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Chapter 1
Current Status and Characteristics
of Cancer

Cancer is among the most deadly and incapacitating disease known (Siegel et al.
2014). 13 Million new cancer cases surface annually and it is about 8 million
casualties worldwide each year—13% of the total 56 million victims of all causes
for death in the world. Despite numerous breakthroughs in cancer therapeutics
research, 16 million new cancer cases are expected to materialize by 2020. 5 Major
forms of cancer contributing to mortality globally are stomach, liver, colorectal,
lung and breast cancer. Within the European Union (EU), breast cancer is diag-
nosed every 2.5 min and a female falls victim to this disease every 7.5 min. Lung
cancer remains the most prevalent cancer worldwide and is responsible for 1.2
million new cases annually (Hesketh 2013). The prognosis of cancer is poor if
advanced or late stage cancer is diagnosed or if the tumor is found to be malignant.
According to the National Cancer Institute, national spending for cancer care in the
United States amounted to about $125 billion in 2010 and could reach staggering
$156 billion in 2020. It is thus imperative to understand cancer fully in terms of its
causation and its characteristics to design better treatment options for cancer
patients.

The causes of cancer are mainly classified into two categories: exogenous and
endogenous. The major exogenous factors that result in cancer causation are
radiation, diet, tobacco smoke, increased exposure to industrial carcinogens and
environmental pollution (Hesketh 2013). According to World Health Organization
(WHO), tobacco use is the most critical culprit for cancer, leading to about 20% of
global cancer deaths and about 70% of global lung cancer deaths. Epidemiological
studies conclude that the dominant driving forces for developing liver cancer in
South-East Asians are exposure to dietary aflatoxins and infection with hepatitis
viruses (Shuker 2007). The main endogenous factors that account for cancer
diagnosis are polygenetic disorders, genetic mutations (missense or silent muta-
tions, insertions and deletions), DNA mutations (chromosomal translocations and
gene amplification), dysregulation in cell signaling, overexpression of surface
receptors, enzymes and genes, and dysregulation of the replication, transcription
and translation machinery, cell cycle (Hesketh 2013).

© The Author(s) 2017
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Thanks to advances in high-throughput genotyping and proteomics tools to
identify potential tumor biomarkers, early cancer detection is possible (Michener
et al. 2002; Koomen et al. 2008). Several tumor biomarkers have been identified for
early cancer diagnosis: hypermethylation of p16, KRAS, BRAF and p53 mutations,
to name a few (Coppedè et al. 2014; Ng and Yu 2015). Compared with normal
tissues, cancerous tissues possess considerable physiological and morphological
differences in temperature, metabolism machinery, oxygen content, pH, and
expression of enzymes and markers, which are briefly summarized in Table 1.1.

1.1 Abnormal Metabolism

Metabolic perturbations are biochemical signatures of cancer cells
(Ganapathy-Kanniappan and Geschwind 2013). Most of its energy is obtained from
glucose in glycolysis, rather than from pyruvate’s oxidative breakdown in the
mitochondria. Even in the presence of abundant oxygen, glucose is converted to
lactate, which usually occurs anaerobically (Gatenby and Gillies 2004). The aerobic
glycolysis is also known as the Warburg effect (Vander Heiden et al. 2009). As the

Table 1.1 Comparison of the properties of cancer tissues with normal tissues

Parameters Normal tissues Cancer tissues

Metabolism Functional Abnormal

Temperature Body temperature Elevated, abnormal temperature
gradients

Lymphatic system Rapid clearance,
functional

Lack of lymphatic drainage

Interstitial pressure Normal High

Blood flow Regular and
continuous

Irregular and discontinuous

Vasculature
architecture/morphology

Ordered, normal
branching
Low Permeability
Even diameter of
vessels

Chaotic, disorganized, abnormal
branching
High permeability, leaky,
hypervasculature
Uneven diameter of vessels

Pore size/nm 2–60 100–780

pH of microenvironment Physiological (7.4) Mildly acidic (6.8)

Inflammation Absence Presence

Partial pressure of oxygen Normal Low (hypoxia)

Enzymes (MMP, telomerase,
ALP) expression

Normal High

Redox environment Normal Reductive in cytosol, oxidative in
mitochondria

Expression of markers Consistent,
balanced

Imbalance of pro- and
anti-angiogenic cues

2 1 Current Status and Characteristics of Cancer



tumor cells have a need to generate glucose, the glycosidase enzyme a-amylase that
catalyzes the conversion of starch to glucose was reported to be 85-fold more
concentrated in the tumor microenvironment (TME) (De la Rica et al. 2012). Due to
the active metabolism of tumor cells, lactic acid accumulation and insufficient blood
supply, the TME is highly acidic (Stubbs et al. 2000). To satisfy metabolic needs,
hypoxic tumors trigger the angiogenic switch to form new vessels (Bergers and
Benjamin 2003).

