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Preface

These lecture notes arise as the continuation of the International Spring School
Advances and Challenges in Space-time modelling of Natural Events, which took
place in Toledo (Spain) in March 2010. This Spring School was addressed to young
researchers (Master students, PhD students, PostDoc researchers) in academics,
extrauniversitary research and industry, interested in learning about recent devel-
opments, new methods and applications in spatial and spatio-temporal statistics
and related areas and to exchange their ideas and results with colleagues. At the
end there were around 50 students coming from all the continents; such a success
was guaranteed by a good mixture between the fascinating Toledo and the excellent
lecturers being there.

There were several motivations justifying such a Spring School. Recent literature
emphasize the need for comprehensive mathematical and statistical frameworks for
the description of phenomena evolving over space or time or both of them.

Once established the crucial importance of simultaneously studying the spatial
and temporal components in the evolution of an environmental process, it is worth
mentioning that the approach to such problem can be extremely variable, depending
on the researcher point of view and the discipline he comes from. A very important
dichotomy regards.

The School covered the main branches of spatial and space—time statistics:
Geostatistics, non-Gaussian random fields, Markov random fields, space—time point
processes, large space—time dataset, spatial design, and last but not least, extreme
values theory for spatial processes. Such a huge range of subjects attracted the
interest of students and young researchers and we hope they appreciated the result
of this organization and the time they spent in Toledo.

The Editors of these Lecture Notes are extremely grateful to the lectures for their
excellent work at the Spring School, and to the students for the participation in the
course and for the enthusiasm they gave to such event.

Gottingen Emilio Porcu & Martin Schlather
Toledo José-Maria Montero
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Chapter 1
Space-Time Processes and Geostatistics

Gema Fernandez-Avilés, José-Maria Montero, Emilio Porcu,
and Martin Schlather

Abstract This chapter presents a broad view of space and space—time processes.
Our dissertation starts with the concept of space and time from the philosophical
viewpoint. Then, we relate the concept of space—time with the current practice in
Geostatistics and the use of the latter as an effective framework for natural and social
sciences. The rest of the chapter gives a methodological assessment of space—time
geostatistics through the framework of space—time random functions, covariances
and variograms.

1.1 Space, Time and Spacetime

1.1.1 A Brief Sketch of the Philosophy of Space and Time

Space and time are fundamental notions. They are so basic concepts that they
were regarded as the source of the world in ancient mythological, religious, and
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philosophical systems, including Chaos and Kronos in ancient Greek mythology,
akasa and kala in Indian philosophy, and Zurvan in early Zoroastrianism [2].

What is space? What is time? Do they exist independently of the things and
processes in them? Or is their existence parasitic on these things and processes? Are
they like a canvas onto which an artist paints; they exist whether or not the artist
paints on them? Or are they akin to parenthood; there is no parenthood until there
are parents and children? That is, is there no space and time until there are things
with spatial properties and processes with temporal durations? These questions have
been debated for a long time and will continue to be debated [62].

Following [68], historical views of space and time can be categorized into both
continuous and discrete, and absolute or relative. In the continuous perspective
the objects are contained within space and time, and as a consequence space and
time are the subject matter. In contrast, in the discrete view the subject matters
are the objects. The absolute perspective assumes an immutable rigid and purely
geometric structure while the relative view, a subjective view, assumes a flexible
structure that is more topological in nature. The relative view, defined by means of
intervals between objects or locations, is bounded, while the absolute perspective is
unbounded.

Therefore, focusing on the structural aspects, the following are core questions.
As for space: Is space finite or infinite in extension? How many dimensions does
it have? Is it Euclidean? Is it isotropic? Is it continuous or discrete? As for time: Is
time finite or infinite? Does it have a beginning or an end? Is it one-dimensional? Is
it linear or branching? Is it anisotropic, i.e. directed? Is it continuous or discrete?

To give an answer to the above questions, it is clear that the story ends with
Einstein’s ideas on a relative and continuous view, clearly influenced by what we
now call Minkowski spacetime. However, Newton’s ideas about the absolutism
of space and time dominated Science until the beginning of the past century and
constitute the framework of most of applications of Geostatistics nowadays. But, as
stated in [40] and the references therein, Newton was responding to both Galileo
and especially Descartes. But Galileo and Descartes themselves were writing in the
context of late Aristotelianism, and so were trained in and critical of that rich school
of thought, so if we want to fully understand their work we would need to understand
scholastic views on space and motion. But late scholasticism itself is the result of
a long history tracing from Plato and Aristotle through Jewish, Arabic, Islamic and
European thought. And of course Plato and Aristotle are explicitly reacting to their
predecessors and contemporaries. In other words, paraphrasing [40] (Ch.1 p.1) we
could start the story as early in recorded thought as we like. However, to keep this
sketch to manageable proportions, we will start with Greek atomists.

Greek atomists were the first that described the discrete space by reducing
everything to distinct bodies adrift in space (the container of such objects: the Void).
As stated in [68], ancient Greek philosophy is rooted in mythological and religious
notions. The earlier notions in Western mythology on the nature of space and time
can be viewed as a progression of the World from the Chaos (the boundless abysm,
the infinite space) to Cosmos (the final state of order, which consists of both natural
and political components). Although the final state is the state of order, the world is
not viewed as a unified whole. Rather, there is a relative order within a multiplicity
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of connected pieces, or territories, and discrete events. That is, space and time are
discontinuous, although the story does have an overall forward-moving evolution
[68]. For early Greeks time on an everyday scale consisted of the ordered rhythm
of human activities [37]. This notion of cyclic time is not idiosyncratic of the Greek
culture, but it appears also in the mythology and religion of other cultures (as an
example, the Mayans were convinced that history would repeat every lamat or 260
year-period), and was the dominating though until the emergence of Christianity
with only some few exceptions. The most notable exception is the Hebrews and
their linear conception of time according to the eventual deliverance and salvation
of Israel. The Zoroastrians and Seneca thought that time was progressive and non
repeating.

In Homer’s Odyssey it can be perceived an ordering of events in the sense of
continuity of time, which proceeds from the past, through the present and goes to
an open-ended future. Space is also seen as continuous and connected.

Although medieval scholasticism was dominated by Aristotle’s views (in the
Aristotelian tradition, space implies body and time implies motion; see [68] and the
references therein for details), in Renaissance times Copernicus, using the notions of
the ancient Greeks, constructed a uniform theory of space and time wherein the earth
and the heaven operate according the same laws. This theory, against the traditional
Christian distinction between Earth and Heaven, can be considered a Copernican
revolution because of (1) the scientific way of expressing the notion of a continuous
and non ending time, and (2) the idea of studying space and time together became
to have a notable degree of consensus. However, he continued to believe in the
Aristotelian idea that space is finite [2].

Galileo, strongly interested in the practical side of Science, recognized empty
space. Descartes did not. In fact, Galileo claimed that all bodies fall with the same
speed in empty space, and that their fall could be described by simple mathematical
laws. In a note apart, as fall in empty space could be not observed accurately at
that time, Galileo suggested new experiments. His new method did not aim at
the description of what is visible, but rather at the design of experiments and the
production of phenomena that one does not normally see and at their calculation on
the basis of mathematical theory [38].

Descartes’ universe was a mechanical (“wind-up”) clockwork robot universe,
with energy only as the property of matter being in motion and nothing other than
God and human souls being non-material. His material universe was all matter with
no empty space and with no separate energy besides the kinetic energy involved
in body motion. His “no empty space” was in line with Aristotle and Huygens
but opposed the experimental evidence offered by Gilbert, Newton and others who
supported non-corporeal energies or “spirits” also existing — separately from matter
and being also detectable by experimental science. For Descartes the human body
and the human mind were discrete entities. The human soul, unlike the mechanical
world, was something that could not be broken down.

According to Descartes the chief attribute of any object is that it occupies space
and we can only assure their measurable and geometric properties. This close
association of space with the existence of objects forced himself to reject empty
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space, because he would otherwise have had to admit the existence of non material
objects [68].

As outlined above, in his natural philosophy, all bodies are of one of two
classes: those that have extension, corporeal substances, or those of thought,
ideas. Corporeal substances are not the bodies of everyday experience but rather
geometrical objects devoid of colour, texture, and smell, which are secondary
attributes dependent upon our experience. It is only extension with its accompanying
geometrical qualities that are necessarily a part of substances. Consequently,
“Cartesian bodies are just the objects of geometry made real, purely geometrical
objects that exist outside of the minds that conceive them” [31], p. 294.

The idea of the coordinate system was developed in 1637 in two writings
(although Fermat developed the concept slightly earlier): In part two of his Dis-
course on Method, in an appendix, Descartes introduced the new idea of specifying
the position of a point or object on a surface, using two intersecting axes as
measuring guides. In La Géométrie, he further explored the above-mentioned con-
cepts. Specifically, he introduced the use of coordinates for describing plane curves,
the axes were omitted, and only positive values of the x- and the y-coordinates were
considered, since they were defined as distances between points.

As for time, Descartes espoused the traditional notion of two times but, as
in the case of space and matter, these were seen through the lens of theology.
According to [68], Descartes attributed absolute time to the external world and
external objects. As such, this time is measurable, but is also eternal and attributable
to God. Relative time is that time experienced by man as a mode of thought
(again the distinction between (external) material things and ideas, i.e. perceptions).
Following [2], Descartes also advanced the notion that time is discrete: Due to God’s
omnipotence, God directly intervenes with each successive discrete instant and such
interference is the cause of both the continuing existence of each individual and the
cause for the entire diversity of natural objects.

The controversial on whether space and time are real objects themselves, i.e.
absolute, or merely orderings upon real objects, i.e. relational, began with a debate
between Isaac Newton, through his spokesman Samuel Clarke, and Gottfried
Leibniz in the famous Leibniz-Clarke correspondence.

According to [68], the Newtonian notion of space arose from Greek atomists
view, with space composed of points, time composed of instants, and both existing
independently of the bodies that occupy this space-time. In addition, the movement
of a body changes the position of that body, but space and time are viewed as a
backdrop with an unchangeable structure that is absolute. Thus, the Newtonian view
can be understood as both discrete and absolute (objects existing within constant
space and constant time). Newton’s thesis of the immobility of (absolute) space,
against the backdrop of Descartes, clearly means that the parts of space, just as the
parts of time, do not change their relation with respect to one another. The parts
of space are their own places, and for a place to be moved out of itself is absurd.
A more expansive antecedent of this argument occurs in De Gravitatione, applied
specifically to time: if yesterday and tomorrow were to interchange their temporal
relations with respect to the remainder of time, then yesterday would become today,
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and today yesterday. Thus, Newton held an interestingly holistic identity criterion
for the parts of space and time [72].
The ideas above outlined can be summarized as follows:

Space is eternal in duration and immutable in nature... Although space may be empty of
body, nevertheless it is itself not a void: and something is there, because spaces are there,
although nothing more than that.

(De Gravitatione, as quoted by [21], p. 133).

Absolute, true and mathematical time, of itself, and from its own nature, flows equably
without relation to anything external.
(Principia, as quoted by [39], p. 118).

Leibniz disagrees with Newton that space and time are absolute. Consistent with
an austere ontology according to which “there is nothing in things except simple
substances, and in them perception and appetite”, Leibniz denies that space and
time are to be included among the worlds’ most basic constituents: time and space
as such are not things or substances or accidents, but merely beings of reason whose
reality is grounded in the mind [30]. For him space and time are properties, which
we attribute to objects in order to understand them properly and distinguish them
from other objects. Therefore, space and time are relative. There is no physically
spatial universe. We use the illusion of time and space in an effort to make sense
of our world. As for Kant, the individual is not a passive observer of an already
existing reality, but instead determines the “shape” of space and time for himself or
herself ([68] in p. 24; see also [44] for details about the Leibniz’s controversy with
the Newtonians).

Newton’s ideas about the absolutism of space and time dominated Science
until the beginning of the past century. But Einstein’s ideas on a relative and
continuous view dominate the Science in the twentieth century. Einstein’s work
was influenced by Minkowsky fusion of space and time. On September 21, 1908
Hermann Minkowski began his talk at the 80th Assembly of German Natural
Scientists and Physicians with the now famous introduction:

The views of space and time which I wish to lay before you have sprung from
the soil of experimental physics, and therein lies their strength. They are radical.
Henceforth space by itself, and time by itself, are doomed to fade away into mere
shadows, and only a kind of union of the two will preserve an independent reality.
[60], p. 75.

The idea that our world and all objects are four-dimensional (4D) since he
introduced the unification of space and time into an indivisible 4D entity (which he
called “the World”, 4D world, or what we now call Minkowski spacetime) can be
deduced from the following paragraph:

A point of space at a point of time, that is, a system of values, x, y, z, t, [ will
call a world-point. The multiplicity of all thinkable x, y, z, t systems of values we
will christen the world... Not to leave a yawning void anywhere, we will imagine
that everywhere and everywhen there is something perceptible. To avoid saying
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“matter” or “electricity” I will use for this something the word “substance”. We
fix our attention on the substantial point which is at the world-point x, y, z, t, and
imagine that we are able to recognize this substantial point at any other time.
Let the variations dx, dy, dz of the space co-ordinates of this substantial point
correspond to a time element dt. Then we obtain, as an image, so to speak, of the
everlasting career of the substantial point, a curve in the world, a world-line, the
points of which can be referred unequivocally to the parameter t from —oo to +o0.
The whole universe is seen to resolve itself into similar world-lines, and I would
fain anticipate myself by saying that in my opinion physical laws might find their
most perfect expression as reciprocal relation, between these world-lines [60], p. 76.

Since then the question of the ontological status of this union of space and time
has become the subject of a continued debate, but that goes beyond the scope of this
brief sketch.

1.1.2 Peuquet’s Varying Views of Reality

As stated in the previous subsection, some core ideas have persisted and have been
indeed refined in the history of philosophical and scientific thought on the nature of
space and time and its representation. In this subsection we focus on whether space
and time is (1) continuous or discrete, and (2) absolute or relative.

As can be deduced from the previous subsection and is resumed in [68]:

1. The continuous view considers that space and time are the subject matter and
all objects are contained within space and time. In contrast, in the discrete
perspective objects are the subject matter.

2. The absolute perspective assumes an immutable structure that is rigid and
purely geometric, whereas the relative view is subjective and assumes a flexible
structure that is more topological in nature.

3. Relative space and relative time are defined in terms of relationships between
and among locations or in terms of relationships between and among objects,
depending on whether both space and time are considered continuous or a
discrete, respectively.

4. From the absolute perspective measurements are referred to some constant
base, implying nonjudgmental observation. The relative view, involves explicit
interpretation of process and the flux of changing pattern and process within
specific phenomenological contexts.

5. The relative view is bounded (is defined via intervals between objects or
locations). The absolute one is unbounded.

Following [68], the first definition of space contained in the Webster’s New
Nineteenth Century Dictionary (Second edition), distance extending without limits
in all directions, that which is thought of as boundless, continuous expanse
extending in all directions or in the three directions, within all material things are
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contained, and the 19th definition of time, indefinite, unlimited duration in which
things are considered as happening in the past, present, or future; as ’the time of
the accident’, can be clearly interpreted as continuous space and time, respectively,
although it must be noticed that continuous space appears as the first definition and
continuous time is relegated to the position 19.

However, the second definition of space, distance, interval, or area between or
within things; extent; room, as ’leave a wide space between rooms’, and the first
definition of time, the period between two events or during which something exists,
happens, or acts; measured or a measurable interval, clearly are in line with both
the discrete and relative character of space and time.

As previously said, discrete space, as described by Greek atomists, implies bodies
adrift in space, with space acting as a container: the Void. Newtonian notion of
time and space have its roots in that notion, with space composed of points, time
composed of instants, and both existing independently of the bodies that occupy
this space-time. In addition, the movement of a body changes its position but
space and time are viewed as a backdrop with a rigid, unchanging structure that
is absolute. Thus, the Newtonian view can be considered both discrete and absolute:
objects exist within constant space and constant time [68]. Leibniz, as did Kant,
adopted a relative notion of space and time. But was the Newtonian perspective
which dominated science until Minkowski and Einstein works. The relative view
of a combined space-time continues to dominate science in general and physics
in particular. There is a common modern presumption of a combined space-time
matrix derived from Minkowskian ideas. But this is valid from a relative point of
view rather than from an absolute perspective. Absolute space and time are highly
interdependent and share many characteristics, but they are not interchangeable in
the sense of a four-dimensional, mathematically defined space-time hypercube.

Which is the resolution between absolute and relative points of view? It is one
superior to the other? These are two core questions for Peuquet [68]. The fundamen-
tal thesis of [68] is that both perspectives are complementary and interdependent.
The same could be said for continuous and discrete views of space and time.

Let us focus on Fig. 1.1, which in fact is a space-time domain (something similar
can be found in [73]) useful for showing how various views of space-time are
related in a general sense. Following again [68], the absolute side assumes an
unchanging structure that is independent of human perception (objective). The
relative view of space and time is connected with human internality; space and time
are contextual and interpretative (depending on social, religious or other contexts
and prior individual experience). Thus, according to [68], at one extreme of this
continuum, on the side of relative space and time, is the domain of myth and
metaphor; On the side of the absolute space and time is the domain of external
observation and measurement: what Peuquet names the “external truth”.

Figure 1.1 can be also be related with the division between physical and
social sciences. Physical sciences would be closest to the absolute side of the
absolute-relative continuum due to their emphasis on the understanding of the
external reality; somewhere in the middle is Geography, as both physical and social
science; progressing to the relative side could be found social sciences, including
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Sociology and Economics, given their emphasis on human-created environments
and institutions. Psychology would be closest to the relative side (pure human
interpretations and perception of reality). Where to locate Mathematics? It is the
unique case that does not fall in any single area of this framework but rather seems
to have aspects or subfields throughout (for example, Euclidean geometry is absolute
and very continuous in nature, but topology is relative and discrete).

1.1.3 Space, Time, Spacetime and Current Practice
in Geostatistics

As outlined in subsection 1.1.1, Einstein’s theory of relativity established that
space and time are both interdependent and inseparable. Space, consisting of
three dimensions (up-down, left-right, and forward-backward) and time are all
part of what’s called the space-time continuum. However most of the theory and
applications of statistics for spatio-temporal data, including Cressie and Wikle
(2011) book, which we follow in the sequel, are related to phenomena which
reside in a Newtonian framework because some modifications should be done in
the classical analysis to deal with, say, astronomical data.

Next we reproduce the Cressie-Wikle version of Einstein’s thought experiment:
Think of a boxcar being pulled by a train travelling at velocity v , and place a source
of light at the center of the moving boxcar. An observer on the train sees twin pulses
of light arrive at the front and rear end of the boxcar, simultaneously. A stationary
observer standing by the train tracks sees one pulse arrives at the rear end of the
boxcar before its twin arrives at the front end. That is, the reference frame of the
observer is extremely important to the temporal notions of simultaneity/before/after.
What ties together space and time is movement (velocity) of the boxcar’.
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Again following [20], Einsteinian physics assumes that the velocity of light is
a universal constant regardless of the frame of reference. Thus, for any frame of
reference, the distance traveled by a pulse of light is equal to the time taken to travel
that distance multiplied by the above constant. That this relationship holds under
any spatio-temporal coordinate system means that for Einsteinian physics, space
and time are inextricably linked. Other physical properties are modified, too. The
length of an object measured in the moving frame, moving with velocity v, is always
smaller than or equal to the length of the object measured in the stationary frame, by
a factor [1 — (v/c)?]/2. A similar factor shortens a time interval in a moving frame,
leading to the famous conclusion that the crew of a spaceship flying near the speed
of light would return in a few (of their) years to find that their generation on Earth
had become old.

However, although Einstein’s ideas are certainly relevant for some kind of
phenomena, the practice of Geostatistics assumes Newtonian physical laws. That
is, Geostatistics works with a coordinate system that is a Cartesian product of
the space (three-dimensional) and time (one-dimensional), while respecting the
directionality of the temporal coordinate, and uses models of spatio-temporal
processes to attempt to capture the statistical dependencies that can arise from the
evolution of phenomena at many spatial and temporal scales.

1.2 Geostatistics at Work in Natural Sciences
and Social Sciences

The study of spatial and spatio-temporal dependencies is one of the hot questions in
statistical and econometrical research. We live in a globalized physical world and, in
addition, the join effects of space and time on variables and attributes are becoming
a core question in almost all scientific disciplines.

Although the First Law of Geography, which stipulates that observations close
together in space are more likely to be similar than those farther apart [82], was
proposed forty years ago, only with the raise of geographic information science and
technologies, sophisticated statistical and econometric spatial and spatio-temporal
methods have been widely developed and applied in geographical sciences.

But, as stated in [20], this will be a century of massive (spatio-temporal)
datasets collected to answer Society’s dominant questions. And much of that
questions are fundamental to sustaining our planet (those related with Climate and
Environment) and to improve social and economic conditions (those related with
Education, Health, Economics, Finance, etc.), and they involve complex spatio-
temporal phenomena and are inherently statistical.

One more aspect should be considered. As outlined in [42] and stated in [58] and
[28], the past two decades have witnessed space-time convergence: transportation
and communication technologies have shrunk the world to an incredible degree.
Locations on the Earth’s surface are much closer to each other with respect to the
time required for movement and interaction. Sometimes, physical distance vanishes
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(this is the case in Finance). But even in such cases physical distance can be sub-
stituted by financial, economic, or social distances, and spatial and spatio-temporal
strategies continue to be at the core of stochastic modeling and statistical inference.

To address the patterns and statistical variability we can opt for a data-driven
orientation (Statistics) or a model-driven orientation (Econometrics) [3]. In both
approaches, spatial, and especially spatio-temporal arguments, are emerging as key
arguments in current research and will be paid more and more attention in the future.
Irrespective of the approach, the old assumption of independent observations is not
valid anymore in a geo-referenced world and this complicates statistical inferences,
parameter estimation and prediction. As a consequence, more realistic techniques
are needed. An interesting aspect of the path followed by the above mentioned
disciplines is that the incorporation of the spatial argument and of the joined effects
of space and time has lead them to work together. As an example, interpolated
variables are considered as core explanatory variables in econometric models, which
results in new challenges and, as a consequence, in new research and new procedures
(see, for example, [4,28, 59] for a discussion on the potential “errors in variables”
aspect of interpolated variables when they are used as explanatory variables in
spatial hedonic models as well as consequences and solutions).

As stated above, spatial and spatio-temporal strategies are currently at the core
of a wide range of scientific disciplines. Focusing on spatial statistics, the force
driving the development of Geostatistics was practical and economic. In Russia
meteorologists wanted to interpolate atmospheric variables from sparse recording
stations; in South Africa miners wanted to estimate the gold contents of ores
locally from measurements on drill cores; elsewhere petroleum engineers wished
to estimate oil reserves from logged boreholes; and all wanted their estimates to be
unbiased with minimum variance. Local estimation, i.e. spatial prediction, was the
ultimate goal of Geostatistics, and kriging was the means of achieving that goal. [45]
had written out the equations for the purpose in the 1930s, but without computers
no one could solve them. The advent of computers gave mining and petroleum
engineers the opportunity. As a consequence, Geostatistics rapidly became in an
evolving branch of applied mathematics.

The earlier applications were in mining, where the first steps were taken in
South Africa, with the work of the mining engineer Krige and the statistician
Sichel [46, 47, 79], followed by applications in forestry and hydrology. Typical
points that were addressed included locating and quantifying minable resources,
making a forest inventarisation, modelling (and predicting) changes in hydrological
components, to name just a few. Much of the original impetus for the subject was
driven by Geostatistics. It was in this context that the technique of kriging, optimal
least squares interpolation over a random spatial field, was originally developed.
Some theory was available, for example the random function theory as developed by
[85] in the nineteen sixties. But that was largely insufficient to find generic solutions
for the whole class of problems and, hence, applications required a new theory.

The innovative ideas of Krige and Sichel attracted the attention of French mining
engineers and in particular of Georges Matheron, who put them together in a single
framework: his celebrated Theory of Regionalized Variables [1, 53-57]. The new
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theories were applied to new disciplinary problems leading to modifications and
extensions of mathematical and statistical procedures. Well-defined problems with a
common character were suddenly on the agenda and data availability and intensive
discussion with practical and disciplinary researchers resulted in new theoretical
developments. It is often difficult to say which came first, but different theoretical
models were developed for different applications. Thus, there is no surprise that with
the advent of high-speed computers in the seventies the applications of Geostatistics
spread from the original metal mining topics (Matheron, who coined the term
Geostatistics, used it to designate his own methodology of ore reserve evaluation)
to such diverse fields as Soil Science, Oceanography, Hydrogeology, Agriculture
(especially in precision farming), Environmental and Ecological Sciences (with
particularly fruitful applications), and more recently Health Science, Sociology
(especially social networks theory), the practice of commerce and military plan-
ning (Logistics) and the development of efficient spatial networks, Real Estate,
Education, Psychology, Neighborhood research, Archeology, Financial Economics,
Demographic Modelling and even Politics (see [67] for applications of Geostatistics
to election forecast). The first international meeting on the subject was organized in
Rome in 1975 [35]. In the eighties two further international congresses took place,
namely at Lake Tahoe, U.S.A., in 1983 [83] and in Avignon, France, in 1988 [5].
It could be said that at that moment the discipline was consolidated. Of course, a
continuum of conferences and congresses followed from the eighties until now.

However, when it comes to indicate the areas where Geostatistics could be
applied, the most celebrated text books continuous to refer only to natural variables.
Without the intention to be exhaustive, and taking [18] as a guide, [15,22,23,43]
focused on applications in mining industry; [65] on hydrology and water resources,
[10] on soil mapping, [81] on atmospheric science, [41] on groundwater con-
taminant concentration. [18] provides some more applications of Gesostatistics in
Chap. 4 of his celebrated text, but they refer to the same areas we have outlined
above. [14] established the field of Geostatistics in the spatial or spatio-temporal
study of variables such as ore grades in a mineral deposit, depth and thickness of a
geological layer, porosity and permeability in a porous medium, density of trees of a
certain species in a forest, soil properties in a region, rainfall over a catchment area,
pressure, temperature, and wind velocity in the atmosphere, and concentrations of
pollutants in a contaminated site. [20], which surveys the most recent developments
in the statistical analysis of spatio-temporal data, is recommended for Climate and
Environmental Sciences. Note that much more work exists where the principles of
Geostatistics (second order assumptions; best linear unbiased prediction) are applied
in a spatial context without referring to geostatistics itself.

As outlined above, more and more disciplines are calling for sophisticated
models of spatial statistics. A particularly delicate, hence interesting area is the
field of Social Sciences including Real Estate research, Neighborhood research and
Medical Geography. [33] points out that the latter is a field where Geostatistics has
a promising future for application (see also [48], [7]). Medical Geography or spatial
epidemiology [24], is concerned with both (1) the study of spatial patterns of disease
incidence and mortality and (2) the identification of potential “causes” of disease,
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such as environmental exposure or socio-demographic factors [84], and has received
little attention in the geostatistical literature. This lack of attention contrasts with the
increasing need for methods to analyze health data following the emergence of new
infectious diseases (e.g. West Nile Virus, bird flu), the higher occurrence of cancer
mortality associated with longer life expectancy, and the burden of a widely polluted
environment on human health.

Empirical and Bayesian methods have been traditionally used in the analysis
of health data and putative covariates, such as environmental, socio-economic,
behavioral or demographic factors. [33] argues that Geostatistics represents an
attractive alternative to increasingly popular Bayesian spatial models in that:
(1) it is easier to implement and less CPU intensive since it does not require
lengthy and potentially non-converging iterative estimation procedures, and (2) it
accounts for the size and shape of geographical units, avoiding the limitations of
conditional auto-regressive (CAR) models commonly used in Bayesian algorithms
while allowing for the prediction of the risk over any spatial support. However,
Bayesian modelling has been successfully combined with geostatistical methods in
other areas [25, 63].

Of course, as data are typically aggregated over irregular spatial supports leading
to the “modifiable area unit problem” that may have a massive impact on statistical
results [64]. In order to tackle such problems, tools existing in Geostatistics
have to be modified or even taken from the larger tool box of spatial statistics
including hierarchical models, graphical models, marked point processes and other
models from stochastic geometry, such as germ-grain models and tessellations [34].
Additional problems appear as the quantity of interest are quotients of estimated
quantities where, mostly, the denominator is the estimated population size. The
behaviour of such quotient estimators is still not fully explored [80].

Neighborhood research assumes similarity among individuals residing in a
particular neighborhood and differences between neighborhoods; thus, issues of
spatial dependence are implicit in this kind of research. Community psycholo-
gists studying neighborhood effects usually turn to hierarchical linear modeling
to test multilevel theories that explain neighborhood effects by examining the
links between neighborhood characteristics and resident outcomes. They consider
random effects models to account for the lack of independence between individuals
or observations nested within neighborhoods. While it is possible to account for the
clustering or grouping of individuals within neighborhoods using these methods,
the grouping unit is typically a geographic region defined by administrative sources
(e.g., census tracts). Geostatistical methods do not require this a priori spatial
definition, but instead examine spatial point locations. As a result, these methods
do not rely solely on predefined boundaries that may not be consistent with
residents’ perceptions of neighborhood boundaries [16]. As an example, [69] shows
that neighbourhood boundaries are crucial to determine the size and statistical
significance of effects of neighborhood crime and neighborhood socioeconomic
status on residents’ perceptions of neighborhood problems.

Research on real estate relies more and more on spatial analyses, see [71]
and [18], for instance, for a discussion of relevant spatial statistics methods.
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The most popular application is the use of variogram to directly estimate the
variance-covariance matrix of errors in a traditional or augmented econometric
model and then compute an estimated generalized least squares estimate of the
regression coefficients. From this or a similar view, [9] treats spatial models with
both geostatistics techniques and hedonic models using a large sample of sales
in New Zeland. Instead of proceeding as usual, using geographical coordinates
or other spatial indicators as regressors, parametrically or even nonparametrically
[11,12,29] as explanatory variables in the hedonic model to take into account spatial
effects, they geostatistically model the disturbance term, and investigate whether
spatial statistical models perform better than an OLS model with neighborhood
dummy variables. Using a small sample from Baltimore, [26] compares exsample
predictions using OLS and a geostatistical technique, and concludes that the
geostatistical approach is superior even when some neighbourhood (census block
group) characteristics are included as explanatory variables. Further examples of
successful application of geostatistical models are given by [6,26,66].

[50] use geostatistics, spatial autoregressive models and geographically weighted
regression in a complementary way for localizing real estate submarkets homoge-
nous in respect of price, and direct modeling of the variance-covariance matrix later
used in GLS estimation.

[13] uses kriging methods, isotopic data cokriging, and heterotopic data cok-
riging methods to obtain estimates of house pricing in Granada, Spain, arguing
that interpolated maps of house price are interesting for appraisers, real estate
companies, and bureaus because they provide an overview of location prices.
Cokriging has been intended to take account for two different groups of data:
sold housing samples and not-for-sale housing samples where the price has been
estimated for instance for tax reasons, an information that has not received much
attention in the literature on hedonic price models [49]. Other co-variates appear in
spatial hedonic housing price models such environmental information (pollutants,
noise, etc., measured at monitoring stations). Examples of their effect are given in
[4,28] and indirectly in [59,61], for instance.

Finally, it is well known that understanding the spatial component within a
commercial portfolio is essential since fundamental portfolio theory shows that
spatial correlation is an unsystematic risk that should not be compensated by the
market. [36] is a pioneer work in application of spatial statistics in the real estate
field relative to spatial diversification, dividend policy and credit scoring.

1.3 Modelling Spatio-Temporal Dependencies

1.3.1 Introduction

It is well known that spatio-temporal statistics recognizes and exploits the space-
time locations of data when designing for collecting, managing, analysing, and
displaying such data. Spatio-temporal data are typically dependent, for which there
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are classes of spatio-temporal models available that allow for process prediction and
parameter estimation.

The study of spatio-temporal variability is a rather new area within Statis-
tics. There has been a growing awareness in the last 10 years that knowing
where and when data were observed could help enormously in answering the
substantive questions that precipitated their collection. Of course, that realization
is strongly linked to the improvements on computational power. Going a little
beyond, interpolation-based kriging procedures strongly depend on the choice of
the autocovariance associated to a space-time random field. Thus, the geostatistical
challenge is to obtain permissible dependence structures for space and time; in other
words, what is needed are adequate spatio-temporal covariance models associated
to stationary or non-stationary, isotropic or anisotropic random fields. On a note
apart, recent literature persistently emphasizes the use of approximation methods
and new methodologies for dealing with massive spatio-temporal data sets. When
dealing with spatio-temporal data, calculation of the inverse of covariance matrices
becomes a crucial problem. For instance, the inverse is needed for best linear
unbiased prediction, and is repeatedly calculated in maximum likelihood estimation
or Bayesian inferences. Thus, large spatio-temporal sample sizes results in another
big challenge from the computational point of view.

But both having a wide range of spatio-temporal models available that allow for
process prediction in most of situations the researcher could find, and parameter
estimation are not easy tasks, and in the two last decades much effort has been made
to enlarge the set of valid covariographic models and to overcome the computational
problems that usually arise when dealing with spatio-temporal data. This is why,
in this section, we briefly relate the story of spatio-temporal data and some of
the solutions to computational burden. Previously, we revise some basic, but core,
concepts to deal with spatio-temporal covariance functions.

1.3.2 Basic Concepts in the Analysis of Spatio-Temporal
Random Functions

Let Z(s,t),s € D C Rd, t € T C R, denote a space-time process where each of
Z, D and T is possibly random. Geostatistical approaches have been developed to
fit random field models in continuous space and time settings, based on a limited
number of spatially and/or temporally dispersed observations. These approaches
model the observations as a partial realisation of a spatial-temporal, typically
Gaussian, random field. Under the geostatistical framework, the domain is fixed
and we assume to draw observations, in given points, from a certain distribution.
In Chap. 4 the location of the sample sites moves according to a certain probability
setting.
In the following we assume for simplicity that D = R%and T = R.

Definition 1.1. A spatio-temporal random field Z(s,?) is said to be Gaussian if
all the finite dimensional distributions of the random vector Z = (Z(s1,t1), ...,
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Z(sy, ty)) for any set of spatio-temporal locations (s1,t1), ..., (Sy.ly) € R+ are
multivariate Gaussian.

Definition 1.2. A spatio-temporal random field Z is strictly stationary if its
probability distribution is translation invariant. In other words, if, in the case
of any separation vector (h,u) € R4¥!, the vectors Z and Zy, = (Z(s; + h,
t1 +u),...,Z(sy + h,t, + u)) have the same distribution for any s;,h € R4,
ti,ue R,i =1,...,n,andn € N.

A space-time random field is called weakly stationary if it has finite first and
second moment, and if the covariance between Z and Zy,, only depends on (h, u).

Gaussianity and weak stationarity are prominent and convenient assumptions
when dealing with space-time data, although often unrealistic. The Gaussian
assumption is fundamental for conditional und unconditional simulation and for
evaluating the impact of the misspecification of the covariance function on optimal
linear prediction (for this last concept, the reader is referred to Chap. 3). Motivated
by geological, meteorological and agricultural applications, Allard discusses in
Chap.7 the ways to overcome the assumption of Gaussianity and illustrates the
constructions obtainable through two huge classes of processes: the transformed
Gaussian and the skew-normal processes.

The assumption of weak stationarity can be weakened by assuming, for instance,
instrinsic stationarity. Here, the increments of a space-time random field on two
different space time locations have zero mean and their variance depends on the
space-time separation, i.e.

Var (Z(s,t) — Z(s', 1)) = y(s' —s,t' —1), 5,5 €eRY 1,1 eR.

The function y(-) is called variogram. Chap.2 points to some of its properties
and illustrates their use for unconditional simulation of weakly stationary and
intrinsically stationary Gaussian random field.

Several simulation algorithms are based on Bochner’s spectral representation [8]
that establishes a one to one correspondence between covariance functions and the
Fourier transforms of finite non-negative measures. The proof uses the fact that a
covariance function is positive definite function, and vice versa. The latter is synon-

mic to the fact that for any finite system of locations (s;,#),7 = 1,...,n, and any
constants a;, . . ., an, the variance of linear combinations, which can be written as
n n n
Var Zaiz(si,li)) = > aia;Cov(Z(si. 1), Z(s;. 1))
i=1 i=1j=1

must be nonnegative. A similar property holds for a variogram, which is called
conditionally negative definite since the bilinear combination

D aiajy((si 1), (s5.1))) (1.1)

i=1j=1
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shall be nonpositive for any n € N, and for any (s;,#;) € RY x R and a; € R,
n
i=1,...,n,with Y} a; =0.
i=1
The results from [78] give the relation between variogram and covariance
functions.

Theorem 1.1. Let y a real valued function with y(0) = 0. Then, the following
statements are equivalent:

* y isavariogram.
o exp (—0y) is a covariance function for any 6 > 0.
© C(siti), (s).1)) = y((si.1i), (0,0)) +y((s7.1)), (0,0)) = y((si.1i), (85.1;)) is a

covariance function.

Assuming stationarity of the increments of order k leads to building generalized
covariance functions. In Chap. 8 several generalized covariances are built on the
basis of stochastic differential equations, in particular through heat equations driven
by arandom noise or through Burger equations. In Chap. 9, a generalized covariance
is discussed as a general family including as special cases some ordinary covariances
that are well known in the literature.

A stationary space time covariance is called spatially isotropic if C(h, u,) =
K(||h||, up) for || - || being usually the Euclidean norm and for any fixed temporal
lag u,. Some other metric may be used but with much care since, in general, the
composition of the function K with any seminorm does not offer a positive definite
function. The reader is referred to the beautiful results in [86] where covariances
depending on the norm are studied. The function C is also called fully symmetric
if C(h,u) = C(h,—u) for any h € R? and u € R. An example is the class of
isotropic covariance functions which build a basic model component in the area of
meteorology [17] when modelling rainfall. Many models proposed in the last twenty
years regard such constructions as shall be explained subsequently.

A spatio-temporal random field has a separable covariance function if the spatio-
temporal covariance structure factors into a purely spatial and purely temporal
component, Cs and Cr, say,

C(h,u) = Cs(W)Cr(u) or C(h,u)=Cs(h) + Cr(u), heR? ucR.
(1.2)
In all the other cases, the covariance shall be called nonseparable.

Equivalently, [52] speaks about reflection symmetry; complete symmetry is
another usual term for this concept. It has been shown by [32] that if the covariance
function is fully symmetric, so is its associated spectral density, if it exists. Another
interesting aspect is that separable covariances are also fully symmetric, while
reverse is not necessarily true. Hence, covariance structures that are not fully
symmetric are non-separable, and tests for full symmetry ([75] and [52]) can be
used to reject separability.

We shall say that a space time isotropic covariance function is space-time
compactly supported if C has compact support, i.e., C(h,u) = 0 whenever
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General class of spatio-temporal covariance functions
(stationay or nonstationary)

With compact support

Stationary

Completely

symmetric
Separable

Fig. 1.2 Relations between the spatio-temporal covariance functions (Gneiting et al. 2007)

[(h,u)|| = r for some r > 0. A less severe limitation would come in if,
independently of the temporal argument, the space time covariance is identically
zero whenever ||h|| > r, or symmetrically, whenever |u| > r independently of the
spatial lag. Such assumption of space time compact support is for the meantime just
pedagogical since, to our knowledge, there are no models with such feature available
in the literature, apart of the trivial separable construction. But this definition comes
as an important perspective, in view of the increasing importance of a statistical
procedure celebrated in the literature under the name of tapering. For a thorough
illustration of such procedure the reader is referred to Chap. 10, who illustrates
the effect of tapering on asymptotic optimal prediction, and Chap. 3, where the
authors apply the idea of tapering in several contexts, with the aim of overcoming
the computational burdens induced by working with large spatial or space time
datasets.

In [32] the relationships between the various notions are nicely summarized in
terms of classes of spatio-temporal covariance functions, and an analogous scheme
applies to correlation structures (see Fig. 1.2). The largest class is that of general
stationary or non-stationary covariance functions. A separable covariance function
can be stationary or non-stationary, and similarly for fully symmetric covariances.

Covariance functions are a convex cone closed under the topology of pointwise
convergence. This act has been repeatedly used in the last years to build new
models of space time covariances. Thus, linear combinations, products, limits and
scale mixtures are friendly tools for the construction of such covariances. Such
properties are explained in Chap. 2, where Schlather also discusses the properties
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of variograms, being also a convex cone closed under the topology of pointwise
convergence, but with no closure property with respect to the product, expect to
some special cases as shown in [70].

1.4 Overview

The geostatistical space time framework has been very popular for over 20 years,
but it cannot be the universal key for the analysis of space time datasets since the
complexities of space time are extremely variable depending on the type of dataset,
the purposes of the analysis, the researcher perspective, and many other factors.
Adequate extensions include marked point process approaches and extreme value
theory, where the usual second order assumptions are questionable [76,77].

This book presents various aspects of the rapidly developing area space time
modelling. The majority of the approaches is nonetheless based on space time
covariances or variograms, for which we refer to Chap.2, where we can find
indications about the construction of covariances and variograms as well as how
to simulate processes using these objects.

A big challenge is related to the analysis of massive datasets, which imply a
huge computational burden for both estimation and prediction. This argument is
illustrated in Chap. 3. The authors illustrate the scenarios arising recently with the
aim of overcoming the computational burdens whilst preserving a certain level
of statistical efficiency. Such efficiency can be measured either with respect or
estimation or with respect to prediction, and this is precisely what they highlight
when talking about tapering. Likelihood approximations, in the spatial or in the
spectral domain, represent a nice alternative to tapering as they discuss. Recently,
a nice approach based on PDE has been proposed by [51], although with severe
limitations due to the fact that the solution is available in closed form for some
parameters only.

As just mentioned, statistical efficiency can be evaluated with respect to predic-
tion or to estimation. Such argument is valid also for the case of spatial or space
time design, as discussed in Chap.6. Two approaches are considered to design
experiments for a correlated random field when the objective is to obtain precise
predictions over the whole experimental domain. Both take the uncertainty of the
estimated parameters of the correlation structure of the random field into account.

Spatial and space time extremes represent a very important and quickly growing
area of space time statistics. Chapter 5 offers a review of the most important methods
for the construction of spatial extremes. After a brief illustration of the extreme
value theory for univariate and multivariate values, this chapter focuses on spatial
max-stable processes, illustrating also the features related to statistical inference and
simulation for these processes. Max-stable processes are also contrasted with spatial
hierarchical models.

The problem of large and complex datasets is thoroughly discussed in Chap. 4,
but from the perspective of Bayesian inference for space time point processes,
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which have become more and more popular, especially thanks to the development
of Markov chain Monte Carlo methods, which expand the scope of application of
Bayesian methods considerably. In particular, the authors mainly focus on Bayesian
contributions to inference for point processes, with emphasis to non-Markovian
processes, specifically Poisson and related models, doubly stochastic models, and
cluster models. They also discuss Bayesian model selection for these models and
give examples in which Bayes factors are applied both directly and indirectly
through a reversible jump algorithm.

The assumption of normality if fundamental for, e.g., the simulation of random
fields with a certain dependence structure (see Chap. 2), and justified by the stability
of multivariate normal distribution under summation and conditioning which offers
tractability and simplicity. On the other hand, Gaussian spatial processes are well
modeled and understood by the statistical and scientific communities, but for a wide
range of environmental applications Gaussian spatial or spatio-temporal models
cannot reasonably be fitted to the observations. Motivated by these facts, Allard
offers in Chap. 7 several ways to avoid the assumption of Gaussianity starting from
a Gaussian random field and transforming according to some rule. He discusses the
effects of such transformations on the moments of the resulting random field and
illustrates the issues related to estimation.

Space time covariances are nice tools since they allow for estimation and
prediction starting from an object available in closed form. But in many situations
the use of a covariance model respect to another is not justified by the laws of
physics or by the natural characteristics of the phenomenon of interest. If one
wants to consider such a perspective, then Chap. 8 will be a fundamental reference.
It provides a general overview on the main results derived by the authors in
relation to limit theory for the solution of linear and non-linear random evolution
equations. Additionally, they show the local regularity properties of the solution to
fractional pseudodifferential equations driven by random innovations. Specifically,
limit results derived for the heat and Burgers equations with linear and quadratic
external potentials are described in the first part of the chapter. In the second part, the
local quadratic variation properties of the solution to fractional pseudodifferential
equations on regular and fractal domains are formulated.

Two critical aspects of random fields are their behavior over short scales (or
equivalently, at high frequencies) and over long scales (or low frequencies). Some
standard models have flexibility at one but not both of these scales. Recent years
have seen a number of proposed models that have at least some flexibility at both
scales. In Chap.9, Porcu and Stein list the most prominent examples and analyze
their local and global behaviour, either in terms of covariance or associated spectra.

What about asymptotics? What kind of asymptotics should we use for spatial
processes? And, is there a way to use a kind of asymptotics conciling the existing
ones? Chap. 10 starts asserting that useful asymptotics are those that can help with
the statistical inferences. For example, asymptotics can help identify statistically
and computationally efficient estimators. The chapter illustrates how the study of
asymptotics in spatial statistics is complicated by the fact there are more than
one asymptotic frameworks in spatial statistics and the asymptotic results are very
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different under the different asymptotic frameworks. This chapter also reviews
some results under these asymptotic frameworks and shows how the asymptotic
results can help alleviate the computational challenges in the analysis of massive
spatial data.
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Chapter 2
Construction of Covariance Functions
and Unconditional Simulation of Random Fields

Martin Schlather

Abstract Covariance functions and variograms are the most important ingredients
in the classical approaches to geostatistics. We give an overview over the approaches
how models can be obtained. Variant types of scale mixtures turn out to be the
most important way of construction. Some of the approaches are closely related to
simulation methods of unconditional Gaussian random field, for instance the turning
bands and the random coins. We discuss these methods and complement them by an
overview over further methods.

2.1 Introduction

Random fields are used to model regionalized variables [65] such as temperature,
humidity, soil moisture, wave heights or metal concentrations of reservoirs, to
mention a few. A random field, Z say, can be seen as a random real function on RY s
or as a bundle of dependent random variables Z(x), indexed by x € R?. Assuming
that the variances exist, such a random field can be characterized by its expectation
and its covariance function

C(x,y) = cov(Z(x), Z(y)), X,y € R4,

These two characteristics determine the random field uniquely if the field is
Gaussian, i.e. if (Z(x1),...,Z(x,)) has a multivariate Gaussian distribution for
any x; € RY and n € N. Considering the variances of linear combinations
S h_, arZ(xy) with a; € Rand x; € R?, we get that
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n n
Z Z ar C(xg,xj)a; =0 forall x; € R?, g € R, and foralln € N.
k=1j=1
(2.1)

Hence, C(x, y) cannot be any arbitrary function. On the other hand, Kolmogorov’s
existence theorem (cf. [9], for instance) shows that if a symmetric, real-valued
function C satisfies (2.1) then at least a Gaussian random field exists that has C
as covariance function. Note that not all covariance functions are compatible with
a given marginal distribution. For instance, a log-Gaussian process on the real axis
cannot have the cosine as covariance function [1, 68].

Beyond characterizing (Gaussian) random fields from both a practical and a
theoretical point of view, covariance functions are the key elements to determine
likelihoods, to perform simulations and to spatially interpolate data (kriging).

In this chapter, we concentrate on the construction of covariance functions. In
Sect.2.2, we give methods that are as elementary as important. Sections 2.3-2.5
introduce the spectral approach, the convolutions, and the power series. The
approaches in Sects. 2.2-2.4 are closely related to simulation methods for uncondi-
tional Gaussian random fields. Hence, they are presented on the way. Unconditional
simulations are the key ingredients for conditional simulations [55] and are used
for simulation studies. Scale mixtures, discussed in Sect. 2.6, allow for an elegant
way to construct models. In particular, scale mixtures of the “Gaussian” covariance
model, C(x,y) = exp(—|x — y[[)?), play an exceptional role. The turning
bands method, presented in Sect.2.7, is primarily a simulation method, but also
defines a way to construct covariance models. In Sect. 2.8, the montée is presented.
Section 2.9 gives an overview over simulation methods that are not related to the
construction of covariance functions. Sections 2.10 and 2.11 deal with the advanced
topics of space-time covariance functions and multivariate covariance models. Some
excercises are given in section 2.12.

Henceforth, we will always assume that the expectation of the random field is
zero. Translation invariant covariance functions, i.e. covariance functions C with
C(x,y) = ¢(x — y) for some function ¢ : R — R, play a dominant role when
modelling spatial data. In this case, the function ¢ is called a positive definite func-
tion. A corresponding random field is called (weakly) stationary. If, furthermore,
the covariance function is motion invariant, i.e. C(x,y) = ¢(||x — y||) for some
function ¢ : [0, 00) — R, then the corresponding random field is called (weakly)
stationary and isotropic. Henceforth, || - || will always denote the Eucledian distance.

If Z(x + h) — Z(x) is weakly stationary for all 7 € R¥, then the random field
Z is called intrinsically stationary and the (uncentred) (semi-)variogram y is used
to characterize the random field:

y(h) = 5 B(Z() ~ Z(0).

Matheron [66] shows that a function y : R — [0, 00) is a variogram if and only if
y(0) = 0 and y is conditionally negative definite, i.e., y is symmetric and
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n n n
Z Zaiajy(xi —x;) <0 forallx; e ]Rd,ai € R with Zai =0,n € N.
i=1j=1 i=1
2.2)
If Z is even weakly stationary then y(h) = ¢(0) — ¢(h).
For theoretical considerations, we will also consider complex valued random
fields and hence complex-valued covariance functions C, i.e., functions that satisfy

n n
Z Z ar C(xg,xj)a; =0 forall x; € R?, ax € C,and foralln € N.
k=1j=1
(2.3)
[78] shows that any complex valued function satisfying (2.3) is Hermitian.

Complementaries and applications are given, for instance, in the books of [15],
[18], and [55]. Related review papers are given by [36] and [60], for example. See
also the technical report by [84].

Most of the models, many construction principles and nearly all simulation
methods given here are available within the R package RandomFields of [87].

2.2 Basic Constructions of Positive Definite Functions

A simple, but also important example of a covariance function is the scalar product
C(x,y) = (x,y). Most generally, let H : R? — J# be a mapping into a Hilbert
space 7. Then

Clx.y) = (H(x), H(y))r 2.4

is a covariance function. This representation of covariance functions is used
particularly in machine learning, see [27] and [95], for instance. As a consequence,
the function

C(x,y) = e/ tx=y) (2.5)

is a covariance function for any fixed r € R¢. Here, i is the imaginary number.

Further, if C is a covariance function on R? and A4 is a linear mapping from
R”™ into R?, then C(A-, A-) is a covariance function on R™. In particular, rescaling
C(s-,s-), s > 0, does not change the property (2.1).

Remark 2.1. If A has full rank then the corresponding random field is called
geometrically anisotropic, otherwise zonally anisotropic. Such kind of anisotropies
are frequently assumed due to preferential directions of underlying processes. Note
that the zonal anisotropy implies that if (|| - ||) is a positive definite function in R¥
sois @(| - ||) in RF with k < d.

Also sums and products of covariance functions are again covariance functions
[15, 18]. This can easily be seen by considering sums and products of respective
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independent random fields. In particular, vC is a covariance function for any
constant v > 0 since a non-negative constant function is positive definite.

Assume C, is a sequence of covariance functions that converges pointwise to
some function C,

C(x,y) = nll)ngo Cu(x,y), X,y € RY. (2.6)

Then, it can be easily seen that condition (2.1) holds also for C if C(x, x) is finite
forall x € R?.

These basic construction principles for covariance functions already allow us to
create many classes of covariance functions.

2.3 Spectral Representation

Equations (2.5) and (2.6), or (2.4) with a suitably defined scalar product, yield that

w@%=/ O (dw) 27
Rd

is a positive definite, complex valued function for any finite, non-negative measure
w on R?. For real-valued random fields we have

¢W=LMWMMM)

It is easy to see that ¢ is uniformly continuous. Bochner’s celebrated theorem
[10, 11] gives the reverse statement, namely that all continuous positive definite
functions have a unique representation (2.7).

The representation (2.7) allows for an immediate simulation procedure. Let
Z(x) = V(R CRXTP) or 7(x) = /1(RT) cos((R, x) + @) where & ~
U[0,27) and R ~ uu/(R¥) are independent. Then Z is (strongly) stationary, i.e.,
the finite dimensional distributions of (Z(x)),cga and (Z(x +1h)),cga are the same
forany h € R4, The marginal distributions are not multivariate Gaussian. However,
an approximation Z’ to a Gaussian random field is obtained if Z;,i = 1,...,n, are
independent and identically distributed according to Z and Z' = n=Y23Y"_ 7,
for some n large enough.

Example 2.1. The important Whittle-Matérn model [44, 62, 90],
Wy (h) = 2" ()~ 21" Ky ([121]). v >0, (2.8)

has spectral density
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Fig. 2.1 A variogram in R constructed by an infinite sum over cosine functions, see example 2.2

du(w) I'(v+d/2)
do  T()rd2(1 + |w|2)r+d/2"

Here, I' is the Gamma function and K, is a modified Bessel function of the second
kind.

