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Preface

This work is called a guide because it is primarily a source of basic methods for

scientists wanting to combine evidence from different experiments. It also promotes

a deeper understanding of the notion of statistical evidence. Many scientists like to

use p-values for this purpose, but evidence is obscured by the p-value. It is rather a

measure of surprise: the smaller the p-value under the null hypothesis, the more

untenable the null hypothesis becomes. As a simple measure for filtering out

unremarkable experimental results, the p-value works remarkably well. But it is

hard to interpret and combine across experiments, especially when one believes the

null is false.

When one has in hand several ‘significant’ p-values from different experiments,

all testing for the same effect, the conviction grows that an alternative hypothesis

could be true. By considering the p-value as a random variable under alternative

hypotheses, one sees that its distribution is highly skewed, making interpretation

and comparison of p-values under alternative hypotheses unwieldy at best. By

transforming the p-value with the probability integral transform Tð pÞ ¼ ��1

ð1� pÞ, where � is the standard normal cumulative distribution function, one

obtains the probit scale under the null and a location change of it under alternative,

centered on the expected evidence.

The consequences for interpretation of evidence are profound if one is in the habit

of thinking of p-values as measuring evidence. A ‘highly’ significant p-value of 0.01

represents, on average, only about 40% more evidence for the alternative than a

significant 0.05 p-value, because ��1ð1� 0:01Þ ¼ 2:326 and ��1ð1� 0:05Þ ¼
1:645: There is no conflict here. The p-values are computed under the null and are

measures of surprise, while the evidence lies on a location probit scale. It will be seen

that under alternatives, the evidence measures always have a normal distribution with

standard deviation one. Thus evidence as defined here is a random quantity with a

well-known distribution, and it has a standard error of one unit when estimating its

expected value.

The above statements are strictly true only for the prototypical normal model

with known standard deviation, but as demonstrated in the chapters to follow, many

test statistics can be transformed onto the probit scale by means of variance

stabilizing transformations. Each application requires its own special transforma-

tion, and the mathematical level required for applying them is minimal.



So what can the reader expect from this book? In Chapter 1 the main ideas on

statistical evidence are introduced, to offer a taste of, and hopefully whet the

appetite for, the methods and theory to come.

Part I illustrates how to interpret and combine statistical evidence for the

simplest statistical problems. These methods come first, so those readers wanting

quick access to the ‘how to do it’ can readily find what they want. The why and

wherefore – the philosophy and theory – behind these guidelines are found in

Part II, for those readers piqued by curiosity or skepticism.

Chapters 2–5 present methods for continuous measurements for which the

normal model is deemed appropriate. Chapters 6–9 describe methods for discrete

measurements for which binomial or Poisson models are adopted.

These two groupings are followed in Chapters 10 and 11 by two applications of chi-

squared statistics, testing for goodness-of-fit and homogeneity. However, the emphasis

is on finding evidence for the alternative hypotheses; for example, evidence for

heterogeneity rather than evidence against homogeneity. Measuring heterogeneity is

important in Chapters 12 and 13 wherein methods for combining evidence for effects

from similar studies are presented. Chapter 13 gives methods for regression of evidence

on covariates, and finally Chapter 14 shows how to account for publication bias.

All chapters in Part I have the same format: data, model, questions of interest,

test statistic, transformation to evidence, interpretation, choosing sample size and

confidence intervals. This general methodology in each chapter is followed by

worked examples. Macros for the software package R which enable the reader to

obtain these and results for other data are provided on the website http://www.wiley.

com/go/meta_analysis.

Part II provides the motivation, theory and results of simulation experiments to

justify the methodology. It is intended to be a coherent introduction to the statistical

concepts required to understand our thesis that evidence in a test statistic can be

calibrated when transformed to a canonical scale. This leads to an appreciation of

the error inherent in evidence, and provides the foundation for combining evidence

from different studies.

The spirit of this theory is akin to the Fisherian tradition in that it attempts to

provide a basis for thinking about test statistics, but it differs from Fisher’s

significance testing in that evidence is calibrated under alternatives, not the null

hypothesis. Links to the Neyman–Pearson tradition can be made, because the

expected evidence is a sum of probits of false positive and false negative rates, from

which an expression for the power function is realized. A totally different approach

to evidence based on the likelihood function is provided by Royall (1997).

The chapters in Part II could easily be the basis for a statistics course for senior

undergraduates, while students working through the examples in Part I will gain some

experience with real data. It is recommended that all readers carefully study the first

two chapters of both Parts I and II, before embarking on more adventurous selections.

Elena Kulinskaya
Stephan Morgenthaler

Robert G. Staudte
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1

What can the reader expect
from this book?

Experiments are conducted. Data are gathered. Researchers are looking for an effect,
a change predicted by their musings over a model. At the very least, they want to
gauge the direction of change: how much evidence is there in the data for a positive
effect? More, they want an estimate of the size of the effect.

The statistical evidence for the direction of change is found in a test statistic. But
how does one define and measure this ‘statistical evidence’?

In this book we provide a theory for inference in which the word evidence is cen-
tral and meaningful. We show how to transform test statistics from different studies
onto the same calibration scale where it is easier to measure, interpret and combine
the evidence in them. Our approach lays the foundation for a meta-analytic theory
with known weights. Further, it often leads to accurate confidence intervals for stan-
dardized effects using smaller sample sizes than would be achieved through standard
asymptotic approximations.

The coming chapters are divided into two parts, dealing with methods and theory,
respectively. In this chapter we give a taste of things to come. After introducing
the calibration scale for evidence, we apply the methods to data from the meta-
analytic review literature. Then we discuss standardized effects, sometimes called
effect sizes, for two-sample comparisons, and note that each standardized effect is a
simple function of a correlation coefficient.

Meta Analysis: A Guide to Calibrating and Combining Statistical Evidence    E. Kulinskaya, S. Morgenthaler, and
Robert G. Staudte   © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-02864-3



4 WHAT CAN THE READER EXPECT FROM THIS BOOK?

1.1 A calibration scale for evidence
1.1.1 TTT -values and ppp-values

Consider the simple normal model with unknown mean µ and standard deviation 1.
Given n observations X1, . . . , Xn one rejects the null µ = 0 in favor of the alternative
µ > 0 if the sample mean S = X̄n is ‘large enough’. The test statistic S is known to
contain the evidence required for the test, but the word evidence is rarely defined.
In this case we define the evidence for the alternative to be the transformed statistic
T = √

n S = √
n X̄n. This T is normally distributed with mean

√
n µ and standard

deviation 1, so T is an unbiased estimator of its mean
√

n µ with standard error 1.
Note that the expected evidence

√
n µ grows linearly with µ, and we require that

any definition of evidence for µ > 0 would grow with µ. In addition, the expected
evidence grows with the square root of the sample size; this is consistent with the
notion from estimation that evidence for an unknown µ grows only at this rate: one
needs four times as many observations to estimate µ with twice the accuracy, because
the standard error of X̄n is 1/

√
n .

Thus evidence for the alternative as defined here is a random quantity which always
has inherent error, in fact a standard normal error, whether or not the null hypothesis
holds. If one observes T = 1.645 and reports this as evidence for the alternative, one
should also note the standard error is 1; it is better to write 1.645 ± 1. When one does
this, one realizes that what is sometimes called a ‘significant’ outcome could quite
easily have been something else.

Now suppose that one has two independent experiments similar to the one above,
with respective sample means X̄1 based on n1 observations and X̄2 based on n2

observations. How can we combine the evidence in T1 = √
n1 X̄1 and T2 = √

n2 X̄2

to obtain a single evidence T for the alternative µ > 0? A good choice is Tcomb =
(
√

n1 T1 + √
n2 T2)/

√
n1 + n2 , because it is the mean of all n1 + n2 observations,

rescaled to have variance 1. Also, T is a linear combination of independent normal
variables and hence normal, with expected evidence

√
n1 + n2 µ and standard devi-

ation 1. It is on the same calibration scale as T1 and T2. In particular if n1 = 9,
n2 = 16 and T1 = 1.645, T2 = 2.236, then the combined evidence for µ > 0 is
Tcomb = 2.848 ± 1.

Another way of combining the evidence for µ > 0 is to take (T1 + T2)/
√

2
which is normal with mean (

√
n1 + √

n2 ) µ/
√

2 and variance 1. For the example
in which T1 = 1.645 and T2 = 2.236 this combination yields 2.808 ± 1, which is
slightly smaller than Tcomb. Note that

√
n1 + n2 is always greater than or equal to

(
√

n1 + √
n2)/

√
2 and equality is achieved only when n1 = n2. Thus, the first com-

bination of the evidence is on average always at least as good as the second one. The
proof of the cited inequality is left to the reader; it follows from the concavity of the
square root function.

Traditional ‘significance’ is only weak evidence for the alternative

So far we only have transformed the test statistic S onto a scale whose unit equals the
standard deviation of T = T(S). A traditional marker on this scale is 1.645, the point
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dividing ‘significant’ from ‘nonsignificant’ values. But of course there is almost no
difference between the results T = 1.644 and T = 1.646, and adding and subtracting
the true standard error of 1 puts evidence into its proper perspective: it has a standard
normal error. The result T = 1.645 ± 1 illustrates that T = 1.645 is unreliable. If
forced to give an adjective describing such evidence, we would call it ‘weak’. Twice
as much evidence, T = 3.3, will then be called ‘moderate’, and three times as much
evidence, T = 5, will be called ‘strong’. See Figure 1.1 for plots of some evidence
possibilities. These somewhat arbitrary descriptions are necessarily vague because
evidence is a random quantity. But we think they are a more realistic guide than
setting degrees of ‘significance’ based on p-values.

The p-value of an observed value of a test statistic is often thought to be a measure
of evidence against a null hypothesis, with smaller values indicating larger evidence.
In a certain sense this is true, but the p-value is conditional on the data from a particular
experiment, and so has relevance only for that particular experiment. If one wants
to compare p-values from different experiments, or even to combine the evidence in
them as in meta analysis, one must take into account their distributional properties.

First assume the null hypothesis holds. Then the p-value, when considered as a
random variable, is known to have a uniform distribution on the unit interval when the
test statistic has a continuous distribution, and nearly uniform if the test statistic has
a discrete distribution. So, one might argue, one can indeed combine p-values using

1050−5

−
0.

1
0.

1
0.

3
0.

5

T

Figure 1.1 The distribution of evidence on the proposed calibration scale is always
normally distributed with variance 1. When

√
n µ = 0, the evidence T is centered on

the origin; this is often called the null distribution of T . Other possibilities are centered
on

√
n µ = 1.645, 3.3 and 5; respectively shown from left to right. The point is that

evidence is a random quantity with an unknown mean but standard normal error. Upon
observing T = 3.3, one should report T = 3.3 ± 1. This gives a clear indication not
only of the magnitude, but also the error inherent in evidence T .
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their common null uniform distribution, and assumed independence of experiments.
But when one has in hand a number of small p-values, each of which is consid-
ered ‘significant’, the conviction grows that the null distribution is indeed false, and
what is really desired is a combination of evidence that works whether or not the
null hypothesis is true. Such a combination cannot be based on the assumption that
the null hypothesis is true and that the p-value has a rectangular density. These con-
siderations and others, explained in detail in Chapter 16, lead us to the conclusion that
p-values, when considered as random variables, are on the wrong scale for calibra-
tion and interpretation of statistical evidence, and for forming a combined conclusion
from a set of tests.

Before leaving this section we point out that a p-value for a test based on the T -
statistic can be obtained if desired through the probit transformation of an observed
value t of the evidence T . It is p = 1 − �(t) = �(−t). For this simple example the
p-values based on T = T(S) are exactly the same as those based on S.

1.1.2 How generally applicable is the calibration scale?

So far we have only considered the simplest model of testing for a normal mean when
the standard deviation is known. The transformation of the test statistic S = X̄n to
evidence T = √

n S only required multiplication by the square root of the sample size.
In general one tries to select a transformation h of the test statistic S so that T = h(S)

is on this same unit normal calibration scale. In most routine problems of statistics
this goal cannot be achieved completely, but it can be achieved approximately to a
surprising degree for one- and two-sample binomial and Poisson models, for one-
and two-sample t-tests and for chi-squared and F -tests. The first step then is to find
the variance stabilizing transformation h(S) for the particular model of interest, and
the results of our and others’ endeavors are presented in coming chapters.

In most cases the resulting evidence T is approximately normal with standard
deviation 1 and mean which can be approximated E[T ]

.= √
nK(δ). Here again n

is the sample size, δ is a standardized effect and K is the Key Inferential Function.
Knowing the Key is like knowing the power function in traditional Neyman–Pearson
testing; it contains all the important information about the relationship between the
standardized effect δ and its transformed value κ = K(δ). This information can be
exploited to choose sample sizes to obtain desired amounts of evidence, up to standard
error 1, or to derive confidence intervals for δ.

Example 1. The one-sample ttt-test

Take X1, . . . , Xn independent, each having the normal distribution with unknown
mean µ and variance σ2. The raw effect is µ − µ0, where µ0 is a known value
determined by scientific context. The standardized effect is δ = (µ − µ0)/σ. For
testing the null µ = µ0 against the alternative µ > µ0 the test statistic S = √

n (X̄n −
µ0)/sn is known to have a Student t-distribution with n − 1 degrees of freedom under
the null hypothesis and a noncentral t distribution with the same n − 1 degrees of
freedom and noncentrality parameter

√
n δ. Chapter 20 contains further details, where
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it is also shown that a variance stabilizing transformation T = h(S) has the property
that, to a useful approximation, T has the N(

√
nK(δ), 1) distribution for a wide range

of values of n and δ.

The Key Inferential Function for this measure of evidence is

K(δ) =
√

2 sinh−1(δ/
√

2 )

=
√

2 ln(δ/
√

2 +
√

1 + δ2/2).

This simple monotonic function together with the sample size n provide all the infor-
mation required for inference regarding δ, provided n is not too small. For example,
when n = 10 accurate 95 % confidence intervals can be derived for any δ satisfying
−2 < δ < 2.

Example 2. The one-sample binomial test

Let X have the binomial distribution with parameters n, p where n is known and
0 < p < 1. For testing the null p = p0 against the alternative p > p0 it is customary
to reject the null when the test statistic X is too large; or equivalently when p̂ = X/n is
too large. It is well known (see Chapter 18) that a classic transformation of p̂ to the unit
normal calibration scale is given by T = h(p̂) = 2

√
n {arcsin(

√
p̂ ) − arcsin(

√
p0 )},

and this transformation is improved if p̂ is replaced by p̃ = (X + 3/8)/(n + 3/4).

The Key Inferential Function for this transformation is

K(p) = 2
{

arcsin(
√

p ) − arcsin(
√

p0 )
}
.

This Key could have been expressed as a function of the raw effect p − p0 or the
standardized effect δ = √

n (p − p0)/
√

p(1 − p) because these effects are mono-
tonic functions of p, but for this example it would be an unnecessary notational
complication. In Section 1.2 we illustrate how this arcsine transformation to the cal-
ibration scale can be employed to find and combine the evidence in several studies.
But first we need to discuss several issues arising when considering more than one
study on the same subject.

1.1.3 Combining evidence

Return to the simple normal model of Section 1.1.1, where we tacitly assumed that the
true effect µ was the same for the two studies, instead of the more realistic assump-
tion that T1 ∼ N(

√
n1 µ1, 1), T2 ∼ N(

√
n2 µ2, 1) where both µ1, µ2 are unknown.

The joint null hypothesis is now µ1 = 0 = µ2, and there are many possible alter-
natives, each possibly requiring a different combination of evidence. For example,
the alternative µw = (w1µ1 + w2µ2)/(w1 + w2) > 0, for known positive weights
w1, w2, suggests a combination Tw = c(w1T1 + w2T2), with constant c chosen so
that Tw has variance 1. And the joint alternative µ1 > 0 and µ2 > 0 suggests a com-
bination of the form Tmin = h(min{T1, T2}) where h is a transformation to the unit
normal calibration scale. The best combination for each alternative is a challeng-
ing problem in itself, which we do not pursue here. Rather we test or estimate an
overall effect.
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In traditional meta analysis it is common to assume the µk values are equal
(the fixed effects model) ; or to assume that the µk values themselves are a random
sample from a N(µ, γ2) model (the random effects model), where γ2 is a variance
component introduced to explain the variability in µk. The advantage of these two
models is that there is only one parameter of interest µ, the overall effect, and one
can test hypotheses regarding µ or estimate µ without all the complications raised in
the previous paragraph for fixed unequal effects.

More generally, we haveK independent studies resulting in evidencesTk which are
approximately normal with variance near 1 and E[Tk]

.= √
nk K(δk) for k = 1, . . . , K.

Here Tk is the evidence for δk > 0 based on nk observations in the kth study, obtained
by a suitable variance stabilizing transformation, and K is the associated monoton-
ically increasing Key Inferential Function. There is a one-to-one correspondence
between each δk and κk = K(δk). The fixed standardized effects model in which all
δk = δ is easiest to deal with, because there is only one δ, hence one κ = K(δ). One
can find the evidence Tcomb =∑k

√
nk Tk/

√
N , where N =∑k nk, as evidence for

the alternative κ > 0, and hence also for δ > 0. Note that Tcomb ∼ N(
√

N K(δ), 1).

One can also use Tcomb ± z1−α/2 to obtain a 100(1 − α) % confidence interval [L, U]
for κ, and by back-transformation for δ, namely [K−1(L/

√
N ),K−1(U/

√
N )].

In many problems the assumption that all δk = δ is untenable, and testable using
Cochran’s Q test of homogeneity. In Chapter 24 a variant of Cochran’s Q called Q∗

is applied to the κ̂k’s to find the evidence TQ∗ for heterogeneity of the κk’s and hence
the δk’s. On the basis of this evidence, the researcher may well prefer the following
model.

The random transformed (standardized) effects model assumes that the κk’s are
a random sample of size K from the normal model with mean κ and variance γ2,

with both parameters unknown. Then the conditional distribution of each κ̂k, given
κk, is N(κk, 1/nk), and unconditionally it is N(κ, γ2 + 1/nk). Now when the nk’s are
all equal, or when their reciprocals are negligible compared to γ2, the κ̂k’s are just
a sample of size K from a normal population with mean κ and common variance.
Let κ̄ and s2

κ denote the sample mean and variance of these transformed standardized
effects. The usual t-test rejects the null κ = 0 in favor of κ > 0 when the statistic
S = √

K (κ̄ − 0)/sκ is large. The evidence in this statistic for κ > 0, and hence δ > 0,
is essentially T = √

2K sinh−1(S/
√

2K ), as shown in Chapter 20.
If one desires to compute a confidence interval for δ, one can find a t-interval

[L, U] for κ first, namely κ̄ ± tK−1,1−α/2 sκ/
√

K, and then [K−1(L),K−1(U)] for δ

by back-transformation.

1.2 The efficacy of glass ionomer versus resin sealants
for prevention of caries

1.2.1 The data

The review by Ahovuo-Saloranta et al. (2004) contains three studies in which match-
ing molar teeth in the same children formed the basis for paired comparisons. Two
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Table 1.1 Summary of three studies by the authors shown. Note the evidence
is in conflict, but this should not preclude an analysis; further studies may
demonstrate that one sealant is superior to another. References to these
three studies and more background can be found in Ahovuo-Saloranta et al. (2004).

Resin sealant

+ − + − + −
Glass Ionomer + 378 28 156 6 191 2
Sealant − 3 3 37 7 9 1

Arrow (1995) Poulsen (2001a) Poulsen (2001b)

types of sealants were applied at random to the pair, and then the teeth were
assessed after 24- to 44-month intervals to detect the presence ‘−’ of one or more
caries or ‘+’ no caries. The results of these three studies are summarized in
Table 1.1.

The discordant pairs are those for which the treatment and control responses
differ; let f be the number of (+, −) pairs and g be the number of (−, +) pairs.
In the first study there are f = 28 pairs for which the response was (+, −): there
were no caries in one tooth after glass ionomer treatment, while the corresponding
tooth receiving resin sealant did have caries. There were g = 3 pairs in which the
two treatments led to the opposite results (−, +). The conditional distribution of f ,
given f + g is binomial with parameters f + g and p, where p is the probability
that a discordant pair is (+, −). A test of symmetry in treatment control outcomes
is a test of p = 0.5, with alternative p > 0.5 corresponding to the treatment (in this
case glass ionomer) having greater probability of ‘+’ within a discordant pair. (See
Lachin (2000), p. 180, for more details.) We can now compute the evidence for
p > 0.5 in each of the three studies using T = 2

√
n {arcsin(

√
p̃ ) − arcsin(

√
0.5 )},

where p̃ = (X + 3/8)/(n + 3/4).

1.2.2 Analysis for individual studies

1.2.2.1 Evidence for pk > 0.5 in individual studies

In the first experiment, there are 31 discordant pairs, so conditionally, X1 has the
binomial(31, p1) distribution, where p1 is the probability that glass ionomer is more
effective than the resin sealant in preventing caries in the first experiment. The evi-
dence against p1 = 0.5 in favor of p1 > 0.5 is T1 = 5.05, displayed in column 3 of
Table 1.2; this is what we would call ‘strong’ evidence.

In the second study, the distribution of X2 is binomial(43, p2), where again, p2

is the probability that glass iomomer is more effective in this study. The evidence
against p2 = 0.5 in favor of p2 > 0.5 is T2 = −5.16; that is, the evidence is even
stronger than in the first study, but this time in the opposing direction.
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Table 1.2 Summary of synthesis of evidence for the sealant data in Table 1.1.

k Xk nk p̃k Tk T1:k Lk Uk κ̂k

1 28 31 0.903 5.05 5.05 0.763 0.976 0.548

2 6 43 0.140 −5.16 −0.67 0.057 0.265 −0.560

3 2 11 0.182 −2.12 −1.39 0.029 0.476 −0.230

For the third study, the evidence against p3 = 0.5 in favor of p3 > 0.5 is T3 =
−2.12, which is weak evidence for the alternative p3 < 0.5. It is important to remem-
ber that all these evidence values have standard error 1.

Confidence intervals for pk in individual studies

Confidence intervals [Lk, Uk] for pk are based on Equation (18.2), and for confidence
95% are shown in columns 7 and 8 of Table 1.2. Note that they are not centered on
p̃k, but are more reliable than intervals based on the standard asymptotic theory of
adding and subtracting 1.96 standard errors to p̂. For more details, see Chapter 18.
These intervals suggest that the pk are not equal, but nevertheless for completeness
we assume this to be the case in the next section.

1.2.3 Combining the evidence: fixed effects model

If we were to assume that all pk = p, then we could readily combine the evi-
dence in the individual studies for p > 0.5. The results in column 6 of Table 1.2
are obtained sequentially: the entry in row k is based on the first k studies. The
first two studies have strong conflicting evidence, and this is reflected by the com-
bined evidence T12 = (

√
31 T1 + √

43 T2)/
√

74 = −0.67, shown in column 6. It is
almost negligible. For the three studies, the combined evidence is T1:3 = (

√
74 T12 +√

11 T3)/
√

85 = −1.39, which is quite weak evidence in favor of the resin sealant.
Thus combining evidence on the calibration scale allows for cancelation of conflict-
ing evidence, leading to the correct conclusion that there is no evidence for a common
p > 0.

One can also obtain a confidence interval for p based on all three studies. Starting
with the combined evidence T1:3 = −1.39, a 95 % confidence interval for the expected
evidence

√
85K(p) is −1.39 ± 1.96, or [L, U] = [−3.35, 0.57]. Here the key is

K(p) = 2
{

arcsin(
√

p ) − arcsin(
√

0.5 )
}

, so K−1(y) = sin2(y/2 + π/4). This leads
to the 95 % interval [K−1(L/

√
85 ) , K−1(U/

√
85 ) ] = [0.32, 0.53] for p.

1.2.4 Combining the evidence: random effects model

The transformed effects κ̂k = K(p̃k) are shown in Table 1.2, and their respective
approximate normal N(κk, 1/nk) distributions depicted in Figure 1.2. The sample
mean and standard deviation are κ̄ = −0.081 and sκ = 0.569. A test for heterogeneity
of these transformed effects based on Cochran’s Q is described in Chapter 24, and
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Figure 1.2 Transformation of the estimated probabilities that glass ionomer out-
performs resin sealant into transformed effects κ̂k = K(p̃k). The evidence Tk for a
positive effect pk − 0.5 > 0 has distribution that is approximately N(

√
nk κk, 1), so

κ̂k = Tk/
√

nk has distribution that is approximately N(κk, 1/nk). These normal dis-
tributions are centered at respective unknowns κk’s, and depicted in the plot centered
at the respective estimates κ̂k’s.

the evidence for heterogeneity is strong (TQ∗ ≈ 4.5) so a random transformed effects
model is in order; it essentially adds a variance component to the model to account for
the variability from study to study. Details are given in Section 25.3, where it is shown
that if the reciprocals of the sample sizes are small compared to this component, then,
even for a small number of studies K, the evidence for the overall κ > 0, and hence
p > 0.5, is T = √

2K sinh−1(S/
√

2K ), where S = √
K (κ̄ − 0)/sκ.

For our data S = −√
3 (0.081/0.569) = −0.25 and so the evidence T for κ > 0,

and hence p > 0, is negligible. (Note that here T ≈ S = −0.25, because the function
sinh−1 behaves like the identity near the origin.)

A confidence interval for a representative p can also be found, starting with
the t-interval for κ of κ̄ ± t2,0.975sκ/

√
3 or [L, U] = [−1.49, 1.33]. By transforming

this interval back via K−1(y) = sin2(y/2 + π/4), the 95 % confidence interval for p

is [0.002, 0.986]. This interval tells us virtually nothing about p, but of course this is
because the number of studies is small, and the results are contradictory. It confirms
that the very strong assumption of a fixed effects model which led to the interval
[0.32, 0.53] for p is unwarranted.

1.3 Measures of effect size for two populations
For us an effect size is another term for standardized effect ; that is, an effect divided by
a suitable measure of scale. For a single population with mean µ, standard deviation σ,
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it is often taken to be the raw effect µ − µ0 divided by σ. Here µ0 is a hypothesized
value of µ suggested by scientific context. The advantage of standardized effects over
raw effects is that they are free of the units of measurement. For two populations with
different variances σ2

1 , σ2
2 , the question arises of how to standardize the difference of

their means� = µ1 − µ2. The purpose of this section is to define a standardized effect
δ for comparing two populations and its associated correlation effect size ρ = ρ(δ).

Let X1, . . . , Xn1 be a sample of size n1 from the first population and estimate µ1

by the sample mean X̄; similarly let Ȳ be based on an independent sample Y1, . . . , Yn2

from the second population. Then an unbiased estimator of the effect � = µ1 − µ2

is �̂ = X̄ − Ȳ . Now, because �̂ is unbiased for �, the standard error SE[�̂] of �̂

satisfies
{

SE[�̂]
}2 = Var[�̂] = σ2

1

n1
+ σ2

2

n2
.

Definition 1.1 Let N = n1 + n2, and define the standardized effect by

δ = �√
N SE[�̂]

.

This effect size δ is free of the units of measurement. Note that δ is also free of the
sample sizes, but does depend on the relative sample sizes, as well as � and unknown
population variances.

There are numerous other definitions of effect sizes in the meta-analytic literature,
including those that are Pearson product moment correlations between the variable
of interest and a classification variable; this group includes the point-biserial correla-
tion coefficient, see Cohen (1988) and Rosnow and Rosenthal (1996) and references
therein. These measures of effect size are often called correlation effect sizes and will
be denoted generically here by ρ. Each is related to a corresponding standardized
effect δ by:

ρ = δ

{1 + δ2}1/2
. (1.1)

A plot of ρ against δ is shown in Figure 1.3. Note that ρ = ρ(δ) is a strictly
increasing function of δ with inverse function δ = δ(ρ) = ρ/

√
1 − ρ2 . In addition,

ρ is an odd function of δ; that is ρ(−δ) = −ρ(δ) for all δ.

Examples

The above Definition 1.1 of standardized effect is employed directly in comparing
two normal populations in Chapter 21. Another special case, comparing two Bernoulli
populations, is also of interest, and discussed in Chapter 19. Here we reexpress the
above results in a simpler notation for this problem. Assume each Xi = 1 or 0, respec-
tively, with probabilities p1, 1 − p1; that is, Xi has the Bernoulli(p1) distribution, and
µ1 = E[Xi] = p1 and σ2

1 = p1(1 − p1). Similarly let each Yi ∼Bernoulli(p2). Then
p̂1 = X̄, p̂2 = Ȳ .

In this context � = p1 − p2 and �̂ = p̂1 − p̂2. Further, letting q = n2/N, where
N = n1 + n2, and following the notation of Brown and Li (2005), let p = qp1 +
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Figure 1.3 The graph of correlation effect size ρ against standardized effect δ.

(1 − q)p2. They observe that NVar[�̂] = ζ − �2, where ζ = p(1 − p)/{q(1 − q)}.
The standardized effect is therefore δ = �/

√
ζ − �2 , and the associated correlation

effect size is ρ = �/
√

ζ . The importance of this result to the theory presented here is
that in Chapter 19 we define a new and effective variance stabilizing transformation
for the risk difference � = p1 − p2 and its associated Key Inferential Function is
simply K(ρ) = arcsin(ρ).

1.4 Summary
In this text we provide a unified theory of statistical inference in which the word
‘evidence’ is central and meaningful. It grows out of our conviction that the traditional
ways of measuring evidence, in particular with probabilities, are neither intuitive nor
useful when it comes to making comparisons between experimental results, or when
combining them.

We measure evidence for an alternative hypothesis, not evidence against a null.
To do this, we have in a sense adopted standardized scores for the calibration scale.
Evidence for us is simply a transformation of a test statistic to another one (called
evidence) whose distribution is close to normal with variance 1, and whose mean
grows from 0 with the parameter as it moves away from the null. The transformation
required depends on the model, and there is a rich legacy to draw upon from research
in the last century.

The advantages of such a theory are many:

• Conceptual simplicity. Evidence T for an alternative is normally distributed
with unknown mean and variance 1; it is an unbiased estimator of its mean that
always has a standard normal error.
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• Usefulness. The expected evidence often has the form E[T ]
.= √

nK(δ), where
K is a known Key Inferential Function. This formula facilitates finding sample
sizes required to achieve desired amounts of evidence for an alternative, and
deriving confidence intervals for δ.

• Effectiveness. Compared to methods based on standard asymptotics, these
methods generally require smaller sample sizes to achieve good approximations
(see Chapter 27).

• Meta-analytic potential. Combining evidence on this calibration scale is sim-
pler, because it forms combinations of evidence with known weights.

Of course there are disadvantages, too, of which the reader is no doubt aware. One
needs to become familiar with square root, arcsine and hyperbolic arcsine transfor-
mations. But in this opening chapter we have tried to convey the above listed potential
benefits of defining evidence on the unit normal scale. We have sketched the ideas
for the most important binomial and normal models, and illustrated the meta-analytic
ideas on data from the recent review literature. We have concluded with some relations
between effect sizes useful to us in comparing two populations.



2

Independent measurements
with known precision

This chapter is a template for later chapters, and therefore should be read by all
readers. It illustrates the methodology for the simplest normal model where only
one parameter, the mean, is unknown, and the variance is known. In all subsequent
sections a variance stabilizing transformation will be required to bring one onto this
calibration scale.

2.1 Evidence for one-sided alternatives
Data and model

• We are given measurements x1, . . . , xn on a variable X obtained by an instru-
ment of known precision.

• The measurements are regarded as independent observations which form a
sample from a normal population with unknown mean µ and known standard
deviation σ0, the precision.

Question

• What is the evidence for an effect in a known direction? For example, what is
the evidence against the null hypothesis µ = µ0 and for the alternative µ > µ0?
Here the value µ0 is known and determined by scientific context. The difference

Meta Analysis: A Guide to Calibrating and Combining Statistical Evidence    E. Kulinskaya, S. Morgenthaler, and
Robert G. Staudte   © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-02864-3
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µ − µ0 is called the effect, while δ = (µ − µ0)/σ0 is called the standardized
effect.

• By symmetry, if alternatives µ < µ0 are of interest, the problem is the same
as for µ > µ0, except for the direction. The change of direction is reflected in
the sign of the evidence T . The former problem could be transformed into the
latter by reflection about µ0; i.e. replacing the deviations from the null value
xi − µ0 by its negative µ0 − xi; or, replacing the observations xi by 2µ0 − xi.
Thus we only comment on the direction µ > µ0 and interpret positive evidence
as support for µ > µ0.

Test statistic and distribution

• The usual test statistic is based on the arithmetic mean x̄n =∑i xi/n of the
measurements; large values of S = (x̄n − µ0) support the alternative µ > µ0

over the null µ = µ0. There is no natural boundary separating ‘small’ x̄n from
‘large’, and that is why a calibration scale is desirable.

• The model for x̄n is also normal, with the same unknown mean µ, but smaller
variance σ2

0/n. Also, the standard deviation of x̄n is σ0/
√

n which is often
called the standard error of x̄n.

Transformation to evidence

• Let the evidence be T = √
n (x̄n − µ0)/σ0 = √

n δ̂. Then T will, on average,
be equal to τ = √

n δ. Also, the standard deviation of T is 1, and the values
of T can be thought of as being drawn at random from a bell-shaped normal
distribution. These facts can be summarized symbolically as T ∼ N(

√
n δ, 1).

Interpretation

• The evidence T is an unbiased estimator of the expected evidence τ = E[T ] =√
n δ, with standard error SE[T ] = 1. Therefore the evidence is closely related

to τ, as shown in Figure 1.1. It displays the distribution of T for four values, τ =
0, 1.645, 3.3 and 5, which in words we describe, respectively, as no evidence,
weak, moderate and strong evidence for the alternative µ > µ0. Note that there
is a small amount of overlap in the use of these words.

• Under the null hypothesis µ = µ0, the standardized effect δ = 0, so τ = 0 and
T has the standard normal distribution with cumulative distribution function
�. For an observed sample mean x̄n, the observed evidence is T = √

n(x̄n −
µ0)/σ0 and the p-value is p = 1 − �(T) = �(−T). Thus p-values can be recov-
ered from T .

• The choice of τ = 1.645 as the basic unit of calibration is for compatibility
with the well-established p = 0.05 in significance testing; while this boundary
traditionally separates ‘significant’ from nonsignificant results, all scientists



2.1 EVIDENCE FOR ONE-SIDED ALTERNATIVES 17

know this boundary is arbitrary and in terms of evidence it is weak. It is weak
partly because when an experiment has just achieved a boundary result of 0.05,
the expected p-value in an independent replication of the experiment is 0.12
(see Section 16.2.2). It is also weak because it is unreliable in that the standard
error of T is 1, and relative to the size of T = 1.645, this standard error is large.

• The relative error in T , SE[T ]/E[T ] = 1/τ, becomes smaller and smaller as
τ increases. Because τ = √

n δ, choosing the sample size to achieve a desired
expected evidence for a relative effect of interest becomes an option. Another
is combining the evidence from several experiments.

• For any fixed n and µ > µ0 which determine the expected evidence τ = √
n δ,

one needs to increase n by a factor of 4 to move the density of T located at τ

to 2τ and by a factor of 9 to move it from τ to 3τ. In particular, if the expected
evidence is weak, τ = 1.645, then 4 times as much work will yield moderate
evidence of 3.3, and 9 times as much work is required for strong evidence of 5.

• The question arises as to what to do with negative values of T . They could be
set equal to 0, because they are in a direction contrary to the alternative µ > 0.

However, we view evidence for such one-sided alternatives as the first step in
finding evidence for two-sided alternatives, which are usually advocated. And
preserving the direction of evidence through the sign means that when combin-
ing evidence in several studies, contradictory results are allowed to cancel each
other out. Not to preserve the sign is to throw away valuable information. For
further discussion of this question and the above remarks, see Section 2.2 and
Chapter 16.

Choosing the sample size to achieve a desired amount of evidence

• If one wants the evidence for a particular standardized effect of scientific inter-
est, call it δ1 = (µ1 − µ0)/σ0 > 0, to be τ, one needs to solve τ = √

n δ1 for
the sample size n. For example, to obtain ‘strong’ expected evidence τ = 5 one
requires n = 25/δ2

1. This does not guarantee strong evidence T , because T has
standard error 1.

• Let zα denote theαquantile of the standard normal model; it satisfies�(zα) = α.

For those steeped in the Neyman–Pearson tradition, it is of interest to compare
the above choice of n with that needed to obtain power 1 − β of detecting δ1

at level α; it satisfies
√

n δ1 = z1−α + z1−β. Hence the relationship between
expected evidence τ, level α and power 1 − β is

τ = z1−α + z1−β. (2.1)

What is usually asked for is power 0.8 at level α = 0.05, and this corresponds to
expected evidence τ = z0.95 + z0.8 = 1.645 + 0.842 ≈ 2.5, which is between
weak and moderate. To obtain moderate evidence for alternative δ1 at level 0.05
one needs power 0.95 of detecting it, not 0.8. To obtain strong evidence of τ = 5
and maintain α ≤ β(δ1), one can take α = β = 0.005, say.
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Confidence intervals

• Let c = z1−α/2. Then a 100(1 − α) % confidence interval for τ is [T − c,

T + c]. It follows that with the same confidence δ = τ/
√

n lies in the interval
[(T − c)/

√
n , (T + c)/

√
n ]; and for the effect µ − µ0 the interval is

[
σ0(T − c)√

n
,

σ0(T + c)√
n

]

. (2.2)

Usually 95 % confidence is desired, and for this case c = z0.975 = 1.96.

2.2 Evidence for two-sided alternatives
In many, if not most, applications in which the measurements are modeled by a
symmetric distribution, the researcher does not have enough prior knowledge to make
the very strong assumption that the alternative to the null µ = µ0 can only be in a
specific direction. And doing so in the case of testing for the mean of a symmetric
distribution means the p-value is only one-half what it would be if the two-sided
alternative µ �= µ0 were specified; thus the evidence against the null is overstated.
Such action is especially notable if an ‘insignificant’ 0.1 result is presented as a
‘significant’ 0.05, and hence strenuous objection to assuming one-sided alternatives
is frequently made.

While we agree with this objection, it is equally important to keep in mind that
when combining evidence from different studies, the direction as well as the magni-
tude of evidence needs to be known, so that conflicting findings are not hidden and can
be accounted for. We therefore recommend reporting both one-sided and two-sided
evidence.

Data, model and test statistic

Exactly as in Section 2.1.

Question

• What is the evidence for µ �= µ0?

Conversion to evidence

• Let c = z0.75/
√

2 = 0.6745/
√

2 = 0.477.The evidence for the two-sided alter-
native µ �= µ0 to the null µ = µ0 is motivated in Section 17.4.1 and defined in
terms of the absolute value of evidence |T | for one-sided alternatives by

T ± =
{ √

T 2 − c2 − c, for |T | ≥ z0.75;
c −

√[
�−1(1.5 − �(|T |))]2 − c2 , for |T | < z0.75.

(2.3)
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Interpretation

• Evidence of 1.645 or −1.645 for a one-sided alternative, corresponding to a
one-sided p-value of 0.05, is converted into two-sided evidence of 1.10, corre-
sponding to the two-sided p-value of 0.136.

• The difference | T | − T ± is the amount of evidence one loses for assuming a
two-sided alternative when there is prior knowledge to assume a direction; it
is also the amount that the evidence is overstated, by assuming a one-sided
alternative when there is no justification for doing so. While this amount is
not negligible, it is much smaller than ‘halving the p-value’ would suggest.
For values of |T | bigger than about 1.5, this turns out to be approximately the
constant value of c = z0.75/

√
2 = 0.477.

• One-sided evidence can be positive or negative, indicating support for µ > 0
or µ < 0, respectively. Since we always want evidence to be roughly normally
distributed, the same must hold for evidence for a two-sided alternative, even
though negative values for the evidence can no longer be interpreted as giv-
ing evidence in the opposite direction. A negative value of the evidence for
two-sided alternatives simply indicates that none of the alternatives is more
convincing than the null value.

2.3 Examples
Measurements with known precision are common in manufacturing, where the con-
sumer wants to know if a product meets the standard claimed on the label. A regulatory
agency can take a random sample of a product under investigation, and look for
evidence that the product complies with the rules. A manufacturer meanwhile will
institute quality control procedures to ensure compliance.

When storing blood samples, do the concentrations of key markers change over
time or do they remain stable? This can be checked with an experiment where two
measurements are taken, one using fresh samples and the other after a period of
storage. Whether these two results are close to each other then becomes the question
of interest.

Determining whether a person is driving under the influence of an illegally high
blood alcohol content is yet another example. Measurements always vary, and if the
precision is known, the sample mean summarizes the available evidence. How does
one calibrate this evidence?

2.3.1 Filling containers

A paint manufacturer fills 10 liters of white paint into cans that hold as much as 10.5
liters. The amount of paint the filling machine squirts into each can varies, and this
inherent variability has known standard deviation σ0 = 0.2 liters. The actual amount
of paint in a sealed can is determined by net weight and conversion of weight to
volume; these measurements are highly accurate and can be taken as exact for our
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purposes. Suppose the manufacturer is subject to regulatory fines if a random sample
of four cans is found to have a mean volume of less than 9.67 liters. How was this
value determined and how would we judge it from the point of view of evidence?

If a random sample of four cans leads to an average exactly equal to the regulatory
limit x̄4 = 9.67, the p-value turns out to be p = 0.0005. Thus it can be argued that if
the manufacturer is actually complying with the regulations, there is only 1 chance in
2000 of mistakenly charging fines for noncompliance. There is nothing wrong with
this calculation. But if one were to add that p = 0.0005 is ‘very strong evidence’ in
favor of the average filling volume being less than 10 liters, we would object to the
words in quotes. The p-value of 0.0005 sounds impressively small, and is only 1/100
of the ‘significant’ 0.05. But is it 100 times more evidence against the null?

The evidence is T = √
n(x̄n − µ0)/σ0 = 2 × (9.67 − 10)/0.2 = 3.3. We suggest

that the statistic T is a better measure of evidence for the alternative, and −3.3,
corresponding to 0.0005, is only twice the size of −1.645, corresponding to 0.05. On
the probit calibration scale, the outcome T = −3.3 is seen to be moderate evidence
for the alternative µ < 10 rather than very strong evidence.

2.3.2 Stability of blood samples

This example is from Brown and Hollander (1977). The variable of interest is the level
of triglyceride in blood plasma. Two measurements are taken, one on a fresh sample
and the second one after 8 months in frozen storage. The concentration is expressed
in mg/100 ml and it is known that the standard error of the analytic technique is equal
to 4. For the difference x of two independent measurements, this results in a standard
error of

√
42 + 42 = σ0 = 5.7. The rounded differences xi before and after storage

of n = 30 blood samples are:

−8 5 −4 −4 −1 1 8 8 −9 6 2 −2 7 −3 1
7 −3 −4 −2 −5 −2 5 6 3 −4 −1 14 −2 1 13

From this we find x̄30 = 1.1. The corresponding one-sided evidence against µ = 0
is T = √

30(1.1 − 0)/5.7 = 1.1, which is not even large enough to earn the qualifier
of ‘weak evidence’.

The 95% confidence interval for µ is

[
σ0(T − 0.477)√

n
,

σ0(T + 0.477)√
n

]

= [−0.94, 3.14], (2.4)

and thus quite wide.

2.3.3 Blood alcohol testing

Blood alcohol testing of drivers involved in accidents or even selected ‘at random’
is a legal requirement in many countries. An in-depth review of several methods by



2.3 EXAMPLES 21

Devleeschouwer et al. (2004) provides estimates of the precision of these methods.
The variable of interest is X, the blood alcohol content in grams/liter.

As is often the case when measuring positive amounts, observations on blood
alcohol have approximately constant coefficient of variation γ = σ/µ, where σ is the
standard deviation of the measurements and µ is the true blood alcohol content.
For this same reason analytical chemists prefer to express the precision of their
observations in terms of the coefficient of variation.

Because σ = γµ is a percentage of µ, we cannot apply the test discussed in this
chapter immediately. The link between µ and σ suggests the use of the logarithmic
transformation. To see why, write X = µ × (X/µ) and note that X/µ has expected
value of 1 and variance γ2. Taking the logarithm leads to

ln(X) = ln(µ) + ln(X/µ) = ln(µ) + ln[1 + (X − µ)/µ] ≈ ln(µ) + (X − µ)/µ,

where we have used the approximation ln(1 + u) ≈ u for small u. The above equation
also shows that ln(X) has expected value ln(µ) and variance γ2. The logarithmic
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Figure 2.1 Plot of evidence and p-value against average of four readings on a breath-
alyzer test. The evidence for the alternative is weak at T = 1.645 when x̄4 = 0.56,

and this corresponds to the p-value of 0.05. When T = 2.32, which is only slightly
larger given that the standard error of T is 1, the p-value is 0.025, and when T = 3.3,
twice the weak value, the p-value is 0.0005. Both plots are correct; but the interpre-
tation is different, because the p-value plot assumes the null hypothesis µ = 0.5 is
true. The plot of T simply assumes µ is unknown, and comes with the proviso that
T has standard error 1.
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transformation of an observation with constant coefficient of variation will approxi-
mately have constant standard deviation. This is an example of a variance stabilizing
transformation.

A subject involved in an accident must take four independent readings on a test
and these lead to a sample mean of x̄4. This statistic is used to test the null hypothesis
µ = 0.5 grams/liter against the alternative µ > 0.5, with the null rejected if x̄4 is large
enough. The standard deviation of x̄4 is σ/

√
4, whereas its expected value remains

equal to µ. The coefficient of variation of x̄4 is thus equal to γ/
√

4. Applying the
above variance stabilizing transformation shows that ln(x̄4) has expected value ln(µ)

and standard deviation γ/
√

4.

It is known that γ = 0.13 for a certain blood testing kit. Thus ln(x̄4) has approx-
imate standard error 0.13/

√
4 . Hence the p-value of an observed x̄4 is

p = 1 − �
(√

4{ln(x̄4) − ln(0.5)}/0.13
)
.

This p-value is plotted as a function of x̄4 in Figure 2.1, along with a plot of the
evidence for the alternative T = √

4{ln(x̄4) − ln(0.5)}/0.13.

Note that the evidence rises almost linearly with the sample mean (and would be
exactly linear if we had not needed to use the log scale). But the p-value is hard to
read and interpret in the region where it becomes small and is considered significant.
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Independent measurements
with unknown precision

For normal models with both parameters unknown, one may be interested in making
inferences regarding µ, treating σ as a nuisance parameter, or σ with µ as the nuisance,
and traditional methods based on the Student t-statistic or chi-squared statistic are
available. The inference for µ is studied here along with inference for δ = (µ −
µ0)/σ, the standardized effect. The evidence for the one-sided alternative µ > µ0 is
equivalent to δ > 0, because σ > 0.

3.1 Effects and standardized effects
Data and model

• Given measurements x1, . . . , xn on a variable X obtained by an instrument of
unknown precision.

• The measurements are considered independent observations from a normal
population with unknown parameters µ, σ.

Questions

• What is the evidence for a positive effect µ − µ0 > 0; or, equivalently, for a
positive standardized effect δ > 0?

• What is a confidence interval for µ or for δ?

Meta Analysis: A Guide to Calibrating and Combining Statistical Evidence    E. Kulinskaya, S. Morgenthaler, and
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Test statistic and distribution

• The Student t-statistic tn−1 = √
n δ̂, where δ̂ = (x̄n − µ0)/sn is an unbiased

estimator of δ and x̄n and s2
n =∑i(xi − x̄n)

2/(n − 1) are the usual sample mean
and variance. Larger values of the test statistic favor the alternative δ > 0 over
the null δ = 0, and we want to transform the statistic onto the probit calibration
scale.

• The distribution of tn−1 is the noncentral tν(λ) distribution with ν = n − 1
degrees of freedom (hereafter abbreviated df ) and noncentrality parameter λ =√

n δ. Under the null hypothesis, λ = 0 and tn−1 has the familiar central Student
t-distribution, which approaches the standard normal with increasing n.

Transformation to evidence

• It turns out that tn−1 can be transformed to evidence T = √
nK(δ̂) having an

approximate normal distribution with mean τ = √
nK(δ) and variance 1, where

K is given by Equation (3.1), for sample sizes n ≥ 5 and δ encountered in
applications.

• A modificationTunbiased of
√

nK(δ̂) is analyzed in Section 20.4.2. It isTunbiased =√
n K̂unbiased, with K̂unbiased defined by Equation (20.8). The corrected evidence

Tunbiased is preferable to T . Its performance improves with sample size, as sug-
gested by the following guidelines:

– For n = 5 and |δ| < 2 the variance is stabilized near 0.85, but nominal 95 %
confidence intervals for δ have coverage nearer 97 %.

– For n = 10 and |δ| < 10 the variance is stabilized near 1.0, and nominal 95 %
confidence intervals for δ are reliable for |δ| < 2. This interval includes most
δ encountered in applications.

– For n = 25 and |δ| < 10 the variance is stabilized near 1.0, and nominal 95 %
confidence intervals are reliable for |δ| < 10.

Interpretation

• The crucial ingredient K which determines the expected evidence is defined for
each δ by

K(δ) =
√

2 ln

(
δ√
2

+
√

1 + δ2

2

)

, (3.1)

where ln(x) = loge(x) is the natural logarithm. The formula (3.1) forK(δ) looks
complicated, but it has a simple graph, as shown in Figure 3.1. Some values of
τ = √

nK(δ) are given in Table 3.1.
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Figure 3.1 K(δ) plotted as a function of δ. The graph is typical of many key functions
K(·) which determine the expected evidence in different contexts, in that for small
values δ the function K(δ) ≈ δ, but larger values are diminished in magnitude, in
this case logarithmically. Thus the expected evidence

√
nK(δ) is not usually a linear

function of δ, except for the model of Chapter 1.

• The approximate power function of the Student t-test can be obtained from
T as follows, using the normal model N(τ, 1), where τ = √

nK(δ), as an
approximation to the distribution of T . A level-α test rejects the null δ = 0
when T ≥ z1−α. Let β(δ1) denote the probability of falsely accepting the null
when δ1 is the true alternative. Then the power of the level-α test for detecting
an alternative δ1 > 0 is

1 − β(δ1) = Pδ1(T ≥ z1−α)

= �(τ − z1−α)

= �(
√

nK(δ1) − z1−α). (3.2)

Table 3.1 The second row contains some values of the monotonically
increasing function K(δ). The expected evidence in the Student t-statistic for
the alternative δ > 0 is τ = √

nK(δ); examples for n = 5 and n = 10 are also tabled.
Strong expected evidence of τ = 5 for δ = 2 is possible with sample size 10.

δ 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

K(δ) 0.49 0.93 1.31 1.62 1.89 2.12 2.32 2.49√
5K(δ) 1.10 2.08 2.92 3.62 4.22 4.73 5.18 5.57√
10K(δ) 1.55 2.94 4.13 5.13 5.97 6.69 7.32 7.88
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This formula can be rewritten to give the expected evidence in terms of level and
power τ = z1−α + z1−β(δ1). Here K(δ) is given by (3.1), but these are general
relationships between expected evidence, level and power for any Neyman–
Pearson test based on a statistic which can be variance stabilized and normalized
simultaneously. Usually it will be a rough approximation, but it works well for
the t-test (see the discussion in Example 5 of Section 27.3).

Choosing the sample size to achieve a desired amount of evidence

• To obtain expected evidence τ = √
nK(δ1) for a standardized effect of scientific

interest when this effect actually exists, one needs to solve τ = √
nK(δ1) for

the sample size n; that is, n = {τ/K(δ1)}2. This sample size calculation works
well for n ≥ 10 (see Table 27.2).

Confidence intervals

• Let cn = tn−1,0.975 be the 0.975 quantile of the Student t-distribution with n − 1
df. A 95 % confidence interval for µ is given by

[L, U] =
[
x̄n − cn

sn√
n

, x̄n + cn

sn√
n

]
. (3.3)

• Let c = z0.975 = 1.96. A nominal 95 % confidence interval for δ is given by

[L, U] =
[
K−1

(
T − c√

n

)
,K−1

(
T + c√

n

)]
, (3.4)

where K−1(y) = {ey/
√

2 − e−y/
√

2 }/√2 is the inverse function to y = K(δ).
The coverage of this interval is good when n ≥ 10 and |δ| < 2, the range usually
encountered in applications. The range of good coverage improves with n; for
example when n = 25 the range can be extended to |δ| < 10.

3.2 Paired comparisons
Data and model

• Given pairs of measurements (x1, y1), . . . , (xn, yn) on a variable pair (X, Y),
where the pairing is often deliberate to remove some other factor through
differencing.

• The differences di = yi − xi for i = 1, . . . , n are considered independent obser-
vations from a normal population with unknown parameters µd, σ

2
d . Here the

X, Y variables are usually correlated. Each pair is a block within a randomized
block design when the assignment of subjects within each pair is at random:
one to receive treatment, the other serving as control. Then X, say, measures
the control outcome and Y the treatment outcome.
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Questions

• What is the evidence for a positive difference µd > 0?

• Or, equivalently, for δd = µd/σd , what is the evidence for a positive standard-
ized effect δd > 0?

Test statistic and distribution

• The Student t-statistic tn−1 = √
n (d̄n − µd)/sn, where d̄n and s2

n =∑i

(di − d̄n)
2/(n − 1) are the usual sample mean and variance of the di’s. Larger

values of the test statistic favor the alternative µd > 0 over the null µd = 0.

• The distribution of tn−1 is the noncentral tν(λ) distribution with ν = n − 1 df
and noncentrality parameter λ = √

n δ.

Conversion to evidence, interpretation and confidence intervals

• The evidence Td in the t-statistic based on the differences is obtained as in
Section 3.1. Confidence intervals for µd or δd are found using (3.3) and (3.4)
of Section 3.1, with Td replacing T .

• Only the interpretation changes, because two variables are involved. With dif-
ferences defined by di = yi − xi, positive evidence Td measures the support for
the Y variable exceeding the X variable. The confidence interval for µd captures
the size of the mean difference, while the confidence interval for δd captures
the size of the mean difference relative to the precision of the differences.

3.3 Examples
These examples compare data summarized in a one-sample t-statistic with a fixed
boundary of scientific interest. The second arises as a result of taking differences of
paired observations, so the boundary or null hypothesis is 0.

3.3.1 Daily energy intake compared to a fixed level

The average daily energy intake in kilojoules (kJ) of 11 healthy women is compared
to a standard recommended intake level of 7725 kJ in a study by Manocha et al.
(1986) and also analyzed in Altman (1991). The 11 observations are, after ordering,

5260, 5470, 5640, 6180, 6390, 6515, 6805, 7515, 7515, 8230, 8770.

A normal model with unknown parameters µ, σ2 is proposed for testing the null
hypothesis µ = µ0 = 7725 against µ < µ0 or µ �= µ0. The sample mean and stan-
dard deviation are x̄ = 6753.6 and s = 1142.1. Thus the t-statistic is t = √

11 (x̄ −
µ0)/s = −2.821, which supports the one-sided alternative µ < µ0 with a p-value
of 0.009 and the two-sided alternative with p-value 0.018. A two-sided t-interval
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for the effect µ − µ0 is obtained by subtracting µ0 from (3.3) and equals
[−1738.7, −204.1]. These are the traditional ways of summarizing the data. But
they do not give the evidence for the one- or two-sided alternatives, nor a confidence
interval for δ = (µ − µ0)/σ, the mean effect, relative to the population standard
deviation.

By transforming the t-statistic with (20.4) one obtains evidence for the one-sided
alternative of T = −1.947 ± 1 and for the two-sided alternative of T ± = 1.63 ± 1.
The standard errors are recorded to emphasize the error in measuring evidence. The
evidence in this experiment for the two-sided alternative is weak, which is not unusual
when the p-values are in the 0.01 to 0.05 range.

The relative mean effect δ is a measure of how the dietary intake differs from a
recommended level in units σ which are particular to the population of interest, and is
free of the units of measurement. This is arguably a more useful concept than the raw
effect µ − µ0, unless one has a good understanding of kilojoules. The confidence
interval for δ obtained from (3.4) is [−1.470, 0.004].

3.3.2 Darwin’s data on Zea mays

Measurements on the plant Zea mays were collected by Charles Darwin and analyzed
by Fisher (1935). As reported by Manly (1991), Darwin took 15 pairs of plants where
within each pair the two plants ‘were of exactly the same age, were subjected from the
first to last to exactly the same conditions, were descended from the same parents’.
One individual in each pair was cross-fertilized and the other was self-fertilized. The
heights (xi, yi) for the pair of offspring were then measured to the nearest eighth of
an inch over 12 inches. The original data are shown in the next section; here we just
list the differences di = xi − yi, i = 1, . . . , 15:

49, −67, 8, 16, 6, 23, 28, 41, 14, 29, 56, 24, 75, 60, −48.

The question of interest to Darwin was whether these results confirm the general
belief that the offspring from crossed plants are superior to those from self-fertilized in
the sense of having greater mean height. Thus we want to test µ1 = µ2 and the general
belief is the one-sided alternative µ1 > µ2. However, it is possible that µ1 < µ2, so
evidence for both one- and two-sided alternatives will be calculated.

The Student t-statistic t14 = √
15 (d̄ − 0)/sd = 2.148 has 14 df so the one-sided

p-value is found to be 0.025 and the two-sided p-value is therefore 0.05. A 95 % con-
fidence interval for the mean difference is [0.03, 41.84]. Manly (1991) also explains
how to compute p-values and confidence intervals for µd using permutation argu-
ments which do not require the assumption of a normal model.

