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To my parents 

Things are always at their best in the beginning. 
Blaise Pascal, Lettres Provinciales [1656-16571 



Preface 

Since its inception by Perron and Frobenius, the theory of non-negative 
matrices has developed enormously and is now being used and extended in 
applied fields of study as diverse as probability theory, numerical analysis, 
demography, mathematical economics, and dynamic programming, while its 
development is still proceeding rapidly as a branch of pure mathematics in 
its own right. While there are books which cover this or that aspect of the 
theory, it is nevertheless not uncommon for workers in one or another branch 
of its development to be unaware of what is known in other branches, even 
though there is often formal overlap. One of the purposes of this book is to 
relate several aspects of the theory, insofar as this is possible. 

The author hopes that the book will be useful to mathematicians; but in 
particular to the workers in applied fields, so the mathematics has been kept 
as simple as could be managed. The mathematical requisites for reading it 
are: some knowledge of real-variable theory, and matrix theory; and a little 
knowledge of complex-variable; the emphasis is on real-variable methods. 
(There is only one part of the book, the second part of 55 .5 ,  which is of rather 
specialist interest, and requires deeper knowledge.) Appendices provide brief 
expositions of those areas of mathematics needed which may be less gen- 
erally known to the average reader. 

The first four chapters are concerned with finite non-negative matrices, 
while the following three develop, to a small extent, an analogous theory for 
infinite matrices. It has been recognized that, generally, a research worker 
will be interested in one particular chapter more deeply than in others; 
consequently there is a substantial amount of independence between them. 
Chapter 1 should be read by every reader, since it provides the foundation 
for the whole book; thereafter Chapters 2-4 have some interdependence as 
do Chapters 5-7. For the reader interested in the infinite matrix case, Chap- 

vii 
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ter 5 should be read before Chapters 6 and 7. The exercises are intimately 
connected with the text, and often provide further development of the theory 
or deeper insight into it, so that the reader is strongly advised to (at least) 
look over the exercises relevant to his interests, even if not actually wishing 
to do them. Roughly speaking, apart from Chapter 1, Chapter 2 should be of 
interest to students of mathematical economics, numerical analysis, combin- 
atorics, spectral theory of matrices, probabilists and statisticians; Chapter 3 
to mathematical economists and demographers; and Chapter 4 to probabi- 
lists. Chapter 4 is believed to contain one of the first expositions in text-book 
form of the theory of finite inhomogeneous Markov chains, and contains 
due regard for Russian-language literature. Chapters 5-7 would at present 
appear to be of interest primarily to probabilists, although the probability 
emphasis in them is not great. 

This book is a considerably modified version of the author's earlier book 
Non-Negative Matrices (Allen and Unwin, London,Wiley, New York, 1973, 
hereafter referred to as N N M ) .  Since N N M  used probabilistic techniques 
throughout. even though only a small part of it explicitly dealt with probabi- 
listic topics, much of its interest appears to have been for people acquainted 
with the general area of probability and statistics. The title has, accordingly, 
been changed to reflect more accurately its emphasis and to account for the 
expansion of its Markov chain content. This has gone hand-in-hand with a 
modification in approach to this content, and to the treatment of the more 
general area of inhomogeneous products of non-negative matrices, via 
"coefficients of ergodicity," a concept not developed in N N M .  

Specifically in regard to modification, 452.5-42.6 are completely new, and 
$2.1 has been considerably expanded, in Chapter 2. Chapter 3 is completely 
new, as is much of Chapter 4. Chapter 6 has been modified and expanded 
and there is an additional chapter (Chapter 7) dealing in the main with the 
problem of practical computation of stationary distributions of infinite 
Markov chains from finite truncations (of their transition matrix), an idea 
also used elsewhere in the book. 

It will be seen, consequently, that apart from certain sections of Chapters 
2 and 3, the present book as a whole may be regarded as one approaching 
the theory of Markov chains from a non-negative matrix standpoint. 

Since the publication of N N M ,  another English-language book dealing 
exclusively with non-negative matrices has appeared (A. Berman and R. J. 
Plemmons, Nonnegatice Matrices in the Mathematical Sciences, Academic 
Press, New York, 1979). The points of contact with either N N M  or its 
present modification (both of which it complements in that its level, 
approach, and subject matter are distinct) are few. The interested reader may 
consult the author's review in Linear and Multilinear Algebra, 1980,9; and 
may wish to note the extensive bibliography given by Berman and Plem- 
mons. In the present book we have, accordingly, only added references to 
those of N N M  which are cited in new sections of our text. 

In addition to the acknowledgements made in the Preface to N N M ,  the 
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author wishes to thank the following: S. E. Fienberg for encouraging him to 
write $2.6 and Mr. G. T. J. Visick for acquainting him with the non- 
statistical evolutionary line of this work; N. Pullman, M. Rothschild and 
R. L. Tweedie for materials supplied on request and used in the book; and 
Mrs. Elsie Adler for typing the new sections. 

Sydney, 1980 E. SENETA 
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Glossary of Notation and Symbols 

I 
i~ R 

(6 c Y or 
G Y 
(nIT 

4 3 4 ( s )  
(n)'(O) 
(4" 

M.C. 
P; 

G 1 
M 
G 2 

G 3 

usual notation for a non-negative matrix. 
typical notation for a matrix. 
the transpose of the matrix A. 
the (i, j) entry of the matrix A. 
the incidence matrix of the non-negative matrix T .  
usual notation for a stochastic matrix. 
zero; the zero matrix. 
typical notation for a column vector. 
the column vector with all entries 0. 
the column vector with all entries 1. 
the matrix PI has the same incidence matrix as the 
matrix P ,  . 
the minimum among all strictly positive elements. 
k-dimensional Euclidean space. 
set of strictly positive integers; convergence parameter of 
an irreducible matrix T ;  a certain submatrix. 
the identity (unit) matrix; the set of inessential indices. 
i is an element of the set R. 

V is a subset of the set 9. 
(n x n) northwest corner truncation of T 
the principal minor of ( s l  - T). 
det [(,,I - B, (,,TI. 
(n)A ( R )  

Markov chain. 
mathematical expectation operator. 
class of (11 x ! I )  regular matrices. 
class of (11 x n)  Markov matrices. 
class of stochastic matrices defined on p. 143. 
class of (n x n) scrambling matrices. 



CHAPTER 1 

Fundamental Concepts and Results 
in the Theory of Non-negative 
Matrices 

We shall deal in this chapter with square non-negative matrices T  = {ti,), i, 
j = 1, . . . , n ;  i.e. t,j 2 0  for all i, j, in which case we write T  2 0. If, in fact, 
t i j  > 0  for all i, j we shall put T > 0. 

This definition and notation extends in an obvious way to row vectors 
( X I )  and column vectors (y), and also to expressions such as, e.g. 

T > B o T - B > O  

where T,  B  and 0  are square non-negative matrices of compatible 
dimensions. 

Finally, we shall use the notation x' = {x i ) ,  y = {y i )  for both row vectors 
x' or column vectors y ;  and T k  = {tfj)} for kth powers. 

Definition 1.1. A square non-negative matrix T is said to be primitive if there 
exists a positive integer k such that T k  > 0. 

It is clear that if any other matrix has the same dimensions as T, and 
has positive entries and zero entries in the same positions as T,  then this will 
also be true of all powers Tk ,  T k  of the two matrices. 

As incidence matrix T corresponding to a given T  replaces all the positive 
entries of T  by ones. Clearly is primitive if and only if T  is. 

1.1 The Perron-Frobenius Theorem for 
Primitive Matrices1 

Theorem 1.1. Suppose T is an n x n non-negative primitive matrix. Then there 
exists an eigenvalue r such that: 

( a )  r real, >0; 

' This theorem is fundamental to the entire book. The proofis necessarily long; the reader may 
wish to defer detailed consideration of it. 
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(b)  with r can be associated strictly positice left and right eigencectors; 
(c )  r > J A  1 for any eigentlalue II # r ;  
(d)  the eigenvectors associated with r are unique to constant multiples. 
(e )  If 0 I B I T and is an eigenvalue of 3, then I r. Moreooer, 

1 j3 1 = r implies B = T .  
( f )  r is a simple root of the characteristic equation of T .  

PROOF. (a )  Consider initially a row vector x' 2 O', # O r ;  and the product x lT .  
Let 

. xi xi t i j  
r (x )  = rnin - 

j x j  

where the ratio is to be interpreted as 'co' if x j  = 0. Clearly, 0 5 r(x)  < oo. 
Now since 

x j r ( x )  I 1 xi t i j  for each j, 
I 

and so xr l r ( x )  5 x'T1. 

Since T1 I K1 for K = maxi xj t i j ,  it follows that 

r ( x )  I x1 lK/x ' l  = K = max x ti j  
i j 

so r (x )  is uniformly bounded above for all such x. We note also that since T ,  
being primitive, can have no column consisting entirely of zeroes, r(1) > 0, 
whence it follows that 

satisfies 

Cixitij r = sup min -- 
x t ~  j X j  
x f O  

0 < r ( l ) I  r I K < co. 
Moreover, since neither numerator or denominator is altered by the norm- 
ing of x, 

. xi xi tij 
r = sup rnin - 

x>_O j xj 
x'x = 1 

Now the region { x ;  x 2 0, x'x = 1 )  is compact in the Euclidean n-space R,, 
and the function r (x )  is an upper-semicontinuous mapping of this region 
into R,;  hence' the supremum, r is actually attained for some x, say 2. Thus 
there exists i 2 0, # 0 such that 

see Appendix C 
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for each j = 1,  . . . , n ;  with equality for some element of .i-. 
Now consider 

z' = i ' T  - r'i' 2 0'. 

Either z = 0, or not; if not, we know that for k 2 k , ,  T k  > 0 as a con- 
sequence of the primitivity of T,  and so 

{ ( ; ' T ~ ) T J ~  
> r, each j ,  

{it TkI j  

where the subscript j refers to the jth element. This is a contradiction to the 
definition of r. Hence always 

whence i ' T  = ri' 

which proves (a ) .  

(6) By iterating (1.3) 

i' ~h = ,.ki' 

and taking k sufficiently large T k  > 0, and since i 2 0, # 0, in fact i '  > 0'. 

(c) Let i be any eigenvalue of T.  Then for some x # 0 and possibly complex 
valued 

whence 

so that 

where the right side is to be interpreted as ' cc ' for any x j  = 0. Thus 

and by the definition (1.1) of r 

I % /  r r .  

Now suppose I  I  = r; then 
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which is a situation identical to that in the proof of part (a), (1.2); so that 
eventually in the same way 

x I x i l t i j = r l x j l , > O ;  j = 1 , 2  , , . . ,  n (1.5) 
I 

where k can be chosen so large that T k  > 0, by the primitivity assumption on 
T ;  but for two numbers y ,  6 + 0, / "y' 1 1 = 1 y 1 + f 1 1 if and only if 7 ,6  have 
the same direction in the complex plane. Thus writing xj  = I x j  / exp iQj, 
(1.6) implies Q j  = Q is independent of j, and hence cancelling the exponential 
throughout (1.4) we get 

where, since 1 xi I > 0 all i, i is real and positive, and since we are assuming 
I i I = r, 2 = r (or the fact follows equivalently from (1.5)). 

(d) Suppose x' # 0' is a left eigenvector (possibly with complex elements) 
corresponding to r. 

Then, by the argument in (c), so is x'+ = ( [ x i  1 )  # 0', which in fact satisfies 
x +  > 0. Clearly 

is then also a left eigenvector corresponding to r,  for any c such that g  # 0 ;  
and hence the same things can be said about g  as about x ;  in particular 
g+ > 0 .  

Now either x  is a multiple of 2 or not; if not c can be chosen so that g  + 0 ,  
but some element of g  is; this is impossible as g+ > 0 .  

Hence x' is a multiple of 2. 
Right eigenvectors. The arguments (a)-(d) can be repeated separately for 
right eigenvectors; (c) guarantees that the r produced is the same, since it is 
purely a statement about eigenvalues. 

(e) Let y f 0  be a right eigenvector of B corresponding to B. Then taking 
moduli as before 

so that using the same i as before 

and since i ' y ,  > 0, 
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Suppose now 1 B I = r ;  then from (1.7) 

whence, as in the proof of (b) ,  it follows Ty+ = ry, > 0 ;  whence from (1.7) 

so it must follow, from B I T, that B = T. 

( f )  The following identities are true for all numbers, real and complex, 
including eigenvalues of T : 

(XI - T) Adj (XI - T) = det (XI - T)I\ 
Adj (xl - T)(xI - T )  = det (XI - T)I ( (1.8) 

where I is the unit matrix and ' det ' refers to the determinant. (The relation is 
clear for x not an eigenvalue, since then det (XI - T)  # 0; when x is an 
eigenvalue it follows by continuity.) 

Put x = r :  then any one row of Adj (rI - T )  is either (i) a left eigenvec- 
tor corresponding to r ;  or (ii) a row of zeroes; and similarly for columns. By 
assertions (b) and (d) (already proved) of the theorem, Adj (r l  - T )  is either 
(i) a matrix with no elements zero; or (ii) a matrix with all elements zero. We 
shall prove that one element of Adj (r l  - T)  is positive, which establishes 
that case (i) holds. The (n, n) element is 

where (,_,, T is T with last row and column deleted; and (,_,,I is the 
corresponding unit matrix. Since 

the last since T is primitive (and so can have no zero column), it follows from 
(e) of the theorem that no eigenvalue of (,_ ,, T can be as great in modulus as 
r. Hence 

as required; and rnoreocer we deduce that Adj ( r l  - T )  has all its elements 
positice. 

Write 4(x) = det (x l  - T); then differentiating (1.8) elementwise 

d 
Adj (XI - T) + (XI - T)- {Adj (xl  - T)) = @(x)l 

dx 

Substitute x = r, and premultiply by i'; 

(0' < )it Adj (rI - T )  = @(r)i t  

since the other term vanishes. Hence @(r) > 0 and so r is simple. 0 
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Corollary 1. 
11 n 

min C t i j  I r I max C tij 
I j = 1  I j = 1  

with equalitj. on either side implying equality throughout (i.e. r can only be 
equal to the maximal or minimal row sum if all row sums are equal). 

A similar proposition holds for column sums. 

PROOF. Recall from the proof of part (a) of the theorem, that 

0 < r(1) = min 1 tij I r I K = max C tij < 30. (1.10) 
j i i j 

Since T' is also primitive and has the same r, we have also 

min C tji I r I max 1 tji 
j i i j 

and a combination of (1.10) and (1.11) gives (1.9). 
Now assume that one of the equalities in (1.9) holds, but not all row sums 

are equal. Then by increasing (or, if appropriate, decreasing) the positive 
elements of T (but keeping them positive), produce a new primitive matrix, 
with all row sums equal and the same r, in view of (1.9); which is impossible 
by assertion (e) of the theorem. 17 

Corollary 2. Let v' and w be positire left and right eigen~ectors corresponding 
to r, normed so that r'w = 1. Then 

Adj (r l  - T)/@(r) = wv' 

To see this, first note that since the columns of Adj (r l  - T )  are multiples 
of the same positive right eigenvector corresponding to r (and its rows of the 
same positive left eigenvector) it follows that we can write it in the form yx' 
where y is a right and x' a left positive eigenvector. Moreover, again by 
uniqueness, there exist positive constants c,, c, such that y = c, w,  x' = c, v', 
whence 

Adj (r l  - T) = c1 c, wv'. 

Now, as in the proof of the simplicity of r, 

vr@(r) = 0' Adj ( r l  - T) = c, c, v'wa' = c, c, v' 

SO that v1n@'(r) = c, c, v'w 

i.e. c,c, = @(r) as required. 0 

(Note that c, c, = sum of the diagonal elements of the adjoint = sum of the 
principal (n - 1) x (n - 1) minors of ( r l  - T).) 

Theorem 1.1 is the strong version of the Perron-Frobenius Theorem 
which holds for primitive T ;  we shall generalize Theorem 1.1 to a wider class 
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of matrices, called irreducible, in $1.4 (and shall refer to this generalization as 
the Perron-Frobenius Theory). 

Suppose now the distinct eigenvalues of a primitive T are r, i, . . . . , A,,  
t 5 n where r > I i, I > I i, / > . . . > 1 I,, 1 .  In the case 1 E., I = I),, 1 we stipu- 
late that the multiplicity m2 of %, is at least as great as that of I,,, and of aily 
other eigencalue having the same modulus as 2 , .  

It may happen that a primitive matrix has i., = 0; an example is a matrix 
of form 

u b c  
(1.12) 

for which r = a + b + c. This kind of situation gives the following theorem 
its dual form, the example (1.12) illustrating that in part ( b )  the bound 
( n  - 1) cannot be reduced. 

Theorem 1.2. For a prirniti1.e matrix T :  

( a )  i f '  R ,  + 0, then us k + cc 

elementwise, where s = m, - 1 ; 
( b )  i f  i., = 0, thet~,for k 2 n - 1 

T k  = rkWjt''. 

In both cases w ,  o' are any positive right und left elgencectors corresponding to 
r guurunteed by Theorem 1.1, prociding only they are norrned so that o'w = 1 .  

PROOF. Let R ( z )  = ( I  - z T ) -  ' = (r,,(z)j, z # 7.; l ,  i = 1 ,  2 , .  . . (where i1 = r) .  
Consider a general element of this matrix 

where ini is the multiplicity of iLi and c l j ( z )  is a polynomial in z, of degree at 
most n - 1 (see Appendix B). 

Here using partial fractions, in case (a) 

+ similar terms for any other non-zero eigenvalues, 

where the a i j ,  bijm2-s) are constants, and pij(z) is a polynomial of degree at 
most ( n  - 2). Hence for / z 1 < l l r ,  

m mz - 1 

r,,(;) = p.,(z) + a,, (zrlk + 1 b 1 7 2 - s ) l  
k = O  s = O  

+ similar terms for other non-zero eigenvalues. 
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In matrix form, with obvious notation 

+ possible like terms. 

From Stirling's formula, as k -+ x 

so that, identifying coefficients of zk on both sides (see Appendix B) for 
large k 

Tk = Ark + 0(km2- 1 iL2 Jk) .  

I n  case (b), we have merely, with the same symbolism as in case (a) 

ai j rij(z) = pij(z) + - 
(1 - zr) 

so that for k 2 n - 1, 

Tk  = Ark. 

It remains to determine the nature of A. We first note that 

Tk/rk -+ A 2 0 elementwise, as k + co, 

and that the series 

has non-negative coefficients, and is convergent for I z 1 < 1, so that by a 
wellknown result (see e.g. Heathcote, 1971, p. 65). 

cc 

lim (1 - s) 1 (7- ' T ) k ~ k  = A elementwise. 
x - 1 -  k = O  

Now, for 0 < x < 1, 

CC Adj (I - r-  'xT)  1 (r-'T)kxk = (I - r - 'xT)- '  = 
k = o  det (I - r - ' xT )  

so that 

- - -  r Adj (rxP'I  - T )  
x det (rx- 'I  -T 

A = - r Adj (rI  - T)/c 
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where c = lim (-det (rx- 'I  - T)/(l - x)) 
x - l -  

which completes the proof, taking into account Corollary 2 of Theorem 1.1. 
0 

In conclusion to this section we point out that assertion (d) of Theorem 1.1 
states that the geometric multiplicity of the eigenvalue r is one, whereas ( f )  
states that its algebraic inultiplicity is one. It is well known in matrix theory 
that geometric multiplicity one for the eigenvalue of a square arbitrary 
matrix does not in general imply algebraic multiplicity one. A simple 
example to this end is the matrix (which is non-negative, but of course not 
primitive): 

[:, :] 
which has repeated eigenvalue unity (algebraic multiplicity two), but a cor- 
responding left eigenvector can only be a multiple of {O, 1) (geometric multi- 
plicity one). 

The distinction between geometric and algebraic multiplicity in connec- 
tion with r in a primitive matrix is slurred over in some treatments of 
nonnegative matrix theory. 

1.2 Structure of a General Non-negative Matrix 

In this section we are concerned with a general square matrix T = {tij), i, 
j = 1, . . . , n, satisfying tij 2 0, with the aim of showing that the behaviour of 
its powers Tk reduces, to a substantial extent, to the behaviour of powers of a 
fundamental type of non-negative square matrix, called irreducible. The class 
of irreducible matrices further subdivides into matrices which are primitice 
(studied in $1.1), and cyclic (imprimitive), whose study is taken up in $1.3. 

We introduce here a definition, which while frequently used in other 
expositions of the theory, and so possibly useful to the reader, will be used by 
us only to a limited extent. 

Definition 1.2. A sequence (i, i,, i,, . . . , i t -  ,, j), for t 2 1 (where i ,  = i), from 
the index set (1, 2, . . . , n) of a non-negative matrix T is said to form a chain of 
length t between the ordered pair (i, j) if 

t.. t. . . . . 
l r l  1 1 ~ 1  ti,- z i t -  1 t i t  l j  > 0. 

Such a chain for which i = j is called a cycle of length t between i and itself. 
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Clearly in this definition, we may without loss of generality impose the 
restriction that, for fixed (i, j), i, j # i ,  # i ,  # . . . # i ,  ,, to obtain a 'mini- 
mal' length chain or cycle, from a given one. 

Classification of indices 

Let i, j, k be arbitrary indices from the index set 1, 2, . . . , n of the matrix T. 
We say that i leads to j, and write i -+ j, if there exists an integer m 2 1 

such that tjy' > 0.' If i does not lead to j we write i $ , j .  Clearly, if i -+ j and 
j -+ k then, from the rule of matrix multiplication, i -+ k .  

We say that i and j communicate if i -+ j and j -+ i, and write in this 
case i tt j. 

The indices of the matrix T may then be classified and grouped as follows. 

( a )  If i -+ j but j $, i for some j, then the index i is called inessential. An index 
which leads to no index at all (this arises when T has a row of zeros) 
is also called inessential. 

(b) Otherwise the index i is called essential. Thus if i is essential, i -+ j implies 
i ~ j ;  and there is at least one j such that i -+ j. 

( c )  It is therefore clear that all essential indices (if any) can be subdivided into 
essential classes in such a way that all the indices belonging to one class 
communicate, but cannot lead to an index outside the class. 

(d) Moreover, all inessential indices (if any) which communicate with some 
index, may be divided into inessential classes such that all indices in a 
class communicate. 

Classes of the type described in ( c )  and (d) are called self-communicating 
classes. 
( e )  In addition there may be inessential indices which communicate with no 

index; these are defined as forming an inessential class by themselves 
(which, of course, if not self-communicating). These are of nuisance 
value only as regards applications, but are included in the description for 
completeness. 

This description appears complex, but should be much clarified by the 
example which follows, and similar exercises. 

Before proceeding, we need to note that the classification of indices (and 
hence grouping into classes) depends only on the location of the posititle 
elements, and not on their size, so any two non-negative matrices with the 
same incidence matrix will have the same index classification and grouping 
(and, indeed, canonical form, to be discussed shortly). 

Further, given a non-negative matrix (or its incidence matrix), 
classification and grouping of indices is made easy by a path diagram which 
may be described as follows. Start with index 1-this is the zeroth stage; 

Or. equivalently, if there is a chain between i and j. 
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determine all j such that 1 + j and draw arrows to them-these j form the 
2nd stage; for each of these j now repeat the procedure to form the 3rd stage; 
and so on; but as soon as an index occurs which has occurred at an earlier 
stage, ignore further consequents of it. Thus the diagram terminates when 
every index in it has repeated. (Since there are a finite total number of 
indices, the process must terminate.) This diagram will represent all possible 
consequent behaviour for the set of indices which entered into it, which may 
not, however, be the entire index set. If any are left over, choose one such and 
draw a similar diagram for it, regarding the indices of the previous diagram 
also as having occurred 'a t  an earlier stage '. And so on, till all indices of the 
index set are accounted for. 

EXAMPLE. A non-negative matrix T has incidence matrix 

Thus Diagram 1 tells us {3, 7) is an essential class, while (1, 2) is an inessen- 
tial (communicating) class. 
Diagram 2 tells us (4, 9) is an essential class. 

Diagram 1 

Diagram 2 
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Diagram 3 tells us ( 5 )  is an essential class. 
Diagram 4 tells us {6} is an inessential (self-communicating) class. 
Diagram .5 tells us {8) is an inessential (self-communicating) class. 

Diagram 3 

5 - 5  

Diagram 4 

Diagram 5 

Canonical Form 

Once the classification and grouping has been carried out, the definition 
'leads' may be extended to classes in the obvious sense e.g. the statement 
K + '6 ,(%, # K ,) means that there is an index of Ct , which leads to an index 
of %, . Hence all indices of '6, lead to all indices of Ct ,, and the statement 
can only apply to an inessential class % ,. 

Moreover, the matrix T may be put into canonical.fornz by first relabelling 
the indices in a specific manner. Before describing the manner, we mention 
that relabelling the indices using the same index set {l ,  . . . , 11) and rewriting 
T accordingly merely amounts to performing a simultaneous permutation of 
rows and columns of the matrix. Now such a simultaneous permutation only 
amounts to a similarity transforrnatioil of the original matrix, T, so that (a) its 
powers are similarly transformed; ( h )  its spectrum (i.e. set of eigenvalues) is 
unchanged. Generally any given ordering is as good as any other in a physical 
context; but the canonical form of T, arrived at by one such ordering, is 
particularly convenient. 

The canonical form is attained by first taking the indices of one essential 
class (if any) and renumbering them consecutively using the lowest integers, 
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and following by the indices of another essential class, if any, until the 
essential classes are exhausted. The numbering is then extended to the indices 
of the inessential classes (if any) which are themselves arranged in an order 
such that an inessential class occurring earlier (and thus higher in the 
arrangement) does not lead to any inessential class occurring later. 

EXAMPLE (continued). For the given matrix T the essential classes are (51, 
(4, 91, (3, 7 ) ;  and the inessential classes (1, 21, {6), (8) which from Diagrams 
4 and 5 should be ranked in this order. Thus a possible canonical form 
for T is 

It is clear that the canonical form consists of square diagonal blocks 
corresponding to 'transition within' the classes in one 'stage', zeros to the 
right of these diagonal blocks, but at least one non-zero element to the left of 
each inessential block unless it corresponds to an index which leads to no 
other. Thus the general version of the canonical form of T is 

where the 7; correspond to the z essential classes, and Q to the inessential 
indices, with R # 0 in general, with Q itself having a structure analogous to 
T, except that there may be non-zero elements to the left of any of its 
diagonal blocks: 

Q = 
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Now, in most applications we are interested in the behaviour of the 
powers of T.  Let us assume it is in canonical form. Since 

it follows that a substantial advance in this direction will be made in study- 
ing the powers of the diagonal block submatrices corresponding to selj- 
communicating classes (the other diagonal block submatrices, if any, are 
1 x 1 zero matrices; the evolution of R, and S ,  is complex, with k). In fact if 
one is interested in only the essential indices, as is often the case, this is 
sufficient. 

A (sub)matrix corresponding to a single self-communicating class is 
called irreducible. 

It remains to show that, normally, there is at least one self-communicating 
(indeed essential) class of indices present for any matrix T; although it is 
nevertheless possible that all indices of a non-negative matrix fall into non 
self-communicating classes (and are therefore inessential): for example 

Lemma 1.1. An n x n non-negati~e matrix with at least one positive entry in 
each row possesses at least one essential class of indices. 

PROOF. Suppose all indices are inessential. The assumption of non-zero rows 
then implies that for any index i, i = 1, . . . , n, there is at least one j such that 
i + j ,  b u t j + i .  

Now suppose i ,  is any index. Then we can find a sequence of indices i, ,  
i , ,  . . . etc. such that 

but such that ik+ , $, i,, and hence i,, , $, i,, i,, . . . , or i,- ,. However, since 
the sequence i,, i,, . . . , in+ , is a set of n + 1 indices, each chosen from the 
same n possibilities, 1,2, . . . , n, at least one index repeats in the sequence. This 
is a contradiction to the deduction that no index can lead to an index with 
a lower subscript. 0 

We come now to the important concept of the period of an index. 

Definition 1.3. If i -+ i, d( i )  is the period of the index i if it is the greatest 
common divisor of those k for which 

ti;' > 0 

(see Definition A.2 in Appendix A). N.B. If tii > 0, d(i )  = 1. 
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We shall now prove that in a communicating class all indices have the 
same period. 

Lemma 1.2. I f  i H j, d(i) = d(j). 

the first inequality following from the rule of matrix multiplication and the 
non-negativity of the elements of T .  Now, for such an s it is also true that 
t$" > 0 necessarily, so that 

2 s + S )  > 0. 

Therefore d(i) divides M + 2s + N - (A4 + s + N) = s. 

Hence: for every s such that t$' > 0, d(i) divides s. 

Hence d(i) 5 dCj). 

But since the argument can be repeated with i and j interchanged. 

d(j) 5 d(i). 

Hence d(i) = d(j) as required. 0 

Note that, again, consideration of an incidence matrix is adequate to deter- 
mine the period. 

Definition 1.4. The period of a communicating class is the period of any one 
of its indices. 

EXAMPLE (continued): Determine the periods of all communicating classes 
for the matrix T with incidence matrix considered earlier. 

Essential classes : 

( 5 )  has period 1, since t,, > 0. 

(4, 9) has period 1, since t,, > 0. 

(3, 7) has period 2, since tY4 > 0 

for every even k, and is zero for every odd k .  

Inessential self-communicating classes 

(1, 2) has period 1 since t l l  > 0. 

{6) has period 1 since t,, > 0. 

(8) has period 1 since tB8 > 0. 

Definition 1.5. An index i such that i -+ i is aperiodic (acyclic) if d(i) = 1. [It is 
thus contained in an aperiodic (self-communicating) class.] 



18 1 Fundamental Concepts and Results in the Theory of Non-negative Matrices 

1.3 Irreducible Matrices 

Towards the end of the last section we called a non-negative square matrix, 
corresponding to a single self-communicating class of indices, irreducible. 
We now give a general definition, independent of the previous context, 
which is, nevertheless, easily seen to be equivalent to the one just given. The 
part of the definition referring to periodicity is justified by Lemma 1.2. 

Definition 1.6. An n x n non-negative matrix T is irreducible if for every pair 
i, j of its index set, there exists a positive integer m - m(i, j) such that tiy' > 0. 
An irreducible matrix is said to be cyclic (periodic) with period d, if the 
period of any one (and so of each one) of its indices satisfies d > 1, and is 
said to be acyclic (aperiodic) if d = 1. 

The following results all refer to an irreducible matrix with period d. 
Note that an irreducible matrix T cannot have a zero row or column. 

Lemma 1.3. If i -t i ,  tjbd) > 0 for all integers k 2 No(= No(i)). 

PROOF. 

Suppose tjbd) > 0, ti;d) > 0. 

Then tjjk+sld) 2 tj:d)tj$d) > 0. 

Hence the positive integers {kd) such that 

> 0, 

form a closed set under addition, and their greatest common divisor is d. An 
appeal to Lemma A.3 of Appendix A completes the proof. 0 

Theorem 1.3. Let i be anyjixed index of the index set {l, 2, . . . , n)  of' T .  Then, 
for ecery index j there exists a unique integer r, in the range 0 5 r, < d (r, is 
called a residue class modulo d )  such that 

( a )  tij' > 0 implies s - r j  (mod d);' and 
( b )  t$"+'~) > 0 for k 2 N ( j ) ,  where N(j) is some positive integer. 

PROOF. Let tij") > 0 and tij"') > 0. 
There exists a p such that t y )  > 0, whence as before 

tjy+P) > 0 and t!T+p) > 0. 

Hence d divides each of the superscripts, and hence their difference m - m'. 
Thus m - m' - 0 (mod d),  so that 

m = r j  (mod d).  

Recall from Appendix A, that this means that if qd is the multiple of d  nearest to s from below. 
then s = qd + r j ;  it reads 's  is equivalent to r j ,  modulo d ' .  
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This proves (a).  
To prove (b),  since i -+ j and in view of (a) ,  there exists a positive m such 

that 

Now, let N ( j )  = N ,  + m, where N o  is the number guaranteed by Lemma 1.3 
for which tlfd' > 0 for s 2 N o .  Hence if k 2 N ( j ) ,  then 

Definition 1.7. The set of indices j in (1, 2, . . . , n) corresponding to the same 
residue class (mod d )  is called a subclass of the class (1, 2, . . . , n), and is 
denoted by C,, 0 I r < d. 

It is clear that the d subclasses C, are disjoint, and their union is {I, 2, . . . , 
n). It is not yet clear that the composition of the classes does not depend on 
the choice of initial fixed index i, which we prove in a moment; nor that each 
subclass contains at least one index. 

Lemma 1.4. The composition of the residue classes does not depend on the 
initial choice o f j x e d  index i ;  an initial choice of another index merely subjects 
the subclasses to a cyclic permutation. 

PROOF. Suppose we take a new fixed index i'. Then 

where ri denotes the residue class corresponding to j according to 
classification with respect to fixed index i'. Now, by Theorem 1.3 for large k, 
m, the right hand side is positive, so that the left hand side is also, whence, in 
the old classification, 

md + ri ,  f kd + rj = rj  (mod d )  

1.e. ri, + r> = r j  (mod d). 

Hence the composition of the subclasses { C J  is unchanged, and their order is 
merely subjected ,to a cyclic permutation a :  

For example, suppose we have a situation with d = 3, and ri, = 2. Then 
the classes which were C,, C,,  C 2  in the old classification according to i 
(according to which i' E C,) now become, respectively, C;, C; ,  Cb since we 
must have 2 + r )  = r j  (mod d) for r j  = 0, 1 ,  2. 
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Let us now define C, for all non-negative integers r by putting C, = Crj if 
r  - r j  (mod d), using the initial classification with respect to i. Let nl be a 
positive integer, and consider any j for which tjr' > 0. (There is at least one 
appropriate index j, otherwise Tm (and hence higher powers) would have ith 
row consisting entirely of zeros, contrary to irreducibility of T.) Then m = r j  
(mod d ) ,  i.e. m = sd + r j  and j~ Cr j ,  Now, similarly, let k be any index such 
that 

ti:+ " > 0. 

Then, since m + 1 = sd + r, + 1, it follows k E C,,, ,. 
Hence it follows that, looking at the ith row, the positive entries occur, for 

successive powers, in successive subclasses. In particular each of the d cyclic 
classes is non-empty. If subclassification has initially been made according to 
the index i', since we have seen the subclasses are merely subjected to a cyclic 
permutation, the classes still 'follow each other' in order, looking at succes- 
sive powers, and ith (hence any) row. 

It follows that if d > 1 (so there is more than one subclass) a canonical 
form of T is possible, by relabelling the indices so that the indices of C ,  come 
first, of C ,  next, and so on. This produces a version of T of the sort 

EXAMPLE: Check that the matrix, whose incidence matrix is given below is 
irreducible, find its period, and put into a canonical form if periodic. 

Diagram 1 
/ I  
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Clearly i -t j for any i and j in the index set, so the matrix is certainly 
irreducible. Let us now carry out the determination of subclasses on the 
basis of index 1. Therefore index 1 must be in the subset C,; 2 must be in C1; 
3 ,4 ,6  in C2;  1, 5 in C,; 2 in C,. Hence C, and C, are identical; C1 and C,; 
etc., and so d = 3. Moreover 

so canonical form is 

Theorem 1.4. An irreducible acyclic matrix T is primitive and conversely. The 
powers of an irreducible cyclic matrix may be studied in terms of powers oj 
primitiue matrices. 

PROOF. If T is irreducible, with d = 1, there is only one subclass of the index 
set, consisting of the index set itself, and Theorem 1.3 implies 

$1 > 0 for k 2 N(i ,  j ) .  

Hence for N* = maxi, N(i ,  j )  

ti;' > 0, k 2 N*,  for all i, j. 

1.e. Tk > O  for k 2  N* 

Conversely, a primitive matrix is trivially irreducible, and has d = 1, since 
for any fixed i, and k great enough ti:' > 0, t(i:+l' > 0, and the greatest 
common divisor of k and k + 1 is 1. 

The truth of the second part of the assertion may be conveniently 
demonstrated in the case d = 3, where the canonical form of T is 



22 1 Fundamental Concepts and Results in the Theory of Non-negative Matrices 

Now, the diagonal matrices of T f  (of Tt  in general) are square and primitive, 
for Lemma 1.3 states that > 0 for all k sufficiently large. Hence 

Tf = (Tf  )k,  

so that powers which are integral multiples of the period may be studied 
with the aid of the primitive matrix theory of $1.1. One needs to consider 
also 

Tfk+'  and ~ f ~ + '  

but these present no additional difficulty since we may write 
~ f k + l  = ( T ; ~ ) T , ,  T:k+ ' = ( T f k ) T ?  and proceed as before. 

These remarks substantiate the reason for considering primitive matrices 
as of prime importance, and for treating them first. It is, nevertheless, con- 
venient to consider a theorem of the type of the fundamental Theorem 1.1 
for the broader class of irreducible matrices, which we now expect to be 
closely related. 

1.4 Perron-Frobenius Theory for Irreducible 
Matrices 

Theorem 1.5. Suppose T is an n x n irreducible non-negatire matrix. Then all 
of the assertions (a)-( f )  of Theorem 1.1 hold, except that ( c )  is replaced by the 
weaker statement: r 2 13. ( .for any eigenvalue 1 of T .  Corollaries 1 and 2 of 
Theorem 1.1 hold also. 

PROOF. The proof of ( a )  of Theorem 1.1 holds to the stage where we need to 
assume 

z' = i ' T  - ri '  2 0' but # 0' 

The matrix I + T is primitive, hence for some k, ( I  + T ) k  > 0; hence 

which contradicts the definition of r ;  ( b )  is then proved as in Theorem 1.6 
following; and the rest follows as before, except for the last part in (c). 

We shall henceforth call r the Perron-Frobenius eigenvalue of an irredu- 
cible T ,  and its corresponding positive eigenvectors, the Perron-Frobenius 
eigenvectors. 

The above theorem does not answer in detail questions about eigenvalues 
2 such that /, # r but 1 21 = r in the cyclic case. 

The following auxiliary result is more general than we shall require im- 
mediately, but is important in future contexts. 
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Theorem 1.6. (The Subiricariance Theorem). Let T be a non-negatice irredu- 
cible mcitn*., s a positice number, and y 2 0, 7 0, a rector satisfiing 

T y  I sy. 

Then ( a )  y > 0: ( b )  s 2 r, where r is the Perron-Frobenius eigenvalue of T .  
Moreover, s = r zf and only if T y  = s y  

PROOF. Suppose at least one element, say the ith, of y is zero. Then since 
T k J  I sky it follows that 

Now, since T is irreducible, for this i and any j, there exists a k such that 
ti:' > 0; and since yi > 0 for some j, it follows that 

which is a contradiction. Thus y > 0. Now, premultiplying the relation 
Tr sj9 by i', a positive left eigenvector of T corresponding to r, 

Now suppose T y  I ry with strict inequality in at least one place; then the 
preceding argument, on account of the strict positivity of T y  and ry, yields 
r < r, which is impossible. The implication s = r follows from T y  = sy si- 
milarly. 

In the sequel, any subscripts which occur should be understood as 
reduced modulo d, to bring them into the range [O, d - 11, if they do not 
already fall in the range. 

Theorem 1.7. For a cyclic matrix T with period d > 1, there are present 
precisely d distinct eigenvalues 3, with liLl = r, where r is the Perron- 
Frobenius eigencalue of T .  These eigenvalues are: r exp i2nk/d, k = 0 ,  1, . . . , 
d - 1 (i.e. the d roots o f  the equation >! - rd = 0) .  

PROOF. Consider an arbitrary one, say the ith, of the primitive matrices: 

Q i ,  i +  1 Q i +  I ,  i + 2  . . .  Q i + d -  1, t + d  

occurring as diagonal blocks in the dth power, T*, of the canonical form T, of 
T (recall that T,  has the same eigenvalues as T ) ,  and denote by r(i)  its 
Perron-Frobenius eigenvalue, and by ~ ' ( i )  a corresponding positive right 
eigenvector, so that 
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Now premultiply this by Qi _ , , : 

and since Qi+d-  ,, i + d  -- Qi- l ,  i ,  we have 

whence it follows from Theorem 1.6 that r(i)  2 r(i - 1). Thus 

so that, for all i, r(i)  is constant, say i., and so there are precisely d dominant 
eigenvalues of Td, all the other eigenvalues being strictly smaller in modulus. 
Hence, since the eigenvalues of Td are dth powers of the eigenvalues of 7, 
there must be precisely d dominant roots of T, and all must be dth roots of i. 
Now, from Theorem 1.5, the positive dth root is an eigenvalue of T and is r. 
Thus every root i, of T such that / A  1 = r must be of the form 

i = r exp i(2nk/d), 

where k is one of 0, 1, . . ., d - 1, and there are d of them. 
It remains to prove that there are no coincident eigenvalues, so that in 

fact all possibilities r exp i(2nk/d), k = 0, 1, . . . , d - 1 occur. 
Suppose thaty is a positive (n x 1) right eigenvector corresponding to the 

Perron-Frobenius eigenvalue r of T,  (i.e. T written out in canonical form), 
and let y,, j = 0, . . . , d - 1 be the subvector of components corresponding to 
subclass C,. 

Thus Y' = bb, Y; ,  . . . ,Y&- 11 

and Q j ,  j +  1 J ' ~ +  1 = Wj 

Now, let y,, k = 0, 1, . . . , d - 1 be the (n  x 1) vector obtained from y by 
making the transformation 

yj + exp i (2:k -- 

of its components as defined above. It is easy to check that j ,  = y, and 
indeed that j,, k = 0, 1, . . . , d - 1 is an eigenvector corresponding to an 
eigenvector r exp i(2nk/d), as required. This completes the proof of the 
theorem. 0 

We note in conclusion the following corollary on the structure of the 
eigenvalues, whose validity is now clear from the immediately preceding. 

Corollary. If ;1 # 0 is any eigenvalue of T ,  then the numbers i exp i(2nk/d), 
k = 0, 1, . . . , d - 1 are eigent'alues also. (Thus, rotation of the complex plane 
about the origin through angles of 2n/d carries the set of eigencalues into itself.) 
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81.1. a n d  $1.4 

The exposition of the chapter centres on the notion of a primitive non- 
negative matrix as the fundamental notion of non-negative matrix theory. 
The approach seems to have the advantage of proving the fundamental 
theorem of nonnegative matrix theory at the outset, and of avoiding the 
slight awkwardness entailed in the usual definition of irreducibility merely 
from the permutable structure of T. 

The fundamental results (Theorems 1.1, 1.5 and 1.7) are basically due to 
Perron (1907) and Frobenius (1908, 1909,1912), Perron's contribution being 
associated with strictly positive T. Many modern expositions tend to follow 
the simple and elegant paper of Wielandt (1950) (whose approach was anti- 
cipated in part by Lappo-Danilevskii (1934)); see e.g. Cherubino (1957), 
Gantmacher (1959) and Varga (1962). This is essentially true also of our 
proof of Theorem 1.1 (=Theorem 1.5) with some slight simplifications, 
especially in the proof of part (e), under the influence of the well-known 
paper of Debreu & Herstein (1953), which deviates otherwise from 
Wielandt's treatment also in the proof of (a). (The proof of Corollary 1 of 
Theorem 1.1 also follows Debreu & Herstein.) 

The proof of Theorem 1.7 is not, however, associated with Wielandt's 
approach, due to an attempt to bring out, again, the primacy of the primiti- 
vity property. The last part of the proof (that all dth roots of r are involved), 
as well as the corollary, follows Romanovsky (1936). The possibility of 
evolving $1.4 in the present manner depends heavily on $1.3. 

For other approaches to the Perron-Frobenius theory see Bellman (1960, 
Chapter 16), Brauer (1957b), Fan (1958), Householder (1958), Karlin (1959, 
$8.2; 1966, Appendix), Pullman (1971), Samelson (1957) and Sevastyanov 
(1971, Chapter 2). Some of these references do not deal with the most general 
case of an irreducible matrix, containing restrictions of one sort or another. 
In their recent treatise on non-negative matrices, Berman and Plemmons 
(1979) begin with a chapter studying the spectral properties of the set of 
H x n matrices which leave a proper cone in R" invariant, combining the use 
of the Jordan normal form of a matrix, matrix norms and some assumed 
knowledge of cones. These results are specialized to non-negative matrices in 
their Chapter 2; and together with additional direct proofs give the full 
structure of the Perron-Frobenius theory. We have sought to present this 
theory in a simpler fashion, at a lower level of mathematical conception and 
technique. 

Finally we mention that Schneider's (1977) survey gives, interalia, a hist- 
orical survey of the concept of irreducibility. 
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$1.2 and $1.3 

The development of these sections is motivated by probabilistic con- 
siderations from the theory of Markov chains, where it occurs in connection 
with stochastic non-negative matrices P = {pij), i, j = 1,2,. . . , with pLj 2 0 and 

In this setting the classification theory is essentially due to Kolmogorov 
(1936); an account may be found in the somewhat more general exposition of 
Chung (1967, Chapter 1, $3), which our exposition tends to follow. 

A weak analogue of the Perron-Frobenius Theorem for any square T 2 0 
is given as Exercise 1.12. Another approach to Perron-Frobenius-type theory 
in this general case is given by Rothblum (1975), and taken up in Berman 
and Plemmons (1979, $2.3). 

Just as in the case of stochastic matrices, the corresponding exposition i s  
not restricted tofinite matrices (this in fact being the reason for the develop- 
ment of this kind ofclassification in the probabilistic setting), and virtually all 
of the present exposition goes through for infinite non-negative matrices T, 
so long as all powers Tk, k = 1, 2, . . . exist (with an obvious extension of the 
rule of matrix multiplication of finite matrices). This point is taken up again 
to a limited extent in Chapters 5 and 6, where infinite T are studied. 

The reader acquainted with graph theory will recognize its relationship 
with the notion of path diagrams used in our exposition. For development 
along the lines of graph theory see Rosenblatt (1957), the brief account in 
Varga (1962, Chapters 1 and 2), Paz (1963) and Gordon (196.5, Chapter 1). 
The relevant notions and usage in the setting of non-negative matrices 
implicitly go back at least to Romanovsky (1936). 

Another development, not explicitly graph theoretical, is given in the 
papers of Ptak (1958) and Ptak & SedlaEek (1958); and it is utilized to some 
extent in $2.4 of the next chapter. 

Finite stochastic matrices and finite Markov chains will be treated in 
Chapter 4. The general infinite case will be taken up in Chapter 5. 

1.1 Find all essential and inessential classes of a non-negative matrix with incidence 
matrix : 
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Find the periods of all self-communicating classes, and write the matrix T i n  
full canonical form, so that the matrices corresponding to all self- 
communicating classes are also in canonical form. 

1.2. Keeping in mind Lemma 1.1, construct a non-negative matrix T whose index 
set contains no essential class, but has, nevertheless, a self-communicating class. 

1.3. Let T = { t i ,  j ) ,  i , j  = 1,2,.  . . , n be a non-negative matrix. If, for some fixed i and j, 
ti:), > 0 for some k - k(i, j), show that there exists a sequence k,, k , ,  . . . , k, such 
that 

w h e r e r 1 n - 2 i f i # j , r < n - i i f i = j . H e n c e s h o w t h a t :  
(a) if T is irreducible and t j , ,  > 0 for some j ,  then tlk\ > 0 for k 2 n - 1 and 

every i ;  and, hence, if t j ,  > 0 for every j, then Tn-'  > 0;  
(b) T is irreducible if and only if (I + T)"-' > 0. 

(Wielandt, 1960; Herstein, 1954.) 
Further results along the lines of (a) are given as Exercises 2.17-2.19, and 

again in Lemma 3.9. 

1.4. Given T = { t i ,  j ) ,  i , j  = 1,2,.  . . , n is a non-negative matrix, suppose that for some 
power m 2 1, Tm = {tj;] is such that 

ti?+ > 0, i = 1, 2, . . ., n - 1, and tim\ > 0. 

Show that: T is irreducible; and (by example) that it may be periodic. 

1.5. By considering the vector x' = (a, a, 1 - 2a), suitably normed, when: (i)a = 0, 
(ii) 0 < r < f, and the matrix 

show that r(x), as defined in the proof of Theorem 1.1 is not continuous in 
x 2 0, x'x = 1. 

(Schneider, 1958) 

1.6.' If r is the Perron-Frobenius eigenvalue of an irreducible matrix T = { t i j ) ,  
show that for any vector x E .Y, where 9 = {x; x > 0) 

- 
C j  t i j x j  min I'il*l< ,. 5 max 

i  xi i X i  

(Collatz, 1942) 

1.7. Show, in the situation of Exercise 1.6, that equality on either side implies 
equality on both; and by considering when this can happen show that r is the 
supremum of the left hand side, and the infimum of the right hand side, over 
x t 8, and is actually attained as both supremum and infimum for vectors in 9. 

' Exercises 1.6 to 1.8 have a common theme. 
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1.8. In the framework of Exercise 1.6, show that 

I y 'Ts  ( 
max min ------ 

ylTxI 
x e j  1 = r =  minlmax- 

y e +  I r a /  Y I X  /' 
(Birkhoff and Varga, 1958) 

1.9.' Let B be a matrix with possibly complex elements and denote by B+ the matrix 
of moduli of elements of B and b an eigenvalue of B. Let T be irreducible and 
such that 0 5 B+ < T. Show that Ipl < r ;  and moreover that = r implies 
B+ = T ,  where r is the Perron-Frobenius eigenvalues of T .  

(Frobenius, 1909) 

1.10. If,in Exercise 1.9, = r ,  so that p = rei", say, it can be shown (Wielandt, 1950) 
that B has the representation 

where D is a diagonal matrix whose diagonal elements have modulus one. 
Show as consequences: 
(i) that if I b I = r ,  B+ = T ; 

(ii) that given there are d dominant eigenvalues of modulus r for a given 
periodic irreducible matrix of period d, they must in fact all be simple, 
and take on the values r exp i(2nj/d), j = 0, 1, . . ., d - 1. (Put B = T in 
the representation.) 

1.11. Let T be an irreducible non-negative matrix and E a non-zero non-negative 
matrix of the same size. If x is a positive number, show that A = xE + T is 
irreducible, and that its Perron-Frobenius eigenvalue may be made to equal 
any positive number exceeding the Perron-Frobenius eigenvalue r of T by 
suitable choice of x. 
(Consider first, for orientation, the situation where at  least one diagonal 
element of E is positive. Make eventual use of the continuity of the eigenvalues 
of A with I.) 

(Birkhoff & Varga, 1958) 

1.12. If T 2 0 is any square non-negative matrix, use the canonical form of T to 
show that the following weak analogue of the Perron-Frobenius Theorem 
holds: there exists an eigenvalue p such that 
(a') p real, 2 0 ;  
(b') with p can be associated non-negative left and right eigenvectors; 
(c') p 2 / A  1 for any eigenvalue 1 of T ; 
(e') if 0 B 5 T and 1 is an eigenvalue of B, then Ibl j p. 
(In such problems it is often useful to consider a sequence of matrices each 2 T 
and converging to T elementwise {particularly in relation to (b') here)-Debreu 
and Herstein (1953)) 

1.13. Show in relation to Exercise 1.12, that p > 0 if and only if T contains a cycle 
of elements. 

(Ullman, 1952) 

' Exercises 1.9 to 1.11 have a common theme 
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1.14. Use the relevant part of Theorem 1.4, in conjunction with Theorem 1.2, to show 
that for an irreducible T  with Perron-Frobenius eigenvalue r ,  as k -, m 

F k T k  + 0 

if and only if s > r ;  and if 0 < s < r, for each pair (i, j )  

lim sup = a. 
k- rc 

Hence deduce that the power series 

have common convergence radius R = r-I for each pair (i, j). (This result is 
relevant to the development of the theory of countable irreducible T  in 
Chapter 6.) 

1.15. Let T  be a non-negative matrix. Show that: 
(a) Ty i sy, where s # 0; y  2 0, # 0 *y > 0 if and only if T  is irreducible; 
( b )  T  has a single non-negative (left or right) eigenvector (to constant mul- 

tiples) and this eigenvector is positive if and only if T  is irreducible. 

1.16. If A and B are non-negative matrices such that 0 < B < A, A - B # 0, and 
A + B is irreducible, show that p(B) < p(A) where p ( . )  is the eigenvalue 
alluded to in Exercise 1.12. 

1.17. Let T be a non-negative irreducible matrix, s a positive number, and y 2 0, # 0 
a vector satisfying 

Show that r 2 s, where r is the Perron-Frobenius eigenvector of T ,  and s = r if 
and only if T y  = sy. [This is a dual result to the (Subinvariance) Theorem 1.6.1 

1.18. Suppose T is a non-negative matrix which, by simultaneous permutation of 
rows and columns may be put in the form 

where the zero blocks on the diagonal are square. If T  has no zero rows or 
columns, and TI T2 . . .  T, is irreducible, show using Exercise 1.15(a), that T  is 
irreducible. [Hint: Consider y  2 0, # 0 partitioned according to y' = ly;, y ; ,  
. . . , yb] where y i  has as many entries as the columns of T,.  Assuming Ty i sy for 
sornes>O,showfirs t thaty,  > O , a n d t h e n t h a t ~ , + ~  > O * y i > O , i =  1, . . . ,  d, 
Yd+ 1 = ~ 1 . 1  

(Minc, 1974, Pullman, 1975) 



CHAPTER 2 

Some Secondary Theory with 
Emphasis on Irreducible Matrices, 
and Applications 

In this chapter we survey briefly some of the theory which has arisen out of 
deeper investigation, and generalization, of various aspects of the Perron- 
Frobenius structure of a non-negative irreducible matrix T, with Perron- 
Frobenius eigenvalue r. Some of the material is of particular relevance in 
certain applications (e.g. mathematical economics, numerical analysis); these 
are also briefly discussed. 

It is possible to extend several of the results to a reducible matrix T, via 
canonical form; some such discussion is deferred to the exercises. 

2.1 The Equations: ( s l  - T ) x  = e 

In a well-known mathematicalLeconomic setting, to be discussed shortly, it 
is desired to investigate conditions ensuring positivity ( x  > 0) of solutions to 
the equation system 

( s l  - T)x = c 

for any c 2 0, # 0. Closely related to this is the question: for what values of s 
do we have (s l  - T)- '  > O ?  

Theorem 2.1. A necessary and sufficient condition for a solution x ( x  2 0, # 0) 
to the equations 

(s l  - T ) x  = c P I  ) 
to exist for any c 2 0, j. 0 is that s > r. In this case there is only one solution 
x ,  which is strictly positive and given by 

x = (s l  - T)-'c. 



2.1 The Equations: ( s l  - T ) s  = c 3 1 

PROOF. Suppose first that for some c 2 0, + 0 a non-negative non-zero 
solution to (2.1) exists. Then 

with strict inequality for at least one element. This is impossible for s I 0, 
and if s =. 0, Theorem 1.6 implies s > r. 

Now suppose s > r. Then, since Tk/sk -+ 0 as k + cc (see Exercise 1.14), it 
follows that 

exists, from Lemma B.l of Appendix B; and moreover, since for any pair i, j, 
ti:) > 0 for some k = k(i, j) by irreducibility, it follows that the right hand 
side is a strictly positive matrix. Hence 

so that (sl - T)-'c > 0 for any c 2 0, # 0, 

and clearly 

x = (sI - T)-'c. 

Corollary 1. Ofthose real numbers s for which it exists, (sI - T)- '  > 0 ifand 
only if s > r. 

Corollary 2. If s = 1, then the necessary and suficient condition stated for the 
theorem becomes r < 1. 

Corollary 3. If s = 1, then r < 1 ifnone of the row (column) sums of T exceed 
unity, and at  least one is less than unity. 

PROOF. Follows directly from Corollary 1 of the Perron-Frobenius Theorem 
(Theorem 1.1). 0 

Theorem 2.2. A condition equivalent to s > r is that 

where Ai(s) is the principal minor of (sI - T )  which consists ofthejirst i rows 
and columns of (sl - T). 

PROOF.' Assume first that s > r. Then 

A, = det (sl - T )  = 4(s), 

We shall write in the proof A, rather than Ai(s)  for simplicity, since s is fixed 
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in our previous notation, exceeds zero since it is known that 4 ( x )  + co as 
x + oo, and s lies beyond the largest real root r of T.  Moreover, since s must 
exceed the maximal modulus real non-negative eigenvalue of the matrix 
formed by the first i rows and columns of T, i < n (see Exercise 1.12), it must 
similarly follow that A, > 0 for i = 1, 2, . . ., n - 1, if n > 1. 

