(·)

In this section, we point out that the special reference points
(W ∗, h∗, R∗) (see Table 12.2) calculated from a deterministic vision given
by Eq. (12.16), have nothing to do with any limiting equilibrium quan-
tities of the general stochastic model.

Section 12.5 of Chapter 12 showed a simplified model version such
that, given the number zt (of eggs) at stage t and assuming constant
average conditions for survival in the soft and marine phases yielding
to (the potential deposit of eggs) zt+1 at the next stage, the conditional
expectation for Zt+1, is some Ricker function <a,b(zt) of zt, with coeffi-
cients a = aeggs, b = beggs in this example where the stock of eggs is the
state variable:

E(Zt+1|zt) = <a,b(zt)
It is therefore tempting to interpret the Ricker reference points of <a,b,
for instance the deterministic equilibrium stock Z∗ = <a,b(Z∗), as some
limiting trend of the corresponding stochastic system behavior. Suppose
we have some (quasi) equilibrium distribution l(·) for the system state
Zt (hypothesizing we can neglect the probability of extinction),

l(zt) =

∫
n

[zt|zt−1]l(zt−1)dzt−1

Will the pdf l(·) be waving around the previous reference point (for
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eggs in this example)? Can Z∗ be considered as some sort of expected
value?

Confusion should not arise between marginal probabilities [Zt+1] and
conditional probabilities [Zt+1|Zt]. Denoting µ the first moment of l(·)
if any, one gets as a consequence:

E(Zt+1) = Ezt
(
EZt+1|zt (Zt+1)

)∫
z

z × l(z)dz = µ =

∫
z

<a,b(z)× l(z)dz (C.12)

µ = <a,b(µ) would in addition means that the equilibrium point of
the mean deterministic Ricker model would be the mean of the equilib-
rium distribution of the corresponding stochastic model. The rest of this
appendix shows that, if l(·) is approximatively Normal, then relation
(C.12) involves the variance and, consequently, µ 6= <a,b(µ)!

C.4.1 Recalling the Normal characteristic function

We know that, u being a Normal(µ,σ2) random variate

+∞∫
−∞

eku[u]du = ekµeσ
2 k

2
2

Therefore

+∞∫
−∞

ueku[u]du =
∂E (exp kU)

∂k
= (µ+ kσ2)ekµeσ2 k2

2

As a consequence,

E(ue−βu) = (µ− βσ2)e−βµe
1
2β

2σ2

C.4.2 SR transition

These formulae apply to the stochastic stock/recruitment relation-
ship generalizing Eq. (C.1) with a logNormal noise; given S, we assume
that logR is a Normal(0, σ2) distribution ,

E(R|S) = α× Se−βSeσ
2

2 = <
a+σ2

2 ,b
(S)

Unconditional to S, supposedly Normal with mean µS and variance
σ2
S

E(R) = αe
σ2

2 (µS − βσ2
S)e−βµSe

1
2β

2σ2
S
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Therefore, identifying S with z in relation (C.12), the mean of the
pdf l(S) is such that:

µS = αe−βµS (µS − βσ2
S)e

σ2

2 e
1
2β

2σ2
S

= <
a+σ2

2 ,b
(µS)×

(
1− βσ2

S

µS

)
× e 1

2β
2σ2
S

For the deterministic case when σ2
S = σ2 = 0, we do check

µS = <a,b(µS). But by no means does this equation imply that µS =
<
a+σ2

2 ,b
(µS)!
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Appendix D

Examples of predictive and full
conditional distributions

D.1 Predictive for the Logistic model

Let’s denote
log

pi
1− pi

= Xiβ

the linear form in the logit scale of the probability pi, or equivalently

pi =
exp(Xiβ)

1 + exp(Xiβ)

Let the data y be distributed following a Binomial distribution

[y|β] =

n∏
i

dbinom(yi, ni, pi)

and the parameters β be a priori distributed following a multidimen-
sional Student distribution

[β] = dmStudent(
√
a(β − β0), (X ′X)−1, 2a)× a

p
2

Then the joint distribution [y, β] writes

[y, β] =
n∏
i

Γ(1 + ni)p
yi
i (1− pi)ni−yi

Γ(1 + yi)Γ(1 + ni − yi)
×
(

1

2πa

) p
2 √
|X ′X|

×
Γ(a+ p

2 )

Γ(a)

(
1 +

(β − β0)′(X ′X)(β − β0)

2a

)−a− p2
(D.1)
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D.2 Predictive for the LogPoisson model

Let’s denote the linear form in the log scale for the expected abun-
dance λi

λi = Log(Xiβ)

Let the data y be distributed following a Poisson distribution

[y|β] =
n∏
i

dPois(yi, λi)

and let the parameters β be a priori distributed following a multidimen-
sional Student distribution

β = dmStudent(
√
a(β − β0), (X ′X)−1, 2a)× a

p
2

Then the joint distribution [y, β] writes

[y, β] =

(
n∏
i

e−λiλyii
Γ(1 + yi)

)(
1

2πc

) p
2 √
|X ′X|

×
Γ(a+ p

2 )

Γ(a)

(
1 +

(β − β0)′(X ′X)(β − β0)

2a

)−a− p2
(D.2)

D.3 Full conditional for the categorial probit model

We detail here how the data augmentation approach of Albert and
Chib [3] renders easy the inference of the ordered multinomial probit
model presented on page 187 of Chapter 8 for the skate data.