Example 2.2. Variograms with exceptional properties can be obtained by sums of
cosine functions. However, they do not have any practical relevance. Let

y(h) = ) ar(l —cos(h/by)).
k=1

If ar = 1 and by = k! then liminfj_, o, y(h) = 0 and limsupy_, y(h) = oo
[4]. Independently, [50] showed that these two properties hold also for by = 2k,
Figure 2.1 illustrates y for ay = 1073 - k"1 and by = Lt

2.3.1 Spectral Turning Bands

An important special case appears when p is rotation invariant and thus can be
represented by spherical coordinates « and a radial coordinate r, i.e.,

uldw) = sgildozF(dr) 2.9)

for some finite non-negative measure F on [0, 00). Here, s4 denotes the surface area
of the d-dimensional sphere. Integrating over « in (2.7) we get

o(r) = / B(g—2)/2(rs)F(ds) forallr € [0, 00), (2.10)

[0,00)
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where

(=Dkr@w+1) 2\V
By = Zk'1“(v+k+1)< ) _F(”+1)(F) S (). ”>" @10

and J, is the Bessel function. Hence, the function ¢(h) = Bg—2)/2(||2]]) is the
elementary rotation invariant, continuous positive definite function in R¢. For d =
1,2, and 3, the function J(4_2)/2(h) equals

\/Ecos(h)/m, 21 /Oosin(hcosht)dt, and x/isin(h)/m,
0

respectively [46]. In analogy to Bochner’s theorem, [88] stated that a rotation
invariant function 2 +— @(||k])), h € R?, is real, continuous and positive definite
if and only if ¢ is the Hankel transform (2.10) of a non-negative finite measure F'
on the half-line [0, 00). Note that equation 6.567.1 in [42] ensures that B, (||2]|) is a
positive definite function on R for any v > (d —2)/2.

Remark 2.2. In three dimensions we have

o) = [ T,

[0,00)

i.e., the elementary rotation invariant positive definite function in R? is @(h) =
sin(||2]))/ |||, the so-called hole effect model.

Example 2.3. Equations 6.649.2, 6.618.1, and 6.623.3 in [42] consider functions ¢
of the form (2.10), and hence yield that ¢ (||22]|) is a positive definite function on R¥
if

1.v>(d—2)/4and ¢(r) = 2vI,(r)K,(r),

v —2v ,—r2 2
2 v > (d—2)/4and G(r) = I v+ Dr==Ye™ ™ I,(r*), r #0

1, r=0"
2v( 1+r2—1)U
3. v>max{0,(d —2)/2}and §(r) ={ — = ' >0
1, r=20

respectively. Here, I, denotes the Bessel I -function. For instance, the first model is
|v] times differentiable where |v ]| denotes the largest integer less than or equal to
v; it decays at rate 4! to infinity.

Remark 2.3. The function B, (2./vr) converges to the function r > exp(—r?) as
v — oo. Since B, (|| - ||) is a positive definite function in R? for d < 2v + 2, the
“Gaussian” covariance function C(x, y) = exp(—||x — y||?) is the candidate for a
fundamental motion invariant covariance function that is valid in all dimensions d.
This is indeed true, see Sect.2.6.2.
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The simulation method that uses decomposition (2.9) is called spectral turning
bands method in geostatistics, see [61]. A random field Z with a motion invariant
covariance function C(x, y) = ¢(||x — y|) is obtained if

Z(x) = v/2F([0,00)) cos(R(S, x) + @)

and R ~ F/F([0,00)) is given by (2.9), ® ~ UJ[0,2x), and S ~ U.% 5
is uniformly distributed on the (d — 1)-dimensional sphere .;_;. All random
variables are independent. Again, Z’' = n~"/23""_ Z; yields an approximation to
a Gaussian random field for Z;,i = 1,...,n, that are independent and identically
distributed according to Z. The value of n should be of order 500 to get good results.
Figure 2.2 shows the performances of the method for the “Gaussian” covariance

function.

Remark 2.4. The spectral representation by Bochner and Schoenberg leaves the
question open, which discontinuous positive definite functions exist and which
are of practical interest. In practice, only one discontinuous model exists that is
regularly used as a summand in additive covariance models, the so-called nugget
effect p(h) = 14;(h) ([15], for instance). Here, 14 denotes the indicator function
for a set A, i.e. 14(h) equals 1 if 7 € A and 0O otherwise. It is easily seen that

|
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o
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N
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Fig. 2.2 Simulation of the spectral turning bands method with 1, 2, 3, 4, 10, and 1,000 lines (rop
left to bottom right); the random field has the “Gaussian” covariance function
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the nugget effect is a positive definite function in any dimension. More generally,
for any subgroup Q of R¥, the validity of inequality (2.1) is readily checked for
Clx,y) =1o(x—y).

Any measurable positive definite function ¢ is a sum of a continuous positive
definite function and a positive definite function that vanishes almost everywhere
[78]. If, additionally, ¢ is rotation invariant and d > 2, then ¢ must be the sum of a
continuous positive definite function and a nugget effect [38]. However, covariance
functions do not need to be measurable [78].

2.4 Convolutions and Random Coin Method

Another immediate consequence of equation (2.4) is that
o(h) = / fE) f(x +hydx,  heR?, (2.12)
R4

is a positive definite function for any real-valued L,-function f on R¢. The function
@ is called a covariogram. If f is an indicator function, then ¢ is also called a set
covariance function.

Whilst in R! many functions f lead to analytic formulae for ¢, the situations
where the explicit calculation of ¢ is feasable are limited in higher dimensions.
Examples are f(x) = (n/4)%/*exp(—2|x||?) leading to the “Gaussian” model
@(h) = exp(—||k||?), and the indicator functions of the d-dimensional balls of
radius 1/2, up to a multiplicative constant, yielding covariance functions with finite
range 1, i.e. compact support. Examples are the hat function ¢(h) = (1 — |h|)+
for d = 1, the circulant model ¢(h) = 1 — 27~ (||h|| /1 = ||2||? + arcsin(||4]])),
2]l < 1, in R? and the spherical model ¢(h) = 1 — 2||h|| + 1[[2]]3, |2 < 1,in
R3. See [33] for further properties of these functions, and sufficient conditions for
positive definiteness based on these properties.

A random field that corresponds to (2.12) can be defined as

Zx) =Y flx—y)

yell

where IT is a stationary Poisson point process on R? with intensity A = 1. The
random field Z has a direct interpretation as the sum of effects of certain events
y € II and is therefore a convenient model for a non-Gaussian random field in
many applications. It possesses a lot of names, for instance, dilution random field
[15], random coin model, random token model [55], shot noise process [17, 69],
moving average model [62], and trigger process [20]. Of course, an approximation
to a Gaussian random field can be obtained through the central limit theorem.
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Fig. 2.3 Recentred and renormalised superpositions of 1, 10, 100, and 1,000 simulations of an
additive Boolean model with radius » = 1/2 of the disks (top left, top right, bottom left, bottom
right)

Figure 2.3 shows Z for A = 4/7 and f the indicator function of a disk with
radius 0.5, i.e., the covariance function of Z is the circulant model. A satisfying
approximation to the Gaussian distribution is obtained if n &~ 500 independent
realizations are superposed.

Remark 2.5. A related method to obtain positive definite functions and correspond-
ing random fields replaces the product in the integrand of (2.12) by a maximum:

v(h) = [Rd max{ f(x), f(x + h)}dx, heR?,

Here, f is a non-negative, integrable function. Then, v is a conditionally negative
definite function and the function ¢(h) = 2 [ f(x)dx — ¥ (h) is positive definite.
These functions appear in extreme value theory and are called extremal coefficient
functions ¥ or extremal correlation functions ¢ [25]. A random field that has
C(x,y) = ¢(x — y) as its covariance function appears as a thresholded max-stable
random field [85], a special class of Boolean random functions [47].

Both, the spectral representation and the convolution representation are special
cases of the Karhunen orthogonal representation [52]. We refer here to the version
of [8] who give a more rigorous proof and more general results.

Theorem 2.1. Let Z be a second order random field on V. C R4, i.e. Var Z(x)
exists for all x € R4. Assume that for some measurable space (W, '), the
covariance function C allows for a representation

Clx.y) = /W g5 Fds).  x.yeV.
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where

1. F is a positive, o-finite measure on W ;

2. L is the Ly space of functions that are square integrable with respect to F;

3. g:VxW — Cissuchthat g(x,) € L forallx € V;

4. dim(span{g(x,) : x € V}+) < dim(span{Z(x) : x € V}) where the
complement is taken with respect to L.

Then Z can be represented as

Z(x) = /W g(r.9)dE(s).  xeV.

where ¢ is a uniquely determined random orthogonal measure on Wy = {A €
W . F(A) < oo} with {(AU B) = {(A) + ¢(B) for all disjoint A, B € W and
E¢(A)(B) = F(AN B) forany A, B € #%.

This theorem complements Mercer’s theorem [7] which implies that any con-
tinuous covariance function C(x,y) on a compact set can be decomposed into
eigenfunctions. In case the eigenvalues drop quickly towards zero, fast simulation
algorithms for excellent approximations can be obtained by neglecting eigenfunc-
tions that have small eigenvalues.

2.5 Power Series

Since products and pointwise limits of covariance functions are covariance func-
tions, power series of covariance functions with summable, non-negative coeffi-
cients yield further models.

For instance, consider the Taylor development of (1 + x)9 ([42], formula 1.10),
ie.,

—1 —1D...(g—k+1

(1+x)q=1+qx+—q(q2, U SR ik qu Dk 4.
Then we get that
Cix,y) =M -C(x,y)? =M, ~ qg<0, M>supC, (2.13)

2k+1 .

—1)...(g—j+1 S

Catvoy) = 3 PR =X D oy me) — o - cny.

j=0 '

q € (2k,2k +1), keNy, M =>supC,

and
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)...(g—j+1

g1
C3(x,y) = (M =C(h)? =) 7

Jj=0

[—C(W)] M7/, (2.14)

qe€(2k—1,2k), keNy, M >supC,
are covariance functions for any covariance function C. In particular,

@(0)? — (p(0) — ()7, (2.15)

is a positive definite function for g € (0, 1] and any positive definite function ¢. The
function 1— \%(1 —p)'/2 has the form (2.15) up to an additive constant, and appears

as the covariance function of a thresholded extremal Gaussian random field [85].

Further examples of functions that have power series with non-negative coeffi-
cients are exp, sinh and cosh. Hence, if C is a covariance function, so are exp(C),
sinh C and cosh C. See also [86].

2.5.1 Application to Variograms

If y is a variogram then

Cx,y) =yx)+y(y)—vx—1y)

is a covariance function [66]. This is readily seen if an intrinsically stationary
random field Y with variogram y is considered and the covariance function of
Z(x) = Y(x) — Y(0) is calculated. As e S®+¥0)) 5 a covariance function by
(2.4), cf. [66], it follows that

h — exp(—sy(h)) (2.16)

is a positive definite function for all s > 0 and any conditionally negative definite
function y. Since y(h) = limy_o s~ (1 —e™57™)_ the reverse holds as well, i.e., if
the function given by (2.16) is positive definite for all s > 0, then y is a conditionally
negative definite function.

Remark 2.6. Equations (2.16) and (2.15) yield that for any conditionally negative
definite function y and any ¢ € (0, 1] the function

va(h) = lim (7 (1 = e Y ®)7 = y4(n) 2.17)

is non-negative and conditionally negative definite. As additing a constant does not
change the property of a function being conditionally negative definite, (y +a)? —a¥?
is a variogram for any variogram y and a > 0.
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Note that for ¢ > 1, the function y¢ may not be a variogram anymore. In general,
products of variograms are not variograms. See [100] for a discussion and classes
of examples. In contrast, any convex combination of variograms is a variogram.

Example 2.4. Tt is immediately seen from inequality (2.2) that y(h) = (h,h) is
a variogram for any scalar product (-, ). Equation (2.17) yields that & +— |&]%,
a € (0,2] is a variogram model for any dimension d. If d = 1, the corresponding
random field is called fractional Brownian motion, and Brownian motion if o« = 1.
Equation (2.13) yields that (1 + y)™# = lims_o(1 + s~ — s Lexp(—sy)) P isa
positive definite function for any variogram y and 8 > 0. Hence, the generalized
Cauchy model [28],

o(h) = (1+ || ~P/ (2.18)
and, by (2.16), the powered exponential model ¢(h) = exp(—|/h||*) are positive

definite functions on R forany d € N, f > 0 and o € (0, 2].

Although power series are useful for constructing covariance functions, they have
not been of direct use for simulating random fields.

2.6 Mixtures

Equation (2.6) yields that C = [ C,u(dv) is a covariance function if p is a
non-negative finite measure and C, are covariance functions such that C is finite
everywhere. In this case, C is called a mixture of the models C,.

Example 2.5. Integrating (2.16) over the interval [0, 1] with respect to s yields that

(p(h) — )/(h) ’ V(h) 7é 0
1, y(h) =0

is a positive definite function for any variogram y.

2.6.1 Scale Mixtures

The most important class of mixtures are the scale mixtures. Let ¢ and ¢¢ be
complex-valued functions on R¥. The function ¢ is called a scale mixture of @
if there exists a non-negative measure F on [0, 00), such that

o(h) = / vo(sh)F(ds)  forallh & R? (2.19)
[0,00)
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or, more generally,

C((xlv---vxd)’(ylv"'vyd)) =

/[0 y Co((s1X1....8aXq), (51Y1,-...8aya)) F(d(s1,....54)). xi,yi €R,
,00

for some non-negative measure F on [0, oo)d. For instance, all continuous, isotropic
covariance functions are scale mixtures of Bessel functions, see Sect. 2.3.1.

Example 2.6. The scale mixture of the “Gaussian” model with mixing density

oy = D

= 2K,1(5/<)S exp (— (ks + 8%/5)/2)

yields the generalized hyperbolic model [3,28, 89],

8—A

503 > + r) K8 +rH)?),  r=o0.
A

¢(r) =
Here, the parameters A, «, and § satisfy:

§>0,k>0forA >0,
§>0,k>0forA =0,
§>0,k>0forA <0.

It includes, as special cases, the Cauchy model (2.18) with « = 2 and the Whittle-
Matérn model in example 2.1.

2.6.2 Completely Monotone Functions

A continuous function ¥ on [0, co0) with ¥(0) € R U {oo} is called completely
monotone function if it is infinitely often differentiable and (—1)"y ™ (r) > 0 for
any r € (0,00) and n € N. It is well-known [98] that i is completely montone if
and only if it is a scale mixture of the exponential function, i.e.,

v(r) = /OO e T F(ds), r>0, (2.20)
0

for some non-negative measure F' such that v is finite on (0, 00). A function v is
called absolutely monotone if all derivatives are positive.

Since exp(—sy) is a positive definite function for any s > 0 and any variogram y,
the function v (y) is positive definite on R¢ for any bounded, completely monotone
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function ¥ and any variogram y on R?. As h > |h||? is variogram for any
dimension d, we get that v (||2]|?) is a covariance function for any dimension d and
any bounded, completely monotone function . [88] proved that the reverse also
holds. Namely, if ¥ (|| 2]|?), » € R?, is a continuous and isotropic positive definite
function in all dimensions d € N, then ¥ is a bounded, completely monotone
function.

Since 1 —e™*7 = ¢ foy e "*dt is a variogram for any variogram y we get that
foy Y (u)du is a variogram for any completely monotone, integrable function . A
non-negative function on (0, co) that is infinitely often differentiable and whose
first derivative is completely monotone is called a Bernstein function. For particular
properties and a considerable amount of examples, see [74] and [83].

Example 2.7. The conditional negative definiteness of y*, a € (0, 1), see equation
(2.17), also follows immediately from the fact that r > r® is a Bernstein function.

Example 2.8. A completely monotone functionis r > (1 + )1, cf. (2.18), which
implies that
h = log(y(h) + 1)

is a variogram for any variogram y. If y(h) = ||h||%, @ € (0,2], then the model
h — log(||]|* 4+ 1) is called de Wijsian model [96].

Example 2.9. The concatenation of two Bernstein functions is a Bernstein function
[5]. This is a consequence of the product rule for the nth derivative, which implies
that the product of two completely monotone functions is completely monotone.
Hence,

f(r)
rs /0 (< ())ds

is a Bernstein function for any completely monotone function g and any Bernstein
function f. For instance, choosing g(r) = exp(—r) and f(r) = r'/? shows that
erfc(,/y) is a covariance function for any variogram y. The latter function appears
as the covariance function of a thresholded Brown-Resnick process [51].

Remark 2.7. If v is a bounded and absolutely monotone function and C is a
covariance function then ¥ (C) is a covariance function, see Sect.2.5.Let0 < M <
/2, € (0,1) and p be a covariance function with |p| < 1. Then the following
functions are also covariance functions

p/(1—e *MPy " arcsinp, tan Mp, cossec(p)—p~ ', (2Mp)~' —cot(2Mp),

secp, —log(l —ap), log|p/sinp|, —logcos(Mp), log|tan(Mp)/(Mp)|.

The function arcsin p appears as the covariance function of a thresholded Gaussian
random field, see [2] for instance.

Remark 2.8. 1f v is a bounded, absolutely monotone function, the function () —
¥ (0) is also absolutely monotone and should be considered preferentially, since the
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covariance function ¥ (C) with ¥(0) # 0 always refers to a non-ergodic random
field.

2.6.3 More Mixture Models

Mixtures of exp(—Ay) yield several mappings from the set of variograms to the set
of positive definite functions.
For instance, equation 6.521.3 in [42] and equation (2.8) yield that

Y2 () = y2(h)
o) = | Iy =yt P2
vy~ (h), otherwise

is a positive definite function for v € (0, 1] and any two non-negative, conditionally
negative definite functions y; and y, where at least one of them is strictly positive.
Equation 9.111 in [42] and example 2.4 yield that

F(a;B:8;—y) (2.21)

is a positive definite function for@ > 0,§ > f > 0 and any variogram y. Here, F is
the hypergeometric function, see Sect.9.1 in [42]. Similarly, F(«; B;§; C(x, y)) is
a covariance function for any covariance function C with C(x,y) < 1 forallx, y €
R, if (@ + k)(B + k)/(8 + k) > 0forall k € N.
Furthermore,
fy(h)

— y(h 0
oy =1 Ty T
1 otherwise
is a positive definite function for f(z) = log(1 +z), f(z) = arctan(z), f = log(z+
+/72 4+ 1) and any variogram y, see equations 9.121.6, 9.121.27 and 9.121.28 in

[42], respectively. See also example 2.5.
One more example is

e R e N (A= TP}
0

2y B+yi(h)

where y; and y, are variograms and 8 > 0, cf. equation 3.325 in [42] and [22].
Hence,

o(h) = (B + ()26 (VB +ym)rah)

is a positive definite function for any bounded, completely monotone function ¢.
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2.7 Turning Bands Operator

The turning bands method, introduced by [67], see also [49], allows for the
simulation of a stationary random field using a projection technique onto one-
dimensional spaces. In almost all applications, the field is assumed to be isotropic
and the dimension d is less than or equal to 3.

The turning bands method is based on the following idea. Let s be an arbitrary
fixed orientation in R¢ and Z; a random field in R? that is constant on hyperplanes
perpendicular to s. Assume that the random process Y along direction s is stationary.
Then Zj is stationary, but not isotropic, except for the trivial case that Y is constant
for any realization. An isotropic random field is obtained if we replace s by a random
unit vector S that is uniformly distributed on the (n — 1)-dimensional sphere .%5,—;
and that is independent of ¥,

Zs(x) = Y({x.S)), heR4.

Let Ci(x,y) = ¢1(x — y) be the covariance function of Y. Then, the covariance
function C(x, y) = ¢(x — y) of Zg is given by

o(h) = Egi((h. S)) = / o1({h. s)(ds) = / o1l (e s))(ds)

Fn—1 Fn—1

where 77 is the uniform probability measure on .%,_; and e € R denotes any fixed
unit vector. Hence, C is rotation invariant, i.e., C(x,y) = @(||x — y||) for some
function ¢ : [0, co) — R. [67] showed the following relation between ¢ and ¢;:

d
E[rfp(r)], d=3
¢1(r) = d [T s , r>0. (2.22)

— ds, d =2
dr Jo r2—s2s

In fact, relation (2.22) holds reversely for any continuous positive definite function
@(| - ) on R4, d = 2 and 3, respectively [32]. The mapping which assigns @; to
¢ is called the turning bands operator. See Fig. 2.4 for an illustration of the turning
bands method. In Sect.7.4.2 of [15] the case of a general dimension d € N is
considered.

Note that the continuity assumption is equivalent to the assumption that C has no
nugget effect [38] and that C is at least m times differentiable away from the origin
for m the largest integer less than or equal to (d — 1)/2 [32].

An approximation to a Gaussian random field is again obtained through the
central limit theorem:

Z(x) =n"2 Y " Yi((x, Si)).

i=1
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Fig. 2.4 Recentred and renormalised superpositions of 1, 10, 100, and 1000 simulations of an
additive Boolean model with radius r = 1/2 of the disks (top left, top right, bottom left, bottom
right)

Here, Y; ~ Y,i =1,...,n,and S; ~ S,i = 1,...,n, are all independent. The
number of independent copies k that are needed is about 60 for d = 2 and 500 for
d = 3 [30], see also [55]. The simulation of the random field Y is performed on a
grid for example by methods described in Sect. 2.9, and the closest grid point to the
left, say, is taken as an approximation for (x, S).

Remark 2.9. Closed solutions for the Abel integral (2.22) in the case d = 2 are
rare [29]. Hence, the covariance function on the line must be evaluated numerically,
using the following more convenient form if r@(r) is differentiable:

1
1) = %/O r@(rvl—s2>ds=/

Ld
—rg(rv'1—s2)ds. (2.23)
0 dr
Alternatively, if (|| - ||) is a positive definite function also in R3, the space R?
can be considered as a hyperplane in R3 and the simulation is performed in R3.

Remark 2.10. In practice, one should not use random directions S; in the two-
dimensional turning bands method. Instead, equal angles between the lines should
be taken. By choosing the direction of the very first line purely random, isotropy is
still guaranteed from a theoretical point of view.

In dimension 3 or higher, a deterministic point pattern of equally spaced locations
does not exist for an arbitrary number of points. Therefore, the directions are usually
chosen randomly. A random direction S in R is obtained by

(V1 =VZ2cosU,vV1—V2sinU,V),

where U ~ U|0, 2r] is independent of V' ~ U0, 1], see [26], for instance.
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Remark 2.11. [32] generalizes the turning bands operator in the following way. Let
@(|| - ) be a positive definite function on R? and

Gaa(r) = G(r) — #@’(r), d—2>1.

Then @g—_»(|| - ||) is a positive definite function in R?~2, and vice versa.

2.8 Montée

Apart from the turning bands operator, further operators transform between sets of
positive definite functions by means of derivations or integrals.

For instance, the i th second partial derivative 9@ (h)/(dh;)? of a positive definite
function ¢ is positive definite, provided it exists (e.g., [81]). This is proved by
considering the covariance function of the ith partial derivative of a random field
corresponding to ¢.

[71] show that, if @(h) = @(||k]) is a positive definite function in R¥, then
@1(h) = @1(|h]) with @1 (r) = d@(/r)/dr is a positive definite function in R¢ 2.

Here, the montée, and its inverse, the descente, are considered. See [101] for a
unified approach to the turning bands operator and the montée.

Let Z(x1,x2) be a random field on R¥! x R42 with covariance function C and

C((x1,x2), (y1,y2)) = C((x1,x2 — y2), (y1,0)). Let

1

Yp(x1) = @M)&

/ Z(Xl,)Cz)dX2, X1 ERdl.
[-M,M]%2
Then, the covariance function Cjs of the random field Yy yields

1
C ) = i C ) ) ) d d
m(x1, 1) QM)% /[—M,M]dz /[—M,M]dz ((x1.x2), (y1, y2))dx2dy2

— / C((x1,h), (y1,0))dh (M — o0).
R92

This transformation of the covariance functions is called montée [64]. If C(x, y) =
@(|lx — y||) is motion invariant, then Cps (x, y) = @g, (||x — y||) with

2/ o(Vr?2 +s2)ds, d» =1

. 0

(pdl(r) = 0o .

271/ s@(s)ds, dy =2
r
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That is, @q, (|[x — y||) is a positive definite function in R?1 . Reversely, let p(h) =
@(||h])) be a positive definite function in R? and assume that ¢” (0) exists. Then the
descente is given by

1, r=20

PP =g/, r>0

and @(h) = D@(||h||) is a positive definite function in RZ+2 [34].
[31], see also [97] and [12], uses the montée to construct classes of differentiable
covariance functions with compact support from the function

or)=( —rb)al[o,l](r)~

If b = 1, then the function ¢(||2||) is positive definite if and only ifa > (d + 1)/2
[40]. For instance, ¢(h) = @(||h])) is a positive definite function in R¢ for

or) =1+ @ +2r +370+22=1r) (1 =) P11(r)

andv > (d +5)/2.

[80] and [79] extend the montée by considering integrations of real-valued order.
See [45] for a further extension of the Wendland-Gneiting functions. [70] derive
vector-valued covariance functions with comport support.

2.9 General Simulation Methods

In the following, widely used simulation methods are presented that are not imme-
diately related to construction methods of covariance functions and variograms.

2.9.1 Simulation of a Multivariate Gaussian Vector

Let Y be an n-vector of independent Gaussian random variables with zero expecta-
tion and unit variance, and D = Dy D(—)r be any positive semi-definite n X n-matrix.
Let

X ~ DyY. (2.24)

Then X has a multivariate, centred Gaussian distribution with covariance matrix D.
Of course, this basic fact can also be used to simulate from stationary or non-
stationary random fields, defining D = (C(x;,x;));,j=1,...n- The method has its
numerical limitation at about n = 10* for general matrices.
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2.9.2 Circulant Embedding

The circulant embedding method allows to simulate a stationary random field on a
grid which is equally spaced in each direction. The idea is to expand the covariance
matrix to a circulant matrix, i.e. to simulate from a torus. If this is feasible, the square
root of the expanded matrix can be calculated using the Fast Fourier Transform. This
approach was independently published by [23] and [13,99]. [99] show that such
an expansion is always possible if the covariance function has compact support.
The algorithm is then exact in principle. In case negative eigenvalues appear in the
expanded matrix, [99] suggest an approximation by putting them to zero. However,
this can lead to deficient simulation results.

If n is the number of grid points and d the dimension, the number of flops is of
order 291 log(2%n), hence the simulation method is very fast unless the dimension
d is high.

Extensions to conditional simulation, to arbitrary locations [24], and to multi-
variate random fields [14] exist.

Further extensions are the intrinsic circulant embedding and the cut-off circulant
embedding [39, 91]. The idea is to replace a given covariance function by a
covariance function that equals or essentially equals the required covariance on the
given finite grid, but has finite range.

2.9.3 Approximations Through Markovian Fields

In a space-time setup, a field might be simulated on a few spatial points at arbitrary
locations, but at many instances in time on a grid. Instead of simulating all variables
at once, (approximating) Markov fields can be used in the temporal direction, using
a temporal neighbourhood of k instances. Namely, for each instance, Gaussian
variables are simulated simultaneously for all locations, conditioned on the previous
k instances and all locations.

[77] rigorously suggest to approximate Gaussian random fields through Markov
fields with a huge increase in speed for the simulations. In a recent paper, [56] relate
the Markov random fields to partial differential equations.

2.10 Space-Time Models

A current, important task is to find covariance functions that are useful for modelling
space-time data. In the following, let d be the dimension in space. Mathematically,
the set of space-time covariance functions cannot be distinguished from the set of
covariance functions in R4 +1, However, the sets of those covariance functions that
are of interest in practice differ. In the purely spatial context, an isotropic random
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field constitutes the standard model. In contrast, the temporal development of a
process differs in most cases from the spatial development, leading to anisotropies
between space and time. For example, geometrical anisotropy matrices A, see
remark 2.1, that have the form

A= (AO _V) c RE+Dx(@+1)
0 s

connect space and time through the vector v € R¥. The latter can be interpreted, for
instance, as wind speed in a meteorological context [43]. The matrix Ay € Réxd
gives the purely spatial anisotropy and s > 0 is a scaling factor for the temporal
axis.

To simulate space-time random fields, all the approaches presented in the
previous sections can be used if they are appropriate. For example, circulant
embedding will be useful if the space-time data lie on a grid. In the following, some
additional, specific methods are presented.

2.10.1 Separable Models

The simplest class of anisotropic space-time models are separable models. By
definition, a separable model has one of the following two forms

C((x.1),(y,5)) = Cs(x. y)+Cr(t.5) or C((x,1),(y.5)) = Cs(x, y)Cr(t.s),

where Cg is a covariance function in R? and Cr is a covariance function in R
[75]. All other models are called non-separable. It is easy to see from the results
in Sect. 2.2 that separable models are covariance functions. A variogram is called
separable if

y(h,u) = ys(h) + yr(u)

for two variograms ys(h) and yr(ux) in R¢ and R, respectively. Products of
variograms should not be considered, cf. remark 2.6. Random fields with separable
covariance function can easily be simulated. Namely, a spatial random field with
covariance Cg that is constant in time is added (or multiplied, respectively) to a
temporal random process with auto-covariance Cr that is independent of the former
and is constant in space. The obtained field is not Gaussian and an approximation
can be obtained through the central limit theorem. Although separable models
are quite appealing, they have practical disadvantages [19, 54, 76] and theoretical
disadvantages [92].

Many non-separable models given in the literature are based on separable models
and general transformations of covariance functions and variograms as presented in
the preceding sections. An example that refers to the models discussed in Sect. 2.5
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is (h,u) = (1 + |h]* + |u/*)~?, cf. [21]. The function ¢ is positive definite on
R4 x R?' for any dimensions d and d’, if v, A € [0,2] and § > 0. Another example
iso(h,u) = [1 —es(h)er )], where @ > 0 and @5 (0)e7(0) < 1 [57].
Further models are obtained by means of scale mixtures of separable models. For
instance,
o0
- y(h)
C(h,u) = / Y™ cos(slul)ds = —————
0 y(h)> + [ul?
is a covariance model in R? x R for any strictly positive, conditionally negative
definite function y on R4, cf. [22].

2.10.2 Gneiting’s Class

[35] has introduced an important class of space-time covariance functions general-
izing the findings in [19]. Let ¢5(r), r > 0, be a bounded, completely monotone
function and

oh,u) =y~ 2 gs (In1*/yw).,  (h,u) e R? xR.

[35] shows that ¢ is a positive definite function if y(u) = ¥ (Ju|?) for some
strictly positive Bernstein function . [100] show that ¢ is a positive definite
function if and only if y is a strictly positive, conditionally negative definite
function. Note that Gneiting’s model is fully symmetric [35], i.e. C((x,?), (y,s)) =
C((x,—1), (y,—s)), restricting its ability to model correlations between space and
time.

[86] generalizes Gneiting’s model towards models that are not fully symmetric,
using the fact that exp(—u2y (h)) is, for fixed u, a positive definite function in /, and,
for fixed £, the spectral density of the “Gaussian” model.

Remark 2.12. The ambivalency that a function is a positive definite function in
one argument and a spectral density in the other has been used previously by [94]
considering the function [c1 (a2 + || [?)¥ +c2 (a3 + ||u[?)¥2] 7. Here, h € R91, u €
R, a2 +a2 > 0and ¢y, ¢z, V1, V2, @1, 02 > 0, such thatdy /(a1v)+da/(a2v) < 2.
If ¢y = 1, then the corresponding positive definite function is given by

w22Wy—a o (f(ull®) A1)

o) = v .
2Bl (0) f (]2

The function f equals f(s) = (a3+cicy ' (a3 +5)%1)1/2,s > 0,and W, denotes the
Whittle-Matérn model with parameter v. See [58] and [94] for further, sophisticated
models, and [93] for non-stationary covariance functions.
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2.10.3 Turning Layers

Space-time data typically consist of longer, regularly measured time series given
at several arbitrary locations in R?. The turning layers method respects this fact
and is applicable for fully symmetric models that are isotropic in space. As for
the turning bands method, a non-ergodic random field that is isotropic in space
is obtained if a random field with translation invariant covariance function C; is
simulated on a plane where one axis has a random direction in space and the other
axis equals the time axis. The random field in R¢ x R is constant in perpendicular
direction to the plane, cf. [53]. Denote the covariance function of the latter by C.
Similar to the derivation of the turning bands relation we obtain a reverse formula
fOHr |C1((X|1),t), (r1.8)) = @1(lx1 — y1l.[t = s]) given C((x.1). (y.5)) = ¢([lx —
v, |t =s)):

LT d=3
sy =1 (2.25)
®1 (rs i r S(”Z(s, [) . .

————ds,d =2
or Jo rz—s2 *

An approximation to a Gaussian random field is obtained through the central limit
theorem as in the case of the turning bands method. A realization on the plane
might be obtained by using circulant embedding, see Sect. 2.9.2. The turning layers
have the advantages of being an exact method in the temporal direction at any fixed
location. However, it exhibits the usual approximation error of the turning bands
method in space.

Remark 2.13. Assume that, for some functions f,g : R — R and ¢g : [0, 00) —
R, the function ¢(r, t) is of the form g(¢)@s (rf(¢)), as it is the case for the Gneiting
class. Let ¢1,s be the function obtained for ¢s through (2.22) for d = 2,3. Then
we get

P1(r.1) = g(M)p1,s(rf(1)),
assuming that equality (2.23) holds if d = 2.

Naturally, the turning layers can be generalized to simulate random fields on
RYxR", n > 1, that are isotropic in both components. Namely, the two-dimensional
random field Y can be replaced by a higher dimensional one, or the turning bands
principle can be applied also to the second component of Y.

2.10.4 Spectral Turning Layers

A variant of the turning layers that corresponds to the spectral turning bands is useful
for covariance functions of the form

C(h,t) =E&(|x — Vt|?). (2.26)
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Here, ¢ is a bounded, completely monotone function and V is a d-dimensional
random vector that might be interpreted as wind speed in a meteorological context
[16]. A corresponding random field Z is obtained as

Z(x,t) = /2F([0,00))cos(A(S,x = Vi) + D)

where A ~ F/F([0,00)), F is the radial spectral measure for ¢ given by (2.9), @ ~
Ul0,2r), and S ~ U.%;_ is uniformly distributed on the (d — 1)-dimensional
sphere .#; 1. All the random variables are independent. We call the method spectral
turning layers.

Let ¢ be a bounded, completely monotone function and V' ~ A (u, M/2) for
some covariance matrix M . [86] shows that C has a closed form,

C(h,t) = (h—t) T A+ 2M) " (h — 1))

1 ~
«/1+12M(p(

which is fully symmetric if and only if u© = 0.

2.10.5 Models Related to PDEs

A challenging problem is to find closed-form covariance models that refer to
solutions of physical equations. Let B be the random orthogonal measure on R?
such that B(I x J) ~ .A47(0,|I||J]) for any bounded intervals 7, J C R. [48] show
that the solution of

2
(% —aai - b2) Y(x,t)dx = B(d(x,1)), x,t €R,
X

has covariance function

1 2b|h| — 2b|h
Clhuy=t eDllege (2=t} | prutgge (Z2IALE N0 ) )
2 2 Jelh| 2 /elh|

see also [53] and the references therein. [58] generalizes this covariance function
by showing that |A| on the right hand side can be replaced by /y(h) for any
variogram y.

2.11 Multivariate Models

A commonly used model for a multivariate process Z = (Z1,...,2Z,) is the
so-called linear model of coregionalization [41], where each component Z; is a



2 Construction of Covariance Functions and Unconditional Simulation 49

linear combination ZIK=1 aj;Y; of independent, latent processes Y;. Assume Y; has
covariance function C;. Then the matrix valued covariance function of Z,

Cij(x,y) =cov(Z;(x), Z;(y)), i,j=1,...,n, Xx,y€ R4,

equals ACAT with A = (aij)j=1,..ni=1,.,x and C = diag(Cy,...,Cg).

Except for some further special constructions, see [96] and [86] for instance,
parametrized classes have been rare.

Recently, [37] introduced an extension of the Whittle-Matérn model W,
to the multivariate case. In the bivariate case, they show that C;;(h) =
(bl'j in_/‘ (Clijh))i’j=1’2 with Cl'j = Cji, Vij > 0, i, ] = 1, 2 and b,’i > 0, i = 1, 2,
is a matrix-valued positiv definite function if and only if

2 2
»2 < b11b2a I'(vi1 + %)F(VZZ + %)F(VIZ)Z alll)“azvzz in (a%z + t2)2v12+d
— 4 2 .. .
Y Fro)F )iz +%$2  afy2 207 (@2 +12)viitd/2

[70] derive multivariate models with compact support. [82] give both necessary and
sufficient conditions such that a matrix-valued covariance function is divergence
free or curl free. They also show that this property is inherited by the corresponding
Gaussian random field.

[14] present a multivariate version of the circulant embedding method,
Sect.2.9.2. Nonetheless, further methods for simulating multivariate models need
to be developed.

2.12 Exercises

In the following, we give examples of covariance functions given in the literature
that can be derived from the assertions presented in Sects. 2.2-2.8.

Exercise 2.1. [72] show that certain quasi-arithmetic means of completely mono-
tone functions lead to positive definite functions. They give three examples for
classes of positive definite functions. Show the positive definiteness for two of their
examples:

1. Gumbel-Hougard family

@(h1, ha) = exp(—([h1[[P1 + | ha]|P2)?)

forany B € [0,1], p; €[0,2], h; e R%,d; e N,i = 1,2.
2. Clayton family

@(h1,h2) = [(1+ |71 [D? + (1 + A2 ])?2] 7P

forany B > 0, p; € [0,1],h; e R%,d; e N,i = 1,2.
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Hint: show that y~! is a covariance function for any strictly positive, condition-
ally negative definite function y, considering a suitable mixture of the functions
exp(—sy), s > 0.

Exercise 2.2. [73] introduce the Dagum family
y(h) = (1+ ||| 7)™

and show that y is a variogram in R® if 8 < (7 —a)/(1 + 5a) and @ < 7. [6]
present conditions so that the function r +— (1 + r—#)~ is completely monotone.
Show that the Dagum family yields a variogram on R? ford € N, a € (0, 1] and
B €(0,2].
Hint: show that
¥ (0) — y(h)
1+9(0) —v(h)

is a variogram for any positive definite function v, and conclude that yo/(1 + yo)
is a variogram for any variogram yg. See [63] for an alternative proof.

Exercise 2.3. Let Z be an intrinsically stationary random field on R¢ with
variogram y and z be fixed. Show that the covariance function of ¥ with Y (x) =
Z(x + z) — Z(x) equals

Cx,y) =y(x—y+2+ylx—y—2—2y(x—y), x,yeR?

and conclude that

1. f(h,2) =2y(z) +2y(h) — y(h + z) — y(h — 7) is a variogram for any fixed z.
See, for instance, Lemma 17 in [74] and Lemma 1 in [59] for proofs given in the
literature.

Show further that, although f(z,h) = f(h,z), the function f is not a
variogram in (%, 7), in general. To this end, consider y(h) = |h| on R! and
verify that (2.2) is not satisfied.

2. The function ¢(h) = 0.5(]|/h + 1]|* = 2||A||* + || — 1||*) is positive definite for
« € (0,2]. The corresponding random field is called fractional Gaussian noise if
d=1.

Acknowledgements The author is grateful to Sebastian Engelke, Alexander Malinowski, Marco
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Chapter 3
Geostatistics for Large Datasets

Ying Sun, Bo Li, and Marc G. Genton

Abstract We review various approaches for the geostatistical analysis of large
datasets. First, we consider covariance structures that yield computational sim-
plifications in geostatistics and briefly discuss how to test the suitability of such
structures. Second, we describe the use of covariance tapering for both estimation
and kriging purposes. Third, we consider likelihood approximations in both spatial
and spectral domains. Fourth, we explore methods based on latent processes,
such as Gaussian predictive processes and fixed rank kriging. Fifth, we describe
methods based on Gaussian Markov random field approximations. Finally, we
discuss multivariate extensions and open problems in this area.

3.1 Introduction

Due to the advancement of technology, massive amounts of data are often observed
at a large number of spatial locations in geophysical and environmental sciences.
There are many interesting aspects to discuss for the geostatistical analysis of large
spatial datasets. Here we focus on computational issues, that is, how to make the
geostatistical analysis of large datasets feasible or how to improve computational
efficiency. This is crucial because spatial problems with modern data often over-
whelm traditional implementations of spatial statistics, such as maximum likelihood
estimation, Bayesian methods, and best linear unbiased prediction (kriging). In
particular, large dimensional covariance matrices must be inverted. Moreover, many
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geophysical processes are observed on a globe and it is common to have spatial data
covering a large portion of the Earth. This requires special techniques to deal with
large datasets observed over a sphere [27,28]. Finally, the computational burden is
aggravated in spatio-temporal settings and in multivariate situations where multiple
observations occur at each location.

For instance, the exact computation of the likelihood of a Gaussian spatial
random field observed at n irregularly sited locations generally requires O(n3)
operations and O(n?) memory [43]. Therefore while sample sizes of n = 1,000 are
no longer a challenge, n = 1,000,000 remains out of reach with classical procedures
for even large clusters of processors. In a Bayesian framework, hierarchical models
implemented through Markov Chain Monte Carlo (MCMC) methods have become
especially popular for spatial modeling, given their flexibility and power to fit
models that would be infeasible with classical methods. However, fitting hierarchi-
cal spatial models also involves expensive matrix operations whose computational
complexity increases in a cubic order of the number of spatial locations n at every
iteration of the MCMC algorithm [3], and thus here as well the computations
can become problematic for large spatial datasets. Kriging, or spatial best linear
unbiased prediction (BLUP), is an optimal interpolation in geostatistics. Solving the
kriging equations directly requires the solution of a large linear system and involves
inversion of an n x n covariance matrix C, where O(n>) computations are required
to obtain C~! [7, 18].

Because large dataset issues often arise from the difficulty of dealing with large
covariance matrices, understanding and modeling covariance structures is the key
to tackle this problem. Let {Z(x); x € 2 C R?}, d > 1, be a random field and
X1, ..., Xn be the sampling points in Z. For a second-order stationary random field,
the covariance function, C(k) = cov{Z(x), Z(x + K)}, is determined only by the
lag k but not the location x. Here x denotes the location and k denotes the lag
and they can be defined in either a purely spatial domain & = . or a spatio-
temporal domain 2 = .¥ x .7 depending on the nature of the data. Let h denote
the spatial lag and u the temporal lag, that is, k = h for spatial data indexed by
x = s € . while k = (h, u) for spatio-temporal data indexed by x = (s,7) €
. x 7. Further, we can define the second-order stationary covariance function
for a multivariate random field {Z(x) = (Z1(x),...,Z,(x)T;x € Z C R?} by
Cij(k) = cov{Z;(x). Z;(x + k)}, fori, j =1,..., p, where p is the number of
variables at each location. Compared to the n X n univariate covariance matrix C
induced by n spatial locations, the size of the multivariate cross-covariance matrix
is inflated to np x np.

There have been several approaches to overcome this large matrix problem, such
as imposing separability on covariance functions, tapering the covariance matrix,
using composite likelihoods, truncating the spectral representation of a random
field, modeling the realizations by a latent process with reduced dimension, and
approximating the random field with a Gaussian Markov random field. One common
feature implied by all these methods is to sacrifice some unimportant information
in the data in order to gain computational efficiency. How to define “unimportant”
distinguishes these methods. Separability ignores the interaction between different



3 Geostatistics for Large Datasets 57

types of covariances so that the dimension of the covariance matrices to be inverted
is reduced dramatically and thus facilitates computational procedures. Covariance
tapering makes use of the computational advantage of sparse matrices obtained
by zeroing out the “small” values in the covariance matrix. Composite likelihood
methods throw away weak correlations between observations that are far apart,
and spectral methods estimate parameters by truncating spectral representations.
Latent process approaches keep only the most fundamental structure and wash out
the details in the random field via adopting a low rank structure on the covariance
matrix, which enables to simply deal with a matrix of low dimension rather than
a large covariance matrix. While sharing this dimension reduction idea, many low
rank models in different forms have been developed. Besides, Gaussian Markov ran-
dom fields, for which the conditional distributions only depend on nearby neighbors,
lead to sparseness of the precision matrix, the inverse of the covariance matrix.

All these methods can be regarded as approximations of the underlying random
field. In [48], an efficient computing algorithm was thus developed for calculating
different predictive scores which are measures of the predictive performance and
assess how well an approximation works. Estimators are then constructed to
minimize some prediction scores.

The remainder of this chapter is organized as follows. In Sect. 3.2, we review
separable covariance structures and explains how they can facilitate computational
procedures for large spatial datasets. Then, in Sect. 3.3, we describe the use of
covariance tapering for both maximum likelihood estimation and kriging purposes.
We provide some other practical ways to evaluate likelihood functions in both spatial
and spectral domains in Sect.3.4. Next, in Sect. 3.5, we introduce different forms
of low rank models for latent process approaches, including Gaussian predictive
process models and fixed rank kriging, and in Sect. 3.6 we discuss approximations
using Gaussian Markov random fields. We review some existing methods and
extensions for multivariate spatial datasets in Sect.3.7, and the chapter ends with
a discussion in Sect. 3.8.

3.2 Separable Covariance Structures

One way to deal with the computational issue of large covariance matrices
is to take advantage of some special covariance structures. A class of such
covariance structures that has been used widely is that of separable covariance
functions. Separability is defined with different notions depending on the context.
For example, a space-time separable covariance model is defined as C(h,u) =
C(h,0)C(0,u)/C(0,0). That is, the space-time covariance function can be factored
into a product of a purely spatial covariance and a purely temporal covariance.
Another notion of separability, also called intrinsic model and defined only for
multivariate random fields, is that C(k) = p(k)A for a spatial or spatio-temporal
correlation function p(k) and a p x p positive definite matrix A. This type of
separability indicates that the covariance between variables is independent of the
covariance induced by spatial locations.
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The aforementioned separable covariance functions can significantly reduce the
dimension of the covariance matrices that need to be inverted, hence they can
alleviate the computational demand. This is because separability enables the large
covariance matrix to be a Kronecker product of smaller matrices and then only the
inversions of those smaller matrices are required due to nice properties of Kronecker
products. For instance, a spatio-temporal dataset observed at 100 spatial locations
and 100 time points leads to a covariance matrix of size 10,000 x 10,000, for which
the inversion is difficult to compute. However, employing a space-time separable
covariance function decomposes this large covariance matrix into a Kronecker
product of two square matrices each of size 100 x 100 with one being the spatial
covariance matrix and the other the temporal covariance matrix. Then the inversion
of the matrix of size 10,000 x 10,000 is reduced to the inversion of two matrices of
size 100 x 100. Similar gains can be achieved when separable models are used in
multivariate spatial or spatio-temporal data analysis.

Despite their attractive properties, separable models are not always appropriate
for real data due to their lack of flexibility to allow for interactions between different
types of correlations. [21] illustrated the lack of space-time separability for an Irish
wind data and [6] suggested a nonseparable space-time covariance underlying a
tropical wind dataset in the Pacific Ocean. Further, [32] also demonstrated the lack
of multivariate separability for a trivariate pollution data over California. A variety
of tests have been developed to assess the appropriateness of space-time separability.
Among those, [31] proposed a unified nonparametric framework to test many dif-
ferent assumptions, including separability, made on the covariance structure. Their
approach is based on the asymptotic normality of covariance estimators and can
be easily implemented without assuming any specific marginal or joint distribution
of the data other than some mild moment and mixing conditions. Later, this test
was extended by [32] to assess separability for multivariate covariance functions,
for which no effective and formal methods had been developed. Based on the
testing framework in [31, 32], [40] proposed a self-normalization idea in place of
subsampling methods to estimate the covariance of empirical covariance estimators.
This new estimating method avoids the choice of the optimal block size required by
the subsampling method.

In the case of lack of separability, [20] described a nearest Kronecker product
approach to find separable approximations of nonseparable space-time covariance
matrices. His main idea was to identify two small matrices that minimize the
Frobenius norm of the difference between the original covariance matrix and the
Kronecker product of those two matrices. His data example with Irish wind speeds
showed that the prediction deteriorated only slightly whereas large computational
savings were obtained.

Other structures of the covariance function can lead to simplifications too. For
instance, a spatial random field in R? with an isotropic stationary covariance
function yields a symmetric block Toeplitz covariance matrix with Toeplitz blocks.
Recall that a matrix is said to be of Toeplitz form if its entries are constant on each
diagonal. Kriging can then be performed more efficiently with such a structured
covariance matrix [50]. Stationarity of the random field can be tested with the
procedure of [26] and then isotropy with the method of [22].
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3.3 Tapering

The idea of tapering is to set the covariances at large distances to zero but still keep
the original covariances for proximate locations. This is done in a way such that
the new matrix retains the property of positive definiteness while efficient sparse
matrix algorithms can be used. However, since tapering strictly zeroes out weak
correlations, a natural question is whether statistical inference based on the tapered
version shares the same desirable properties with the untapered exact solution. This
question is answered separately in two sections: Sect.3.3.1 focuses on properties
of the maximum likelihood estimator (MLE) of the covariance parameters, and
Sect.3.3.2 discusses spatial interpolation using kriging with known covariance
functions.

3.3.1 Tapering for Estimation

We consider data drawn from a zero-mean, stationary and isotropic Gaussian
random field Z. Let C(h;0) be the parametric covariance function between
any two observations whose locations are apart by a distance 4. The parame-
ter vector § € R? needs to be estimated from a finite number of observations,
Z=(Z(s1),...,Z(sy))". Since the vector Z follows a multivariate normal distri-
bution, we have the log-likelihood function for 8

1(0) = —%log(Zn) — %log|C(())| — %ZTC(())_IZ, (3.1

where C(0) is a n x n covariance matrix with the (i, j)th element equal to
C(l|ls;i —sjll;0),i,j = 1,...,n.[30] proposed a method of covariance tapering
to approximate the log-likelihood (3.1). Then, focusing on the particular case of the
Matérn class of covariance functions, they illustrated the behavior of the MLE.

The tapering idea is particularly suitable if the correlations between observations
far apart are negligible. This type of structure can then be modeled by a compactly
supported covariance function. Let a tapering function Cy,(h;y) be an isotropic
correlation function of compact support, that is, Cyqp,(h; y) = 0 whenever h > y for
some y > 0. Denote a tapered covariance function by

C(h:0.y) = C(h:0)Cuyp(h;y). h>0. (3.2)

__ The tapered covariance matrix defined by C is a Schur (or Hadamard) product
C(0) = C(0) o T(y), where T(y)ij = Cigp(llsi — sl y), or Cij = C(llsi —s;;
0,y). The tapered covariance matrix is positive definite, since the elementwise
matrix product of two covariance matrices is again a valid covariance matrix. In
addition, it has high proportion of zero elements when y is small and is, therefore,
a sparse matrix. Hence it can be inverted much more efficiently than inverting a full
matrix of the same dimension when evaluating the log-likelihood.
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Using covariance tapering, [30] proposed two approximations of the
log-likelihood in (3.1). The first approximation simply replaces the model
covariance matrix C(6) by C(6) o T(y), yielding

1 1
liap(0) = —%log(h) — 510g|C(6) o T(y)| — EZT[C((’) oT(™'Z  (33)

with biased score function, that is, E[%l 1tap(0)] # 0. This means that there is no
guarantee that the estimator that maximizes (3.3) is asymptotically unbiased. To
correct the bias, the second approximation takes an estimating equations approach.
First, rewrite ZTC(0)~'Z = t1r{6C(6’)_1 }, where C=77Z"is the sample covariance
matrix. Then replace both the model and sample covariance matrices with tapered
versions yielding

1 1 (A
Lap(8) = ~S1og(27) = 310g|C(8) 0 T(7)| = 5tr {[€ o TMIICO) 0 T()] |

1 1
= —Zlog(2m) — 310g|C(8) o T(y)| = 52" {[C(0) e T()] ™ 0 T(y)} Z.

Maximizing /5,,,(0) now corresponds to solving an unbiased estimating equation
for 8, that is, E[}; 144,(8)] = 0.

In both approximations, small values of y correspond to more severe tapering.
When y =0, observations are treated as independent, and as y — 0o, we recover the
original likelihood. For the particular case of the Matérn class of covariance func-
tions, it has been shown that the estimators maximizing the tapering approximations,
such as the MLE, are strongly consistent under certain conditions.

[11] then investigated how the tapering affects the asymptotic efficiency of the
MLE for parameters in the Matérn covariance function under the assumption that
data are collected along a line in a bounded region. Their results imply that, under
some conditions on the taper, the tapered MLE is asymptotically as efficient as the
true MLE. Recently, [39] showed that under suitable asymptotics, maximum tapered
likelihood estimators are consistent and asymptotically normal for a wide range of
covariance models.

[19] proposed a combination of tapering and backfitting to estimate the fixed and
random spatial component parameters in a very general type of mixed model. They
were able to model and analyze spatial datasets several orders of magnitude larger
than those analyzed with classical approaches. Tapering techniques in Kalman filter
updates were studied in [16].

3.3.2 Tapering for Kriging

Instead of parameter estimation, [18] addressed the problem of covariance tapering
for interpolation of large spatial datasets. In geostatistics the standard approach,
termed kriging, is based on the principle of minimum mean squared prediction
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error. Starting with the simplest spatial model, we assume that Z(s) is observed
without any measurement error. Then the best linear unbiased prediction (BLUP) at
an unobserved location sy € . is

Z(so) = ¢oC~'Z, (3.4)

where C;; = C(s;,s;) and ¢p; = C(s;,So) are based on a possibly nonstationary
covariance function C. The mean squared prediction error MSPE(sg, C) has the
form

MSPE(sg, C) = C(sg,So) — cOC Co. (3.5)

Similar to (3.2), let a(s, sg) = C(s, sO)C,QB(s, So; ¥). By replacing the covariance
matrix C by the tapered version defined by C, the linear system defining the weights
in (3.4) can be solved efficiently. The implication is that we limit the covariance
function to a local neighborhood. In general we expect the weights ¢oC ™! in (3.4) to
be close to zero for observations whose locations are far from sg. The localization of
the weights in the prediction equation motivates kriging using only a neighborhood
of locations.