Assume now that (2.2) holds for some fixed real s. Since each of the A, is a 
continuous function of the entries of T, it follows that it is possible to replace 
all the zero entries of T by sufficiently small positive entries to produce a 
positive matrix T with Perron-Frobenius eigenvalue r > r by Theorem 
l . l ( e ) ,  for which still A, > 0, i = 1 ,  2, . . . , n. Thus if we can prove that s > 7, 
this will suffice for what is required. 

It follows, then, that it suffices to prove that 

Ai > 0 ,  i = 1, 2, . . . , n implies s > r 

for positive matrices T, which is what we now assume about T.  We proceed 
by induction on the dimension n of the matrix T. If n = 1, Ai > 0 implies 
s > t , , = T = r .  

Suppose now the proposition (2.2) is true for matrices of dimension n ;  
and for a matrix T of dimension (n  + 1)  assume 

If r, is the Perron-Frobenius eigenvalue of the (n x n )  positive matrix (,,T 
which arises out of crossing out the last row and column of T, we have by 
induction that s > r,. Let 

and consider the unique solution x = a,, , of the system 

wheref,, , = (0,  0 ,  . . . , 0, 1). In the first instance, since 

'*n+ 1 = ( ~ 1  - 7' - I f ,+ 1, 

it must follow that the n + 1 element of a n + ,  is kn+ ,, since this is the jn + 1, 
n + 1)  element of ( s l  - T)-'. If we rewrite 

it follows that x = a, must satisfy 

from the first n equations of (2.3). But, since s > r,, Theorem 2.1 implies that 
the unique solution, viz. an, is strictly positive. Hence an+ > 0 also, and the 
Subinvariance Theorem applied to (2.3) now implies s > r,+ ,, as required. 

0 
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Theorem 2.3. If s 2 maxi CJ=, tij, and cij(s) is the cofactor of the ith row and 
jth column of sI - T, then cii(s) 2 cij(s) > 0, all i, j. 

PROOF.' Adj (sI - T) is the transposed matrix of cofactors cij, and is cer- 
tainly positive if s > r by Theorem 2.1 above, since 

0 < (sI - T)- '  = Adj (sI - T)/4(s) 

where @(s) > 0. Further, if s = r it is also positive, by Corollary 2 to the 
Perron-Frobenius Theorem. Now, since Corollary 1 of the Perron- 
Frobenius Theorem asserts that r I maxi xj tij, 2 s  by assumption, it fol- 
lows that all the cofactors are positive. 

(i) Consider first the case s > maxi Cj tij. 
Now, replace any zero entries of T by a small positive number 6 to form a 

new positive matrix T = {Gj) but such that still s > maxi '& Gj. If we can 
prove Eii 2 cij all i, j in this case, this suffices, for, by continuity in 6, letting 
6 -* 0 + , cij I cii. 

Thus it suffices to consider a totally positive matrix T = {tij) which we 
shall now do. Take i, and j, j # i fixed (but arbitrary). Replace all elements of 
the ith row of T: by zeroes, except (i, i)th and (i, j)th where we put s/2. Call 
the new matrix U; it is clearly irreducible, and moreover has all row sums 
not exceeding s, and all but the ith less than s; thus its Perron-Frobenius 
eigenvalue r, < s by Corollary 1 to the Perron-Frobenius Theorem and so 

S S 
0 < det (sI - U) = - - cij + - cii 

2 2 

expanding the determinant by the ith row of sI - U and recalling that the 
cofactors remain the same as for sI - T. 

Therefore cij < cii 

which is as required. 

(ii) s = maxi xj tij. Take 6 > 0 and consider s + 6 in place of s in (sl - T). 
Then since cij(s + 6) I cii(s + 6) for all 6 > 0, from part (i), it follows by 
continuity that, letting 6 + 0, cij I cii as required. 0 

Corollary 1. If in fact T > 0 and s > maxi xj tij then the conclusion can be 
strengthened to cij(s) < cii(s) all i, j, i # j. 

Corollary 2. If s 2 maxj x:=, tij then cji(s) I cii(s) for all i, j. 

PROOF. T', the transpose of T, satisfies the conditions of Theorem 2.3. 

' We shall write in the proof cij rather than cij(s), since s is fixed. 
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The  Open Leontief Model  

Consider an economy in which there are n industries, each industry produc- 
ing exactly one kind of good (commodity). Let xi be the output of the ith 
industry, and t i j  2 0 the input of commodity i per unit output of commodity 
j. It follows then that t i j x j  is the amount of the output of commodity i 
absorbed in the production of commodity j, and the excess 

is the amount of commodity i available for outside use. Thus the vector 
x = { x i )  may be interpreted as a 'supply' vector, and the vector c = {ci) as a 
'demand' vector. A question of importance, therefore, is that of when for a 
given c 2 0, # 0, is there a solution x 2 0, # 0 to the system 

Theorems 2.1 and 2.2 above answer this question in the special case s = 1, 
under the assumption of irreducibility of T. Moreover when the theorems 
hold, the positivity of (I - T ) -  ',and the fact that x = (I  - T)-'c, guarantees 
that an increase in demand of even one good, increases the output of all 
goods. 

If the necessary and sufficient condition r < 1 is replaced by the stronger 
assumption that for all i ,  

with strict inequality for at least one i ,  then Theorem 2.3 gives the additional 
result that if only the demand for commodity j increases then the output of 
commodity j increases by the greatest absolute amount, though all outputs 
increase.' A meaning in economic terms to condition (2.5) may be described 
as follows. If exactly one unit of each commodity is produced, then x;=, t i j  
is the total input of commodity i required for this, so (2.5) asserts that not 
more than one unit of each commodity is required for such production; and 
at least one commodity is then also available for outside use. The condition 
dual to (2.5), viz. 

with strict inequality for at least one j, may be interpreted as follows. If a unit 
of each commodity has the same monetary price (a dollar, say), then 17=, t i j  
is the total cost of producing one unit of commodity j; hence at least one 
industry is able to pay the factors labour and capital. 

' See Exercise 2.2. 
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EXAMPLE. Consider the matrix 

TI is positive, hence irreducible. The top row sum is less than unity, the 
bottom one exceeds unity, so that the condition (2 .5)  is not satisfied. How- 
ever the column sums are both g < 1 so that Corollary 2 of Theorem 2.3 
does apply for s = 1. In fact r = by Corollary 1 of the Perron-Frobenius 
Theorem, so that Theorem 2.1 holds with s = 1. In fact 

which agrees with the assertions of these results. 
Note, also, that if the demand for commodity 1 only increases, by a single 

unit, the supply vector increases by [g, El, which is a greater increase in 
supply of commodity 2 than of commodity 1 .  

On the other hand if the matrix 

T 2 =  T ; =  [i - i] 
- 

11 11 

is considered, then all of Theorems 2.1 to 2.3 hold and 

so that unit increase in demand of either commodity, the other being held 
constant, forces a greater increase in supply of that commodity than the 
other, as expected. 

We thus pause to note that (i) it is not possible to increase the dergand 
vector c even in one component while keeping any element of the supply 
vector x fixed; (ii) it is not necessarily true that an increase in demand for a 
single commodity forces a greater absolute increase in the supply of that 
commodity compared to others. 

The above discussion has been in terms of absolute changes Axi, Aci, 
i = 1, . . . , n in the supply vector x and demand vector c .  Of some interest is 
also the question of relative changes. If ci # 0, xi # 0 the relative changes 
are respectively defined by Axi/xi ,  Aci/ci, i = 1, . . . , n, corresponding to 
some change in c or x. Let T+  consist of those indices i = 1, . . . , n for which 
Aci > 0, and r- of those for which Aci < 0. Write Ac = {Aci), Ax = {Axi}. 
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Theorem 2.4. Let s > r and c 2 0, #O. Then for each i = 1, . . . , n 

I A X . \   AX^ I Axj I min 0, min 2 i -- I max 0 max -- . I j t  r ~ .  xj  1 xi 1 ' j L i +  x j j  

PROOF. We shall prove only the right-hand side, recalling that by Theorem 
2.1, x > 0. It is implicitly assumed also that E = c + Ac 2 0, # 0, so that 
i = x + A x > O .  

If r+ = 4 (the empty set), then Ax = (sl - T)-'  Ac < 0, so the proposi- 
tion is evidently true, as it is in the case T+  = (1, 2, . . . , n}. Hence assume that 
the number of indices in r+ is one of the integers (1, 2, . . . , n - I}, and let 
sc 2 0 be the smallest integer such that tl" > 0 for some i $ r+ and some 
j E T+ ; clearly u 2 1 since ti:) = 0 for i # j. Hence for k = 0, . . . , a - 1 all 
elements of TkAc with index not in T+ are non-positive. Using the identity 
for k 2  1 

k -  1 k 

with k = a, and multiplying from the right by Ac 

we find that for each i $ T, 

so that for i # r+ 
sx Ax, - 1 tj" Ax, I ti:\ Ax, 

jer+ j t T +  

Thus if Ax, 5 0 for all j E T+ , it follows that 

where * indicates restriction of the corresponding matrix to indices i $ T+ . 
Also, since Tk/sk -+ 0 as k -+ a, it follows {(T~)*/s")~ -+ 0, so by Lemma B.l of 
Appendix B, (sZI* - (T")*)-' 2 0, whence it follows A*x I 0. Thus if 
Axj 5 0 for all j E r+ , Axi I 0 for all i = 1, . . . , n, so the proposition is true 
again. 

It thus remains to prove it in the case that Axj > 0 for some j in r+ ,  a 
non-empty and proper subset of (1, 2, . . . , n}, in which case it amounts to 

Axj - AX, Axi/xi I max -- = max -- 

j s r+  x j  , = I ,  ..., n x j  

for i = 1, . . . , n. Suppose to the contrary that this last fails, and write 
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There are real numbers pi,  ii > 0, i = 1, . . . , n such that 
" - 

y .  = A . X .  Ci = p i c i ,  . I 

such that pi # 1 for i E I? u r+ . Since Axi/xi = 3.; ' - 1, i = 1, . . . , n, it 
follows that for i E A 

or equivalently, for i E A 

min jLj = ,Ii < min L j .  
j j t T +  

Now, using the earlier identity again 

so that 

Since also (sI  - T ) i  = 2, also for i = 1, . . . , n we have analogously from the 
identity 

From the last two equations 

Now, let x ( >  1) be the smallest positive number such that t)", jo > 0 for some 
i ,  E A and some j, E (1, 2, . . . ,  n) - A. Then 

since = 0, h = 1, . . . , a if j E (1, 2, . . ., n} - A. Now lbio < 1, and for 
j E A, ,uj 2 1, since A n r+ = 4, so pj/3Li, - 1 > 0, whence it follows that 

Since iio < Aj,, and Ai0 I ij for j = 1, . . . , n, it follows that ti", jo = 0 which is 
a contradiction. 0 

This theorem, proved under the minimal conditions of Theorem 2.1, 
shows in particular that if only the demand for commodity j increases, then 
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the output of commodity j increases by the greatest percentage, though all 
outputs increase. 

The economic model just discussed is called the open Leontief model; 
other economic interpretations may also be given to the same mathematical 
framework. 

We shall mention a dynamic model, whose static version is formally (i.e. 
mathematically) identical with the Leontief set-up. Let the elements of x ,  
denote the output at time stage k of various industries as before; let P, 
0 < I 1 be the proportion (the same for each industry) of output at any 
stage available for internal use, a proportion 1 - P being needed to meet 
external demand; let tij be the amount of output of industry i per unit of 
input of industry j, at the next time stage, and let c 2 0, # 0, be an 'external 
input' vector, the same at all time stages. Then 

The general solution of this difference equation is 

If T is assumed irreducible, as usual, then if (PT)' + 0 as i + CQ, x ,  converges 
elementwise to the solution 

x = (I - PT)-'c 

(see Lemma B.l) of the 'stationary system'. Necessary and sufficient for 
(PT)' + 0 is r < P-'  (see Exercise 1.14) which is familiar from Theorems 2.1 
and 2.2 with s = 8-' .  

Bibliography and Discussion to $2.1 

Theorem 2.1, in the form of its Corollary 1, goes back to Frobenius (1912) 
for positive T. 

The form of necessary and sufficient condition embodied in Theorem 2.2 
is implicit in the paper of Hawkins & Simon (1949), who deal with positive 
T; and is explicit in a statement of Georgescu-Roegen (1951). The condition 
is thus often called the Hawkins-Simon condition in mathematico-economic 
contexts. Theorem 2.2 in fact holds for a non-negative T which is not 
necessarily irreducible' as was demonstrated by Gantmacher (1959, 
pp. 85-9; original Russian version: 1954) who himself attributes this result 
to Kotelyanskii (1952) whose proof he imitates, although in actual fact 
Kotelyanskii (a) considered T > 0, (b) proved a (non-trivial) variant2 of 

See Exercise 2.4. 

See Exercise 2.13, (in 52.2). 
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Theorem 2.2 where every sign ' > 'in its statement is replaced by ' 2 '. The 
Kotelyanskii-Gantmacher assertion was also obtained by Burger (1957) 
who followed the method of the Hawkins-Simon paper; and by Fan (1958). 
Further, Morishima (1964, Chapter 1) gives a proof of Theorem 2.2 which, 
however, makes the implicit assumption that if the last row and column of 
an irreducible T are deleted, then the matrix remaining is also irreducible. 
The virtue of the Hawkins-Simon condition, as well as the sufficient condi- 
tion given in Corollary 3 of Theorem 2.1, is that such conditions may be 
checked fairly easily from the form of the matrix T, without the necessity of 
calculating r. 

Finally, in relation to Theorem 2.2, it is relevant to mention that less 
powerful assertions of similar form, but involving the non-negativity of all 
(not just leading) principal minors, begin with Frobenius (1908). 

Theorem 2.3 is generally attributed to Metzler (1945, 1951). Debreu & 
Herstein (1953) give a proof of its Corollary 1 which the proof of the present 
theorem imitates. (The present statement appears to be marginally more 
general than those usually encountered.) Theorem 2.4 is due to Sierksma 
(1979), though the techniques are partly Morishima's (1964; see esp. Chapter 
1, Theorem 6). 

A simple direct discussion of linear models of production in econome- 
trics, including the Leontief model, is given by Gale (1960, Chapter 9). See 
also Allen (1965, Chapter 11). The reader interested in an emphasis on 
non-negative matrix theory in connection with the Leontief model, and 
alternative interpretations of it, should consult Solow (1952) and Karlin 
(1959, $58.1-8.3). We also mention Kemeny & Snell's (1960, $7.7) discussion 
of this model, in which 2, t,, I 1 all j, but T is not necessarily irreducible, in 
a Markov chain framework closely related to our development in Chapter 1. 

Finally, for a very detailed and extensive mathematical discussion per- 
taining to the properties of the matrices sI - T, and further references, the 
reader should consult the articles of Wong and of Woodbury in Morgen- 
stern (1954). 

In Exercises 2.1 to 2.3, which have a common theme, T  is an ireducible nonnegative 
matrix with Perron-Frobenius eigenvalue r. 

2.1. Lets > 0. Show that a necessary and sufficient condition for r < s is the existence 
of a vector x, .r 2 0, f 0 such that: 

with strict inequality in at  least one position. 
[The condition T x  2 x, x 2 0, f 0 is sometimes imposed as a fundamental 
assumption in simple direct discussions of linear models; in the Leontief model 
it is tantamount to an assertion that there is a t  least one demand c ,  c 2 0, f 0 
which can be met, i.e. the system is 'productive'.] 



40 2 Some Secondary Theory with Emphasis on Irreducible Matrices, and Applications 

2.2. Show that if 

with strict inequality for at least one i ,  then Theorem 2.1 holds, and, moreover, if 
in the equation system (2.1) c 2 0, + 0 is increased in the jth component only, 
then the greatest absolute increase in x is in the jth component also. 

2.3. Suppose T is any square non-negative matrix. Show that a necessary condition 
for (sI - T)- '  > 0 for some s is that T be irreducible, i.e. the situation 
(.TI - T)- '  > 0 may 0 1 1 1 ~  occur If'T is irreducible. (Suppose initially that T has 
the partitioned form 

where A and B are square and irreducible. 0 is as usual a zero matrix, and 
(sl - T ) - '  exists.) 

2.4.' Suppose T is any square non-negative matrix, with dominant eigenvalue p 
(guaranteed by Exercise 1.12). Show that A, > 0, i = 1, . . . . n if and only if s > p. 

(Kotelyanskii, 1952) 
[Since it is easily shown that (sI - T )  ' 2 0 if s > p-see e.g. Debreu & Her- 
stein (1953)-it follows that the Hawkins-Simon condition ensures non- 
negaticity of solution to the Leontief system (2.1), takings = 1, (i.e. (2.4)), even if 
T is reducible, for any 'demand' vector c 2 0, f 0.1 

2.5. Suppose, in the setting of Exercise 2.4, assuming all cofactors c,,(l)  > 0, 

n 

1 2 max 1 tij 
i i = l  

and p < 1, use induction to show 

(Wong, 1954) 

2.6. Suppose, in the context of the open Leontief model, that each industry supplies 
just one industry which differs from itself; and that each of the industries has 
only one supplier. Show by example that T is not necessarily irreducible. Is it 
possible to have T primitive in this context? In general, can any of the indices of 
T be inessential? 

2.7. Under the conditions of Theorem 2.4 and using the same notation and 
approach, show that if T+ # 4 and Axi < 0 for all j~ T+ , then Axi < 0 for all 
i = 1, . . . ,  n. 

(Sierksma, 1979) 

Exercises 2.4 and 2.5 have a common theme 



2.2 Iterative Methods for Solution of Certain Linear Equation Systems 4 1 

2.2 Iterative Methods for Solution of Certain Linear 
Equation Systems 

We consider in this section a system of equations 

Ax = h (2.6) 

where A = (a,,], i, j = 1, . . . , 11 has all its diagonal elements positice, and b is 
some given column vector. The matrix A may be expressed in the form 

where D = diag {a,,, a,, , . . ., a,,) and E and F are respectively strictly lower 
and upper triangular n x n matrices, whose entries are the negatives of the 
entries of A respectively below and above the main diagonal of A. The 
equation system may, thus, be rewritten, 

W e  shall make the assumption that 

is non-negative, and write for convenience 

L = D-'E.  U = D-'F and k = D-'h.  

Thus we are concerned basically with the equation system 

where T is non-negative. Thus the equatio;~ system considered in 92.1 falls 
into this framework, as do any systems where A has 

(i) positive diagonal and non-positive off-diagonal entries; or 
(ii) negative diagonal and non-negative off-diagonal entries (the case (ii) 

occurs in the theory of continuous parameter Markov processes). 

There are two well-known iterative methods for attempting to find a 
solution x (if one exists) of (2.7) corresponding respectively to the two ways 

of rewriting the equation system (2.7). 
Jacobi iteration: The ( m  + 1)th approximation s(nz + 1) is derived from 

the mth by 

TI = (L + U )  is the Jacobi matrix of the system. 
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Gauss-Seidel iteration: x(nz + 1) is related to s(m) by 

(I - L)- ' exists, since L is strictly lower triangular: in fact clearly, because of 
this last fact, 

(see Lemma B.l of Appendix B). 
The matrix T, = (I - L)-'U is the Gauss-Seidel matrix of the system. 
We shall assume that T, is irreducible, with Perron-Frobenius eigenvalue 

r , ;  the matrix T2 = (I - L ) ' U  is reducible,' so let r, denote its dominant 
(non-negative) eigenvalue in accordance with the content of Exercise 1.12. 
The significance of the following theorem concerning relative size of r ,  and 
r, will be explained shortly. (Note that irreducibility of TI implies L # 0, 

f 0.1 

Theorem 2.5. One and only one of the,following relations is d i d :  

PROOF. Let s be a positive eigenvector corresponding to the Perron- 
Frobenius eigenvalue r,  of TI. Then 

so that (I - ' ( L  + U)x = r,(I - rTIL)-'x, 

1.e. ( I  - rY1L)-'Ux = r lx .  

Thus r, is an eigenvalue and x an eigenvector of (I - rT1L)-'U which is 

We deduce immediately (since the presence of the r ,  does not change the 
position of the positive or zero elements) that r, , the dominant eigenvalue of 

(I - L)- ' U = 1 LkU, satisjies r, > 0, since r, > 0. 
k = O  

See Exercise 2.8 
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Further, if r ,  2 1, (I - r L I L ) - ' U  I (I - L ) - ' U ;  it follows that r 2  2 r , ,  
from the content of Exercise 1.12. In fact, since both incidence matrices are 
the same, a consideration of Theorem l.l(e) reveals r ,  > 1 r ,  > r , .  

Now, suppose that y, y 2 0, # 0 is a right eigenvector corresponding to 
the eigenvalue r ,  of T, . Thus 

so that 

i.e. 

Since r ,  L  + U must be irreducible (since L + U is), r ,  must be its Perron- 
Frobenius eigenvalue, and y > 0 (see Theorem 1.6). If r 2  > 1, then 

with strict inequality in at least one position, so that, from the Perron- 
Frobenius theory, r ,  < r ,  r , ,  i.e. 1 < r , ;  but if r 2  = 1, then r ,  = 1. On the 
other hand, if r ,  < 1 

with strict inequality in at least one position, so that r ,  < r ,  
Let us now summarize our deductions 

(i) r ,  2 1 - r ,  I r 2 ;  in fact r ,  > 1 r ,  < r , .  
(ii) r 2  > 1 - 1 < r , .  

(iii) r 2  = 1 * 1 = r , .  
(iv) r 2  < 1 - r 2  < r , .  

The conclusion of the theorem follows. 0 

Returning now to the Jacobi and Gauss-Seidel methods, we may further 
investigate both methods by looking at the system, for fixed i :  

where is some fixed vector. If a solution x to the system (2.7) exists then 
clearly the error vector at time m + 1, ~ ( m  + 1) is given by: 

so that ~ ( m )  = Ty[x(O) - x] = TTc(0). 

Thus if Ty -+ 0 as m + co the ith iterative method results in contiergence to 
the solution, which is then unique, in fact, since Ty -+ 0 ensures that 
(I - 7; ) -  ' exists. On the other hand, if Ty 0, etien ifa unique solution x is 
known to occur, the ith iterative method will not in general converge to it. 

Before passing on to further discussion, the reader may wish to note that 
the problem of convergence here in the case i = 1 is identical with that of 
convergence of the dynamic economic model discussed at the conclusion of 
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$2.1. We have already seen there that since TI  is irreducible, a necessary and 
sufficient condition for T y  + 0 is r ,  < 1. 

T2 on the other hand is reducible, and, while we have not developed 
appropriate theory to cope with this problem, the Jordan canonical form of 
a matrix being usually involved, nevertheless the relevant result1 yields an 
analogous conclusion viz. that r ,  < 1 is necessary and sufficient for TT -t 0. 

The significance of Theorem 2.5 is now clear: either both the Jacobi afzd 
Gauss-Seidel methods conuerge, in which case, since r2 < r,, the latter con- 
uerges (asymptotically) more quickly; or neither method converges, in the 
sense that T y  St 0, i = 1, 2. 

In a more general framework, where T ,  is not necessarily assumed irredu- 
cible, this statement, together with the analogue of Theorem 2.5, has come to 
be known as the Stein-Rosenberg Theorem. 

Bibliography and Discussion to $2.2 

This section barely touches on the discussion of iterative methods of solu- 
tion of linear equation systems; an exhaustive treatment of this topic with 
extensive referencing is given by Varga (1962). The two iterative methods 
discussed and compared here are more accurately known as the point Jacobi 
and point Gauss-Seidel iterative methods; both have various other designa- 
tions. The proof of (our restricted case of) Theorem 2.5 follows the original 
paper of Stein & Rosenberg (1948); the proof given in Varga (1962) is 
different. Generalizations of the Stein-Rosenberg Theorem, which enable 
one to compare the convergence rates of any two iterative methods out of a 
class of such methods, are available: see e.g. Theorem 3.15 and subsequent 
discussion in Varga (1962) where appropriate references are given; and 
Householder (1958). 

2.8. By considering first, for orientation, the example 

show that (whether TI is irreducible or not) T, is reducible. 

2.9.' Suppose we are concerned with the iterative solution of the equation system 

' Which goes back to Oldenburger (1940); see e.g. also Debreu & Herstein (1953); Varga 
(1962), Chapter 1. 

Exercises 2.9 and 2.10 have a common theme. 
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where T = {rid is irreducible, and its Perron-Frobenius eigenvalue satisfies 
r < 1, but some of the t i i ,  i = 1, . . . , n are positive, although all less than unity. 
One may then be inclined to make use of this 'natural form' of the matrix 
A = I - T by putting 

where L consists of the corresponding elements of T below the diagonal, and 
zeros elsewhere, and U consists of zeroes below the diagonal, but has its other 
entries, on the diagonal as well as above. the same at T. Show that the discussion 
of the Jacobi and Gauss-Seidel methods, including the relevant part of Theorem 
2.5, goes through with L, U replacing L, U respectively. 

(Stein & Rosenberg, 1948) 

2.10. In the framework of Exercise 2.9, if r ,  and r ,  have the same meaning as in the 
development of 42.2, show that r ,  < r (so that the 'natural' Jacobi method 
described in Exercise 2.9 is less efficient than the standard method; an analogous 
result is true for the 'natural' Gauss-Seidel method as compared with the 
standard one). 

2.3 Some Extensions of the Perron-Frobenius 
Structure 

The theory of non-negative matrices may be used to determine analogous 
results for certain other matrices which have related structure, and occur in 
contexts as diverse as mathematical economics and number theory. 

The foremost example occurs in the nature of square real matrices 
B = {b. IJJ .'i 3 j = 1, . . . , n where bi j  2 0, i # j. We shall call such matrices ML- 
matrices, and examine their properties. Closely related properties are clearly 
possessed by matrices which have the form - B, where B is an ML-matrix. 

Matrices of the type B or - B are sometimes associated with the names of 
Metzler and Leontief in mathematical economics; and under an additional 
condition of the sort 

1 bij  5 0, all j; or bij  5 0, all i, 
I .i 

with the names of Minkowski and Tambs-Lyche; and with the notion of a 
transition intensity matrix in the theory of finite Markov processes. 

Matrices of form A = - B, where B is an ML-matrix may be written in 
the form 

where s 2 0 is sufficiently large to make 7 2 0. If in fact this may be done so 
that also s 2 p(T), the spectral radius of T, then A is called an M-matrix. If, 
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further, one can do  this so that s > p(T) then A is said to be a non-singular 
M-matrix; since then A-' = (sI - T ) '  2 0  (see Exercise 2.4), it has the 
inverse-positivity property (the inverse exists and has non-negative entries). 
Such matrices have already been considered in 52.1 when T is irreducible. 

Although we carry forward the discussion in terms of ML-matrices only, 
it is clear that results such as Theorem 2.6 give information on inverse- 
positivity also. 

Irreducible ML-matrices 

An ML-matrix B may always be related to a non-negative matrix T - T(p) 
through the relation 

T = p I + B  

where p 2 0, and is sufficiently large to make T non-negative. 

Definition 2.1. An ML-matrix B is said to be irreducible1 if Tis irreducible. 
(This definition is merely a convenience; irreducibility can clearly be 

defined-equivalently-directly in terms of the non-diagonal elements of B, 
in terms of 'cycles '-see Definition 1.2.) 

By taking p sufficiently large, the corresponding irreducible T can clearly 
be made aperiodic also and thus primitive; e.g. take p > maxi 1 bii 1 .  

W e  conjine ourselves to irreducible ML-matrices B in this section, in line 
with the structure of the whole present chapter. The more important facts 
concerning such matrices are collected in the following theorem; for the 
reducible case see the exercises to this section. 

Theorem 2.6. Suppose B is an ( n  x n )  irreducible ML-matrix. Then there 
exists an eigenualue z such that: 

( a )  z is real; 
(b) with z are associated strictly positive left and right eigenuectors, which are 

unique to constant multiples; 
( c )  z > Re A: for any eigenvalue I,, i f z, of B (i.e. 7 is larger than the real part 

of any eigenvalue A: of B, 3, # z ) ;  
( d )  z is a simple root of the characteristic equation of B ;  
( e )  t 5 0  i f  and only if there exists y 2 0, # 0 such that By I 0, in which case 

y > 0; and < 0  ifand only if there is inequality in at least one position in 
By 1 0 ;  

( f )  z < 0  ifand only i f  

AL>O, i =  1,2, ..., n 

In the context of numerical analysis, an irreducible ML-matrix, C, is sometimes called essen- 
tially positiae. 
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where A, is the principal minor of - B formed from the first i rows and 
colurnizs of - B; 

( g )  T < 0 $ and only if - B- ' > 0. 

PROOF. Writing B = T - pI for p  sufficiently large to make T non-negative 
and irreducible, and noting as a result that if is an eigenvalue of B, then T 
has corresponding eigenvalue h i  = p  + ii , and conversely, (a), (b), (c) and (d) 
follow from the Perron-Frobenius theory, r  being identified with r - p, 
where r is the Perron-Frobenius eigenvalue of T. 

To see the validity of (e), let Lj = x j  + iyj be an eigenvalue of B, iLj # t ,  
and suppose xi 2 r .  If 

where p + x j > p + r > O ,  

so that jajj > r = p + r  

which is impossible. On the other hand, if x j  = r ,  but y j  # 0, again 

so the only possibility is x ,  = T ,  yj = 0 i.e. iVj = T ,  which is again a 
contradiction. 

The condition By _< 0 may be written as 

which is tantamount to p  2 r i.e. 

by the Subinvariance Theorem (Theorem 1.6). The discussion of strict 
inequality follows similarly (also in Exercise 2.1). 

The validity of ( f )  follows from Theorem 2.2; and of (g) from Corollary 1 
of Theorem 2.1. 0 

An ML-matrix, B, occurs frequently in connection with the matrix 
exp (Bt), t > 0, in applications where the matrix exp (Bt) is defined (in 
analogy to the scalar case) as the pointwise limit of the infinite series1 (which 
converges absolutely pointwise for each t > 0): 

Theorem 2.7. An ML-matrix B is irreducible ifand only ifexp (Bt) > 0 for all 
t > 0. In this case 

exp (Bt) = exp (.rt)wtll + O(eT") 

' See Lemma B.2 of Appendix B 
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elementwise as t -, co, where w, u' are the posltlue rlght and left elgencectors of 
B corresponding to the 'dommant' elgencalue z of B, normed so that v'w = 1 ,  
and 7' < T.  

PROOF. Write B = T - pI for sufficiently large LL > 0, so that T is non- 
negative. Then 

exp ( B t )  = exp ( -  ptI)  exp ( T t )  

= exp ( -  pt) exp ( T t )  

and since 
cc 

exp ( T t )  = 2 ( t T ) v k !  
k = O  

it follows that exp ( B t )  > 0 for any t > 0 if and only if T is irreducible, which 
is tantamount to the required. 

Suppose now B is irreducible. Then with judicious choice of p, 
T = pI + B is primitive, with its Person-Frobenius eigenvalue r = p + z. 
Invoking Theorem 1.2, we can write, if I., + 0, 

as k -t CQ, where w, u' have the properties specified in the statement of the 
present theorem, since the Perron-Frobenius eigenvectors of Tcorrespond to 
those of B associated with 7. If A, = 0, T k  = rkwv'. 

We may therefore write, for some 6, 0 < 6 < r that 

where (the elements of) Y ( k )  -+ 0 as k -, co. 

Hence 

i.e. elementwise (exp ( T t )  - exp (rt)wvl ( I exp (t6)Y 

where Y is a matrix of positive elements which bound the corresponding 
elements of Y ( k )  in modulus, uniformly for all k. Thus cross multiplying by 
exp ( - l-lt), 

lexp ( B t )  - exp (zt)wvl I I exp [t(S - p)]Y 

where 6 - p < r - p = z. Hence choosing z' to be any fixed number in the 
interval 6 - p < z' < z, the assertion follows. 0 

Perron Matrices 

Irreducible non-negative matrices T, and matrices B and - B where B is an 
irreducible ML-matrix are special classes of the set of Perron matrices. 

Definition 2.2. An (n  x n )  matrix A = {aij)  is said to be a Perron matrix if 
f ( A )  > 0 for some polynomial f with real coefficients. 
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Thus if T is non-negative irreducible, an appropriate polynomial,J is given 
b y 

since the matrix 
n 

f ( T )  = 1 T i  
i = l  

will have a strictly positive contribution for any one of its elements from at 
least one of the Ti ,  i = 1 ,  . . ., n (see Exercise 1.3). 

An irreducible ML-matrix B may be written in the form T - p1, p > 0, 
where T is non-negative and primitive, so that ( B  + > 0 for some posi- 
tive integer k, and this is a real polynomial in B. 

A further important subclass of Perron matrices, not previously men- 
tioned, are the power-positi~>e matrices A, i.e. matrices A such that Ak > 0 for 
some positive integer k. In this case, clearly, f ( x )  = xk.  

Perron matrices retain some of the features of the Perron-Frobenius 
structure of irreducible non-negative matrices discussed in Chapter 1, and 
we discuss these briefly. 

Theorem 2.8. Suppose A is an (n  x n )  Perron matrix. Then there exists an 
eigencalue 7 such that 

( a )  z is real; 
( b )  with 7 can be associated strictly positice left and right eigencectors, which 

are unique to constant nlultiples; 
( c )  .r is a simple root of the characteristic equation of A. 

PROOF. ( a )  and ( b ) :  For x > 0, let 

a i j x j  
z ( x )  = min C -- 

i j xi 

Then, since for each i 

so that l l x z ( x )  5 1'Ax 

since each element of 1'A is less than or equal to maxi Cj  ai j  - K ,  so that 
7 ( x )  is bounded above uniformly for all x > 0. Now, define 

7 = sup 7(x ) .  
x > o  
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It follows that 
n 

T 2 z(l)  = min C aij .  
i j = 1  

Now, let r* be defined by 

T* = sup z(z) 
Z E %  

where % is the set of vectors z = f ( A ) y  where j3 2 0, j s ' j '  = 1. Since this set of 
ys is compact, and the mapping is continuous on the set, % is compact, and 
since z E % * z > 0, clearly '6 is a subset of the set {x; .\- > 0). Thus 

and since z(x) is a continuous mapping from (x; .\- > 0 )  to R,, it follows that 
z* is attained for some z* E %. Now, since for any x > 0 

and x may be taken as normed to satisfy s'x = 1, (without change in z(x)) if 
we multiply this inequality from the left by f(A) 

since f (A)A = Af (A); and since w = f (A)x E % it follows that 

so that certainly 

whence z* = z, from (2.8). 

Thus we have that for some z* > 0 

Az* - zz* 2 0. 

Suppose now that the inequality is strict in at least one position. Then, as 
before 

so that for a w = f (A)z* > 0 

a,j w j  
~ ( M J )  = min C --- > z 

i j " i  

for each i, and this is a contradiction to the definition of r .  Hence 

so that, to complete the proof of assertions (a) and (b) of the theorem, it 
remains first to prove uniqueness to constant multiples of the eigenvector 



2.3 Some Extensions of the Perron-Frobenius Structure 5 1 

corresponding to T ;  and secondly to prove that there is a similar left eigen- 
vector structure. 

Since, for arbitrary positive integer k, and any eigenvector (possibly with 
complex elements), b 

Akb = zkb 

it follows that 

f (A)b = f  (~16. 

Now, f (A) is a positive matrix, and since for b we can put z*, > O ,  it follows 
from the Suninvariance Theorem that f (z)  is the Perron-Frobenius 
eigenvalue off  (A) and hence b must be a multiple of z*, by the Perron- 
Frobenius Theorem. 

As regards the left eigenvector structure, it follows that all the above 
theory will follow through, mutatis mutandis, in terms of a real number z' 
replacing z, where 

( . I:=, xiaij\ 
z' = SUP min 

x > "  \ j xj I 
so that there exists a unique (to constant multiples) positive left eigenvector 
c satisfying 

= z'c' 

and also 

Az* = TZ* 

(c): The fact that there is (to constant multiples) only one real b # 0 such 
that 

( T I  - A)b = 0 

implies that (71 - A) is of rank precisely n - 1, so that some set of (n - 1) of 
its columns is linearly independent. Considering the (n - 1) x n matrix 
formed from these (n - 1) columns, since it is of full rank (n - I), it follows' 
that (n - 1) of its rows must be linearly independent. Thus by crossing out a 
certain row and a certain column of (TI - A) it is possible to form an 
(n - 1) x (n - 1) non-singular matrix, whose determinant is therefore non- 
zero. Thus 

Adj (zl - A) # 0 

since at least one of its elements is non-zero. Thus, as in the proof of the 
Perron-Frobenius Theorem (part (f)), Adj (TI - A) has all its elements 
non-zero, and all positive or all negative, since all columns are real non-zero 

By a well-known result of linear algebra. 
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multiples of the positive right eigenvector, and the rows are real non-zero 
multiples of the positive left eigenvector, the sign of one element of 
Adj (TI - A )  determining the sign of the whole. 

Hence d'(z) # 0, 

as in the proof of Theorem 1.1. 

Corollary 1. 

min aij  I .r I max C aij  

with a similar result for the columns. 

PROOF. We proved in the course of the development, that 

min x ai j  r _< max 1 aij  
i j j i 

and implicitly (through considering 7') that 

min C aij  I z I max 1 a i j .  
j i i j 

Corollary 2. Either Adj (TI - A )  > 0 or -Adj (zl - A )  > 0. (Proved in the 
course of (c)). 

Corollary 3 (Subinvariance). For some real s, 

Ax I ss 

for some x 2 0, # 0  implies s 2 z; s = z i f  and only i f  Ax = sx. 

PROOF. Let sx - Ax = f ;  f 2 0 .  

Then SC'X - C'AX = c:f ,  

i.e. sc'x - zc'x = clf: 

Hence, since s - z = df ' /c lx ,  the result follows. 0 

Since the class of Perron matrices includes (irreducible) periodic non- 
negative matrices, it follows that there may be other eigenvalues of A which 
have modulus equal to that of z. This cannot occur for power-positice 
matrices A, which are clearly a generalization of primitive, rather than 
irreducible, non-negative matrices. 

For suppose that i. is any eigenvalue of the power-positive matrix A ;  thus 
for some possibly complex valued b # 0, 

and so Akb = Lkb 
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for each positive integer k, and hence for that k for which Ak > 0. It follows 
as before that for this k, zk is the Perron-Frobenius eigenvalue of the primi- 
tive matrix Ak, and hence is uniquely dominant in modulus over all other 
eigenvalues. 

Hence, in particular, for this k 

/tkI > / A k /  i.e. It/ > 1J.l 

if ik # rk .  
Now suppose iLk = t k .  Then it follows that any eigenvector b correspond- 

ing to i, must be a multiple of a single positiue vector, since Ak is primitive, 
corresponding to the Perron-Frobenius eigenvalue zk of Ak. 

On the other hand this positive vector itself must correspond to the 
eigenvalue T of A itself: call it z*. 

Thus Az* = zz*, Az* = l z *  

Therefore z = 2 .  

In this situation also, T is clearly a uniquely dominant eigentmlue in modulus 
as with primitive matrices. It may, however, be negatiue since jor ecen k, 
Ak>Owhere  A =  -T, T > 0 .  

Bibliography and Discussion to $2.3 

The theory of ML-matrices follows readily from the theory developed earlier 
for non-negative matrices T and the matrices s l  - T derived from them, and 
no separate discussion is really necessary. Theorem 2.7 is useful, apart from 
other contexts, in the theory of Markov processes on finite state space, in 
that it describes the asymptotic behaviour of a probability transition (sub - ) 
matrix exp (Bt )  at time t, as t becomes large (B in this context being irredu- 
cible), and satisfying, for all i, xj  bij  I 0 (see for example Mandl (1960); 
Darroch & Seneta (1967)). 

Ostrowski (1937; 1956) calls a real (n x n) matrix A = {aid an M-matrix 
if: aij  5 0, i # j, and A-' exists, with A-' 2 0, in effect, and deduces certain 
results for such matrices. We shall not pursue these further in this book, 
mentioning only the books of Varga (1962) and Berman and Plemmons 
(1979) for further discussion and references. 

The notion of a Perron matrix seems to be due to ~ i o n i s i o  (1963/4, Fasc. 
1) who gives the results of Theorem 2.8, his method of proof (as also ours) 
imitating that of Wielandt (1950) as modified in Gantmacher (1959). It will 
be noted that this approach differs somewhat from that used in the proof of 
the Perron-Frobenius Theorem itself in our Chapter 1, that proof following 
Wielandt almost exclusively. Both proofs have been presented in the text for 
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interest, although the initial stages of Wielandt's proof are not quite appro- 
priate in the general context of a Perron matrix. 

Power-positive matrices appear to have been introduced by Brauer 
(1961), whose paper the interested reader should consult for further details. 

There are various other (finite-dimensional) extensions of the Perron- 
Frobenius structure of non-negative matrices. One such which has received 
substantial attention is that of an operator H, not necessarily linear, map- 
ping {x; x 2 0) into itself, which is monotone (0 < x, < x, => Hx, I Hx,), 
homogeneous (H(crx) = crH(x) for 0 I cc < a), and continuous, these proper- 
ties being possessed by any non-negative matrix T. A weak analogue of the 
irreducibility is 

(0 < .I-, < x2 ,  x, # x,) * {Hxl I Hx2 ,  H.rl # Hx,); 

and for primitivity the right hand side of the implication must be supple- 
mented by the existence of a positive integer m such that Hmx, < Hmxz .  A 
theorem much like the Perron-Frobenius Theorem in several respects can 
then be developed using a method of proof rather similar to that in Chapter 
1. The interested reader should consult Brualdi, Parter & Schneider (1966), 
Morishima (1961, 1964), Solow & Samuelson (1953), and Taylor (1978). 

It is also revelant to mention the paper of Mangasarian (1971) who 
considers the generalized eigenvalue problem (A - 2B)x under variants of 
the assumption that y'B 2 O', # 0'- y'A 2 O', # 0' to derive a Perron- 
Frobenius structure; the nature of this generalization becomes clear by put- 
ting B = I. 

Finally we note certain generalizations of Perron-Frobenius structure 
obtainable by considering matrices which are not necessarily non-negative, 
but specified cycles of whose elements are (the definition of cycle is as in 
$1.2). This kind of theory has been developed in e.g. Maybee (1967); Bassett, 
Maybee & Quirk (1968); and Maybee & Quirk (1969)-from which further 
references are obtainable. A central theme of this work is the notion of a 
Morishima matrix (Morishima, 1952), which has properties closely allied to 
the Perron-Frobenius structure. 

An (n x n) non-negative matrix T, with a view to further generalizations, 
may itself be regarded as a matrix representation of a linear operator which 
maps a convex cone of a partially ordered vector space (here the positive 
orthant of R,) into itself, in the case when the cone is determined by its set of 
extreme generators. Berman and Plemmons (1979) give an extensive 
discussion. 

2.11. Suppose B is an arbitrary (n x n)  ML-matrix. Show that there exists a real 
eigenvalue p* such that p* 1 Re 1 for any eigenvalue 2 of B, and that p* < 0 if 
and only if Ai > 0, i = 1, 2, . . . , n. (See Exercises to 42.1 of this chapter.) 

2.12. In the situation of Exercise 2.11, show that if p* I 0 then Ai 2 0, i = 1 ,2 , .  . . , n. 
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2.13. Let B  = (b i j )  be an (n  x n )  ML-matrix with bij  > 0, i f j ,  whose 'dominant '  
eigenvalue is denoted by p*. Show that (for n  2 2 )  the condition: A, 2 0 ,  
A, > 0 ,  i = 1. 2, ..., n  - 1, ensures that p* 5 0 .  

Hint: Make use of the identity ( -  B )  Adj ( -  B )  = A, I ,  and follow the proof 
pattern of the latter part of Theorem 2.2. 

[Kotelyanskii (1952) shows that for such B  the apparently weaker condition 
Ai 2 0, i = 1, . . ., n  implies Ai > 0, i = 1 , .  . ., n - 1. Thus, taking into account 
also Exercise 2.12 above, Ai 2 0,  i = 1, . . . , n is necessary and sufficient for p* I 0 
for such B.] 

2.14. Let B  = (bid be an irreducible (n  x n )  ML-matrix with 'dominant' eigenvalue 
p*. Show that 

min 1 bij < p* max C bLj 
i j = 1  i j = 1  

with either equality holding if and only if both hold, making use of the analo- 
gous result for a non-negative irreducible matrix T. 

If it is assumed, further, that 

for every i, show that: A, 2 0,  i = 1, . . . ,  n;  and that A, > 0,  i = 1, . . . ,  n  if and 
only if some row sum of B  is strictly negative. Hence deduce that A, # 0 if and 
only if some row sum of B  is strictly negative. [The variants of this last state- 
ment have a long history; see Taussky (1949).] 

2.15. If B  is an (n  x n )  ML-matrix, not necessarily irreducible. but satisfying 

show that A, 2 0, i = 1, . . ., n. 
(Ledermann, 1950a) 

2.16. Show that a non-negative reducible matrix T cannot be a Perron matrix 

2.4 Combinatorial Properties 

It has been remarked several times already in Chapter 1 that many proper- 
ties of a non-negative matrix T depend only on the positions of the positive 
and zero elements within the matrix, and not on the actual size of the positive 
elements. Thus the classification of indices into essential and inessential, 
values of periods of indices which communicate with themselves, and hence 
investigation of the properties of irreducibility and primitivity in relation to 
a given non-negative T, all depend only on the location of the positive 
entries. This is a consequence of the more general fact that the positions of 
the positive and zero elements in all powers, Tk, k a positive integer, depend 
only on the positions in T. 
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It thus follows that to make a general study of the sequence of the powers 
Tk, k = 1, 2, . . . it suffices for example to replace, for each k 2 1, in the matrix 
Tk the element t$' by unity, whenever t15' > 0. The matrices so obtained may 
still be obtained as appropriate powers of the matrix T so modified (denoted 
say by T), if we accept that the rules of addition and multiplication involving 
elements 0, 1 pairwise are those of a simple Boolean algebra, i.e. the rules are 
the usual ones, with the single modification that 1 + 1 = 1. The basic matrix 
T has been called the incidence matrix of the matrix T in Chapter 1; such 
matrices with the Boolean algebra rules for composition as regards elements 
of their products, are also known in certain contexts as Boolean relation 
matrices. 

An alternative formulation for the study of the power structure of a 
nonnegative matrix is in graph theoretic terms; while a third is in terms of a 
mapping, F, induced by a matrix T,  of its index set {l,2,  . . . , n} into itself. We 
shall pursue this last approach since it would seem to have the advantage of 
conceptual simplicity (as compared to the graph-theoretic approach) within 
the limited framework with which we are concerned in the present chapter. 
Nevertheless, it should be stressed that all three approaches are quite equiva- 
lent, merely being different frameworks for the same topic, viz, the combina- 
torial properties of non-negative matrices. 

Denote now by S the set of indices {l ,2 ,  . . . , n} of an irreducible matrix T, 
and let L c S. Further, for integer 11 2 0, let Fh(L) be the set of indices j E S 
such that 

t$' > 0 for some i E L. 

(If L = 4, the empty set, put ~ ~ ( 4 )  = 4.) 
Thus Fh(i) is the set of j E S such that ti;' > 0. Also FO(L) = L by conven- 

tion. Further, we notice the following easy consequences of these definitions : 

(i) A c B c S, then F(A) c F(B). 
(ii) If A c S,  B c S, then F(A u B) = F(A) u F(B). 

(iii) For integer h 2 0, and L c S,  

(iv) The mapping Fh may be interpreted as the F-mapping associated with 
the non-negative matrix Th, or as the hth iterate (in view of (iii)) of the 
mapping F associated with the matrix T. 

We shall henceforth restrict ourselves to irreducible matrices T ; and even- 
tually to primitive matrices T, in connection with a study of the index of 
primitivity of such T .  

Definition 2.3. The minimum positive integer y - y(T) for which a primitive 
matrix T satisfies T/  > 0 is called the index of primitivity (or exponent) of T. 
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Irreducible Matrices 

We shall at the outset assume that n 2 2, to avoid trivialities, and note that 
for an irreducible T, F(i)  # 4, for each i E S. 

Lemma 2.1. F ( S )  = S. If L is a proper subset of S and L # 4 then F ( L )  
contains some index not in L .  

PROOF. If F ( S )  were a proper subset of S, then T would contain a zero 
column; this is not possible for irreducible T. If for a non-empty proper 
subset L of S ,  F ( L )  c L ,  then this also contradicts irreducibility, since then 
Fh(L)  c L all positive integer h, and hence for i E L ,  j # L ,  i 1. j. 0 

Lemma 2.2. For 0 5 h _< n - 1, { i )  u F(i)  u . . . u Fh(i)  contains at least 
h + 1 indices. 

PROOF. The proposition is evidently true for h = 0.  Assume it is true for some 
h , O < h < n -  1;then 

L = { i )  u F(i )  u . . .  u Fh(i)  

contains at least h + 1 indices, and one of two situations occurs: 

( a )  L = S, in which case 

( i )  u F(i )  u . . .  u Fh+'( i )  = S 

also, containing n > h + 1 elements, so that n 2 h + 2, and the hypo- 
thesis is verified; or 

( b )  L is a proper non-empty subset of S in which case 

contains at least one index not in L (by Lemma 2.1), and since i E L,  

{ i )  u F ( L )  = { i )  u F(i )  u . . .  u Fh+'( i )  

contains all the indices of L and at least one not in L,  thus containing at 
least h + 2 elements. 0 

Corollary 1. If { i )  u F(i )  u . . . u Fh-  ' ( i )  is a proper subset of S, then, with the 
union of Fh(i), at least one new element is added. Thus, f 

{ i )  u F( i )  u . . . u Fh(i), h < n - 2, 

contains precisely h + 1 elements, then union with each successive Fr(i), r = 1, 
2, . . . , n - 2 adds precisely one new element. 

Corollary 2. For any i~ S,  i u  F ( i ) u  . . .  u Fn- ' ( i )  = S .  (This was proved 
directly in Exercise 1.3.) 

For purposes of the sequel we introduce a new term. 
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Definition 2.4. An irreducible (n  x n )  matrix T is said to be deterministic if it 
is periodic with period d  = n  (i.e. each cyclic subset of the matrix contains 
only one index). Equivalently, for such an irreducible matrix, for each i  E S 
there is only one j E S such that t i ,  > 0.)  

Lemma 2.3. For i  E S,  Fh(i)  contains at least two indices,for some h, 1 5 lz _< n  
unless the deterministic case obtains. 

PROOF. Since { i )  u F(i) u . . . u Fn- ' ( i )  = S ,  two cases are possible: 

( a )  each of the Fh(i), h  = 0,  . . . , n  - 1, contains precisely one index, and all 
differ from each other. Now if Fn(i)  contains only one index, either 
Fn(i)  = {i} and we are in the deterministic case; or Fn(i)  = Fh(i) for some 
h, 1  I h 5 n - 1, which is impossible as irreducibility of T is contra- 
dicted. Otherwise Fn(i)  contains at least two indices. 

( b )  some Fh(i), 1 I h  I n - 1 contains at least two indices. 0 

We now pass on to a study of a general upper bound for y(T)  depending 
only on the dimension n ( 2 2  by earlier assumption) for primitive T. For 
subclasses of (n  x n)  primitive matrices T satisfying additional structural 
conditions, stronger results are possible.' 

Theorem 2.9. For a  primitice (n  x n )  matrix, T ,  y I n2 - 2n + 2. 

PROOF. According to Lemma 2.3, for arbitrary fixed i  E S, 

{i} u F(i)  u . . .  u Fn- ' ( i )  = S, 

and either ( a )  Fh(i), h = 0 ,  . . . , n  - 1 all contain precisely one index, in which 
case Fn(i)  contains at least two2 indices; or ( b )  one of the Fh(i), 1  I h I n  - 1  
contains at least two. 

( a )  Since {i)  u . . . u Fn- ' ( i )  = S,  it follows F(i)  u . . . u Fn(i) = 

F(S)  = S,  in which case Fn(i)  must contain i, and at least one index not i, i.e. 
one of Fh(i), h  = 1, . . . , n  - 1. Hence for some integer m = m(i), 1  5 m < n, 

Fm(i) E Fn(j)  = Fm+("-"J (i) ,  

so that operating repeatedly with Fn-": 
p ( i )  ~m + ( n  - m )  ( i )  ~ m + 2 ( n - m )  ( i )  . .. ~ m + ( n -  l ) ( n - m )  (4 

and by Corollary 2  of Lemma 2.2, 
~ m + ( n -  I ) @ - m )  ( i )  = S. 

Now 
m + ( n  - l ) ( n  - m )  = n  + (n - 2)(n - m )  5 n  + (n - 2)(n - 1)  

= n2 - 2n + 2. 

See Exercise 1.3, and Exercises 2.17 and 2.18 of the sequel, and Bibliography and Discussion. 

The deterministic case is excluded by assumption of primitivity of T. 
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( b )  If one of the Fh(i), h = 1, 2, . . . , n - 1 contains at least two indices, we 
further differentiate between two cases: 

(b.1) { i )  u F(i)  u . . . u Fn-'(i) # S. Then by Corollary 1 of Lemma 2.2, 
each of Fh(i), h = 0, . . . , n - 2 adds precisely one new element, and by 
Corollary 2, Fn- ' ( i )  contributes the last element required to make up S. Let 
p - p(i), 1 < p I n - 1, be the smallest positive integer such that Fp(i)  con- 
tains at least two elements. Then there exists an integer m, 0 < m < p such 
that Fm(i) L FP(i). Proceeding as in (a),  

and 

(b.2) { i )  u F(i)  u . . . u Fn- ' ( i )  = S. Then 

as before, so that for some p, 1 I p I n - 1, FP(i)  2 FO(i) = {i). Proceeding 
as before, 

~0 + ( n  - 1 )P(i) = S, 

with 

(n  - 1)p 5 (n  - 1)' < n2 - 2n + 2. 

Thus combining ( a )  and (b),  we have that for each i 6 S, 

F n z - z n + 2  ( i )  = S 

which proves the theorem. 

Corollary. y(T)  = n2 - 2n + 2 i f  and only i f  a simultaneous permutation of 
rows and columns of T reduces it to an (almost deterministic) form having 
incidence matrix 

0 1 o o . . . o  

T =  
0 0 0 ... 
1 1 0 0 ... 

PROOF. From the proof of Theorem 2.9, it may be seen that only in case (a)  is 
it possible that there exists a row, say the ith, which becomes entirely posi- 
tive for the first time only with a power as high as n2 - 2n + 2, and then only 
with the conditions that m = 1 is the unique choice and 
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Ignoring (2.9) for the moment, the other conditions indicate that, taking i as 
the first index, F(i) as the second, . . ., Fn- ' ( i )  as the nth, a form with the 
incidence matrix displayed is the only one possible. It is then easily checked 
for this form that (2.9) holds, as required, for each successive operation on 
F(i) by Fn-' adds precisely one new element, up to the (n - 1)th operation. 
0 

Bibliography and Discussion to $2.4 

The approach of the present section is a combination of those of Holladay & 
Varga (1958) and Ptak (1958). Wielandt (1950) stated the result of Theorem 
2.9 (without proof) and gave the case discussed in its Corollary as an 
example that the upper bound is attainable. Theorem 2.9 was subsequently 
proved by Rosenblatt (1957) using a graph-theoretic approach, and by Hol- 
laday & Varga and Ptak, in the papers cited. The full force of the Corollary 
to Theorem 2.9 would seem to be due ~ i o n k i o  (196314, Fasc. 2), using a 
graph-theoretic approach. 

The study of the combinatorial properties of non-negative matrices has 
expanded rapidly since the early contributions of Rosenblatt, Holladay, 
Varga, and Ptak, usually with the aid of methods which are explicitly graph- 
theoretic. We shall mention only a limited number of these contributions, 
from which (or from whose authors) the interested reader should be able to 
trace others. Perkins (1961), Dulmage & Mendelsohn (1962,1964) and Heap 
& Lynn (1964) have further pursued the structure of the powers of primitive 
T, obtaining sharper bounds than Wielandt's under certain structural condi- 
tions. Pullman (1964) has investigated the imprimitive case using a combina- 
torial approach. Subsequently, Heap & Lynn (1966, I), have considered the 
' oscillatory' structure of the sequence of powers of irreducible and reducible 
T; and (1966, 11) the maximum number of positive elements, p, which may 
be contained by a matrix of the sequence Tr, r = 1, 2, . . . and the positive 
integer v for which T' first contains p positive elements. Schwartz (1967) has 
made a study similar to that of Heap & Lynn (1966, I) for irreducible 
matrices, using a combinatorial approach. 