We further assume prior independence for [δ, β]

[δ, β] = [δ]× [β]

More specifically, we pick priors in the Normal family for conjugacy
reasons: {

[δ] = dmnorm(δ, δ0, D)1δ1<...<δJ−1<δJ−1

[β] = dmnorm(β, β0,Σ0)

The full conditionals are as follows:
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1. Since

[Z |δ,β,y,x ] ∝
T∏
t=1

{
1δyt−1

6Zt<δyt × dnorm (Zt, βxt, 1)
}

(D.3)

given δ,β,y,x, the Zt are truncated independent variables.

2. The vector δ contains the noninfinite bounds of each category,
its full conditional reads as a truncated joint multivariate Normal
distribution:

[δ |Z,α,β,y,x ] ∝ dmnorm (δ, δ0, D)× Iδ ×
T∏
t=1

{
1δyt−1

6Zt<δyt

}
The constraints Iδ : δ1 < δ2 < ... < δJ−1 must be respected.
Suppose that in addition to that constraint, we took independent
priors for each component, i.e., a diagonal prior variance, D =

diag
(
σ2
δj

)
. One can work componentwise. The relationship

[δ |Z,β,y,x ] ∝ dmnorm
(
δ, δ0, diag

(
σ2
δj

))
×

T∏
t=1

{
1δyt−16Zt<δyt

}
is equivalent to

[δj |Z,β, δ−j ,y,x ] ∝ dnorm
(
δj , δj0, σ

2
δj

)
× 1δinf

j ≤δj≤δ
sup
j

(D.4)

for δj , j = 1, ..., J − 1 with δinf
j = max {max {Zt : yt = j} ; δj−1}

and δsup
j = min {min {Zt : yt = j + 1} ; δj−1}. If needed, the nor-

malizing constant
(∫ δsup

j

δinf
j

N
(
δj

∣∣∣δj0, σ2
δj

)
dδj

)−1

can be evaluated

via a simple routine based on the univariate Normal cumulative
function.

3. The full conditional for β stems from the Normal conjugate prop-
erty. From

[β |Z0,Z, δ,y ] ∝ dmnorm (β, β0,Σ0)×
T∏
t=1

{N (Zt |βxt, 1)}

one can derive:

[β |Z, Z0, δ,y ] = dmnorm
(
β, β̂Z ,Σ

−1
)

(D.5)

with {
Σ = X ′X + Σ0

β̂Z = Σ−1 (X ′Z + Σ0β0)
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Equations (D.3)+(D.4)+(D.5) can be handled and a Gibbs algorithm
can be designed for the Bayesian inference of the probit model. The
Gibbs algorithm iterates between the steps:

sample [Zt |Z6=t , δ, β,y],

sample [δj |Z, δ6=j , β,y ],

sample [β |Z, δ,y ]

(D.6)



Appendix E

The baseball players’ historical
example: A simple introduction to
hierarchical modeling

E.1 The baseball players’ example

Efron and Morris [98] brilliantly exemplified via an interesting sport
dataset that the James-Stein estimator ([286]) based on each player’s
first 45 at bats does perform better at predicting subsequent performance
than their observed averages. In this appendix1, we revisit this example
as a simple introduction to hierarchical modeling. The batting successes
yi of 18 major league baseball players (i = 1, ..., 18) in their first 45
at bats of the 1970 season are given in the first column of Table E.1.
The batting average defined as the ratio of a player’s hits yi to his at
bats (45 in this example), is one of the best acknowledged of all baseball
statistics. They are given in the second column of Table E.1 and play
the role of estimates µ̂i = yi

45 for the true µi, i.e., the unknown skill of
player i and the empirical score µ̂i has for long been considered as the
classical best bet for the underlying true averages µi. In addition, the
two last columns provide a 90% Bayesian posterior credible interval for
µi using a noninformative Uniform prior for µi with the Binomial model
Yi ∼ Binomial(µi, 45) showing that a large uncertainty is attached to
these estimates.

Now, before revealing the true µi in the next section, can we propose
any better betting procedure than the empirical score µ̂i?

1This supplementary material can be used as an introduction to Chapters 9 and
10.

363
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Players First 45 at bats Score IC 5% IC 95%
yi µ̂i

Clemente 18 0.400 0.254 0.546
Robinson 17 0.378 0.233 0.523
Howard 16 0.356 0.213 0.499

Johnstone 15 0.333 0.192 0.474
Berry 14 0.311 0.173 0.449

Spencer 14 0.311 0.173 0.449
Kessinger 13 0.289 0.154 0.424
Alvarado 12 0.267 0.135 0.399

Santo 11 0.244 0.116 0.372
Swoboda 11 0.244 0.116 0.372

Unser 10 0.222 0.098 0.346
Williams 10 0.222 0.098 0.346

Scott 10 0.222 0.098 0.346
Petrocelli 10 0.222 0.098 0.346
Rodriguez 10 0.222 0.098 0.346

Campaneris 9 0.200 0.081 0.319
Munson 8 0.178 0.064 0.292

Alvis 7 0.156 0.048 0.264

TABLE E.1: 18 major league baseball players in their first 45 at bats
of the 1970 season. The prior for all scores is taken Uniform on [0,1].