We next find the evidence in t14 for the one-sided alternative by transformation
to evidence Td = 1.73 for the one-sided alternative δd > 0. By Equation (2.3) the
evidence is T ±

d = 1.38 for the two-sided alternative δd �= 0. Each of these measures
of evidence is best reported together with their standard errors 1.73 ± 1 and 1.38 ± 1.

While some may lament the fact that these values are weak evidence with error in
them, it is more realistic than reporting 0.025 and 0.05 as ‘significant’ measures
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of evidence with no error in them. These latter numbers are of course, correct
p-values to two decimal places; it is only the interpretation of them as evidence that is
wrong.

The value Td = 1.73 leads to the point estimate δ̂d = 0.454 of δd = µd/σd .
Further, using Equation (3.4), we obtain a 95 % confidence interval for δd

of [−0.06, 1.03].



4

Comparing treatment
to control

4.1 Equal unknown precision
Data and model

• Given two independent sets of measurements: x1, . . . , xn1 on a control variable
X, and y1, . . . , yn2 on a treatment variable Y , where the measurements on each
variable have the same, but unknown, precision. The X-data are summarized in
terms of the sample mean x̄ and variance s2

1, and similarly the pair (ȳ, s2
2) for

the Y -data.

• The xi’s are regarded as independent observations which form a sample from
a normal distribution with mean µ1 and standard deviation σ; similarly for the
yj’s, but the mean µ2 could differ from µ1 while the standard deviation is the
same unknown σ.

• The effect is defined by θ = µ2 − µ1 and the standardized effect by dCohen =
θ/σ. This standardized effect is often called Cohen’s-d in the psychological
literature (Cohen 1988) and the effect size in Hedges and Olkin (1985).

Questions

• What is the evidence for a treatment effect in a known direction? For example,
what is the evidence against the null hypothesis µ1 = µ2 and for the alternative

Meta Analysis: A Guide to Calibrating and Combining Statistical Evidence    E. Kulinskaya, S. Morgenthaler, and
Robert G. Staudte   © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-02864-3
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µ2 > µ1? Or, in other words, is the treatment variable Y larger than the control
variable X in the sense that µ2 > µ1?

• By symmetry, if alternatives µ2 < µ1 are of interest, the change of direction is
reflected in the sign of the evidence T . Thus we only comment on the direction
µ2 > µ1 and interpret positive evidence as support for µ2 > µ1.

Test statistic and distribution

• Now σ2{1/n1 + 1/n2} is the variance of ȳ − x̄, the best estimator of µ2 −
µ1. For N = n1 + n2 and q = n2/N it can be rewritten σ2/{N(q(1 − q)}. This
variance, and hence the standard error of ȳ − x̄, is clearly minimized forq = 0.5;
that is, n1 = n2.

• A more appropriate standardized effect for differing sample sizes is
δ=√

q(1−q) dCohen of which an estimator is δ̂ = √
q(1 − q) (ȳ − x̄)/sp, where

s2
p = {(n1 − 1)s2

1 + (n2 − 1)s2
2}/(n1 + n2 − 2) is the pooled estimate of the

variance σ2.

• The test statistic tpool = √
N δ̂. Large values of tpool favor the alternativeµ2 > µ1

over the null µ2 = µ1. The statistic tpool has the noncentral tν(λ) distribution
with ν = N − 2 df , and noncentrality parameter λ = √

N δ (see Johnson et al.
(1995), p. 509).

Conversion to evidence, interpretation and confidence intervals

• Because the test statistic has the same noncentral t-distribution as in the one-
sample problem of the last chapter, the transformation to evidence T = T(tpool)

is exactly the same here as it was there. Namely, T = √
N K(δ̂), where K

is given by Equation (3.1) as K(δ) = √
2 sinh−1(δ/

√
2 ) = √

2 ln(δ/
√

2 +√
1 + δ2/2 ).

• Evidence is now centered on τ = √
N K(

√
q(1 − q) dCohen), where K is given

by Equation (3.1). Clearly balanced sampling q = 0.5 is preferred, because it
maximizes the expected evidence for fixed N.

• A 95 % confidence interval for dCohen is, for c = z0.975 = 1.96,

[
1√

q(1 − q)
K−1

(
T − c√

N

)

,
1√

q(1 − q)
K−1

(
T + c√
N − 1

)]

, (4.1)

whereK−1(y) = √
2 sinh(y/

√
2 ) = {ey/

√
2 − e−y/

√
2 }/√2 is the inverse func-

tion to y = K(δ).



4.2 DIFFERING UNKNOWN PRECISION 33

Choosing the sample size

• For expected evidence τ1 when in fact dCohen = d1 it suffices to take sample size

N1 = {τ1/K(
√

q(1 − q) d1)}2. (4.2)

4.2 Differing unknown precision
Data and model

• Given two independent sets of measurements: x1, . . . , xn1 on a control variable
X, and y1, . . . , yn2 on a treatment variable Y , where the measurements on each
variable have different unknown precision. The X-data are summarized in terms
of the sample mean x̄ and variance s2

1, and similarly the pair (ȳ, s2
2) for theY -data.

• The xi’s are regarded as independent observations which form a sample from
a normal distribution with mean µ1 and standard deviation σ1; similarly yi’s
are regarded as independent observations which form a sample from a normal
distribution with mean µ2 and standard deviation σ2.

• The effect is defined by θ = µ2 − µ1 and the standardized effect by δ = θ/σ,

where σ is a scale parameter arising as follows. Let N = n1 + n2 and θ̂ = ȳ − x̄.
Then define

σ2 = N Var[θ̂] = N

{
σ2

1

n1
+ σ2

2

n2

}

. (4.3)

Note that the standard error of θ̂ is SE[θ̂] = σ/
√

N . For further discussion of
this definition, see Section 21.2.

Questions

• Is the treatment variable Y larger/smaller than the control variable X in the
sense that µ2 > µ1 or µ2 < µ1, respectively?

• These questions can be rewritten in terms of δ > 0 and δ < 0, where δ is the
standardized effect defined by δ = (µ2 − µ1)/σ.

• As before, we only comment on the direction µ2 > µ1.

Test statistic and distribution

• For A = σ2
1/n1, B = σ2

2/n2 define the Welch df by

ν = (A + B)2/{A2/(n1 − 1) + B2/(n2 − 1). (4.4)

Further define estimates ν̂, σ̂ of ν, σ by substituting sample variances s2
1, s

2
2 for

the respective population variances σ2
1 , σ2

2 in Equations (4.3), (4.4).
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• Then the Welch statistic defined by tWelch = √
N(Ȳn2 − X̄n1)/σ̂ has, under the

null δ = 0, an approximate Student t-distribution with ν̂ degrees of freedom.

Transformation to evidence

• The transformation of tWelch = √
N(Ȳn2 − X̄n1)/σ̂ to the evidence scale T =

T(tWelch) is realized by Equation (21.6); it is similar to the vst of the Student
t-distribution.

• For variance ratio � = σ2
2/σ2

1 satisfying 0.5 ≤ � ≤ 2 and reasonably balanced
sampling 0.5 ≤ n2/n1 ≤ 2 the variance of T is stabilized near 1 and nominal
95 % confidence intervals for δ derived from T are reliable for all |δ| ≤ 1,
provided N = n1 + n2 ≥ 10. These results improve with increasing sample
sizes n1, n2; for further details see Section 21.4. In most applications |δ| ≤ 1.

Interpretation

• The expected evidence τ = √
N Kξ(δ) is defined for each ξ, δ by Kξ(δ) =√

2/ξ sinh−1(δ
√

ξ/2 ); where sinh−1(x) = ln(x + √
1 + x2 ). The parameter

ξ is defined in Equation (21.7) and ξ ≈ N/ν ; that is, ξ is roughly equal to
the ratio of the total sample size N to Welch’s df ν. Note that the expected
evidence decreases in magnitude with increasing ξ, so it is desirable that ξ be
near 1.

• The constant ξ ≥ 1 and it can be shown that ξ = 1 when the sample sizes
m, n are proportional to the standard deviations σ1, σ2, so if there is some
knowledge of the ratio �, the total sample size can be allocated accordingly.
For example if N = 30 and one knows a priori that � ≈ 4 or σ2/σ1 ≈ 2, then
it is best to take n2/n1 ≈ 2, that is, n1 = 10 and n2 = 20. Of course usually
� is unknown, and then balanced sampling n1 = n2 is recommended, for then
1 ≤ ξ ≤ 2.

Choosing the sample size

• For balanced sampling N = 2n1, the minimum value of |τ|, as ξ varies, occurs
for ξ = 2, and then τ = √

N K2(δ) = √
N sinh−1(δ). Therefore the minimum

sample size N1 required to guarantee expected evidence τ1 = √
N sinh−1(δ)

when δ = δ1 is
N1 = {τ1/ sinh−1(δ1)}2. (4.5)

For example, to guarantee ‘moderate’ expected evidence τ1 = 3.3 for δ > 0
when in fact δ = δ1 = 0.5 one needs N1 = 47, or equal sample sizes of 24
each. For only ‘weak’ expected evidence of 1.645 under the same conditions
one needs equal sample sizes of 6 each.

• For unbalanced sampling, use Equation (21.9).
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Confidence intervals

• An approximate 100(1 − α) % confidence interval for θ is given by the Welch
t-interval [

θ̂ − tν̂,1−α/2
σ̂√
N

, θ̂ + tν̂,1−α/2
σ̂√
N

]
. (4.6)

• For c = z0.975 an approximate 95 % confidence interval for δ based on the one-
sided evidence T = T(tWelch) is given by





√
2

ξ̂
sinh






√
ξ̂

2N
(T − c)





,

√
2

ξ̂
sinh






√
ξ̂

2N
(T + c)








, (4.7)

where ξ is estimated by ξ̂ = N/ν̂.

4.3 Examples
In the first example the assumption of equal unknown precision appears reasonable,
so the methods of Section 4.1 are employed, while in the second example unequal
precision is apparent and so the methods of Section 4.2 are illustrated.

4.3.1 Drop in systolic blood pressure

Summary statistics from seven studies in the review by Mulrow et al. (2004) are
shown in Table 4.1. In each study the sample mean ȳk gives the average drop in
systolic blood pressure for a group of patients following a weight reducing diet, and
x̄k is the average drop for a control group. For every one of the studies s1k ≈ s2k, so
the pooled estimate spool, k of a common unknown standard deviation σk is computed.
The two-sample pooled t-statistic with νk = n1k + n2k − 2 degrees of freedom and

Table 4.1 Seven studies comparing drop in systolic blood pressure for
treated patients undergoing a weight-loss regime (summarized by n2, ȳ, s2) with
control patients not undergoing a weight-loss regime (summarized by n1, x̄, s1).
The estimated effect θ̂k, pooled sample standard deviation spool, k, two-sample
t-statistic tpool, k and evidence for a positive effect Tk for each k are also tabled.

k n1k x̄k s1k n2k ȳk s2k Nk θ̂k spool, k tpool, k Tk

1 24 0.2 13.8 27 −4.8 13.8 51 −5.0 13.80 −1.29 −1.24
2 18 7.4 8.1 20 13.3 8.1 38 5.9 8.10 2.24 2.11
3 64 4.0 15.7 66 11.0 17.1 130 7.0 16.43 2.43 2.39
4 9 −3.0 13.5 10 4.0 15.3 19 7.0 14.48 1.05 0.94
5 25 15.0 16.5 24 8.0 20.4 49 −7.0 18.51 −1.32 −1.27
6 5 2.5 5.1 5 9.8 7.1 10 7.3 6.18 1.87 1.42
7 14 9.9 6.4 19 12.5 6.3 33 2.6 6.34 1.16 1.09
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the evidence for a positive effect Tk are also shown in Table 4.1. It is apparent that
only studies 2 and 3 would reject the null hypothesis of no effect at level 0.05, and
the evidence for a positive effect, shown in the last column, is only weak for these
two studies. A 95 % confidence interval for Cohen’s-d in the second study, based on
Equation (4.1), is [0.05, 1.39]. Later in Chapter 25 we will demonstrate how one can
combine the evidence in the seven studies.

4.3.2 Effect of psychotherapy on hospital length of stay

Mumford et al. (1984) compare the effectiveness of treatment ‘psychotherapy’ with
control ‘no therapy’ for reducing length of stay in hospital in days for eight dif-
ferent studies. The data are shown in Table 4.2. The sample variances indicate that
heteroscedasticity is present within most studies, so the Welch type t-statistic is
appropriate.

In the first study the estimated effect θ1 = x̄1 − ȳ1 = −1.5 days, the standard
error of this estimate is σ̂1/

√
N1 = 8.548/

√
26 = 1.676. The 95 % Welch confidence

interval for θ1 is [−4.98, +1.98], which contains 0, so the hypothesis θ1 = 0 would
not be rejected at level 0.05. By the same argument, it is clear that only studies 2 and 5
would reject at level 0.05 the null hypothesis of psychotherapy having no effect. These
results can be obtained on most statistical packages. But if one wants to compare the
studies, it is better to look at standardized effects, rather than raw effects, because
then the studies are all compared on the basis of a scale-free measurement.

In Table 4.3 are shown the results for the standardized effect analysis. The esti-
mated standardized effect in the first study is δ̂1 = θ̂1/σ̂1 = −0.175 and a 95 %
confidence interval for δ1 is [−0.570, +0.218]. Because this interval does contain 0
we could not reject δ1 = 0 at level 0.05, confirming the small magnitude of the Welch
statistic t = −0.895. Only studies 2 and 7 provide level 0.05 significance that psy-
chotherapy reduces length of stay. This was already found in Table 4.2. However, now
we can actually see how much evidence there is for a positive effect in each study.

Table 4.3 For each study k in the Mumford et al. (1984) review are listed ξ̂k ≈
Nk/ν̂k, the Welch statistic tWelch, k and the evidence Tk for a positive standardized
effect δk which lies in it. In the last column are the 95 % confidence intervals based
on (4.7) for the unknown values of δk.

k ξ̂k δ̂k tWelch,k Tk [Lk, Uk]

1 1.24 −0.175 −0.895 −0.86 [−0.57, +0.22]
2 1.11 −0.298 −2.662 −2.61 [−0.52, −0.07]
3 1.79 −0.152 −1.269 −1.24 [−0.39, +0.09]
4 1.13 0.064 0.403 0.39 [−0.25, +0.38]
5 1.28 0.105 0.469 0.44 [−0.34, +0.55]
6 1.27 −0.297 −1.544 −1.47 [−0.69, +0.09]
7 1.72 −0.671 −2.845 −2.53 [−1.24, −0.14]
8 1.83 −0.388 −1.554 −1.41 [−0.94, +0.14]
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Note that the alternative δ < 0 is of interest here. The positive evidence for negative
effect is equivalent to negative evidence for positive effect found here. Six of the eight
studies yield standardized effects which suggest by direction that psychotherapy does
make a difference and these effects are all much greater in magnitude than the other
two. Thus it is plausible that there is at least weak evidence for an overall negative
effect in the eight studies, i.e. the overall reduction in length of stay.



5

Comparing K treatments

In this chapter we consider the simplest case of treatment comparisons. Based on K

samples taken under K different conditions we want to know whether the conditions
lead to notable changes in the sample means.

5.1 Methodology
Data and model

• We are given K sequences of measurements of some outcome variable Y :
y11, . . . , y1n1 through yK1, . . . , yKnK

. The measurements are taken under vary-
ing conditions, either by applying different treatments or by modifying in some
other way the circumstances of the measurements. Following tradition, we call
these circumstances ‘treatments’.

• The measurements are modelled as samples from K normal populations with
means µk for the kth sample and with equal and unknown variance σ2.

Questions

• What is the evidence for differential effects of the K conditions? The various
means µk are called treatment effects and the null situation occurs when they
are all equal; that is, H0 : µ1 = · · · = µK. The alternative we are interested in
simply states that H0 is untrue.

• Because our alternative does not describe a precise deviation from the null
situation, no direction or sidedness is involved.
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Test statistic and distribution

• The treatment effects can be estimated by the sample means µ̂k = (yk1 + · · · +
yknk

)/nk = ȳk. The total sample size is N = n1 + · · · + nK and the mean of all
measurements is ȳ = (n1ȳ1 + · · · + nKȳK)/N. A large variance of the sample
means [n1 (ȳ1 − ȳ)2 + · · · + nK (ȳK − ȳ)2]/(K − 1) supports the alternative of
unequal treatment effects, but this statistic is difficult to calibrate because its
size also depends on the size of the variance σ2.

• The sample variances for the kth sample is s2
k = [(yk1 − ȳk)

2 + · · · + (yknk
−

ȳk)
2]/(nk − 1). These can be pooled to create a stronger estimate [(n1 − 1)s2

1 +
· · · + (nK − 1)s2

K]/(N − K). The rescaled test statistic is

S = [n1 (ȳ1 − ȳ)2 + · · · + nK (ȳK − ȳ)2]/(K − 1)

[(n1 − 1)s2
1 + · · · + (nK − 1)s2

K]/(N − K)
.

• Under the null hypothesis the test statistic S has an F-distribution FK−1,N−K

with K − 1 and N − K degrees of freedom and the usual procedure consists in
deriving a p-value from a tabulated F-distribution.

• Under alternatives S has a noncentral F-distribution ncFK−1,N−K(λ) with non-
centrality parameter λ = [n1(µ1 − µ)2 + · · · + nK(µK − µ)2]/σ2.

Transformation to evidence

• To convert the test value into evidence, we make use of the inverse of the
hyperbolic cosine function

cosh−1(y) = ln(y +
√

y2 − 1).

Furthermore, let m = F−1
K−1,N−K(0.5) denote the median (50 % quantile) of the

F-distribution with K − 1 and N − K degrees of freedom. For the computation
of the evidence we make a distinction between large and small values of the
test statistic. For values of S exceeding the median, the evidence is

T =
√

N − K

2

(
cosh−1

(
(K − 1) S + N − K√

(N − K) ((K − 1)m + N − K)

)

− cosh−1

(√
(K − 1)m + N − K

N − K

))
.

For values of S below the median m, essentially the same formula can be used.
First we compute the flipped value of the test statistic

S∗ = F−1
K−1,N−K (1 − FK−1,N−K(S)).
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Then we compute the evidence with changed sign

T = −
√

N − K

2

(
cosh−1

(
(K − 1) S∗ + N − K√

(N − K) ((K − 1)m + N − K)

)

− cosh−1

(√
(K − 1)m + N − K

N − K

))
.

For additional explanations and derivations, the reader should consult Chapter 23.

Interpretation

• The crucial quantity for the test statistic S is the noncentrality parameter λ. The
bigger this value, the further we are from the null hypothesis. A standardized
effect for the FK−1,N−K(λ)-distribution is often defined as λ or λ/N.

• The evidence T is calibrated and can be interpreted on the scale of a normal dis-
tribution with variance 1. For the evidence statistic we have T ∼ N(

√
NK, 1),

where K = K(λ) depends on N, K and λ.

• The value of K is the transformed effect computed as follows:

K(λ) =
√

N − K

2N

(
cosh−1

(
(K − 1)m + λ + N − K√

(N − K) ((K − 1)m + N − K)

)

− cosh−1

(√
(K − 1)m + N − K

N − K

))
.

If K exceeds zero and as N increases, the evidence in favor of the alternatives
will increase.

• As in all the other tests discussed in this book, the key inferential function
translates the apparent effect λ into a statistically meaningful transformed effect.
The transformed effect is estimated by κ̂ = T/

√
N.

Choosing the sample size

• For a known or assumed value of the noncentrality parameter λ one can choose
the sample size N necessary to reach any desired expected evidence τ. The
equation to solve is τ = √

NK(λ), which is not as simple as in some of the
other cases, since the Key Inferential Function itself depends on N and K.
We recommend to solve the equation by trial-and-error.

• Instead of fixing the expected amount of evidence τ, we may be interested in
designing the study to have a certain level (probability of false rejection) α

and power (probability of true rejection) 1 − β. In this case we need to solve√
NK(λ) = z1−α + z1−β, where zp = �−1(p) is the p quantile of the standard

normal distribution.
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Confidence intervals

• Let c = z0.975 = 1.96. The interval T ± 1.96 is a confidence interval for√
N K(λ).

• A nominal 95 % confidence interval for λ is given by

[L, U] = [K−1(T − c),K−1(T + c)],

where

K−1(y) = cosh

(
y
√

2/(N − K) + cosh−1

(√
Km + (N − K)

(N − K)

))

×
√

(N − K) (Km + (N − K)) − (Km + (N − K)).

is the inverse function to y = K(λ).

5.2 Examples
Comparing a treatment to a control is a common practice in many applications.
This comparison can be based on two series of measurements, one of which under
the condition of treatment and the other under the control condition. Alternatively,
one may form a sample of matched pairs and apply the treatment and the control to
one member of each of the pairs. The generalization to K treatments with K > 2 is
an equally useful method. Such experiments may again be performed in the form of
independent series of measurements or in the form of K blocks of size n with random
allocation of the treatments to the units of each block (randomized block design).

The test we discuss here does not involve pairwise comparisions or other methods
to determine the precise differences between the treatment effects. We are only con-
cerned with the evidence in favor of the alternative that ‘some’ difference between
the treatment effects exists.

5.2.1 Characteristics of antibiotics

Ziv and Sulman (1972; cited in Larsen and Marx (1986), p. 504) gave measurements
of Y = binding percentage characteristics of five antibiotics. Table 5.1 contains the
data and Figure 5.1 shows a plot of the five samples.

The F-test statistic is S = (1480.8/(K − 1))/(135.8/(N − K)) = 40.9, which
has to be compared to an F-distribution F4,15 with a 50 % quantile of 0.88 and a
95 % quantile of 3.06. The evidence statistic is T = 7.1. Both computations lead to
identical conclusions. The evidence is seven standard deviations from zero, which
means that the evidence against the null hypothesis is very strong. The p-value is
6 × 10−8 which would also be interpreted as a very strong indication in favor of the
alternative.
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Table 5.1 Binding percentages of five antibiotics. This is an example with
K = 5 different conditions. The sample size n = 4 is the same in each case,
which leads to a total size of N = Kn = 20.

Penicillin G Tetracycline Streptomycin Erythromycin Chloramphenicol

29.6 27.3 5.8 21.6 29.2
24.3 32.6 6.2 17.4 32.8
28.5 30.8 11.0 18.3 25.0
32.0 34.8 8.3 19.0 24.2

Averages
28.6 31.4 7.8 19.1 27.8

Sample variances
10.4 10.1 5.7 3.3 15.9

5.2.2 Red cell folate levels

Amess et al. (1978; discussed as Example 9.8.2 in Altman (1991)) contains measure-
ments of the outcome variable Y = red cell folate levels in patients treated with nitrous
oxide, N2O (often called laughing gas). This is usually administered in a 50/50 mixture
with oxygen as a simple anesthetic agent. Among the toxicological side effects is the
inhibition of an enzyme, leading to impairment of folate metabolism. In this example,
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Figure 5.1 The five samples are shown alongside each other on a common vertical
axis. The order of the samples is the same as in Table 5.1.



44 COMPARING K TREATMENTS

Table 5.2 Red cell folate levels (µg/l) in three groups of patients given
different concentrations of nitrous oxide-enriched ventilations. This is an
example with K = 3 different conditions. The sample sizes are n1 = 8, n2 = 9
and n3 = 5. The total sample size is N = 22.

Long Short Oxygen only

243 206 241

251 210 258

275 226 270

291 249 293

347 255 328

354 273

380 285

392 295

309

Averages
316.6 256.4 278.0

Sample variances
3447.7 1378.0 1139.5
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Figure 5.2 The three samples are shown alongside each other on a common vertical
axis. The order of the samples is the same as in Table 5.2.



5.2 EXAMPLES 45

three groups of patients undergoing cardiac bypass surgery are considered. The
treatments given to these patients were distinguished according to the mixture they
breathed and the duration of the ventilation regime. Table 5.2 contains the data and
Figure 5.2 shows a plot of the three samples.

The F-test statistic isS = (15515.8/(K − 1))/(39716.1/(N − K)) = 3.71, which
has to be compared to an F-distribution F2,19 with a 50 % quantile of 0.72 and a 95 %
quantile of 3.52. The evidence statistic is T = 1.64, which speaks weakly in favor
of the alternative of some difference between the treatments. The p-value is equal to
0.044, close to the traditional 5 %.

The expected unit evidence is K̂ = 1.64/
√

N = 0.35 with an associated confi-
dence interval [0.35 ± 0.21]. By how much would we have to increase the study
size N in order to reach moderate evidence of 3.3? Using K̂ = 0.35, we must solve√

Nstudy = 3.3/0.35 = 9.4, which gives Nstudy ≈ 88. We would thus have to quadru-
ple the size of the study in order to reach moderate evidence. Of course, this prediction
is subject to considerable uncertainty. Had we used the lower confidence point for K̂,
we would have obtained Nstudy ≈ 555.
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Evaluating risks

In prospective studies the risk or incidence of contracting a disease is often represented
by a probability p, the probability that someone drawn from a cohort contracts a
disease during a certain period of time. Or p could represent the prevalence of a
disease within a certain population at the present time. In either case a random sample
of individuals is examined at a fixed time and the number within the sample with the
disease is noted. The question is then how to use this information to estimate p, or to
test hypotheses regarding p.

6.1 Methodology
Data and model

• The data are a set of n dichotomous observations; that is, each taking on one of
two possibilities, say D for diseased, D̄ for not diseased, or labeled numerically
by 1 and 0.

• The binomial model assumes that there are n independent, identically
distributed variables, say I1, . . . , In, with P(Ij = 1) = p, P(Ij = 0) = 1 − p,
where 0 < p < 1 is unknown.

Questions

• What is the evidence that the risk p exceeds a certain fixed level p0?

• What is a confidence interval for the risk p?

Meta Analysis: A Guide to Calibrating and Combining Statistical Evidence    E. Kulinskaya, S. Morgenthaler, and
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Test statistic and distribution

• The test statistic is the number of 1’s amongst the n outcomes,
S =∑n

j=1 Ij; it has the binomial distribution with parameters n, p.

Transformation to evidence and distributional properties

• Let p̃ = (S + 3/8)/(n + 3/4). Then the evidence for the alternative p > p0

to the null p = p0 is given by the classic transformation

T = 2
√

n
{

arcsin(
√

p̃ ) − arcsin(
√

p0 )
}
.

• This T is approximately normal for np(1 − p) ≥ 5.

• The expected evidence E[T ]
.= √

nK(p), where the Key Inferential Function
is defined by

K(p) = 2
{

arcsin(
√

p ) − arcsin(
√

p0 )
}
.

• The evidence T has standard deviation lying between 0.95 and 1.0 for 0.2 <

p < 0.8 for sample size n = 9, and this range expands to 0.07 < p < 0.93 for
n = 30. For anyn, asp approaches 0 or 1, the standard deviation ofT approaches
0; but this does not mean that T is not a good estimator of its expected value.
For more information, see Figure 18.1 and accompanying text.

Interpretation

• Positive values of T are evidence for the alternative p > p0, while the magnitude
|T | of a negative value of T is positive evidence for the alternative p < p0.
Evidence T ± for the two-sided alternative p �= p0 can be obtained from |T | via
the transformation (2.3).

Choosing the sample size

• For testing p = p0 against p > p0 one may choose n1 so that the expected
evidence for a fixed p1 of interest is at least τ1. This requires n1 to satisfy
τ1 ≤ √

n1 K(p1), or n1 ≥ {τ1/K(p1)}2.

• For example, if the null is p = 0.5 to achieve ‘strong’ expected evidence τ1 = 5
against p = 0.9 one requires n1 ≈ 29. Some other values are also shown in
Table 6.1.

Confidence intervals

• Letting p̃ = (S + 3/8)/(n + 3/4) and T = 2
√

n arcsin
(√

p̃
)

, a 95 % confi-
dence interval for p is given by

[ {
sin

(
T − z0.975

2
√

n

)}2

,

{
sin

(
T + z0.975

2
√

n

)}2 ]
.

It is understood that if the sine values are less than 0 or greater than 1, they are
replaced, respectively, by 0 and 1, before squaring.



6.2 EXAMPLES 49

Table 6.1 Approximate sample sizes required to achieve weak, moderate or
strong expected evidence for alternatives p1 to the null p0 = 0.5.

p1 arcsin(
√

p1 ) τ1 = 1.645 τ1 = 3.3 τ1 = 5.0

0.5 0.78540 — — —
0.6 0.88608 67 267 617
0.7 0.99116 16 64 148
0.8 1.10715 7 26 60
0.9 1.24905 4 13 29

• These intervals are much more accurate than traditional large sample intervals
of the form p̂ ± z0.975

√
p̂(1 − p̂)/n , where p̂ = X/n (see Section 18.2).

• When p is near 0, confidence intervals for p are often derived after a log-
transformation of p̂ = S/n. Such intervals are comparable in performance to
those based on the formula displayed above (see Section 18.4). A rule of thumb
suggested based on simulations reported in Section 18.4 is that the when con-
ditions np(1 − p) ≥ 5 and n ≥ 25 are satisfied, then the arcsine intervals will
have empirical coverage between 93 and 97 %; and for np(1 − p) ≥ 11 and
n ≥ 100, the coverages will lie between 94 and 96 %.

6.2 Examples
These methods have already been illustrated for the case of p0 = 0.5 in matched pair
experiments in Section 1.2.

6.2.1 Ultrasound and left-handedness

A study by Salvesen et al. (1993) found a slight positive association between in
utero routine ultrasonography and subsequent left-handedness of 8- and 9-year-old
children. Similar reports for only boys in a different study were reported by Kieler
et al. (1998). If the proportion of left-handers in the general population is p0 = 0.1,
how large a sample is required to obtain strong evidence that in utero routine ultra-
sonography leads to a proportion p of left-handers which exceeds the general popu-
lation proportion 0.1 by 10 %? That is, what is the minimum sample size required to
obtain expected evidence 5 for an alternative p = p1 = 0.11?

We require n1 ≥ {τ1/K(p1)}2 = (5/0.03263)2 = 23 481.3, or 23 482. For only
moderate evidence 3.3 of a 10 % increase, one needs a minimum sample size of
n1 = 10 229.

6.2.2 Treatment of recurrent urinary tract infections

If untreated, recurrent urinary tract infections continue in 65 % of observed patients
(see Section 19.5). Let p represent the risk of continued infection following treatment
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by antibiotics. In study 2 of Table 19.1 eight of 21 patients treated by antibiotics
had further infections during the study period. How much evidence is there for the
alternative p < 0.65 to the null p = 0.65 based on these data?

In the notation of this chapter n = 21 and S = 8. An estimate of p is p̃ = (S +
3/8)/(n + 3/4) = 0.3895. Hence the evidence for the alternative p < 0.65 is T =
2
√

n {arcsin(
√

p0 ) − arcsin(
√

p̃ )} = 2
√

21 {arcsin(
√

0.65 ) − arcsin(
√

0.3895 )}
= 2.4, which is between weak and moderate. An analysis based on comparing treat-
ment pat́ients to similar controls is given in Section 7.2.1.
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Comparing risks

Unknown probabilities of a binary outcome (of survival, contracting a disease, say) for
individuals in two groups, treatment and control, are often called risks. The ‘treatment’
could be exposure to a risk factor, drug intervention, surgery, etc. The risk p1 to an
individual in the control group is compared to the risk p2 in a treated group after
obtaining independent estimates of these parameters. Here we present new methods
for inference on the risk difference p1 − p2, the relative risk p1/p2 and the odds
ratio p1(1 − p2)/{p2(1 − p1)}. It turns out that the evidence for a higher risk in one
of the groups is the same regardless of how this difference is measured: by the risk
difference, or relative risk, or odds ratio. We start from estimating the risk difference
� which has an advantage of linearity in probabilities. Standard methods for the
relative risk and odds ratio can be found in Chapter 19.

7.1 Methodology
Data and model

• There are n1 subjects from a population of control subjects having proportion
p1 at risk; and x1 of the n1 are found to have the binary outcome of interest, say
disease. Similarly x2 of the n2 subjects from a population of treated subjects
having proportion p2 at risk have the outcome of interest.

• Given X1, X2 independent, with each Xi having the binomial distribution with
parameters (ni, pi) for some 0 < pi < 1.
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Questions

• What is the evidence for treated subjects having a lower risk than control
subjects? That is, for � = p1 − p2 > 0; or, equivalently, for the relative risk
RR = p1/p2 > 1 or for the odds ratio OR = p1(1 − p2)/{p2(1 − p1)} > 1 ?

• What are confidence intervals for the risk difference, relative risk and the
odds ratio?

Test statistic and distribution

• The test statistic and estimator of � is defined by S = �̂ = p̃1 − p̃2, where
p̃1 = (X1 + 0.5)/(n1 + 1), p̃2 = (X2 + 0.5)/(n2 + 1). Its distribution is com-
plicated and the standardized version (�̂ − 0)/SE[�̂] converges to the standard
normal distribution much slower than commonly believed.

Transformation to evidence

• Let N = n1 + n2 be the total sample size, q = n2/N the proportion of the
total allotted to the second sample. Define p = qp1 + (1 − q)p2 and ζ = p(1 −
p)/{q(1 − q)}. Substitute p̃1, p̃2 for p1, p2 in the formula for ζ to obtain an
estimator ζ̃ of it. Then the evidence for the alternative � > 0 to the null � = 0
is defined by

T = √
N arcsin

(
S/

√
ζ̃

)
. (7.1)

• It is shown in Chapter 19 that T is approximately normal for a wide range of
parameters. Further τ = E[T ]

.= √
N K(ρ), where ρ = �/

√
ζ , is the correla-

tion effect size introduced in Section 1.3.1, and the Key Inferential Function is
simply K(ρ) = arcsin(ρ).

Interpretation

• The standardized effect for the difference � is δ = �/
√

N Var[�̂] =
�/
√

ζ−�2 . The Key can be reexpressed as a function of the standardized
effect using the fact that ρ = δ/

√
1 + δ2 .

• To uniformly maximize the magnitude of the expected evidence |E[T ]|
by choice of sample size allocation q, it suffices to uniformly minimize
ζ = {p(1 − p)}/{q(1 − q)} by choice of q. Now for any q, the numerator
of ζ has maximum value 0.25, and thus the maximum value of ζ over the
parameter space can be minimized by maximizing the denominator of ζ; that
is, by choosing q = 0.5, or n1 = n2.

Choosing the sample size

• In order to attain expected evidence τ1
.= √

N arcsin(ρ1) for a correlation effect
size ρ1 one requires N ≥ {τ1/ arcsin(ρ1)}2. In particular, to attain ‘moderate’
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expected evidence of 3.3 = 2 × 1.645 for ρ1 = 0.5, one needs a total sample
size of N ≥ (6 × 3.3/π)2 = 39.7, or N = 40. This calculation masks the fact
that depending on ζ, that is, on the ratio of sample sizes and resulting value of
p, very different raw effects � may result in the same value of ρ, and therefore
the same evidence.

• To achieve an expected evidence of τ1
.= √

N arcsin(�1/
√

ζ ) against an effect
�1, it suffices, for any fixed q, to take

N ≥ {τ1/ arcsin( 2
√

q(1 − q) �1) }2.

In particular, for τ1 = 3.3 and �1 = 0.5, it suffices to take equal sample sizes

totalling N = 40. For unequal sample sizes, a larger total is required.
Often a baseline value for the control risk is known, and thus when the desired
risk difference is specified, so is p, and the required sample size N is determined.

Confidence intervals

• A nominal 95 % confidence interval for ρ is given by

[L, U] =
[

sin

(
T − z0.975√

N

)

, sin

(
T + z0.975√

N

)]

.

• And this leads immediately to intervals having the same confidence for the
standardized effect δ = ρ/

√
1 − ρ2 , namely

[
L√

1 − L2
,

U√
1 − U2

]

.

• Further, the above 95 % confidence intervals [L, U] for ρ = �/
√

ζ can be
multiplied by

√
ζ̃ , where ζ̃ = {p̃(1 − p̃)}/{q(1 − q)} is an estimate of ζ, to yield

nominal 95 % confidence intervals [L�, U�] for �. Despite the extra estimate
involved, these intervals tend to have better coverage than the corresponding
intervals for ρ.

• The above preservation of intervals under transformations tacitly assumed that
the argument of the sine function in the definition of L, U lies within the interval
[−π/2, π/2] (wherein the sine function is strictly monotonic increasing). This
requires |T | < 3.0787

√
N . Even for sample sizes as small as n1 = n2 = 8,

this means |T | < 12.3. Evidence T with magnitude 5 is considered ‘strong’, so
this restriction on T is likely to be met in applications.

• Simulation studies of the empirical coverage probabilities are available in
Sections 19.2 and 19.3. The empirical coverage of intervals for ρ for balanced
sampling with n1 = n2 = 9 and p = 0.5 ranges from 94.5 to 98 % for all ρ not
too near 1. But when p = 0.2 much larger sample sizes are required to achieve
the same coverage. The corresponding intervals for � have more accurate
coverage.
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Extensions to relative risk and odds ratio

• Using the identities p1 = p + (1 − q)� and p2 = p − q� one may rewrite
the relative risk in terms of p and � and similarly for the odds ratio. From
these expressions one can see that for fixed p, both the RR and OR are strictly
increasing in �. Since the evidence T = √

N arcsin
(
Sζ̃−1/2

)
has been derived

in Chapter 19 by a conditional argument, given p̃ = p, this evidence for � > 0
can serve as evidence for RR > 0 or for OR > 0.

• In view of the above remarks, a confidence interval [L, U] for � can be trans-
formed into one for the relative risk by substituting the endpoints L, U for �

in the expression RR = (p̃ + (1 − q)�)/(p̃ − q�) to obtain the endpoints of
an interval for the relative risk. Coverage of these confidence intervals, unlike
the coverage for confidence intervals for � given above, has not yet been inves-
tigated by simulations. Until this has been done, we recommend instead the
standard confidence intervals for RR or OR given in Section 19.4.

7.2 Examples
7.2.1 Treatment of recurrent urinary tract infections

Albert et al. (2004) reviewed 11 studies in which antibiotic treatments of recurrent
urinary tract infections were compared to control groups. For more information, see
Section 19.5. Here we only consider the second study, in which X2 = 8 out of n2 = 21
treated subjects continued to have infections while X1 = 17 out of n1 = 19 control
subjects continued to have infections during the study period.

Letting p1, p2 be the probabilities (or risks) of further infection for the control and
treated groups, we want the evidence for the alternative p2 < p1 to the null hypothesis
p1 = p2. Letting � = p1 − p2 we want the evidence for � > 0.

Now p̃2 = 0.87500, p̃1 = 0.38636 and �̃ = 0.48864. Also N = 40, q = n2/N =
21/40 = 0.525, so p̃ = 0.6429 and ζ̃ = 0.9206.

This leads to ρ̃ = �̃/
√

ζ̃ = 0.509 and evidence T = 3.38 for � > 0. Thus in
this study there is moderate evidence for the antibiotic treatments being effective in
reducing the risk of recurrent urinary tract infections.

A 95 % confidence interval for ρ is [L, U] = [0.222, 0.748], for δ the interval is
[0.228, 1.125], for � it is [0.213, 0.717] and for RR it is [1.40, 3.69] .

7.2.2 Diuretics in pregnancy and risk of pre-eclamsia

Collins et al. (1985) studied the benefit of taking diuretics during pregnancy on the risk
of pre-eclamsia. The data were obtained in nine clinical trials. These data were also
studied in Hardy and Thompson (1996) and in Biggerstaff and Tweedie (1997). The
previous analyses concentrated on the odds ratio of developing pre-eclamsia. Here we
consider for simplicity the differences in absolute risk �k = p1 − p2 for n2k patients
and n1k controls, k = 1, · · · , 9. The sample sizes are Nk = n1k + n2k. To calculate
the evidence in each study we need the correlation effect sizes ρk = �k/

√
ζk, where
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ζk are study-specific parameters. The evidence for a positive effect Tk was calculated
from Equation (7.1). The data, estimated parameters ζ̂k, correlation effect sizes ρ̂ and
95 % confidence intervals for ρ, estimated transformed effects κ̂k and evidence Tk

from each trial are given in Table 7.1. The evidence is weak to moderate in studies
2–6, but there is no evidence of any benefit in the rest of the studies. For study 5 the
difference in risk is rather small, � = 0.034, but the evidence is the highest due to
large sample sizes. The confidence interval for � is [0.018, 0.051], the confidence
interval for RR is [1.82, 18.04] and the sample RR is 3.78. For study 4 the difference
in risk is much larger, � = 0.285, but the evidence is lower, this is a small study. The
confidence interval for � is rather wide, [0.085, 0.470], and the confidence interval
for RR is [1.32, 7.17], while the sample RR = 2.71.
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Evaluating Poisson rates

Poisson processes are frequently used for modeling the number of rare events in time
or space, such as numbers of equipment failures in a month, of traffic accidents at
an intersection in a year, of mutations in a given segment of DNA, of cells growing
in a culture (see Section 17.3.1), of soldiers killed by horse-kicks in each corps in
the Prussian cavalry during 20 years (see Section 8.2.1), and a multitude of other
phenomena. These numbers are called counts data, and one wants to use them to
make inferences regarding the rate of occurrence of the rare events. The presentation
below will be for processes in time.

8.1 Methodology
Data and model

• Given the observed number st of occurrences (the count) of the rare event during
a time interval of known length t.

• For a Poisson process, the number St of events in any time interval of length t

has a Poisson distribution with parameter µt, where µ > 0 is the unknown rate
of events per unit time.

• The Poisson(np) distribution also arises as an approximation to the binomial
(n, p) distribution with large n and small probability p; this approximation is
discussed in Section 18.4. One can think of n as a ‘time’ parameter and p, the
probability of the rare event in any Bernoulli trial, as the rate per trial that the
rare events occur.

Meta Analysis: A Guide to Calibrating and Combining Statistical Evidence    E. Kulinskaya, S. Morgenthaler, and
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58 EVALUATING POISSON RATES

• One wants to make inferences regarding µ, which is estimated by the number
of rare events in an observation period of length t, divided by the length of the
interval µ̂ = St/t. The mean and variance of the Poisson distribution equal its
parameter, in this case µt, so µ̂ is an unbiased estimator of µ with variance µ/t.

For large t, µ̂ is approximately normal with these parameters. The notation for
the discrete time case in which Sn is the count of rare events in n trials (and is
modeled by the Poisson(np) distribution) is p̂ = Sn/n.

Questions

• What is the evidence against the null hypothesis H0 : µ = µ0 and for the
alternative µ > µ0? Or, equivalently, for a positive effect � = µ − µ0?

• What is a confidence interval for � or for µ?

Test statistic and distribution

• The test statistic St has the Poisson(µt) distribution; large values of St favor
� > 0.

• A large-sample test statistic is

Zt =
√

t

µ0
(µ̂ − µ0). (8.1)

Larger values of this test statistic favor the alternative � > 0 over the null
� = 0. As the length of the observation period t increases without bound, the
distribution of Zt can be approximated by a normal distribution with mean

√
t δ

and variance µ/µ0, where δ = (µ − µ0)/
√

µ0 is the standardized effect. Under
the null hypothesis, δ = 0 and the approximating distribution of Zt is standard
normal.

Transformation to evidence

• The objective is to transform the test statistic onto the unit normal calibration
scale; this is achieved by

Tt = 2
{√

St + 3/8 −
√

µ0t + 3/8
}
. (8.2)

This definition of evidence is based on the variance stabilizing transformation
(Anscombe 1948) for the Poisson model (see Section 17.3.3).

• For µt ≥ 5 the variance of Tt is stabilized near 1 (see Section 17.3.2).

• For each value of µ ≥ µ0 the Key is given by

K(µ|µ0) = 2(
√

µ − √
µ0 ). (8.3)
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• For large t the distribution of Tt is approximately normal with mean
E[Tt]

.= √
t K(µ|µ0) = 2

√
t (

√
µ − √

µ0 ) and unit variance. Under the null
hypothesis, µ = µ0 and Tt ∼ N(0, 1).

Interpretation

• The Key K(µ|µ0) given by Equation (8.3) measures the distance from µ to µ0.
It is a simple function of the rate µ. It can be rewritten K(µ|µ0) = 2(

√
� + µ0

− √
µ0 ) to show it is transformed effect; that is, a function of the effect �.

• It is also possible to rewrite the Key K(µ|µ0) as a function of the standard-
ized effect δ, as is usually done in this book. For the Poisson model this only
complicates the Key without adding any insight.

• An inverse transformation to find µ from the transformed effect is

K−1(y|µ0) = [ max{ (y/2 + √
µ0 ), 0 } ]2. (8.4)

Since the rate µ ≥ 0 the values of K−1(y|µ0) are truncated at zero.

• The approximate power of the level-α test based on the evidence Tt for detecting
an alternative µ1 > µ0 is

1 − β(µ1|µ0) = �(
√

t K(µ1|µ0) − z1−α).

This formula can be rewritten to give the expected evidence in terms of level
and power τ = z1−α + z1−β(µ1|µ0).

Choosing the time t required to achieve a desired amount of evidence

• To obtain expected evidence τ1 = √
t K(µ1|µ0) for alternative µ1, the required

observation time is t = {τ1/K(µ1|µ0)}2.

Confidence intervals

• Let c = z0.975 = 1.96. A nominal 95 % confidence interval forK(µ|µ0) is given
by

[L, U] = t−1/2[Tn − c , Tn + c ]. (8.5)

• A nominal 95 % confidence interval for µ is given by

[Lµ, Uµ] = t−1/2
[K−1(Tt − c|µ0) ,K−1(Tt + c|µ0)

]
, (8.6)

where the function K−1(y|µ0) is given by Equation (8.4). This interval is not
symmetric around µ ; its lower limit is non-negative due to the restrictions
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imposed on the inverse key function; the left limit Lµ ≥ µ0 if and only if
Tt ≥ c. The coverage of this interval is good when tµ ≥ 5, the range usually
encountered in applications.

8.2 Example
8.2.1 Deaths by horse-kicks

This famous example of numbers of soldiers killed per year by horse-kicks in each
corps in the Prussian cavalry belongs to L.J. Bortkiewicz (1868–1931) and has been
used to illustrate the application of the Poisson distribution in numerous textbooks.
These data are taken from Preece et al. (1988), who reproduce the complete data on
number of deaths each year for 20 years (1875 to 1894) for each of 14 corps. After
omitting four anomalous corps, they fit a log–linear model to the data and show that
the death rates are constant over time, but with different rates for different corps. The
total S20 number of deaths during the 20 years for each corps are displayed in the
second column of Table 8.1.

For the sake of illustration assume that the safety regulations in the Prussian
cavalry required that the death rate from horse-kicks to be at most 0.5 per year in a
corps. Then µ0 = 0.5 and to ascertain compliance for each corps one needs to test

Table 8.1 Bortkiewicz’s data on number St of deaths by horse-kicks over
20 years for each of 10 corps. The large-sample test statistic Zt is defined in
Equation (8.1) and the evidence Tt is calculated with Equation (8.2). The p-values
pz and pT are for the tests based on Zt and Tt , respectively, using the normal
distribution. Lµ and Uµ are the lower and upper limits of the 95 % confidence
interval for the unknown rate µ. The length of the observation period is t = 20
for each individual corps, t = 200 for the combined 10 corps (the row marked
‘Total’) and t = 180 after omitting corps XIV (the last row).

Corps St µ̂ Zt pZ Tt pT Lµ Uµ

II 12 0.6 0.632 0.264 0.594 0.276 0.31 0.99
III 12 0.6 0.632 0.264 0.594 0.276 0.31 0.99
IV 8 0.4 −0.632 0.736 −0.654 0.743 0.00 0.73
V 11 0.55 0.316 0.376 0.303 0.381 0.00 0.92
VII 12 0.6 0.632 0.264 0.594 0.276 0.31 0.99
VIII 7 0.35 −0.949 0.829 −1.011 0.844 0.00 0.66
IX 13 0.65 0.949 0.171 0.872 0.192 0.34 1.05
X 15 0.75 1.581 0.057 1.400 0.081 0.42 1.17
XIV 24 1.2 4.427 0.000 3.432 0.000 0.76 1.72
XV 8 0.4 −0.632 0.736 −0.654 0.743 0.00 0.73

Total 122 0.61 2.200 0.014 2.087 0.018 0.51 0.72
Total w/o XIV 98 0.54 0.843 0.200 0.824 0.205 0.44 0.66
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the null µ = 0.5 against the alternative µ > 0.5. The results are given in columns 3
to 9 of Table 8.1.

Several corps have estimated death rates µ̂ above µ0 = 0.5, but the evidence for
noncompliance is negligible except for corps X, where it is very weak (T20 = 1.4),
and for corps XIV, where it is moderate (T20 = 3.43).

But worryingly the overall death rate for all 10 corps (in the row marked total)
is too high; there the evidence T200 = 2.09 is weak, but certainly not negligible. The
computations are repeated after omitting the data for corps XIV and the results listed
in the last row of the table; this time there is negligible evidence for overly high death
rates.

The p-values from the Z-test (pZ) and those based on the evidence (pT ) are
provided in Table 8.1 to compare the quality of the usual normal approximation
to the Poisson distribution with that of the vst-based approximation. The evidence-
based p-values are somewhat higher. This difference is noticeable for corps X, where
pZ = 0.057 (rather close to being significant at level 0.05) whereas pT = 0.081. Now
S20 has the null distribution Poisson(10), so the exact p-value to three decimal places
is P(S20 ≥ 15) = 0.083.

Similarly, for the total number of deaths, one finds pZ = 0.014, pT = 0.018 and
the exact p-value to three decimal places is 0.018. The exact p-values are much closer
to pT than to pZ because the variance stabilization provides a superior approximation
to the Poisson distribution compared to the standard normal approximation. The
coverage of the evidence-based confidence intervals for µ is also much more reliable.
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Comparing Poisson rates

For two-sample data modelled by Poisson distributions with unknown rates µ1, µ2

one is often interested in comparing these two parameters. One may do this with
either the difference � = µ2 − µ1 or the ratio ρ = µ2/µ1. Testing for the one-sided
alternative � > 0 to the null � = 0 is equivalent to testing for alternative ρ > 1 to the
null ρ = 1, but the statistical methods are different for these two parameterizations
of the problem.

For the difference �, one first finds transformed parameter estimates of each rate;
this leads to evidence for the alternative hypothesis � > 0 whose expectation depends
on a standardized effect δ, from which confidence intervals for δ can be derived. This
is called the unconditional approach in what follows.

For the ratio ρ the conditional distribution of the second one sample total, given
the two-sample total, is the basis for inference. It leads to evidence for the alternative
hypothesis whose expectation depends on ρ, from which confidence intervals for ρ

can be derived. This is called the conditional approach.
Recall that the Poisson(np) distribution is often used as an approximation to a

binomial(n, p) distribution with large n and small probability p. The parameter p is
the rate of occurrence of the rare event per Bernoulli trial, and is often called a risk
(of infection, disease, death) in the medical literature. When this approximation is
applicable to each of two samples with respective rates p1, p2, the difference of rates
� = p2 − p1 is called the risk difference and the ratio of rates ρ = p2/p1 is called
the risk ratio or relative risk. Confidence intervals for the risk difference under the
Binomial model are found in Chapter 7.

Meta Analysis: A Guide to Calibrating and Combining Statistical Evidence    E. Kulinskaya, S. Morgenthaler, and
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9.1 Methodology
9.1.1 Unconditional evidence

Data and model

• Rare events are observed to occur over time under two different sets of con-
ditions. The observed numbers xt1 , xt2 of these rare events in time intervals of
respective lengths t1, t2 are recorded.

• The measurements are modelled by independent Poisson processes with respec-
tive rate parameters µ1, µ2. Thus for the first process the number Xt1 of rare
events has a Poisson distribution with parameter µ1t1, and similarly for the
second process Yt2 ∼Poisson (µ2t2).

Questions

• What is the evidence for a positive effect � = µ2 − µ1 ; or, equivalently, for a
positive standardized effect δ > 0 defined by Equation (9.2)?

• What is a confidence interval for � or for δ?

Test statistic and transformation to evidence

• A natural test statistic is �̂ = µ̂2 − µ̂1 = Yt2/t2 − Xt1/t1, but its distribution
is complicated and the standardized version (�̂ − 0)/SE[�̂] converges to the
standard normal distribution much slower than the evidence statistic Tt defined
below and first introduced by Huffman (1984).

• As in the previous chapter, one can stabilize the variances of Xt1 , Yt2 to one by
applying the Anscombe transformation to obtain the statistics SX=2

√
Xt1+3/8

and SY=2
√

Yt2+3/8 . Then, letting t = t1 + t2, and q = t2/(t1 + t2), the evi-
dence for � > 0 is defined by

Tt =
√

1 − q SY − √
q SX. (9.1)

• For large t1, t2 the distribution of Tt is approximately normal with mean E[T ]
.=√

t δ and variance 1, where the standardized effect δ is defined by

δ = 2
√

q(1 − q) (
√

µ2 − √
µ1 ). (9.2)

Under the null hypothesis, δ = 0 and for large t1, t2, the statistic Tt is approxi-
mately standard normal.

• The Huffman (1984) statistic defined by (9.1) is a vst for this two-sample
Poisson problem and because E[Tt]

.= √
t δ, the Key Inferential Function is

especially simple, K(δ) = δ.
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• For t1µ1 ≥ 5 and t2µ2 ≥ 5 the variances of SX and SY are reliably
stabilized near 1 (see Section 17.3.2); therefore the same is true for the test
statistic Tt , which gives the evidence for δ > 0.

Interpretation

• The standardized effect δ given by Equation (9.2) is a comparatively simple
function of the individual parameters µ1 and µ2. But it cannot be rewritten as
a function of the difference � alone or the ratio ρ alone. Thus the statistic Tt is
a good measure of evidence, but it is not especially useful in itself for finding
confidence intervals for the risk difference or risk ratio.

• The approximate power of the level-α test based onTt for detecting an alternative
δ1 > 0 is

1 − β(δ1) = �(
√

t δ1 − z1−α).

This formula can be rewritten to give the expected evidence in terms of level
and power τ = z1−α + z1−β(δ1).

Choosing the sample size to achieve a desired amount of evidence

• To obtain expected evidence τ = √
t δ1 for a standardized effect δ1 of scientific

interest when this effect actually exists, the total observation time t = t1 + t2
must satisfy t ≥ {τ/δ1}2. Individual observation times are found from
t1 = (1 − q)t and t2 = qt. It is clear from Equation (9.1) that the maximum
evidence for a given t is obtained for q = 0.5.

Confidence intervals

• Let c = z0.975 = 1.96. A nominal 95 % confidence interval for δ is given by

[L, U] = t−1/2[T − c , T + c ]. (9.3)

The coverage of this interval is good when µ1t1 ≥ 5 and µ2t2 ≥ 5.
For fixed q the range of good coverage improves with t.

9.1.2 Conditional evidence

Data and model

• The data and model are exactly as in the previous section, but now the ratio of
rates ρ = µ2/µ1 is of interest. Inference is conditional on the observed total
Xt1 + Yt2 = m which is assumed fixed.
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Questions

• What is the evidence for alternative ρ > 1 to the null ρ = 1 ?

• What is a confidence interval for ρ ?

Test statistic and distribution

• The conditional distribution of Yt2 given Xt1 + Yt2 = m is binomial with
parameters m and p = t2µ2/(t1µ1+t2µ2) = (1 + (q−1−1)ρ−1)−1, where
q = t2/(t1 + t2) and ρ = µ2/µ1 (see Lehmann (1986), pp.140–142). Let
Yt2|m ∼ binomial(m, p) be a random variable with this conditional
distribution; it is the test statistic for inference on p.

• The parameter p is a monotonically increasing function of ρ, with inverse
function ρ = (q−1 − 1)(p−1 − 1)−1. The hypotheses ρ = 1 versus ρ > 1 are
equivalent to p = q versus p > q. Large values of Yt2|m favor the alternative
p > q, so the traditional conditional test is carried out for an observed Yt2|m =
y by computing and evaluating the p-value P(Yt2|m ≥ y | p = q). For large
t1, t2 the statistic Yt2|m is approximately normal with mean mp and variance
mp(1 − p).

Transformation to evidence

• The conditional evidence Tcond for the alternative p > q, and hence for ρ > 1
is obtained by applying the vst for binomial distributed variables described in
Section 18.1 to SY :

Tcond = 2
√

m {arcsin(
√

p̃ ) − arcsin(
√

q )}, (9.4)

where p̃ = (Yt2|m + 0.375)/(m + 0.75). Another expression is obtained via the
trigonometric identity arcsin(

√
x ) + arcsin(1 − 2x) = π/2 :

Tcond = 2
√

m {arcsin(1 − 2q) − arcsin(1 − 2p̃)}. (9.5)

• It follows from the properties of the vst transformed test statistic Yt2|m that Tcond

is approximately normal with variance 1 and mean E[T ]
.= √

mK(p), where
the Key is given by

K(p) = arcsin(1 − 2q) − arcsin(1 − 2p). (9.6)

Interpretation

• Recall that the binomial parameter p = p(ρ) is monotonically increasing in the
risk ratio ρ. Therefore one can interpret Tcond as conditional evidence for the
alternative ρ > 1 to the null ρ = 1.
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• The approximate power of the level-α test for detecting an alternative ρ1 > 1
can be found exactly as in Section 9.1.1.