All exercises refer to an (n x n )  primitice matrix T, unless otherwise stated. 

2.17. In Exercise 1.3, of Chapter 1, it was shown that if tii > 0, i = 1, . . ., n, then 

?(T) n - 1. Adapting the reasoning of this exercise show that 
(i) If T has exactly one positive diagonal entry, then y(T) 2 2(n - 1). 

(Rosenblatt, 1957) 
(ii) If T has exactly r 2 1 diagonal entries then ;.(T) < 2n - r - 1. 

(Holladay & Varga, 1958) 
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2.18. If T is an irreducible matrix which has t i j  > 0 if and only if t j ,  > 0, show that T 2  
has all its diagonal elements positive. If, in addition, Tis  primitive, show that 
y(T) 2 2(n - 1). 

(Holladay & Varga, 1958) 

2.19. Use the fact that t[;' > 0 for some r, 1 < r g n, and the essence of part (i) of 
Exercise 2.17 above to obtain the bound y(T) I: 2n2 - 2n for an arbi- 
trary (primitive) T. (This bound, substantially weaker than that of Wielandt in 
Theorem 2.9, was already known to Frobenius (1912)). 

2 . 2 0 .  If k(T) is the t o t a l  number of positive entries in T, show that k(T'), r = 1, 2,  . . . 
may not (initially) be non-decreasing, by investigating the (9 x 9)  matrix whose 
positive entries are t l l .  t 1 2 ,  t 2 3 ,  t z 4 ,  t 2 5 ,  t 3 6 ,  h7 ,  t 3 8 ,  t 4 6 ,  t4, ,  t 4 8 ,  t j 6  t s 7 .  t 5 8 ,  

t 6 9 ,  t 7 9 ,  t 8 9 .  t 91 .  

(Sidak, 1964) 

2.21. In the framework of Exercise 2.20, show that k(Tr) is non-decreasing with r if at 
least (n - 1) diagonal entries of T are positive. (Use Lemma 2.1.) 

(Sidak, 19646) 

2.22. Let T = i t i j } ,  i, j = 1, . . . , n be a non-negative matrix, not necessarily primitive, 
and suppose that for some permutation (p,, p,, . . . ,  p,) of {l. 2, . . . ,  TI ) ,  

n;= ti,, > 0. If S is n x n non-negative, show that k(T) 5 k(TS) in the nota- 
tion of Exercise 2 . 2 0 ;  and hence that k(Tr) is nondecreasing with r. 

(Vrba, 1973) 

2.5 Spectrum Localization 

If T is an n x n irreducible non-negative matrix with Perron-Frobenius 
eigenvalue r,  then in Corollary 1 to Theorem 1.1 of Chapter 1 we obtained 
the Frobenius-type inclusion 

where s = min 1 t i j ,  S = max 1 tij ; 
i j=1  i j = l  

with either equality holding if and only if all row sums are equal. A similar 
proposition holds for column sums. Related inequalities were discussed in 
Exercises, 1.6 to 1.8 of Chapter 1. It is easy to see from the canonical form of a 
square non-negative matrix T with spectral radius p, using (2.10a), that 

As regards the whole spectrum, a problem of interest posed by Kolmo- 
gorov in 1938, is that of characterizing the region M ,  of the complex plane 
which consists of all points which can be eigenvalues of (n x n) non-negative 
matrices T; clearly for the problem to be meaningful it is necessary to 
impose a condition restricting the size of the spectral radius p (assumed 
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positive). If T has a left eigenvector v' = {ci) > 0' corresponding to p, or a 
right eigenvector w = {w,) > 0, then the transformation 

p. .  I J  = v.t../c.p J J I  I or = tijwj/wip (2.11) 

i, j = 1, . . . , n, respectively, results in an (n x n)  matrix P = (pij) which has all 
row sums unity with (since essentially only a similarity transformation is 
involved) spectrum identical to the spectrum of T except that each eigen- 
value of T is divided by p. Matrices T for which such a transformation may 
be performed include those which are irreducible, and those which have 
identical row sums a > 0 (in which case p = a, by (2.10b), and 1 is a corre- 
sponding right eigenvector), or which have identical column sums a > 0. In 
the sense of this discussion, it is therefore sufficient to consider the problem 
for (n x n )  matrices which are stochastic. 

Definition 2.5. A non-negative matrix T = itij), i, j = 1, . . . , n, is called stoch- 
astic (or more precisely row stochastic) if 

tij = 1, each i. 
j = 1  

It is called doubly stochastic if also 

C tij = 1, each j. 
i = l  

It is clear that for a stochastic T, p = 1 and for any eigenvalue i, I /Z I 5 1, 
so M n  for such T is contained in the unit circle. 

In the sequel we concern ourselves only with determining a circle in the 
complex plane, centre origin, which contains all eigenvalues ,? # 1 of a par- 
ticular stochastic T. The procedure is no more difficult for an arbitrary real 
(n x n) matrix A = {aij), i, j = 1, . . . , n with identical row sums a, and we 
shall carry it through in this setting. Since for a stochastic matrix T, 
A = I - T has identical row sums (zero), the result (Theorem 2.10) enables 
us to obtain a circle, centre unity, containing all values / 1 - 21, where i is 
an eigenvalue of T. Thus we concern ourselves (until the Bibliography and 
Discussion) with spectrum localization by circles. 

In the following, for x = {xi), lIx11 = I xi I (the 1, norm of x) and f ,  
denote the vector with unity in the i-th position and zeros elsewhere. 

Lemma 2.4. Suppose SE Rn, n 2 2, 6'1 = 0, 6 # 0. Then for a suitable set 
9 = 4(6 )  of ordered pairs of indices (i, j), i, j = 1, . . . , n, 
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PROOF. We proceed by induction on n. The proposition is evidently true for 
n = 2. Suppose it is true for n = k 2 2, and consider n = k + 1. Then in 
6 = {d,), i = 1,  . . . ,  k + 1, choose p so that 1dpl = max 1 ~ 5 ~ 1 ,  and q so that 
6,  # 0 and sign 6,  = -sign 6,. Put al = dq(.fq - f,), and write 6 = (6 - a,), 
which has a zero component in the q-th position, but clearly 6 # 0, 6'1 = 0 
and 1181 = 1161) - 2 16,l. We can thus apply the induction hypothesis to 8 
to obtain the required result for 6, where q,, ,/2 = 16,). 0 

Theorem 2.10. Let A = {aij):, j = l  be a matrix with constant row sums a, and 
suppose 1, is an eigencalue of A other than a. Then 

1). I I $ max 1 1 ais - ajs / . (2.13) 
i.j s = l  

Moreover the right-hand bound may be written in either of the alternutice 
forms 

n 

a - min C min (a,, , ujs), (max max (ais , a j s ) )  - a. (2.14) 
i ,  j s = l  i , j  s = l  

PROOF. Let z' = (z, ,  z,,  . . . , z,) be an arbitrary row vector of complex num- 
bers. Then for any real 6 # 0, 6'1 = 0 in view of Lemma 2.4 

putting f ( z )  = maxi, I zi - z j  1 ,  we have 

Thus for any right eigenvector z of A corresponding to an eigenvalue 2 of A, 

Now 1 # a impliesf ( z )  # 0, sincef ( z )  = 0 if and only if z = const. 1. Hence 
if A # x ,  

n 

/ 1 I 5 ( f )  max 1 1 %  - ajsl 
i, j s = l  

The alternative forms follow from the identity, valid for any n real pairs 
( x i ,  yi), i = 1, . . ., n 
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Bibliography and Discussion to $2.5 

According to Zenger (1972), Theorem 2.10 is due to E. Deutsch, within the 
framework of Bauer, Deutsch and Stoer (1969). A generally even sharper 
boundthan (2.13) for 1 # a is given by Deutsch and Zenger (1971) viz. 

- - 

I C ( q k - a j k l  . 
i, j  k  

k t i ,  j  
I 

A bound generally weaker than (2.12), in view of (2.14), 

I " 1 I ̂ . 1 5 min a 1 min a,,, (il max a,,) - a ,  (2.15) 1 -w , 1 

was obtained by Brauer (1971), and partially by Lynn and Timlake (1969). 
Bauer, Deutsch and Stoer (1969) also showed that if T is non-negative 

and irreducible, then for 1 # r ,  where r is the Perron-Frobenius eigenvalue 
of T, 

where 

in terms of the transformed stochastic matrix P = { p i j )  formed from T via 
(2.1 I), and 

where 

t i k  +(T) = min --- i f T > O  
i ,  j ,  k ,  I t j k  t i l  

= 0 if T + 0. 

.r,(T) and t , (T)  are known as "coefficients of ergodicity" (Seneta, 1979) 
because of certain other properties and uses which will be discussed in 
Chapter 3 where the inequality s,(T) 2 s1(T) will be obtained (Theorem 
3.13) in a slightly more general setting. 

The inequality z,(T) 2 12 ( / r  in terms of the Birkhoff (1957) coefficient of 
ergodicity r n ( . )  is due to Hopf (1963). 

It is not surprising that some of the above results have been rediscovered 
in the probabilistic context of ergodicity coefficients. Thus the first of the 
bounds in (2.15)-obtained by Pykh (1973) and in a review of this paper the 
bound (2.13) stated by Seneta (1974), for stochastic A. A proof of (2.13) was 
subsequently given, along lines similar to those followed above, by Alpin 
and Gabassov (1976). 
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The problem of improving the Frobenius bounds (2.10a) for r in the case 
in which not all row sums of T are the same, in the guise of determining 
positive numbers p ,  and p ,  such that 

was suggested by Ledermann in 1950. For T > 0 such numbers p ,  and p , ,  of 
successively 'sharper' nature were obtained by Ledermann (1950b), 
Ostrowski (1952) and Brauer (1957~)  (see also Medlin (1953)). The case of 
irreducible T was similarly considered by Ostrowski and Schneider (1960). 
An account of these and other contributions is given by Marcus and Minc 
(1964). 

Related lines of research for irreducible T, pertain to bounds involving 
the Perron-Frobenius eigenvector. If w = {w,) > 0 is such a right eigenvec- 
tor, then bounds are available for min w,/max w, (perhaps the simplest such 
is given in Exercise 2.22), min wi/xi wi and max wi/xi w, . See e.g. Lynn and 
Timlake (1969); de Oliveira (1972); and Berman and Plemmons (1979) for 
further references. 

The problem of determining M ,  for stochastic matrices was partially 
solved by Dmitriev & Dynkin (1945), Dmitriev (1946), and the solution 
completed by Karpelevich (1951). It turns out that M ,  consists of the inter- 
ior and boundary of a simple curvilinear polygon with vertices on the unit 
circle, and is symmetric about the real axis. A description of this and related 
theory is available in the book of de Oliveira (1968, Chapter 2). 

A second problem is that of determining, for a given non-negative T, a 
region which contains all the eigenvalues 1 of T. Theorems which determine 
regions containing all eigenvalues for general (possibly complex valued) 
matrices in terms of their elements may be used for this purpose. The field 
here is broad; an account is available in the books of Varga (1962,§1.4 and 
its discussion) and Marcus & Minc (1964); and the paper of Timan (1972). 
Theorem 2.10 above is essentially pertinent to this problem.' 

Further, we mention the difficult problem suggested by Suleimanova 
(1949, 1953) of investigating the n-dimensional region 93, consisting of n- 
tuples of (real or complex) numbers, these n-tuples being the set of character- 
istic roots of some stochastic non-negative matrix T, this being a 
generalization of Kolmogorov's problem. Associated with this is the prob- 
lem of conditions on a set of n numbers in order that these form a set of 
eigenvalues of an (n x n) stochastic matrix. After ~uleimanova (1949), this 
work was carried forward by Perfect (1952, 1953, 1955) for stochastic 
matrices, and by Perfect & Mirsky (1965, and its references) for doubly 
stochastic matrices. Further work in this direction has been carried out by 
the de Oliveira (1968), whose book contains an extensive description and 
references. 

For a useful generalization of the notion of stochasticity and some results relevant to this 
section, see Haynsworth (1955). See also Barker and Turner (1973) and Fritz, Huppert and 
Willems (1979). 
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Vere-Jones (1971) has considered another version of this problem, viz. the 
investigation of the n-dimensional region consisting of points which are 
eigenvalue sets of those non-negative T which can be diagonalized by a 
similarity transformation Q-'TQ by a fixed matrix Q. (See also Buharaev 
(1968)) 

We finally mention the articles of Mirsky (1963, 1964) as sources of 
further information. 

EXERCISES ON $2.5 

2.23. Let T be an irreducible non-negative matrix with Perron-Frobenius eigenvalue 
r and corresponding left and right strictly positive eigenvectors o', w. By using 
the fact that the matrix defined by (2.11) is stochastic show that 

S(min wi/max wi) < r < s(max w,/min w,) 

with s and S having the meaning of (2.10~);  and hence that 

min wi/max w, < (s/S)' '. 

Obtain corresponding inequalities in terms of o'. 

2.24. Express the vector 6 = (-9, 4, 4, 1)' in the form (2.12). 

2.25. For irreducible T = {ti,], i, j = 1, . . . , n, show (using (2.16)) that for any eigen- 
value I j. r 

/ 2 1 l r  I (M - m)/(M + m) 

where M = maxi, t i j ,  m = mini, t i j .  
(Ostrowski, 1963) 

2.26. Calculate T, and T I  for each of the matrices 

and verify that T, 2 

2.27. Suppose P = {piiJ,  i, j = 1, . . . , n is any stochastic matrix. Show that T,(P)  < 1 if 
and only if no two rows of P are orthogonal (or, alternatively, any two rows 
intersect). [Stochastic matrices with this property are called "scrambling" and 
will be considered in Chapter 3 and in detail in Chapter 4.1 

2.28. Any real (n x n) matrix A = {atj) may be adjusted by several devices into an 
(n + 1) x (n + 1) matrix with equal row sums a, without changing the spec- 
trum apart from adding on eigenvalue a, so Theorem 2.10 may be used to 
localize the whole spectrum of A. 

Show that one such augmentation: consisting in adding a column whose 
entries are the negatives of the respective row sums of A, and a final row of 
zeroes (making zero the row sums, a, of the augmented matrix), produces the 
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bound S (see (2.10b)) when A 2 0. Suggest an augmentation which does the 
same for A 2 0, but where the augmented matrix is still non-negative. 

(Seneta, 1979) 

2.29. Suppose T = { t i j} :  i, j = 1, . . . , n is a non-negative matrix with spectral radius 
p > 0. Denoting the corresponding right eigenvector by n! = {wt.,j show that 

Now supposing T has its r-th row strictly positive, show that p > 0, and, 
putting O,, = maxi (tkjltrj), that 

[Hin t :  Apply the preceding to the matrix A = {uiji formed from T by multiply- 
ing its r-th row by O,, and dividing its r-th column by @,,, if @,, > 0.1 

(de Oliveira, 1972) 

2.30. Denote by s(T)  and S(T) the minimal and maximal row sums of a square 
non-negative matrix T with spectral radius p. If A and Bare two such matrices 
show that s(AB) 2 s(A)s(B), S(AB) j S(A)S(B) and hence that 

If T is irreducible with Perron-Frobenius eigenvalue r. show that as p + cc 

{S(T~'))"~ '  r 1 {S(T2p))112p. 

(e.g. Varga, 1962; Yamamoto, 1967) 

2.6 Estimating Non-negative Matrices from 
Marginal Totals 

An important practical problem, whose scope and variants are discussed in 
the notes to this section, may be stated as follows. Given an (m x n) matrix 
A = {ai j )  2 0 with no row or column zero, when does there exist a non- 
negative matrix B = {bi j )  of the same dimensions with specified strictly posi- 
tive row and column totals (say B1 = x > 0, 1'B = y' > 0') and such that 
ai j  = 0 implies bi j  = O ?  If such a B exists, how may it be obtained from A ?  

An intuitively straightforward approach to this problem is to rescale first 
the rows of a given A so that the vector of row sums is x, then to rescale the 
columns of the resulting matrix to give y' as the vector of column sums; and 
then to continue the iterative process by rescaling the row sums, and so on. 
Under favourable conditions on A, x and y', a matrix B of required form 
may be expected to result as the limit of this iterative scaling procedure. We 
shall pursue this approach to a limited extent without making our usual 
restriction to square matrices (though much work has been done in the 
setting of A square and irreducible), since in the applications squareness is 
not a standard requirement. 
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Taking an iteration to be a row adjustment followed by a column adjust- 
ment, we denote the result of t ( t  2 1 )  iterations by A"') = {a$')) with 

a!;') = r!"ui jc~ ' ,  i = 1 ,  . , , , m ;  j = 1, . . . , n 
where 

where c y )  = 1. When necessary for clarity we shall write rl t)(A) for 1.1" and 
c?'(A) for cy);  this extended notation makes possible the use of relations such 
as 

rlt+ " ( A )  = rj"(A(2"), each i. (2.18) 

It is also useful to write A("- ')  = (ajjZr- where 

(21- 1) = r j i )a .  . +  1 )  aij I J  J 

for the matrix resulting from t row adjustments and t - 1 column adjust- 
ments ( t  2 1). 

Lemma 2.5. For au A with no zero row or column, 

PROOF. By (2.17b) with t + 1)  in place of t 

so that, for all i, 

( t -  1 )  ,.it+ 1 )  

max (%) 2 -ri 2 min 
j r~ j 
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since the matrix with (i, j )  entry (rj"aijcj!~"/xi) is (row) stochastic by 
(2.17b), and so rltj/rl'+" is a convex combination of the elements cf'/cj!- I ) ,  

j =  1, . . . ,  n. 
On the other hand, from (2.17a) with (t  + 1) in place of t 

from which the stated results follow. 

Corollary. The sequences maxi (r!" "/rit)), maxj (cj"/cy- l') are non-increasing 
with t ,  while mini (rjt+ "lrlt)), minj (cSf)/c~-") are non-decreasing. 

In view of the fact that the elements of A"'' = {a$ ')) are non-negative and 
have constant column sum vector y', it follows that A('J has at  least one limit 
point (every limit point must be an elementwise finite non-negative matrix 
with the same column sum vector y', and zeroes in at least the same positions 
as A). Let A* denote any limit point. 

Lemma 2.6. I f  A > 0, then A* > 0. 

PROOF. From (2.17a), 

for all i, where a = min a,j > 0. 
From (2.17b) 

2 min e l  -- r a i j l j  
j 



70 2 Some Secondary Theory with Emphasis on Irreducible Matrices, and Applications 

by the Corollary to Lemma 2.5. Thus 

c y  Xi 
$1 2 min , ( x  = max a i j ) ;  

j 

Finally 

Hence 

e(.l ) 
> a2  min J min ( " i ~ j )  

.i (c:?)) i ,  (ma2 xj y j )  

> 0 

so a(2') is bounded away from zero. 

To give the flavour of the general theory, we shall prove subsequent 
results under a simplifying assumption of connectedness of A or A*. 
Development of the theory only for the case A > 0 (*A* > 0 by Lemma 
2.6) obscures the difficulties otherwise present, just as the Perron- 
Frobenius theory for T > 0 obscures the difficulties which enter in the 
presence of zero elements. 

Definition 2.6. An ( m  x n )  matrix A = {a i j )  2 0 is said to be connected if it 
has no zero row or column, and for any proper non-empty subset I of (1, 2, 
. . ., m),  F ( I )  n F ( I c )  + 4 .  

Here. as in 82.4, F ( I )  = [ j :  ai j  > 0, i E I): we shall write this F , ( I )  where 
confusion is possible. Also, $ denotes the empty set and I c  denotes the 
complement of I in (1, 2, . . . ,  m}. We put F ( 4 )  = 4 .  Note that F ( I )  u 
F(Ic) = (1, 2, . . . , n),  since A has no zero row or column. The constraint of 
connectedness enables us to sharpen the result of Lemma 2.5. We state the 
result for row adjustments rit) only, though a similar result obtains for 
column adjustments. 

Lemma 2.7. I f  A 2 0 is ( m  x n )  and connected, and .for any t' 2 2 
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PROOF. Put I, = {i; rl")/rl"pl) = mini (rl'"/rjt'-l))}. We have for t > t' by 
Lemma 2.5 

'+' - 1) 

min (%I 2 m:n 
.i 

Define 

If J, # 4, then since from (2 .17~)  

it follows that 

so F(1;) c J', . 
Now again by Lemma 2.5 

so define 

If I, # 4, then as in the previous step 

so F(ll) c J,. Thus I, G I, .  Since '4 is connected, it is not possible that 
I ,  = I,, so I, is a proper subset of I,. Suppose I, # 4. If now 

(1' + 1) (t'  + 1) 
m? (%) . m y  (k) 

we can repeat the whole cycle, and continue in this manner. Since I, may 
contain at most (m - 1) indices, I, may contain at most (m  - 2), so at worst 
the process will terminate during the ( m  - 1)th repetition of the cycle, 
whence the conclusion. 0 
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Lemma 2.8. I f  A = {aij]  2 0 is ( m  x n )  and connected, and B = {b,,} 2 0 is of 
the same dimensions and satisfies B1 = x and 1'B = g' for somejixed s > 0 
and > 0, and is expressible in the form B = RAC,for some diagonal matrices 
R = diag r i ,  C = diag c j ,  then B is the unique matrix satisjjing these condi- 
tions and expressible in this manner. 

PROOF. Since B > 0 has positive row sums, no r i ,  c j ,  i = 1 ,  . . . , nl; j = 1 ,  . . . , n 
may be zero. Suppose ri > 0, i E I  and ri < 0, i E 1'; and c j  > 0, j E J  and 
cj  < 0, j E J C .  Then aij  = 0 for i E I ,  j E J C  and i E IC, j E J .  Since A is con- 
nected, a contradiction results unless I' = 4 = J c  or I  = 4 = J .  Thus we 
may assume without loss of generality that R and C have positive diagonal. 

Suppose B = RAC is another matrix with the properties of B. Then 

say, where P = diag pi and Q = diag q j  are diagonal matrices with positive 
diagonal. Since s = B1, y' = 1'B 

Since the matrix {bi j /x i )  is row stochastic 

pi.xi min qj  I C pibijqj I xipi  max q j  
j 

so by (2.22a) 

Pi min qj  5 1 5 pi max q j ,  each i. 

Similarly, since (b i j / y j }  is column stochastic, from (2.22b) 

qj  min pi I 1 I q j  max pi,  each j. 

Using (2.23a) and (2.23b) 

(min pi)(max q j )  = (max pi)(min q j )  = 1. 

Now reorder the rows and columns of B. B so that 

Suppose first that for some i,, j,, p. q j ,  > 1 and biojp > 0. If j, &1-1 then 
f 0  

qj ,  = rnin qi and 1 < pi, qj ,  = pi, min q j  I max pi min q j  = 1 by (2.24) 
which is a contradiction. So suppose j ,  > 1. Then there must be a j ,  < j, 
such that pioqjl < 1 and biOjl > 0, otherwise we have a contradiction to 
C j  = .xi, . If i, = 1 we shall obtain a contradiction to (2.24) again; and if 
i, > 1 there is an i ,  < i, such that pi, q j l  > 1 and b i l j l  > 0, otherwise we 
have a contradiction to xi bi j l  = yj l .  Continuing in this manner we obtain a 

. . sequence j,, i,, j,, i,, J , ,  1 , ,  . . .  where j , > j ,  > j ,  . . . ,  i , > i ,  > i , > . . .  . 
Eventually one of the j,'s or one of the i,'s becomes 1. Suppose it is one of the 
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j,'s; then we have on the next step for some i*, 1 < pi,  q1 < maxi pi minj qj 
which is a contradiction to (2.24). Similarly if one of the i,'s becomes 1 first. 

A similar argument leading to a contradiction to (2.24) will hold if we 
suppose that for some i,, j,, pi,qjo < 1 for some bioj, > 0. 

Hence for any bij such that bij > 0, pi qj = 1. Hence 

Lemma 2.9. A limit point A* = (a,*,) of the sequence A'2" = (a!frlJ which 
satis5es the conditions: A*l = .r, l'A* = y', A* is connected, is the unique llnzit 
point with these properties. 

PROOF. Since A* is connected, A is connected. Consider the subsequence of 
(tJ through which A* arises as the limit of and let (r., c) = ({ri), (cj)) 
(either vector of which may have infinite entries) be a limit point of (r.")/rY), 
c(')r'il), where r.") = {rjr'), c'" = {c)"), through the same subsequence. Then 
r, = 1. Let I = (i; ri = a). If 1 is non-empty, then since for each i E I there is 
a j such that uij > 0 (and all a$ are finite), it follows that the set 
J = ( j ;  cj = 0) is nonempty also. Also, I' is non-empty, and A* has no zero 
rows, so Jc is non-empty. It follows that F,=(I) c J, F ,,,= (Ic) c Jc, so F,iy(I) n 
F,4*(Ic) = 4, which contradicts the connectedness of A*. 

An analogous argument beginning with the supposition that the set 
{ j ;  c, = GO) is non-empty leads to a contradiction likewise. 

Thus all the r, and cj are finite, and we may write A* = RAC. Hence by 
Lemma 2.8 there can be no other limit point with the properties of A*. 

Theorem 2.11. Suppose x'l  = y' l  and every lirnit point of the sequence 
= {a$')) is connected. Then B = lim,,, exists, satisjies B1 = x, 

1'B = y', and is expressible in the form B = RAC where R and C are diagonul 
matrices with positice diagonals [hence B has the same incidence matrix as A ] .  

PROOF. Since 1 ' ~ ( ~ ' )  = y', it follows, as already noted, that l'A* = J,' for any 
limit point A* of A'2'). 

Suppose first that for some limit point A* 

Then rj2)(A*) = Aril)(A*), i = 1, . . . , m. 

Write B = {bij) where 

so that 

C b . . = y . , C b i j = / l - l x i ,  1.1 J w h e n c e C y j = I L - ' ~ x i ,  
i j j i 
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and since by assumption zj J ) ~  = zi x i ,  it follows 7, = 1. Now, for each i 

through an appropriate subsequence of (tj, by continuity. Hence for this 
subsequence 

Thus, by the Corollary to Lemma 2.5, 

through all values t ,  t = 1, 2, . . . . Similarly, through all t values 

( f +  ' ) ( A )  , 
1 = lim min --- 

. (r i r l t ) ( ,4)  I ' 
t+CC I 

whence, for each i, through all t values 

Thus for A ( ~ ' +  " = {ajfi+ 'I}, where, recall, " 1  = x, since 

by (2.26), through an appropriate subsequence of { t} ,  for all i, j. Hence 
A*l  = x; and we already know l 'A*  = y' and that A* is connected. Lemma 
2.9 then shows that A* is the unique limit point with these properties, and by 
the assumption of the present theorem that ecery limit point is connected 
and so has the properties of A*, 

A* = lim 
t+ cC 

Moreover, by the last statement in the proof of Lemma 2.9, A* = R A C  for 
some diagonal R and C with positive diagonals. Finally, since B as defined in 
the course of the proof also has the properties of A*, and is expressible in the 
form R A C  for some diagonal R and C with positive diagonal, since 



Bibliography and Discussion to $2.6 7 5 

it follows from Lemma 2.8 that B = A*, which explains the notation of the 
theorem. Note that B has zeroes in at least the same positions as A. 

There remains the important possibility that (2.25) does not hold, i.e. 
suppose 

r(2)(.4*) 
min (m) r; ' ) (A*)  < ma. I (L)). ri l)(A* 

Then from Lemma 2.7, since A* is connected, 

Now for t and t' sufficiently large and members of the appropriate 
subsequence 

( r i 2 ) ( ~ ( 2 " 1 )  [rjm+ ' ) ( A ( ~ " ) ) ]  
0 < h/2 < max r ! 1 ) ( ~ ( 2 t )  - r j m ) ( ~ ( 2 ~ ' ) )  

if t' + m - 1 I t by the Corollary to Lemma 2.5, which is a contradiction, 
since t' and t can certainly be chosen accordingly. 

The fact that + B as t + as follows from (2.26). 0 

Corollary. If A > 0 is ( m  x n )  then [by Leinina 2.61 if -dl = y'l, then the 
conclusiorls of Theorem 2.11 hold. 

Bibliography and Discussion to $2.6 

The approach and results of the section are generally those of Bacharach 
(1965; 1970, Chapter 4). Lemma 2.6 follows Sinkhorn (1964), who also gives 
a version of Lemma 2.8 in his setting where A is ( n  x n),  A > 0, and B is 
doubly stochastic (B1  = 1, 1'B = 1'). The crucial averaging property of a 
row stochastic matrix P = (pij) on a vector w = ( w j )  which it multiplies from 
the left : 

min wj  I C pijwj  I max wj  
.i .i j 

and its refinements are used repeatedly in Chapters 3 and 4. Bacharach's 
results are more extensive (we have given them in abbreviated form, to avoid 
extensive technicalities but to nevertheless cover the case A > 0) .  For 
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example his main theorem (1965; Theorem 3) states that for an (m x n )  
A 2 0 with no zero row or column: 

A"" converges to B which satisfies B1 = x, 1'B = y' if and only if for any 
subsets I and J of (1, . . . , mj and (1, . . . , n )  respectively 

aij  = 0 for all i E IC, j E J * z xi I 1 yj, 1 xi 2 1 yj. (2.27) 
i t l c  j s J c  i s 1  j s J  

(aij is to be understood as zero if i or j E 4, as is summation over an empty 
set.) This, and its Corollary 3 given as our Exercise 2.34, answers the 
questions posed at the beginning of $2.6. For further discussion it is useful to 
note (in view of Exercise 2.34) that the theorem just stated may be restated in 
the following form: 

A'2'' converges to a matrix B which satisfies B1 = x, 1'B = y' if and only if 
there exists a non-negative matrix B = {bijJ satisfying these two condi- 
tions and the condition aij  = 0 * bij = 0. 

We remark at this stage that connectedness in the present context plays 
much the same role as irreducibility in earlier contexts: it simplifies the 
development of the general theory. 

There have been essentially two separate evolutionary lines for theory of 
the kind considered in this section. One has motivation and evolution in an 
economics context, culminating in the book of Bacharach (1970), which 
gives an extensive bibliography for this line. The other line has had its 
origins in the general area of mathematical statistics where the motivating 
papers have been those of Deming and Stephan (1940), Frechet (work cited 
in his paper of 1960), and Sinkhorn (1964). Macgill (1977) gives a partial 
bibliographic survey covering both these main lines, which points out that 
aspects of the problem studied here may be traced back as far as Kruithof 
(1937) in the field of telecommunication. The earliest rigorous treatment of 
aspects of the problem appear to be within an unpublished note of Gorman 
(1963); see Bacharach (1970; $4.6). We shall give only a brief account of the 
various settings. 

In empirical work in economics, if the elements of a non-negative matrix 
function of time are known at one time (call the ( m  x n) matrix A )  but only 
its row and column sums (x > 0, y' > 0' respectively) are known at the next 
time point, an intuitively simple estimate for the matrix at this time point is 
B = {bij), where bij = ri aijcj for some r = {r,} > 0, c = {cjJ > 0 where 
B1 = x, 1'B = y' (if such a B may be found). Bacharach calls such a matrix B 
biproportional to the matrix A, or a biproportional matrix adjustment of A, 
since its rows are proportional to the rows of A and its columns to the 
columns (it is often called the RAS adjustment in economics). It is clear that 
a necessary condition for the existence of a biproportional matrix adjust- 
ment B of A, is the existence of a matrix B 2 0, with zero elements in precisely 
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the sanze positions as A, and satisfying the further constraints B1 = s, 
1'B = y'. Theorem 2.11 and its Corollary give: (1) sufficient conditions for a 
biproportional matrix adjustment B for A to exist; (2) provide an iterative 
procedure, giving A(k),  k = 1, 2, , , . as an algorithm for arriving at B. 

If the requirement of biproportionality of B is relaxed in that it is required 
to satisfy only: B 2 0, B1 = x, 1'B = y' and a,, = 0 => b,, = 0, then such an 
"adjustment" will sometimes exist when a biproportional matrix adjust- 
ment does not (see Exercise 2.32); and Bacharach's Theorem 3 in the guise of 
Exercise 2.34 gives necessary and sufficient conditions on 4, x and y for this. 
The alternative statement of the theorem shows that such an adjustment 
may then be attained by the iterative scaling procedure. 

A biproportional adjustment of A may also be thought of as the matrix B 
minimizing the entropy/information type-expression 

subject to the constraints B 2 0, aij = O o  bij = 0, B1 = x, 1'B = y' (see 
Macgill (1977) for detail and Bacharach (1970, $6.5) and Wilson (1970) for 
some interpretations). It is worth noting that if xi, aij  = xi, bij  = 
x'l  + 3'1, and B is close to A, a Taylor series approximation to the expres- 
sion (2.27) is 

which has a formal analogy to the Pearson chi-square statistic for 
goodness-of-fit in a table with mn classes. Indeed, if aij  is the recorded 
proportion of outcomes out of r independent trials falling into outcome class 
(i, j), out of mn mutually exclusive and exhaustive possible outcomes, so xi, aij  = 1 and we wish to estimate the probabilities b i j ,  i = 1, . . . , rn, j = 1, 
..., n ( x i ,  bij  = 1) subject to the constraints aij  = 0- b. 11 = 0, 
Z j  hij = bi, = x i ,  X i  bij = b, j  = yj fixed, then if a biproportional adjustment 
exists (it will in the case A > O), it provides the required estimator matrix. 
Since in this setting, (2.29) is1 the x2 goodness-of-fit statistic, this estimator 
will be approximately a "minimum chi-square statistic ". In actual fact it will 
minimize (2.28), and so maximize this same expression when multiplied by 
( -  1/2), which is then known as the relative entropy of the bivariate probabil- 
ity distribution represented by the matrix B to the bivariate sample distribu- 
tion represented by the matrix A (c.f. Kullback (1959); Akaike (1977)). In a 
statistical setting the problem was first considered by Deming and Stephan 
(1949). Statistical literature is cited by Fienberg (1970), who also shows 
convergence of A'k', k = 1, 2, . . . in this setting for A > 0, which had been 

Apart from a factor t 
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suggested by Deming and Stephan. Fienberg points out the statistically 
relevant point regarding the scaling algorithm producing A(ki, k = 1, 2, . . . 
that interaction structure of the original table A, as defined by the cross 
product ratios 

is preserved at each stage of the iterative processes, since 

Amongst the statistical problems studied by Frechet (see Frechet (1960), 
and Thionet (1963) for references) which pertain to our discussion is the 
following: given two random variables X, Y with respective sample spaces 
(cr,, a z ,  . . . , a,, all ai distinct) and (bl, . . . , bn, all pj distinct), with prescribed 
marginal distributions x, y(x > 0, y > 0, x'l  = $1 = I), is there a bivariate 
(joint) distribution of (X, Y) consistent with these marginal distributions? 
In this problem there is no insistence that certain positions of the matrix B, 
with specified row and column totals x, y' (with x'l  = $1 = I), sought, be 
zero. We may use the Corollary to Theorem 2.1 1 to deduce that a bivariate 
distribution which has every point (cri,  pj) i = 1, . . . , m ;  j = 1, . . . , n in its 
sample space (i.e. B > 0) will result from applying the iterative scaling algor- 
ithm to any (m x n )  matrix A > 0. The non-uniqueness of solution of this 
problem is manifest, and demonstrated by Frechet. 

The motivation for the paper of Sinkhorn (1964) is from the estimation 
theory of Markov chains, and the paper is unconnected with earlier statisti- 
cal manifestations of the problem of this section. If the transition matrix of a 
Markov chain is the (stochastic) matrix P = (pij) i, j = 1, . . . , n, then the 
usual estimate of pij for fixed i is aij  where aij  is the proportion of transitions 
to "state" j, j = 1, . . . , n out of all transitions beginning in state i .  Thus xj aij  = 1, i = 1, . . . , n. If it is in fact known that P is doubly stochastic (i.e. 
P1 = 1 = P'l),  then the iterative scaling procedure A(ki, k = 1,2, . . . may be 
expected to produce it. Sinkhorn then proves Lemmas 2.6 and 2.8, and 
Theorem 2.11 in the setting when A > 0 is square and x = y = 1. This paper 
was the first of a sequence of papers by numerous authors. Although Sink- 
horn (1967) extended his results to an (m x n) A > 0 and arbitrary x, y > 0, 
most work has focused simply, and using a variety of methods, on one 
mathematical aspect of the problem: For a given A 2 0, i, j = 1,.  . . , n, when 
do there exist diagonal matrices R and C with positive diagonals such that 
RAC is doubly stochastic, and when are they unique (to scalar factors)? We 
mention only the papers of Brualdi, Parter and Schneider (1966), Menon 
(1967, 1968), Sinkhorn & Knopp (1967), and Djokovic (1970), where further 
references may be found. See also Brualdi (1974) and Sinkhorn (1974). Thus 
in this context attention has been focussed rather on the existence of a 
biproportional-type matrix adjustment, rather than on the iterative scaling 
algorithm as a means of producing it. 
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2.31. Investigate the behaviour of A'2". A @ - ' )  as t increases for the case x = y = 1 
where 

Note that the matrix is not connected, and the conclusions of Theorem 2.1 1 do 
not hold. 

2.32. Show that 

as k -t oo but the limit matrix A* cannot be expressed in the form RAC.  Note 
that A* is not connected, and not all conclusions of Theorem 2.1 1 hold. Show 
directly that there is no matrix B satisfying B1 = x,  1'B = y' and expressible in 
the form B = RAC. 

2.33. Suppose x'l # y ' l  where x > 0, J- > 0 and for the matrix A 2 0 with no zero 
row or column 

Show that neither A"" nor A("-')  changes with t ,  but A(2') # A ( 2 r -  '1. Con- 
struct an example of an A satisfying these conditions. 

2.34. Given an (m x n )  matrix A = {a,J 2 0 with po zero row or column, show that 
there exists a non-negative matrix B = {bij) of the same dimensions as A, such 
that ai j  = 0 3 bij = 0, with B1 = x > 0 , l ' B  = y' > 0' (with x and y fixed) if and 
only if (2.27) holds. [Hint :  Use Bacharach's Theorem 3 stated above for the 
sufficiency .] 

(Bacharach, 1965) 



CHAPTER 3 

Inhomogeneous Products of 
Non-negative Matrices 

In a number of important applications the asymptotic behaviour as r -t cc 
of one of the 

Forward Products: T,, , = {tjg,')) = H,,, H,,, . . .  H,,, 

Backward Products: U p , ,  = (ujf,')) = H,+, . . .  H,+, H,,, 

and its dependence on p is of interest, where {H, ,  k = 1, 2, . . .) is a set of 
(n x n) matrices satisfying H ,  2 0. We shall write H ,  = {h, , (k)) ,  i, j = 1, . . ., 
n. The kinds of asymptotic behaviour of interest are weak ergodicity and 
strong ergodicity, and a commonly used tool is a contraction coefficient 
(coefficient of ergodicity). We shall develop the general theory in this chap- 
ter. The topic of inhomogeneous products of (row) stochastic matrices has 
special features, and is for the most part deferred to Chapter 4. 

3.1 Birkhoff's Contraction Coefficient 
Generalities 

Definition 3.1. An (n x n) matrix T 2 0 is said to be row-allowable if it has at 
least one positive entry in each row. It is said to be column-allowable if T' is 
row-allowable. It is said to be allowable if it is both row and column 
allowable. 

In order to introduce Birkhoff's contraction coefficient which will serve 
as a fundamental tool in this chapter, we need to introduce the quantity, 



3.1 Birkhoff's Contraction Coefficient: Generalities 8 1 

defined for any two vectors x' = (x,, . . . , xu) > 0', J,' = (yl, . . . , yn) > O', by 

This function has, on the set of (1 x n) positive vectors, the properties of a 
metric or distance, with the notable exception that d(xl, y') = 0 if and only if 
x = 1-v for some 2 > 0. (Exercise 3.1). It is a pseudo-metric giving the 
"projective distance" between x'  > 0' and y' > 0'. Henceforth we assume as 
usual that all vectors are of length n and all matrices (n  x n), unless other- 
wise stated. 

It follows that if x', y' > 0' and T is column-allowable, then x'T, y'T > 0' 
the essence of the contraction property is in the inequality 

which we shall establish by recourse to the averaging (contraction) proper- 
ties of row stochastic matrices in a manner similar to that already employed 
repeatedly in our Section 2.6. 

Lemma 3.1. If x, y > 0 and .? = Tx,  j. = Ty, where T = (tij) 2 0 is row- 
allowable, then 

where pij = tLj yj/Ck tikyk is the (i, j) element of a stochastic matrix P. In 
particular 1, pij = 1, so (3.2) follows [so (3.1) follows for a column allowable 
T, from the definition of d(. , .)I. 0 

We may sharpen the above result by recourse to 

Theorem 3.1. Let w = (wi) be an arbitrary cector and P = (pij) a stochastic 
matrix. If z = Pw,  z = {zi), then for any two indices h, h' 

1 
z - z - Iphj - ph,,l 'man wj - min wj I 

j I J  .i I 
and 

I I Imax zj - min zj < T,(P) max wj - min wj I 
1 1  j 1 -  I j j I ; 
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or equicalently to the last, 

where 

s , (P)  = 5 max 1 pis - pjS 1 = 1 - min min (pis, pjA). 
2 i , j  s = 1  i , j  s = l  

PROOF: zh - zh. = xj uj wj, where uj = phj - P , , ~  (since we are considering h 
and h' arbitrary but fixed). Let j' denote the indices for which uj 2 0, and j" 
those for which uj < 0, noting that xj uj = I (and bearing in mind that the 
set of jl"s will be empty only if u = 0). Put 

Then 

I I Q max wj - min wj I 
I j J I 

I 5 s,(P) max wj - min wj 1 
1 j j I ' 

The alternative expression for s , (P)  is given as part (equation (2.14)) of 
Theorem 2.10. 0 

The preceding result is of most interest in the situation where z,(P) < 1 (it 
is obvious that 0 I r , (P)  j I), and indeed this condition is also that under 
which the spectral bounding result of Theorem 2.10 becomes of interest for a 
stochastic matrix. It is clear from the alternative expression for t,(P) that 
s,(P) < 1 if and only if no two rows of P are orthogonal (or, alternatively, 
any two rows intersect in the sense of having at least one positive element in 
a coincident position). Such stochastic matrices have been called scrambling; 
we extend this definition to arbitrary non-negative T. 

Definition 3.2. A row-allowable matrix T 2 0 is called scrambling if any 
two rows have at least one positive element in a coincident position. 
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Lemma 3.2. I f  T' is scrambling and x,  y > 0, then 

d(xlT,  y 'T)  < d(x', y').  (3.5) 

PROOF. Referring to the proof of Lemma 3.1, and T' replacing T,  we see that 
the stochastic matrix P = { p i j )  defined therein is scrambling, so by Theorem 
3.1, strict inequality obtains in at least one of the inequalities in (3.2), whence 
the result follows from the definition of d(xl, 3''). 0 

Corollary. (3.5) holds if T has a positive row. 

It follows in view of (3.1) for a column-allowable matrix T and the fact 
that d(x', y ' )  = 0 if and only if x = Ly for some positive 3. > 0, that we may 
define a quantity T,(T) by 

d(xlT, y 'T)  
T,(T) = sup 

X, Y > O  d(.v1, y') 
x f  1.y 

which must then satisfy 

0 < t n ( T )  I 1 

Clearly, if TI and T2 are both column-allowable then so is Tl T2 and for 
x, y > 0, it follows (from Exercise 3.1) that 

whence 

T,(.) is Birkhoff's contraction coefficient (or: coefficient of ergodicity), and 
properties (3.6) and (3.7) are fundamental to our development of the theory 
of inhomogeneous products. In view of relation (3.7), we see that if from a 
sequence {H,) of column-allowable matrices we select the matrices H p +  ,, . . . , 
H,,, and form their product in any order and call this product H,, ,, then 
still 

A matrix T will be contractive if T,(T) < 1, and, clearly, from (3.8) and 
(3.6) the significance of a matrix T for which t,(T) = 0 is of central 
significance. We remark that if T is of rank 1 as well as column-allowable, i.e. 
is of the form T = wv' = {wi u j )  where a > 0; w 2 0, # 0, then from Exercise 
3.1 
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since d((x1w)a', k'w) t t1)  = d(cl, v ' )  = 0 .  To develop further the use of z,(T) we 
require its explicit form for a column-allowable T = {t,,j in terms of the 
entries of such a matrix. An explicit form is difficult to obtain, and we defer 
an elementary, but long, derivation to Section 3.4. The form for an allowable 
T is 

TB(T)  = (1  - [dm1 21/{1 + [dm1 2 ,  

where 

' t ik t j l  + ( T )  = min -- if T > 0 ;  
i, j ,  k .  I t j k  t i l  

= 0 if T 0 .  

From this it is clear that given T is allowable, z B ( T )  = 0 if and only if T is 
of rank 1, i.e. T = wv', w,  c > 0. 

Definition 3.3. The products H,, , = {h$ 'I) formed from the allowable 
matrices H,, ,, H,, , , . . . , H,,, multiplied in some specified order for each 
p 2 0 ,  r 2 1, are said to be weakly ergodic if there exist positive matrices 
S,, , = {st ,  ')) ( p  2 0 ,  r 2 1)  each of rank 1 such that for any fixed p, as r + ac: 

Lemma 3.3. The products H,,  are weakly ergodic if and only if:for all p 2 0 as 
r + c c  

~ ~ ( f f p ,  r )  + 0 .  (3.10) 

PROOF: From the explicit form of t , (T) ,  which implies continuity with 
T > 0 ,  (3.9)  evidently implies (3.10). Conversely, define the rank 1 matrices 

H p ,  r l l 1 H P ,  r / l lHp,  r 1 

(since (3.10) is assumed to hold, since H,,, is allowable, H,,, > 0 for 
sufficiently large r, from the explicit form of t B ( . ) ) .  Then 

by (3.10), since 4 ( H p ,  ,) + 1. 0 

Lemma 3.3 together with relation (3.7) indicates the power of the 
coefficient of ergodicity s,(.) as a tool in the study of weak ergodicity of 
arbitrary products of allowable non-negative matrices. In Lemma 3.4 we 
shall see that for forward products T,, , the general notion of weak ergodicity 
defined above coincides with the usual notion for the setting, when T,, , > 0 
for r 2 r,(p). We have included Lemma 3.2 because this provides a means of 
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approaching the problem of weak ergodicity of forward products without the 
requirement that T,, , > 0 for r 2 r,(p) (so that T,(T,, ,) < I ) ,  although we 
shall not pursue this topic for products of not necessarily stochastic 
matrices. Theorem 3.1 which is here used only for the proof of Lemma 3.2 
achieves its full force within the setting of products of stochastic matrices. 

3.2 Results on Weak Ergodicity 

We shall focus in this section on forward products 
T,, , = H,+ , H p +  , . . . H,,, and backward products 

as r -+ oo since these are the cases of usual interest. 

Lemma1 3.4. I f  H ,  , = H P r 1  H,+ , H P + ,  , i.e. H ,  , is  the forward product 

T,,, = {tlj" in the premous notation, and all H k  are allowable, then 
z,(T,, ,) -+ 0 as r + oo for each p 2 0 ifand only ifthe following conditions both 
hold: 

,for all i,  j, p, k where the lirnit is independent of k (i.e. the rows of T,, , tend to 
proportionality as r -+ a). 

PROOF: The implication: (3.1 1 )  + (3.10) is obvious since under (3.11) clearly 
4(TP,  ,) -+ 1. Assume (3.10) obtains; then clearly T,, , > 0 for sufficiently large 
r (r  2 ro(p), say). Now consider i and j fixed and note that 

where dg,  ') = tg-  ' )hSk(p + r + l ) / t$-  '+'I is the k, s element of a (row) stoch- 
astic matrix with strictly positive entries and so a scrambling matrix. Hence 
by Lemma 3.1 

tlg. 
max () t$sr) is non-increasing with r ;  

tlfl, ') 
min (-1 is non-decreasing with r. 

$3 r ,  

' For the analogous result for backward products see Exercise 3.3. For column-proportionality 
of forward products see Exercise 3.7. 
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Since 2,(TP, ,) + 0, +(T,, ,) -. 1, so as r + a 

for all i ,  j, k ,  s, so the two monotone quantities as r + cc have the same 
positive limit, which is independent of k  and may be denoted by Wlf). 

Theorem 3.2. For a sequence {Hk), k  = 1, 2, . . . of non-negatice allowable 
matrices i f  H,, , = Tp, , or H,, , = Up,, then weak ergodicity obtains ifand only 
f there  is a strictly increasing sequence of positive integers {k , ) ,  s = 0, 1, 2, . . . 
such that 

PROOF: Suppose H,, , = T,, , , p 2 0, r 2 1. Take p = 0 for simplicity to prove 
sufficiency of (3.12) and large r (for arbitrary p the argument will be similar). 

for some allowable T* 2 0 where k ,  is the nearest member of the sequence 
{ k , )  not greater than r, so t + co as r -+ a. Then by (3.7) 

and as r + oo the right hand side + 0 if and only if 

From the definition of $(.), 0 5 4 ( . )  5 1, and taking into account the expli- 
cit form of T,( .  ), the divergence of the sum is implied by (3.12). Hence (3.12) 
is sufficient for weak ergodicity (of forward products). 

If we assume weak ergodicity then by Lemma 3.3 .r,(TP, ,) + 0 as r + cc, 
p 2 0. Let 1 > 6 > 0 be fixed. Then define the sequence {k,) recursively by 
choosing ko arbitrarily, and k , ,  , once k ,  has been determined so that 

which implies (3.12) for this sequence. 
The proof for backwards products Up,, is analogous. 
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Corollary. I .  for a sequence {k,), s 2 0, of  positice integers such that 
k , ,  - k, = g (constant), 

then z,(T,, ,) -+ 0 as r --+ co, p 2 0, at a geometric rate, e.g. in the case p = 0 :  

.for r sujjciently large. Analogous results hold,for backwards products 

Theorem 3.3. I f  for the sequence of non-negatice allowable matrices 
H k  = (hLj(k) ) ,  k 2 1 ,  ( i )  H ,,,,, > 0 ,for p 2 0 where r ,  ( 2  1 )  is some fixed 
integer independent of p; and (i i):  

(where min' refers to the minimum of the positice elements and 7 is indepeiz- 
dent of k) ,  then if H,, , = T,, , (or = U p ,  ,), p 2 0, r 2 1, weak ergodicity (at a 
geometric rate) obtains. 

PROOF: From the structure of r,(.) and its dependence on 4(.) it is evident 
that the value of r,(H,,,) is unchanged if each H k  is multiplied by some 
positive scalar (each scalar dependent on k). Since by Lemma 3.3 weak 
ergodicity is dependent only on such values, we may assume without loss of 
generality in place of (3.13) that 

It follows, since H,, ,, > 0, p 2 0, that 

yrO 11' 5 H p ,  ,, 5 nro- 11' (3.15) 

SO 4 ( H p ,  r o )  2 (yrO/nrO- = E ~ ,  sap, p 2 0. We may now apply the Corollary 
to Theorem 3.2, with g = r,, and k ,  = 1, say. 0 

One may, finally, obtain a result of the nature of Theorem 3.2 and its 
Corollary for products H,, , formed in arbitrary manner from H,, ,, H,+, , 
... ,  Hp+r .  

Theorem 3.2' For a sequence {H,}, k 2 1 of non-negative allowable matrices, if 

then the products H,, , are weakly ergodic. 

PROOF: zB(Hp,  ,) I nfLi+ z B ( H k )  -' 0 as r + co as in the proof of Theorem 
3.2. 0 
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Corollary. The conditiotl (3.16) majl be replaced by the condition 

Bibliography and Discussion to ss3.1-3.2 

The crucial averaging property of a stochastic matrix, already used in $2.6 
and mentioned in its discussion, manifests itself here in Lemma 3.1, and, in 
more refined manner, in Theorem 3.1. Both these results occur in Markov 
(1906), the first of Markov's papers to deal with Markov chains (with a finite 
but arbitrary number of states). Hostinsky (1931, p. 15) calls these results the 
Theoreme ,fondamentale sur la limite de la probabilite, and elsewhere: . . . 
l'inzportante methode de moyennes successices employee par Markojr. . . and 
they were taken up by Frechet (1938, pp. 25-30), but their potential, in the 
context of inhomogeneous products of stochastic matrices, was not fully 
realized until the work of Hajnal (1958). We shall develop these themes 
further in the more appropriate setting of Chapter 4 where the notion of a 
scrambling matrix is used extensively. 

The Corollary to Lemma 3.2 is due to Cohen (1979a); the lemma itself is a 
direct consequence of Theorem 3.1. Apart from the results mentioned so far, 
the development of gg3.1-3.2 largely follows Hajnal (1976). Cohen's subject 
matter, following on from Hajnal, is the study of d(x'T,, , , y'T,, ,) as r --+ ac: 
where the matrices {H,) are column allowable inasmuch as each is supposed 
to have a positive row. 

The origins and chief application of the notion of weak ergodicity of 
forward products T,, , , p 2 0, r 2 1 is in the context of demography. A simple 
demographic model for the evolution of the age structure of a human popu- 
lation, regarded as consisting of n age groups (each consisting of the same 
number of years), over a set of" time points" r = 0, 1,2, . . . , (spaced apart by 
the same time interval as successive age groups) may be described as follows. 
If p, is an (n  x 1) vector whose components give numbers in various age 
groups at time r, then 

C(:+l=C(;H,+l, r = O , l , 2 , . . .  
where H,,, is a known matrix of non-negative entries, depending (in 
general) on time r, and expressing mortality-fertility conditions at that time. 
Indeed, each of the matrices H,, k 2 1, has the same form (has the same 
incidence matrix); specifically, it is of the form: 
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which is known as a " Leslie matrix " in this context (and as a " Renewal-type 
matrix" more generally). Here s, is the proportion of survivors from age 
group i to age group ( i  + 1) in the next time-step, and b, is the number of 
contributions to age group 1 per individual in age group i. If we assume all 
b , ,  s, > 0 for all k, then the matrix set H,,  k 2 1, has a rather special struc- 
ture (in the sense of a common incidence matrix), with, moreover, a positive 
diagonal entry; see Exercise 3.11; and it is usual to assume that the (coinci- 
dent) positive entries are bounded away from zero and infinity. Thus the 
conditions of Theorem 3.3 are certainly satisfied, and its conclusion enables 
us to make certain inferences about 

where po ( 2  0, # 0) represents the initial age structure of the population. 
and H,,  k > 1, the history of mortality-fertility pressures over time. Thus 
consider two different initial population structures: a = {r,), f i  = { P I )  sub- 
jected to the same " history" H,,  k 2 1. Thus from Lemma 3.4, as r + co 
(first dividing numerator and denominator by t$-"):  

(the last step being a consequence of Exercise 3.5), the limit value being 
independent of k. This independence is called the weak ergodicity property. 
since the p, arising from different p0 tend to proportionality for large k .  If we 
focus attention on the age-distribution, which at time r gives the proportions 
in the various age groups viz. p:/p: 1, then this conclusion may be rein- 
terpreted as saying that the age-distributions tend to coincidence for large r. 
but the common age structure may still tend to euo1t.e with r.  To see this note as 
r + o o  

for any fixed q = 1, . . . , n and all k = 1, . . . , n, and hence is independent of a. 
Strong ergodicity, discussed in $3.3, is the situation where the common 

age-distribution tends to constancy as r + co. 
We may thus call a combination of Theorem 3.3 with Lemma 3.4, the 

"Weak Ergodicity Theorem". A variant in the demographic literature is 
generally called the Coale-Lopez theorem, since a proof in this setting was 
provided by Lopez (1961) along the lines of Exercises 3.9-3.10. This original 
proof was written under the influence of the approach to the basic ergodic 
theorem for Markov chains with primitive transition matrix occurring in the 
book of Kemeny and Snell (1960, pp. 69-70). The present approach (of the 
text) is much more streamlined, but, insofar as it depends on the contraction 
ratio z,(.), is essentially more mathematically complex, since the explicit 
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form of r,(.) needs to be established for completeness of exposition. 
The theory of weak ergodicity in a demographic setting begins with the work 
of Bernardelli (1941), Lewis (1942), and Leslie (1945). For the theory in this 
setting we refer the reader to Pollard (1973, Chapter 4); see also Cohen 
(1979b) for a survey and extensive references. 