However, if the BLUP (3.4) is calculated under the covariance function 5, the
mean squared prediction error is of the form

MSPE(so. C) = C(so.80) — 265C "o + c4C 1 CC &, (3.6)

where the tilde terms are based on C . For the Matérn covariance family, [18] showed
that under specific conditions the asymptotic mean squared error of the predictions
in (3.6) using the tapered covariance converges to the rn1n1mal error in (3. 5) It
was also shown that the naive prediction error MSPE(sy, c ), assuming that C is
the true covariance function, has the correct convergence rate as well. As can be
seen, covariance tapering for kriging purpose is an approximation to the standard
linear spatial predictor which is justified to be both asymptotically accurate and
computationally efficient.

3.4 Likelihood Approximations

Likelihood approaches for large irregularly spaced spatial datasets are often very
difficult, if not infeasible, to implement due to computational limitations. Tapering
methods in Sect. 3.3 approximate the Gaussian likelihood through sparse covariance
matrices. In this section, we review some other practical ways to evaluate likelihood
functions in both spatial and spectral domains.
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3.4.1 Likelihood Approximations in the Spatial Domain

In a spatial setting, [46] suggested a simple likelihood approximation. The idea is
that any joint density can be written as a product of conditional densities based on
some ordering of the observations. Then, one way to lessen the computations is to
condition on only some of the “past” observations when computing the conditional
densities. Specifically, suppose that Z = (Zy,...,Z,)" has joint density p(z: @),
where ¢ is a vector of unknown parameters. By partitioning Z into subvectors
Z,....,Zy of possibly different lengths and defining Zgj) = (Z7,.... Z}), we
always have

b
pz:) = pz1:9) [ | p@)lz-1):9). (3.7)

j=2

To calculate the conditional densities p(z;|z(;—1); ¢), it may not be crucial to
condition on all components of z(; ) for the purpose of reducing the computational
effort. In particular, if, for j = 1,...,b — 1, V ;) is some subvector of Z), then
we have the approximation:

b
p(:9) ~ p(z1:9) [ | p(zj|vii-1):9)

Jj=2

which is the general form of Vecchia’s approximation to the likelihood. For
Gaussian Z, the best linear predictor (BLP) of Z; given Z;_;) is the conditional
expectation E(Z;|Z(;—1); ¢) as a function of ¢, and therefore, p(z;|z(;—1): ) is
the density of the error of the BLP of Z; given Z;_;). Vecchia’s approximation
is accomplished by replacing this density with the one for errors of the BLP of Z;
given V(;_ypy.

[44] adapted Vecchia’s approach for the full likelihood to approximate the
restricted likelihood of a Gaussian process and showed that the approximation gives
unbiased estimating equations. Suppose that Z ~ ,, (X8, C(6)), where X is a known
n X g matrix of rank ¢, f € R? is a vector of unknown coefficients and # € ®
is a length r vector of unknown parameters for the covariance matrix of Z, then
¢ = (B,0). For estimating @, the maximum likelihood acts as if § were known
and, hence, tends to underestimate the variation of the spatial process. Restricted
maximum likelihood (REML) avoids this problem by considering 8 as nuisance
and estimating @ by using only contrasts, or linear combinations of the observations
whose means do not depend on f.

Just as the full likelihood can be written in terms of the densities of errors of
BLPs, the restricted likelihood can also be written in terms of the densities of errors
of best linear unbiased predictors (BLUPs) similar to equation (3.7). Specifically,
let Z; have length n; and take X; to be the corresponding n; rows of X assuming
that rank(X;) = g¢. For j > 1, let B;(#) be the n; x n matrix such that
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W;(0) = B;(0)Z is the vector of errors of the BLUP of Z; based on Z;_).
For j = 1, take B1(#) to be a matrix independent of @ of size (n; — ¢) X n such
that W1(0) = B1(0)Z is a set of contrasts of Z;. Then W; () ~ Ny, (0,A;(0))
where A;(0) = B; (0)C(0)B§ (0). We then could obtain the restricted likelihood,
which only depends on ¢ through 6:

b
n—gq 1 _
—log2m) = 3 :[log{det(Aj)} +WIAT'W ,]_
j=1

rl(0;Z) =

Now consider approximating the restricted likelihood by computing the BLUP
of Z; in terms of some subvector V(;_1y of Z(;_;). The BLUP of, say, Z, given
some subvector S of Z that does not contain Z; is just the linear combination 1S
that minimizes var(Z; — AS) subject to E(Z; — ATS) = 0 for all values of 8. Let
V be the collection of subvectors V(yy, ..., Vp—1). Define W (V) = Wy and, for
Jj > 1, W;(V) is the error of the BLUP of Z; based on V(;_;). Let A; (V) be the
covariance matrix of W (V). Then the approximation to r/(6; Z) is of the form

b

tog2m) — 3 3 [logtdet(A,; (V)3 + WH(V)A, (V) W, ()|
=1

rl@:v)y =~ —4

(3.8)

Having this restricted likelihood approximation, [44] showed that equation (3.8)
gives a set of unbiased estimating equations for #. The properties of its solutions
were studied using the well-developed theory of estimating equations, and the
effectiveness of various choices for V was also investigated. [46] only considered
prediction vectors of length 1 such that Z; = Z;, whereas [44] considered pre-
diction vectors Z; of length greater than 1 and added more observations in the
conditioning set rather than just the nearest neighbors in order to further reduce
the computational effort and to improve the efficiency of the estimated parameters.
However, difficulties with the composite likelihoods of [46] and [44] arise with
the selection of the observation order and of the conditioning sets as pointed out
by [45], who reviewed recent developments of composite likelihood. To overcome
such complications, three different likelihood approximations together with their
statistical properties all based on splitting the data into blocks were proposed and
investigated by [4,5].

3.4.2 Likelihood Approximations in the Spectral Domain

The method proposed by [44] is a spatial domain approach. There are also some
spectral methods which give another way to approximate the likelihood without
involving the calculation of determinants, and to obtain the MLEs of the covariance
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parameters 6. These methods are based on [47]’s approximation to the Gaussian
negative log-likelihood, which can only be used for datasets observed on a regular
complete lattice. In this situation, fewer calculations are required. For irregularly
spaced data, [15] presented a version of Whittle’s approximation to the Gaussian
negative log-likelihood by introducing a lattice process. Additional computational
savings were obtained by truncating the spectral representation of the lattice
process.

Suppose Z is a continuous Gaussian spatial process of interest with a covariance
function C, observed at m irregularly spaced locations in R2. Let f7 be the
stationary spectral density of Z, which is the Fourier transform of the covariance
function:

1
fz(w) = W /11&2 exp(—ih'®)C(h)dh.

We define a process Y at location s as the integral of Z in a block of area A2
centered at s,

Y(s) = A2 / h(s —8)Z(8)ds5, (3.9)
where for u = (uy, uz) we have

1, iflur] < A/2, |ua| < A2,

0, otherwise.

h(u) = {

Then Y is also a stationary process with spectral density fy given by
fr(@) = AT (@) fz(@).

where I'(w) = [ h(u)e‘i“’T“du = [2sin(Aw1/2)/w1][2 sin(Aw,/2)/w;] and @ =
(w1, wz)T-
For small values of A, fy(w) is approximately fz(w), because we have

lim A72| M (w)]? = 1.
Lim | (@)]

By (3.9), Y(s) can be treated as a continuous spatial process defined for all s € .7,
but here we consider the process Y only on a lattice (77 X ny) of sample size
m =nny. That is, the values of s in (3.9) are the centroids of the m grid cells
in the lattice, where the spacing between neighboring sites is A. Then the spectrum
of observations of the sample sequence Y (As), for s € Z2, is concentrated within
the finite-frequency band —/A < @ < 7/ A (aliasing phenomenon). The spectral
density fa,y of the process on the lattice can be written in terms of the spectral
density fy of the process Y as
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fay(@) =Y fr(e+21Q/A). (3.10)

Qez?

[15] justified that in practice the sum in (3.10) can be truncated after 2m terms.
Whittle’s approximation to the Gaussian negative log-likelihood is of the form

By 2 08 fa0) + In@) fa(@) ™'}, (3.11)

where the sum is evaluated at the Fourier frequencies, I, is the periodogram, and
fa is the spectral density of the lattice process. Now for the lattice process of Y, by
computing the periodogram, Whittle’s approximate likelihood (3.11) can be applied
to fa,y, written in terms of fy, then fz. Therefore, we can obtain the MLE for the
covariances/spectral density parameters of Z. [15] also showed that this version of
Whittle’s approximation converges to the exact negative log-likelihood for Y, and
if n is the total number of observations of the process Z, the calculation requires
O(m log, m + n) operations rather than O(n?) for the exact likelihood of Z.

Another spectral method proposed by [34] extends the definition of a peri-
odogram for time series to the situation where the sampling locations are irregularly
spaced. They showed that the well-known property for time series that the peri-
odogram at different frequencies are asymptotically independent still holds for
irregularly spaced data. Therefore, it allows for nonparametric and parametric
spatial spectral estimators similar to the classical time series analysis setting.

For a stationary random field Z observed at irregularly spaced locations in R?, by
assuming some distribution of the sampling locations, [34] defined the periodogram
based on a finite Fourier transform of Z(s) as well as a tapered version of the
periodogram. Just as the methods of estimating spectral densities in time series
analysis, both nonparametric and parametric estimators were then proposed. The
nonparametric method is the spectral window estimator and the parametric approach
is based on Whittle’s likelihood approximation using the proposed periodogram.
Their asymptotic properties were studied and comparisons with [44] and [15] were
reported on numerical examples. [44] focused on high frequency components to
estimate parameters which better capture the behavior at very short distances, while
[34] focused on low frequency components and [15] did on both high and low
frequency components. In terms of computational considerations, the latter two
spectral methods have a clear advantage.

3.5 Latent Processes

Statistics for spatial data also faces the problem of dealing with noisy data when the
interest is in inference on unobserved latent processes. For large spatial datasets, one
way to speed up computation is from the perspective of data dimension reduction.
[3] developed a spatial model, called a Gaussian predictive process model, which we
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introduce in Sect. 3.5.1. There, an approximation of the latent process is proposed
to achieve dimension reduction. In Sect. 3.5.2, another solution is given by [7] who
defined a spatial mixed effects model for the latent process and proposed fixed rank
kriging within a flexible family of nonstationary covariance functions.

First, we define a latent process. Let {Y(s):s € . C R¢} be a real-valued spatial
process. We are interested in making inference on the latent process Y on the basis
of data that have measurement error. Consider the process Z defined by

Z(s) =Y(s) +e(s), se.”,

where {€(s);s € .7} is a spatial white noise process with mean 0, var{e(s)} =
t2v(s) € (0,00) for 2 > 0 and a known v(-). In fact, the process Z is observed
only at a finite number of spatial locations. Define the vector of available data to be
Z = (Z(s1).....Z(sp))".

The hidden process Y is assumed to have a linear mean structure,

Y(s) =x"(s)B + w(s), se.”,

where x(s) = (x1(s),...,x4(s))T represents a ¢ x 1 vector of known covariates;
the coefficients B = (B1, ..., B4)T are unknown, and the process w has zero mean,
0 < var{w(s)} < oo, forall s € ., and a generally nonstationary spatial covariance
function:

coviw(s),w(s)} = C(s,s), s,8 € .7.

We discuss techniques to reduce computational burden for large spatial datasets
under the model

Z(s) = x'(s)B + w(s) + €(s). (3.12)

Thatis, Z ~ N,(XB. X), with ¥ = C + 12V, where X = [x"(s;)]’_, is a matrix
of regressors, C = [C(s;.s;)]} ;_, and V = diag{v(s1). ..., v(sn)}.

3.5.1 Gaussian Predictive Processes

With regard to the challenge of computational cost on covariance matrices, [3]
proposed a class of models based on the idea of a spatial predictive process which is
motivated by kriging ideas. The predictive process projects the original process onto
a subspace generated by realizations of the original process at a specified set of loca-
tions (or knots). The approach is in the same spirit as process modeling approaches
using basis functions and kernel convolutions, that is, specifications which attempt
to facilitate computations through lower dimensional process representations.
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Assume at locations s € . C R?, a response variable Z(s) is observed from
model (3.12), where w(s) is a zero-centered Gaussian Process (GP) with covariance
function C(s, s’) capturing the effect of unobserved covariates with spatial pattern,
and €(s) ~ N(0, t2) is an independent process, often called the nugget, that models
the measurement error. In applications, we usually specify C(s,s’) = 02p(s,s’; 0)
where p(-; 0) is a correlation function and @ includes parameters in the covariance
function. The likelihood for n observations is based on Z ~ N,(XB, X'z), with
¥z = C(0) + 721, where C(0) = [C(s;,s;; 0)]7 ;—,- To project the original or
parent process onto a subspace, consider the lower-dimensional subspace chosen
by the user by selecting a set of knots, #* = {s},...,s) }, which may or may
not form a subset of the entire collection of observed locations .. The predictive
process @(s) is defined as the kriging interpolator

@(s) = Elw(s)|@*] = cT(s;0)C* 1(0)w*, (3.13)

where ®* = [w(s])]7_ | ~ N;u (0, C*(#)) is derived from the parent process realiza-
tion over the knots in %, C*(0) = [C(s},s7: 0)]"; _, is the corresponding m x m
covariance matrix, and ¢(s; 8) = [C(s,s7; 0)]7_,.

The predictive process @(s) ~ GP(0, 5(-)) defined in (3.13) has nonstationary
covariance function,

C(s.s';0) = c"(s:0)C* " (0)c(s; 0).

and is completely specified by the parent covariance function. Realizations asso-
ciated with Z are given by @ = [@(s;)]"_; ~ Nn(0,¢7(8)C*1(0)c(0)), where
c'(#) is the n x m matrix whose ith row is given by ¢'(s;; #). The theoretical
properties of the predictive process including its role as an optimal projection have
been discussed in [3].

Replacing w(s) in model (3.12) with & (s), we obtain the predictive process model

Z(s) = x1(s)B + a(s) + €(s). (3.14)

Since in (3.13), @w(s) is a spatially varying linear transformation of @*, the
dimension reduction is seen immediately. In fitting model (3.14), the n random
effects {w(s;),i = 1,...,n} are replaced with only m random effects in @*. So we
can work with an m-dimensional joint distribution involving only m x m matrices.
Although we introduced the same set of parameters in both models (3.12) and (3.14),
they are not identical.

The predictive process systematically underestimates the variance of the parent
process w(s) at any location s, since we have var{@(s)} = ¢'(s;0)C*~1(0)c(s: 9),
var{w(s)} = C(s,s) and 0 < var{w(s)|@*} = C(s,s) — c'(s:0)C*"1(0)c(s; ).
In practical implementations, this often reveals itself by overestimating the nugget
variance in model (3.12), where the estimated 72 roughly captures t2 4+ E{C(s, s) —
cT(s;0)C* 1 (0)c(s;0)}. Here E{C(s.s) — ¢"(s,0)C*"1(0)c(s.#)} denotes the
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averaged bias underestimation over the observed locations. Indeed, [3] observed
that while predictive process models employing a few hundred knots excelled
in estimating most parameters in several complex high-dimensional models for
datasets involving thousands of data points, reducing this upward bias in 2 was
problematic.

To remedy this problem, [14] proposed a modified predictive process, defined
as &(s) = @(s) + &(s), where now é(s) ~ N(0, C(s,s) —cT(s;0)C*~1(0)c(s; 0))
is a process of independent variables but with spatially adaptive variances. It is
then easy to see that var{@(s)} = C(s,s) = var{w(s)}, as desired. Furthermore,
E{&(s)|w*} = @&(s) which ensures that &(s) inherits the attractive properties of @
discussed by [3]; see also [2]. A recent application of predictive process models to
a complex dataset from forestry can be found in [13].

3.5.2 Fixed Rank Kriging

Kriging, the spatial optimal interpolation, involves the inversion of covariance
matrices. Straightforward kriging of massive datasets is not possible and ad hoc
local kriging neighborhoods are typically used. One remedy is to approximate the
kriging equations, for example by means of covariance tapering as we discussed
in Sect.3.3.2. Another approach is to choose classes of covariance functions for
which kriging can be done exactly, even though the spatial datasets are large. One
advantage of having a spatial model that allows exact computations is that there
is no concern about how close the approximate kriging predictors and approximate
mean squared prediction errors are to the corresponding theoretical values. For exact
methods, two important questions arise: how flexible are the spatial covariance
functions that are used for kriging and how are they fitted. [7] constructed a
multiresolution spatial process and showed that there is a very rich class of spatial
covariances for which kriging of large spatial datasets can be carried out both exactly
and extremely rapidly, with computational complexity linear in the size of the data.
They showed how to specify the n x n covariance matrix ¥ so that ¥ ' can
be obtained by inverting m X m positive definite matrices, where m is fixed and
independent of n. The result is a spatial BLUP (kriging) procedure which they called
Fixed Rank Kriging (FRK); see also [41].

For model (3.12), the kriging predictor of Y(sg) in terms of the covariance
function is

Y (s0) = x"(s0)B + £7(50)(Z — XB), (3.15)

where B = (XTX 7 1X)"1XT X "'Z, g"(so) = ¢T(s0) £ ! and c(so)=[C (s0. sHlt_y

The FRK method captures the scales of spatial dependence through a set of
m (not necessarily orthogonal) basis functions, B(s) = (Bi(s), ..., Bi(s))T, for
s € R?, where m is fixed. For any m x m positive definite matrix G, we model
cov{Y(s), Y(s')} according to
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C(s,s') = B'(s)GB(s), s,s' € RY, (3.16)
which can be shown to be a valid covariance function. It is easy to see that
expression (3.16) is a consequence of writing w(s) =BT(s)y, where 5 is an
m-dimensional vector with var(n) = G. [7] called the model for w a spatial random

effects model. Hence, Y(s) = x"(s)B + BT(s)y is a spatial mixed effects model.
From expression (3.16), we can write the n X n covariance matrix as

Y = BGB" + ¢2V. (3.17)

Both B, the n x m matrix whose (7, /)th element is B; (s;), and V, a diagonal matrix
with entries given by the measurement error variances, are assumed known. Further,

coviY(sg).Z)} = ¢ (so) = B (s9)GB”.
[7] showed that the choice of the covariance function (3.16) allows alternative ways

of computing the kriging equations involving inversion of only m X m matrices.
From equation (3.17),

yl=q"ly1/2 {I + (r_lV_I/ZB)G(r_lV_l/ZB)T}_l TIv120 (3.18)
Then we have that, for any n x m matrix P,
I+ PGPT =1+ (I+ PGPT)PG(I + PTPG) !PT,
Premultiplying by (I + PGPT)~! yields
(I+PGP") ! =1-P(G~! +PTP)"'P",

which is a particular case of the well-known Sherman-Morrison-Woodbury
formulae. Using this in equation (3.18), it yields the computational simplification

P = @V) = (2V)'B{G! + BT(z2V)" B} BT (z2V)"L.  (3.19)

The formula (3.19) for X! involves inverting only fixed rank m x m positive
definite matrices and the n x n diagonal matrix V. Finally, the kriging predictor
(3.15) is

Y (s0) = x"(s0)B + BT (s0)GB" X "1(Z — X ),

where B = (XX 'X)"!X" X "'Z and X ! is given by equation (3.19).

For a fixed number of regressors ¢ and a fixed rank m of G in the covariance
model that is defined by (3.16), [7] showed that the computational burden of FRK
is only linear in n. The results rely on using a rich class of nonstationary covariance
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functions (3.16) that arise from a spatial random effects model. Further, microscale
variation in the hidden process Y could be modeled by including another diagonal
matrix in equation (3.17),

Y =BGB" + £21 + ¢?V.

When both diagonal matrices are proportional to each other, the measurement error
parameter 72 and the microscale parameter £2 are not individually identifiable,
although their sum &2 + 72 is. The presence of the microscale variance &2 was
discussed by [7] but they have assumed that the process Y is smooth (i.e. £2 = 0).
The FRK formulae including £2 were given by [8].

Statistics for spatio-temporal data inherits a similar need for data dimension
reduction as what we saw for spatial data, possibly more so since the data size
quickly becomes massive as time progresses. [9] built a spatio-temporal random
effects model that allows both dimension reduction (spatially) and rapid smoothing,
filtering, or forecasting (temporally). They focused on filtering and developed a
methodology called Fixed Rank Filtering (FRF); see also [29]. With a similar
idea as FRK, the fast statistical prediction of a hidden spatio-temporal process is
achieved through spatio-temporal models defined on a space of fixed dimension;
the space is defined by the random coefficients of prespecified spatio-temporal basis
functions, and the coefficients are assumed to evolve dynamically. By reducing the
dimensionality, FRF was proposed as a spatio-temporal Kalman filter, which is able
to use past data as well as current data to great effect when estimating a process
from a noisy, incomplete, and very large spatio-temporal dataset. [9] showed that
the gains can be substantial when the temporal dependence is strong and there are
past data at or near locations where the current data have gaps.

3.6 Gaussian Markov Random Field Approximations

Gaussian Markov random fields (GMRFs) possess appealing computational proper-
ties due to the sparse pattern of their precision matrices. The numerical factorization
of the precision matrix using sparse matrix algorithms can be done at a typical cost
of O(n®?) for two-dimensional GMRFs. The computational gains from GMRFs
have been exploited to provide fast and accurate Bayesian inference for latent
Gaussian field models through integrated nested Laplace approximation (INLA)
by [35]. [12] made a further step of applying INLA on top of predictive process
models [3] to dramatically reduce the computation in making inference for large
spatial datasets. More generally, [36] demonstrated empirically that GMRFs could
closely approximate some commonly used covariance functions in geostatistics, and
proposed to use GMRFs as computational replacements for Gaussian random fields
for example when making kriging predictions [24]. However, their approximation
was restricted to Gaussian random fields that are observed over a regular lattice
(or torus) and the fit itself had to be precomputed for a discrete set of parameter
values. Other literature following this idea includes [1, 10,25, 42].
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[33] recently proposed an approach to find GMRFs with local neighborhood and
precision matrix to represent certain Gaussian random fields with Matérn covariance
structure. This is accomplished through the following two facts:

(a) The solution of a particular type of stochastic partial differential equation
(SPDE) driven by Gaussian white noise is a Gaussian random field with Matérn
covariance function. Specifically, let X (s) be the solution of the following linear
fractional SPDE:

(2= AN2X(s)=W(s), seRY a=v+d/2, k>0, v>0,

where W (s) is a spatial Gaussian white noise with unit variance. Then X(s) is a
Gaussian random field with the Matérn covariance

o2

0= o

(e IKID” Ko (i [ KD,

where

2 _ I'(v)
T'(v+d/2)(4m)d/2c2v”

Here the Laplacian A = Zl‘.izl £C—22, K, is the modified Bessel function of

second kind with order v > 0, k > 0 is a scaling parameter and o2 is the marginal
variance. The integer value of v determines the mean square differentiability of
the underlying random field.

(b) Let X be a GMRF on a regular two-dimensional lattice indexed by (i, j), where
the Gaussian full conditionals are

1
E(X; ;| X_¢.j)) = Z(Xi—l,j + Xig1,; + Xij—1+ Xi ),

and var(X;,;j|1X—¢,j)) = 1/a for |a| > 4, where X_(; ;) denotes the vector
of X’s on the lattice except at location (i, j). The coefficients in the GMRF
representation of the SPDE in (a) over a regular unit-distance two-dimensional
infinite lattice forv = 1,2, ..., can be found by convolving the elements of the
precision matrix corresponding to X by itself v times.

The authors then generalized the above results to enable the construction of the
corresponding GMRFs representation of the Matérn field on a triangulated lattice,
hence the Gaussian random fields in [33] are no longer restricted to lattice data. This
avoids the interpolation of irregularly spaced observations to grid points and allows
for finer resolution where details are required. The drawback of this approach is that
we can only find the explicit form of GMRFs for those Gaussian random fields that
have a Matérn covariance structure at certain integer smoothnesses. Nevertheless,
the main results in [33] cover the most important and used covariance models in
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spatial statistics, and they can be extended to model Matérn covariances on the
sphere, nonstationary locally isotropic Gaussian random fields, Gaussian random
fields with oscillating correlation functions, and non-isotropic fields.

3.7 Multivariate Geostatistics

Multivariate spatial data have been increasingly employed in various scientific
areas. We have introduced the intrinsic model, a separable covariance structure for
multivariate data, to reduce computational cost in Sect. 3.2. In addition, in many
statistical applications, predicting a geophysical quantity based on observations
at nearby locations of the same quantity and on other related variables, so-called
covariables, is of prime interest. Obviously, the analysis should take advantage of
covariances between locations as well as covariances among variables. For a single
variable of interest, we have discussed the tapering technique for kriging purpose
in Sect.3.3.2 and the fixed rank kriging method in Sect. 3.5.2. When information
from several different variables is also available, it should be used for prediction
as well. The problems implied by large amounts of data are then further amplified
since many observations occur at each location. Therefore, we need methodologies
to keep the analysis computationally feasible.

For spatially correlated multivariate random fields, the best linear unbiased
prediction (BLUP) is often called cokriging in geostatistics. Assume that we have
a primary variable and two or more secondary variables and aim at predicting the
primary variable at some location. It is well-known that in a mean squared prediction
error (MSPE) sense, the best predictor is the conditional expectation given variables
at the other locations, where the set of conditioning variables can be either just
the primary variable (i.e., kriging) or some or all of the secondary variables (i.e.,
cokriging).

Thus, the cokriging technique requires the solution of a large linear system based
on the covariance and cross-covariance matrix of all involved variables. For large
amounts of data, it is impossible to solve the linear system with direct methods. [17]
proposed aggregation-cokriging for highly-multivariate spatial datasets to reduce
the computational burden. This method is based on a linear aggregation of the
covariables with carefully chosen weights, so that the resulting linear combination
of secondary variables contributes as much as possible to the prediction of the
primary variable in the MSPE sense. In other words, the secondary variables should
be weighted by the strength of their correlation with the location of interest. The
prediction is then performed using a simple cokriging approach with the primary
variable and the aggregated secondary variables. This reduces the computational
burden of the prediction from solving a (n + €m) x (n + £m) to solving a
(n +m) x (n 4+ m) linear system, where n and m are the numbers of observations of
the primary and secondary variables, respectively, and £ is the number of secondary
variables. The computational complexity is now comparable with simple bikriging,
i.e., simple cokriging with only one of the secondary variables, and its optimality
was discussed by [17] under different covariance structures.
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Besides cokriging, Gaussian predictive process models can also be generalized
to multivariate settings. In Sect.3.5.1, we have discussed a class of models based
on the idea of a univariate spatial predictive process which is motivated by
kriging ideas. The predictive process projects the original process onto a subspace
generated by realizations of the original process at a specified set of locations
(or knots). Similarly, for multivariate spatial processes, the multivariate predictive
process extends the preceding concepts to multivariate Gaussian processes. Now
w(s) from the model (3.12) is assumed to be a p-dimensional zero-centered
multivariate Gaussian process w(s), where p is the number of variables at each
location. For locations sy, ..., s,, we write the multivariate realizations as a vector
® =[w(s;)]'_; € R"7. Analogous to the univariate setting, [3] again considered a
set of knots .#”* and denoted by @* the realization of w (s) over .#”*. Then similar
to (3.13), the multivariate predictive process is defined as

@(s) = coviw(s), *var H(@®)w*,

and @(s) has properties that are analogous to its univariate counterpart. The
projection onto a lower dimensional subspace allows the flexibility to accommodate
multivariate processes in the context of large datasets.

3.8 Discussion

Whenever we deal with large spatial datasets, we face problems with storage
and computation. When covariance functions produce covariance matrices that are
neither sparse nor low rank, it is sometimes possible to compute the exact likelihood
even for quite large datasets if they are spatially gridded data. However, exact
likelihood calculations are not possible with large numbers of irregularly sited
observations.

One solution that has been discussed is to truncate the covariance function to
zero and use well-established algorithms to handle sparse systems. Such libraries or
toolboxes are available in widely used software packages such as R or Matlab. The
tapering for kriging purpose presented in Sect. 3.3.2 is based on the assumption of
Matérn covariances which could be weakened, but not entirely eliminated. However,
the Matérn family is already sufficiently flexible to model a broad class of processes.
The tapering techniques also work for nonstationarity or anisotropic processes at
least with conservative taper ranges, but the accuracy of the tapering approximation
for nonstationary problems remains an open question [18].

The approximation of the likelihood in either the spatial or spectral domain
is another solution to overcome computational obstacles. In the spatial domain,
the composite likelihood method in Sect.3.4.1 is based on conditional densities,
which points out the difficulty in choosing conditioning sets and the need for
less haphazard rules. Furthermore, the use of this approximation in Bayesian
analysis poses considerable challenges, since the approximation accuracy needs to
be evaluated especially if the likelihood calculation is just one part of a single step
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in a MCMC algorithm [44]. The spectral methods in Sect. 3.4.2 are computationally
efficient by avoiding the calculation of determinants and can be easily adapted to
model nonstationary processes as a mixture of independent stationary processes
[15]. However, they do not overcome the difficulty in prediction with massive
data. The Gaussian predictive process model in Sect.3.5.1 projects the parent
process onto a lower dimensional subspace. Since every spatial or spatio-temporal
process induces a predictive process model, it is flexible to accommodate non-
stationary, non-Gaussian, possibly multivariate, possibly spatio-temporal processes
in the context of large datasets. In the same spirit, the fixed rank kriging in
Sect. 3.5.2 relies on using a class of nonstationary covariances where kriging can
be done exactly. Those techniques can be implemented on very large datasets
as the computations are linear in the size of the dataset, and they are highly
flexible since they allow the underlying spatial covariances to be nonstationary.
Section 3.6 described another approach based on Gaussian Markov random field
approximations.

The covariance tapering and the reduced rank based methods have shown great
computational gains, but they also have their own drawbacks. The covariance
tapering may not be effective in accounting for spatial dependence with long
range while the reduced rank based methods usually fail to accurately capture
the local, small scale dependence structure. To capture both the large and small
scale spatial dependence, [37] proposed to combine the ideas of the reduced rank
process approximation and the sparse covariance approximation. They decomposed
the spatial Gaussian process into two parts: a reduced rank process to characterize
the large scale dependence and a residual process to capture the small scale spatial
dependence that is unexplained by the reduced rank process. This idea was then
extended to the multivariate setting by [38]. However, the application of tapering
techniques to multivariate random fields remains to be explored due to the lack of
flexible compactly supported cross-covariance functions.

[49] discussed some strategies to deal with computations for large datasets within
the context of their convolution-based spatial nonstationary models. Basically, for
parameter estimation they proposed to smooth raw estimates obtained over apriori
determined grids, and for predictions they discussed the idea of local window as in
[23] and tapering as in [18].

For spatio-temporal processes, we have reviewed the methods to compute separa-
ble approximations of space-time covariance matrices. A well-known shortcoming
of separable covariance functions is that they do not allow for space-time inter-
actions in the covariance. Nevertheless, the separable space-time structure allows
for a simple construction of valid space-time parametric models. By assuming
separability, one can further combine separable approximations with the tapering
approach. In this case, it is expected that a combination of computational gains
can be achieved [20]. When dealing with several variables evolving in space and
time, that is, multivariate space-time random fields, the cokriging approaches are
even more computationally costly. In this context, the separable approximation
techniques can also be combined with other approaches for multivariate spatial
processes to further facilitate computational procedures.
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In summary, we have compared various methods for handling large spatial

datasets from the literature reviewed in this chapter. However, it would be inter-
esting to further compare all of them under different situations with Monte Carlo
simulation studies and real data examples. We look forward to the emergence of
such work.
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Chapter 4
Bayesian Inference for Non-Markovian
Point Processes

Peter Guttorp and Thordis L. Thorarinsdottir

Abstract The Bayesian approach to statistical inference has in recent years become
very popular, especially in the analysis of complex data sets. This is largely due
to the development of Markov chain Monte Carlo methods, which expand the
scope of application of Bayesian methods considerably. In this paper, we review
the Bayesian contributions to inference for point processes. We focus on non-
Markovian processes, specifically Poisson and related models, doubly stochastic
models, and cluster models. We also discuss Bayesian model selection for these
models and give examples in which Bayes factors are applied both directly and
indirectly through a reversible jump algorithm.

4.1 Introduction

Statistical inference for point processes originates, as pointed out by Daley and
Vere-Jones, in two sources: life tables, and counting phenomena [12]. Among early
sources of inferential work are Graunt, Halley and Newton in the eighteenth century
on the life table side, and Newcomb, Abbe and Seidel in the second half of the
nineteenth century on the counting side (for Newcomb’s contributions, see [22]; the
others are all described by Daley and Vere-Jones). The modern approach originated
mainly in England in the 1950s and 60s, with Bartlett and Cox as the main names.
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Fig. 4.1 Examples of Voroni tessellations that arise from point process patterns. Left: the tessel-
lation of a process which is both clustered and regular (a Matérn type I process, Sect. 4.2.4, yields
the cluster centers and a Neyman-Scott process, Sect. 4.4, the points). Middle: the tessellation of a
regular process (a Matérn type I process). Right: the tessellation of a completely random process
(Poisson process, Sect. 4.2.1). Generated by Ute Hahn and Dietrich Stoyan

A few examples of Voroni tessellations that arise from point process patterns are
shown in Fig.4.1.

This paper will review the Bayesian contributions to inference for point
processes. We will only discuss non-Markovian processes, as lately much of
the emphasis has been on Markovian models, and we consider it important not
to lose sight of the non-Markovian ones. We make no pretense of a complete
literature review; rather, we have chosen papers that we think are interesting or
important or that we can use to make a point. A more comprehensive review paper
is [47]. Chapter 4 of the recent Handbook of Spatial Statistics is devoted to spatial
point processes [16].

We start in Sect. 4.2 by reviewing work on non-parametric estimation (Bayesian
is always assumed unless otherwise specified) of the rate of a non-homogeneous
Poisson process. Immediately we will see that many processes, and many inference
problems, can be viewed from more than one point of view. We then proceed to
models derived from a Poisson process using thinning, and show how one can use
Bayes factors to distinguish between models of late fall precipitation in upstate New
York, USA.

The next Sect. 4.3 deals with doubly stochastic models, and again we encounter
the problem of how one views the inference. Section 4.4 deals with cluster
processes, where we show an application to brain imaging, and Sect. 4.5 is about
model selection. Here we compare the Akaike criterion and the Bayes factor for
selecting between types of cluster models. Finally, a short summary is given in
Sect. 4.6.
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4.2 Poisson and Related Processes

The simplest point process model, and the one for which most inference tools have
been developed, is the Poisson process. The stationary case does not contain much
of interest, as it is a single parameter situation, but the non-stationary case resembles
non-parametric density estimation. The thinning approach to simulation will have
several applications in this paper, and we also look at some models with sub-Poisson
variability (often called regularity in the literature) that are constructed from an
underlying Poisson process.

4.2.1 Non-parametric Estimation for Non-stationary Poisson
Rate Functions

In 1978 Aalen revolutionized point process analysis by introducing a general
non-parametric statistical theory for the class of multiplicative counting processes
[1]. Tt was a frequentist theory, but received a Bayesian adaptation in the work
of Lo for Poisson processes [39], and Lo and Weng for the general multiplicative
processes [40]. The general multiplicative process was also dealt with in [32], but a
Lévy process prior was used. Here we will focus on Lo’s treatment of the Poisson
process case. Consider a Poisson process with intensity measure v. Lo showed that
a gamma process prior is conjugate. To define the gamma process prior, consider a
o-finite measure o, and say the measure u is selected by a gamma process prior
if for disjoint sets Aq,..., Ay we have that the collection of random variables
{(A1), ..., u(Ag)} are independent gamma random variables of scale 1 and means
a(A;). The measure w is then said to have shape measure o and scale parameter 1.
We denote the corresponding probability measure having these finite-dimensional
distributions by Py ;. We can re-scale the measure by an «-integrable positive
random function # by defining fu(A4) = | 4 B(x)u(dx) and the corresponding
probability measure is denoted P, g. Lo showed that if we observe independent
realizations Np,..., N, of N, and assign a prior measure Py g to the intensity
measure v, then the posterior measure is Py s . g/(14np)-

Consider now the special case where 8(x) = 1/6, and suppose we are interested
in estimating the intensity v; = v(0, t] under integrated squared error loss. It is not
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difficult to verify that the Bayes estimator is

0 «0,1] nolg
O+n 0 +n+9n ;N,(O,t],

i.e., a weighted average of the prior guess and the sample empirical estimate.
Generally the tools needed to estimate non-parametrically a non-homogeneous

Poisson process with time dependent rate A(¢), assumed integrable over the period

of observation A, are the same as those for density estimation. Conditionally upon

the total number of points N = N(A) the points are distributed as the order statistics

from a distribution with density

£(5) = Als)/ /A A(u)du @.1)

[10]. This fact was used to develop a kernel estimator for the intensity [13], and for a
histogram type estimator in setting up a Bayesian analysis of an interesting problem
in musicology [49]. In order to create a Bayesian structure, it has been popular
to assign a prior related to a Gaussian process, typically of the form exp(X(¢))
where X(7) is a Gaussian process. By the same misnomer as for the log-normal
distribution, this tends to be called a log Gaussian Cox process, although it is the
log intensity which is Gaussian, and in our context serves as a prior for a non-
homogeneous Poisson process intensity, while the setup mathematically (albeit not
conceptually) corresponds to a doubly stochastic Poisson process [9]. The doubly
stochastic Poisson process is of course of interest in its own right (see Sect.4.3).
The conditional likelihood for this model, given the realization of A(s),s € A, is
simply the usual Poisson likelihood

L(A(s)) = exp (/A (log A(s)dNs — A(s)ds)) . 4.2)

For random infinite dimensional A(s) the integral in the exponential of (4.2)
cannot be evaluated explicitly, which makes Bayesian inference with a prior Y (¢)
based on a Gaussian process intractable. A discretization approach to obtain a
tractable expression for the likelihood has been used [11,45] and applied this to the
Bayesian problem we are considering in this Sect. [8]. The idea is to approximate
the continuous process Y () by a sequence of step functions in the linear case,
and values on a grid in the spatial case. Waagepetersen showed that the resulting
posterior density converges to the true posterior as the discretization interval shrinks
to zero [59]. Both he and others have pointed out the sensitivity of the resulting
inference to the discretization scheme [8, 59].

In [24] the authors took a similar route, using piecewise constant functions with
random number of jumps of random size as prior on the intensity function, but not
thinking of this as an approximation to a smooth prior process. It does not follow,
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for example, that the posterior mean is piecewise constant. In fact, it typically comes
out smooth.

Kottas used the representation in (4.1) to develop a different estimation method
[33]. Treating y = [, A(u)du as a separate parameter, he used explicit density
estimation tools to estimate f(s). We let A=(0,T]. Then f is estimated as a
Dirichlet mixture of scaled beta densities (supported on (0, T]). The Dirichlet
process is determined by a precision parameter ¢, which is given a gamma prior,
and a base distribution, which is a function of the location and dispersion of the
beta distributions. These are taken to be independent uniform and inverse gamma,
respectively. Finally, y is given a Jeffreys prior of the form 1/x.

4.2.2 The Thinning Approach to Simulation

Lewis and Shedler introduced the standard approach to generating non-
homogeneous Poisson processes on a set A [37]. If the rate is A(s) and we write
A* = sup,c4 A(2), their thinning approach is to generate a homogeneous Poisson
process of rate A*, and then keep a point at location T with probability A(z)/A*.
This is, of course, a form of rejection sampling.

The Lewis-Shedler method has been extended to enable exact computation of
the posterior distribution of a non-homogeneous Poisson process with a Gaussian
process prior of the form A*o (X (s)), where o(x) = (1 + exp(—x))~!, by keeping
track of the deleted locations as well as the values of the Gaussian process at both
the deleted and the kept locations, which are treated as a latent variable [2]. The
approach is to use a Markov chain Monte Carlo approach containing three types of
steps: changing the number of deleted points, the locations of the deleted points,
and the values of the Gaussian process. The joint distribution over the fixed data,
the number of thinned events, the location of the thinned events, and the function
values at observed and thinned events can then be written down explicitly, and
used to develop an MCMC procedure for the augmented posterior distribution,
without the need to evaluate integrals of Gaussian processes. This approach appears
to outperform the discretization approach of the previous subsection on smooth
intensity functions.

4.2.3 Extensions to Higher Dimensions

Many of the methods for point processes on the line generalize to spatial processes.
In some cases these extensions are non-straightforward, mainly concerning the
lack of well-ordering of R2. A fairly recent review is Sect.2.4 in [34]. Interesting
applications include [55] who modeled a spatial pattern of badger territories and the
distribution of pores in 3D translucent alumina using an inhomogeneous Poisson
process with high intensity near the edges of an unobserved Voroni tessellation.
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We have chosen not to focus on parametric rate models (which abound e.g. in
the software reliability literature [26, 35]), since most of these are very similar to
Bayesian models for iid data.

4.2.4 Matérn Thinning

Matérn introduced three different thinnings of Poisson processes in order to produce
point processes that were more regular than the Poisson [42]. Type I simply
deletes all pairs of points that are within a radius R of another point. This is
perhaps the simplest hard core rejection model in the literature. Type II introduces
independent uniform marks #;, called times, to each of the original points. The point
with the smallest mark among all neighbors within distance R is retained. Clearly
this model would have a higher rate of points than type 1. Matérn also considered
a third, dynamic variant, which Huber and Wolpert call Type III [27], and which
Matérn thought intractable. The retained points are called “seen”, while the removed
points are “hidden”. In the type III process the seen points are those for which no
seen point with lower time mark lies within distance R. So, for example, if we have
three points with increasing times, such that the first is within R of the second,
and the second is within R of the third, we have no points left in a type I process,
only the first point left in the type II process, but potentially two points left in the
type III process (see Fig. 1 in [27] for a graphical illustration).

In order to calculate the likelihood for a type III process, Huber and Wolpert
used a technique akin to that used by [2] in the previous subsection. Specifically,
they suggested starting with n seen points and parameters A and R, and then draw
hidden points from a Poisson process of rate A, and draw time marks uniformly for
both seen and hidden points, until for all hidden points there is a seen point within
distance R and with smaller time mark. This has the drawback that it can take quite
a long time if there is a large number of seen points. Define the shadow of a seen
point configuration as the union of balls of radius R centered at each seen point
cross the interval (¢;, 1] containing the possible hidden points. Let d A(x, t) be the
joint intensity of a Poisson point at x with mark 7. Then the density (with respect
to a Poisson process with uniform marks) of a seen point pattern x with marks t
becomes

1(p(x) > R)A" exp(|S|(1 — X)) exp(A(D(x.1))) (4.3)

where p(x) = min;«;(x;, x;) is the smallest inter-point distance, D(x,t) is the
shadow of (x,t), and S is the observation window. It is straightforward to verify
that the acceptance-rejection approach outlined above samples directly from the
likelihood. A faster perfect simulation approach was also outlined, and has been
expanded upon in [44].

The likelihood calculation can now form the basis for a Bayesian approach to
estimating parameter of a Matérn type III process. To our knowledge this has not
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yet been implemented elsewhere in the literature. If the point process includes a time
component as is the case in the example below, the density in (4.3) can be calculated
directly. Otherwise, a simulation method is needed for the latent time marks.

Example 4.1. (Comparison of cluster processes for precipitation models)

Hobbs and Locatelli described mesoscale rainfall activity in cyclonic storms roughly
as follows [25]. Synoptic scale weather fronts contain large mesoscale regions,
rainfall bands, where precipitation activity is possible. In turn, these bands contain
moving rain cells, which are the points of higher rainfall rates. Observing this from
a fixed point in space (e.g., a rain gauge), we see varying amounts of rainfall over
time, with precipitation tending to come in clusters. Mathematically, Le Cam was
first to suggest modeling rainfall at a location by a cluster point process [36], while
Kavyas and Delleur proposed a Neyman-Scott Poisson cluster process, in which the
primary process is a non-homogeneous Poisson process, and were the first to fit it to
observed data [31]. In a sequence of papers in the 1980s, a variety of cluster process
approaches were developed (a review is provided in [21], [54] discusses more recent
work), usually made stationary by considering only a short time period each year,
such as a month.

In most versions of cluster point process analysis of precipitation, the primary
process is assumed unobserved. This may be reasonable if only rain gauge data
is used. However, one would often be able to assess the arrival of weather
fronts using different types of data. Guttorp used so-called event-based data from
the MAP3S acid rain monitoring network to assess features of the secondary
process [20]. This is the same data set that we will be using for our analysis,
see Fig.4.2. The MAP3S/PCN (Multistate Atmospheric Power Product Pollution
Study / Precipitation Chemistry Network) network of nine monitoring stations in
the northeastern United States was initiated in 1976. We will focus on station 1,
located on Whiteface Mountain in New York, at an altitude of 610 meters. The
data were obtained from the Battelle-Pacific Northwest Laboratories ADS (Acid
Deposition System) data base. They are described in [17], and in [41]. The data
were collected on an event basis, using samplers that open during precipitation, and
close during dry periods. The definition of an event in the MAP3S network was left
to the operator of the station; the Whiteface operator made a meteorologically based
decision on what constitutes a new event.

For either station, each event may contain several precipitation incidents, indi-
cated by separate lid openings. Since storm fronts do not arrive according to a
Poisson process (the fronts are physically separate), we do not expect a Poisson
cluster process to be an adequate description of precipitation. We thus perform a
comparison of a homogeneous Poisson cluster model and the type III Matérn model
described in the previous subsection. Here, we view the fall data from 1976 to 1982
as seven independent realizations of fall precipitation events at Whiteface Mountain.

In a Bayesian framework, Bayes factors offer a natural way of scoring models
based on the evidence provided by the data [29]. Specifically, suppose that
p(x| 6, M) is the density function of the observed point pattern x under model M
given the model-specific parameter vector 6. Let the prior density of 6 (assumed
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T
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Fig. 4.2 Fall (October through December) precipitation events observed at Whiteface Mountain,
New York, 1976-1982

to be proper) be given by m(6). The marginal likelihood of x under model M is
given by

m(x|M)=/p(x|9,M)7T(0|M)d9. 4.4)

Two models, M, and M, may then be compared by calculating the Bayes factor

m(x | M)

. 4.5
m(x | Mz) )

Bi2(x) =

For our data set, the Matérn Type III density in (4.3) becomes
p(x| A, R, Mpa) = 1(p(x) > R)A" exp(7T + A(nR —T)),
where n = 127 is the total number of observed points, 7 = 92 is the number of
days in the observation period, and p(x) = 0.75 is the minimum inter-point distance

over all the seven realizations. Similarly, the density for the homogeneous Poisson
process is given by,

p(xX| A, Mpy) = A" exp(7T(1 — 1)).
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Fig. 4.3 The Bayes factor for comparing the Matérn Type III model and the homogeneous Poisson
model for the Whiteface Mountain precipitation data, as a function of the minimum inter-point
distance, p(x). The Bayes factors are plotted on a log-scale; values greater than zero favor the
Matérn Type III model

Here, we assume that A, R > 0. We assign the parameter A a conjugate prior density
and set it to be exponential with rate parameter v = 2 in both models, while the
parameter R in the Matérn Type III density is assigned a uniform prior on (0, T'),
see Fig.4.4. This choice of prior distributions allows for explicit calculation of the
marginal likelihoods and hence, the Bayes factor. The Bayes factor for equiprobable
models becomes

(7T +v) 7T + v "
Buapo(X) = — 1) =273618, 4.6
Ma,P (X) Tnz 7T + v — np(x) ( )

which strongly favors the Matérn Type III model the latter being consistent with our
hypothesis. As shown in Fig. 4.3, the value of the Bayes factor is highly dependent
on the value of the minimum inter-point distance p(x).

Based on the results above, we continue with the analysis of the Matérn Type 111
model only. The full conditional posterior distribution for A is given by a I'(n +
1,7T + v — nR) distribution and

P(R|X, A, Myia) = 1(0 < R < p(x)) exp(AnR).

An
exp(Anp(x)) — 1

Figure 4.4 shows the posterior distributions for R and A which are obtained from
50,000 simulations using a Gibbs sampler and the inverse transform. The posterior
distributions are much sharper than the prior distributions and the posterior means
are very close to the maximum likelihood estimates. The maximum likelihood
estimates are given by R = 075and A = 0.23, while we obtain the posterior
means R = 0.74 and A = 0.23.
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Fig. 4.4 Posterior distributions for the parameters R (left) and A (right) in the Matérn Type III
model for precipitation events at Whiteface Mountain. The respective prior distributions are
denoted by solid black lines

4.3 Doubly Stochastic Processes

The doubly stochastic Poisson process, introduced by Cox in [9] and so named
by Bartlett in [6] is obtained by letting the rate A(¢) of the Poisson process vary
according to a positive stochastic process, say A(?). There are instances of doubly
stochastic Poisson processes that are identical to cluster processes (for example, the
shot noise process driven by a stationary Poisson process is identical to a Neyman-
Scott Poisson cluster process, see p. 171-172 in [12]). It is worth noting here that,
except when the rate process is determined by the scientific situation, it is difficult
to analyze a doubly stochastic process without having repeated observations, since
the model is indistinguishable from a non-homogeneous Poisson process based on
a single path [46]. Thus, how you view your analysis can be seen as a matter of
preference or convenience. We have not been able to find any Bayesian analyses of
data where repeated observations are available, so that one can tell apart the doubly
stochastic mechanism from the non-homogeneous Poisson process model.

Wolpert and Ickstadt modeled a spatial Poisson process with random intensity,
where the intensity measure is a kernel mixture with a gamma measure [63]. As
an example, they analyze the density and spatial correlation of hickory trees. The
same data were also analyzed in Chap. 10.4 of [46] in a Bayesian setting using a
non-homogeneous Poisson process with a log-Gaussian prior process, where the
Gaussian process has constant mean £, variance 02, and an exponential correlation
function with range parameter . The hyper-parameters 8,02,k = log(a) need
prior distributions as well. The authors used Jeffreys priors for the mean and
variance, and a uniform prior between —2 and 4 for «. As discussed in Sect. 4.2,
a discrete approximation to the prior process was used. The analysis was very
sensitive to the prior on «, and compared to a frequentist method of moment
analysis using the g-function, the Bayesian method indicates a substantially larger
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correlation range. As pointed out above, this can also be viewed as a parametric
Bayesian analysis of the doubly stochastic Poisson process obtained using a log
Gaussian rate function.

In [19] a doubly stochastic Poisson process was considered with a gamma
process (as in [39]) being its rate function A(z). This process has parameter
functions « (the rate function measure) and B (the scale process). In the case of
constant scale B = b, the resulting process is what the authors call a negative
binomial process of type 2. To perform a Bayesian analysis, they assigned a gamma
process prior to the rate function measure «, and computed a closed form expression
for the posterior distribution of o given the data. The authors did not view the
distribution of the rate function A(#) as a prior distribution.

In the highly influential paper on integrated nested Laplace approximations
(INLA), the authors illustrated how their numerical alternative to Markov chain
Monte Carlo methods can be applied to a doubly stochastic Poisson process
where the intensity process is log Gaussian, although the method would work for
any intensity process that is a positive function of a Gaussian process such that
the resulting doubly stochastic Poisson process is valid. The calculation of over
20,000 marginal distributions, applied to the rain-forest data set also analyzed
in [61], took four hours of computing time. Again, the Gaussian process was
discretized to a fine grid. To get similar precision with MCMC methods would
be prohibitive computationally. It is possible within INLA to calculate Bayes
factors, as noted in Sect. 6.2 of the paper. However, the prior distributions used
for the underlying random field are usually improper. The Bayes factor is thus
only determined up to an unknown ratio of constants unless the parameters
associated with the improper prior appear in all the models among which selection
is performed.

4.4 Cluster Processes

The general cluster process consists of a primary process X of parent points 7;, to
each of which is associated a secondary point process Z; + t; [12]. The structure of
the primary and secondary processes is a suitable source of classification. Thus we
can for example separate Poisson cluster processes (in which the primary process
is Poisson) from general cluster processes (with a general primary process). On the
line the most common secondary processes are of the Bartlett-Lewis type in which
a random number of secondary points are laid out according to a renewal process,
and the Neyman-Scott type where the secondary points are iid around the parent
point (or cluster center). The named processes that abound in the literature (Cox
cluster process, Matérn cluster process, Thomas process etc.) are simply special
cases, and it does not seem useful to us to have a nomenclature which separates the
particular distributional assumption. For example, we would call the (generalized)
Thomas process a Poisson cluster process of Neyman-Scott type using a Poisson
cluster size distribution and normally distributed dispersion. Most Poisson cluster
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processes are non-Markovian; the exception being those with uniformly bounded
cluster diameters [5].

Van Lieshout and Baddeley developed likelihood expressions for cluster pro-
cesses with Poisson distributed offspring sizes, and developed Bayesian inference
for processes where the prior distribution of the parent process is a Markov
inhibition process [38]. Of course, one could assign a Poisson process or a Matérn
type III prior, and the results would be very similar. The main tool is a Markov
chain Monte Carlo algorithm that uses a birth and death process (or, in a special
case, coupling from the past), and the techniques are applied to a classical data set.