E.2 Borrowing strength from neighbors

E.2.1 Estimate Williams’ skills using all players’ perfor-
mances

Take for instance the case of player Williams (k = 12) with yk = 10
successes out of 45 trials. The scores of the remaining 17 other players
in the first column of Table E.1 can be considered as sample of batting
averages of baseball professionals and this piece of information will be
exploited to derive a prior distribution for µk. To benefit from the Beta-
Binomial conjugate properties as already seen in Chapter 2, we pick a
Beta distribution with coefficients a and b to be estimated. The empirical
mean and variance are respectively 0.268 and 0.005, and we can fit the
two coefficients of the Beta pdf by the method of moments:

a

a+ b
= 0.2679

a

a+ b
× b

a+ b
× 1

a+ b+ 1
= 0.005
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yielding a = 10.18, b = 27.80.
Keeping with the interpretation of Beta coefficients as prior distri-

bution for Binomial trials, a is to be interpreted as a prior number of
successes while b turns to be equivalent to a prior number of failures. In
other words, we learn from the fellow players of Williams that a profes-
sional baseball player can a priori obtain around 10 successes at bats out
of 10+28 = 38 trials. Following the Beta-Binomial model from Eq. (2.8)
with such a prior, a Bayesian predictor µ̃k would be the posterior expec-
tation of µk, i.e.,

µ̃k =
yk + a

45 + a+ b

µ̃k ≈
10 + 10.18

45 + 10.18 + 27.80
= 0.24

(E.1)

To sum it up, after transferring some information from the colleagues
of Williams, we would rather propose to bet on µ̃k = 0.24 than on the
empirical score µ̂k = 0.22 computed from the sole individual results of
Williams.

FIGURE E.1: Bayesian approach to assess Williams’ ability at bat.
Borrowing strength from the other players to estimate the skill µk for the
player k. Note that this figure does not follow the conventions of Directed
Acyclic Graphs as arrows indicate the flow of information rather than
probabilistic conditioning.

Figure E.1 sums up the Bayesian association of the two sources of
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information that were combined to provide an estimation of William’s
ability at bats:

• The other players as a prior beta pdf;

• Its own recorded performance during the first 45 at bats.

E.2.2 Winning bets

We could repeat the previous procedure for every player to obtain
the estimation µ̃i, of each player’s average (i = 1, ..., 18) for the remain-
der of the season. As a crude approximation, we assume here the same
Beta prior for all players (a = 10.18, b = 27.8). Using a simple spread-
sheet, Table E.2 gives estimates µ̃i that we call Bayesian estimates in as
much as they follow the Bayesian spirit of combining the two sources of
information.

In most problems, the value of the unknown remain unrevealed allow-
ing statisticians to elaborate on competing theories and endlessly discuss
their merits around a cup of tea or some other stronger beverage. Yet,
in this particular baseball example, the nice thing is that each player’s
average for the remainder of the season will typically involve several hun-
dred more at bats so we can use them as surrogates for the true µi and
compare traditional estimates µ̂i (based on the 45 at bats) and Bayesian
proposals µ̃i with their revealed true value µi estimated at the end of
the season, for instance using a squared error loss function.

Table E.2 shows that the approximate Bayesian procedure clearly
outperforms the traditional way of doing statistics that would only trust
the personal results of each player:

• 15 times out of 18 the squared error loss is less for the former
procedure (indicated by an asterisk in the last column of the table),

• The total cumulative loss (0.075) for the standard procedure is
twice the one obtained with the Bayesian approach (0.032)!

E.3 Fully exchangeable model

Figure E.1 can be transformed into a fully symmetric structure called
a hierarchical model. The joint pdf for all quantities involved in the
model can be read from the hierarchical structure and the conditional
independence of the directed acyclic graph of Fig. E.2. This structure
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Players True skill Empirical Loss Bayesian Loss
i µi score (µi − µ̂i)2 estimate (µi − µ̃i)2

µ̂i µ̃i
Clemente 0.346 0.400 0.003 0.340 0.0000∗

Robinson 0.298 0.378 0.006 0.328 0.0009∗

Howard 0.276 0.356 0.006 0.315 0.0016∗

Johnstone 0.222 0.333 0.012 0.303 0.0066∗

Berry 0.273 0.311 0.001 0.291 0.0003∗

Spencer 0.270 0.311 0.002 0.291 0.0005∗

Kessinger 0.263 0.289 0.001 0.279 0.0003∗

Alvarado 0.210 0.267 0.003 0.267 0.0033
Santo 0.269 0.244 0.001 0.255 0.0002∗

Swoboda 0.230 0.244 0.000 0.255 0.0006
Unser 0.264 0.222 0.002 0.243 0.0004∗

Williams 0.256 0.222 0.001 0.243 0.0002∗

Scott 0.303 0.222 0.007 0.243 0.0036∗

Petrocelli 0.264 0.222 0.002 0.243 0.0004∗

Rodriguez 0.226 0.222 0.000 0.243 0.0003
Campaneris 0.285 0.200 0.007 0.231 0.0029∗

Munson 0.316 0.178 0.019 0.219 0.0094∗

Alvis 0.200 0.156 0.002 0.207 0.0000∗

TABLE E.2: True batting average calculated at the end of the season
(µi), average of the 45 first events (traditional estimate µ̂i) and Bayesian
estimate (µ̃i) for the 18 professional Baseball players in 1970.

involves two types of unknowns (latent variable and parameter) and one
layer of observables:

• The latent variable µi here is the key concept that corresponds to
the unobserved skill of player i;

• The latent variables are linked to the data yi by a process of ob-
servations (here a Binomial experiment);

• The latent variables are also linked together because they can be
considered as stochastic draws from an urn of resemblance that
would say what the standard baseball player looks like. This urn
(we chose a Beta pdf with population parameters θ = (a, b)) mimics
the variations among players;

• In addition, external information can be encoded as a prior pdf for
the parameter θ in a Bayesian setting.
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θ

Latent variables
Baseball players ability

Observations
Recorded scores 

Parameters of the Beta 
distribution
Mean and variability of 
baseball players ability

μ1 … …μk μn

yk ynyk

FIGURE E.2: Hierarchical Bayesian model for the 1970 baseball play-
ers.