Confidence intervals

• Let c = z0.975 = 1.96. A nominal 95 % confidence interval for κ = K(p) is
given by

[L, U] = m−1/2
[
Tcond − c , Tcond + c

]
. (9.7)

• Let C = arcsin(1 − 2q) and write the inverse function to κ = K(p(ρ))

h(κ) = (1 − q)(1 − sin(C − κ))

q(1 + sin(C − κ))
. (9.8)

• A nominal 95 % confidence interval for ρ is [h(L), h(U)].

• The coverage of the above intervals is good for mp(1 − p) ≥ 5.

Application to Bernoulli trials data

• In the preamble to this chapter it was noted that given a large number n1 of
Bernoulli trials indicating the occurrence of disease or no disease, say, and each
trial resulting in disease with small risk p1, the Poisson(n1p1) approximation
could be a model for the number Xn1 in the sample that have the disease. Let
Yn2 be the number in an independent sample of large size n2, small risk p2, so
that Yn2 ∼Poisson(n2p2). Then it is clear that the above conditional methods
(with ti = ni, µi = pi) apply to the relative risk ρ = p2/p1. The unconditional
methods provide evidence for � = p2 − p1 > 0 and confidence intervals for√

p2 − √
p1 . Confidence intervals for � based on the Binomial model are

found in Chapter 7.

9.2 Example
9.2.1 Vaccination for the prevention of tuberculosis

The data in Table 9.1 are reproduced from Sutton et al. (2000). The data resulted
from 13 randomized clinical trials (RCTs), each comparing a group vaccinated by
Bacillus Calmette-Guerin (BCG) vaccine for the prevention of tuberculosis against a
nonvaccinated group, and originally reported by Colditz et al. (1994). It was suspected
that the distance from the equator affected the efficacy of the vaccine, and therefore
this covariate is investigated by means of meta-regression in Chapter 14.

The sample sizes in the RCTs are large and the risks of tuberculosis are rela-
tively small, so we model the data using the Poisson distribution. Here unconditional
and conditional evidence for each trial is calculated, and the two are compared.
Also calculated are confidence intervals for the relative risk ρ of tuberculosis in the
nonvaccinated group. All results are given in Table 9.2.
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Table 9.1 Data from clinical trials of BCG vaccine efficacy, reproduced in a
modified form from Colditz et al. (1994).

Vaccinated Not vaccinated

Trial Latitude Disease No disease Disease No disease

1 44 4 119 11 128
2 55 6 300 29 274
3 42 3 228 11 209
4 52 62 13 536 248 12 619
5 13 33 5036 47 5761
6 44 180 1361 372 1079
7 19 8 2537 10 619
8 13 505 87 886 499 87 892
9 −27 29 7470 45 7232

10 42 17 1699 65 1600
11 18 186 50 448 141 27 197
12 33 5 2493 3 2338
13 33 27 16 886 29 17 825

The trials in Table 9.1 vary considerably in both sample size and number of
diseased. The total number of cases m varies from 8 (trial 12) to 1004 (trial 8), and the
total number of subjects N = n1 + n2 varies from 262 (trial 1) to 176 782 (trial 8).
Unconditional and conditional evidence for a relative risk ρ > 1 are listed in the
second and third columns of Table 9.2 and they nearly coincide. This is possibly

Table 9.2 Unconditional and conditional evidence, relative risk and its
confidence interval for the data from clinical trials of BCG vaccine efficacy.

Unconditional Conditional 95 % CI for RR

Trial evidence evidence RR Lower Upper

1 1.57 1.55 2.43 0.95 6.95
2 4.12 4.16 4.88 2.40 10.79
3 2.24 2.26 3.85 1.37 12.80
4 11.58 11.78 4.23 3.36 5.36
5 0.95 0.95 1.24 0.86 1.81
6 8.99 9.04 2.19 1.89 2.55
7 3.19 3.20 5.06 2.29 11.36
8 −0.19 −0.19 0.99 0.89 1.10
9 1.99 1.98 1.60 1.08 2.38

10 5.67 5.74 3.94 2.54 6.27
11 3.00 3.00 1.40 1.17 1.69
12 −0.59 −0.56 0.64 0.17 2.19
13 0.06 0.06 1.02 0.65 1.59
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due to reasonably large values of N. Usually, conditional tests are considered to be
less powerful than unconditional, but we do not see this here. Evidence varies from
negligible (trials 1, 5, 8, 12, 13) to strong (trials 4, 6, 10). The null hypothesis of equal
risks is rejected by traditional tests whenever the evidence is above 1.65.

The 95 % confidence intervals for the relative risk ρ in Table 9.2 are based on
conditional inference, and are calculated from Equation (9.8). Note that the strength
of evidence and RR are not directly related: evidence also very much depends on the
total number of cases. Evidence in trial 6 is higher than evidence in trial 10, even
though the relative risk is only half as big. This is due to m = 552 versus m = 82 in
the respective trials.
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Goodness-of-fit testing

Given observations x1, . . . , xN from an unknown distribution, it is often desired to
think of them as a sample from a population which has shape similar to some standard
distributionF , whereF may or may not depend on unknown parameters. This problem
is called goodness-of-fit testing, meaning that the test is required to see how well the
distribution F fits the data. Only one test, the classic Pearson’s chi-square test, is
discussed in this chapter. We treat the case of fully known F foremost and only
briefly comment on the case of estimated parameters.

We do not recommend the indiscriminate use of the chi-square test in goodness-of-
fit problems. Its main disadvantage is the arbitrariness of the choice of the number of
intervals K (see below). There are better goodness-of-fit tests, such as the Anderson–
Darling test or Shapiro–Wilks test for the normal distribution (see D’Agostino and
Stephens, 1986). Rather, this chapter is included to demonstrate the breadth of possible
applications of our approach to evidence.

10.1 Methodology
Data and model

• Let X1, . . . , XN be independent observations, each with the same
unknown distribution F , and partition the domain of F into K intervals, with
pk equalling the probability under F of an observation falling within the kth
interval. Denote by Ok the observed number of observations falling in the kth
interval. The expected number of observations falling in the kth interval is
calculated as Ek = Npk.

Meta Analysis: A Guide to Calibrating and Combining Statistical Evidence    E. Kulinskaya, S. Morgenthaler, and
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Questions

• Are the Ok’s close enough to the respective Ek’s so that the hypothesized model
F can be adopted? Or is there sufficient evidence to reject the model?

• Are theOk’s too close to the respectiveEk’s? That is, is there another explanation
for the very close agreement between model and data?

Test statistic and distribution

• Pearson’s chi-squared statistic C is defined by

C =
K∑

k=1

(Ok − Ek)
2

Ek

. (10.1)

• Pearson’s chi-squared statistic can be rewritten to bring more insight into its
properties. Under the true distribution F(N) the probabilities p

(N)
k of an observa-

tion falling within the kth interval are estimated byp̂
(N)
k = Ok/N. The observed

numbers Ok = Np̂
(N)
k are compared to the expected numbers Ek = Npk. Then

the statistic is

C = N

K∑

k=1

(
p̂

(N)
k − pk

)2

pk

.

• Under certain regularity conditions (see Chapter 3 of Greenwood and Nikulin
(1996)), for large N the null distribution of C is approximately χ2

K−1; and
Pearson’s test rejects the hypothesized model F at level α when C ≥ χ2

K−1,0.95 .

• Under alternatives (see p. 23 of Greenwood and Nikulin (1996)), the
Pearson statistic C of Equation (10.1) has for large N approximately a χ2

K−1(λN)

distribution, where

λN = N

K∑

k=1

(
pk − p

(N)
k

)2

pk

. (10.2)

Transformation to evidence

• Evidence in the noncentral chi-squared statistic is found in Section 22.2. The
large-sample evidence in C for such alternatives λ > 0 to λ = 0 is obtained
from Equation (22.1), namely

TK−1 = hK−1(C). (10.3)
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• Thus rather than carrying out a traditional test and computing power for var-
ious alternatives, one can evaluate and interpret the evidence TK−1 which has
an approximate normal distribution, with standard error 1 in estimating its
mean defined in Equation (22.2). In view of remark 2 following Definition 22.3,
for large N a simple-to-remember version of this Key is K(θ) = θ1/2, where
θ = λ/N, and the expected evidence E[TK−1]

.= √
N K(θ) = λ1/2.

Interpretation

• As usual, we recommend that TK−1 equal to 1.645, 3.3 and 5, each with standard
error 1, be roughly interpreted as weak, moderate and large evidence against
the model. A weak, moderate and large negative evidence is interpreted as an
evidence of a ‘too good to be true’ model fit. If TK−1 were −3.3, say, this
result would be interpreted as moderate evidence for the existence of particular
reasons for an extraordinarily good fit between model and data.

• Greenwood and Nikulin (1996, pp. 27–28) remark that point hypotheses such
as λ0 = 0 never really hold, and that one should really be testing λ ≤ λ0

against λ > λ0, for some suitable choice of λ0. This amounts to relaxing the
model assumption, and making it harder to reject the model(s) represented
by p1, . . . , pK. They state that in many practical applications one can choose
λ0 = (1/NK2)

∑
k(1/pk); and, in particular for equiprobable intervals λ0 =

1/N. Were this suggestion to be adopted, the appropriate measure of evi-
dence from Definition 22.6 would be given by TK−1(λ0) = TK−1 − √

λ0 =
TK−1 − 1/

√
N . In practice this theoretical nicety is not likely to make much

difference to the evidence obtained.

• When the parameters of the distribution F need to be estimated from the data,
and these estimates are then used to calculate the expected values Ek in the
Pearson statistic, it is commonly stated that C ∼ χ2

K−1−r, where r is the number
of estimated parameters. In fact this is true only when the parameters are esti-
mated from the cell counts Ok and not from the original observations xk. In the
latter case, the distribution will lie somewhere between a chi-square distribu-
tion with K − r − 1 and K − 1 degrees of freedom (see Chernoff and Lehmann
1954). Usually this results in the inflated level of the goodness-of-fit test above
the nominal level. Luckily, the difference is not too large when the number of
intervals K is large. Watson (1957) recommends K > 10 for a normal case with
the mean and variance estimated by their sample counterparts.

Choosing the sample size

• Sample size calculations for obtaining an expected evidence for a fixed number
of intervals K and alternative θ1 = λ/N are discussed in detail in Section 22.4.1.
Alternatively, sample size calculations required to obtain a desired power are
given in Section 22.4.2. Such calculations are of not much value here, because
the choice of K is arbitrary and greatly affects the results.
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10.2 Example
10.2.1 Bellbirds arriving to feed nestlings

Table 10.1 gives the collective arrival times of bellbirds to a nest containing two
10-day-old nestlings. The mother bird is the only female amongst the dozen bellbirds
arriving during a 90-minute period. The father of the nestlings is quarantined by the
zoologists, so the males can be considered potential suitors, trying to impress the
female by their paternal efforts in feeding the nestlings.

It would be easier to test this hypothesis if one could model the arrival times as a
Poisson process in time. For such a process, given that the number of arrivals during
the observation period is N, the arrival times have the same joint distribution as if
they were drawn independently from the uniform model on this interval (see Karlin
and Taylor (1975), p. 126). This result is the basis for a goodness-of-fit test for a
Poisson process. Are the N arrival points distributed ‘at random’ within the interval?
That is, are they consistent with the uniform model or are they too regularly spaced
or too clumped together to be consistent with a Poisson(λ) process?

The bellbird arrival data do appear more or less uniformly distributed over the 90
minutes, with small gaps at 40 and 85 minutes. The gap at 40 minutes can be partially
explained by the arrival of a much larger bird, a currawong.

10.2.1.1 Testing for ‘randomness’ of arrivals

The method is to partition the observation interval into K intervals of equal length,
each having probability 1/K under the uniform model, and test for ‘randomness’
by comparing the expected number in each interval Ek = N/K with the observed
number Ok via the statistic C =∑k (Ok − Ek)

2/Ek. In this case both large values

Table 10.1 Arrival times of bellbirds to a nest during a 90-minute
observation period, after conversion from minutes and seconds to decimal
notation. The data were kindly supplied by Dr Michael Clarke of the School
of Zoology, La Trobe University.

0.000 0.250 2.250 2.583 2.750 3.200 3.500
3.750 4.583 5.583 5.666 6.500 6.666 7.000
7.750 9.166 9.750 10.000 11.083 15.666 15.833
16.500 17.833 18.083 18.916 19.416 21.833 22.666
22.750 24.133 24.750 26.166 26.250 26.500 28.500
29.916 30.333 30.583 32.333 33.166 33.500 34.333
35.166 35.666 36.250 36.500 38.833 39.000 43.583
44.500 49.000 50.833 50.916 51.000 51.250 51.833
52.166 53.250 54.333 55.000 55.333 56.916 57.333
57.666 57.916 58.666 58.750 59.916 60.716 62.916
65.500 66.250 66.833 67.250 67.916 69.916 71.333
72.250 73.166 76.583 77.583 78.583 78.750 79.750
81.666 82.483 88.916
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of C and small values of C raise doubt about the hypothesis of a Poisson process.
Large values suggest finding another model which explains the agglomeration of
observations, while small values suggest finding a model which explains why the
arrivals are so regular.

An analogous test for complete spatial randomness is often carried out when
observations are points in the plane, such as locations of trees in a forest, or of cells
growing in culture in a dish. The observation region is partitioned into a grid of
K equal-area regions, and the number of points falling within each region are the
observations Ok. See Diggle (1983) for examples.

Returning to the bellbird data, there are N = 87 observations in the 90-minute
period. If one uses K = 6 intervals of length 15 minutes each, the expected number in
each interval is Ek = 87/6 = 14.5. The observed numbers Ok are 19, 17, 14, 18, 11
and 8, respectively, leading to a chi-squared statistic C = 6.45 and T5 = h87(6.45) =
0.59. This result has standard error 1, so can be considered neutral, discrediting neither
the uniform distribution of the arrivals, nor the hypothesis of randomness of arrivals.
If C had been 11.9, then T5(C) = +1.645 and we would say there is weak evidence
against the model in favor of a model which allows for more agglomeration of points
than a uniform model. The traditional Pearson chi-squared test rejects at level 0.05
for C = 11.07.

If the result had turned out near C = 0.98 with T87 = h87(0.98) = −1.645, or if
C = 0.09 with T87 = h87(0.09) = −3.3, then we would say there is weak or moderate
evidence for the nonrandomness, and look for a specific reason why there is so much
evidence: possibly the birds avoid each other, so the gaps between arrivals are more
regular than would be expected from random arrivals.
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Evidence for heterogeneity of
effects and transformed effects

Given K studies, it is customary in the meta-analytic literature to carry out a chi-
squared test of the hypothesis of homogeneity of effects using Cochran’s Q statistic,
introduced by Cochran (1937, 1954). If the test fails to reject it is then assumed the
effects are equal, and an estimate of the common effect can be obtained; if it does reject
then an alternative model which allows for different effects is assumed. In this chapter
we measure the evidence for the alternative of unequal effects, and also evidence for
unequal transformed effects. In either case, the evidence for heterogeneity is different
for fixed and random effects models, so will be presented in separate sections below.
The theory is given in Chapter 24.

11.1 Methodology
11.1.1 Fixed effects

Data and Model

• Given K studies of sizes nk measuring potentially different effects µk, for
k = 1, . . . , K.

• The estimated effects µ̂k for the respective studies are mutually independent
and approximately normal with variances w−1

k .

• The inverse variances wk are used as weights for the effects µk, and their
estimates are denoted by ŵk.

Meta Analysis: A Guide to Calibrating and Combining Statistical Evidence    E. Kulinskaya, S. Morgenthaler, and
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• Denote the weighted mean effect by µ̄w =∑wkµk/
∑

wk and its estimate
ˆ̄µŵ =∑ ŵkµ̂k/

∑
ŵk. For equal effects µk = µ̄w for all k.

• Standardized effects are denoted by δk, and transformed (standardized) effects
by κk = K(δk), where K is the Key for the model, which is assumed to be
the same for all studies. These transformed effects can be combined with
weights nk to obtain κ =∑ nkκk/N, where N =∑ nk is the total sample
size.

• Evidence in the kth study satisfies Tk ∼ N(
√

nkκk, 1), to a good approximation.

• Transformed effects are estimated by κ̂k = Tk/
√

nk ; for each k the estimator κ̂k

is approximately normal with mean κk and variance n−1
k . Their weighted mean

is κ̂ =∑ nkκ̂k/N.

Questions

• What is the evidence against the null hypothesis of homogeneity of effects
H0 : µk = µ for all k and for the alternative of heterogeneity H1 : µj �= µk for
some j �= k?

• Alternatively, what is the evidence against the null hypothesis of homogeneity
of transformed effects H∗

0 : κk = κ for all k and for the alternative H∗
1 : κj �= κk

for some j �= k?

Test statistic and distribution

• To test for the homogeneity of effects, Cochran’s Q is defined by

Q =
∑

k

ŵk(µ̂k − ˆ̄µŵ)2. (11.1)

Larger values of the test statistic favor the alternative H1 of the heterogeneity
of effects over the null H0 of homogeneity.

• For a fixed number of studies K and simultaneously growing sample sizes
nk → ∞ (see Section 24.1.1 for details), the distribution of Q is approximately
χ2

K−1(λ) with the noncentrality parameter λ =∑wk(µk − µ̄w)2. Under the
null hypothesis H0, λ = 0 and Q has the central χ2

K−1 distribution.

• To test for the homogeneity of transformed effects, the test statistic Q∗ is defined
by

Q∗ =
∑

k

nk(κ̂k − κ̂)2. (11.2)

Larger values of Q∗ favor the alternative H∗
1 of heterogeneity of transformed

effects over the null H∗
0 of homogeneity.
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• For a fixed number of studies K and simultaneously growing sample sizes nk →
∞, the distribution of Q∗ is approximately χ2

K−1(λ
∗) with the noncentrality

parameter λ∗ =∑ nk(κk − κ)2. Under the null hypothesis H∗
0 , λ∗ = 0 and Q∗

has the central χ2
K−1 distribution.

Transformation to evidence

• The evidence for heterogeneity in Q is defined by

TQ =
√

Q − m/2 −
√

m/2, (11.3)

where m = χ2
K−1,0.5 is the null median. This formula only applies for Q ≥ m.

For Q less than its null median it is defined by a symmetrization argument (see
Definition 24.1 in Section 24.1.2 for details).

• For large individual study sample sizes totaling N, Cochran’s Q is approxi-
mately distributed as χ2

K−1(λ). Then TQ is approximately N(τQ, 1), where for
θ = λ/N the expected evidence is τQ

.= √
N K(θ), andK = KK−1,N is given by

(22.2). This Key for the noncentral chi-squared model is very complicated, but
for λ, N increasing without bound and λ/N approaching θ, the Key approaches
K(θ) = √

θ. Under the null hypothesis H0, τQ = 0 and TQ ∼ N(0, 1).

• The evidence in Q∗ for heterogeneity of transformed effects is defined to be
the vst in (22.1) applied to Q∗, and denoted TQ∗ . For large sample sizes TQ∗ ∼
N(τQ∗ , 1), where the mean evidence is given by τQ∗

.= √
N K(λ∗/N). Under

the null hypothesis H∗
0 , τQ∗ = 0 and TQ∗ ∼ N(0, 1).

• In the normal model with equal sample sizes nk = n described in Section 24.2
the variance of TQ is reliably stabilized near 1 for n ≥ 80, and the variance of
TQ∗ for n ≥ 20.

Interpretation

• Hypotheses (H0, H1) and Cochran’s test based on Q are concerned with het-
erogeneity of effects µk, whereas hypotheses (H∗

0 , H∗
1 ) and the test based on

Q∗ are concerned with heterogeneity of transformed effects κk. In general,
these two problems are different. It is possible to have homogeneous effects
and heterogeneous transformed effects, or the other way round.

• The approximate power of the level-α TQ-based test for detecting an alternative
λ > 0 is

1 − β(λ) = 	(
√

N K(λ/N) − z1−α).

This formula can be rewritten to give the expected evidence in terms of level
and power: τ = z1−α + z1−β(λ).

• The usual methodology can be used for sample size calculations, and confidence
intervals for the noncentrality parameter λ derived. Neither seems to be of much
practical interest.
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11.1.2 Random effects

Data and model

• Continuing with the assumptions and notation of Section 11.1.1, further assume
µk ∼ N(µ, γ2); the parameter γ2 ≥ 0 is called the interstudy variance. Then
the estimated effects µ̂k for the respective studies are independent and approx-
imately normal: µ̂k ∼ N(µ, w−1

k + γ2).

• Alternatively, let the transformed effects κk ∼ N(κ, γ2). Then the estimated
transformed effects κ̂k for the respective studies are independent and approxi-
mately normal: κ̂k ∼ N(κ, 1/nk + γ2).

Questions

• What is the evidence against the null hypothesis of zero variance component
H0 : γ2 = 0 (equivalent to the null hypothesis of homogeneity of study effects
µk = µ for all k, or homogeneity of transformed effects κj = κ for all k) and
for the alternative of a positive variance component H1 : γ2 > 0?

Test statistic and distribution

• If the hypotheses about the raw effects µk are of interest, the test statistic is the
Cochran’s Q defined by Equation (11.1).

• If the hypotheses about the transformed effects κk are of interest, the statistic
Q∗ is appropriate.

• Larger values of the test statistics Q or Q∗ favor the alternative H1 of the nonzero
variance component over the null H0 of homogeneity.

• For a fixed number of studies K and simultaneously growing sample sizes
nk → ∞ (see Section 24.1.1 for details), the null distribution of Q or Q∗ is
approximately central χ2

K−1.

• The distribution of Q or Q∗ under alternatives γ2 > 0 differs from the dis-
tribution under alternatives of heterogeneity of fixed effects; for equal sample
sizes nk = N/K → ∞ and fixed K it is vescaled central chi-square distribu-
tion (1 + γ2N/K)χ2

K−1. Otherwise it is a quadratic form in normal random
variables.

• For fixed sample sizes nk and K → ∞ the distribution of both Q and Q∗ is
approximately normal with moments given in Equation (24.11).

Transformation to evidence

• Let Mr =∑k wr
k be the sum of rth powers of the weights, and define

a = M1 − M2/M1 and b = M2 − 2M3/M1 + (M2/M1)
2, c = b/a2 and d =

c(K − 1) − 1.
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• The evidence T ′
Q in Cochran’s Q (known weights) for the alternative γ2 > 0 is

defined by (24.12) as

T ′
Q = 1√

2c

{

ln

(
c Q − d +

√
d + (cQ − d)2

1 + √
d + 1

)}

.

• The evidence T ′
Q∗ in Q∗ for γ2 > 0 is defined by (24.12) using the known

weights wk = nk.

Interpretation

• The statistics Q, Q∗ have the same null distributions under both fixed and ran-
dom effects models. However, the alternatives themselves and the distributions
of these statistics under alternatives differ under the fixed and random effects
models. This results in differently defined evidence.

• In general, the evidences for heterogeneity in T ′
Q and T ′

Q∗ for the random effects
model are smaller than their fixed effects model counterparts TQ and TQ∗ . Both
increase with the number of studies K as the

√
K; but the evidence for fixed

effects increases at the rate
√

n for an average study size n = N/K compared
to the rate ln(n) for random effects. Therefore the evidence for random effects
is unlikely to be large for small K regardless of study sample sizes.

• If the weights need to be estimated, then the moments (24.11) are only esti-
mated, and therefore vst (24.12) may not be reliable. This extra source of
variability caused by unknown weights undermines TQ and T ′

Q. Therefore the
inference using TQ∗ and T ′

Q∗ which is based on transformed effects κk and uses
known weights nk is recommended.

11.2 Examples
11.2.1 Deaths by horse-kicks

We build on the analysis in Section 8.2.1 of the Bortkiewicz data on the numbers
of soldiers killed per year by horse-kicks in each corps in the Prussian cavalry. The
death rates over 20 years are denoted by µk for each of K = 10 corps. The observed
death rates µ̂k and evidence Tk for the alternative µ > 0.5 to the null µ ≤ 0.5 are
listed in columns 3 and 6 of Table 8.1. The ‘sample sizes’ are the numbers of years
of observation, nk = 20 for all 10 corps.

Here the objective is to ascertain whether the death rates are homogeneous across
the corps. Assume the estimated death rates satisfy µ̂k ∼ N(µk, µk/nk), so the esti-
mated weights for Cochran’s Q are ŵk = nk/µ̂k, and the estimated weighted mean
is ˆ̄µw = 0.544. Cochran’s statistic for heterogeneity is Q = 13.19 with p = 0.154
found from the χ2

9 distribution. The evidence for heterogeneity in Q is TQ = 0.960,
which is negligible.
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The choice of µ0 = 0.5 in this example does not affect the homogeneity (or lack
thereof) of the raw effects; the Q-test is location invariant. For the transformed effects
κk = 2(

√
µk − √

µ0) of the Poisson model given by Equation (8.3) heterogeneity (or
lack thereof) measured by Q∗ is also free of the choice of µ0, for the same reason.

The estimated transformed effects are κ̂k = Tk/
√

nk and their weighted mean is
κ̂ =∑ nkκ̂k/

∑
nk = 0.122, leading to Q∗ = 14.54 with p = 0.105. The evidence

in Q∗ for heterogeneity of transformed effects TQ∗ = 1.177, slightly more than that
in TQ. One might expect them to be equal, given that the κk’s are a monotonic
function of the µk’s, but Q and Q∗ are different statistics. Generally speaking, Q

approaches its limiting noncentral chi-squared distribution slower than does Q∗ (see
Chapter 24).

Looking at the contribution of each corps to the value of Q∗
k = nk(κ̂k − κ̂)2 it

can be seen that corps XIV with the highest death rate contributes the largest term,
8.32, followed by corps VIII with the lowest death rate, contributing 2.43. Still, these
values are not large enough to make the overall evidence for heterogeneity worth
further consideration.

11.2.2 Drop in systolic blood pressure

We continue the analysis of the Mulrow et al. (2004) data given in Section 4.3.1. The
objective is to assess the effectiveness of a weight-reducing diet for reducing systolic
blood pressure in seven different studies. The average drop in systolic blood pressure
for n2k patients (ȳk) and n1k controls (x̄k) and their pooled standard deviations spool,k

were used to calculate the two-sample pooled t-statistics tk with νk = n1k + n2k − 2
degrees of freedom and the evidence for a positive effect Tk. All these values are
shown in Table 11.1. In this example the raw effects of interest are differences
in means µk = µy − µx estimated by µ̂k = ȳk − x̄k. The standardized effects of

Table 11.1 Seven studies comparing drop in systolic blood pressure for treated
patients undergoing a weight-loss regime from Section 4.3.1. Sample sizes n1k and
n2k, the estimated effect µ̂k, pooled sample standard deviation spool, k, two-sample
t-statistic tpool, k and evidence for a positive effect Tk for each k are tabled along with
contributions of each study to homogeneity statistics Q and Q∗ denoted by Qk and
Q∗

k , respectively.

k n1k n2k µ̂k spool, k tpool, k Tk ŵk Qk Q∗
k

1 24 27 −5.0 13.80 −1.29 −1.24 0.067 4.77 4.20
2 18 20 5.9 8.10 2.24 2.11 0.144 0.86 1.99
3 64 66 7.0 16.43 2.43 2.39 0.120 1.51 1.21
4 9 10 7.0 14.48 1.05 0.94 0.023 0.28 0.20
5 25 24 −7.0 18.51 −1.32 −1.27 0.036 3.91 4.25
6 5 5 7.3 6.18 1.87 1.42 0.065 0.97 1.13
7 14 19 2.6 6.34 1.16 1.09 0.201 0.15 0.19
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interest, known as Cohen’s d (Cohen 1988), are δk = µk/σk for a common, to treat-
ment and control groups, standard deviation σk estimated by the pooled standard
deviation spool,k.

To ascertain whether the differences in means are homogeneous across the studies,
the estimated weights are ŵk = n1kn2k/{(n1k + n2k)s

2
pooled,k}, and the weighted mean

is ˆ̄µw = 3.46. Cochran’s statistic for heterogeneity is Q = 12.45 with the p-value
p = 0.053 found from the χ2

6 distribution. The evidence in Q is TQ = 1.491 which
is weak.

The estimated transformed effects are κ̂k = Tk/
√

n1k + n2k and their weighted
mean is κ̂ =∑(n1k + n2k)κ̂k/

∑
(n1k + n2k) = 0.113. This leads toQ∗ = 13.17 with

p = 0.041. The evidence in Q∗ is TQ∗ = 1.605, which is weak evidence for hetero-
geneity of transformed effects. Looking at the contribution terms of each study to Q

and Q∗, it is seen that studies 1 and 5 (the only two studies with negative results) make
the main contributions to both statistics. In addition, study 2 makes a considerable
contribution to Q∗ but not to Q. This study has the second largest effect, and also a
comparatively small standard deviation, resulting in a large standardized effect.

11.2.3 Effect of psychotherapy on hospital length of stay

We continue the analysis of Mumford et al. (1984) data introduced in Section 4.3.2.
The objective is to compare the effectiveness of treatment ‘psychotherapy’ with con-
trol ‘no therapy’ for reducing length of stay (LOS) in hospital in days for eight
different studies. The data are given in Table 4.2. The sample variances suggest that
heteroscedasticity is present within most studies, so the Welch two-sample t-statistic
is employed.

Entries from Tables 4.2 and 4.3 needed here are collected in Table 11.2. The
row effects are the differences in mean LOS under two treatments, estimated by

Table 11.2 Statistical summaries of eight studies from Mumford et al. (1984) are
listed in columns 2–8. The results compare mean difference in length of stay µk

in hospital for patients receiving psychotherapy and no therapy. For each study k

are given sample sizes n1k and n2k, the estimated effect µ̂k, scale parameter σ̂k,
standardized effect δk, Welch statistic tWelch, k and evidence Tk for a positive δk.

k n1k n2k µ̂k σ̂k δ̂k tWelch,k Tk κ̂k

1 13 13 −1.50 8.55 −0.175 −0.895 −0.86 −0.168
2 50 30 −1.20 4.03 −0.298 −2.662 −2.61 −0.129
3 35 35 −2.40 15.83 −0.152 −1.269 −1.24 −0.148
4 20 20 0.20 3.14 0.064 0.403 0.39 0.062
5 10 10 0.18 1.72 0.105 0.469 0.44 0.099
6 14 13 −0.60 2.02 −0.297 −1.544 −1.47 −0.283
7 9 9 −2.22 3.31 −0.671 −2.845 −2.53 −0.598
8 8 8 −0.88 2.26 −0.388 −1.554 −1.41 −0.352
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µ̂k = x̄2k − x̄1k. The standard errors of these estimates are σ̂k/
√

Nk, where Nk =
n1k + n2k.

The estimated standardized effects are δ̂k = µ̂k/σ̂k. The estimated transformed
effects κ̂k are κ̂k = N

−1/2
k Tk, and are listed in the last column of Table 11.2. Six

of the eight studies yield negative effects which suggest that psychotherapy does
make a difference. In this discussion we wish to test whether the effects (raw and/or
standardized effects) are homogeneous.

Cochran’s statistic for heterogeneity is Q = 14.204 with p-value 0.048 found
from the χ2

7 distribution. The evidence for heterogeneity of fixed effects in Q is
TQ = 1.54, which is very weak.

The statistic for heterogeneity of the transformed effects is Q∗ = 8.814 with p-
value 0.266. The evidence in Q∗ is 0.594. There is negligible evidence for heterogene-
ity of transformed effects. This happens because comparatively large standardized
effects in the last three studies correspond to small sample sizes, and therefore do not
contribute much to Q∗.

11.2.4 Diuretics in pregnancy and risk of pre-eclamsia

We continue the analysis of Collins et al. (1985) data from Section 7.2.2. The objec-
tive is to investigate the possible benefit of taking diuretics during pregnancy to prevent
pre-eclamsia. The raw effects are the differences in absolute risk of pre-eclamsia in
nine clinical trials of n2k patients and n1k controls, k = 1, · · · , 9. The total sample
sizes are Nk = n1k + n2k. The standardized effects of interest are correlation effect
sizes ρk. The evidence for a positive effect Tk was calculated from the vst (19.1).
The data, correlation effect sizes ρ̂k and estimated transformed effects κ̂k are given in
Table 7.1. Here we calculate evidence for heterogeneity of fixed transformed effects,
and also the evidence for random transformed effects.

The statistic for heterogeneity of the transformed effects is Q∗ = 22.4, and the
evidence for heterogeneity in Q∗ is almost moderate at TQ∗ = 2.41. The constants
required for calculation of the evidence for random transformed effects given by
(24.12) are c = 0.268 and d = 1.145. The value of T ′

Q∗ = 1.900. Thus there is a weak
evidence for random transformed effects. As expected, the evidence for heterogeneity
of random effects is weaker than that for fixed effects, but in this example the random
transformed effects model is a reasonable way forward, whereas combining very
heterogeneous effects through the fixed equal effects model is rather foolhardy.

By contrast, there is no need to even calculate the evidence for random effects in
any of the previous examples in this section; it would be even weaker than the weak
to negligible evidence we found for the heterogeneity of fixed effects which was
calculated. Another consideration in adopting a random transformed effects model is
whether the K studies can reasonably be viewed as a random sample of studies from
a larger population of studies.
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Combining evidence: fixed
standardized effects model

In the previous chapter quantitative methods for helping to decide whether to choose
a fixed or random standardized effects model are provided. Therefore it is assumed
here that the researcher has already decided to adopt a fixed standardized effects
model.

The choice between ‘fixed and equal’ and ‘fixed but unequal’ standardized effects
models is aided by the evidence TQ∗ in Q∗ for heterogeneity of the transformed stan-
dardized effects κ̂k, which indirectly measures the heterogeneity of the standardized
effects δ̂k, because all κk = K(δk), and K is a monotonically increasing function
assumed common to all models.

The distinction between the fixed and equal and fixed but unequal standardized
effects models is conceptually important but the methodology is exactly the same. In
the first model all δk = δ are assumed equal and of course δ is the parameter of interest;
in the second model, the δk are combined by δ = K−1(κ), where κ is a weighted mean
(weights equal to the sample sizes) of the κk’s. The theory is given in Chapter 25.
Other options for the heterogeneous case are presented in Chapters 13 and 14.

The standard meta-analytic approach is to first carry out a Cochran Q-test for
homogeneity of raw effects and, if it is not significant, combine the effects from the
respective studies using a weighted mean, with estimated inverse variance weights.
The same approach can be adapted to standardized effects. These methods are also
illustrated here for the sake of comparison and completeness. Their theory is well
established and available in many books on meta analysis from Hedges and Olkin
(1985) to Sutton et al. (2000).
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12.1 Methodology
Data and model

• Given K studies of sizes nk measuring potentially different effects µk, for
k = 1, . . . , K.

• The estimated effects µ̂k, k = 1, . . . , K, for the respective studies are mutually
independent and approximately normal with means µ̂k and variances w−1

k esti-
mated by ŵ−1

k . A representative µ for the K studies could be µ̄w =∑k wkµk/∑
j wj .

• Standardized effects are denoted by δk, and their transformed versions by κk =
K(δk). Their weighted mean is κ =∑k nkκk/N, where N =∑ nk is the total
sample size.

• Evidence in the kth study for δk > 0 is Tk which is approximately distributed
N(

√
nk κk, 1). The transformed effects are estimated by κ̂k = Tk/

√
nk ; the esti-

mate κ̂k is approximately normal with mean κk and variance n−1
k .

Questions

• What is an estimate of a representative effect µ and a confidence interval
for µ?

• How does one define a representative standardized effect δ for the K studies,
without assuming that the δk’s are equal?

• What is the evidence for δ > 0?

• What is a confidence interval for such a δ?

Transformation to evidence

• A representative κ for the K studies is the weighted mean κ =∑k nkκk/N; and
the representative δ = K−1(κ). If it turns out that all δk are equal, this δ equals
the common value, because κk = K(δk).

• Given independent (T1, . . . , TK), the combined evidence for δ > 0 in the
K studies is

T1:K =
√

n1 T1 + · · · + √
nK TK√

n1 + · · · + nK

. (12.1)

As usual, when T1:K is negative, its magnitude |T1:K| is interpreted as evidence
for δ < 0. Because of the properties of the individual Tk’s, the combined evi-
dence is approximately normal with mean E[T1:K]

.= √
N κ and variance 1. For

further discussion of this definition, see Section 25.2.2.
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Interpretation

• The combined evidence T1:K lies on the calibration scale, so can be interpreted
as an estimator of its expectation with a standard normal error. It allows for
cancellation of positive and negative evidence from conflicting studies.

Confidence intervals

• The weighted mean of effects µ̄w =∑k wkµk/
∑

k wk is traditionally estimated
by ˆ̄µw =∑k ŵkµ̂k/

∑
k ŵk; and the 100(1 − α) % confidence interval for µ̄w

has endpoints ˆ̄µw ± z1−α/2/
√∑

k ŵk . If the effects are equal to µ, say, then of
course this is a confidence interval for µ = µ̄w.

• A 100(1 − α) % confidence interval for κ has endpoints defined by (T1:K ±
z1−α/2)/

√
N . An interval of the same confidence for δ = K−1(κ) is obtained

by applyingK−1 to these endpoints. If the standardized effects are equal to δ, say,
then it is a confidence interval for the common δ, rather than the representative
δ that transforms into the weighted average of the κk’s, defined earlier.

• When the effects µk are one-to-one functions of the standardized effects δk, two
different interval estimates for the representative effect can be obtained from
the above two approaches. The interval based on the transformed standardized
effects technique has, generally speaking, better coverage properties due to the
variance stabilization process, which also improves the normal approximation.

Extension required for nuisance parameters

• When the Key K depends not only on a standardized effect δ but also on a
nuisance parameter ξ, the standardized effects are κk = K(δk, ξk).

• If the Key is strictly monotonic in both arguments, a representative ξ can be
defined. The choice ξ =∑ nkξk/N seems reasonable; for more discussion, see
Section 25.2.3.

• Once a representative ξ is defined, its estimate ξ̂ can be used to solve the equation
K(δ̂, ξ̂) = κ̂ for δ̂.

• Endpoints of the level 1 − α confidence interval for δ = K−1(κ, ξ) are solutions
for δ̂ to the equation K(δ̂, ξ̂) = κ̂ ± z1−α/2/

√
N .

12.2 Examples
12.2.1 Deaths by horse-kicks

We continue with the analysis of these data and model from Section 8.2.1 and the test
for heterogeneity in Section 11.2.1. Recall that for each of the 10 cavalry corps in the
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Prussian army, the numbers of deaths by horse-kicks were modeled by the Poisson
distribution with respective rates µk, and the evidences Tk for µk > 0.5 found for each
corps are listed in Table 8.1. Further, we found negligible evidence for heterogeneity
of effects and similarly negligible evidence for heterogeneity of transformed effects,
so we adopt the fixed and equal standardized effects model. The representative κ is
related to the common mean µ by κ = K(µ|µ0) = 2(

√
µ − √

µ0 ), where µ0 = 0.5.

The evidence for κ > 0 is given by Equation (12.1), and for equal sample sizes
of nk = 20 reduces to T1:10 =∑10

k=1 Tk/
√

10 = 1.73, which is weak evidence for
noncompliance of regulations µ > 0.5. Note that this is slightly less than the weak
evidence T200 = 2.09 for µ > 0.5 obtained in Section 11.2.1. This latter measure of
evidence utilized the fact that all 10 cavalry corps could be considered as a whole,
with the same Poisson model. This example suggests that it is better to combine all
the K study test statistics before carrying out a single variance stabilization to obtain
evidence, rather than use a vst for each and then combine the evidence. However, the
former option will not be available for most models.

Another objective is to find interval estimates of the representative standard-
ized effect δ. But for the one-sample Poisson model δ = (µ − µ0)/

√
µ0 and we are

more interested in an interval for µ. An inverse transformation to find µ is given by
Equation (8.4) asK−1(y|µ0) = (max((y/2 + √

µ0), 0))2. The estimated transformed
effects κ̂k = Tk/

√
nk and their weighted mean κ̂ =∑ nkκ̂k/

∑
Nk = 0.122 were cal-

culated in Section 11.2.1. The estimated death rate µ̂ = K−1(0.122) = 0.506, and the
95 % confidence interval for the death rate is [0.489, 0.701]; it is found by applying
K−1(y|µ0) to the endpoints of the interval for κ which are (T1:10 ± 1.96)/

√
200 .

The standard meta-analytic estimates are ˆ̄µw = 0.544 and the confidence interval
ˆ̄µw ± z1−α/2/

√∑
wk = [0.442, 0.646]. Interestingly, µ̂ < ˆ̄µw, but the correspond-

ing confidence interval is more to the right. The first interval should have better
coverage, as follows from discussions in Sections 17.3.5 and 17.3.6.

12.2.2 Drop in systolic blood pressure

We build on the analysis of the Mulrow et al. (2004) data in Section 11.2.2. The
objective is to assess the effectiveness of a weight-reducing diet for lowering sys-
tolic blood pressure in seven different studies. The estimated raw effects µ̂k are the
differences in average drop in systolic blood pressure for n2k patients (ȳk) and n1k

controls (x̄k). The sample sizes are Nk = n1k + n2k, and the standardized effects of
interest are Cohen’s dk = µk/σk, where a common unknown standard deviation σk is
estimated by the pooled standard deviations spool,k (see Section 4.1). The evidence Tk

for a positive standardized effect dk > 0 is based on the two-sample pooled t-statistics
tk, with all results given in Table 11.1.

The estimated transformed effects κ̂k=Tk/
√

Nk and their weighted mean
κ̂=∑Nkκ̂k/

∑
Nk=0.113 were calculated in Section 11.2.2, along with the evi-

dence for heterogeneity of TQ∗ = 1.605. So there is only marginal to weak evidence
for heterogeneity of transformed effects. We adopt the fixed but unequal standard-
ized effects model. This means that we need to define a representative standardized
effect δ.
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For each study k the transformed effect is κk=K(
√

qk(1 − qk) dk) , where K(x)=√
2 sinh−1(x/

√
2 ) and qk = nk/Nk. Here the Key is a function of both dk and the

study-specific constant qk (see Section 4.1). Therefore a representative value of q

should be chosen prior to solving the equation κ = K(
√

q(1 − q) δ) for a represen-
tative standardized effect δ. Let q =∑Nkqk/N =∑ nk/N = n/N, so that q is the
overall proportion of patients undergoing the weight-reducing diet. Then

δ = δq(κ) =
√

2 sinh(κ/
√

2 )√
q(1 − q)

.

An estimate for δ is δ̂ = δq(κ̂). A confidence interval for κ has endpoints (κ̂ ±
z1−α/2)/

√
N . Applying the function δq to this interval yields an interval for δ with

the same confidence coefficient.
The evidence for δ > 0 is defined in (12.1) and equal to T1:7 = 2.06.
A point estimate of δ is δ̂ = 0.227 with the 95 % confidence interval [0.068, 0.386].

Note that the confidence interval is not quite symmetric around δ̂: the lower limit
is δ̂ − 0.1588, and the upper limit is δ̂ + 0.1595. This reflects the skewness of the
noncentral t-distribution.
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Combining evidence: random
standardized effects model

In Chapter 11 quantitative methods for deciding whether to choose a fixed or random
standardized effects model are discussed, so it is assumed here that the researcher
has already decided to adopt a random standardized effects model. Thus there is
good reason to suppose an interstudy variance component γ2 > 0 exists and must be
accounted for. While we discuss two estimates for γ , both are biased upwards for small
γ , and small γ seems to be the rule, not the exception, in applications. Fortunately, it is
not necessary to estimate γ to find evidence for a positive standardized effect δ, or to
find interval estimates for δ in the presence of γ. The theory is given in Section 25.3.
For other options to proceed in the case of heterogeneous effects, see the fixed effects
model in Chapter 12 and the meta-regression in Chapter 14.

13.1 Methodology
Data and model

• For each of K studies adopting the same model, evidence Tk is available in the
kth study for a positive standardized effect δk > 0. Further, for the same Key K
common to all the studies, the transformed standardized effects are defined by
κk = K(δk).

• For the fixed standardized effects model, Tk ∼ N(
√

nk κk, 1), and the trans-
formed effects are estimated by κ̂k = Tk/

√
nk, which are approximately

distributed N(κk, n
−1
k ). Here the κk’s are constants.
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• For the random standardized effects model, the κk’s are assumed to be a
random sample from the N(κ, γ2) model, where κ, γ2 are unknown; and the
just described distributions for the fixed model are now considered to be condi-
tional distributions, with the kth conditional on the value of κk. It follows that
the unconditional distribution of κ̂k is approximately N(κ, n−1

k + γ2). The
parameters of interest are κ and the representative standardized effect δ =
K−1(κ). For more discussion of this model, see Section 25.3.

Questions

• What are point estimates of the mean transformed effect κ and of the interstudy
variance component γ2?

• What is the evidence for κ > 0 ?

• What is a confidence interval for κ and for δ = K−1(κ)?

Point estimates of the mean transformed effect κ and δ = K−1(κ)

• Let κ̄ = (
∑

k κ̂k)/K and s2
κ =∑k(κ̂k − κ̄)2/(K − 1) denote the sample mean

and variance of the κ̂k’s.

• Clearly κ̄ is an unbiased estimator of κ, with variance Var[κ̄] = σ2/K, where

σ2 = γ2 + 1

K

∑

k

1

nk

.

It is left to the reader to show that E[s2
κ] = σ2, so s2

κ is an unbiased estimator
of σ2, and one can estimate σ2 without estimating γ2. Thus approximately
κ̄ ∼ N(κ, E[s2

κ]/K), and the standard error of estimation is SE[κ̄] = sκ/
√

K .

• The standardized effect δ = K−1(κ) is estimated by δ̄ = K−1(κ̄).

• An alternative unbiased estimator of κ employed for the case of fixed effects in
Chapter 12 is κ̂ =∑ nkκ̂k/N. For this model its distribution is N(κ, N−1(1 +
γ2∑ n2

k/N)). The two estimators κ̄ and κ̂ coincide when the sample sizes are
equal nk = n = N/K .

Test statistic and transformation to evidence

• First note that when the sample sizes are all equal to n, the κk’s are just a
random sample from N(κ, σ2) with σ2 = γ2 + 1/n. It follows that

√
K κ̄/sκ ∼

tK−1(λ), with noncentrality parameter λ = √
K κ/σ. This noncentral Student

t-distribution can also be useful when the sample sizes are large enough so that
their reciprocals are small compared to γ2.

• The test statistic for an alternative κ > 0 is SK−1 = √
K κ̄/sκ.



13.1 METHODOLOGY 93

• The evidence for κ > 0 and hence δ > 0 is given by

T ∗
1:K =

√
2K sinh−1

(
κ̄√
2 sκ

)
.

Interpretation

• When all sample sizes are equal, this T ∗
1:K is approximately normal with variance

1 and mean E[T ∗
1:K]

.= √
2K sinh−1(κ/

√
2 σ). This mean evidence is mono-

tonically increasing in κ and monotonically decreasing in γ , because σ2 =
1/n + γ2. Thus a large number of studies K will be necessary to find even
weak evidence for κ > 0 when γ is large.

• When all sample sizes are approximately equal, or all their reciprocals small
compared to γ2, the above results are expected to still be applicable, because
simulations of t-intervals for κ found under these conditions demonstrate good
coverage probabilities.

Confidence intervals for mean transformed effect κ and δ = K−1(κ)

• For equal sample sizes nk = N/K a nominal 100(1 − α) % confidence interval
for κ has endpoints [L, U] defined by κ̄ ± tK−1,1−α/2

√
s2
κ/K .

• [K−1(L),K−1(U)] covers δ with the same confidence coefficient.

• The above intervals are approximately valid for any general sample sizes nk

when they are large enough so that the values 1/nk are small relative to γ2 (see
Section 25.3).

• In Section 25.3 it is shown that confidence intervals based on κ̂ are not reliable
under the random transformed effects model, so are not recommended.

Estimates of the parameter γ2

• Recall the Cochran statisticQ∗ =∑k nk(κ̂k − κ̂)2 of Equation (11.2) for assess-
ing heterogeneity. Its expectation can be used to derive the method of moments
estimator γ̂2

M = (Q∗ − (k − 1))/(N −∑ n2
k/N), but this can take on nega-

tive values. DerSimonian and Laird (1986) proposed the modified estimator
γ̂2

DL = max{0, γ̂2
M} in order to correct this problem.

• Variance Var(γ̂2
M) = Var(Q∗)/(N −∑ n2

k/N)2, where Var(Q∗) is given in
Equation (24.11). The variance is small only when the number of studies K

is large.

• Another estimator γ2 is γ̂2
S = max{0, s2

κ − 1
K

∑
k

1
nk

}. Once more, the variance
of γ̂2

S is small only for large K. Simulations show that both estimators are biased
upwards for small γ2.
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13.2 Example
13.2.1 Diuretics in pregnancy and risk of pre-eclamsia

We continue the analysis of the Collins et al. (1985) data studied in Sections 7.2.2 and
11.2.4. The objective is to investigate the benefits of taking diuretics during pregnancy
on the risk of pre-eclamsia by combining the evidence from nine clinical trials. The
raw effects are the differences in absolute risk �k = p1k − p2k for n2k patients and n1k

controls, k = 1, . . . , 9. The sample sizes areNk = n1k + n2k. The standardized effects
of interest are correlation effect sizes ρk = �k/

√
ζk, where ζk are study-specific

parameters defined by ζk = {pk(1 − pk)}/{qk(1 − qk)} for qk = n2k/(n1k + n2k), and
pk = qkp1k + (1 − qk)p2k. The evidence for a positive effect Tk was calculated from
the vst (19.1). The data, correlation effect sizes ρ̂ and estimated transformed effects κ̂

are given in Table 7.1. There is a weak evidence T ′
Q∗ = 1.900 for random transformed

effects calculated in Section 11.2.4. The random effects model is used here to combine
the evidence for a positive representative correlation effect ρ.

The statistic SK−1 = 1.796 and the p-value of 0.055 when performing a con-
ventional t-test for κ > 0 may be found from central t8-distribution. The evidence
T ∗

[1:K] = 1.749 seems larger than it should be when compared to the p-value until we
recall that the evidence in the t-test (or any other evidence) is not routinely calibrated
to provide a value of 1.65 when p = 0.05 (see Section 20.4.1 for discussion). If such
a calibration were desired, a corrected evidence Tcorrected = 1.596 is calculated as
(1 − 0.7/(K − 1))

√
2K sinh−1(SK−1/

√
2K), as suggested in Section 20.4.1. In any

case there is a weak evidence of a positive correlation effect, so the risk of pre-eclamsia
may be reduced by diuretics. The point estimate of transformed effect is κ̄ = 0.079
and the 95 % confidence interval for κ is (−0.022, 0.181). Finally, point and interval
estimates of the correlation effect ρ are ρ̄ = 0.079 with the 95 % confidence interval
(−0.022, 0.180).

It would be very easy to calculate point and interval estimates of the standardized
effect δ, since δ2 = ρ2/(1 − ρ2), but it is not straightforward to estimate representative
absolute risk difference �. To do that a reasonable common value of ζ is needed, and
there is no evident way to define such a value.

The estimates of interstudy variance are rather different: γ̂DL = 0.003 and γ̂S =
0.013. Since the number of studies K = 9 is not large, the variation of these estimates
is rather high, and the confidence intervals for ρ and κ given above are also rather
wide.

For comparative purposes, the same evidence was combined under fixed trans-
formed effects model, even though this model may be wrong to use due to high
heterogeneity (Q∗ = 22.4 and TQ∗ = 2.41). The values are ρ̂ = 0.057, with the 95 %
confidence interval (0.034, 0.081). This interval is considerably more narrow than
the interval for ρ under random effects.
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Meta-regression

In a meta analysis results from several studies are combined. When the studies are
heterogeneous, straightforward combination of test results may be too simplistic
and more sophisticasted techniques should be used. One such technique is meta-
regression. In this model, the effect sizes estimated in the individual studies are
modeled as functions of one or more characteristics of the studies (see Thompson and
Higgins 2002). The meta-regression model (fixed effects regression) is an extension
of the fixed effects model and is most appropriate when all variation above and
beyond the sampling error between study outcomes can be accounted for by the
covariates included. A mixed model is more suitable when the covariates explain
only part of the variation, and a random effect term is used to account for a remainder
(Sutton et al. 2000, Chapter 6). Only fixed effects regression is considered in this
chapter.

Because the transformation of the study outcomes to evidences by applying an
appropriate vst simplifies the distributional properties, it is easier to formulate an
accurate model.

14.1 Methodology
Data and model

• The basic data consist of the observed evidence T1, . . . , TK from K studies of
sample sizes nj, j = 1, . . . , K.

• Let Yj = κ̂j = n
−1/2
j Tj ∼ N(K(δj), n

−1
j ) be the estimated transformed effects,

which are related to the (standardized or raw) effects δj as indicated.
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• In addition, we are given u < K predictor variables X = (X1, . . . , Xu), all of
which are study characteristics.

Questions

• What is the evidence that the covariates, which describe the characteristics or
circumstances of the studies, are related to the effect sizes δ?

• To make the relationship between the covariates and the raw effect linear,
one has to apply a linearizing transformation f(δ), which is usually treated as
known. The model then only depends on a u-vector of regression coefficients
(β1, . . . , βu) and is of the form f(δ) = β1X1 + · · · + βuXu. In this model, the
regression coefficients relate directly to the raw effects δ.

• The transformed effects κk = K(δk) have estimates with approximately normal
distributions. No additional linearization is needed. This suggests the alternative
model κ = β1X1 + · · · + βuXu, in which the regression coefficients are directly
related to the transformed effects. This corresponds to a nonlinear model for
the raw effects, δ = K−1(β1X1 + · · · + βuXu). The two models are equal when
f(·) equals K(·).

• What are the estimates and confidence intervals for the regression coefficients
β1, . . . , βu?

Theory

• In the first model, which involves a linearizing transformation, we propose the
model

Yk = K(f−1(β1Xk1 + · · · + βuXku)) + εk, (14.1)

where we assume that ε1, . . . , εk are independent with εk ∼ N(0, n−1
k ). This

choice is justified by the fact that the estimated evidences are roughly normally
distributed.

• Relationship (14.1) is a nonlinear regression model with known variances. It
is also part of the family of generalized linear models (GLMs) with the link
function g(y) = f(K−1(y)) (see McCullagh and Nelder, 1999, for the general
theory of GLMs).

• The simpler model is a weighted linear regression model with known weights
nk, because the response variable Y has an expectation that is linear in the
covariates and a known variance of 1/nk

Yk = β1Xk1 + · · · + βuXku + εk. (14.2)

The two models (14.1) and (14.2) are equivalent when K(·) = f(·).
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Using standard software

• The GLM analysis can be performed in a number of statistical software pack-
ages, including R, SPLUS, SAS among others. Usually the software has a list of
ready-made link functions, corresponding to particular families of distributions,
but the functions of interest to us are not included. It is, however, possible to
pass the required information in the form of the link function g(y), its inverse
g−1(·) and its derivative g′(·). Details differ for different software packages. One
may also need to specify a variance function, the description of the variance
as a function of mean. Since the errors in (14.1) are normally distributed, the
variance function is constant. Most statistical packages also include routines
for nonlinear regressions, which is an alternative way of fitting (14.1).

• The linear regression model relating Y linearly to the covariates (14.2) is easiest
to fit. Virtually all statistical packages include a least squares regression solver.

• In all cases the sample sizes nk must be used as case weights.

• The software for GLMs, nonlinear and linear regressions will compute a value
for the squared global scale parameter σ2 and make use of it in computing stan-
dard errors and confidence intervals. In our models, this global scale is known
to be equal to one.

What to look for in the output

• The estimates β̂1, . . . , β̂u of coefficients are obtained directly from the output.

• The standard errors of the estimates of the regression coefficients from the
output should be divided by the estimated global scale σ̂ to account for the
fact that the global scale is one. These corrected values of standard errors are
denoted by s.e. [β̂k] in what follows.

Tests and confidence intervals

• The t-tests for coefficients βk �= 0 given in the output should be changed to
z-tests based on the values of z = σ̂t. These can easily be transformed to two-
sided evidence.

• A confidence interval for the coefficient βk is given by [β̂k ± s.e. [β̂k]z1−α/2].

• The weighted residual sums of squares for regression or so called deviances
for GLMs are χ2

K−u-distributed. They can be used for lack-of-fit testing, and
transformed to evidence for lack-of-fit via Equation (22.1).

• Suppose a model Hv ⊂ Hu has only v parameters β1, . . . , βv whereas a model
Hu includes u > v parameters β1, . . . , βv, βv+1, . . . , βu. The difference of
weighted residual sums of squares (or deviances in the case of GLMs) has the
χ2

u−v distribution, and can be used to test βv+1 = . . . = βu = 0. Large values
indicate nonzero coefficients, i.e. the lack of fit of model Hv as compared to Hu.
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Traditional meta-regression

• Model (14.1) is a counterpart of the weighted regression for effects tradition-
ally used in meta analysis. This model assumes a normal distribution for the
linearized effect sizes f(δ) and uses weights equal to the inverse estimated vari-
ances of f̂(δ). Sometimes logistic regression is used when the effects of interest
are odds ratios. See Sutton et al. (2000, Chapter 6) for more details.