Of interest also is an economic interpretation of the same model (that is, 
where all H ,  are of renewal-type as discussed above), within a paper (Feld- 
stein and Rothschild, 1974, esp. $2), which served as a motivation for the 
important work of Golubitsky, Keeler and Rothschild (1975) on which 
much of our $3.3 depends. The vector p, represents, at time r,  the amount of 
capital of each "age" i = 1, 2, . . . , n, where goods last (precisely) n years. A 
machine, say, provides s, as much service in its ( i  + 1)th year as it did in its 
ith. Define b r b(r + 1) (the "expansion coefficient") as the ratio of gross 
investment in year r (for year r + 1) to capital stock in year r .  Then each H,, 
k 2 1, has the renewal form with each bi being b(k + 1) in H,, ,, and all si, 
i = 1, . . . , n - 1 being constant with k. 

3.1. Show for positive (1 x n)  vectors x' ,  y', z' that for the projective distance d(., .) 
defined for positive vectors: 

( i )  d(xl ,  y') 2 0 ;  
(ii)  d(x', y ' )  = d b ' ,  x ' ) ;  

(iii) d (x f ,  y ' )  < d(x', z ' )  + d(z', y') [Triangle Inequality]; 
(io) d(xl ,  y ' )  = 0 if and only if x = i y  for some > 0 ;  
(o)  d(x' ,  J") = d(axl,  by')  for any two positive scalars r ,  p. 

3.2. Show that on the set D+ = { x ;  x  > 0; x'l = 1) the projective distance is a 
metric. Further, show that if d ( . ,  . )  is any metric on D + ,  and P E S'. the set of 
column-allowable stochastic matrices, and 7 ( P )  is defined by 

d(xlP,  y 'P)  
T ( P )  = sup 

r, r E D + dix', Y O  
x +  Y 

then 
( i )  T(p1 p2) 2 7 ( p l ) ~ ( p 2 ) ,  P I ,  p2 E s+;  

( i i )  T ( P )  = 0 for P E S +  if and only if P = Id, v E D+. 
(iii) r ( P )  = 1 for P = I, the unit matrix. 

(Seneta, 1979) 

3.3. Check that if T is allowable, then T,(T)  = t ,(T')  and hence state the analogue 
of Lemma 3.4 for backwards products U p , ,  = H,+, . . .  H,+,  H,.  

3.4. If H,,, = {h:$'."} is an arbitrary product formed from the allowable matrices 
H p +  ,, H p +  z ,  . . . , H p + ,  in some specified order, show that the products are 
weakly ergodic if and only if 
( a )  H,, , > 0 ,  r 2 r&); 
( b )  hjf ' ) /h$,  ') - 'I, hi:, ' ) /h$-  ') - ~ $ 3  r ,  as r + cc for all i, j, p, k ,  where 

Vjya 'I, W$. ') are independent of k. 
[See also Exercises 3.6-3.7.1 



Exercises on $43.1-3.2 9 1 

3.5. Show that in Lemma 3.4, W j p ] =  lim,,, t $ ' ) / t j f r l  may be written as 
wjP)/wjP1 for some dP) = { w p l } ,  where dP1 > 0, (dP))'l = 1. 

3.6. Proceeding along the lines of Lemma 3.4 show that if T,, , > 0, r 2 r,(p), then 

are, respectively, non-increasing and non-decreasing with r. Hence show that if 
r,(T,, ,) + 0, r + co, for an allowable sequence H,, k 2 1, then both sequences 
have the same positive limit which (is independent o f j  and) may be denoted by 
vg. 

3.7. Show that in Exercise 3.6 the limit may be written in the form = v$'/c',P1 for 
some dP1 = {ciP1}, where dP1 > 0, (dP1) ' l  = 1. Combine this result with that of 
Exercise 3.5 to show that if r,(T,, ,) + 0, r + co, then 

tl$' ' ) / t$.  ') + W ~ P l c y ' / W ~ ) l ) $ )  > 0, 

3.8. Show that for a stochastic matrix P = { p Z j J ,  i, j = 1, . . ., n 

n 

r l ( P )  i 1 - 1 min pi, 1 - ne 
s = l  i 

where t: = mini,, p i j .  [Thus if P > 0, 1 - nc < 1 and there is a simpler bound 
for r l ( P ) . ]  

3.9. Suppose H,, k 2 1, are all positive and satisfy condition (3.13). Using the 
stochastic matrix with (k, s) entry 

of Lemma 3.4, and Exercise 3.6, show that mink,,  df; 2 q 2 n - ' ,  and hence via 
Theorem 3.1 and Exercise 3.8 that 

for some > 0 independent of k, where K,, cc > K ,  2 0 is a constant 
independent of i, j, k. 

3.10. Under the conditions of Theorem 3.3 show [without recourse to $(.) or r,( . )]  
by using the results of Exercise 3.9 and the weak monotonicity argument in 
Lemma 3.4 that there are # $ I  independent of k such that for all i ,  j, k, p 

I t j f ,  r l / t j t  - WQ) L J  I < - C,(I - (qrO/nrO- 1 ) 2 r " 0 ,  r 2 I, 

where C,, 0 5 C, < oo is a constant independent of i ,  j, k. [Note that this form 
of " geometric rate" of ergodicity differs somewhat in nature from that asserted 
for this situation by the Corollary to Theorem 3.2.1 

(Lopez, 1961; Seneta, 1973) 

3.11. If all H k ,  k 2 1, have the same incidence matrix which is irreducible and has at  
least one positive diagonal entry, show that H,, , > 0 for p 2 0, r 2 2(n  - 1). 
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3.3 Strong Ergodicity for Forward Products 

Definition 3.4. The forward products Tp, , = {tjjp,r)) formed from a sequence 
of row-allowable matrices H,, k 2 1, are said to be strongly ergodic if for 
each i, j, p. 

independently of i. 

Lemma 3.5. lfstrong ergodicity obtains, the limit vector vb = {UP))  of (3.17) is 
independent of p 2 0. 

PROOF: For any x 2 0, # 0, it follows from (3.17) that as r + cc 

whence 

But xlH,+, 2 O', # 0' (since x1HP+ ? l  > 0 from the row allowability of 
H,+ ,) so the limit of the left-hand side is also u b + ,  , Hence all up have a 
common value, say v. Moreover v 2 0, v ' l  = 1, so v is a probability vector. 

0 

Definition 3.5. A sequence H,, k 2 1, of row-allowable matrices is said to be 
asymptotically homogeneous (with respect to D)  if there exists a probability 
vector D (i.e. D 2 0, D'1 = 1) such that 

For the sequel we shall repeatedly make the compactness assumption 
(3.13) which in the present context (insofar as we consider ratios) may again 
without loss of generality, be replaced by (3.14). We restate this condition 
here for convenience 

(C) O < 7 5 min+ hij(k), max hij(k) 5 1 
i, j i ,  j 

and call it condition (C). 

Lemma 3.6. Strong ergodicity of Tp, , , p 2 0, r 2 1, with limit vector v, and 
condition (C) on the sequence H,, k 2 1, implies asymptotic homogeneity (with 
respect to v)  of the sequence H,, k 2 1. 
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PROOF: Let,f;. be the vector with unity in the ith position and zeros elsewhere. 
Then 

where p(r, p, i)  is the scalar given by 

~ ( r ,  P, i )  = (f :Tp, rl)(L"Hp+r+ ~ l ) ! f i T ~ ,  r +  11. 

Multiplying (3.18) from the right by 1 yields 

1 = (,f~Tp.r/f :Tp.r1)(Hp+r+ ~ l / ~ ' H p + r +  11)p(r> P, i); 

and we may write 

J':TP, ,/f!f:Tp, r1 = v' + E(r, p, i )  

where E(r, p, i )  + 0 as r + cc by strong ergodicity. By (C) 

r+dc 
p(r, p, i) - 1. 

Applying this to (3.18) and using similar reasoning, as r + cc 

C" + vlHp+,+ ,JulHpfr+ 1 as required. 0 

Theorem 3.4. If all H,, k 2 1, are irreducible,' and condition (C) is satisfied, 
then asymptotic homogeneity of Hk  (with respect to a probability vector D )  
is equivalent to 

where el is the positice left Perron-Frobenius eigencector of H, normed so that 
it is a probability vector (eil = 1) and e is a limit vector. In the event that 
either (equicalent) condition holds, D = e > 0. 

PROOF: Let us assume that the prior conditions and (3.19) hold, Then since 
by definition of e,, 

e; = e;Hk/r;H,l 

it follows by condition (C) that as k -t m 

e' + eiHk/e'Hkl 

so asymptotic homogeneity, with respect to the (necessarily probability) 
vector e' obtains. 

Conversely assume the prior conditions hold and H,, k 2 1, is asympto- 
tically homogeneous with respect to a probability vector D'. Since the set of 
probability vectors is closed and bounded in Rn, it contains all its limit 

Any irreducible matrix is, clearly, allowable 
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points; let e be a limit point of a convergent subsequence {e,,} of {ek), so 
e,, -+ e, 1 -+ co. Then 

e;L=e;,Hk,/e;,Hk,l, i 2 1 .  (3.20) 

Now, by condition (C) 

y f ,  I H, I Y , ,  k 2  1, 

where P, is the incidence matrix of H,, and the 4, are all members of the 
finite set of all irreducible incidence matrices Y (j), j = 1, . . . , t. Further, the 
set [74(j), F(j)] = {T; y . f  ( j)  I T I F(j)} is a closed bounded set of R": 
whence so is 

Q = lj [yY(j). ( j ) l  
j = 1  

(which contains only irreducible matrices satisfying (C)). Hence referring to 
(3.20) and taking a subsequence of {k,), 1 if necessary, 
H,, -' H E Q, 1 -+ a, SO that 

e' = e1H/e'H1. 

From asymptotic homogeneity, on the other hand 

D' = D'HID'Hl. 

Since H is irreducible, it is readily seen that both e' and D' must be the 
unique probability-normed left Perron-Frobenius eigenvector of H, so 
D = e > 0, and, further, the sequence (e,} has a unique limit point D, whence 
ek -+ D = e. 0 

Corollary. Under the prior conditions of Theorem 3.4, ifstrong ergodicity with 
limit vector v holds, then (3.19) holds with e = v .  [Follows from Lemma 3.6.1 

Lemma 3.7. Suppose y > 0 and the sequence {x,), m >_ 1, x, > 0 each m, are 
probability t'ectors (i.e. y ' l  = xhl  = 1). Then as m -+ co 

PROOF: X; + y' => d(x&, y') -+ 0 follows from the explicit form of d(., . ). 
Conversely suppose d(xh, y') + 0. Writing xh = {xjm)}, we have from the 
form of d(., .) that y, xj""/x[")yj -+ 1, m -+ co i.e. 

Now, since the set of all (1 x n) probability vectors is bounded and closed, 
there is a subsequence {m,) of the integers such that x'"" -+ z ,  where z ,  being 
a probability vector, has at least one positive entry, say zi,. Putting i = i, 
and m = m, above, it follows that for any j = 1, . . . , n, xyk )  -+ zj, and that 
In (yj/zj) = C = const. Thus yj = (exp C)zj and since y' and z' are both 
probability vectors, C = 0, and y = z. Hence any limit point of x, in the 
sense of pointwise convergence is y, so x, -t y, m + co. 0 
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In the following theorem we introduce a new condition, (3.21), which is 
related to that of the Corollary to Theorem 3.2 and implies the same geome- 
tric convergence result for weak ergodicity. 

Theorem 3.5. Assume all H,, k 2 1, are irreducible and satisfy condition (C); 
and 

for all r 2 t Vor some t > I), uniformly in p 2 0. Then asymptotic homogeneity 
of H,, k 2 1, is necessary and suficient for strong ergodicity of the T,., . 

PROOF: (Necessity.) Given strong ergodicity and condition (C) asymptotic 
homogeneity follows from Lemma 3.6. [Note that neither irreducibility nor 
(3.21) are needed for this.] (Sufficiency.) We shall only prove strong ergodi- 
city of T,, , in the case p = 0 since the argument is invariant under shift of 
starting point. Consider the behaviour as r -+ oo of the probability vectors 
i$ = v:/v:l where v: = x'To ,,, r 2 1, for arbitrary fixed x = v, 2 0, # 0. 
From Theorem 3.4, e, + e > 0, so, from Lemma 3.7 it follows that there is an 
r,(e) 2 t such that d(e:, e') < E for r 2 rO(&): consider such an r. Then taking 
into account that for a 2 0, v,+, > 0 for any k 2 t since by (3.21) To, ,+, > 0, 
and the properties of d( . ,  . )  [see Exercise 3.11 

- < f l  d($, e') + E + d(e:+ T ,  , ,  e') 

the f l  (<  1) arising from (3.21) and the definition of T , ( . ) .  Now focussing on 
the term on the extreme right, since e:+, H,+ , = e:+, p(H,+ ,) 

since T+,- ,, , = H,,,. Thus from (3.21) for r 2 r0(e), 

d($+, , e') 5 f l  d(i$, e') + 2te, 

whence 
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SO letting s + co, r + oo yields 

lim d(ci+ kt, e') = 0 for arbitrary a 2 0. 
k -  3C 

From Lemma 3.7 

lim $,+ k t  = e', especially for a = 0, . . . , t - 1. 
k -  n 

Hence 

lim f ir = e. 
r + m  

Corollary. I f :  ( i )  all H k ,  k 2 1, are allowable; ( i i )  (3.21) holds; und (iii) 
k -  a e, --+ e for some sequence of left probability eigenvectors {eh), k 2 0 ,  and 

for some limit Lector e' > Of, then strong ergodicity obtains. 

The following results, culminating in Theorem 3.7, seek to elucidate the 
nature of the crucial assumption (3.21) be demonstrating within Theorems 
3.6 and 3.7 situations which in essence imply it. 

Theorem 3.6. I f  each H,, k 2 1, is row-allowable and H ,  -t H  (elementwise) as 
k + co, where H is primitice, then strong ergodicity obtains, and the limit 
vector v' is the probability-normed left Perron-Frobenius eigencector of H .  

PROOF: (Again we only prove ergodicity of Tp, , in the case p = 0.) Let k ,  be 
such that for k > k ,  , Hk has positive entries in at least the same positions as 
H. Let j, 2 1 be such that H j 9  0 (recall that H  is primitive). Then for 
p 2 0 , j 2 j o  

Then for r 2 2jo + k,, and p 2 0 

since Tp+ ,,,,- j o - k o  > 0 ,  Tp+"-  jo. jo > 0 and Tp, ,, is row-allowable. In view 
of property (3.7) of z,(.) and (3.22) 

for r 2 2jo + k,. Now ~ ~ ( 3 ,  j o )  -+ T ~ ( H ~ O )  as k + co, so for k 2 r,, 
tB (Tk ,  5 j < 1, since r B ( H J o )  < 1. Thus for r 2 2jo + k ,  + a,, = t say, 
from (3.23) 

~ d T p ,  r )  P < 1 

uniformly in p 2 0. This is condition (3.21). 
The proof of sufficiency of Theorem 3.5 is now applicable in the manner 

encapsuled in the Corollary to that theorem, since H,, k 2 t,  are certainly 
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allowable, once we prove that e, + e > 0, where e; is the probability-normed 
left Perron-Frobenius eigenvalue of the primitive matrix H ,  ( k  2 k,), and e' 
is that of H .  We have that 

e; = ei H, /e;Hkl .  

Let e* be a limit point of {e,}, so for some subsequence { k , }  of the integers 
e,, -+ e*, where e* must be a probability vector (the set of ( n  x 1) probability 
vectors is bounded and closed). Since Hki  --+ H,  we have 

(e*)' = (e*)'H/(e*)'Hl 

so (e*)' is the unique probability-normed left Perron-Frobenius eigenvector, 
e' (> 0' )  of H .  Hence ek -+ e. [This part has followed the proof of Theorem 
3.4.1 0 

We now denote by M j  the class of non-negative matrices T such that for 
some k (and hence for all larger k ) ,  T, has its jth column positive. Clearly 

M j  is the set of all primitive matrices. 
We also write A - B for two non-negative matrices A and B if they have 

the same incidence matrix, i.e. have zero elements and positive elements in 
the same positions, so that the "pattern" is the same. 

Lemma' 3.8. I f A  is row-allowable and A B  - A for a matrix B E M j  then A 
has its jth column strictly positice. 

PROOF: Since AB, - A for all k 2 1, and ABk has its jth column positive for 
some k, A has its jth column positive. 0 

Corollary. If B is positice then A > 0. 

Lemma 3.9. I f  T,, , is primitice, p 2 0, r 2 1 ,  then T,, , > 0 for r 2 t where t is 
the number of primitice incidence matrices. 

PROOF: For a fixed p, there are some a, b satisfying 1 2 a < b I t + 1, such 
that 

since the number of distinct primitive incidence matrices is t. Hence 

Tp, a Tp+a,  b - a  - Tp, a .  

By the Corollary to Lemma 3.8, T,, a > 0, so T,, , > 0, r 2 t. 0 

Theorem 3.7. If T,, , , p 2 0, r 2 1, is primitive, and condition (C) holds, asymp- 
totic homogeneity is necessary and suflcientfor strong ergodicity. 

' We shall use the full force of this lemma only in Chapter 4 
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PROOF: Clearly all H ,  are primitive, so irreducible; and condition ( C )  is 
satisfied. Moreover for r 2 t where t has the meaning of Lemma 3.9 

T B ( T ~ ,  r )  5 T B ( T ~ ,  t )  

by the property (3.7) of z,(.). From condition (C)  {analogously to (3.15), 
since, by Lemma 3.9, T,, , > 0 )  

Since T,(A) clearly varies continuously with A > 0, if A varies over the 
compact set y'll' 5 A 5 nt-I l l ' ,  the sup of T,(A), say p, over such A is 
obtained for some A* in the set. Thus A* > 0 and = T,(A*) < 1 whence for 
all p 2 0, r 2 t, 

z B ( T p ,  r )  5 /j < 

We can now invoke Theorem 3.5 to obtain the conclusion of that theorem. 
0 

We conclude this section by touching on some results relating to uniform 
strong ergodicity. 

Lemma 3.10. If all H, ,  k 2 1,  are allowable and (3.21) obtains, then 

where w; = w:/wLl ,  r 2 1 ,  with N( = ylTo,,, r 2 1, for arbitrary J' = I V ,  2 0, 
# 0, and 5: as in the proof of Theorem 3.5, with K independent o f  w, and v , .  

PROOF: Writing r = a + t + st, where a = 0, . . . , t - 1, s 2 1 ,  with a and s 
depending on r (2 2t), we have 

by definition of z,(.); 

by (3.7); 

r: 8" d ( i i + , ,  wi,,) = p. '{p-'"'"-' d(Gh+,> wb+,)). 
Now ( f i -  d (-b v To, n+ t ,  wb To, n+ t ) )  for fixed a is evidently well-defined and 
continuous in t b ,  wb (since To, > 0 )  and these are probability vectors 
thus varying over a compact set. The sup is thus attained and finite; and the 
final result follows by taking the maximum over a = 0, . . . , t - 1. 0 

Theorem 3.8. Suppose d is any set of primitive matrices satisfying condition 
(C). Suppose e l ( H )  is the left probability Perron-Frobenius eigenvector of 
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H E .d. Then for x 2 0, # 0, if C,(H) = xlx'l and $(H) = s: Hr/x'H'l. 
d(L$(H), et(H)) = d(x'Hr, el(H)) 5 Kpl ' for r 2 2t, where t = n2 - 2n + 2, 
K > 0, 0 5 B < 1, both independent of H and x. 

PROOF: For any H E d ,  Hr > 0 for r 2 t by Theorem 2.9, and, from condi- 
tion (C), 

$11' 5 Ht  5 n -  ill', 

Thus for r 2 t, by (3.7) 

where /J is independent of H E d being the sup of z,(A) as A varies over the 
compact set $11' I A _< nt-'11 (as in Theorem 3.7). Following Lemma 3.10, 
with w, = e(H), we have for r 2 2t 

and the result follows by taking sup over 

as x' and H vary over their respective compact sets (see the proof of 
Theorem 3.4), and then taking the maximum over a = 0, 1, 2, . . ., t - 1. 

0 

Bibliography and Discussion to $3.3 

The development of this section in large measure follows Seneta and Sheri- 
dan (1981), and owes much to Golubitsky, Keeler and Rothschild (1975, $3). 
Theorem 3.6 {given with a long direct proof as Theorem 3.5 in Seneta 
(1973c)), together with Exercise 3.15, is similar in statement to a peripheral 
result given by Joffe and Spitzer (1966, pp. 416-417). Lemmas 3.8 and 3.9 
have their origins in the work of Sarymsakov (1953a; summary), Sarymsa- 
kov and Mustafin (1957), and Wolfowitz (1963). Theorem 3.8 is akin to a 
result of Buchanan and Parlett (1966); see also Seneta (1973c, 43.3). 

The results of 443.2-3.3, with the exception of Theorem 3.8, may be 
regarded as attempts to generalize Theorem 1.2 (of Chapter 1) for powers of 
a non-negative matrix to inhomogeneous products of non-negative matrices. 
A great deal of such theory was first developed, also with the aid of 
" coefficients of ergodicity ", for the special situation where all H, are stoch- 
astic, in the context of inhomogeneous Markov chains. We shall take up this 
situation in the next chapter, where, owing to the stochasticity restriction, an 
easier development is possible. The presentation of the present chapter has, 
however, been considerably influenced by the framework and concepts of 
the stochastic situation, and the reader will notice close parallels in the 
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development of the theory. Theorem 3.8 touches marginally on the concept 
of "ergodic sets": see Hajnal (1976). 

In relation to the demographic setting discussed following $3.2, as already 
noted, the property of strong ergodicity for forward products relates to the 
situation where the common age structure after a long time k (" weak ergodi- 
city ") will tend to remain constant as k increases. 

Show that U;=, M j  = GI ,  the class of (n x n) nonnegative matrices whose 
index set contains a single essential class of indices, which is aperiodic. [Recall 
that M j  is that class of (n x n) non-negative matrices T such that, for some k, Tk 
has its jth column positive.] 

Show that if T is scrambling [Definition 3.21, then T E G ,  [as defined in Exer- 
cise 3.121. Construct an example to show that a T E G I  is not necessarily 
scrambling. 

By generalizing the proof of sufficiency for (the Corollary of) Theorem 3.5 by 
leaving 1,(7,, ,) in place of p, show that if: 

(i) all H k ,  k 2 1, are allowable and T,, , > 0 for all r 2 t (for some t 2 1); 

uniformly for all s 2 2 and p 2 0; and 
k -  m 

(iii) ek - e for some sequence of left probability eigenvectors {e'& k 2 0, 
and for some limit vector e' > 0, 

then strong ergocicity obtains. (Seneta & Sheridan, 1981) 

Taking note of the technique of Lemma 3.10, show that under the conditions of 
the Corollary to Theorem 3.5 (and hence certainly under the conditions of 
Theorem 3.5), 

d(i$, e') -+ 0 

unijormly with respect to v ,  = x 2 0, # 0. 

Birkhoff s Contraction Coefficient : 
Derivation of Explicit Form 

In this section we show that if d(x l ,  y') is the projective distance between 
x' = {xi), y' = {y , )  > 0', i.e. 

d(x f ,  y ' )  = max In 
i, J 
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then for an allowable T = {t i j}  

where 

tik t j l  d ( T )  = min -- if T > 0 ;  
i ,  j ,  k ,  1 t j k t i l  

To this end we first define two auxiliary quantities, rnax (x,  y), rnin (x,  Y ) .  
For any 

rnax (i) = m y  (;I, min = m:n (:) 
where (xi /yi)  = co if for some i, xi > 0 and yi = 0 ;  and (xi /yi)  = - co if for 
some i, xi < 0 and yi = 0 ;  (010) = 0. 

The following results list certain properties of rnax (., .), and rnin (., . )  
necessary for the sequel and serve also to introduce the quantities osc ( x / y )  
and 8(x, y) .  

Lemma 3.11. 
( i )  rnax [ (x  + y)/z] 5 rnax (xlz)  + rnax klz) 

rnin [ (x  + y)/z] 2 rnin (xlz)  + min k/z) 
for any x, y E R,; z 2 0, f 0. 

(ii) rnax ( - xly) = - rnin (xly ) 
min( - x / J ~ )  = - rnax ( x / y )  

for any x E R,; y > 0, # 0. 
(iii) min (x /y)  5 rnax (xly), x E R,; y 2 0, f 0 

0 1 m i n ( x / y ) 5 m a x ( x / y ) ,  x 2 0 ;  y 2 0 ;  # 0 .  
(ir) If osc ( x / y )  = rnax (xly)  - rnin (xly), x E R,; y 2 0, f 0 [this is well- 

dejned since rnax (x,  y) > - co and rnin (x,  y) < a], then 
cr, 2 osc (xlj?) 2 0, and osc (xly)  = 0 i f  and only i f :  x = cy  for some 
c E R, and in the case c f 0, y > 0. 

( u )  rnax (oxlry) = (017) rnax (xly), 
rnin (oxlzy) = (a/r)  rnin (x /y)  
x ~ R , ; y 2 0 ,  # O ; ~ > O , a 2 0 .  

(ri) rnax [(x  + cy)/y] = rnax (xly)  + c, 
rnin [ (x  + cy)/y] = rnin (xly) + c 
osc [(x  + cy)/y] = osc (xly), 

x ~ R , ; y 2 O ,  + O ; C E R .  
(uii) rnax (xly)  = [min @/x)]- ' ,  x, y 2 0, # 0. 
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(ciii) I f  x ,  y, z 2 0, # 0, then 
rnax (x ly )  I rnax (x l z )  . rnax (zly), 
rnin (XI,) r rnin (x l z )  . rnin (zly). 

( i x )  rnax [ x / ( x  + y)]  = rnax (x/ j>)/[ l  + rnax ( x / y ) ]  I 1, 
rnin [x / (x  + y ) ]  = rnin (x /y ) / [ l  + rnin (xly)]  1, 
x ,  y 2 0, # 0. 

PROOF: Exercise 3.16. 

Lemma 3.12. Let x, y 2 0 and dejine for such x, y 

(this is well-dejined, since the denominator isjnite).  Then 

( i )  %(EX, fly) = Y ) ,  2, B>O; 
(ii) O(x, y )  = fib, x ) ;  

(iii) m 2 %(x,  y )  2 1, and %(x,  y )  = 1 ifand only i f x  = cy > 0 for some c > 0 ;  
(ic) O(x, z )  I Q(x, y)OCy, z )  i f  z 2 0, # 0. 

PROOF: ( i )  follows from Lemma 3.11(v). Lemma 3.ll(vii) yields O(x, y )  = 

rnax ( x / y )  rnax b / x ) ,  = Oblx),  which gives (ii). (iii) follows from Lemma 
3.1 l(iii). (ic) follows from Lemma 3.1 l(t.iii). 0 

Lemma 3.13. Suppose A is a matrix such that z > 0 * z'A > 0'. Assume 
x E R,, y > 0 and 0 I osc ( x / y )  < co. Then for any E > 0,  

where .for w, z > 0 

rnax (wlz) . rnax (zlw) - 1 . 
O(W, z )  = 

(max (w/z)  + 1) . (max ( z / w )  + 1) ' 

z1  = x - (min ( x / y )  - e)y > 0, 

z ,  = (max (x ly )  + &)y - x > 0, 

so that 

[N.B. W e  are adopting, for notational convenience, the convention that for 
any x, y E R, , and each f, f ( x ,  y )  = f (x' ,  y').] 

PROOF : 
osc (xlA/y 'A)  = rnax (x1A/y 'A)  - rnin (x1A/y 'A)  

= {max ([x 'A - (min (xl /y ' )  - E )  . y1A]/y'A) + rnin (x'/y1) - E }  

- {min ([x 'A - (min (x f /y ' )  - F )  . ylA]/y 'A)  + min (xl /y ' )  - E )  
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by Lemma 3.11(ci); 

= ((osc (x ' /yl)  + 2 ~ )  . rnax ([x'A - (min (x1/y') - e )  . y'A]/ 
(OSC (x ' /y f )  + 2 ~ )  ' ylA) - ( ( O X  (xl/J.") + 2 ~ )  

rnin ([x'A - (min (x1/y') - 8 )  . ytA]/(osc (x ' /yl)  + 2e)y1A) 

by Lemma 3 . 1 1 ( ~ ) ;  

= (OSC (.rf/y') + 2e){max (z ;  A/z; A)/( l  + rnax (z', A/z; A ) )  
- rnin ( z ;  A/z; A)/(1 + rnin ( z ;  A/z; A)) )  

by Lemma 3.11(ix); 

= (OSC (xf/J") + 2e)jmax (z', A/z; A)/( l  + rnax (z ;  Alz; A) )  
- [ 1 / ( 1  + max ( z ;  Alz; A) ) ] )  

by Lemma 3.1 l(cii); 

The purpose o f  Lemma 3.13 was to establish a relation between osc (xl /y ')  
and osc (xlA/-v'A), which leads to the inequality in Theorem 3.9. 

Theorem 3.9. For x # 0 and y > 0, such that 0 < osc (xly), and A such that 
z > 0 * z'A > 0' 

osc (x'A/ytA)/osc (x1/y') 5 (6 '"(A) - 1)/(6112 ( A )  + 1 )  

where B(A) = sup B(wlA, z'A), and this sup is over w, z > 0. [N.B. I f  
Q(A)  = co, the right-hand side is to be interpreted as unity.] 

PROOF: Since both rnax (w'A/zlA), rnax (z'A/wlA) > 0 (and necessarily finite) 

rnax (w'A/zfA) . rnax (z'A/wf A)  - 1 
w(wtA, z'A) = 

[max (w1A/z'A) . rnax (z1A/w'A) 
+ rnax (z'24/n3'A) + rnax (w'A/tlA) + 11 

(from the definition o f  w( . ,  .)) 

rnax (w1A/z'A) . rnax (zfA/w'A) - 1 
< 
- [max (w'A/z'A) . rnax (z'A/wlA) 

+ 2{max (z'A/w'A) . rnax (wfA/z'A))"* + 11 

since i f  a, b 2 0, a2 + b2 2 2ab 2 0, and the numerator is 2 0 by Lemma 
3.1 l(iii) and (cii); 

= (max (2) . rnax (%I - I \ / [  [max (2) max (%)I ' ' + 1 / ' 
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by Lemma 3.1 l(cii) and the definition of Q(. ,  .); 

= {dl 2 ( n l ' ~ / z ' ~ )  - 1}/{01 '(wlA/z'A) + 1). 

Hence by Lemma 3.13, since (oc - l)/(oc + 1) is increasing with oc > 0, 

osc (x'A/~,'A)/(osc (x1/y') + 2e)  1 (0' '(A) - 1)/{01 '(A) + 1). 

Letting t: -+ 0 +  yields the result. 0 

Since it is seen without difficulty (Exercise 3.17), that for an (n x n) matrix 
A, z > 0 * z'A > 0, if and only if A is non-negative and column-allowable, 
we henceforth use the usual notation for an (11 x n) non-negative matrix, 
T = {ti,). 

Lemma 3.14. If T > 0, and j; denoted the rector with the ith of its n entries 
unity, and the others zero, then, for all k, 1 = 1, . . . , n 

f :Tfk sup (a) = m y  (-1 
x > O .  Z O  x'Tfi f ;TL 

PROOF: Write s = {.xi) = xi xi J;. . Then 

Assume without loss of generality that 

Now, if a, b, c, d > 0, then alb 2 c/d o alb 2 (a + c)/(b + d), applying 
which to the immediately preceding (from the right) yields for any x 2 0, 
# 0 

with equality in the case x = f,, which is as asserted. 

Corollary. If T > 0, 

f :.Th sup ( x k )  = m y  (--) . 
x >  O  x' Tf, f : T h  

Theorem 3.10. For the possible cases of column-allowable T:  

Q(T) = max (ti"'" -- if T > 0, 
i ,  j ,  k. l til t j k  

= 00 if T + 0, T allowable; 
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and if T is column-allowable but not row-allowable, 

8 ( T )  = co 

if and only if there is a row containing both zero and positive elements.' 

PROOF: Suppose T > 0, w, z > 0. Then 

W9'Tfk / w ' T ~  w 1 T f k .  ~ ' T f i  -- - - 
~ ' T f k  ~ ' T f i  w ' T f i . ~ ' T f k  

f l Tfk I max ---- . f ; T I ;  max 
i . f : T L  j . f>Tfk 

by the Corollary to Lemma 

for some i,, j,, k , ,  1, 
Hence 

8 ( T )  = sup 
w. z > o  

On the other hand 

max 
i, j. k ,  1 

where n, = {wi)  > 0 with wio = (1 - 6) ,  6 > 0, = 1 and z = { z J  > 0 with 
zjo = (1 - 6) ,  6 > 0, 2'1 = 1 ;  and letting 6 + 0 +  yields the required result 
that 

e ( T )  = ( t i o k o  t jo lo/ t io lo  t j o k o ) .  

If T has a row containing both positive and zero elements then for some j, 
t jk  = 0, t j ,  > 0 for some k ,  h. Choose n* = {wi} > 0 so that wj = (1 - 6) ,  
6 > 0, w'l = 1, and z = 1. Then 

o 5 min (r,'rj ---- I --- 6 

What happens when this fails is treated at the conclusion of the proof. 
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and 

so O(wlT, z'T) 2 (1 - 6)tJh/6. and the result follows by letting 6 + O + .  
The only case remaining is where all rows are either zero or strictly 

positive, and there is at least one of each. Then call the m x n matrix 
(1 I m < n )  formed from T by deleting the zero rows A = (a,,]. By a preced- 
ing sequence of arguments 

Theorem 3.11. I f  T is column-allowable 

sup osc (x'T/yr T)/osc (x'ly') = (8' '(T) - 1)/(01 ' ( T )  + 1) 

where the sup is ocer x > 0, y > 0  such that x # cy. (Interpret the right hand 
side as 1 ifO(T) = co.) 

PROOF: Since osc (x/j~) = 0 if and only if x = cj3 (Lemma 3.1 I), we have 
osc (x/y) > 0 and are within the framework of Theorem 3.9. If O(T) = 1, from 
Theorem 3.10 all rows of T are non-negative multiples of a single positive 
row, and so osc (x1T/j>'T) = 0 for all x, y > 0  (Lemma 3.12) and the proposi- 
tion is established for this case. If O(T) = co, by Theorem 3.10 T has a row, 
say the jth, containing both positive and zero elements, and by Theorem 3.9 

osc (x' T/ylT)/osc (x'/yl) 5 1 

x , y  > O ,  rv # cz. Suppose tj, = 0 andt,, > 0.Choosey = 3Lf, + 1,). > 0,and 
x =  1 -,<. 

Then osc (xl/y') = 1, while 

and, since 

and letting 1- + co yields the result. In this argument x + 0, but an approxi- 
mating argument (use x = 1 - (1 - 6)h) will yield the result required. 

We now turn to the remaining case 1 < 8(T) < co, and suppose first (see 
Theorem 3.10) that T > 0. Choose E > 0 small enough so that O1 '(T) x 
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(1 - E )  > 1. From Theorem 3.10, putting S = maxi ( f  Tf,/  f :  Tji)  and 
I = mini ( f ' i  T f k /  f i Tf;) ,  it follows that B(T) = max,, , S/ l ,  so there exist k, I 
such that S/ l  > B(T)(l - e)', and we henceforth consider k and 1 fixed at 
these values. We can now find a 6 > 0 such that 

Let 

Clearly M n m = 4, since (S - 6)/(1 + 6 )  > 1. Put F = U;=, , A ,  
N = F - m a n d R = F - m - M = N - M ; a n d i f B ~ F a n d x = { x , J > O ,  
then 

Take, along the lines of the preceding argument 

(while y  > 0, x has some zero elements). Then osc (x ' / y l )  = 1 ,  and we need 
focus only on osc (x fT/y 'T) :  

osc (x' T / y l T )  2 (x' T f ,  / y lT fk )  - (x' T j ;  /y' T f , )  

from the choice of x. 
Now 

since e.g. if alb, c/d > cr for a, b, c, d ,  cc > 0, then (a + c)/(b + d )  > a. Hence, 
since N = M u N, M n N =  4 

if q is chosen suj'jiciently small, and then fixed. Thus if we put 
t  = J'; TJ; /y; T j ;  , t = yk T f ,  /y; T.f,, then 
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Now, since F = N u m and N n m = 4, and N 2 M # 4, m # 4, 

in view of the inequality for t/f; 

after simplification. 
Further, 

so, (q now being fixed) i > 0 can still be chosen so that F =  { H '  2 ( T )  x 
(1 - 8 ) ) -  l ,  and then fixed. From the above, for these choices of i., q, 

If we now replace x by x + y on the left and use Lemma 3.1 l(ci) ,  we see 
that 

sup osc (x' Tly' T )  > j H 1  2 (T) ( l  - 8 )  - 11 

X, Y > O  \ H ~ ~ ~ ( T ) ( I  - C )  + I \  

and letting t: + 0 + ,  together with Theorem 3.9 yields the final result. 
The remaining case for the theorem in that where T has only strictly 

positive and strictly zero rows, and at least one of each. This is tantamount 
to treating a rectangular matrix A > O as in Theorem 3.10, and is analogous 
to the treatment for T > 0. 17 

The following result finally yields the explicit form for ?,(T). 

Theorem 3.12. I f  T is column-allowable, 

where 4 ( T )  = 0 - ' (T ) ,  H(T) having the calue specijied by Theorem 3.10. 
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PROOF: For any c > 0, since s # i y ,  x + cy f %y, so 

Since the numerator of the left-hand side is 

rnax [(s + cj9)'TIy'T] 
rnin [(x + cjl)' T/y' TI 

by Lemma 3.11(ci); 

= In [ l  + c-' rnax (xlT/y 'T)] 

- In [ I  + c- ' min ( x 'T / f  T ) ] ,  

and similarly for the denominator, it follows by letting c -+ co that 

osc ( x fT /y 'T )  
= lim 

d[(x + c.v)' T ,  y' TI 
i zn(T), (3.24) 

osc (x', y ' )  ,,, d[(u + cy)', ~ ' 1  
Next, we note from Theorem 3.9 that 

imax ( x ' T I ~ . ' T )  - rnin (x 'T/y fT)]  5 a(T){max (s1/y ' )  - min (x'l.v')j 

where we have put, for convenience, G ( T )  = [ l  - 4' ' ( T ) ] / [ l  + 4' 2 ( T ) ] ;  
that is [by Lemma 3.1 l(cii)] 

rnax (y' T/s'  T )  - rnin (y' T/x' T )  
- 

jmax (~7'/x') - min (y'/xt)l 

rnax ( y r T / i  T )  rnin ( v lT /dT)  ' o(T)(  rnax ( l i / x l )  min ( . y / x l )  1 ' 
Replacing y by ky + s, k > 0, and using Lemma 3.11(ci )  and (c) 

rnax (y'T/xr T )  - min (JIT/x' T )  

[I + k rnax (ytT/x 'T)][l  + k rnin (y 'T/xlT)] 

Integrating both sides in the interval (0, c), c > 0, over k, we obtain 

In [ l  + c rnax [v1T/x'T)] - In [(l + c min (y 'T/xlT)] 

I o ( T )  {ln [l + c rnax (y'lx')] - In [ I  + c rnin (yf/x')]) 

In { [ I  + c rnax (y 'T/x 'T)]/[l  + c rnin (y'T/xlT)]) 
- -- I a ( T )  

In { [ I  + c rnax (y'/x')]/[l + c rnin (vl /x ')])  

and letting c + co yields for x, y > 0, x # i y ,  that 

d(y' T,  x'T)/d(yt, x')  _< a ( T )  

so that 
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But, from (3.24) and Theorem 3.9 

so the required follows. 

To conclude this section we consider the important case where T = P' 
where P is stochastic (so 1'T = 1' and T is certainly column allowable). This 
relates directly to the spectrum localization results mentioned in the Biblio- 
graphy and Discussion g2.5 in relating T,(T) and z l (T)  for a non-negative 
irreducible T, and, not surprisingly, relates to Theorem 3.1. 

Theorem 3.13. If P = {pij} is a stochastic matrix, then z,(P') 2 zl(P)  where 
s,(P) = + max,, ] p i s  - pjs I .  In particular, i fP  is stochastic and allow- 
able, then 

5B(P) 2 4'). 

PROOF. For x, y > 0, x # Ay, by Theorem 3.9 and Theorem 3.12, 

z,(P') 2 osc (x'P'/y'P')/osc (n'ly') 

and in particular if y = 1, for x > 0, x # k1 

osc (Px/l) max (Px/l) - min (Px/l)) 
zg(P') 2 

osc (x/l) = max (x/l) - rnin (x/l) 

Now, Theorem 3.1 states that certainly the right-hand side is always 
< z,(P). We need to tighten this result by proving - 

osc (Pxl l)  
z, (P)  = sup 

x> 0 OSC ( 4 1 )  

We shall suppose zl(P) > 0 ;  otherwise the theorem is already established. 
Suppose i,, j, are such that 

where S = {s ;  pi, - pjo, > 0) f 4 and is a proper subset of (1, 2, . . . , n). Let 
x = 1,; then 

- - osc (P[61 + (1 - 6)lS]/Pl) 
osc {[dl + (1 - 6)1,]/1) 
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since P I  = 1, by Lemma 3 .11(~)  and (ti), noting that for small 6 > 0, 
x(6) = 61 + (1 - 6)1, > 0, x(6) # i-1. Thus (3.25) is established. 

The remaining portion of the theorem follows from the fact that for 
allowable P, t,(P) = z,(P1) (Exercise 3.3). 0 

Bibliography and Discussion to $3.4 

The development of this section follows Bauer (1965) up to and including 
Theorem 3.9. The proof of Theorem 3.11 is essentially due to Hopf (1963). 
The arguments leading to the two inequalities which comprise the proof of 
Theorem 3.12 are respectively due to Ostrowski (1964) and Bushel1 (1973). 
Theorem 3.13, as already noted in the Bibliography and Discussion to $2.5, is 
due to Bauer, Deutsch and Stoer (1969). The evaluation of t,(T) was first 
carried out in a more abstract setting by Birkhoff (1957) [see also Birkhoff 
(1967)], whose proof relies heavily on projective geometry. The paper of 
Hopf (1963) was apparently written without knowledge of Birkhoff's earlier 
work. The section as a whole is based on the synthesis of Sheridan (1979, 
Chapter 2) of the various approaches from the various settings, carried out 
by her for the case when T is allowable. 

3.16. Prove Lemma 3.1 1 

3.17. Suppose A is an ( n  x n )  real matrix. Show that 
( i )  z' 2 0', # 0' * z'A 2 O', # 0' if and only if A is non-negative and 

row-allowable; 
( i i )  z' > 0' z'A > 0' if and only if A is non-negative and column-allowable. 

3.18. In view of Lemmas 3.11 and 3.12, and Exercise 3.17(i), attempt to develop the 
subsequent theory for row-allowable T, taking, for example, "sup" directly 
over x, y > 0, f 0 etc. 

3.19. Suppose A = {a i j )  2 0 is ( m  x n )  and column-allowable. Define @ ( A )  as in 
Theorem 3.9. Evaluate @ ( A )  as in Theorem 3.10, and investigate in general how 
far the theory of this section and @3.1-3.2 can be developed for such rectangu- 
lar A. 



CHAPTER 4 

Markov Chains and Finite 
Stochastic Matrices 

Certain aspects of the theory of non-negative matrices are particularly im- 
portant in connection with that class of simple stochastic processes known 
as Markov chains. The theory of finite Markov chains in part provides a 
useful illustration of the more widely applicable theory developed hitherto; 
and some of the theory of countable Markov chains, once developed, can be 
used as a starting point, as regards ideas, towards an analytical theory of 
infinite non-negative matrices (as we shall eventually do) which can then be 
developed without reference to probability notions. 

In this chapter, after the introductory concepts, we shall confine ourselves 
to finite Markov chains, which is virtually tantamount to a study from a 
certain viewpoint of finite stochastic matrices. We have encountered the 
notion of a stochastic matrix, central in the subject-matter of this book, as 
early as $2.5. A number of the ideas on inhomogeneous products of finite 
non-negative matrices developed in Chapter 3 will also play a prominent 
role in the context of stochastic matrices. In the next chapter we shall pass to 
the study of countable Markov chains, which is thus tantamount to a study 
of stochastic matrices with countable index set, which of course will subsume 
the finite index set case. Thus this chapter in effect concludes an examination 
of finite non-negative matrices, and the next initiates our study of the count- 
able case. 

We are aware that the general reader may not be acquainted with the 
simple probabilistic concepts used to initiate the notions of these two chap- 
ters. Nevertheless, since much of the content of this chapter and the next is 
merely a study of the behaviour of stochastic matrices, we would encourage 
him to persist if he is interested in this last, skipping the probabilistic pas- 
sages. Chapters 5 and 6 are almosffree of probabilistic notions. 

Nevertheless, Chapters 4 to 6 are largely intended as an analytical/matrix 
treatment of the theory of Markov chains, in accordance with the title of this 
book. 
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4.1 Markov Chains 

Informally, Markov chains (MCs) serve as theoretical models for describing 
a "system" which can be in various "states ", the fixed set of possible states 
being countable (i.e. finite, or denumerably infinite). The system "jumps" at 
unit time intervals from one state to another, and the probabilistic law 
according to which jumps occur is 

" If the system is in the ith state at time k - 1, the next jump will take it to 
the jth state with probability p,,(k)." 

The set of transition probabilities pij(k) is prescribed for all i, j, k and deter- 
mines the probabilistic behavior of the system, once it is known how it starts 
off " at time 0 ". 

A more formal description is as follows. We are given a countable set 
S' = (s,, s,, ...) or, sometimes, more conveniently (so, s,, s,, . . .) which is 
known as the state space, and a sequence of random variables {X,}, k = 0,1, 
2, . . . taking values in .Y, and having the following probability property: if x, , 
s,. . . . , x,+ , are elements of .Y, then 

P(Xk+ 1 = sk+ 1 Xk = Sk,  Xk-  1 = ,xk- 1 ,  . . . , XO = so) 

= P(Xk+ 1 = X k +  1 (XI ,  = x,) 

if P(X, = x,, . . . , X, = so) > 0 

(if P(B) = 0, P(A 1 B) is undefined). 
This property which expresses, roughly, that future probabilistic evolu- 

tion of the process is determined once the immediate past is known, is the 
Markov property, and the stochastic process (X,] possessing it is called a 
Marko~' chain. 

Moreover, we call the probability 

pix,,, = sj / X ,  = si) 

the transition probability from state si to state sj, and write it succinctly as 

pij(k + I), s i ,  sj  E .Y, k = 0, 1, 2, . . . 
Now consider 

PIX. = Sio , X1 = Si, , . . . , Xk = sik]. 

Either this is positice, in which case, by repeated use of the Markov property 
and conditional probabilities it is in fact 

P[Xk = sikl Xk-  1 = S i n  ' ' '  PIX1 = Sil  IXo = sio]P[X0 = si0] 
- - pie 1% ik(k)pik-~, i k -  l(k - 1) " ' Pio, il(l)nio 

where IIio = P[X, = sio] 

or it is zero, in which case for some 0 I r I k (and we take such minimal r) 

PIX. = Sio ,  X ,  = Sil, . . ., XI = Sir] = 0. 
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Considering the cases r = 0 and r > 0 separately, we see (repeating the 
above argument), that it is ~zecertlzeless true that 

since the product of the first r + 1 elements on the right is zero. Thus we see 
that the probability structure of any finite sequence of outcomes is conz- 
pletely dejned by a knowledge of the non-negutire quantities 

pll(k);  s , ,  s, E Y. IT,; s, E Y 

The set {n,) of probabilities is called the initial probabilitj1 distribution of the 
chain. We consider these quantities as specified, and denote the row vector 
of the initial distribution by lib. 

Now, for fixed k = 1, 2, . . . the matrix 

is called the transition matrix of the M C  at time k. It is clearly a square 
matrix with non-negative elements, and will be doubly infinite if 9 is 
denumerably infinite. 

Moreover, its row sums (understood in the limiting sense in the 
denumerably infinite case) are unity, for 

= P [ X ,  E .Y I X ,  , = si] 

by the addition of probabilities of disjoint sets; 

Thus the matrix P, is stochustic. 

Definition 4.1. If PI = P ,  = . . . = P,  = . . . the Markov chain is said to have 
stationary transition probabilities or is said to be homogeizeous. Otherwise it 
is non-homogeneous (or : inhomogeneous). 

In the homogeneous case we shall refer to the common transition matrix 
as the transition matrix, and denote it by P. 

Let us denote by the row vector of the probability distribution of X,; 
then it is easily seen from the expression for a single finite sequence of 
outcomes in terms of transition and initial probabilities that 

by summing (possibly in the limiting sense) over all sample paths for any 
fixed state at time k. In keeping with the notation of Chapter 3, we might 
now adopt the notation 
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and write 

[We digress for a moment to stress that, even in the case of infinite 
transition matrices, the above products are well defined by the natural exten- 
sion of the rule of matrix multiplication, and are themselves stochastic. For: 
let 

be two infinite stochastic matrices defined on the index set (1, 2, . . .). Define 
their product P, Pi! as the matrix with i, j entry given by the (non-negative) 
number : 

This sum converges, since the summands are non-negative, and 

since probabilities always take on values between 0 and 1. Further the ith 
row sum of the new matrix is 

by stochasticity of both P,  and Pi,. (The interchange of summations is 
justified by the non-negativity of the summands.)] 

It is also easily seen that for k > p 

We are now in a position to see why the theory of homogeneous chains is 
substantially simpler than that of non-homogeneous ones: for then 

so we have only to deal with powers of the common transition matrix P, and 
further, the probabilistic evolution is homogeneous in reference to any initial 
time point p .  

In the remaining section of this chapter we assume that we are dealing with 
finite (n  x n )  matrices as before, so that the index set is (1, 2, . . . , n )  as before 
(or perhaps, more conveniently, (0, 1, . . . , n - 1)). 
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Examples 

(1) Bernoulli scheme. Consider a sequence of independent trials in each of 
which a certain event has fixed probability, p, of occurring (this outcome 
being called a " success") and therefore a probability q = 1 - p of not occur- 
ring (this outcome being called a " failure "). We can in the usual way equate 
success with the number 1 and failure with the number 0;  then i /  = (0, I ) ,  
and the transition matrix at any time k is 

so that we have here a homogeneous 2-state Markov chain. Notice that here 
the rows of the transition matrix are identical, which must in fact be so for 
any " Markov chain" where the random variables {X,]  are independent. 

( 2 )  Random walk between two barriers. A particle may be at any of the points 
0, 1, 2. 3, . . . , s (s 2 1 )  on the x-axis. If it reaches point 0 it remains there with 
probability a and is reflected with probability 1 - a to state 1 ; if it reaches 
point s it remains there with probability b and is reflected to point s - 1 with 
probability 1 - b. If at any instant the particle is at position i, 1 2 i 2 s - 1, 
then at the next time instant it will be at position i + 1 with probability p, or 
at i - 1 with probability q = 1 - p. 

It is again easy to see that we have here a homogeneous Markov chain on 
the finite state set .if = (0, 1, 2, . . . , sj with transition matrix 

If a = 0, 0 is a rejecting barrier, if a = 1 it is an absorbing barrier, other- 
wise i.e. if 0 < a < 1 it is an elastic barrier; and similarly for state s. 

(3) Random wulk unrestricted to the right. The situation is as above, except 
that there is no "barrier " on the right, i.e. 9 = (0, 1,2,3,  . . .I is denumerably 
infinite, and so is the transition matrix P. 

( 4 )  Recurrent el'ent. Consider a "recurrent event ", described as follows. A 
system has a variable lifetime, whose length (measured in discrete units) has 
probability distribution { J ) ,  i = 1,2, . . . . When the system reaches age i 1, 
it either continues to age, or "dies" and starts afresh from age 0. The 
movement of the system if its age is i - 1 units, i 2 2 is thus to i, with 
(conditional) probability (1 -f, - . . . - j;)/(l - f ;  - . . . - j -  ,) or to age 0, 
with probability ,f;./(l - f ,  - . . . - A -  ,). At age i = 0, it either reaches age 1 
with probability 1 - f,, or dies with probability f,. 



4.1 Markov Chains 117 

We have here a homogeneous Markov chain on the state set .Y = (0, 1,2, 
. . .} describing the movement of the age of the system. The transition matrix 
is then the denumerably infinite one: 

It is customary to specify only that I,"=, f ;  5 1, thus allowing for the 
possibility of an infinite lifetime. 

( 5 )  Polya Urn scheme. Imagine we have a white and b black balls in an urn. 
Let a + b = N. We draw a ball at random and before drawing the next ball 
we replace the one drawn, adding also s  balls of the same colour. 

Let us say that after r drawings the system is in state i, i  = 0, 1 ,2 , .  . . if i is 
the number of white balls obtained in the r drawings. Suppose we are in state 
i  ( I  r)  after drawing number r. Thus r - i  black balls have been drawn to 
date, and the number of white balls in the urn is a + is, and the number of 
black is b + (r - i)s. Then at the next drawing we have movement to state 
i + 1 with probability 

a + is 
Pi, i +  ~ ( r  + 1) = N + rs 

and to state i with probability 

Thus we have here a non-homogeneous Markov chain (if s > 0 )  with tran- 
sition matrix P ,  at "time" k = r + 1 2 1 specified by 

= otherwise, 

where Y = {O, 1, 2, . . .). 
N.B. This example is given here because it is a good illustration of a 

non-homogeneous chain; the non-homogeneity clearly occurring because of 
the addition of s balls of colour like the one drawn at each stage. Never- 
theless, the reader should be careful to note that this example does not fit 
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into the framework in which we have chosen to work in this chapter, since 
the matrix P ,  is really rectangular, viz. k x (k + 1) in this case, a situation 
which can occur with non-homogeneous chains, but which we omit from 
further theoretical consideration. Extension in both directions to make each 
P,  doubly infinite corresponding to the index set (0, 1, 2, . . .) is not neces- 
sarily a good idea, since matrix dimensions are equalized at the cost of zero 
rows (beyond the (k - 1)th) thus destroying stochasticity. 

4.2 Finite Homogeneous Markov Chains 
Within this section we are in the framework of the bulk of the matrix theory 
developed hitherto. 

It is customary in Markov chain theory to classify states and chains of 
various kinds. In this respect we shall remain totally consistent with the 
classification of Chapter 1. 

Thus a chain will be said to be irreducible, and, further, primitice or cyclic 
(imprimitice) according to whether its transition matrix P is of this sort. 
Further, states of the set 

iJ7={s1, S Z ,  . . . )  S") 

(or { s o ,  s,, . . . , s,- ,)) will be said to be periodic, essential and itzessential, to 
lead one to another, to communicate, to form essential and inessential classes 
etc. according to the properties of the corresponding indices of the index set 
(1, 2, . . . , nJ of the transition matrix. 

In fact, as has been mentioned earlier, this terminology was introduced in 
Chapter 1 in accordance with Markov chain terminology. The reader 
examining the terminology in the present framework should now see the 
logic behind it. 

Irreducible MCs 

Suppose we consider an irreducible MC {X,) with (irreducible) transition 
matrix P. Then putting as usual 1 for the vector with unity in each position, 

PI = 1 

by stochasticity of P ;  so that 1 is an eigenvalue and 1 a corresponding 
eigenvector. Now, since all row sums of P are equal and the Perron- 
Frobenius eigenvalue lies between the largest and the smallest, 1 is the 
Perron-Frobenius eigenvalue of P, and 1 may be taken as the corresponding 
right Perron-Frobenius eigenvector. Let v', normed so that v ' l  = 1, be the 
corresponding positive left eigenvector. Then we have that 

v'P = v', (4.1) 
where v is the column vector of a probability distribution. 
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Definition 4.2. Any initial probability distribution no is said to be stationary, 
if 

and a Markov chain with such an initial distribution is itself said to be 
stationary. 

Theorem 4.1. An irreducible M C  has a unique stationary distribution gicen by  
the solution tl of i1'P = v', dl = 1. 

PROOF. Since 

it is easy to see by (4.1) that such c is a stationary distribution. Conversely, if 
no is a stationary distribution 

so that by uniqueness of the left Perron-Frobenius eigenvector of P, no = t i .  