E.3.1 Prior distributions

E.3.1.1 Prior on population parameters θ = (a, b)

In this application, we propose to design the prior pdf [a, b] by as-
signing independent distributions to µ̄ = a

a+b and ν = a+ b. Parameter
µ̄ is the expected score of a professional baseball player and a convenient
noninformative prior for µ̄ is a Uniform distribution on [0, 1]. Gamblers
aware of baseball performances may argue that an informative Beta dis-
tribution will certainly be preferable: For baseball fans a batting aver-
age of 0.3 tends to be regarded as exceptionally good while a 0.4 average
seems to be almost out of reach except for some of the greatest players in
baseball history. Parameter ν is equivalent to a virtual number of prior
baseball trials. We chose 1 virtual trial as a lower bound, constraining a
and b to be both greater than 1

2 in the Beta pdf. An upper bound νmax

has also to be fixed. The bigger ν, the more influential will be the prior
information so taking νmax = 45 is a reasonable choice to put no more
weight on the prior than on one player’s results. As ν is scaling the prior
precision, we suggest to take log(ν) uniformly distributed on the interval
[log(1), log(νmax)] so as to remain invariant under a change of scale for
the units of ν. This choice will conveniently put more prior weight on
small values for ν. Writing for infinitesimal increments dµ̄, dlog(ν), da, db
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the conservation of probability mass under a change of variables

[µ̄]× [log(ν)] : dµ̄ : dlog(ν) = [a, b] : da : db.

Because the prior densities [µ̄] and [log(ν)] are proportional to constants
(∼Uniform), this prior construction yields:

[a, b] ∝
∥∥∥∥∆(µ̄, log(ν)

∆(a, b)

∥∥∥∥
with the Jacobian

∥∥∥∆(m,log ν)
∆(a,b)

∥∥∥ such that∥∥∥∥∆(µ̄, log(ν)

∆(a, b)

∥∥∥∥ = det

(
b

(a+b)2
1

(a+b)

− a
(a+b)2

1
(a+b)

)
.

Therefore, with such assumptions, the prior on [a, b] is:

[a, b] ∝ 1

(a+ b)2
× 1a> 1

2
× 1b> 1

2
× 1a+b<νmax (E.2)

E.3.1.2 Priors structure for the latent layer: Exchangeability

Given (a, b), the µi’s (i = 1, ..., n with n = 18 in our example) are a
priori independent. They are conditionally distributed as Beta random
variables with parameters (a, b):

[µ1:n|a, b] =
n∏
i=1

[µi|a, b] (E.3)

Unconditionally to (a, b), they are correlated and their joint distribution
is written as:

[µ1:n] =

∮
a,b

k∏
i=1

[µi|a, b]× [a, b] : da : db (E.4)

As the pdf given in Eq. (E.4) is left unchanged by any permutation of
the players’ indices, the latent µi’s are said to be exchangeable random
variables.

E.3.2 Posterior distributions and borrowing strength

E.3.2.1 Posterior distributions

The probabilistic link between all µi’s which is established a priori by
Eq. (E.4) allows for borrowing strength from the different units i when
updating the µi’s by all data y1:n.
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For a Bayesian analysis, the joint distribution of all probabilistic
quantities (i.e., parameters, latent variables and observables) sums up
the whole model structure that factorizes as:

[Y1:n = y1:n, µ1:n, a, b]

= [a, b]× [µ1:n|a, b]× [Y1:n = y1:n|µ1:n]
(E.5)

Given (a, b), the µi’s are independent as shown in Fig. E.2. Given
the µi’s, the observables Yi’s are independent and are conditionally dis-
tributed as Binomial random variables:

[Y1:n = y1:n|µ1:n] =
n∏
i=1

[Yi = yi|µi]

The full joint distribution (Eq. (E.5)) then writes

[Y1:n = y1:n, µ1:n, a, b]

=
n∏
i=1

[Yi = yi|µi]×
n∏
i=1

[µi|a, b]× [a, b]
(E.6)

The joint likelihood [Y1:n = y1:n|a, b] is obtained by integrating out
the latent variables:

[Y1:n = y1:n|a, b]

=

∮
µ1:n

n∏
i=1

[Yi = yi|µi]×
n∏
i=1

[µi|a, b] dµ1:n
(E.7)

The joint posterior distribution of parameters and latent variables is
straightfully derived:

[µ1:n, a, b|y1:n]

=
1

K(y1:n)
× [a, b]×

n∏
i=1

[Yi = yi|µi]×
n∏
i=1

[µi|a, b]
(E.8)

with the constant of integration K(y1:n)

K(y1:n) =

∮
a,b,µ1:n

n∏
i=1

[Yi = yi|µi]×
n∏
i=1

[µi|a, b]× [a, b] da db dµ1:n

Therefore the marginal posterior distribution of parameters (a, b) is
obtained by integrating out the full joint posterior in Eq. (E.8) over all
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values of (µ1:n):

[a, b|y1:n]

=
[a, b]

K(y1:n)
×
∮
µ1:n

k∏
i=1

[Yi = yi|µi]×
k∏
i=1

[µi|a, b] dµ1:n
(E.9)

Similarly, the marginal posterior distribution of the latent variables
(µ1, ..., µn) is:

[µ1:n|y1:n] =

∮
a,b

[µ1:n, a, b|y1:n] da db (E.10)