1.2 Abnormal Vasculature

In normal tissues, vessels are organized in a hierarchical manner such that all cells
are proximal to their vessels, and nutrients can be easily diffused and completely
consumed until they reach their targets (Siemann 2011). Compared to normal
vasculature, tumor vasculature architecture is often disorganized and heteroge-
neous, and lacks the ordered branching network of normal vessels (Narang and
Varia 2011). In tumors, vessel organization is aberrant and non-canonical, and
vessel diameters are non-uniform (Dudley 2012). Besides, tumor vessels have poor
pericyte cover (responsible for vasoconstriction), and arterioles and venules are
difficult to distinguish from each other, which contribute to the high degree of
disorder (Matsumura and Maeda 1986; Dvorak 2003). Blood flow through the
tumor capillaries is sluggish and sometimes stationary (Munn 2003). Hence, the
high irregularity, intermittent and discontinuous nature of the blood flow leads to
the entire TME, including the red blood cells and endothelium to be highly hypoxic.
The high hypoxia enables tumors to develop new blood vessels (extensive angio-
genesis), and as a result, high vascular density of tumors is common (Maeda et al.
2000).

The copious amounts of vascular permeability factors and mediators such as
nitric oxide (NO), carbon monoxide (CO), bradykinins, vascular endothelial growth
factor (VEGF), kallikrein proteases and peroxynitrite present all account for the
leaky microvasculature and hyperpermeability due to the large gaps and pores that
reside between endothelial cells (Fang et al. 2011).

1.3 Resistance to Anti-proliferative Growth Factors (GFs)

Elevated levels of pro-angiogenic VEGF persist in cancer cells, and angiogenic
regulators such as anti-angiogenic angiostatin and endostatin are often in dearth
(Carmeliet and Jain 2000). Transforming growth factor (TGF)-b, whose function is
ablated in tumor cells, accounts for anaplasia or loss of differentiation in tumor cells
(Wakefield et al. 2000).

1.1 Abnormal Metabolism 3



1.4 Unlimited Replicative Potential

Telomerase, an enzyme preventing the degradation of telomeres and causing the
cells to be immortalized, is overexpressed in cancer cells (Gupta and Qin 2003;
Hanahan and Weinberg 2011). They can also engage in alternative telomere
lengthening (ALT)—a process of recombination between telomeres of various
chromosomes. These autonomous cancer cells are independent of growth signals
and other molecular cues that prompt them to proliferate.

1.5 Immune System Activation and Inflammation

Pro-inflammatory cytokines are often secreted in tumor cells (Dinarello 2000).
Tumor-associated macrophages (TAMs) constitute the bulk of the immune cells
found in the TME. The cytokines TAM release could activate the expression of
VEGF, cyclooxygenases (COX2), epidermal growth factor receptor (EGFR),
matrix metalloproteinases (MMPs) (Goldberg and Schwertfeger 2010;
Koontongkaew 2013).

1.6 Interstitial Pressure

The tumor interstitial fluid pressure (TIFP) in solid tumors is particularly elevated
(14–30 mmHg for cancers) as compared to normal tissues (0 mmHg) due to the
richly developed and highly permeable vascular networks, as well as the presence
of non-functional lymphatic circulation (Torchilin 2011; Spencer et al. 2015). This
fact also forms a barrier against the uptake of chemotherapeutics and a lack of
treatment efficacy.
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Chapter 2
Clinical Anticancer Drugs for Cancer
Treatment

Besides cytoreductive surgery and radiotherapy, chemotherapy is the most widely
used therapeutic strategy in combating cancer. The high incidence of cancer has led
to a lot of immunotherapeutic and chemotherapeutic drugs to be developed and
approved by U.S. Food and Drug Administration (FDA). Antineoplastic agents
(approved or under development) can be broadly classified into:

(1) Antimetabolites: methotrexate, fluoropyrimidines (e.g. 5-fluorodeoxyuridine
(5-FU), and capecitabine), cytarabine, gemcitabine;