0 

Theorem 4.2. (Ergodic Theorem,for primitice MCs) .  As k -+ co, for a primitice 
M C  

elementwise where c is the unique stationary distribution o f  the M C ;  arzd the 
rate o f  approach to the limit is geometric. 

PROOF. In view of Theorem 4.1, and preceding remarks, this is just a restate- 
ment of Theorem 1.2 of Chapter 1 in the present more restricted framework. 

0 

This theorem is extremely important in MC theory for it says that for a 
primitive M C  at least, the probability distribution of X, ,  viz. nbPk - v' ,  
which is independent of no, and the rate of approach is very fast. Thus, after 
a relatively short time, past history becomes irrelevant, and the chain 
approaches a stationary regime.' 

We see, in view of the Perron-Frobenius theory that the analytical (rather 
that probabilistic) reasons for this are ( i )  r = 1, ( i i)  w = 1. 

We leave here the theory of irreducible chains, which can be further 
developed without difficulty via the results of Chapter 1. 

See also Theorem 4.7 and its following notes 
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Reducible Chains with Some Inessential States 

We know from Lemma 1.1 of Chapter 1 that there is always at least one 
essential class associated with a finite MC. Let us assume P is in canonical 
form as in Chapter 1, 51.2, and that Q is the submatrix of P associated with 
transitions between the inessential states. We recall also that in Pk we have 
Qk in the position of Q in P. 

Theorem 4.3. Qk + 0 elementwise as k -+ a, geometrically fast. 

PROOF. [We could here invoke the classical result of Oldenburger (1940); 
however we have tried to avoid this result in the present text, since we have 
nowhere proved it, and so we shall prove Theorem 4.3 directly. In actual 
fact, Theorem 4.3 can be used to some extent to replace the need of Olden- 
burger's result for reducible non-negative matrices.] 

Any inessential state leads to an essential state.' Let the totality of essen- 
tial indices of the chain be denoted by E, and of the inessential matrices by I. 

We have then that 

for some k, for any fixed i E I, so that 

Now C, pi!' is non-increasing with k, for 

Hence for k 2 k,(i) and some k,(i) 

and since the number of indices in I is finite, we can say that for k 2 k,, and 
6' < 1, where k ,  and 0 are independent of i, 

Therefore 

See Exercise 4.11 
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for fixed k 2 k , ,  and each m 2 0 and i E I .  Hence 

Hence a subsequence of 

approaches zero; but since this quantity is itself positive and monotone 
non-increasing with m, it has a limit also, and must have the same limit as 
the subsequence. 

Hence Qkl 1- 0 as k + a ,  

and hence Qk + 0. 

Now, if the process {X,) passes to an essential state, it will stay forever 
after in the essential class which contains it. Thus the process cannot ever 
return to or pass the set I  from the essential states, E. Hence if &(I) is that 
subvector of the initial distribution vector which corresponds to the inessen- 
tial states we have from the above theorem that 

as k + co, which can be seen to imply, in view of the above discussion, that 
the process {X,) leaves the set I  of states in a finite time with probability 1, 
i.e. the process is eventually "absorbed ", with probability 1, into the set E of 
essential states. 

Denote now by E,  a specific essential class, ( U P  E,, = E), and let x,, be 
the probability that the process is eventually absorbed into E,, , so that 

having started at state i E I. Let xjh) be the probability of absorption after 
precisely one step, i.e. 

and let x, and x r '  denote the column vectors of these quantities over i~ I .  

Theorem 4.4. 

PROOF. First of all we note that since Qk + 0 as k + co by Theorem 4.3 
[ I  - Q]-' exists by Lemma B.l of Appendix B (and = I,"=, Qk 
elementwise). 
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Now let xj;) be the probability of absorption by time k into E,, from i E I. 
Then the elementary theorems of probability, plus the Markov property 
enable us to write 

x(Jo = (1) 
I, X I ,  f x P,A!< " (Backward Equation), 

r t l  

x(k) ,, , xi, ( k -  1) + pi':- "x$) (Forward Equation). 
r e 1  

The Forward Equation tells us that 

so that lim,,, xji) exists, and it is plausible to interpret this (and it can be 
rigorously justified) as xi,]. 

If we now take limits in the Backward Equation as k -t cc 

an equation whose validity is intuitively plausible. Rewriting this in matrix 
terms, 

xp = xL1) + Qxp, ( I  - Q)xp = x?) 

from which the statement of the theorem follows. 0 

The matrix [I - Q]-' plays a vital role in the theory of finite absorbing 
chains (as does its counterpart in the theory of transient infinite chains to be 
considered in the next chapter) and it is sometimes called thefundamental 
matrix of absorbing chains. We give one more instance of its use. 

Let Zi j  be the number of visits to state j E I starting from i E 1. (Zii 2 1). 
Then 

is the time to absorption of the chain starting from i E I. Let mij = 8(Zij)  
and mi = Q(Zi) be the expected values of Zi j  and Zi  respectively, and 
M = {mijIi, j , I ,  and m = {mi). 

Theorem 4.5. 

PROOF. Recall that Q0 = I by definition. Let yjjk) = 1 if X k  = j, ~ 1 5 )  = 0 if 
X ,  # j, the process {X,} having started at i E I. Then 
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Moreover 

the sum on the right being effectively finite for any realization of the process, 
since absorption occurs in finite time. By positivity 

i, j E I. Thus 

= ( I  - Q )  (Lemma B.l of Appendix B) 

and since Zi  = C Z . .  
11 ' 

j t l  

it follows that 

Finally, in connection with the fundamental matrix, the reader may wish 
to note that, in spite of the elegant matrix forms of Theorems 4.4 and 4.5, it 
may still be easier to solve the corresponding linear equations for the desired 
quantities in actual problems. These are 

u. , = x!') ,p + 1 pirxrp, i E I .  (Theorem 4.4) 
r e 1  

m i =  1 + C p i r m r ,  i~ 1. (Theorem 4.5) 
r e 1  

and we shall do so in the following example. 

EXAMPLE: (Random walk between two absorbing barriers). (See $4.1). Here 
there are two essential classes E,, E, consisting of one state each (the absorb- 
ing barriers). The inessential states are I = (1,2, . . . , s - 1) where we assume 
s > 1, and the matrix Q is given by 

with X I ; '  = a i l  4, xlf' = d i ,  ,-, p, i E I ,  d i j  being the Kronecker delta. 

( a )  Probability of et'entual absorption into E,. We have that 
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Write for convenience xi - x,, . Then if we define x ,  = 0, xs  = 1, the above 
equations can be written in unified form as 

and it is now a matter of solving this difference equation under the stated 
boundary assumptions. 

The general solution is of the form 

where z ,  and z ,  are the solutions of the characteristic equation 

viz., z ,  = 1, z ,  = qjp bearing in mind that 1  - 4pq = (p  - q)2.  
Hence : 

( i )  if q  f p, we get, using boundary conditions to fix A and B 

xi = ( 1  - ( q / ~ ) ~ \ i / { l  - (q/p)S), i E I .  

( i i )  if q  = p  = 

x i = i / s ,  ~ E I .  

(b )  Mean time to absorption. We have that 

m s - ,  = 1 + qms-2 .  

Hence we can write in general 

( n z , = l + q m i _ , + p m , + , ,  i = 1 , 2  , . . . ,  s - 1 1  

lmo = 0, nz, = 0. 1 
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We have here to deal with an inhomogeneous difference equation, the hom- 
ogeneous part of which is as before, so that the general solution to it is as 
before plus a particular solution to the inhomogeneous equation. It can be 
checked that 

( i )  q f p ;  i/(q - p) is a particular solution, and that taking into account 
boundary conditions 

= i / (q  - P )  - (sl(q - ~ ) ) { l  - ( q / ~ ) ' j l { l  - (qlp)?, i E 1. 

(i i)  q = p = f ;  - i2  is a particular solution and hence 

m , = i ( s - i ) ,  i ~ l .  

The following theorem is analogous to Theorem 4.2 in that when atten- 
tion is focused on behavior within the set I of inessential states, under similar 
structural conditions on the set I ,  then a totally analogous result obtains. 

Theorem 4.6. Let Q, the subnzatrix of P corresponding to transitions between 
the inessential states of the M C  corresponding to P,  be primiti~e, and let there 
be a positice probability o f  {X,} beginning in some i E I .  Then for j E I as 
k + m  

where d 2 )  = {$)) is a positive vector independent o f  the initial distribution, 
and is, indeed, the left Perron-Frobenius eigenvector of Q. 

PROOF. Let us note that if no is that part of the initial probability vector 
restricted to the initial states then 

since by primitivity Qk > 0 for k large enough, and no # 0, Moreover the 
vector of the quantities 

P I X k = j l X k ~  I], j c  I 

is given by 

n; ~ ~ l n ;  ~ ~ 1 .  

The limiting behaviour follows on letting k -+ cc from Theorem 1.2 of Chap- 
ter 1, the contribution of the right Perron-Frobenius eigenvector dropping 
out between numerator and denominator. 0 

Chains Whose Index Set Contains a Single Essential Class 

On account of the extra stochasticity property inherent in non-negative 
matrices P which act as transition matrices of Markov chains, the properties 



126 4 Markov Chains and Finite Stochastic Matrices 

of irreducible non-negative matrices (to an extent) hold for stochastic 
matrices which, apart from a single essential class (which gives rise to a 
stochastic irreducible submatrix, PI) ,  may also contain some inessential 
indices. The reason, in elementary terms, is that if P is written in canonical 
form (as in the preceding discussion): 

then Qk + 0 elementwise (in accordance with Theorem 4.3). P: exhibits the 
behaviour of an irreducible matrix in accordance with Chapter 1, with the 
simplifications due to the stochasticity of P I .  The effect of P I  thus dominates 
that of Q; the concrete manifestation of this will become evident in sub- 
sequent discussion. 

Firstly (compare Theorem 4.1) a corresponding M C  has a unique sta- 
tionary distribution, which is essentially the stationary distribution corre- 
sponding to P I .  For, an n x 1 vector a = (u ; ,  0')' where o1 is the unique 
stationary distribution corresponding to P I ,  the chain being assumed in 
canonical form, is clearly a stationary distribution of P ;  and suppose any 
vector I I  satisfying H'P = Kt', n'l = 1 is correspondingly partitioned, so 
that n' = {n;, n;). Then 

nip, + n ; ~  = n; 
n ;Q  = n; 

From the second of these it follows that H, Qk = H 2 ,  SO, by Theorem 4.3, 
n, = 0; so, from the first equation P I  = n ; ;  and nil = 1, whence 
n, = a,. In particular a is the unique stationary distribution. 

It is evident' that an MC which contains at least two essential classes will 
not have a single stationary distribution, and hence chains with a single such 
class may be characterized as having a single stationary distribution. This 
vector is the unique solution n to the linear equation system 

H1{1, I - P} = {I, 0'1 

where the matrix (1, I - P) is n x ( n  + 1). This uniqueness implies this 
matrix is of rank n, and hence contains n linearly independent columns. The 
last n columns are linearly dependent, since (I - P)1 = 0; but the vector 1 
combined with any (11 - 1) columns of I - P clearly gives a linearly indepen- 
dent set. 

It follows from the above discussion that for an M C  containing a single 
essential class of indices and transition matrix P, any (n - 1) of the equations 
n ' P  = n' are sufficient to determine the stationary distribution vector to a 
constant multiple and the additional condition n'l = 1 then specifies it 
completely. The resulting (n x n) linear equation system may be used for the 
practical calculation of the stationary distribution, which will have zero 
entries corresponding to any inessential states. 

See Exercise 4.12. 
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To develop further the theory of such Markov chains, we define at this 
stage a regular1 stochastic matrix, and hence a regular Markov chain as one 
with a regular transition matrix. This notion will play a major role in the 
remainder of this chapter. 

Definition 4.3. An n x r1 stochastic matrix is said to be regular if its essential 
indices form a single essential class, which is aperiodic. 

Theorem 4.7. Let P be the trar~sition matrix of a regular M C ,  in canonical 
form, and a; the stationary distribution corresponding to the primitice subnza- 
trix P ,  of P corresponding to the essential states. Let u' = (a;, 0') be an 1 x n 
cector. Then as k + ro 

P k  ' la' 

elementwise, where a' is the unique stutionarq'distribution corresponding to the 
matrix P, the approach to the limit being geometrically fast. 

PROOF. Apart from the limiting behaviour of pi!), i E I ,  j E E, this theorem is 
a trivial consequence of foregoing theory, in this and the preceding section. 

If we write 

it is easily checked (by induction, say) that putting R ,  = R 

so that we need to examine this matrix as k + a. 
Put M = P I  - lu;;  

then Mi = P'; - lv; .  

Now from Theorem 4.2 we know that each element of Mi is dominated by 
K ,  p;, for some K ,  > 0 ,0  < p1 < 1, independent of i, for every i. 

Moreover 
k k 

and we also know from Theorem 4.3 that each element of Qi is dominated 
by K ,  p i  for some K 2  > 0,0 < p2 < 1 independent of i, for every i. Hence 
each component of the right hand sum matrix is dominated by 

for some K ,  > 0, and hence -. 0 as k + oo. 

Our usage of "regular" differs from that of several other sources, especially of Kemeny and 
Sne11 (1960). 
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Hence, as k -+ 'x 

3C 

lim R k + ,  = QIRlc; = (I - Q)-'Rlt!; 
k - r  3C 1 = 0 

as required. 0 

Both Theorems 4.2 and 4.7 express conditions under which the probabi- 
lity distribution: P [ X k  = j], j = 1, 2, . . . , n approaches a limit distribution 
v = { r j )  as k -+ oo, independent of the initial distribution no of { X , ) .  This 
tendency to a limiting distribution independent of the initial distribution ex- 
presses a tendency to equilibrium regardless of initial state; and is called the 
ergodic property or ergodicity.' Theorem 4.6 shows that when attention is 
focused on behaviour within the set I of inessential states, then under a similar 
structural condition on the set 1, an analogous result obtains. 

Absorbing-chain Techniques 

The discussion given earlier focussing on the behaviour within the set I of 
inessential states if such exist, for a reducible chain, has wider applicability in 
the context of MC's containing a single essential class of states in general, 
and irreducible MC's in particular, though this initially seems paradoxical. 
We shall give only an informal discussion of some aspects of this topic. 

If P  is ( n  x n )  stochastic and irreducible, write A  = I - P and 
("- l ) A  = (,- - (,- l ,P  the ( n  - 1) x ( n  - 1) northwest corner truncation' 
of A.  We may write, with obvious notation: 

Now since i -+ n, i = 1, . . . , n - 1 (since P  is irreducible), it follows that the 
modified MC with stochastic transition matrix 

has the states (1, . . . , n - 1) inessential, with "absorbing" state n, so (,_ , ,  P 
plays the role of Q in Theorem 4.3, and in particular ( , _ , , A 1  exists and is 
non-negative. Indeed, by Theorem 4.5, its entries give expected numbers of 

See Exercises 4.9 and 4.10. 
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visits starting from any state i E ( 1 ,  . . . , n - 1) to any state on this set before 
" absorption " into state n in the modified chain, and sums of these for a fixed 
initial state in (1,  . . . , n - 1 )  gives the mean time to absorption in n. In regard 
to the original chain, described by P, these mean times have the interpreta- 
tion of mean j r s t  passage time.from i E (1,  . . . , n - 1) to n. We shall take up 
extension of this important point shortly. For the moment, the reader may 
wish to check that the unique stationary distribution H', for the chain 
described by P, which is determined by the equations 

is given explicitly by the expression 

since c = (,,_,,I - ,,-,,P)l = (,-,, A l .  
Clearly the state n holds no special significance in the above argument, 

which shows that such absorbing chain considerations may be used to 
obtain expressions for all first passage times from any state to any other state 
in the M C  governed by P, and that such considerations may be used to 
provide expressions for the stationary probability vector. 

In an MC with a single essential class of indices, every other state leads to 
a specijied state in the essential class. If we regard any such specified state as 
playing the role of the state n in the above discussion, it is clear that the 
entire discussion for irreducible P given above applies in this situation also. 

For an M C  started from state i, the first passage time from i to j in general 
is the number of transitions (" time ") until the process first enters j, if j # i ;  
or (as shown) the number of transitions until it next enters j ,  i f j  = i. We have 
discussed above a method for obtaining the expected first passage time, p i j ,  
(in specified situations) from i to j, j # i. The question concerning the ex- 
pected first passage time from a state to itself has been left open. Denote this 
quantity for an essential state i by pii ,  or just pi: we may clearly treat the 
question within the framework of an irreducible chain, and do so henceforth. 
This quantity is more commonly called the mean-recurrence time of state i, 
and in the purely analytical treatment of Chapter 5 (see Definition 5.1) is 
called a mean recurrence measure. A simple conditional expectation argu- 
ment, conditioning on the first step, shows that 

Pj j  = pjjl f C ~ j i ( l  f Pij) 
i 

i # j  

= 1 f 1 pji pij 
i 

i # j  

so once pi j ,  i # j,  i = 1, . . . , n are all known, pjj may be calculated. Indeed, 
put j = n, to accord with our previous discussion. Then it follows, in terms of 
the notation introduced above that 
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whence we obtain, as a bonus from the preceding discussion, the important 
result that 

where II = {xi} is the unique stationary distribution for the MC governed 
by P. 

More generally, for an irreducible MC, it follows 

which is a fundamental and intuitively pleasing result of MC theory, and 
makes clear the intimate connection between mean first-passage times and 
the stationary distribution. 

EXAMPLE (A simple dynamic stochastic inventory model). A toy shop stocks 
a certain toy. Initially there are 3 items on hand. Demand for the toy during 
any week is a random variable independent of demand in any other week. 
and if p, = Pr{k toys demanded during a week), then po = 0.6, p1 = 0.3, 
p ,  = 0.1. Orders received when supply is exhausted are not recorded. The 
shopkeeper may only replenish stock at weekends, according to the policy: 
do not replenish if there is any stock on hand, but if there is no stock on 
hand obtain two more items. 

Calculate the expected number of weeks to first replenishment, and the 
limiting-stationary distribution. 

Denote by X, the number of items of stock at the end of week n (just 
before the weekend). The state space is (0, 1, 2, 3). X ,  = 3, and {X , )  is a 
Markov chain with transition matrix: 

Thus state 3 is inessential, and states 0, 1, 2 form a single essential class. We 
require p,, . This is the third element of the vector ( I  - Q)-'1 where 

5 3 5  205  and since (I - Q)-'1 = (I, s, T) ' ,  p30 = s. The unique stationary dis- 
tribution is consequently given by the vector 
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Bibliography and Discussion to 444.1-4.2 

There exists an enormous literature on finite homogeneous Markov chain 
theory; the concept of a Markov chain is generally attributed to A. A. 
Markov (1907), although some recognition is also accorded to H. Poincare 
in this connection. We list here only the books which have been associated 
with the significant development of this subject, and which may thus be 
regarded as milestones in its development, referring the reader to these for 
further earlier references: Markov (1924), Hostinsky (1931), von Mises 
(1931), Frechet (1938), Bernstein (1946), Romanovsky (1949), Kemeny & 
Snell (1960). [The reader should notice that these references are not quite 
chronological, as several of the books cited appeared in more than one 
edition, the latest edition being generally mentioned here.] An informative 
sketch of the early history of the subject has been given by W. Doeblin 
(1938), and we adapt it freely here for the reader's benefit, in the next two 
paragraphs. 

After the first world war the topic of homogeneous Markov chains was 
taken up by Urban, Levy, Hadamard, Hostinsky, Romanovsky, von Mises, 
Frechet and Kolmogorov. Markov himself had considered the case where the 
entries of the finite transition matrix P = {pijj were all positive, and showed 
that in this case all the pjf) tend to a positive limit independent of the initial 
state, si, a result rediscovered by Levy, Hadamard, and Hostinsky. In the 
general case (pij 2 0) Romanovsky (under certain restrictive hypotheses) and 
Frechet, in noting the problem of the calculation of the was essentially an 
algebraic one, showed that the pi!' are asymptotically periodic, Frechet then 
distinguishing three situations: the positively regular case, where pi;) + pj > 0, 
all i, j ;  the regular case, where p)!' -+ pj 2 0 all i ,  j ;  the non-oscillating case 
where pj5' + pi, for all i, j; and also the general singular case. Frechet linked 
the discussion of these cases to the roots of the characteristic equation of the 
matrix P. Hostinsky, von Mises, and Frechet found necessary and sufficient 
conditions for positive regularity.' Finally, Hadamard (1928) gave, in the 
special case pertaining to card shuffling, the reason for the asymptotic perio- 
dicity which enters in the singular case, by using non-algebraic reasoning. 

On the other hand the matrix P = {pijj is a matrix of non-negative ele- 
ments; and these matrices were studied extensively before the first world war 
by Perron and, particularly, by Frobenius. The remarkable results of Frob- 
enius which enable one to analyze immediately the singular case, were not 
utilized until somewhat later in chain theory. The first person to do so was 
probably von Mises (1931) who, in his treatise, deduced a number of impor- 
tant theorems for the singular case from the results of Frobenius. The 
schools of Frechet and of Hostinsky remained unaware of this component of 
von Mises' works, and ignorant also of the third memoir of Frobenius on 

' See Exercise 4.10 as regards the regular case; Doeblin omits these references. 
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non-negative matrices. In 1936 Romanovsky, certainly equally unaware of 
the same work of von Mises, deduced, also from the theorems of Frobenius, 
by a quite laborious method, theorems more precise than those of von 
Mises. Finally, Kolmogorov gave in 1936 a complete study of Markov 
chains with a countable number of states, which is applicable therefore to 
finite chains. 

The present development of the theory of finite homogeneous Markov 
chains is no more than an introduction to the subject, as the reader will now 
realise; it deals, further, only with ergodicity problems, whereas there are 
many problems more probabilistic in nature, such as the Central Limit 
Theorem, which have not been touched on, because of the nature of the 
present book. Our approach is, of course, basically from the point of view 
(really a consequence) of the Perron-Frobenius theory, into which elements 
of the Kolmogorov approach have been blended. The reader interested in a 
somewhat similar, early, development, would do well to consult Doeblin's 
(1938) paper; and a sequel by Sarymsakov (1945). 

The subsection on "absorbing chain techniques" has sought to give an 
elementary flavour of the approach to finite M C  theory proposed by Meyer 
(1975, 1978) and espoused by Berman and Plemmons (1979). A matrix 
approach to the theory of finite MC's grounded in the elements of linear 
algebra, with heavy emphasis on spectral structure, has recently been given 
by Fritz, Huppert and Willems (1979). 

Some further discussion pertaining spec$cally to the case of countable, 
rather than finite state space (or, correspondingly, index set) will be found in 
the next chapter. 

(All these exercises refer to homogeneous Markov chains.) 

4.1. Let P be an irreducible stochastic matrix, with period d = 3. Consider the 
asymptotic behaviour, as k + m, of P ~ ~ ,  P~~~ P3k f2  respectively, in relation 
to the unique stationary distribution corresponding to P. Extend to arbitrary 
period d. 
Hint: Adapt Theorem 1.4 of Chapter 1. 

4.2. Find the unique stationary distribution vector a for a random walk between 
two reflecting barriers, assuming s is odd. (See Example (2) of 64.1.) Apply the 
results of Exercise 4.1, to write down lim,,, pZk and lim,,, P Z k f 1  in terms of 
the elements of v. 

4.3. Use either the technique of Appendix B, or induction, to find P k  for arbitrary k, 
where (stochastic) P is given by 
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Consider two urns A and B, each of which contains m balls, such that the total 
number of balls, 2m, consists of equal numbers of black and white members. A 
ball is removed simultaneously from each urn and put into the other at times 
k = 1, 2, . . . .  

Explain why the number of white balls in urn A before each transfer forms a 
Markov chain, and find its transition probabilities. 

Give intuitive reasons why it might be expected that the limiting/stationary 
distribution {ci) of the number of white balls in urn A is given by the hyper- 
geometric probabilities 

and check that this is so. 

Let P be a finite stochastic matrix (i.e. a stochastic matrix all of whose column 
sums are also unity). 
(i) Show that the states of the Markov chain corresponding to P are all 

essential. 
(ii) If P is irreducible and aperiodic, find lim Pm as rn + so. 

A Markov chain {X,) ,  k = 0, 1, 2, . . . is defined on the states 0, 1, 2, . . ., 2N, its 
transition probabilities being given by 

j, i = 0, 1, . . ., 2N. Investigate the nature of the states. 
Show that for m 2 0, j = 0, 1, 2, . . ., 2N, 

and that consequently 

Hence, or otherwise, deduce the probabilities of eventual absorption into 
the state 0 from the other states. 

(Malecot, 1944) 

A Markov chain is defined on the integers 0, 1, 2, . . . , a, its transition probabili- 
ties being specified by 

1 a - i - 1  
pi, + = - 

2 (  a - i  1' 
1 a - i + l  

pi , , -1  = -  - 2 (  a - i  1 2  

i = 1, 2. . . ., a - 1, with states 0 and a being absorbing. 
Find the mean time to absorption, m,, starting from i = 1, 2, . . ., a - 1. 
Hints: (1) The state a - 1 is reflecting. (2) Use the substitution 

z ,  = (a - i)m, . 
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4.8. Let L be an (n x n) matrix with zero elements on the diagonal and above, and 
b' an (n x n) matrix with zero elements below the diagonal. Suppose that 
PI = L + U is stochastic. 
(i) Show that L" = 0, and hence (with the help of probabilistic reasoning, or 

otherwise), that the matrix P ,  = (I - L)- '  b' is stochastic. 
(ii)  Show by example that even if PI is irreducible and aperiodic, P, may be 

reducible. 

4.9. Theorem 4.7 may be regarded as asserting that a sufficient condition for ergodi- 
city is the regularity of the transition matrix P. Show that regularity is in fact a 
necessary condition also. 

4.10. Use the definition of regularity and the result of the preceding exercise to show 
that a necessary and sufficient condition on the matrix P for ergodicity is that 
there is only one eigenvalue of modulus unity (counting any repeated eigen- 
values as distinct). 

(Kaucky, 1930; KoneEny, 1931) 

4.11. Show that any inessential state leads to an essential state. 
Hint: Use a contradiction argument, as in the proof of Lemma 1.1 of Chap- 

ter 1. 

4.12. Show that if an n-state MC contains at  least two essential classes of states, then 
any weighted linear combination of the stationary distribution vectors corre- 
sponding to each such class, each appropriately augmented by zeros to give an 
(n x 1) vector, is a stationary distribution of the chain. 

4.13. Denote by M j  the class of (n x n) stochastic matrices P such that for some 
power k, and hence for all higher powers, P' has its jth column positive. Denote 
by G I  the class of regular (n x n )  stochastic matrices. Show that 
G ,  = U'j=, M j ,  while r)'j=, M j  is the set of primitive (n x n) stochastic 
matrices. [See Exercise 3.12.1 

4.14. Suppose P is irreducible and stochastic, with period d, and c its unique station- 
ary distribution vector. Let R = lim,,, pdk. Show that 

d - 1  pk 
R 1 - = lr '  

k = O  d 

[Hint: Consider P in canonical form, and use the methods of $1.4.1 

4.3 Finite Inhomogeneous Markov Chains 
and Coefficients of Ergodicity 

In this section, as already foreshadowed in $4.1 of this chapter, we shall 
adopt the notation of Chapter 3 except that we shall use P,  = { p i j ( k ) )  instead 
of H, = {h i j (k ) ) ,  i, j = 1, . . . , n to emphasize the stochasticity of P,, and we 



4.3 Finite Inhomogeneous Markov Chains and Coefficients of Ergodicity 135 

shall be concerned with the asymptotic behaviour of the forward product1 

as k-tco. 
Naturally, both Theorems 3.3 and 3.7, for example, are applicable here, 

and it is natural to begin by examining their implications in the present 
context, where, we note, each T,, , is stochastic also. 

Under the conditions of the first of these, as r -+ co, for all i, j,  p, s 

where the limit is independent of s. Put for sufficiently large r, 

Thus, using the stochasticity of T,, , 

where also 0 < t:f;') I 1. Letting r + co, it follows that the additional 
assumption has led to : 

1 = WjpI, all i, j, p, 

so that the rows tend not only to proportionality, but indeed equality, 
although their nature still depends on r in general. Indeed we may write 

as r -+ a, which on account of the present boundedness of tf;" implies 

as r -t co, for each i, j, p, s. This conclusion is a weaker one than that 
preceding it, and so we may expect to obtain it under weaker assumptions 
(although in the present stochastic context) than given in Theorem 3.3. In 
fact, since this kind of assertion does not involve a ratio, conditions imposed 
in the former context, to ensure positivity of denominator, inter alia, may be 
expected to be subject to weakening. 

Under the conditions of Theorem 3.7, in addition to the present stochasti- 
city assumption, we have, simply, that 

where v' = { c j )  is the unique invariant distribution of the limit primitive 
matrix P. 

' Backwards products of stochastic matrices are of interest also: see $4.6 
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(4.2) and (4.3) are manifestations of weak and strong ergodicity respec- 
tively in the MC sense. 

Definition 4.4. We shall say that weak ergodicity obtains for the MC (i.e. 
sequence of stochastic matrices Pi)  if 

t ( ~ ,  r )  - &P. r )  -+ 0 
1 ,  S J .  s 

as r + cc for each i, j, s, p. (Note that it is sufficient to consider i f j . )  

This definition does not imply that the tlfgr' th~mselves tend to a limit as 
r + co. merely that the rows tend to equality (=  "independence of initial 
distribution ") but are still in general dependent on r. 

Definition 4.5. If weak ergodicity obtains, and the tlf:' themselves tend to a 
limit for all i, s, p as r -+ co, then we say strong ergodicity obtains. 

Hence strong ergodicity requires the elementwise existence of the limit of 
Tp, , as r -+ co for each p, in addition to weak ergodicity. It is clear from 
Definition 3.4 and Lemma 3.5 that the definition of strong ergodicity here is 
completely consistent with that given in the more general setting. 

A stochastic matrix with identical rows is sometimes called stable. Note 
that if P is stable. p2 = P, and so Pr  = P. 

Thus we may, in a consistent way, speak of weak ergodicity as tendency to 
stability. 

As in Chapter 3, a convenient approach to the study of both weak and 
strong ergodicity is by means of an appropriate contraction coefficient; such 
coefficients in this stochastic setting are more frequently called coefficients of 
ergodicity. In contrast to Chapter 3, we shall first introduce some general 
notions for this concept, then specialize to those we shall use in the sequel. It 
will be seen that the notions of stochastic matrices with a positive column, 
and the quantity z,(P) already encountered, interalia, within the context of 
Theorems 3.1 and 2.10, are central to this discussion. 

Definition 4.6. We call any scalar function .r(.) continuous on the set of 
( n  x n )  stochastic matrices (treated as points in R,,z) and satisfying 
0 I z(P) I 1, a coeflcient oj'ergodicity. It is then said to be proper if 

z(P) = 0 if and only if P = Id 

where is any probability vector (v  > 0, d l  = 1): that is, whenever P is 
stable. 

Lemma 4.1. Weak ergodicity offorward products is equicalent to 

where t ( . )  is a proper coeflcient oj'ergodicity. 
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PROOF. Take p fixed but arbitrary, and suppose .r(T,, ,) + 0, r -+ a. Suppose 
then t?;" - t:fir' -+ 0 for all i, j, s as r -+ a is false. Then there is a sub- 
sequence {k,}, r 2 1, of the positive integers and an c > 0 such that the 
Euclidean distance between T,, ,r and ecery stable matrix is at least e. Since 
7,. ,,, r 2 1, is stochastic and the set of stochastic matrices is compact 
(bounded and closed) in R,,, we may, by selecting a subsequence of (h,) if 
necessary, assume T,, ,r -+ P* where P* is stochastic, and by the assumptions 
on T, .r(T,, , )  -+ 0 = .r(P*), whence P* is stable, and hence a contradiction 
results. The converse follows easily by continuity of z(.). 0 

Theorem 4.8. Suppose m ( . )  and T ( . )  are proper coeficients of ergodicity and 
for any r stochastic matrices P'", i = 1, . . . , r with each r 2 1: 

Then weak ergodicity offorward products1 T,, ,formedji.om a gicen sequence 
{P,), k 2 1, obtains ij' and only Ilf there is a strictly increasing sequence #f 
positive integers (k,) ,  s = 0, 1, 2, . . . such that 

PROOF. (Similar to Theorem 3.2; Exercise 4.15). 

Examples of proper coefficients of ergodicity are (in terms of P = (pij): see 
Theorem 3.1) evidently: 

1 n n 

.rl(P) = - max 1 lp,, - pj,l - 1 - min 1 min (p,,, pj,); 
2 i , j  s = 1  i , j  s = l  

a(P) = max max / pi, - pjs 1 ; 
s r . j  

b ( ~ )  = I - (min pis j. 
s = l  i 

An example of an inproper coefficient of ergodicity is 

c(P) = 1 - max min p,, , 
s L 1 

For the analogous result relating to backwards products see Theorem 4.18. 

See Exercise 4.16. 
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with c ( P )  < 1 if and only if P has a positive column. Theorem 3.1 enables us 
to deduce a concrete manifestation of (4 .4)  for if we substitute in it w = {wj] 
with M:, = t(P, I), p = p 

J J ,  s ,+ ,, we have from (3.4) 

so that 

a(Tp,r) 5 ~ l ( P p + l ) a ( T P + l . r -  I ) .  

More generally for any sequence {P")}, i 2 1. of stochastic matrices, and each 
r >  1, 

a(p(1)p(2) . . . p w )  5 7 1 ( p ( l ) ) a ( p ( 2 )  . . . ~ ( ' 1 )  

where I is the unit matrix; i.e. 

since z l ( I )  = 1. By (4.6) it follows that (4.4) also holds with m = a, and z = b 
(or 7 = c, taking into account the Corollary to Theorem 4.8). A " homogen- 
eous" inequality of form (4.4), in that both m ( . )  and z ( . )  are the same, may 
be obtained analogously to (3.7) by considering a metric d(x', J") on the sets 
of probability row vectors. 

Lemma 4.2. For a metric d on the set D = ( z ' ;  z 2 0, z'1 = 1 )  the quantity, 
dejned for any (n  x n )  stochastic matrix P by 

d(x lP,  y 'P)  
7 ( P )  = sup 

XI, y' E D  d(x'> Y ' )  

satisjes the properties 

( i )  T ( P ( ' ) P ' ~ ) )  I z ( ~ ( ' ) ) z ( P ( ~ ' ) ,  P"), P(2) stochastic; 
( i i)  z ( P )  = 0 for stochastic P i f  and only i f  P is stable. 

PROOF. The only non-obvious part of this assertion is z ( P )  = 0 => P = lc' 
where u' E D. Now z ( P )  = 0 * ( x  - y)'P = 0' for any two probability vectors 
x ,  J', and ( x  - y ) l  = 0. Taking x = A ,  y =f,, i f j ,  wheref;, is, as usual. the 
vector with zeroes everywhere except unity in the kth position, it follows that 
the ith and jth rows of P are the same, for arbitrary i, j. 0 

This lemma provides a means of generating coefficients of ergodicity, 
providing the additional constraints inherent in their definition, of continu- 
ity and that z ( P )  5 1, are satisfied for any P. There are a number of well- 
known metrics defined on sets of probability distributions' such as D, and 

See Exercise 4.17 
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other candidates for investigation are metrics corresponding to any vector 
norm 1 .  I on R,, or C, (the set of n-length vectors with complex valued 
entries), i.e. 

Obvious choices for investigation here are the 1, norms 

where x' = {x i ] .  
For any metric of the form (4.8) the definition of T(P) according to 

Lemma 4.2 is 

z(P) = sup 
x ' , g ' e D  - Y Y ~ /  

x l  g 

= SUP ll6'pJI 
J d ~ ~  = 1 

since any real-valued vector 6 = j6,) satisfying 6 + 0 6'1 = 0 may be written 
in the form 6 = const (x - y )  where s and p are probability vectors, x # y, 
and const = 4 E i ) 6 , )  = 1 , 6 :  = -Ei6 ;  where a+ =max (a,  0). a-  = 

min (a,  0). 
The following result provides another concrete manifestation of (4.4), and 

establishes t , ( . )  as an analogue, in the present stochastic setting, of z,(.) of 
Chapter 3. 

Lemma 4.3. For stochastic P = { p i j )  

so that z,(.  ) is a proper coeficient of ergodicity satisfying 

for any stochastic P"', P"'. 

PROOF. By Lemma 2.4, any real 6 = 16,) satisfying / # / I  = 1, 6'1 = 0 may be 
written 

where 

a suitable set .f = .Y(6) of ordered pairs of indices (i, j ) ,  i, j = 1, . . ., n. 
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= z1 (P). 

We may construct a 6 such that 116'1 = 1, 6'1 = 0, IS'P1 = zl(P)  as 
follows : 

and take 6 = ~ ( . f ~ ,  -A,). The final part of the assertion follows from Lemma 
4.2. 0 

Corollary. Weak ergodicity of forward products of a sequence of'(n x n) stoch- 
astic matrices is equit'alent to 

4.4 Sufficient Conditions for Weak Ergodici ty 

In this section we apply the general notions of $4.3 and earlier chapters to 
obtain conditions for weak ergodicity. 

Definition 4.7. An (n x TI )  stochastic matrix P is called a Markov matrix if 
c(P) < 1, i.e. at least one column of P is entirely positive. We shall also need 
repeatedly the notion of a regular stochastic matrix (Definition 4.3), and 
shall denote the set of such (n x n) matrices by G I  (as in Exercise 4.13). The 
class of (n x n) Markov matrices is denoted by M; obviously M c GI. We 
shall introduce further classes of stochastic matrices, G, and G, in the course 
of this section. 

The following theorem is the oldest, and in a sense the most fundamental 
(as we shall see from the sequel) result on weak ergodicity, which we shall 
treat with minimal recourse to .r,(.), which however will play a substantial 
role, analogous to that of z,(.) in Chapter 3, in the discussion of strong 
ergodicity. It was initially proved by direct contractivity reasoning.' 

See Exercise 4.18. 
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Theorem 4.9. Weak ergodicity obtains ,for forward products formed fiorn a 
sequence {P,), k 2 1 ,  of stochastic matrices i f '  

by Lemma 4.3; 

by (4.6) and the assertion of the theorem is tantamount to 

The conclusion follows from Lemma 4.1. 

Corollary 1. 

a(T,, ,) = max max I tjf"" - t:fsr' / < n c ( P , + ~ )  
s i , j  i = l  

[This follows from (4.6), since U ( P )  I T, (P)] .  

Corollary 2. If c(Pk)  c, < 1, k 2 1, (i.e. all P,  are "uniformlj~ Markoc") 
then weak ergodicity obtains at a rate which is at least geometric with par- 
ameter c, Cfor every p 2 0 ) .  

The following sequence of arguments including Theorem 4.10 parallels 
that leading to Theorem 3.7. 

Lemma 4.4. If P and Q are stochastic, Q E G l  and PQ or QP has the same 
incidence matrix as P (i.e. PQ - P or QP - P),  then P E M .  

PROOF. Since Q E GI ,  QL E M for some k. Assuming first PQ - P, it follows 
PQk - P, SO P, like PQk, has at least those columns positive that are positive 
in Qk. If we assume QP - P, it follows that QkP - P and that P, like QkP, will 
have at least one column positive. 0 

Lemma 4.5. I f  T,, , E GI ,  p 2 0 ,  r 2 1 ,  then T,, , E M for r 2 t where t is the 
number qf' distinct incidence matrices corresponding to G I .  
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PROOF. For a fixed p, there are some numbers a, b satisfying 1 5 a < 
b 5 t + 1 such that 

P p + l P p + 2  " '  Pp+aPp+a+l " '  P p + b  p p + l P p + 2  " '  p p + a  

since the number of distinct incidence matrices is t .  Hence 

Since T,+.. E G I ,  by Lemma 4.4, T,, . E M .  Thus T,, , , r 2 a, has a strictly 
positive column (not necessarily the same one for each r). 0 

The following result is analogous to Theorem 3.3 of Chapter 3. 

min' pi j (k )  > g > 0 
I .  j 

(4.9) 

uniformlyfor all k 2 1 ,  then weak erqodicity obtains, at  a un form  geometric 
rate,for all p 2 0. [ In  particular, (4.9) holds I f  the sequence (P,) has each of its 
ele~nerzts selected from a nurnerically,finite set o f  stochastic matrices.] 

PROOF. Consider p fixed but arbitrary and r "large ": then 
- . . . 

Tp, r = Tp, r Tp+ I ,  t Tp+ 2t. t T p + ( k -  l j f ,  r qp, r )  = Tp, k t % ,  

where k is the largest positive integer such that k t  2 r, t has the meaning of 
Lemma 4.5, and q,, ,, is some stochastic (possibly the unit) matrix. Since by 
Lemma 4.5, 7, +,, ,  , is Markov, from (4.9) 

c(Tp+ ,,, t )  5 1 - ;". 

By Corollary 1 of Theorem 4.9 and the last equation 

and letting r + completes the result, since 7 < 1. 

The assumption that T,, , E  GI ,  p 2 0, r 2 1 in Theorem 4.10 is a restric- 
tive one on the basic sequence P,, k 1, and from the point of view of 
utility, conditions on the individual matrices P ,  are preferable. To this end, 
we introduce the classes G 2  and G ,  of ( n  x n )  stochastic matrices. 

Recall that min' is the minimum over the positive elements. We may call (4.9) condition (C) 
in accordance wlth (3.18) of Chapter 3. 
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Definition 4.8. (i) P E G, if (a) P E G I  : (b) QP E G I  for any Q E G, ; (ii) 
P E G3  if z l (P)  < 1, i.e. if given two rows a and p, there is at least one column 
7 such that p,, > 0 and p,, > 0.' 

If P E  G3, P is called a scrambling matrix; the present definitions of such 
matrices is entirely consistent with the more general Definition 3.2. It is also 
clear from the definition of the class G, that if P ,  E G, , k 2 1, then T,, , E GI, 
p > O , r >  1. 

Theorem 4.11. M c G3 c G, c GI .  

PROOF. The implication M c G3 (any Markov matrix is scrambling) is 
obvious, and that G ,  c G I  follows from the definition of G, .  

To prove G, c G 2 ,  consider a scrambling P in canonical form, so its 
essential classes of indices are also in canonical form if periodic. (Clearly the 
scrambling property is invariant under simultaneous permutation of rows 
and columns.) 

It is now easily seen that if there is more than one essential class the 
scrambling property fails by judicious selection of rows r and P in different 
essential classes; and if an essential class is periodic, the scrambling property 
fails by choice of x and P in different cyclic subclasses. Thus P E GI.  

Now consider a scrambling P = {p,,), not necessarily in canonical form. 
Then for any stochastic Q = {q,,): Q P  is scrambling, for take any two rows 
r,  f l  and consider the corresponding entries 

in the jth column of QP.  Then there exist k, r such that q,, > 0. q,, > 0 by 
stochasticity of Q. By the scrambling property of P, there exists j such that 
pkj > 0 and prj > 0. Hence Q P  is scrambling, and so QP E G1 by the first part 
of the theorem. 

Hence, putting both parts together, P E G,. 0 

Corollary. For any stoclzastic Q,  QP is scrambling, forjixed scrambling P. 
This corollary motivates the following result. 

Lemma 4.6. Ij  P  is scrambling, then so are PQ and QPfor any stochastic Q.  
The word "scrambling" may he replaced with " Markoc". 

PROOF. In view of what has gone before in this section, we need prove only 
that p E G3 + PQ E G3 for any stochastic Q. Since P = {plj) is scrambling, 
for any pair of indices (a, p)  there is a j = j(cr, p)  such that paj > 0, poj  > 0. 
There is a k such that q j k  > 0 by stochasticity of Q. Hence the kth column of 
PQ has positive entries in the a, p rows. 0 

' See Exercise 2.27. 
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Matrices in G, thus have two special properties: 

( i )  it is easy to verify whether or not a matrix E G,; 
(ii) if all P,  are scrambling, then T,, , is scrambling, p > 0, k 2 1, and in 

particular T,, , E G I .  

Lemma 4.7. P. Q E G2 = PQ, Q P  E G 2 .  

PROOF. See Exercise 4.20. 

Thus G, is closed under multiplication, but G I  is not.' 

Lemma 4.8. If P has lnctdence matrzx of form P = I + C where C 1s an 
mcidence nzatrlx (such P are sazd to be "nornzed "), and Q E G I ,  then Q P  and 
PQ E G1 [In particular, ~f also P E GI ,  P E G2.]  

PROOF. See Exercise 4.20. 0 

This result permits us to demonstrate that G, is a proper subset of G, . A 
stochastic matrix P whose incidence matrix is 

evidently satisfies the condition of Lemma 4.8 and is clearly a member of GI ,  
so P E G, .  However, the 3rd and 4th rows do not intersect. so P is not 
scrambling. 

To conclude this section we remark that another generalization of 
scrambling matrices useful in a certain context in regard to verification of 
the condition 

T , , , €G1 ,  p 2 0 ,  r 2 1  

is given in the following Bibliography and Discussion. 

Bibliography and Discussion to 554.3-4.4 

The definition of weak ergodicity is due to Kolmogorov (1931), who proves 
weak ergodicity for a sequence P,, k > 1, of finite or infinite stochastic 
matrices under a restrictive condition related to the Birkhoff coefficient of 
ergodicity z,(.) (see Seneta, 1979), rather than coefficients of the kind dis- 
cussed here. (See also Sarymsakov (1954), 54, for a repetition of Kolmogorov's 

See Exercise 4.21 
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reasoning. The statement of Theorem 4.8 is in essence due to Doeblin 
(1937); our proof follows Hajnal (1958). The coefficient of ergodicity b ( . )  is 
likewise due to Doeblin (1937); while a( . ) and 7 , ( . ) ,  via Theorem 3.1, are 
already implicit in Markov (1906)-see Bibliography and discussion to 
$$3.1-3.2. Lemmas 4.2 and 4.3 are largely due to Dobrushin (1956) (see also 
Hajnal (1958) and Paz and Reichaw (1967)). For a historical survey see 
Seneta (1973b). 

Theorem 4.9 and its Corollaries are due to Bernstein (1946) (see Bernstein 
(1964) for a reprinting of the material). It is known in the Russian literature 
as " Markov's Theorem "; Bernstein's reasoning is by way of the contractive 
result presented as our Exercise 4.18 which, the reader will perceive, is ob- 
tained by the same argument as (Markov's) Theorem 3.1. 

Lemmas 4.4, 4.5, 4.7, and 4.8, and Theorem 4.10 are all due to Sarymsa- 
kov (1953a; summary) and Sarymsakov and Mustafin (1957), although the 
simple proof of Lemma 4.5 as presented here is essentially that of Wolfowitz 
(1963). Lemma 4.6 (also announced by Sarymsakov, 1956), and a number of 
other properties of scrambling matrices are proved by Hajnal (1958). The 
introduction of the class G ,  is again due to Sarymsakov and Mustafin. The 
elegant notion of a scrambling matrix was exploited by Sarymsakov (1956) 
and Hajnal (1958). 

Weaker versions of Theorem 4.10, pertaining to the situation where each 
P,  is chosen from a fixed finite set K, were obtained by Wolfowitz (1963) and 
Paz (1963, 1965). The substantial insight into the problem due to Sarymsa- 
kov and Mustafin consists in noting that the theory can be developed in 
terms of the (at first apparently restrictive) notion of a Markov matrix, and 
made to depend, in the end, on (Bernstein's) Theorem 4.9. 

In coding (information, probabilistic automation) theory, where the term 
SIA is generally used in place of regular, the situation is somewhat different 
to that considered above (see Paz, 1971, Chapter 2, $53-4) in that, instead of 
considering all products of the form T,, , formed from a giuen sequence P,, 
k 2 1, of stochastic matrices, one considers all possible sequences which can 
be formed from a j i x e d j n i t e  set ("alphabet ") K ,  and the associated forward 
products (''words") To,,, r 2 1, (To,, is said to be a word of length r) for 
each. The analogous basic assumption (to T,. , E GI ,  p 2 0, r 2 1) is then that 
all words in the member matrices of the alphabet K be regular (in which case 
all forward products formed from any particular sequence are uniformly 
weakly ergodic by Theorem 4.10.) By Lemma 4.5, a necessary condition for 
all words to be regular is the existence of an integer ro such that all words of 
length r 2 r ,  are scrambling; this condition is also sufficient (Exercise 4.28); 
and indeed, from Lemma 4.5, there will then be such an r,  satisfying r,  5 t. 
Thus in the present context the validity (or not) may certainly be verified in a 
finite number of operations, and substantial effort has been dedicated to 
obtaining bounds on the amount of labour involved. Bounds of this kind 
were obtained by Thomasian (1963) and Wolfowitz (1963), but a best pos- 
sible result is due to Paz (1965) who shows that if an r,  exists, then the 
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smallest value it can take satisfies 

min r < I(3" - 2" ' 
0 - 2  + 1) 

and the bound is sharp. Thus one needs only check all words of lengths 
progressively increasing to this upper bound to see if for some specific length 
all words are scrambling (by Lemma 4.6 all words of greater length will be 
scrambling). It is clear that a large number of words may still need to be 
checked. 

The question arises whether by restricting the set K to particular types of 
matrices, the basic assumption is more easily verifiable. This is the case if 
K c G ,  (Lemma 4.6, Theorem 4.1 1); and more generally if K c G ,  (Lemma 
4.7, Theorem 4.11). A substantial, but not wholly conclusive, study of the 
class G ,  occurs in Sarymsakov and Mustafin (1957), as do studies of related 
classes of matrices. Of interest therefore are several possible conditions on 
the elements of the set K such that any word of length (rz - 1) is scrambling 
(then all words are regular, by Exercise 4.28). 

One condition of the kind mentioned is announced by Sarymsakov 
(1958), and proved. rather lengthily, in Sarymsakov (1961). Suppose P is a 
stochastic matrix with the property that if A and A are any two disjoint 
non-empty sets of its indices than either F(A) n ~ ( 2 )  + 4 ;  or F(A) n 
~ ( 2 )  = 4 and # (F(A) u ~ ( 2 ) )  > # (A u A). Here for any set of indices B, 

F ( B )  is the set of "one-step" consequent indices (in line with the definition 
and notation of $2.4); # denotes the "number of indices in". Clearly, 
scrambling matrices satisfy this condition, since these are precisely the stoch- 
astic matrices for which F(A) n F(A) f 4 for all A, A. To see very simply 
that a product of (n - 1) matrices of this kind is scrambling, notice that if any 
two rows intersect in P, then they intersect in PQ, for any stochastic Q (proof 
as in Lemma 4.6). Now suppose there are two rows which do not intersect in 
a product of (n - 1) matrices each satisfying Sarymsakov's property: call 
these A, A; and write (as earlier) Fk(B) for the set of kth-stage consequents of 
any non-empty set B (i.e. after multiplying the first k matrices together). 
Then our supposition is 4 = Fn- '(A) n Fn- '(A), so 

#(F"-'(A) u F"-~(A))  > # ( F " - ~ ( A )  F ~ - ~ ( A ) )  > . . .  > #(A A) = 2; 

i.e. # (Fn-'(A) v Fn-'(A)) > n, a contradiction to the supposition. Thus if 
K consists of a (finite numer of) matrices of Sarymsakov's class, the basic 
assumption will be satisfied. However, to verify for a particular P that it does 
not belong to this class, the number of pairs of sets A. A which need to be 
checked is, by the partition argument of Paz (1971, p. 90), again 
+(3" - 2"+ ' + 1). 

Another condition on K ensuring that any word of length (n - 1) is not 
only scrambling, but is, indeed, a Markov matrix, is given by Anthonisse and 
Tijms (1977). 

Recent contributions to the theory of inhomogeneous Markov chains 
relevant to 4g4.3-4.4 have also been made by Paz (1971), Iosifescu (1972, 
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1977) Kingman (1975), Cohn (1976), Isaacson and Madsen (1976), and 
Seneta (1979). Treatments within monographs are given by Bernstein (1946, 
1964), Paz (1971), Seneta (1973), Isaacson and Madsen (1976) and Iosifescu 
(1977); these provide references additional to those listed in this book. 

Although all our theoretical development for weak ergodicity has been 
for a sequence P,, k 2 1, of stochastic matrices which are all (n x n), we have 
mentioned earlier (in connection with the Polya Urn scheme) that some 
inhomogeneous Markov chains do not have a constant state space; and in 
general one should examine the situation where if P ,  is (n ,  x !I,+ ,), then 
P,,, is (n,, , x n,,,), k 2 1. It is then still possible to carry some of the 
theory through (the argument of Exercise 4.18 still holds, for example). 
Writings on finite inhomogeneous chains of the Russian school ( e g  Bern- 
stein, 1946; Sarymsakov, 1958, 1961) have tended to adhere to this 
framework. 

We have not considered the case of products of infinite stochastic 
matrices here; the reader is referred to the monographs cited. 

4.15. Prove Theorem 4.8. 

4.16. Prove (4.6) [See Exercise 3.8 for a partial proof.] 

4.17. Familiar metrics on the set of probability distributions are the P. Levy distance 
and the supremum distance. Show that if these are considered within the set D 
(of length n probability vectors), then the coefficient of ergodicity T(P)  (defined 
in Lemma 4.2) generated is identical to that generated by the I ,  norm. (Detail 
on this coefficient may be found in Seneta, 1979.) 

4.18. Suppose S = {hi) is a real vector satisfying 6 # 0, 6'1 = 0, and 6* = (6:) is 
defined by (6")' = S'P for stochastic P. Let A = x / h i  1 = 116'11 
A* = 1 16: 1 = 11(6*)'1/,, and j' denote a typical index for which 67 2 0. Show 
that fA* = x, Sk(xj,  pkj,), and proceed as in the proof of Theorem 3.1, with 6, 
playing the role of uk and xj. pkj playing the role of wk to show 

1 * rA I fA max x (pijr - phj.) I ~ A T ~ ( P ) ,  
i ,  h j' 

so that A* I Ac(P). 
Use this last inequality to prove Theorem 4.9; and the inequali r 

to prove (c.f. Lemma 4.3) 

4.19. In the notation of the statement and proof of Theorem 4.10, suppose (4.9) does 
not necessarily hold, but continue to assume T,, , E GI,  p 2 0, r 2 1, and intro- 
duce the notation 7 ,  = min;, p,,(h). Show that 
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so that if 

weak ergodicity obtains 

Prove Lemmas 4.7 and 4.8. 

Show by example that the set G I  is not closed under multiplication. Show. 
however, that if P E GI, Q E G1 then either both or neither of PQ, QP 6 G,. 

Show by example that it is possible that A. B, C E GI,  such that AB, BC, 
AC E G,, but ABC $ G,. although BAC E GI.  (Contrast with the result of 
Exercise 4.15.) 

(Sarymsakov. 1 9 5 3 ~ )  

Suppose that weak ergodicity obtains for a sequence (P,: of stochastic matrices, 
not necessarily members of GI.  Show that for each fixed p  2 0, there exists a 
strictly increasing sequence of integers {mi), i 2 1, such that 

where m, = p. 
(Sarymsakov (1953a); Sarymsakov & Mustafin (1957)) 

Hint:  A row of an n x 11 stochastic matrix has at least one entry 2 n - ' .  

Discuss the relation between M. G, and G, when the dimensions of the stoch- 
astic matrices are n x n, where n = 2.3. Discuss the relation between G2 and G 3  
when n 2 5. 

Show by examples that a Markov matrix is not necessarily a "normed " matrix 
of GI (i.e. a matrix of G, with positive diagonal); and vice versa. Thus neither of 
these classes contains the other. 

Show that, for 17 = 4, a scrambling matrix P = ( p i j )  is "nearly Markov ", in that 
there is a column j such that p , , ,  > 0, pi,, , U, pi, ,  > 0 bi distinct il, i 2 ,  i 3 .  
Extend to n > 4. 

Hint .  For an n x n scrambling matrix there are n(n - 1),/2 distinct pairs of 
(row) ind~ces, but only n actual (column) indices. 

Show that if pk is scrambling for some positive integer k,  then P E GI.  
(Paz, 1963) 

4.28. Let PI ,  . . . , P, be a finite set of stochastic matrices of the same order. 
Show that if there is an r ,  such that all words in the P s  of length at least r ,  are 

scrambling, then each word in the Ps E GI.  
Hint:  Use Exercise 4.27. 