E.3.2.2 Borrowing strength

The borrowing strength concept (also nicely called the “Robin Hood”
approach by Punt et al. [242]) is nicely illustrated by looking at the
marginal posterior distribution of µk for one particular player k. Because
all units i are linked together through the hierarchical structure (a priori
as in Eq. (E.4) and a posteriori as in Eq. (E.10)), the marginal posterior
distribution of µk is conditioned by the data of all units i. It is given by
integrating out Eq. (E.10) over all µi’s except µk:

[µk|y1:n] =
1

K(y1:n)

×
∮
a,b

[a, b]×
∮

µi 6=µk

∏
i6=k

[Yi = yi|µi]×
∏
i6=k

[µi|a, b] dµi6=k

× [Yk = yk|µk]× [µk|a, b] da db

(E.11)

The previous formula (Eq. (E.11)) points out that the posterior
knowledge about the skill of player k is influenced by its own perfor-
mance [Yk = yk|µk] (in the right-hand term of Eq. (E.11) which plays
the role of the likelihood) but also by his fellow players via the left-hand
term under the integral sign

[a, b]×
∮

µi 6=µk

∏
i6=k

[Yi = yi|µi]×
∏
i6=k

[µi|a, b] : dµi6=k.

This latter term can be seen as an update of the prior [a, b] by all data ex-
cept yk so that one should draw attention to the following pdf [a, b|yi6=k]
which is the marginal of the posterior of (a, b) with all data except yi :

[a, b|yi6=k]

=
1

K ′(yi6=k)
×

∮
µi 6=µk

[a, b]×
∏
i6=k

[Yi = yi|µi]×
∏
i6=k

[µi|a, b] dµi6=k (E.12)
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with the constant of integration

K ′(yi6=k)

=

∮
a,b

[a, b]×
∮

µi 6=µk

∏
i6=k

[Yi|µi]×
∏
i6=k

[µi|a, b] dµi6=k

 da db

Then in Eq. (E.11), the left-hand side which is closed to the posterior
(Eq. (E.12)), does in fact play the role of a prior for (a, b) but that already
integrates the information conveyed by the data yi6=k. Equation E.11 can
then be written more explicitly using the posterior [a, b|yi6=k]:

[µk|y1:n]

=
K ′(yi6=k)

K(y1:n)

∮
a,b

[a, b|yi6=k]× [Yk = yk|µk]× [µk|a, b] da db (E.13)

Equation E.13 clearly illustrates how the hierarchical structure borrows
strength from the data yi6=k to update the skill of the player k through
the population parameters (a, b).

E.4 Shrinkage effect in the exchangeable hierarchi-
cal structure

The method we suggested in Section E.2 to assess the µi’s is the
empirical Bayes procedure ([47];[48]). It is the weird marriage of:

• A frequentist point of view (such as the method of moments that
we used) is taken to assess the parameters θ = (a, b) from the
estimates µ̂i of the latent variables;

• A standard Bayesian updating technique that provides empirical
posterior distributions of the latent µi’s.

This empirical Bayes procedure is an approximation of the rigorous
Bayesian solution given by Eq. (E.8) (which is developed with Eqs. (E.9)
and (E.13)).

A major effect occurs for the exchangeable hierarchical model: For a
player k like Williams, taking into account the results of the other players
makes a compromise between the average player with a succes and b
failures and the observed first 45 at bats with respectively yk success
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FIGURE E.3: Posterior pdf of baseball players’ performance in 1970,
computed under models assuming independence (white boxes) and hier-
archically structured (greyed boxes). The dots are performances at the
end of the season (surrogates for true values µi).

and 45 − yk failures. This compromise is clearly given by Eq. (E.1) for
the empirical Bayes procedure and by the more elaborate Eq. (E.13)
for the complete Bayesian solution. If the present score of player k is
lower than the average man a

a+b , his predictive score for the remainder
of the season will be pushed up (as it is the case for Williams) because
this first poor performance may happen due to bad luck. In the reverse
case, the predictive bet will be diminished. This effect (see Fig. E.3 for
the baseball example) is known as the shrinkage effect in the Bayesian
literature.
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letin Franais de la Pêche Pisciculture, 298:69–105, 1985.

[15] J.L. Baglinière and A. Champigneulle. Population estimates of ju-
veniles Atlantic salmon (Salmo salar) as indices of smolts produc-
tion in the river scorff, Brittany. Journal of Fish Biology, 29:467–
482, 1986.

[16] J.L. Baglinière, G. Maisse, and A. Nihouarn. Atlantic salmon
(Salmo salar) wild smolt production. In R.J. Gibson and R.E.
Cutting., editors, Production of Juvenile Atlantic Salmon (Salmo
salar) in Natural Waters, volume 118, pages 189–201. Canadian
Special Publication of Fisheries and Aquatic Sciences, 1993.

[17] J.L. Baglinière, F. Marchand, and V. Vauclin. Interrannual
changes in recruitment of the Atlantic salmon (Salmo salar) pop-
ulation in the river Oir (lower Normandy France): Relationships
with spawner and in-stream habitat. ICES Journal of Marine Sci-
ence, 62:695–707, 2005.

[18] S. Banerjee, B. P. Carlin, and A.E. Gelfand. Hierarchical Modeling
and Analysis of Spatial Data. Monographs on Statistics and Ap-
plied Probability. Chapman et Hall/CRC, Boca Raton, FL, 2004.

[19] A. Bardonnet and J.L. Baglinière. Freshwater habitat of Atlantic
salmon. Canadian Journal of Fisheries and Aquatic Sciences,
57:497–506, 2000.

[20] T. Bayes. Essay towards solving a problem in the doctrine of
chances. Philosophical Transactions of the Royal Society of Lon-
don, 53:370–418, 1763. Reprinted in Biometrika, vol. 45, pp. 293-
315, 1958.