(2) Antimitotic agents: taxanes (e.g., docetaxel), vinca alkaloid (e.g. vincristine);
(3) Alkylating agents: carboplatin, cisplatin, oxaliplatin;
(4) Antitumor antibiotics: anthracyclines (e.g. doxil, daunorubicin), podophyllo-

toxins (e.g. etoposide, teniposide), campothecins (e.g. topotecan, irinotecan);
(5) Tyrosine kinase inhibitors (TKI): imatinib, gefinitib, dasatinib, sunitinib,

afatinib, lapatinib, vismodegib;
(6) Cyclin dependent kinase (CDK) inhibitors: alvocidib, palbociclib;
(7) Poly(ADP-ribose) polymerase (PARP) inhibitors: olaparib, rucaparib,

veliparib;
(8) Histone deacetylase (HDAC) inhibitors: mocetinostat, belinostat, romi-

depsin, vorinostat, trichostatin;
(9) Mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitors:

selumetinib, trametinib, cobimetinib;
(10) Serine/threonine-protein kinase B-Raf inhibitors: vemurafenib, sorafenib,

dabrafenib;
(11) Mammalian target of rapamycin (mTOR) inhibitors: temsirolimus,

everolimus;
(12) Phosphoinositide 3-kinase (PI3K) inhibitors: idelalisib;
(13) Ribonucleotide reductase (RNR) inhibitors: cladribine, tezacitabine,

fludarabine;
(14) DNA methyltransferase inhibitors: 5-azacytidine (5-AzaC), 5′-deoxy-

azacytidine (DAC);

© The Author(s) 2017
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(15) Retinoids: tretinoin, bexarotene;
(16) Monoclonal antibodies (mAbs): ofatumumab, ibritumomab tiuxetan,

rituximab.

These antineoplastic drugs often exert their anticancer effects via several
mechanisms of actions and their use in cancer treatment is briefly described below.

2.1 Antimetabolites

Methotrexate, a competitive antagonist of dihydrofolate reductase that participates
in the tetrahydrofolate synthesis needed subsequently in thymidine and DNA
synthesis, is employed for treating osteosarcomas and trophoblastic neoplasms.
5-FU (Adrucil), an irreversible inhibitor of thymidylate synthase, is indicated for
oesophageal, stomach, pancreatic and skin cancers.

2.2 Antimitotic Agents

There are two major classes of antimitotic agents: taxanes and vinca alkaloids,
which act as antithesis to each other. Taxanes inhibit tubulin depolymerization in
the spindle fiber apparatus, while vinca alkaloids hamper tubulin polymerization.

Docetaxel (Taxotere), a mitotic spindle assembly inhibitor, is FDA-approved for
treating locally advanced or metastatic breast cancer, non-small cell lung cancer
(NSCLC), head and neck cancer, gastric cancer and hormone-resistant prostate
cancer. Vincristine (Oncovin), an inhibitor of mitotic spindle disassembly during
metaphase, is widely used to treat acute myeloid leukemia (AML), acute lym-
phoblastic leukemia (ALL) and neuroblastoma. Vinblastine (Velban), besides
preventing the microtubules formation, also hampers glutamic acid metabolism and
is approved for several hematological and solid tumors. Vinorelbine (Navelbine),
similar in action as vinblastine, is used for treating relapsed metastatic breast cancer.

2.3 Alkylating Agents

Carboplatin (Parapatin), oxaliplatin (Eloxatin) and cisplatin, which crosslink gua-
nine residues, are effective in several forms of cancer. They are able to form
inter-strand and intra-strand crosslinks on the guanine residues via the coordination
of the N7 atoms of the purine bases to platinum. The crosslinking ultimately stalls
the action of DNA and RNA polymerases. Chlorambucil (Leukeran), a DNA
replication interferent, acts against chronic lymphoid leukemia (CLL). All of these
agents belong to the WHO’s List of Essential Medicines.

8 2 Clinical Anticancer Drugs for Cancer Treatment



2.4 Antitumor Antibiotics

Mitomycin C is FDA-approved for the treatment of adenocarcinomas of the
stomach and pancreas, while bleomycin is employed in squamous cell cancer,
Hodgkin’s disease and germ cell tumors. Doxorubicin (DOX, Adriamycin), a planar
anthracycline glycoside antibiotic which intercalates between DNA bases and DNA
topoisomerases inhibitor, is a first-line drug for many cancer types, but is primarily
used in breast carcinoma, pediatric solid tumors, ovarian cancer and Hodgkin’s
disease. Etoposide (Etopophos) and teniposide (Vumon) are both DNA topoiso-
merase II inhibitors for the utilization in leukemia treatment. Irintoecan (Camptosar)
and topotecan (Hycamtin) belong to the campothecin family. Both of these DNA
topoisomerase I inhibitors are FDA-approved for the treatment of refractory
metastatic colon cancer and relapsed ovarian carcinoma, respectively.