McKeague and Loizeaux considered Neyman-Scott processes in the plane, and
also used an inhibition process as prior on the parent process [43]. They used perfect
sampling, and applied their tools to an example involving leukemia cases, where
unobserved cluster centers are estimated to lie close to some hazardous waste sites.

The idea of self-exciting processes is to have the rate depend on the development
of the model in the past. If this dependence can be written as a linear functional,
there is an alternative representation of this process as a cluster process (see
pp. 183—185 in [12]). Gamerman used a variant where the intensity is piecewise
constant, but dependent on the events in the previous piece [15]. One could of course
also think of this as a doubly stochastic model. Gamerman writes down equations
for filtering and prediction as well as for Bayesian estimation of the rates in each
interval.

A Neyman-Scott process with negative binomial cluster size distribution and
truncated bivariate normal dispersion has been used to model minke whale popu-
lations [60]. The data are obtained from line transect samples, and are modeled as a
random thinning of the cluster process. The parameter of interest is the product of
the rate of the cluster centers and the mean cluster size, called the whale intensity.
It is estimated using Markov chain Monte Carlo, even though the exact likelihoods
are computable.

Example 4.2. (Modeling activation in the human brain)

Functional magnetic resonance imaging (fMRI) is a technique for non-invasive in
vivo recording of brain activation. It is based on the different magnetic properties of
oxygenated and deoxygenated haemoglobin; images obtained with the method show
changing blood flow in the brain associated with neural activation. Figure 4.5 shows
such data set, where the subject was not exposed to stimuli during the recording of
the data. Despite the lack of specific stimuli, changes in the signal appear over time,
some of which show covariation in different regions of the brain.

In [58] and [30], a Bayesian spatio-temporal point process model for such data
was proposed. Purely spatial processes for this type of data have also been proposed
[23,57]. The activation is described by a marked point process @, where the point
process is latent and corresponds to the unobserved neural activation while the
marks are observed and describe the associated observed MR signal changes due
to changes in the blood oxygenation level. It is thus the latent point process, ¥,
and the associated intensity function that are of main interest for the statistical
analysis.
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0

Fig. 4.5 Development of the magnetic resonance (MR) signal activity over time in a single
slice through the human brain. From left to right and top to bottom: the activity at time ¢ =
12,30,48,...,210s. Note that the images shown here have been pre-processed to correct for

movement related artifacts and the signal changes have been enhanced so that they can be observed
with the naked eye. From [58]

Assume that we have observed data {Z;}, where ¢t € [0, T] denotes time and
x € 2 denotes a spatial location, or a voxel, in the brain region .2~ which is a
bounded subset of R? or R3. Here, 2" is a single slice through the brain, 2~ C R2.
To account for edge effects in the time domain, we assume that ¥ is a process on
[T, T] x &, where T— < 0 is chosen such that it is very unlikely that a neural
activation starting before time 7_ will affect an observed MR signal on [0, T].
The marked process is denoted by @ = {[t;, x;; m;]} with (¢, x;) € ¥ and marks
m; € Rd.

The resulting model for the observed MR signal intensity at time # and voxel x
becomes

Zix = px + Y foxlli, Xismi) + Oy, 4.7)

1

where py is the baseline signal at voxel x and &, is an error term with mean
0 and variance 1. The function f;, describes the contribution to the observed
signal intensity at voxel x and time ¢ caused by a neuronal activation at
(ti,x;) € W. This function is assumed to be separable in space and time with
Six(ti,xizmi) =gt — ti;mi)h(x — xi;m;) and m; = (61;, 02;, 03;) € R3., where

2
h(y;m) = 01 exp (— ”2ye||2 )

and

() 1 ox ( (u—v—6)2)d
u,m) = —_—— | dv.
& 0o /273 P 18
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Here, ||-|| denotes the Euclidean norm. The mark parameters thus have the following
interpretation: 61; describes the magnitude of the signal change due to neural
activation i, 0,; describes the spatial extend of this change, and 63; its temporal
duration.

For simplicity, assume that the marks m; and the variance o2 are fixed. The
aim of the statistical analysis is then to recover the latent point process ¥ and its
intensity function based on the observations {Z;,} under the model described by
(4.7). Further, we may replace Z;y in (4.7) by Z;» — Z . and Jfix BY fix — fx. The
new data have u = 0 and the same correlation structure as the original data if the
number of observed images is sufficiently large.

The prior distribution of ¥ is chosen as Poisson with intensity A. There is thus
no interaction between points in the prior distribution and any interactions found in
the posterior distribution derive from interactions observed in the likelihood. The
intensity function A is assumed to be of the form

K

Arx) =) Mel(x € 25), 4.8)
k=1

where the sets 2 C 2 are disjoint. Their union may be the whole observed brain
region 2~ but need not be. The sets Z; should be specified by the experimenter
while the parameters A are unknown. The intensity function can be written as
A(t,x) = cAz(x), where ¢ > 0 and [9// Az(x)dx = 1. It follows from (4.8), that
Ao can be written as

2
Az (x) = Zﬂk x;jflk),

where |-| denotes area and mx > 0 with Zf=1 7 = 1. The parameters ¢, w7 =
(m1, ..., k) are assigned non-informative prior distributions.
The posterior density is of the form

ple,m, ¥ |z2) x pz|¥)p(Y | e, m)p(c)p(r),

where the likelihood is given by

_ 1
pely) = Rro? " exp | o5 3 e = 3 fuxltixiim)

,x (i x;)EY

A fixed scan Metropolis within Gibbs algorithm is used to simulate from the
posterior density where in each scan c¢,w, and  are updated in turn. The full
conditional distributions for ¢ and m are given by a Gamma and a Dirichlet
distribution, respectively, while the full conditional distribution for ¥ is
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Fig. 4.6 The posterior spatial activation pattern in the three regions of interest cumulated over
time. The three regions are the left and right motor cortex and a middle region. From [30]
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1

K
p(Wlc,mz) x "W 1_[ ”zk(W) exXp ey Zix — Z Jix(ti, xi3m) )
k=1 t.x (ti X)) EY

4.9)

where n () denotes the number of points in ¥ that fall within 2%. Note that
the full conditional distribution for v is in fact a pairwise interaction density. The
point process V¥ is simulated from the density in (4.9) using a Birth-Death-Move
algorithm as described in [46].

Based on an earlier analysis of the same data set in [7], the prior intensity in
(4.8) was set to be positive in three sub-regions of interest, the left and right motor
cortex and a middle region. The resulting posterior spatial intensity pattern for
when cumulated over time is shown in Fig.4.6. The posterior spatial intensity is
clearly inhomogeneous in contrast to the homogeneous prior intensity with strong
indications for clustering in the spatial domain.

4.5 Model Selection

Model selection for point process models is commonly carried out by investigating
the summary statistics of the point pattern prior to the model fitting. Formal Monte
Carlo tests of goodness-of-fit to the homogeneous Poisson process or comparison
of the nearest-neighbor distance distribution function and the spherical contact
distribution function can provide the modeler with evidence for regularity or
clustering in the point pattern as compared to complete randomness [4, 28]. Such
comparisons can produce important guidance for choosing the correct class of
models, yet these model classes are very broad, rendering the information less
valuable.
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Statistical inference for point process models is usually very computationally
intensive, and it is often not feasible to perform inference for a single data set
under many different models. For this reason, scientific understanding of the data,
combined with expert knowledge of the model class, is often combined to select a
priori a single model for a given data set, once the appropriate class of models has
been established. However, if the scientific question of interest relates to specific
details in the modeling, such as particularities in the clustering mechanism of the
point pattern, a more formal procedure for model comparison is called for.

The Akaike information criterion (AIC), which is given by

AIC = —2log L + 2k, (4.10)

where L is the maximum likelihood value and k is the number of parameters in
the model, is by far the most popular model comparison criterion used in the point
process literature. The AIC has the advantage that it can be applied to any likelihood
based inference method. However, it has been noted that it tends to favor more
complicated models for larger data sets [48]. This is a clear disadvantage in a setting
where the modeling easily becomes computationally intractable. We discuss this
issue further in Example 4.3.

Bayes factors (see Example 4.1) were first used in a point process context
by Akman and Raftery, who compared parametric intensity models for non-
homogeneous Poisson processes on the line [3]. The focus of their work was to
develop conditions for which the Bayes factor could be determined under vague
prior information. In this context, they call the Bayes factor Bi"z) (x, T') operational
ifforUy(T) = {u= (u1,...,un):0 <up <--- <u, < T}, there exists a positive
integer n such that

sup sup B(l';)(u, T) < oo.

T>0ueU,(T)

Then, m, the smallest such integer, is the smallest number of observed events needed

for a comparison of M and M,. Furthermore, if B(l';) (u, T) is a bounded function
of u for each fixed n and T, and invariant to scale changes in the time variable,

B (u.T) = B®(au,aT) Va >0,

for all n,u, T, then the Bayes factor is operational. It is thus, under fairly general
conditions, sufficient to define the prior distributions such that the Bayes factor
becomes time-invariant for it to be well defined. Akman and Raftery demonstrated
this explicitly for log-polynomial intensity models.

Partial Bayes factors have been used for hypothesis testing to classify a point
pattern as either a homogeneous Poisson pattern or a mixture of a homogeneous
Poisson pattern and a hard-core Strauss process [62]. Here, the term partial Bayes
factor refers to calculating the Bayes factor in (4.5) using a summary statistic y
rather than the full data x, as the marginal likelihood is intractable for the mixture
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model considered in the study. The partial Bayes factor is equivalent to (4.5) if and
only if y is a sufficient statistic for x under both M; and M>.

To our knowledge, [3] and [62] are the only applications of Bayesian model
selection criteria reported in the literature in the context of point process models
such as those discussed in this paper. In Example 4.1, we showed how Bayes
factors may be calculated directly for simple models. In the following example,
we consider using a reversible jump algorithm for Bayesian model selection when
direct calculation of the Bayes factor is not feasible.

Example 4.3. (Model selection for point processes of Neyman-Scott type)

Here, we compare using AIC and Bayes factors for model selection within the
class of Neyman-Scott cluster processes. More precisely, we compare two different
models of Neyman-Scott type which differ in the dispersion process for the
secondary points. Model M has a homogeneous Poisson cluster process, a Poisson
cluster size distribution, and the dispersion distribution is given by a normal
distribution. This model has also been called the modified Thomas process [14].
Model M;, on the other hand, can be seen as a mixture of two such processes,
where the dispersion variance differs for the two components of the mixture. Palm
likelihood inference for My and M, was considered in [56] and ProkeSova and
Jensen showed that the Palm likelihood estimator for these models is consistent and
asymptotically normally distributed [50].

Model M, has a latent cluster center process and three unknown parameters:
the intensity of the cluster process, «, the mean cluster size, «, and the dispersion
variance, w?. We generate ten samples from this model on B = [0, 1] x [0, 1] for
(k,a,0) = (50,30,0.03) and perform Palm likelihood inference and Bayesian
inference for each sample under both model M; and M;. The procedure is then
repeated with data samples generated from model M,. Model M, has two latent
cluster center processes and five unknown parameters. We set the true parameters as
(k1, k2,0, w1, w2) = (25,25,30,0.02,0.04), where k; is the intensity and a)lz is the
dispersion variance for cluster process i = 1, 2. Examples of such point patterns are
shown in Fig.4.7.

Bayesian inference for processes of similar type is discussed in e.g. [46], [47],
and [60]. Contrary to the models considered in Example 4.1, we cannot calculate
the marginal likelihood (4.4) of a dataset x under the models M and M, directly.
Instead, we define a reversible jump algorithm where we jump between the models
M and M, [18]. The Bayes factor can then be obtained directly from the MCMC
sample by comparing the time spent in M; and the time spent M>.

The random intensity function of M5 is given by

%Cew ( —s||2) Z (|c2;f||2),

where o = (w1, w,), ¥ = (¥1,¥,) denotes the cluster center processes. To
account for edge effects, we define the center processes on the extended window

aZE |V, w) =«a
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Fig. 4.7 Examples of simulated point patterns of Neyman-Scott type in the plane. Left: Poisson
cluster center process with Poisson number of offsprings and normal dispersion process. Right:
mixture of two such processes which differ in the dispersion variance. The observed point patterns
are indicated with gray dots, while the black squares and circles indicate the latent cluster center
processes

Bext =[—0.1, 1.1] x[—0.1, 1.1]. The density of a Poisson process on B with intensity
function x with respect to a homogeneous Poisson process X; with intensity A is
given by

p(x]K) = exp (A|B|—/Bx(s)ds)1"[x(s).

Eex

As noted by [46] (p. 151), the choice of X; is not important for maximum
likelihood inference and for MCMC simulations from a single model. However,
when performing a reversible jump step between models with different number
of latent processes, we need to choose A with care in order to obtain balanced
proposals, see below.

The joint posterior distribution of the latent processes and the parameters in M»
is thus given by

P, 0[x) o px[aZ(-| . @) p(Y1 | k1) p(¥2 [ k2) p (1) p(@) p(),

and the joint posterior distribution under M; is an obvious simplification. Our
MCMC simulation algorithm consists of the following steps:

(a) Updating the latent process V;

(b) Updating the parameter «;

(c) Updating the parameter «o;

(d) Updating the parameter w;

(e) Proposing to jump between M7 and M.
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Steps (a—d) are repeated 25 times under the same model between proposals
to jump between models. For step (a), we use the Birth-Death-Move algorithm
described in [46]. If we are currently in model M», we propose one change for each
of the latent processes ¥; and ¥,. We assign conjugate priors to the parameters «
and o which result in closed form full conditional distributions for these parameters.
More precisely, we set k ~ (50, 1), k1,kp ~ '(12.5,0.5) and @« ~ (30, 1),
where the gamma distributions are parameterized in terms of shape and rate. The
full conditional distributions are then

€|y ~ IS0+ n(), 1+ [Bex|)
ki | i ~T(12.54n(;),0.5 4 |Bex|), fori =1,2

alx, Z(-| ¥, w) ~F(30+n(x),1+/BZ(“g‘|w,w)d§).

A Metropolis-Hastings step is needed to update the dispersion parameter w.
We define the prior distribution for @ in terms of the precision and set 1/w? ~
I'(1,0.001). Under model M,, we simulate initial values for w; and w, from the
prior distribution until w; < w,. This is needed for identifiability, as M is otherwise
invariant to permutations of the labels i = 1,2. The joint prior distribution of
(w1, wy) is thus 2 times the product of the individual prior components; this plays a
role in the reversible jump step (e). To update the dispersion parameter w under M1,
we generate a proposal 1/w2” ~ I'(1/w?, 1) and accept it with probability

PX[aZ(-| Y. 0")g(w|0®)
p(xlaZ(|Y.0)q(@* |w) " |

where ¢(w* | @) is the proposal density for w* given the current state of the chain.
Under M,, the parameters w; and w, are updated in a similar way. However,
a proposal is rejected immediately if the condition w; < w, is violated by the
proposal.

The reversible jump step (e) is similar to the reversible jump step for normal
mixtures described in [52]. To move from M, to M; we need to merge the two
cluster processes into one process. This is proposed by setting

V=1 Uy

k* = k1 + k2

K1a)12 + K2w22

K1+ K2

The reversible split move from M; to M> is now largely determined. There are two
degrees of freedom involved in the split which we determine with a two-dimensional
random vector u given by

u; ~ Beta(2,2), up ~ Beta(2,2).
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Here, we set

k* = (k1.k5) = (urk, (1 —uy)k), 4.11)

* * * uz 1—u2
0" = (v],0;) = Za), l—ulw ,

and reject the proposal immediately if w] < w5 does not hold. It still remains to
allocate the points in ¥ to either ¥ or . This is performed by allocating each
point in ¥ at random to either ¥ with probability k| /« or to ¥ with probability
K3 /K.

The acceptance probability for a split move is

*,K*,Ol, *X
min 1484 wl)m’1 ’

P k.o, w]x)q (u)

where ¢ (u) is the density function of u and J is the Jacobian of the transformation
described in (4.11),

wkK

J| = .
I 2/ur (1 — uy) ua (1 — uz)

As mentioned above, we need to choose the densities of the latent cluster processes
carefully in order to obtain balanced proposals. Let X, X1, and X, be homogeneous
Poisson processes on Bex with intensities A, A1, and A, respectively, such that

n(y) n(yn) n(y2)
= . A= . A= .
|Bexl| ! |Bexl| 2 |Bexl|

The log-ratio of the density of (¥, ¥;') with respect to (X1, X») and the density of
¥ with respect to X is then given by

o (p(I/f{‘IKT)p(WS‘IKS‘))

p(¥lk)
N T n(y)
=) [k’g ) n(p) }

which penalizes for a lack of balance between the proposed intensities and the
corresponding point patterns. The acceptance probability for a merge move is
calculated in a similar fashion. The algorithm was implemented in R [51].

The Palm likelihood inference is performed as described in [56], where the
maximization is repeated five times for each sample using different starting values
each time. We found that this was necessary, as different starting values would often
give different results. The AIC in (4.10) is then calculated for each sample based on

} +n(y3) [log% ~log
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Table 4.1 Model selection results for comparing M; and M, based on Akaike information
criterion (AIC) and Bayes factors (BF) for simulated data. The table reports the classification
results for each of the model selection criteria based on ten simulated data sets from each model.

Correct model AIC BF

M 1 M 2 M 1 M 2
M, 8 2 10 0
M, 3 7 0 10

the optimal result obtained over the five runs. The MCMC chain is run for 300,000
iterations over the steps (a—d). We assessed the convergence by running several such
chains for each data set which give nearly identical results. The starting values for
both inferenceo methods are set as

1
k ~ Po(50), @~ Po(30). — ~ I'(1,0.001),
w

under M and similar under M,. For the Bayesian inference, the initial latent center
processes are simulated from a Poisson model and the chain is started randomly in
either M, or M,. The Palm likelihood inference takes about 30-40 minutes on a
standard desktop computer for a single data set. Running one MCMC chain takes
about 1.5-2 hours on the same computer.

The results of the simulation study are reported in Table 4.1. In the Bayesian
framework, all the MCMC chains would initially jump back and forth between
the two models and then settle in the correct model. Under M, this initial burn-
in period was very short, or only about 5,000 iterations. However, the mixing was
slower under M>, and about 100.000 iterations were needed before all the chains
would settle in M,. In the frequentist framework, a data set would be classified as
belonging to either M or M, based on the minimum AIC obtained for that data set.
As Table 4.1 shows, 25% of the data sets were wrongly classified by this method.
We did, however, not find any indications of the AIC preferring either the simpler
or the more complicated model. Generally, though, we would obtain a much greater
difference between the two AIC scores when M, was chosen as the correct model.

4.6 Summary

Statistical inference for point process models was initially performed in a frequentist
manner, with the earliest work on Bayesian inference being published about three
decades ago. In this paper, we have reviewed some Bayesian contributions for non-
Markovian processes. Our aim was not to provide a complete literature review;
rather, we have chosen to focus on those papers that we find especially important or
interesting. In particular, we have tried to emphasize the variety of areas to which
non-Markovian point process models have been applied.
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We have further emphasized the use of Bayesian methodology for model
selection. We show how Bayes factors can be used to determine model probabilities
for simple models without performing a full inference under each model. For more
complicated models, this is usually no longer the case. In an example, we show
how a reversible jump algorithm can be used to determine model probabilities when
the marginal likelihoods for the competing models cannot be computed directly.
Traditionally, model selection methods for point processes mainly aim at detecting
repulsion or clustering in the point pattern and there seems to be a lack of methods
that apply beyond this initial distinction. The results presented here suggest that
Bayesian methodology might be applied to fill this gap, although further research is
needed.
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Chapter 5
A Review on Spatial Extreme Modelling

Jean-Noél Bacro and Carlo Gaetan

Abstract In this chapter we review recent advances in modelling spatial extremes.
After a brief illustration of the extreme value theory for univariate and multivariate
values, we concentrate on spatial max-stable processes. Statistical inference and
simulation for this processes are subject of a close examination. Max-stable
processes are also contrasted with spatial hierarchical models. The review ends with
summarizing some open problems.

5.1 Introduction

Applications of extreme value methods mainly concern environmental and climate
processes. During this last thirty years, the extreme value theory has developed prob-
abilistic models and inferential procedures to characterize and work with extreme
events. Such events are, almost by definition, rare and unexpected. Univariate
methods have been first used to describe the extremal behaviour at a particular
location in space and extreme modelling for single stationary time series is well-
established (see, for example, [3, 23] and the references therein). The multivariate
extreme value theory offers various notions to capture the main characteristics of
the underlying dependence structure [27] but has to be extended to characterize
extremal behaviour of spatial processes. Recently, major efforts are concentrated
on developing models and methods for extreme values taking into account the
more complex structure of spatial phenomena. If standard spatial statistics methods
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perform well for the inference on the mean behaviour of spatial processes, they are
clearly inappropriate when dealing with extreme realizations. Owing to the extreme
nature of the considered events, the class of max-stable processes plays a central
role and deserves special attention. Introduced by [20] as an extreme analogy of
Gaussian processes, max-stable processes have been first considered by [10, 13,63]
for spatial applications. More recently a hierarchical approach has been proposed
[9, 16, 29] in order to model spatial dependence. Both approaches have relative
merits that we will discuss in some extent later. A comparison of both can be found
in [19].

The paper is organized as follows. First in Sect. 5.2 we recall some results on
univariate and multivariate extreme value theory. Sect.3 deals with max-stable
processes. Classic spectral representations from [57] as well as Brown-Resnick
ones from [39] are detailed. Statistical inference for spatial max-stable processes
is presented in Sect. 5.4. Estimation methods for the extremal coefficient function
and for the model parameters are reviewed. The simulation of max-stable processes
is considered in Sect.5.5. Well established unconditional simulation techniques
are described there. Instead for the conditional case we outline a recent method
that copes with the prediction for max-stable processes. The hierarchical approach
offers an alternative approach for modelling spatial dependence and its merits
are discussed in Sect.5.6. We end the chapter discussing some open problems in
modelling spatial and spatio-temporal extreme data.

5.2 Extreme Values Theory for Univariate
and Multivariate Data

5.2.1 Univariate Extremes

Let Xi,...,X, be a sequence of independent and identically distributed
(i.i.d.) random variables having a distribution function F(-). Consider M, =
max(Xy,..., X,) and assume that there exist sequences of positive constants

(an)n>0 and real constants (b,),>0 such that (M, — b,)/a, converges as n — oo
to a non-degenerate distribution function G(-). Then G(-) is the generalized extreme
value (GEV) distribution [25,33,36]

G(x) =exp{—[1 +$(X;M)]_1/E} , 5.1

+

where a4 denotes max(a, 0), —co < £ < 00, —00 < u < co and o > 0. Here p
is a location parameter, o is a scale parameter and £ is a shape parameter. The case
& = 0 is obtained by taking the limit as § — 0. If (M,, — b,)/a, converges to a
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GEV distribution G(-), F(-) is said to be in the domain of (max) attraction of G(-)
(usual notation: F' € Z(G)).
An alternative characterization of extreme value behaviour comes from mod-
elling exceedances of high threshold and uses the point process theory [18,51,52].
Let G(-) be a GEV distribution and assume F' € 2(G). Consider the sequence
of point processes (Py,),>1 on R? defined as

j X;i—b
Pn:%( . ”),i:l,...,n}.
n+1 an

Due to the scaling, all but the most extreme values become scaled to the lower end-
point of the rescaled distribution. On region Ax = {(0, 1) x (x,00)}, (Py)n>1 can
be approximated by a Poisson process with intensity measure

X — u]—l/é

AL(0, 1) x (x, 00)} = [1 te |

The resulting distribution of the maximum for large n is a GEV distribution

o X p e
P((My —bp)/an < x) = P(no points in Ay) ~ exp § — [1 +§ ps ]+ :

In the applications, the point process model is often parametrized in order to work
on maxima over blocks such as months, years .... If n observations are available
corresponding to m blocks of data, the intensity measure is written as

Al(a, b) x (x,00)} = (b —a)m [1 +E—

X — U ]—1/ H

+
to ensure that the parameters , o, £ correspond to the GEV distribution of the block
maxima [62]. If np is the number of data in one block, i.e. m = n/ny, then the
distribution of the block maximum M,, = max(Xi,..., X,,) can be computed as

P(Mp, < x) ~ exp{—A((0.np/n) x (x,00))}.
Threshold exceedances are modelled by the generalized Pareto distribution (GPD)

x\ /¢
H =1-(1+62)

o/+
where £ is a shape parameter and 6 > 0 is a scale parameter. In this approach, all
observations over a high threshold, say u, are considered. From Pickands’s result
[51], it is well known that the conditional distribution P(X — u < y|X > u) can be
approximated by a GPD having the same shape parameter £ as the GEV distribution
related to the maximum of X. Such results can be deduced following the point
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process approach. If (7}, X;) designates a point of the process such that X; > u,
then, for large u,
1 — -1/ ) Ve
P(X; > x|X; > u) ~ M} _ { E(x u)}

-y S

+ +

with 6 = o + &(u — p). This corresponds to the usual representation using the
GPD, specifying the scale parameter 6 in terms of the GEV parameters and the
threshold u.

5.2.2 Multivariate Extremes

The multivariate extreme value (MEV) theory focuses on component-wise maxima.
Unlike the univariate case, the class of MEV distributions does not have a parametric
representation but there are considerable restrictions on the dependence structure
between marginal distributions. From a probability point of view, MEV distributions
are well characterized [30, 53]. More precisely, let (X; 1,..., Xi,p)’, i =1,2,...
be a sequence of p-dimensional i.i.d. random vectors and (My1,..., M, ,) the
vector of component-wise maxima, M, ; = max{Xi,;,..., Xn,;}. If we assume
that for suitable normalizing sequences, (dn,j)n>1 > 0, (by,;)n>1, the marginal
limit distribution for each univariate component exists, then the limit distribution of
the normalized vector

(5.2)

e ey

an,1 An,p

(Mn,l _bn,l Mn,p_bn,p)

can be characterized. By construction, each component of (5.2) must have a limit
distribution of GEV type. Therefore, there is no loss of generality in keeping
a specific marginal distribution since the other ones can be obtained through
marginal transformations. Usually the results are stated assuming that marginal
distribution Fx, € 2(Gyx j), where G x , 1s the unit Fréchet marginal distribution,
ie. Gx;(x) = exp(—1/x) for x > 0.

There exist two fundamental representations for a MEV distribution [52, 53].

¢ A multivariate distribution G is a limit distribution of the random vector (5.2)
with unit Fréchet margins if and only if

G(x1,....,xp) = exp(=V(x1,...,xp)) (5.3)

for (x1,...,xp)" € R?, where

V(xl,...,xp):/ max (ﬂ)dH(wl,...,wp)
Sy P\ X
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for a positive measure H defined on the (p — 1)-dimensional unit simplex, S,
such that fS,, widHwy,...,wp)=1,j=1,...,p.
e Any MEV distribution G with unit Fréchet margins can be written as

p
G(x1,....xp) =exp | —A(wi,...,wp) Zx;l (5.4)
j=1
where w; = x;l/ Z,le x,:l, Jj =1,..., p,and A(:) is a convex functionon S,
satisfying max(wy, ..., wp) < Awi,...,wp) < 1, forall (wy,...,wp) € S,.

The functions V(-) and A(-) are known as the exponent measure [53] and
dependence function [52], respectively. Note that A(-) is often written as a function
of p — 1 arguments which sum to unity. For given GEV marginal distributions, the
class of distributions given by (5.3) is referred to as the family of MEV distributions.
In the sequel, for simplicity, we will focus on bivariate extreme value distributions
for (X, Y). In that case, representation (5.4) is equivalent to MEV distribution but
this is not generally the case [69]. For p = 2, we can rewrite (5.3) as

1 1—
G(x,y) =exp { —/ max (K, —W) dH(w)} , (5.5)
0 xo)
where H(-) is such that fol dHw) = 2, fol wdH(w) = 1. Instead formula (5.4)
becomes
1 1
G(x,y):exp%—(—+—)A( a )} (5.6)
X oy x+y

where A(0) = A(l) =1, -1 < A(0) < 0,0 < A1) <1, A”(w) = 0 and
max(w, 1 —w) < A(w) < 1,0 <w < 1. The dependence function A(-) is related to
the measure H (-) through

1
Aw) = /(; max(w(1l — u), (1 —w)u)dH (u).

The functions A(-) and H(-) can deal with the total dependence case, i.e. X =Y
with probability one,

G(x.y) = exp{—max (x',y")}
as well as with the independence case, i.e.
G(x.y) = Gx(x)Gy (y) = exp{—(x"" + y™ "}

In fact, choosing A(w) = 1 or H(0.5) = 2 and A(w) = max(w, (1l — w)) or
H(0) = H(1) = 1 leads, respectively, to total dependence and independence.
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Several parametric models for multivariate extremes have been introduced
[11,12,69] especially for the bivariate case [11,12, 14,34,35,37,68]. For example,
the so-called logistic-Gumbel model

o
G(x,y) = exp {—(x 7V 4y,
x > 0,y > 0,0 < a =< 1 has gained a lot of favour since it can cover
the total dependence case (¢ — 0) and the independence (¢ = 1) one only
through one parameter. As in dimension one, a notion of domain of attraction has
been introduced. Let (X1, Y1), ..., (X, Yy) be a sequence of i.i.d. random vectors
having distribution function F(:,-). As previously, let (M ,, M> ,) designate the
corresponding vector of component-wise maxima. Assume that both X; and Y; are

unit Fréchet distributed and let G(-,-) be a bivariate extreme value law with unit
Fréchet margins. Then, F € 2(G) if

P(Myn/n<x,Myn/n<y) =5 G(x,y)

When G(x,y) = exp{—(x~! 4+ y~1)}, the random variables X and Y are said to
be asymptotically independent. Independence implies asymptotic independence but
the converse is false.

5.3 Spatial Max-Stable Processes

Max-stable processes arise from an infinite-dimensional generalisation of multi-
variate extreme value theory. Let Z(-) be a stochastic process with non-degenerate
marginals over an index set S. From [20], Z(-) is a max-stable process if all of
its N-dimensional distributions satisfy the max-stability property: for each n > 1,
there exists sequences a,(s) > 0, b,(s), with s € S, such that for any subset
D ={sy,...,sy}of §
n
p(M <z 2lN) = ba(sn) SZN) — Gl ).
an(s1) an(sn)

Here G(z1,....zn) is a MEV distribution. Choosing S C R? for some d > 1
allows us to consider general processes such as time, spatial or spatio-temporal ones.
All the marginal distributions of Z(-) are GEV ones and univariate marginals can
always be considered as Fréchet ones up to a rescaling and shift. A max-stable
process with unit Fréchet marginal distributions is usually referred as a simple max-
stable process.

Currently, we can recognize two main approaches for constructing such pro-
cesses. The first approach relies on (mixed) moving maxima processes [22,57, 63]
whereas the second one involves maxima on stochastic processes with the same
correlation structure [39,57].
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In an unpublished paper, [63] exploits a representation of a continuous time max-
stable process given by [20] and introduces the following max-stable process

Z(s) = max X; f(s. U),
i>

where {X;, U; }i>1 is arealization of a Poisson process on (0, 00) x Sy with intensity
measure x~2dx v(du). Here f(-) is a non-negative function on S x Sy, with finite
integral with respect a positive measure v on Sy .

Under the constraint || Sy f(s,u)v(du) = 1, we get that Z(-) process is simple.
In that paper, Smith gives an intuitive physical interpretation in terms of rainfall-
storms, i.e. X; and U; are, respectively, the size and the type of the ‘storm’ i.

In general it is difficult to derive a closed form expression of the multivariate
distribution of max-stable processes, apart from the bivariate case.

If Sy = S and f(s,u) = ¢, x(s) is the d-variate normal density with vector
mean u and covariance matrix X', [63] derives the expression of the bivariate
distribution of Z(s) and Z(s + h)

P(Z(s) <21, Z(s + h) < 2) = exp{_%¢ (&2}1) N ﬁlog%)

1 fath) 1 zl)} J
—— | — 4+ —log— |}, h e R%,
2 ( 2 Tam) %%

(5.7)

where @(-) is the standard normal distribution function and a(h) = vh' X ~1h.

This representation is known as Gaussian extreme value process and is used to
model environmental data such as extremes of rainfall [10, 13] or extremes of wind
speed [14]. In [61] the covariance matrix X is allowed to vary across S.

Different choices of function f(-) are also possible. [22] derived the expression of
the bivariate distributions when f(-) is a Student and a Laplace multivariate density.

The initial proposal of Smith is extended by [57], introducing a random shape
Y(-) instead of the deterministic function f(-). The Schlather’s formulation is the
following:

Z(s) = max X;Yi(s = U;), (5.8)

where {X;, U; };>1 is a realization of a Poisson process on (0, 00) x R4 with intensity
measure x 2dx x u~'du and {Y;(-)};>1 are independent copies of a non-negative
random function Y (), defined on R?, such that u = EJ [s Y(s)ds] € (0,00).
The Schlather’s extension keeps the previous physical interpretation as illustrated in
[42]. These authors term the process (5.8) storm process and derive its multivariate
distribution for different choices of the random functions Y, that specifies the spatial
observation support.

[57] has also introduced a class of max-stable process that is based on stationary
stochastic processes with finite expectation. Let {X;};>1 designate a realization of
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a Poisson process on (0, 00) with intensity measure p~'x"2dx and {W;()}i>1
be independent copies of W(-), a stationary stochastic process on R?, with 1 =
E(max{0, W(0)}) € (0, c0). The stochastic process Z(-),

Z(s) = m:lf(XiI’Vi(S)a (5.9)

is a stationary simple max-stable process. The multivariate distribution of Z(-) for

any subset {s1,..., S} of Sis
W .
—]E( sup ﬁ)} .
1<i<m Zi

When the Poisson process has intensity measure /27 x~2dx and W(-) is a zero-
mean stationary Gaussian process, with unit variance and correlation function p(-),
the max-stable process (5.9) is known as the extremal Gaussian process [57]. The
bivariate distribution of an extremal Gaussian process is given by:

P(Z(s1) <z1,-.-, Z(Sm) < zm) = €xp

P(Z(s) <z1,Z(s + h) <z0) = exp{—% (% + i)

x (1 + \/1 —2(p(h) + 1)#)} .

A distinctive feature of extremal Gaussian process is that the independence between
pairs of observations does not occur at any distance (see also Sect.5.4). For the
applications, such a property could be questionable and attempts to modify this
property can be found in the literature. A first model defined as a mixture of the
Schlather model and an asymptotically independent stochastic process is proposed
[54]. This model, sometimes called the independent Schlather model, is of limited
interest in a spatial context and [19] propose another instance of (5.9), the geometric
Gaussian process. For such max-stable process, W(-) is a log-Gaussian stochastic
process

W(s) = exp {ae(s) - %2}

where €(-) is a zero-mean stationary Gaussian process, with variance o2 and

correlation function p(-). Actually the geometric Gaussian process is an instance
of a two-dimensional Brown-Resnick process [6,39], see below, and its bivariate
distributions are the same as (5.7) provided that a(h) = /2062(1 — p(h)) [54]. In
this case, the dependence can range from the complete one to the independence,
according to the p(-) value.

([21], Corollary 9.4.5) introduce a representation for simple max-stable processes
on S = [0, 1] which is closely related to (5.9). In their representation, {W;(:)}i>1
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are independent copies of a positive stochastic process W(-) in C[0, 1], the space
of continuous functions on [0, 1] equipped with the supremum norm. The authors
assume also that E(W; (s)) = 1 forall s € [0, 1] and E(sup,¢[g,1) W(s)) < oo. This
representation has been used in [7] for simulating extreme rainfalls.

Historically, the first example of max-stable process in the literature has been the
Brown-Resnick process on a line [6]

Z(s):maxXiexp{si(s)—M} , s e R,
i>1 2
where {X;};> is a realization of a Poisson process on (0, co) with intensity x~2dx,
{€i(-)}i>1 are independent copies of a Brownian motion on the real line and we
assume that {X;};>1 is independent from {e; (-)};>1. Note that the process W(s) =
exp{e(s) — |s|/2} meets the conditions required in ([21], Corollary 9.4.5).

[39] propose a natural generalization of the Brown-Resnick process by replacing
the Brownian motion on the real line by a more general Gaussian process on R4,
d > 2, namely

(5.10)

Z(5) = max X; exp { i) — 2 }

2
where ¢;(-) are independent copies of a Gaussian process &(-) with stationary

increments, variance o2(-) and variogram 2y(-). This simple max-stable process
has bivariate distribution given by

P(Z(s +h) <z1.Z(s) < 22) = exp

1, V2y(h) . log(zi/22)
2 2 V2y(h)

L [2r() | logza/z)
2 2 2y )Y

The Brown-Resnick process is stationary although the Gaussian process £(-) may
not be. Moreover, the variogram 2y (-) characterizes the Brown-Resnick process and
careful choices [39] for it allow us to end up with the Smith and Schlather models.
Finally, [39] show that the Brown-Resnick process has connections with mixed
moving maxima processes. More precisely, a Brown-Resnick process corresponding
to a Gaussian process &(-) with stationary increments has a mixed moving maxima
representation provided that e(s) —o2(s)/2 tends to —oo almost surely as |s| — o0o.

Other characterizations and representations of max-stable processes are possible.
The multivariate maxima of moving maxima processes [65,76,77] are well known
max-stable processes but not yet exploited in a spatial context. The ongoing research
[38, 67, 73, 74] is exploring the link of max-stable processes with sum-stable
processes and these recent contributions seem promising to solve the prediction task
(see Sect.5.5).
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5.4 Inference for Spatial Extreme Model

5.4.1 The Extremal Coefficient Function

Measuring extremal dependence between two random variables by means of their
correlation is inappropriate because the correlation measures the dependence around
the mean values. Moreover some extreme value distributions do not have moments
of order two.

[63] suggests to measure the dependence by means of the extremal coefficient.
For a bivariate vector (X,Y) with bivariate extreme distribution and common
marginal distribution G(-) the extremal coefficient 0 is defined by

P(max(X,Y) < x) = G%(x).

The values of 6 range from one to two where the perfect dependence corresponds to
6 =1, instead for independent maxima we have 6 = 2. To simplify the presentation,
in the sequel we consider random variables with unit Fréchet distribution. In this
case we have

P(max(X,Y) < x) = exp (_g) ~ exp (_ V(L, 1)) ~exp (_2A():/2)) |
(5.11)

For a max-stable process Z(-), the extremal coefficient function [59], 6(:), is
given by

P(max(Z(s). Z(s + h)) = z) = exp{—0(h)/z}.

Moreover [59] prove some properties of 8(-):

1. 2 — 6(-) is a semi-definite positive function;

2. The function 6(-) is not differentiable at 0, unless 6(h) = 1, for all 4;

3. If Z(-) is an isotropic stochastic process, 8(-) has at most one discontinuity at 0
and is continuous elsewhere.

The extremal coefficient function for max-stable models in Sect. 5.3 can be derived
from their bivariate distribution and we get:

>

Gaussian extreme value process: 0(h) = 2@ (

«/h’E—lh)
2

Extremal Gaussian process: Oh) =14+ (A —p(h))/2;
0(h) = 20 ( v Zy(h)).

Brown-Resnick process: 7
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Note that for the extremal Gaussian process limjy—o0 0(h) = 1 + 1/V2 < 2,
therefore the (asymptotic) independence of the maxima does not occur at any
distance. Moreover, for the Brown-Resnick process we have independence if 2y (-)
is unbounded.

[42] specify compatibility relationships between extremal coefficients at various
spatial supports, extending results for max-stable random vectors [59] and on
rectangle spatial supports [10, 13].

Estimators of a single value 6(/) are proposed by [15,59, 63] and [4]. Assume
that we have T independent copies, Z}(f) = (Z;(;t)p Z(t)z)’, t = 1,...,T of the
bivariate vector Z, = (Z(s), Z(s + h))’, with unit Fréchet margins. The random
variable 1/Z(s) has exponential distribution and min(1/(Z(s), 1/ Z(s + h)) has an
exponential distribution with rate 6 (/). This suggests as natural estimator [63]

T

9(h .
= Yy min((Z 11 (211

[59] derive a maximum likelihood estimator maximizing the censored log-
likelihood

—1
[(O(h))=#7t1: max (thth) > u}log 0(h) — Q(h)z [max{u max (Z Zh,k)”
- (5.12)

where u is a high threshold level and Zj = 77! ZtT=1 1/Z}(2€.
In Geostatistics, it is common to characterize the spatial bivariate structure of a
process Z(-) by means of the madogram

v(h) = %E|Z(s +h) = Z(s)].

[15] suggest to consider the madogram for the transformed max-stable process
F(Z(-)), where F(-) is the unit Fréchet distribution. In this case they show that

16(h) —1

1
vr(h) = SEIF(Z(s + ) = FZW)| = g0

which leads to the natural estimator for 6 (/)

fony = - 2r W),
1— 21)F (h)
where Vg (h) = ZzT=1 |ZO(s) — ZD (s + h)|/2T.

A generalization of the [15] estimator has been proposed by [4]. In a large simula-
tion study, [4] compared four estimators for 6(-), 1nclud1ng the non-parametric esti-
mator H(h) =24 #(1/2) deduced from (5.11), where A #(1/2) is the nonparametric
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estimator [8] for the Pickands function for the pair (Z(s), Z(s + h)). Their
simulation results point out that no one of the considered estimators outperforms
the other, but the two madogram based estimators lead to slightly better results.
Recently, a madogram based estimator for the dependence function has been
proposed by [47].

The estimates 5(/1) can be used to fit the parameters of a max-stable model.
Assuming that the max-stable model depends on an unknown parameter v,
characterizing the spatial dependence, [63] suggests to minimize the weighted sum
of squares criterion

~ 2
9/’1,’ —9/’1,’;
S(xm:Z(() ( w))

wae \ se(@(h)

which contrasts the theoretical values 6(h;; ) with the estimates é(hi). Here 57
is a set of spatial lags h; chosen for evaluating the estimate ’G\(hi). Here 0(-; )
is the theoretical extremal coefficient function and se(@(h,-)) is the standard error
related to the estimates /9\(h,~), that can be evaluated using, for instance, a jackknife
or bootstrap estimator.

A plug-in estimate for the parameter y based on the Pickands dependence
function is suggested by [22] and applied in [7].

5.4.2 Composite Likelihood Methods

The heart of difficulties in doing likelihood inference for max-stable processes is
that the full likelihood is difficult to evaluate, because we do not have a closed
form expression for the distribution of the whole observation vector. The composite
likelihood (CL) is an inference function derived by multiplying likelihoods of
marginal or conditional events. The terminology has been introduced by [44], but his
precedent in spatial statistics was the Besag’s pseudo-likelihood [5]. Today, around
this approximation, there is a renewed interest testified in a thoughtful overview of
its applications [71].

Let {f(-,¥), ¥ € ¥} be a parametric family of joint densities for the observa-
tions Xq,...,X,;, € R™ and consider a set of events {A4; : A; € §,i € I C N},
where § is a o-algebra on R™. The logarithm of CL is defined as

cl() =) log f(Xi..... Xm) € Aii¥).
iel

Now suppose that we have observed a maximum Z®(s;) at site s; and over a
temporal block #, withi = 1,...,nand ¢ = 1,...,T and the observations are
temporally independent. If we are interested only in the parameters of the marginal
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distributions, we can consider the estimates coming from the marginal composite
likelihood constructed pretending that the observations are spatially independent,

T n
clna(¥) = )Y log f(Z¥(s:); ¥)

t=1i=1

The standard errors have to be adjusted (see below) otherwise they will be
underestimated and this procedure has been firstly suggested by [64].

If the parameters of interest are also related to dependence we can consider the
pairwise log-likelihood [50, 61]:

T n n
clpir(@) =Y YD log f(ZD(s:), ZD(s;): 9)

t=1i=1 j>i

Under suitable conditions [50] the maximum composite likelihood estimator for
can be proved consistent and asymptotically Gaussian with asymptotic variance the
inverse of the Godambe information matrix

La(¥) = HaW)[Ja(W)] ™" Ha(¥),

where H, (V) = E(—V?2cl,(¥)) and J, () = V(Vcly(¥)), and a = ind, pair.

Pairwise likelihood estimation has been implemented in the R packages
SpatialExtremes [55] and ExtremalProc [49] available on the CRAN
repositories.

5.5 Simulation of Spatial Max-Stable Processes

Spatial simulations allow the recovery of information at any site. When the simula-
tions fit the observed data, they are said to be conditional, otherwise they are termed
unconditional. In particular, the conditional simulation appears as a remarkable tool
since different conditional simulations can be combined to derive a predictor of any
quantity of interest (quantiles, probabilities of exceedance, return levels, ...).

Simulation methods are well established for Gaussian spatial models [41].
Instead there exist few methods for unconditional simulation of max-stable pro-
cesses [42,54,57] and, to the best of our knowledge, one attempt connected to the
conditional case [75].

5.5.1 Unconditional Simulations

According to formula (5.8), (5.9) and (5.10), a max-stable process Z(-) is defined
through a maximum over an infinite number of copies of a stochastic process.



116 J.-N. Bacro and C. Gaetan

In practice only a finite number of realizations of the random process can be
generated. Nevertheless, there are theoretical results and ad-hoc procedures that
allow us to obtain exact or approximate simulations of some max-stable models.
[57] gives conditions which ensure exact simulations for the max-stable processes
(5.8) and (5.9). We will illustrate the simulation algorithm in this last case.

Suppose that the stochastic process W(-) is uniformly bounded by a finite and
positive constant C. Setting Ty = 0, for k = 1,2,..., the following procedure
simulates a realization from a max-stable process (5.9):

1. generate Ex ~ & and put Ty = Tx—1 + Ex, X = T} '

2. generate Wi (1) ~ W(-);

3. if C Xg > max X;W;(s), goto (1); else return Z(s) = max X; W;(s).
1<i<k 1<i<k

Here & stands for the exponential distribution with unit mean. By construction
(T7)i>1 is a Poisson process on (0,00) with intensity measure df and (X;);>1
is a Poisson process on (0, 00) with the required intensity measure x~2dx. The
algorithm ends in a finite number of iterations because Xj decreases to 0, as
k — oo. When the condition about uniformly boundness is not fulfilled, an
approximate algorithm can be introduced. For instance, good results are obtained
when we choose C such that P(W(s) > C) is small enough.

An analogous algorithm can be devised for the max-stable process (5.8) provided
that the random shape Y(-) is uniformly bounded and has finite support ([57],
Theorem 4). Both of these algorithms are implemented in the R packages Random
Fields [58] and SpatialExtremes [55].

More recently [42] introduced the exact simulation of the Poisson storm process,
exploiting specific properties of the random storms.

Simulations of Brown-Resnick models are more difficult to obtain. Ideas used for
the storm processes seem to lead to simulation results with a poor quality. In their
experiments, [48] and [40] report simulations of the Brown-Resnick process using
the process definition and a fixed number k of iterations that appear non stationary,
if the semi-variogram y (-) increases fast.

5.5.2 Conditional Simulations

We have already remarked that it is difficult to obtain in closed form the multivariate
distribution of the max-stable process making the exact conditional simulation
infeasible.

[75] provide an approximate answer to this problem. Suppose we have observed
a max-stable process Z(-) over n sites sy, . . . 5,. Starting from the extremal integral
representation [67] of a max-stable process Z(+), the distribution of the multivariate
max-stable vector (Z(s1),...,Z(sp)) can be approximated arbitrarily well (for
large p) by the distribution of the multivariate vector (Z(s), ..., Z(sp)), with
Z(si) = maxp—; p Gi(si)Yy, for i = 1,...,n. Here the ¢(-)’s are suitable

.....
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non-negative deterministic functions and Yj’s are independent standard a-Fréchet
random variables, with distribution P(Y; < y) = exp(—of y™*), for o, 0y, y > 0.

The Wang and Stoev’s algorithm generate samples from the regular conditional
probability of (Yy,...,Y,) given (Z(s1),.... Z(sn)) = (Z(s1)...., Z(sn)) and
predict Z(s*) at any arbitrary location s* from the samples, (Yl(”m), ey YISS”"))’,
using the discrete approximation of max-stable process:

Z6im 5%y =  max ¢k(s*)Yk(Sim).
=L,.p

The simulation algorithm is implemented in the R package maxLinear [72].

5.6 Spatial Hierarchical Models

Spatial hierarchical models [2] stem from the remark that given three random
variables Z, Y and X, we can always decompose the joint distribution of the triplet
(Z,7Y, X) by successive conditioning

[Z.Y. X] = [Z]Y, X][Y | X][X]

where [A] denotes the distribution of random variable A. For spatial data, model
building is broken into three stages:

1. data model: [data|process, parameters]
2. process model: [process|parameters]
3. parameter model: [parameters|

At stage 1 we specify how the data are generated by a distribution driven by a latent
spatial process, i.e. the likelihood, at stage 2 we give the distribution of the process
which depends on some parameters. The final stage specifies the distribution of the
parameters, casting the model in a Bayesian framework.

In the literature [9, 16, 29] univariate extreme value models are used as building
blocks in the first stage.

Suppose that we want to model the maximum Z(s) at site s and we assume that
conditional on three latent spatial processes wu(-),0(-) and £(-), Z(s) is a random
variable with GEV(u(s), o (s), £(s)) density

1 £(s) —1/&(s)—1
F(Z(s): u(s), 0(s).§(s)) = ) [1 + o) (Z(s) - M(S))}
+
—1/&(s)
exp { — [1 + % (Z(s) — u(s))i|+ } (5.13)

Moreover we assume that at observed sites (s1, ..., ) the random variables Z(s;),
i =1,...,n,are independent on (1£(s;), o (s;), £(s7)).
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[9] suggest to model threshold exceedances at each location using the point
process characterization. More precisely, let &(s) = {Z;(s) : Z;(s) —u > 0} be the
set of exceedances of a threshold u at location s and N(s) = |&(s)| the number of
these exceedances, the likelihood at each site s is given by

£(s)
o(s)

FE(5): 1(5). 0(5),E(5)) = exp { m [1 i

—1/&(s)
(u— u(s))] }

+

—1/&(s)—1
I, e[ o]

Zi (5)EE(s) +
(5.14)

where m is the number of blocks.
[16] models the exceedances using the GPD distribution and specifying a
Binomial distribution for the number of exceedances

e (]\xi))ﬂ(s)ms)(l — m(s))Ne=NE)
L ) B —1-1/&(s)
Zk(sl)_e[éa(s) { (s) [1 - (s) (Zi(s) ”)L

(5.15)

where N is the number of observations in a block and 7 (s) is the probability that
an observation exceeds u.

In modelling exceedances we assume that at observed sites (s1,...S5,) the
random vectors, &(s;), i = 1,...,n, are independent on (u(s;), o (s;),E(s;)) or
on (6(s;), £(si), (s;)) and that the exceedances observed at each site are temporal
independent. Actually exceedances often occur in clusters so we need to decluster
the data. The first step in a declustering procedure [62] is to identify the clusters.
Two clusters of observations over time ¢ at each site s are separated when, after
observing Z,;(s) > u, we have m consecutive observations over time below u. Thus,
we decluster the data by keeping only the highest measurement of that cluster.
Selecting the cluster maximum for each cluster makes the data approximately
independent. Obviously the critical issue for declustering is the choice of m. Tools
for selecting m have been proposed by [43] and [24].

In the stage two, the specification of the latent spatial processes a(-), a =
u,o,0,§&, m, follows a geostatistical approach namely

ha(a(s)) = ga(s: Ba) + Xa(s; ¥a),

where h,(-) is a known link function, g,(-, B4) is a regression function with
unknown parameter 8, representing the large scale component and X, (-, ¥4) is
a zero-mean Gaussian stochastic process with unknown parameter v, representing
the small scale component.
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Moreover, for simplicity, spatial processes X, (-; ¥4) are supposed mutually
independent, even if [66] suggested that scale and shape parameters should have
negative dependence.

Zero-mean spatial Gaussian processes are specified through the covariance
function ¢4 (s, s’; ¥4). Its explicit formulation requires the inversion of a potentially
large matrix for doing Bayesian hierarchical inference. A possible solution is
approximating the spatial process X, (:; ¥) by a discrete convolution [29].

Prior distributions for the parameters 8, are usually chosen uninformative,
instead for the parameters v, it is difficult to elicit prior information (see [16] for
an example). For variance parameters in ¢4 (s, s’; ¥,) Inverse Gamma priors are a
possible choice.

Adopting a hierarchical formulation has limitations and advantages. Firstly
models are max-stable only conditionally and the resulting predictive distributions
will be a mixture of max-stable distributions. Moreover conditional independence
entails that the spatial variation is taken into account only through the parameters
of the marginal max-stable distributions. Thus when we do simulations from these
models, the resulting patterns lack of local spatial structure, with an effect similar
to a nugget effect. For weather extremes this fact could be an issue.

However hierarchical modelling shows its potential benefit when we want to
improve the knowledge about extreme events over a long period of time. Examples
are climate parameters like return levels [16] or trends in extreme rainfalls [29].