Bibliography 377

[21] M.A. Beaumont, W. Zhang, and D.J. Balding. Approximate
Bayesian computation in population genetics. Genetics, 62:2025–
2035, 2002.

[22] J.R. Beddington, D.J. Agnew, and C.W. Clark. Current problems
in the management of marine fisheries. Science, 316:1713–1716,
2007.

[23] R. Bellman. Dynamic Programming. Princeton University Press,
1957.

[24] E. Beltrami. Mathematics for Dynamic Modeling. Academic Press,
1987.
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des stocks démersaux en Afrique Nord-Ouest. Travaux du groupe
“Analyses monospécifiques” du projet SIAP. Number 65 in CO-
PACE/PACE. FAO, Rome, 2003.

[112] A.E. Gelfand and D.K. Dey. Bayesian model choice: asymptotics
and exact calculations. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 56(3):501–514, 1994.

[113] A.E. Gelfand, D.K. Dey, and H. Chang. Model determination using
predictive distributions with implementation via sampling-based
methods. In Bayesian Statistics 4, Edited by J.M. Bernardo, J.O.
Berger, A.P. Dawid and A.F.M. Smith, Oxford University Press,
1992., pages 147–167, 1992.

[114] A.E. Gelfand, P.J. Diggle, Montserrat F., and P. Guttorp, editors.
Handbooks of Spatial Statistics. Handbooks of Modern Statistical
Methods. Chapman & Hall/CRC Press, Boca Raton, FL, 2010.

[115] A.E. Gelfand and A.F.M. Smith. Sampling based approach to
calculating marginal densities. Journal of the American Statistical
Association, 85:398–409, 1990.

[116] A. Gelman. Prior distributions for variance parameters in hierar-
chical models. Bayesian analysis, 1(3):515–534, 2006.



Bibliography 385

[117] A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin. Bayesian
Data Analysis. Second Edition. Col. Texts in Statistical Science.
Chapman & Hall/CRC Press, New York, 2004.

[118] S. Geman and D. Geman. Stochastic relaxation, Gibbs distribu-
tions and the Bayesian restoration of image. IEEE Trans. Pattern
Analysis and Machine Intelligence, 6:721–741, 1984.

[119] E. George and R. McCulloch. Variable selection via Gibbs
sampling. Journal of the American Statistical Association,
88(423):881–889, 1993.

[120] W.R. Gilks, S. Richardson, and D. Spiegelhalter. Markov chain
Monte Carlo in Practice. Chapman & Hall, London, 1996.

[121] O. Gimenez, S.J. Bonner, R. King, R.A. Parker, S.P. Brooks, L.E.
Jamieson, V. Grosbois, B.J.T. Morgan, and L. Thomas. Win-
bugs for population ecologists: Bayesian modeling using Markov
chain Monte Carlo methods. In D.L. Thomson, E.G. Cooch, and
M.J. Conroy, editors, Modeling Demographic Processes In Marked
Populations, volume 3 of Environmental and Ecological Statistics,
pages 883–915. Springer, 2009.

[122] V. Ginot, C. Le Page, and S. Souissi. A multi-agent architecture
to enhance end-user individual-based modelling. Ecological Mod-
elling, 157:23–41, 2002.

[123] M. Goldstein and D. Wooff. Bayes Linear Statistics, Theory &
Methods. John Wiley & Sons, Ltd, 2007.

[124] P.J. Green. Reversible jump MCMC computation and Bayesian
model determination. Technical report, University of Bristol, 1994.

[125] V. Grimm and S. F. Railsback. Individual-Based Modeling and
Ecology. Princeton University Press, Princeton NJ, 2005.

[126] J. Halley and P. Inchausti. Lognormality of ecological time series.
Oikos, 99:518–530, 2002.

[127] T.R. Hammond. A recipe for Bayesian network driven stock as-
sessment. Canadian Journal of Fisheries and Aquatic Sciences,
61:1647–1657, 2004.

[128] T.R. Hammond and V. Trenkel. Censored catch data in fisheries
stock assessment. ICES Journal of Marine Science, 62:1118–1130,
2005.



386 Bibliography

[129] C. Han and B.P. Carlin. Markov chain Monte Carlo methods for
computing Bayes factors: A comparative review. Journal of the
American Statistical Association, 96:1122–1132, 2001.

[130] D.G. Hankin. Multistage sampling designs in fisheries research:
Applications in small streams. Canadian Journal of Aquatic and
Fisheries Sciences, 41:1575–1591, 1984.

[131] G. Hardin. Extensions of “the tragedy of the commons”. Science,
280(5364):682–683, 1998.

[132] S.J. Harley and R.A. Myers. Hierarchical Bayesian models of
length-specific catchability of research trawl surveys. Canadian
Journal of Fisheries and Aquatic Sciences, 58:1569–1584, 2001.

[133] J. Harwood and K. Stokes. Coping with uncertainty in ecologi-
cal advice: lessons from fisheries. Trends in Ecology & Evolution,
18(12):617–622, 2003.

[134] E. Hewitt and L.J. Savage. Symmetric measures on Cartesian
products. Transactions of the American Mathematical Society,
80:470–501, 1955.

[135] R. Hilborn and M. Liermann. Standing on the shoulders of giants:
Learning from experience in fisheries. Reviews in Fish Biology and
Fisheries, 8:273–283, 1998.

[136] R. Hilborn and M. Mangel. The Ecological Detective Confronting
Models with Data, volume 28 of Monographs in population biology.
Princeton University Press, Princeton, New Jersey, 1997.