(Paz, 1965) 

4.29. Let (P,) be a weakly ergodic sequence of stochastic matrices, and let det {P,] 
denote, as usual, the determinant of P , .  Show that 

m 

1 (1 - 1 det {Pi) I ) = co. 
, =1  

(Sirazhdinov, 1950) 
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4.30. Let us call a stochastic matrix P = { p i j )  quasi-Markot. if for a proper subset A 
of index set .V = (1, 2, . . . , n )  

1 pij > 0, for each i E .V 
j .A 

[A Markov matrix is thus one where A consists of a single index]. 
Show that a scrambling matrix is quasi-Markov, but (by examples) that a 

quasi-Markov matrix 6 G I  (i.e. is not regular) necessarily. 
Hint: Use the approach of Exercise 4.26. 

4.5 Strong Ergodicity for Forward Products 

We have already noted that the definition of strong ergodicity for forward 
products T,, , = (tjpjr)), p 2 0, r 2 1, of stochastic matrices formed from a 
sequence P,, k 2 1 ,  is subsumed by that of the more general context of row 
allowable matrices considered in $3.3. Thus here the forward products are 
said to be strongly ergodic if for all i, j, p 

independently of i. The limit vector u p  = { c y ' }  is again evidently a probabi- 
lity vector, and, as in 43.3, is easily shown to be independent of p. 

Indeed virtually all the theory of $3.3 goes through without changes of 
proof for sometimes slightly more general structure of quantities being con- 
sidered, to compensate for the stochasticity of the underlying sequence P,. 
k 2 1. We shall generally not need to give anew formally either definitions or 
proofs as a consequence. Firstly asymptotic homogeneity here reduces to the 
existence of a probability vector D such that D'P, + D' as k + co, and 
condition (C), as already noted (4.9) to 0 < 7 I min+ ~ , ~ ( k ) .  

Lemma 4.9. Strong ergodicity of T,, ,, p 2 0, r 2 1 (with limit vector o) implies 
asyinptotic honlogeneity (with respect to o )  o f  the sequence P,, k 2 1. 

PROOF. AS for Lemma 3.6 (condition (C) is not needed). 17 

Theorem 4.12. If all P,, k 2 1, contain a single essential class ofindices, and 
condition ( C )  is satisjied, then asymptotic homogeneity of the P, (with respect 
to a probability rector D) is equivalent to 

where e, is the unique stationarq' distribution vector corresponding to P,, ilnd e 
is a limit vector. In the event that either (equivalent) condition holds, D = e .  

PROOF. AS for Theorem 3.4, with the change that we take .fk to be members 
of the finite set of all incidence matrices Y(j), j = 1, . . . , t containing a single 
essential class of indices (and reference to irreducible matrices is generally 
replaced by reference to matrices of this kind). 0 
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Corollary. Under the prior conditions of Theorem 3.4, ifstrong ergodicity with 
limit rector o holds, then (4.10) holds with e = a. 0 

Theorem 4.13. Assume all P,, k 2 1, contain a single essential class of indices 
and sutisfi condition (C); and 

z1(Tp, r )  5 B < 1 (4.11) 

for all r 2 t (for some t > I), unifbrmly in p 2 0. Then asymptotic homogeneity 
is necessary and sufficient for strong ergodicity. 

PROOF. AS for Theorem 3.5, mutatis rnutandis. In particular we use z , ( . )  in 
place of z,(.) and the corresponding distance generated by / . 1 1 ,  in place of 
the projective distance, and do not need the strict positivity of vectors and 
matrices inherent in the use of the projective distance. 0 

Corollary. If(4.11) holds, and e,  a e  for a sequence ek,  k 2 1, of station- 
ary distribution uectors of the sequence of stochastic matrices P,, k 2 l,,for 
some limit cector e,  then strong ergodicity holds. 

Theorem 4.14. If P,+ P (elementwise) as k +  co, where P E G, (i.e. P is 
regular), then strong ergodicity obtains, and the limit vector z) is the unique 
stationary distribution vector of P. 

PROOF. AS in the proof of Theorem 3.6; again we use z , ( . )  in place of z,(.), 
positivity of matrices is not needed, and the proof is somewhat simpler. Since 
P is regular, there is a j ,  2 1 such that PjO is Markov. Now for p 2 0 

z~(Tp,r) = zl(Tp,r-jo Tp+r-jo, j o )  5 z~(Tp+r-jo, jo )  (4.12) 

for r 2 jo  . As T,(K, j o )  -+ 7 (Pjo) as k + oo, by the continuity of zl,  where 
zl(PJO) < 1 since PJO is scrambling, so for k > a,, say, z,(Tk, jo) 5 f l  <: 1. 
Hence for r 2 j ,  + a,, = t, say, from (4.12) 

zl(Tp. ,) 5 B < 1 

for all p 2 0. This is condition (4.11) of Theorem 4.13. As in the proof of 
Theorem 3.6, it is easy to prove that the conditions of the Corollary to 
Theorem 4.13 are otherwise satisfied (with e being the unique stationary 
distribution of P, and also-by Lemma 4.9-the limiting distribution v in 
the strong ergodicity). 0 

Theorem 4.15. If T,, , E GI, p 2 0, r 2 1, and condition (C) is satisjed, asymp- 
totic homogeneity is necessary and suficient for strong ergodicity.' 

PROOF. From Theorem 4.13, we need only verify that (4.11) holds, since 
TP,, E GI, p 2 0, r 2 1 *Pk E GI, k 2 1. From Lemma 4.5, T,,, E M for 
r 2 t, and for such r by (4.6) and condition (C) 

This result is a strong ergodicity version of Theorem 4.10, and the analogue of Theorem 3.7. 
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We conclude this section with a uniformity result analogous to Theorem 
3.8. 

Theorem 4.16. Suppose .:I is any set of  stoclzastic matrices such that .d c G I  
and each matrix sati,$es condition (C) .  For H E .d let e(H) be the unique 
stationary distribution cector, and suppose .r is any probability cector. Then for 
r 2 t, where t is the nurnber of distinct incidence inatrices corresponding to G,, 

where K > 0, 0 I p < 1, both independent of H and s. 

PROOF. Proceeding as in the proof of Theorem 4.10 and by (4.6), for r 2 t 

where t is the number of distinct incidence matrices corresponding to G,, 
where k is the largest positive integer such that kt 2 r. Hence for any H E .d 

T ~ ( H ~ )  5 (1 - 7')- ' 

where /3 = (1 - 7, ' ) .  Hence 

by Lemma 4.3: 

Hence the result follows by taking K = 2(1 - y')-'. 

Bibliography and Discussion to 54.5 

This section has been written to closely parallel 43.3; the topics of both 
sections are treated in unified manner (as is manifestly possible) in Seneta 
and Sheridan (1981). Theorem 4.14 is originally due to Mott (1957) and 
Theorem 4.15 to Seneta (1973a). It is clear that, in Theorem 4.16, t can be 
taken as any upper bound over (n  x n )  P E GI for the least integer r for 
which Pr has a positive column; according to Isaacson and Madsen (1974), 
we may take t = (n  - l)(n - 2) + 1 = n2  - 3n + 3 (cf. Theorem 3.8). 

One of the earliest theorems on strong ergodicity is due to Fortet (1938, 
p. 524) who shows that if P is regular and 



152 4 Markov Chains and Finite Stochastic Matrices 

where 

with A = {a,,), i, j = 1, . . . , n, then as r + co, lim (r + m)T,, , exists, p > 0;  
this result is subsumed by Theorem 4.14. For a sequence of uniform Markov 
matrices P,, k 2 1, Theorem 4.15, which is the strong ergodicity extension of 
the Sarymsakov-Mustafin Theorem (Theorem 4.10), was obtained by Bern- 
stein (1946) (see also Mott (1957) and Exercise 4.32). The notion of asympto- 
tic homogeneity is due in this context to Bernstein (1946, 1964). Important 
early work on strong ergodicity was also carried out by Kozniewska (1962); 
a presentation of strong ergodicity theory along the lines of Bernstein and 
Kozniewska without use of the explicit notion of coefficient of ergodicity 
may be found in Seneta (1973c, $4.3), and in part in the exercises to the 
present section. The interested reader should also consult the papers of 
Hajnal (1956) and Mott and Schneider (1957); and the books of [saacson 
and Madsen (1976) and Iosifescu (1977) for further material and references. 

There is also a very large literature pertaining to probabilistic aspects of 
non-homogeneous finite Markov chains other than weak and strong ergodi- 
city, e.g. the Central Limit Theorem and Law of the Iterated Logarithm. 
This work has been carried on largely by the Russian school; a comprehen- 
sive reference list to it may be found in Sarymsakov (1961), and an earlier 
one in Doeblin (1937). Much of the early work is due to Bernstein (see 
Bernstein (1964) and other papers in the same collection). 

4.31. We say the sequence of stochastic matrices P,, k 2 1, is asymptotically station- 
ary if there exists a probability vector D such that 

lim D'T,, , = D', p 2 0. 
r - x  

Show that (i) asymptotic stationarity implies asymptotic homogeneity; and, 
more generally: (ii) asymptotic stationarity implies 

l imDfT, , ,=D' ,  r 2 1 .  
P - =  

(Kozniewska, 1962; Seneta, 1973a) 

4.32. If the sequence of stochastic matrices P,, k 2 1, is uniformly Markov (i.e. 
c(P,) I co < 1, k 2 I), show that asymptotic homogeneity is necessary and 
sufficient for strong ergodicity. (Hint: y . f ,  I P, < 11' where 7 ,  = 1 - c, and .Pk 
is one of the matrices I f ; ,  j = 1, 2, . . ., n.) 

(Bernstein, 1946) 

4.33. Use the results of Exercises 4.31 and 4.32 to show that for a sequence of 
uniformly Markov matrices, asymptotic homogeneity and asymptotic station- 
arity are equivalent. 

(Bernstein, 1946) 
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4.34. Show that if weak ergodicity obtains for the forward products T,.,, p 2 0. 
r 2 1, formed from a sequence P k ,  k 2 1, of stochastic matrices. then asympto- 
tic stationarity is equivalent to strong ergodicity. 

(Kozniewska, 1962) 

4.35. If P k  = P, k 2 1. (i.e. all P i s  have common value P), show that weak and strong 
ergodicity are equivalent. 

(Kozniewska. 1962) 

4.6 Backwards Products 

As in $3.1 we may consider general (rather than just forward) products 
H,, , = ( l z l ~ ; " ] ,  p 2 0, r 2 1, formed from a given sequence P,, k 2 1, of 
stochastic matrices: H,, , is a product formed in any order from Pp+ ,, Pp+ , , 
. . . . P P , ,  . From Lemma 4.3, it follows that 

and it is clear from 954.3-4.4 that a theory of weak ergodicity for such 
arbitrary products may be developed to some extent.' 

Of particular interest from the point of view of applications is the beha- 
viour as r + oo of the backwards products 

for reasons which we now indicate. 
A group of individuals, each of whom has an estimate of an unknown 

quantity engage in an information-exchanging operation. This unknown 
quantity may be the value of an unknown parameter, or a probability. When 
the individuals are made aware of each others' estimates, they modify their 
own estimate by taking into account the opinion of others; each individual 
weights the several estimates according to his opinion of their reliabilities. 
To obtain a quantitative formulation of the model, suppose there are n 
individuals, and let their initial estimates be given by the entries of the vector 
& = (Fy, F:, . . . , F:). Let ~ , ~ ( l )  be the initial weight which the ith individual 
attaches to the opinion of the jth individual. After the first interchange of 
information, the ith individual's estimate becomes 

where the pij(l)'s can be taken to be normalized so that 

See Exercise 4.36. 
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Clearly, the Fi's may be elements of any convex set in an appropriate linear 
space, rather than just real numbers; in particular, they may be probability 
distributions. Now write P,  = (pij(k)), k 2 1, i, j = 1, . . . , n, where pij(k) is the 
weight attached by the ith individual to the estimate of the jth individual 
after k interchanges of information, properly normalized. If Fk is the estimate 
vector resulting, then 

Fk = P,Fk_ = P k P , _ ,  . . .  P I  Fo = U,, ,F, 

where the P,, k > 1, are each stochastic matrices. The interest is clearly in 
the behaviour of U o , ,  as k + m, with respect to: (1) whether consensus tends 
to be obtained (i.e. whether the elements of F, tend to become the same), 
clearly a limited interpretation of what has been called weak ergodicity; and 
(i i)  whether the opinions tend to stabilize at the same fixed opinion, a limited 
interpretation of what has been called strong ergodicity, for backwards 
products. 

One may also think of the set P,, k > 1, in this context as one-step 
transition matrices corresponding to an inhomogeneous Markov chain 
starting in the infinitely remote past and ending at time 0, P ,  being the 
transition matrix at time - k, and U p , ,  = P,,, . . .  P,+,P,+, as the r-step 
transition matrix between time - (p + r )  and time -p. In this setting it 
makes particular sense to consider the existence of a set of probability 
vectors v,, k > 0, such that 

u : + ~  U p ,  r = p 2 0 ,  r 2 1 ,  (4.13) 

the set t i k ,  k 2 0, then having the interpretation of absolute probability cec- 
tors at the various "times" - k, k 2 0. We shall given them this name in 
general. 

Finally we shall use the definitions of weak and strong ergodicity analo- 
gous to those for forward products (Definitions 4.4 and 4.5) by saying weak 
ergodicity obtains if 

u ( ~ .  r )  - r )  + 0 
I ,  s J ,  s (4.14) 

as r -. cc for each i, j, s, p and strong ergodicity obtains if weak ergodicity 
obtains and the u?ir )  themselves tend to a limit for all i, s, p as r -. co (in 
which case the limit of u&') is independent of i ;  but not necessarily, as with 
forward products, of p'). The reason for the informality of definitions is the 
following: 

Theorem 4.17. For backwards products U p , ,  , p 2 0, r > 1, weak and strong 
ergodicity are equiualent. 

PROOF. We need prove only that weak ergodicity implies strong ergodicity. 
Fix p 2 0 and F: > 0 ;  then by weak ergodicity 

- E  < - U ( , ~ . ' )  
- I ,  S 1 , s  56' 

See Exercise 4.39. 
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for r 2 ro(p), uniformly for all i, j, s = 1, . . . , n. Since 

for all i, s, h = 1, . . . , n, p 2 0, r 2 r,(p), k 2 0. Putting i = h, it is evident that 
ulp'') is a Cauchy sequence, so lim (r + oo)ujp;" exists. 0 

Hence we need only speak of ergodicity of the Up,, , and it is suficient to prove 
"weak ergodicity" (4.14). We may, on the other hand, handle weak ergodi- 
city easily through use of coefficients of ergodicity as in $54.3-4.4, since scalar 
relations in terms of these, such as (4.4), (4.7), and that given by Lemma 4.3, 
are " direction-free ". 

Theorem 4.18. Suppose m ( . )  and z( . ) are proper coeficients of ergodicity 
satisfying (4.4). Ergodicity of backwards products Up,, formed from a gicen 
sequence P,, k 2 1, obtains if and only ifthere is a strictly increasing sequence 
ofpositiue integers {k , } ,  s = 0, 1, 2, . . . such that 

PROOF. AS indicated for Theorem 4.8. 

Results for backwards products analogous to Theorems 4.9 and 4.14 for 
weak and strong ergodicity of forward products respectively, are set as 
Exercises 4.36 and 4.38. Lemma 4.5 for forward products has its analogue in 
Exercise 4.37, which can be used to prove the analogue of Theorem 4.10 
(weak ergodicity for forward products) and Theorem 4.15 (strong 
ergodicity ). 

Theorem 4.19. If for each p 2 0, r 2 1, Up,, E G I  and 

min' pij(k) 2 :, > 0 
i, j 

uni$ormly for all k ' 2  1,  then ergodicity obtains at a uniform geometric rate for 
all p 2 0. [This is true in particular i f  Up,, E GI ,  p 2 0, r 2 1, and the sequence 
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{P,} has its elements selected from a numerically jnite set of stochastic 
matrices.] 

PROOF. Proceeding analogously to the proof of Theorem 4.10, with the same 
meaning for t ,  we obtain 

so that for all i, j, s, p, from the definition of a ( . )  

Proceeding as in the proof of Theorem 4.17, for all i,s, lz = 1, . . . , n, p > 0 ,  
r > t , k 2 0  

1 Lkyk r + k )  - u ( ~ 3  r j  < ( I  - ) { ( I  - ) , r > t ,  h , s  I - 
and letting k -+ cc yields 

where 

The following result also gives a condition equivalent to ergodicity for 
backwards products. 

Theorem 4.20. Backwards products Up, ,  , p 2 0 ,  r 2 I ,  ,formed ,from a se- 
quence P,, k 2 1 ,  of stochastic matrices are ergodic i f  and o d j ~  i f  there is 
only one set o f  absolute probability vectors v,, k 2 0, in which case 

r -  cc 

u p - 1  pro. 
PROOF. We have for p 2 0 ,  r 2 1, h 2 1 

Now, since the set of stochastic matrices is compact in R,,, we may use the 
Cantor diagonal argument to select a subsequence of the positive integers si 
such that as i -+ cc 

for each x 2 0, for stochastic matrices Vx,  x 2 0.  Hence substituting 
si - p - r for h in (4.15) and letting i + co we obtain 

so there is always at least one set of absolute probability vectors given by 
j'> V,, k 2 0, for any particular fixed j = 1 ,  . . . , n (i.e. we use the jth row of 
each Vk,  k 2 0) .  
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Now suppose strong ergodicity holds, so that 

and suppose v,, k 2 0, is any set of absolute probability vectors. Then 

where E,, , -t 0 as r + co, so, since Cb+, is bounded, being a probability 
vector, 17, = L ' ~ ,  p 2 0. 

Conversely, suppose there is precisely one set of absolute probability 
vectors o,, k 2 0. Then suppose U,* is a limit point of U,, , as r + cc for fixed 
but arbitrary q 2 0, so that for some subsequence r,, J > 1, of the mtegers, as 
i - f  a, 

u4. ,, + up*. (4.17) 

Now use the sequence ri+,,,j > 1. from which to ultimately select the sub- 
sequence si giving (4.16). Following through the earlier argument, we have 
V, = lpL, x 0, by assumed uniqueness of the set of absolute probability 
distributions. But, from (4.17) 

U,* = lim U,, ,, _, = T/, 
i+ x 

from (4.16), 

Hence for a fixed q 2 0, the limit point is unique, so as r + co 

U,, , -+ I $ ,  q 2 0. 

Bibliography and Discussion to $4.6 

The development of this section follows Chatterjee and Seneta (1977) to 
whom Theorems 4.17-4.19 are due. Theorem 4.20 is due to Kolmogorov 
(1936b); for a succinct reworking see Blackwell (1945). In the special case 
where the P k ,  k 2 1, are drawn from a finite alphabet K, Theorem 4.19 was 
also obtained by Anthonisse and Tijms (1977). 

Our motivating model for the estimate-modification process which has 
been used in this section is due to de Groot (1974), whose own motivation is 
the problem of attaining agreement about subjective probability distribu- 
tions. He gives a range of references; a survey is given by Winkler (1968). 
Another situation of applicability arises in forecasting, where several indivi- 
duals interact with each other while engaged in making the forecast (Delphi 
method; see Dalkey (1969)). The scheme 
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represents an inhomogeneous version of a procedure described by Feller 
(1968) as "repeated averaging"; Feller, like de Groot, considers only the 
case where all P,  are the same, i.e. P,  = P, k 2 1. In this special case, 
Theorem 4.19 and Exercise 4.38 are essentially due to de Groot. 

For the rather complex behaviour of U p , ,  as r + cc in general the reader 
should consult Blackwell (1945, Theorem 3), Pullman (1966, Theorem 1); 
and Cohn (1974) for an explanation in terms of the tail a-field of a reverse 
Markov chain. 

A further relevant reference is Mukherjea (1979, Section 3). 

4.36. Defining weak ergodicity for arbitrary products H,, ,, p 2 0 ,  r 2 1, by 

as r -t x for each i ,  j, s, p, show that weak ergodicity is equivalent to  
sl(Hp, ,) + 0 as r + co, p 2 0 .  Show that sufficient for such weak ergodicity is 

( 1  - z,(P,))  = X. 

4.37. Show that if U p , .  E G I ,  p 2 0 ,  r 2 1, then U p , ,  t M for r 2 t, where t is the 
number of distinct incidence matrices corresponding to GI.  (H in t :  Lemmas 4.4 
and 4.5.) 

4.38. Show that if P ,  -. P (elementwise) as k + co, where P E GI ,  then ergodicity 
holds for the backward products U p , , ,  p 2 0 ,  r 2 1 .  (H in t :  Show that there 
exists a po and a t such that c(U,. ,) I c ,  < 1 uniformly for p 2 p,, and use the 
approach of the proof of Theorem 4.10.) 

(Chatterjee and Seneta, 1977) 

4.39. Suppose the backward products U p ,  ,, p 2 0 ,  r 2 1 ,  formed from a sequence P,,  
k 2 1, of stochastic matrices, are ergodic, so that as r -t cc 

where the limit vectors may or may not depend on p. By using the fact that 
Up, , lv '  = lv '  for any probability vector v', construct another sequence for 
which the limit vectors are not all the same (i.e. depend on p). 

4.40. An appropriate analogy for backwards products to the class G, given by 
Definition 4.8 in the G; of stochastic matrices, defined by P E G; if (a) P E GI;  
(b) PQ E GI for any Q E GI. Discuss why even more useful might be the class 
G 2  = ( P ;  P E G I ;  PQ, Q P  E G I  for any Q E GI) = GZ n G;. Show that G2is  a 
strictly larger class than G,, the class of ( n  x n )  scrambling matrices. 



CHAPTER 5 

Countable Stochastic Matrices 

We initiate our brief study of non-negative matrices with countable index set 
by a study of stochastic matrices for two main reasons. Firstly the theory 
which can be developed with the extra stochasticity assumption provides a 
foundation whose analytical ideas may readily be generalized to countable 
matrices which are not necessarily stochastic; and this will be our approach 
in the next chapter. Secondly the theory of countable stochastic matrices is 
of interest in its own right in connection with the theory of Markov chains 
on a countable state space; and indeed it is from this framework that the 
analytical development of our ideas comes, although we shall avoid probabi- 
listic notions apart from the occasional aside. We shall not deal with inho- 
mogeneous situations at all in the interests of brevity, since the infinite 
matrix theory is as yet of lesser utility than that for finite matrices. 

We adopt the obvious notation: we deal with a square (non-negative) 
stochastic matrix P = {pijJ with a countable (i.e. finite or denumerably 
infinite index set (1, 2, . . .). We recall from $4.1 that the powers Pk = ( p $ ) ) ,  
k 2 1, (Po  = I) are well defined by the natural extension of the rule of matrix 
multiplication, and are themselves stochastic. [We note in passing that for an 
arbitrary non-negative matrix T with denumerably infinite index set, some 
entries of its powers Tk, k 2 2 may be infinite, so that the powers are not well 
defined in the same sense.] 

5.1 Classification of Indices 

Previous Classification Theory 

Much of the theory developed in $1.2 for general finite non-negative matrices 
goes through in the present case. 
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In particular the notions of one index leading to another, two indices 
communicating, and the consequent definition of essential and inessential 
indices, and hence classes, remain valid, as also does the notion of period of 
an index, and hence of a self-communicating class containing the index; and 
so the notion of irreducibility of a matrix P and its index set (see $1.3). A 
primitice matrix P may then be dejned as a matrix corresponding to an 
irreducible aperiodic index set. Moreover, as before, all these notions depend 
only on the location of the positive elements in P and not on their size. 

In actual fact the only notions of $1.2 which do not necessarily hold in the 
present context are those concerned primarily with pictorial representation, 
such as the path diagram. and the canonical form, since we have to deal now 
with an index set possibly infinite. Nevertheless, things tend to "work" in 
the same way: and consequently it is worthwhile to keep in mind even these 
notions as an aid to the classification and power-behaviour theory, even 
though e.g. it may be impossible as regards the canonical form representa- 
tion to write two infinite sets of indices (corresponding to two self- 
communicating classes) as one following the other in sequential order. 

Of the results proved in gs1.2-1.3, viz. Lemma 1.1, Lemma 1.2, Lemma 
1.3, Theorem 1.3, Lemma 1.4 and Theorem 1.4, only Lemma 1.1 does not 
extend to the present context (even Theorem 1.4 remains partly, though no  
longer fundamentally, relevant). To see that an infinite stochastic matrix 
with at least one positive entry in each row does not necessarily possess at 
least one essential class of indices, it is only necessary to consider the 
example 

p i j = l  f o r j = i + l (  . 
i, J € { I ,  2, ...I. 

= 0 otherwise 

EXAMPLES. (1)' Suppose P has the incidence matrix 

Then P is irreducible, since i -+ i + 1 for each i so that 1 -+ i ;  also i -+ 1 for 
each i. Moreover p l l  > 0, so that index 1 is aperiodic. Hence the entire index 
set {I, 2, . . .} is aperiodic. Consequently P is primitive. 

Relevant to Example (4) of $4.1 if all f ;  there are positice 
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(2) Suppose P has incidence matrix 

Then (i)  index 1 itself forms a single essential aperiodic class. (ii) Each j E (2, 
3, . . .) is inessential, since j + j - 1, so that j + 1; however 12, 3, . . .} is a 
non-essential self communicating class, since also j + j + 1. Further the 
subset has period 2, since clearly for each index j E j2, 3, . . .} "passage" is 
possible only to each of its adjacent indices, so "return" to any index j can 
occur at (all) even k in p$), but not at any odd k. 

(3) In the counterexample to Lemma 1.1 (in this context) given above, 
each index is inessential, and each forms a single non-self-communicating 
inessential class. 

New Classification Theory 

Although the above, previously developed, classification theory is of con- 
siderable value even in connection with possibly infinite P, it is not adequate 
to cope with problems of possibly extending Perron-Frobenius theory even 
to some extent to the present context, and so to deal with the problem of 
asymptotic behaviour as k -+ cc of Pk = (pi!)}, a fundamental problem inso- 
far as this book is concerned. 

It is therefore necessary to introduce a rather more sensitive classification 
of indices which is used in conjunction with the previous one : specifically, we 
classify each index as recurrent or transient, the recurrent classification itself 
being subdivided into positive- and null-recurrent. To introduce these no- 
tions, we need additional concepts. Write 

(where 1iQ) = 0, by definition, for all i, j E (1, 2, . . .}). [In the MC framework, 
1j:) is the probability of going from i to j in k steps, without revisiting i in the 
meantime; it is an example of a "taboo" probability.] 

It is readily seen that 115) I 1) by the very definitions of l{r), p$). 
Thus for 1 z 1 < 1, the generating functions 

are well defined for all i, j = 1, 2, . . . 
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Lemma 5.1. For 1 z 1 < 1 : 

Further, 1 L i i ( z )  I < 1, so that we ma)' write 

PROOF. We shall first prove by induction that for k 2 1 

The proposition is clearly true for k = 1, by virtue of the definitions of lj?', 
1:;'. 

Assume it is true for k 2 1. 

by the induction hypothesis: 

the first part following from the definition of the I$', in ( 5 . 1 ) :  

by the induction hypothesis; 

since pi j  = l i j ;  

since l$' = 0. This completes the induction. 
The first set of relations between the generating functions now follows 

from the convolution structure of the relation just proved, if one bears in 
mind that ply' = dij,  by convention. 

' This relation is a "last exit" decomposition in relation to passage from i to j in an M C  
context. 
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To prove the second part note that since = 1, for real z, 

0 5 z < 1, 1 5 P,,(z) < co. 

Hence, considering such real z, we have 

Hence letting z + 1 - , 1 2 Lii(l  - )  = I,"=, l$'. 
Thus for complex z satisfying / z / < 1, 

Let us now define a (possibly infinite) quantity pi1 by the limiting derivative 

for each index i. 

Definition 5.1. An index i is called recurrent if L, , ( l - )  = 1, and transient if 
LJ l -  ) < 1. 

A recurrent index i is said to be positice- or null-recurrent depending as 
p, < CE or p, = CE respectively. We call such p, the mean recurrence measure 
of a recurrent index i. 

The following lemma and its corollary now establish a measure of rela- 
tion between the old and new terminologies. 

Lemma 5.2. An inessential index is transient. 

PROOF. Let i be an inessential index; if i is not a member of a self- 
communicating class, i.e. i $, i then it follows from the definition of the 115' 
that /if"' = 0 all k, so that Lii(l)  = 0 < 1 as required. 

Suppose now i is essential and a member of a self-communicating class, I. 
Then clearly (since i -+ i)lif' > 0 for some k 2 1. This follows from the 
definition of the l$'s once more; as does the fact that such an lib) must consist 
of all non-zero summands of the form 

Pirl PrIr2 ' '  ' Prk- l i  

where r j  # i, j = 1 ,  2, . . . , k - 1 if k > 1, r j  + i ;  and simply of 

Pii 

if k = 1. A non-zero summand of this form cannot involve an index u such 
that i -t u,  u $, i. 

' The "mean recurrence time" of state i in the M C  context 
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Now in I there must be an index i' such that there exists a j $ I satisfying 
i + j, j $, i, and pisj > 0, since i is inessential. It follows that there will be an 
index q E I such that 

It follows moreover that this element pi., will be one of the factors, for some 
k, of one of the non-zero summands mentioned above. 

Now consider what happens if the matrix P is replaced by a new matrix 
P = (6 ,,I by altering the i'th row (only) of P, by way of putting f i i , j  = 0 for the 
i', j mentioned above, and scaling the other non-zero entries so that they still 
sum to unity. It follows in particular that biSa > pi,q. 

It is then easily seen that for some k 2 1 

4;' > li;' > 0 

and that consequently 

which yields the required result.' 0 

Corollary. A recurrent index is essential. 

The following lemma provides an alternative criterion for distinguishing 
between the recurrence and transience of an index: 

Lemma 5.3. An index j is transient ifand only if 

PROOF. From Lemma 5.1, for real s, 0 s < 1 

Pj j ( s )  = [ I  - Lj j ( s ) ] -  ' 
Letting s -+ 1 - yields Pj j ( l  - )  - I,"=, p$' < co if and only if L j j ( l  - )  < co. 

0 

Corollary. An index j is recurrent if and only if 

In fact it is also true that if j is transient, then 

Which is, incidentally, trivial to prove by probabilistic, rather than the present analytical, 
reasoning. 
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for every index i such that i -+ j, so that p j f '  -+ 0 as k -+ co; but before we can 
prove this, we need to establish further relations between the generating 
functions Pij(z),  and between the generating functions Lij(z).  

Lemma 5.4. For 1 z  1 < 1, and all i, j = 1, 2, . . 

PROOF. The first relation follows directly from an elementwise consideration 
of the relation Pkt l  = pkP; and the second from substitution for the Pij(z)  in 
terms of the Lij(z)  via Lemma 5.1. 0 

Corollary 1. For each pair of indices i, j, such that i + j, L j , ( l  - )  < co 

PROOF. For s such that 0 < s < 1, and all i, j, 

from the second of the relations in Lemma 5.4 (noting Lii(s) < 1). Iterating 
the above inequality k times, 

in particular 

Thus, with the appropriate substitutions 

Now if i -+ j, but j $, i, the assertion of the Corollary 1 is trivial, so suppose 
that i -+ j and j -+ i. Then there is a k such that p$' > 0 ;  and also from its 
definition, Lji(s) > 0.  Letting s -+ 1 - in (5.3) yields Lji( l  - ) < co since 
Lj j ( l  - ) I 1. Thus 0 < Lj i ( l  - ) < co. Thus in this case the Corollary is also 
valid. 0 

Corollary 2. I f  j is transient, and i -+ j, 

(and so p;' -+ 0 as k -+ a ) .  I f  j is recurrent, and i - j ,  
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PROOF. For i = j, this is covered by Lemma 5.3 and its Corollary. For 
0 < s < 1,  and i # j, from Lemma 5.1 

L e t s -  1 - .  
Consider j transient first: then P j j ( l - )  < co by Lemma 5.3, and 

Lj i ( l  - )  < cc by Corollary 1 above, so the result follows. 
If j is recurrent, P j j ( l  - ) = co, and since i -  j ,  0 < Lj i ( l  - ), < co; so that 

Pj i ( l  - ) = co as required. 0 

The problem of limiting behaviour for the p$) as k -+ co for recurrent 
indices is a deeper one, and we treat it in a separate section. 

5.2 Limiting Behaviour for Recurrent Indices 

Theorem 5.1. Let i be a recurrent aperiodic1 index, with mean recurrence 
measure p,  5 oo. Tken us k - co 
We shall actually prove a rather more general analytical form of the 
theorem. 

Theorem 5.1'. Let , f ,  = O,.L > 0, j 2 1, with 

Assume that the g.c.d. ofthose j for which,fi > 0, is unity2, and let the sequence 
{u,),  k 2 0, be dejined by 

It follows (e.g. by  induction) that 0 < uk I 1 ,  k 2 0. Then as k -+ co 

[Theorem 5.1 now follows by putting lg) =f;., = u, for j,  k 2 0, in view of 
the basic relation 

See Exercises 5.1 and 5.2 for an indication of the case of a periodic index 

See Appendix A. 
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deduced in the proof of Lemma 5.1, in conjunction with our convention 
p$'' = 1.1 

PROOF. (i)  We first note from Appendix A, that of those j for which f, > 0, 
there is a finite subset { j , ,  j,, . . ., j r )  such that 1 is its g.c.d., and by the 
Corollary to Lemma A.3 any integer q 2 N O ,  for some N O  is expressible in 
the form 

with the p, non-negative integers, depending on the value of q. 

( i i )  Put r, = 27=,f j+, ,  noting r, = 1; then for k 2 1, 

Thus for all k 2 1, 

( i i i )  Since 0  I u, I 1,  there exists a subsequence j k , )  of the positive integers 
such that 

lim u,, _ = a - lim sup uk I 1 
L'+ m k -  s 

Let j be such that fj > 0, and suppose 

lim sup ukL-  = p, (0 I fl I x ) .  
c - J i  

Suppose a > j. Then 
k ,  

where 0 < i: < (a - B)fJ and M 2 j is chosen so that 

since 0  I u,  I 1. Letting c -+ cc 
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i t .  letting M -t so, 
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Taking into account the choice of E,  this is a contradiction. Hence P = c r :  
thus we may take {k,] to be a sequence such that 

This is true for any j such that f ,  > 0. the sequence (k,) depending on j . If we 
consider the set of j, (j,, . . . , j,) specified in part ( i )  of the proof, then by a 
suitable number of repetitions of the argument just given, for any fixed 
nonnegative integers p, ,  p , ,  . . . , pr there exists a (refined) sequence {k,] such 
that 

i s .  for any fixed integer q 2 N o  (from part (i) of the proof) 

where subsequence (k,) depends on q. 
Denote the sequence {k,) corresponding to q = No by {kjO)J. Repeat again 

the argument of (iii) in starting from this sequence to obtain a subsequence 
of it (k:") for which (5.4) holds, for q = 1, etc. It follows that, from the 
Cantor diagonal selection principle, there is a subsequence of the integers 
(we shall still call it {k,)) such that 

lim uk,  -, = x 
,+ 3C 

for ecery q 2 No 
Now let 

y = lim inf u,(O I y I c i  I 1). 
k -  m 

By an argument analogous but "dual" to the one above,' there exists a 
subsequence {n,) of the integers such that 

for all q 2 N o .  

But effectively using Fatou's Lemma rather than the epsilon argument. 
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( i c )  Now introduce new subsequences of the positive integers, {s , ) ,  { t , )  
defined for sufficiently large c by 

S ,  = k ,  - N o ,  t,, = n, - N o  

Then 

for p 2 0, and similarly 

Now 

where E > 0 is arbitrary, and M such that r , ,  < E .  From these relations, as 
o -+ co, taking lim inf and using Fatou's lemma in the first; and lim sup in 
the second, and subsequently M -+ oo; and e -+ 0 :  

where 0 I y I cr. 
Further 

Thus if p = C,"=, r ,  = oo, -a = 0;  thus a = y = /LC', as required. If 

thus a = y = p- ' ,  as required. 
This completes the proof. 

Corollary 1 .  I f  i is a recurrent aperiodic index and j is any index such that j -+ i 
then as k -+ oo 

p:;j -+ p; - ). 

PROOF. 

Now since 
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(by Corollary 1 to Lemma 5.4), we may use the Dominated Convergence 
Theorem to conclude that as k + co (by Theorem 5.1) 

which is the required conclusion. 

Corollary 2. I f  i is in fact positice recurrent, 

j 

PROOF. By stochasticity and since a recurrent index is essential 

so that by Fatou's Lemma 

1 2 p; ' C Lij(l - ) as required. 
j 

[Note that by similar argument, Corollary 1 is trivially true if j St i]. 
It is possible to develop (as in the case of a finite matrix) a rather more 

unified theory in the important case of a single essential class of indices, i.e. 
in the case of an irreducible P. We now pass to this case. 

5.3 Irreducible Stochastic Matrices 

Since Lemma 1.2 of Chapter 1 continues to hold in the present context, we 
know that every index of an irreducible countable P has the same period, d. 

Properties, like this, possessed in common by all indices of a single essen- 
tial class of indices, are often called solidarity properties. We shall go on to 
show that transience, null-recurrence, and positive-recurrence are all solidar- 
ity properties, and to describe the limiting behaviour as k + a of Pk as a 
whole. 

Moreover an important role in the present theory is played by subinuar- 
iant row vectors (measures), and we treat this topic in some depth also. The 
results which are given for these are the (one-sided) analogues, for countable 
irreducible stochastic P, of the crucial Subinvariance Theorem of Chapter 1 
for finite irreducible non-negative T. 

Theorem 5.2. All indices corresponding to an irreducible stochastic P are 
transient, or all are null-recurrent, or all are positice-recurrent. 
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PROOF. We first note the elementary inequalities for any two indices r and J 

$:+ ' + w ( h )  (kJ ( W  2 Pjr P r r  Prj 

( k + ' + L f J  ( l ! ) ( k ) ( \ )  
Prr 2 Prj P j j P j r  

- P ' P ~ P "  = P"Pkp' NOW since r -1, which follow directly from P k + ' +  - 

it follows that ,I4 and N can be chosen so that 

Now the index I. must be transient, or null-recurrent, or positive-recurrent. 
We treat the cases separately. 

( i )  If r is transient 

from Lemma 5.3; this implies by the second of the elementary inequalities 
that 

so (any other index) j is also transient. 

(ii) If r is null-recurrent, from Theorem 5.1 

thus by the second of the elementary inequalities 

On the other hand, since I. is recurrent, from the Corollary to Lemma 5.3 it 
follows that 

hence the first of the elementary inequalities implies 

so that by Lemma 5.3, j is recurrent. Now if j is assumed positive recurrent, 
we know from Theorem 5.1 (and its periodic version) that as k + cc 

which is a contradiction. Hence j is also null-recurrent. 

(iii) If r is positive recurrent, j must be also; otherwise a contradiction to the 
positive recurrence of r would arise from (i) or (ii). 0 
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This theorem justifies the following definition. 

Definition 5.2. An irreducible P is said to be transient, or null-recurrent, or 
positive-recurrent depending on whether any one of its indices is transient, 
or null-recurrent, or positive-recurrent, respectively. 

Definition 5.3. For a stochastic P,  a row vector x', x' 2 0', x' # 0' satisfying 

x'P I x' 

is called a subincariant measure. If in fact x'P = x' the x' is called an invariant 
measure. [Note that a positive multiple of such a measure is still such a 
measure.] 

Lemma 5.5. For a stochastic irreducible P,  a subincariant measure always 
exists. One such is giceu by the vector {L, ,(1-)) ,  j = 1, 2, [for arbitrarjljixed 
i], whose elements are positice and finite. 

PROOF. From Lemma 5.4, for i fixed but arbitrary, and j = 1, 2, . . ., and 
O < s < l  

Lij(s) = s C Lir(s)prj + spij(1 - Lii(s)). (5.5) 

Letting s + 1 - and using Fatou's Lemma 

Lij(1- 2 1 Lir(1- ) ~ r j  + ~ i j ( 1  - Lii(1- 1) 
r 

whence, since Lii ( l  - ) I 1 ,  the row vector ( L i j ( l  - )), j = 1 ,  2, . . . is a subin- 
variant measure. We know that since i tt j 

0 < Li j ( l  - ) < a2 

from Corollary 1 of Lemma 5.4. 

Corollary. For $xed i, j = 1, 2, 3, . . . 

L i j ( l  - ) = 1 Lir( l  - )prj + pij(l - Li i ( l  - )). 
r 

PROOF. From the proof above, since 

s 1 Lir(s)prj I 1 Lir(l - )pr j  I Li j ( l  - )  < a2 
r r 

we may use the Dominated Convergence Theorem in (5.5) in letting s + 1 -, 
to obtain the "finer" result stated. 0 

Lemma 5.6. Any subincariant measure for irreducible stochastic P has all its 
entries positice. 

PROOF. For such a measure x' 

x'P I x' 
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so that 

and in particular 

i.e. for any i, j 

Select fixed i so that xi > 0; for any fixed j, since i +j, there is a k such that 
pj!) > 0. Hence 

xj > 0 all j = 1, 2, , . . 0 

Lemma 5.6 makes sensible the formulation of the following result. 

Theorem 5.3. If X' = {x1j is any subinvariant nieasure corresponding to irredu- 
cible stochastic P,  then f o r j x e d  but urbitrary i, and all j = 1 ,  2, . . . 

and i,,, j = 1,  2, . . . is also a subinvariant measure (with ith elernent unity). 
[This theorem therefore says that out of all subinvariant measures normed 

to have a fixed element unity, there is one which is minimal.] 

PROOF. That { i i j J ,  j = 1, 2, . . . is subinvariant is readily checked from the 
statement of Corollary 1 of Lemma 5.5, since - )  < 1. 

We prove the rest by induction. Let { y j J  be any subinvariant measure with 
yi = 1. It is required to show that for every j 

or equivalently that for every j ,  and every m 2 1 

Now we have for all j, 

,'. > 1 y p . yip.. = I!'' . j -  r r j k  r j  I j  

r 

and by assumption 

y. = 1 
I ' 

a,, is the Kronecker delta, as before. 
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sc the proposition is true for In = 1 and all j. Assume it is true for n7 2 1 ;  
then for each j 

2 1 1 $,k'J'rj + P i j  
r # i  k = 0  

= C 1 C ' p r j  + P i j  
k = l  r # i  

and from the definition of the lj!' 

Hence y .  > C I $ ) ,  all j, 
J - 

k = O  

and moreover 

by given, so induction is true for m + 1; This completes the proof. 0 

Theorem 5.4. For a recurrent1 matrix P an incariant measure exists, and is 
unique (to constant niultiples). 

A subinvariant measure which is nut incariant exists rf and onljs i f  P is a 
transient matrix; one such subinvariant measure is then girlen b y  { s i j j , , j  = 1 ,  2, 
. . . 

PROOF. If P is recurrent, L i i ( l  - )  = 1 for all i, so existence of an invariant 
measure j x i j ) ,  j = 1, 2, . . . follows from the Corollary of Lemma 5.5. Now let 
y = {4.i} be any subinvariant measure scaled so that jSi  = 1 for fixed i. Then 

satisfies z 2 0, (from Theorem 5.3) and zi = 0; and if z # 0, z is clearly a 
subinvariant measure, since J ,  is subinvariant and { X i j j  is invariant: but 
z i  = 0 and this is not possible by Lemma 5.6. 

Hence z = 0, which completes the proof for the recurrent case. 
If P is transient, L i i ( l  - )  < 1 for each i, hence a subinvariant measure 

which is not invariant may be taken as { x i j ) ,  j = 1, 2, . . . for fixed i from the 

i.e. positive-recurrent or null-recurrent 
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Corollary of Lemma 5.5;  there is strict inequality in the subinvariance equa- 
tions only at the ith position. Suppose now a subinvariant measurey = (yj,), 
normed so that J., = I, exists but is not invariant, in relation to a stochastic 
P. Then 

If P is recurrent, then from the first part y must be invariant, since y j  = sij, 
which is a contradiction. Hence P must be transient. 0 

Corollary. If 'x '  is a subincaria~zt measure for recurrent P, it is, itzjact, an 
incariant nzeasure, aid is a positive multiple o f  {Zij), j = 1, 2, . . . 

Theorem 5.5. (General Ergodic Theorem1). Let P be a primitive2 stochastic 
matrix. If P is transient or null-recurrent, then for each pair of indices i, j ,  
pI:)+O as k +  oc. 

l f  P is positice recurrent. then for each pair i, j 

and tlze cector c = {p,-') is the unique zntariarzt measure oj P satisjying 
d l  = 1. [v' is thus of course the unique stationary distribution.] 

PROOF. If P is transient, the result follows from Corollary 2 of Lemma 5.4 (in 
fact if P is merely irreducible); if P is null-recurrent, from Corollary 1 of 
Theorem 5.1. 

If P is positive recurrent on the other hand, for any pair i, j 

(since in the recurrent case Lii(l  - )  = 1). 
From the Corollary to Theorem 5.4, for fixed i 

where (from Corollary 2 of Theorem 5.1) 

Hence u' = {u j )  where 

l l j  = .uij/C xi, 
r 

is the unique invariant measure of P satisfying u ' l  = 1 (and hence is indepen- 
dent of the initial choice of i) .  

cf. Theorem 4.2. 

For the irreducible periodic case see Exercises 5.1 and 5.2 
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Now since u'P = u' it follows u'Pk = u' SO that 

u j  = C urp$), all j. 
r 

Since 1, ur < co, we have, by dominated convergence, letting k + co 

Now suppose that in fact 

1 Yr j  < pr for some r. 
j 

Then summing over j in (5.6) (using Fubini's Theorem) 

which is impossible. Hence 

1 xrj  = pr for all r = 1, 2, 
j 

and so u j  = pl: 1 -  x I j  for all i ;  

and by putting i = j, we see 

as required, since Z i i  = 1. 

Corollary. If P is an irreducible transient or null-recurrent matrix, there exists 
no incariarit measure o' satisfying o ' l  < co. 

PROOF. In either case1 we know p$' -+ 0 as k -+ a. Suppose a measure of the 
required sort exists : then 

Since xi 11, < co, by dominated convergence 

v, = 2 L', lim pi!' = 0 
L + . 

for each j = 1, 2, . . . , which is a contradiction to o 2 0, # 0. 

5.4 The " Dual" Approach ; Subinvariant Vectors 

In 9g5.1-5.3 of this chapter we developed the theory of classification of 
indices, subinvariant measures, and asymptotic behaviour of powers Pk, for 

See Exercise 5.2 for the periodic situation 
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a countable stochastic matrix P, in terms of the quantities 1:;' and con- 
sequently the L,,(l- ). 

There is a more classical approach, dual to the one we have presented, for 
developing the index classification and behaviour of powers theory, which is 
in many respects (as will be seen) more natural than the one just given, since 
it accords better with the fact that the row sums of P are unity. However 
(although it too leads to Theorem 5.5), it is not suitable for dealing with 
subinvariant measures, which multiply P from the left, and are particularly 
important in the stability theory of Markov chains: but rather with subinoar- 
iant rectors. 

Definition 5.4. For a stochastic P, a column vector u, u 2 0, u # 0 satisfying 

is called a subincariant cector. If in fact P u  = u, the vector u is called an 
int>ariant tvctor. [A positive multiple of such is still such a vector.] 

The stochasticity of P ensures than an invariant vector always exists, viz. 
1 is such, for P1 = 1. While subinvariant vectors are of little importance in 
the stability theory of MC's, they are of substantial interest in the description 
of long term behaviour of transient chains, i.e. of their Martin exit boundary 
theory, to which we shall pass shortly. 

It is thus appropriate to sketch here the alternative development, 
although all proofs will be left to the interested reader.' 

The development is in terms of the quantities f $', k 2 0, i, j = 1, 2, . . . 
defined by 

wheref lg' = 0 by definition. [In the MC framework, f lr' is the probability of 
going from i to j in k steps, without visiting j in the meantime; it is also an 
example of a "taboo" probability, and the set {f  15'1, k = 0, 1,2, . . . is known 
as the first passage time distribution from i to j.] 

The generating functions, well defined / z 1 < 1, 

are related by (the analogue of Lemma 5.1) 

from which it is seen that Fii(z) = Lii(z), I z I < 1, so that f!;' = I$'. From this 
it is seen that the classification theory of indices is the same, and Theorem 
5.1 is equally relevant to the present situation. 

See Exercise 5.4. 
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On the other hand, instead of Lemma 5.4 we have from considering now 
p k +  1 = ppk: 

Lemma 5.4.D. For / z 1 < 1, and all i, j = 1, 2, 

Corollary 1. For each pair o f  indices i, j, F,j(l - )  5 1 

Corollary 2. I f ' j  is transient. 

for all i (und so p$' -+ 0 as k -+ a). I f  i is recurrent and i - j .  

Instead of Corollary 1 to Theorem 5.1, we have that if j is a recurrent 
aperiodic index, and i is any other index, 

The results are adequate to prove the analogue of Theorem 5.2. The 
analogue of Lemma 5.5 is trivial in view of the vector u = 1;  and the 
analogue of Lemma 5.6 holds from similar argument. 

The minimal subinvariant vector is given, for fixed but arbitrary j and 
i = 1, 2, . . .  by 

and the analogue of Theorem 5.4 reads: 

Theorem 5.4.D. For a recurrent matrix P, an invariant cector exists and is a 
positice multiple of the vector 1, and iiij = 1 ,  all i, j. 

A subinl:ariant vector which is not incariant exists lf and only i f  P is a 
transietlt matrix; one such subincariant vector is given by {ziij}, i = 1,  2, . . . . 

Theorem 5.5 can be proved also, using slightly different emphasis. 
Some of the notes made in the present section will be required in the next. 
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5.5 Potential and Boundary Theory for 
Transient Indices1 

In this section only we shall relax the assumption that P = {pij), i ,  j 2 1 is 
stochastic in a minor way, assuming only that 

pij 2 0, 1 2 1 pij > 0 each i. 
j 

In the strictly substochastic case, i.e. where for some i, 1 > zj pij, we may 
think of P as a part of an enlarged stochastic matrix P = {pij), on the index 
set (0, 1, 2, . . .), where jij = pij, i, j 2 1; pi,, = 1 - Cj pij, i 2 1, poo = 1: in 
this case 

so that 

so in either situation it is meaningful to study the (well-defined) powers Pk of 
the matrix P = {pij), i, j = 1, 2, . . . 

It is readily seen that Lemma 5.4D and its Corollaries continue to hold in 
the present more general situation; and in the strictly substochastic case of 
P, the Pij(z) and Fij(z) for i, j 2 1 coincide with the corresponding quantities 
Pij(z), Fij(z) of the expanded matrix P for i, j 2 l( fbk] = 0 for all k 2 0 if 
j 2 1). 

We shall now extend slightly the notion of a subinvariant vector, and 
introduce the more usual terminology which generally occurs in this context. 

Definition 5.5. A column vector2 u 2 0 satisfying 

is said to be a superregular rector for P. If in fact Pu = u, u is said to be 
regular. 

Thus the vector 0 is regular for P; and the vector 1 is superregular (but is 
not regular if P is strictly substochastic). 

If we define the vector {iiij}, i = 1, 2, . . . for fixed but arbitrary j 2 1 as in 
the previous section, it will similarly be superregular for P :  in fact 

This section is of more specialist interest; and in the part dealing with the Poisson-Martin 
representation requires deeper mathematics than the rest of the book. 

Assumed elementwise finite as usual. 
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[so that strict inequality may occur only in position i = j as regards the 
superregularity equations]; and the minimality property in this case (ob- 
tained with an almost identical induction proof) will take the form that for 
any superregular u, 

(since we no longer have the assurance that u > 0). 
Since {ii,), i = 1, 2, . . . is itself superregular, we have, by putting ui = Gir, 

i =  1, 2, . . .  : 

I The Fundamental Inequality: Gir 2 iiijiijr, all i, j, r 2 I. 1 
We shall for the rest of the section make the 

Basic Assumption I .  

(i) The index set of P is in fact all the positice integers, R. (The case of finite 
P is excluded here for the first time.) 

(ii) All indices are transient: i.e. Fii(l - )  < 1 for all i 2 1. 

[Note that we do not necessarily have irreducibility of P.] 
By Corollary 2 of Lemma 5.4D of the previous section 

m 

gij = 2 p j f )  < co for all i, j E R 
k = 0 

so that the non-negative matrix G = {gij) on i, j~ R (i.e. R x R)  is element- 
wise finite. This matrix will be used to define potentials on R ;  it is some- 
times called the Green'sfunction, or kernel defined on ( R  x R )  corresponding 
to P. 

Potential Theory 

Since u 2 Pu for a vector u superregular on R, it follows 

Denote the limit vector of the monotone decreasing non-negative vector 
sequence {Pku} by Pmu. 

Lemma 5.7. For a superregular cector u, Pmu is regular on R, and moreocer 

u = Pmu + G(u - Pu). 

Pmu = lim Pr f  'U  = lim Pr(Pku) 
k +  m k -  m 
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(by Fubini's Theorem), and since Pku I u, and Pku 1 PU3u, 

= Pr lim Pku 
( k + m  1 

by dominated convergence, 

Taking r = 1 shows that P m u  is regular. 
Now, we may write N as 

= pr+l.+ Pk[l, - Pu]. 
k = O  

Letting r + cc yields the result, since G = Pk. 

Definition 5.6. If c 2 0 (elementwise finite as usual) is a column vector, then 
Gc is called its potential [Gv may have some entries infinite.] 

Lemma 5.8. If'a potential Gu is euerywlzerejinite, it (a) determines tq; and, (b) is 
superregular. 

PROOF. It is easily checked that 

G = P G + I  

from the definition of G; applying this to (an elementwise finite) vector we 
have 

Gu = P(Gu) + c. 

Thus if Gc is everywhere finite, P(Gtl) is finite, and 

I? = Gt1 - P(Gc) = (I - P)(Go) 

which proves the first part; further in this situation clearly 

GF 2 P(Gc) 

which is equivalent to the second part. 0 

Lemma 5.9. A necessury aizd sujkient conditionfor a superregular rector u to 
he a (jinite) potential is P"u = 0. 

PROOF. Suppose a non-negative vector 1, is an elementwise finite potential; 
then for some (elementwise finite) v 2 0 

u = Gc, 
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from the proof of Lemma 5.8, i.e. 

Let r-+ oo; 

u - P m u  = Gv, = u by definition of u and t l .  

Therefore PWu = 0. 

Now let u be a superregular vector such that P W u  = 0. Define v ,  non- 
negative and elementwise finite by 

v = u - Pu. 

Hence as before 

and letting r + co 

Gv = u - P x u  

by assumption. Hence u is a potential for v .  

Theorem 5.6. A superregular vector u may be decomposed into a sum 

where g is a potential and r is regular. The decomposition is unique; in fact 

r = Pmu, g = G(u - Pu). 

PROOF. Lemma 5.7 already asserts the possibility of decomposition with the 
specific forms for v and g stated. To prove uniqueness let 

where r is regular and g is a potential; g is necessarily elementwise finite, 
since u is, by its very definition. 

Then 
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since Y is regular; let k --+ a, taking into account g is also superregular, in 
view of Lemma 5.8 

Pmu = r + Pmg 

since Pmg = 0 by Lemma 5.9. 
Hence 

and the fact that g = G(u - Pu) follows from Lemma 5.7. 0 

Theorem 5.7. Let u be a superregular uector and h an (elementwise Jinite) 
potential. Then (a) the elementwise minimum, c = min (u, h) is also a poten- 
tial; and (b) there exists a non-decreasing sequence of (jinite) potentials {h,) 
concerging (elementwise) to u. 

PROOF. (a) Since h is a finite potential, Pmh = 0 (Lemma 5.9). 

Thus since h 2 c 2 0, then Pkh 2 pkc 2 0. 

It follows, letting k + co, that Pmc = 0. 
We shall now prove c is superregular (it is clearly elementwise finite). 

since h, being a potential, is superregular; and from definition of c. Similarly 

PC I Pu I u 

from definition of c and u. Hence 

Pc 5 min (u, h) = c. 

Hence by Lemma 5.9, c must be a potential. 

(b) Let g and h be any two finite potentials; then clearly g + h is superregu- 
lar (since both g and h are) and 

Pa@ + h) = P"g + Pmh = 0 + 0 = 0 

by Lemma 5.9. Hence again by Lemma 5.9, g + h is a finite potential; thus a 
sum of finite potentials is itself a finite potential. 

Now let& be the column vector with unity in the jth position and zeros 
elsewhere: since gjj > 0 always, Gjj is a potential having its jth position 
nonzero, at least. 