2.5 Tyrosine Kinase Inhibitors (TKI)

Gefitinib (Iressa), Afatinib (Gilotrif) and Erlotinib (Tarceva) are widely used to treat
NSCLC. Imatinib (Gleevec), another popular TKI that binds to the kinase domain of
abelson murine leukemia viral oncogene homolog 1 (abl) in the bcl-abl fusion
protein, was approved by FDA in 2001 for treating chronic myeloid leukemia
(CML). In 2006, TKI Sunitinib (Sutent) was the first anticancer drug simultaneously
approved for two different indications: renal cell carcinoma (RCC) and imatinib-
resistant gastrointestinal stromal tumor (GIST). Vandetanib (Caprelsa) inhibits a
rearrangement during transfection (RET)-tyrosine kinase as well as vascular
endothelial growth factor receptor (VEGFR), and was FDA-approved for the
treatment of late-stage (metastatic) medullary thyroid cancer. Lapatinib (Tykerb), a
less commonly known TKI, interrupts the human epidermal growth factor receptor 2
(HER2/neu) and EGFR pathways, and is utilized to treat breast cancer.

2.6 Cyclin Dependent Kinase (CDK) Inhibitors

Alvocidib (Flavopiridol), a flavonoid alkaloid CDK9 kinase inhibitor, interferes
with RNA polymerase transcription and halts the cell cycle, which is under clinical
development for AML treatment. Palbociclib (Ibrance), a CDK4 and CDK6 inhi-
bitor, is used for treating estrogen receptor (ER)-positive and HER2-negative breast
cancer.

2.4 Antitumor Antibiotics 9



2.7 Poly(ADP-Ribose) Polymerase (PARP) Inhibitors

Olaparib (Lynparza) is an FDA-approved targeted therapeutic agents for cancer.
Rucaparib and Veliparib are under investigation for use as anticancer agents.

2.8 Histone Deacetyltransferase Inhibitors (HDACi)

Romidepsin (Istodax) was approved in the US for the use against peripheral and
cutaneous T-cell lymphoma (PTCL and CTCL). Vorinostat (Zolinza) is FDA-
approved for the treatment of CTCL. Mocetinostat, another HDACi, is undergoing
clinical trials for treating follicular lymphoma, Hodgkin’s lymphoma and AML.

2.9 Mitogen-Activated Protein Kinase (MAPK) Kinase
(MEK) Inhibitors

MEK inhibitors hamper the action of the MAPK enzyme (MEK) in the
MAPK/extracellular signal-regulated kinase (ERK) pathway. Recently, Cobimetinib
(Cotellic), a MEK inhibitor, is FDA-approved to treat advanced melanoma in
patients who possess serine/threonine-protein kinase B-Raf proto-oncogene (BRAF)
mutations in conjunction with vemurafenib (Zelboraf). Trametinib (Mekinist), a
MEK1 and MEK2 inhibitor, was approved in 2013 for metastatic melanoma, while
Binimetinib is in phase III clinical trial for neuroblastoma RAS viral oncogene
homolog (NRAS)-mutant melanoma.

2.10 Serine/Threonine-Protein Kinase B-Raf Inhibitors

Sorafenib (Nexavar), a FDA-approved drug in 2005 to treat RCC and hepatocel-
lular carcinoma, functions by inhibiting proto-oncogene serine/threonine-protein
kinase, platelet-derived growth factor (PDGF) and VEGF. Vemurafenib (Zelboraf)
is used for late-stage melanoma.

2.11 Mammalian Target of Rapamycin (MTOR)
Inhibitors

Everolimus (Afinitor), an mTOR inhibitor, is FDA-approved for advanced kidney
cancer, subependymal giant cell astrocytoma (SEGA), progressive neuroendocrine
tumors of pancreatic origin (PNET) and HER2-negative breast cancer in
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conjunction with exemestane. Another mTOR inhibitor, Temsirolimus (Torisel),
was approved for treating advanced RCC.

2.12 Phosphoinositide 3-Kinase (PI3K) Inhibitors

PI3K inhibitors hinder the PI3K enzymes, which play a significant role in PI3K/
protein kinase B (AKT)/mTOR pathway. The first FDA-approved anticancer PI3K
inhibitor is Idelalisib (Zydelig) in 2014 to treat various leukemia types. Several other
PI3K inhibitors such as Buparlisib and Duvelisib are in Phase III trials.

2.13 Ribonucleotide Reductase (RNR) Inhibitors

RNR inhibitors block the RNR enzyme action by catalyzing deoxyribonucleotides
from ribonucleotides. Cladribine and fludarabine (Fludara) are employed for
hematological malignancies and hairy cell leukemia (HCL), respectively, while
gemcitabine (Gemzar) is used in various carcinomas, NSCLC, pancreatic, bladder,
and breast cancer.

2.14 DNA Methyltransferase Inhibitors

Agents such as 5-azacytidine (5-AzaC) and 5′-deoxy-azacytidine (DAC) inhibit the
action of DNA methyltransferase that is responsible for DNA methylation.

2.15 Retinoids

There are two different types of retinoid receptors that counteract each other:
retinoid X receptor (RXR) and retinoic acid receptor (RAR) that are responsible for
the induction of apoptosis and proliferation, respectively. Bexarotene (Targretin) is
an FDA-approved RAR activator for CTCL.