[137] R. Hilborn and C.J. Walters. Quantitative Fisheries Stocks Assess-
ment: Choice, Dynamics & Uncertainty. Col. Natural Resources.
Chapman & Hall, New York, 1992.

[138] N. T. Hobbs. New tools for insight from ecological models and
data. Ecological applications, 19(3):551–552, 2009.

[139] J.A. Hoeting, D. Madigan, A. Raftery, and C.T. Volinsky. Bayesian
model averaging: a tutorial. Statistical Science, 14:382–417, 1999.

[140] P.D. Hoff. A First Course in Bayesian Statistical Methods.
Springer, New York, 2009.

[141] M.B. Hooten, C.K. Wikle, R.M. Dorazio, and J.A. Royle. Hierar-
chical spatiotemporal matrix models for characterizing invasions.
Biometrics, 63(2):558–567, 2007.



Bibliography 387

[142] J.A. Hutchings. Collapse and recovery of marine fishes. Nature,
406(6798):882–885, 2000.

[143] J.A. Hutchings and M.E.B. Jones. Life history variation and
growth rate thresholds for maturity in Atlantic salmon, salmo
salar. Canadian Journal of Fisheries and Aquatic Sciences,
55(Suppl. 1):22–47, 1998.

[144] ICSEAF. Historical series data selected for cape hake assessment.
Technical report, ICSEAF, 1989.

[145] G. Iooss. Bifurcations of maps and applications. Lecture Notes,
Mathematical Studies. North-Holland, Amsterdam, 1979.

[146] D. Jacobson and D. Mayne. Differential Dynamic Programming.
American Elsevier Publishing Company, 1970.

[147] W.H. Jeffreys and J.O. Berger. Ockham’s razor and Bayesian anal-
ysis. Am. Sci. (American Scientist), 80:64–72, 1992.

[148] J.B. Johnson and K.S. Omland. Model selection in ecology and
evolution. Trends in Ecology & Evolution, 19(2):101–108, 2004.

[149] I.D. Jonsen, J.M. Flemming, and R.A. Myers. Robust state-space
modeling of animal movement data. Ecology, 86(11):2874–2880,
2005.

[150] N. Jonsson, B. Jonsson, and L.P. Hansen. The relative role of
density-dependent and density-independant survival in the life cy-
cle of Atlantic salmon salmo salar. Journal of Animal Ecology,
67:751–762, 1998.

[151] I. Jordaan. Decisions Under Uncertainty: Probabilistic Analysis
For Engineering Decisions. Cambridge University Press, 2005.

[152] M.I. Jordan. Learning in Graphical Models. MIT Press, Cam-
bridge, MA, 1999.

[153] J.B. Kadane. Principles of Uncertainty. Texts in Statistical Sci-
ence. Chapman & Hall/ CRC, Boca Raton, FL, 2011.

[154] J.B. Kadane and N.A. Lazar. Methods and criteria for model
selection. Journal of the American Statistical Association, 99:279–
290, 2004.

[155] J.B. Kadane, L.J. Wolson, A. O’Hagan, and K. Craig. Papers on
elicitation with discussions. The Statistician, pages 3–53, 1998.



388 Bibliography

[156] R.E. Kass, B.P. Carlin, A. Gelman, and R.M. Neal. Markov chain
Monte Carlo in practice: a roundtable discussion. The American
Statistician, 52(2):93–100, 1998.

[157] R.E. Kass and A.E. Raftery. Bayes factors. Journal of the Amer-
ican Statistical Association, 90(430):773–795, 1995.

[158] R.L. Keeney. A utility function for examining policy affecting
salmon in Skeena river. Journal of Fisheries Research Board
Canada, 39:49–63, 1976.

[159] G.J.A. Kennedy and W.W. Crozier. Factors affecting recruitment
success in salmonids. In Harper D.M. and A.J.D. Fergusson, ed-
itors, The Ecological Basis for River Management., Chichester,
1995. Wiley & Sons.

[160] M. Kery. An Introduction to WinBUGS for Ecologists. Academic
Press, Elsevier Inc., 2010.

[161] M. Kery and M. Schaub. Bayesian Population Analysis using Win-
BUGS/OpenBUGS: a Hierarchical Perspective. Academic Press,
Burlington, 2012.

[162] D.K. Kimura, J.W. Balsiger, and D.H. Ito. Kalman filtering the
delay-difference equation: practical approaches and simulations.
Fishery Bulletin, 94:678–691, 1996.

[163] R. King and S.P. Brooks. On the Bayesian analysis of population
size. Biometrika, 88(2):317–336, 2001.

[164] R. King, B.J.T. Morgan, O. Gimenez, and S.P. Brooks. Bayesian
Analysis for Population Ecology. Chapman & Hall/CRC, Boca
Raton, FL, 2010.

[165] M. Kitti, M. Lindros, and V. Kaitala. Optimal harvesting of the
Norvegian spring-spawning herring: Variable versus fied harvest-
ing strategies. Environmental Modeling and Assessment, 7:47–55,
2002.

[166] P.M. Kuhnert, Martin T.G., and Griffiths S.P. A guide to eliciting
and using expert knowledge in Bayesian ecological models. Ecology
Letters, 13(7):900–914, 2010.

[167] S. Kuikka, M. Hilden, H. Gislason, S. Hansson, H. Sparholt, and
G. Varis. Modelling environmentally driven uncertainties in Baltic
cod (gadus morhua) management by Bayesian influence diagrams.
Canadian Journal of Fisheries and Aquatic Sciences, 56:629–641,
1999.