A way of introducing extra spatial dependence in the likelihood is through
copulas. A copula C is a multivariate distribution on the n—dimensional hypercube
[0, 1]*. Suppose that G;(-) is the marginal distribution of a random variable
Zi, i = 1,...,n, then there exists a function C(-) such that the distribution
G(z1,-..,2n) = C(G1(z21), ..., Gn(zy)) is a multivariate distribution with marginal
distributions G; (-). Note that when we deal with continuous random variables, as in
the present case, the copula is unique [60]. Advantages and disadvantages about
copula modeling of extreme values are discussed in [46].

[56], assuming the conditional model (5.13) for the maxima, use a Gaussian
copula. Firstly, they transform the data into

Y(s) = exp { - [1 + 59 2 - u(s))}

—1/&(s)
o(s) §

+

then they build the likelihood as

S(Z(s1), . Z(5n); ©) = 0,56 (@7 (Y (51)), ..., 7 (Y (50)))

where @ = {Yg, (u(si),o(si),&(si),i =1,...,n}, ¢m,x is the n-variate Gaus-
sian density, with mean vector m and covariance matrix X, and @ is the
distribution of a standard Gaussian random variable. The covariance matrix
Yo =lce(si,sjive)l! j=1 comes from the covariance function cG(s,8;v¢q)
of a fixed spatial Gaussian process. Using a Gaussian copula has computational
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advantages [56] and allows us a great flexibility in choosing covariance models,
however Gaussian copula entails asymptotic independence for a pair of maxima
(Z(s), Z(s")) observed at two sites s # s’. A solution to overcome this problem is
using a multivariate ¢-Student copula with covariance matrix X7 and dr degrees of
freedom [32].

A different spatial hierarchical model has been introduced by [7] and its
distinctive feature is that the marginal distributions are consistent with the max-
stable theory. Let Y be a random variable with GPD distribution 1 — (1 + y)_l,
y > 0, and X(-) a positive stochastic process, independent from Y such that:
E[X(s)] = 1 and sup,cg X(s) = u. The GPD process Z(-) = (¥ + 1)X(:) has
marginal distribution with GPD tail, namely

P{Z(s)>z+1}=(1+2)"

forl +z> u.

5.7 Discussion and Perspectives

Recent results in the literature offer tools for modelling spatial extreme data and,
as it has been illustrated in the previous sections, both spatial max-stable processes
and hierarchical models appear as interesting tracks to work with spatial extremes.
Nevertheless, there are some topics for discussion that we propose to the reader.

Max-stable spatial models for block maxima are usually defined in a stationary
context [61] and nonstationarity is worked out by means of the marginal distribu-
tions of the data [50].

Their parametric inference relies on the composite likelihood approach, but
nowadays we have considered only the bivariate densities. For spatial Gaussian
processes these choices can be supported because empirical covariances are suffi-
cient statistics for the dependence parameter, but for max-stable processes densities
with higher dimensionality could be considered [31]. Moreover spatial models for
threshold exceedances and related statistical inference techniques appear welcome.
Research on a composite likelihood inference for spatial threshold exceedances is
currently under investigation [1].

Hierarchical modelling is a natural way for incorporating known physical
constraints, through informative priors. Recently [26] have proposed a hierarchical
model that is consistent with the max-stable theory. Apparently their model lacks a
spatial application.

As underlined in Sect. 5.5, there is a demand for valuable methods for conditional
simulations of spatial extreme processes. Moreover, when available information is
provided by two datasets, global climatic models outputs and rain-gauge data for
example, sometimes we need to take into account the multi-support spatial structure.
Recent results on downscaling extreme values are available [28, 45] and change of
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scales for extreme values appear as a fundamental problem, particularly in a climate
change framework.

For many environmental processes, extreme events have a spatial and temporal

component. There are some attempts to model both components in a Bayesian
hierarchical framework [32, 70] but, to our best knowledge, no real application of
recent advances [17] for space-time processes with regularly varying innovations
has been found.
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Chapter 6

Relations Between Designs for Prediction
and Estimation in Random Fields:

An Illustrative Case

Werner G. Miiller, Luc Pronzato, and Helmut Waldl

Abstract Two approaches are considered to design experiments for a correlated
random field when the objective is to obtain precise predictions over the whole
experimental domain. Both take the uncertainty of the estimated parameters of the
correlation structure of the random field into account. The first one corresponds to
a compound D-optimality criterion for both the trend and covariance parameters.
The second one relies on an approximation of the mean squared prediction error
already proposed in the literature. It is conjectured, and shown on a paradigmatic
example, that for some particular settings both approaches yield similar optimal
designs, thereby revealing a sort of accordance between the two criteria for random
fields. However, our example also shows that a strict equivalence theorem as in the
uncorrelated case is not achievable. As a side issue we cast doubts on the ubiquity
of equidistant space-filling designs.

6.1 Introduction

For the development of design theory for experiments with independent observa-
tions, the so called equivalence theorem [10], henceforth KWET, and its extensions,
have played a major role. It allows to quickly check whether given designs
are optimal, and led to the development of efficient algorithms for constructing
good designs. One of the key aspects of the KWET is the establishment of the
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equivalence of optimal designs between two criteria of optimality, one related to
parameter estimation, the other related to prediction (classically between D- and
G -optimality).

Unfortunately, in the design and analysis for correlated random fields, given by

Yi(x)=n(x,8)+e((x), te T CR, (6.1)

most of the conditions of the KWET are not met. Here, t € .7 indexes the different
realizations of the field, 8 is an unknown vector of parameters in R?, x a known
vector of regressors belonging to some set 2", and the random term ¢ (x) has zero
mean, (unknown) variance o2 and a parameterized spatial error correlation structure
such that [E[g, (x) & (x")] = o2¢(x, x'; ). Itis often assumed that the deterministic
term has a linear structure, i.e., n(x, 8) = f ' (x)p, and that the random field &; (x)
is Gaussian, allowing estimation of 8, o and y by Maximum Likelihood.

Note that setup (6.1) is used in such diverse areas of spatial data analysis
(cf. [4]) as mining, hydrogeology, natural resource monitoring and environmental
science, and has become the standard modelling paradigm in computer simulation
experiments, following the seminal paper [18]. In the analysis of deterministic
computer models all realizations of the field are identical, ¥y (x) = Yy (x) for all
t,t',and limy/ 5 c(x’, x;y) = c(x, x;y) = 1 forall x.

In this note we will argue why we believe that an accordance of prediction and
estimation based criteria can also be suspected in setup (6.1). At the same time,
however, our example will serve to demonstrate that a strict KWET can not be
achieved in this setting.

6.2 Motivation

We must carefully distinguish between two fundamentally distinct problems that
are both usually designated as “prediction” problems. One may refer to [16] for a
detailed overview of the differences between the two situations. In the following
we will refer to £ as the design, the collection of inputs x, and to 2~ as the design
space, the set of potential inputs. . stands for the set of unsampled inputs. Note
that, due to correlations, we can only consider exact designs and thus n needs to be
fixed beforehand.

6.2.1 Prediction of a Distinct Realization (Parameter Estimation):
Yi(x),x € §} > {E{Yr(x)|Y:(2),z €&}, x € 2}

Here, observations in the model (6.1) at a given t € 7 and sites £ are used to
predict a future realization of the random field at a different ¢’ # ¢. This problem
has usually been assessed under the assumption that realizations at different times
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are independent and identically distributed (see eg. [13]). Under this assumption,
prediction amounts to estimation of the deterministic term 7(x, 8) and requires
estimation of the parameters B in (6.1), say by ,3”. The prediction of a future
realization of the field Y;/(x) is then simply 7" (x) = n(x, 3”). Note that here the
influence of y is somewhat hidden, but estimators of ,3” will generally depend upon
it, so that precise estimation of y is required as well.

For this case, it has been suggested in [15] to maximize a compound criterion
with weighting factor «,

D[ |a] = [Mg(E,y)|* - My (&, )|, (6.2)

which consists of determinants of information matrices corresponding to trend and
covariance parameters, stemming from

PInL(B.y) _*nL(B.y)
gl mwwr anr | _(MeEy) 0 63)
_InLBy) _ PInL(B.y) 0 M,Ey) ) '
3y0B T dyay T 7

where, for the linear model

1
MpE.y) =~ 3 3 SOIC Wliirf T (),

x,‘ESXi/ES
and
1 1 IC ) oy ICA(Y)
M. , o= —t C 1 n—C 1 —_— 0,
My €V} =5 r% n (V) by, ») P
using notation {C,, (y)}iir = c(xi, xi7;y), i, = 1,...,n. In terms of experimental

design, the framework is not much different from the standard one (for which the
KWET holds), the difference being that for fixed ¢ the errors &;(x) in (6.1) are
correlated.

6.2.2 Prediction of the Same Realization (Inter-/extrapolation):
{Yi(x),x € §} > {E{Y,(x)|Y;(z),z € §}, x € ¥}

The situation here is very different from that encountered in the setting in Sect. 6.2.1.
Notice that we require . N & = @. Also note that, even in the idealized framework
where 8 and the parameters 62 and y of the covariance function of &; (x) in (6.1) are
known, predicting the value of Y;(x) at an unsampled site x requires the collection
of (neighboring) observations on the particular realization of the field, whereas in
a setting where the &;(x) are (spatially) uncorrelated, prediction at x ¢ £ is simply
given by n(x, ) when B is known and observations are useless.
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Contrasting parameter estimation and interpolation/extrapolation, the second
task is usually treated by minimizing a functional of the so-called kriging variance
Var[)A’t x|&)] = ]E[(I?, (x| £) — Y;(x))?] at site x, interpreted as the unconditional
Mean-Squared Prediction Error (MSPE) for the best linear unbiased predictor at x.
For instance one may minimize the maximum of it over a set 2",

min max E[(Y: (x| §) — Y:(x))?]. (6.4)

Here, Y, (x| &) denotes the best-linear unbiased predictor of Y;(x) based on the
design points in £ and associated observations Y; (£) = [Y;(x1), ..., Y:(x)]".

Assume that y is known. In the linear setting (universal kriging, with n(x, 8) =
fT(x)B in (6.1) a polynomial in x), it takes the form

VLix[8) = fT0)B +ef (1. )C (I (§) — Ful.

where {c,(x,y)}i = c(x,xi5y), 1 = 1,...,n, and,é = ,3()/) is the weighted
Least-Squares estimator of § in the linear regression model, that is

B) = IE T DETE G (Y @),
with F, = [f(x1)...., f(x,)]". We can write
Ve(x [§) = vy (x.0)Yi(§)
with v] (x,y) € R". The MSPE is given by

MSPEg(x.0%,y) = 0 {1 —c, (x.7)C; (¥)ca(x.y)

+ gy (L IECTN ) Fal  gn(x, 7))

with g,(x,y)= f(x)— FnT C,7 ' (y)en(x,y). Note that the MSPE depends on
(02, y), with 02 intervening only as a multiplicative factor. For a recent discussion
of the related design problem in a different context see [8].

The situation gets more complicated when the covariance parameters are esti-
mated (by Maximum Likelihood) from the same dataset. Indeed, the resulting
additional uncertainty then needs to enter the design criterion. For instance,
following the approach of [9] and using a first-order expansion of the MSPE for the
estimated parameters (62", ") around their true value, we obtain as an approxima-
tion an additional correcting term for the MSPE related to the observations collected.
Assume for simplicity that o2 is known, we then get the corrected kriging variance
by the approximation
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MSPEg(x, ") = MSPE¢(x,02,7")

T (x 0) 8v(x e)

+ur M, (E P ——

Ca(7")

§ , (6.5)
)Qn

a4

where M, (§,y) is the part of the (expected) information matrix related to the
parameters y, see (6.3). (When 02 is unknown and estimated on the same dataset,
we need to consider the full information matrix M, ,, (&, o2,y) for parameters

0?2 and y, and then replace in (6.5) M, L(€,7™) by the part of M, ! (E 02" 7
corresponding to y; a similar modlﬁcatlon can be used in (6.2).) Consequently, [26]
(for a similar criterion see also [23]) regards

i MSPEg (x, 6.6
min max g(x,y) (6.6)

for some nominal y as the (local) design problem, which is termed EK-(empirical
kriging-)optimality in the same paper. The objective here is to take into account
the dual effect of the design (obtaining accurate predictions at unsampled sites and
improving the accuracy of the estimation of the covariance parameters, those two
objectives being conflicting, see [16]) through the formulation of a single criterion.

6.3 A Suspected Accordance Between Criteria

Let us briefly review one of the essential statements of the KWET [10], which was
formulated for the classical linear regression setup with uncorrelated errors: it relates
D-optimal designs for estimating the regression coefficients 8, which maximize
|Mg|, to so-called G-optimum designs, which minimize the maximum prediction
variance, i.e.

22}% Var[Y; (x)].

Those criteria are equivalent when considering approximate designs, in the sense
that the D-efficiency of a G-optimal approximate design is 100% and vice versa.
Thus the respective efficiencies for exact designs can be expected to be high. It is
thus natural that in [15] is formulated the conjecture that it may always be possible
to find an « that allows to find designs optimizing @[§|«] with high EK-efficiency
(that is efficiency with respect to EK-optimality), thus establishing a relationship in
the spirit of the KWET. Note that, using (6.5) and due to the unbiasedness of the
kriging predictor, we can rewrite (6.6) as

msin )Icléa% {Var[?t ()] +tr {M),_IVaI[E)Yt (x)/ay]}} , 6.7)
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which particularly highlights the affinity with G-optimality. The reasoning is much
similar as for the two-step design suggested in [24], which however confines itself to
the covariance parameters and seeks to find a balance not in the criterion itself, but
in applying two different criteria successively. For more details and the derivation
of (6.7) and variants see [1,25,26].

It has been observed, in particular in the references above, that both criteria
are seeking to find a compromise between space-filling behavior (i.e. the trend
parameter and the kriging variance component respectively) and short distances
(i.e. the covariance parameter and the correcting term component respectively).
We are thus led to believe that respectively good efficiencies can be produced for
both setups. This would be very advantageous since EK-optimal designs are much
more difficult to generate than parameter estimation designs (they require embedded
optimizations over the candidate sets, see (6)). A quasi KWET-relationship would
thus allow to replace the very demanding optimization (6.6) by the much less
intensive (6.2) without much loss in efficiency.

In the next section we will give an extremely simple example that on the one
hand supports the suspected accordance between the two criteria, but that on the
other hand clearly shows that a strict equivalence between them cannot be achieved,
contrary to the uncorrelated case (the KWET). This example was chosen from the
wealth of our computations in various diverging setups and is intended to serve as a
paradigmatic case.

6.4 Example

We will use the Ornstein-Uhlenbeck process on 7 =[0,1], which is a special case of
(6.1) with n(x, B) = B, ie. f(x) = 1,and c(x,x";y) = exp|x —x'|/y = p*=¥'1,
setting 02 = 1 to avoid identifiability problems (see, e.g. [21]). Also from now on
we will be using the alternate parametrization p for ease of interpretation, with M,
replacing M,,.

For this example, we have analytic results that correspond to the case o =1
in (2). The optimality of space-filling designs is proved in [11] and [22]. For the
setup with an additional slope parameter it is shown in [5] that the points 0 and
1 must be included in the design, that for growing p the design tends to a space-
filling design and that the efficiencies of space filling designs can be quite high also
for small p (for small numbers of observations). The similar behavior for designs
based on minimizing the (maximum or average of the) kriging variance is a widely
acknowledged fact and has led to the predominance of equidistant designs for
computer simulation experiments (cf. [3]). Prediction and estimation based criteria
are recently compared in [2], who implicitely establish a KWET-type relationship
in this restricted case.

However, contrasting results are known for the case ¢ = 0 in (2). Here it is
shown [14] that the optimal designs collapse into one point; see also [22].

In the following we will only report results for n =3 and p = ﬁ, although
similar, albeit perhaps more trivial, results were achieved for other choices of p.



6 Relations Between Designs for Prediction and Estimation 131

For growing n there is expectedly a tendency towards approaching the case o =1,
which, however, is counterbalanced by growing p. This relation requires more
detailed investigations in the future, but the below given necessarily limited cases
seem to encapture the general behaviour well.

6.4.1 Two Design Points Fixed

We will start our investigations by fixing x; =0 and x, = 1 and we will be looking
for the optimal position x} for the third design point. This is inspired by the findings
of [5] in the linear case and will allow a more comprehensive exposition. The
correlation matrix is now given simply by

1 p p|x3|
CGp)=| p 1 plt=l
p|x3| pll_x3| 1

and the resulting kriging variance as a function of the remaining point x3 (and the
points for prediction x) is displayed in the left panel of Fig. 6.1 with the axis for x3 in
front. It is evident that x3 = 0.5 as expected minimizes the maximum over x of the
kriging variance. That this is not the case for the corrected EK-criterion (6.6) can be
easily seen from the right panel of Fig. 6.1, indicating that the minimum is reached
for a point close to the endpoints of the region. In fact, the minimizing argument is
x; = 0.934 (or x = 0.066 respectively), which gives a lower corrected kriging
variance (though also a much higher kriging variance) than the center point. This
discrepancy of the two criteria is well documented in Fig. 6.2.

It now remains to be seen, whether the design (0,0.934, 1) (or at least one with
an efficiency close to it) can be achieved employing criterion (6.2) with a particular
choice of «. Its components are of the expected form, the | Mg| being concave with a
maximum value of 29/11 at x3 = 0.5 and the | M| being convex with a limit value
of 236.765 for x3 — 0 or x3 — 1 respectively. We can in fact tune the compound
criterion @[x3|o] in such a way that it gives an optimum at x3 = 0.934 (or

Fig. 6.1 Kriging variance (left panel) and corrected kriging variance (right panel) as a function of
x3 (front axis) and x
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Fig. 6.2 Kriging variance (solid line) and corrected kriging variance (dashed line) as a function
of x for x3 = 0.5 (left panel) and x3 = 0.934 (right panel)

SFTTT——  — 7 50044
af 5.0042
- 5.0940
3t e ) 5.0938
2P T4 50036
EoN g 5.0934
1F S -7 '
-—_ _ _ - 5.0932
PR T T Y | IS T S N SRS PR (T T S S | YT ST T N SR SR TN (NN TR N SR (Y SN SN SN N ST S S |
02 04 06 08 1.0 090 092 094 096 098 1.00

Fig. 6.3 3|Mpg| (dotted), |M,|/100 (dashed) and @[x3|o = 0.8025] (solid) as functions of x3 (left
panel) and enlarged portion of the graph (right panel)

0.066 respectively) by choosing o = 0.8025, which can be seen from the enlarged
picture in the right panel of Fig. 6.3. Thus for this example we have achieved exact
“equivalence” between the prediction and the estimation based criterion.

6.4.2 One Design Point Fixed

Let us continue the example by lifting the restriction to the endpoints and allowing
two of the design points to vary freely. It is natural for reasons of symmetry to then
fix one of the three points in the center, i.e. x, = 0.5 and the other two equally
distant from the boundaries, i.e. x3 = 1 — x;. One can now plot the correcting
second term in (6.7) as a function of x3 and x and see that the situation differs much
from the above, see Fig. 6.4.

It is indeed so that although again the optimal designs corresponding to the
kriging variance and the EK-criterion differ (for the former we find x7 = 0.120
and x3 = 0.880, while for the latter x; = 0.099 and x; = 0.901), their structure
and the form of the respective functions, see Fig. 6.5, are rather similar.
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Fig. 6.4 Correcting terms in (6.7) as functions of x3 (front axis) and x for x; = 0 and x, = 1
(left panel) and x, = 0.5 and x3 = 1 — x| (right panel)

Fig. 6.5 Kriging variance (solid line) and “corrected” kriging variance (dashed line) as a function
of x for x; = 0.120 = 1 — x5 (left panel) and x;* = 0.099 = 1 — x (right panel)

422}
420}
418}

416}

Fig. 6.6 3|Mg| (dotted), |M,|/100 (dashed) and ®[xs]a = 0.8477] (solid) as functions of x3 =
1 — xy (left panel) and enlarged portion of the graph (right panel)

Once more we are looking for an «, which will yield a similar design for the
compound criterion as for EK-optimality. The functions |[Mg| and |M,| are as
expected with spikes at x; — 1—x3 = 0.5 and yet again we can choose @ = 0.8477
to yield exactly x] = 0.099 = 1 — xJ (see Fig. 6.6), the EK-optimal design.
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40f \ ,

350 A /
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0.2 0.4 0.6 0.8 1.0
Fig. 6.7 @[x3|a = 0.8477] as functions of x3 with x; = 0, x, = 1 (solid line) and x3 = 1 — x|
with x, = 0.5 (dashed line)

6.4.3 No Design Point Fixed (Three Point Optimal Designs)

Let us now finally lift all restrictions and allow the three points to vary freely. A grid
search reveals that the EK-optimal design is indeed {0.0975, 0.5, 0.9025}. Unfortu-
nately now, the @[- | «]-optimal designs are asymmetric for all ¢ € [0.8021;0.919],
so exact correspondence of the optimal designs cannot be achieved for these o-
values. For a > .919 the @[- | «]-optimal design is {0, 0.5, 1} which is also different
from the EK-optimal design. Finally, for « < 0.8021 the @[ | «]-optimal design
collapses to a two-point design with one double point and for « < 0.4785 to a one-
point design with a triple point. Thus even in this simple example the conjecture in
the strict sense is disproved. However, a plot of the criterion (2) with « = 0.8477
as a function of x3=1 — x; when x, = 0.5 and as a function of x3 when
x1 = 0, xo = 1 (the optimum design being obtained in the latter case, for the value
x3 = 0.772 or x3 = 0.228), reveals that the EK-optimal design is only marginally
suboptimal for @[-|0.8477] (see Fig.6.7). Thus we can expect local optima (e.g.
yielded from an exchange algorithm) to still perform rather well.

6.4.4 Relative Efficiencies of the @ |- | «]-Optimal
and EK-Optimal Designs

Let us now more closely analyze whether the @[ | «]-optimal design is EK-efficient
and vice versa. We define the EK-efficiency of @[- | ]-optimal designs £g[.|q] as
the ratio of the EK criterion function of the EK-optimal design &gk and g | o]:

maXyxe ATS?EE@[.W] (x, )/)

Effey ol o)) = ——
L maxye o MSPEEgk (X, y)

If @[« is not unique for some «, we take the @[- | o]-optimal design with the
highest EK-efficiency. Analogously, the @[- | «]-efficiency of EK-optimal designs
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Fig.

Fig.

EK-efficiency of D,-optimal designs

0
~
S [0;0;1]or [0;1:1]  {0%2i1] [0;0.5:1]
o
l\. —
<3
8 | /x1;x1;1—x1]
o
o
Q
S
0
lq —
=) [0.5;0.5;0.5]
o
I.O' —
o
T T I T T I
0.0 0.2 0.4 0.6 0.8 1.0

o

6.8 EK-efficiencies of £¢[.|4) and different o-values

D-efficiency of the EK-optimal design [0.0975;0.5;0.9026]
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6.9 @[ |a]-efficiencies of £gx = {0.0975,0.5,0.9026} and different a-values

is defined as the ratio of the @[- | «] criterion function of EK-optimal and @[- | @]-
optimal designs:

Plear ale]l _ IMgaria) V) - IMy(Earja, )™
Eff! = =
2t 6EK) = g e o] M G )| - [ My (G ) [0

Continuing our example of Sect. 6.4.3 we computed the @[- | «]- and EK-efficiencies

for

all a-values. The result can be seen in the Figs. 6.8 and 6.9. In the graphs also the
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different @[- | «]-optimal designs and the corresponding «-intervals are specified.
The best EK-efficiency of @[-|«]-optimal designs is reached at « = 0.8021,
£o[ |a=0.8021] = {0,0.0574, 1} has an EK-efficiency of 73.7%. If we look at the
@[ | o]-efficiencies of the EK-optimal design &gx = {0.0975,0.5,0.9026} we get
the highest efficiency for o« = 0.8629: Effp[.|0=0.8620](§EK) = 99.23%.

6.4.5 More Design Points and Different Linear Predictors

In a first generalization of our example in Sect.6.4.3 we studied larger designs
for the same model. The EK-optimal design for this model is always symmetric
about the center of the design interval and the design points are spaced almost
equidistant. The criterion (6.6) is minimal when MSPE¢(x, y) has its maximum
at the boundaries of the design interval and the midpoints between the design points
simultaneously (see Fig. 6.5 forn = 3).

For n > 3 the highest EK-efficiency for @[ | «]-optimal designs is reached when
£4[. | o] 1s equidistant. The corresponding a-values are o € [0.816; 1] forn = 4, €
[0.8075; 1] for n = 5 etc. i.e. the @[- | = 1]-optimal design is always the design
with the highest EK-efficiency. The maximal EK-efficiency for £p[.|q] increases
with n (82.84% forn = 4, 88.63% for n = 5 etc.).

For n > 3 the maximal @[ | a]-efficiency for the EK-optimal designs is also
reached when £g[.| o] is equidistant. Since the maximum of the criterion function
(6.2) decreases with decreasing « and the @[- | «]-optimal design is equidistant for
a € [ay; 1] we get the maximal @[ | «]-efficiency of EK-optimal designs for & =
ay. For n = 4 we have oy = 0.816 and a maximal @[- | «]-efficiency of 97.76%,
forn = 5 we have s = 0.8075 and a maximal @|- | «]-efficiency of 96.72%
etc.

With increasing n the EK-optimal design converges to the equidistant design
which is also @[-|a]-optimal for « = 1. Therefore both relative efficiencies
converge to 1 in our example.

The reported results only change slightly if we change the linear predictor of our
example to n(x, B) = Bo+ B1x: The @[- | a]-optimal design with @ = 1 always has
maximal EK-efficiency (81.86% for n = 3, 72.53% forn = 4, 81.39% forn =5
etc.). We could also observe a maximal @[- | @]-efficiency of EK-optimal designs
which is similar to the example without regressor (70.39% forn = 3 ata = 0.8343,
78.8% forn = 4 at @ = 0.7182 etc.). Also here the relative efficiencies converge to
1 as n increases.

The presented examples, albeit of only seemingly limited scope, give hope
that the accordance formulated in Sect. 6.3 (a quasi KWET-type relationship) will
continue to hold in more complex and realistic settings. They also show that the
EK-optimal designs (and the corresponding @[- | «]-optimal designs) can be quite
far from the often suggested and frequently employed equidistant space-filling
designs.
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6.5 Outlook

Suppose therefore that a value o can always be found such that the optimal design
for problem (6.2) is reasonably efficient for (6.7). It is then much advantageous to
solve (6.2) rather than minimize (6.5) since the former does not require maximiza-
tion over the candidate set 2 . Several approaches have been suggested to solve
(6.2) with o = 1, see [6, 12]. It remains to be checked whether such approaches can
be used when « < 1. The main difficulty here is to choose a suitable o beforehand.
From the discontinuities in Fig. 6.8 one may guess that this is a formidable task.
Since it is reasonable in most applications to assume that Z is finite, the evaluation
of M MSPEg (y) = maxyeg MSPEg(x,y) has a moderate computational cost. One
can then simply compute optimal designs for (6.2) for a series of values of «, and
retain the best one in terms of M MSPE¢(y).

The corrected MSPE (6.5) can also be used for the sequential construction of
designs. Let £70 denote some initial design of size n. At step k of such a sequential
construction, k > ng, choose xz 4 as

X1 = argg;zgg msk (x,7)

and then update £* into 61 = {£%, x; 4 }. Again, when 2" is finite, the sequential
construction above has a moderate computational cost. If one wishes to minimize
the integrated MSPE, IM/SP\EE W) = [y Z\TS?EE (x, y)u(dx), for some measure of
interest i, one can choose instead at step k

Xp41 = arg mln/ MSPE{S]( (. y)p(dx).

The parameters y can be estimated after each generation of a new sampling
point x4, rendering the sequential designs above adaptive. Algorithms for the
construction of adaptive designs for (6.2) are also of interest. We believe that such
investigations could yield the development of cheap algorithms for the sequential
construction of designs that would take into account the prediction task and at
the same time the reduction of uncertainty in the estimation of the covariance
parameters, thereby following the same ultimate objective as designs optimal in the
sense of (6.7). The fact that in most applications .2 is finite might reveal particularly
useful for studying the convergence properties of such adaptive procedures, see [17]
for such developments in the case of uncorrelated errors.

Contrasting with the uncorrelated case, non-additivity and nonconvexity are
amongst the obstacles for constructing optimal designs for random fields, which
have recently been reviewed in [14] (not to mention the potential existence of local
extrema, see eg. Fig.2 of [20]). Furthermore the concept of Fisher information is
conveniently used as a basis for designing efficient experiments. However, if the
output stems from correlated random fields as (6.1), the conditions under which
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Fisher information may be suitable must be restated. For some small sample results
see also [7].

A last point that requires investigation concerns the estimability of the random-
field parameters 02 and y. Under the infill design framework (i.e., when the
design space is compact) typically not all parameters are estimable, only some of
them being micro-ergodic, see [19]. However, it seems reasonable to consider that
Jeffrey’s law will apply and that parameters that are not estimable from the data
Y; (&) should have little influence on predictions (interpolations/extrapolations) for
the random field.
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Chapter 7
Modeling Spatial and Spatio-Temporal
Non Gaussian Processes

Denis Allard

7.1 Introduction

The ubiquitous assumption of normality for modeling spatial and spatio-temporal
data can be understood for many reasons. A major one is that the multivariate
normal distribution is completely characterized by its first two moments. In addition,
the stability of multivariate normal distribution under summation and conditioning
offers tractability and simplicity. Gaussian spatial processes are well modeled and
understood by the statistical and scientific communities, but for a wide range
of environmental applications Gaussian spatial or spatio-temporal models cannot
reasonably be fitted to the observations.

The purpose of this chapter is to offer a brief and partial review of some spatial or
spatio-temporal models for data that are positive, skewed or long-tailed. In a word,
models for data that do not fit the Gaussian assumption.

While the definition of a Gaussian spatial random process is precise, different
approaches can be proposed for building non Gaussian spatial processes. We shall
review two distinct approaches. A classical approach consists in transforming a
spatial Gaussian process in a way that fits the data. Expressed the other way around,
it consists in transforming the data into values that are compatible with a Gaussian
assumption. Another strategy is to assume that the random field follows specific pro-
cesses, such as y2 or ¢ processes (see e.g. [1] or [2]) or Gamma processes, see [33].

This chapter is organized in three sections. In this introductory section, some
definitions and properties of Gaussian spatial processes that will be needed in the
rest of this chapter are first recalled; one example of a process with Gaussian
univariate marginal which is not a Gaussian process is also given. In the second
section, we shall present the class of the transformed Gaussian processes, which
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consists in transforming each value of a Gaussian process with a fixed function.
Besides the problem of choosing the adequate transform, there are a few theoretical
pitfalls associated with this method, which will be presented. In the third section,
we illustrate the second approach by presenting the spatial skew-normal processes.

We shall specifically focus on the modeling of the covariance function (and/or
variogram) for these non Gaussian processes. We shall see that the question of how
building valid classes of variogram is still an open problem for some of the models
presented.

When possible, we shall provide illustrations with simulated or environmental
data.

7.1.1 Gaussian Spatial Random Processes

Let us recall briefly the definition and some properties of Gaussian Random
Processes. Let us consider a continuous domain of interest, 2 € R?, where typically
d = 2ord = 3 andletus denote 51, ..., s, aset of locations in Z. The distribution
of the process {Y(s) : s € Z} is given by the collection of all finite-dimensional
joint distributions

Fy1,oo s yniS1s-.s8n) = P(Y(s1) < y1,...,Y(sn) < yn), (7.1)

for all n and all collections (sq,...,s,) of sites in Z. The Kolmogorov existence
theorem [7] states that the stochastic process model P is valid if the family of
the finite dimensional joint distributions (7.1) is consistent under permutation and
marginalization.

A spatial random process {Y(s) : s € Z} is a multi-Gaussian random process,
or a Gaussian random process for short, if all finite dimensional distributions (7.1)
are multivariate Gaussian, that is if the probability density function of the vector of
values Y = (Y(s1),...,Y(sn)) is

£@y) = 2n) ™2 det(C)" 2 exp{—0.5(y —p)C (y — )},  (7.2)

where y = (y1,....yn), 0 = (E[Y(s1)]...., E[Y(sy)]) is the vector of
expectations and C is the covariance matrix whose elements are Cp; ;1 =
Cov(Y(s;),Y(s;)). The elements of the covariance matrix are such that
Cov(Y(s;),Y(s;)) = C(si,s;) for some real valued function C(-,-) on Z x 2,
called the covariance function.

A spatial random process is stationary if the finite dimensional joint distributions
are invariant under translation. In the case of a Gaussian random process, this
implies that

EY(si)] = u: Cov(Y(si), Y(s;)) = C(sj — si) (7.3)

for all s;,s; € 2. For non Gaussian random processes, conditions (7.3) refer to
second order stationarity, also called weak stationarity.
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The variogram of a spatial random process is defined as
y(h) = 0.5Var{Y(s + h) — Y(s)}. (7.4)

For weakly stationary random processes, straightforward calculations show that
y(h) = C(0) — C(h). There is a less demanding assumption for stationarity than
second order stationarity, that only requires the existence of the first and second
moments of differences Y (s + i) — Y (s), instead of the existence of first and second
moments of Y (-). A random process Y (+) is said to be intrinsically stationary if

E[Y(s +h)—Y(s)] =0 and Var(Y(s + h) — Y(s)) = 2y(h), (7.5)
forany s and s + h € &, in which case
y(h) = 05E[(Y(s + h) — Y(5))?]. (7.6)

It is very often preferable to use the variogram, y(h) instead of the covariance
function because (1) the variogram exists for the less demanding assumption of
intrinsically stationarity; (2) estimation based on variograms are more robust than
those based on covariance functions. See [11] and [10] for more details on the esti-
mation of both the variogram and the covariance function for general spatial random
processes. See also [35] on how likelihood approaches can be used for Gaussian
spatial random processes. From now on, except when explicitly stated otherwise,
only stationary random processes for which (7.3) holds will be considered.

Since the covariance matrix C in (7.2) must be nonnegative definite, the
associated covariance function must be positive definite. The classical Bochner
theorem [8] states that a real-valued continuous function C (k) is a positive definite
function if and only if it is the Fourier transform of a symmetric, nonnegative and
finite measure F on R such that fRd dF(w) <o00:

Ch) = /d exp{i < h,w >}dF(w), (7.7)
R

where < -,- > designates the dot product in R?. F(-) is called the spectral
decomposition of the covariance function. More details can be found in [30].

A spatial random process Y (-) in & is mean square differentiable it E[(Y(s+h)—
Y(s))?] = Oas ||| — 0. Since 0.5E[(Y (s + h) — Y (5))?] = y(h) = C(0)— C(h)
for a second order stationary process, mean square differentiability is equivalent
to the covariance function (or, equivalently, the variogram) being continuous at
the origin. It can be easily shown [30] that a second order stationary process is
p times mean square differentiable if its covariance function (or, equivalently, its
variogram) is 2p times differentiable at the origin. The exponential covariance
function C(h) = exp{—||h||/a} is continuous at the origin. The corresponding
process Y (-) is thus mean square continuous but not mean square differentiable. The
Gaussian covariance function C(h) = exp{—(||h||/a)?} is infinitely differentiable
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Fig. 7.1 Realizations of (0, 1) Gaussian random processes. Left: with exponential covariance.
Right: with Gaussian covariance

at the origin. Its associated Gaussian random process is thus infinitely mean square
differentiable. A realization of both processes is shown in Fig. 7.1.

7.1.2 An Example of a Non Gaussian Random Process
with Gaussian Marginals

All Gaussian spatial random processes have Gaussian univariate marginals, but the
converse is obviously not true. As an example of a non Gaussian random process
with Gaussian marginals, we shall consider the Poisson lines tessellation model
with Gaussian random values in cells. A tessellation model randomly partitions the
domain into non overlapping cells. To each cell of the tessellation is independently
assigned a random value. Here, we shall draw from the standard Gaussian distri-
bution. The Poisson tessellation model is generated by Poisson random lines. A
line in R? is fully specified by two parameters: a direction, « € [0,27), and a
distance to the origin, d > 0. Poisson random lines correspond to an homogeneous
Poisson process for (o, d) in [0,27) x Ry The number of lines intersecting the
domain is drawn from a Poisson distribution with parameter A(Z). Each line is then
drawn with independent uniform distributions for & and d, subject to the condition
that the line intersects the domain. The only parameter driving the tessellation is
thus the parameter A(2) : to large values of A(Z) correspond small cells and vice
versa. Regarding the random values in the cells, we shall consider here standard
(0, 1) Gaussian random variables. This hierarchical model is strictly stationary. It
defines a random process Yz () whose univariate marginals are Gaussian, but which
is obviously not multi-Gaussian. [19] shows that the variogram of Yjs(-) has an
exponential form

ym(hiay) =1 —expi—|lhll/am}. am = L(D)/2M2D)). (7.8)

where L(2) is the perimeter of the domain 2.
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As a consequence of (7.8), for a well chosen parameter A(2) it is possible to
define a second order stationary process with same marginal univariate Gaussian
and same exponential variogram as a (multi-) Gaussian process Y (-). These models
are thus indistinguishable if we restrict ourselves to first and second order moments.

While expectation and covariance functions are similar, it is not the case of the
first order variogram, also called madogram [10]. It is defined as half the expectation
of the absolute difference between Y (s + &) and Y (s):

yi(h) = 0.5E[|Y (s + h) — Y (s)]]. (7.9)

The madogram of a stationary Gaussian random process Y (s) with variogram
yG (h; ag) can easily be computed. The difference Yg (s + h;ag) — Yo (s;ag) is a
Gaussian random variable with 0 mean and variance equal to 2y (h; ag). Recalling
that the expectation of the absolute value of a Gaussian random variable X with
zero mean and variance 72 is E[|X|] = \/2/nt, one gets that

ve(hiag) = Vyc(hiag)/ V.

For the Poisson tessellation model, it can be shown (see below) that the first order
variogram is
var(hiam) = ym(hsam)/ 7.

In short, the relationship between first order and second order variograms is

quadratic for Gaussian random process, and it is linear for Poisson tessellation

model. We thus have a powerful tool for discriminating between these two models.
The two models are now combined to define mixture models

Yu(s) = wYg(siag) + (1 —wH)?Yy(siam), 0<w<1, (7.10)

which have same expectation and same exponential covariance function for all w if
ag = apr. Note that if ag # ayy it is still not possible to attribute which part of the
variogram is related to the tessellation model and which part is related to the multi-
Gaussian model. Note that negative weights could also be considered, but because
the Gaussian fields are centered we can set the parametrization (7.10) without loss of
generality. Figure 7.2 shows a realization of a Poisson tessellation model, a multi-
Gaussian random process, and a mixture model as defined in (7.10), with exactly
same univariate (0, 1) Gaussian distribution and same exponential covariance. The
experimental histograms and variograms computed on these realizations, not shown
here, are very similar.
It can be shown [14] that the first order variogram for the mixture model is

ya () = w(l = yaa (s am)y6 (hiag)

+yaa (hi am) Vw2 yG (h:aG) + (1 —w2)} /7. (T11)
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Fig. 7.2 Top: Realizations of a Poisson random lines tessellation process (left) and of a Gaussian
random process (right) with same (0, 1) univariate marginal and same exponential model. Bottom:
Left, mixture model with w> = 0.5 (lef?); Right, relationship between variogram and madogram
of the mixture model

The proof of this result relies on the computation of |Y,,(s 4+ &) — Y,,(s)| conditional
on the event {s and s + & belong to the same cell}. Equation (7.11) shows that even
when ag = ayy, the first order variogram depends on w. The relationship between
the variogram and the madogram in (7.11), from linear for w = 0 to quadratic for
w = 1, is shown in the bottom right panel of Fig.7.2. Simultaneous computation
of variograms and madograms can thus be used to estimate w, and consequently to
discriminate between a multi-Gaussian structure and a mosaic structure.

This approach has been proposed in [14] to discriminate between natural and
cultivated landscapes on remote sensing images of vegetation indices. Figure 7.3
shows a vegetation index measured from the SPOT-HRYV satellite with a 20 m spatial
resolution. The left-hand-side image is an agricultural site near Avignon, France.
The right-hand-side image is a natural vegetation site near Montpellier, France.
On crop sites the fraction (1 — w?) of the variance explained by the tessellation
component of the mixture model is generally high or very high. The associated
range aps could be related to the mean size of the agricultural fields, even though
the experimental variogram could be disturbed by the gathering of fields with similar
vegetation index. On natural and forest vegetation sites, the fraction of variance w?
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Fig. 7.3 Examples of landscape structures characterized from high spatial resolution NDVI
images (SPOT-HRYV sensor at 20 m spatial resolution). Left: agricultural site near Avignon, France.
Right: natural vegetation site near Montpellier, France

explained by the multi-Gaussian model is, on the contrary, generally quite large. On
the sites shown in Fig. 7.3, it was found that w? = 0.07 on the agricultural site and
w? = 0.42 on the natural vegetation site.

7.2 Transformed Gaussian Random Process

Consider a (0, 1) Gaussian random process Y (-) with correlation function p(h) =
C(h)/C(0) on 9. Let ¢(y) be a function from R to E C R. The random process
defined by Z(s) = ¢{Y(s)}, s € 9, is a transformed Gaussian random process.
We shall first consider strictly monotonic transforms which are invertible. In the
next subsection, we shall consider more general transforms that are not one-to-one
correspondences.

7.2.1 Strictly Monotonic Transforms

When the transform function ¢ admits a proper inverse, the general approach
for dealing with transformed spatial or spatio-temporal Gaussian data is thus the
following: (1) estimate the parameters of ¢ and compute the normal score of
the data, i.e. compute Y(s;) = ¢ '{Z(s;)} fori = 1,...,n; (2) estimate the
covariance function on the transformed data; (3) do spatial prediction Y 7 (-) and/or
stochastic simulations Y *(-) conditional on the data Y = (Y (s1),...,Y(sn))’; (4)
back-transform the predictions/simulations with ¢. Care must be taken to the back-
transform step. While Y¥(-) distribution is by construction the same as Y, this
is not the case for Y7 (-). For example, if prediction is made by simple kriging
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(see e.g. [10] for details on the practice of kriging), Cov(Y 7 (s), Y P (s + h)) =
C(h) — C(s)'C™'C(s + h), where C(s) = (C(s — s1),...,C(s — s,))". The
covariance function of the predicted process is thus different than the one of the
original process. Ignoring the variance reduction in the back-transform step can lead
to serious bias. It is thus necessary to take it explicitly into account, which can be
done if one specifies the transform function ¢.

Probably the most intuitive way of transforming the data is by applying a
parametric transform. Many environmental data are positive and/or long-tailed. It is
for example the case for soil humidity, pollutant grades, wind speed, radiation, etc.
For these variables, transforms related to the power and to the exponential functions
are quite common. In the geostatistical literature, a semi-parametric approach based
on the orthogonal Hermite polynomials is also proposed, see e.g. [10], [32]. This
approach will not be presented here. The reader is referred to the references above.

7.2.1.1 Lognormal Spatial Processes

A positive random process Z(+) is a lognormal spatial process on & if and only if
there exists  and o > 0 such that

InZ(s) = u+ o¥Y(s), foralls € &, (7.12)
where Y () is a (0, 1) Gaussian random process with correlation function p(/). In

other words, the transform function is ¢(y) = exp{u + oy}. Let m, Cz(h) and
yz(h) denote respectively the expectation, covariance function and variogram of

the lognormal spatial process Z(-). Using the general result E[e?X] = ¢®/2 when
X is (0, 1) Gaussian random variable, it is straightforward to show that
E[Z(s)] = e l2 = m
Cov(Z(s), Z(s + h)) = m> (a’zp(h) - 1) = Cz(h). (7.13)
For the variogram one gets from (7.13)
vz (h) = m?e°” (1 - e—ozy“’)) . (7.14)

Denoting 72 = m2e®” and gh) = e=o7 v, (7.14) yields

yz(h) = 7*(g(0) — g(h)),

which shows that g (h) is a covariance function. This result is thus a partial proof by
construction of the following theorem.
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Theorem 7.1. Ify(h) is a variogram, e =¥ is a covariance function for all t > 0.

This theorem is a particular case of the more general Schoenberg theorem [29]
which states that y(-) is conditionally negative definite if and only if exp(—zy(-)) is
positive definite for all positive 7. See also [27] and [28] on the use of Schoenberg
theorem for building valid classes of space-time covariances.

The construction above assumed a weakly stationary random processes Y (-) It
is in fact possible to extend the definition of lognormal processes to intrinsically
stationary processes with unbounded variogram y (%). But in this case (7.12) cannot
be applied since © and o do no longer exist. When conditioning {Y(s) : s € Z}
to its average on a domain V' O &, the process {Z(s) = exp{Y(s)} : s € Y} isa
locally stationary lognormal random process on Z. In this framework it is shown in
[20] that

yz(h) = b(1 —exp{—y(h)}) (7.15)

for some b > 0. Equation (7.15) indicates that the exponential variogram is a
valid model for lognormal processes, if and only if the variogram of the underlying
Gaussian process is intrinsically stationary, with a linear variogram y(h) = al|h||
for some a > 0.

Equation (7.14) establishes the parametric form of the variogram of a lognormal
spatial process. Any valid correlation function p(%) (i.e. a positive definite function
with p(0) = 1) will lead to a valid covariance function for the process Z(-) through
(7.13). If we decide instead to directly model the covariance of Z(-), it must be of
the specific form (7.14). In other words, not only Cz () but also In(Cz (h)/m? + 1)
must be positive definite, which excludes certain models. [22] proves for example
that the spherical model is not compatible with bi-lognormality' for certain values
of the variance. It is further conjectured that the spherical covariance function is not
a valid model for lognormal processes.

Let us go back to the problem of prediction. For Gaussian random processes,
the conditional expectation, which is the optimal predictor, is linear with respect to
the data. That is Y ?(sg) = E[Y(so) | Y] = 'Y, where A = (A1,..., ;)  is the
solution of the kriging equation (see e.g. [11], [32]). Then the optimal predictor for
Z(s9) is

Z7(s0) = E[Z(s0) | Y] = exp 1 Y7 (s0) + 0.5 > Aid; (1= plsi —5) ¢ -
i=1j=1
/ (7.16)
and

Var(Z? (s0) = Z(s0)) = (Z”(50))* | exp 3 Y > Aid;(1—plsi —s;) p — 1

i=1j=1

'The logarithm of a bi-lognormal process is a process for which all univariate and bivariate
marginals are Gaussian. It is thus a weaker assumption than the lognormality considered here.
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Equation (7.16) shows that Z7”(s¢) is not simply the exponential transform of
Y P(s9). It does include a correction factor based on the prediction variance. As a
first consequence, Z”(s¢) is not unbiased anymore. Working with quantiles rather
than moments might be an interesting alternative because quantiles simply follow
the transformation: since the distribution of the error Y 7 (so) — Y (so) is symmetric
(Gaussian), its median coincides with its mean, and thus Z?(s¢) is a median
unbiased estimator of Z(sp). As a second consequence, Z” (so) is more sensitive to
the covariance parameters (sill and range) than a linear predictor built on Z directly.
It is also very sensitive to the lognormal assumptions. It is thus not at all obvious
that the mathematical optimality of (7.16) should be preferred to the robustness of
a conventional kriging on the raw values Z, which is only linearly optimal. A wise
advise is probably to perform both kriging and to assess their performance via a
cross-validation study.

Note that lognormal processes are also used as driving intensities for non
homogeneous point processes, see e.g. [24].

7.2.1.2 Box-Cox Spatial Processes
A more general transformation for positive values Z is the Box-Cox transformation:

-1

y=9¢;') = if A #0; ¢5'(z) = Inz. (7.17)
Obviously the case A = 0 brings us back to the lognormal model above. For A # 0,
derivations similar to those described in the previous paragraph are possible. They
involve technicalities that are beyond the scope of this presentation. In [12] this
transformation has successfully been applied for the prediction of rainfall using a
Bayesian approach.

7.2.2 Transformed Truncated Gaussian Processes

The parametric transform seen in the previous section relies on the assumption that
the transform is a one-to-one correspondence. There are unfortunately many cases
for which this assumption is not possible. The modeling of rainfall data is a very
typical example. Rainfall data are characterized by a large proportion of values equal
to 0, up to 90% of the data, depending on the location and on the time step of the
measures. A one-to-one transform is thus not appropriate. Models need to be able
to account explicitly for a large proportion of 0 values.

The truncated Gaussian model is a particular transformed Gaussian process, with
¢(y) = v(y)I[y = v], where I[] is the indicator function equal to 1 if the
expression within brackets holds, and 0 otherwise, and where ¥ (y) is a strictly
monotonic function. In other words, let {Y(s), s € 2} be a Gaussian process on &
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and define
Z(s) =y (Y(s)), Y(s) = v, (7.18)

and Z(s) = 0 otherwise. The process Z(-) is thus a non strictly monotonic transform
of the latent Gaussian process Y (-). This model has been used in [4] for modeling
spatio-temporal rainfall data with a quadratic form of the power transform of the
data: ¥ (y) = ap+a1y? +ay?”, for y > 0, which is monotonic for a large range of
values of y when (g, @1, @2, ) are estimated from the data, thus guaranteeing strict
monotonicity on a large interval of y values. The data were spatial and temporal.
A Gaussian Random Markov Field (GMRF) approach was used for modeling the
latent Gaussian process, and estimation of the parameters was done by maximizing
the log of the pairwise probabilities.

We shall take a different route. First, we shall consider an exponential trans-
formation of the truncated Gaussian field, instead of a power-quadratic one, i.e.
V(¥) = zm + b1 — 1), It was found to offer an excellent fit to the data
(see Fig.7.4), and it offers the possibility of deriving explicit formulas in the case
¢ = 1. We shall denote with f(y) the probability density function (pdf) of a (0, 1)
Gaussian random variable and F(y) its cumulative probability function (cpf). We
shall further denote the complementary cpf G(y) = 1 — F(y). The model is thus
the following

Z() = 0, Y()<v

‘ 71
tm + b(eATO _ 1) y() >, (7.19)

were 7, is the resolution of the rain gauge (i.e. it is the minimum quantity a rain
gauge is capable to measure; typically z,, = 0.5 mm), v is a parameter related to
the rain frequency and a, b and ¢ are parameters related to the rain intensity regime.
When ¢ = 1 explicit expressions can be derived for the expectation and the variance
of rainfall, given that the day is not dry:

E[Z|Z>0]=Elzm+ b —1)| Y > ]

—Zm+b (e_‘”’E[e“Y 1Y >v]— 1)

=zZm+b (6“2/2_“”% — 1) , (7.20)

and

Var(Z | Z > 0) = b*>Var(e®X ™V | Y > v)

2
_ bzeaz—Zav |:€a2 G(v —2a) _ (G(V _a)) ] . (721)

G(v) G(v)

From (7.20) and (7.21) a method of moments estimator for @ and b can be derived.
One can derive the variogram of Y(-), conditional on Y(-) > v. First note that
E[Y | Y = v] = f(v)/G(v). Recall that p(h) is the correlation function of
the latent (0, 1) Gaussian process. Then, following [31], technical but otherwise
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straightforward computations lead to

E[Y$)Y(s+h) | Y(s)=v,Y(s+h)>v]=

2ppf G50 (1= p* (1) (v, vip(h) (f(v) )2 7.2
Ga(v.v; p(h)) Ga(v,v: p(h)) Gwy)) =

p(h) +

where v, = v/(1 = p(h))/(1 + p(h)), and f> and G, are respectively the pdf
and the complementary cumulative function of a (0, 1) bivariate Gaussian vector
with correlation p(h). From (7.22) we can derive the expression of the variogram:

y(h)? .
yriy=v(h) = y(h) + Gavvip() {Vf(V)G(Vp(h)) —[2=yMW]f2(v, U;P(h))} ,
(7.23)

Note that (7.23) is a one-to-one mapping between the variogram of the latent
Gaussian process, ¥ (h), and the variogram of the truncated process, yy|y >,. To each
definite positive covariance function of Y(-) corresponds a variogram of Yy|ys,.
Conversely, variograms of the truncated process must have the specific form (7.23).

This model has been used for modeling hourly precipitation values on 30 year
long climatic series recorded at 12 locations in France, as part of the research project
CLIMATOR [9]. The aim was to build a model for disaggregating daily values of
large scale climatic models into hourly values used as input values for agricultural
precipitation models. The disaggregation was done stochastically according to
model (7.19), conditional on the daily value, with a temporal autocorrelation of
the Gaussian process modeled as the sum of two exponential covariance functions.
A maximum likelihood procedure for estimating their parameters would rely heavily
on the multi-Gaussian assumption which cannot be checked (not even mentioning
tested). An estimation by a weighted least square procedure was thus preferred,
because it was less sensitive to departures from the model. We refer to [34] and [35]
for an in-depth discussion about the estimation of variogram parameters. Figure 7.4
illustrates the fitting of the model on hourly data measured in Toulouse, France,
from September 1st to November 30th. Since at the Toulouse climatic station,
Zm = 0.50 mm, data are multiples of z,,. The top panels show the histogram and the
cumulative probability function of both the data and the model. The experimental
cpf is a step function, while the theoretical cpf is a continuous function. The bottom
left panel shows the quantity Q(¢) = E[Z.I(Z > t)], where ¢ is a rainfall threshold.
For t = zy, Q(zm) = E[Z]. The bottom right panel shows the experimental
variogram of Yz~o = Yy|y>; along with its theoretical curve, as given by (7.23).