2.16 Monoclonal Antibodies (MAbs)

Rituximab (Rituxan), a B cell annihilator, treats mainly lymphoma and leukemia.
Trastuzumab (Herceptin), a HER2/neu receptor target, is the first mAb to receive
FDA approval and used for breast cancer treatments. Ofatumumab (Arzerra) is
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FDA-approved for treating CML that is fludarabine and alemtuzumab (Campath)-
resistant. Tositumomab (Bexxar), an immunoglobulin (Ig) G2a anti-CD20 antibody
covalently bound to 131I, is also FDA-approved for rituximab-resistant lymphomas
expressing CD20. Gemtuzumab ozaogamicin (Mylotarg), an anti-CD33 mAb
linked to calicheamicin cytotoxic agent, is FDA-approved for AML in 2000.
Panitumumab (Vectibix) targets the extracellular ligand-binding domain of EGFR
and is used for patients with non-curable colorectal cancer.

2.17 Combination Therapy

Multidrug resistance (MDR) that results in refractory diseases often necessitates the
use of a set of chemotherapy drugs to exert more potent cytotoxic activity against
tumor cells (Gottesman 2002; Szakacs et al. 2006). Several factors account for the
emergence of MDR, which include increased drug efflux due to the overexpression
of both ATP-binding cassette (ABC) transporters and P-glycoprotein (P-GP)
(Spencer et al. 2015), alterations in cell cycle checkpoints, overactive EGFR, tyr-
osine kinase receptor (RTK) and AKT (Gao et al. 2014), expression of multidrug
resistance-associated protein (MRP) (Szakacs et al. 2008), and presence of cancer
stem cells (Dean et al. 2005). Chemotherapy drugs often act synergistically to
render more cytotoxic effect against cancer cells (Mignani et al. 2015). Multidrug
regimens are ubiquitously prescribed in clinical practice to combat MDR, and they
work via divergent mechanisms. Well-established combination therapies include
MOPPEBVCAD (mechlorethamine, vincristine, procarbazine, prednisone, epi-
doxirubicin, bleomycin, vinblastine, lomustine, DOX, and vindesine) for advanced
Hodgkin lymphoma, EMA-CO (etoposide, methotrexate, actinomycin-D,
cyclophosphamide and vincristine) for gestational trophoblastic disease (GTD),
ADE (cytosine arabinoside, daunorubicin and etoposide) for AML treatment, and
G-FLIP (gemcitabine, 5-FU, leucovorin, cisplatin) for pancreatic cancer.
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Chapter 3
Nanomaterial-Based Drug Delivery
Carriers for Cancer Therapy

3.1 Introduction

Standard chemotherapeutics usually suffer from several limitations, such as their
toxicity, drug resistance, and low stability. In order to circumvent above limitations,
nanomaterials have been used as promising candidates to deliver conventional
therapeutics for cancer therapy in recent years. Nanomaterial-based drug delivery
carriers have numerous advantages including increased solubility, prolonged cir-
culation time, and improved biodistribution, by the utilization of the enhanced
permeability and retention (EPR) effect or active targeting effect to alter the uptake
mechanism. Herein, we summarized different types of nanomaterial-based drug
delivery carriers for cancer treatment including organic, inorganic, and organic–
inorganic hybrid nanomaterials. It is believed that precisely designed nanomaterials
will be the next-generation therapeutic agents for cancer theranostics.

3.2 Organic Nanomaterials

In this section, some representative organic nanomaterials, including FDA-
approved liposomes, polymer-based nanoparticles, supramolecular nanosystems,
and other organic nanoparticles are discussed for their applications as drug
nanocarriers in cancer therapy.

3.2.1 FDA-Approved Liposomes

Currently, there are three liposome nanoparticles, i.e., Doxil, DaunoXome, and
Marqibo, which were approved by FDA for cancer treatment (Table 3.1,
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Dawidczyk et al. 2014). Doxil is a PEGylated liposome with diameter about
100 nm encapsulating 10,000 DOX molecules (Barenholz 2012), which could
decrease side effects like cardiotoxicity originated from DOX with high concen-
tration. Most of the DOX in Doxil is in its solid phase and the drug concentration is
beyond its solubility limit. The introduction of cholesterol in the bilayer of liposome
increases the cohesiveness of bilayer and reduces the leakage of DOX, resulting in
more than 98% of the circulating drug inside liposomes (Gabizon et al. 2003).
Moreover, PEG coating can lead to a long circulation half time and enhanced tumor
accumulation through the EPR effect (Vllasaliu et al. 2014). Unlike Doxil,
DaunoXome, and Marqibo have no PEGylated lipids in the liposomes (Silverman
and Deitcher 2013). DaunoXome has a diameter of 50 nm with incorporated drug
of daunorubicin (Lowis et al. 2006), and Marqibo has a diameter of 100 nm with
incorporated drug of vincristine (Bedikian et al. 2011). The design mechanism for
these two liposomes is to enhance the uptake by mononuclear phagocyte system
(MPS), and the liposome provides a reservoir from which the free drug can be
released slowly into the circulation. The design strategies for the FDA-approved
liposome nanoparticles could provide an important inspiration for developing more
efficient therapeutic agents for cancer treatment in clinic.