• In the model (14.1) the weights are known sample sizes, not estimated variances.
The results are thus more stable. In addition, the assumption of normality is
better justified due to the vst that was applied when computing evidence and
prior to the meta modeling.

14.2 Commonly encountered situations
In this section we discuss some common situations in which meta-regression is used.
Consider a meta analysis of K two-sample studies (treatment versus control) of sizes
Nk = n1k + n2k, respectively. Throughout the remainder of this chapter, the subscript
k which ranges over the studies, is often suppressed for simplicity of notation. The
additional index is 1 for control and 2 for treatment. Denote by qk = n2k/Nk the
proportion of observations in the treatment arm of a study.

We will consider three common types of effects in this section. First, Cohen’s
standardized effect dCohen = (µT − µC)/σ, next the difference � = pT − pC of two
binomial proportions and finally the relative risk ρ = µT /µC for two Poisson rates.

14.2.1 Standardized difference of means

When the outcome of interest is a continuous variable and the variances σ2 are
assumed to be equal between the two arms of a study, the results are usually reported
as standardized differences of the means for the two arms of the study d̂Cohen =
(x̄2 − x̄1)/spooled. In this expression, x̄2 and x̄1 are the sample means, and spooled is
pooled standard deviation. This statistic is an estimate of dCohen = (µ2 − µ1)/σ (see
Cohen, 1988).

In Section 4.1 the comparison of two group means is discussed. The standardized
effect size is δ = (q(1 − q))1/2(µ2 − µ1)/σ, where q = n2/(n1 + n2). The corre-
sponding two-sample t-test statistic is tpooled = √

Nδ̂. This has a t-distribution with
ν = N − 2 degrees of freedom and the corresponding vst is Azorin’s (1953) trans-
formation with the key

K(δ) =
√

2 sinh−1(δ/
√

2) =
√

2 ln(δ/
√

2 +
√

1 + δ2/2).

To perform a GLM or nonlinear least squares meta-regression the linear rela-
tionship between the covariates and the effect sizes is assumed to hold for d̂ =
(q(1 − q))−1/2δ̂. The link function is thus g(y) = (q(1 − q))−1/2K−1(y), where

K−1(y) =
√

2 sinh(y/
√

2) = {exp(y/
√

2) − exp(−y/
√

2)}/
√

2.
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The inverse link function is

g−1(x) = K((q(1 − q))1/2x) =
√

2 sinh−1((q(1 − q))1/2x/
√

2),

and its derivative is

g′(y) = (q(1 − q))−1/2(exp(y/
√

2) + exp(−y/
√

2))/2.

When the variances in the two arms of a study are not assumed to be equal,
the Welch t-test should be used instead of the t-test with pooled variances, and the
appropriate vst may be found in Section 4.2.

14.2.2 Difference in risk (two binomial proportions)

Consider a linear model for a difference in risk in a meta analysis of K studies. The
risk in question may be a risk of a disease and a treatment under consideration may be
a medical intervention or a behavioral change, such as a smoking cessation program.
The number of cases in the treatment and control arms (X2 or X1 respectively) can
be modeled as binomial random variables, and the difference in risk is the difference
of binomial proportions � = p2 − p1 between the two arms of the study.

This basic model is considered in Chapter 19. As usual, q = n2/(n1 + n2). The
parameter p = qp1 + (1 − q)p2 and function ζ = {p(1 − p)}/{q(1 − q)} introduced
in Section 19.1.1, are needed to specify the key function, which is given by (see
Equation (19.1))

K(�) = arcsin(�/
√

ζ ). (14.3)

Because the range of � is restricted, various choices for the linearizing transformation
f(·) may be useful. The key function incorporates one of the standard choices, so that
we may again take f(·) to be the identity. The link function is then g(y) = K−1(y) =√

ζ sin(y) with derivative g′(y) = √
ζ cos(y). The proportions p1 and p2 are estimated

by p̃1 = (X1 + 0.5)/(n1 + 1), p̃2 = (X2 + 0.5)/(n2 + 1), and substituted into the
formulae for �, p and ζ, to obtain estimated transformed effects Y = K(�̃).

If, alternatively, a linear model is assumed for correlation effect sizes ρ = �/
√

ζ,
take g(y) = sin(y).

14.2.3 Log relative risk (two Poisson rates)

Consider a meta analysis of K large studies of a rare disease. The numbers of observed
cases X2 and X1 can be modeled by Poisson random variables, and the relative risk
(RR) is the ratio of Poisson rates ρ = µ2/µ1 of the two arms of the study. This basic
model was considered in Section 9.1.2.

For each study, conditionally on the total number of responses X1 + X2 = w, the
number of cases under treatment follows a binomial distribution,

X2 given X1 + X2 = w ∼ B(w, p).

As in the previous case, various linearizing transformations f(·) are considered in the
literature. One of the standard choices is the logarithm of the relative risk ln(ρ) related
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to the parameter p via linearizing transformation ln(ρ) = ln(q−1 − 1) − ln(p−1 − 1).
For the meta-regression, this quantity is chosen as the response variable.

The appropriate key is

K(p) = arcsin(1 − 2q) − arcsin(1 − 2p), (14.4)

and the inverse function isK−1(x) = (1 − sin(arcsin(1 − 2q) − x))/2. The link func-
tion is thus

g(y) = f(K−1(y)) = log(q−1 − 1) − log

(
1 + sin(C − y)

1 − sin(C − y)

)
, (14.5)

whereC = arcsin(1 − 2q). The proportionp is estimated by p̃ = (X2 + 0.375)/(w +
0.75), and it is used to obtain estimated transformed effects Y = K(p̃); a linear model
is fitted for g(Y) = log ρ̃ = log((q−1 − 1)(p̃−1 − 1)−1). The inverse link function is

g−1(y) = C − arcsin

(
Re−y − 1

Re−y + 1

)

where R = q−1 − 1 and the derivative is

g′(x) = 2

cos(C − x)
.

14.3 Examples
This section presents two examples of meta-regression. First an example of meta-
regression for standardized differences in means taken from Section 8.F.2 of Hedges
and Olkin (1985) is considered. Then a meta-regression for log relative risk of tuber-
culosis originally reported by Colditz et al. (1994) is refitted.

14.3.1 Effect of open education on student creativity

Effect size estimates from K = 10 studies of the effects of open versus traditional
education on student creativity are given in the Table 14.1. The covariate of interest
is the grade level. Sample sizes for both modes of education are equal in each study,
and the effect size is d̂Cohen = (X̄2 − X̄1)/spooled. The variances in the two arms are
assumed to be equal (see Hedges and Olkin, 1985, pp. 185–187). Hedges and Olkin
use the vst transformation with the key functionK(d)=g−1(d)=√

2 sinh−1(d/(2
√

2))

before performing the standard linear model analysis, which tests for the difference in
grades 1–3 (coded 1) versus grades 4–8 (coded 2). This corresponds to the regression
model (14.2).

Hedges and Olkin found the effect of open education to decrease significantly
in grades 4–8, with mean −0.327, and 95 % confidence interval [−0.484, −0.170].
The residual sum of squares (RSS) for their model is 31.285; and this model (which
includes grade differences only) is rejected at the 0.01 level using a chi-squared
distribution with K − u = 8 degrees of freedom. A linear regression may be a better
model, providing an intercept of 0.5202 and slope of −0.1106 per grade, with RSS
equal to 27.821 still with 8 degrees of freedom.
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Table 14.1 Effect size estimates from 10 studies of the effects of open versus
traditional education on student creativity, reproduced with minor changes from
Table 4, Section 8.F.2 of Hedges and Olkin (1985). The values of d̂k are in fact
slightly corrected unbiased standardized mean differences, but the difference
between these values and dCohen values is uniformly less than 0.02 across the table
and is therefore ignored.

Grade
Study level n2 = n1 d̂k κ̂k

1 6 90 −0.581 −0.288
2 5 40 0.530 0.263
3 3 36 0.771 0.381
4 3 20 1.031 0.505
5 2 22 0.553 0.275
6 4 10 0.295 0.147
7 8 10 0.078 0.039
8 1 10 0.573 0.284
9 3 39 −0.176 −0.088

10 5 50 −0.232 −0.116

The other model (14.1) uses a normal GLM with link function g(y) =
2
√

2 sinh(y/
√

2). Note that q = 1 − q = 1/2 for each study. Both methods provide
similar answers.

The GLM approach with the response variable Y = κ̂ = g−1(d) also shows a sig-
nificant decrease in the effect of open education in grades 4–8, with mean −0.657
and 95 % confidence interval [−0.974, −0.339]. Residual deviance is exactly the
same value of 31.285 we had before, and the lack-of-fit evidence is rather strong
at 3.259. Using grade as a continuous predictor, the model equation is d = g(Y) =
1.053 − 0.224 grade, with adjusted confidence intervals for the regression coeffi-
cients being [0.589, 1.516] for the intercept, and [−0.322, −0.125] for the slope.
The residual deviance is 27.742 with 8 degrees of freedom, and the lack-of-fit evi-
dence is 2.91. This is still not a perfect model. The plot of fitted versus observed
values of Y = g−1(d), and the QQ plot of the residuals are shown in Figure 14.1. The
QQ plot is much better than for the model with dichotomous grade level.

14.3.2 Vaccination for the prevention of tuberculosis

The data fromK = 13 RCTs each comparing a group vaccinated by Bacillus Calmette-
Guerin (BCG) vaccine for the prevention of tuberculosis against a nonvaccinated
group, originally reported by Colditz et al. (1994), were already considered in Section
9.2.1 and reproduced in Table 9.1. It was suspected that the distance from the equator
affected the efficacy of the vaccine, and therefore this covariate is to be investigated
in the meta-regression. Latitude was centered by subtracting its mean (33.46). Since
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Figure 14.1 Plot of fitted versus observed values of Y = g−1(d), and the QQ plot
of residuals for the GLM model of effects of open versus traditional education on
creativity with grade as a continuous covariate.

only the distance from the equator and not the sign is of interest, the negative sign in
study 9 carried out on the opposite side of the equator was dropped for the analysis.

14.3.2.1 Standard meta-regression with fixed effects

In the original study the log(RR) of disease in vaccinated group, defined as θ =
log ρ = log(µ2/µ1) was the response variable. Here the index 2 corresponds to
‘vaccinated’ and 1 to ‘nonvaccinated’. The inverse variances of log(RR) were used
as weights in a standard weighted regression based on a normal approximation to
log(RR). The answer was

θ̂ = −0.635 − 0.029(x − 33.46),

where x is the distance from the equator in degrees latitude. As the distance from the
equator increases the log(RR) decreases, corresponding to greater vaccine efficacy.
To use correct tests and confidence intervals, the standard errors for the coefficients
were divided by the MSE 1.672. The adjusted confidence intervals for intercept
and slope are [−0.722, −0.547] and [−0.034, −0.024], respectively. The RR for
the average distance from the equator observed in the trials is an exponent of the
intercept estimate, which is 0.530. Similarly, the confidence interval for the RR is
[e−0.722, e−0.547] = [0.486, 0.578].

The plot of log (RR) versus the distance from the equator, and the QQ plot of
the residuals are shown in Figure 14.2. The radii of circles on the left-hand plot
correspond to the weights of trials. The model is driven by trials 6, 8 and 11. The QQ
plot shows three outliers.
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Figure 14.2 Plot of distance from the equator versus log (RR) with regression line
log(RR) = a + bx, and the QQ plot of residuals. The radii of circles on the left-hand
plot correspond to the weights of trials. The labels are trial numbers. The model is
driven by trials 6, 8 and 11.

14.3.2.2 Meta-regression based on conditional standardized effects

The use of the Poisson approximation to the binomial is discussed in Section 18.4.
Following a recommendation of Decker and Fitzgibbon (1991) it can be used only
for small probabilities satisfying p < 0.47/n0.31. For the BCG data this condition is
satisfied for all trials except trial 6, in which the probabilities in both arms are too
large. In trial 2 the proportion of disease in the not vaccinated arm p = 0.1 is only
slightly higher than 0.47/n0.31 = 0.08. The data-generating mechanism can thus be
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Figure 14.3 Plot of distance from the equator versus log RR g(Y) with the linear
fit g(Y) = a + bX from GLM, and the QQ plot of residuals. The radii of circles on
the first plot correspond to the inverse numbers of cases in trials. The labels are trial
numbers.
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approximated by the Poisson distribution, and the conditional key function (14.4)
can be used. This is a more adequate approach since transformed standardized effects
K(p) are assumed to be normally distributed, whereas the log (RRs) themselves are
not. Let us fit a model for log (RR) in the nonvaccinated group using the generalized
linear model (14.1) and the link function (14.5). Let w be the total number of cases
in each trial, and X2 and X1 be the numbers in each subgroup (nonvaccinated versus
vaccinated). Response variable Y is a vector of transformed standardized effects
for conditional evidence (given total number w of cases in each trial) calculated as
Y = arcsin(1 − 2q) − arcsin(1 − 2p̃)), with p̃ = (X2 + 0.375)/(w + 0.75).

The fitted model is

g(Y) = log RR = 0.6513 + 0.0302(x − 33.46).

Note that the coefficients are very close to those from the standard meta-regression.
The sign is opposite because in the original model the RR was defined as µ2/µ1, and in
(14.4) it was defined as as µ1/µ2. The estimated dispersion parameter is σ2 = 2.618.
The standard errors need to be divided by

√
2.618. Adjusted confidence intervals for

the regression coefficients are [0.561 to 0.742] and [0.0249 to 0.0355], respectively.
The width of these confidence intervals hardly differs from the width of confidence
intervals for the standard meta-regression.

The plot of log RR g(Y) as a function of the distance from the equator, and the
QQ plot of residuals are shown in Figure 14.3. The QQ plot is much better than for
the previous model. Its superiority to the QQ plot from the standard meta-regression
results from almost true normality of transformed standardized effects as opposed to
dubious normality of log RR.

The null deviance is 164.2759 on 12 degrees of freedom, and the residual deviance
is 28.8021 on 11 degrees of freedom. Thus the evidence for badness of fit is 2.53.
This is certainly not a perfect model as can be seen from the spread on the plot.
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Accounting for publication bias

A well-planned study may fail to generate the hoped-for amount of evidence. The
reasons may include an insufficient sample size, a smaller than expected effect size,
or imprecise and highly variable measurements of the influence of the treatment. By
combining several low-powered studies, stronger evidence may be obtained. This is
the idea that underlies meta-analysis. Publication bias is in some sense an inverse
outcome. A result enters the published record with a claimed evidence that is exag-
gerated. This can be caused by a selection bias. If small studies are run repeatedly, one
or a few of them may produce weak evidence. Because the published weak evidence
is the maximal amount observed in repeated trials, this can happen even if the null
hypothesis of a zero effect size is true.

If we know something about the selection mechanism, the published evidence can
be corrected. The use of a vst that leads to approximate normality with fixed variances
simplifies the necessary computations.

15.1 The downside of publishing
Data and model

• In a meta analysis one combines the available and comparable studies in order
to obtain a more precise estimate of an effect. We assume that the estimated
evidences of K studies have been published. Thus, K couples of study sizes
and evidence values (nk, Tk) for k = 1, . . . , K are at our disposal. These can
be combined to give evidence

Meta Analysis: A Guide to Calibrating and Combining Statistical Evidence    E. Kulinskaya, S. Morgenthaler, and
Robert G. Staudte   © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-02864-3
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Tcombined =
√

n1 T1 + · · · + √
nK TK√

n1 + · · · + nK

, (15.1)

for which the sum n = n1 + · · · + nK is the appropriate sample size. The com-
bined effects found by a meta analysis often appear to overstate the evidence
and to be biased in favor of the alternative. Such a bias could be due to a
nonrandom selection of the studies, for example by favoring those studies that
show a large effect. Publication bias is the name given to such a selection.
Because the meta analyst only has access to published studies and because
studies are only published if they show a significant effect, a selection bias is
created.

• To model the publication bias, we suppose that the observed evidences satisfy

Tk ∼ T N (
√

nk κ, 1, 1.645),

where T N denotes the truncated normal distribution with center
√

nk κ, vari-
ance 1 and truncation point 1.645. Truncation at 1.645 means that all evidences
smaller than 1.645 are absent. The truncated normal density is constructed from
a normal density by setting the value of the density equal to zero to the the left
of the cutoff point. The resulting curve is not a density, because it encloses an
area of less than one. To make it into a density, one multiplies by the necessary
constant.

This is the simplest possible explanation of the selection bias. To make
the model more general, we could choose another truncation point or make
the truncation point depend on the study. We could also make the effect size,
expressed by the value of κ, depend on the study. But the positive side of such
modifications – they render the model more realistic – have to be balanced
with the negatives: they complicate the model’s use and make its results less
transparent.

Under the truncated normal model, some studies are absent from the pub-
lished record and we take care of this by assuming knowledge about the mecha-
nism for truncation. A better model is obtained by adding an additional feature,
the number of missing or absent studies. The user of this model must specify
the number of missing studies. By doing this, one gains control over the bias
correction introduced in the meta analysis. Adjusting the cutoff point would
serve a similar purpose.

Question

• If Equation (15.1) gives a biased account of the combined evidence, how can
we correct for the bias?

Bias correction

• Based on the sample (ni, Ti) (i = 1, . . . , K), the cutoff point and the number
of missing studies, a statistical estimate of κ can be derived. The details of
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the calculation are explained in Chapter 26. Let κ̂meta be this estimate. The
bias-corrected evidence estimate is then simply

Tmeta = √
n1 + · · · + nK κ̂meta.

Interpretation

• By construction, because the meta analysis takes the missing studies into account
and corrects a bias in favor of the alternative, we have Tmeta ≤ Tcombined. By
increasing the number of missing studies from zero, a decrease in Tmeta can be
observed and we recommend to compute the value for several choices.

15.2 Examples
15.2.1 Environmental tobacco smoke

Tweedie et al. (1996) give an example of relative risk estimates based on 36 case-
control studies. The disease these studies considered was lung cancer and the risk
factor was environmental tobacco smoke (ETS). The data given in the paper are
unadjusted risk ratios. The published values range from 0.74 (no risk, ETS decreases
the occurrence of the disease) to 2.55 (large increase in risk for lung cancer due
to ETS). In Chapter 7 the transformation to evidence of risk estimates has been
discussed. There, risk is defined as the difference p1 − p2, where p1 is the probability
of the disease for the group with the risk factor activated and p2 is the chance for
those with the risk factor absent. The relative risk on the other hand is equal to the
ratio RR = p1/p2.

In order to prepare a data set suitable for our purpose, we needed a way to get
from one to the other. Assuming a value for p2, this is easy and we find p1 − p2 =
p2(p1/p2) − p2 = p2(RR − 1). From the published data set, the sample sizes are
not known either. We made the assumption that each study used an equal num-
ber n1 = n2 = n of cases and controls. We were then able to infer the value of n

from the length of the confidence intervals for the relative risk given in Tweedie
et al. (1996).

Let Ri = p2(RRi − 1) and Ni = ni + ni denote the values for the risk and the
sample size in the ith study. The evidence is then – up to the small sample corrections,
which are not important in this example – given by

Ti =
√

Ni arcsin
(
Ri/
√

4 × pi(1 − pi)
)
,

where pi = (p1,i + p2)/2 = p2 (RRi + 1)/2.
Conversely, we can infer the value of the relative risk RR from the evidence T

and the sample size N by solving the following equation:

p2 (RR − 1)√
4 p2 (RR + 1)/2(1 − p2 (RR + 1)/2)

= sin (T/
√

N ).
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If there were selection bias, we would expect some studies at the lower end
of the evidence scale to be absent. A graphical inspection shows that the distribu-
tion of the 36 evidence values has a longer tail than the normal and its variance is
smaller than one. This could be the result of variation in the effect size κ between the
studies.

The combination of the 36 evidence values leads to Tcombined = 2.24, which corres-
ponds to a relative risk of 1.12. Assuming trunction with a known number of missing
studies (censoring) and truncation point 1.645 leads to minimal corrections. When
the number of missing studies is for example set to five, we obtain Tmeta = 2.19,
which corresponds to a relative risk of 1.119. In this example we conclude that there
is weak evidence of an increase in lung cancer risk due to ETS.
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Figure 15.1 This plot shows the evidences obtained from 69 studies (Jané-Llopis
et al. (2003)). In the paper, the standardized mean differences are tabulated. We
assumed a sample size of 200 individuals in each study and converted the standardized
mean differences to evidence by a simple rescaling. In the left-hand panel the normal
density and an overlaid histogram of the evidence values is shown. In the right-hand
panel the sorted evidence values are compared to normal quantiles.
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15.2.2 Depression prevention programs

Jané-Llopis et al. (2003) report on a meta analysis of 69 studies on the effectiveness
of depression prevention programs. Figure 15.1 shows the sorted evidence values
versus normal quantiles. As pointed out in Jané-Llopis et al. (2003), the effects are
very nearly normally distributed, with the exception of four studies that reported
unusual findings. The plot reveals no publication bias due to suppressed studies near
the lower end. Since the paper does not contain sample sizes, we had to assume values
in order to apply the publication bias correction.

The combined evidence from the 69 studies equals 8.1 and speaks strongly in
favor of a positive effect. Assuming five missing studies modifies this value only
slightly downwards to 7.9.

The two least significant studies have evidence values of −4 and −2. Deleting
these from the meta analysis results in an increased combined evidence of 9.0 instead
of 8.1. Correcting for publication bias assuming two missing studies with a cutoff
at evidence = −1.5, one obtains a corrected combined evidence of 8.3, which is
surprisingly close to the original value.

We have used these studies as an example for publication bias even though the
interest centers primarily on the differences between the study characteristics and the
influence of these differences on the outcome.
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16

Calibrating evidence in a test

Many scientists regard the p-value as a measure of evidence against a null hypothesis,
while others regard evidence better encapsulated in a confidence interval for an effect.
Two advantages of the p-value are that only one number is specified, and it has a
wide range of applicability. But the p-value also has numerous deficiencies which
have been widely documented: see, for example, Schervish (1996) and Goodman
(1998).

For us, the evidence for an effect lies in a test statistic, and to measure the evidence
requires only a transformation to a simple calibration scale. On this scale the evidence
always has a standard normal error in estimating its expected value. Thus only one
number, the evidence for the effect, is reported, and it is always accompanied by a
known error distribution which is familiar to all students of statistics. Interpretation of
evidence is then more natural and easily communicated to others. And interpretation
is possible under alternative hypotheses, extending the range of its usefulness.

This procedure further leads to confidence intervals for the effect, and facilitates
combination of evidence for the same effect from different studies. Having a simple
calibration scale allows for concentration on other important statistical issues of how
to choose alternative hypotheses, and whether to allow for different or even random
effects in combining evidence from different studies.

The price paid for calibrating evidence on such a simple scale is that one has to get
there. This is done in theory by taking large enough samples so that the test statistic
or estimator is approximately normal. But as many early statisticians pointed out, one
can also get there with much smaller sample sizes by means of a variance stabilizing
transformation. What this means in practice is that by applying a variance stabilizing
transformation to the test statistic, one can often achieve approximate normality, with
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Robert G. Staudte   © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-02864-3
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standard deviation one, for much smaller sample sizes than required by central limit
theorem approximations.

Typically evidence will be positive for a positive effect and negative for a negative
effect, that is, an effect in the opposite direction. One must allow for both, especially
when combining studies, so that conflicting results are allowed to cancel out. Because
of the symmetry of the normal calibration scale, it suffices to define evidence for one
direction.

16.1 Evidence for one-sided alternatives
Let X have the normal distribution with mean µ and variance σ2, hereafter denoted
X ∼ N(µ, σ2). In this chapter we assume µ is unknown and σ = σ0 is known. One
may be interested in either testing a hypotheses regarding µ, or in estimating µ, and
these two problems are connected through the notion of statistical evidence.

For testing the null hypothesis H0 : µ = µ0 against the one-sided alternative
H1 : µ > µ0 we want a measure of the evidence against H0 in favor of H1. Or,
if we do not have enough information to assume a one-sided alternative (the usual
case), then we want a measure of the evidence against H0 in favor of the two-sided
alternative H2 : µ �= µ0. This latter problem is postponed until Section 17.4 because
first we need to get the calibration scale right.

Given a random sample of observations X1, . . . , Xn which are independent and
each distributed N(µ, σ2

0), the usual estimator of µ and also a test statistic is S =
X̄n =∑i Xi/n. One rejects the null when S is large, because it is clear that large
values of S favor H1 over H0. But what is the right calibration scale for the evidence
in S against H0?

When estimating µ the standard error of X̄n is σ0/
√

n, which decreases at the
rate 1/

√
n, so one must effectively quadruple the experimental effort to double the

accuracy of the estimator of the unknown µ. We take it as axiomatic that evidence in
favor of an alternative regarding µ must grow at the same rate. It will be convenient
for what follows to define the effect by θ = µ − µ0 and the standardized effect by δ =
θ/σ0. In this case there is an obvious choice for estimating θ, namely θ̂n = X̄n − µ0.
It is evident that the null and alternative hypotheses can be restated in terms of θ

or δ; for example H0 : θ = 0 against H1 : θ > 0. This simple model is called the
prototypical model.

We now define one-sided evidence against the null in favor of the positive alter-
native as any monotonically increasing transformation T = T(S) of the test statistic
S for which T ∼ N(E[T ], 1); that is, for which T is on the unit normal scale for all
values of the parameters. A consequence of this definition is that evidence always
has a normal distribution with fixed standard deviation of 1, facilitating comparisons
between and combinations of evidence. Another is that the evidence T is closely iden-
tified with its expectation, in this case its mean τ = E[T ] = √

n θ/σ0. The standard
error of T in estimating τ is 1.

In our simple model we can take T = √
n (X̄n − µ0)/σ0, which is sometimes

called the Z-test statistic. Clearly T ∼ N(τ, 1) for all µ. As a simple example, fix



16.1 EVIDENCE FOR ONE-SIDED ALTERNATIVES 115

µ0 = 5 and σ0 = 5. Then for n = 4 and X̄4 = 10, the evidence against the null in
favor of the positive alternative is T = 2, with standard error 1 when considered an
estimator of the unknown τ. For n = 36 and X̄36 = 10, the evidence against the null
is T = 6, also with standard error 1.

The one-sided alternative µ < µ0 can be treated symmetrically, by replacing
T by −T . That is, negative one-sided evidence for µ > µ0 is positive one-sided
evidence for µ < µ0. Evidence for two-sided alternatives is defined in
Section 17.4.

16.1.1 Desirable properties of one-sided evidence

The reader will no doubt question the generality of the above definition, for once
the standard deviation σ0 of the observations Xi is unknown, or the distribution non-
normal, the test statistic S will have a distribution which is non-normal with variance
depending on unknown parameters. However, in many practical examples T can be
chosen to stabilize the variance to 1, and simultaneously yield approximate normality.
We list below four desirable properties E1 to E4 for a measure of evidence, which in
practice are attained only to a certain, but usually sufficient, degree to measure the
evidence against the null hypothesis and for an alternative.

Let θ be an unknown effect for which it is desired to test θ = 0 against θ > 0, and
let S be a test statistic which rejects H0 for large values of S. We want a measure of
one-sided evidence T to satisfy

• E1, the one-sided evidence T is a monotonically increasing function of S;

• E2, the distribution of T is normal for all values of the unknown parameters;

• E3, the variance Var[T ] = 1 for all values of the unknown parameters; and

• E4, the expected evidence τ = τ(θ) = Eθ[T ] is monotonically increasing in θ

from τ(0) = 0.

In the simple example of a normal model with known variance all of the above
properties hold exactly for evidence defined by the Z-test statistic; that is, estimated
standardized effect. In general, properties E2 to E4 will hold only approximately, but
to a surprising degree, even for small sample sizes.

16.1.2 Connection of evidence to p-values

The p-value for an observed S = s is computed by p = P0{S ≥ s}, where P0 is the null
distribution of S. Further, if T = T(S) satisfies properties E1 to E3, then the p-value
can also be computed from the observed value of T = t by p = P0{T ≥ t} = �(−t),

so t = t(p) = �−1(1 − p). Table 16.1 contains some values of t(p) for comparison
with p. As a significant promoter of p-values, Fisher (1926) originally suggested the
level 0.05, saying
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Table 16.1 Selected values of p, t(p) = �−1(1 − p) and the ratio t(p)/t(0.05).
The second row is on the probit scale while the third row uses 0.05 as a
reference point. The traditional markers 0.05, 0.01 and 0.0005 represent
evidence in proportions 1 :

√
2 : 2.

p 0.0005 0.001 0.01 0.02 0.025 0.05 0.1 0.1587
t(p) 3.291 3.090 2.326 2.054 1.960 1.645 1.276 1.000
t(p)/t(0.05) 2.000 1.879 1.414 1.248 1.192 1.000 0.779 0.608

Personally this writer prefers to set a low standard of significance at the
5 per cent. point, and ignore entirely all results which fail to reach this
level. [Our emphasis.]

We somewhat arbitrarily describe values of T near 1.645 as weak evidence against
the null. Values of T which are twice as large we call moderate evidence, and val-
ues which are three times as large as strong evidence. Thus our definition of weak
evidence follows Fisher’s low standard when the null is true, but we are otherwise
measuring evidence against the null on a different calibration scale, one which allows
for interpretation whether or not the null hypothesis holds.

Now the observed T = t is a monotonic function of the p-value; but the salient
difference between t and p is that under alternatives the p-value distribution is highly
skewed and changing with sample size, making interpretation and combinations of
evidence difficult, as explained in Section 16.2.

16.1.3 Why the p-value is hard to understand

16.1.3.1 The p-value is a conditional probability

The definition of the p-value requires four ingredients: first, a null hypothesis about the
state of nature; second, a test statistic S which orders the outcomes of an experiment,
with the larger the value of S, the more evidence against the null hypothesis; third,
the probability distribution of the test statistic when the null hypothesis holds; and
fourth, an observed value of S = s from the experiment. The p-value of the outcome
S = s is then defined to be the probability under the null hypothesis that S ≥ s. The
evidence is in the test statistic S and the p-value is a measure of ‘surprise’, with
smaller values of the p-value raising the question of whether the null hypothesis
could in fact be true. Note that the word ‘evidence’ is used in the everyday sense of
the word.

The reason Fisher promoted the p-value is that he found it useful for discarding
unremarkable experimental results from those which might be worth further con-
sideration. Based on his experience with many experiments, he gave guidelines for
what might be considered significant p-values. But he did not intend that 0.05 should
become a standard for publication, or that p-values should be compared or used to
predict future experimental results.
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However, given its widespread adoption it was perhaps inevitable that not only
statisticians but scientists in general would start trying to interpret it from frequentist
or Bayesian points of view. In particular, a scientist might ask whether one can expect
to obtain a similar p-value in an identical replication of the experiment; and if not,
why not (see the end of Section 16.2.2). Or, because p-values are often interpreted
naively as the probability of the null hypothesis, given the data, one might ask whether
these concepts have anything to do with each other (see Section 16.4).

The above definition of the p-value is a conditional probability, computed given an
event S = s in a specific experiment and therefore applicable only for that experiment.
It does not have any further interpretation. If one wants to interpret it unconditionally,
that is, from outside the particular experiment which led to it, one needs to define it
differently.

16.1.3.2 The unconditional, or random p-value

Let S0 be independent of S and have the null distribution of S. This S0 represents
the outcome of an independent repetition of the experiment, in which conditions are
identical to those of the original experiment, and in which the null hypothesis holds.
Then given S = s in the experiment just conducted, define the p-value by P(S0 ≥ s).

This yields the same conditional p-value as above, because S and S0 have the same
distribution under the null hypothesis.

Now define the random p-value by PV = P(S0 ≥ S) = 1 − F0(S), where for
simplicity of presentation we assume the null cumulative distribution function F0

(the cdf of S0), is continuous. The cdf of PV , for 0 < p < 1, is

FPV (p) = P{PV ≤ p} = P{1 − F0(S) ≤ p}
= P{F0(S) ≥ 1 − p} = P{S ≥ F−1

0 (1 − p)} (16.1)

= 1 − F1(F
−1
0 (1 − p)),

where F1 is the cdf of S. Note that this definition does not require F1 , the distribu-
tion of the original test statistic S, to be the same as the null distribution F0. When
it does (F1 = F0), it follows from (16.1) that FPV (p) = p for 0 < p < 1, so the
random PV has the continuous uniform distribution on the interval [0,1]. When F1

differs from the null distribution, the random PV often takes on a very different
distribution.

16.1.3.3 Random p-value for the prototypical model

Let X ∼ N(µ, 1), with the hypotheses of interest being µ = 0 and µ > 0. Given
X = x, the ordinary (conditional) p-value is P(X0 ≥ x) = 1 − �(x), where X0 has
the null distribution of X and is independent of it. The cdf of X depends on µ and
is Fµ(x) = P{X ≤ x} = P{X − µ ≤ x − µ} = �(x − µ). The (unconditional) ran-
dom p-value based on X is PV(X) = 1 − �(X). Substituting these results in (16.1),
one obtains its cdf FPV (p)=1−Fµ(t(p))=�(t(p)−µ), where t(p)=�−1(1−p) is the
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probit transformation discussed in Section 16.1.2. This cdf will be useful in deriving
properties of PV in the next section.

16.2 Random p-value behavior
This section explains in part why a new calibration scale for evidence in the p-value
is desirable. For simplicity of presentation, let µ0 = 0 and σ0 = 1 in the prototypical
model. Thus X ∼ N(µ, 1), the hypotheses of interest are µ = 0 and µ > 0 and the
random p-value based on X is PV(X) = �(−X) = 1 − �(X). The presentation is
for n = 1 observation, but results for any n can be obtained by replacing X by

√
nX̄n

and µ by
√

nµ.

16.2.1 Properties of the random p-value distribution

Let zq = �−1(q) denote the qth quantile of the standard normal distribution; that
is, q = P(Z ≤ zq), and define for each x the standard normal density by ϕ(x) =
exp{−x2/2}/√2π . Then for the prototypical model the random p-value PV has the
following properties:

• P1. The qth quantile of the distribution of PV(X) is pq = pq(µ) = �(zq − µ).
The notation pq = pq(µ) emphasizes that the qth quantile depends on µ. It may
also be expressed in terms of the power of the Neyman–Pearson level-(1 − q)

test, namely Pµ(X > zq) = 1 − �(zq − µ) = 1 − pq(µ). With this formula
one immediately sees that as µ increases without bound, the qth quantile pq(µ)

approaches 0 and the power approaches 1.

• P2. The expected value of the random PV(X) is Eµ[PV (X )] = �(−µ/
√

2).

The reason for stating this formula is that it is common to describe a random
variable in terms of its mean and standard deviation. This we have already done
for the transformed p-value t(PV), where we found the mean to be µ and the
standard deviation 1. But these are good summary measures only when the dis-
tribution is symmetric or nearly so. The p-value distribution under alternatives
is highly skewed, so the expected p-value is not a representative measure of its
distribution. In fact, it follows easily from properties P1 and P2 that:

• P3. The expected p-value equals the qth quantile of its distribution, where q

is given by q = �(µ(
√

2 − 1)/
√

2). For example, when µ = 1, the expected
p-value equals the q = 0.61 quantile of its distribution, and when µ = 3 it
equals the q = 0.81 quantile. Thus the expected p-value is totally unreliable for
representing the p-value distribution under alternatives. The expected p-value
was studied by Dempster and Schatzoff (1965) and more recently by Hung
et al. (1997) and Sackowitz and Samuel-Cahn (1999); the latter authors also
consider quantiles of the p-value distribution under alternatives and give an
application of their findings. Median p-values are investigated by Bhattacharya
and Habtzghi (2002).
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• P4. The density of the p-value is fPV (p) = ϕ(t(p) − µ)/ϕ(t(p)), 0 < p < 1,
where t(p) = �−1(1 − p) for all 0 < p < 1.This formula is derived in Donahue
(1999). Plotting fPV (p) against p for any µ > 0 reveals it to be concave, mono-
tonically decreasing and skewed to the right. Moreover, the plots change shape
with µ, so it is difficult to make comparisons between different p-values under
alternatives.

16.2.2 Important consequences for interpreting p-values

What are the implications of the above results P1 to P4 for interpreting the evidence
in the p-value? A good way to grasp the implications is to consider some quantiles
of the corresponding distributions. The p-value and corresponding probit-value X =
t(p) are related by a monotonically decreasing function so the qth quantile of one
distribution transforms into the (1 − q)th quantile of the other. For example, the
q = 0.5 quantile or median of X is µ, and this corresponds to the median p-value
�(−µ). When µ = 1.645, the median p-value is �(−1.645) = 0.05. The reader is
asked to study the plot of t(p) versus p in Figure 16.1, and find the corresponding
quantiles of these two distributions.

Next take the q = 0.75 quantile of the evidence distribution which is µ + 0.6745;
it transforms into the (1 − q) = 0.25 quantile of the p-value distribution, which is
�(−µ − 0.6745). When µ = 1.645 this quantile is �(−2.32) = 0.01. Similarly the
reader can check that in this example the 0.25 quantile µ − 0.6745 of the evidence
distribution transforms into �(−0.971) = 0.166. Thus when µ = 1.645, the central
50 % of the evidence distribution (shown shaded in Figure 16.1) corresponds to the
50 % of the p-value distribution lying between 0.010 and 0.166. The fact that the
latter interval is not centered on the median p-value of 0.05 reflects the asymmetry
of this distribution under alternatives.

Now let µ be unknown. Having observed X = x, a 50 % confidence interval for
µ is of the form [x − 0.6745, x + 0.6745]. This interval transforms into a 50 % con-
fidence interval [�(−x − 0.6745), �(−x + 0.6745)] for the corresponding median
p-value �(−µ). For example, when X = 1.645 the observed p-value is 0.05, but a
50 % confidence interval for the median p-value is [0.010, 0.166]. The reader can
similarly find intervals with different levels of confidence, but the message is clear:
simply stating that the p-value is 0.05 gives the wrong impression that one is close to
the mark.

An important result follows from property P2. If one has conducted an experiment
and obtained a p-value of 0.05, then the estimate of µ is 1.645 and hence the maximum
likelihood estimate of the expected p-value is �(−1.645/

√
2) = 0.122. Thus in a

repetition of the experiment, the researcher can expect a p-value of 0.122. Similar
findings are reported by Goodman (1992).

16.3 Publication bias
It is well known that the established practice of requiring experimental results to
contradict a null hypothesis of no effect at level 0.05 introduces certain anomalies.
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Figure 16.1 The curve shows the evidence t(p) for each p-value. The p-value
of 0.05 and its transformed value of 1.645 are highlighted. Around those values a
50 % confidence interval is drawn, both for the p-value itself and for the transformed
p-value. Also indicated is how the interval boundaries are linked to each other. On
the transformed scale, the random variation is the same, no matter the value of the
transformed p-value. This is indicated by the normal density and the shaded area
covering 50 % of the area.

The scientist who obtains a p-value of 0.049 may succeed in publishing the result,
while the one who obtains 0.051, which is not publishable, knows there is just about
as much evidence against the null in his or her data as that in the 0.049 result. The
very fact of publication introduces a bias towards the alternative: a published p-value
is conditional on its being less than a threshhold. Of course there are other factors
which are more important in publishing than the size of the p-value, but here we only
examine this one.

Assume evidence Tn = √
nX̄n for testing µ = 0 against µ > 0 in the prototypi-

cal model. Let An = {PVn ≤ 0.05} = {Tn ≥ 1.645} be the event that the evidence
in the p-value is significant at level 0.05. The conditional evidence in the random
p-value, given that it is significant, is defined to be Un = Tn|An, where Pµ(An) =
1 − �(c√

n µ), with c√
n µ = 1.645 − √

n µ. It is clear that the distributions of Tn and
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Figure 16.2 Plot of the publication bias function B(µ) versus µ. When α = 0.05
the bias at µ = z0.95 = 1.645 is a surprisingly large B(1.645) = 0.8.

Un only depend on n and µ through
√

n µ so hereafter we only consider the case of
of n = 1 and write T = T1 and U = U1. One can substitute

√
n µ for µ to recover

the general case when desired.
If one restricts attention to p-values which are significant at level 0.05, because

they are the ones available in the literature, then one exaggerates the evidence in such
p-values by considering only U rather than T , effectively ignoring all nonsignificant
results. The difference in means B(µ)=Eµ[U]−Eµ[T ] will be called the publication
bias at µ, for µ ≥ 0. It is shown in Chapter 26 that B(µ)=ϕ(cµ)/{1−�(cµ)}. A plot
of this function is shown in Figure 16.2.

For small µ the publication bias is considerable: the average overstatement of
evidence is more than 2 units on the probit scale. Of course, it is very unlikely
(probability near 0.05) that when µ is small the p-value will be significant. Of more
concern is that when µ = 1.645, say, which is an effect of some interest, that the
publication bias is 0.8. Estimation of publication bias and correction for it is the topic
of Chapter 26.

16.4 Comparison with a Bayesian calibration
The p-value is often confused with the probability that the null hypothesis is true,
given the data. For many frequentists, this confusion can best be resolved by edu-
cation: in their view, the concepts of p-value and posterior probability are simply
incommensurable. However, a considerable amount of research has gone into mak-
ing such comparisons; see, e.g. Casella and Berger (1987), Berger and Sellke (1987),
Berger et al. (1997), Selke et al. (2001), Hubbard and Bayarri (2003) and Berger
(2003) and the discussions following them. It is therefore of interest to compare the
calibration scale proposed here with a recent one by Selke et al. (2001).

These authors assume the p-value has the uniform density f0 on [0,1] under
H0 and then consider alternative distributions f1(p) for the p-value under H1. The
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likelihood ratio (or Bayes factor) for H0 to H1 is then L(p) = f0(p)/f1(p), and,
assuming a positive prior probability π0 on H0, the posterior probability of H0, given
p is P(H0|p) = {1 + (1 − π0)/π0L(p)}−1. It is evident that for any f1(p) which is
positive over [0,1] any desired value of P(H0|x) can be obtained by choice of prior
probability π0. These authors choose a ‘default’ value π0 = 0.5 and show that (under
some conditions) the likelihood ratio L(p) is bounded below by B(p) = −ep ln p for
p < 1/e and 1 otherwise. This leads to a lower bound α(p) = {1 + 1/B(p)}−1 on
P(H0|p). For example, when p = 0.05, α(p) = 0.289. This leads them to conclude
that the p-value overstates the evidence; it certainly does so if one uses P(H0|p) as a
measure of evidence.

However, our thesis is that the p-value measures surprise, not evidence, so it is
of interest to place the α(p) bound on the probit scale. A plot of T(α(p)) against
T(p) = �−1(1 − p) is shown in Figure 16.3, for comparison with our calibration of
the p-value. This graph shows that α(p) will typically underestimate the evidence in
the p-value by 1 unit, the standard deviation of T(PVn), at least for significant p-values
p < 0.05. In general P(H0|p) will exceed α(p), so a person using the smallness of
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Figure 16.3 Plot of T(α(p)) against T(p) for 0.0001 < p < 0.5. The region of inter-
est is T(p) ≥ 1.645, corresponding to p ≤ 0.05.



16.5 SUMMARY 123

P(H0|p) as a measure of evidence against the null will underestimate the evidence
in the p-value by even more than 1 unit.

The difference between the frequentist approach to testing and the Bayesian
approach espoused by Selke et al. (2001) is that these authors treat the hypothe-
ses symmetrically. Contrast this with the frequentist approach which chooses one
hypothesis to be the null so that the burden of proof is on the alternative, that is,
because by definition Type I error is more important than Type II error.

We have considered the usual situation where the Type I error (making a false
claim of an effect) is more important than the Type II error (not detecting an effect).
But there are other problems where a large enough ‘effect’, positive or negative, of
some proposed treatment is deleterious, and one will not adopt the treatment unless
it proves otherwise. In this case appropriate hypotheses are null H0 : |µ| ≥ µ0 and
alternative H1 : |µ| < µ0. An inability to take into account the ramifications of
hypothesis choice can lead to confusion and major mistakes (see Hoenig and Heisey
2001). We agree with Hoenig and Heisey that writers of modern textbooks would
do well to emphasize the importance of choosing hypotheses carefully, and add that
Neyman (1950) devoted four pages of his elementary text explaining how to choose
appropriate hypotheses. The choice of hypotheses is determined by context, and they
can rarely be interchanged in practice.

16.5 Summary
The p-value has been around for a long time because it has proven to be a simple
and useful tool for filtering out very weak experimental results. But scientists and
statisticians in particular want more from a measure of evidence. They want to be
able to compare evidence from different experiments, and combine evidence from
experiments testing for the same effect. When faced with a number of ‘significant’
results, each of which casts some doubt on the null hypothesis, it is natural to want
to combine these results, and to do so under an alternative hypothesis.

While the random p-value is simple to interpret under the null hypothesis, under
alternatives its distributions are highly skewed, making comparisons and combina-
tions of results complicated. Nevertheless, we have learned a few things by looking at
the p-value under alternatives for the prototypical model. Perhaps the most interest-
ing one is that given a p-value of 0.05, the estimated expected p-value in an identical
replication of the experiment is 0.12.

By transforming the random p-value onto the probit scale, one obtains a measure
of evidence whose mean grows linearly with the effect and linearly with the square
root of the sample size. On this scale a ‘highly significant’ p-value of 0.01 represents
about 40 % more evidence than a p-value of 0.05. Further, one must face the fact that
evidence contains random error, and on this proposed calibration scale it is always
1 unit, regardless of sample size or effect size. Often p-values are interpreted too
precisely, perhaps because they are calculated to two or more decimal places. But the
evidence in a conditional p-value of 0.05 would better be reported as evidence 1.645,
with a standard error of 1.
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We compared the evidence in a Bayesian calibration of the p-value and found
that for all practical purposes, the posterior probability of the null, given the p-value,
contains about one standard error less evidence than the p-value.

If one accepts the above proposal as potentially useful for thinking about evidence,
the main remaining question is: how general are the above results? In many sim-
ple applications of statistics, variance stabilizing transformations which are already
available will allow calibration on this scale, as we will demonstrate in the coming
chapters.



17

The basics of variance
stabilizing transformations

In this chapter we first review the simplest method for variance stabilization, stan-
dardization of the test statistic. Then we outline a general method for obtaining a
variance stabilizing transformation, or vst, for short, and explain how we expect to
benefit from it in finding evidence and confidence intervals. Then we will illustrate
the theory with a vst for the sample mean estimator of the Poisson mean. Finally, we
give an important example where a vst is desired: obtaining two-sided evidence from
one-sided evidence on the probit calibration scale.

17.1 Standardizing the sample mean
Given the test statistic X̄n based on a sample of n observations from a distribution with
mean µ and variance σ2, it is common, especially when n is large, to ‘standardize’ X̄n

by subtracting its mean, and dividing by its standard deviation to obtain a Z-statistic
Zn = √

n (X̄n − µ)/σ. This has three effects: firstly, it results in a variable centered
at 0 (E[Zn] = 0) for all µ, σ; secondly, the variance is stabilized at 1 (Var[Zn] = 1
for all µ, σ); and thirdly, the distribution of Zn is approximately standard normal, by
virtue of the central limit theorem. Thus while X̄n has variance σ2/n taking on all
positive values, Zn has variance 1 for all values of the parameters. The transformation
from X̄n to Zn thus ‘stabilizes the variance’. The benefits of this transformation are
clear, but it requires knowledge of the usually unknown parameter σ2.

If σ2 were replaced by the sample variance s2 in the transformation, the resulting
Yn = √

n (X̄n − µ)/sn would not have a stable variance in the sense of being constant
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for all µ, σ, but it may be close enough to 1 for practical sample sizes n and a
corresponding range of µ, σ so that for the sake of inference about µ we may be able
to act as though it were so.

Definition 17.1 Any sequence of random variables {Yn} will be said to be variance
stabilized (to 1) if Var[Yn] = 1 + cn, where ncn → 0 as n → ∞. This is sometimes
written Var[Yn] = 1 + o(n−1). The constants {cn} may well depend on model param-
eters, and the convergence to 0 is not necessarily uniform in the parameters. In any
case we write Var[Yn]

.= 1.

In this book variance stabilization is about choosing transformations hn(Sn) of
statistics {Sn} that achieve the goal Var[hn(Sn)]

.= 1. As indicated, hn can depend on
the known sample size parameter n. Note that hn(Sn) is itself a statistic.

In most cases the degree of approximation will be checked by simulations, even
when a limit theorem exists that gives the rate of convergence of the variance of
transformed variable to the target 1 as n increases without bound. We are mainly
interested here in small and moderate sample sizes, and often drop the subscript n on
hn when it is clearly understood.

17.2 Variance stabilizing transformations
17.2.1 Background material

Let X denote a random variable with variance Var[X]. Suppose Y = h(X), where h is
now any smooth function with at least two derivatives. Then the following expansions
may be helpful when Var[X] is small:

E[Y ] = h(E[X]) + h′′(E[X])

2
Var[X] + R1; (17.1)

Var[Y ] = {h′(E[X])}2Var[X] + R2. (17.2)

Here R1 and R2 are remainder terms when the earlier terms on the right are used as
approximations to the mean and variance of Y ; these remainder terms will typically
be of smaller magnitude than the earlier terms. These approximations will be used
repeatedly throughout this book and can be found in Johnson et al. (1993, p. 54) or
Bickel and Doksum (1990, p. 32); the latter reference also contains material on the
error of approximation when the random variable X is a sample mean.

In our applications X = Sn is a test statistic based on n observations and h = hn is
chosen so that the transformed test statistic Y = hn(Sn) satisfies Var[hn(Sn)]

.= 1. A
first approximation to the expected value is then given by the first term in (17.1), and
we write E[hn(Sn)]

.= hn(E[Sn]) for this approximation. It is typically growing at the
rate

√
n, while the bias term h′′

n(E[Sn])Var[Sn]/2 is of smaller order, usually 1/
√

n,
and depending on unknown parameters. The remainders R1 and R2 are typically of
order n−3/2, also depending on unknown parameters.

Johnson et al. (1993, p. 54) or Bickel and Doksum (1990, p. 32) also point out a
simple method for finding a function h so as to stabilize the variance, provided one
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can first write Var[X] = g(E[X]) for a known function g. One defines h as any

h(x) =
∫ x

[g(t)]−1/2dt, (17.3)

provided the indefinite integral exists. Thus h is defined up to an additive constant.
It follows that {h′(E[X])}2 = {g(x)}−1 = {Var[X]}−1, and then, by (17.2), we can
expect that Var[Y ]

.= 1. Thus, in principle, variance stabilization is easy, but in prac-
tice this method of finding h may not be fruitful, because the resulting h may depend
on unknown parameters.

17.2.2 The Key Inferential Function

Let us call our parameter of interest θ. If Sn is a test statistic for θ = θ0 versus θ > θ0

for which large values of Sn lead to rejection (Sn could be an estimator θ̂n), and hn is a
vst of Sn obtained from (17.3), we typically find that hn(Sn) has a variance near 1 for a
desired range of values of θ, so it satisfies property E3 of Section 16.1.1 of a measure
of evidence. Further, it is often the case that hn can be chosen to be monotonically
increasing in its argument, so property E1 is satisfied. In other words, hn(Sn) is still
a test statistic for testing θ = θ0 versus θ > θ0. If it turns out that hn depends on θ or
unknown nuisance parameters, one can try substituting estimates for these parameters
to see whether a measure of evidence can be obtained by modification of hn. Hereafter
we assume these hurdles have been overcome.

Property E4 requires that the mean E[hn(Sn)] be monotonically increasing in θ

from 0 at θ0. In many applications E[hn(Sn)] is of the form
√

n K(θ) for n, θ of interest
and K a known monotonically increasing function of θ. By subtracting the known
constant

√
n K(θ0) from hn, we can ensure that Tn = hn(Sn) − √

n K(θ0) will have
a mean τ = E[Tn] that satisfies E4 as well as inheriting the properties E1, E3 from
hn(Sn), because hn is defined only up to an additive constant. Finally, we need to
check that Tn also satisfies condition E2, approximate normality for n, θ of interest.
Having Tn approximately N(τ, 1) with τ = √

n K(θ) is highly desirable, because then
Tn has a very well-known distribution and is an unbiased estimator of its mean τ, with
standard error 1. In the text to follow we often write Tn ∼ N(τ, 1), even though the
distribution of Tn is only approximately normal.

Definition 17.2 Given a statistical model and a measure of evidence Tn that satisfies
properties E1–E4 of Section 16.1.1. Supposing further that its expected evidence
τ = E[Tn]

.= √
nK(θ), we call K the Key Inferential Function or simply the Key for

this statistical model.

The Key Inferential Function leads to the solution of many routine problems:

• K1 Choosing the sample size n. For testing θ = θ0 against θ > θ0 based on a
sample of n observations the expected evidence is

√
nK(θ) for each θ. To attain

a desired expected evidence τ1 against alternative θ1 one needs to choose n1 to
be the smallest integer greater than or equal to {τ1/K(θ1)}2.
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• K2 Power calculations. In the Neyman–Pearson setting the power function of
a level α test based on Tn satisfies

�(θ) = Pθ(Tn ≥ z1−α)

= �(τ − z1−α)

= �(
√

nK(θ) − z1−α). (17.4)

• K3 Finding confidence intervals for θ. A 100(1 − α) % confidence interval for
θ is given by

[

K−1

( {Tn − z1−α/2}√
n

)
, K−1

( {Tn + z1+α/2}√
n

)]

, (17.5)

where K−1 is the inverse function to K.

It is tempting to interpret the Key Inferential Function as the expected evidence
attainable with the statistical model and only n = 1 observation. However, usually
Tn ∼ N(

√
nK(θ), 1) only for moderate to large sample sizes. It is our experience

that the sample sizes required by these methods for inference are almost always
smaller than those based on standard asymptotics using the central limit theorem
alone.

Note that if the initial statistical model is reparametrized in terms of η = m(θ),
where m is a strictly increasing function, then the Key Inferential Function remains
unchanged; that is, after variance stabilization the resultingTn∼N(

√
nK(m−1(η)), 1),

where K is the function described above.
Another caveat is that the simplicity suggested by properties K1 to K3 is not

always available; in particular if the underlying test statistics have a skewed distri-
bution under both null and alternatives, it may not be possible to find a vst whose
expectation satisfies τ

.= √
nK(θ) to a useful degree, for a K that is free of the sample

size n.
A notable advantage of the methodology based on vsts is that it facilitates the

comparison and/or combination of evidence from several related studies, because the
evidence from all studies is placed on the same calibration scale.

17.3 Poisson model example
The theory of Section 17.2 is applied to counts data from one-sample experiments for
which the Poisson model is appropriate. The test statistic is moved onto the canonical
scale by a simple variance stabilizing transformation and interpreted as evidence,
which leads to confidence intervals for the unknown model parameter. Later chapters
will follow and extend the same methodology.
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17.3.1 Example of counts data

A standard method for ascertaining the concentration µ of cells growing in a culture
is to place a square grid over the region and count the number of cells in each of n

randomly chosen squares of unit area. If the cells are randomly distributed over the
region, it is reasonable to assume the resulting numbers X1, . . . , Xn are independent,
each with the same Poisson(µ) distribution:

P(Xi = x) = e−µ µx

x!
, for x = 0, 1, 2, . . . (17.6)

It is well known that E[X] = µ = Var[X], so µ is the mean number of cells per unit
area. The standard error in estimating µ by the sample mean X̄n is

SE[X̄n] =
√

Var[X̄] =
√

µ

n
≈
√

X̄n

n
.

It is desired to know whether µ ≤ µ0 or µ > µ0. The usual test statistic is X̄n, and for
large n the p-value of the test which rejects for large values of X̄n can be computed
as follows. Having observed X̄n = x̄n

p = P(X̄n ≥ x̄n) = P

{√
n

µ0
(X̄n − µ0) ≥

√
n

µ0
(x̄n − µ0)

}

≈ �(−z0), (17.7)

where z0 = √
n (x̄n − µ0)/

√
µ0. This p-value is based on an asymptotic approxima-

tion, so will be referred to as pasym.
For example let µ0 = 1, and take three samples of sizes n1 = 10, n2 = 25, n3 =

100 from the Poisson(µ) model. Assume these samples have respective sample means
X̄n1 = 3, X̄n2 = 1.2, X̄n3 = 1.4. Then the approximate p-values given by (17.7) are
respectively 0.000000, 0.158655 and 0.000032. The exact p-values to six decimal
places are obtained using the fact that nX̄n has the Poisson(nµ0) distribution and
are 0.000001, 0.182140 and 0.000092. The extremely small p-values will be hard
to interpret, whether one computes precise probabilities or not, because one has
almost no experience with such rare events. We want to measure the evidence on the
canonical scale, instead of trying to interpret the p-value, so we need to transform the
test statistic.

17.3.2 A simple vst for the Poisson model

The standard test statistic is the sample mean X̄n ofnobservations from the Poisson(µ)

distribution. Now Var[X̄] = g(E[X̄]) for g(t) = t/n, so by (17.3) a possible choice for
h is h(x) = √

n
∫ x

t−1/2 dt = √
4nx . This heuristic argument suggests Y =

√
4nX̄n

will have variance approximately 1. However, this approximation cannot hold for all
µ, because for fixed n, as µ approaches 0, so also will X̄n. Thus while Var[Y ] may be
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Figure 17.1 The left hand panel shows a probability plot of 10 000 values of z0 =
3(X̄9 − 1), where X̄9 is the mean of nine observations from the Poisson distribution
with mean 1. The right hand panel shows a similar plot for the variance stabilized
values T = 6(

√
X̄9 − 1). These plots show that the distribution of T is much closer

to normality than z0, especially in the upper tail, where the p-values are computed
for testing µ = 1 against µ > 1. See Table 17.1.

approximately 1 for all µ not too near 0, we need to know when the approximation
is good; and, as explained further below, a good ‘rule of thumb’ is n µ ≥ 5.