7.2.3 Excursion Sets of Gaussian Random Processes

Yet a more severe transformation than (7.18) is to consider that () is a constant
function, say, ¥ (y) = 1. Then, for a (0, 1) Gaussian random process Y () in Z,
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Fig. 7.4 Fitting of the model on Sept-Oct-Nov data measured in Toulouse, France. Top left:
histogram and fitted pdf. Top right: experimental and fitted cpf. Bottom left: experimental and
fitted quantity Q(¢). Bottom right experimental and fitted variogram. See text for details

with correlation function p(4), the model (7.18) now becomes
Zy(s)=1, Y(s)>v, s€ 9, (7.24)
and Z, (s) = 0 otherwise. An alternative point of view is to consider the set
X, ={s€2:Y(s)>v}. (7.25)

The set X, is called the excursion set of the Gaussian random process Y (-). There is
an obvious duality between excursion set and truncated Gaussian random process,

since
Zy(s)=1<ss5€X,. (7.26)

In the usual geostatistical literature, (7.24) is referred to as the truncated
Gaussian random process. It has been extensively used for modeling geolog-
ical lithofacies for simulating petroleum reservoirs [10]. In [25] an interesting
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Fig. 7.5 Excursion sets of the realizations in Fig.7.1. Left: with exponential covariance. Right:
with Gaussian covariance. See text for details

connection with point processes is made. This work considers spatial Cox point
processes where the random intensity is defined by the excursion set of a Gaussian
random process, such that different point intensities appear in the two phases formed
by the random set and its complement.

Figure 7.5 shows the excursion set at v =0 of the realizations shown in
Fig.7.1. One can observe that their boundaries present very different roughness. The
following theorem provides the relationship between the regularity of the Gaussian
random process and the properties of the boundaries of the excursion set. Its proof
can be found in [19]; a sketch is presented here for sake of completeness.

Theorem 7.2. The variogram v, (h) of Z,(-) given in (7.24) is

1 1 1 2/01
yo(h) = / e V) g,
’ 2 oy VT=r2°

Proof. First note that

yo(h) = P(Y(s) <v,Y(s + h) = v) = / ’ / ” g . v)dudv.  (1.27)

Recall that the bivariate Gaussian pdf is

0.5(u? = 2puv + v?) %

1
go(u,v) = ex ;
? T 1—p?

Then, by direct computation one can check that dg,(u,v)/dp = 9%g,(u,v)/dudv,
from which, using (7.27) we find

3)/,, % 0%gp(u,v) _
p ap/ / 8o(hy(u, v)dudy —/ / —5,dudv=—g,(v.v).
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Hence

1 1
1 1 5
yv(h) Z/ gr(v,v)dr = —/ L O
' p(h) " 27 o) V1 — r2

O

From this result is deduced the regularity of the excursion set. We perform the
change of variable r = cos(2¢) in Theorem 7.2. Since y(h) = 1 — p(h):

1 arcsin /Y (h)/2 2
yy(h) = —/ exp{——(l + tanzt)} dt (7.28)
T Jo 2
Now, for h = 0, i.e., for y(h) ~ 0
1 2
h) ~ ——=/y(h)e™"/2. (7.29
yv(h) - y () )

Hence, from Equation (7.29),

o If y(h) o ||h||? at the origin, which is for example the case for a Gaussian
covariance function, X, has finite specific perimeter. In other words, Gaussian
random processes that are at least mean square differentiable lead to excursion
sets with finite specific perimeter. They will display very regular boundaries, as
in the right panel of Fig.7.5.

o If y(h) o ||h]|*, 0 < @ < 2 near h = 0, which is for example the case for an
exponential covariance function, X, has an infinite specific perimeter. Gaussian
random processes that are not mean square differentiable lead to excursion
sets with infinite specific perimeter. They display very erratic boundaries, as
illustrated on the left panel of Fig.7.5.

It must be noted that the expression in Theorem 7.2 is again a one-to one
mapping between the class of valid variograms for Gaussian random processes
to the class of valid variograms for excursion sets. This mapping is not a one-
to-one correspondence, because covariance functions of random sets must verify
more conditions than positive definiteness, as we shall see below. The question
of establishing from (7.28) which variograms are associated with excursion sets
of Gaussian random process is a difficult one. Let yo(h) be the variogram of a
random process taking only two values, 0 and 1. According to (7.29), yo(h) is the
variogram of an (v = 0) excursion set of Gaussian random process if the function
y(h) = 2sin?{myo(h)} is a variogram in R?. [19] proves that it is the case for the
exponential family, i.e. for yo(h) = e~

7.2.4 Variograms of Random Sets

Excursion sets presented in the previous paragraph are one specific example of
randoms sets. We recall briefly some important definitions and properties, but the
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reader is referred to [21] and [19] for more detailed presentations. A random set
is a stochastic process whose realizations are subsets of R?. Typical examples are
sets obtained by thresholding a random process Y (-) at a given level v: when Y (+)
is a Gaussian random process, the associated random sets are the excursion sets
defined in Sect. 7.2.3. When Y (-) is a Poisson line tessellation with Gaussian values,
the associated random sets are union of disjoint Poisson polygons, as defined in
Sect.7.1.2.
Random closed sets are characterized by the hitting functional

T(K) = P(X N K # 0). (7.30)

where K is any compact set of R? [21]. This characterization allows us to consider
a wide variety of random closed sets, including spatial point processes. In the rest
of this section, we shall only consider random regular sets, i.e., closed sets with non
void interior. Second order characteristics of random regular sets can be derived
from (7.30).

o Setting K = {s} leads to the first order characteristic

p(s) = T({s}) = P(s € X).
e Setting K = {s,s + h} leads to the second order characteristic

c(s,s+h)=T({s,s+h})=P(seX,s+heX).

Assuming stationarity yields
p(s) = p and c(s,s + h) = c(h). (7.31)

The quantity p is called the proportion of the random set and c(h) is its non
centered covariance function. Some immediate properties of ¢ (%) are ¢(0) = p and
lim|jp)|>o00 ¢(h) = p?. Contrarily to Gaussian random processes, first and second
order characteristics of a random sets are thus tightly related.

As already seen in (7.26), any random set X can be characterized by its indicator
function: Iy (s) = 1,if x € X, and I x(s) = 0 otherwise. The variogram of Ix (-) is

yx(h) = 0.5E[(Ix(s) — Ix (s + h))?]
= 0.5P(Ix(s) # Ix(s + h))
=PeX)—PseX,s+heX) (7.32)
— p—c(h). (7.33)
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The third equality uses the duality between indicator functions and random sets.
Variograms of random sets verify yx (0) = 0 and limjjpjj»o00 yx (h) = p — p? =
p(1 — p). Notice that variograms of indicators of random sets are necessarily
bounded.

From (7.32) one gets limyjs|—o yx (h) = lim)p)—»o P(s € X) = P(s € X, s+ h
€ X). Hence, the behavior of the variogram at the origin conveys information about
the boundary of X. Let us define 09 the specific (d — 1) volume of X; 0@ is for
example the specific perimeter of the random set X in R2. The next theorem states
precisely the relationship between o) and yx (h).

Theorem 7.3 ([21]). Let X be an isotropic random regular set in R?, and let yx (h)
denote its associated variogram. Then,

dwy
0@ = =y (0),
Wd—1
where wg denotes the d-volume of the unit ball in R?. For example, for d = 2, one
getswg = 7, wg—y =2 and c?® = 7y (0).

Thus,

e If yx(h) has a linear behavior at the origin, 0@ is finite and the boundary is
regular.

 If y.(0) is infinite, the boundary of X has a non integer dimension D withd —1 <
D <d.

 The case y.(0) = 0 would correspond to a degenerate case, where X = R¢ with
probability p and X = @ with probability 1 — p.

If X is the excursion set of a Gaussian random process Y(-), the first case
corresponds to mean square differentiable random processes while the second case
corresponds to non mean square differentiable random processes.

There is yet another condition a variogram of a random set must verify. Since

{x(s) = Ix (s + W)} = |Ix(s) = Ix (s + h)|
and using
[x(s) = Ix(s +h+h)| < |Ix(s) = Ix (s + m)| + [Ix (s + 1) — Ix (s + h + h)],
it is clear that the variogram yy (4) must satisfy the triangular inequality
yx(h+ 1) < yx(h) + yx(I). (7.34)
Consider for example y(h) ~ ||h||* when ||k|| &~ 0. Then choosing & = A’ in
(7.34) yields (2||h|D® < 2||h||¥, hence @« < 1. This again shows that regular

variograms such as Gaussian variograms or Matérn variograms with k > 1/2 cannot
be variograms of random sets.
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Clearly, from (7.34) and the other considerations seen so far, not all functions
yx (h) = C(0) — C(h), where C(h) is a covariance function, can be the variogram
of a random set. We have seen that yy () must be bounded and that yx (%) cannot
be too regular. The natural question is therefore “Is there a general characterization
of variograms of random sets ?” There is unfortunately no definitive answer to
that question, which is still an open problem. The triangular inequality (7.34) is
a necessary condition, but it is not sufficient. In [23] a conjecture is proposed to
characterize the family of indicator variograms.

Conjecture 7.1 ([23]). Let y(h) be a variogram. It is the variogram of an indicator
function (i.e., it is the variogram associated to a random set) if the inequality

n
Z €i€;y(si—s;) <0 (7.35)
ij=1
for all n, for all (s1,...,8,) € R, and for all sequence of values (€1, .. ., €,) taking

values in {—1,0, 1} such that >/, ¢; = 1.

Matheron was able to prove that (7.35) is a necessary condition, but he could not
prove that it is sufficient.

Even though a general characterization of the covariance function for random
sets is still an open question, some partial results do exist. In [13] it is shown that
the spherical variogram cannot be the variogram of a stationary mosaic random
field in R® and of a stationary Boolean random set in R3. It also cannot be the
variogram of the excursion set of a stationary Gaussian random field in Rd, d <
3. Similar conclusions hold for the circular variogram in R?. The variogram of a
stationary mosaic random field in R can be spherical, circular or triangular. These
results suggest that the spherical variogram is not a good candidate for random sets
in general. Among the variograms with linear behaviour at the origin, we have seen
that the exponential function is a valid covariance function for random sets. It is
in particular the covariance function associated with the Poisson line tessellation
(Sect. 7.1.2) and the covariance function of an excursion set of a particular Gaussian
random process (Sect. 7.2.3).

7.3 Skew-Normal Spatial Random Processes

In the previous section, we have seen how to define transformed Gaussian random
processes. In this section, we present a different approach, which consists in working
with a larger class of distributions than the Gaussian one, namely the complete skew-
normal distribution (CSN). The family of the CSN distributions is an extension of
the Gaussian distribution which admits skewness while at the same time retaining
most of the tractability offered by the Gaussian distribution: it is closed under
summation, marginalization and conditioning ([5], [6], [16] and [15]).
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In [18] a Bayesian approach is proposed for spatial prediction of rainfall
using skew-normal processes. Their model was unfortunately based on the usual
skew-normal distributions, which has been shown to be unable to impose a strong
amount of skewness for spatial data [26]. CSN distributions have been used for
Bayesian spatial regression which can handle covariates and missing observation
[17]. Spatial prediction is made by a Metropolis-Hasting algorithm. The Bayesian
approach is of course very appealing because it can handle hierarchical models and
missing data. It is however time consuming and can be difficult to implement. In [3]
a spatial model based on the complete skew-normal CSN distribution is proposed.
It will be shown below that for this model, it is possible to perform a method of
moment approach for estimating the parameters of the model, and in particular that
it is possible to estimate the covariance function of the spatial random process.

7.3.1 The Multivariate Closed Skew-Normal Distribution

An n-dimensional random vector Y is said to have a multivariate closed skew-
normal distribution, denoted by CSN, (1, X,D,v, A), if its density function is
of the form

f) =cm dn(y: . Z) (D' (y — p):v, A), with ¢! = &,(0:v,A+ D'ED),
(7.36)

where . € R” and v € R™ are vectors of expectation, ¥ € R and A € R™™
are covariance matrices, D € R™ is a transformation matrix and ¢, (y; #, ¥)
and @,(y;u, X) are the pdf and cdf, respectively, of the n-dimensional normal
distribution with mean vector u and covariance matrix X', and D’ is the transpose of
the matrix D. If D = 0, the density (7.36) reduces to the multivariate normal one.

The CSN,, (1, X, D, v, A) distribution defined by (7.36) can be generated in
the following way. Let U be a Gaussian vector of dimension m and consider the
augmented Gaussian vector (U’, Z') such that

U\ « v A+DXYXD -D'XY
()2 (G)- (2557 57)) o

d e . .
where = denotes equality in distribution. Then it is straightforward to show that,
conditional on U < 0, the random vector

Y =p+[Z]U=<0] (7.38)

is distributed according to the CSN,, (1, X', D, v, A) distribution defined in (7.36).
Here the notation U < 0 corresponds to U; < O, for all i = 1,...,m. This
construction offers a wide range of possible models depending on the choice of
K, v, A, ¥ and D. The moment generating function (mgf) of Y is
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1
M(t) = ¢y @y (D'Zt;v, A+ D' XD)exp %u/t + Et’Et} . (7.39)

It is the product of the mgf of a Gaussian vector, with mean p and covariance matrix
Y, and the cdf of the m dimensional normal distribution with mean v and covariance
matrix A + D’YD. From (7.39), it is easy to derive the moments of Y, but these
expressions are difficult to use in practice because the cumulative distribution &,
cannot be represented in analytical form. This fact raises an important computational
hurdle if m is large. In a spatial context, it implies that only simple structures for
A and D can be investigated. The next section clarifies the forms of such matrices.
The parameter v in (7.36) is difficult to estimate because it is a redundant quantity
in the expression @,,(D'(y — p); v, A). It is thus decided to set v = 0 in the rest of
this chapter.

7.3.2 Skew-Normal Spatial Processes

In order to define a skew-normal spatial random process, it is sufficient to define a
proper distribution verifying the Kolmogorov consistency conditions for any finite
vector Y. Similarily to (7.38) we define a CSN random process {Y(s)}, s € & as

Y(s) £ ju(s) + [Z(s) | U < 0.

Thus, for any n and any vector Z = (Z(s1),...,Z(sn)) of Z(-), Y 4 n+ (7|
U < 0], where U and Z are distributed according to (7.37). The vector Y can also
be expressed as a sum of two independent processes. Let us introduce

(v) £ (0)-(213%210))

where I, represents the identity matrix of size n. Then the vector Z is set equal
to -FU + G2V with F = ED(A + D'ED)' and G = ¥ — ED(A +
D'YD)~'D’Y. This is a multivariate Gaussian vector with zero-mean vector and
covariance X and, more importantly, the bivariate couple (U’,Z')’ satisfies (7.37).
The independence of U and V allows us to write

YL FU|U> 0]+ G2V, (7.40)

This decomposition is useful when deriving moments and empirical variogram
properties. The spatial skew-normal random process shall differ according to the
values of the parameters. In [26] and [3], several possibilities are explored. In
particular, the integer m is assumed to be a known quantity, not an extra parameter to
be estimated. Moreover, it is shown that m must be large enough in order to impose
sufficient skewness. As a consequence m is set to be equal to the number of data:
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m = n. In the model proposed in [3], it is further imposed that A = ¥ and that ¥
corresponds to a covariance function C (/1) computed at all pairs of locations s;, 5,
with 1 < i, j < n. Such a construction corresponds to equating the hidden points
which define implicitly the elements of U with the observed ones. This model is
thus referred to as the homotopic model. To simplify the interpretation of the model,
it is further assumed that D = §I,,, where § € R is a single parameter controlling
the skewness. When 6 = 0, Y is independent of U, i.e. Y is a Gaussian vector with
expectation p and covariance matrix X. As §2 increases, the vector Y tends to a
proper truncated Gaussian vector. With these choices (7.40) leads to

d 1) 1
YEspu+——[U|U>0]+ —F/2y, 7.41

The vector Y is thus a weighted sum of a sample from a stationary process with
covariance function proportional to C (k) and a vector U conditional on U > 0,
whose covariance function is (1 + §2)C(h). For the sake of stationarity, we shall
further impose that g = p (1,...,1)".

For computing the moments of Y, we shall take advantage of the decomposition
in (7.41) and use results concerning the moments of the truncated multivariate
normal distribution given in [31]. Let us denote R the correlation matrix of U,
Ri; = Ry; ;1 its elements and Ry its kth partial correlation matrix. Then, as shown
in [3],

§*o @,-1(0;0,Ry)
mi = E[¥] —p = = ;; Rt 0:0.0) (7.42)

with §* = §(1 + 62)~!/2. The parameter driving the skewness is §*, a quantity
varying between —1 and 1. When |§*| = 1, the skewness is maximum. It should be
noted that although U and V are stationary processes, Y is not stationary.

As second moment, we shall use the experimental variogram, denoted Py (h). It
is established in [3] that

R 1 8*20.2
Elpr 0l = | 55 > vij | + =T, (7.43)
{GD:xi—x |~ |RI]}
with |
rh)y=—— Vi + Wi —2Y;; 7.44
W =ym 2 Wy =% (7.44)

{G.7):xi—x i [~=I1Rll}

and y;; = 02(1 — R;;). In (7.44), the ¥;; s are quantities related to the second order
moments of U, namely

n
Rij — R R i ©,—2(0;0,Ry;)
Wiy =Y Ry — L L2y (7.45)

k=1 i#k /11— R @,(0;0,R)
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Fig. 7.6 CSN spatial process with 4 = 1, § = 4 and exponential covariance function C(h) =
exp{—10||h||}. Simulation at n = 100 locations and histogram (right)

with Ry; being the partial correlation matrix satisfying

xs — xCF
Pn(Xs. Xie = . X1 = ur:R) = bo . ur: Rit) n—2 | =g —Rua |-

N

where xSCE and GSC E are, respectively, the conditional expectation and conditional

standard deviation of x; given (xg,x;) = (ug,u;). Note that in general ¥;; >
0.5(¥;; + ¥,;) and thus that the quantity (7.44) is negative.

Based on these moments, it is thus possible to estimate the parameters of the
model in (7.41). The method is described in details in [3]. It consists in: (1)
estimating the parameters of the variogram for a given parametric family (e.g.
Matérn class), based on the experimental variogram computed on the data; (2)
computing the corresponding correlation matrix R, the ¥;; and I" (k) using (7.44)
and (7.45); (3) estimate §*2 and 0% from (7.43); (4) estimate u from (7.42).

This model and the estimation of its parameters are now illustrated. The left
panel of Fig.7.6 shows one realization at n = 100 sample locations within the
unit square of the spatial homotopic model with (1,02,8*) = (1,1,0.94) and an
exponential covariance function C(h) = exp{—10||%||}. The histogram, displayed
on the right panel of Fig. 7.6 clearly indicates that the model is capable of generating
a fair degree of skewness in the values taken by the process. As one would expect
for a skewness parameter §* = 0.94, the histogram is strongly positively skewed.
The sample variogram is displayed in Fig.7.7, Note that the sample variogram
indicates a spatial structure up to a distance of around 0.1, in agreement with the
simulated covariance function. However, the variance values corresponding to the
sill of the variogram is around 0.7, considerably smaller than the value of 1 taken
by o, in agreement with (7.42). The estimated parameters are ({1,572, 3*,&) =
(1.30,1.15,0.92,0.062). The resulting variogram is displayed in Fig.7.7. The fit
with the sample variogram is clear.
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Chapter 8

Random Fields Arising in Chaotic Systems:
Burgers Equation and Fractal
Pseudodifferential Systems

Nikolai N. Leonenko and M. Dolores Ruiz-Medina

Abstract This chapter provides a general overview on the main results derived
by the authors in relation to limit theory for the solution of linear and non-linear
random evolution equations. Additionally, the local regularity properties of the
solution to fractional pseudodifferential equations driven by random innovations
are introduced. Specifically, limit results derived for the heat and Burgers equations
with linear and quadratic external potentials are described in the first part of
this chapter. In the second part, the local quadratic variation properties of the
solution to fractional pseudodifferential equations on regular and fractal domains are
formulated. The driven process can be a fractional Gaussian random field or Levy
noise. The fractal domain case and multifractional pseudodifferential formulations
are studied in the context of Gaussian white-noise innovations.

8.1 Introduction

Recent research (see [60]) has provided the evidence that stochastic anomalous
diffusion process modeling constitutes an important topic in the analysis of geo-
statistical, geophysics and financial data (see [1]; [19]; [33]; [50]; [S1]; [53];
[118], among others). In this context, anomalous means the presence of long-range
dependence; self-similarity; non-linearity and multifractality. These features can be
represented in terms of fractional or multifractional pseudodifferential operators
and non-linear evolution equations with random initial conditions. This chapter
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contains a review of the main contributions developed by the authors regarding the
generation, probabilistic analysis and limit theory of the above-referred anomalous
diffusion processes. New results are also derived to complete the contents of the
sections of this chapter in relation to the description of the anomalous features (local
singularity) characterizing the families of processes introduced.

Data in many fields of application display scaling, e.g. sample paths of fractional
Brownian motion (see [85]), or even multiscaling, e.g. sample paths of multifrac-
tional Brownian motion (see [23]). A general formulation of multifractional random
field models, extending multifractional Brownian motion, is provided in [99]. The
effect of the homogeneous or heterogeneous fractal geometry of the domain is
studied in [97] and [100]. A way to characterize the multiscaling/multifractal
behaviour of a random process or field is via the non-trivial singularity spectrum
of its sample paths ([58]). Multiplicative cascades and iterated function systems
allow the generation of multifractals ([40]; [41]; [84]). Brownian motion in mul-
tifractal time and Lévy processes on fractal domains also display heterogeneous
fractality ([58]; [91]). A very small sample of illustrative examples of application
of multifractal analysis includes [31]; [33]; [46]; [86]; [91]. Recently, in the papers
by [16] complementary methodologies are provided for generation of multifractal
processes, based on the products of geometric Ornstein-Uhlenbeck type processes
or geometric birth-death processes.

Non-linear dynamics are usually observed in complex systems. Burgers equation
constitutes an important example of nonlinear partial differential equations studied
in turbulence (see, for example, [30]; [32]; [41]; [48], and [103]).

Burgers equation with random initial conditions and external potential @ = 0
has been extensively studied in the last one and a half decade by [93], [2]; [29];
[28]; [45]; [371; [42]; [67]1; [75]; [87]; [26]; [101], and [95], among others. Books of
[64], [118] and [21] contain a complete bibliography of the subject and expositions
of some of the principal results of the theory of Burgers turbulence.

In particular, [2]; [15]; [29]; [28]; [36]; [42]; [67]; [74] obtained Gaussian and
non-Gaussian scenarios for parabolically rescaled solutions of the Burgers equation
with external potential @ = 0, and weakly dependent or strongly dependent random
initial conditions. These scenarios are in some sense subordinated to the Gaussian
white noise random measure.

For other approaches to Burgers’ turbulence problem see [20], [93] and [108] (on
asymptotic distributions of averages of solutions of Burgers equation with random
initial data), [44], [107] (in the context of long memory shot noises), [26] and [101]
(large deviation principle and statistics of shock waves), [87], [88], [115], [116] (on
hyperbolic asymptotics), [ 104] (statistics of shocks and related topics), [106], [109]
and their references.

In a sense, the Gaussian and non-Gaussian scenarios for a solution of Burgers
equation with random initial condition result from the application of the central
limit theorem or non-central limit theorems for non-linear functionals of Gaussian
processes and fields. The results by [27]; [38]; [56] and [110] [111] contain a main
principle for the study of limiting distributions of non-linear transformations of
Gaussian processes with long-range dependence. These distributions are not always
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Gaussian, but they are subordinated to Gaussian white noise random measures.
For a recent development, see [5], [6]; [39]; [70]; [711; [72]; [73]; [89]; [95], and
references therein.

We consider the one-dimensional Burgers equation of the form

0 + 0 il +2 9 P 8.1
—u+tu—u=pu—u —9, .
o T T e T s
subject to the initial condition
u(0, x) = uo(x), (8.2)

where u = u(t, x),t > 0, x € R, is a velocity field, and

U=U@) = / uo(®)dE 83)

is the velocity potential, ® = @(x), x € R, is the external potential, ®, = j—x(b(x),
u > 0, is the viscosity of the media, and the reciprocal Re = 1/u corresponds to
the Reynolds number. The nonlinear equation (8.1) can be viewed as a simplified
version of the Navier-Stokes equation. But the differences between Burgers’ and
Navier-Stokes’ equations are as interesting as the similarities.

Our interest relies on the cases where the external potential @ is a linear or
quadratic function, and the initial condition

up(x) = n(x), x € R, (8.4)

is a stationary random process with short- or long-range dependence, having sample
paths that are integrable over all finite intervals. The initial-value problem (8.1)-(8.4)
is known as Burgers turbulence problem.

In relation to linear anomalous diffusion processes, in the second part of
this chapter, fractional and multifractional pseudodifferential equations driven by
random innovations are formulated, and several results on their mean-quadratic local
variation properties and sample-path properties (in the Gaussian case) are reviewed,
as well as derived here. Specifically, different special cases of temporal, spatial and
spatiotemporal pseudodifferential equations of the form

PX =¢

are considered, where . can be a fractional or multifractional temporal, spatial
or spatiotemporal pseudodifferential operator, and ¢ is a zero-mean, second-order
temporal, spatial or spatiotemporal random process, satisfying suitable mean-
quadratic local variation conditions. In the spatial case, . = £ will be assumed to
be elliptic, and in the spatiotemporal case, . is assumed to be of the form
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where .Z can be a fractional or multifractional elliptic pseudodifferential operator.
The outline of the present chapter is the following:

Random Partial Differential Equations (with random initial conditions)

* Heat equation
» Fractional heat equation and fractional wave equation
* Non-linear equations: Burgers without and with linear and quadratic potentials

Fractional Differential Equations Driven by Random Innovations

* Temporal fractional pseudodifferential models

 Elliptic fractional pseudodifferential models on regular and fractal domains
» Fractional pseudodifferential evolution equations

* Multifractional pseudodifferential equations

8.2 Random Partial Differential Equations

In the present section, we study the limiting random fields obtained from the
rescaled version of a spatiotemporal random field u(¢, x), t > 0, x € R”, arising
as solution of linear PDE or fractional PDE depending on various types of random
initial conditions in the stationary class.

8.2.1 Random Heat Equation

The heat equation with random initial conditions is a classical subject in both
mathematics and physical literature. An introduction of the rigorous probabilistic
tools into the subject can be found in [59], and [92]. More recently, several
researchers investigated solutions of the heat equation with random initial conditions
(see [75], [51, [17], [701, [71], [72], [73]).

Let us consider the random field solution

u(t,x), t >0, x € R",

of the heat equation:

a
E)_Ltt = plu, pu>0, (8.5)
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subject to the stationary random initial condition with zero mean:

169

up(x) = n(x) = / ¢ X Z,(dX), E(Z,(dN)) = Fy(dA), (8.6)

Rll

EM@n@>=BAx—yr=/a“Jﬂuwwm. 8.7)

Rn

Then, the mean-square solution is

1 lx—y[2
u = u(t, x) =/—e‘ e n(y)dy =
dyrut)n/?
Rn( pt)
. / G =P 7 (13) 150, x € R, (8.8)

Rll

The following assumptions are made on the class of random initial condi-
tions 7, defined as non-linear functionals of a Gaussian process &, i.e., n(x) =
G(&(x)), x € R". Specifically, £, G and 7 satisfy the following conditions:

(A)

(B)

The process £(x), x € R”, is a real, measurable, separable, mean-square con-
tinuous, stationary and Gaussian random field with E£(x) = 0, E£2(x) = 1,
and covariance function B(x) = Bg(x) = E [£(0)§(x)]. x € R”, such that

Be(x) = / e** Fe(d)) = / e fe(M)dA,
Rll Rn

thatis f¢(A) is the spectral density of £(x), x € R".
Under the condition (A)

E(x) = /e"*x fe(MW(dA), x € R, (8.9)

R

where W is the complex Gaussian white noise random measure.

The function G(u), u € R, is real, measurable, and such that £G?2 (£(0)) < oo.
The (non-linear) function G admits a series expansion in terms of orthogonal
Hermite polynomials given by

oo

G =3 ¢ = [ G
k=0 ' R

where Ik
mwszww*ﬂww,hwmmw
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with
_ 1 u? R
¢u) = GO AT “ER
(C) There exists an integer m > 1 such that Cp = 0,C; = -+ = Cp—; = 0,
Cn #0.

Under conditions (A), (B) and (C), the stationary process 7(x) =
G(£(x)), x € R", admits the spectral representation in form of L,-stochastic
integral:

2 CiH ,
n(x) = GEX) =Y w = /e’“Z,,(dA), (8.10)

k=m R

with the associated spectral representation of its covariance function

By(x) = cor(nO).n(0) = [ ¢ Fy ().
Rll
in terms of the bounded and positive spectral measure F;, which defines the
second-order structure of the complex-valued orthogonally scattered random
measure Z, () such that £ |Z,, (d)L)|2 = F,(dA).

(D) A weak-dependent scenario is assumed for the random initial condition 7, that
is,

/ | By (x)|"dx < o0, / By (x)dx # 0.
R R

Theorem 8.1. ([76]). Suppose that the condition (D) of the short range dependence
(SRD) is satisfied by n in (8.10). Then, the finite-dimensional distributions of the

random fields
1 t x
Us(t,x) = mlx[ g, m

D
converge weakly (—), as ¢ — 0, to the finite-dimensional distributions of the
Gaussian random field U(t, x) with EU(t,x) = 0 and the following covariance
function:

1

Varp(t +1) '

N s Ck2 k ”x_x/”Z
EU@t. x)U({' X)) = [/R > 7 B (x)dx] exp{_wz +1')

k=m

Remark 8.1. Up to the constant the spectral density of the limiting field has the
form:

g(A) = const x ;e_”’l”zx““(t“/), A € R".
Vi +1t)
For a long-range dependent (LRD) random initial condition we assume conditions
(A)—(C), and the following condition:
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(E) Random field & defining n(x) = G(£(x)), x € R”, satisfies

Llx—»1D

=" O<x<n, |x—y|—o00, (8.11)

EE)E(D) = Be(x—y) =

where L is a slowly varying function at co, bounded at each bounded interval.
By the Tauberian theorem (see [64]), condition (E) implies that, as ||A]|| — 0,

Fe(dd) = f.(MdA, f.() ~ II/\II" . A= 0. Cr=Cr(nx

_ ﬂ_z . (8.12)
w2l (%)

Theorem 8.2. ([75], [5]). Suppose that the condition (E) on the LRD is satisfied
fornin (8.10). Then the random fields

1 r X D
Ug(t,x) = Sm—x/4u (;, 817) — Upy(t,x), e >0,

where

/

Cr'Cm / P N B i LR v o W(dA) --W(dAm)
ml ). (Al )7
(8.13)
with Ct being the Tauberian constant defined in (8.12), Cy, being defined as in
condition (C), and the multiple stochastic integral (8.13) is taken with the respect
to the complex Gaussian white noise random measure defined in (8.9), with diagonal
hyperplanes A; = x£A;,i,j =1,...m,i # j, excluded.

Un(t,x) =

Note that, in (8.13), the random field U; (¢, x) is Gaussian, but Uy, (¢, x) are non-
Gaussian for m > 2. Thus, Theorem 8.2 can be considered as special form of non-
central limit theorem, see [111], [38], among others.

Some spectral properties of random fields (8.13) have been studied by [76] and
[15]. In particular, for m = 1, and each ¢ > 0, the limit solution has spatial spectral

density |

1A

g(h) = C2Cre A1

8.2.2 Linear Korteweg-de Vries Equation or Airy Equation

We consider the so-called Linear Korteweg-de Vries equation or Airy equation:

du u
5=—ﬁ, t >0, xeR, (8.14)
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subject to random initial condition u(0, x) = n(x), x € R, a zero mean stationary
stochastic process with covariance function B, (x) = cov(n(0),n(x)), x € R,
satifying conditions (A)—(D) forn = 1.

Then (see [22]), the finite-dimensional distributions of the random fields

1 r x
Ug(l,)C): mu(g,m), t>0, x ER,

converge weakly, as ¢ — 0, to the finite-dimensional distributions of the Gaussian
random field U(t, x) with EU(t, x) = 0 and the following covariance function:

o2 1 Ai( 2=y’ ) r>1

L «/25 3/3(=1) 3/3(@—=1)
EU@,x)) Ut ,x') =3 o2 __1 i x=x’ / 8.15
(U ) =32 i (=) < (8.15)
B —1), t=t,

where

o3

1 o0
Ai(x):ﬁ/o cos(ax+3)dx, x € R,

is the Airy function of the first kind and

o~ Sk [ g
o? = Z F/RBS (x)dx.
k=m

The above limiting covariance structure (8.15) is difficult to predict without
using the rescaling limit theorems. It is interesting that the limiting random field
is stationary both in space and time.

8.2.3 Fractional Kinetic Systems or Riesz-Bessel Motion:
Micro- and Macro-scalings

Theorems 8.1 and 8.2 can be generalized to the following so-called fractional kinetic
equation or Riesz-Bessel motion:

o8
WZ =—puI = 0)"?(=A)*2u, pu>0.y=0. aec(0.2]. Be(0.2].
(8.16)
with u = u(t,x), t > 0, x € R”, and subject to the stationary random initial
condition

uo(x) = n(x) = /e’“’x)z,,(d)u, E (Zy(d}))? = Fy(dA). (8.17)

R”
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The time derivative of order § is defined in Caputo-Djrbashian sense:

Pu 1 a [ 5 u(0, x)
38 ) = (1_@[5/00%) u(r,x)dz ——73 }

and the operators (—A)®/2 and (I —A)?/? are interpreted as the inverses of the Riesz
and Bessel potentials, respectively, that is, as the inverses of the integral operators,
whose kernels have Fourier transforms

@)~ 2 A7, 2 e RY,

and )2
(7)) (1 + ||A||2)  AeRd,

respectively (see, for more details, [4] and [7], [8], [11]). The case of classical
diffusion or heat equation with random data corresponds to

(ﬁ’a’ )/) = (17270)7

while the wave equation corresponds to

(B.a.y) = (2,2,0).

Thus, fractional equation (8.16) interpolates the heat and wave equations. The
time-fractional index B means subdiffusion if 8 < 1, diffusion if § = 1, and
superdiffusion if § > 1. The spatial-fractional Riesz index o means the jumps of
the evolution, the Bessel index y means the tempering of large jumps.

Let us now formulate some results of [7], [8], [9], [10] and [81], [82], [83]. Note
that the Fourier transform of the Green function of (8.16) takes the form (see [7]):

G(t.8) = Eg (—ne® 181 (1 + 181°)772).

where the Mittag-Leffler function Eg is given by

( 1)]x/ -
Ep(—) = Zr(ﬂ/m r=0

The Green function itself is of the form (assuming that the Fourier transform
exists)

G(t,x) = p(t.x;0,y, )

1 ) .
R"
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In particular, the Gaussian kernel is obtained as

1 _ xllx|?

1,X:2,0,)0) = ————¢ dur
»( 0] @2

’

and the Cauchy kernel (density) also constitutes a particular case given by

r(et t
p(tax;()’lvlu“)z (n—21 ) & n—1"~

2

7 [wn? + k17

fory =0, a € [0, 2], the symmetric stable kernel

p(Loxiaon) =t /e"W)—%"xH“dx
2T Q27"

Rn

is defined. For y = 0, we obtain the Green function in terms of H-function of Fox
(see [7], and the references therein):

—n/2 x 2a
G(t,x) = % H2! <|| I (1,1) (1,8) )

”x”2n 2,3 Zaﬂtﬁ %s%) (131) (1,%)

Then, the solution to the Cauchy problem is

u(t.x) = / 10)G(t.x — y)dy
R'l

= [ ey (<t 11 1+ RIPY) 2yt
R'l

with covariance

Cov(u(t, x), u(s, y))
= [y (<t a1+ JAP2)
Rn

x Eg (—ps® A1 (1 + IA17)P72) Fy(d2)

and, in the case of LRD Gaussian random initial conditions, Theorem 8.2 can be
generalized as follows.

Theorem 8.3. (see [7] on microscaling) Suppose that condition (E) on the LRD
structure is satisfied for the initial random condition in equation (8.10), and mx <
min{2«, n}. Then, the following convergence in distribution holds
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1 rox D
Ug(t, x) = B2 (;, sﬁ/“) = Un(t,x), &—0,

where

/

Ut _ C?Cm i(X—y3A1+"'+A””)E — tﬂ A A «
) < . s (=t |21+ o+ Al

an

W(dAy) - -W(dAm)
ALl A ) 2027

(8.18)

with Ct being the Tauberian constant, defined in (8.12). Constant Cy, is given
as in condition (C), and the multiple stochastic integral (8.18) is taken with the
respect to the complex Gaussian white noise random measure in (8.9), considering
the diagonal hyperplanes A; = £A;,i,j =1,..m,i # j, excluded.

Note that in (8.18) the random field U, (¢, x) is Gaussian, but U, (¢, x), m > 2, are
non-Gaussian. Thus, form =1,

1 r x D
Ug(t,x) = gxﬂ/Zau(g’ sﬂ/“) — Uy(t,x), &—0,

where U, (¢, x) is Gaussian field with
cov (Ui (t,x),Ui(s,y))
dx

_ / R By (—yut® A1) Ep (—pes? IAI®) e

R”

% < min(2a, n).

The spatial spectral density has bifractal form:

1
g = CrEZ (—ut? |A|*) =
"< )uxu

const
g ~ —5=, Al =0,
(Al

e L
A1

This is a macro scaling: to “heat up” the initial data in order to have a nontrivial

limit. Note that the Riesz index « is the unique parameter that in the limiting

distribution plays different roles when macro-scaling procedures are considered.
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In contrast, under the so-called micro-scaling (t — t& ,& — 0), both Bessel
parameter y and Riesz parameter « play different roles in the limiting distribution.

We need to "freeze down” both time ¢ and space x (again L = 1) if in the random
initial condition we consider a rescaling of the form:

( l )
77 X 1 ’
gaty X

for a fixed parameter y > 0. Then, for m» < min{2(«¢ + y),n} we have the
following convergence of finite-dimensional distributions (see, for details, [83]):

1 _B \ D
Us(t,x) = Wu (ts, xea+1/) — Upn(t,x), e&—0,
where

_ CTYZLC’” i{x=y,A14+...4+Am) B at+y

Un(t,x) = = / e Eg (—;u A1+ ... + Aml )
an
o W(dAy) --W(dAm)
(IAL[ - A ) r—2/2°

In the above formulae, we assume that fractional parameters are such that the
above integral exists (see, for a details, [83]). As before, the random field U; (¢, x)
is Gaussian, but U, (¢, x), m > 2, are non-Gaussian. For m = 1, the spatial spectral
density has bifractal form

1
gW) = CrEp (—ut? 1Y) ==
4 ( ) Al
const
g) ~ T Al — O,
const
g IA]] = oe.

~ ”A||n—2(a+y)—x ’

8.3 Cole-Hopf Solutions of the Burgers Equation

The Burgers equation (8.1) can be reduced to a parabolic type equation by the Hopf-
Cole transformation

0
u(t,x) = —2;15 log h(t, x) (8.19)

(see e.g. [117]; [93]; [48]; [2], or [25]), which reduces (8.1)-(8.3) to the equation

hy = phyx — ®h (8.20)
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subject to the random initial condition
U [~
h0.3) = o) =exp |~ —expd - [ w6
21 PYVIN NS

where, in equation (8.20), h = h(¢,x),t > 0, x € R.
The parabolic type equation (8.20) reduces, for @ = 0, to the classical heat

equation
hy = ,U«hxxa (8.22)

which has, as given before, a fundamental solution of the following form
(t.%) 1 x2
,X) = ———expy———
& NZE T P Ayt
Thus, the field

}, t>0, xR (8.23)

— _Uw»m
Jr gt x —y)e 2 dy  1(1,x)
Jeglt.x —y)e™ 2 dy 0. %)

u(t,x) = (8.24)

solves the initial-value problem (8.1)-(8.3) in the case where the external potential
d=0.
We recall Hopf’s formulation of this result (see [52]).

Theorem 8.4. Let u(t, x) be the solution of equation (8.1) with locally integrable
initial condition u(0, x) = uo(x) and external potential @ = 0. If

X

/%@wszdﬁx (8.25)

0

as |x| — oo, then,

Jr = exp {—ﬁF(x, y,t)} dy

[rexp {—ﬁF(x, ¥, t)} dy

u(t, x) = (8.26)

where

2 2
F(x.y.1) = % + / uo(£)dE = % +U®) (8.27)
0

is a solution of (8.1), with @ = 0, that satisfies

X

a
/u(y,t)dy — /uo(y)dy as x—a, t—0,
0 0
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for every a. If, in addition, ug(x) is continuous at x = a, then,
u(x,t) - upla) as x—>a, t—0.
We note that the equation (8.20) with initial condition
h(0,x) = ho(x) (8.28)

can be solved explicitly in a number of cases (see, for example, [63], or [66]). In
particular, for the linear external potential

d(x) =a + bx, (8.29)
the field
h by + L i ho(y)dy (830
t, = —t .
0 =exp -tta o+ HE [ ST oay 820

solves the initial-value problem (8.20)—(8.21), and, under suitable conditions, the
field

2 _G—y—but®2  _UW)
X=y=but” = 0T 2i
Jr =T e w e mdy

u(t,x) = 2ubt + (8.31)

_()c—y—b;u‘z)2 _Uuw
Jre wr e 2 dy

solves the initial-value problem (8.1)—(8.3) with the external potential (8.29).
For the quadratic external potential

&(x) =a+bx% b>0, (8.32)
the field

h(t,x) = exp {—at — Vbx? tanh(a)t)/\/ﬂ}

_ [x—y cosh(@n)]®
X / exp{ /b sinh(Qwt) } hO(Y)dy
R

73 (8.33)
[2]T w/b sinh(wt)]
solves the initial-value problem (8.20)—(8.21), where
w =2/ ub. (8.34)
Note that for a = 0 and b = 1, the above solution formula can be reduced

to Mehler’s formula. (For information on Mehler’s formula see, for example, [34],
pp-286-287 or [24], p.154).
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Hence, under suitable conditions, the solution of (8.1)-(8.3) with external
potential (8.32) can be written as

u(t,x) = 2\/ﬁx tanh(wt)

f x—y cosh(@) {_[x—y cosh(@)]® U(y)}d
4 R Jiijb simm@at) P\ 7 Ji/b sinhGer) | 24

_ [x—y cosh(@)®> _ U®)
fR exXp { Viu/b sinh(Qwt) 2/ } dy

+

(8.35)

Remark 8.2. For an external potential @ of general (possibly random) form the
solution of Burgers initial-value problem can be expressed by the Feynman-Kac
formula (see, for example [88]; [118]; [64], among others), or by the functional
integrals (see, [102]).

8.3.1 Burgers Equation

As commented before, Burgers equation with random initial conditions and external
potential @ = 0 has been extensively studied in the last one and a half decade
(see references provided in the Introduction). We begin with the one-dimensional

Burgers equation

3u+ 8u_ 02u
a " Mox T Mok

subject to the random initial conditions

t>0, x eR,

u(0,x) = j—xé(x), x €R,

where £(x), x € R, is a zero mean stationary stochastic process with covariance
function B(x). (See also [18] in relation to the Burgers equation with random
boundary conditions).

Theorem 8.5. ([2], and [75], [77]). Suppose that condition (D) on the short range
dependence (SRD) structure is satisfied for the random initial condition in (8.10).
Then, the finite-dimensional distributions of the random fields

1 t x
Ug(t,x)= mu(g,%), t>0, XER,

converge weakly ( 2) ), as ¢ — 0, to the finite-dimensional distributions of the
Gaussian random field U(t, x), with EU(t,x) = 0 and the following covariance
function:

EU@t,x)U(t',x") = constx
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y 1 L (x —x")? 2 _(x—x’)2
(t+ﬂ>3/2( zww)) ""p{ zM(rw)}’

where the constant is given in [75] and [77].

Note that the spectral density of the above limiting random field is of the form
g(A) = const x A2e A mEF) ) R

This random field is stationary in space, but not in time.

Multidimensional generalization of these results can be found in [2], [75] [77]),
and [13], [15]). In the above papers, one can find also the investigation of limiting
distributions for strongly dependent initial conditions, in particular, for convergence
to non-Gaussian distributions, see [65], [67], [69]. The limiting distributions in the
so-called KPZ turbulence is investigated in [15].

8.3.2 Non-Gaussian Scenarios in Burgers Turbulence
and their Spectra

In this chapter, parabolically rescaled solutions of Burgers equations are studied.
These parabolically rescaled solutions are in fact approximations to the hyperboli-
cally rescaled solutions. We present the second- and higher-order spectral densities
of homogeneous (in space) random fields arising as rescaled solutions of the
Burgers equations with singular non-Gaussian initial conditions. This subject is
a continuation of those by [75], [76], [77]), in which the second-order spectral
densities were studied for the Burgers turbulence problem with non-Gaussian
singular data, and [13], in which second- and higher-order spectral densities were
given for fractional random fields arising as rescaled solutions of the heat and
fractional heat equations with singular random data (for further details on these
equations, see [5], [6] and [8]).

In a sense, non-Gaussian scenarios are more realistic models of zero viscosity
than Gaussian scenarios. Furthermore, to provide a full description of singularity,
we have to consider higher-order spectral densities and their singular properties.
But even for the second order, our results for the spectral density in one dimension
can be compared with the results of [49]. Indeed the singular property of the energy
spectrum of the initial condition (8.42) below is transformed by the Burgers equation
into the singular property, forn = 1,/ = k = 1, and up to a constant, as
|A|¢ e=2412% witha = 2x% + 1,0 < % < 1/2. This result is exactly the same as
formula (122) of [49]. However, we can see that these singular properties depend on
the dimension n, and the results change dramatically starting from dimensionn > 3.
In our opinion, both non-Gaussian scenarios in parabolically rescaled Burgers and
KPZ equations and singular properties of higher-order spectral densities provide a
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description of Burgers and KPZ turbulence complementary to that of [49] and [47],
via vanishing viscosity together with a power-law investigation of the solutions.

The closed-form expressions of higher-order spectral densities in turn will
play an essential role in the statistical estimation of these random fields. In fact,
in the presence of possible long-range dependence, non-Gaussianity and non-
linearity inherent in the formulated models, particularly in a situation where useful
information is contained in higher orders rather than the second order, an estimation
theory using information in higher-order spectral densities is more viable. Some
components of such a theory are provided in [14] and [12], based on the minimum
contrast principle.

Consider the n-dimensional Burgers equation

du

5 + (u, VIu = pndu, pn>0, (8.36)

subject to the random initial conditions in potential form:
u(0,x) =VU(x), xeR”, (8.37)

where A denotes the n-dimensional Laplacian, and V the gradient operator in R”.
Equation (8.36) describes the time evolution of the velocity field

u(t,x) = (u1(,x), ..., un(t,x)), (¢, x) € (0,00) x R", n > 1.

We will assume that the initial velocity potential U(x) is a scalar random field of
the form described in Condition F below.

Equation (8.36) is a parabolic equation with quadratic, inertial nonlinearity,
which can be viewed as a simplified version of the Navier-Stokes equation with
the pressure term V p omitted, and with the viscosity coefficient i corresponding to
the inverse of the Reynolds number (see [93], p.152). As commented before, via the
Cole-Hopf transformation,

u(t,x) = —=—2uVloght, x), (8.38)
the Burgers problem (8.36)-(8.37) is reduced to the parabolic-type equation

o
5 =HAh 1>0. xeR". (8.39)

subject to the random initial condition

h(0, x) = ho(x) = exp % —%’z)} (8.40)

(see e.g. [117], and [48]).
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We introduce the following condition concerning the initial velocity potential.
F. The initial velocity potential U(x) is a random field of the form

Ux) = £2(x)—1, xeR",

where the random field £(x) is a real measurable homogeneous and isotropic
Gaussian field with E€ (x) = 0, E£?(x) = 1 and covariance function of the
form

Be (x) = |Ix|7* L(lIx[). .0 <x<n, as |x]|— oo, (8.41)

where the function L(¢), t > 0, is slowly varying at infinity and is bounded on each
bounded interval. Furthermore, the spectral density f¢(A1), A € R", of the field & (x)
exists, is decreasing for ||A|| > Ao > 0 and continuous for all A # 0.

Note that the random field & (x) of Condition A can be represented as

e = [ @40 [rawian,

where W(-) is a Gaussian white noise, and, as commented before, from the
Tauberian theorem for Hankel type transform (see, for instance, [64], Theorem
1.1.4), we obtain that the spectral density fg (1) satisfies

- 1
Se(IAD ~ A" L (m) c(n,x), 0<x<n, |A] =0, (8.42)

where ¢(n, x) is the Tauberian constant

I (%)

CT(I’I,}() = %{Wz—lw

(8.43)

Identity (8.42) means that the random initial condition under consideration displays
a singular property; in fact, the random field £ (x) will then have long-range
dependence.

We will study the spectral properties of the limit distributions of the rescaled
solutions, namely, with parabolic scaling, of the Burgers equation (8.36) with initial
data (8.37) satisfying Condition F. These parabolic scaling limits of the solution can
be described in terms of their multiple stochastic integral representation as stated in
the following theorem (see [69], [68] or [64]).

Theorem 8.6. Let u(t, x), (¢, x) € (0,00) x R", be a solution of the initial value
problem (8.36)-(8.37) with £ defining the initial velocity potential U(x) = £2(x)—1
satisfying Condition F, and o € (0,n/2). Then, the finite-dimensional distributions
of the random fields
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o~ (1+2)/2
L(1//e)
converge weakly, as ¢ —> 0, to the finite-dimensional distributions of the vector

field Z (t, x), (t, x) € (0,00) xR", homogeneous in x, with the following multiple
stochastic integral representation:

Zo(t,x) = u(t/s,x/\/g), (t,x) €(0,00) xR", 0<x <n/2,

1oeiehir) il () 4 4,)
Z(t,x) = C(M)CT(n,x)/ — W (dX) W (dLy),
R (Al A
(8.44)
(t, x) € (0,00) x R", where the constant Ct(n, x) is given by (8.43),
2.
Tt
C(p) = , 8.45
(W) =17 " (8.45)

and the double stochastic integral f "... is evaluated with respect to the Gaussian
complex white noise measure W (-) in R", with the diagonal hyperplanes A1 =
£, being excluded from the domain of the integration.

The second-order spectral densities f (1) = (fjx (1))}, of the non-Gaussian
vector random field Z (¢, x) representing the limit of the parabolically rescaled
solution of problem (8.36)-(8.37) are given as follows:

fikQ) = const x eI |3 26 D ()

lk=1.....n, A:(A“),...,A('l))eR". (8.46)

Note that different non-Gaussian scenarios are also given in [65], [68], [42].

8.3.3 Heat and Burgers Equations with Quadratic External
Potential: Multidimensional Case

The consideration of quadratic external potentials in Burgers equation with random
initial data involves a non-periodic behavior, in general, a non-compact situation,
in the model representing the external force acting on the fluid, according, for
example, with the large-scale forcing in the hydrodynamics setting. In this section,
we consider this external forcing scenario under strongly dependent random initial
conditions. The strong dependence parameter of the initial velocity potential
characterizes the limiting distribution. In the heat equation, this parameter also
defines the strong dependence properties of the limiting random field. However, in
the Burger equation, the limiting random field does not display strong dependence,
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but it is a fractal random field displaying a local singular behavior characterized by
the LRD parameter of the initial velocity potential.
We have considered, with @ = 2,/ub and ¢ — 0, the rescaling procedure

1 ¢ xt
t——In-; x—» —; 0<e<t.
w € g2

Our rescaling procedures differ significantly from the rescaling procedure

; t X
> - X > —;
e T
of the heat and Burgers equations with external potential @ = 0 (see [2], [75], [76],
[118], [64], [5], [8]), [95] and references therein) or the rescaling procedure
t X 12
t——; x> —+bu
& &

N

of the heat and Burgers equations with a linear external potential @(x) = a + bx
(see [66]).

In this section, we review the results by [70] on the limit behavior, in the sense
of the convergence of finite-dimensional distributions, of a scaling version of the
solution to the initial-value problem

0
" + (u,V)u=pdu+2uveo

u(0,x) = up(x) = VU(x), xeR”, (8.47)

where u = u(z,x), x € R”, is a vector random field, the scalar field U represents
the initial velocity potential. Here, as usual, V denotes the gradient and A denotes
the Laplacian. We consider the case of quadratic external potentials, that is, the case

where
n
) =a+b||x||2=a+b<2xi2), b > 0.
i=1

The solution u to problem (8.47) can be defined as the Hopf-Cole transformation
u(t,x) = —2uVinh(t, x) (8.48)

of the solution /% to the following heat equation:

9
= uAh—oh
o T M

h(0,x) = ho(x) = G(u(x)), xeR" (8.49)
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(see, for example, [104] and [25]). The initial velocity potential U is assumed to be
given by an homogeneous and isotropic random field £ with spectral density

@2n)”

fe(A) = TIIMI_"“Y(1 + AP y>0,a—y>0, (8.50)
where P ,
722 (L)
p(y) = n—2
rG-%)

Hence, £ admits a spectral representation in the Lj-stochastic integral form given
by:

£(x) = / exp i (%)} Zg(dA) = / expii (A.x)} f;2(MW@A). (8.5D)
R R"
with the associated spectral representation of its covariance function
Bex) = covE(0).£() = [ exp i (1.x)} Fedd),
R”

in terms of the bounded and positive spectral measure Fg, which defines the second-
order structure of the complex-valued orthogonally scattered random measure Z¢ (-)

such that E |Z¢(dA)|” = Fg(d ), and with
Fe(dA) = fe(A)dA.
Here, W represents a Gaussian white noise measure. For y < n/2, this model

displays long-range dependence (see, for example, [4]).
As before, we consider the Chebyshev-Hermite expansion of function

G(u)=exp{—%}, ueR. (8.52)
Thus,
. Ck
o) = exp | -2 — 3 G im0

where

0 2

S(x) = cov(ho (0), ho(x)) = Bpy(x) = » %Bg (x). x € R". (8.53)
k=1
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The stationary process ho(x) = exp {—@}, x € R”, then admits the spectral

representation in the form of L,-stochastic integral:

ho(x) = exp { —&}

1 .
o = exp { W} +R[ exp{i (A,X)} Zp,(dAX), (8.54)

with the associated spectral representation of its covariance function

Bro (%) = cov(o(0). ho(x)) = / exp i (A.x)} iy (d2).