Bibliography 389

[168] M. Kyung, J. Gilly, M. Ghoshz, and G. Casella. Penalized regres-
sion, standard errors, and Bayesian Lassos. Bayesian Analysis,
5(2):369–412, 2010.

[169] M. Laurans. Evaluation des ressources halieutiques en Afrique de
l’ouest: dynamique des populations et variabilité écologique. Thèse
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éléments d’une relation stock / recrutement chez le saumon atlan-
tique (salmo salar) en France. Cybium, 20(3):7–26, 1996.

[238] E. Prévost, G. Chaput, and (Ed.). Stock, Recruitment and Ref-
erence Points Assessment and Management of Atlantic salmon.
INRA Editions, Paris, 2001.

[239] E. Prévost, E. Parent, W. Crozier, I. Davidson, J. Dumas, G. Gud-
bergsson, K. Hindar, P. McGinnity, J. MacLean, and L.M. Sat-
tem. Setting biological reference points for Atlantic salmon stocks:
Transfer of information from data-rich to sparse-data situations by
Bayesian hierarchical modelling. ICES Journal of Marine Science,
60:1177–1193, 2003.



Bibliography 395

[240] A.E. Punt. Extending production models to include process error
in the population dynamics. Canadian Journal of Fisheries and
Aquatic Sciences, 60:1217–1228, 2003.

[241] A.E. Punt and R. Hilborn. Fisheries stock assessment and deci-
sion analysis: the Bayesian approach. Reviews in Fish Biology and
Fisheries, 7:35–63, 1997.

[242] A.E. Punt, D.C. Smith, and A.D. M. Smith. Among-stock com-
parisons for improving stock assessments of data-poor stocks:
the “Robin Hood” approach. ICES Journal of Marine Science,
68(5):972 –981, 2011.

[243] A. Quiggin. A theory of anticipated utility. Journal of Economic
Behavior and Organization, 3:323–343, 1964.

[244] J.J. Quinn, I and R.B. Deriso. Quantitative Fish Dynamics, chap-
ter 3: Stock and Recruitment. Biological resource management.
Oxford University Press, Oxford, New York, 1999.

[245] J.M.Newton M.A.and Krivitsky P.N. Raftery, A.E.Satagopan. Es-
timating the integrated likelihood via posterior simulation using
the harmonic mean identity. Bayesian statistics 8 (Eds) J.M.
Bernardo, M.J. Bayarri, J.O. Berger, A.P. David, Heckerman D.,
Smith A.F.M. and West M. Oxford University Press., pp. 1-45:–,
2007.

[246] H. Raiffa. Decision Analysis - Introductory lectures on choices un-
der uncertainty. Addison Wesley, Reading, MA, 1968. traduction
française: Analyse de la décision: introduction aux choix en avenir
incertain, Dunod, 1973.

[247] H. Raiffa and R. Schlaifer. Applied Statistical Decision Theory.
Harvard University Press, Harvard, 1961.

[248] R.G. Randall. Effect of water temperature, depth, conductivity
and survey area on the catchability of juvenile Atlantic salmon
by electric fishing in new brunswick streams. In I.G. Cowx., edi-
tor, Developments in Electric Fishing, pages 79–90. Fishing News
Books, Blackwell Scientific Publications, 1990.

[249] C.R. Rao and H. Toutenburg. Linear Models: Least Squares and
Alternatives. Springer, New York, NY, 1999.

[250] W.J. Reed. The steady state of a stochastic harvesting model.
Mathematical Biosciences, 41:273–307, 1978.



396 Bibliography

[251] W.J. Reed. Optimal escapement levels in stochastic and determin-
istic harvesting models. Journal of Environnemental Economics
and Management, 6:350–363, 1979.

[252] H. Regan, M. Colyvan, and M.A. Burgman. A taxonomy and treat-
ment of uncertainty for ecology and conservation biology. Ecolog-
ical Applications, 12(2):618–628, 2002.

[253] D. Revuz. Markov Chains. North Holland, Amsterdam, 1984.

[254] S.C. Riley, R.L. Haedrich, and R.J. Gibson. Negative bias removal
estimates of Atlantic salmon parr relative to stream size. Journal
of Freshwater Ecology, 8:97–101, 1993.

[255] E. Rivot and E. Prévost. Hierarchical Bayesian analysis of capture-
mark-recapture data. Canadian Journal of Fisheries and Aquatic
Sciences, 59:1768–1784, 2002.

[256] E. Rivot and E. Prévost. Concevoir et construire la décision, chap-
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Making statistical modeling and inference more accessible to 
ecologists and related scientists, Introduction to Hierarchical 
Bayesian Modeling for Ecological Data gives readers a flexible and 
effective framework to learn about complex ecological processes 
from various sources of data. It also helps readers get started on 
building their own statistical models. 

The text begins with simple models that progressively become 
more complex and realistic through explanatory covariates and 
intermediate hidden states variables. When fitting the models to 
data, the authors gradually present the concepts and techniques 
of the Bayesian paradigm from a practical point of view using real 
case studies. They emphasize how hierarchical Bayesian modeling 
supports multidimensional models involving complex interactions 
between parameters and latent variables. Data sets, exercises, and 
R and WinBUGS codes are available on the authors’ website.

This book shows how Bayesian statistical modeling provides an 
intuitive way to organize data, test ideas, investigate competing 
hypotheses, and assess degrees of confidence of predictions. It 
also illustrates how conditional reasoning can dismantle a complex 
reality into more understandable pieces. As conditional reasoning 
is intimately linked with Bayesian thinking, considering hierarchical 
models within the Bayesian setting offers a unified and coherent 
framework for modeling, estimation, and prediction.
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