Next consider the expected value of the transformed test statistic Y . The first term
in (17.1) gives the approximate mean E[Y ]

.= √
4nµ . Further, the second derivative

of h is h′′(x) = −
√

n/4x3 , so the second term −1/
√

16nµ is the bias term. When
n µ ≥ 5, the ratio of the bias term to the first term in (17.1) is 1/8nµ ≤ 1/40.

The above results suggest that for testing µ = µ0 versus µ > µ0 the evidence be
defined by T = h(X̄) − h(µ0), for then the resulting T would have approximate mean
τ = E[T ]

.= 2
√

n {√µ − √
µ0} and variance Var[T ]

.= 1. Further, the distribution of
T is approximately normal (see Figure 17.1) for even small sample sizes n, so it
satisfies the properties E1 to E4 of a measure of evidence for testing θ = 0 against
θ > 0, where θ = µ − µ0 is the effect. The evidence T can also be regarded as an
estimator of its expectation τ, with SD[T ]

.= 1. The Key Inference Function for this
model is therefore K(µ) = 2{√µ − √

µ0 }.
It is instructive to examine the mean and variance of T as a function of µ, for the

same example of X̄9, the mean of nine observations from a Poisson(µ) model. To
illustrate the computation of evidence for the counts data of Section 17.3.1, we simply

find Tk = √
4nk {

√
X̄nk

− 1} for k = 1, 2 and 3. The results are shown in Table 17.2,
along with the corresponding p-values �(−Tk). This tabulation shows that �(−Tk)
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Table 17.1 For selected values of µ the mean and standard deviation of the evidence
T = 6(

√
X̄9 − 1) against µ = 1 in favor of µ > 1; the values shown are

sample means and sample standard deviations based on 10 000 simulated samples
of size 9 from the Poisson(µ) distribution. Note that the variance is quite stable,
while the expected evidence τ rises with µ, as expected, with τ = 6(

√
µ − 1).

µ 1 2 3 4 5 10 20
Eµ[T ] –0.08 2.42 4.34 5.96 7.37 12.95 20.82

SDµ[T ] 1.02 1.01 1.01 1.00 1.00 1.01 1.01

is a better approximation to the exact p-values than the asymptotic approximation
pasym. Both could be improved with continuity corrections. But the reader may well
ask, what is the point of seeking approximations to very small p-values? For how can
one possibly interpret them as measures of surprise, much less evidence, when one
has no experience with evaluating such rare events?

On the other hand, there is no pretence to precision for the evidence values Tk

shown in column 6 of Table 17.2; they each have standard error 1 in estimating their
respective means, whether the null or alternative hypothesis is true. They give realistic
assessments of the evidence against the null µ = 1 in favor of the alternative µ > 1.
Because T1 is almost 5, it is strong evidence against the null, while T3 is moderate
evidence and T2 is almost negligible.

The reader may observe that the real issue is how to estimate the effect µ − 1. This
is indeed one of our goals. But if a 95 % confidence interval is found for µ in each
of the three studies, they are roughly X̄n ± 2

√
X̄n/n, or, respectively, [1.85, 4.15],

[0.76, 1.64] and [1.16, 1.64]. The first interval appears to be estimating a different
parameter than the second and third. Denoting the mean concentration in the kth
sample by µk, in retrospect it would have been wiser to allow the means to be different.
The strong assumption of homogeneity µ1 = µ2 = µ3 needs to be examined up
front, and that is the purpose of Chapter 24. If this assumption is not tenable, then
the analysis becomes more complicated when one wants to combine evidence in the
three studies. One needs to decide what joint alternative in terms of the µk’s is of
interest, and choose an appropriate combination of the Tk’s as evidence for it.

Table 17.2 Illustration of computations required for finding the evidence in three
samples against µ = 1 in favor of µ > 1. The p-values at the right are exact
to six places. The large-sample p-values pasym = �(−z0), where
z0 = √

nk (X̄nk
− 1).

Sample k nk X̄nk
z0 pasym Tk �(−Tk) Exact p-value

1 9 3 6 0.000000 4.39 0.000006 0.000001
2 25 1.2 1 0.158655 0.95 0.169928 0.182140
3 100 1.4 4 0.000032 3.66 0.000124 0.000092
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17.3.3 A better vst for the Poisson model

We showed the square root transformation could be applied to counts data which
followed the Poisson model to obtain a stable variance. It was also seen that trans-
formation led to approximate normality in our example. However, there are better
transformations available if one wants variance stabilization, and these are not nec-
essarily the same as those which transform towards normality. The problem of trying
to obtain both desirable properties simultaneously for the Poisson model is a hard
one which has been studied in some depth by Anscombe (1948), Efron (1982) and
Bar-Lev and Enis (1988).

Anscombe (1948) found that
√

4n(X̄n + 3/8n) would both reduce bias and sta-
bilize the variance over a larger range of values of µ than

√
4nX̄n . Some results

based on 100 000 simulations are shown in Figure 17.2.

17.3.4 Achieving a desired expected evidence

We conclude this section by choosing the sample size to achieve a desired expected
evidence τ. For testing µ = µ0 versus µ > µ0 the evidence was defined by T =
2
√

n
{√

X̄n − √
µ0
}

. The resulting τ = E[T ]
.= 2

√
n
{√

µ − √
µ0
}

and variance
Var[T ]

.= 1. Therefore to obtain expected evidence τ for the alternative hypothesis
when µ = cµ0, where c > 1, take n = τ2/4µ0(

√
c − 1)2. To be specific, let µ0 = 1

and µ = 4 = 4µ0. Then the required n = τ2/4. If we want ‘strong’ expected evidence
(which is three times the magnitude of ‘weak’ evidence 1.645) for this alternative
when it is true, then we require n = 6.25 ≈ 6.

17.3.5 Confidence intervals

We want a confidence interval for the effect θ = µ − µ0. It is easier to find the
confidence interval for µ and then shift it to the left by µ0. We can use the results
already obtained, namely

√
4nX̄n ∼ N(

√
4nµ , 1), for nµ sufficiently large, so in

principle a 1 − α confidence interval for the mean
√

4nµ is centered on
√

4nX̄n, with
length 2z1−α/2. By dividing the endpoints of this interval by

√
4n and then squaring

them one obtains the confidence interval for µ:

[{√
X̄n − z1−α/2√

4n

}2
,
{√

X̄n + z1−α/2√
4n

}2
]

. (17.8)

For example an approximate 95 % confidence interval for µ when n = 9, X̄9 = 3
and we take z0.975 = 1.96 ≈ 2 is [1.96, 4.27], an interval which is not centered on
3 and is to be compared with the interval [1.85, 4.15] found earlier which is based
on X̄ ± 2 SE[X̄]. We do not expect this last interval to have as accurate coverage as
the one given by (17.8), because the standardized mean is not as close to normality
as the variance stabilized mean (see Figure 17.1). An even better interval (in terms
of accurate coverage probability) is obtained by using Anscombe’s transformation.
This amounts to replacing X̄n by X̄n + 3/8n in (17.8).
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Figure 17.2 Let X ∼Poisson(µ). The graph of SDµ[
√

4X ] versus µ is shown in the
bottom plot as a dashed line, and SDµ[

√
4(X + 3/8) ] as a thin solid line. In the top

plot are shown the target
√

4µ versus µ as a thick solid line, and the expected values
of the two transformed statistics Eµ[

√
4X ] and the Anscombe vst Eµ[

√
4(X + 3/8) ]

introduced in Section 17.3.3 versus µ as thick dashed and thin solid lines, respectively.
For n observations, one can replace X by nX̄n and µ by nµ on the horizontal axis.
Note that for nµ ≥ 5, the Anscombe vst performs very well.



134 VARIANCE STABILIZING TRANSFORMATIONS

Figure 17.3 The empirical coverage probabilities of the nominal 95 % confidence
intervals for µ based on (17.8), as a function of µ, for sample size 1, are shown as the
dashed line. The thin solid line gives the same coverages for (17.8) with Anscombe’s
adjustment. See text for details.

17.3.6 Simulation study of coverage probabilities

While it is clear that the Anscombe vst stabilizes the variance and reduces the bias
better than the simple square root vst, it is not clear that it leads to better 95 %
confidence intervals. A simulation study based on 100 000 observations from the
Poisson(µ) distribution were generated for µ ranging from 0.2 to 10 in steps of 0.2.
For each observation the empirical coverage frequencies of (17.8) and the intervals
based on Anscombe’s vst were calculated; the results are shown in Figure 17.3. The
coverage probabilities continue to stabilize around 95 % for larger µ, although this
is not shown.

The main conclusion is that if one uses the Anscombe-based intervals, then the
coverage probability always lies between 90 and 100 %, and for µ ≥ 7 the coverage
is between 94 and 96 %. These results are for intervals based on 1 observation. For
n > 1 observations it follows from the fact that Sn = nX̄n is one observation with
Sn ∼Poisson(n, µ) that the coverages will be close to 95 % for nµ ≥ 7.

17.4 Two-sided evidence from one-sided evidence
We return to the basic model of Chapter 16.1, normal with unknown mean µ and
known variance σ2

0 . For testing µ = µ0 against the one-sided alternative µ > µ0

the test statistic is the sample mean X̄n and the measure of evidence for the one-
sided alternative satisfying properties E1 to E4 of Section 16.1.1 is defined by T =√

n (X̄n − µ0)/σ0. Without loss of generality we can take µ0 = 0 and σ0 = 1, so
the measure of evidence reduces to T = √

n X̄n ∼ N(
√

n µ, 1). For simplicity of
presentation, we only consider the case n = 1.

The problem now is to find a measure of evidence for the two-sided alternative
µ 	= 0, that is, |µ| > 0. From the symmetry of the problem it is clear that the evidence
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T ± for the two-sided alternative should be be a function of the sufficient statistic |T |.
Moreover, to be consistent with the definition of evidence for one-sided alternatives,
T ± should also satisfy properties E1 to E4 where the parameter of interest is now |µ|.

We describe two very different methods leading to similar solutions. The first, in
Section 17.4.1, is derived from the connection between | T |, which has a folded normal
distribution, and the equivalent test statistic T 2, which has the noncentral chi-squared
distribution with one degree of freedom. The second, in Section 17.4.2, is derived
from doubling the p-value.

Both solutions yield positive values of T ± for large | T | that can be interpreted at
evidence for the alternative |µ| > 0. And both yield negative values of T ± for small
| T | whose magnitude can be interpreted as positive evidence for the null |µ| = 0.
Thus the sign of T ± is a signal as to which hypothesis is being supported: if negative,
the null; if positive, the alternative. The magnitude | T ±| gives the degree of evidence.

17.4.1 A vst based on the chi-squared statistic

The test of |µ| = 0 against |µ| > 0 that rejects the null for large |T | is equivalent to
the one that rejects for large S = T 2, and this statistic has the noncentral chi-squared
distribution with one degree of freedom and noncentrality parameter λ = µ2. In sym-
bols, S ∼ χ2

1(λ). For more information, see Chapter 22, wherein a vst for the general
noncentral chi-squared distribution is derived and defined by (22.1). Now given a
vst for any statistic, in this case S, a vst for a smooth one-to-one function of the statis-
tic, in this case | T | = +√

S , is the original vst composed with the inverse function,
in this case the squaring function. Hence we are led to the following definition.

Definition 17.3 Let F1 be the cdf of the central chi-squared distribution with one
degree of freedom and let c2 be one-half the median of this distribution; i.e. F1(2c2) =
0.5. For the model T ∼ N(µ, 1) and hypotheses |µ| = 0 against |µ| > 0, the two-
sided evidence in | T | is defined by

T ± =
{ +√

S − c2 − c, for S ≥ 2c2;
−√

S∗ − c2 + c, for S < 2c2,
(17.9)

where S∗ = F−1
1 (1 − F1(S)). This definition assigns (negative) evidence to values of

S less than the null median equal to the (positive) evidence assigned to corresponding
values greater than the median, where the correspondence is in terms of tail area
probabilities under the null; see also Definition 22.2.

The associated Key Inferential Function for the parameter |µ| is a special case
of the Key for the noncentral chi-squared distribution given by Equation (22.3) for
N = 1, ν = 1 and θ = λ = µ2. The median is m1 = 0.4549364, so c = 0.4769363
and L = L(µ2) =

√
µ2 + 1 − c2 =

√
µ2 + 0.7725318 so

K(|µ|) = L − (µ2 + 0.5)

2L3
− c. (17.10)

This T ± satisfies property E1 of Section 16.1.1 because it is a monotonically
increasing function of the sufficient statistic | T | (see the top plot in Figure 17.4).
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Figure 17.4 In the top plot is shown the graph of evidence for the two-sided evi-
dence defined by (17.9) (the solid line) for comparison with the two-sided evidence
suggested by doubling the one-sided p-value (17.11) (the dashed line). Also shown
are reference lines depicting the graph of |T | and T = ±0.6745 = �−1(0.75). In the
bottom plot is shown the empirical mean (dashed line) and standard deviation (dotted
line) of T ± defined in (17.9) based on 100 000 samples from the N(µ, 1) distribution
for selected values of µ. The solid line is the graph of the Key Inferential Function
defined by (17.10). By symmetry, the plot for negative µ is a reflection about the
vertical axis. For interpretation, see the text.

The other properties were checked by experiments, in which the empirical means and
standard deviations were based on 100 000 simulated values of T ± at selected values
of |µ|. The bottom plot in Figure 17.4 suggests that T ± satisfies property E3, a stable
standard deviation near 1. The estimated mean evidence E[ T ±], also shown in the
bottom plot of Figure 17.4 as a dashed line, grows from 0 with |µ|, thus satisfying
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Figure 17.5 Histograms of T ± defined by (17.9) based on 100 000 simulated values
of T ∼ N(µ, 1), for each of the four cases µ = 0, 1, 2 and 3.

property E4. Further, it closely approximates the Key Inferential Function (17.10),
also plotted as a solid curve.

The histograms in Figure 17.5 summarize the results of 100 000 simulated values
of T ± for four cases µ = 0, 1, 2 and 3, together with superimposed normal densities
having the same mean and standard deviation. The first distribution is more concen-
trated because it has a standard deviation near 0.86, while the others have standard
deviations closer to 1 (1.01, 1.06, 1.03, respectively). From these graphs and direct
plots of the densities (not shown) it is clear that desirable property E3, normality, will
almost be satisfied.

17.4.2 A vst based on doubling the p-value

To motivate another definition of evidence for two-sided alternativesµ 	= 0, we invoke
the probit transformation of the p-value for the one-sided alternative; recall T =
�−1(1 − p) and p = �(−T). For the two-sided alternative |µ| > 0, the p-value is
p± = 2�(−| T |). The relation T = �−1(1 − p) suggests evidence in the two-sided
p-value be defined by

T ±
PV = �−1(1 − 2�(−| T |)) = �−1(F1(S)) , where S = T 2. (17.11)

Thus one-sided evidence of 1.96 or −1.96 would become two-sided evidence 1.645.
The graph of this function is shown as a dashed line in the top plot of Figure 17.4.
It is very similar to that for T ± defined earlier by (17.9). The advantage of T ±

PV over
T ± is that it preserves the p-value interpretation: �(−T ±

PV ) = p±, by definition. One
advantage of T ± over T ±

PV is that it has variance stabilized closer to 1, and another
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is that it also provides a natural link to Chapter 22 on evidence in the chi-squared
statistic.

For |T | > µ∗ = �−1(0.75), the two-sided p-value is less than 0.5, and the evi-
dence T ±

PV inherits the ‘penalty’ property of p-values: if one assumes a two-sided
alternative when there is prior knowledge to assume a one-sided alternative, one pays
the penalty of a larger p-value than necessary. On the other hand, assuming a one-
sided alternative when unjustified leads one to overstate the significane of the result.
What is the relationship between the evidence as defined here under these two differ-
ent assumptions regarding alternatives? The difference | T | − T ±

PV is the amount of
evidence one loses for assuming a two-sided alternative when there is enough prior
knowledge to assume a known direction; it is also the amount by which the evidence
is overstated, by assuming a one-sided alternative when there is no basis for it.

17.5 Summary
In this chapter we described some standard methods for variance stabilization, and
showed how they can lead to a Key Inferential Function for testing a model parameter.
This function supplements the p-value in much the same way that the power function
supplements the significance level in Neyman–Pearson hypothesis testing.

We illustrated variance stabilization for the Poisson model and demonstrated how
it could be used to find the evidence for the one-sided alternative µ > µ0 to the
null hypothesis µ = µ0. The evidence in the sample mean X̄n for the alternative
µ > µ0 was defined to be T = 2

√
n
{√

X̄n − √
µ0
}
, or better, with X̄n replaced

by X̄n + 3/8n. This vst of X̄n has variance approximately 1 for all nµ ≥ 5, and
its expected value is τ

.= 2
√

n
{√

µ − √
µ0
}
. Knowing this allows us to interpret

evidence as weak, moderate or strong, where ‘weak’ is essentially a 0.05 result under
the null. It also enables us to choose a sample size to obtain a desired amount of
experimental evidence. The variance stabilization of X̄n is accompanied by increased
normality as n increases for fixed µ. In particular, for nµ ≥ 7 the 95 % confidence
intervals derived from Anscombe’s vst are quite reliable, and not too bad for all µ.

Returning to the basic normal model with unknown mean and standard deviation
1, we also considered the problem of defining evidence T ± for two-sided alternatives
in terms of evidence for a one-sided alternative. We provided two solutions, the first
based on the equivalence between the test based on |T | and that based on T 2, which
has a noncentral chi-squared distribution with one degree of freedom. The vst for |T |
is a simple function of that for T 2, which is a special case of the vst defined for an
arbitrary noncentral chi-squared distribution found in Chapter 22. Thus the two-sided
evidence function for normal tests links up with the chi-squared tests studied later.
The second solution was based on p-value arguments, and led to a vst for which the
two-sided evidence had similar performance characteristics to the first solution.

There is no all-purpose rule to tell us when we have achieved all the desirable
properties E1 to E4 of a measure of evidence for one-sided alternatives; for each model
this needs to be checked. On the other hand, a great deal of research has already gone
into vst for standard models, so we will draw on this literature whenever possible.
Efron (1982) provides a method for obtaining a transformation to normality.
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One-sample binomial tests

In this chapter we find the evidence in one-sample binomial data using the methods
introduced in the last chapter. They will be compared with some standard methods
and shown to be competitive in terms of leading to reliable moderate to large sample
confidence intervals. They will allow for easy interpretation of the evidence in test
statistics. The inference is concerned with the parameter p, the probability of an event
in a binomial setting which is often called risk. In turns out that larger sample sizes are
required to obtain reliable results when the risk p is close to 0 or 1, and in particular
we will require the sample size n to satisfy np(1 − p) ≥ 5 for values of p of interest.
Many researchers in medical statistics prefer to think in terms of relative risk or odds
ratio, rather than risk differences, so we reformulate the notion of evidence in these
terms in Section 18.3; these concepts are further investigated in Chapter 19 in the
two-sample setting.

18.1 Variance stabilizing the risk estimator
Let X have the B(n, p) distribution, with 0 < p < 1. When testing p = p0 against
p > p0 we want to find the evidence for the alternative. We also want to find confi-
dence intervals for p or the effect p − p0. The usual test statistic p̂ = X/n has mean
E[p̂] = p and variance Var[p̂] = p(1 − p)/n, which varies with p, so we seek to
transform p̂.

The variance Var[X] = g(E[X]), where g(t) = t(1 − t)/n, so by the method-
ology described in Section 17.2 a vst is h(x)=√

n
∫ x{t(1−t)}−1/2dt=2

√
n arcsin

(
√

x)+c. The constant c is taken to be 0 in this classic transformation, and Anscombe
(1948) has shown that 2

√
n arcsin(

√
p̃ ),where p̃=(X+3/8)/(n+3/4), comes closer
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to a normal distribution with unit variance and mean 2
√

n arcsin(
√

p) than does the
transformation applied to p̂.

Let c=−2
√

n arcsin(
√

p0 ). Then T=h(p̃)=2
√

n
{

arcsin
(√

p̃
)− arcsin(

√
p0 )
}

will have approximate mean τ(p) = Ep[T ] increasing from 0 as p increases from p0,
and thus satisfy property E4, Section 16.1.1, of a measure of evidence. It should also
satisfy properties E1 to E3 for a useful range of parameters n and p because it is only
a shift of the Anscombe (1948) statistic.

Definition 18.5 The Key Inferential Function for the binomial model when testing
p = p0 against p > p0 is for each p ≥ p0 given by

K(p) = 2{arcsin(
√

p ) − arcsin(
√

p0 )}. (18.1)

For testing in the other direction p = p0 against p < p0 the appropriate Key would
be the negative of (18.1).

For an example we took p0 = 0.0, so K(p) = 2 arcsin(
√

p ), and then simulated
400 000 values of T at each of n = 9, 15, 30 and for p ranging from p0 = 0.01
to 0.99 in intervals of 0.02. The empirical means of T/

√
n are plotted against p

in Figure 18.1, along with the target K(p). The bias is quite negligible over the
range shown, especially compared to the standard deviation. For n = 9 the standard
deviation of T is stable and near 1 for 0.2 < p < 0.8, but descends to 0 as p ap-
proaches 0 or 1. The range of variance stability increases with the sample size.

These plots contain the information required for any choice of p0. For example,
if p0 were 0.5 rather than 0.0 so the hypotheses were p = 0.5 against p > 0.5, then
the plot for the standard deviations would be simply the portion of the lower plot to
the right of 0.5. Similarly for the means, except that the values would be reduced by
2 arcsin(

√
p0 ), in this case 2 arcsin(

√
0.5 ) = π/2.

Extensive simulations (not shown) demonstrate that approximate normality of T

holds provided np(1 − p) ≥ 5. Thus T cannot be considered a measure of evidence
(satisfying criteria E1 to E4 of Section 16.1.1) unless this condition holds. In the next
section we show the results of confidence intervals derived from T and compare them
with a standard large-sample method.

18.2 Confidence intervals for p

A nominal 95 % confidence interval for the mean evidence τ(p) is T ± z0.975, so a
nominal 95 % confidence interval for p is τ−1(T ± z0.975), or

[{
sin
(

arcsin
(√

p̃
)

− z0.975

2
√

n

)}2
,
{

sin
(

arcsin
(√

p̃
)

+ z0.975

2
√

n

)}2 ]
. (18.2)

These intervals are far more reliable than p̂ ± z0.975

√
p̂(1 − p̂)/n, where p̂ = X/n,

as shown in Figure 18.2. In the top plot the 95 % confidence intervals based on
variance stabilization have for n = 9 actual coverage which is too conservative for p
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Figure 18.1 In this plot the null is taken to be p = p0 = 0 and the alternative p > 0.

Empirical means of T/
√

n = 2
{

arcsin
(√

p̃
)}

and standard deviations of T for n =
9, 15 and 30 are plotted as a function of p. The thick solid line in the upper plot is the
graph of K(p) = 2 arcsin(

√
p) versus p. The empirical means of T/

√
n are shown

for n = 9 as a dashed line, for n = 15 as a thin solid line and for n = 30 as a dotted
line. In the lower plot are shown the corresponding empirical standard deviations for
the same cases.

outside [0.25, 0.75], and too liberal for p near 0.4 and 0.6. The coverages for n = 15
are acceptable for p inside [0.25, 0.75], ranging from 93 to 97 % therein. For n = 30
the coverages are dependable for p inside [0.2, 0.8]. All suffer from spikes dropping
below 95 % and overconservatism for p near 0 and 1.

In the bottom plot are shown the coverages of the classic large-sample intervals;
all are much worse than those in the top plot. Even for n = 30 these intervals can
descend to 88 % coverage. Replacing p̃ by p̂ in any of these intervals only makes
things worse.
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Figure 18.2 In the top plot are shown the empirical coverage probabilities of nomi-
nal 95 % confidence intervals based on (18.2) as a function of p for n = 9 as a dashed
line, for n = 15 as a thin solid line and for n = 30 as a dotted line. By way of com-
parison the lower plot shows similar empirical coverage probabilities based on the
large-sample confidence interval p̂ ± 1.96

√
p̂(1 − p̂)/n .

For p near 0 or 1 larger sample sizes will be required to obtain evidence and/or reli-
able confidence intervals and this problem is examined in some detail in Section 18.4.

18.3 Relative risk and odds ratio
In comparing two risks p1, p2 many researchers prefer to think in terms of the relative
risk RR = p1/p2 or odds ratio OR = {p1/(1 − p1)}

/{p2/(1 − p2)} rather than the
risk difference � = p1 − p2. When both risks are small the simple log transformation
of estimators of the former two quantities has an approximate normal distribution,
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for sufficiently large samples sizes. In other words, a straightforward methodology is
available for finding confidence intervals for these quantities (see pp. 24–28 of Lachin
(2000), for example). We will compare these standard methods with other methods in
Chapter 19. However, we can learn something about the log-transformed estimators
of RR and OR by first considering the one-sample problem in which X ∼ B(n, p)

and we are comparing an unknown risk p with a known null hypothesis value p0. In
this case only one parameter needs to be estimated.

18.3.1 One-sample relative risk

Consider the null hypothesis p = p0 and alternative 0 < p < p0, which arises when
p0 is the ‘known’ risk in a certain population (risk of disease, positive response to a
standard treatment, etc.), and p is the expected risk to a treated patient in the study.
Rather than the simple difference p0 − p we are interested, say, in the relative risk
RR = p0/p which will exceed 1 under the alternative hypothesis, because then the
treatment reduces the risk. Let θ = ln(p0/p). Inference for θ is equivalent to inference
for RR = p0/p: the null hypothesis is now θ = 0; the alternative θ > 0.

Let X denote the number of positive responses in a study of n treated patients, and
estimate p by p̂ = X/n. Then standard asymptotics shows that θ̂ = ln(p0) − ln(p̂)

has for increasing n an approximate normal distribution with mean θ and variance
(1 − p)/(np). It is customary to form a 100(1 − α) % confidence interval [L, U]
for θ by taking L = θ̂ − z1−α/2{(1 − p̂)/(np̂)}1/2 and similarly for U. Coverage can
be slightly improved by modifying p̂ = X/n to (X + 0.5)/(n + 0.5) or p̃ = (X +
0.375)/(n + 0.75). A 95 % confidence interval [L, U] for θ is easily transformed to
a 95 % confidence interval [eL, eU] for RR = p0/p.

The log-transformation is employed because when p is small the distribution of
p̂ is very skewed, while that of ln(p̂) is more symmetric. This raises the question of
whether the evidence in the test statistic p0/p̂ for the alternative p < p0 might be mea-
sured by the standardized transformed test statistic

√
n ln(p0/p̂)[{p̂/(1 − p̂)}]1/2.

This statistic, for fixed 0 < p < 1 and large enough n has an approximate normal
distribution with variance 1 and asymptotic mean

√
n ln(p0/p){p/(1 − p)}1/2. This

mean, when expressed in terms of the log-relative risk θ = ln(p0/p), is
√

n K0(θ),
with K0(θ) = θ{p0e−θ/(1 − p0e−θ)}1/2. An example of this function for p0 = 0.2 is
plotted as a dashed line in Figure 18.3 for θ > 0. Note that it cannot serve as a Key
function because it is not monotonically increasing in θ over the range of alternatives.
Also plotted is the Key function corresponding to the (negative of the) Key function in
(18.1), namely K(p) = 2

√
n {arcsin(

√
p0 ) − arcsin(

√
p)}, after reparametrization

in terms of θ :

K(θ) = 2
{

arcsin(
√

p0 ) − arcsin(
√

p0e−θ )
}
. (18.3)

The conclusion to be drawn from this comparison of K0(θ) and K(θ) is that while
they both arise as vsts, the former the mean of the standardized θ̂, the latter the
mean of the arcsine transformed θ̂, the former transformation has a limited range of
applicability because it is not increasing in θ for all θ > 0. And, as we will see, both
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Figure 18.3 Plot of K0(θ) = θ{p0e−θ/(1 − p0e−θ)}1/2 against θ = ln(p0/p) when
p0 = 0.2, with graph shown as a dashed line. Note that for small θ, corresponding to p

near p0, it is a close approximation to the Key function for the binomial modelK(θ) =
2{arcsin(

√
p0 ) − arcsin(

√
p0e−θ )}, where again p0 = 0.2, with graph shown as a

solid line. Similar plots arise for different choices of p0 over the unit interval, although
both functions uniformly increase in θ with p0, and the degree of approximation
improves as p0 approaches 0.

transformations achieve approximate normality at the same rate as n grows without
bound. Therefore the arcsine transformation is our vst of choice.

18.3.2 One-sample odds ratio

Given the odds ratio OR = {p0/(1 − p0)}
/{p/(1 − p)}, relative to the null, let

η = ln(OR). Then the original hypotheses p = p0 versus p < p0 can be reexpressed
in terms of the odds ratio as OR = 1 versus OR > 1; or, if one prefers, η = 0
versus η > 0.

The estimator η̂ obtained by substituting p̂ for p in ln(OR) has for n increasing
without bound a normal distribution with asymptotic mean η and variance
1/{np(1 − p)}. That is, the standardized η̂ has a limiting normal distribution with
asymptotic mean {np(1 − p)}1/2 η and variance 1. This raises the question as to
whether the evidence in the log-odds ratio can be expressed in terms of the standard-
ized η̂ with Key function {p(1 − p)}1/2 ln[{p0(1 − p)}/{p(1 − p0)}]. Equivalently,
when reexpressed in terms of η, this possible mean evidence function becomes
K1(η) = η

√
c0 eη/2/(1 + c0eη), where c0 = (1 − p0)/p0. However, this function is

not monotonically increasing over the alternatives η > 0, so it cannot serve as a Key
function for a measure of evidence.

The negative of the Key function (18.1), which is appropriate for testing p = p0

against p < p0, can be reparametrized in terms of the log-odds ratio η to obtain a
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Key function for η = 0 against η > 0:

K(η) = 2
{

arcsin(
√

p0 ) − arcsin(
√

1/(1 + c0eη)
}
. (18.4)

This function is monotonically increasing in η > 0, and K1(η) defined above is a good
approximation to it for small η. Again, as for the log-relative risk, the transformation
to evidence is in terms of the classic arcsine transformation.

The main point is that if one prefers to think in terms of the simple difference
p0 − p or the relative risk or the odds ratio the evidence in p̂ remains the same. This
evidence will be roughly normally distributed with variance 1 and mean function

√
n

times the same Key function, whether expressed in terms of the risk in (18.1) or the
relative risk in (18.3) or the odds ratio in (18.4).

18.4 Confidence intervals for small risks p

It is clear from Figure 18.2 that the coverage probabilities of the confidence intervals
for p examined earlier, one based on the standardized p̂ and the other based on
the vst arcsine transformation, vary greatly about the nominal 95 % value when p

is near 0 or 1. The problem is caused by the highly skewed nature of the binomial
distribution in these cases. Two additional methods are considered in this section, the
log-transformation and a Poisson approximation to the binomial.

18.4.1 Comparing intervals based on the log and arcsine
transformations

Again let X ∼ B(n, p), p̂ = X/n and p̃ = (X + 0.375)/(n + 0.75). One possible
remedy to the problem of asymmetry is to find a confidence interval [L, U] for
θ = ln(p) using the normal approximation N(ln(p), (1 − p)/np) to the distribution
of ln(p̃). Then [eL, eU] is taken to be the confidence interval for p. For nominal 95 %
confidence, define L = ln(p̃) − z0.975{(1 − p̃)/np̃}1/2, and U = ln(p̃) + z0.975{(1 −
p̃)/np̃}1/2. Another possibility is to use the arcsine-based confidence intervals defined
earlier in (18.2). There is little to choose between the two methods for nominal 95 %
confidence. As seen earlier in Figure 18.2, the empirical confidences zigzag about
the nominal level. Extensive simulations with 40 000 simulations for sample sizes n

ranging from 25 to 6400 and p ranging from 0 to 0.5 suggest that:

1. For n = 25 the log-transformed intervals had coverage between 93 and 97 %
for 0.1 ≤ p ≤ 0.4, while the arcsine-transformed intervals had the same range
of coverage for 0.2 ≤ p ≤ 0.5.

2. For n ≥ 50 the log-transformed intervals described above have empirical con-
fidence ranging from 93 to 97 % for p in the interval [2.7/n, 0.5], while the
arcsine intervals have the same range of empirical confidence over the intervals
[5/n, 0.5].

3. For n ≥ 100 empirical coverage between 94 and 96 % is held over the smaller
intervals [11/n, 0.5] and [19/n, 0.5], respectively, for the two methods.
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To summarize, the confidence intervals derived by either method require increas-
ingly large sample sizes as p approaches 0 in order for the empirical coverages to
approach the nominal 95 % coverage. The log-transformation is more reliable over a
slightly larger range of values of p for large n.

For p close to 1, one can use the ln(1 − p̂) transformation or the arcsine-based
intervals in (18.2); by symmetry, the results will parallel those above, but with p

replaced by 1 − p.

A rule of thumb suggested by these simulations is that the when conditions np(1 −
p) ≥ 5 andn ≥ 25 are satisfied, then the arcsine intervals will have empirical coverage
between 93 and 97 %; and for np(1 − p) ≥ 11 and n ≥ 100, the coverages will lie
between 94 and 96 %.

18.4.2 Confidence intervals for small p based on the Poisson
approximation to the binomial

Another method uses the Poisson(µ) approximation to the B(n, p) distribution with
µ = np. It is based on the result that as n → ∞ and p → 0 with µ = np held fixed,
the random variable X converges in distribution to a variable Y ∼Poisson(µ). And for
a Poisson variable we know that the classic square root transformation is an effective
vst. In view of Figure 17.3 one can expect confidence intervals based on (17.8) applied
to the single observation Y to have good coverage for all µ > 7. These intervals for
µ are of the form {Y ∓ z0.975/2}2. Both endpoints need to be divided by n to obtain
the interval for p. Empirical coverage probabilities of these intervals are, however,
somewhat disappointing. This is explained as follows.

Decker and Fitzgibbon (1991) are cited in Johnson et al. (1993), p. 118; they
recommend practical use of the Poisson approximation to the binomial when n0.31p <

0.47. This bound, combined with our ‘rule of thumb’ that µ = np > 7 to obtain good
coverage of the Poisson parameter, suggests that these intervals will have reliable
coverage when 7/n < p < 0.47/n0.31.

Even for sample size n = 50 this range of p is void, while for n = 100 it is
0.07 < p < 0.11. For n = 200 it is 0.035 < p < 0.091 and for n = 500 it is 0.014 <

p < 0.068. Extensive simulations for sample sizes ranging from 200 to 1000 reveal
that the main advantage of these intervals over those based on the log-transformation,
say, is that the coverage is more conservative and remains above 95 % for these
intervals; the disadvantage is that this is so over only the narrow range of p just
specified. Outside this range, but still within the interval 0.02 < p < 0.2, they tend
to be too conservative with coverages rising to 97 % or even 98 % even for n = 1000
and p = 0.2.

In summary, for small p we do not recommend the Poisson approximation to
the binomial followed by the classic vst to obtain approximate large-sample confi-
dence intervals unless the interest lies in values of p within the above narrow range
of values, and at the same time outside a larger range of values of p where the
log or arcsine transformations studied earlier yield reliable intervals for p for any
given n.
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18.5 Summary
In this chapter we found that the classic arcsine transformation of the test statistic
p̂ leads to statistical evidence T for testing p = p0 against p > p0. The expected
evidence τ = √

nK(p) is determined by a Key Inferential Function K(p) that can be
reparametrized in terms of the relative risk p0/p or odds ratio p0(1 − p)/{p(1 − p0}.
Minimum sample sizes were determined so that the transformation to evidence also
led to reliable 95 % confidence intervals for p, even when it is near 0, and these
intervals are easily converted to intervals for the relative risk or odds ratio.
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Two-sample binomial tests

Let X ∼ B(n1, p1) independent of Y ∼ B(n2, p2). One parameter of interest is the
(raw) effect � = p1 − p2. When p1, p2 represent risks for control and treatment sub-
jects, � is called the risk difference. In Section 19.1.1 we find a measure of evidence
T for the alternative � > 0 to the null hypothesis � = 0. It turns out that the expected
evidence is a simple function of a correlation effect size, which in turn is a mono-
tonic function of the standardized effect. Minimal sample sizes required to obtain
desired expected evidence for raw effects and effect sizes are found in Section 19.1.3.
Then confidence intervals for these effect sizes are derived in Section 19.2, and in
Section 19.3 are presented confidence intervals for the risk difference �. Other stan-
dard parameters of interest, especially when p1, p2 are small, are the relative risk
RR = p1/p2 and the odds ratio OR = p1(1 − p2)/{p2(1 − p1). New and traditional
methods for these parameters are discussed in Sections 19.1.4 and 19.4.

19.1 Evidence for a positive effect
19.1.1 Variance stabilizing the risk difference

Let q = n2/N represent the proportion of the total sample size N = n1 + n2 allotted
to the second sample. Brown and Li (2005) introduce the parameter p = qp1 + (1 −
q)p2 so the (p1, p2) unit square can be reparametrized in terms of � and p. Note that
p1 = p + (1 − q)� and p2 = p − q�.

The maximum likelihood estimators of p1, p2, � and p are p̂1 = X/n1, p̂2 =
Y/n2, �̂ = p̂1 − p̂2 and p̂ = qp̂1 + (1 − q)p̂2, respectively. Brown and Li (2005)
observe that Var[�̂], when expressed in terms of p, q, � and N, is Var[�̂] = (ζ −
�2)/N, where ζ = {p(1 − p)}/{q(1 − q)} depends on the unknown parameter p.
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Now for moderate and large sample sizes the distribution of p̂ is approximately
normal with mean p and variance

NVar[p̂] = {q3 + (1 − q)3}ζ − (1 − 2q)(1 − 2p)� − q(1 − q)�2.

For equal sample sizes, q = 0.5, p = p̄ = (p1 + p2)/2 and the first term in this
expression is p̄(1 − p̄). The second term drops out, and the third term is less than p̄2

in magnitude. So for equal sample sizes the large-sample distribution of p̂ does not
depend (much) on �; that is, p̂ is almost ancillary for �: it reveals little about �. We
also note in passing that for q = 0.5, Var[p̂] = Var[�̂]/4.

In view of these facts, it seems reasonable to stabilize the variance of �̂, condi-
tional on p̂ = p. So we treat p, and hence ζ, as if they were known in the following
paragraph, and then estimate them. We can expect the results to be useful for q near
0.5 and small �.

One can write Var[�̂] = g(E[�̂]), where g(t) = a − bt2 with a = ζ/N and b =
1/N. Using the standard method described in Section 17.2, one obtains an indefinite
integral h(x) = ∫ x |g(t)|−1/2dt = b−1/2 arcsin(xζ−1/2). This yields the conditional
evidence, given p̂ = p, of

√
N arcsin(�̂ζ−1/2). Then by substituting an estimate for

p in ζ, a candidate for unconditional evidence is obtained.

Definition 19.1 We found through experimentation that the choices p̃1 = (X + 0.5)/

(n1 + 1), p̃2 = (Y + 0.5)/(n2 + 1), when substituted into the formulas for �, p and
ζ = {p(1 − p)}/{q(1 − q)}, lead to a measure of evidence

T = √
N arcsin

(
�̃ ζ̃−1/2

)
. (19.1)

This T satisfies conditions E1 to E4 of a measure of evidence as defined in
Section 16.1.1 for a wide range of parameter values �, p. It is clear that condition E1

is satisfied because T is monotonically increasing in �̂. Approximate normality with
unit variance will need to be checked by simulations, but condition E4 is simpler to
verify.

To this end, define the standardized effect δ = �/
√

N Var[�̂] = �/
√

ζ − �2 .

The associated correlation effect size is ρ = δ/
√

1 + δ2 = �/
√

ζ , as shown in
Section 1.3. Hence the first term in (19.1) for the expected evidence τ=E[T ]

.=√
N K(ρ) where K(ρ) = arcsin(ρ). Note that this is monotonically increasing from 0

as � increases from 0; thus τ = E[T ]
.= √

N K(ρ) satisfies condition E4 of a measure
of evidence for testing � = 0 against � > 0.

Definition 19.2 The Key Inferential Function for testing � = 0 versus � > 0 in the
two-sample binomial model can be expressed in terms of the effect size as measured
by ρ or δ and is given for each real δ by

K(ρ) = arcsin(ρ) , where ρ = δ/
√

1 + δ2. (19.2)
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19.1.2 Simulation studies

As an example, we examine the behavior of T for equal sample sizes n1 = n2 and fixed
p = 0.5. In this case � = ρ. The Key Inferential Function is shown as a thick solid
line in the upper plot of Figure 19.1. Also plotted are three graphs of the empirical
means of T/

√
N versus �, where N = n1 + n2 = 2n1 = 18, 30 and 60. All means

are based on 100 000 simulations at � ranging from 0.01 to 0.99 in steps of 0.02.

It is clear that the bias in T/
√

N for estimating K(ρ) is decreasing for all � as the
sample size increases and further it is negligible for � < 0.5 and these sample sizes.
The corresponding standard deviations of T are plotted as functions of � in the
lower plot and one can see that variance stabilization is achieved for a wide range
of �.

For a second example, we repeated the above experiments, but now with q = 2/3;
that is, n2 = 2n1 and N = 3n1 = 18, 30, and 60. The only difference in the results is
that the alternative hypothesis is restricted to [0, 0.75] because in general

max{−p/(1 − q), (p − 1)/q} ≤ � ≤ min{p/q, (1 − p)/(1 − q)}, (19.3)

due to the restriction that (p1, p2) lies in the unit square. There is a slight lowering of
the Key Inferential Function because q �= 0.5, and the behavior of T defined by (19.1)
is similar to that depicted in the plots in Figure 19.1. The main disadvantage of using
unbalanced sampling is that actual and expected evidence is lower than it would be
with balanced sampling. But for these sample sizes the variance stabilization works
well when p = 0.5.

For the third and fourth examples we fixed p = 0.2 with the same total sample
sizes as above and considered both cases q = 0.5 and q = 2/3. However, except for
the total sample size of N = 60, the results are disappointing, and they suggest that
for small p larger sample sizes are required for T defined by (19.1) to be useful as a
measure of evidence.

19.1.3 Choosing sample sizes to achieve desired expected
evidence

In order to attain expected evidence τ1
.= √

N arcsin(ρ1) for a correlation effect size
ρ1 one requires N ≥ {τ1/ arcsin(ρ1)}2. In particular, to attain ‘moderate’ expected
evidence of 3.3 = 2 × 1.645 for ρ1 = 0.5, one needs a total sample size of N ≥
(6 × 3.3/π)2 = 39.7, orN = 40. This could be apportioned equally, or into somewhat
unequal samples whose sum is 40. Further below we consider some cases of unequal
sample sizes.

To achieve an expected evidence of τ1
.= √

N arcsin(�1/
√

ζ ) against an effect
�1, it suffices, for any fixed q, to take N ≥ {τ1/ arcsin( 2

√
q(1 − q) �1)}2. In particu-

lar, for τ1 = 3.3 and �1 = 0.5, it suffices to take equal sample sizes totaling N = 40.

For unequal sample sizes, a larger total is required.
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Figure 19.1 Empirical means ofT/
√

n and standard deviations ofT for equal sample
sizes plotted as a function of � = p1 − p2. The parameter p = (p1 + p2)/2 is fixed
at p = 0.5 so ζ = 1 and � = ρ. The thick solid line in the upper plot is the graph of
K(ρ) = arcsin(ρ) versus ρ. The empirical means of T/

√
N are shown for m = n = 9

as a dashed line, for m = n = 15 as a thin solid line and for m = n = 30 as a dotted
line. In the lower plot are shown the corresponding empirical standard deviations of
T for the same cases.
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19.1.4 Implications for the relative risk and odds ratio

Using the identities p1 = p + (1 − q)� and p2 = p − q� one can rewrite the relative
risk RR = (p + (1 − q)�)/(p − q�) and see that for fixed p, it is strictly increasing
in � because 0 < q < 1. Similarly, the odds p1/(1 − p1) = (p + (1 − q)�)/(1 −
p − (1 − q)�) is for fixed p strictly increasing in �, while the odds p2/(1 − p2)

is strictly decreasing in �. Thus for fixed p the odds ratio OR = p1(1 − p2)/{(1 −
p1)p2} is also strictly increasing in �.

The evidence T = √
N arcsin

(
�̃ζ̃−1/2

)
defined in (19.1) was derived by a con-

ditional argument, given p̃ = p, so this conditional evidence for � > 0 can serve as
evidence for RR > 0 or for OR > 0. Thus the evidence for a positive effect, whether it
be parametrized by �, RR or OR, is the same. The simulation studies in Section 19.1.2
indicate that this evidence has good unconditional properties as well.

19.2 Confidence intervals for effect sizes
While it is clear that for large enough sample sizes n1, n2 the distribution of T defined
by (19.1) will be approximately normal with asymptotic mean τ

.= √
N K(ρ) and

variance 1, so that T ± z0.975 will provide nominal 95 % confidence intervals for τ,
simulation studies are required to determine how well these intervals perform. Any
interval for τ is easily transformed into an interval [L, U] for the correlation effect
size ρ, with

[L, U] =
[

sin

(
T − z0.975√

N

)

, sin

(
T + z0.975√

N

)]

. (19.4)

And this leads immediately to intervals having the same confidence for the standard-
ized effect δ, namely [L/

√
1 − L2 , U/

√
1 − U2 ]. Note that the above preservation

of intervals under transformations tacitly assumed that the argument of the sine func-
tion in the definition of L, U lies within the interval [−π/2, π/2]. This is the case
for |T | < 3.0787

√
N .

In the top plot of Figure 19.2 are shown the empirical coverage probabilities of
nominal 95 % confidence intervals [L, U] for ρ as defined above based on 100 000
simulations. In the top plot p = 0.5 and there are three cases of equal sample sizes
n1 = n2. For a total sample size of N = 18, the dashed line shows the empirical
coverage ranges from 94.5 to 98 % for all ρ not too near 1. For a total N = 30,
the thin solid line shows the coverages range from 95 to 97.5 % for the same ρ.
For ρ < 0.5 the results tend to be closer to 95 % , but there is always some slight
fluctuation in coverage. For N = 60 the empirical coverages continue to improve.

In the bottom plot of Figure 19.2 are shown similar results for p = 0.2 and equal
sample sizes. Because p1, p2 are small, with average 0.2, larger sample sizes are
required to get accurate converage for ρ. Even though we took N = 30, 60 and 120,
only the last really leads to accurate coverage of 95 % confidence intervals, and then
only for ρ < 0.2.
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Figure 19.2 The upper plot shows empirical coverage probabilities of nominal 95 %
confidence intervals for ρ defined by (19.4) when p = 0.5 and equal sample sizes
totaling N = n1 + n2 = 18 (dashed line), N = 30 (thin solid line) and N = 60 (dot-
ted line). The lower plot gives similar results when p = 0.2 and there are equal sample
sizes totaling N = 30 (dashed line), N = 60 (thin solid line) and N = 120 (dotted
line).
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19.3 Estimating the risk difference
The nominal 95 % confidence intervals for ρ = �/

√
ζ given by (19.4) can be multi-

plied by
√

ζ̃ , where ζ̃ is an estimate of ζ, to yield nominal 95 % confidence intervals
for �. They can be expressed as

[√
ζ̃

(
T − z0.975√

N

)

,

√
ζ̃

(
T + z0.975√

N

)]

. (19.5)

Despite the additional estimate required, they tend to have better coverage properties
than the corresponding intervals for ρ under the same conditions (see Figures 19.2.
and 19.3).

19.4 Relative risk and odds ratio
We continue with the model X ∼ B(n1, p1) independent of Y ∼ B(n2, p2) where
p1, p2 represent risks for control and treated subjects, respectively, and it is now
desired to find a confidence interval for the relative risk or odds ratio. The methodology
for finding confidence intervals in Sections 19.4.1 and 19.4.2 is standard and can also
be found in Sections 2.3.2 and 2.3.3 of Lachin (2000), for example. New methods
for finding confidence intervals for the relative risk and odds ratio are presented in
Section 19.4.3.

19.4.1 Two-sample relative risk

Let the null hypothesis be no difference between treatment and control, with alterna-
tive that the treatment reduces the risk more than the control. The relative risk RR =
p1/p2 which will exceed 1 under the alternative hypothesis. Let θ = ln(p1/p2). Infer-
ence for θ is equivalent to inference for the RR : the null hypothesis is now θ = 0;
the alternative θ > 0.

Let p̂1 = X/n1, p̂2 = Y/n2, N = n1 + n2 and q = n2/N. Standard asymptotics
shows that θ̂ = ln(p̂1/p̂2) has, for large n1, n2, an approximate normal distribution
with asymptotic mean θ and variance

Var[θ̂] = 1 − p1

n1p1
+ 1 − p2

n2p2
. (19.6)

This formula assumes p1, p2 > 0 and so we modify p̂1 = X1/n1 to p̃1 = (X1 +
0.5)/(n1 + 0.5) and similarly for p̂2. Using (19.6) the standard error of θ̃ = p̃1/p̃2

is estimated by SE[θ̃] = {(1 − p̃1)/(n1p̃1) + (1 − p̃2)/(n2p̃2)}1/2.

One can then form a 100(1 − α) % confidence interval [L, U] for θ by taking
L = θ̂ − z1−α/2 SE[θ̂] and U = θ̂ + z1−α/2 SE[θ̂]. This interval [L, U] for θ is then
transformed to a 100(1 − α) % confidence interval [eL, eU] for RR.

The standardized estimator S = (θ̂ − 0)/SE[θ̂]; then as n1, n2 increase without
bound, we haveS converging in distribution to anN(E[S], 1)distribution, with asymp-
totic mean E[S]

.= √
q(1 − q)N θ/{qp2(1 − p1) + (1 − q)p1(1 − p2)}1/2. It is not
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Figure 19.3 In the top plot are shown the empirical coverage probabilities of nomi-
nal 95 % confidence intervals for � based on (19.5) as a function of �. It is assumed
p = 0.5. The graphs are shown for n1 = n2 = 9 as a dashed line, for n1 = n2 = 15 as
a thin solid line and for n1 = n2 = 30 as a dotted line. In the lower plot p = 0.2 and
sample sizes are again equal, with the graphs shown for n1 = n2 = 15 as a dashed
line, for n1 = n2 = 30 as a thin solid line and for n1 = n2 = 60 as a dotted line.
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clear that this S satisfies the properties of a measure of evidence, even for p1, p2

small, so we do not use it as such.

19.4.2 Two-sample odds ratio

The odds ratio of control to treatment is OR = {p1/(1 − p1)}/{p2/(1 − p2)}. One
can estimate OR by substitution of p̃1, p̃2 for p1, p2 to obtain ÕR. For small p1, p2

this estimator has a skewed distribution, so one again uses the log transformation.
Let the log-odds ratio be defined by η = ln(OR). As for the relative risk, standard
asymptotics are employed to show η̃ = ln(ÕR) has, for n1, n2 increasing without
bound, a limiting normal distribution with asymptotic mean η and variance:

Var[η̃] = 1

n1p1(1 − p1)
+ 1

n2p2(1 − p2)
. (19.7)

Thus the standard error of η̃ is SE[η̃] = [1/{n1p̃1(1 − p̃1)} + 1/{n2p̃2(1 − p̃2)}
]1/2

.

One then obtains a 100(1 − α) % confidence interval [L, U] for η by taking L =
η̂ − z1−α/2 SE[η̂] and similarly for U. This interval [L, U] for η is transformed to a
100(1 − α) % confidence interval [eL, eU] for OR.

One can standardize η̃ to obtain a statistic which is asymptotically normal with
variance 1, but as with the log relative risk, it is not clear that this provides a measure
of evidence for η > 0 over the parameter space.

19.4.3 New confidence intervals for the RR and OR

The confidence intervals derived for � in Section 19.1.1 are based on the evidence T ,
which resulted from a vst applied conditionally to the distribution of �̂, given p̃ = p.
In view of the fact that for fixed p = qp1 + (1 − q)p2, the RR and OR are strictly
increasing in � as shown in Section 19.1.4, the intervals for � can be transformed
into intervals for the RR and OR, maintaining the same nominal conditional confi-
dence coefficient. Further investigation into these intervals and comparison with the
traditional intervals presented above are required before one can recommend them.

19.5 Recurrent urinary tract infections
Recurrent urinary tract infections are a common health problem, and treatment by
different antibiotics at various dosages has been tested in a large number of case-
control studies. A recent review by Albert et al. (2004) included a summary of 11 such
studies. For background, references and standard meta-analytic results, the reader may
consult the website at www.nicsl.com.au and follow the prompts. The data are listed
in columns 2–5 of Table 19.1. Here x1 is the number of n1 control patients who had
recurrent infections, while x2 is the number of n2 treated patients who had recurrent
infections following treatment.

The quantities in columns 6–10 show for each study estimates of the risk difference
�̃, the unknown constants p̃, ζ̃, the correlation effect size ρ̃ and evidence T for a
reduction of risk of infection � > 0. Definitions for each are given in Section 19.1.1.
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Table 19.1 Results of 11 independent studies of antibiotic treatment to
prevent recurrent urinary tract infection. For each study the number x1 out of
n1 control subjects who continued to have infections is listed, as well as the
number x2 of n2 of treated subjects. See text for details regarding results.

Study x1 n1 x2 n2 �̃ p̃ ζ̃ ρ̃ T L U

1 17 22 1 23 0.698 0.419 0.975 0.707 5.27 0.47 0.88
2 17 19 8 21 0.489 0.643 0.921 0.509 3.38 0.22 0.75
3 4 13 2 15 0.165 0.245 0.743 0.192 1.02 −0.18 0.53
4 8 21 1 20 0.315 0.225 0.698 0.377 2.47 0.08 0.64
5 10 13 0 11 0.708 0.366 0.935 0.733 4.03 0.41 0.94
6 13 17 4 18 0.513 0.501 1.001 0.513 3.19 0.21 0.76
7 5 6 1 13 0.679 0.571 1.133 0.637 3.01 0.24 0.91
8 15 25 3 25 0.462 0.365 0.928 0.479 3.53 0.22 0.70
9 13 23 1 20 0.491 0.300 0.844 0.535 3.70 0.26 0.76
10 5 7 1 13 0.580 0.484 1.098 0.554 2.63 0.15 0.86
11 9 11 2 16 0.645 0.529 1.032 0.635 3.57 0.30 0.87

All estimated effects �̃ are positive. The weighted average of risks p̃ vary widely
from 0.192 to 0.708 and the estimates of correlation effect size ρ̃ are all positive but
quite variable. The first study contains large evidence T for a positive effect due to
treatment, and the third study very little evidence, but most show moderate evidence
for a positive effect. These evidences are combined in Chapter 25.

The last two columns of Table 19.1 give confidence intervals [L, U] for the risk
difference �, with only the third study interval containing the null � = 0.

19.6 Summary
For two samples, variance stabilization led to very good coverage properties of inter-
val estimators of the risk difference � = p1 − p2. Whether similar techniques can
improve on traditional confidence intervals for the relative risk and odds ratio remains
to be seen.
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Defining evidence in t-statistics

20.1 Example
Mulrow et al. (2004) conducted a review of studies in which the drop in systolic blood
pressure following a weight-reducing diet for a group of patients was compared to
that of a control group. Here we only consider the results for the treated patients for
three studies, but a comparison of treated with control groups for seven studies is
given in Section 21.4.3. The data are summarized by sample size n, sample mean ȳn

and sample standard deviation sn, shown in columns 2–4 of Table 20.1. Column 5
contains the Student t-statistic for each study denoted Sn, and column 6 the p-value.

20.2 Evidence in the Student t-statistic
Given n observations Y1, . . . , Yn from the normal model N(µ, σ2), with both parame-
ters unknown, we want a measure of the evidence against µ = µ0 in favor of µ > µ0.
Define the effect by θ = µ − µ0 and the standardized effect by

δ = θ/σ = (µ − µ0)/σ ,

a ratio of two unknown parameters. Denote the sample mean and variance of the
observations by Ȳ n and s2

n. Recall from Chapter 1 that when σ = σ0 is known, the
evidence in Ȳn for the one-sided alternative µ > µ0 is defined by T0 = √

n (Ȳn −
µ0)/σ0 ∼ N(τ, 1) with expected evidence τ = √

n θ/σ0. In this model with known
variance, the key inferential function is thus equal to the standardized effect δ = θ/σ0.
We now want to define the evidence and expected evidence when σ is unknown.

Meta Analysis: A Guide to Calibrating and Combining Statistical Evidence    E. Kulinskaya, S. Morgenthaler, and
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Table 20.1 One-sample data for each of three studies measuring drop in
systolic blood pressure for treated patients undergoing a weight-loss regime.