R”

in terms of the bounded and positive spectral measure Fy,, which defines the
second-order structure of the complex-valued orthogonally scattered random mea-

sure Zp, (-) such that £ |Z;,O(0ZA)|2 = Fy,(dA).

8.3.3.1 Main Results

The solution /4 to equation (8.49) is defined as

1/2
h(t,x) = exp {—at 5 ©Xp { 1/2 (b) tanh(a)t)||x||2§
(cosh(a)t)er ( 1 tanh(a)t) #

” Cosh(a)t) /”2
exp{ — 1/2
R 2 (%) tanh(w?)

X
__expi-an) (2 >
= (cosh(a)t))”/z exp§ 1/2 (M) tanh(w?) ||x||
1/2 tanh
oo el ] s

(8.55)

where Zj, is given as in equation (8.54), |A||? = Z A2,

w = 2(ub)"2.

The following result provides the limiting Gaussian random field distribution of
a rescaling of the random field solution (8.55).
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Theorem 8.7. Let h be the solution (8.55) to problem (8.49). Then, the finite-
dimensional distributions of the generalized random field €. defined by the
ordinary random field

1/2 > 2
1(b X —
exp { 2 (ﬁ) | 3_5”2 |:§2+t,2]} 1 P xt
Heltx) = Tty WG (2) %)
w=2ub)"? 0<e<t, (8.56)

converge, when € goes to zero, to the finite-dimensional distributions of the Gaussian
generalized random field 7€ with zero mean and covariance function

E [ (1. $) 7 (t2.9)] = R(t1. ¢, 12, ¢) =

= (tltz)—(a/a)+n/2)2l—2y/ / ¢(X1)||X1 — X2|I_2y(p(X2)dX1dX2, (857)
R JR"

for0 <y <n/2, and ¢, p € H'"2(R").

Let us now consider the Burgers problem (8.47). Its solution is defined as

u(t, x)

—2uVin (h(t,x)) = —2uV [—%XWXT}

V [exp{xVV}exp {1VZVT} ho] (1.x)
[exp {xVV}exp {3 VZVT} ho] (t.x)

\Y [exp {%VZVT} ho (t’ m)]

= /ubtanh(wt)V||x||* — 2 . . - (8.58)
[exp {EVZV } I’ZO] (t, m)
In particular, we have
uj(t,x) = 2/ ubx; tanh(wt)
x j—y j cosh(wt) [x—y cosh(w?)]? U(y)
44 fR" AJ/,L/b/smh(zm) eXp {_q/u/bsinh(Za)t) - W} dy 1 "
I'L f exp {_[x—y COSh(wt)]z _ M}dy ’ .] PR
R” /b sinh(2wt) 21
(8.59)

The following result provides the limiting random field distribution, under LRD
random initial conditions, for the Burgers problem (8.47).

Theorem 8.8. Let u be the solution (8.58)—(8.59) to the Burgers equation (8.47)
with quadratic external potential, considering random initial velocity potential
U = & with spectral density (8.50), and with G being defined as in (8.52). Then,
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the finite-dimensional distributions of the vector generalized random field U °
associated with the ordinary random field

. 1 Qr)r\ V2 1. Tt] xt 1. [t xt
Uwh@:€””“”(¢@)) F(am[ﬂ’g)_F(5m[J’§)]

O0<e<t, (8.60)
converge to the finite-dimensional distributions of the Gaussian vector generalized
random field % with covariance matrix given by, fori,j = 1,...,n,

22n +2—2ylu2

E (. )% (02 0)] = Gy

/R /R ¢ (x 1)[ )2|| 1—x2||—2V}p(xZ)dxlde,
n n 2
(8.61)

22n+2—2yu2
CZ(Z t )n/2+1

/ $(x1) - Ix1 — xa| 7
R” JR” i ( xz)a(xi xé) ! 2

X @(x2)dx1d %z, (8.62)

E|% . $)%i(12.9)] =

where 0 <y <n/2and ¢, € HY~"/2H1/n(R") with

F(t,x) = (F1(t,X),..., F,(t,Xx))
= (2(,ub)1/2 tanh(w?)x1, ..., 2(ub)"/? tanh(a)t)xn)

= (wtanh(wt)xy, ..., tanh(wt)x,) . (8.63)

(The proof of the above assertions can be found in [70]).

8.4 Other Possible Scenarios: Weak-Dependent Random
Initial Conditions

In this section, we provide an alternative scaling procedure which allows to derive
the limiting Gaussian distributions of the solutions to the heat and Burgers equations
with quadratic external potentials, under weak-dependent scenarios. The results
reviewed here are obtained in [73]. Let us then consider the solution u to
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d d 02 d
&u(t,x) + u(t,x)au(t,x) = ,uax—zu(t,x) + Z/La@(x), (8.64)
subject to the initial condition
u(0,x) = up(x), (8.65)

where, as before, u = u(t, x),t > 0, x € R, is a velocity field,

U=U) = / uo(y)dy (8.66)

—00

is the initial velocity potential, ® = @(x), x € R, is the external potential, & > 0
is the viscosity of the medium and the reciprocal Z = 1/u corresponds to the
Reynolds number. As in the previous section, @ = a + bx?, b # 0. However, our
interest, in this section, relies on the case where the initial velocity potential U = &
is a stationary random process displaying short range dependence. Thus, we assume
that conditions (A)-(D) hold.

The scaling procedure established, as ¢t — oo, is the following

1
t — —Int
w

X
X — —
o(1)

E(x) —> &(p(t)x), (8.67)

where p and p satisfy suitable asymptotic conditions formulated below, in order to
apply the Central Limit Theorem derived in [54]. In particular, we consider

oy = 20,

Additionally, the random field

B B ¥(t) 1 x—y y
Ht.x) = Ht.x.8) = /_W) Tk ( W) ) ¢ (E (M)) @y B

is also considered for the proof of the results below (see [73]), and the following
conditions are also assumed:

(G) Function G € (LZ(R); $(2)dz), with ¢(z) being the standard Gaussian
measure.
In our definition of function G we have assumed Conditions (B)-(C), which,
under condition (A), is equivalent to Condition (G).
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(H) Function  in equation (8.68) must be positive, tending to infinity when t goes
to infinity, and satisfying

y(@)
, im oow(t) = 00, (8.69)
V(1)
t_u)%owﬂ_s ) =0, foranyd$ >0, (8.70)
v _
Jim w(p(t) (8.71)

Equations (8.69) and (8.70) hold if and only if p is chosen such that

V()
t_1)oo 1) = 00, (8.72)
V(1)
, 1moop2+8 o =0, foranyd > 0. (8.73)

Remark 8.3. In our definition of the scaling procedure we have considered

scaling (8.67) with p(¢) = @. Thus, the following time-dependent linear
transformation of the spatial component

x_t
p(t)

is considered. Other valid choice of function p could be

X —>

D= p.

However, in this case, equations (8.72) and (8.73) must be reformulated in
terms of the quotient between function 1 and function p(z)/sinh(2 In?¢).

Equation (8.71) holds, since ¥ (t) —> oo and ¢(t) —> 1/2, when
t —> o0.

(I)  Function h must be in L*>(R), and for 0 < p < 1,

-~ _
h
/ *hds<oo,
0 sP

where h = h.
For our selection of function h(z) = exp {—|z|2}, we have that such
function is square integrable and since

hxh(s) eXP{-%}

B sh ’
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then,

® hxh
/ * ds <oo, 0<pB<l.
0 sP

Thus, condition (I) holds.
(J) Functions vy and w, defining the scaling of h, must satisfy

Vi)
t—>00 W(Z) -

With the choice made of functions v and w, the following identities hold

2
p(0)[27 /]b sinh(n())] /219791 cosh(In(r))
1/2 2
v)%(t) CXP{(ﬁ) (ﬁ)) [l—tanh(ln([))”
- 1/2
w(r) t=p(t) [\/%sinh(2 lnt)]

[p(6) (21 /2B sinh(In(1)))¢2/*= [cosh(In(1))
exp % (3)1/2 (W;))2 [1 — tanh (ln(t))]} t=1p(t)y/(12/b)"/? sinh(2 In )
B ()27 /1 /b(t* — 1)t2e/o+2(12 4 1)2
4ISexP{ (ﬁ)l/z (%)2 [ﬁ]} (14 — 1)V/2(u/b)1/4

— 00 [ —> 0Q.

(8.74)

Function Bg is also assumed to be such that

/ 1S@)]dz < oo, / S(@)dz £ 0, 8.75)
R R

which implies
| 155@ldz < oc.
R
where

o~ G i
Se(2) = Z FBS«)(Z)’
k=m

in the case where the Hermite rank is m > 1, with ng being the covariance function

of &,.
Under the above setting of conditions, the following results hold (see [73]):

Proposition 8.1. If Bg satisfies (8.75), then

vx (1)
Vw(t)

(i) oG = gnva[ H(z,x,m} S HN
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where H(t,x,£,), vx, w, h and S are defined as before, satisfying conditions

(G)-().

(i7)  Jim Var [% (H(t.x.8,) - H(t,x,g‘w)):| —0, (8.76)

where

il [T (2 v
Aexgo= [ ( wo) ) ¢ (E (@(Z))) o @I

Theorem 8.9. Under condition (8.75), when t — oo,

l));fzt)) |:ﬁ (élnt,xt) —E (ﬁ (élnt,xt))} K, H (&) ~ N(O, 012(G))’
(8.78)

where, as before, H is defined as in equation (8.77).

For the limiting distribution of the random field solution to the Burgers equation
the following computations and result are derived in [73]:
Considering first the function

F(t,x) = wxtanh(wt), w = 2/ ub,

we have

X — y cosh(wt) oo ) [x — y cosh(w?)]?
R +/1t/b sinhQwt) P v /b sinhQwt)

/exp _ [x = y cosh(w)]? ho()dy
R v /b sinhQwt) ‘

§ ho(y)dy

u(t,x)— F(t,x) = 4u

BT St SRS B i . ( z ) dz
A R +//b sinh(2wt) P /b sinh(Qwt) 0 cosh(wt) / cosh(wt)
= I,L .

[l bt i)
R P /b sinh(wt) 0 cosh(wt) ) cosh(wt)
(8.79)

The scaling
1
t — —Int
1)

X —> Xt
p(t)

§(x) —> &(p(1)x),
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for p, as before, satisfying condition (H), then leads to the following expression

1 1 xt
( Ine, 5 g“’(””))) ( Int. %)

xt

p(1)

R v/ /4/bsinh(21Int)

/ exp
R

exp

exp

_ [W—Z] ( zp(t) ) dz
/1t/bsinh(2 Int) 0 cosh(Int) / cosh(Inz)

_ 20— 3 ( p(t)z ) dz
/1t/bsinh(2 Int) 0 cosh(Int) / cosh(ln?)
G — o

Y _ ( typ(t) ) tdy
i/b(1/t)?sinh(2 Int) 0 cosh(Int) / cosh(In?)

R +/1/b(1/t)sinh(2 Int)

/ exp
R

X —u [x — u)?
/R PO /5(1 1) sinh@ i D pOF {_ Ji/b(1/ 1 sinh@ D[] } ¢ (5 (w(l))) du

_ [ =] ( typ(t) ) tdy
V1e/b(1/1)?sinh(2 In¢) { "° \ cosh(Int) / cosh(int)

s o = e smmaor) © (¢ ()¢
R 00p0) 1T Jab(1/1)? sinh(2 In ) [p(1)] o))"
_ 1xE) _
= J(t.x,§¢) = U(t.x,g‘w), (8.80)
with
cosh(In?)
===

Lemma 8.1. The random field J(t, x,§,) defined in equation (8.80) converges in
probability to the constant Cy, whent —> 00.

Theorem 8.10. Assume that condition (8.75) holds. Then, when t goes to infinity,

v (1)
Vw(t)

.. v(t) 1 xt
(ii) Noo) [u (5lnt, m,&p (p(t).)) —F (—lnt o ))} w U(£p)
- 3 (G)
N (Co, ce ),
02(G) = |h31IS I

v(t) = (1) sinh(2 Int)(1/0)[p(1)]?

p(t),/sirtlh(Z lnt)7 (8.82)

(i) [1(t.x. &) = EU (1. x.£)]] w UlEpe) ~ N(0.03(G))  (8.81)

where

w(r) =
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with
y

hu(y) = —,m exp

y? }
/by’
8.5 Some Comments on the Introduced Results

In the above section, the limiting distributions of the solutions to the heat and Burg-
ers equations, under weak-dependent scenarios, are derived from the application
of [54] results. Specifically, the scaling proposed is formulated within the general
setup established in [73], which can be applied for defining different versions of
Central Limit Theorems in the context of Heat and Burgers equations. For example,
in [72], the function p defining the scaling of the spatial component and random
initial condition is the function #/In¢. This choice of such a function allows the
definition of a nice and simple class of admissible functions ¥ and v needed in
the application of the mentioned [54] results. Alternative scaling procedures can be
investigated, but the weak-convergence to the Gaussian distribution does not hold
as it is can be seen applying different methodologies such as diagram formulae and
[89] results, among others.

Finally, we remark other possible lines of investigation such as the ones related
with limit results for other external potential functional forms like the exponential

forms, that is, for
22
<D(x) = 762)6.

In this case, the fundamental solution ¢(¢, x, y) of the heat equation

9 19 PR
E/’l(l,X) = Eax—zl’l(l,X) — 78 h(l,X), (883)
h(0,x) = ho(x) (8.84)

was obtained by [55] in the following form:

oo /\2 2x 2y x+y d
f](tsst’):/ exp(—Tu—e Te )9(‘3 ,Z) _M, (885)
0

2u u u

where

o0 2 2
T —zm . .
0(r,t) = / e 2 ”"Shzsmhzsdez.
0

r
r3t)'/?
Thus, the solution of the initial value problem (8.83)-(8.84) takes the form

h(t.x) = / 4t x. Y)ho()dy =
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+y

00 00 212 e2% 4 o2y ex Ty
= exp| ——u— i
/—oo /0 ( 2 2u ) (27r3t)1/2

00 2.2 x4y du
% / e 2t~ “*MIginhzsin —dz] ) ho(y)dy.
0

The solution of the Burgers equation with exponential external potential
ad 1 02 202%.
Eu(t,x) + u(t,x) u(t x) = ——u(t x) + A%e

subject to the initial condition

u(0.%) = uo(x).  Ulx) = /_ uo(E)dE (8.86)

is then given by

9 _Uuw
Zqg(t,x,y)e 2w d
u(t.x) = JREEAEXY) Y (8.87)

uw)
Jra(t,x, y)e 2 dy

where
a o0 o0
_q([vxvy) = / / F(M,Z)dzdu,
dx o Jo
and
2 02X 1 o2y A
Fu, Z) d [exp —Lu— +e u o ¥y coshz sinh z sin El] _
2 2u (2n3t)1/2 tu

-
eX Ty 1 1
|: (sinhz) — Ner=n (sin %z) exp (E (nl _ Z2) - (coshz) ex+y)
1 1
X exp (—Eukz -3 (ezx + ezy))
e2* 7 1/, 5 1 X
i 0 _ _ _ +y
Ner=n (sm tuz) exp (2t (n Z ) ” (coshz) e )
1 1
X exp (—Eulz ~ 5 (ezx + 32y>)
e2(x+y) P

1 . . Ly 5 1 x+y
—— (cosh zsinh z) m (sm EZ) exp (E (n -z ) - (coshz)e

1 1
X exp (—Eukz — 2— (eZX + €2y>)i| .
u

(8.88)

1
—— (sinhz) e* Ty
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In this context, the Laplace transform can be useful to obtain suitable scalings
for deriving limit results, since the Laplace transform of the fundamental solution is
given by

o0
/ e_“zt/zq(t,x,y) =2lp(Ae*)Ky(Ae?), x < y,
0

where /(z) and K, (w) are the usual modified Bessel functions, for which we have
1 [ 1 24+ p? b\ 1
Tn(a@) Ky (b) = —/ exp(—zu— 7 1 (22) 2aw.
2 Jo 2 2u uj)u

8.6 Fractional Differential Equations Driven
by Random Innovations

In this section, we review some results on mean quadratic local properties of the
solution to fractional pseudodifferential equations driven by random innovations.
The temporal and spatial cases are first studied. In the spatial case, pseudodifferen-
tial problems are defined on a bounded domain of R”. Specifically, C *°— bounded
domains and fractal domains are considered. An overview of some recent results
on fractional pseudodifferential evolution equations driven by random innovations
is secondly provided for the introduction of new classes of fractal and strong-
dependence spatiotemporal random fields.

8.6.1 Temporal Fractional Pseudodifferential Models

Several extended formulations of [43] equation, as well as the weak-sense definition
of their solutions are studied in the fractional pseudodifferential framework in
[60]. Specifically, the following family of temporal pseudodifferential models is
considered

(D +a)’X_,(t) =), teR, (8.89)

in terms of the operator D = D; = %, v > 0, a € R, where {¢(¢), t € R} is
a zero-mean white noise. The local regularity properties of the sample-path of the
strong-sense solution of the above equation are characterized, in the Gaussian case,
in the following result from [60].

Proposition 8.2. For v > 1/2, the solution Z_, to equation (8.89) is Holder
continuous, in the mean-square sense, of order v—1/2, i.e., the following inequality
holds for certain positive constant C,

E[X_,(x+h) —X_,(x)?<Ch* ', h—o.
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In the Gaussian case, the sample paths of Z_, have modulus of continuity A(8) of
order §*~V/2(|In8|)~, and satisfy with probability one

dimp (image(X—,(-))) = 1 A (v —11/2)

dimy (graph(X—y ())) = ( ) AQ—(-1/2).  (890)

v—1/2

In the spatial case, the fractional elliptic pseudodifferential model

(@21 — A)"? X,)(x) =e(x). xeR". n>2 v>0, (8.91)

provides the extension to R” of the stochastic Laplace or stochastic Helmholtz
equation of [43]. Here, operator ((—A) + az)v/ ? is defined by

o0
(a) +02)"% = 123 (12 a2,
—o \ J
Jj=0
The homogeneous isotropic solution X, to this equation has spectral density

(A = o’ ! 1 eR” (8.92)
o (AP +e2) ' '

The mean-quadratic local variation properties of X, are now derived in the
following result.

Proposition 8.3. The solution X, to equation (8.91) satisfies the following inequal-
ity:
E[Xy(x +h) — X, < Clh*™, h—0, (8.93)

for certain positive constant C.

Proof. The proof follows from the asymptotic order 2v of the spectral density
(8.92), which means that the functions in the Reproducing Kernel Hilbert space
(RKHS) of X, admit weak-sense fractional derivatives up to order v, i.e., from
classical Embedding Theorems of fractional Sobolev spaces into Holder-Zygmund
spaces (see, for instance, [112]), this assertion is equivalent to the fact that they are
Holder continuous of fractional order v — n/2. That is, random field X, is Holder
continuous of the same order, in the mean-square sense. Hence, equation (8.93)
holds.

Remark 8.4. An interesting covariance function family in relation to the above
introduced spatial fractional pseudodifferential model class is the following
(see [119])
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o? 1 4
u,
Q)" (u? + o2)v

(o]
B(r) = (27{)"/ (ru)(z_")/zJ(,,_z)/z(ru)u"_1 r>0,
0

v>n/2,

which belongs to Matérn class (see [105], pp. 49-51), and takes the form

n,n/z 2

B(r) = Q2v=nv=n/2=1[ () (27)" K

v—n/Z(rO{)(ra)v_n/za r>0,

a>0,v>n/2,

where K is the Macdonald function with index A € R, and J, is the usual Bessel
function of order .

8.6.2 Elliptic Fractional Pseudodifferential Models on Regular
and Fractal Domains

Spatial fractional elliptic pseudodifferential models have been introduced, for
example, in [96], [97]), and in [99], in the generalized random field framework.
In this section, we establish some results related to the strong-sense covariance fac-
torization, and the local variation properties of the solution to extended formulations
of the above models, in terms of fractal Gaussian random innovations.
In a general abstract setting, we can consider the spatial fractional pseudodiffer-
ential model
ZX(x) =¢e(x), xeDCR", (8.94)

where . is an elliptic fractional pseudodifferential operator of order s > 0, and
€ is a zero-mean second-order innovation random field with covariance function
B:(x,y) = E[e(x)e(y)]. The following result provides the covariance factorization
and local regularity properties of the strong-sense solution X. In the Gaussian case,
the sample-path properties are also characterized.

Proposition 8.4. Assume that the RKHS of ¢ is isomorphic to the fractional Sobolev
space HP (D) of order B, for certain B > 0, constituted by functions with compact
support contained in D, where D is a compact C*° domain. Then, the following
assertions hold: For B + s > n/2,

(1) The solution X admits the covariance factorization

Bx(x,y) = E[X(x)X(y)] = /D3 ls(x, 2)te (2, v)te (v, )l (u, y)dzd vdu,

(8.95)
where l; is the kernel of the inverse operator £;! of %5, i.e.,
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xﬂﬁm=ﬁﬁmwﬂwm VfenZL).

with (£, 1) denoting the domain of operator £;"\. Here, t, is the kernel of
operator Ty satisfying that R, = . T.*, where R, is the covariance operator

of € with kernel its covariance function B,.
(2) Random field X satisfies

E[X(x +h) — X(x)]*> < C|h|?EF)™,

for certain positive constant C.
(3) In the Gaussian case, random field X has Holder continuous sample paths of
order B +s—n/2.

Remark 8.5. Note that the above covariance factorization of the Gaussian inno-
vation process ¢ holds, in terms of isomorphisms between L?(D) and H#(D),
and between H 8 (D) and L2(D), under the assumption that the RKHS of ¢ is
isomorphic to the space H# (D) (see [96]).

Proof. (i) The proof follows from the formal definition of random field X as
X = .iﬂs_l e,

and the assumption of equivalence of norms between the RKHS of ¢ and H# (D).
Specifically, from this assumption, and since .7 is elliptic and bounded, the
covariance operator

RX — Zy—lyg*[zy—l]*

of X defines an isomorphism between the fractional Sobolev spaces H —(B+9)(D)
and HA¥$(D). Therefore, X admits the covariance factorization (8.95), since its
covariance operator is in the trace class for s + 8 > n/2, as follows from
the isomorphic relationship between the RKHS of X and the fractional Sobolev
H*+B(D), as well as from the asymptotic order of its eigenvalues

|Ak(Rx)| < Ck26FA/n | e N,

obtained from the following entropy number inequality of the embedding
H~6TA(D) — HS+E(D),

ex (id - H=S+B(D) — HS“’(D)) < Ck26+B)/n | e N,

and from
\Ak(id)| < V2er(id), keN

(see, for example, [112]).
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(ii) Random field X is Holder continuous of order 8 + s —n /2, from the isomorphic
identification of the RKHS of X with the fractional Sobolev space H**# (D), as
well as from the embedding H518 (D) — #5tB—7/2(D), with #5+tE—"/2(D)
being the space of Holder continuous functions of order s + § —n/2 on D.

(iii) The assertion follows from [1]’s results on ¢ —index random fields. Specifically,
random field X is from (ii) a B + s — n/2—index random field, that is, it satisfies,
for any € > 0,

sup |X(x +h) — X(x)| < YsPFTs/2=¢ 5§ 50, VxeR",
|h|<8

where Y is an almost surely finite random variable.

Consider now model (8.94) in the case where D = I, with I" being a fractal
compact d —set as given in the following definition (see [113]):

Definition 8.1. Let I" be a set in R”. Then, I" is called a d —set, with 0 < d < n,
if there exists a Borel measure p in R” with the following two properties:

) Suppur =1r
(i) there are two constants ¢; > 0, and ¢, > 0, such that, forall y € I', and all r
withO<r <1,
ar? <pur (B(y.r)NI) < cor?,

where B(y, ) denotes the closed ball in R” centered at y and of radius r.

Remark 8.6. Operator %, in the d —set context, is defined as a fractal pseudodiffer-
ential operator, with inverse having pure point spectrum constituted by eigenvalues
{ Ak (.,2”3_1), k € N}, that satisfy, for certain positive constant C,

(LDl < Ck™/4, keN.

(For a more general treatment in the stochastic sense see also [35]).

Proposition 8.5. Assume that the RKHS of ¢ is isomorphic to the fractional Sobolev
space H*(I") of order «, for certain o > 0, constituted by functions which coincide

with the trace on d —set I' of distributions in the space Hoetst (R") (see [113]).
Then, the following assertions hold: For s + o > d /2,

(i)  The solution X admits the covariance factorization

Bx(r.9) = EXCIX0] = [ 1 2te el e (@2
x pr(dv)pr(du), (8.96)

where l; is the kernel of the inverse operator £;' of %5, i.e.,
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ﬁ?%fﬂﬂ==l]&myLNWMrww, VfenZL.

with 2(£:1) denoting the domain of the inverse L' of the fractal pseu-
dodifferential operator £, which under the assumptions made coincides with
a trace space on I'. Here, t¢ is the kernel of operator J; satisfying that
R, = T.97, where R, is the covariance operator of & with kernel its
covariance function By.

(ii) Random field X satisfies

E[X(x + h) — X(x)]?> < C|h|? Tt

for certain positive constant C.
(iii) In the Gaussian case, random field X has Holder continuous sample paths of
orders +a —d/2

Proof. The proof of (i)-(iii) follows in a similar way to the proof of Proposition 8.4,
applying the Trace and Fractal Embedding results given, for example, in [113]
for fractional Sobolev spaces on compact d —sets. Also Remark 8.6 provides the
spectral properties of % as a fractal pseudodifferential operator on I'. These
properties are also applied in the derivation of (i-iii) as in the proof of previous
Proposition 8.4.

8.7 Fractional Pseudodifferential Evolution Equations

Some results on the weak-sense definition of the random solutions to fractional
pseudodifferential evolution equations of the type studied in [60] are now reviewed.
Also, the mean quadratic local variation properties of the corresponding temporal
and spatial increment processes are derived in Sect. 8.7.1.

Let {X(t,x), t > 0, x € R} be the solution of the following fully-fledged
stochastic partial differential equation (see Theorem 8.11 and Remark 8.7 below)

3+ —czivX(t x) = &(t, x) (8.97)
o VT o2 )= el '

t>0, xeR, ¢>0, v>0, y>0, ceR,

where ¢ = {e(t,x), t > 0, x € R} is a white noise random field both in time and
in space, i.e., € is a (generalized) zero-mean random field with covariance function

E[s(/)e(2)] = o (f, &) L2(R4 xR) * 0* >0,

for f,g € L?>(R+ x R), the space of square-integrable function on R x R.
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Heuristically, the second-order density of the stationary both in time and space
m.s. solution to the equation (8.97) takes the form

o2 1
@r) (W + (7 + )

Sy, A) = wAER, y>0, v>1,

(8.98)
where p and A are, respectively, conjugates to ¢ and x.
Note that for v = 1 the spectral density (8.98) was obtained by [114]. Moreover,
in [33], p. 225, a set of covariances in (0, o0) x R¥ having the spatiotemporal spectral
density

2
o
flu,A) = 1 , HLER, ALeR", n>1,
(312 + (@ + APy
is introduced in a geostatistical context. In the case p = 1,d = 1 and c% = 1, this
formula reduces to spectral density (8.98) with v = 1, 07 = (2‘;2)2, ¢? = 1and
2
ac =y.

For y > 0, v > 1, the random field with spectral density (8.98) exhibits a
short-range dependence both in the time and space, that is,

Em () of 1
im A) =
max{A,u}—0 yv (27‘[)2 )/2\1

and in time or in space separately, that is, for a fix A € R,

o2 1 -
@) (y + 222

;11—n>1() fy,v (/’Ls A) = Os

or, for a fixed u > 0,

o2 1 ~0
(2m)2 (u? 4 y2)Y

li A) =
lim Sy (i, A)

However, the random field with spectral density (8.98) displays the following
fractal behavior at infinity

fy,V(Mv A’) = 0 ((mln {/’Lv A'2})_21))
as min {it, A} — o0o; and in time or in space separately, that is, for a fixed A € R,
f}’,V(/’Ls A) = 0 (M—2v) s H — 00,

or, for a fixed u € R,

Jyw(,A) =0 (/\_4“), A — oo.
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This random field also displays long-range dependence, both in time and in
space, in the particular case y = 0 as

max{kf}}}—)O fO,y(M’ A) = oo
However, for y = 0, 0 < v < 1, the spectral density in (8.98) does
not correspond to a second-order stationary random field, but rather to a self-
similar random field with homogeneous increments. In particular, the second-order
moments of the random field X (¢a, x+/a) coincide with that of a’" X (¢, x) for
everya > Oandv € (3, 7).
Ify =0andv € (0, %) , the random field

t+1 px+1
v(t,x) = / / X(s,y)dsdy, t>0, x €R,
t X

has spectral density

2 g2 4 ogin2 4
0“ sin” 3 sin” 5 1

h(u,A) = (2n)? (%)2 (%)2 (12 + %y’

u,A €R.

So, it is stationary , and displays long-range dependence both in time and in space,
that is
a2 1

(g, A) ~ (27)2 (12 + c* A4y

as max {A, u} — 0, and

1
h(p.2) =0 (’uzkz(’uz i 64/14)\;)

asmin{A, u} — oo.

In order to make rigorous the heuristically derivation of (8.98) from (8.97), we
will use again the theory of GRFs on fractional Sobolev spaces.

Operator H, is a function of the elliptic self-adjoint differential operator

(%, %) = (—i%,—i%), densely defined on the separable Hilbert space
(LZ(R+ x R), C) . Specifically,

Hy=(i%+y+c22?)" . (8.99)

Hence, H, admits the spectral representation, for each ¢ € Z(H,),

H,(p)(g) = /A ) [ip+y+ A" d (Eqin (@), g)

9 2\’
- (5 ty— Czax_z) (¢)(2), Vg e L*(R4 xR), (8.100)
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where A; x Ay stands for the continuous spectrum of operator (%;, %), and
{E(u,k) s () € A X Ax} denotes its spectral family.
The formal adjoint H,S of H, is then represented as

H}(p)(g) = / [—ip+y + 222" d (Eay (@), g)

1 XAx

= (% +y+222) (99

foreach ¢ € Z(H)) = Z(H,), where we have used the fact that —i .} = _3_at is

the formal adjoint of i .%; = a%
In terms of the spectral representations of H, and H), their common domain
2(H,) = Z(H)) is defined as

P(H,) = {f € L’ (R4 xR): - (12 + (v + 2A?) d (Equa(f). f) < oo

Note that, for each ¢ € 2(H ) = 2(H,),

HyH (@) () = / (12 + (0 + 022) d (Equn (@) V). V¥ € D(H?).

tXAx

The inverse operator H, ! of H, admits a similar spectral representation: for
each f € P(H;"),

Hy' (f)(g) = / (ip+vy+c2A2) " d (Euan(f). g)

XAy

=L +y+2L) 7 (f)g), VYgeL*Ry xR). (8.102)

As the operator (£}, %) satisfies conditions given in [90] (pp. 145-148), the
projection operators E(,, 3y, (,A) € A; x Ay, defining its spectral family, admit
an integral representation in terms of a kernel given by

A "
Eguy(t.5:%, yi . A) = / / B(t.5:x. v: £ 0)dp(E. ).

where ®(t,s:x,y:6,0) = 2m) 2exp(i ((t —s.x —y), (£, w))) represents the
spectral kernel and dp(§, w) = d&dw is the spectral measure of operator (%}, Zx) -
The above spectral representations of operators H,H} and H, ! can then be
expressed in terms of @ and p.
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Theorem 8.11. Let X_,, be a GRF defined as
Yol = [ [ el st .
m-S. JRy xR JRy xR
= / h(t,x)2_y(t, x)dxdt, (8.103)
m.s. R+XR

forall h € L>(Ry x R), where ¢ is the generalized white noise as in (8.97), and

exp (i {(t —5.x =) () (i +y + czxz)_v ddy.
(8.104)

I(t.x:5.y) = 2m)~> /

1 XAx

Then, for v < 2/3, X_, defines, in the weak-sense, a m.s. solution Z_,, to
equation (8.97), and for v > 2/3, X_,, defines, in the strong-sense, the unique
mean-square continuous solution Z_, to equation (8.97).

The GRF X_,, has RKHS 5¢(X_,) =

%gb e L’ (Ry xR): o (12 + (y + c2A2)?)”

~ 2
B )| drdp < oo} ,

(8.105)
with the inner product

(6. 0) ey = /A O+ ) B DB A 3100

Remark 8.7. The mean-square fractional regularity order of the GRF X_, defined
in equation (8.103), that is, the weak-sense regularity order of the functions of
its RKHS, is % = %, with the fractional regularity order v in time and the
fractional regularity order 2v in space (v > 0). Its minimum mean-square fractional
singularity order, that is, the weak-sense regularity order of the test functions
defining its domain, is then —(3/2)v. Although, in the formulation of Theorem 8.11,
we consider the separable Hilbert space L?(R x R). However, X_, can be defined
on a larger function space according to its regularity order.

Proof. Random field X_,, defined in equation (8.103) satisfies the following mean-
square identity:

X_y(h) :/ / T(s, y:t, x)h(t, x)dxdt |de(s, y)
m-$ JRExR | JREXR

9 , 2\ )
=¢|l|l-——+y—c"— h|, VhelL“(R;xR),

m.s ot 0x2
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where

~ (¢t — -y, (u, A ) -

l(l,x;s,y) :/ exp(l (( s, X 2)’) (/’L ))) (_l//l,‘i‘]/‘i‘czkz) vdldﬂ,
ArxAx (2m)

—v
is the kernel of the integral operator (—% +y- czzgc_zz) .

Therefore,

3 , PN\ [ 0 , "
* —_— —_—— — —_— [ — —_—
X (Hl) = ¢ ( o TV ax2) ( V¢ ax2) ¢

= ¢(p), Vo€ D(H)).

m.s
That is, X_, satisfies, in the m.s. sense, the generalized equation on Z(H,)
associated with (8.97).

From Embedding Theorems between fractional Besov spaces, for v > 2/3,

Z_(t,x) = / I(t,x;5,y)de(s, y) (8.107)
m-s JRy xR

.S

defines the unique mean-square continuous ordinary solution to equation (8.97),
with [ defined as in equation (8.104). This implies that the spectral density of 2_,,
is given by (8.98).

The definition of the reproducing kernel Hilbert space 77 (X—,) of X_, is as in
the theory of GRFs on fractional Sobolev spaces developed in [96], and motivated
by the following definition of the dual random field X _, of X_,, :

X_,(y)=¢ (3+ —czi)vw Yy € 2(H,)
v ar VT a2 ’ v

Hence,

(¢, @),%(X,U) = (y—v(d’)s y“’((p»H(X_U):H(’}\(/_U)

= /A ) (i1 +y + 22 dGu V(i +y + ¢222)” ¢(u, Mdrdp
1 XA x

= /A ., (1% + (7 + 2A%)?)" d (i, M@, A)d Ad .
1 XA x

The definition of X _, guarantees the bicontinuity of the covariance operator
Ryx_, and the closeness of such an operator. Thus, the RKHS of X_, is a Hilbert
(closed) space with the norm generated by the inner product (8.106), and it is a
dense subspace of LZ(R; x R).
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The extension of Theorem 8.11 to the n—multidimensional space case is
straightforward using the relation

Hy= (% +y+22)",

with 2 = (—A), and being A, as before, the Laplacian operator on R”". Hence,
H,, admits the spectral representation

Hv((P)(g):/A ) [in+y+ A2 d (Eqa(p).g). Vg e L*(RyxR"),
t XAy

for each ¢ € Z(H,), where A; x A stands for the continuous spectrum of the self-
adjoint operator (%, %) = (—id/dt,—id/dxy,...,—id/dx,) on L2(Ry x R"),
and {E(M,A) T () € Ap X Ax} is its spectral family.

In a similar manner one can view many useful spatiotemporal fractional pseu-
dodifferential models as fractional versions of the heat equation.

Let 21, , be the mean-square solution to

I:c% + ((-2) + az)"} 2-p = & (8.108)

where A represents the Laplacian on R”, and ¢ spatio-temporal white noise with
intensity 0. For p > (n®> + 2n — 1)/4n, 2_1,_p is defined in the strong sense as

Z_,—p(t,x) = / I(t,x;s,y)de(s,y), Y(t.,x) e L>(T xR"),
m T xR"

where

1
l,;,zz‘”‘I/ (1 —s,x — ), (U, A drdu,
(t.x:s,y) = (2m) A,xAxexp(l ((t =s5,x =), (1, 1)) icn+ (M2 +aryp

with associated spectral density

1
c2u? + (JA]2 + a?)?r

Jip(p,A) =

(cf. [33]).
For p < (n? 4+ 2n —1)/4n, 2_, _, is defined in terms of a generalized spatio-
temporal random field

-1
X_1—p(h) =¢ (I:—ca% +((=2) + az)”} h) . VheL*(T xR".
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Note that the mean-square fractional regularity order of X_; _, is (1 + 2pn)/
(n + 1), with 1 representing the regularity order in time and 2 p the regularity order
in space.

Model (8.108) is included in a more general family

9
(5 + L;) Xorm = 5, (8.109)

where LY is a spatial linear self-adjoint differential operator of order v on L?(R").
In the case where LY = F,(—A), i.e. LY a function of —A, with A denoting, as
before, the Laplacian operator on R”, particularly, for F,, given in terms of fractional
powers of —A, a fractional version of the heat equation emerges with m.s. solution
given by

.S.

P (tx) = / It x5, )de(s. y),
m. R+XR”

for (1 +vn)/(n +1) > (n + 1)/2, where

It x:s,y) = (271)_"_1/ exp (i ((t —s,x =), (i, 1)) dp.

1
——dA
Arx Ay in+ F.(A1%)
Its spectral density is then defined as

1

vy )y = ——m—.
Sl = R

In particular, model (8.108) corresponds to the case where v =2p, and
Fo(=4) = (=) +a*)" . If F(=A)=( — H)*2(=A)? (ie. v=a + ),
one obtains the fractional heat equation considered in [3], where the local mean
quadratic variation properties of the solution are studied.

8.7.1 Mean Quadratic Local Variation Properties

The semigroup-based formulation of the solution to equation (8.109), as well as its
mean quadratic local variation properties are derived in the following result:

Proposition 8.6. The solution to equation (8.109) admits the following representa-
tion:

t

c(t,x) =/ e'<x’k>/ exp{—(t —s) P,(M)} & (dA)ds, (t,x) € Ry xR",
R 0

where &, denotes the characteristic polynomial of operator LY (continuous

function of the spectrum of —i % ), and v its asymptotic order. Also, the following
assertions hold:
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(i) The limit behavior for the variance
o)% (t) = E[c (t + 7. x) —c (t. x)]*.
of the time increments is given by

ox (1)
im ———— = constant.
\rl—>0|f|§(1—v
Also, for v > n, the spatial increment process displays the following local
asymptotic behavior:

5 1/2
{E [c(t,x+2z)—c(t x)] }
lim —
lz|—0 lz] 2

= constant.

8.7.2 Geostatistical Fractional Pseudodifferential Models

Now, consider {Y (¢, x), t > 0, x € R"}, a spatio-temporal random field defined as
the output of the following fractional differential filter applied to a spatio-temporal
random field 2{_g )y withv +1=>"7_, v;

Pl +B+2

ax]19xy2 ... dx," 9rB+1

3&”(_&_,,)=Y(t,x), ,3>O, vi>0,i=1,...,n.

(8.110)
Here, Y is assumed to be a zero-mean spatially homogeneous/temporally stationary
field. Thus, Y belongs to the class of spatio-temporal random fields (S/TRF, /g
models) considered in [33], and can be interpreted as a generalized spatio-temporal
random field defined from 2(_g _), in terms of the test function family (see [33],
p. 255)

Gox(s.y) = Q)" @+D / AD" .. (iA)" (i) B+D

Ap XAy

X exXp (l ((t -8, X - y)s (/JL,A») dA d,LL,
(t,x) € Ry x R, (8.111)

where A; x Ay is the continuous spectrum of operator
(Lo Ly, L) = (—i0/0xy, ..., —i0/0x,,—i0/0t), (8.112)

and 2m)" "t Dexp (i ((r —s, x — y),(u, A))) is its spectral kernel. Note that
operator
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av+ﬂ+2

8v+ﬂ+2 —
Oxy10xy2 ... 0x," 0tB+1

can be defined via the operator (%%, . ..., %x,,-%;) in equation (8.112) as
STPY2 = (L) (L) ()P,

with 2(8"TA+2) = HY+B+2(R, x R") dense in L2(Ry x R"). The parametric
family of (v/B)-random field models defined above provides a useful tool in
heterogeneity analysis in modern spatio-temporal geostatistics. This parametric
family allows, by properly selecting the test functions ¢, to represent the degree
of departure from homogeneity (parameter v) and from stationarity (parameter )
(see [33]).

In the case where random field Y is a generalized white noise on L?(Ry x R"),
it can be proved similarly to Theorem 8.11 that Z(_g _,) is well-defined in the
mean-square sense as

/R rd 8(t, x) Z(—p,—v(t, x)dxdt
+X

= / g(t,x) [(t,x;s,y)de(s, y)dx dt, (8.113)
R+XRd R+XRd

m.s.

for g € L>(Ry x R"), where

11, x5, y) = ()~ 0+D / (A . (T h) ™ (i)~ B+

tXAx

exp(@((t—s, x—y),(w, ))drdu. (8.114)

8.8 Multifractional Pseudodifferential Equations

The results previously described can be extended to the multifractional context
considering the theory of fractional Besov, and, in particular, fractional Sobolev
spaces of variable order as given in [78], [79], [80], [99], [100] provide, in the
framework of generalized random fields, the covariance factorization and multifrac-
tional pseudodifferential representation of zero-mean second order random fields
with RKHS isomorphic to a fractional Sobolev space of variable order, including
the case of compact d(-)—sets with variable local fractal dimension (see also [98]).
In [94], the associated functional filtering and prediction problems are addressed in
the functional regression context. Here, we study the heterogeneous mean-quadratic
local variation properties of such random fields.
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Let us first consider some preliminary definitions and results (see [99]):
Let § and p be real numbers with 0 < § < p < 1, o be a real-valued function in
B> (R"), the set of all C*° functions whose derivatives of each order are bounded.

We say that a function p(x, §) € AB® (R;’ X Rg) belongs to 5”:8 if and only if for

any multi-indices o and B there exists some positive constant Cy g such that
| DEDE p(x. )| < Ca,p(g) POVl (8.115)

where Dg‘ and Df refer to derivatives with respect to & and x, respectively, and

(€) = (1 + |£]*)!/2. The following semi-norm is considered for the elements of
S
0,8

[PI” = maxiaspret UG eyernir {1DF DE p(x. §)1(8) 7 Orle+dIAIY

Definition 8.2. ([61], [62]) For u € . (R") (the set of rapidly decreasing functions
of the Schwartz space) and p € 5”:8, let P : ./(R") — . (R") be defined as

Pu(x) = /R e p(x, &)i(€)dE, (8.116)

where i(§) = [pn e "¢ y(x)d x (the Fourier transform of u) and d§ = (27)"d&.
We refer to P = p(x, Dy) as a pseudodifferential operator of variable order with
symbol p € 5”;78. The set of all pseudodifferential operators with symbol p of class

755 is denoted by .77 5.

A pseudodifferential operator P € . Z, s 1s elliptic if there exists ¢ > 0 and M > 0
such that

Ip(x. &) = c(&)°,  (&] = M). (8.117)

Furthermore, Q € . 3?8 = Uner & :)"’ s 1s said to be a left (resp. right) parametrix
of P if there exists Ry, € Y;fgo = (\mer Y;”’s (resp. Rg € Y;‘go = (\mer Y;”’s)
such that

QP =1+ Ry (resp. PQ =1+ Rp),

where I denotes the identity operator. Pseudodifferential operator Q is a parametrix
for P if Q is simultaneously a left and right parametrix of P.

The following properties hold for the class of pseudodifferential operators with
variable order .77 5.

Proposition 8.7. (i) /7!y C /0% for 01(x) = 02(x). In particular, 5’%5 C
yg’s C yis,forg = infxeRl’l U(X) and o = SUDPyeRrn G(X)
(ii) For Py € %' and Py € #%%, P = Py - P, € #1772
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(iii) For P € 5";’5, the formally adjoint operator P* defined by (Pu,v) =
(u, P*v), foru,v € /(R"), belongs to /' 4
(iv) If P € ) s is elliptic, then there exists a parametrix of P in /',

We now consider the definition of fractional Sobolev spaces of variable order.

Definition 8.3. Let o be a real-valued function in #°°(R"). The Sobolev space of
variable order o on R” is defined as

HOOR") = {u e H® = JH'R") : (D,)°™u e L*R")

s€ER

where

(D™= [ @) expixg) )" Vi),

and

H*R") ={ue S (R"): (Dy)*ue L*(R")}.
Proposition 8.8. (see [62]) The above introduced fractional Sobolev spaces of
variable order satisfy the following properties:

(i) Ifu € H°OR"), then, for P € 9 5. Pu € L*(R").
(ii) Let o1 and 07 be functions in B> (R") with 1(X) > 02(X), for each x € R".
Then, H®'O(R") ¢ H2O(R"). In particular, HU()(R") C HZORM).
(iii) H®O(R™) is a Hilbert space with the inner product

() ooy = [ (1007 Ou) D7) (ax
/ (D)) () (Dy)Ev) (dx. &.118)

Moreover, & (R") is dense in HO (R").

(iv) Let 0 and t be functions in %8°°(R"™). Suppose that P € 5”5 Then, there
exists some constant C > 0 independent of P and some positive integer |
depending only on 0,7, p, 8, and n such that

1Pl greorgny < ClLPI Null groorteo gy

for u € HEOYO®RM), which provides the continuity of P from
HOOTTOR") into H*O (R?).

Remark 8.8. Equivalent norms can be defined on H°® (R"), considering in Equa-
tion (8.118) the inner product (u, v) s r») instead of the inner product (u, v) georr),
fors <o.

The following result is fundamental in the characterization of the class of
generalized random fields of variable order we consider in the next section.
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Theorem 8.12. (see [62]) Let P € .7 5, be elliptic. Then,

H°OR") = {ue H®R"): Pue L*R")} (8.119)

as a set. Moreover, the norm |u|| go) (R"?) is equivalent to the norm
n 2 2 1/2
lullgorr R = (1PulZ2ry + lulgaqen) - (8.120)

The following results on embeddings and lifting properties for fractional Sobolev
spaces of variable order on L? (R") also hold (see [57]).

Theorem 8.13. Let 1 < p <oo and j €N, and let 6(X) = s + ¥ (X), with ¥ €
Z(R"), satisfying 0 < m’ < o(x) < m < 2, forall x € R". Then, the following
asserions hold:

(i) The space H 1{’0(') (R") is a Banach space and C§°(R") is dense in this space,
where

HITO®") = {f € 7' R") 1 (DY7O f e LR

(ii) Form’j > n/p, the embedding olej,"U(’) (R™) into C*°(R") is continuous.

Theorem 8.14. Assume that the conditions of Theorem 8.13 hold, and let

b(x, (Dx)a(')) be a parametrix for (Dy)°® in 5’;% Then, the following assertions

hold:

(i) The operator (DX)O(') maps Hlf-H’O(')(R") continuosly into HI{’G(') (R™), and
b(x, (Dx)a(')) maps H;_l’o(') (R™) continuosly into HI{’U(’) (R").

(ii) If (Dy)°Ou = f holds for f € sz,"g(’)(R”) and u € L?(R"), then we have
we H PP ORm),
There exists Ao € R such that, for all A > Ao, the operator (Dy)°® + AT maps
H O R onto HYO(RY).

8.8.1 Mean-Quadratic Local Variation Properties

Let us define X as the solution to the equation
ZsX(x) =e(x), xeR", (8.121)

where %5, is a multifractional elliptic pseudodifferential operator of functional
order s(-), whose inverse .,iﬂs_(i has symbol / such that the following identity holds:

L) = [ expli (v 2) Lo DFRAA, V9 € AL,
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Here, ¢ denotes a zero-mean, second-order random innovation process with RKHS
isomorphic to a fractional Sobolev space H#)(R"), of variable order B(-), i.e., it
admits the following weak-sense covariance factorization (see [99]):

R8 = ‘%z*s

where .7, : L?(R") — HPO(R") defines an isomorphism.

Remark 8.9. The case where the model is defined on D, a compact domain
with C* boundary, or a fractal compact d—set, can be treated in a similar
way to Section 8.6.2 by definition of the corresponding trace spaces and trace
pseudodifferential operators of variable order.

The following result provides the covariance factorization and mean-quadratic
local variation properties of the solution to equation (8.121).

Proposition 8.9. Let X be the solution to equation (8.121). If infxern B(x) +
s(x) > n/2, the following assertions hold:

(i) The covariance function Bx(x,y) = E[X(x)X(y)], x,y € R”, admits the
following factorization:

/R By (x.0)¢(y)dy = /R Cexp (i (x.2)) Loy (v, e (6. )i (. Ml (3. 4)
x p(A)dr, Vo€ Z(Rx).

where 9(Rx) denotes, as before, the domain of the covariance operator Rx
of X, and t; denotes the symbol of the pseudodifferential operator 7.
(ii) The increments of X satisfy that there exists a positive constant C, such that

E[X(x 4+ h) — X(x)] < C|p)PB@FsCD= 50 VxeR"

Proof. (i) The proof follows from the assumption on the isomorphic relationship
of the RKHS of the innovation process and the multifractional Sobolev space
HPBOR™M), as well as from the fact that Zs) is an elliptic pseudodifferential
operator of variable order.

(i1) From (i), and equations (8.115) and (8.117), the asymptotic order of the symbol
of Ry, the covariance operator of X having kernel By, is B(-) + s(-). Specifically,
the symbol

I’X(.x,k) = Zs(x)(x’A’)té‘(x7A’)t_&‘(ka)l_s(x)(ka)ﬁ xa/\' € Rna

of Ry displays an equivalent behavior to the symbol

(A>—2(ﬂ(x)+s(x)) =(1+ |M2)—(ﬂ(x)+S(x))’ forall x, A € R",

ie.,
M) T2EOFC) ~ oy (x,1), x A eR, A — oco.
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The rest of the proof follows from the fact that the functions of the RKHS of X
then display a local behavior characterized in terms of the functional local Holder
exponent S(-) + s(-) —n/2.
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Chapter 9

On Some Local, Global and Regularity
Behaviour of Some Classes of Covariance
Functions

Emilio Porcu and Michael L. Stein

Abstract Two critical properties of stationary random fields are their degree of
smoothness and the rate of decay of correlation at long lags. These properties are
in turn closely connected to the behaviour of the random fields’ spectral densities
at infinity and at the origin, respectively. Many standard models have flexibility at
one but not both of these scales. Recent works have proposed a number of models
with at least some flexibility at both scales. This chapter summarizes some of these
proposed models and analyzes their local and global behaviour, both in terms of
their covariance functions and the associated spectra. Some ways to obtain models
allowing greater flexibility are described.

9.1 Introduction

Recent literature emphasizes a growing interest in the study of Gaussian random
fields (RFs) characterized by parametric families of covariance functions; see, e.g.,
[14, 16] and [28] for the generalized Cauchy covariance function or [29] for the
generalized Matérn covariance function. Two critical aspects of random fields are
their behavior over short scales (or equivalently, at high frequencies) and over long
scales (or low frequencies). Some standard models have flexibility at one but not
both of these scales. Recent years have seen a number of proposed models that
have at least some flexibility at both scales. For example, the generalized Cauchy
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family allows different values for the fractal dimension, a descriptor of short-scale
behavior, and for the Hurst parameter, a descriptor of large-scale behavior [16].
Houdre and Villa [21] generalized fractional Brownian motion parametrized by a
single Hurst index to the bifractional Brownian motion characterized by two indices.
Other notable works include [3, 51], and [2] for a more abstract representation of
generalized RFs and covariance factorizations in the Riesz sense. Some properties of
fractional Riesz-Bessel field are offered in [30]. Properties of the generalized Linnik
probability density are studied in [11,38] and [26], whilst those of the generalized
Ornstein-Uhlenbeck process are offered in [31]. For a statistical view of the subject,
we cite [9] and [59], as well as [46,47] and [45]. The subject has been extensively
treated in the field of termomechanics, for which we cite [35-37]. Finally, excellent
textbook references are [1,12,27] and [53].