Table 3.1 FDA-approved liposomes for cancer therapy. Reproduced with permission from
reference (Dawidczyk et al. 2014)

Platform Drug d (nm) Drug/carrier
ratio

Key design feature(s) Problem
addressed

Doxil Doxorubicin 100 10,000–
15,000

Lipid encapsulation for
high drug/carrier ratio,
polyethylene glycol
coating to evade MPS,
crystallization of drug
in liposome minimizes
escape during
circulation

Drug
toxicity
and
adverse
cardiac
side effects

DaunoXome Daunorubicin 50 *10,000 No polyethylene glycol
coating, targeted by
MPS resulting in slow
release into circulation

Drug
toxicity
and
adverse
cardiac
side effects

Marqibo Vincristine 100 *10,000 No polyethylene glycol
coating, targeted by
MPS resulting in slow
release into circulation

Drug
toxicity
and
adverse
cardiac
side effects

16 3 Nanomaterial-Based Drug Delivery Carriers for Cancer Therapy



3.2.2 Polymer-Based Nanoparticles

As one kind of potential drug nanocarriers for cancer therapy, polymeric
nanoparticles usually possess a stealth surface made from water-soluble polymers
(e.g., poly(ethylene oxide) (PEO), poly(ethylene glycol) (PEG), poly(acrylic acid)
(PAA), and dextran) and biodegradable aliphatic polymers (e.g., poly(lactide-
co-glycolide) (PLGA), polylactide (PLA), and poly(e-caprolactone) (PCL)) with
size of 20–250 nm (Aw et al. 2013). The preclinical or clinical researches have
confirmed that drug-loaded polymeric nanoparticles have better drug bioavailabil-
ity, extended circulation time, improved accumulation in the tumor sites through the
EPR effect, and reduced side effects toward normal tissues. However, polymeric
nanoparticles often have inadequate stability and slow biodegradation, leading to
the drug leakage during circulation and slow drug release upon the arrival at the
pathological sites (Cheng et al. 2013). In recent years, various stimulus–responsive
(such as pH, redox, temperature, glucose, enzymes or ultrasound, light, and mag-
netic field) polymeric nanoparticles have been fabricated to solve the above prob-
lems for efficient cancer treatment (Ge and Liu 2013).

Bae et al. (2007) conjugated DOX onto the polymer chains of a diblock copolymer
PEG-b-poly(aspartic acid) through a pH-responsive hydrazone bond (PEG-b-P
(Asp-Hyd-ADR)). The polymeric micelles assembled from PEG-b-P
(Asp-Hyd-ADR) could release DOX under acidic environment of endosomes or
lysosomes to exhibit efficient anticancer activity with low toxicity. Moreover, by
introducing targeting ligand folic acid on the surface of polymer micelles, higher
therapeutic efficiency and lower side effects in vivo could be achieved for
tumor-bearing mice. Dai et al. (2011) fabricated redox and pH dual-responsive
interfacially crosslinked micelles from a triblock copolymer PEG-b-poly(L-aspartic
acid/mercaptoethylamine)-b-poly(L-aspartic acid/2-(diisopropylamino) ethylamine)
(mPEG-PAsp(MEA)-PAsp(DIP)) through self-assembling at pH 10 and subsequent
oxidative crosslinking to improve micelle stability in extracellular environment
(Fig. 3.1). The crosslinked micelles showed good stability without the drug leakage
at neutral pH, and DOX could be released at pH 5.0 or in the presence of
1,4-dithiothreitol (DTT), with the fastest DOX release under the condition of pH 5.0
and 10 mM DTT. In vivo studies exhibited that the prepared micelles had decreased
drug leakage during blood circulation and improved therapeutic effects towards nude
mice with Bel-7402 xenograft, when compared with DOX-loaded PEG-PCL
micelles or free DOX. Qiao et al. (2011) prepared temperature, pH, and redox
multi-sensitive nanogels through the copolymerization of 2-(5,5-dimethyl-
1,3-dioxan-2-yloxy) ethyl acrylate (DMDEA), monomethyl oligo(ethylene glycol)
acrylate (OEGA), and bis(2-acryloyloxyethyl) disulfide (BADS) (Fig. 3.2). The
nanogels shrank to 17–35 nm to load drugs when the temperature increased to 37 °C,
and they could swell to release drugs at acidic condition (pH 4–6) and 20 mMDTT at
pH 7.4 due to the hydrolysis of the ortho ester groups or cleavage of disulfide
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crosslinkers. The nanogels without drug loading exhibited little toxicity, while the
nanogels with paclitaxel (PTX) loading showed a concentration-dependent toxicity
to MCF-7 cells. The results demonstrated that the multi-responsive nanogels had a
great potential for the delivery of hydrophobic anticancer drugs.