Study n ȳn sn Sn p-value

1 27 −4.8 13.8 −1.81 8.2 × 10−2

2 20 13.3 8.1 7.34 5.8 × 10−7

3 66 11.0 17.1 5.23 1.9 × 10−6

The t-statistic

Sn = √
n (Ȳn − µ0)/sn

has under the null hypothesis µ = µ0 the Student t-distribution with ν = n − 1
degrees of freedom, but in order to derive the evidence, we need to study its dis-
tribution under the alternative µ > µ0. In this case, we can rewrite the t-statistic
as

Sn =
√

n (Ȳn − µ) + √
n (µ − µ0)

sn

,

which is known to have the noncentral t-distribution.

Definition 20.1 The random variable X defined as a function of two independent
random variables Z ∼ N (0, 1) and W ∼ X2

ν by

X = Z + λ√
W/ν

is said to have a noncentral Student’s tν(λ) distribution. The noncentrality parameter

λ ∈R and the number of degrees of freedom ν ∈ {1, 2, 3, . . .} are the two parameters
that characterize this law.

When µ > µ0, the t-statistic Sn has a noncentral t-distribution with parameters
ν = n − 1 and λ = √

n δ. This follows by putting Z = √
n(Ȳn − µ)/σ and W =

s2
n/σ

2. A good reference for the noncentral t-distribution is Chapter 31 of Johnson
et al. (1995).

Letting �(α) = ∫∞
0 xα−1e−xdx denote the gamma function of α > 0, the first two

moments of the noncentral t-distribution X ∼ tν(λ) are

E[X] = cν λ =
(ν

2

)1/2 �(ν−1
2 )

�( ν
2 )

λ

=
(

1 + 3

4ν
+ O(1/ν2)

)
λ (20.1)

E[X2] = ν

ν − 2
{1 + λ2}
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var[X] = ν

ν − 2
+ λ2

(
ν

ν − 2
− c2

ν

)

= 1 + λ2

2ν
+ O(1/ν2) = 1 + E[X]2

2ν
+ O(1/ν2). (20.2)

The expansions into powers of 1/ν are valid when ν → ∞ and are based on Stirling’s
approximation for the gamma function. Using these approximations, one finds that
the vst appropriate when X ∼ tν(λ) has to satisfy

(h′(x))2 (1 + x2/(2ν)) = 1

for all x (see Section 17.2). The solution is

h(x) =
√

2ν sinh−1

(
x√
2ν

)
. (20.3)

The sinh function, an abbreviation for hyperbolic sine function is defined by sinh(x) =
(ex − e−x)/2 for all x. It has inverse function sinh−1(x) = ln(x + √

x2 + 1) for all
x. The reader can verify that the inverse function is an odd function (sinh−1(−x) =
− sinh−1(x)), and that its first derivative is d

dx
sinh−1(x) = {1 + x2}−1/2.

Equation (20.3) is due to Azorin (1953), who first studied variance stabilization of
the noncentral t-distribution and derived a more elaborate and more accurate formula.
To define the evidence in the t-statistic, we apply the vst (20.3) to the t-statistic Sn,
but introduce a further simplification. In the case of the t-statistic, ν = n − 1. Thus,

h(Sn) =
√

2(n − 1) sinh−1

(
Sn√

2(n − 1)

)
.

Because Sn contains a factor of
√

n, we could further simplify the expression, if
we used ν = n instead of ν = n − 1. This introduces a small error of order O(1/n),
which is of the same order as the other simplifications we made.

Definition 20.2 The evidence in a t-statistic for testing µ = µ0 against the alterna-
tives µ > µ0 is

T =
√

2n sinh−1

(
Sn√
2n

)
=

√
2n sinh−1

(
(Ȳn − µ0)/sn√

2

)
. (20.4)

As we will see in Section 20.4 the finite sample corrected evidence

Tcorrected =
(

n − 1.7

n − 1

)√
2n sinh−1(Sn/

√
2n). (20.5)

improves the normal approximation in the tails.

For the data of Section 20.1, the evidence is shown in Table 20.2.
Let θk be the unknown drop in systolic blood pressure for the kth treated group.

Then for the first study T1 = −1.79 is weak evidence for the alternative θk < 0 to the
null hypothesis of no effect. However, T2 = 6.26 and T3 = 5.06 provide strong evi-
dence for the respective alternatives θ2 > 0 and θ3 > 0.All theTk’s have standard error
1. The main question is how to combine these evidence values, and that is the topic for
later chapters. But first, in this chapter we justify the choice of evidence measure T .
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Table 20.2 One-sample data for each of three studies measuring drop in
systolic blood pressure for treated patients undergoing a weight-loss regime.
Instead of the p-value, the evidence is indicated.

Study n ȳn sn Sn Evidence T

1 27 −4.8 13.8 −1.81 −1.79
2 20 13.3 8.1 7.34 6.26
3 66 11.0 17.1 5.23 5.06

Laubscher (1960) has studied the question whether or not the evidence is nor-
mally distributed and found problems for small values of n and large values of the
noncentrality parameter. If the normal approximation for the evidence were to hold,
we would have T ∼ N(

√
n(

√
2 sinh−1(δ/

√
2)), 1). The quality of this approximation

can be checked in various ways, for example, by comparing quantiles, distribution
functions or densities and we will come back to this in more detail a little later on.
For now, let us simply look at how well we do based on p-values. Figure 20.1 shows
the p-value after the application of the vst as a function of the p-value before the
transformation to evidence. The p-value often is based on the normal approximation,
the p-value before is computed with the central t-distribution; see Section 20.4.1.

We can also check the approximation by looking at densities. The actual cumu-
lative distribution of the evidence T in (20.4) is

P(T ≤ t) = P

(√
2n sinh−1

(
Sn√
2n

)
≤ t

)

= P

(

Sn ≤
√

2n sinh

(
t√
2n

))

= FStudent

(√
2n sinh

(
t√
2n

) ∣∣∣∣∣
n − 1,

√
nδ

)

,

where FStudent(t|v, λ) is the cumulative distribution function of the noncentral
t-distribution with v degrees of freedom and noncentrality λ. From this formula the
density is easy to derive.

Figure 20.2 shows the densities in six representative situations together with the
approximate normal density. The three panels in the top row are for n = 5, the three in
the bottom row are for n = 10. The two left-most panels show the case of the central
t-density. The actual density of the evidence has a variance that is slightly larger then
one, the variance the approximating normal density. This effect is quite visible when
n = 5, but much less pronounced when n = 10. The two right-most panels have a
noncentrality of λ = 4. In these cases, the actual density of the evidence remains
visibly asymmetric and the density of the evidence T again has a variance slightly
bigger than one. In addition, the mode of the approximating normal density is to the
left of the mode of the actual density. Again, we also note that these effects diminish
with increasing n. The two middle panels are for λ = 2.
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Figure 20.1 The curves show the p-values before and after using the vst, for different
sample sizes. Ideally, all the curves would lie exactly on the diagonal of the chart,
which is clearly not the case here. After our transformation (20.4), the p-values based
on the evidence are systematically too small. The curves in gray correspond to the
corrected evidence and here the approximation is good.

20.3 The Key Inferential Function for Student’s model
The expected evidence E[T ] is approximately equal to

E[T ]
.=

√
2n sinh−1(

√
n δ/

√
2n)

= √
n(

√
2 sinh−1(δ/

√
2)) = √

nK(δ) , (20.6)

where we made use of the approximate expectation of the t-statistic, which is
√

n δ.
Of course, we want the evidence T based on n observations to satisfy T ∼ N(τ, 1),
where τ = √

nK(δ) for some monotonically increasing function of δ = (µ − µ0)/σ,
called the Key Inferential Function. And this is exactly what seems to happen.
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Figure 20.2 The six panels show the density of the evidence T (20.4) in situations
with small sample sizes. The curves in gray are the approximating normal densities.

Definition 20.3 The Key Inferential Function appropriate for Student’s t-test is
defined in (20.6) and equals

K(δ) =
√

2 sinh−1(δ/
√

2) =
√

2 ln(δ/
√

2 +
√

1 + δ2/2). (20.7)

The graph is plotted in Figure 20.3.

The Key Inferential Function transforms the standardized effect δ into transformed
standardized effect K(δ). The latter is estimated by κ̂ = T/

√
n .

To achieve ‘moderate’ expected evidence 3.3 for the one-sided alternative when
δ = 0.5 one would need a sample size of n satisfying

√
nK(0.5) = 3.3, or n = 35.

The evidence as usual has standard error 1 in estimating this expected value. We now
can compare the expected evidence for µ > 0 when σ is known with the expected
evidence when σ is unknown. The former is

√
n δ, while the latter is

√
nK(δ). The

ratio is equal to {sinh−1(δ/
√

2)}/(δ/√2), which is approximately 1 for small δ but
behaves like {1 + δ2/2}−1/2 for large δ.
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Figure 20.3 The Key Inferential Function for Student’s model is shown as a function
of the standardized effect δ.

Or, one can ask how much more work is required to obtain the same amount
of expected evidence. If m observations with σ known and n observations with σ

unknown are to lead to the same expected evidence, then the ratio of n to m satisfies√
n/m

.= 1 + δ/6 over the range 1 < δ < 20, so the extra work required relative to m

is (n − m)/m
.= (1 + δ/6)2 − 1 = δ/3 + δ2/36. The extra work required, because σ

is unknown, is a quadratic function of the unknown standardized effect δ over most
of the range of interest. In particular for δ = 3, n must be roughly twice as large as
m to achieve the same expected evidence. When δ = 6, n = 4m is required. We will
come back to this question in Section 20.6.

20.4 Corrected evidence
The expected value of the evidence satisfies E[T ]

.= √
nK(δ). In this section we

discuss possible modifications of the evidence T with the aim of improving the
precision of the above approximate equality. Recall that

.= means equal up to some
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wiggle room. We use this wiggle room to simplify the choice of expressions. Both our
key K (20.7) and our evidence T (20.4) are easy-to-use formulas. But the imprecision
in

.= may lead to appreciable errors for small samples. Thus the desire to correct the
evidence.

20.4.1 Matching p-values

One of the ways in which the approximation error is made visible is in the p-value.
Suppose we had a study and we wished to test µ = µ0 against µ > µ0. The result of
the study can be summarized by its p-value pstudy and the sample size n. We know
how the p-value was calculated. It is equal to

pstudy = FS(−
√

n (Ȳn − µ0)/sn) = FS(−Sn),

where FS denotes the cumulative distribution function of a t-distribution with n − 1
degrees of freedom. We transform this information to evidence by way of

Tn = hn(Sn) =
√

2n sinh−1(Sn/
√

2n)

and could derive a p-value for the evidence as

pevidence = 
(−Tn).

By construction, it is evident that pstudy
.= pevidence. However, exact equality does

not hold, which may to some users be disconcerting, especially when the study
p-value is below 5 %, but the evidence p-value is above this bound. This particu-
lar problem is, of course, caused by the mistaken impression that the limit of 5 %
is somehow sacred. So, our primary response to this worry is to emphasize that one
should not rely on the p-value in the first place. It is much easier to think in terms of
evidence. Because evidence has a standard error of 1, whether the p-value is slightly
below 5 % or slightly above 5 % makes no real difference.

If, however, the translation to evidence has to preserve the p-value, we suggest
using a correction. To have equality between the two requires


(−Tn) = FS(−Sn) ⇔ Tn = hn(Sn) = −
−1 (FS(−Sn)).

A multiplicative correction to the vst of the form

h̃n(x) = (1 + cn) hn(x),

with cn of order O(1/n) would be appropriate. It amounts to a finite sample correction
of lower order than the terms deleted in 20.1. The correction corresponds simply to a
multiplication of the evidence T and Figure 20.2 can guide us in the choice of cn. If we
multiplied the evidence T by a constant slightly smaller than one, both deficiencies we
noted in the discussion of these densities could be corrected, the mode of the density
would shrink towards zero and the variance would become smaller. To choose a
particular value of cn, we could, for example, demand that a study p-value of 5%
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translate into an evidence p-value of 5%. Using the symmetry of the t-distribution
FS , this implies that


(−h̃n(F
−1
S (0.95)) = FS(−F−1

S (0.95)) = FS(F
−1
S (0.05)

(1 + cn) n(F
−1
S (0.95)) = −
−1(0.05) = 
−1(0.95)

cn = 
−1(0.95)/hn(F
−1
S (0.95)) − 1.

This correction anchors the vst at the 95 % quantiles of the Student t-distribution and
the normal distribution. The correcting constant cn turns out to be nearly equal to

cn
.= −0.7/(n − 1).

The corrected vst thus leads to the following evidence

Tcorrected =
(

1 − 0.7

n − 1

)√
2n sinh−1(Sn/

√
2n) .

The fact that the correction has a negative sign means that the corrected evidence is
smaller than the uncorrected one. The corrected evidence thus has a bigger associated
p-value 
(−Tcorrected).

Mathematical statistics offers some additional insight to the problem of matching
p-values. The Cornish–Fisher expansion is a tool for matching all the quantiles of
an arbitrary distribution to those of a normal distribution. For the t-distribution it
leads to

F−1
S (p)

.= 
−1(p) + [(
−1(p))3 − 3
−1(p)]
1

8n
.

This formula could be used to derive a more general expression for the correction cn.

20.4.2 Reducing bias

Another basis for choosing a correction is the bias incurred when estimating the
expected evidence E(T) = τ

.= √
nK(δ). The plug-in estimate of E(T) is simply the

observed value τ̂ = T . This is equivalent to the use of

κ̂ = K(δ̂n) = K (Sn/
√

n
)

based on the straightforward estimate of the standardized effect, δ̂n = (Ȳn − µ0)/sn =
Sn/

√
n. In order to realize the full potential of the Key Inferential Function, we need

an unbiased estimator K̂corrected for which
√

n K̂corrected ∼ N(
√

nK(δ), 1). This will
enable us to find confidence intervals for δ and to combine evidence from different
but related experiments, as described in Chapters 17 and 25.

There are two distinct sources of bias in the basic estimate K̂. First, as shown
in (20.1), δ̂n is not an unbiased estimate of δ, and, second, even if it were, K̂ would
still be biased, because K is nonlinear. To compute the bias, consider the three-term
Taylor expansion

K(δ̂n)
.= K(δ) + (δ̂n − δ)K′(δ) + (δ̂n − δ)2 K′′(δ)/2.
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Taking the expectation leads to

E[K(δ̂n)]
.= K(δ) + (E[δ̂n] − δ)K′(δ) + E[(δ̂n − δ)2]K′′(δ)/2.

From (20.1) we find

E[δ̂n]
.= δ(1 + 3/(4n)) and E[(δ̂n − δ)2]

.= (1 + δ2/2)/n.

Putting these two together yields

E[K(δ̂n)]
.= K(δ) + 3δK′(δ)/(4n) + (1 + δ2/2)K′′(δ)/(2n).

We leave it to the reader to check thatK′(δ)=(1+δ2/2)−1/2 andK′′(δ)=−δ (K′(δ))3/2.
The above result thus simplifies to

E[K(δ̂n)]
.= K(δ) + 3δK′(δ)/(4n) − δK′(δ)/(4n)

.= K(δ(1 + 1/(2n))).

When matching p-values we found that the uncorrected estimate (20.4) slightly
overestimates the evidence. This is confirmed by the above computation. The
estimate κ̂ overestimates the Key Inferential Function by an amount that is inversely
proportional to the size of the study. This suggests a correction of κ̂, namely

K̂unbiased = K(δ̂n[1 − 1/(2n)]) =
√

2 sinh−1(δ̂n(2n − 1)/(2n)). (20.8)

In order to compute the evidence, K must be multiplied by
√

n. This gives an alter-
native bias-corrected vst, namely

Tunbiased =
√

2n sinh−1((2n − 1)Sn/(2n
√

2n)). (20.9)

For the data of Section 20.1, the three versions of the evidence are shown in
Table 20.3.

Figure 20.4 demonstrates that the bias correction does indeed provide an improve-
ment on (20.4) by reducing the bias. The variance stabilization is, however, much
better with the finite sample correction, where the standard error is very nearly equal
to one, even for samples of size 10. For this reason, we do not recommend the use of
the evidence Tunbiased in practice.

Table 20.3 One-sample data for each of three studies measuring drop in
systolic blood pressure for treated patients undergoing a weight-loss regime.
The three versions of evidence are shown in the last three columns. The
corrections are of small size, but show that the raw evidence overstates the true
value somewhat.

Study n Sn Raw Corrected Unbiased

1 27 −1.81 −1.79 −1.74 −1.76
2 20 7.34 6.26 6.03 6.14
3 66 5.23 5.06 5.01 5.03
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Figure 20.4 In the top row of panels, the value of K(δ) = √
2 sinh−1(δ/

√
2) is

shown as a thick gray line. Also shown are the expected values of the estima-
tors κ̂, κ̂corrected and κ̂unbiased for study sizes of n = 10, 20, 40. The expected values
were computed by taking the mean over 100,000 simulations. The panels in the
bottom row show the corresponding estimated standard deviations of the evidences
T, Tcorrected, and Tunbiased. The ordinate of each plot is provided by the standardized
effect δ.

20.5 A confidence interval for the standardized effect
How to construct a confidence interval for the standardized effect δ = (µ − µ0)/σ is
the topic of this section.

The estimated key inferential statistic κ̂ is approximately normal with mean
K(δ) = √

2 sinh−1(δ/
√

2 ) and variance 1/n for a range of values of δ. A nomi-
nal 95 % confidence interval for K(δ) is given by [κ̂ ± 1.96/

√
n]. Because K(·)

is a one-to-one function, this can easily be inverted to yield a confidence inter-
val for the standardized effect δ. The inverse function is δ = √

2 sinh(K/
√

2 ) =
{eK/

√
2 − e−K/

√
2 }/√2, which leads to a nominal 95 % confidence interval for δ in
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terms of the evidence T = √
n K̂ of

[L, U] =
[√

2 sinh

(
T − 1.96√

2n

)

,
√

2 sinh

(
T + 1.96√

2n

)]

. (20.10)

As seen above, the corrected evidence Tunbiased is preferable and for smallest sample
sizes. When using the corrected evidence (20.5), the inversion formula leads to the
confidence interval

[Lcorrected, Ucorrected] =
[√

2 sinh

(
Tcorrected − 1.96

n−1.7
n−1

√
2n

)

,
√

2 sinh

(
Tcorrected + 1.96

n−1.7
n−1

√
2n

)]

,

which is always a bit wider than the confidence interval (20.10).
For the data of Section 20.1, the sample sizes are so large that the correction is

not necessary. The first sample based on n = 27 observations has S27 = −1.81 which
leads to δ̂ = −0.336 and a 95 % confidence interval for δ from (20.10) of [L, U] =
[−0.75, 0.03]. For the next sample S20 = 7.3, δ̂ = 1.35 and [L, U] = [1.03, 2.40],
and the third S66 = 5.23, δ̂ = 0.62 and [L, U] = [0.39, 0.92].

20.5.1 Simulation study of coverage probabilities

In Figure 20.5 are shown the empirical coverage probabilities based on 100 000
simulations each of nominal 95 % confidence intervals [L, U] for δ, when (20.10)
is employed with Tunbiased = √

n K̂unbiased based on the bias-corrected vst given by
(20.8).

20.6 Comparing evidence in t- and z-tests
20.6.1 On substituting s for σ in large samples

The expected evidence in a one-sided t-test of µ = µ0 against µ > µ0 is equal to√
nK(δ), whereas for the z-test it is equal to

√
nδ. For large δ = (µ − µ0)/σ there

is thus a very notable difference in the evidence obtained from a t-statistic S =√
n(Ȳn − µ0)/sn compared to a z-test Z = √

n(Ȳn − µ0)/σ. Clearly, as the sample
size n grows the standard deviation becomes more or less ‘known’ , the distributions
of the two test statistics under the null hypothesis are ‘equal’ and the decisions taken
for or against the null hypothesis of the two tests are in agreement. The reason for
the difference in the evidences lies in the different behavior of the distribution of the
two test statistics when the alternative hypothesis holds. In Section 20.2 it was shown
that the distribution of the t-test has a noncentral t-distribution tν(λ) with ν = n − 1
and λ = λ(ν) = √

n δ = √
(ν + 1) δ. If we let the sample size grow, the distribution

of X ∼ tν(λ(ν)) is for large ν delicately poised between normality and a skewed
distribution. The following proposition explains in detail what happens.
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Figure 20.5 The coverage probabilities for the standardized effect δ are plotted as
functions of δ for sample sizes n = 5, 10, 25. The curves in grey are for the evidence
T (20.4), the black curves are for the corrected evidence Tcorrected (20.5). The corrected
evidence leads to coverage probabilities close to 95% over a wide range of situations.

Proposition 20.1 Let X ∼ tν(λ(ν)). There are three cases of possible convergence
as ν → ∞, depending on the rate of growth of λ(ν) with ν:






if λ(ν) → λ, then X → N(λ, 1);
if λ(ν) = √

ν δ, then X − √
ν δ → N(0, 1 + δ2/2);

if λ(ν) = νk λ for k > 1/2, then (X − λ(ν))/νk−1/2 → N(0, δ2/2).

Proof : By definition (20.1), we can write X as

Z√
W/ν

+ λ(ν)√
W/ν

,

where Z is a standard normal random variable and W is independent of Z and has a
χ2

ν distribution. The mean and variance of W are ν and 2ν. The mean and variance of
1/

√
W/ν are thus approximately equal to 1 and 2ν/(2ν)2 = 1/(2ν).

As ν → ∞, the first summand converges to a normal limit, and the standardized
variable

√
2ν (1/

√
W/ν − 1) also tends to a normal distribution. In other words,
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λ(ν)/
√

W/ν is approximately normal with mean λ(ν) and variance λ(ν)2/(2ν). The
three different cases correspond to different behaviors of the second summand.

In the first case, λ(ν) → λ as ν → ∞, the second term tends in probability to λ and
the sum of the two converges to a normal with mean λ and variance 1. This situation
occurs when performing a t-test with alternatives that depend on the sample size n

and approach the null hypothesis as n grows. These so-called contiguous alternatives
are of the form µ0 + θ/

√
ν. For these alternatives the fact that the standard deviation

σ has to be estimated has no importance and the two tests are equivalent.
The second case occurs when we consider the t-test under a growing sample

size but for a fixed alternative µ > µ0. Here, the second summand is approximately
normal with mean

√
ν δ and variance δ2/2. Since the two summands are independent,

their sum is approximately normal with mean
√

ν δ and variance 1 + δ2/2. In this
case, the t-test and the z-test are not equivalent. The t-test has a bigger variance due
to the fact that the standard error needs to be estimated.

In the third case, λ(ν) = νk δ as ν → ∞, the second summand has an approximate
normal distribution with mean νk δ and variance ν2k−1δ2/2. Here we are interested in
2k − 1 > 0, in which case the variance grows with ν and we need to divide by νk−1/2

in order to standardize. Doing this causes the first summand to converge to zero in
probability, thus proving the stated limit. This corresponds to a situation where with
growing sample size n the alternatives move away from the null hypothesis. In this
case it is the variance of the estimate of the standard deviation which determines the
limit.

Except in the first case of contiguous alternatives, there is thus a real difference
between the z-test and the t-test. This difference shows itself in a reduction of the
power of the t-test. One has to note, however, that the practical relevance of this
phenomenon is minor. The difference in the expected evidence is

√
n (δ − K(δ)).

This is going to be large in absolute value only if either the sample size n or the
standardized effect δ or both are large. In either case the expected evidence carried by
a t-statistic is large as well and the power is close to one. The contiguous alternatives
have originally been invented exactly as a response to this conundrum. If one makes
experiments with large n then the power will be close to one even for small effects
δ and, in order to study the power more closely, contiguous alternatives have to be
used.

20.7 Summary
For normal data the test statistic for µ = µ0 is the Student t-statistic, and its variance
stabilization was essentially solved by Azorin (1953). However, we require a little
more, because when we combine evidence from different studies in later chapters, it
will be important that the expected evidence in each be of the form

√
nK(δ) where

K is monotonically increasing in the unknown standardized effect δ = (µ − µ0)/σ,

and that K be the same for all studies. Therefore we reexpressed Azorin’s vst in terms
which enabled us to obtain unbiased estimates κ̂k from different studies for which
each Tk = √

nk κ̂k ∼ N(
√

nk K(δ), 1).
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It turns out that the appropriateK(δ) = √
2 sinh−1(δ/

√
2). Knowing this function

determines the expected evidence in the Student t-statistic enables us to assess what to
expect for a given sample size n and standardized effect δ. It also allows us to choose
the sample size to obtain a desired amount of expected evidence for a particular
alternative δ.

In order to estimate
√

nK(δ) with standard error 1 we introduced two different
but similar bias-corrections. The benefits of finding a good vst become apparent when
calculating confidence intervals for the standardized effect δ, where for all practical
purposes a sample size of 10 is sufficient to attain the nominal coverage of 95 % for
δ ranging from −2 to 2. This range includes what Cohen (1988) considers a ‘large’
effect, δ = 0.8, and what W.G. Hopkin (http://sportsci.org/resource/stats/) calls ‘very
large’. The range of δ for which this method yields accurate confidence intervals
increases with increasing sample size.

Next we examined the difference between the t-test and the z-test. The latter
assumes knowledge of the standard deviation σ, whereas the former does not. In
terms of the Key Inferential Function, this difference is plainly visible, whereas in
traditional asymptotic studies one is usually left with the impression that it does
not matter for large sample sizes. We showed that this is only true for the so-called
contiguous alternatives.
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Two-sample comparisons

Two-sample comparisons of normal populations, one sample undergoing treatment
and the other serving as control, remain some of the most commonly encountered and
challenging problems in statistics. It is difficult when the populations have different
variances, the heteroscedastic case. The simpler homoscedastic case was solved long
ago and will be reviewed in passing. Another difficulty is conceptual: does one want
to compare the populations by estimating the difference of their means, the raw effect,
or does one want to make inferences about a standardized effect, which is the effect
size relative to the dispersion of the populations? As we shall show, the evidence in
the Welch (1938) statistic for testing the hypothesis of no effect in the heteroscedastic
case has two parameters, one a standardized effect and the second a sampling design
factor, depending on how well the ratio of sample sizes agrees with the (unknown)
ratio of population standard deviations.

The model entails X1, . . . , Xn1 i.i.d. N(µ1, σ
2
1) independent of Y1, . . . , Yn2 i.i.d.

N(µ2, σ
2
2), all parameters unknown. The objective is to test a null hypothesis µ1 =

µ2 against a one-sided alternative, say µ1 < µ2, or the two-sided alternative. By
definition the effect is θ = µ2 − µ1 and the standardized effect is δ = θ/σ, where σ is
a measure of scale, or magnitude, defined by (21.1). But first we consider an example,
to help fix ideas.

21.1 Drop in systolic blood pressure
Summary statistics from the review by Mulrow et al. (2004) are shown in Table 21.1.
The drop in systolic blood pressure following a weight-reducing diet for a group
of patients was compared to that of a control group. The same article also includes
reviews of studies that include hypertensive reducing drugs, and the interested reader

Meta Analysis: A Guide to Calibrating and Combining Statistical Evidence    E. Kulinskaya, S. Morgenthaler, and
Robert G. Staudte   © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-02864-3
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Table 21.1 Seven studies comparing drop in systolic blood pressure for
treated patients undergoing a weight-loss regime (summarized by n2, ȳ, s2)
with control patients not undergoing a weight-loss regime (summarized by n1, x̄, s1).
The estimated standardized effect in the kth study is δ̂k = θ̂k/σ̂k = (ȳk − x̄k)/σ̂k.

k n1k x̄k s1k n2k ȳk s2k Nk θ̂k δ̂k

1 24 0.2 13.8 27 −4.8 13.8 51 −5.0 −0.18
2 18 7.4 8.1 20 13.3 8.1 38 5.9 0.36
3 64 4.0 15.7 66 11.0 17.1 130 7.0 0.21
4 9 −3.0 13.5 10 4.0 15.3 19 7.0 0.24
5 25 15.0 16.5 24 8.0 20.4 49 −7.0 −0.19
6 5 2.5 5.1 5 9.8 7.1 10 7.3 0.59
7 14 9.9 6.4 19 12.5 6.3 33 2.6 0.20

can find much more information on the selection criteria and methodology for these
meta analyses by consulting the Cochran Review website at www.nicsl.com.au.

These data suggest homoscedasticity within each study, which will allow us to
make comparisons of new techniques with traditional ones based on the assumption of
equal variances. Our current objective is to find the evidence against each hypothesis
θk = µ2k − µ1k = 0 in the direction of θk > 0 and to find a confidence interval for
θk or δk. In Chapter 25 we will combine the evidence in all these studies and use it to
find a confidence interval for a representative standardized effect.

First we need to consider what we mean by a standardized effect in one study. In
the fifth study shown in Table 21.1, there is a negative effect −7.0, but the sample
standard deviations of control and treatment groups are 16.5 and 20.4, so the effect is
small relative to the spread within the control and treatment groups. By comparison,
in the sixth study a positive effect of 7.3 is a little larger than the standard deviation
in each group. Clearly the raw effects, in themselves, do not convey the discrepancy
between control and treatment groups.

21.2 Defining the standardized effect
Writing N = n1 + n2 and q = n2/N, the unbiased estimator of θ defined by θ̂ =
Ȳn2 − X̄n1 has variance

Var[θ̂] = σ2
1

n1
+ σ2

2

n2

= 1

N

{
q σ2

1 + (1 − q) σ2
2

q(1 − q)

}

. (21.1)

Letting σ2 denote the quantity in the braces, we have SE[θ̂] = σ/
√

N, where σ is
our chosen measure of scale; it is free of N and depends only on the known relative
sample sizes and the unknown population variances.
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When σ1 = σ2, the standard error reduces to σ/
√

N = σ1/
√

N{q(1 − q)} , a
quantity minimized by taking q = 0.5, and then σ = 2σ1 . More generally, Equation
(21.1) is minimized for fixed N by choosing the second sample proportion to be
q = σ1/(σ1 + σ2). This will help if one has a rough idea of the relative sizes of σ1, σ2

prior to sampling, and wants to estimate the effect θ.
We define the standardized effect by δ = θ/σ. In this chapter we find confi-

dence intervals for δ and evidence for δ > 0. When σ1 = σ2, the standardized effect
reduces to δ = {q(1 − q)}1/2{(µ2 − µ1)/σ1}. The second factor is often referred to
as Cohen’s-d (Cohen 1988) in the psychological literature, and is called the effect
size in Hedges and Olkin (1985). The first factor {q(1 − q)}1/2 is known, and reflects
the impact of unbalanced sampling. We will not assume equal variances further. It is
helpful to rewrite δ in terms of q = n2/N, � = σ2

2/σ2
1 and δ1 = θ/σ1:

δ = δ1

{
1

1 − q
+ �

q

}−1/2

. (21.2)

The ratio δ1 = θ/σ1 is the standardized effect relative to the scale σ1 of the first
(control) sample; it was originally proposed by Glass (1976), who argued that the
control sample should be the basis for standardization. For balanced sampling, that
is, q = 0.5, the standardized effect δ = δ1(2 + 2�)−1/2.

21.3 Evidence in the Welch statistic
It is clear that testing the hypotheses θ = 0 versus θ > 0 is equivalent to testing δ = 0,
versus δ > 0, so in either case the evidence for the alternative will be the same. To
find it, we begin by variance stabilizing the Welch statistic, which is widely used for
testing these hypotheses in the context of comparing two normal populations, with
all four parameters unknown.

21.3.1 The Welch statistic

Welch (1938) proposed a test statistic for δ = 0 versus δ > 0 which is defined by
tWelch = √

N(Ȳn2 − X̄n1)/σ̂, where σ̂ is the estimate of σ obtained by substituting
the sample variances s2

1, s
2
2 for the respective population variances σ2

1 , σ2
2 . Welch

(1938, 1947) and Aspin (1948) showed that the distribution of tWelch under the null
δ = 0 is approximately the Student t-distribution with ν degrees of freedom. It has
df ν = (A + B)2/{A2/(n1 − 1) + B2/(n2 − 1)}, where A = σ2

1/n1, B = σ2
2/n2. In

implementation, ν is estimated by ν̂ obtained by substitution of s2
1, s

2
2 for the unknown

population parameters. Further, an approximate 100(1 − α) % confidence interval for
θ is given by

[L, U] =
[

θ̂ − tν̂,1−α/2
σ̂√
N

, θ̂ + tν̂,1−α/2
σ̂√
N

]

. (21.3)
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The statistic tWelch can be written as the ratio of independent variables, Z + δ to
W , where Z is standard normal and W is the square root of a mixture of independent
χ2

n1−1, χ2
n2−1 variables. The exact distribution of tWelch for all parameter values is

derived in Nel et al. (1990), and is a generalization of the noncentral F -distribution.
They use it to show that Welch’s approximate t-distribution methodology is quite
accurate for obtaining critical points. It does not appear to be useful in obtaining
confidence intervals for δ because of its complicated form and dependence on the
unknown population variances.

21.3.2 Variance stabilizing the Welch t-statistic

Let w = 1/Var[θ̂] be the inverse of the variance of the effect estimator θ̂ = Ȳn2 −
X̄n1 . Further define the constants C = σ4

1/{n2
1(n1 − 1)} + σ4

2/{n2
2(n2 − 1)} and D =

σ6
1/{n3

1(n1 − 1)2} + σ6
2/{n3

2(n2 − 1)2}. Then it is shown in Kulinskaya and Staudte
(2007) that

E[tWelch] ≈ √
N δ

{

1 + 3w2C

4
+ K

[
105w4C2

32
− 5w3D

2

]}

(21.4)

Var[tWelch] ≈ 1 + 2w2C + N δ2

{
w2C

2
+ K

[
39w4C2

8
− 3w3D

]}

. (21.5)

When K = 0 the terms in curly brackets are accurate to order O(N−1), and when
K = 1 to order O(N−2). The choice of K will be made later to improve the range of
parameters for which 95 % confidence intervals for δ are obtained.

It follows from these approximations that Var[tWelch] = a1 + a2E2[tWelch], where
a1 = 1 + 2w2C and a2 is the ratio of the quantity in curly brackets in (21.5) to the
square of the quantity in curly brackets in (21.4). It then follows by the same derivation
used in Section 20.2 that a variance stabilizing transformation of the Welch statistic
is given by:

T(tWelch) = 1

a
1/2
2

sinh−1

{(
a2

a1

)1/2

tWelch

}

. (21.6)

The theory suggests this transformed statistic T = T(tWelch) should be approxi-
mately normally distributed with variance 1, but simulations are needed to verify these
claims (see below). Lettingn1, n2 tend to infinity with proportionq = n2/(n1 + n2) =
n2/N fixed, it follows that a1 → 1 and Na2 → ξ/2, where

ξ = lim
N

ν
= σ4

1/(1 − q)3 + σ4
2/q

3

{σ2
1/(1 − q) + σ2

2/q}2
= (1 − q)−3 + �2q−3

{(1 − q)−1 + �q−1}2
. (21.7)
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Thus the variance stabilized Welch statistic in (21.6) will for large n1, n2 have
expected value E[T ] =. √

NK(δ), where the Key is

K(δ) =
√

2

ξ
sinh−1

(√
ξ δ√
2

)
. (21.8)

Here ξ is a parameter depending only on the unknown ratio of variances � and
the proportion q of observations allocated to the second sample. For any δ > 0 the
expected evidence τ is decreasing in ξ, so to maximize τ we want ξ to be as small as
possible. Using elementary calculus, one can show ξ ≥ 1 with equality along the curve
� = {q/(1 − q)}2, or q = √

�/(1 + √
� ) = σ2/(σ1 + σ2). This is the same ‘choice’

of q which minimizes the standard error of θ̂ (see the discussion after Equation (21.1)).
Because the ratio of population variances is usually unknown, balanced sampling
q = 0.5 is recommended, for then the constant ξ is bounded and in fact 1 ≤ ξ ≤ 2.

When ξ = 1 the asymptotic mean (21.8) reduces to τ = √
N K(δ), where K(δ)

is given by (20.5); that is, τ reduces to the same expression for the mean evidence
encountered in the one-sample Student t-statistic. This is in accord with the homo-
geneous case � = 1 and balanced sampling, for then the Welch statistic and the
two-sample pooled t-test are approximately equal. Even in the nonhomogeneous
case, the Welch test statistic with q = σ2/(σ1 + σ2) has ν ≈ N. Further, the scale
parameter defined in (21.1) simplifies to σ = σ1 + σ2. Thus in this case the scale
parameter depends on only one unknown, the sum of the standard deviations, so it is
not surprising that the evidence in tWelch is then asymptotically equivalent to that in a
one-sample t-statistic. In the next section we describe the small-sample behavior of
the variance stabilized tWelch.

21.3.3 Choosing the sample size to obtain evidence

For any fixed 0 < q < 1 and ξ = ξ(�) defined by (21.7) one can show that ξ(�) ≤
ξmax = max0<�<∞ ξ(�) = max{q−1, (1 − q)−1}. Further the expected evidence
(21.8) in tWelch has, for any fixed δ1 > 0, its smallest magnitude when ξ = ξmax,

because |τ| is decreasing in ξ. Thus to guarantee expected evidence of at least |τ1| for
all � when δ = δ1 we need to choose N1 so that

N1 = τ2
1 ξmax

2

/[

sinh−1

(

δ1

√
ξmax

2

)]2

. (21.9)

For balanced sampling N = 2n1 this reduces to N1 = {τ1/ sinh−1(δ1)
}2

.

21.4 Confidence intervals for δ

21.4.1 Converting the evidence to confidence intervals

If it is true that T = T(tWelch) defined in (21.6) satisfies T ∼ N(τ, 1) at least approxi-
mately, with τ given by (21.8), then a nominal 100(1 − α) % confidence interval for τ
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is [T − z1−α/2, T + z1−α/2]. Now τ = √
2N/ξ sinh−1(

√
ξ δ/

√
2), so this confidence

interval for τ can be modified to isolate δ between two limits, namely
[√

2

ξ̂
sinh

{√
ξ̂

2N
(T − z1−α/2)

}

,

√
2

ξ̂
sinh

{√
ξ̂

2N
(T + z1−α/2)

}]

, (21.10)

where ξ̂ is an estimate of ξ. This is a nominal 100(1 − α) % confidence interval for
δ, but needs to be checked by simulations. In the following we substitute sample
variances for population variances in (21.7) to obtain ξ̂.

21.4.2 Simulation studies

Kulinskaya and Staudte (2007) report on a series of simulation studies for different
choices of � = σ2

2/σ2
1 and sample proportions q = n2/(n1 + n2) with total sample

size N = n1 + n2 ranging from 10 to 100, and raw effect θ = µ2 − µ1 ranging from
0 to 5. For each configuration (q, r, N, θ), 100 000 values of tWelch were generated,
and T = T(tWelch) computed using transformation (21.6). After experimentation, the
constant K(q) = min{1, 1/3 + 4 |q − 1/2|} required in (21.4) and (21.5) was found
to improve the accuracy of 95 % confidence intervals for δ. The empirical means of
T/

√
N are close to the asymptotic value τ/

√
N and the empirical standard deviation

of T is also close to 1 for a wide range of parameter values. For complete details we
refer the interested reader to Kulinskaya and Staudte (2007).

Table 21.2 gives a summary of the coverage probability results of nominal 95 %
confidence intervals over the range 0 ≤ δ ≤ 1. In the context of equal variances σ2

1 =
σ2

2 , Cohen (1988) has described effect size values d = (µ2 − µ1)/σ1 equal to 0.2,
0.5 and 0.8 as ‘small’, ‘medium’ and ‘large’, respectively. These correspond to our
δ = 0.1, 0.25 and 0.4. Hedges and Olkin (1985, p. 87) similarly note that effect size

Table 21.2 Columns 2–4 list the minimum and maximum empirical coverage
percentages of the nominal 95 % confidence intervals (21.10) for δ, when 0 ≤ δ ≤ 1,
based on 100 000 simulations. All numbers are rounded to the nearest 0.1 %.

(n1, n2) � = 1 � = 2 � = 4

(5, 5) (95.2, 95.5) (95.0, 95.2) (94.5, 94.7)
(10, 10) (95.1, 95.2) (95.1, 95.2) (94.6, 95.0)
(20, 20) (95.0, 95.2) (95.0, 95.2) (94.7, 95.2)
(25, 25) (95.1, 95.2) (94.9, 95.2) (94.8, 95.1)
(50, 50) (94.9, 95.2) (95.0, 95.1) (94.9, 95.1)
(100, 100) (94.9, 95.2) (94.9, 95.1) (94.8, 95.2)

(5, 10) (94.8, 95.6) (95.1, 95.6) (95.2, 95.8)
(10, 20) (95.0, 95.2) (95.0, 95.3) (95.1, 95.5)
(20, 40) (95.0, 95.1) (95.0, 95.2) (95.0, 95.3)
(30, 60) (94.9, 95.0) (94.9, 95.2) (95.0, 95.1)
(60, 120) (94.9, 95.0) (95.0, 95.1) (95.0, 95.1)
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Table 21.3 Values of the tWelch statistic, the variance stabilized statistic
T = T(tWelch) given by (21.6) and 95 % confidence intervals [Li, Ui] for δi based
on (21.10) and the data given in Table 21.1.

i Ni θ̂i σ̂i/
√

Ni tWelch,i Ti [Li, Ui]

1 51 −5.0 3.87 −1.29 −1.26 [−0.46, +0.10]
2 38 5.9 2.63 2.24 2.16 [+0.03, +0.70]
3 130 7.0 2.88 2.43 2.40 [+0.04, +0.39]
4 19 7.0 6.61 1.06 1.00 [−0.22, +0.71]
5 49 −7.0 5.31 −1.31 −1.29 [−0.47, +0.10]
6 10 7.3 3.91 1.87 1.61 [−0.11, +1.37]
7 33 2.6 2.24 1.16 1.12 [−0.15, +0.55]

values from quantitative research syntheses usually fall within their considered range
of 0 to 1.5, which corresponds to our 0 ≤ δ ≤ 0.75. It is also found in Kulinskaya
and Staudte (2007) that the lengths of these confidence intervals for δ, which do not
assume equal variances, are only slightly longer than the best available when the
assumption is made.

21.4.3 Drop in systolic blood pressure (continued)

Table 21.3 shows the results of applying the procedures proposed in Sections 21.3
and 21.4.1 to each of the individual studies in Table 21.1. The evidence for δ > 0 is
negligible in all studies except 2, 3 and 6 where it is weak.

Only the second and third studies are of level 0.05 significance in testing δi = 0
against δi �= 0, because the 95 % confidence intervals for δ2, δ3 shown in column 7
do not contain 0. The same two studies would yield 0.05 significance for testing
µ2i = µ1i against µ2i �= µ1i using the traditional Welch t intervals for the differences
in means. So the question should be asked: what have we gained by considering
standardized effects rather than the raw differences in treated and control responses?

What we have gained is the ability to make comparisons among studies, because
the standardized effects are free of the variability in the populations under considera-
tion in all the studies. Moreover, we can put all seven results together to combine the
evidence for various alternatives and to estimate an overall effect (see Chapter 25).

21.5 Summary
The evidence in the two-sample Welch statistic is found to have a form similar to
that in the one-sample t-statistic, again growing with a suitably defined standardized
effect through the sinh−1 transformation, but now also dependent on a parameter ξ

which is a known function of the relative sample sizes and the unknown ratio of
variances. Knowing this enables one to choose the sample size to obtain a desired
expected evidence for a given δ.
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For any fixed δ > 0 the expected evidence in tWelch has a maximum near that of a
one-sample t-test with N degrees of freedom when q = σ2/(σ1 + σ2) because then
ξ = 1. Larger values of ξ will only diminish the expected evidence in the test statistic.
Because the ratio of variances is usually unknown, it is recommended that sampling
be balanced, for then at least 1 ≤ ξ ≤ 2.

Confidence intervals for the unknown standardized effect can be obtained for a
wide range of parameter values and even small sample sizes, provided sampling is
balanced.
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Evidence in the chi-squared
statistic

22.1 The noncentral chi-squared distribution
A comprehensive collection of results on the noncentral chi-squared distribution is
found in Johnson et al. (1995, Chapter 29); most material in this section is excerpted
from their work but stated in our notation.

Definition 22.1 Given ν independent standard normal variables Z1, . . . , Zν and ν

constants µ1, . . . , µν, the distribution of S =∑ν
i=1(Zi + µi)

2 has the noncentral
chi-squared distribution, and depends only on two parameters, ν and λ =∑ν

i=1 µ2
i .

It is denoted S ∼ χ2
ν(λ). When λ = 0 this distribution is the standard (central) chi-

squared distribution, denoted χ2
ν.

In many applications the null λ = 0 is rejected at level α in favor of the alternative
λ > 0 when S ≥ χ2

ν,1−α, the 1 − α quantile of the χ2
ν distribution. Denote the null

median by mν = χ2
ν,0.5. The difference ν − mν between the null mean and median is

monotonically increasing with ν from a minimum of 0.545 at ν = 1 to a least upper
bound of 2/3. The mean and variance of S ∼ χ2

ν(λ) are given by E[S] = ν + λ and
Var[S] = 2ν + 4λ.

Example. Between group sum of squares (for known variance)

For each group k = 1, . . . , K let X′
k = [Xk1, Xk2, . . . , Xk,nk

] denote a sample of nk

observations, each with distribution N(µk, 1). Also assume the elements of

Meta Analysis: A Guide to Calibrating and Combining Statistical Evidence    E. Kulinskaya, S. Morgenthaler, and
Robert G. Staudte   © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-02864-3
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X′ = [X1, . . . ,XK] are independent. Further introduce the total sample size N =∑
k nk, the sample proportions qk = nk/N, the kth sample mean X̄k, the overall

sample mean X̄ =∑k qkX̄k, its expectation µ =∑k qkµk and the parameter λ =
N
∑

k qk(µk − µ)2. Then the between group sum of squares Y = N
∑

k qk(X̄k −
X̄)2 ∼ χ2

ν(λ), where ν = K − 1. The ratio θ = λ/N =∑k qk(µk − µ)2 depends
only on the relative sample sizes qk, and measures the variability of the group means
µk using a weighted sum of squared deviations from the weighted mean µ, with
weights qk.

To see why Y ∼ χ2
ν(λ), for every positive integer n denote by 1n the n-vector of

1’s, In the n × n identity matrix and Jn the n × n matrix of 1’s. Let MN be the block
diagonal matrix with kth diagonal submatrix Jnk

/nk. Then for C = MN − JN/N the
between group sum of squares can be written as the quadratic form Y = X′CXwhere
C is symmetric and idempotent. Hence by Rao (1973, Section 3.b.4) Y ∼ χ2

ν(λ),

where ν = K − 1 is the rank of C (equal to the trace of C) and the noncentrality
parameter λ = E[X]′ C E[X] = N

∑
k qk(µk − µ)2.

22.2 A vst for the noncentral chi-squared statistic
The asymmetry in the chi-squared distribution means that one must work harder to
stabilize its variance, and that the Key Inferential Function will depend on the sample
size. Nevertheless, the methodology can be carried out with useful consequences for
inference.

22.2.1 Deriving the vst

Let S be any test statistic with S ∼ χ2
ν(λ). We want a vst Tν = hν(S) such that Tν

satisfies the properties E1 to E4 of Section 16.1.1; that is, ideally it should be mono-
tonically increasing in S, have variance 1, be normally distributed for all λ and have
expectation monotonically increasing from 0 at the null with λ.

Now E[S] = ν + λ and Var[S] = 2ν + 4λ = g(E[S]), where g(t) = 4t − 2ν, so
by the method of Section 17.2, h(x) = ∫ x{g(t)}−1/2dt = √

x − ν/2 + cν, where cν

is any constant, should stabilize the variance of h(S) near 1. Further, the choice
cν = −√

ν/2, yields a first-order expected evidence E[h(S)]
.= √

λ + ν/2 − √
ν/2 ,

which is monotonically increasing from 0 with λ.
However, the above promising heuristic argument is flawed, because E[S] ≥ ν

and therefore the relationship Var[S] = g(E[S]) underlying the derivation is defined
only for t ≥ ν, and hence s ≥ ν. The definition of the vst needs to be extended to small
values of S in a smooth way so that the properties E1 to E4 are satisfied. This can be
done if one centers the vst on the null median mν instead of the null mean ν, and then
defines the vst for small S in terms of large S by a symmetrization about mν as follows.

Definition 22.2 Let Fν be the cdf of the central chi-squared distribution with ν degrees
of freedom and let mν be the median of this distribution: Fν(mν) = 0.5. For the
model S ∼ χ2

ν(λ), λ ≥ 0 and hypotheses λ = 0 against λ > 0, the evidence in S is
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defined by

Tν = hν(S) =
{

+√
S − mν/2 − √

mν/2, for S ≥ mν;
−√

S∗ − mν/2 + √
mν/2, for S < mν.

(22.1)

where S∗ = F−1
ν (1 − Fν(S)). Positive values of Tν are interpreted as evidence for the

hypothesis λ > 0. Negative values of Tν will be interpreted, after multiplication by
minus one, as positive evidence for the null hypothesis λ = 0.

Some graphs of Tν are plotted in Figure 22.1 which reveal Tν to be a smooth,
monotonically increasing function of S that is 0 at the null median. Further, as sim-
ulations reported in Section 22.3 demonstrate, the vst defined by (22.1) has variance
well-stabilized near 1 and is approximately normal for a wide range of parameter
values. Thus this vst will be seen to satisfy E1 to E3 of Section 16.1.1.

22.2.2 The Key Inferential Function

It turns out that the first-order mean hν(E[S]) is too rough an approximation for our
applications, and the bias correction term in (17.1) is also needed. In terms of the
parameters θ = λ/N, ν = K − 1, the mean and variance of S are E[S] = N{θ + ν/N}
and Var[S] = N{4θ + 2ν/N}. Hence Equation (17.1) leads to the following key.

Figure 22.1 The graph of T = T(S) defined by (22.1) is shown for ν = 1 as a solid
line, ν = 2 as a dashed line, ν = 4 as as dotted line and ν = 8 as a long-dashed line.
The vertical reference lines show the respective central chi-squared medians.
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Definition 22.3 The Key Inferential Function for the noncentral chi-squared model
when testing θ = 0 against θ > 0 is defined by

KN,ν(θ) = LN,ν(θ) −
(
θ + ν

2N

)

2NL3
N,ν(θ)

−
{mν

2N

}1/2
, (22.2)

where

LN,ν(θ) =
{

θ + 2ν − mν

2N

}1/2
. (22.3)

A simpler, but less accurate, Key than (22.2) is obtained by replacing ν in its
second term by 2ν − mν to obtain

K∗
N,ν(θ) = LN,ν(θ) − 1

2NLN,ν(θ)
−
{mν

2N

}1/2
. (22.4)

Remarks

1. The Key Inferential Function defined by (22.2) for parameters N ≥ ν ≥ 1 and
θ = λ/N of practical interest, gives the expected evidence in the noncentral
chi-squared distribution, in the sense that (22.1) satisfies

E[Tν]
.= √

N KN,ν(θ). (22.5)

2. For ν = K − 1 fixed and λ, N → ∞ with θ = λ/N fixed, KN,ν(θ) → θ1/2.

This remains true even if the number of groups K = ν + 1 grows with N at
any rate less than N; that is, K = o(N).

3. There are some applications where one wants to test the hypotheses λ < λ0

versus λ > λ0, where the boundary λ0 is positive. A vertical adjustment to the
evidence (22.1) allows one to do this (see Section 22.5).

22.3 Simulation studies
In order to assess the properties of Tν defined by (22.1), 400 000 samples were gen-
erated for various degrees of freedom ν ≥ 2 and values of θ = λ/N ranging from 0
to 3 in steps of 0.1. For example, with K = 3 groups, ν = K − 1 = 2, and for a total
number of observations N = 6, 12 and 24, the results are displayed in Figure 22.2.
The simulations for ν = 2, but with N = 50, 100 and 200, are shown in Figure 22.3.
Details now follow.

22.3.1 Bias in the evidence function

The bias E[Tν] − √
N KN,ν(θ) = √

N {E[Tν]/
√

N − KN,ν(θ)} of Tν in estimating√
N times the Key inferential Function in (22.2) is shown as a function of 0 ≤

θ ≤ 3 for N = 6, 12 and 24 in the top left-hand plot of Figure 22.2. The maximum
absolute bias (absolute difference between the two sides of (22.5)) is less than 0.04,
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Figure 22.2 In the first row of plots are shown the empirical biases and standard
deviations of T2 for N = 6 (dotted line), N = 12 (dashed line) and N = 24 (solid
line). The second row of plots gives the empirical coverage probabilities of nominal
95 % upper confidence bounds and 95 % conditional confidence intervals.

so the bias squared is much smaller than the variance of T2, which is close to 1, as
illustrated in the top right-hand plot of the same figure. The distributions of T2 are
very close to normality (not shown). These properties suggest that confidence bounds
and confidence intervals for θ can be found for θ = λ/N and hence λ.

22.3.2 Upper confidence bounds; confidence intervals

To the extent that Tν satisfies properties E1 to E4 of a measure of evidence, one can
expect Tν + z0.95 to define a nominal 95 % upper confidence bound for

√
N KN,ν(θ),

and hence
[
0, K−1

N,ν

({Tν + z0.95}/
√

N
)]

defines a nominal 95 % upper confidence
bound for θ. However, an explicit formula for K−1

N,ν is not readily obtained, so we
based our confidence bound on K∗

N,ν of (22.4).

Definition 22.4 For fixed α < 0.5 define Uν,α = (Tν + z1−α + √
mν/2

)2
. Then, after

inversion of K∗
N,ν, which requires the solving of a quadratic equation, one obtains a
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Figure 22.3 A repeat of Figure 22.2, but now for N = 50 (dotted line), N = 100
(dashed line) and N = 200 (solid line).

nominal upper 100(1 − α) % confidence bound for θ of the form [0, B] defined by

B = Uν,α

4N

(
1 +

{
1 + 2

Uν,α

}1/2)2

− ν

2N
. (22.6)

The reader who carries out the derivation will find that instead of the constant
−ν/(2N) appearing on the right-hand side of (22.6), one has (mν − 2ν)/(2N). The
change to −ν/(2N) brings the coverage probability closer to the nominal value when
1 − α = 0.95, although sometimes it drops slightly below 95 %. To ensure at least
95 % confidence for all θ we recommend replacing −ν/(2N) with −mν/(2N). For
examples of the empirical coverage probabilities of nominal 95 % upper confidence
bounds when ν = 2, see Figures 22.2 and 22.3.

Reliable confidence intervals for θ are more difficult to obtain because the bias
and variance of Tν are not close to 0 and 1, respectively, when θ is small. However,
if one only tries to form an interval when Tν exceeds z1−α/2, that is, when Tν is large
enough to be significant at level α/2 for alternative θ > 0, then one can expect some
success. Therefore we define conditional confidence intervals as follows.
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Definition 22.5 Assume that Tν > z1−α/2. Then subject to this condition, define

Lν,α/2 = (Tν − z1−α/2 + √
mν/2

)2
and Uν,α/2 = (Tν + z1−α/2 + √

mν/2
)2

. A nom-
inal 100(1 − α) % (conditional) confidence interval [L, U] for θ has endpoints

L = Lν,α/2

4N

(
1 +

{
1 + 2

Lν,α/2

}1/2)2

− mν

2N
, (22.7)

U = Uν,α/2

4N

(
1 +

{
1 + 2

Uν,α/2

}1/2)2

− mν

2N
. (22.8)

Again, the choice of additive constant −mν/2N in these equations yields empirical
coverage closer to the 95 % value. Some empirical coverage probabilities of these
intervals are displayed in Figures 22.2 and 22.3.

More examples are shown in Figures 22.4 and 22.5. In Figures 22.4 there were
K = 5 groups, and hence ν = 4, with total number of observations N = 10, 20
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Figure 22.4 In the first row of plots are shown the empirical biases and standard
deviations of T4 for N = 10 (dotted line), N = 20 (dashed line) and N = 40 (solid
line). The second row of plots gives the empirical coverage probabilities of nominal
95 % upper confidence bounds and 95 % conditional confidence intervals.
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Figure 22.5 The corresponding results for ν = 9, and N = 20 (dotted line), N = 40
(dashed line) and N = 80 (solid line).

and 40. Figure 22.5 displays the results for K = 10 groups, so ν = 9 and here N =
20, 40 and 80. Note that the conditional confidence intervals are not very reliable in
terms of coverage unless θ is moderately large.

22.4 Choosing the sample size
22.4.1 Sample sizes for obtaining an expected evidence

Earlier in Section 17.2.2 some useful properties of the Key Inferential Function were
listed. In particular, property K1 states that if one wants expected evidence τ1 for alter-
native θ1, one needs to solve for the least integer N satisfying N ≥ {τ1/KN,ν(θ1)}2.

This goal is more readily accomplished by solving for N in
√

N K∗
N,ν(θ1) = τ1, where

K∗
N,ν

.= KN,ν is found in (22.4). The equation of interest can now be rewritten in terms
of λ1 = Nθ1, a = aν = ν − mν/2 and b = bν(τ) = τ1 + √

mν/2 as

√
λ1 + a − 1

2
√

λ1 + a
= b, (22.9)
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which leads to a quadratic equation with positive solution

λ1 = λ1(ν, τ1) = 1 + b2 + b
√

2 + b2

2
− a. (22.10)

It follows that the minimum sample size required to obtain expected evidence τ1 for
alternative θ1 is the least integer N1 greater than or equal to λ1(ν, τ1)/θ1. Dropping
the subscripts, plots of the function λ(ν, τ) against τ defined by (22.10) are shown
in Figure 22.6, for ν = 1, . . . , 9. These plots make it easy to quickly determine the
sample size required to obtain expected evidence τ1 for alternative θ1.