Properties of a Gaussian RF are intimately connected with that of its associated
covariance function. In the weakly stationary case, (in chronological order), Math-
eron [32], Christakos [7], Yaglom [61], Stein [55] and Christakos [8] show that
we can establish several properties of RFs through the study of their correlation
functions or, equivalently, spectral densities.

This chapter offers a view of the most important covariance functions stemming
from the statistical literature and for which critical properties of the corresponding
Gaussian RFs can be obtained. In order to do this, we appeal to literature coming
from fields as diverse as statistics, engineering, mathematical physics and, last but
not least, numerical analysis. The last is especially important for the extensive study
of the properties of covariances, called kernels, in terms of reproducing kernel
Hilbert spaces (RKHS) and Sobolev spaces associated with them that allow one
to identify the regularity properties of RFs with a given kernel. Sobolev spaces
can be viewed as special cases of RKHS and the celebrated imbedding theorems
allow the study of continuity properties of Gaussian fields. Also, RFs evaluated
on Hilbert spaces constitute a fundamental tool for the study of the equivalence of
Gaussian measures and its relationship to spatial interpolation; see Ibragimov and
Rozanov [22] Yadrenko [60] Stein [54];[55] and Zhang [62]. In particular, under
infill asymptotics, Stein [54] shows that the effect of covariance misspecification
on optimal linear prediction (known as kriging in the geostatistical literature) is
asymptotically negligible if the Gaussian measures corresponding to the correct and
misspecified covariance functions are equivalent. As a consequence, it turns out that
for spatial interpolation, some parameters of standard models do not have to be
estimated well in order to get nearly optimal predictions and accurate assessments
of mean squared error.

The plan of the chapter is the following: in Sect. 2 we offer some basic tools for
ordinary and generalized RFs, long range dependence and fractal dimension, and
RKHS and Sobolev spaces. In Sect. 3 we resume discussion of the properties of the
main classes of (ordinary or generalized) covariance functions through the study
of their spectra. In particular, we describe ways to generate families of covariance
functions that have the same flexibility as the Matérn family at high frequencies and
the same flexibility at low frequencies as the generalized Cauchy family.
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9.2 Preliminaries

In this section we report some basic facts about weakly stationary and isotropic
Gaussian RFs, the characterization of the associated family of covariance functions,
and the identification of their local regularity and asymptotic orders in the fractal
and long-range dependence case. Basic facts concerning the RKHS theory are also
provided.

Throughout this chapter we shall refer to real-valued zero mean weakly station-
ary Gaussian RFs {X(x), x € R"} having covariance structure

CE =EXx+HX(X).

Covariance functions are positive definite, i.e. for any finite system of points {x; }

N
i=1
in R” and collection of real constants {c; }IN= "

N
Z a;C(x; —xj)a; > 0.

i,j=1

Bochner’s theorem establishes the equivalence between the class of continuous
positive definite functions on R" and that of Fourier transforms of positive and
bounded measures defined on R”; that is,

CE) = / exp(itE)dpu o).

Here, we are only interested in real-valued random fields, in which case, we only
need to consider measures p that are symmetric about the origin. Additionally,
if () is absolutely continuous with respect to Lebesgue measure (when C €
L1(R")), then the above integral can be written with respect to the spectral density
function f(-) = (d/d-) ().

We shall work under the additional assumption of isotropy or radial symmetry,
that is C(§) := C(|[§])), for || - || denoting the Euclidean norm and C : R — R a
continuous function such that the composition C (|| - ||) is positive definite on R”".
Thus, a covariance function is isotropic if C(§1) = C (&) whenever ||&1] = ||&2]|.

A function g : [0, co[— R is completely monotone if

—Dke®@y>0,  0<t, VkeN.

By Schoenberg’s theorem [52], a function g : [0, co[— R, g(||€||?) is continuous
and positive definite on R” for all » > 1 if and only if g is completely
monotone on [0, co[. Thus, the search for radial functions that are positive definite
on n-dimensional Euclidean spaces for all n coincides with that of completely
monotone functions on the positive real line. A correlation function is just a
covariance function that equals 1 at the origin. We see that correlation functions
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of isotropic RFs are also characteristic functions of random vectors whose measures
are invariant to rotations about the origin. Thus, we may use equivalently these
definitions whenever no confusion may arise. As a last remark, positive definiteness
conditions are called permissibility conditions in Christakos [7].

9.2.1 Fractals and Long Memory

The fractal dimension of a surface in R” provides its roughness measure, with range
[n,n + 1). The long memory in time series or spatial data is associated with power
law correlations, and often referred to as Hurst effect (H effect). Long memory
dependence is then characterized by the H parameter.

Local regularity properties of the sample-paths of a Gaussian RF have an intimate
connection with its second-order regularity properties (see [1]). In particular, in the
weakly stationary case, if, for some « € (0, 2],

IIEIIiITEO (I=CE) IEIT* = Co. 0 < Cop < o0, O.1)

then, with probability one, the random field X satisfies

d = dim(Gr X) = min (i,n +1 —a/z) ,
a2

where, as before, C denotes the covariance function of the random field X . Here,
Gr X denotes the graph(X) = {(¢t.X(¢)). t € [~1,1]"} C R"*!, thus the
estimate of o provides an estimate of the fractal dimension d. Equation (9.1) refers
to the issue of scaling laws, which describe the way in which rather elementary
measurements vary with the size of measurement unit, and we refer to Hall and
Wood [20] for a detailed analysis of the relation between the fractal index « and
the fractal dimension d, as well as to the previous work in [1] on Gaussian index-f
random fields, with 8 = /2 in this case.
Now consider the behavior of C at long lags. If, for some 8 € (0,n) and

0 < Cy < o0,

lim  CE[&I™"F = Co, (9.2)

] —o00

then the process is said to have long memory, with Hurst coefficient H = /2. Note
that (9.2) implies that C is not integrable on R*. If H € (n/2,n) or H € (0,n/2)
the correlation is said to be respectively persistent or anti-persistent. Tauberian and
Abelian theorems (see, e.g., [5]) relate the behavior of a function at the origin with
that of its Fourier transform at infinity. Thus, the parameter ¢z, which in (9.1) controls
the behavior at the origin of C, is related to the rate of decay of the spectral density
at high frequencies, while the parameter f in (9.2) is associated with the behavior
of the spectral density at low frequencies.
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In relation to the generalized Gaussian RF framework, we remark that, for k a
positive integer, we say that a function K : R” — R s conditionally positive definite
of order k if, for any collection xy,...,xy € R” and reals oy, ..., ay, such that
Zj\;l ajp(x;) = 0, for all polynomials p(-) of degree at most k, the inequality

Z¥j=l a; K(x; —xj;)a; > 0holds. A counterpart of Bochner’s characterization is
available and we refer the reader to Wendland [57] for more precise characterization
theorems in this context. For the weak-sense definition of covariance functions,
from the theory of distributions, we refer the reader to [19] and, in the fractional
pseudodifferential case, to [44]. The Moak class defined in equation (9.15) thus
represents the correlation function of some Gaussian generalized RF defined on a

suitable class of test functions.

9.2.2 Reproducing-Kernel Hilbert Spaces

In this section, we shall introduce the notion of a reproducing-kernel Hilbert space,
which is the base to describe the classes of functions that are dealt with in statistics.
Requiring a covariance function to be continuous is not always necessary, but
allowing for discontinuous covariances (called kernels in the literature stemming
from numerical analysis) would complicate many of our considerations, so we shall
generally stick to continuity as one of our working assumptions in this and all
subsequent chapters. For a symmetric positive definite function C on some domain
2, define

ZaiC(x,-,') cai €R, x; €9, me Ny, 9.3)
i=1
with inner product
Za, C(xi,-), Zb C(x;,-) = ZZaibjC(xi,xj). 9.4)
i=1 i=1j=1
K 7ol

By the positive definiteness of C we have (f, ). > 0 forall f € Hc, and
(f. /) = 0if and only if f = 0, so the inner product (9.4) defines a norm

I/ Nl = (f, f)l/2 on Hc. Furthermore, for any f € Hc, we have

i=1 i=1

(£.C(x.9) (Za, C(xi,), C(x, )) =Y 4 C(xi,x) = f(x)
S

9.5)
which is called the reproducing kernel property.
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The closure of Hc under | - || s« is a space of real-valued functions, denoted by
A, and called the reproducing kernel Hilbert space of C. By the continuity of the
inner product, the reproducing equation (9.5) carries over to ¢ .

9.2.3 Sobolev Spaces

Following [50] and [57] we introduce an important class of RKHSs, the Sobolev
spaces. These spaces guarantee a certain smoothness of the functions they contain.
They are the natural function spaces for the sample paths of second order random
fields. For an (arbitrary) domain 2 < R" we denote by ¥(2) the space of
continuous (real-valued) functions, by €*(2) the space of k times continuously
differentiable functions and by ¥°°(2) the space of infinitely differentiable func-
tions f : 2 — R. Finally, for f € €*(2) and a multi-index « € At of order

lal . . .
lo| <k, |a| =37 i, let DY f = % , where e; is the unit vector in
T den

R” in the direction of the i # coordinate axis. D f is the (weak) partial derivative
in the direction (e",..., en"‘")/. Let 2 be a domainin R” and 1 < p < co. The
Sobolev space W*P(9) consists of all locally integrable (i.e., integrable over all
compact sets) functions f : 2 — R such that for each multi-index « with || < k,
D® f exists in the weak sense and belongs to L?(2). W*P(2) is the Sobolev

space of (integer) order k over 2. If it only belongs to L (%), we obtain the local

loc

Sobolev space Wl](fc’p (2).For f € WkP(2) we define its norm to be

1/p
(S 1D gy ) 1=p <o
”f”Wk.p(@) = '

> lal<k €Sssupg [Df|,  p=o0

Sobolev spaces have a nice mathematical structure: for each k € A4 and 1 < p <
o0, the Sobolev space WX?(2) is a Banach space. The special case W52(2)
is a Hilbert space. The notion of Sobolev spaces can be extended to non-integer
orders [50], which, all together, yield a class of function spaces with continuously
parametrized degree of smoothness. The scale of fractional Sobolev spaces provides
a suitable framework for the local characterization of fractal functions, since the
regularity properties of functions in the spaces of such a scale interpolate the local
regularity properties displayed by the functions in Sobolev spaces of integer order.
Specifically, in the case u € (0,n), we have continuity for s > n/2, but not
differentiability [48]. The embedding of fractional Sobolev spaces of order s > n/2
in the Holder-Zygmund space of continuous functions of order s — n/2 allows the
introduction of fractal functions in the framework of fractional Sobolev spaces. The
equivalence between the norm generated by the covariance function and the norm of
a fractional Sobolev space of order s € (n/2,n) is fundamental in the definition of
fractal random fields [42—44]. Specifically, such an equivalence leads to the Holder
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continuity of order s — n/2, in the mean-square sense, as well as to the Holder
continuity of fractional order (fractality) of the sample paths, in the Gaussian case
(see [44]).

An alternative characterization of W#*2(R" ) as (cf. [57, p. 141]) will be useful
throughout the chapter:

WER") = {f € LP®R"): fOU+ |- P2 € Ly®")}.  (96)
We shall also make use of the following useful result, for which we refer to
Scheuerer [50] and the references therein.
Theorem 9.1. Suppose that C € L1(R") N € (R") has a Fourier transform f that

satisfies

a(l+el?)" = f@ < a(l+]o?)". ocR

with T > % and two positive constants ¢1 < c¢3. Then the RKHS ¢ coincides with

the Sobolev space W2 (R™), and the norms ||| s and ||- 2@y are equivalent.

The equivalence of the norms discussed above should not be confused with that
of Gaussian measures, this last concept being the basis for the theory of optimal
asymptotic prediction as discussed in [55,60] and to which the reader is referred.

The main imbedding results can be resumed as in the following [50].

Theorem 9.2. Let 7 be a bounded ¢*° domain in R". Then, for i > k + 5 we
have the implication

fewhr(2) = 3Afe€D) sothat f=f aeon.

A more general result can be obtained by considering Holder spaces €8 ()
equipped with the norm

Iflgxe@y = Y, ID*fllo@ + D ID*floos),

loe| <k la|=k

where for 0 < 8 < 1 we define the 8 Holder seminorm of f : 2 — R by

|f|<go,3(§) = Sstuep |f(t) — f(s5)]

o le—sll® -
SFEL

Theorem 9.3. Let 9 be a bounded €*° domain in R", further let k € Ny and
0 < B < 1. Then, for u > k + B + 5 we have the implication

[ewr () = 3f e (D) sothat f=f aeon?.
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9.3 Results on Some Families of Covariance Functions

This section describes six (labeled I-VI) families of covariance functions.

(I) The generalized Cauchy function (e.g., [14], [16]) i.e.

Cay(§) = 1+ 1), (9.7)

which is positive definite on R” for all n €N, for 0 <o <2 and y > 0.
Special cases of this class will be also of interest. In particular, C, , is
the characteristic function of the symmetric Bessel distribution, Cq o is the
characteristic function of the Linnik distribution, and Cj, is the symmetric
generalized Linnik characteristic function. For these special cases, according
to [48] we shall use the restriction y € (0,n), for n the dimension of
the Euclidean space associated to the argument &, for technical reasons that
are thoroughly explained therein. Note that for this and most of the models
we consider here, it is possible to add a variance parameter 6 and a range
parameter ¢ to the model by considering Cy 94 = 0(1 + ||E/¢||*)7Y for O
and ¢ positive and it is this form of the model that would generally be used in
practice.

The generalized Cauchy class represents a breaking point with respect to
earlier literature based on the dogmatic assumption of self similarity, since
it decouples the fractal dimension and the Hurst effect [16]. Gneiting and
Schlather [16] argue convincingly that the generalized Cauchy RF allows
independent treatment of the parameters identifying the fractal dimension
and the Hurst effect. Then, in [28], the same class of covariance functions is
considered to study the local and global properties of the associated Gaussian
RF and Gaussian sheet. Also, the properties of the associated self-similar RF,
obtained through Lamperti transformations, are studied therein.

In a more recent contribution, Lim and Teo [28] consider the generalized
Cauchy class and show that, according to Kent and Wood [25], the Gaussian
RF with this covariance is locally self similar of order /2 and that its tangent
field is the Lévy fractal Brownian field of order «/2. They then give a formal
justification of the decoupling effect by showing that the model in equation
(9.7) is long range dependent if and only if 0 < oy < n. To show this, they
appeal to the integral identity [18]

& 1
f x# 1 4+ xP)™Vdx = - B (E, v— E) ,
0 p \p p

for B the Beta function, and to integration in polar coordinates. Thus, the
reparametrization

Cay (€)== (1 + [|E[*) /™ (9.8)

gives a model that decouples the fractal dimension and the Hurst effect.
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Lim and Teo also study the local and long tail behavior of the associated
spectra, which we denote hereafter as f, ,. In particular, as referenced by the
same authors, a detailed study of these spectral densities has been carried out
by Kotz et al. [26] for0 < « < 2,y = l andn = 1; by Ostrovskii [38] for 0 <
o <2,y = 1and n € N; and by Erdogan and Ostrovskii [11] for 0 < o < 2,
y > 0 andn = 1. Lim and Teo derive the asymptotic properties of the spectral
densities fy,, for 0 < o < 2,y > 0 and n € N, which can be regarded as
an extension to the results on generalized multivariate Linnik distributions.
The proofs of their results are very beautiful and the reader is referred to
their paper for them. Here, we report and rephrase the results for the sake of
completeness. The authors show that f> , (w) = c(y)|lw||” ™" (1-0(w)) where

O(w) — 0 as ||| — 0, and c(y) = m Also, for |w| — oo,

mﬂwﬂ”_% exp(—|wl)) (1 + yé)ﬁ;ﬁ) + ) .
Moreover, for the spectral densities fy o and fi,, the following local and
asymptotic identities hold: when ||w|| — 0, fo,o(®) = c(@)||w||*7" (1-0(w))
and f1,(w) = c(y)|o]| (1 — 6(w)), where (w) — 0 as ||| — O.
Finally, for | — 00, fa,a(@) = cull0|T"7%(1 + o(1)), and fi(®) =
¢yll®|72(1 + o(1)). The main result is eventually contained in the following

Proposition 9.1 (Lim and Teo, 2008 [28]).

we have f; ,(w) =

Jay(@) = c(@)o]""(1 - 0(w)), where (@) >0 as [o]—>0
(9.10)
Jay(@) = cillo]T"7* (1 +o(1),  [lo]| — oo, 9.11)

Lim and Teo then show that, for 0 < @ < 2 and for any positive 3,

2-n
el = Im/"" KUl oy,
0

Jap@) = —————-
“f 25 1% (1 +ei”"‘/2u"‘)ﬁ

where .%;, is the modified Bessel function of the third kind of order v. Gneiting
and Schlather [16] demonstrate decoupling of the generalized Cauchy model
through a simulation study. They show that with sufficiently large sample sizes
on a regular grid spread over a large enough domain, it is possible to estimate
both o and y in (9.8) well using spectral methods. Thus, it is not always
necessary to assume Gaussian RFs are self-similar in order to obtain good
estimates of their behavior at both small and large scales.

Ruiz Medina et al. [48] give further properties and characterizations of
a Gaussian RF with a Cauchy covariance. In particular, they obtain a local
pseudodifferential representation in terms of the local regularity properties of
the functions in its RKHS. Namely, they show that the local behavior of the
functions in the RKHS of the Cauchy Gaussian RF coincides with the local

behavior of the functions in the fractional Sobolev space W#’z(R”). Thus,



230

ey

(IIT)

E. Porcu and M.L. Stein

the Gaussian RF with a Cauchy covariance as in equation (9.8) admits the
following local pseudodifferential representation, in the mean-square sense:

(—2)"F X =&, 9.12)

where A denotes the Laplacian operator, and, here and subsequently, € denotes
Gaussian white noise.

As a corollary of this result, the fractional mean quadratic variation order,
as well as the modulus of continuity of the sample paths, is derived by the
same authors, who show that the Gaussian RF with a Cauchy covariance has
mean quadratic variation order given from the identity

E[X(E+£)—XEP =051, &bl —0, YEeR". (9.13)

Also, with probability one, for any € > 0, the following inequality holds for
its sample paths

a—

7°, §—>0, VEeR", 9.14)

‘SSI‘IPSIX(S +&0)—X(E)|<Y$

where Y is an almost surely finite random variable.
The Moak class [33] of completely monotonic functions has the form

1
_ _O
EEarEn ¢

for which several nice contributions can be found about its complete mono-
tonicity (cf. Berg et al., [4], and references therein). For o > 0, this function
has a singularity at the origin. Thus, it cannot be the covariance of a Gaussian
RF defined in the ordinary sense. This class will be reconsidered subsequently
in point (IV) below.

(9.15)

For v > 0 the Matérn covariance function is given by

Con(§) = (”%”) %/v(”%) . (9.16)

A huge literature for this covariance function can be found in spatial statistics
and we refer the reader to Matérn [34] for an early treatment, to Stein [55] for
a discussion of its importance as a flexible model for the local behavior of a
Gaussian RF, and to the excellent survey in Gneiting and Guttorp [17] for an
historical view of the use of this kernel in several branches of science. The
Matérn kernel has corresponding spectral density with respect to Lebesgue
measure (up to a multiplicative constant)
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—v—n/2

fo(@) = (72 + |lo]?) (9.17)

In the numerical analysis literature this kernel is also called the Sobolev
kernel [6]. Its value in both numerical analysis and spatial statistics is that
the parameter v quantifies the smoothness of the associated RKHS and the
associated random field.

Note that the kernel Cy ,, itself (and hence any finite linear combinations of
kernel translates) is contained in the Sobolev space W*2(R") if and only if
n<2v-— %, which directly follows from

(1+[x]*) " e L'R") <= s5>1,

and from the alternative characterization of Sobolev spaces given in equation
(9.6). A complementary and nice result is given in Scheuerer [50]: for the
Matérn kernel Cy ), it holds that

Cow €CFPRY = 2w=k+B+n k=01 0<B=<1.

loc

For k = 1 and B = 1 we even have the strict inequality

Cow €CUIRYY = 20>2+n.

loc

Whittle [58] shows that the covariance in equation (9.16) is generated by the
stochastic differential equation

(A + 213" Y(x) = (). (9.18)

Lim and Teo [29] consider a stochastic differential equation with two frac-
tional orders

2y(x) = e(x).

((=2)* +1?)
generating the spectra fo,(0) = (27)7" (Jo|?* + 22)~", which is square
integrable on the real line if and only if «v > n/2, so that the associated field
is well defined in the ordinary sense for this range of parameters. Otherwise,
the associated RF can be regarded as a generalized RF in the Schwartz space of
test functions. Lim and Teo analyze the asymptotic behaviour of the covariance
function Cy,, given by the Fourier transform of fy . [29] show the Fourier
representation of Cy . A very interesting result contained therein asserts that,
for ||€|| — oo, the leading term of C,,, is proportional to ||&[|72*~" when « is
not an integer. To study the local behavior of the RF, one needs to distinguish
several subcases of the parameter space.

(IV) Let us recall the equation of the Dagum function family

HAY
> Kpgy(§):=1- (W) , 9.19)
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for which sufficient conditions of complete monotonicity are By < 1 and
B < 1. The characterization is not complete yet, as explained in [4], although
the authors conjecture that this condition is also necessary. Arguments in
[40] show that the Dagum function is positive definite on any n-dimensional
Euclidean space for 8 € (0,2] and y € (0, 1]. Larger ranges of permissibility
of these parameters are given in Berg et al. [4] where the authors give an almost
complete picture for the permissibility of this class. A simulation-based study
in the spirit of [16] highlights, after a suitable reparametrization, an explicit
decoupling of the local behavior and long-range dependence in the Dagum
covariance function.

We begin by illustrating the relationship between the Dagum function
and what has been called in [48] auxiliary family of generalized covariance
functions, hereafter denoted as C, g ,, and whose equation is

N 1 v/B
- Y B 9.20
0y (6) (nsna(l T ||s||ﬁ>) o

In particular, in the results derived below, we work under the choice ¢ =
(n—By)/(1 +y)and y/B = 1+ y, so that C, g, can be easily seen as
the first derivative of the Dagum family Kg , with respect to |£|. This is not a
mere algebraic fact, since it constitutes a key point for studying the properties
of a Dagum Gaussian RF in relation to those Gaussian RFs whose covariance
function is a special case of the auxiliary family above. It is worth mentioning
that the generalized Cauchy class and its related particular cases are obtained
as special cases of the auxiliary family, since Cy,, = Eo,a,y. Also, the Moak
class in equation (9.15) corresponds to the choice 6%2,2.

For this generalized covariance, [48] show that for y8 € (0,n), the
following local and asymptotic behaviors hold:

~ 1

=0\———= ), 0 d
Tupr@ =0 (1) Tl >0 an
Tapr@ =0 (lol 7). ol > .

where 70,’&), is the generalized Fourier transform of ax, By-

A relevant remark concerns the fact that the Cauchy, Dagum and auxiliary
families do not admit a closed form for the associated (ordinary or generalized)
spectra. [48] show that, for 0 < oy < n,

gpy@) =0 (ol ™*#). ol >0  and
g8y@) = 0 ([0 7*7), o] — o, 9.21)

for gg, = F[Kp,y]
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V)

The local pseudodifferential representation and local RKHS characteriza-
tion of Dagum Gaussian and auxiliary generalized RFs is provided in the
following result, also due to [48], where it is shown that the local behavior
of the functions in the RKHS of the Dagum Gaussian RF can be identified
with the local behavior of the functions in the fractional Sobolev space
W (1+vB)/2.2(R™) | continuously embedded into the Holder-Zygmund space of
fractional order yf/2. This means that the following local identity holds in the
mean-square sense:

(_A)(n+yﬁ)/4X = ¢,

Finally, [48] show that the mean quadratic variation order of the Dagum
Gaussian RF X is given by

E[X(E +80) — X@P = 0 (I6l”). &l -0, véeR". (0.22)

That s, X is an index-(yf)/2 RE. Therefore, the Dagum Gaussian RF satisfies
a stochastic Holder condition of order « for every « < yfB. Equivalently, with
probability one, for any € > 0, the following inequality holds for its sample
paths
B—e
Sup [X(§ + 5) — X(§)| <2677, §—>0, VEER',  (9.23)
&ol<8

where Z is an almost surely finite random variable.
Compactly supported correlation functions.

The Wendland class of correlation functions has been repeatedly used in
applications involving the so-called tapered likelihood [10]. We recall here
Wendland’s [57] construction (it is rephrased in Gneiting [15]). Let

Yu,0,8(x) 1= (1 — ”%) , EeR", veRy and B >0, (9.24)
+

be the truncated power function, also known as the Askey function when
v is an integer; it is compactly supported over a ball in R” with radius ,
and ¥, 0,p is positive definite on R" for v > |5 | + 1, where |a] denotes
the greatest integer less than or equal to a. Many applications refer to the
exponent v € N, while the real part of the exponent is a basic characteristic
of the associated Sobolev space that determines the regularity properties of
a Gaussian RF with such covariance structure. For pertinent results on this
topic see Wendland [57] and, for the cases not treated there, Schaback’s [49]
complementary contribution. Note that we have defined { over x € R”, but
in fact it could as well be defined over y = || x|| € R4, and the notation often
exploits this varied use while maintaining consistency of meaning for .
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For any g € ®(R") for which fR+ ug(u)u < oo, Matheron’s montée
operator [ is defined by

ftoo ug(u)du

Ig(l) = Q/'OOOMg(M) du

(t e Ry).

Wendland defines ¥, x g via k-fold iterated application of the montée operator
on the Askey function ¥, 0,g(§) defined in (9.24). Wendland [57] proves
that ¥, 08 € ®R") for Y, p € @(R"2%). The implications in terms
of differentiability of v, x g are well summarized by Gneiting [15], and
Wendland [57] shows that the degree of the piecewise polynomials is minimal
for the given smoothness and dimension for which the radial basis function
should be positive definite.

The following beautiful result allows for a characterization of the Fourier
transform related to Wendland functions. Its proof can be found in ([57], Thm
10.35) but the assertion and notation are rephrased here for consistency with
the rest of the chapter. For what follows, let us denote by {ﬂ\v’k, g the Fourier
transform of ¥, x g.

Theorem 9.4. Let n > 3 if k = 0. Then there exists constants c1,Ca
depending exclusively on n and k such that

AL+ o)™ < P/ sir1k1(©@) < ea(1+ ool )21,

i.e. Wendland functions are defined on the classical Sobolev space
Wd/2+k+l/2’2(Rn),

The complementary cases are completed in the recent contribution by
Schaback [49].
Some new covariance functions.

None of the covariance functions we have described enjoy both the
flexibility of the Matérn model at short scales together with that of the
generalized Cauchy or Dagum families at long scales. Specifically, by
adjusting the parameter v in the Matérn model, we can get any degree of
mean-squared differentiability in the corresponding random field. However,
no Matérn model exhibits long-range dependence; indeed, every Matérn
covariance function decays exponentially as its argument increases. In
contrast, the generalized Cauchy and Dagum families can both attain any
degree of long-range dependence, but correspond either to processes with
no mean-squared derivatives or to processes that are infinitely mean-squared
differentiable (for « = 2 in Cauchy case and f = 2 in Dagum case).

There are a number of ways to obtain families of covariance functions that
allow the local flexibility of the Matérn class and freedom in the degree of
long-range dependence. A simple solution is just to add a Matérn covariance
and a Cauchy model with o = 2:



9 On Some Local, Global and Regularity Behaviour of Some Classes 235

C(§) = 01llE/ 11" 1IN/ P1) + (9.25)

0>
(14 1&/d211>)7”

where 6, 6, nonnegative and ¢1, ¢», v,y positive are sufficient to make C
positive definite in any number of dimensions n. Note that because we are
taking a sum of positive definite functions and there is no prior basis for
fixing the relative contribution of the two terms, we have included variance
parameters 67 and 6, in the model. We also include a range parameter for
each component of the model (¢; and ¢,), although one might be able to
make a case for setting ¢; = ¢, if one wanted to simplify the model. Because
all Matérn models decay exponentially as ||£|| increases, the first term on the
right side of (9.25) has no impact on the long-range dependence of the model
(9.25). Similarly, because the Cauchy models with « = 2 all correspond to
infinitely differentiable processes, as long as 6; > 0, the second term on the
right side of (9.25) has no impact on the local behavior of the model (9.25).

Even if we set ¢; = ¢», the model in (9.25) has five parameters, which
is arguably one more than necessary. Specifically, if we allow one variance
parameter and one range parameter, we should be able to attain any degree of
local behavior and any degree of long-range dependence with two additional
parameters for a total of four. In fact, we can specify such a four-parameter
model in the spectral domain by

Ollof*™

J@) = ol

(9.26)

which, for 6 and ¢ positive, is integrable over R” if and only if 0 < o < 2k.
For any n, the corresponding covariance function can be written in terms of
the generalized hypergeometric function ; F» ([18], 6.565.8). The parameter

«a controls the long-range behavior of the process (for & € (0, n), the resulting

covariance function has Hurst coefficient %(n —«a)) and k — %a controls its

local behavior, playing essentially the role of v in the Matérn model.
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Chapter 10
Asymptotics and Computation for Spatial
Statistics

Hao Zhang

Abstract Asymptotics describe large sample properties of statistical inferences.
Useful asymptotics are those that can help with the statistical inferences. For
example, asymptotics can help identify statistically and computationally efficient
estimators. The study of asymptotics in spatial statistics is complicated by the
fact there are more than one asymptotic frameworks in spatial statistics and the
asymptotic results are very different under the different asymptotic frameworks.
This chapter reviews some results under these asymptotic frameworks and shows
how the asymptotic results can help alleviate the computational challenges in the
analysis of massive spatial data.

10.1 Introduction

In this chapter, we assume a spatial process Y (s),s € R? is observed at n locations
S1,:*+,Sy in a bounded region D C R?. This kind of geostatistical data arise in
many disciplines in environmental, agricultural and atmospheric sciences. We are
concerned of two particular problems in this section. One is the prediction of Y (s)
at a spatial location that is not observed. The best linear unbiased prediction is
commonly referred to as kriging, which is computed by using either the covariogram
or variogram. Recall that the variogram for a process is

Y6.%) = SE0VE) ~ V() (10.1)

and the covariogram is defined as

C(s,x) = Cov(Y(s), Y (x)).
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Under the intrinsic stationarity, y(s,Xx) = y(s — x) and under the second order
stationarity, C(s,x) = C(s — x) where we slightly abused the notation. We will
consider only stationary processes and use C(-) and y(-) to denote the stationary
covariogram and variogram, respectively. Then we have C(x) = 02 — y(x) where
o2 is the variance. Quite often, we assume the covariogram belongs to a parametric
family such as the Matérn model. We will estimate the model parameters by the
maximum likelihood method or some other methods so that the plug-in kriging can
be carried out. This leads to the second problem in this chapter, i.e., the parameter
estimation. More specifically, we will study which parameters can be estimated well
and what parameters are virtually impossible to be estimated well. We will also
study what parameters are most important to kriging and what parameters are less
important to kriging. The precise meanings of these last two sentences will become
clear later as we use rigorous statistical terms.

The following is frequently encountered in the analysis of spatial data, which
deserves some theoretical investigation. Two quite different covariograms could
yield very similar prediction results; Estimators of some parameters in the covar-
iogram tend to have large variances even when the sample size is sufficiently
large, regardless of estimation method. These can be explained quite well by
asymptotic results. [16] established rigorous mathematical results on kriging which
we will review in Sects. 10.2.1 and 10.2.2. He employed the fixed-domain or infill
asymptotic framework by assuming that the sampling domain D is bounded, i.e.,
sup e [lx]| < co.

For parameter estimation, however, different asymptotic frameworks have been
studied. When the sampling domain is bounded and more data are observed from
this bounded region, this is the fixed domain asymptotic framework. No all param-
eters can be estimated consistently under the infill asymptotic framework [9, 22].
When the distance between any two sampling locations is bounded away from 0,
this is the increasing domain asymptotic framework because the sampling domain
have to increase in order for us to observe an arbitrarily large number of data. Under
this asymptotic framework, all parameters can be estimated consistently under
regularity conditions and the maximum likelihood estimators are asymptotically
normal [13]. [9] considered a mixed asymptotic framework where the spatial domain
is increasing but the minimum distance among the sampling distance also tends
to 0. Since estimators have different asymptotic properties under the two asymptotic
frameworks, it is important to choose an appropriate asymptotic framework for
the practical problem at hand. [26] have done some theoretical investigation and
numerical study to address this issue.

Recent studies on asymptotic properties of parameter estimation have brought
about more understanding of the behavior of estimators of spatial model parameters
and lead to estimation methods that can reduce computation in the estimation and
prediction in spatial data analysis. These methods are particularly useful in the
analysis of massive spatial data. The objective of this chapter is to review the
asymptotic results that can help with the spatial data analysis.
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10.2 Infill Asymptotic Framework

In this section, we assume that the spatial process Y(s),s € D C R is a stationary
Gaussian process with mean 0 and a covariance function C(h, 6) where 6 is the
parameter. We first review a probabilistic concept that has proved to be quite useful
in the study of infill asymptotics.

10.2.1 Egquivalent Probability Measures

Two probability measures Py and P; are equivalent on a measurable space {£2, .7 } if
P1(A) =1 forany A € % implies Py(A4) = 1 and vice versa. It says that if an event
occurs with probability one under one measure then it occurs with probability one
under the other measure. On the other hand, two measures are orthogonal if there
exists an event A such that P;(A) =1 but Py(A) = 0. We usually restrict the event
A to the o-algebra generated by {Y(s),s € D} where D is a subset of the space R?.
We emphasize this restriction by saying the two measures are equivalent on the paths
of {Y(s),s € D}.If D is bounded, two Gaussian measures are either equivalent or
orthogonal on the paths {Y(s),s € D} if Y(s) has a continuous covariogram (This
is not a necessary condition though).

Example 10.1. Let Y, k = 1,2,..., be ii.d. under probability measure Py
and Py and E;Y; =0 and E,~Ykz=cri2 for any k, where the expectation E;
corresponds to P; for i =0,1. If og #* 012, the two measures are orthogonal
because by the law of large numbers, P;(A) =i,i =0, 1 where A is the event that
lim, oo(1/n) Y k= Y2 =07,

Example 10.2. Let Y; =Y(s;) where's; € D and D C R? is bounded, and the
process Y(s) be stationary Gaussian with mean 0 and an isotropic exponential
covariogram o2 exp(—ah) where 02 and o« are the two parameters. Denote by
P; the Gaussian measure corresponding to parameters o; and «;. Then even if
(0.a1) # (02,ap), the two measures could still be equivalent. Indeed, P and
Py are equivalent on the paths of {¥(s;),i =1,2,---} if and only if 020y = 0 ag.
Hence P1{(1/n) Y./ _, Y? — o7} =1 cannot be true.

In Example 2, if we reparameterize by letting ©# = 0>a and write the model
parameters as 6 = (¢, ). If Py denotes the Gaussian probability measure
corresponding to parameter 6 and ¢; = (¥;,;), i =0, 1, then Pg, and Py, are
equivalent if and only if ¥; =¥,. Such a parameter ¥ is called a microergodic
parameter and « is called a non-microergodic parameter. Non-microergodic
parameters can not be estimated consistently. Only microergodic parameters can be
estimated consistently.
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Now consider the Gaussian process Y(s) under two equivalent probability
measures P; and Py. Let Y; = Y (s;) for some locations s;, i > 1. Write

e, = Y(Sl), Cri = Y(Sk) —E; [Y(Sk)IY(Sl),l <l< k], k=2---,n,i=0,1.

(10.2)

It is known (e.g., [15], p 501) that Po and P are equivalent on .% = o (Y;,i =
1,2,---,) if and only if

o

2
E _ 2 o0 E 82
Z ol(en,1 2e”’0) ] < 00, and Z 0 ;’0 —1) <o (10.3)
Elen’l E

n=2

It follows (10.3) that

El[(en,l - en,O)z] _

lim 0 10.4

n—00 EOei,O ( )
E{e?

lim —l = . (10.5)

n—o0 Eoeﬁ 0

The last two equations have a nice interpretation. Since e, ; is the prediction error
for predicting Y;, given Y,k < n, these two equations imply that prediction given
under P; are asymptotically equally as good as those given under Py.

In practice, we are interested in predicting Y (s) at any location s not just at s,.
Leteij(s,n) = Y(s) — E;(Y(s)|Y(sg),k = 1,--- ,n — 1). A sensible measure for
how good predictions given P; are when Py is the true model is

EO(el (Sv I’l) - 6‘()(5, n))2
K EOeO(Sv n)2

’

i.e., how large the mean squared difference of predictions is relative to correct mean
squared error, where the supremum is taken over s such that Egeg(s,n)> > 0.
Because the mean squared error is often calculated in practice, it is also of interest
to compare the two MSEs by evaluating the ratio Eje;(s,n)?/Egeq(s,n)%. The
following theorem can be derived from (10.3) and is a special version of Stein ([16],
1999, p. 35).

Theorem 10.1. Let Py and P) be two equivalent Gaussian probability measures on
the paths of Y(s),s € D, and the set of sampling sites {sx,k = 1,2,---} is dense in
D, where D C R% is bounded, then uniformly in s € D such that Egeg(s, n)2 > 0,

1. Eo(el(ss n) _e()(s,}’l))z _
1m =
n—00 Egeo(s, n)?

lim Ejei(s,n)?/Egeo(s,n)® = 1. (10.7)
n—oo

0 (10.6)
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So far we have assumed that the process is Gaussian. [2] established a result that
shows that the predictive distribution under two equivalent measures will eventually
agree as more data are collected. We now rephrase the theorem to make it directly
applicable here. Let Y;, i > 1 be random variables on a measurable space (§2,.%)
and P;,i = 0, 1 be two probability measures (not necessarily Gaussian) on .% such
that Py is absolutely continuous with respect to P; constrained on o (Y;,7 > 1), the
o-algebra generated by Y;,i > 1. Then with Py-probability 1,

sup |Po(AlY1, -+, Yn) — P1(AlY1,--+ . Yu)| — 0, asn — oo
where the supremum is taken over all A € o(Y;,i > n). In particular,

sup |Po(Y; € B|Yy,---,Yy) = Pi(Y; € B|Yy, -+, Yy)]

i>n,B

— 0, asn — oo. (10.8)

The two measures are not necessarily Gaussian and the predictors are not
necessarily linear. Hence (10.8) applies to non-linear prediction and implies the
predictive distributions under the two measures are asymptotically equal.

Interestingly, Theorem 1 can be established from (10.8) . When the measures
are Gaussian, the predictive distribution, i.e., the conditional distribution of Y;
given Yp,---,Y,, is determined by the conditional mean (the predictor) and the
conditional variance (the prediction variance). Then (10.8) can be given in terms of
prediction error and the prediction variance, as given by (10.6) and (10.7).

Finally in this section, we review a sufficient condition for equivalence of
Gaussian probability measures in terms of spectral density. Let the process Y (s), s €
R“ be Gaussian stationary with mean 0 and have a spectral density f;(A) under
probability measure P;, i = 0, 1. If, for some a > 0, f;*(A)|A|* is bounded away
from 0 and oo as |A| — oo, and for some finite c,

2
} dA < oo, (10.9)

/ {fl(/\)—fo(/\)
1A|>c Sfo(R)

then P; and Py are equivalent on the paths of Y(s),s € D for any bounded subset
D C RY.

When the spectral densities can be expressed in closed-form, it is possible to
verify condition (10.9).

10.2.2 Spectral Densities and Kriging

In this section, we focus exclusively on linear prediction. Linear prediction only
requires the first two moments and does not require the distributional properties. We
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assume that the process is second order stationary with mean 0 and will carry out
kriging using two covariograms, C;, i = 0, 1. Assume that C; has a spectral density
fi(A),i = 0, 1. The following theorem of Stein (1999, p.135) provides a simpler
condition in terms of spectral density for (10.6) and (10.7) to hold.

Theorem 10.2. Let the underlying process Y (s) be Gaussian under probability P;
with mean 0 and spectral density f;, i = 0, 1. If for some ¢ > 1, fo(X)||A]? is
bounded away from 0 and oo and

f1(A)
Jo(R)

then (10.6) and (10.7) hold.

— las |A]| = oo,

10.2.3 Infill Asymptotics for the Matérn Model

The Matérn model for covariogram has been widely used primarily because it is
capable of modeling the smoothness of the underlying process. It has a spectral
density in a simple form

I'(v+d/2) oa?’ N
nIPEW) (@ + A7)+

fQ) = € R, (10.10)

where 02 is the variance, « is the scale parameter controlling how fast the correlation
function decays to 0, and v is the smoothness parameter. When v > 1, the process
is mean square differentiable.

Consider two Matérn covariograms with parameters (61.2, ai,v),i = 0,1.Itcan
be shown [22] that the two spectral densities satisfy condition (10.9). [22] showed
the following result.

Theorem 10.3. Let P;,i = 0,1 be two probability measures such that under P;,
the process Y(s),s € R? is stationary Gaussian with mean 0 and an isotropic
Matérn covariogram in RY with a variance 01.2, a scale parameter o;, i = 0,1 and
the same smoothness parameter v, where d = 1,2 or 3. For any bounded infinite
set D C R?, Py = P, on the paths of Y(s).s € D if and only ifota?’ = oZad".

There are two immediate corollaries. First, the parameter 022" is microergodic
and the individual parameter o and o are both non-microergodic. Hence both o2
and o are not consistently estimable if the sampling domain is bounded in R? for
d < 3. The inconsistency of the estimator for a non-microergodic parameter implies
that the variance likely does not vanish as the sample increases. It certainly does not
if the estimator is asymptotically unbiased. This may also explain why the profile
likelihoods for these parameters tend to be flat as observed in many simulation
studies and data analysis [22,25].
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Second, two Matérn covariograms with parameters (01.2, a;,v),i = 0,1 yield
asymptotically equal predictive distribution and asymptotically equally optimal.
More precisely, (10.6) and (10.7) hold. This is not intuitive at all, but it explains
why two different covariograms can yield very similar prediction results.

Therefore, from the point of view of prediction, we only need to estimate
the microergodic parameters well. The non-microergodic parameters cannot be
estimated well anyway.

In the higher dimensions, d > 4, Theorem 10.3 no longer holds. Indeed, both o2
and « are consistently estimable [1]. The case for d = 4 remains open.

10.3 Increasing Domain Asymptotic Framework

In the increasing domain asymptotic framework, the distance between any two
sampling locations is bounded away from 0. Properties like (10.6) and (10.7)
in general fail to hold. Therefore, properties of kriging are not studied under
the increasing domain asymptotic framework. However, asymptotic properties of
estimators can be given. Indeed, it is generally easier to study the asymptotic
properties of estimators under the increasing domain asymptotic framework. One
reason is that various mixing conditions can be given with the increasing domain
asymptotic framework. Limit theorems have been established under the mixing
conditions [7].

[13] gave some conditions under which the maximum likelihood estimators for
the parameters in the probability distribution of a stationary spatial process are
asymptotically normal. The asymptotic variance is given by the inverse of the Fisher
information matrix.

[10] studied the asymptotic distribution of least squares estimators of variogram
parameters under the increasing domain asymptotic framework.

10.4 Which Asymptotic Framework to Use?

In any real application, spatial data are observed at a finite number of points with
no intention or possibility of taking more observations, and it is not clear which
asymptotic framework to appeal to. Stein (1999) gives a cogent argument for using
infill asymptotics if interpolation of the spatial process is the ultimate goal, as we
discussed previously. However, for parameter estimation, it is not obvious which
asymptotic framework should be used.

I take a pragmatic approach. I strongly believe that the reason to establish any
asymptotic results is to ultimately apply them to a finite sample for statistical
inferences. We hope that the asymptotic distribution of an estimator provides a good
approximation to the finite sample distribution in the particular problem at hand. We
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therefore choose a framework on the basis of how well the asymptotic distributions
of estimators of parameters of interest approximate the finite-sample distributions
of those estimators.

The finite sample distribution of an estimator can be obtained through simula-
tions. [22] and [26] considered extensive simulation studies on exponential models.
Their results show that the finite sample distribution of the MLE for the variance
o2 or the scale parameter o appears to be skewed for moderately large sample size
while the finite sample distribution of the MLE for the microergodic parameter o2
appears to be more symmetric and normal. This can be easily explained by the infill
asymptotics though it is not obvious under the increasing domain asymptotics.

[26] considered a Gaussian process Y (¢),¢ € R that has an isotropic exponential
covariogram 6; exp(—6h),h > 0. Asymptotic results for this model have been
established under both asymptotic framework. [21] has shown that the following
infill asymptotic distribution for the microergodic parameter 61 6,. If the process is
observed at n locations in [0, 1],

V(6165 — 6,6,) — N(0,2(6:62)).

If the process is observed at equally spaced locations §i,i = 1,--- ,n where § > 0
is a fixed constant, this is the increasing domain framework. The MLE has the
following asymptotic framework

(616, — 6,6,) - N(0,0?), (10.11)
where
0% =2(0162)> + {(1 = p*)(p) ™" — 26201707 (1 — p>) ™! (10.12)

and p = exp(—626).

The two asymptotic distributions differ in the asymptotic variance. However,
when both are applied to a finite sample, little difference will result. The reason is the
following. Suppose we observed at n equally spaced locations in an interval [0, a].
The distance is usually rescaled by a linear transformation so that the maximum
distance in the sampling domain is 1 [3]. Then the n locations can be denoted by
ti = 8i for § = 1/n. For this §, the asymptotic variance o2 in (10.12) under the
increasing domain asymptotic framework is approximately 2(6;6,)2. Indeed,

0?2 — 2(9192)2, asn — oo.

Therefore, there will be no or little difference which asymptotic result we choose to
apply, either the infill or the increasing domain asymptotics.

However, for a non-microergodic parameter, there are big differences in the two
asymptotic frameworks. We already know that the non-microergodic parameter is
not consistently estimable under the infill asymptotic framework but is consistently
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estimable in general under the increasing domain asymptotic framework. The
asymptotic distribution of a non-microergodic parameter under the infill framework
usually converges to a non-degenerate distribution though this asymptotic distri-
bution is usually unknown except for the exponential model we discuss here. It is
plausible that the MLE of « a sample at n locations in [0, 1] has an infill asymptotic
distribution, which is the distribution of

1
A Y(@)dY()
92,00 = _/;)1—. (10.13)
Jo Y(0)2dt
§$2,oo is the MLE of 6, when Y(¢) is observed everywhere in [0, 1] (e.g. [12],
Theorem 7.7, p. 248).

10.5 Asymptotics for Computation

Asymptotic results are particularly helpful for the statistical inferences if they lead
to statistically and computationally efficient estimation. In particular, spatial data
analysis usually involves more computation due to the spatial correlation and the
fact that the spatial sample size can be huge. We now discuss some applications of
infill asymptotics that reduce the amount of computation in the spatial data analysis.

10.5.1 Hybrid Estimation

[22] constructed a consistent estimator for the microergodic parameter o2’ in the

Matérn model (10.10) for the dimension d = 1,2 or 3. The idea is to fixed the
non-microergodic parameter « at any chosen value «;. The variance is estimated
by maximizing the likelihood function in which the parameter « is fixed at ;. The
resulting estimate of o2 is given in closed-form

1
6% ==Y R(a;)"'Yy
n

where R(w) is the correlation function that depends only on «; (the smoothness
parameter is assumed to be known here). Zhang (2004) showed that 6205%” is an
consistent estimator of 622", This idea of fixing the non-microergodic parameter
at a known value is used in the subsequent work [4, 8].

[4] established the infill asymptotic distribution of this estimator when d = 1:

Vn(6%a? —oZad’) — N(0,2(c2ad”)?). (10.14)
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The right hand of side is the asymptotic distribution of full MLE as established
by [21]. Therefore there is no loss of statistical efficiency when we fix the non-
microergodic parameter o.

In practice when we have a finite sample, the choice of « may affect the statistical
efficiency. [27] suggested fix « at a rough estimator that is computationally easy
to obtain. They used the weighted least squares estimator for « and estimate the
microergodic parameter by maximizing the likelihood function when all the non-
microergodic parameters are fixed at the rough estimates. They call it the hybrid
estimation. The hybrid estimation requires a little more computation than the least
squares method and has superior predictive performance. It requires much less
computation than the MLE but has comparable predictive performance as the MLE.

10.5.2 Covariance Tapering

Covariance tapering is a computational technique to handle a large covariance
matrix. Covariance tapering results in a sparse covariance matrix that takes less
memory to store and to operate. Despite the computational advantage, the covari-
ance tapering may not reduce the statistical efficiency of the estimators and the
predictive performance.

The tapered covariogram is of the form

C(h, (1)) = p(h)K(h, (1)) (10.15)

where K (h, (¢)) is the covariance function of the underlying process that depends
on a vector of parameter (¢) and p(h) is the taper, a known correlation function with
a compact support. Hence p(h) is zero when |h| > h¢ for some iy > 0. Some
examples of taper can be found in [6, 14, 18-20].

When the covariogram K is a Matérn model, explicit infill asymptotic results
have been established that assure that an appropriate taper yields no loss in
predictive performance or statistical efficiency. First note that if the K and p each
have a spectral density, denoted by fo(A) and g(A), then C has a spectral density
as a convolution

A = /R ok 0z (10.16)

If
fo(d) < 02a? /(@ + |A|*)"T4/% for A € RY (10.17)

and the spectral density g(A) of the taper satisfies the following taper condition:
0<g(A) < MO+ ||A|>)~v-9/2 (10.18)

for some € > 0 and M > 0. Then f1(4)/fo(A) has a finite limit as ||[A|| — oo
and this limit equals 1 if € > 0, where f; is given by (10.16)[5, 23] Therefore,
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predictions under both models will be nearly the same when a large sample is
obtained from a bounded.

[4] established the first infill asymptotic distribution for tapered MLE of the
microergodic parameter o2a?” in the Matérn model when the Gaussian process
is observed in an bounded interval on the real line. Let V,, denote the tapered
covariance function whose (i, j)th element is C(||s; —s;|) wheres;,i = 1,---,n

are n sampling locations. The tapered likelihood function is defined as
2 n 1 ’ |
Intap(at,07) = —3 log2mw — 3 log[det V] — EX" V, X, (10.19)

Fixing o at an arbitrary value oy > 0, let

A2
n Un ,tap

= ArgMax I qp (a1, 02).

[4] established the following infill asymptotic result

Vn(6ra? —ogad’) N N(0,2(c3ad”)?). (10.20)

Comparing with (10.14), we see that the tapered MLE is as efficient as the true
MLE.

I am aware of some new results that are not yet published and extend (10.20) to
higher dimensions d = 2 and 3.

10.5.3 Approximation of Likelihood

When the spatial sample size is large, the inverse of the covariance matrix can
be a computational challenge. Hence, the Gaussian likelihood function needs to
be approximated to facilitate computation. [17] proposed an approximation to
the likelihood. This approximation is based on the following simple idea. Given
Y, = (Y1,---.,Y,) where Y; = Y(s;) is the observation at location s;, the log
likelihood can be expressed exactly as

n
La((1) =log p(Y1) + > _log p(Y;[Yj 1.+ . Y1: (1)).
j=2
[17] suggested to approximate p(Y;|Y;_1,---, Y1) by the conditional probability
density of Y; on a subset S¢;_1) C {Y;—1,---, Y1} and recommended choosing

S(j—1) to be made up of a few values that are nearest to the side j. This results in a
quasi-likelihood

La((t)) =log p(Y1) + Y log p(Y;]S¢j—1y: (1)).
j=2
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Assume the process is Gaussian with mean 0 and a Matérn covariogram of known
smoothness parameter. Write = (02, ). Assume 0 and o are the true value of
the parameters and oy > 0 is an arbitrarily chosen value. Define the estimator

62 = AugMaxL, (02, o)

We can give sufficient conditions such that the following is true

d
Vn(6?ad —olad’) — N(0,2(cgad’)?). (10.21)

Let 012 = oga?)" /a%" and let E; denote the expectation corresponding to the
parameter value (01.2, ai),i = 0, 1. Define

e1,0 =Y(s1), ex0 = Y(sg) —Eo[Y(sp)|Y(s1). 1 <l <k], k=2,---,n
ei,1 = Y(s1), ex,1 = Y(sk) —Ei[Y(s)|Sk—]. k =2.--- ,n.

Theorem 10.4. If
EO(en,l - en,O)z _

lim ———————— =0. 10.22
nl>nolo E0€5,() ( )
and
1/2 2
1 < (E - 2 1 <~ |Ege
1 Z ( o€k 2ek,o) ) — oY), and 1 Z I;,o 1| = o2
n = Eoek’0 n et Elek’1
(10.23)
then (10.21) holds.

Proof of this follows the unpublished result and [24].

10.6 Spatio-Temporal Processes

Quite often a spatial location is observed at different time points. This leads
to spatio-temporal data. It is often sensible to employ the increasing domain
asymptotic in the time domain as in the time series literature. In the spatial
domain, we still have the choice whether to apply the fixed domain or increasing
domain asymptotic framework. Currently, most asymptotics for spatio-temporal
data assume the increasing domain asymptotics in both the spatial domain and
temporal domain [11]. It would be interesting to consider that the time domain
is increasing while the spatial domain is fixed. There are no asymptotic results
that I am aware of for this kind of spatio-temporal asymptotic framework. One
conjuncture is that all model parameters are consistently estimable in this latter case
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because the time domain is increasing. However, the asymptotic distribution might
depend on whether the spatial domain is fixed or increasing.
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