3.2.3 Supramolecular Nanosystems

Since Lehn, Cram, and Pedersen won the Nobel Prize in 1987 for their discovery in
supramolecular chemistry, supramolecular nanosystems based on macrocyclic hosts
(such as crown ethers, cyclodextrins (CDs), cucurbit[n]urils (CBs), calixarenes
(CAs), and pillar[n]arenes, Fig. 3.3) and guest molecules have received worldwide
attention in recent years (Lehn 1988; Ma and Zhao 2015). The guest molecules are
usually encapsulated in the cavities of macrocyclic hosts through specific molecular

Fig. 3.1 Schematic illustration of redox and pH dual-responsive interfacially crosslinked micelles
prepared from mPEG-PAsp(MEA)-PAsp(DIP). Reproduced with permission from reference (Dai
et al. 2011)
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shape or size matching, hydrophobic interaction, electrostatic interaction, or
hydrogen-bonding interaction. Due to good biocompatibility of macrocyclic
molecules as well as reversibility and stability of host-guest complexes,
supramolecular nanosystems have been widely investigated for applications in
biomedicine (Tu et al. 2011; Li et al. 2012a, b; Liu et al. 2013).

Fig. 3.2 Schematic illustration of temperature, pH and redox multi-sensitive nanogels.
Reproduced with permission from reference (Qiao et al. 2011)
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Fig. 3.3 Chemical structures and schematic representations of CD, CB, and CA. Reproduced with
permission from reference (Ma and Zhao 2015)
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Ang et al. (2014a) developed multifunctional supramolecular nanoparticles
through the host-guest interaction between b-CD and amantadine (Ad) (Fig. 3.4).
The supramolecular nanoparticles fabricated from b-CD functionalized poly(acrylic
acid) (PAA-CD), Ad-functionalized PAA (PAA-Ad) and Ad-functionalized PEG
(PEG-Ad) showed a uniform size of 35 nm, with anticancer drug DOX-loaded
during the preparation. Through introducing Ad-functionalized folic acid (FA-Ad)
and Ad-functionalized fluorescein isothiocyanate (FITC-Ad), the synthesized
supramolecular nanoparticles possessed the ability of active targeting and fluores-
cent bioimaging, leading to selective and efficient therapeutic efficiency toward
B16F10 skin cancer cells and MDA-MB-231 breast cancer cells, and good inhi-
bitive effects for tumor growth in vivo.

Guo et al. (2012) fabricated an enzyme sensitive supramolecular vesicle based
on the host-guest interaction between p-sulfonatocalix[4]arene and myristoyl-
choline (Fig. 3.5). The supramolecular vesicle could load drug tacrine to treat
Alzheimer’s disease, and disassemble and release the loaded drugs upon the
responsiveness to cholinesterase to destroy the hydrophilic-hydrophobic balance.
Similarly, by utilizing other macrocyclic hosts, Duan et al. (2013) synthesized a
novel supramolecular vesicle with a thickness of 7 nm based on host-guest inter-
action between hydrophilic pillar[6]arene (WP6) and hydrophobic ferrocene
derivative (Fig. 3.6). This supramolecular vesicle could encapsulate anticancer drug

Fig. 3.4 Schematic illustration of multifunctional supramolecular nanoparticles prepared from
PAA-CD, PAA-Ad, PEG-Ad, FA-Ad, and FITC-Ad for target-specific drug delivery. Reproduced
with permission from reference (Ang et al. 2014a)
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mitoxantrone (MTZ) inside and release it under acidic pH condition, resulting in
low toxicity to normal cells and comparable anticancer efficiency as free MTZ to
cancer cells.

3.2.4 Others

Besides FDA-approved liposomes, polymer-based nanoparticles and supramolec-
ular nanosystems described above, other organic nanomaterials such as conjugated
polymers were also developed in recent years for application in the cancer treatment

Fig. 3.5 Schematic illustration of enzyme sensitive supramolecular vesicle based on p-
sulfonatocalix[4]arene and myristoylcholine for the delivery of tacrine to treat Alzheimer’s
disease. Reproduced with permission from reference (Guo et al. 2012)

Fig. 3.6 Schematic illustration of pH-sensitive supramolecular vesicle based on WP6 and
ferrocene (Fc) derivative for the delivery of anticancer drug MTZ. Reproduced with permission
from reference (Duan et al. 2013)
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(Xu et al. 2014). The conjugated polymers, including poly(3,4-ethylenedioxy-
thiophene):poly(4-styrenesulfonate) (PEDOT:PSS), polyaniline, and polypyrrole
(PPy) have excellent photostability and good biocompatibility, which endow them
the ability to serve as therapeutic agents or multifunctional drug nanocarriers for
potential combined cancer therapy (Song et al. 2014a).