For example, suppose we want moderate expected evidence of τ1 = 3.3 for alter-
native θ1 = 0.5.By following the vertical dashed line in Figure 22.6 up to the graph for
ν = 4, and then the horizontal dashed line over to the y-axis, one finds λ(4, 3.3) =
19.8. This leads to the minimum sample size N1 = 19.8/0.5 ≈ 40. For the same
expected evidence against the smaller alternative θ1 = 0.2, one would need a sample
size N1 ≈ 100.
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Figure 22.6 Plots of the graphs (τ, λ(ν, τ)) defined in (22.10) for ν = 1, 2, . . . , 9
from the lowest line (ν = 1) to the highest (ν = 9). The vertical dashed lines cor-
respond to weak, moderate and strong expected evidence (τ = 1.645, 3.3 and 5,
respectively). These plots allow for a quick determination of sample sizes required
to achieve a desired expected evidence; see text for details.
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22.4.2 Sample size required to obtain a desired power

Property K2 of the Key Inferential Function in Section 17.2.2 described how the
power 1 − β = �(θ1) against an alternative θ1 at level α of a Neyman–Pearson test
based on an evidence statistic T was related to the expected evidence τ = E[T ],
namely τ = z1−α + z1−β. This statement is only true when the distribution of the evi-
dence is exactly normal under both the null θ = 0 and alternative θ = θ1 hypotheses.
For the chi-squared statistic the distribution of the evidence Tν defined by (22.1) is
very close to normal for alternatives but not so under the null hypothesis. Therefore
for the vst of Definition 22.2 we define hν,1−α = hν(F

−1
ν (1 − α)), so that the exact

1 − α quantile of Tν = hν(S) is given by hν,1−α. Then a better approximation to the
relationship between τ, level α and power 1 − β is

τ = hν,1−α + z1−β. (22.11)

This relationship, together with the methodology developed in Section 22.4.1, allows
one to choose the sample size required to obtain power 1 − β = �(θ1) = Pθ1(Tν ≥
hν,1−α) against θ1 at level α. One only needs to determine τ from (22.11), substitute
it in λ(ν, τ) of (22.10), and find N, the smallest integer greater than or equal to
λ(ν, τ)/θ1. For example, with ν = K − 1 = 4, level α = 0.05 and power β = 0.8,
the relevant τ = 1.50 + 0.84 = 2.34, so λ(4, 2.34) = 11.9. For alternative θ1 = 1,
one requires a sample size of N = 12, while for alternative θ1 = 0.2, it is 60.

22.5 Evidence for λ > λ0

The methods developed in Section 22.2 for testing λ = 0 versus λ > 0 can easily be
extended to situations where one wants to test the hypotheses λ ≤ λ0 versus λ > λ0,
where the boundary λ0 is positive.

We continue to use the notation N observations and the test statistic S ∼ χ2
ν(λ).

The parameter of interest is θ = λ/N.

Definition 22.6 Given the model S ∼ χ2
ν(λ), λ ≥ 0, and a fixed λ0 > 0. The evidence

for testing λ < λ0 versus λ > λ0 is defined by

Tν(λ0) = Tν − √
N KN,ν(θ0), (22.12)

where Tν is defined in (22.1) and KN,ν is its associated Key Inferential Function
(22.2). The magnitude of negative values of Tν(λ0) are positive evidence for λ < λ0

while positive values are evidence for λ > λ0.

It follows from (22.5) that E[Tν(λ0)]
.= √

N{KN,ν(θ) − KN,ν(θ0)}, so the associ-
ated Key Inferential Function of Tν(λ0) is given for each θ = λ/N by

KN,ν,λ0(θ) = KN,ν(θ) − KN,ν(θ0). (22.13)

This Tν(λ0) inherits from Tν properties E1 to E4 of Section 16.1.1 for a measure of
evidence: monotonicity in the test statistic S, an expected evidence growing from 0
as the parameter increases from the null, a stabilized variance near 1 and approximate
normality. As a special case, Tν(0) = Tν and KN,ν,0 = KN,ν.
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22.6 Summary
In this chapter we derived a vst for any statistic S having a noncentral chi-squared
distribution. This transformation required a smooth symmetrization about the null
median so that the resulting evidence Tv is not only defined and variance stabilized,
but also approximately normal for all values of S. It turns out that the Key Inferential
Function for this model requires a bias correction term in order to be useful for
inference. One can use this Key to derive upper confidence bounds and two-sided
confidence intervals for the noncentrality parameter, and simulations demonstrate
their accuracy providing the parameter is not too near zero. In addition, a slight
modification of the Key enables one to carry out accurate sample size calculations
to achieve a desired amount of evidence for an alternative of interest. Finally, we
showed that the transformation is easily modified to allow one to find evidence for
the noncentrality parameter exceeding a positive constant.



23

Evidence in F-tests

23.1 Variance stabilizing transformations
for the noncentral F

The F-test is commonly used in the analysis of experiments in order to assess the
importance of effects compared to the background noise level. In the one-way ANOVA
with unequal sample sizes an outcome variable Y is observed under K different
conditions, which may be different locations, different doses, or different treatments.
This results in k samples Ys1, . . . , Ysns

for (s = 1, . . . , K) with total sample size N =
n1 + · · · + nK. In the fixed effects model (FEM), the observations have expectation
E(Ysi) = µs and constant variance σ2. The F -test statistic is

S =
∑K

s=1 ns

(
Ȳs − Ȳ

)2
/(K − 1)

∑K
s=1

∑ns

i=1

(
Ysi − Ȳs

)2
/
∑K

s=1(ns − 1)
, (23.1)

where Ȳs is the mean of sample s and Ȳ is the mean of all the observations. Denote the
expected value of Ȳsi by µs and consider the null hypothesis µ1 = µ2 = · · · = µK.
If this hypothesis is actually true and if the measurements have a normal distribution
with constant variance and are independent of each other, then the test statistic S

has an F -distribution with νn = K − 1 and νd =∑K
s=1(ns − 1) = N − K degrees

of freedom for the numerator and the denominator, respectively. The proof of this
results requires the use of linear transformations and knowledge of their effects on
multivariate normal random vectors. It suffices to say that one can show that both
the numerator and the denominator are proportional to chi-squared random variables,
which furthermore are independent. The formal definition of the F -distribution is as
follows.

Meta Analysis: A Guide to Calibrating and Combining Statistical Evidence    E. Kulinskaya, S. Morgenthaler, and
Robert G. Staudte   © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-02864-3
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Definition 23.1 Let U ∼ χ2
νn

and V ∼ χ2
νd

be two independent chi-squared ran-
dom variables, with νn and νd degrees of freedom, respectively. The distribution
of S = (U/νn)/(V/νd) is said to be an Fνn,νd

distribution.

If an alternative holds, that is, if at least one of the expected values µs is different
from the rest, then a noncentral F -distribution results. The behavior of the denomi-
nator of S is not affected by the fact that the null hypothesis is false. The numerator,
however, changes to a noncentral chi-squared variable with the noncentrality param-
eter equal to

λ =
K∑

s=1

ns(µs − µ)2/σ2, (23.2)

where µ =∑K
s=1 nsµs/

∑K
s=1 ns.

A nice overview of the issues and several proposals for variance stabilizing trans-
formations are given in Laubscher (1960). Formally, our noncentral F -distributions
are defined as follows.

Definition 23.2 Let U ∼ χ2
νn

(λ) be a noncentral chi-squared random variable with
noncentrality parameter λ > 0 and νn degrees of freedom. Let V ∼ χ2

νd
be an inde-

pendent chi-squared random variable with νd degrees of freedom. The distribution of
S = (U/νn)/(V/νd) is said to be a noncentral F -distribution, ncFνn,νd

(λ).

The central F -distribution corresponds to λ = 0.
To derive the vst we have to express the variance of a noncentral F variable in

terms of its expectation. These two quantities are

expectation = νd(νn + λ)/(νn(νd − 2))

variance = 2 ν2
d(νn + λ)2 + 2 ν2

d(νn + 2λ)(νd − 2)

ν2
n (νd − 2)2(νd − 4)

= 2

νd − 4

((
expectation + νd

νn

)2

− ν2
d (νn + νd − 2)

ν2
n (νd − 2)

)

.

The variance exists when νd > 4 and the expectation is always larger than
νd/(νd − 2), which is the value of the expectation when λ = 0. As a consequence,
the vst derived from the expression of the variance as a function of the expecta-
tion is not defined for all possible values of the statistic S. This variance stabilizing
transformation h(S) for a noncentral F variable with parameters νn, νd and λ satisfies

h′(x) =
√

(νd − 4)/2

(x + νd/νn)2 − c2(νn, νd)
,

where the positive constant is c2(νn, νd) = ν2
d(νn + νd − 2)/(ν2

n(νd − 2)) > 0. The
solution of this differential equation involves the hyperbolic cosine function, which
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is defined for any real number x by cosh(x) = (ex + e−x)/2. It is easy to verify that
this function is symmetric. Only the positive branch, that is, cosh(x) for x ≥ 0, is of
interest to us. The inverse value x satisfies

(ex + e−x) = 2y ⇔ (ex)2 − 2yex + 1 = 0

⇔ ex = y ±
√

y2 − 1 ⇔ cosh−1(y) = ± ln
(
y +

√
y2 − 1

)
.

The derivative of this function is exactly what we need for our vst . For the positive
root we have

d

dy
cosh−1(y) = 1 + y/

√
y2 − 1

y +
√

y2 − 1
= 1
√

y2 − 1
.

The vst thus is

h(S) =
√

(νd − 4)/2 cosh−1

(
S + νd/νn

c(νn, νd)

)

=
√

(νd − 4)/2 cosh−1



 νn S + νd√
ν2

d (νn + νd − 2)/(νd − 2)



. (23.3)

Strictly speaking, this is only valid for S > νd/(νd − 2). For smaller values, one
can still use it, but when the quotient inside cosh−1 becomes smaller than one, the
corresponding value of h no longer exists. This difficulty is discussed by Laubscher
(1960), who then switches to transformations in which the noncentrality parameter
λ has to be estimated.

In order to extend the definition of the vst we will follow the general procedure
outlined for the chi-squared test, that is, (1) re-center the function h(S) such that it
is equal to zero at the median med νn,νd

of the null distribution Fνn,νd
and (2) flip the

values for arguments above the median to those below the median in a symmetric
fashion. Also in analogy to the chi-squared case, it is useful to modify the above
function h(S) and to bring the median into play in its definition.

The F -test turns into the chi-squared test when the number of degrees of freedom
in the denominator is large. Consider the example of the one-way ANOVA (23.1) and
suppose the sample sizes used in the experiment are fairly large, so that νd is large
and νn/νd is small. We will now expand (23.3) in order to see how it compares to the
vst considered in Chapter 22. The denominator of the argument of the inverse of the
hyperbolic cosine function can be rewritten as

ν2
d (νn + νd − 2)/(νd − 2) = ν2

d (1 + (νn − 2)/νd)/(1 − 2/νd)

.= ν2
d (1 + (νn − 2)/νd)(1 + 2/νd)

.= ν2
d (1 + νn/νd).
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Note that the subtraction of 2 in the numerator and denominator cancels out in the
limit. The inverse hyperbolic cosine function is evaluated at

(νd + νn S)/
(
νd (1 + νn/νd)

1/2
) .= (1 + (νn S)/νd)(1 − νn/(2 νd))

.= 1 + νn S

νd

− νn/2

νd

.

When evaluating cosh−1(1 + ε) for a small value of ε we find

cosh−1(1 + ε) = ln
(

1 + ε +
√

(1 + ε)2 − 1
)

= ln
(

1 + ε +
√

2ε + ε2
)

.=
√

2ε.

It follows that for large νd and small νn/νd

h(S)
.=
√

(νd − 4)/2

√

2

(
νn S

νd

− νn/2

νd

)

.=
√

1 − 4/νd

√
νn S − νn/2

.=
√

νn S − νn/2.

When νd is large compared to νn, it follows that νn S is a noncentral χ2
νn

variable,
whereas the denominator of the F -test statistic (23.1) is approximately equal to the
variance of the measurement error. We now compare the above expression with the
evidence (22.1) for the chi-squared test Y . For values of Y larger than the median mνn

of the χ2
νn

distribution, this evidence is up to the re-centering equal to

√
Y − mνn

/2 ≈√νn S − mνn
/2.

This would be exactly equal to h(S), if we replaced in h(S) the half-mean νn/2
by the half-median mνn

/2, which in turn is approximately equal to νn med νn,νd
/2.

Looking back over the preceding development, we note that we could achieve the
necessary change by replacing (νn + νd − 2) by (νn med νn,νd

+ νd − 2) inside the
inverse hyperbolic cosine function. To further simplify the formula, we leave out
the subtraction of 2 to arrive at

√
(νd − 4)/2 cosh−1



 νn S + νd√
ν2

d (νn med νn,νd
+ νd)/νd



.

To center the transformation, we finally subtract the value at S = med νn,νd
, which is

equal to
√

(νd − 4)/2 cosh−1

(
νn med νn,νd

+ νd√
νd (νn med νn,νd

+ νd)

)

.
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Simulations of this transformation for small numbers of degrees of freedom show that
the multiplier

√
(νd − 4)/2 leads to variances below the target value of 1. A further

worthwhile modification consists in omitting the subtraction of 4 from νd .
This leads to the following definition of evidence.

Definition 23.3 Let S be an F-test statistic of the null hypothesis λ = 0 versus λ > 0
with νn degrees of freedom for the numerator and νd degrees of freedom for the
denominator. The corresponding evidence is defined as

T = T(S) = sign (S − med νn,νd
)

√
νd

2

(

cosh−1

(
νn S∗ + νd√

νd (νnmed νn,νd
+ νd)

)

− cosh−1

(√
νnmed νn,νd

+ νd

νd

))

.

In this formula, S∗ denotes the flipped value of the test statistic, equal to

S∗ =
{

S, if S ≥ med νn,νd

F−1
νn,νd

(
1 − Fνn,νd

(S)
)
, if S < med νn,νd

.

Recall that the inverse of the hyperbolic cosine function is

cosh−1(y) = ln(y +
√

y2 − 1).

Figure 23.1 shows the evidence as a function of the test statistic for two values
of νd and increasing values of νn. Figure 23.2 illustrates the convergence to the chi-
squared case when the number of degrees of freedom in the denominator grows.

23.2 The evidence distribution
The evidence defined in the previous section is a monotonic transformation T(S) of
the test statistic S, which itself has a noncentral F -distribution. It follows that the
evidence T(S) has density

fνn,νd ,λ(S(T))S′(T),

where S(T) is the inverse transformation and fνn,νd ,λ(S) is the noncentral F density.

From Definition 23.3 it follows that

S∗(T) = cosh

(

|T |
√

2

νd

+ cosh−1

(√
νnmed νn,νd

+ νd

νd

))

×
√

νd (νn med νn,νd
+ νd)

νn

− νd

νn

,



200 EVIDENCE IN F-TESTS

0 2 4 6 8 10

−
2

0
2

4

S

T

νn=5, 10, 100 and νd=20

S

T

νn=5, 10, 100 and νd=5

Figure 23.1 The curves show the evidence in an F -test statistic S for νn = 5,

10, 100 and νd = 5, 20.

whose derivative is

d

dT
S∗(T) = sinh

(

|T |
√

2

νd

+ cosh−1

(√
νnmed νn,νd

+ νd

νd

))

×sign(T)
√

2νd(νnmed νn,νd
+ νd)/(νn

√
νd).

Note that S ≥ med νn,νd
⇔ T ≥ 0 ⇔ S∗=S. In this case, S(T)=S∗(T). For T < 0, we

have S∗(S)=F−1
νn,νd

(
1−Fνn,νd

(S)
)
, which has inverse S(S∗)=F−1

νn,νd
(1−Fνn,νd

(S∗)).
Here, S(T) = S(S∗(T)). The final result we need for calculating the density of T is

d

dS∗ S(S∗) = −fνn,νd
(S∗)/fνn,νd

(S).

The density of T is thus equal to

f(T) =
{
fνn,νd ,λ(S(T))(dS∗/dT) , if T ≥ 0
fνn,νd ,λ(S(T))(dS∗/dT) (dS/dS∗) , if T < 0.

(23.4)
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Figure 23.2 These plots show the evidence as a function of the test statistic for
the chi-squared test (solid curves) and for the F -test (dashed curves). To make them
comparable, the abscissa for the F -test is νn S. The horizontal line indicates zero
evidence.

When λ = 0, the density of the evidence T is symmetric around zero and equal
to f(T) = fνn,νd ,λ=0(S

∗(T))(dS∗/dT). Figure 23.3 shows plots of these densities for a
selection of values for degrees of freedom and noncentrality parameter. The agreement
between the normal density and the density of the evidence is on the whole quite good.
The biggest discrepancies occur for λ = 0, which is the null hypothesis being tested.
For small νn (top row in Figure 23.3) the variance of the evidence is visibly smaller
than 1. When νd is smaller than νn, the density of the evidence has a slightly increased
variance. In the top row, when λ = 0, it is evident that the derivative of the density of T

is not smooth at 0. This is due to a discontinuity of the derivative of the transformation
d/dS T(S) at the point S = med νn,νd

. In the other plots, the lack of smoothness at 0
is less visible, but it is still present.
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Figure 23.3 The four panels show the densities of the evidence for four couples of
degrees of freedom. For comparison, the standard normal density ϕ is included (thin
line).

23.3 The Key Inferential Function
The evidence T has expected value E(T)

.= √
N K(νn, νd, λ), where N is the sample

size, that is, the total number of observations. A first approximation for this expecta-
tion is obtained by calculating the evidence we would obtain with the mean value of
the test statistic S:

E(T)
.= T(S = νd (νn + λ)/(νn(νd − 2)))

.=
√

νd

2

(

cosh−1

(
(νn + λ)/(1 − 2/νd) + νd√

νd (νnmed νn,νd
+ νd)

)

− cosh−1

(√
νnmed νn,νd

+ νd

νd

))

.
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As shown in Figure 23.1, the transformation T(S) to evidence is concave and the
above approximation is an upper bound on the actual expectation. This can be seen
very clearly when λ = 0. We saw above that the distribution of T is symmetric around
zero, but obviously the above approximate expectation is not zero. We could now go
ahead and compute a correction based on the second derivative of the transformation
T(S). However, the case when λ = 0 suggests a simpler remedy, namely to use the
following formula:

E(T)
.=
√

νd

2

(

cosh−1

(
νnmed νn,νd

+ λ + νd√
νd (νnmed νn,νd

+ νd)

)

− cosh−1

(√
νnmed νn,νd

+ νd

νd

))

, (23.5)

which clearly is equal to zero when λ = 0. The matching normal distributions in
Figure 23.3 are all centered at the approximate expected value calculated by the
above expression and we note that it does a very good job.

The Key Inferential Function corresponding to (23.5) is as follows.

Definition 23.4 The Key Inferential Function when using an F-test is equal to

K(λ) =
√

νd

2N

(

cosh−1

(
νnmed νn,νd

+ λ + νd√
νd (νnmed νn,νd

+ νd)

)

− cosh−1

(√
νnmed νn,νd

+ νd

νd

))

.

As in all the other tests discussed in this book, the Key Inferential Function
translates the apparent effect λ (see, for example, Equaton (23.2)) into a statistically
meaningful effect size. Figure 23.4 shows how the key varies with the noncentrality
parameter. For λ close to zero one has K(λ)

.= K′(0) λ with the derivative approxi-
mately equal to

K′(0) ≈
√

1 − νn/N

2νn

1√
N

.

Clearly, the larger νn, the smaller the rate of increase. For larger values of the non-
centrality parameter, the Key Inferential Function grows logarithmically.

The interval T ± 1.96 is a confidence interval for
√

N K, which can be inverted
to obtain a confidence interval for the noncentrality parameter λ. The inverse
function λ(K) is

λ(K) = cosh

(√
NK

√
2/νd + cosh−1

(√
νnmed νn,νd

+ νd

νd

))

×√νd (νnmed νn,νd
+ νd) − (νnmed νn,νd

+ νd).
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Figure 23.4 The upper panel shows the Key Inferential Function for the same com-
bination of degrees of freedom used in Figure 23.3, namely all combinations of
νn = 1(solid) or 10 (dashed) and νd = 5 or 50. The one-way ANOVA setting, where
N = νn + νd + 1, is assumed. The lower panel shows the total expected evidence
from the experiment.

To compute the desired confidence limits, one has to substitute T ± 1.96 for√
NK.

Transforming the test statistic S to the evidence T not only provides a calibrated
scale on which to judge the outcome of a statistical test and to combine test results,
but it also makes sample size and power calculations easy. In testing µ = µ0 versus
µ = µ0 + � > µ0 with a single observation of a normal random variable with unit
variance, the true discovery rate or power at the alternative � > 0 is

P(T > z1−α) = P(T − � > z(1 − α) − �) = 	(z1−α − �),

where 	 denotes the unit normal distribution function, z1−α is its 1 − α quantile and
α is the probability of a false discovery or the type-I error rate. It follows that in order
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to reach a probability for a true discovery or power of 1 − β, the alternative must
satisfy

z1−α − � = zβ = −z1−β ⇔ � = z1−α + z1−β.

After transformation to evidence, we are approximately in the situation of a test as
described above, with the Key Inferential Function in the role of the shift parameter,

� = √
NK(λ).

The power function of an F -test is thus approximately equal to

Power(λ) = 	(z1−α − √
NK(λ)).

In a typical situation, the noncentrality parameter λ is approximately known or it is
assumed to have a certain size. The number of degrees of freedom in the numerator νn

is also typically known, whereas the number of degrees of freedom in the denominator
νd and with it the total size N of the study can be adjusted. In order to reach power
1 − β, the total sample size has to be chosen as

N =
(

z1−α + z1−β

K(λ)

)2

.

To illustrate the approximation, Figure 23.5 shows the power curves as a function of
the noncentrality parameter for different sample sizes.

23.3.1 Refinements

The Key Inferential Function and the normal approximation

T ∼ Normal(µ = √
NK(λ), σ2 = 1)

lead to satisfactory results. Its main advantage is the simplicity of its use. No com-
plex approximations need to be calculated. Knowledge of the vst, which is a simple
function given in closed form, is sufficient. However, all the elements in the above
distributional approximation contains errors. The distribution of the evidence T is not
exactly normal, its expectation is not exactly equal to the µ indicated and its variance
is not exactly equal to 1. One could try to improve the approximate formulas given,
but this would lead to considerably more complicated expressions, which is reason
enough for us not to pursue these ideas any further.

23.4 The random effects model
The standard F -test in one-way ANOVA (23.1) is based on the two sums of squares

SSA =
K∑

k=1

nk

(
Ȳk − Ȳ

)2
,

and

SSe =
K∑

k=1

nk∑

i=1

(
Yki − Ȳk

)2
.
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Figure 23.5 The approximate and true power of the F -test as a function of the
noncentrality parameter λ. The values for the degrees of freedom are all combinations
of νn = 1 or 10 and νd = 5 or 50. In each case, the quality of the approximation is
satisfactory, with the exception of the couple νn = 5 and νd = 5, where the power is
overestimated when using the key inferential statistic.

Under the fixed effects model (FEM) Yki = µk + eki with iid random variables
eki ∼ N(0, σ2

e ). Under the random effects model (REM) Yki = µ + ak + eki with iid
ak ∼ N(0, σ2

A) independent from the errors eki ∼ N(0, σ2
e ). The null hypothesis under

the FEM is H0 : µk = µ, and under the REM it is H0 : σ2
A = 0.

Note that under the REM Ȳk = ak + ēk ∼ N(0, σ2
A + σ2

e /nk). Let wk = σ2
A +

σ2
e /nk = σ2

e (θ + 1/nk), and W = diag(wk) the K × K diagonal matrix with wk on
the diagonal. Note that the parameter θ = σ2

A/σ2
e measures the standardized distance

to the null hypothesis. The random vectorZ = (Ȳ1, . . . , ȲK) has distribution N(0, W)

and can be used to rewrite the sum of squares SSA as

SSA = ZZZtBZZZ, with B = (bkt) = nk

(
δkt − nt

N

)
.
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In this last formula, δkt denotes Kronecker’s delta, which is 1 if k = t and 0 otherwise.
For a balanced design, nk = n = N/K, and bkt = n(δkt − 1/K). Thus SSA ∼ (nσ2

A +
σ2

e )χ
2
K−1.

For both REM and FEM, SSe ∼ σ2
e χ

2
N−K, independently from SSA. Thus for a

balanced case

S = SSA/(K − 1)

SSe/(N − K)
≡
(

1 + n
σ2

A

σ2
e

)
X = (1 + nθ)X ,

where X ∼ Fνn=K−1,νd=N−K. This is different from the noncentral F -distribution we
found previously for FEM. In REM the distribution under alternatives is a scaled
central F -distribution.

23.4.1 Expected evidence in the balanced case

Using the formulas for the expectation and variance of a non-central F -distribution
we find

E(S) = µ(θ) = (1 + nθ)
νd

νd − 2
= (1 + nθ)

N − K

N − K − 2
,

Var(S) = σ2(θ) = (1 + nθ
)2 2ν2

d(νn + νd − 2)

νn(νd − 2)2(νd − 4)

= (1 + nθ
)2 2(N − K)2(N − 3)

(K − 1)(N − K − 2)2(N − K − 4)

= E(S)2 2(N − 3)

(K − 1)(N − K − 4)
= a µ(θ)2 , (23.6)

where θ = σ2
A/σ2

e . The vst corresponding to (23.6) is h(S) = a−1/2 ln(S). Under the
null hypothesis, θ = 0 and E(h(S))

.= h(µ(0))+h′′(µ(0))σ2(0)/2=a−1/2 ln(µ(0))

−a1/2/2, and subtracting this term, we obtain the evidence

T = a−1/2 ln(S/µ(0)) + a1/2/2. (23.7)

The expected evidence under a general alternative is

E(T) = a−1/2 ln(µ(θ)/µ(0)) − a1/2/2

= a−1/2 ln(1 + nθ) =
(

(K − 1)(N − K − 4)

2(N − 3)

)1/2

ln(1 + nθ)

.= (K − 1)1/2[(n − 1)/(2n)] ln(1 + nθ). (23.8)

In the last formula we made use of N = Kn, N − K − 4 = K(n − 1) − 4 ≈ K(n −
1) and N − 3 ≈ Kn, which shows that this approximation holds when at least one of
K or n is large.
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23.4.2 Comparing evidence in REM and FEM

Under REM, the expected evidence is of order K1/2 but depends on n at a much
lower rate of ln(n). This is natural since one can improve the estimate of σ2

A only by
increasing the number of samples K (and not the number of observations n in each).
The noncentrality parameter λ is related to θ by the approximate equality Nθ = λ,
which equals nKθ in the balanced case. Depending on the choice of K and n, the
evidence in a REM may be bigger or smaller than in the corresponding FEM. Few
(small K), but large (n large) samples is a design that is unfavorable to REM and
favorable to FEM. When K and n are about equal (both around

√
N) then FEM tends

to produce more evidence in favor of an alternative λ.

23.5 Summary
In this chapter we considered test statistics with an F -distribution. Under the null
hypothesis, the test statistic is a ratio of independent chi-squared variables, each
divided by its number of degrees of freedom. It often happens that under the alterna-
tives the numerator becomes a noncentral chi-squared variable and it is for this case
that we derived a vst . The evidences resulting from F -tests in fixed effects ANOVA
models can be computed with the help of this transformation. Another large area of
applications are regression models.



24

Evidence in Cochran’s
QQQ for heterogeneity of effects

Given K studies measuring potentially different effects µk for k = 1, . . . , K it is
customary to test the null hypothesis of equal effects, or homogeneity, using the Q

statistic introduced by Cochran (1954); it is a weighted sum of squared deviations
of the effects from their weighted mean, and the topic of Section 24.1. The alterna-
tive hypothesis of heterogeneity asserts that µj �= µk for some j �= k. Assuming the
µk’s can be estimated by asymptotically normal statistics, Q has, under the alter-
native of heterogeneity, a limiting noncentral chi-squared distribution, as shown in
Section 24.1.1. Unfortunately, when the weights in Q need to be estimated, the dis-
tribution of Q often converges slowly to its limit, making p-values based on this limit
of dubious value. Welch (1951) and James (1951) suggested a better moderate sam-
ple size approximation to the null distribution of Q which leads to the Welch F -test
for homogeneity, and Kulinskaya and Staudte (2007) proposed an approximation to
the distribution of Q under alternatives. But here we advocate thinking in terms of
evidence for the alternative of heterogeneity. A vst of Q from Chapter 22 will find
the large-sample evidence TQ for heterogeneity of effects (see Section 24.1.2).

We also introduce another approach which makes Q useful for even moder-
ately small sample sizes. The idea is to find the evidence in each of K studies, use
such evidence to estimate a transformation of the standardized effect and then apply
Cochran’s Q with known weights to these transformed effects. The resulting Q∗ has
an approximate noncentral chi-squared distribution, and so is readily transformed into
evidence on the canonical scale using the results of Chapter 22. The simple theory

Meta Analysis: A Guide to Calibrating and Combining Statistical Evidence    E. Kulinskaya, S. Morgenthaler, and
Robert G. Staudte   © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-02864-3
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and applications of this approach are the content of Section 24.1.3. In Section 24.2
the performances of Q and Q∗ are examined through simulation studies.

The random effects model is discussed in Section 24.3. It is well known that
Cochran’s Q has the same null distribution under the fixed and random effects models.
However, the alternative hypotheses are different for the two models, and for fixed
K the evidence for the alternative of heterogeneity in Cochran’s Q for the random
effects model is smaller than for the fixed effects model.

24.1 Cochran’s Q: the fixed effects model
It is customary in the meta-analytic literature to carry out a chi-squared test of the
hypothesis of homogeneity of effects using Cochran’s Q. If the test fails to reject it
is then assumed the effects are equal, and if it does reject then an alternative model
which allows for different effects is assumed. In this section we propose to measure
the evidence for the alternative of unequal effects; that is, to replace the all-or-nothing
approach of testing a null hypothesis with a measure of the evidence in the test statistic
Q; the researcher then has more information with which to make a decision regarding
the choice of models.

24.1.1 Background material

Assume the estimated effects µ̂k, k = 1, . . . , K for the respective studies are mutually
independent and satisfy

√
wk (µ̂k − µk) → N(0, 1). Cochran’s Q is defined by

Q =
∑

k

ŵk(µ̂k − ˆ̄µŵ)2, (24.1)

where µ̄w =∑wkµk/
∑

k wk is the weighted effect, and ŵ−1
k is the estimated asymp-

totic variance w−1
k of µ̂k. We restrict attention to situations where for each k there are

nk observations in the kth study and w−1
k = σ2

k /nk for a fixed, but usually unknown
σ2

k > 0. In particular when the observations in the kth study are modeled by the nor-
mal distribution N(µk, σ

2
k ), one estimates µk by the sample mean µ̂k = X̄k and wk

by ŵk = nk/s
2
k , where s2

k is the sample variance.

Proposition 24.1 Assume Y is a mutivariate K-vector with Y ∼ N(µ, �), where
� is a known non-singular diagonal matrix with inverse W = �−1. Denote the kth
diagonal element of W by wk and define pk = wk/(

∑
j wj), µw =∑k pkµk, and

Ȳw =∑k pkYk. Then the statistic S has a noncentral chi-squared distribution:

S =
∑

k

wk(Yk − Ȳw)2 ∼ χ2
K−1(λ), (24.2)

where

λ =
∑

k

wk(µk − µ̄w)2. (24.3)
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Proof: Let P be the diagonal matrix with kth element pk, I the K × K iden-
tity matrix and J the K × K matrix of 1’s. Further introduce the symmetric matrix
C = (I − JP)′W(I − JP). Then it is easily checked that the quadratic form Y ′CY =∑

k wk(Yk − Ȳw)2 = S.
It now follows from a standard result (Serfling (1980), pp. 128–129) that if Y ∼

N(µ, �) with � nonsingular and if C is symmetric, then Y ′CY has a noncentral chi-
squared distribution if and only if � C � C � = � C �, in which case the degrees of
freedom is the trace tr (C�) and the noncentrality parameter is µ′Cµ.

To complete the proof, check that C� = I − PJ and JPJ = J , so � C � =
� − J/tr(W) = � C � C �. The degrees of freedom in the noncentral chi-squared
distribution of S are tr (C�) = tr (I − PJ) = K − 1, and the noncentrality param-
eter is λ = µ′Cµ =∑k wk(µk − µw)2. Clearly this distribution is the central chi-
squared distribution if and only if all µk are equal.

It will be rare that the conditions of the above proposition are satisfied; rather
it is usually tacitly assumed that the statistical model of interest is imbedded in a
sequence of models indexed by a superscript (i), say, for which the statistic of inter-
est, in our case Cochran’s Q(i), has a limiting noncentral chi-squared distribution,
and then this limiting distribution is used to approximate the unknown actual distri-
bution of the particular ith model in hand. Therefore we consider some extensions of
Proposition 24.1.

Proposition 24.2 Fix the number of groups at K and define limiting sample pro-
portions r = (r1, . . . , rK)′, all rk > 0. Let n(i) = (n

(i)
1 , . . . , n

(i)
K ), with total denoted

N(i) =∑k n
(i)
k , define a sequence of sample sizes for the K groups satisfying n(i)/N(i)

→ r as i → ∞. For each k = 1, . . . K and every i let µ̂(i)
k be an estimator of µk based

on the available n
(i)
k observations, and assume {n(i)

k }1/2{µ̂(i)
k − µk}/σk → N(0, 1) in

distribution as i → ∞. Further assume the µ̂k’s are mutually independent.
In vector notation, for µ = [µ1, . . . , µK]′ and µ̂

(i) = [µ̂(i)
1 , . . . , µ̂

(i)
K ]′, it follows

that

Y (i) = {N(i)
}1/2{

µ̂
(i) − µ

}→ Y ∼ N(0, �) (24.4)

in distribution as i → ∞. Here � is a diagonal matrix with �kk = σ2
k /rk > 0.

With these preliminaries, we may now find:

1. Limiting distribution of Q(i) =∑k(nk/σ
2
k )
{
µ̂

(i)
k − ˆ̄µw

}2
for unknown weights

under the null hypothesis of homogeneity. For each i define {W(i)}−1=�(i)=
Cov [Y (i)], P(i)=W(i)/tr (W(i)) and C(i)=(I − JP(i))′W(i)(I−JP(i)). Under
the hypothesis of homogeneity µ = µ1K, we have

Q(i) = (µ(i))′C(i)µ(i) =
∑

k

n
(i)
k

σ2
k

{
µ̂

(i)
k − ˆ̄µw

}2
→ χ2

K−1 (24.5)

in distribution as i → ∞.
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Proof: Observe that W(i)/N(i) → �−1 arising in Equation (24.4),
so C(i)/N(i) → D = (I − JP)′�−1(I − JP). Letting aN = µ{N(i)}1/2 and
using Y (i) = {N(i)

}1/2{
µ̂

(i) − µ
}

, we may write Equation (24.5) as

Q(i) = (Y (i) + aN1K

)′ C(i)

N(i)

(
Y (i) + aN1K

)
(24.6)

= (Y (i)
)′ C(i)

N(i)
Y (i)

because (I − JP(i)) aN1K = 0K. It now follows from Proposition 24.1 and the
continuity theorem that Q(i) → Y ′DY ∼ χ2

K−1 as i → ∞.

2. Limiting distribution of Q(i) for known weights under the alternative hypothe-
sis of heterogeneity. Assume for each i, the effect that was fixed at µk is replaced
by µ

(i)
k = µ + �k/{N(i)}1/2, and that for each k, {n(i)

k }1/2{µ̂(i)
k − µ

(i)
k }/σk →

N(ηk, 1) in distribution as i → ∞. Here ηk = �k

√
rk /σk. Then (24.4) is

replaced by Y (i) = {N(i)
}1/2{

µ̂
(i) − µ(i)

}→ Y ∼ N(�, �) in distribution.
Hence by Proposition 24.1 and the continuity theorem,

Q(i) → Y ′DY ∼ χ2
K−1(λ), (24.7)

where

λ = �′D� =
∑

k

rk

σ2
k

(�k − �̄w)2. (24.8)

Note that the noncentrality parameter in the ith problem is approximately
λ(i) = N(i)θ(i), where

θ(i) =
∑

k

n
(i)
k

σ2
k

(
µ

(i)
k − µ̄(i)

w

)2
. (24.9)

3. Limiting distribution of Q(i) for unknown weights. Suppose that the weights
w

(i)
k = n

(i)
k /σ2

k are unknown, but there exists for each k estimators σ̂
(i)
k based on

the available n
(i)
k observations with σ̂

(i)
k → σk > 0 in probability. Then again

by the continuity theorem, Q(i) has a limiting distribution given in the previous
two parts of this proposition.

24.1.2 Evidence for heterogeneity of fixed effects

Cochran’s Q as defined in (24.1) is the standard test statistic for testing against homo-
geneity of the effects µk. Whenever Q has an approximate noncentral chi-squared
distribution one can calibrate the evidence in it for heterogeneity of effects using the
vst derived in Chapter 22.

Definition 24.1 Let Q ∼ χ2
ν(λ), with ν = K − 1 and λ =∑k(nk/σ

2
k )(µk − µ̄w)2.

The evidence in Q for heterogeneity is defined to be the vst in (22.1) applied to Q,
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and denoted TQ = hK−1(Q). Then TQ ∼ N(τQ, 1), where the mean evidence is given
by τQ

.= √
N K(θ), with the Key defined by (22.2) and θ = λ/N.

We consider some examples illustrating the performance of TQ with various con-
figurations of parameters in Section 24.2.

24.1.3 Evidence for heterogeneity of transformed effects

We have found in earlier chapters that an appropriate vst of a test statistic often leads to
evidence T having an approximate N(τ, 1) distribution, where τ = √

N K(δ), N is the
sample size and δ is a standardized effect. For example, the

√
2n sinh−1(tn−1/

√
2n )

transformation of the Student t-statistic (20.4) leads to τ
.= √

nK(δ), where δ =
(µ − µ0)/σ.

Suppose now there are K studies, each entailing a standardized effect δk of interest,
and one wants to know if the standardized effects are equal or not. One could apply
the method of Cochran to the estimated effects δ̂k, for k = 1, . . . , K, provided one
could find weights vk for which

√
vk (δ̂k − δ) → N(0, 1). Another approach is based

on the existence of a vst of δ̂k, as follows: let Tk = h(δ̂k) ∼ N(
√

nk K(δk), 1), at
least approximately. Then the transformed effects κk = K(δk) can be estimated by
κ̂k = Tk/

√
nk ∼ N(κk, 1/nk). Hence Cochran’s Q statistic can be calculated for the

κ̂k’s with known weights nk:

Q∗ =
∑

k

nk(κ̂k − ˆ̄κn)
2. (24.10)

This Q∗ ∼ χ2
K−1(λ

∗), where λ∗ =∑k nk(κk − ˆ̄κn)
2. The evidence in Q∗ for hetero-

geneity of the κk’s is clearly TQ∗ = hK−1(Q
∗) ∼ N(τQ∗ , 1), from Definition 24.1.

Note that Q∗ and Q do not usually measure the same type of heterogeneity. Further
note that if all nk’s are equal, Q∗ can be written Q∗ =∑(Tk − T̄ )2.

24.2 Simulation studies
For each of K studies one has nk independent observations in the kth study, each
with mean µk, variance σ2

k . Let µ̂k be the sample mean, so w−1
k = Var[µ̂k] = σ2

k /nk.

Let ŵk = nk/s
2
k , where s2

k is the sample variance of the nk observations in study k.
In this section let Q =∑k wk(µ̂k − µ̄w)2 denote Cochran’s formula in the idealized
situation where the weights are known, Q̂ the usual formula with estimated weights
(24.1) and Q∗ given by (24.10).

In this simulation experiment, the evidences for heterogeneity in each of Q, Q̂ and
Q∗ were found for each of 40 000 replications of the parameter settings. Table 24.1
shows the result for K = 3 groups with equal sample sizes from standard normal
distributions. Thus the hypothesis of homogeneous means holds. The computation of
Q assumes known weights wk = nk/σ

2
k = nk, while for Q̂ the weights are estimated

by ŵk = nk/s
2
k .

Column 2 of Table 24.1 shows the sample sizes, and column 3 the empirical size
of the nominally level 0.05 test, an estimate of P(χ2

2 ≥ 5.99) = 0.05. Columns 5 and
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Table 24.1 Empirical study of TQ, TQ̂ and TQ∗ based on 40 000 samples from
K = 3 standard normal populations, with equal sample sizes.

nk Size λQ Q̄ sQ T̄Q sTQ

Q 5 0.05 0 1.98 1.99 −0.52 0.99
10 0.05 0 1.99 2.00 −0.52 0.99
20 0.05 0 2.00 2.02 −0.52 1.00
40 0.05 0 1.99 1.99 −0.52 0.99
80 0.05 0 2.00 1.99 −0.51 1.00

Q̂ 5 0.12 0 2.85 3.95 −0.28 1.21
10 0.08 0 2.31 2.60 −0.42 1.08
20 0.07 0 2.15 2.30 −0.47 1.04
40 0.06 0 2.06 2.11 −0.49 1.01
80 0.05 0 2.03 2.04 −0.50 1.01

Q∗ 5 0.10 0 2.54 3.21 −0.37 1.15
10 0.07 0 2.15 2.36 −0.47 1.04
20 0.06 0 2.07 2.17 −0.50 1.02
40 0.05 0 2.02 2.06 −0.51 1.01
80 0.05 0 2.01 2.01 −0.51 1.00

6 give the empirical mean and standard deviation of Q, estimates of E[Q] = 2 and
SD[Q] = 2. Columns 7 and 8 give the empirical mean and standard deviation of the
evidence TQ. Note that sTQ

is near 1, as expected, and the mean evidence is slightly
negative, indicating a small positive evidence for the null hypothesis of homogeneity.

Next consider the results for Q̂ in the same table. It is clear from consideration
of the empirical size mean and standard deviation that this Q̂, the one actually used
in practice, has a distribution which is shifted to the right of its limiting distribution
χ2

2. Nevertheless, the evidence TQ̂ appears to reliably point to the null hypothesis.

The results for Q∗ in the same table are worth comparing with those of Q and Q̂.
For although Q∗ measures the heterogeneity of the transformed effects κk = K(δk),
where δk = (µk − µ0)/σk, when the σk’s are equal the δk’s (and κk’s) differ if and
only if the µk’s differ. Thus Q∗ indirectly measures the evidence for heterogeneity of
the µk’s. Note that the size, mean and standard deviation of Q∗, as well as the mean
and standard deviation of the evidence in TQ∗ are closer to those of the ideal Q than
the commonly used Q̂.

In Table 24.2 are shown the corresponding results for the three test statistics under
the alternative of heterogeneity: here the means are (0, 0, 1). All results are computed
as above, but now the estimated level is replaced by the estimated ‘power’ at level
0.05; of course when the level is not 0.05 (see Table 24.2 for the actual size) it is the
estimated power at a level equal to the size.

Consider first the results for the ideal Q which assumes known weights. The
estimated means and standard deviations in columns 5 and 6 are estimates of
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Table 24.2 Empirical study of TQ, TQ̂ and TQ∗ based on 40 000 samples from
K = 3 normal distributions, with means (0,0,1) and variances (1,1,1),
again with equal sample sizes. The ‘power’ of each Q-test is not necessarily at
level 0.05, but rather at the estimated size of the test shown in Table 24.1.

nk ‘Power’ λQ Q̄ sQ T̄Q sTQ

Q 5 0.35 3.33 5.32 4.13 0.65 1.12
10 0.63 6.67 8.66 5.53 1.43 1.09
20 0.92 13.33 15.38 7.55 2.54 1.03
40 1.00 26.67 28.57 10.46 4.05 1.01
80 1.00 53.33 55.26 14.67 6.20 1.00

Q̂ 5 0.44 3.33 7.73 9.11 1.01 1.50
10 0.65 6.67 10.13 7.86 1.62 1.28
20 0.92 13.33 16.52 9.21 2.65 1.17
40 1.00 26.67 29.56 12.00 4.12 1.12
80 1.00 53.33 56.24 16.32 6.25 1.10

Q∗ 5 0.34 2.89 5.73 5.73 0.66 1.28
10 0.56 5.78 8.07 5.88 1.28 1.15
20 0.88 11.56 13.74 7.42 2.29 1.06
40 0.99 23.12 25.10 10.01 3.69 1.02
80 1.00 46.25 48.25 13.82 5.70 1.01

E[Q] = 2 + λQ and SD[Q] =√4 + 4λQ. For example, when sample sizes are all
equal to 5, the theoretical E[Q] = 5.33 and its estimate is 5.32; and the theoretical
SD[Q] = 4.16 and its estimate 4.13. If the transformation to evidence TQ worked
perfectly, its standard deviation would be 1, but in fact it is slightly larger, near 1.12.
The estimated expected evidence for heterogeneity is 0.65, with standard error 1.12,
which is very weak for these sample sizes.

Now if one uses Q̂, one sees that the power and evidence are exaggerated over
what would one expect from using the asymptotic distribution under alternatives,
namely that of Q. This limiting noncentral chi-squared distribution does not describe
the actual distribution of Q̂.

Finally, for Q∗ the noncentrality parameter λQ∗ is smaller than that of λQ, but the
noncentral chi-squared parameters ν = K − 1 = 2 and λQ∗ yield theoretical mean
and standard deviation that are in good agreement with the estimated mean and
standard deviation, especially for sample sizes at least 10 each. Thus the statistic TQ∗

can be relied upon as measure of evidence for heterogeneity of standardized effects,
and in the case of equal variances, of the effects themselves.

The null distribution of Q∗ is quite stable under changes of the parameters, espe-
cially compared to Q̂. For example, if the null hypothesis of homogeneity still holds
for K = 7 groups, and the smallest samples correspond to the populations with the
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Table 24.3 Empirical study of TQ, TQ̂ and TQ∗ based on 40 000 samples of
respective sample sizes n = (5, 5, 5, 10, 10, 10, 25) from K = 7 normal
populations having means µ = (0, 0, 0, 0, 0, 0, 0) and standard deviations
σ = (2, 2, 2, 1, 0.5, 0.5, 0.5). These results are shown in rows 2, 7 and 12,
which are labeled n̄ = 10. The subsequent rows show the results as the sample
sizes are repeatedly doubled.

n̄ Size λQ Q̄ sQ T̄Q sTQ

Q 10 0.05 0 6.00 3.48 −0.28 0.96
20 0.05 0 5.98 3.44 −0.28 0.95
40 0.05 0 6.01 3.49 −0.28 0.96
80 0.05 0 6.01 3.49 −0.28 0.96

160 0.05 0 5.99 3.46 −0.28 0.96

Q̂ 10 0.21 0 9.44 10.64 0.31 1.46
20 0.11 0 7.07 4.76 −0.05 1.09
40 0.08 0 6.48 3.99 −0.17 1.02
80 0.06 0 6.24 3.73 −0.23 0.99

160 0.06 0 6.09 3.57 −0.26 0.97

Q∗ 10 0.11 0 7.05 5.17 −0.09 1.15
20 0.07 0 6.31 3.93 −0.22 1.01
40 0.06 0 6.14 3.68 −0.25 0.98
80 0.06 0 6.08 3.59 −0.27 0.97

160 0.05 0 6.02 3.51 −0.28 0.96

largest variability, then the null distribution of Q̂ is again shifted to the right much
more than that of Q∗ (see Table 24.3).

Other simulation studies were carried out, using Q̂ and Q∗ as defined above, but
the data were not generated according to the normal model; rather they were generated
from the symmetric but heavy tailed Student’s t3 model and the double exponential
model; and also an asymmetric model composed of 80 % normal and 20 % from a
standardized exponential model. In all these cases the null distribution of Q∗ was
closer to the nominal χ2

K−1 distribution than that of Q̂ (see Kulinskaya and Staudte
(2007) for details).

24.3 Cochran’s Q: the random effects model
In the fixed effects model (FEM) of Section 24.1 it was assumed that there existed
K independent µ̂k ∼ N(µk, w

−1
k ), where wk = σ2

k /nk, either exactly, or in the limit
as all nk → ∞. If this model is considered conditional on the µk’s themselves being
a random sample from the N(µ, γ2) distribution, then the unconditional distribution
of the µ̂k’s is called the random effects model (REM). For the REM each µ̂k ∼
N(µ, w−1

k + γ2), where γ2 ≥ 0.
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The parameter γ2 is called the interstudy variance component, and under the
null hypothesis γ = 0 the common distribution of the µ̂k’s is the same as for the
FEM under the null hypothesis of equal effects µk = µ. Thus the null distribution of
Cochran’s Q is the central χ2

K−1 under either model.
However, the alternative hypothesis γ > 0 under the REM is different from that of

the FEM, which is that at least two of the µk’s differ. These alternative hypotheses for
both models describe ‘heterogeneity’, but for the FEM it is of fixed effects, while for
the REM it is of random effects. Thus one cannot expect the evidence in Cochran’s
Q for heterogeneity to be the same for the two models.

Let Mr =∑k wr
k be the sum of rth powers of the weights, and define a = M1 −

M2/M1 and b = M2 − 2M3/M1 + (M2/M1)
2, c = b/a2 and d = c(K − 1) − 1. All

these constants are non-negative because the weights are assumed positive; and, when
the weights are equal, c = 1/(K − 1) and d = 0. For the special case of K = 2, the
constants c = 1 and d = 0 for any weights.

For the REM Biggerstaff and Tweedie (1997) obtain the moments

E[Q] = K − 1 + a γ2; (24.11)

Var[Q] = 2(K − 1) + 4a γ2 + 2b γ4,

and approximate the distribution of Q by the gamma distribution with these moments.
Here we want a vst for Q, so we write Var(Q) = 2d(K−1)−4d (E[Q]) +2c (E[Q] )2.

Thus Var[Q] = g(E[Q]), where g(t) = a0 + a1t + a2t
2 and a0 = 2(K − 1)d, a1 =

−4d and a2 = 2c.

By the traditional method of Section 17.2 any indefinite integral
∫ x{g(t)}−1/2 dt

is a possible candidate for a vst . This requires a standard integral:
∫ x

{a0 + a1t + a2t
2}−1/2 dt = 1√

a2
sinh−1

(
2a2x + a1√
4a0a2 − a2

1

)
.

After substitution of the constants into this formula, we obtain

h(x) = 1√
2c

sinh−1
(cx − d√

d

)
.

This h(x) has been chosen to stabilize the variance of Q at 1. To obtain a potential
measure of evidence, one must also subtract off the mean h(E[Q]) at the null hypoth-
esis γ = 0 ; that is, when E[Q] = K − 1. This leads to T ′

Q = h(Q) − h(K − 1) as
evidence for the alternative hypothesis γ > 0. Recalling the definition sinh−1(y) =
ln
(
y +

√
1 + y2

)
, this evidence can be rewritten in terms of the log function.

Definition 24.2 Assuming the random effects model as defined above, the evidence
T ′

Q in Cochran’s Q for the alternative γ > 0 is defined by

T ′
Q = 1√

2c

{

ln

(
cQ − d +

√
(cQ − d)2 + d

1 + √
1 + d

)}

. (24.12)
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For the case of equal weights d = 0, c = 1/(K − 1) and T ′
Q = (1/

√
2c ) ln

(
cQ
)
.

Substituting the expected value of Q given by (24.11) into (24.12) leads to the
first-order approximation:

E[T ′
Q]

.= 1√
2c

{

ln

(
1 + ac γ2 +

√
d + (1 + ac γ2)2

1 + √
d + 1

)}

. (24.13)

For the case of equal weights d = 0, c = 1/(K − 1) and E[T ′
Q]

.= (1/
√

2c ) ln(1 +
ac γ2).

Remarks

1. A limited number of simulation studies were carried out using the REM to
determine whether T ′

Q has a stable variance for 0 ≤ γ ≤ 1, a range including
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Figure 24.1 All plots compare the evidence in Q assuming the FEM (solid line)
with that assuming the REM (dashed line), for 0 < Q ≤ 3χ2

K−1,0.95. The top left-
hand plot is based on K = 3 samples of size 10; the top right-hand plot has K = 6
samples of size 10; and K continues to double in the bottom left and right plots. The
vertical dotted lines indicate the df K-1 and the critical point χ2

K,0.95 of the traditional
test for heterogeneity.
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all applications we have encountered. For equal weights wk = nk = N/K, the
standard deviation of T ′

Q was near 1.5 for K = 2, 1.3 for K = 3, 1.15 for K = 5
and 1.07 for K = 10, uniformly in γ over the range of interest. For unequal
sample sizes the standard deviation varied slightly more about these values.
Assuming equal sample sizes, the graph of the empirical mean evidence for
heterogeneity versus γ had the same shape as the expected evidence (24.13).
It was biased downwards, by the fixed amount, 1/

√
K, and when this was

added to T ′
Q the bias almost disappeared. These results depend much more

on the value of K than on the total sample size N =∑ nk, assuming only all
nk ≥ 10.

2. Assuming known weights it is of interest to compare the evidence for hetero-
geneity TQ of Definition 24.1 for the FEM to the evidence in (24.12) derived
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Figure 24.2 These plots are based on the same values of K as in Figure 24.1, but now
the sample sizes are very unbalanced. For the top left-hand plot, they are (10, 10, 100);
for the top right-hand plot (10, 10, 100, 10, 10, 100); and the pattern of doubling
the number of studies with sample sizes (10,10,100) continues. The discrepancy in
evidence for heterogeneity between the FEM and REM appears to be greater for this
unbalanced case.
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for the REM, because the same Q is often used to test for heterogeneity in
both models. Some plots making direct comparisons of these measures of evi-
dence are shown in Figures 24.1 and 24.2. Consider the upper left-hand plot
of Figure 24.1. It shows for K = 3 samples of equal size nk = 10 the graph
of TQ versus Q as a solid line compared to the graph of T ′

Q versus Q as a
dashed line. The vertical dotted lines indicate the df K − 1 and the critical
point χ2

K−1,0.95 of the traditional test for heterogeneity. Note that both graphs
indicate similar evidence for their respective alternative hypotheses for Q up
to this critical point, but that for larger Q the evidence for heterogeneity is
lower in the REM.

3. The plots of Figures 24.1 and 24.2 do not depend on the size of wk = nk; rather
it is the configuration of weights that matters, as well as the value of K.

4. The derivation leading to the above definition of T ′
Q depends on the assump-

tion of known weights, and its validity can be compromised by substitution
of estimates for them. In applications one applies these evidences for het-
erogeneity to transformed effects, which are supposed to be approximately
normally distributed, with known standard variances 1/nk under the FEM.
But this will typically only be the case for all nk ≥ 10, and the larger the nk’s
in the individual studies, the better.

5. One could define a new version of Cochran’s Q using weights ŵ−1
k + γ̂2, but

γ2 is not easy to estimate, especially when it is small (see Chapter 25).

24.4 Summary
In this chapter we studied Cochran’s Q under the ideal situation where the weights are
known and when they are estimated. We showed that the study sample sizes nk must
be quite large before estimated weights can be safely substituted in Q. That is why we
advocate thinking in terms of transformed standardized effects, whose distributions
are designed to be approximately normal with variances equal to the reciprocals of the
sample sizes. Then the weights on the transformed space are ‘known’ to be wk = nk,
and one uses the special case of Cochran’s Q that is denoted Q∗. We also showed that
evidence for heterogeneity in Cochran’s Q depends on which model is used: for the
random effects model T ′

Q increases in Q as ln(Q); while for the fixed effects model
TQ increases at the faster rate

√
Q .
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Combining evidence
from K studies

25.1 Background and preliminary steps
In this book we have shown that a vst T = h(S) of a test statistic for a positive effect
µ > 0 often can be chosen so that the T lies on the unit normal calibration scale;
that is, to a useful approximation T ∼ N(τ, 1). This construction allows one to easily
interpret the evidence in the test statistic S for µ > 0, because T is an estimator of its
expected evidence τ with known standard normal error. Frequently the test statistic
S and the vst h can be chosen so that T ∼ N(

√
n κ, 1), where n is the sample size,

and κ = K(δ) is the Key Inferential Function applied to the standardized effect δ.

This construction allows one not only to find confidence intervals for κ, but also, by
back-transformation, for δ.

Now suppose there are K independent studies with data which, it is decided, can
be interpreted using the same model with unknown parameters. The parameter of
interest, the effect, may change from study to study, so it is denoted µk for the kth
study. Often there are other parameters which may vary. For example if the normal
model is adopted, both µk and σk may differ with k, and if the Student t-statistic Sk

is used in the kth study, we found that a vst led to evidence whose mean grew with a
monotonic function of the standardized effect δk = (µk − µ0)/σk.

Let κk = K(δk) denote the kth transformed effect. In Chapter 24 we applied
Cochran’s Q to the κ̂k = K(δ̂k), k = 1, . . . , K to obtain the evidence TQ∗ for het-
erogeneity of the κk’s directly, and the δk’s indirectly. On the basis of this evidence
one then has to make a decision how to proceed. If there is little or no evidence
(say TQ∗ < 1.645) for heterogeneity of fixed effects, then one might assume equal
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standardized effects δk = δ for all k, and proceed to combine evidence for the alter-
native δ > 0 and find confidence intervals for δ as described in Section 25.2.1.