Let 

where x(j) is positive integer chosen so that x(j)gjj > u(j) where u = { u ( j ) )  is 
the given superregular vector. Then g j  is a finite potential (being a finite sum 
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of finite potentials), and 4 defined by 

is also. It follows that d,(j) > u(j), j = 1, 2, . . ., n. 
Consider now the sequence (h,) defined by 

h, = min (u, d,), 

h, being a potential from the first part (a) of the theorem. Moreover {h,) is a 
non-decreasing sequence of finite potentials converging elementwise to u. 

0 

The reader acquainted with various versions of potential theory in phy- 
sics will recognize that the above results are formally analogous. Theorem 
5.6 is, for example, the analogue of the Riesz Decomposition Theorem; some 
further discussion will be given at the end of the chapter. We shall have 
occasion to make use of some of the previously developed results shortly. 

The  Mart in  Exit Boundary;  the Poisson-Martin Integral 
Representation for a Superregular Vector 

The basic purpose of this subsection, in keeping with the general aims of the 
book, is to develop an important representation of a superregular vector 
which is similar to, but rather more sophisticated than, the Riesz decomposi- 
tion given by Lemma 5.7 and Theorem 5.6. In this connection we need to 
develop first a small amount of boundary theory, the Martin exit boundary 
being of additional importance in the study of long-term behaviour of the 
trajectories of infinite Markov chains which consist of transient states only. 
This probabilistic framework, which we shall not pursue here; nevertheless 
motivates the making of an additional basic assumption, which can in effect 
be reasoned (from the probabilistic framework) to be made without essential 
loss of generality. 

Basic Assumption 2. The index 1 leads to every index, i.e. 1 + j, j = 1,2, . . . 
[This implies that in G = {gij), g l j  > 0 for all j E R.] 

Define for all i, j E R 

the U i j  = (1 - bij)Fij(l - ) + bij having been defined in $5.4. [It may be useful 
to note also, on account of the relation between the Fij(z) and Pij(z), that in 
fact 

. 9. .  
( i  ) = , all i, j E R.] 

91j 
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From the Fundamental Inequality deduced earlier in this section 

so that 

( i  j )  1 l i  for all i, j ;  

and further, since for fixed j  E R, {uijJ is superregular, then so is K ( i ,  j) .  
Let us now define on R x R the function 

where (wi) is any sequence of strictly positive numbers such that 

(e.g. we might take wi = 2- ' ) .  
We shall now show that d ( .  , . )  is a metric on R i.e. 

0 I d(t.,, 0,) < oo for c,, v ,  E R 

and 

( i )  d(c , ,  v,) = 0 if and only if c ,  = c,; 
( i i )  d(t',, c,) = d(c , ,  v , ) ;  

( i i i )  d(t.,, c,) 1 d(c , ,  v,) + d(v , ,  v,). 

The non-negativity is trivial; and finiteness of the bivariate function d ( .  , . ) 
follows from the fact that 

on account of the triangle inequality on the real numbers, and the bound on 
K ( i ,  j) established above. Similarly ( i i )  and ( i i i )  are trivial; and in fact the 
only non-obvious proposition which needs to be demonstrated is that 

Suppose not; suppose that for some c,, v,, d(c , ,  v,) = 0 and v ,  # v ,  . Now 
d(v , ,  v,) = 0 implies 

since U l i  wi  > 0 for all i. Thus 

But since t', # v, by assumption, this becomes 
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from the subinvariance equations (5.7) for {iiij}, i = 1,  2, . . . for fixed j, where 
inequality occurs only in the i = j position. Thus 

which is a contradiction to K(i ,  c , )  = K(i,  L , )  for all i E R. 
Thus R is metrized by the metric d, and so we may henceforth speak of the 

metric space (R,  d ) .  
Now this metric space is not necessarily complete; i.e. we cannot say that 

for every Cauchy sequence {j,} in (R,  d )  (so that d(j,, j,) < e, n, m 2 N o )  
there exists a limit point z E (R,  d )  such that d(j,, z )  + 0 as n + co. In other 
words (R,  d)  does not necessarily contain all its limit points. The following 
lemma will help us understand the process of making (R,  d )  complete, by 
transferring the problem to the real line. 

Lemma 5.10. A sequence {j ,)  is Cauchy in the metric space (R,  d )  if and only if 
the sequence of real numbers K( i ,  j,) is Cauchy (in respect to the usual metric 
on the real line) for each i E R 

PROOF. From the definition of d ( . , . )  if {j,} is Cauchy in (R,  d), since 
iil, W, > 0, {K( i ,  j,)) is Cauchy on the real line for each i. 

Conversely, if {K(i, j,,)) is Cauchy for each i, let e > 0 and choose a finite 
subset of indices E c R such that 

Choose M sufficiently large so that 

for each i E E and TI, m 2 M .  
Then writing symbolically 

in the definition of d (  . , . ) we have 

l e 

for n, m 2 M .  

Suppose now that {j,,) is any Cauchy sequence in (R,  d ) .  Then, by the 
result just proved, {K( i ,  j,)} is Cauchy for each fixed i E R. Thus for each 
i E R  

lim K(i, j,) = K( i ,  x) 
n + m  



5.5 Potential and Boundary Theory for Transient Indices 189 

where K(i,  x )  is notation we adopt for the limit, which is of course some real 
number; of course x = x({j,))  is not an entity we can "picture" in general, 
but we only need to work with it insofar as we need only to know K(i,  x), 
i E R. Define now for any j E R 

d(j,  x)  = I K(i,  j,) - K(i,  s)lGliw,.  
is K 

Then if (j,} is the Cauchy sequence corresponding to x 

d(j ,  , x) = 1 1 K(i,  j,) - K(i,  x )  1 ul i  w, 
~ E K  

as n + a, by dominated convergence. Thus if we extend the metric d ( .  , . ) 
from R to operate also on any new points x added in this way, in the obvious 
manner, and put .u = y, if and only if K(i,  x )  = K(i,  J )  for all i E R, then we 
shall have an extended, and now complete, metric space (R*, d). The set R is 
thus dense in (R*, d), which is therefore separable. In fact more is now true: 

Lemma 5.11. The metric space (R*, d )  is compact. 

PROOF. [Compactness in metric space is equivalent to the Weierstrass 
property: that every infinite sequence has a limit point in the metric space.] 

Let {k,) be any sequence in (R*, d). We know that for each i E R, and for 
any k E R and so (by obvious extension) for any k E R*, 

Thus for any fixed i E R ,  K(i,  k,) is a bounded sequence of real numbers; it 
then follows from the Bolzano-Weierstrass Theorem and the Cantor dia- 
gonal refinement procedure that there exists a subsequence {k,,), j = l ,  2. . . . 
of {knj such that 

lim K(i,  k,,) exists for every i E R 
j+ 2 

Thus the sequence K(i,  knj)  is Cauchy on the real line for every i E R ;  and 
repeating now the argument in the second part of the proof of Lemma 5.10 
(k,, E R* now, and not necessarily to R )  it follows that {k,,) is Cauchy in 
(R*, d )  and, this last being complete, there exists a limit point 5 in (R*, d )  as 
required. 17 

Definition 5.7. The set R* - R is called the Martin exit boundary of R, 
induced by the matrix P, relatice to index 1.' 

1. Now let 93 be the o-field of Borel sets of (R* d), i.e. the minimum a-field 
containing the open sets of (R*, d). [It is obvious that each i E R is itself a 
closed set. Thus R itself is closed, and so R* - R is a Borel set.] 

By suitable rearrangement of rows and columns of P, the development of the theory entails no  
essential loss in generality in working in relation to index 1. 
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2. Further, consider K(i ,  .u) for fixed i E R, as a function of .u E (R*,  d). Then 
for x,, x, E (R*, d )  

d ( x l ,  x,) < 6 = / K(i ,  x l )  - K(i ,  x,)I < c 

from the definition of the metric, where E > 0 is arbitrary, and 6 appro- 
priately, chosen. Thus K(i,  x )  is continuous on (R*,  d ) ;  and since (R*, d )  
is compact, K( i ,  x)  is unijormly continuous on (R*,  d )  for i fixed. 

3. Let {P,( . )) be any sequence of probability measures1 on the Bore1 sets 3 
(i.e. measures such that P,(R*) = 1). Then since (R*,  d )  is compact. there 
exists a subsequence {n,), i 2 1, of the positive integers such that the 
subsequence { P J . ) )  converges weakly to a limit probability measure 
{P( . )). [This is the generalized analogue of the Helly selection principle 
for probability distributions on a closed line segment [a, b]. We shall use 
generalizations of another Helly theorem to compact metric space below. 
For proofs in the metric space setting, see Parthasarathy (1967). 
pp. 39-52; the theorem just used is on p. 45.1 

Theorem 5.8. Any superregular cector u = {u(i)j has representation 

where p( . ) is some jinite measure on 3 independent of i. 

PROOF. The case u = 0 is trivial; assume u # 0. 
We shall first prove the proposition for u = h where h is a finite non-zero 

potential. There exists a non-negative vector k = {k( i ) )  such that 

h = Gk, 

Hence if we define a measure on 8 by 

then we have the required representation for h, since 

h(1) > 0 since for all j E R ,  g I j  > 0 by the Basic Assumption 2; and k ( j )  > 0 
for at least one j E R ,  as h + 0 by assumption. 

Now for a superregular vector u # 0, let {h,) be a non-decreasing se- 
quence of potentials converging to u elementwise (by Theorem 5.7) and let the 

The assumption of probability measures is not strictly necessary to the sequel, but is conven- 
ient; especially for the reader acquainted with some probabilistic measure theory. 
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corresponding measures as deduced above be {p,( . )), where 

pn(R*) = h,( l )  > 0. 

We know h , ( l )  u(1)  as n -+ so, so that u(1)  > 0. Thus 

where the sequence { p n ( .  )) does not depend on i. 

Therefore u(i )  = lirn h,,(i) = lim /' K(i ,  x)pn(dx)  
n-  J, n-m 'R' 

where P, ( . )  = p,( .) /h,(l)  is a probability measure on %. Hence by the gen- 
eralized Helly selection principle mentioned in 3 above, and by the gener- 
alized Helly-Bray Lemma, since K(i,  .x) is bounded and continuous in 
x  E R*, for fixed i E R 

where P ( . )  is the limit probability measure on % of an appropriate sub- 
sequence {Pn,( .  )). 

The theorem now follows by putting 

4 . 1  = w'(. 1. 0 

We consider the infinite stochastic matrix P, defined on the index set R = (1,  
2, ...} by 

Thus we may represent P in the form 

The index set R clearly forms a single essential aperiodic class, and hence P 
is primitive. 

' See Example (4) of 64.1 for another vlew of this example. 
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For k 2 I 

since q, = 1 - p,  . Hence 

= po - lim r ,  
k +  cc 

where r ,  = popl  . . .  p, has a limit a, 2 0 as k + GO since it is positive and 
decreasing with k. Hence 

Thus index 1 (and thus every index) is transient if and only if a, > 0 (and is 
recurrent if r ,  = 0). 

In the case a, = 0 :  

Hence 

and we obtain positive recurrence of the matrix P if 15, sc j  < oo and null- 
recurrence otherwise (when a, = 0). 

We shall next evaluate in terms of the rxis the quantities Fij(l  - ), i f j; this 
is really of interest only when a, > 0, i.e. in the case of transience of the 
matrix P, for otherwise1 Fij(l - )  = 1, all i, j E R, but we shall not assume 
that a, > 0 necessarily. [The case Fii(l -), i E R is-at least in the transient 
case-more difficult to evaluate, but, as we shall see, we shall not need if for 
consideration of the Martin exit boundary.] 

First we note that 

for this quantity is readily seen to be the "absorption probability" from 
index i of the set 1 I i < j [to which there corresponds a strictly substoch- 

See Exercise 5.4 for the general proposition 
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astic primitive matrix ( ,  ,, P (the ( j  - 1) x ( j  - 1) northwest corner trunca- 
tion of P)] into the single " absorbing index " of remaining indices {j, j + 1, 
. . .:. (See $4.2). 

Secondly 

which follows from the definition of F i j ( l  - )  in this special situation, i.e. in 
view of the previous result 

Thus we need only to find F i , ( l  - )  for i > 1 .  Now 

from the special structure of P.  
Hence 

= qi + p i  - lim p i p i + :  . . .  p i + k  
k ' x  

= qi + pi - lim POP1 " '  Pi+k 

k-a, P O P I  " '  Pi -1  

Thus, finally 

Let us now pass on to the Martin boundary theory, assuming transience 
henceforth i.e. cz, > 0. 

Then 

so that 
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Hence (relative to index 1 as usual) we have the metric on (R x R)  

d(r,, c,) = 2 w , u , , l ~ ( i .  c , )  - K(i, r 2 ) /  
1 t R  

Assume, for further working, that we are dealing with c1 # rc,; so without 
loss of generality, let us assume c, < L,,; then 

i.e. for r ,  < c, 

where, of course, 0 < a, /a , - ,  < 1. 
Thus the metric space (R, d) is isometric to the metric space which is that 

subset of the real line (with the ordinary modulus-difference metric) consist- 
ing of points 

where 

Now every izon-terminating subsequence of this new metric space con- 
verges to the same point, viz. 

Hence the Cauchy completion of (R, d), viz. the Martin exit boundary of 
(R, d) relative to index 1 induced by the matrix P, consists of a single point, 
which we may call, therefore, "infinity ". 

Bibliography and Discussion 

Our discussion of countable stochastic matrices is rather selective; excellent 
treatments now exist in textbook and monograph form, and the reader 
desiring a sustained and more extensive development of most of the material 
presented in this chapter, as well as extensive bibliography, should consult 
the books of Feller (1968), Chung (1967) and Kemeny, Snell & Knapp 
(1966), expecially Chung's. 
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As mentioned earlier in the book, study of countable stochastic matrices 
was initiated by Kolmogorov (1936), by whom the notions of essential and 
inessential indices, which we use throughout the book, were introduced; and 
followed closely by many contributions of Doeblin, although we have not 
touched to any significant extent on this later author's work in this context. 

The standard approach to the basic theory is in terms of the quantities 
{ f 15'). We have worked in terms of the quantities {l!;') partly so as not to 
duplicate this approach yet again, although for stochastic P it is in several 
ways not quite so natural as the other. The fundamental reason, however, for 
using the { l j ~ ' }  is that even in the stochastic context it is the natural tool as 
regards the development of the probabilistically important theory of sub- 
invariant and invariant measures, and makes a reasonably unified treatment 
possible; whereas, e.g. in Feller (1968), a change of approach is necessary 
when passing on to the topic of invariant measures. Finally, it is necessary to 
mention that in $45.1, 5.3 and 5.4, the present author was substantially 
influenced in approach by the papers of Vere-Jones (1962, 1967), which are 
not restricted to the stochastic framework, and play a substantial role in the 
development of the next chapter also. 

Theorem 5.1' is due to Erdos, Feller & Pollard (1949). The part of 
Theorem 5.4 referring to recurrent P is due to Derman (1954). A necessary 
and sufficient condition for the existence of an invariant measure for a 
transient P is due to Harris (1957) and Veech (1963). Theorem 5.5 is due to 
Kolmogorov (1936) and Feller (1968; 1st ed. 1950). For a probabilistic 
rather than analytical proof of Theorem 5.5 the reader should consult Orey 
(1962). 

A consideration of Perron-Frobenius-type spectral properties of denu- 
merable stochastic irreducible P as operators on various sequence spaces 
(i.e. from a functional-analytic point of view) has been given by Nelson 
(1958), Kendall (1959), Sidak (1962, 1963, 1964a) (see also Holmes (1966)), 
and Moy (1965), and these results provide an interesting comparison with 
those obtained in the present chapter. The reader interested in this topic 
should also consult the references in the notes at the conclusion of the next 
chapter, which refer to a more general (specifically, non-stochastic) 
situation. 

Much of 45.5 is adapted from the papers of Doob (1959) and Moy 
(1967~). Extensive discussions of the potential theory in the same framework 
as in $5.5 may be found in the book of Kemeny, Snell & Knapp (1966) and 
the earlier exposition of Neveu (1964). 

Exercises 

5.1. Let i be an index with period d > 1 corresponding to the stochastic matrix 
P = {pijJ. Show that in relation to the matrix 

pd = iP!*') 
I J  ' 
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z is aperiodic, and show also that for 0 < s < 1, 

L,,(s) = Ll$'(sl d,  

by first showmg 

P,,(s) = P;p'(sl d, 

where the superscript (d) pertains to the matrix Pd. 
Use this to show that if i is positive or null recurrent, or transient in relation 

to P, it is also this, respectively, in relation to Pd;  and that in the recurrent case, 
a s k + m  

+ dip,. 

5.2. Use the final result of Exercise 5.1 to conclude that for an irreducible stochastic 
matrix P (not necessarily aperiodic) for all i, j = 1, 2, . . . 

pi:' + 0 

if the matrix P is transient, or null-recurrent; and that this occurs for no pair 
( i ,  j )  if P is positive recurrent. 

5.3. Show, if i is an index corresponding to a Jinite stochastic matrix P, that i is 
transient if and only if i is inessential; and is positive recurrent otherwise. 

5.4. Develop in full the "dual" approach to the theory as indicated in 55.4. Prove in 
particular the analogues of Theorems 5.3 and 5.4. Prove also Theorem 5.5 from 
this new viewpoint, noting in the course of this that for a recurrent stochastic P, 
FLj( l -)  = 1 for all i , j =  1, 2, . . .  

5.5 Show that a stochastic irreducible matrix P is positive-recurrent if and only if 
there exists a subincariant measure x' for P such that x'l  < oo. Repeat for an 
invariant measure. 

5.6. An infinite stochastic irreducible P = {plj) satisfies 

uniformly for all i in the index set of P, where N is some fixed positive integer. 
Show that P is positive-recurrent. 

Hint: Consider 

5.7. For the Example to which 55.6 is devoted. attempt to solve the invariant 
equations x 'P = x', and hence deduce a necessary and sufficient condition for 
positive-recurrence of this particular P, using the result of Exercise 5.5. Does 
this concur with the results of 55.6 on classification? 

Find p, for each i = 1, 2, . . . in the positive-recurrent case. 

5.8. Let P = {pij} and P ,  = {pij(n)), n = 1, 2, . . . be transition probability matrices of 
irreducible recurrent Markov chains each defined on the states (1.2, . . .), and let 
{ci) and {cy)), n = 1, 2, . . . be the corresponding invariant measures, normalized 
so that c, = c'f' = 1 for all n. Assume that pij(n) + pij for all i ,  j as n + co. 
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Show that {a,*}, defined by cT = lim inf,,, o?, i = 1,2. . . . , is a subinvariant 
measure corresponding to P; and hence show that 

Finally, deduce that vi = r f ,  i = 1, 2, 

5.9. If P is an infinite recurrent doubly stochastic matrix, show that it must be 
null-recurrent. 

5.10. Show that the structure of the Martin exit boundary B = R* - R does not 
depend on the choice of weights {wi} in the definition of the metric d(a,, P,)  on 
( R  x R), so long as wi > 0 all i, xi., wi < co. (Use Lemma 5.10.) 

5.11. Let P = {piJ be an irreducible substochastic matrix on R x R with one index 
transient. Show that all i E R are also transient, and that x' = { x i )  defined by 
xi  = gli/gll is a strictly positive superregular row vector for P. Further show 
that the matrix P̂  = { j i j ) ,  where 

6.. ,, = x .  J P J I - , ,  . . +  i , j ~ R  

is irreducible, substochastic, and all its indices are transient. 

The Martin entrance boundary (relative to index 1) for matrix P is the 
Martin exit boundary for the matrix p. 

Show that1 for i, j E R 

5.12. Using the results of Exercise 5.11 in relation to P as given in 55.6, with 2, > 0, 
show that 

and hence that the space (R, d )  is itselfcomplete, so that the Martin entrance 
boundary of P, corresponding to index 1, is empty. 

5.13. The substochastic irreducible matrix P = {pij} on R = {1, 2, . . .} described by 

for j 2 1, describes the "transitions" between the inessential indices (those of 
R )  of a (space inhomogeneous) random walk on the non-negative integers with 
" absorbing barrier " at  the "origin ", 0. For this matrix, it can be shown2 that 

' Capped symbols refer to the situation in relation to matrix p. 
' Seneta (1967b). 



5 Countable Stochastic Matrices 

G = {g,,} is given by 

where 

and q,  (the "absorption probability" into the origin from i 2 1) is to be under- 
stood as unity if I p ,  diverges. 

Calculate K(i, j), i, j E R, and hence deduce the structure of the Martin exit 
boundary. 

Repeat with the Martin entrance boundary, using the comments of Exercise 
5.1 1, and ~ ( i ,  j). 



CHAPTER 6 

Countable Non-negative Matrices 

Countable stochastic matrices P, studied in the previous chapter, have two 
(related) essential properties not generally possessed by countable non- 
negative matrices T = i t i j) ,  i, j = 1, 2, . . . . In the first instance the powers Pk,  
k 2 1, are all well defined (using the obvious extension of matrix multiplica- 
tion); secondly the matrix P (and its powers) have row sums unity. 

It is inconvenient in the general case to deal with (as usual elementwise 
finite) matrices T whose powers may have infinite entries. For the sequel we 
therefore make the 

Basic Assuinption 1 : T k  = {t$)) ,  k 2 1. are all elementwise finite. 

The second role played by the " row-sums unity" assumption involved in 
the stochasticity of P, is that this last may be expressed in the form P1 = 1, 
whence we may expect that even in the case where P is actually infinite, our 
study of Perron-Frobenius-type structure of P may still be centred about the 
" eigenvalue " unity, and the "right eigenvector " playing a role similar to the 
finite case will be 1. The reader examining the details of the last chapter will 
see that this is in fact the approach which was adopted. 

In the case of general non-negative T the asymmetric stochasticity 
assumption is absent, and we may, in the first instance, expect to need to 
resolve the problem (restricting ourselves to the irreducible case) of the 
natural analogue of the Perron-Frobenius eigenvalue. Indeed the resolution 
of this problem, and associated problems concerning "eigenvectors ", makes 
this theory more fundamental even for transient stochastic P (as will be seen), 
than that of the last chapter. 

For convenience we shall confine ourselves to those T which satisfy the 

Basic Assumption 2:  T  is irreducible. 
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Recall that in the countable context irreducibility is defined precisely as in 
the finite case, viz. for each i, j = 1, 2, . . . there exists k = k(i, j )  such that 
t$) > 0. It also follows as in Chapter 1, that all indices of T have a 
common finite period d 2 1 (for further detail of this kind see $5.1). 

6.1 The Convergence Parameter R, 
and the R-Classification of T 

Theorem 6.1. The power series 

all hace colnnion convergence radius R, 0 I R < oo, for each pair i, j .  

PROOF. Denote the convergence radius of I,"=, $'zk by R i j .  On account of 
the non-negativity of the coefficients in the power series, 

The first inequality clearly implies that 

Rij I Rj j  

(consider t. constant and such that t$' > 0, using irreducibility; and form the 
relevant power series), while the second analogously implies that 

Rj j  5 Ri j .  

Thus we have that Rij  = R j j  for all i, j = 1, 2, . . . . The third and fourth 
inequalities imply, respectively, that 

R 5 R  Rij I Rii 

so that Rij = Rii for all i ,  j = 1, 2, . . . . 
Thus we may write R for the common value of the R i j .  
It remains to show only that R < oo. This can be seen via Lemma A.4 of 

Appendix A, which implies, in view of 
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where d is the period of i, that 

lim {t!YdJ)' 
n +  m 

exists and is positive and so 

lim nd F lim sup {t,'f))l'k 
n+cc k-+ cc 

exists and is positive, and by a well-known theorem' the limit is l /R , ,  = l iR.  
0 

From Lemma A.4 of Appendix A we obtain the additional information: 

Corollary. tjYd' R - " ~  

i.e. Rkt::' 5 1 

for all i = 1, 2, . . ., k 2 0 ;  and 

lim {tl:dJ)l nd = R - 1 ,  

n-'m 

N.B. It is possible to avoid the use of Lemma A.4 altogether here,2through 
an earlier introduction of the quantities Fij(z), Lij(z) which we carry out 
below; its use has been included for unity of exposition, and for the natural 
role which it plays in this theory. 

Definition 6.1. The common convergence radius, R, 0 5 R < co, of the 
power series 

cc 

is called the convergence parameter of the matrix T 

Basic Assumption 3 :  We deal only with matrices T for which R > 0. 

Note that for a countable substochastic (including stochastic) matrix 
T = P, R 2 1, clearly. Further, it is clear if T is finite, that 1/R = r, the 
Perron-Frobenius eigenvalue of T (in the aperiodic case this is obvious from 
Theorem 1.2 of Chapter 1, and may be seen to be so in the period d case by 
considering a primitive class of Td) .  For this reason the quantity 1/R is 
sometimes used in the general theory, and bears the name of concergence 
norm of T.  

To proceed further, we define quantities f j ; ) ,  lj?) as in the last chapter; 
write,f $ )  = 1jYJ = 0, f lj" = I!!' = t i j  and thereafter write inductively 

e.g. Titchmarsh (1939, 47.1) 

See Exercise 6.1 
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are convergent for 1 z I < R, and as in the previous chapter 

for 1 z I < R;  the very last equation follows from 

for 1 z I < R, through the fact that for / z 1 < R 

as before. We thus have, letting s + R -, that 

Finally let us put 

Definition 6.2. An index i is called R-recurrent if L,,(R - ) = 1 and R-transient 
if Lii(R - )  < 1. 

An R-recurrent index i is said to be R-positive or R-null depending as 
,ui(R) < co or pi(R) = co respectively. 

Clearly, an index i is R-transient if and only if Ti(R - )  < co; in this case 
tib)Rk -+ 0 as k -+ co. To go further, we can adapt the results of Chapter 5 for 
our convenience in the following way: proceeding as in Lemma 5.4, we 
obtain for 1 z / < R that 

which yields eventually that Lij(R - ) < co for all i, j(i c-. j because of irre- 
ducibility) and as in Lemma 5.5 we obtain that there is always a row vector 
x', x' > O', # 0' satisfying 

one such being given by the vector {Lij(R-)), j = 1, 2, . . . [for arbitrary 
fixed i]. 
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Definition 6.3. Any x' 2 Of, f 0' satisfying 

Rx'T x' 

is called an R-subincariant measure. If in fact Rx'T = x', x' is called an 
R-iizuariant measure. 

As in Lemma 5.6 -any R-subinvariant measure has all its entries positive. 
Now for a given R-subinvariant measure x' = {xi) define an, in general. 

substochastic matrix P = (pij} by 

pij = Rxjtji/xi, i, j = 1, 2, 

so that Pk = {p$)) has its elements given by 

It is readily checked P is irreducible. Let us then consider two cases. 

(1) P is strictly substochastic, i.e. at least one row sum is less than unity. 
Then as at the outset of $5.5, each of the indices i = 1, 2, . . . may be 
considered inessential in an enlarged matrix P, hence transient from 
Lemma 5.2, whence for each i = 1, 2, . . . 

C pip < oo. 
k 

We shall in the rest of this section include this case with the case where P 
is stochastic and transient, in which case (6.2) holds also. 

(2) P is stochastic, in which case it may be transient, null-recurrent or 
positive-recurrent. 

It can be seen that the transformation will enable us to fall back, to a large 
extent, on the results presented in Chapter 5 by considering the matrix P, 
and then translating the results for the matrix T. 

Thus for example an index i of P is transient if and only if 

i.e. if and only if i in T is R-transient. Moreover since P (like T) is irreducible, 
all its indices are either transient or recurrent; thus all indices of T must be 
R-transient, or all must be R-recurrent. The last case can only occur if P is 
stochastic. 

Further note that for / z 1 < 1 
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where the superscripts P and T indicate which matrix is being referred to. 
Hence for 0 I s < 1 

and letting s -+ 1 - in the R-recurrent case of T (= the recurrent case of P )  

Thus i in P is positive recurrent if and only if i in T is R-positive, etc., and 
since all i in recurrent P are positive recurrent, or all are null-recurrent, for 
R-recurrent T all indices are R-positive or R-null. Thus it is now sensible to 
make the : 

Definition 6.4. T is called R-transient, R-positive or R-null if one of its 
indices is R-transient, R-positive or R-null respectively. 

It is clear, further, that if T is R-transient or R-null, for any i, j, Rkt$) -+ 0 
as k-+co. 
If T is R-positive, 

~k t j? '  

is clearly still bounded as k -, co for any fixed pair of indices, (i, j) since 

On the other hand, no matter what the R-classification of T,  

p t ip  

is unbounded as k + co for any pair (i, j), if P > R. For suppose not. 

Then bkt[5) i Kij  = const. 

for all k. Let z satisfy 1 z 1 < P. Then clearly 

converges for such z and hence converges for z 
which are outside the radius of convergence 
contradiction. 

satisfying > 1 z 1 > R, 
of Tj(z); which is a 

In conclusion to this section we note that the common convergence radius 
of all qj(z), and the common R-class@cation of all indices in an irreducible T 
are further examples of so-called solidarity properties, enjoyed by all indices 
of an irreducible non-negative matrix (another example is the common 
period d of all indices). 
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6.2 R-Subinvariance and Invariance; R-Positivity 

As in Theorem 5.3 if x' = { x i )  is any R-subinvariant measure corresponding 
to our (irreducible, R > 0 )  T ,  then for fixed but arbitrary i, and all j = 1,2, . . . 

x j l x i  2 .Tij 

where X i j  = ( 1  - h i j )L i j (R  - ) + hij  

and (x i j ) ,  j = 1, 2, . . . is also an R-subinvariant measure [with ith element 
unity]. We then have in the same manner as before for Theorem 5.4: 

Theorem 6.2. For an R-recurrent matrix T an R-invariant measure always 
exists, and is a constant multiple of (,?,,), j = 1, 2, . . . . 

An R-subinvariant nzeasure which is not invariant exists $and only i fT  is 
R-transient; one such is then given by {,?,,), j = 1, 2, . . . . 

N.B. The analogous discussion with the quantities Fij(R - ) would not be, 
in the present context, essentially different from the above, since there is no 
"asymmetric" assumption such as stochasticity present, which tends to 
endow T and T' with somewhat divergent properties. (In any case it is easily 
shown that the common convergence radius R is the same for T and T', and 
the subinvariant Gector properties of T may be evolved from the subinvar- 
iant nzeasure properties of T'.) 

We now trivially extend the scope of our investigations of subinvariance, 
by saying : 

Definition 6.5. x' = {xi} ,  x' 2 O', # 0' is a b-subinvariant measure for b > 0 ,  
if 

elementwise. The definition of P-invariance is analogous. 

Theorem 6.3. 

( a )  I f  x' = { x i )  is a 0-subinuariant measure, then x > 0 and 

( b )  Lii(P) I 1 for all i and f l  5 R ;  
( c )  for f l  r R ,  Li j (P)  < co for all i, j and for.fixed i (Li j (P))  constitutes a left 

P-subincariant measure, remaining subincariant i f  Lii( f l)  is replaced by 
unity; 

( d )  no P-subincariant measure can exist for /? > R. 

PROOF. In view of the theory of this chapter and Chapter 5, the only proposi- 
tion which is not clear from already established methods is (d), and we shall 
prove only this. 
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Suppose x' 2 0', f 0' is a /-subinvariant measure for fi > R. Then since 

pkx'Tk I X' 

we have for a p such that R < B < / 

But, since p > R the convergence radius of x,"=, t$'zk, the left hand side 
cannot be elementwise finite, which is a contradiction. 

We now pass on to a deeper study of the interaction of p-subinvariance 
and invariance properties as they relate to the important case of R-positivity 
of T. 

Theorem 6.4. Suppose x' = {xi) is a /-invariant measure and y = {y,) a p- 
invariant cector of T. Then T is R-positice if 

3"x = 1 yixi < m, 
L 

in which case / = R, x' is (a n~ultiple of) the unique R-invariant measure of T 
and y is (a multiple o f )  the unique R-incariant vector of T. 

Conversely, if T is R-positive, and x', y are respecticely an invariant measure 
and cector, then y'x < m. 

PROOF. We have 

Px'T = x', ~ T J '  = 3' 

where 0 < /, and p I R, the last following from Theorem 6.3(d), [and x > 0, 
y > 0 from Theorem 6.3(a)]. Form the stochastic matrix P = {pij) where 

Suppose first xi xi y i  < co, and norm so that xi xi  yi = 1 ; and put 
v = {CJ, where ci = xi y,. Then 

for each i. Thus 

and v ' l  = 1. Thus irreducible stochastic P has a stationary distribution, and 
by the Corollary to Theorem 5.5 this is possible only if P is 
positive-recurrent. 

Hence 
p:;' = pkt$'xj/xi $, 0 

as k + m ; since for / < R, j?ktE' + 0, from the definition of R, and as we 
know p I R, it must follow / = R, and that T is in fact R-positive, for 
otherwise Rkt t )  -+ 0 as k -+ co. The rest follows from Theorem 6.2. 
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Conversely, assume T is R-positive, and x' and y are respectively an R- 
invariant measure and vector. Form the stochastic matrix P = {pi j )  where 

Since T is R-positive, P is positive-recurrent, and so has a unique invariant 
measure (to constant multiples) u, which moreover satisfies u'l  < co. 
(Theorem 5.5 and its periodic version.) 

Now consider the row vector { x i  y i ) ;  this is in fact an invariant measure 
for P, since 

1 x iy ip i j  = R x .  J 1 , t , .  J I ~ L  . -, - Y.). J . ( J  

i I 

for each j = 1, 2, . . . . Hence 

Theorem 6.5. I f  T is an aperiodic R-positice matrix, then us k + cc 

where x', y are an inuariant measure and cector of  T respecticely. 

PROOF. Form the usual positive-recurrent stochastic matrix P = {pij} (which 
is now aperiodic) 

pij = R x j  t j i / x i ,  

so that p!:) = R k x j  t$) /x i .  
From the body of the proof of the second part of the last theorem 

since u = {c j )  constitutes the unique invariant measure of P normed to sum 
to unity (Theorem 5.5). The assertion follows immediately. 0 

6.3 Consequences for Finite and Stochastic 
Infinite Matrices 

(i) Finite Irreducible T 

It has already been mentioned that in this case 1/R = r, where r is the 
Perron-Frobenius eigenvalue of T. Clearly, since Tk/rk  $, 0,  such T are R- 
positive; the unique R-invariant measure and vector are of course the left 
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arid right Perron-Frobenius eigenvectors corresponding to the eigenvalue r. 
A consequence of the new theoretical development is that for each i, 

Lzi(rp ') = 1. 

Theorem 6.5 is of course a weak version of Theorem 1.2 of Chapter 1. [The 
question of when the rate of convergence is (uniformly) geometric in the case 
of infinite T does not have a simple answer-see the discussion following 
Theorem 6.6 in the next section, and the Bibliography and Discussion.] 

(ii)  Infinite Irreducible Stochastic Matrices 

For T = P, where P is an infinite irreducible stochastic matrix, it has already 
been noted that R 2 1. Viewing the development of those results of 95.3 
which relate to the problem of subinvariant measures of such a P, without 
specialization to recurrent P, such as Theorem 5.3, it is seen without 
difficulty from Theorem 6.3 that in essence the discussion there pertains in 
general to fl-subinvariance, where fl - 1 I R, this choice of fl having been to 
some extent dictated by analogy with finite stochastic P, where 1 = l l r  = R 
(although of course invariance itself is of physical significance in Markov 
chain theory'). 

However it is now clear from the earlier section of this chapter that in fact 
/3-subinvariance, with fl = 1, may in general be of less profound significance 
than R-subinvariance if it may happen that R > 1. On the other hand since 
finite irreducible stochastic P are always R-positive, with R = l/r = 1, we do 
not expect to be able to improve on the results of Chapter 5 for infinite 
R-positive T (and perhaps also R-null T) where we would expect R = 1. 

Theorem 6.6. I f  an irreducible stochastic P is positive-recurrent or null- 
recurrent, it is R-positire or R-null (respecticely) with R = 1. Concersely at7 
R-positice or R-null stochastic P with R = 1 implies (respecticely) positiue- 
recurrence and null-recurrence. 

There exist stochastic P which are transient with R > 1; such P may still be 
R-positive. 

PROOF. If P is recurrent Lij(l - )  = 1 for any index i, by definition of recur- 
rence. On the other hand Lii(R - )  I 1 and for 0 < < R, clearly 

Lii(fl- ) < Lii(R - ). 

Hence R = 1; and consequently P is recurrent. The rest of the first assertion 
is trivial, as is its converse. 

We demonstrate the final part of the theorem2 by the example discussed 
in $5.6, with 

1 i + l ]  1 
pi = {f + (1) ,/{2 + (+)i), i 2 1. 

See Derman (1955). 

See Exercise 6.5 for an example of a transient P which has R > 1 and is R-transient 
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Then 

30 - 1 

Therefore F l l ( z )  = 1 ( i )k+ lzk  = (:](I -;I 
k = l  

Hence F l l ( l )  = so that P is transient. 

Moreover P I  ,(z) = [I - F l(z)]- ' = 2(2 - z)(4 - 3z)-'  

at least for I z  I < 1. Hence by analytic continuation, the power series P l l ( z )  
has convergence radius 4 so that 

Also for 0 < s < 4 

so that P is R-positive. 

Transient stochastic P  with R > 1 are sometimes called geometrically 
transient in virtue of the following result. 

Theorem 6.7. A stochastic irreducible P satisfies 

ask  + co, for some 6,O < 6 < 1, and for somejxed pair ofindices i and j ,  ifand 
only i f P  has convergence parameter R > 1. In this case (6.3) holds unijormly in 
6 for each pair i, j, for any jixed 6 satisfying R ' I 6 < 1 ; and for no 6 < R-  ' 
for any pair (i, j).  

PROOF. Consider the power series 

Since pj5) I const dk, it follows that the power series converges for 16z I < 1, 
i.e. 1 z  1 < K 1 ,  and since 6- '  > 1 it follows that the common convergence 
radius R of all such series satisfies R 2 6- ' > 1 [and so, by Theorem 6.6, P is 
transient]. Conversely if P has convergence parameter R > 1, then since for 
any fixed pair i, j 

is bounded as k -+ oo, it follows 
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as k + co. Moreover this is true for any pair of indices i, j. If 6 < R- ', 6- kpjf '  
is unbounded as k + co (since /lkt$) is for any /l > R}. 

Note that in general, however, in this situation of geometric transience one 
can only assert that 

p!k) < C i j ~ - k  
IJ - 

where Cij is a constant which cannot be replaced by a uniform constant for 
all pairs of indices (i, j). 

Corollary. I fP  is recurrent it is not possible to$nd a pair ofindices (i, j) and a 
6 satisfying 0 < 6 < 1 such that 

{This corollary is of course of chief significance for null-recurrent P.) 

The analogous question to these considerations for positive recurrent 
matrices P (R-positive, with R = 1, stochastic P )  in case P is also aperiodic, 
is that of whether and when the convergence: 

(see Theorems 5.5 and 6.5) where v' = ( c j }  is the unique stationary measure 
of P satisfying 0'1 = 1, takes place at a geometric rate for every pair of 
indices (i, j) .  This situation is called geometric ergodicity; it is known that if 
a geometric convergence rate to zero obtains for one pair of indices (i, j), the 
same geometric convergence rate is applicable to all indices, so that geome- 
tric ergodicity is a (uniform) solidarity result for a positive recurrent aperi- 
odic stochastic set of indices. However it does not always hold in such a 
situation; i.e. positive recurrent aperiodic stochastic P exist for which the 
rate in (6.4) is geometric for no pair of indices (i, j). 

6.4 Finite Approximations to Infinite Irreducible T 

Since the theory evolved in this chapter to this point for non-negative T 
satisfying our basic assumptions coincides with Perron-Frobenius results if 
T is actually finite, and is thus a natural extension of it to the countable case, 
a question of some theoretical as well as computational interest pertains to 
whether, in the case of an infinite T, its Perron-Frobenius-type structure is 
reflected to some extent in its (n x n) northwest corner truncations (,, T, and 
increasingly so as n + co. 

To make this investigation easier, it seems natural to make a further 
assumption for this section, that at least the irreducibility structure of T 
should be to some extent reflected in the structure of the truncation (,, T: 
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Assumption 4 :  All but at most a finite number of truncations (,, T ,  n 2 1, 
are irreducible.' 

We shall adopt the convention that a preceding subscript (n) refers to the 
truncation (,, T ;  thus e.g. (for sufficiently large n) (,, R is the convergence 
parameter of ,,, T, i.e. the Perron-Frobenius eigenvalue of (,, T is ,,, R - ' .  

Theorem 6.8. (,+ l ,R < (,,R for all irreducible (,,T. (,,R j R as n --+ co. 

PROOF. Let ,,, y = {,,,yi) be the positive right Perron-Frobenjus eigenvector 
of ,,, T; then the matrix ,,, P = {(,,pij) defined by 

is stochastic and irreducible, for all n for which (,, T is irreducible. 
Now the (n x n)  northwest corner truncation of ,,+ ,, P must be strictly 

substochastic, or (,+ ,, P could not be irreducible. On the other hand since 
this truncation has entries 

( n + l ) R  ( n + l l t i j  ( n + l ) ~ j / ( n + l ) ~ i ,  

i ,  j = 1, . . . , n, and for these indices (,+ ,, t i j  = ,,, t i j ,  it follows that it has 
positive entries in the same position as ,,, P and so is irreducible; con- 
sequently its Perron-Frobenius eigenvalue is strictly less than unity. On the 
other hand its convergence radius is clearly (,, R/(,+ ,, R, since (,,+ ,, t i j  = t i j ,  
i , j =  1,2,  ..., n. 

Therefore (,, R/,,+ ,, R > 1, as required. 

Thus ,,, R 1 (,, R for some (,, R satisfying R I (,, R < ,,, R,  since (,, tIkl I tik] 
implies that R I ,,, R. 

Now, we have 
n 

where we assume that for every n (sufficiently large) {(,, y,) has been scaled so 
that (, ,y,  = 1. Put 

yj* = lim inf (,,yj 
n+m 

for each j = 1, 2, . . . , so that yT = 1, co 2 yj* 2 0. By Fatou's Lemma 
m 

(m,R 1 tijyT I y*, i = 1, 2, . . .  
j =  1 

Iterating this, we find 

' This assumption does not in fact result in essential loss of generality-see the Bibliography 
and Discussion to this chapter. 
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and taking i = 1, using the fact that yT = 1 and the irreducibility of T ,  
implies y? < cz for all j. Hence JJ* = {y*) is an (,, R-subinvariant vector; 
hence y* > 0, and (,, R I R, the last by analogy with part ( d )  of Theorem 
6.3. 

Hence finally 

which is as required. 

Theorem 6.9. Let (,,x' = {(,,,x,) and (n,y = {(,,, y,) be the left and right Perron- 
Frobenius eigenvectors, normed so that ,,,xl = 1 = ,,,yl, of (,,T, where the 
infinite matrix T is R-recurrent. Then 

lim ,,,yi = yi, lim (,,xi = xi 
n -m  n+cc 

exist, for each i, and x' = (Y , )  and y = {y , )  are the unique R-incariant measure 
and rector, respectirely, of T ,  nor~ned so that x ,  = 1 = yl. 

PROOF. We give this for the y only, as is adequate. From the proof of 
Theorem 6.8 

y* = {y*), y* = lim inf (,,yi 
n -  30 

is always an R-subinvariant vector of T,  and when T is R-recurrent (as at 
present) it must be the unique R-invariant vector of T with first element 
unity, y. (Theorem 6.2.) 

Let i* be the first index for which 

y: = lim inf (,,y,-. < lim sup (,,y,. I co. 
n - m  n -  3) 

Then there exists a subsequence {ar }  of the integers such that 

If we repeat the relevant part of the argument in the proof of Theorem 6.8, as 
in the proof of this theorem, but using the subsequence {n,), r = 1, 2, . . . 
rather than that of all integers, we shall construct an R-invariant vector of T ,  
3.' = {ji) with first element unity, but with 

which is impossible, by uniqueness of the R-invariant vector y with first 
element unity. 0 

In the following theory we concentrate on how the determinantal and 
cofactor properties of the matrices [(,,I - R(,, TI relate to those of the 
infinite matrix [I - RT]. Since (,, R > R, the reader will recognize here that 
there is a relationship between this theory and that of $2.1 of Chapter 2. In 
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actual fact we shall not pursue the relation to any great extent, persisting 
rather in the investigation of the approximative properties of the finite trun- 
cations to the Perron-Frobenius-type structure of T. Some investigation of 
the determinantal properties of [(,,I - p,, TI as n + co, for p I R however 
occurs in the Exercises.' 

Write,2 

(,, cij(P) = cofactor of the (i, j )  entry of [,,,I - p . ,,, TI; (,, cZj = (,) ci j (R) .  
We note that for 0 j p I R ,  

(n,A(P) > 0 

since p < (,, R [this follows from a fact already used in the proof of Theorem 
1.1, that for a real square matrix H, the characteristic function det [,?I - HI is 
positive for i exceeding the largest real root, if one such exists]. 

We shall now consider only the quantities (,,A, {,,, cij). 

Theorem 6.10. ( a )  As n + oo, 

( n , ~ j i / ( n , ~ i i  f .Yij > 0 (i, j = 1, 2> . . .), 

where,.forjixed i, (xi j ) ,  j = 1, 2, . . . is the minimal left R-subincariant measure3 
of T. 

( b )  limn,, (,,A 2 0 exists; and if lim (,,A > 0, T is R-transient, 
limn,, (,, cij  2 0 exists for etiery pair (i, j), and all these limits are positive or 
zero together. For an R-transient matrix, ( , ,A and (,, ci j  have positive or zero 
limits together. 

PROOF. Since (,, R > R ,  and (,, cji /( , ,  A is the (i, j )  entry of [(,,I - R(,, TI- ', it 
follows from Lemma B.l of Appendix B that 

( n l ~ j i  = (,,A . (,,)Tij(R), SO that ,,,cji > 0 for i, j = 1 ,  2, 

and since it is clear that (,, 115' t lijk' as n + CO, 

See Exercise 6.8. 

Noting that the definition of these symbols differs here from that in Chapter 2, slightly. 

As defined at the outset of 56.2. A similar proposition will, of course. hold for R-subinvariant 
vectors. 
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as n + co, which proves (a). [The inequality and the rest of the assertion 
follows from Theorems 6.2 and 6.3.1 

We now pass to the proof of (b). By cofactor expansion along the 
(n + 1)th column of: [(,+ ,,I - R . (,+ ,, T] with its jth row and column 
deleted, 

and - 
( n + ~ ) ~ j j / n +  1 , n + 1  - ( n ) C j j ;  

where (,+ ,,cjjlk, ,+,  is the (k, n + 1) cofactor of this matrix. The corre- 
sponding matrix formed from (,+ ,,T by crossing out its jth row and column, 
may not be irreducible, but none of its eigenvalues can exceed I/(,+ ,, R in 
modulus.' Hence 

in the same manner as in the first step of the proof of this theorem. Thus 

O < ( n + l ) C j j  5 (n)Cjj, 
so that 

lim ,,,cjj 2 0 
n-m 

exists; let us put cjj for the value of this limit. Thus as n -+ co 

@,A 1 lim (n,cii[l - (n,Lii(R)l 
n- m 

= cii[l - Lii(R)] 2 0 

exists; and if the limit is positive Lii(R) < 1, so T is R-transient. Further 
since 

(n) Cji/(n) Cii X i j  > O 

it follows that if for some i ,  cii > 0 then the limit 

cji = lim (,,cji 
n - r m  

exists and cji > 0, for all j = 1, 2, . . . and if cii = 0, 

exists. Thus we have that in the matrix whose (i, j) entry is cji each row is 
either strictly positive or zero. 

See e.g. Exercise 1.12, (e'). 
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By making the same considerations as hitherto for the transpose of T, T', 
we shall obtain the same conclusion about the columns of this same matrix, 
whose (i, j) entry is c,,; so that finally all c,, are positive or zero as asserted. 

Finally, if T is R-transient, L,,(R) < 1, and since 

lim (,)A = cii[l - L,,(R)] 

the conclusion that lim (,,A and the c,, are positive or zero together, follows. 
0 

Corollary. For any pair (i, j )  

with both sides converging to xij = {xji)-' as n + oo, if T is R-recurrent. 

PROOF. The inequalities 

I (n )" i j  I ; {xi;}- 1 < - , 
(n) ci i  l ( r z ) c j j l  

are given by the theorem, as is the convergence in each. Let {x(i)} be any 
R-subinvariant measure of T. Then by the minimality property of {xij] 

,Tij 5 x(j)/x(i) = {x(i)/x(j)}- 5 {,?ji] - (6.5) 

which completes the proof of the inequality. 
If T is R-recurrent, {xij), j = 1, 2, . . . is the only R-invariant measure of T 

with ith element unity. Hence all inequalities in (6.5) become equalities, 
which completes the assertion. 17 

Thus we can compute precrse bounds, from (,, T for the unique R-incariant 
measure with ith element unity of an R-recurrent T. 

6.5 An Example 

We illustrate a number of the results and ideas of this chapter by an example 
which has the feature that the countable non-negative matrix T = {tlj) con- 
sidered is more conveniently treated in doubly infinite form rather than 
having index set {1,2,. . .) as could be achieved by relabelling. It will be taken 
up again in Chapter 7. 

Suppose T = {tij),"pj= - ;. is defined by 

[ O  otherwise 
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where b > 0, so = 1, si > 0,0 I I i I < h + 1 ,  where h I co and si = 0 other- 
wise, but t,, ,, , = t -  ,- ,, -, = 0; and 

def 

s = sup si < (1 - 2b), 
i t 0  

the right-hand side being independent of h. 
Let uik' = {ujk)}, I i 1 = 0, 1, 2, . . . , k 2 0, and suppose 

where do)  2 0, l ' d O )  = 1 and ubO) > 0, so uiki 2 0, + 0 for all k 2 0 (in parti- 
cular uhk' > 0 for a11 k 2 0). Further, since 1'T when restricted to its 
"central" (2h + 1 )  elements is ( ( 1  - b)s-,, s-,+ ,, . . . , s- ,, s o ,  s,, . . . , s,- ,, 
(1  - b)s,), it follows that co > l'dk' for all k 2 0, so that 

satisfies 1 ' ~ ' ~ '  = 1, dk )  2 0, a$) > 0. 
We shall determine the asymptotic behaviour as k + oo of $). The related 

vectors uik), a(k) shall for the present be used as an aid in the proof only, 
though there are evident connections with the notions of ergodicity of not 
necessarily stochastic matrices, in the manner discussed in Chapter 4. 

First notice that 

where s = {sj) .  Thus 

since so = 1, 

since 

Thus 

(ad"+ I ) ) -  ' I (1 - s) / ( l  - 2b) + ( s / ( l  - 2b))(a$))- ' 
whence, iterating 
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In view of (6.6), a t) ,  k 2 0, is therefore uniformly bounded from 0. say 

and 

a b k ) 2 6 > 0 ,  k 2 0  I , 
lim inf a$) 2 1 - 2b(l - s)- ' > 0 / 

where 6 is independent of h. 
In the case of jinite h, the finite matrix {tij)f, j = - h  is primitive and the 

asymptotic behaviour of dk) is evident from Theorem 1.2. In particular, if 
(x'~')', y(h) are the Perron-Frobenius eigenvectors of this matrix normed so 
that ( x ' ~ ' ) ' ~ ' ~ )  = 1, I 'Y(~)  = 1 and r(h) the Perron-Frobenius eigenvalue, then 
as k - + m  

if the vectors S(h), (x(~)) '  are made infinite in both directions by augmenting 
them by zeros, and (cf. Theorem 4.6) 

Let us now turn to the case of injinite h. Consider T modified so that all 
entries are replaced by zero except tij, i, j = -n, . . ., - 1, 0, 1, . . ., n which 
are as for the original infinite T (thus we are effectively considering a 
(2n + 1) x (2n + 1) truncation of this infinite T). For the modified matrix 
taking do) = y'"), where y'") is the infinite extended probability-normed right 
Perron-Frobenius eigenvector of the truncation, as considered above, it 
follows from (6.7) that for the modified matrix a',) = y'") for all k, and from 
(6.8) that y$' 2 6 > 0 (where y'"' = {yy')), for all n. Using Cantor's diagonal 
selection argument, we may ensure that elementwise as k -+ co 

through some subsequence {n,) of the integers, where 0 < l'y I 1 (since 
l t y ( n )  = 1, y$' 2 6). Since from (6.7), for ( i 1 I n, 

It follows from the case i = 0 (since ytk)  2 6 > 0) that the limit as k -+ co of 
the denominator exists, and if we denote it by P- ', 0 < P < co and 

Now put x' = {si y,). It is readily checked that x'T = P-'x' and, clearly 
x'y = 1, y?s, < co. Thus by Theorem 6.4, B = R, and T is R-positive (it is 
evidently irreducible), with y being a multiple of the unique R-invariant 
vector and x' of the R-invariant measure. Since T is evidently also aperiodic, 
by Theorem 6.5 for each (i, j), as k -+ co 
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Notice that apart from Theorem 6.4 and 6.5, we have used ideas akin to  
Theorem 6.9. We shall develop this theme further in Chapter 7 and extend 
the conclusions of the example there. 

Had we developed the theory of $6.2 more extensively, we would have 
been able to show also that for each (i, j ) ,  as k + cc 

Bibliography and Discussion 

The strikingly elegant extension of Perron-Frobenius theory to infinite 
irreducible non-negative matrices T is as presented in $6.1-s6.3 basically due 
to D. Vere-Jones (1962, 1967) where a more detailed treatment and further 
results may be found. The reader is referred also to Albert (1963), Pruitt 
(1964), Kendall (1966), and Moy (1967a) in this connection; the last refer- 
ence gives a particularly detailed treatment of the periodic case of T (see also 
Sidak (1964~))  and a generalization to irreducible T of the Martin boundary 
and potential theory of 95.5. The latter part of the proof of Theorem 6.1 is 
due to Kingman (1963, 98), and Theorem 6.4 is due to Kendall (1966). 

As regards the Basic Assumptions 1-3 on T, consequences of relaxing 2 
(i.e. of not necessarily assuming irreducibility) are examined briefly by King- 
man (1963, 96) and Tweedie (1971, $2). The role of 1 and 2 and the con- 
sequences of their relaxation are examined by Kendall (1966) and Mandl & 
Seneta (1969; $2). 

For infinite irreducible stochastic P the study of problems of geometric 
rate of convergence to their limit was initiated by Kendall(1959) and it is to 
him that the term geometric ergodicity, and the proof of its being a solidarity 
property, are due. The study was continued by Kendall (1960); Vere-Jones 
(1962) proved the uniform solidarity results for geometric convergence rate 
for transient and positive-recurrent P discussed in Theorem 6.7 and its 
following remarks: and further contributions were made by Vere-Jones 
(1963), Kingman (1963) and Vere-Jones (1966). 

For examples of the usage of the Vere-Jones R-theory see also Seneta & 
Vere-Jones (1966), Moy (1967b), Daley (1969), and Kuich (1970~). Study of 
countable non-negative T as operators on sequences spaces has been under- 
taken by Putnam (1958, 1961) and, comprehensively, by Vere-Jones (1968). 

The contents of $6.4 are taken from Seneta (1967a), a paper largely mo- 
tivated by some earlier results and ideas of Sarymsakov (1953b; 1954, $822- 
24) for infinite primitive stochastic P. Thus the result (,, R J (,, R 2 1 is due 
to him, as is the idea of the proof of Theorem 6.10; although in the absence 
at the time of Vere-Jones' extension of the Perron-Frobenius theory to 
infinite irreducible T, his results were necessarily rather weaker. The present 
proof of Theorem 6.8 is adapted from Mandl & Seneta (1969) and differs 
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from the proof in Seneta (1967~). The Corollary to Theorem 6.10 is essen- 
tially due to Kendall (see Seneta, 1967~) .  

A discussion of the fact that Assumption 4 in $6.4 does not result in 
essential loss of generality is given in Seneta (1968a) as a result of correspon- 
dence between Kendall and Seneta; and to some extent in Sarymsakov 
(1953b, pp. 11-12). Some computational aspects of the two alogorithms of the 
theory are briefly discussed in this 1968 paper also, and analysed, extended 
and implemented in Allen, Anderssen & Seneta (1977). 

The example of $6.5 is adapted from Moran (1976). 