Now assume TQ∗ is large enough to raise doubts about the above simple model. We
describe three ways to proceed, depending on the assumptions one is willing to make
and the data available for analysis. First, if one wants to estimate a fixed and represen-
tative standardized effect δ for the K studies, one can proceed as in Section 25.2.2.
Second, if one assumes the K studies in hand are a random sample from a larger
population of studies, present or future, and wants to draw inferences about a repre-
sentative δ for this larger population, then one can proceed as in Section 25.3. Third,
if one suspects that a covariate can explain the differences in the δk, then one can
employ meta-regression as explained is Chapter 14.

25.2 Fixed standardized effects
25.2.1 Fixed, and equal, standardized effects

Given K independent studies, with evidence Tk in the kth study for δ > 0, for
k = 1, . . . , K. Then, at least approximately, each Tk ∼ N(τk, 1) where τk = √

nk κ,
κ = K(δ) andK is the Key Inferential Function for the assumed model. The combined
evidence for δ > 0 should continue to be on the evidence scale: that is, it should con-
tinue to be approximately normally distributed with variance 1, and mean growing
with δ. By the method of Lagrange multipliers one can show that amongst all linear
combinations

∑
k vkTk, all vk > 0, satisfying Var[

∑
k vkTk] =∑ v2

k = 1, choosing
vk proportional to

√
nk maximizes the expected evidence E[

∑
k vkTk] =∑k vkτk

.=(∑
k vk

√
nk

)
κ. Therefore we choose this combination.

Definition 25.1 Define the combined evidence for δ > 0 in the K studies by

T1:K =
√

n1 T1 + · · · + √
nK TK√

n1 + · · · + nK

. (25.1)

As usual, when T1:K is negative, its magnitude |T1:K| is interpreted as positive evi-
dence for δ < 0.

Now E[T1:K]
.= √

N κ, where N =∑k nk. So a 100(1 − α) % confidence interval
for κ is given by (T1:K ± z1−α/2)/

√
N . An interval of the same confidence for δ =

K−1(κ) is obtained by applying K−1 to the endpoints.
If for each k the evidence Tk is of the form Tk = √

nk K(δ̂k) where δ̂k is an
estimator of δ in the kth study, then the above interval can be reexpressed in terms of
the κ̂k = K(δ̂k)’s. For then T1:K/

√
N is the weighted combination of the κ̂k’s, namely

T1:K/
√

N = κ̂ =∑k nkκ̂k/N ∼ N(κ, 1/N).

The coverage of these intervals should be better than that of the coverage of
intervals in individual studies, because weighted averaging of the Tk’s should result
in a distribution closer to normality.
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25.2.2 Fixed, but unequal, standardized effects

In this section the δk’s are not assumed equal, but a representative δ for these K stud-
ies is desired. To obtain one, we first define a weighted transformed effect, and then
apply K−1 to it.

Definition 25.2 Given κk = K(δk), k = 1, . . . , K, define a representative κ by

κ =
∑

k

nkκk/N. (25.2)

This κ gives weight proportional to the sample sizes involved in the K studies.

Other weights may be more appropriate, depending on circumstances. Define the
representative δ for the K studies by δ = K−1(κ), where K is the appropriate Key for
the K studies.

The evidence for δ > 0 is defined the same way it was for equal effects (Equation
(25.1)).

To find an interval estimate for δ we first find one for κ. Starting with κ̂ =∑
k nkκ̂k/N, it is easy to see that κ̂ is unbiased for κ, and further κ̂ ∼ N(κ, 1/N).

As in the previous section of equal standardized effects, a nominal 100(1 − α) %
confidence interval for κ has endpoints κ̂ ± z1−α/2/

√
N , and the same confidence

can be had in the interval for δ obtained by applying K−1 to the endpoints of this
interval.

The reader will have noticed that the estimation methodology is exactly the same
as for fixed equal effects, but the parameter of interest δ now has a different meaning.
While before δ was assumed fixed for all studies, now the δk’s are allowed to vary,
and δ is the standardized effect that transforms into the weighted average of the κk’s.
So the interpretation of δ is quite different.

25.2.3 Nuisance parameters

We have found that in some contexts the Key K depends not only on a standardized
effect δ of interest but also on a nuisance parameter ξ; thus K = K(δ, ξ). For example
with the two-sample t-test the Key depended on both the standardized difference
of means δ and ξ−1 = ν/N, the ratio of Welch’s degrees of freedom and the total
sample size (see Chapter 21 for details). In such cases one has not only δk’s from K

studies to combine, but also the ξk’s. It appears that each problem may require an
ad hoc solution, but if K(δ, ξ) is monotonic in ξ, a weighted average of the ξk’s, with
weights proportional to the sample sizes, seems to be a useful prescription. Once a
representative ξ is defined, the same combination of ξ̂k’s leads to an estimator ξ̂ of ξ,
and one can continue as follows.

For simplicity assume that K(δ, ξ) is not only strictly monotonic in each argu-
ment, but jointly continuous in both arguments. Let κk = K(δk, ξk) for all k, and
let κ̂k = Tk/

√
nk. This κ̂k ∼ N(κk, 1/nk). For N =∑k nk, define κ by (25.2). Then
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define an overall standardized effect δ in terms of the representative ξ, κ as the
solution of

K(δ, ξ) = κ. (25.3)

This δ exists because K(δ, ξ) is monotonically increasing in its first argument, by
definition. A nominal 100(1 − α) % confidence interval for κ has endpoints κ̂ ±
z1−α/2/

√
N , and the same confidence can be found in an interval for δ obtained

by fixing ξ at ξ̂ and solving (25.3) for the endpoints of this interval. This procedure
should be checked by simulations, as has been done for the two-sample normal model
in Chapter 21 and in Kulinskaya and Staudte (2007).

Another attractive approach is to acknowledge different nuisance parameters and
condition on their values. Then Equation (25.3) is changed to

N−1
∑

nkK(δ, ξk) = κ. (25.4)

The solution δ exists because the sum of the key functions is still monotonically
increasing in δ, and the confidence interval for δ is obtained as above after fixing ξk

at ξ̂k. This procedure has not yet been tried in applications.

25.3 Random transformed effects
25.3.1 The random transformed effects model

In traditional meta analysis interstudy variability is often modeled by assuming the
effects themselves are a random sample from a normal model with a positive variance.
We follow this example, but introduce the interstudy normal model on the space of
transformed standardized effects, because on this space we have estimators resulting
from variance stabilization, and we know they are approximately normal with known
variances.

Given a transformation δ → K(δ) that is monotonically increasing and continu-
ous, define for each k the transformed effect κk = K(δk). In the previous sections, it
was assumed the κk’s were fixed, but now it is assumed κ1, . . . , κK are a sample from
the N(κ, γ2) model with unknown mean κ and variance γ2.

Conditional on the observed values of κ1, . . . , κK it is assumed further that there
exists estimators δ̂k, k = 1, . . . , K, for which κ̂k = K(δ̂k) has a conditional distri-
bution, given κk, which is N(K(δk), 1/nk). (When K is the sinh−1 transformation
applied to Student t-statistics this amounts to assuming the δk’s are independent, and
from rescaled Student t-distributions.)

To obtain the unconditional properties of the κ̂k’s one must average over the distri-
bution N(κ, γ2). By using the conditioning formulas for expectations and variances,
one finds:

E[κ̂k] = κ

Var[κ̂k] = 1

nk

+ γ2. (25.5)
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These assumptions define the random transformed effects model. The first goal
is to find evidence for κ > 0, and hence δ = K−1(κ) > 0, where K is the common
Key for the K studies. The second goal is to find a confidence interval for κ, and by
back-transformation δ. To achieve these goals, one apparently needs an estimator of
γ2, but this is not the case, as we will see.

Before going any further, however, it is suggested that one find the evidence for
γ > 0 using the evidence for heterogeneity T ′

Q∗ in the REM defined by (24.12) applied
to Q∗ =∑k nk(κ̂k − κ̂)2. For, even if TQ∗ , the evidence for heterogeneity of fixed
effects is large, it does not mean the evidence for heterogeneity of random effects is
large enough to worry about. Assuming there is weak or stronger evidence for γ > 0,
one can then proceed as follows.

Let κ̄ = (
∑

k κ̂k)/K and s2
κ =∑k(κ̂k − κ̄)2/(K − 1) denote the sample mean and

variance of the κ̂k’s. Then one can show that E[s2
κ] = γ2 + (1/K)

∑
k(1/nk), which,

together with the fact that γ2 ≥ 0, leads to the estimator of γ2 :

γ̂2 = max

{
0, s2

κ − 1

K

∑

k

1

nk

}
. (25.6)

In this context of known weights equal to the sample sizes, the DerSimonian and
Laird (1986) estimator of γ2 reduces to

γ̂2
DL = max

{
0,

Q∗ − (K − 1)

N −∑k n2
k/N

}
, (25.7)

where N =∑k nk, κ̂ = (
∑

k nkκ̂k)/N, and Q∗ =∑k nk(κ̂k − κ̂)2. It is readily seen
that when the weights nk are equal, the above two estimators are identical.

25.3.2 Evidence for a positive effect

For the random transformed effects model just defined, the evidence T1:K of (25.1) is
a linear combination of normally distributed variables Tk = √

nk κ̂k, and hence nor-
mally distributed, but its variance now depends on the unknown γ2. And, substituting
one of the estimators γ̂ or γ̂DL for γ2 leads to T1:K with an unknown distribution.
Therefore we proceed differently.

Note that κ̄ is an unbiased estimator of κ with variance

Var[κ̄] = 1

K2

∑

k

{
1

nk

+ γ2

}
= E[s2

κ]

K
, (25.8)

using the fact that E[s2
κ] = γ2 + (1/K)

∑
k(1/nk). This suggests the Studentized

sample mean SK−1 = √
K (κ̄ − 0)/sκ as a possible basis for measuring evidence

for κ > 0, but it has an unknown distribution.
However, it is clear from (25.5) that the κ̂k’s will have constant variance whenever

all nk = n, say, and then SK−1 ∼ tK−1(λ), the noncentral Student t-distribution with
K − 1 degrees of freedom and noncentrality parameter

λ =
√

K
(κ − 0)

√
1/n + γ2

. (25.9)
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The same result will hold to a good approximation if every 1/nk is small relative
to γ2, because then the κ̂k’s are a random sample from (almost) the same normal
population. Of course this speculation needs to be checked by simulations.

Let s1/nk
be the standard deviation of the reciprocal sample sizes. For all K ≥ 2,

γ > 2s1/nk
, the simulations described in Section 25.3.5 suggest that this is so; that is,

the variances 1/nk + γ2 of the κ̂k’s are sufficiently close to each other so that for all
practical purposes one can proceed as though they were equal in the REM.

The condition γ > 2s1/nk
is likely to be met in practice if all nk ≥ 10, because

then this is true for γ > 0.05. One can estimate γ using (25.6) or (25.7), for example,
but caution is in order because these estimators are biased upwards for small γ .
There are other estimators of γ available, including a MLE by Biggerstaff and
Tweedie (1997), but to our knowledge its performance has not yet been checked with
simulations.

Definition 25.3 Assume the random transformed effects model for K studies, and
assume that all study sample sizes are at least 10 and γ > 2s1/nk

. The evidence
for κ > 0 and hence δ > 0 is given by applying the vst (20.4) for the noncentral
t-distribution to the statistic SK−1:

T ∗
1:K =

√
2K sinh−1

(
SK−1√

2K

)
=

√
2K sinh−1

(
κ̄√
2 sκ

)
. (25.10)

25.3.3 Confidence intervals for κ and δ: K small

Given the rationale for evidence for a positive effect in the REM in the previous
section, it is now tempting to employ the Student t-interval with c = tK−1,1−α/2 to
capture κ:

[L, U] =
[
κ̄ − c

sκ√
K

, κ̄ + c
sκ√
K

]
. (25.11)

Simulation studies described in Section 25.3.5 indicate that these t-intervals for κ

have very accurate coverage for every K > 1 and all γ > s1/nk
.

The small sample confidence interval for δ is then given by [K−1(L),K−1(U)],
where K is the common Key for the K studies.

25.3.4 Confidence intervals for κ and δ: K large

In the previous section we estimated κ using equal weights on each κ̂k, but one
may want more weight on κ̂k’s which are based on larger sample sizes. Let κ̂v =∑

k vkκ̂k/
∑

j vj be an estimator of κ with known positive weights vk. Then κ̂v ∼
N(κ, σ2

v ), where

σ2
v = 1

{∑j vj}2

[
∑

k

v2
k

{
1

nk

+ γ2

}]

. (25.12)
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For inverse variance weights vk = nk, and N =∑k nk this simplifies to σ2
v = (1/N +

γ2∑
k n2

k/N
2). Letting c = z1−α, a large-sample 100(1 − α) % confidence interval

for κ is given by

[L2, U2] = [κ̂v − c σ̂v, κ̂v + c σ̂v], (25.13)

where σ̂v is obtained from (25.12) after estimating γ2 using (25.6) or (25.7). These last
estimates require K to be very large, in order to achieve the nominal 95 % coverage,
as demonstrated in the next section.

The large sample confidence interval for δ is then given by [K−1(L2),K−1(U2)],
where K is the common Key for the K studies.

25.3.5 Simulation studies

In order to evaluate the performance of the confidence intervals described in the pre-
vious two sections, a variety of values of K and sample sizes n1, . . . , nK were chosen.
For each of these choices, 40 000 simulated samples κ̂1, . . . , κ̂K were generated with
κk ∼ N(κ, 1/nk + γ2), where the target κ was held fixed, and γ set initially to 0. The
three intervals initially compared were:

1. the 95 % Student t-interval defined by (25.11);

2. the large-sample 95 % interval defined by (25.13), with c = z0.975 and
γ estimated by γ̂ of (25.6); and

3. the large-sample 95 % interval defined by (25.13), again with c = z0.975 and
γ estimated by γ̂DL of (25.7).

This sampling procedure was repeated for 30 more selected values of γ in the unit
interval. This region includes all estimated values of γ we have seen in applications;
and, in any case, simulations for γ ranging from 1 to 20 yielded no changes from
those at γ = 1. The resulting empirical coverage probabilities for the three intervals
were plotted as functions of γ .

• It immediately became apparent that the asymptotic intervals, points (2) and
(3) above, had coverage less than 95 %, sometimes by a large margin, for a
wide range of values of γ , unless K was at least 40. For example, when K = 30
and all nk = 10, these intervals have coverage near 96 % for very small γ , but
this drops to 94 % for 0.2 ≤ γ ≤ 1. Increasing all nk’s does not improve the
coverage; it is the value of K that must be increased. Thus the asymptotics do
not ‘kick in’ early enough for these intervals to be of practical value. Their
performance was greatly improved by replacing c = z0.975 by c = tK−1,0.975, so
hereafter we make this change.

• For small K the coverages of the t-intervals were overly conservative for very
small γ but performed extremely well otherwise. The example with n1 = n2 =
10, n3 = 50 is displayed in the top plot of Figure 25.1.
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Figure 25.1 The top plot is for K = 3 studies of sizes 10, 10 and 50. The dashed
line gives the empirical coverage of the t-interval defined by (25.11) as a function of
γ . The other graphs depict coverage of intervals defined by (25.13), with the dotted
line corresponding to γ̂ of (25.6) and the solid line to γ̂DL of (25.7). In both cases
c = t2,0.975 as in (25.11). In the bottom plot are shown the graphs of the coverage
probabilities of these three intervals for K = 6 studies of sizes 10, 10, 10, 50, 50
and 50.
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• The lower plot of Figure 25.1 shows the results for K = 6 studies with n1 =
n2 = n3 = 10 and n4 = n5 = n6 = 50. This time the γ̂DL-based interval fares
much better than that based on γ̂ , but both are soundly beaten by the Student
t-interval.

• The upper plot of Figure 25.2 compares the coverages of these intervals for
the sample sizes of the 11 studies of the recurrent urinary tract infections data
described in Section 19.5.

• The lower plot of Figure 25.2 assumes 30 studies having sample size 10 and 10
having sample size 50. Even for this number of studies, the t-interval has the
best overall performance.

• The average lengths of the intervals were also found, and the t-intervals were
shorter than the other two intervals, which were similar in length.

In summary, for the ideal situation where the transformed effects κ̂k are exactly
normally distributed with variances 1/nk + γ2, the Student t-intervals for κ are
preferred. The second best performer was the large-sample interval centered on a
weighted estimator κ̂ and using the DerSimonian and Laird (1986) estimator of γ .
However, it needed to be modified, replacing z0.975 by tK−1,0.975, for it to be compet-
itive unless K is at least 40. Estimation of γ is not necessary to carry out inference
regarding κ for the REM, as we have seen. For those readers who want a confidence
interval for the parameter γ , we suggest Biggerstaff and Tweedie (1997).

In practice the transformed effects κ̂k will only be approximately normal with
standard deviations approximately 1/nk + γ2 under the random (transformed) effects
model, so the above results must be treated with caution. Sample sizes in individual
studies must be large enough for variance stabilization techniques to work, and how
large they must be depends on the model and (unknown) values of the parameters. This
warning also applies to other meta-analytic techniques that use estimated weights,
especially ones that advocate normal approximations for K only moderately large.

25.4 Example: drop in systolic blood pressure
We return to the example of two-sample comparisons studied in Section 21.1, with
original data in Table 21.1 and results for individual studies summarized in Table 21.3.
Recall that Nk is the total sample size in the kth study, Tk is the evidence for a positive
effect and κ̂k = Tk/

√
Nk is the estimated transformed standardized effect. These last

two results are shown in Table 25.1 to three decimal places. In this example Cochran’s
Q applied to the transformed effects yields Q∗ =∑ nk(κ̂k − κ̂)2 = 14.035 which
exceeds χ2

6,0.95 = 12.6, so this traditional test would reject the assumption of equal
transformed standardized effects; that is, the assumption of equal κk’s is rejected at
level 0.05 by this test. This is custom, but still arbitrary.

Let m6 = χ2
6,0.5 = 5.34812 be the median of the χ2

6 distribution. The evidence
for heterogeneity TQ∗ is found by applying the vst (22.1) to Q∗; it yields TQ∗ =√

Q∗ − m6/2 − √
m6/2 = 1.7, which is only weak evidence for heterogeneity of

the fixed standardized effects. Without further information it could reasonably be



230 COMBINING EVIDENCEFROM K STUDIES

Figure 25.2 Continuing with the same intervals as in Figure 25.1, the top plot shows
empirical coverage for K = 11 studies with sample sizes 45, 40, 28, 41, 24, 35, 19,
50, 43, 20 and 27. Only the t-interval coverage is close to 0.95 for all γ . Similar results
are obtained in the bottom plot for K = 40 studies, 30 having sample size 10 and 10
having sample size 50. The average lengths of these intervals were also computed
and are substantially smaller for the t-intervals compared to the others, especially for
small K.



25.4 EXAMPLE: DROP IN SYSTOLIC BLOOD PRESSURE 231

Table 25.1 For each of seven studies are shown the total sample sizes Nk, the
Welch df ν̂k, evidence for positive effect Tk and corresponding transformed
effects κ̂k.

k Nk ν̂k Tk κ̂k

1 51 48.30 −1.263 −0.177
2 38 35.58 2.158 0.350
3 130 127.62 2.404 0.211
4 19 17.00 0.997 0.229
5 49 44.24 −1.285 −0.184
6 10 7.26 1.608 0.509
7 33 27.91 1.117 0.195

assumed that the standardized effects are fixed and unequal, or that they are a random
sample from a population of standardized effects.

The choice of model (fixed or random standardized effects) should be determined
on the basis of whether one wants to draw inferences regarding these seven studies
only, or rather one wants to draw inferences for a larger population of studies for
which these seven represent a genuine random sample. We will do the computations
for each model for illustrative purposes.

25.4.1 Inference for the fixed effects model

Whether one assumes all κk = κ or the κk’s are different, and the representative
κ =∑k Nkκk/N, where N =∑k Nk, the inferential methods are the same. Using
(25.1) the evidence for κ > 0 in these N = 7 studies is T1:7 = 2.12, which is weak.
That is, there is only weak combined evidence for the conclusion that dieting leads to
a drop in systolic blood pressure. This is not surprising, given that two of the seven
studies showed the opposite result. This evidence is readily converted into a 95 %
interval (T1:7 ± z0.975)/

√
7 for κ, namely [0.009, 0.225].

A 95 % confidence interval for δ = K−1(κ) requires the inverse of the Key for the
Welch t-test. Recall from Chapter 21 the Key K(δ) is for each value of the nuisance
parameter ξ given by

Kξ(δ) =
√

2

ξ
sinh−1

(√
ξ δ√
2

)
.

In the kth study ξk = Nk/ν̂k, the ratio of the total sample size Nk = mk + nk to
Welch’s df for the two-sample comparison.

For all K = 7 studies a representative value of ξ is ξ̂ = N/
∑

k ν̂k, where N =∑
k Nk is the total sample size. Note that ξ̂ is a weighted harmonic mean (weights

Nk/N) of the ξ̂k’s. For these data N = 330,
∑

k ν̂k = 307.9 and ξ̂ = 1.072. The
overall δ for the seven studies is defined by δ = K−1

ξ̂
(κ), and hence a 95 % confidence

interval for δ is obtained by applying K−1
ξ̂

to each endpoint of the 95 % confidence
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interval derived above for κ. The result is almost the same, [0.009,0.226], because
the sinh−1 function behaves like the identity near the origin.

25.4.2 Inference for the random effects model

For the random (standardized) effects model the evidence for γ > 0 in Q∗ = 14.035
is by definition (25.3) equal to T ′

Q∗ = 1.43, which is very weak, so one should stay
with the FEM analyzed above. But for the sake of illustration, we proceed with the
analysis based on the REM.

The DerSimonian and Laird (1986) estimate (25.7) of the variance component
γ2 is γ̂2 = 0.032. For these data one can also compute κ̄ = 0.162, sκ = 0.2577 and
γ̂2 = 0.030 from (25.6).

The evidence for κ > 0 is by Definition 3 given by T ∗
1:7 = 1.61. Note that this is

smaller than the evidence found earlier for κ > 0 using the fixed effects model. But
there is not much difference because γ̂2 is small.

The 95 % Student t-interval (25.11) for κ is [−0.077, 0.400]. The 95 % interval
for δ is readily found by applying the transformation K−1

ξ̂
to each of the endpoints

of the previous interval, which yields [−0.076, 0.406]. Note that these intervals are
slightly larger than those obtained from κ, δ earlier, because they had to allow for a
small variance component. If γ2 were much larger, so would be these intervals.

25.5 Summary
In this chapter we have proposed methods for combining evidence in K studies for the
fixed (equal or unequal) standardized effects model, as well as a random transformed
standardized effects model. For all models, a representative standardized effect is
defined and confidence intervals are provided. The methods are relatively simple
because it is assumed that variance stabilization techniques have already transformed
the test statistics onto the unit normal calibration scale. The reader is cautioned, how-
ever, that these techniques make strong assumptions, in particular that the evidence
for each study is on the calibration scale to a good approximation, for all parameters
of interest.
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Correcting for publication bias

26.1 Publication bias
It is well known that the established practice of requiring experimental results to
contradict a null hypothesis of no effect at level 0.05 introduces certain anomalies.
The scientist who obtains a p-value of 0.049 may succeed in publishing the result,
while the one who obtains 0.07 cannot publish. After reading this book it becomes
clear that this is an absurd situation, because the second study contains almost as
much evidence as the first one. The very fact of publication introduces a bias towards
the alternative: a published p-value is conditional on its being less than a threshold.
When combining p-values obtained through published studies, one must be aware of
this selection bias and one must try to reduce its effect.

If selection bias affects a sample, one can sometimes make it visible in an appropri-
ate plot. The missing parts show up as gaps, truncations, hollows, etc. In the literature
on publication bias the funnel plot is often cited as such a tool.

Definition 26.1 Suppose we plan to combine a group of similar studies. For each
study two numerical summaries are at hand. First, an observed effect, which can be a
log odds ratio, the deviation of a mean from the null value, or something else. Second,
a measure of the precision, such as the standard error of the observed effect. The plot
of the precision as a function of the effect is called a funnel plot.

Example 26.1 A simulated example may help in illustrating the selection intro-
duced by publishing only studies that reach traditional significance as measured by a
p-value of less than 0.05. In this example, we look at 300 studies, each resulting in
an observed effect X that is normally distributed with a mean of µ and a standard

Meta Analysis: A Guide to Calibrating and Combining Statistical Evidence    E. Kulinskaya, S. Morgenthaler, and
Robert G. Staudte   © 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-02864-3
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Figure 26.1 The four funnel plots show the precision (equal to the standard error)
of each of 300 studies versus the observed effect X. Note that even though the study
size is indicated in the y-axis labels, the ordinate used in plotting is 1/

√
study size. A

study rejects the null hypothesis, if the effect exceeds 1.645/
√

study size. The dark
points indicate the studies that reject the null. The four panels correspond to different
actual effects. They go from µ = 0.4 (upper left) to µ = 0.1 (upper right) to µ = 0.0
(lower left) and finally to µ = −0.1 (lower right).

error of 1/
√

n, where n is the number of subjects in the study. Figure 26.1 shows
what happens if we select the studies leading to a significant result, while ignoring
the others. When the actual effect µ is large, or, more precisely, when the power of
the study is close to one, the selection bias is negligible. This is the case in the upper
left-hand panel of Figure 26.1. As the power decreases, the publication bias becomes
more visible. In the upper right-hand panel, the funnel plot is asymmetrical and it is
clear that more than one half of what should be there is missing.

The most dangerous cases are shown in the lower row of plots, where the true
effects are zero (no effect whatsoever) and −0.1. In this latter case, the actual effect
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is in the opposite direction of the observed effect. In both cases, any published result
is a false discovery. Imagine the funnel plot containing only the dark points. Would
the reader, seeing these two plots, guess that something was amiss? In the lower
left-hand plot one might convince oneself that the funnel plot is about half missing. In
the right-hand plot, however, there are only three published studies and they confirm
each other perfectly. And so, one would most likely conclude that a small positive
effect truly existed.

This example shows two things. For one, while the funnel plot is a valid idea in
some circumstances, there are many ways in which things can go wrong. Using it as
our tool for detecting bias is thus probably not a good idea. The second lesson is that
unless we know more about how many unpublished studies have been performed, we
cannot compute a reliable correction.

26.2 The truncated normal distribution
We argue in this book in favor of another presentation of the results from observational
studies. Variance stabilizing the results of a study produces what we call evidence
having variance about equal to one. The outcome of a study is then summarized in
the evidence T , which is approximately normally distributed with mean

√
nκ and

variance 1. In our formulas we assume exact normality of the observed evidences.
The first model for publication bias we will consider is a conditional analysis

of the published results. Being published implies that the p-value is below 0.05 or
that the evidence obtained satisfies ti > 1.645. Conditional on being published, this
means that the observed result ti no longer has a normal distribution, but rather a
truncated normal distribution, because ti is guaranteed to exceed a certain bound.

Definition 26.2 A random variable X is said to have a truncated normal distribution
with truncation point β (X ∼ T N (µ, σ2, β)) if it has density

f(x|µ, σ, β) = ϕ((x − µ)/σ)/σ

1 − �((β − µ)/σ)
for x ≥ β . (26.1)

For x < β, the density is equal to zero. The parameters of this distribution are µ, σ
and β.

The mean of a truncated normal distribution (26.1) is equal to

E[X] = µ + σ ϕ((β − µ)/σ)

1 − �((β − µ)/σ)
,

which contains an expression for the numerical size of the bias one incurs when

using X for estimating µ.
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The published evidence Ti of a study has a very simple truncated normal
distribution

Ti ∼ T N (
√

niκ, 1, 1.645),

and assuming that t1, . . . , tm are a sample with these distributions, the likelihood
for κ is

Ltruncated(κ) =
m∏

i=1

f(ti|κ√
ni, 1, 1.645) . (26.2)

An algorithm for maximizing the likelihood can be based on our expression for
the mean of a truncated normal. At the start, we simply ignore the bias and treat ti as
if it were normally distributed. The estimate of κ is then

κ̂ =
m∑

i=1

√
ni ti

/ m∑

i=1

ni.

Based on this, we can estimate by how much we overestimate the true effect κ and
make a correction. The resulting algorithm is as follows:

1. Put k = 0 and

κ̂k =
m∑

i=1

√
ni ti

/ m∑

i=1

ni.

2. Compute the corrections

bi = ϕ(1.645 − κ̂k

√
ni)

1 − �(1.645 − κ̂k

√
ni)

for i = 1, . . . , m.

3. Update the estimate by putting k = k + 1 and

κ̂k =
m∑

i=1

√
ni (ti − bi)

/ m∑

i=1

ni.

4. Stop the calculations and put κ̂truncated equal to the final value, as soon as the
estimate does not change any more, otherwise return to step 2.

Once the estimate of the underlying effect κ is obtained, we have corrected for
the publication bias. The combined evidence is estimated by

Tcombined by truncation =
m∑

i=1

√
ni κ̂truncated/

√
m,
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Table 26.1 Data relating to Example 26.2.

k κ̂k

0 0.5
1 0.35
2 0.26
5 0.11
10 0.00
20 −0.09
30 −0.11
40 −0.12

and the combined p-value, corrected for publication bias, is

pcombined by truncation = 1 − �(Tcombined by truncation).

Example 26.2 Table 26.1 shows what happens when applying this procedure to the
case of the one smallish study of n = 16 subjects that gave significant evidence of
t = 2. The estimated bias is considerable. While the naive use of the lone published
study predicts that κ̂ = 0.5, the conditional analysis based on the truncation model
predicts a value of κ̂truncated = −0.12, that is, an actual effect in the opposite direction.
As a consequence, pcombined by truncation = 0.68 is larger than 0.5 and the evidence
Tcombined by truncation = −0.48 is negative.

26.3 Bias correction based on censoring
The estimation by the truncated normal is usually not quite the right thing to do,
because it provides the same correction, whether there were any unpublished studies
or not. Intuitively one would think, however, that the number of unpublished studies
ought to play a part. If a single study is done and it has a p-value that is smaller
than 0.05, why should one correct for bias? If, on the other hand, only one in 300
studies results in such evidence, why should one believe its result? The interpretation
of published evidence is completely different depending on whether the published
study is the only one ever done, or whether it is the only one with an observed effect
that reaches the standard of traditional significance among many studies. In the first
case, we would say that no bias is present, whereas in the second case a vigorous bias
correction is needed.

Why does the conditional model we described above, and which seems plau-
sible, sometimes fail? Well, it assumes that the researchers performing the studies
will continue repeating them until one reaches a result with an associated p-value
smaller than 0.05. In this way, one is guaranteed to obtain a published study and
in effect the truncated normal is the correct model. In this model, each published
study has its natural proportion of accompanying unpublished studies. In reality,



238 CORRECTING FOR PUBLICATION BIAS

though, studies are planned and performed without the intention of repeating them
until one has a sufficiently large observed effect. The evidence obtained by each
study is thus not modeled by the truncated normal, but rather by the normal itself.
The bias is still there, but the reason is not truncation, it is rather censoring. The
evidence of any study that happens not to reach the required p-value of 0.05 is
suppressed.

If we had more detailed information about the unpublished studies – how many
there were and what sample sizes were used – we could take it into account by
replacing the previous likelihood (26.2) by

Lcensored(κ) =
m∏

i=1

ϕ(ti − √
niκ)

l∏

j=1

�(1.645 − κ
√

n∗
j ). (26.3)

Here the number of unpublished studies is equal to l and the sample sizes are
n∗

1, . . . , n
∗
l . The published studies are characterized by the evidences t1, . . . , tm and

sizes n1, . . . , nm. The maximum likelihood estimate of κ satisfies

m∑

i=1

√
ni

(
ti − √

ni κ̂censored
)−

l∑

j=

√
n∗

j

ϕ(1.645 −√n∗
j κ̂censored)

�(1.645 −√n∗
j κ̂censored)

= 0. (26.4)

Of course, we do not know how many unpublished studies have been performed
and, in order to use the new likelihood, we need to decide how big to choose l, the
number of unpublished studies and what to take for n∗

1, . . . , n
∗
l . The second choice

is the easier one. We propose to use the average size of the published studies, that
is, to put n∗

j =∑m
i=1 ni/m for all j. As for the number of unpublished studies, we

propose to compute the bias corrected evidence and p-values for a variety of choices
and leave it to the user to make the final decision.

An algorithm that works reasonably well for solving the likelihood equation is
the Newton–Raphson iteration. It leads to the following little program.

1. Put k = 0 and

κ̂k =
m∑

i=1

√
ni ti

/ m∑

i=1

ni.

For each of the l presumed latent or unpublished studies, setn∗
j = n̄, the average

study size of the observed studies.

2. Compute for j = 1, . . . , l, that is, for the latent studies, the quantity uj =
1.645 −√n∗

j κ̂k.
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(a) Compute the log-likelihood derivative

f =
m∑

i=1

√
ni(ti − √

niκ̂) −
l∑

j=1

√
n∗

j ϕ(uj)/�(uj).

(b) Compute the second derivative of the log-likelihood

f ′ = −
m∑

i=1

ni −
l∑

j=1

N∗
j (ϕ(uj)/�(uj) (uj + ϕ(uj)/�(uj)).

3. Update the estimate by putting k = k + 1 and

κ̂κ = κ̂k−1 − f/f ′.
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Figure 26.2 The figure shows the log-likelihood function for κ for the data of
Example 26.3. When we assume that the single available study is the only one ever per-
formed (none unpublished), then the maximum likelihood estimate is κ̂ = 2/4 = 0.5.
We have seen previously that for the truncation model, κ̂truncated = −0.12. For the
censored case the values at which the various curves attain their maxima yield the
corresponding estimates. These values are equal to κ̂censored = 0.34 , 0.07 , −0.26 for
l = 1 , 10 , 299, respectively.
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4. Stop the calculations and put µ̂censored equal to the final value, as soon as the
estimate does not change any more, otherwise return to step 2.

We could simplify the formulas somewhat by using the fact that in our proposed
procedure all the n∗

j have the same value, but we chose not to do so in order to give
the algorithm in full generality.

Example 26.3 To illustrate the behavior of the censored and truncated log-likelihood
functions, consider again the example where a single study is available. It has weak
evidence of t = 2 and the number of subjects used wasn = 16. Figure 26.2 shows vari-
ous likelihood functions for the underlying effectκ. If we assume that one other study of
similar size has been left unpublished, the combined evidence is Tcombined by censoring =
1.37 and the corrected p-value becomes pcombined by censoring = 0.085. For the cen-
sored case, we assume that a number of unpublished studies, not attaining a p-value
of 0.05, had been performed. The size of these unpublished studies is taken to be
equal to n = 16, the size of the published study.

26.4 Summary
Biasing findings by selectively publishing only those studies that reach a certain
standard, while suppressing those that do not, has been called publication bias. In
this chapter we have shown two simple ways in which one can combine the results
from several studies and correct for this bias. The first method is based on a truncation
model. It usually results in quite a vigourous correction, but has the advantage of not
requiring any knowledge beyond the results of the published studies.

The second method is based on censoring. To implement it, we need to know
the number of unpublished studies as well as the number of subjects used in each
of the unpublished studies. In other words, some information about the unobserved
latent data must be available. For this method, we make a practical proposal that only
requires the user to guess the number of unpublished studies.

In the litterature on publication bias, the funnel plot is often advocated as a tool
for detecting the bias and even correcting for it. In our opinion, however, this is not
a safe method and we do not recommend its use.

For further reading on these topics, we invite the reader to consult Chapter 15 at
http://www.cochrane-net.org/openlearning as well as the article by
Givens et al. (1997).
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Large-sample properties
of variance stabilizing
transformations

27.1 Existence of the variance stabilizing
transformation

The following description of (asymptotic) univariate variance stabilizing transforma-
tions (vst’s) is taken from Holland (1973), which gives a nicely written account of
the subject.

Let Xn be a real-valued random variable with distribution depending upon a real
parameter θ ∈ D, an open interval in R . Xn may for example be an estimator based
on a sample of size n. Suppose that for every θ ∈ D the quantity

√
n(Xn − θ) →

N(0, σ2(θ)) in distribution. The asymptotic variance σ2(θ) > 0 is assumed to be
continuous in D.

An asymptotic vst is a one-to-one, continuously differentiable mapping f : D →
R

1 such that
√

n(f(Xn) − f(θ)) → N(0, 1) in distribution. Since Xn → θ in proba-
bility, Xn ∈ D with probability as close to 1 as needed for n large enough. Therefore
f is defined for the possible values of Xn with a probability approaching 1 as n → ∞.
This situation is, of course, not satisfactory in practice. As a remedy and in order to
apply a vst, one may have to extend the definition of f(·).

Assume that f exists and has a differential at each θ ∈ D, i.e. if |xn − θ| =
O(n−1/2) then f(xn) = f(θ) + (xn − θ)f ′(θ) + o(n−1/2). For the random variable

Meta Analysis: A Guide to Calibrating and Combining Statistical Evidence    E. Kulinskaya, S. Morgenthaler, and
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Xn the same is true in probability, resulting in
√

n(f(Xn) − f(θ)) → N(0, σ2(θ)(f ′(θ))2)

in distribution. Since only continuously differentiable solutions of the differential
equation σ2(θ)(f ′(θ))2 = 1 are acceptable the sign should be 1 or −1 for all θ ∈ D.
In summary, the one-dimensional asymptotic vst problem always has a one-to-one
continuously differentiable solution given by

f(θ) = f(θ0) ±
∫ θ

θ0

(σ(t))−1dt. (27.1)

The solution is unique up to an additive constant and the sign of its derivative. The
only requirement is that σ(θ) is a continuous nonzero function of θ in D, it does not
have to be one-to-one and may be constant. In the following, we will choose the
positive sign in the defining equation for the vst. The additive constant allows us to
fix the value of the vst at one point, for example, f(θ0) = 0.

So far we were looking at the asymptotic vst valid in the n−1/2-vicinity of θ0. But
often the vst is defined on a much larger region, or even globally, as will be seen in the
examples in the next section. Interestingly, in all these examples, and in the majority
of variance functions for traditional exponential families, the variance σ2(θ) is a first-
or second-degree polynomial in θ. In such cases a global vst exists and is a rather
simple transformation.

We also were working in a most simple case of σ2 = σ2(θ), but a more general
case is σ2 = σ2(ξ; θ), where ξ is a nuisance parameter. An example is the vst for
the Student t, where the variance is the nuisance parameter. The presence of nui-
sance parameters modifies the above asymptotic theory as follows. Equation (27.1)
changes to

f(θ|ξ) = f(θ0|ξ) +
∫ θ

θ0

(σ(ξ; t))−1dt, (27.2)

which means that the vst depends on ξ. Suppose ξ̂ is asymptotically independent
of Xn = θ̂, and ξ̂ → ξ in probability, then we may solve (27.2) with ξ̂ substituted
for ξ.

The asymptotic vst is based on the asymptotic variance σ2(θ) and Equation (27.1).
In a finite sample setting, approximate variance stabilization can be achieved by
applying (27.1) to the actual variance σ2

n(θ). We denote the finite sample vst by fn(·).
When n → ∞, the vst has the effect of rendering the asymptotic variance equal to 1
for all θ. For finite n, this holds only approximately, but in practice often goes a long
way towards this goal.

27.2 Tests and effect sizes
Let us now compare tests and effect sizes before and after the vst. In the previous
section we considered an estimator Xn = θ̂. Its mean E(Xn) = θ was the main param-
eter of interest. In a slightly more general setting we shall consider test statistics Xn

of a null hypothesis involving a real-valued parameter ζ. Denote the expectation of
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the test statistic θ(ζ) = Eζ(Xn). Assume without loss of generality that under the null
hypothesis ζ = 0 and let θ0 = θ(0). The effect size associated with the test based on
Yn = √

n (Xn − θ0) is

δ = (θ − θ0)/σ(θ) = (θ − θ0)f
′(θ), (27.3)

where f(·) is the asymptotic vst for Xn.
The Pitman efficacy of a test describes the behavior of the asymptotic power. The

Pitman efficacy of the test Yn is

eY = (dθ(0)/dζ) σ(θ0)
−1 = (dθ(0)/dζ) f ′(θ0).

This result holds if θ(ζ) is differentiable in ζ at 0 with a positive derivative and σ is
continuous at θ0 and nonzero. The ARE of such tests is the ratio of squared efficacies,
see Theorem 14.19 from van der Vaart (1998).

After application of the vst we obtain what we call evidence statistic throughout
this book. This is another test, which has the form Tn = √

nf(Xn). For Tn we have
weak convergence to a unit normal distribution

√
n(f(Xn) − f(θ)) → N(0, 1). This

new test statistic thus has an effect size of

f(θ) − f(θ0). (27.4)

It is easy to see that the Pitman efficacy of a test is not affected by the application of
a vst. The two tests based on Yn and Tn are asymptotically equivalent.

Lemma 27.1 The Pitman efficacy of a test remains constant under the application
of the variance stabilizing transformation. In this sense, the tests Yn and Tn are
equivalent.

The proof is straightforward. The efficacy of Tn is computed with the help of
(27.4) and equals eT = df(θ)/dζ, where the derivative is evaluated at ζ = 0. The
chain rule then leads to eT = (dθ(0)/dζ) f ′(θ0) = eY .

Comparing the original effect size δ and the effect size after variance stabilization
f(θ) − f(θ0) on an interval (θ0, θ) we obtain the following result.

Lemma 27.2 Suppose the vst f(·) is twice continuously differentiable. It follows that
the effect size of the transformed test Tn is larger than the effect size of the original
test Yn if and only if (iff) the vst is concave on (θ0, θ). This holds iff dσ/dθ > 0, which
means that σ is an increasing function of the parameter θ.

Proof: We expand f(θ0) around the θ and obtain f(θ0) = f(θ) + f ′(θ)(θ0 − θ) +
{f ′′(c)/2} (θ − θ0)

2, for some c lying between θ0 and θ. When applying this to the
effect size for the test based on Tn we have

f(θ) − f(θ0) = (θ − θ0)f
′(θ) − (θ − θ0)

2

2
f ′′(c)

= δ − (θ − θ0)
2

2
f ′′(c).



244 LARGE-SAMPLE PROPERTIES OF VSTs

The transformed effect size is thus larger than the original effect size iff the vst is
concave on (θ0, θ), i.e. iff f ′′(θ) < 0.

Recall that f ′(θ) = σ(θ)−1. From this it follows that f ′′(θ) = −(σ(θ))−2dσ/dθ.
This shows that the vst f(·) is concave on (θ0, θ) iff dσ/dθ > 0.

Example 1. Poisson counts

We observe a sample of counts, each having a Poisson distribution with expectation µ.
The estimate for µ is the sample mean Xn, which satisfies

√
n(Xn − µ) → N(0, µ).

To test µ = µ0 versus µ > µ0 we use Yn = √
n(Xn − µ0). The asymptotic vst for

Xn is up to an additive constant and a sign change equal to twice the square root, so
that Tn = √

nf(Xn) = 2
√

Yn.
The effect size before applying the vst is δ = (µ − µ0)/

√
µ. The transformed

effect is 2(
√

µ − √
µ0). The derivative of σ(µ) is positive for µ > 0, therefore the

vst increases the effect size.

Example 2. The t-test

The parameter of interest when using the t-statistic is the mean µ, but we are in the
presence of a nuisance parameter, the variance σ2. The test is constructed with the
help of Xn and sn, the sample mean and standard deviation, which are asymptoti-
cally independent. We reject µ = µ0 in favor of µ > µ0 for large values of Yn =√

n(Xn − µ0)/sn. A relevant standardized effect is Cohen’s d = (µ − µ0)/σ, and
Yn = √

nd̂n. The statistic Yn is approximately normal with mean
√

nd and variance
σ2(d) = 1 + d2/2 and the corresponding finite sample vst is discussed in Chapter 20.
One finds

fn(d̂n) =
√

2 ln

(
d̂n/

√
2 +

√
1 + (d̂n/

√
2)2

)
.

The effect size before applying the vst is δ = d/
√

1 + d2/2. For the statistic Tn =√
nfn(d̂n), the effect size is f(d) = √

2 ln(d/
√

2 +
√

1 + d2/2). The two effect sizes
are very close for small values of d. Say for d = 0.05, δ = 0.049967 and f(d) =
0.04999. These functions grow very far apart for large values of d, with δ → √

2 in
the limit, whereas f(δ) is unlimited.

Example 3. Binomial proportions

Here σ(p) = √
p(1 − p), and δ = (p − p0)/σ(p). The sign sgn(dσ/dθ) =

sgn((1/2) − p). The sign is constant on (p0, p) if p0 and p are at the same side
of 1/2. When p0 < p < 0.5 the vst should result in increased effect size. When
0.5 < p0 < p the transformed effect size should be smaller. The transformed effect
size is

f(δ) = arcsin(1 − 2p0)− arcsin

(
1−2p0−δ

√
1+δ2−(1−2p0)2

1+δ2

)

. (27.5)
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When p0 = 1/2,

f(δ) = arcsin

(
δ√

1 + δ2

)
= arctan(δ).

This shows that |f(δ)| ≤ |δ| for p0 = 1
2 .

Example 4. The sign test

Given n observations from a continuous distribution F(µ, σ) with unknown median
µ and scale parameter σ, we wish to test µ = 0 in favor of µ > 0. The sign statistic
Sn =∑i I{Xi > 0} ∼ Binomial (n, pµ), with pµ = 1 − F(−µ/σ). This is exactly
the previous example with p0 = 1/2 and pµ > 1/2. The effect size δ is positive, and
it is decreased by the vst.

27.3 Power and efficiency
The power of an asymptotically normal α-level test based on Yn is approximately
equal to 1 − �(z1−α − √

nδ), where δ is given by (27.3). The sample size of a test
with power 1 − β can be calculated from

√
nY = δ−1(z1−α + z1−β). (27.6)

Similarly, after the vst, the test based on Tn has power 1 − �(z1−α − √
n(f(θ) −

f(θ0)), and the sample size is calculated from

√
nT = (f(θ) − f(θ0))

−1(z1−α + z1−β). (27.7)

Note that (27.6) implies that δ = (z1−α + z1−β)/
√

nY , which is small for large sample
sizes. Recall from Lemma 27.1 that for small values of δ we found f(θ) = f(θ0) +
(θ − θ0) f ′(0) + o(δ), which means that for large sample sizes (27.6) and (27.7) give
approximately identical sample sizes, since the above implies that f(θ) − f(θ0) ≈
δ. In many practical cases, though, this asymptotic equivalence is not sufficiently
accurate and the two sample sizes nY and nT may be quite different. The ratio of
(nominal) sample sizes is

nY/nT = ((f(θ) − f(θ0))/δ)
2. (27.8)

The following result is a corollary of Lemma 27.2.

Corollary 27.3 Asymptotic sample size calculation based on Yn results in a larger/
smaller sample size than the one based on Tn (i.e. nY > nT ) iff the vst is concave
(dσ/dθ > 0)/convex (dσ/dθ < 0).

Example 5. The t-test (continued)

The effect size of the t-statistic is δ = d/
√

1 + d2/2 and becomes
√

2 ln(d/
√

2 +√
1 + d2/2) after the stabilizing transformation, where d = (µ − µ0)/σ specifies
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the alternative. The ratio of the nominal sample sizes is

nY/nT = (2 + d2)d−2[ln(d/
√

2 +
√

1 + d2/2)]2.

Fixing the sample size n and the false positive and false negative error rates α and β,
one can solve Equation (27.6) for d. Substituting the result in the above equation, we
obtain an expression for the ratio of nominal sample sizes nY/nT for a given sample
size, level and power, denoted by r(Y, T |n, α, β). We leave it to the reader to check
that this leads to

r(Y, T |n, α, β) = 2n

(z1−α + z1−β)2

[

ln
(z1−α + z1−β) + √

2n
√

2n − (z1−α + z1−β)2

]2

. (27.9)

This ratio of sample sizes is a decreasing function of all three parameters, the
sample size and the false positive and false negative error rates α and β. The limit
of r(Y, T |n, α, β) when the sample size n → ∞ is 1, but for moderate values of n

(between 10 and 100) the ratio is considerably greater than 1. Some examples are
given in Table 27.1.

Example 6. The sign test (continued)

Consider testing H0 : pµ = 1 − F(−µ/σ) = 1/2 versus HA : pµ > 1/2. The effect
size of the sign statistic is δ = (pµ − 1/2)/

√
pµ(1 − pµ). After transformation to

evidence via the vst, the effect size is f(δ) = arctan(δ). The ratio of the sample sizes is
nY/nT = (δ/ arctan(δ))2. Substituting δ = (z1−α + z1−β)/

√
n in the above equation,

we obtain an expression for the ratio r(Y, T |n, α, β) for a given triplet (n, α, β). This
is an increasing function of the error rates α and β, and of the sample size n. The
limit when the sample size n → ∞ is 1, but for moderate values of n (between 10
and 100) the ratio r(Y, T |n, α, β) is considerably smaller than 1, i.e. the asymptotic

Table 27.1 Values of the ratio of nominal sample sizes r(Y, T |n, α, β) calculated
from Equation (27.9) for t-test (columns 2–4) and the sign test (columns 5–7; see the
text for explanation) for α = 0.05, β = 0.05, 0.10 and 0.20 and for various
sample sizes n.

t-test Sign test

n β = 0.2 β = 0.1 β = 0.05 β = 0.2 β = 0.1 β = 0.05

10 1.27 1.43 1.64 0.72 0.65 0.60
15 1.16 1.24 1.34 0.79 0.73 0.69
20 1.12 1.17 1.23 0.83 0.78 0.74
25 1.09 1.13 1.17 0.86 0.82 0.78
30 1.07 1.11 1.14 0.88 0.84 0.81
35 1.06 1.09 1.12 0.90 0.86 0.83
40 1.05 1.08 1.10 0.91 0.88 0.85
45 1.05 1.07 1.09 0.92 0.89 0.86
50 1.04 1.06 1.08 0.92 0.90 0.88
100 1.02 1.03 1.04 0.96 0.95 0.93
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Table 27.2 Comparison of sample sizes for the t-test at α = 0.05,
β = 0.05, 0.10 and 0.20. The sample sizes were selected for the t-test (nt) and
calculated using Equation (27.7) for the evidence-based test (nT ). To do so, the value
of δt = (µ − µ0)/σ was calculated with the help of the NCSS-PASS (2005)
software in order to match the chosen nt , α and β.

nt β δt f(δt) nT nt/nT

10 0.05 1.131 1.036 10.09 0.99
15 0.05 0.894 0.843 15.22 0.99
20 0.05 0.764 0.731 20.25 0.99
25 0.05 0.677 0.653 25.34 0.99
30 0.05 0.615 0.597 30.35 0.99
35 0.05 0.568 0.554 35.29 0.99
40 0.05 0.529 0.517 40.43 0.99
45 0.05 0.498 0.488 45.40 0.99
50 0.05 0.472 0.464 50.34 0.99
100 0.05 0.331 0.328 100.56 0.99
10 0.1 1.005 0.935 9.79 1.02
15 0.1 0.795 0.758 14.90 1.01
20 0.1 0.679 0.655 19.94 1.00
25 0.1 0.603 0.586 24.93 1.00
30 0.1 0.547 0.534 30.01 1.00
35 0.1 0.505 0.495 34.97 1.00
40 0.1 0.471 0.463 40.00 1.00
45 0.1 0.443 0.436 45.04 1.00
50 0.1 0.420 0.414 49.95 1.00
100 0.1 0.295 0.293 99.82 1.00
10 0.2 0.853 0.808 9.46 1.06
15 0.2 0.675 0.652 14.56 1.03
20 0.2 0.577 0.562 19.57 1.02
25 0.2 0.512 0.501 24.59 1.02
30 0.2 0.465 0.457 29.60 1.01
35 0.2 0.429 0.423 34.61 1.01
40 0.2 0.400 0.395 39.66 1.01
45 0.2 0.376 0.372 44.75 1.01
50 0.2 0.357 0.353 49.53 1.01
100 0.2 0.250 0.249 99.94 1.00

sample size calculation based on the standard normal approximation to the sign test
results in a considerably smaller sample size nY in comparison to the evidence-based
sample size calculation nT . Some examples are given in the last three columns of
Table 27.1.

The results of these two examples are rather striking. The evidence-based sample
size calculations for the t-test for sample sizes up to 100 give considerably smaller
values of n, whereas for the sign test they result in considerably larger values of
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Table 27.3 Comparison of sample sizes for the sign test at nominal level α = 0.05
and for three values of the type II error β. The sample size nS was chosen,
whereas nY and nT were calculated with the help of pµ, the alternative
corresponding to the triplet (nS, α, β). These were computed by the program
NCSS-PASS (2005).

nS pµ α β δ nT nY nT − nS nS − nY

10 0.963 0.011 0.05 2.460 11.08 2.57 1.08 7.43
15 0.903 0.018 0.05 1.365 15.98 7.56 0.98 7.44
20 0.860 0.021 0.05 1.040 20.95 12.55 0.95 7.45
25 0.830 0.022 0.05 0.877 25.92 17.47 0.92 7.53
30 0.779 0.049 0.05 0.672 31.02 24.05 1.02 5.95
35 0.764 0.045 0.05 0.623 35.99 28.78 0.99 6.22
40 0.753 0.040 0.05 0.586 40.97 33.53 0.97 6.47
45 0.743 0.036 0.05 0.556 45.93 38.25 0.93 6.75
50 0.735 0.032 0.05 0.532 50.95 43.03 0.95 6.97
100 0.664 0.044 0.05 0.346 100.98 93.59 0.98 6.41
10 0.946 0.011 0.1 1.963 10.61 3.33 0.61 6.67
15 0.878 0.018 0.1 1.156 15.60 8.58 0.60 6.42
20 0.834 0.021 0.1 0.898 20.60 13.67 0.60 6.33
25 0.804 0.022 0.1 0.765 25.58 18.64 0.58 6.36
30 0.752 0.049 0.1 0.585 30.71 25.15 0.71 4.85
35 0.739 0.045 0.1 0.544 35.71 29.94 0.71 5.06
40 0.729 0.040 0.1 0.514 40.67 34.70 0.67 5.30
45 0.720 0.036 0.1 0.490 45.64 39.46 0.64 5.54
50 0.713 0.032 0.1 0.470 50.61 44.22 0.61 5.78
100 0.647 0.044 0.1 0.306 100.72 94.83 0.72 5.17
10 0.917 0.011 0.2 1.508 10.16 4.34 0.16 5.66
15 0.843 0.018 0.2 0.942 15.23 9.80 0.23 5.20
20 0.799 0.021 0.2 0.745 20.25 14.96 0.25 5.04
25 0.770 0.022 0.2 0.641 25.25 19.97 0.25 5.03
30 0.718 0.049 0.2 0.486 30.41 26.35 0.41 3.65
35 0.707 0.045 0.2 0.455 35.39 31.18 0.39 3.82
40 0.698 0.040 0.2 0.432 40.37 35.98 0.37 4.02
45 0.691 0.036 0.2 0.413 45.34 40.78 0.34 4.22
50 0.685 0.032 0.2 0.398 50.34 45.60 0.34 4.40
100 0.626 0.044 0.2 0.260 100.41 96.12 0.41 3.88

n than the simple asymptotic approximation of the traditional test statistic would
lead one to believe. How do the vst -based sample sizes compare with exact sam-
ple sizes obtained from the noncentral t or from the binomial distribution? The
NCSS-PASS1 (2005) software was used to obtain the values of δt = (µ − µ0)/σ

1Power analysis and sample size software produced by NCSS (http://www.ncss.com)
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(effect size for t-test) for given values of n, α and β (see Table 27.2). Then the vst was
applied to calculate the effect size of the evidence-based t-test, f(δt). Finally, the
sample size nT was calculated with (27.7). Surprisingly, the sample sizes agree down
to n = 10, which shows that sample size computations based on the evidence are very
accurate. Note that minor differences are explained by using exact and not rounded-up
sample sizes for nT .

For the sign test at nominal level α = 0.05 and fixed β, the values of the actual
levels α and Pµ (probability under alternative) were calculated by the NCSS-PASS
(2005) for a given sample size nS . Then effect size δ (effect size for sign test) and
transformed effect size f(δ) were calculated as in Example 4, and were used to calcu-
late approximate sample sizes nY and nT using not the nominal, but the true α level.
Table 27.3 contains the numerical values. The differences between the calculated
sample sizes and the actual sample sizes derived from the program are given in last
two columns. The evidence-based sample size is within 1 of the true sample size,
whereas the classic asymptotic sample size calculation substantially underestimates
the sample size needed.

27.4 Summary
In this chapter we have seen that under an assumption of asymptotic normality and
some standard regularity conditions, the vst always exists. Evidence obtained via a
vst is also asymptotically normal. Its ARE to the original test is 1. We have also demon-
strated that the vst may both increase and decrease (positive) effect size, depending on
the behavior of variance as the function of the distance from the null. This difference
of the effect sizes may be very large, even unlimited. When the variance increases,
the vst increases the effect size. When the opposite is true, the variance is the highest
at the null (see Examples 3 and 4 above). In this case the effect size decreases when
stabilizing the distribution. Finally, sample size calculations based on variance stabi-
lizing transformations perform considerably better than standard asymptotic sample
size calculations for sample sizes up to 100, as was shown for the t-test and the sign
test.
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