6.1. Prove the last part of Theorem 6.1 (avoiding the use of Lemma A.4) by assuming 
to the contrary that R = cc and using the relation 7;,(z) = (1 - L,,(z))-'. 

Hint: For some k ,  I f '  > 0. 

6.2. Show that if the Basic Assumption 3 is not made, then the situation where the 
convergence parameter R is 0 must be defined as R-transient to accord with the 
present theory for R > 0. 

(Kendall, 1966) 

6.3. Show that if T is periodic, with period d, then there exist "eigenvectors" (with 
possibly complex elements) corresponding to each of the " eigenvalues" R -  ' 
e2"lh d ,  h = 0, 1, 2, . . ., d - 1 if T possesses an R-invariant vector. 

6.4. Suppose A  and B  are finite or infinite irreducible non-negative matrices, and R A ,  
R, 2 0 their convergence parameters. Suppose X  is a non-negative, non-zero 
matrix such that A X ,  X B  are elementwise finite, and that 

A X  = X B .  

Show that, if each row of X  has only a finite number of non-zero elements, 
R, 2 R, ; and if each column of X  has only a finite number of non-zero elements 
R, I R,. (Thus if X is both row-jnite and column-finite in the above sense, 
RA = RB .) 

Hint: Show first A ~ X  = X B k .  
(Generalized from Kuich, 1970b) 

6.5. A semi-unrestricted random walk with reflecting barrier at the origin, as 
described by the stochastic matrix P of Example (3) of Chapter 4, 44.1, with 
n = q can be shown to have 

(Recall that in this instance the index set is {0, 1, 2, . . .).) 
Show that P is transient if and only if p > q; in which case R = (4pq)-' and 

P is R-transient. 
Hint: 1 - 4pq = (p + q)2 - 4pq. 

6.6. Let A = {aij) be an infinite matrix defined by a , , i  = 0, ai. 2i = c l ,  ai, 2 i +  = c 2 ,  
a,,, i = d, a z i +  = d ( i  2 I), ai,  = 0 otherwise; c,, c 2 ,  d > 0. Show A  is 
irreducible. 
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Construct a non-negative matrix X which is row and column finite such that 
AX = XB where B = {bi j] ,  is given by 

all other bLj = 0. 
For the case c1 + c, = p, 0 < p < 1, it can be shown that for the matrix B, 

F l  ,(z) = f(1 - f i- 4pqz2]). 

Use this fact and the result of Exercise 6.5 to deduce that 

Hint:  Take X = {x,,} to be such that its jth column contains only zeros, apart 
from a "block" of elements with values 1, of length 2'-'. 

(Kuich, 1970b) 

6.7. Show that if T has period d, and all the assumptions of $6.4 are satisfied, all ,,, T 
for sufficiently large n have period d also. 

(Seneta, 1967a) 

6.8. Carry through as far as possible the arguments of Theorem 6.10 in the case of the 
more general matrix [I - PT], 0 < P I R. Show in particular that 

def 

d(P) = lim det [,,,I - p . ,,,TI 2 0 
n-m 

exists for 0 5 f l  I R [the approach to the limit being monotone decreasing as n 
increases]. Thus d(P) may in a sense be regarded as a (modified) characteristic 
polynomial of T;  note that d(R) = 0 certainly for R-recurrent T, as one might 
expect. 



CHAPTER 7 

Truncations of Infinite 
Stochastic Matrices 

For irreducible infinite stochastic matrices T = P the approximative beha- 
viour of finite truncations, touched on in $6.4, acquires probabilistic 
significance inasmuch as such matrices may be regarded in the role of transi- 
tion matrices of countable Markov chains. 

It is, first, of some interest to glance at the consequences of evolving the 
theory of $6.4 with /3 = 1 rather than fl = R (in the notation of Chapter 6), 
although we know now, in view of Theorem 6.6, that it is only for transient P 
that there may be differing results. On the other hand, even with recurrent P, 
the stochasticity of P will imply a more specialized structure of results than 
for general R-recurrent T. 

Second, an important problem in applied work involving countable 
Markov chains is that, even though every entry of the transition matrix 
P = {p , , ) ,  i, j = 1, 2, . . . may be precisely specified, and even though the 
matrix is irreducible and positive-recurrent, the unique stationary distribu- 
tion, which is of central importance, may not be analytically determinable. 
Recall1 that for a matrix P with the specified structure, the stationary dis- 
tribution is the unique invariant measure x' of P satisfying x'l = 1, to which, 
in this case, we shall also refer as the probability-normed invariant measure. 
Evidently finite approximative techniques, based on successive finite trunca- 
tions of P, for the probability-normed invariant measure are necessary for 
computer implementation. Results such as Theorem 6.9 and Theorem 
6.10(a) provide limiting results which enable us to calculate from finite 
truncations, approximations to the unit-normed invariant measure (i.e. with 
some specific element unity). One might suppose in practice that, once an 
adequate approximation to the unit-normed measure has been obtained, 

See Theorem 5.5 and Exercise 5.5. 
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one for the stationary distribution can be obtained merely by dividing each 
of the elements in the approximation by their sum. Nevertheless algorithms 
should be developed for the direct computation of the probability-normed 
measure, and this is a different problem which we shall therefore examine. 
Allied problems, on which we shall also touch, are those of numerical 
stability and conditioning with increasing truncation size, and rate of 
convergence. 

7.1 Determinantal and Cofactor Properties 

In the sequel, (,,P is the (n  x n)  northwest corner truncation of P and the 
other quantities follow notation preceding, and in the body of, Theorem 
6.10, if in that notation we replace (,, T by (,, P. 

Theorem 7.1. If,for stochastic irreducible P all but at most ajinite number of 
truncations (,, P, n 2 1, are irreducible,' as n + co : 

( a )  (,, cji( l) /( , ,  c i i ( l )  7 xij  > 0 ,  (i, j = 1 ,  2, . . .) where, for jixed i, (x i j} ,  j = 1, 2, 
. . . constitutes the minimal subintlariant measure2 of P. 

( b )  lim (,, A(1) 2 0 exists; if lim (,, A(1)  > 0 ,  P is transient. c, ,( l)  = 

lim ( , ,c i j ( l )  exists for ecery pair (i, j )  and all these limits are positizje or 
zero together. For a transient matrix (,, A ( l )  and (,, c,,(l) haue positice or 
zero limits together. 

( c )  If P is recurrent, c j i ( l )  is independent of i. 

( d )  There exist recurrent P where all c i j ( l )  are positive; and transient P 
where lim (,, A ( l )  > 0.  

PROOF. Proof of ( a )  and ( b )  follows that of Theorem 6.10, taking into account 
Theorem 5.3. [See Exercise 6.8 for a direction of further generalization.] 

We need to prove ( c )  only in case the c i j ( l )  are positive and P is recurrent. 
In the manner of the proof of Theorem 6.10, approached with the quantities ,,, Fij rather than (,, L i j ,  we arrive at 

and since Fi j ( l  - )  = 1 for all (i, j )  since P is recurrent (Theorem 5.4D) the 
result follows. 

To demonstrate the validity of (d) ,  we return to the stochastic P inves- 
tigated in $5.6, which we note has all its truncations irreducible. Moreover 

As remarked in $6.4, this assumption does not result in essential loss of generality. 

In the sense of Theorem 5.3. 
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in the notation 
column in turn 
hand for I < j 

of $5.6, the determinant being evaluated by first adding each 
to the first; and then expanding by the nth row. On the other 
< n 

by deleting the jth row and column of [(,,I - ,,,PI, adding all columns in 
turn to the first in the resulting matrix; and finally expanding the determin- 
ant by its first column. 

Thus for j = 1, 2, . . . 

irrespective of whether P is recurrent or transient. On the other hand P is 
transient if and only if sc, > 0 and so (in this case) P is transient if and only if 

ctm = lim i,,)A(l) > 0. 
n + m  

Corollary. Supposing P is as in Theorem 7.1 and recurrent and {x(i)} is any 
invariant measure then as n + cc 

in)cji(W(n)cii(l) T x(j)Ix(i) 1 (n)cjj(l)/(n) cij(1). (7.1) 

[This is merely a restricted version of the Corollary to Theorem 6.10.1 

There may be probabilistic grounds for calling those transient P where 
lim (,, A(l) > 0, strongly transient since in the example considered in the 
above proof and an appropriate generalization,' the positivity of this limit 
indicates that there is a positive probability of a corresponding Markov chain 
"going to infinity" by the "shortest possible" route (in these cases well 
defined) no matter what the initial state index, the limit itself being this 
probability if the chain starts at state-index 1. 

The use of cofactorJdeterminant methods in the style of Theorems 6.10 
and 7.1 has a number of further useful features which will become evident 
after the following preliminary lemma. 

Lemma 7.1. Let {yij, i, j = 1, . . . , n) be n2  arbitrary numbers and deJine the 
matrix X={xij) ,  i, j =  1, . . . ,  n by x i j=  - j l i j ,  i, j =  1, . . . ,  n, i f j ,  and 
xii = Ink,l yik, i = 1, . . . , n. Then 

where the summation is over a subset J of the set J* ofall ordered n-tuples (j,, 
. . . , j,), each entry chosenj?om (1, 2, . . . , n). 

PROOF. Evidently 

See Exercise 7.1. 
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where the 6 ( j 1 ,  . . ., j,) are integers. Indeed, putting y,,, = y,,, = 
. . .  - - y,," = 1 and all other y,, = 0, we see that 6( j , ,  j,, . . . , j,) is the determin- 

ant of the resulting X ,  which we may call X ( j l ,  j,, . . . , j,). It will therefore 
suffice to prove that det X ( j l ,  j,, . . . , j,) = 0 or 1. I f j ,  + i for any i = 1, . . . , n, 
then each row sum of X ( j , ,  j,, . . . , j,) is zero, and hence this matrix is 
singular. Suppose for some i, say i = i*, j ,  = i. Then the i*th row of X ( j l ,  j ,  , 
. . . , j,) has unity in the i*th position and zeros elsewhere, and deleting the 
i*th row and column again gives a matrix of the form of X ( j , ,  j,, . . . , j,) but 
of dimension (12 - 1)  x ( n  - 1). Hence the result follows by expanding 
det X ( j , ,  j,, . . ., j,) by the i*th row and induction on n. 0 

Corollary. I f X ( i ,  i) is the cofactor of the (i, i )  entry of X ,  then 

the sumnzation being over some subset Ji o f  ordered (11 - 1 )  tuples ( j , ,  j,, . . . , 
j,- ,, j,+ l ,  . . . , j,) with each element selected,from the numbers ( 1 ,  2, . . . , i - 1, 
i + 1, , . . ,  n}. 

with summation over all ordered ( n  - 1) tuples where the hi(. .  . )  are 
integers. Again 

is X( i ,  i) if we put all yij = 0 except 

and the form of the ( n  - 1 )  x ( n  - 1)  matrix of which this is the determinant 
is that of the body of the lemma. 0 

The crux of the above results is that det X and X( i ,  i )  are each expressed 
as a sum of products of the yi;s with a plus sign for every summand. 

It is clear that if Q = {qij}, i, j = 1, . . . , n is an irreducible strictly substoch- 
astic matrix of the nature of ,,,P in Theorem 7.1, then I - Q has the form of 
the matrix X in Lemma 7.1 if we put yij = qij, i # j, and yii = 1 - z;=, qik. 
Returning specifically to the setting of Theorem 7.1 we have 

so that, by Lemma 7.1 and its Corollary, 
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with summation over a subset of ordered n tuples (k, ,  k , ,  . . . , k n )  where each 
element is selected from (1, 2, . . .); and 

with summation over a subset of ordered ( n  - 1 )  tuples (k, ,  k , ,  . . ., ki-  ,, 
k,+ ,, . . . , k,,) with each element selected from (1,  2, . . . , i - 1, i + 1, . . .}. 

Theorem 7.2. Suppose the matrix P = {p,,) satisjies the conditions of Theorem 
7.1,' and a stochastic matrix P" = {p,,} satisjies for each (i, j )  

where 0 I ei and 

Then P" is transient if and only if P is. 

PROOF. Let ,,, z ( 1 )  and (,,Eii(l) have the obvious meaning for p, which, in 
view of (7.3) has the same incidence matrix as P and has coincident trunca- 
tion structure. 

Using the elementary inequalities 

we obtain from (7.2)-(7.3) that 

If P is transient, I,"=, p$) < co by Lemma 5.3, and, as in tlie proof of 
Theorem 6.10, by dominated convergence 

Hence by (7.4) 

(n)Eii(l) lim ---- < rn 
n+m (n )A( l )  

and the limit must be 1, PI!), so P" is transient. That P" transient implies P 
transient is proved similarly. 0 

' Again, the restriction of ireducibility of truncations is made for convenience rather than 
necessity. 
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Corollary. In the event that P and P are recurrent and x' is the unique ( to  
constant multiples) inr'ariant measure of P, then has incariant nzeasure it 
satisfying 

( 1  + E ) - ~ x '  5 .tf < (1  + ~ . ) ~ x ' .  

PROOF. In view of (7.3) and (7.2b) 

Now 

and as n + cc from Theorem 7.1 and its Corollary putting x' = { ~ ( i ) ) ,  

and similarly for the matrix p. Thus 

( 1  + 6 ) -  * [ s ( j ) / x ( i ) ]  s k(j)/.?(i) I (1 + ~ ) ~ [ s ( j ) / s ( i ) ] .  

Thus taking i fixed and j = 1 ,  2, . . . yields the result. 

In the case that P is positive-recurrent and satisfies the conditions of 
Theorem 7.1, let us write n' = {xi) for the unique probability-normed invar- 
iant measure (unique stationary distribution). Let us take i fixed in (7.1) and 
then rewrite (7.1) as 

and by dominated convergence as n + co, 
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Thus the left-hand side provides a direct pointwise estimator of z' converg- 
ing elementwise from above, providing one solution to the problem of 
numerically approximating the stationary distribution as mentioned in the 
preliminary remarks to this chapter. 

Attention thus focuses, for a given finite truncation (,, P, on the question 
of computation of the cofactors which enter into relation (7.5); or (7.1) if a 
unit-normed version of the invariant measure for recurrent P is required. 
Since we may fix i, we require for specific 11 under consideration, (,,cjL(l), 
(,) cjj(l), (,) cij(l), j = 1, . . . , n, that is: the ith row and column and the diag- 
onal of the matrix Adj ((,,I - (,, P). {In the case of a unit-normed measure, 
if both upper and lower approximative bounds for x(j)/x(i) are not required, 
(7.1) shows that the ith row of the adjoint matrix will suffice.) Putting 

and 

from the fact that 

where (,,A is our customary notation for a vector with unity in the ith 
position and zeros elsewhere. The required vectors are therefore obtained as 
solutions to linear equation systems involving the matrix ((,,I - (,, P )  and 
taking suitable ratios of elements allows, in theory, implementation of (7.1) 
or (7.5). 

It is clear in regard to numerical properties of the approximations that the 
structure of the matrix ((,,I - (,, P )  as n + co must be considered in respect 
of numerical stability and conditioning; and that such considerations are 
important for any practical (computer) implementation of the algorithms 
(7.1) or (7.5). 

For each n sufficiently large, the matrix (,, P is of the form Q = {q,,) where 
Q is irreducible, strictly substochastic, so that Qk + 0 as k + co. Hence 
(I - Q)- ' = I,"=, Qk > 0 (Lemma B.l of Appendix B), and moreover the 
matrix A = {aij) = I - Q with whose inversion we are in practice concerned, 
is also diagonally dominant viz. 

with strict inequality for at least one i (on account of strict substochasticity). 
This last property is a favourable one in regard to numerical aspects of the 
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systems (7.6) as n -+ oo. We shall not dwell on this here;' and shall confine 
ourselves to a discussion of the sensitivity of ( I  - Q')-' to perturbations in 
the matrix I - Q'. We shall henceforth, therefore, be confining our remarks 
to the first of the systems (7.6) when written in transposed form. 

The sensitivity of B-' to perturbations in a nonsingular matrix B = {bij) ,  
i, j = 1, . . . , n may be measured by the condition number 

where 1 .  I is a vector norm in R,.  In dealing with a matrix of the form 
B = ( I  - Q')  where Q = {qi j )  is an irreducible strictly substochastic matrix, 
it is natural to use the 1, norm yielding 

Thus 

Q 5 1 1 - q , ,  I l I  - Q ' /  I max 2(1 - q j j )  5 2 
j 

noting that q j j  < 1 for each j,  and since if r is the Perron-Frobenius 
eigenvalue of Q', (1  - r ) -  ' is the Perron-Frobenius eigenvalue of ( I  - Q')- ' ,  
it follows that 

Thus 

( 1  - q l l ) / ( 1  - r )  5 K(I  - Q ' )  5 2(1 - llQ11~)-'. (7.7) 

Clearly with Q = ,,, P, and ,,, r denoting its Perron-Frobenius eigenvalue, 
since we are considering infinite recurrent P, it follows from Theorems 6.6 
and 6.8, since R = 1. and ,,, r = I/(,, R, that (,,r 1 1. Hence from (7.7), as 
I7 + CO 

so the system 

suffers increasing ill-conditioning with increasing n. (By symmetry, using the 
I ,  norm, similar remarks would apply to the other equation system of the 
pair (7.6))  While this does not necessarily mean that direct solution of (7.6) 
for (,,hj and/or (,,gi followed by suitable adjustment to implement (7.1) or 
(7.5) will produce increasingly numerically inaccurate approximations with 
increasing n, several reasons exist,2 in the case of positiue-recurrent P, for 

See Bibliography and Discussion to this chapter for references. 

See Bibliography and Discussion to this chapter. 
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considering rather than (7.5) as the finite approximation procedure for the 
stationary distribution x' = {nj), the possibility of the procedure (for fixed i )  

in case it can be shown to hold. An obvious probabilistically aesthetic reason 
is that the left-hand side of (7.9), unlike that of (7.5), is itself a probability 
vector and the relation (7.9) is a manifestation of "convergence in distribu- 
tion". The reader should note also that the approximations can be cal- 
culated from the single system (7.8), again unlike the situation (7.5). 

We shall establish in the next section that (7.9) holds at least for certain 
classes of irreducible positive-recurrent P. We shall refer to it as the probabi- 
lity algorithm. 

7.2 The Probability Algorithm 

In this section we deal (except where otherwise stated) with positive- 
recurrent stochastic P. A rather obvious question which may be asked if it is 
sought to approximate x' by a sequence of finite probability vectors, is 
whether this may be done by the finite stationary distribution vectors (,,n' 
corresponding to the (irreducible) finite stochastic matrices (,, P formed from 
(,, P by augmenting one specific column of (,, P. We first show that the 
left-hand side of (7.9) may be regarded as such a (,,xl, which result thus 
establishes an equivalence between two algorithms: that based on (7.8) for the 
unadjusted truncations ,,, P, and that based on an ,,, P. This differing view- 
point of the finite approximate vectors (,$, further, enables us to consider 
different methods for their calculation from the numerically relevant stand- 
point of condition (number) as n + CO, which in the case of calculation 
directly from (7.8) appeared unsatisfactory, but may be moreso from a differ- 
ent computational approach. 

The equivalence mentioned above is based on the following result,' where 
Q = {q,,) is an (n  x n )  substochastic matrix satisfying Q~ + 0 as k -+ CO. Thus 
the matrix (I - Q)-' = I,"=, Qk 2 0 exists by Lemma B.l of Appendix B. 

Lemma 7.2. Let ~ ( 2 0 ,  # 0) be the unique solution of 

(I - Q')x = b (b 2 0, # 0). 

Then the matrix 

P = Q + (I - Q)lbl/b'l 

is stochastic, and ij n is any stationary distribution vector corresponding to it, 

n' = x'lx'l. 

Which indicates how the assumption of irreducibility of (,, P may be dispensed with. 
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PROOF. It is obvious P 2 0, P1 = 1. A finite stochastic matrix always has at 
least one stationary distribution vector' n' (thus n' > 0', x'l  = 1, n'P = n'). 
Thus 

n'Q + nl( l  - Q)lbl/b'l = n' 

SO 

n'(1 - Q) = (n'(1 - Q)l/bll)b' 

so n' is a multiple of x' whence the conclusion follows. 

Corollary. Under the assumptions of'  the lemma, P has a unique stationary 
distribution vector n', and this is the unique solution to the linear equation 
11 x (n + 1 )  system 

and of the corresponding (n  x n )  system if any column of I - P (and the 
corresponding zero entry of the right-hand side) is omitted. 

PROOF. The uniqueness of n' follows from the uniqueness of x'. Then as in the 
discussion in $4.2 (preceding Definition 4.3), it follows that the index set of P 
contains a single essential class of indices, and the other conclusions are as in 
that section. 13 

It follows that if we take Q = ,,, P and b = f i ,  and if ,,, Pk + 0 as k -+ cc 
(certainly so if ,,, P is assumed irreducible), then P = (,, P [that is, (,, P aug- 
mented in the ith column to make it stochastic], and from (7.8) 

as required. 
The next step is to show that (,, n' + n' elementwise as n -+ oo at least for 

some classes of positive-recurrent matrices P. 

Lemma 7.3. Suppose that we can jnd  a subsequence {(,,P), s 2 1 ,  of trunca- 
tions, each member of which satisfies (,,Pk -+ 0 as k + ~ 0 , ~  and such that, by  
changing one column only (not necessarily the same,for each s), ( n s )  P can be 
made stochastic in such a way that those n, - 1 stationary equations, of the 
whole n, equations 

(n,)  v'(n,)P = (n,) 0'3 

which do not incolve the relevant column, coincide with (n,  - 1) of thejirst n, 
stationary equations, of the injnite system 

v'P = c'. 

See Lemma 1.1, and remarks in $4.2. 

For irreducible P this involves no loss of generality-see Exercise 7.3. 
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Then (using the precious ilotation,for stationary distribution vectors) 

,,,n,=n, f n r ,  j = l ,  . . . .  n,. 
r =  1 

In particular, as s + co, (,s, nj 1 nj,  j 2 1. 

PROOF. From the Corollary to Lemma 7.2, (n, - 1)  of the equations 

(n,) ~ ' ( n , ,  P = Ins,  F' 

together with lr,sl.lr'l = 1 determine the stationary distribution vector l,3,7c' 

uniquely. Under the assumptions of the lemma, therefore 
I ?Is 

(,,,nj = nj  1 1 nk, j = 1, . . ., n,. 0 
' k = l  

Note that in this situation we have monotone convergence from above, 
comparable to (7.5). 

Two kinds of infinite stochastic matrices P = (pij), assumed a priori 
positive-recurrent which satisfy the conditions of Lemma 7.3 are the 
following. 

( a )  Generalized Renewal Matrices. 
These satisfy 

and are a generalization of the infinite matrix considered in $5.6 [See also the 
Bibliography and Discussion to $#3.1-3.2.1 If we consider formed from 
(,, P by replacing p i l ,  i = 1, . . . , n by 

so only the first column of ,,,P is affected, then clearly the last (n  - 1 )  
stationary equations of ,,, P are also stationary equations of P. (7.10) holds 
with i = 1. 

( b )  Upper-Hessenberg Matrices. 
A matrix of this type satisfies 

so all entries below the subdiagonal are zero. Clearly thejirst ( n  - 1)  station- 
ary equations of (,, P formed by augmenting the last column of ,,, P are also 
stationary equations of P. Thus (7.10) holds with i = n in this case, and 
hence with i not jixed irrespective of n. By Lemma 7.3 therefore 

in the sense of elementwise convergence. 
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Definition 7.1. An infinite P = ( P , ~ ) ,  i, j = 1, 2, . . . is said to be a Markov 
matrix if all the elements of at least one column are uniformly bounded away 
from zero.' 

We shall show that for a Markov matrix, which nzay not be irreducible, a 
unique stationary distribution vector always exists, and may be approx- 
imated by (,, n' calculated from appropriately augmented truncations (,, P. 

Theorem 7.3. Let P = {p,,), i, j = 1, 2, . . . be a Markoc matrix, and assume 
wlthout loss ofgenerality that p , ,  2 6 > 0, i 2 1. Let stochastic (,, P beformed 
fronl (,, P by augnlentation of  tlzejirst column ( i f n e c e ~ s a r y ) . ~  Then (,, P and P 
lzace unique stationary distrrbutlon cectors (,, n', n' respecticely, and 

elenlentwise. 

PROOF. (,) P is evidently a finite Markov matrix (its 1st column is positive), 
and hence is, clearly, regular i.e. contains a single essential class of indices 
which is aperiodic. Hence by the discussion in 94.2 for stochastic matrices 
with a single essential class, there is a unique stationary distribution vector 
,,, n'. This clearly satisfies 

where 
def 

Q - (,,P - blf'; 

is clearly substochastic with all row sums (1  - 6).  Hence (e.g. by Theorem 
4.3), Qk + 0 as k -t cc, so (I - Q)-  ' exists (Lemma B.l of Appendix B )  and is 
non-negative, whence the system (7.11) has a unique solution given by 

Let n* = { n J ) ,  j 2 1, be given by 

nj* = lim inf (,,nj, j 2 1, 
n - r a  

where, from (7.12), nT 2 6. Hence by Fatou's Lemma, since ( , ,nf1 = 1 

0 < b 5 (n*)'l 5 1. 

Rearranging (7.11) as 

This is consistent with Definition 4.7 

See Exercise 7.7. 
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and again applying Fatou's Lemma 

(n*)'(P - 61f';) + 6f; (n*)' (7.14) 

whence from (7.13) 

(n*)'P I (n*)' 

Now, in fact equality must hold at all entries of this equation, otherwise by 
stochasticity of P and (7.13) 

Hence there is elementwise equality in (7.14), and hence (n*)'l = 1. Hence P 
has a stationary distribution vector, viz. n*. 

Now, it is readily seen that P contains a single essential class of indices 
(those which communicate with index 1) which is also aperiodic 
( p , ,  2 6 > O), any other indices being inessential and hence transient 
(Lemma 5.2). Hence, as k -+ CQ, Pk has an elementwise limit matrix, which is 
the zero-matrix unless the index 1 is positive-recurrent (see Chapter 5) .  The 
case of a zero limit matrix, in view of 

(n*)'Pk = (n*)' k 2 1 

leads as k -t co, by dominated convergence to 0' = (n*)' which is a contra- 
diction. Hence the index 1 is positive-recurrent, and there is a unique sta- 
tionary distribution vector corresponding to the single essential class. An 
argument, analogous to that given in $4.2 for a finite matrix containing a 
single essential class, now reveals that there is a unique stationary distribu- 
tion vector n', being this vector for the positive-recurrent class augmented by 
zero entries for any inessential indices in P. 

Thus n* = n. Suppose now that for some j, 

Select a subsequence {n,) so that, for that j ,  

lim = lim sup (,pj .  
k -  n n-  cc 

Repeating the previous argument through the subsequence {n,} we arrive at 
a contradiction to the uniqueness of n. Hence 

Corollary. I f  P is, additionally, assumed irreducible, then 

(nln' = (n,h'I /(n,h'Il + n', 

PROOF. Exercise 7.3 shows that (,,P satisfies the role of Q in Lemma 7.2 so 
(7.10) is applicable. 0 
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The above reasoning in part enables us to deduce (a generally 
unverifiable) necessary and sufficient condition for 

in the case of a P which is positive-recurrent. We have in general 
- 

(nix' ( n f  = (n)n' 

where (,, P is ,,, P (where Exercise 7.3 shows that (,, P satisfies the role of Q in 
Lemma 7.2), augmented in some column (not necessarily the same for each 
n) to make it stochastic. Define n* = {nj*) by 

(0 5 )nT = lirn inf j 1. 
n+m 

By Fatou's Lemma 0 I (n*)'l I 1, and 

(n*)'P 5 (n*)' 

Now suppose the set of probability vectors {(,, R}, n 2 1, is tight' (viz. any 
infinite subsequence itself possesses an infinite subsequence converging 
elementwise to a probability vector). Suppose for some j, say j = j,, 

Suppose ini), (n,) are subsequences such that 

lim = lim sup (n,njo, lim = lim inf (,,nj0 
i +  cc n+m k + m  n-cc 

Using tightness and taking subsequences if necessary 

lim ( , , n  = nl ,  lim (r,k,n = n2 
i -m k -  m 

where n,  and n, are probability vectors which differ in at least the j,th 
element. But, by Fatou's Lemma, applied to the corresponding finite systems, 
it follows that 

whence summing both sides clearly n; P = n;, n; P = n;,  and since P is 
positive-recurrent, n ,  = n2 which is a contradiction. Hence 

where n* = { n f }  is the unique stationary distribution vector n of P (n* must 
be a probability vector by tightness of (,,, n)). 

Conversely, if (,,n -+ R where n is the unique stationary distribution 
vector of P, then the sequence {(,,n) is obviously tight. Thus tightness of 

n)  is necessary and sufficient for (,, n -+ n. 

' This notion is well-known in the theory of weak convergence of probability measures, though 
the equivalence of our definition and the usual one is known as Prokhorov's Theorem. 
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Returning to the case of a Markov matrix P, it is interesting to envisage 
the calculation of (,,.n, for fixed n, directly,from the linear equation system 
(7.11) transposed, rather than (as for a P which is also irreducible) from (7.8) 
and (7.10) with i = 1 which incurs problems of numerical condition as 
n + oo.' We have already noted that with 

Q = ( , ,P  - 61f';, 

Q1  = (1  - 6)1 

so if we assume for convenience of application of (7.7) that, as there, Q is 
irreducible, obviously r = 1 - 6, 1IQ'I = 1 - 6, whence 

so " good conditioning" with increasing n persists for this computational 
procedure. 

EXAMPLE. The following is a structurally simple irreducible infinite matrix P, 
with irreducible truncations, which is both a generalized renewal matrix and 
a Markov matrix. P = {pij) is defined by 

1 0  otherwise, 

where p = {pj), j 2 1, is a probability distribution with each element positive. 
It is easily shown from the stationary equations that the unique stationary 
distribution vector .rr = inj) satisfies 

Thus for j 2 2, 

and 

See also Exercise 7.9. 
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For a situation such as obtains here, and in general where 

we see that 

(recall that if P is positive-recurrent, 71 > 0, from Lemma 5.6) as n + oo, so 
we are able to make deductions about convergence rate. Specifically, using 
the present example, we see directly from (7.15) that 

C nk - const. 1 pk 
k = n +  1 k = n +  1 

so the convergence rate of (,,nj to nj with n for fixed j may be arbitrarily slow 
or arbitrarily fast, in dependence on corresponding choice of p = ( p j ) .  

7.3 Quasi-stationary Distributions 

The purpose of this section is to set into a probabilistic framework results on 
the pointwise convergence of the Perron--Frobenius eigenvectors of trunca- 
tions (supposed irreducible): that is, to consider in a probabilistically 
relevant framework truncation results of the kind of Theorem 6.9 (and 
Theorem 6.8), whereas so far in this chapter we have followed through, 
rather, the consequences of Theorem 6.10, which in essence avoids the 
Perron-Frobenius structure of truncations. 

The motivating result here is Theorem 4.6 which shows if Q is a finite 
primitive strictly substochastic matrix, then its probability-normed left 
Perron-Frobenius eigencector has a probabilistic interpretation akin to the 
stationary-limiting distribution corresponding to primitive stochastic P. 

We shall thus call the probability-normed left Perron-Frobeniuseigenl;ector 
of a jnite irreducible substochastic matrix Q (which may be stochastic) n 
quasi-stationary distribution. This notion thus generalizes that of a stationary 
distribution (which is unique for irreducible stochastic P). The next generali- 
zation needed is that of a positive-recurrent stochastic matrix P which we 
may apply to the countable case. The following shows how to do this. 

Lemma 7.4. Let Q be an irreducible substochastic (perhaps not strictly) matrix 
with convergence parameter R, and suppose Q is R-positive. Then either R > 1, 
or R = 1 and the matrix is stochastic and positive-recurrent. 
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PROOF. Since the elements qir' of Qk may be interpreted as probabilities it is 
clear that the convergence radius R of 

satisfies R 2 1 (see Theorem 6.1) as we have already noted in Chapter 6. If 
R = 1, since Q1 I 1 from substochasticity of Q, 1 is an R-subinvariant- 
vector, and by the assumed R-positivity and (a dual of) Theorem 6.2, 
Q1 = 1, so Q is stochastic; and in view of Theorem 6.6 is positive-recurrent. 

0 

Definition 7.2. An irreducible substochastic R-positive matrix Q is said to 
have a quasi-stationary distribution vector v, if its unique (to constant mul- 
tiples) R-invariant measure x' may be probability-normed, in which case 
v = xlx' l .  

An analogue of Theorem 4.6 can now be proved (had we developed the 
theory of $6.2 more extensively for Q of the kind described in Definition 7.2) 
which lends analogous meaning to v as in the finite case.' We shall not do 
this, but turn to the truncation setting. 

If we assume Q infinite irreducible substochastic and R-positive, and all 
but a finite number of its northwest corner truncations (,, Q, n 2 1, irredu- 
cible (for convenience), of interest is the asymptotic behaviour as n + cc of 
the quasi-stationary distributions, ,,, v,  of (,, Q. In particular, if Q has a quasi- 
stationary distribution, v, the question arises: under what conditions is it 
true that (,,v + v elementwise, in analogy with our investigations of $7.2? 
Theorem 6.9 provides the information that the unit-normed Perron- 
Frobenius left-eigenvectors converge to the unit-normed R-invariant meas- 
ure of Q, but we have no information on the consequences of probability 
norming. 

We may, however, apply the condition of tightness of the set of quasi- 
stationary distributions {(,, v) in a manner analogous to that in $7.2. 

Theorem 7.4. For infinite irreducible substochastic and R-positive Q with all 
but ajinite number of (,, Q, n 2 1, irreducible, if the set ofprobability distribu- 
tions (,,, v), n 2 1, is tight (i.e. any infinite subsequence possesses an infinite 
subsequence conrlerging elementwise to a probability cector) then Q possesses a 
quasistationary distribution cector v, and (,,v -+ v.  Concersely, ijfor some prob- 
ability distribution cector v, (,, v + v then the set {(,,v} is tight, and v is the 
(unique) quasistationary distribution cector of Q. 

PROOF. If (,, R denotes the convergence parameter of (,, Q (i.e. the reciprocal 
of its Perron-Frobenius eigenvalue), we have from Theorem 6.8 that 

See Seneta and Vere-Jones (1966). 
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(,,, R 1 R. For the rest we need only imitate arguments in $7.2, and shall do so 
for completeness. 

Suppose {(,, v} is tight and suppose for some j, say j = j, , and appropriate 
subsequences {nil, {n,) 

lim ,,,, v,, = lim sup ,,,v,, > lirn ,,,, v,, 
1  - m n+3C k'x 

= lim inf ( n l ~ t J o  . (7.16) 
n + 5  

By tightness, taking subsequences if necessary 

lim ( , ,  t1 = v lim (,,, v = v2  
I + =  k +  z 

where v, and v, are probability vectors which differ in at least the j,th 
element. By Fatou's Lemma applied to the systems 

we find 

By R-positivity of Q and Theorem 6.2, 

and v,  = v 2  which is a contradiction to (7.16). Hence 

exists, by tightness v = {vj) is a probability vector, and by a repetition of the 
foregoing argument, is a quasi-stationary vector of Q, and the unique one. 

Conversely, if (,, v + v for some probability vector v, then { ( , ,  v) is tight. A 
repetition of the foregoing argument establishes that v must be a quasi- 
stationary distribution of Q, and hence the unique one. 0 

Corollary 1. If Q has no quasi-stationary distribution, ((,, v )  cannot comerge 
elementwise to a probability rector. 

Corollary 2. I f  Q = P is assumed stochastic, but the assumption ofR-posititity 
is dropped entirely, and ( , , v +  v for some probability cector v, then P is 
positive-recurrent, and v is its unique stationary distribution. 

PROOF. AS before we find 

Rv'P I: v'. 

Since v ' l  = 1, and R 2 1, a contradiction results unless R = 1 and 

v'P = v'. 0 
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EXAMPLE. We return to the example of $6.5 in the light of the present section. 
The (doubly infinite) matrix T considered there when h = co has the 

property that 

is strictly substochastic since 

and so = 1 while the other s j  (see (6.6)) are positive but uniformly bounded 
from unity. The finite matrix {tij}, i, j = - n, . . . . - 1,0, 1, . . . , n of dimensions 
(2n + 1) x (2n + 1) when transposed may be denoted by (,,Q and is the 
(2n + 1) x (2n + 1) "centre" truncation of Q. It has been noted that Q and ,,, Q are irreducible. The vector y'"' is the quasi-stationary distribution vector 
of ,,, Q, and, in relation to the matrix ( h ,  Q the conclusion 

is a manifestation of Theorem 4.6. It is, further, shown that 

and hence through some subsequence {n,) of the integers 

and Q is R-positive, with y' a multiple of the unique R-invariant measure 
of Q. 

Hence Q has a quasi-stationary distribution: viz. yljl'l, but it is not clear 
that 1'y = 1 (i.e. that y itself forms the quasi-stationary distribution vector); 
nor that y'"' -+ y as n -+ co. Tightness of the sequence {J""') would suffice, 
from Theorem 7.4, to establish these facts, and we shall now show that 
tightness obtains, under certain additional assumptions. 

We again consider (doubly infinite) Q modified so that all entries are 
replaced by zero except the (i, j) entries where i, j = - n, . . . , - 1,0, 1 , .  . . , n ;  
and consider y'"' to be the infinite extended left probability-normed Perron- 
Frobenius eigenvector of the truncation (,, Q. 

The additional constraints which we now impose are 

The consequent symmetry about the index 0 in the matrix (,,Q clearly 
induces a symmetry about this index in the vector y'"' = {y j " ' )  

Now, 

yp)  = { b s ,  , y j"! , + (1 - 2b)si yj"' + bs,, , yj"! lJ/y(n) 
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I i I 5 n, where ? ( ? I )  = .s>'") - 2bsn J$"'. Thus 

On expanding the squared terms, and using the assumed symmetry of the sj's 
about 0 : 

Then, if we put M2(n) = I:= - n  i2Y?' (the " second moment " of the probabi- 
lity distribution g(n)) ,  we have 

Let us now focus on the two terms on the right of (7.18) in turn. Since, 
putting v j  = sj ,  j f 0, c, = s1 = s 
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by the assumed symmetry and monotonicity of the si with increasing / i 1 

since 2, v,y$'" c s 'y, y?' = S. From (7.18) where we shall put w(n) = 

2bsn yjl"'/C, s, yy', and the above, 

M,(n) 5 {2b + {sM,(n)/(s + yg'(1 - s)) ) ){ l  - w ( n ) ) ' ,  

providing the expression { .  . . )  is positive. Now 

and recalling that 

lim inf y$j > 1 - 2b(l - s)-' 
n -  m 

a number of possible additional conditions will ensure that {...I is ulti- 
mately positive and 

lim sup M,(n) - M ,  < co 
n+m 

e.g. sn -t 0 as 11 -t co (which ensures w(n)  -t 0 ) ;  or merely s < (1 - 2b)(l  - b).  
It remains to show that the boundedness of M,(n) ensures the tightness of 

the set of probability distribution vectors j3Jn))  in the present circumstances. 
That tightness obtains now follows from well-known arguments in probabi- 
lity theory, but for completeness we shall give a direct proof. For any c > 0 

("1 < c-' 1 i2y?) I c - ' ( M 2  + 6 )  ' y y i  - 
l i / > c  lil > c  

for some positive 6 > 0 independent of n; so for sufficiently large c, 

1 yp)  < e or, equivalently 'y yj" > 1 - -e 
l i l > c  J i /  5 c 

for all n. We have already seen that there is a subsequence {nk)  of the positive 
integers such that -v("~) - ty  as k + co where 0 < I> I 1. We could similarly, 
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starting from any infinite subsequence of the integers, obtain a further sub- 
sequence for which a similar proposition was true, so let in,} denote such a 
further subsequence, and y = {y,)  the limit vector corresponding to it. Then 
for arbitrary E,  and correspondingly chosen c, applying the above inequali- 
ties with n = n,, and letting k -+ co, we obtain 

and letting c -t co yields l'y 2 1 - E so I$ = 1, which establishes tightness 
by establishing that y is a probability vector. 
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EXERCISES 

7.1. "Slowly spreading" infinite stochastic matrices P = {pij}, i, j 2 1 are defined by 
the condition 

pi, i + r  = 0, i 2 1, r 2 2 
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( i t .  all elements above the superdiagonal are zero). Irreducibility, which we 
assume, clearly implies pi, i +  > 0, i 2 1 : this situation clearly subsumes both the 
Example of $5.6, used in the proof of Theorem 6.11, and that of Exercise 6.5 
above. 

Show that 

so that 

Note that this condition is far from satisfied in the situation of Exercise 6.5, 
even if p > q i.e. p > f (after adjusting the index set in that question 
approximately), 

(Adapted from Kemeny, 1966) 

7.2. For the matrix P = {pij), i, j 2 1, defined by 

where 0 < p, < 1 for all i 2 1, show that an invariant measure x' = {x(i)} always 
exists and is unique to constant multiples by solving the difference equation 

under the auxiliary condition x(2) = (pl /q,)x(l), where x(1) is taken as positive 
but otherwise arbitrary. 

Hence use the result of Exercise 7.1 to show that there exist stochastic P for 
which an invariant measure exists, even though 

lim (n,A(l) > 0 
n - r m  

(again, contrary to expectations, but again only in the transient case). 

7.3. Show that if P is an infinite irreducible stochastic matrix and Q is any square 
northwest corner truncation of P, then Qk -+ 0 as k -+ co. (Hint: Assuming Q is 
(n x n), so its index set is I = {l, 2, ..., n}, show that in P, for each i E I, 
i -+ {n + 1, n + 2, . . .}, and invoke Theorem 4.3.) 

7.4. Assume P is an infinite stochastic matrix with a single essential class of indices, 
which, further, contains an infinite number of indices. Show that if Q is any 
square northwest corner truncation of P, then Qk -+ 0 as k -+ co. (This result 
generalizes that of Exercise 7.3.) 

7.5. Assume P is an infinite stochastic matrix, which contains one and only one 
positive-recurrent class of indices, which consists of an infinite number of 
indices. (All other indices are thus null-recurrent or transient). Show that the 
conclusion of Exercise 7.4 continues to hold. 

Construct further results along the lines of Exercises 7.3-7.5. 
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7.6. Suppose the infinite stochastic matrix P is defined by P = lp'  where p is a 
probability vector whose elements are all positive. Show that P is positive recur- 
rent. If (,,p' comprises the first n elements of p', whose sequence of elements is 
now assumed non-increasing, show that 

(This simple example shows that the condition number of the system (7.8) may 
approach infinity arbitrarily slowly or fast.) 

(Seneta, 1976) 

7.7. Show by example that an infinite stochastic P which is a Markov matrix may 
have finite truncations (,, P which are eventually all stochastic. Relate this result 
to that of Exercise 7.4, to generalize the Corollary to Theorem 7.3. 

7.8. Noting the arbitrariness in rate in Exercise 7.6 where P is a structurally simple 
example of a Markov matrix, and the arbitrariness in the example concluding 
$7.2, obtain explicit forms for (,,d and R' for the Markov matrix of Exercise 7.6 
and investigate the pointwise convergence rate. (Hint: For a probability vector 
P> PVP') = P'). 

7.9. Show that the linear system (7.11) may be written as 

in terms of the (unaugmented) (n x n)  northwest corner truncation (,,P. 
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APPENDIX A 

Some Elementary Number Theory 

We consider the set of all integers, both non-negative and negative. 

Lemma A.1. Any subset, S, of the integers containing at least one non-zero 
element and closed under addition and subtraction contains a least positive 
element and consists of all multiples of this integer. 

PROOF. Let a E S, a # 0. Then S contains the difference a - a = 0, and also 
0 - a = -a. Consequently there is at least one positive element, I a 1 ,  in S,  
and hence there is a smallest positive element, b, in S. Now, S must contain 
all integral multiples of b, for if it contains nb, n = 1, 2, . . . etc., then it must 
contain (n + l ) b  = nb + b, and we know it contains b. Moreover, ( -n )b  = 
0 - (nb)  is the difference of two elements in S, for n = 1, 2, . . . and so S 
contains all negative multiples of b also. 

We now show that S can contain nothing but integral multiples of b. For 
if c is any element of S, there exist integers q and r such that c = bq + r, 
0 5 r < b (qb is the multiple of b closest to c from below; we say 
c r r(mod b)).  Thus r = c - bq must also be in S, since it is a difference of 
numbers in S. Since r E S, r 2 0, r < b, and b is the least positive integer in S, 
it follows r = 0, so that c = qb. 0 

Definition A.1. Every positive integer which divides all the integers a,, a, ,  
. . . , a, is said to be a common divisor of them. The largest of these common 
divisors, is said to be the greatest common divisor (g.c.d.). This number is a 
well defined positive number if not all a,, a,, . . . , a, are zero, which we 
assume henceforth. 

Lemma A.2. The greatest common divisor of a,, a,, . . . , a,, say d, can be 
expressed as a " linear combination ", with integral coeflcients, of a,, a,, . . . , 
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a,, i.e. 
k 

d = 1 biai,  bi integers. 
i = l  

PROOF. Consider the set S of all numbers of the form If=, bi u i .  For any two 
such 

and hence the set S of such numbers is closed under addition and subtrac- 
tion, hence by Lemma A. l  consists of all multiples of some minimum posi- 
tive number 

k 

Thus d, the greatest common divisor of a,, . . ., a,, must divide a, so that 
0 < d I v. Now each ai is itself a member of S (choose the bs so that bi = 1 
and all other bs zero), so that each ai is a multiple of c, by Lemma A.1. Thus 
a contradiction arises unless d = a, since d is supposed to be the greatest 
common divisor of the as. 0 

Definition A.2. Let a i ,  i = 1,2, . . . be an infinite set of positive integers. If dk is 
the greatest common divisor of a,, . . . , a,, then the greatest common divisor 
of a i ,  i = 1, 2, . . . , is defined by 

d = lim d,. 
k - m  

The limit d 2 1 clearly exists (since the sequence (d,} is non-increasing). 
Moreover d is an integer, and must be attained after a finite number of k, 

since all the d k s  are integers. 

Lemma A.3. An injnite set of positive integers, V = {a i ,  i 2 I), which is closed 
under addition (i.e. i f  two numbers are in the set, so is their sum), contains all 
but a jnite number o f  positice inultiples of its greatest common diaisor. 

PROOF. We can first divide all elements in the infinite set V by the greatest 
common divisor d, and thus reduce the problem to the case d = 1, which we 
consider henceforth. 

By the fact that d = 1 must be the greatest common divisor of some finite 
subset, a,, a,, . . . , a,, of V,  it follows from Lemma A.2 that there is a linear 
combination of these as such that 
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where the nis  are integers. Let us rewrite this as 

where m is the sum of the positive terms, and - 1 1  the sum of the negative 
terms. Clearly both n and m are positive integer linear combinations of the 
ais and so belong to the set V. Now, let q be any integer satisfying q > tz x 
(n  - 1); and write 

where a is a positive integer, a 2 (n  - 1). Then using (A.l)  

so that q is also in the set V. Hence all sufficiently large integers are in the set 
V,  as required. 0 

Corollary. If a,, a,, . . ., a, are positive integers with g.c.d. unity, then any 
sufficiently large positive integer q may be expressed as 

k 

q = C a J L  
1=1 

where the pi are non-negative integers. 

We conclude that this subsection by an application which is of relevance 
in Chapter 6, and whose proof involves, in a sense, a tightening of the kind of 
argument given in Lemma A.3. 

Lemma A.4.' Let u i  (i  = 0. 1, 2, . . .) be non-negative numbers such that, for all 
i , j 2 0  

Suppose the set V of those integers i 2 l.for which ui > 0 is non-empty and has 
g.c.d., say d ,  which satisfies d = 1. Then 

u = lim u,"" 
n - tm  

exists and satisfies 0 < u 5 co; further, for all i 2 0 ,  ui 5 ui 

PROOF. The set V is closed under addition, in virtue of ui+ 2 ui u j  , and since 
d = 1, by Lemma A.3, V contains all sufficiently large integers. Hence for any 
r E V there exists an s E V,  s > r, such that the g.c.d. of r and s is unity. Thus 
by Lemma A.2 we have 

Due to Kingman (1963). This is an analogue of the usual theorems on supermultiplicative or 
subadditive functions (e.g. Hille & Phillips 1957, Theorem 7.6.1; Khintchine, 1969, $7). 
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for some integers b,, b, ,  Not both of b ,  and b ,  can be strictly positive, since 
r, s 2 1. Assume for the moment 

Let n by any integers such that n 2 rs, and let k = k (n )  be the smallest 
positive integer such that 

b/r I kln I a/s;  

such an integer certainly exists since 

Then n = Ar + Bs 

where A = na - k(n)s, B = k(n)r - nb are non-negative integers. Now, from 
the assumption of the Lemma, 

A B un = uAr+ Bs 2 uAr uBs 2 . . . 2 u, u s ,  (n  2 rs). 

Thus 1,'n > U , a -  (ks ln)  ( k r ln ) -b  
un - us 

Letting n + co, and noting k(n),'n + blr, we see that 

lim inf u,':" 2 U : - b s l r % - b  = U j l r .  
n-ao 

This holds for any r 6 V and so for any sufficiently large integer r. Hence 

lim inf u,"" 2 lim sup ujlr 
n-+m r -+m 

which shows u = limu,'"' 
n-+m 

exists. Further, again from the inequality ui+ 2 ui u,, 

so that l l k i  i > U ,  ( ~ k i  ) - r 

and letting k -+ co, 

u i 2 u i ,  i 2 1  

and since ui > 0 for some i 2 1 the proof is complete, apart from the case 
i = 0, which asserts 

1 2  u,. 

The truth of this follows trivially by putting i = j = 0 in the equality, to 
obtain u,  2 U: . 

We need now to return to the possibility that b ,  0, b,  > 0. If we write 
b ,  = a, - b ,  = b, so that 1 = as - br, then the roles of s and r need to be 
changed in the subsequent argument and, apart from this k = k (n )  needs to 
be chosen as the largest integer such that 
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This leads eventually once more to 

lim inf u,"" 2 u,"' 
n - r m  

and the rest is as before. 

Corollary. 

U = sup utIn 
n 
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Some General Matrix Lemmas 

Lemma B.1. I f  A is ajinite n x n matrix with real or complex elements such 
that Ak --+ 0 elementwise as k + co, then (I - A)-' exists and 

convergence being elementwise. (A' = I by definition.) 

PROOF. First note that 

(I - A)(I + A + . . . + Ak- ') = I - Ak, 

Now, for k sufficiently large, Ak is uniformly close to the zero matrix, and so 
I - Ak is to 1, and is therefore non-singular. (More specifically, by the con- 
tinuity of the eigenvalues of a matrix if its elements are perturbed, the eigen- 
values of I - must be close to those of I for large k, the latter being all 1; 
hence I - Ak has no zero eigenvalues, and is therefore non-singular.) Taking 
determinants 

det (I - A) det (I  + A + . . .  + Ak-l )  = det (I  - Ak) + 0, 

therefore det (I - A) # 0. 

Therefore 

(I - A)- ' exists, and 1 + A + .. . + Ak- l = (I - A)- '(I - Ak). 

Letting k -+ oo completes the proof of the assertion. 



B. Some General Matrix Lemmas 253 

Corollary. Given an n x n matrix A, for all complex z suf$ciently close to 0, 
(I - zA)-' exists, and 

in the sense of elementwise concergence. 

PROOF. Define 6 by 

6 =max la i j / .  
i, j 

Then putting Ak = {aj;)}, it follows from matrix multiplication 
1 a!;) I I n 6', and, in general 

) a $ ) l < n k - 1 6 k ,  a l l i , j = l , 2  , . . . ,  n. 

Hence Akzk + 0 if ( z  I < (n 6)-l ,  and the result follows from Lemma 

that 

B.1. 
0 

Note: We shall call the quantity R(z) r (I - zA)- ' the resolcent of A, for 
those z for which it exists, although this name is generally given to 
(zI - A)-1. 

The above Corollary also provides an analytical method for finding Ah 
for arbitrary k for real matrices of small dimension. It is necessary only to 
find the resolvent, and pick out the coefficient of zk. Note that 

(I - zA)-' = Adj (I - zA)/det (I - zA). 

and the roots of det (I - zA) = zn det (z-'I - A) for z f 0, are given by 
zi = 1; ' where the Ai are the non-zero eigenvalues of A. Hence 

n 

det (I - zA) = n (1 - zAj) 
j =  1 

where the ILj are the eigenvalues of A, and the singularities of the resolvent 
are all poles, possibly non-simple, since the elements of the adjoint matrix are 
polynomials of degree at most n - 1. 

EXAMPLE. Find Pk  for the (stochastic) matrix: 

3 

, pi > O ,  i = 1, 2, 3, c p i  = 1. 
i = l  

det (I - zP) = (1 - z)'(l - zpZ). 
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Therefore 

By the use of partial fractions and the separating of components, we get 
eventually 

Thus equating coefficients of zk, 

Lemma B.2. I f  A = {a i j )  is a jnite n x n matrix with real or complex 
elements, the matrix series 

converges elementwise; for each t > 0 the limit matrix is denoted by exp ( tA) ,  
in analogy to the scalar case. If B is also an (n  x n )  matrix, then ifAB = BA 

exp (A + B) = exp (A) . exp (B).  

PROOF. Let 6 = maxi, I aij  1 .  As in the Corollary to Lemma B.l 

I a!!) I 5 nk- ' dk, all i, j = 1, 2, . . . , n 

and elementwise (absolute) convergence follows from the fact that 

converges for any t, 6, n > 0. 
The second part of the assertion follows from this simply by multiplying 

out the series for exp (A) ,  exp (B), and collecting appropriate terms, as is 
permissible under the circumstances. 0 



APPENDIX C 

Upper Semi-continuous Functions 

Let f ( x )  be a mapping of a subset of the Euclidean n-space R,, into R ,  
extended by the values + co and - co. 

Definition C.1. The function f is said to be upper semicontinuous on .d, if 

for any x ,  E d, where {xk}  is any sequence contained in such that x,  + xo  
as k + m .  

Lemma C.1. ( a )  For any ( jn i t e ,  denumerable, or even non-countable) set of  
functions A which are upper semi-continuous on d ,  

h ( x )  = inf f ( x )  
f € A  

is also upper semi-continuous on d. 
(b)  An upper semi-continuous function dejned on a compact .d attains its 

supremum for some x ,  E d. 

PROOF. ( a )  By definition for every f ( x )  E A 

h ( x )  < f ( x ) ,  V x  E ,d. 

Thus for any xo E d and x,  -+ x,, with {x,) in .d 

so that lim sup h(x,) 5 lim sup f (x,) s f  (x,)  
k+ m k - t  m 

for any f E A. 
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Thus lim sup h(x,) 5 inf f(.x,) = h(xo) 
k+ z f - \  

(b)  Let a = sup,, ,, f (x) for an f upper-semicontinuous on d. We can 
find a sequence {x,} c .oJ' such that 

Since d is a compact, there exists a convergent subsequence {x,,}, i = 1,2, . . . 
converging to a value x, E r8. By upper semicontinuity of j' 

Thus 

a = lim sup f (q) sf (so) c a. 
1 - J L 1  

f(s,) = a. 
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Corrigenda. 

p.6 1. In exercise 2.20. 1964 should read l964b. In exercise 2.22 
k(T) 5 k(TS) should read k(S) 5 k(ST) (or k(S) 5 k(TS)). 

pp. 69-71. Several typos related to occurrence of min and 
omission of C. 

p.77, mid-page. (2.27) should read (2.28). 

p.82, line 7J. . = 1 should be replaced by = 0. 

p.91. Assertion in exercise 3.6 is not valid, and exercise 3.7 is 
affected. 

p. 1 10, line 1 J . "Theorem 3.9" should read "Theorem 3.1 1 ". 

p.141. In statement of Corollary 1, a should be replaced by a. 

p. 166. At end of Proof of Lemma 5.3, replace cn by 1. 

p. 1 85, mid-page. Replace Pg by Ph 

p. 189, line 3 . Replace " itself is closed" by "itself is Borel" 

p.220. In the expression just above Hint: replace (d+cl+ c2 ) by 
(d+cl+ C? )2 

p.224. At the end of the statement of the Corollary, replace 
{ I ,  2, ... , i-1, i+13 ... n} by { I ,  2, ..., i-1, i, i+l,  ... n} 
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