Yang et al. (2011) synthesized polyoxyethylene-sterate coated polyaniline
nanoparticles in the emeraldine base (EB) state (EB-PANPs) through the emulsi-
fication method for photothermal therapy (Fig. 3.7). Under the intracellular con-
ditions, such as alkali ions, protons, or oxidative species EB-PANPs could transit to
emeraldine salt (ES-PANPs) with high absorbance in near-infrared (NIR) region.
With NIR irradiation, ES-PANPs had greater temperature rise than EB-PANPs or
pure water. Moreover, EB-PANPs showed efficient tumor ablation both in vitro and
in vivo upon exposure to 808 nm NIR laser for 5 min with a power density of
2.45 W cm−2. Cheng et al. (2012a) prepared PEGylated PEDOT:PSS (PEDOT:
PSS-PEG) nanoparticles through layer-by-layer (LBL) assembly for photothermal
therapy (Fig. 3.8). PEDOT:PSS-PEG nanoparticles had an extended blood circu-
lation half-life of 21.4 ± 3.1 h and high tumor accumulation efficiency of 28.02%
injected dose per gram at 48 h postinjection. Furthermore, 4T1 tumors in mice
could be completely eliminated at a day after intravenous injection of PEDOT:
PSS-PEG nanoparticles and followed by 808 nm NIR laser irradiation for 5 min
with a power density of 0.5 W cm−2. Wang et al. (2013a) fabricated multifunc-
tional PEGylated Fe3O4@PPy (Fe3O4@PPy-PEG) nanoparticles for
imaging-guided and combined cancer treatment (Fig. 3.9). In this platform, Fe3O4

nanoparticles were used for magnetic resonance imaging and magnetic field con-
trolled drug delivery, and PPy served as photothermal agents as well as carriers for
drug loading. In vitro and in vivo experiments demonstrated that DOX-loaded
Fe3O4@PPy-PEG possessed excellent synergistic (photothermal therapy and
chemotherapy) therapeutic efficacy.

Fig. 3.7 Schematic illustration of EB-PANPs for photothermal therapy. Reproduced with
permission from reference (Yang et al. 2011)
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3.3 Inorganic Nanomaterials

In this section, some typical inorganic nanomaterials, such as quantum dots (QDs),
gold nanomaterials (gold nanoparticles and gold nanorods), mesoporous silica
nanoparticles, carbon nanomaterials (carbon nanotubes, graphene, and carbon dots),
upconversion nanoparticles, two-dimensional nanomaterials, and other inorganic
nanoparticles are reviewed for their applications as therapeutic agents in the cancer
treatment.

Fig. 3.8 Schematic illustration for the preparation of PEDOT:PSS-PEG nanoparticles for
photothermal therapy. Reproduced with permission from reference (Cheng et al. 2012a)

Fig. 3.9 Schematic illustration of DOX-loaded Fe3O4@PPy-PEG nanoparticles for
imaging-guided and combined photothermal therapy and chemotherapy. Reproduced with
permission from reference (Wang et al. 2013a)
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3.3.1 Quantum Dots

QDs are semiconductor nanocrystals with sizes of 2–10 nm, which consist of
binary or alloyed II–VI, III–V, and IV–VI elements (Michalet et al. 2005). QDs
have attracted tremendous attention from researchers worldwide based on their
various distinguished properties, including (1) wide absorption spectra,
(2) size-tunable, narrow, and symmetrical fluorescence spectra from ultraviolet to
infrared region, and (3) high quantum yield, excellent photostability and long
fluorescence lifetime. QDs can be synthesized through physical, chemical, and
biological methods. Physical methods include laser irradiation of large particles and
laser physical vapor deposition, but the prepared QDs have poor stability, surface
defects, and low quantum yield (Jagannadham et al. 2010; Wu et al. 2015).
Chemical methods consist of water-phase and organic-phase routes, which result in
monodispersed QDs with excellent optical properties (Murray et al. 1993; Zhang
et al. 2003). Biological methods could be used to synthesize QDs with inherent
biocompatibility and biostability in mild conditions (Dameron et al. 1989; Kang
et al. 2008).

Besides photovoltaics, light-emitting diodes (LEDs) and other optical applica-
tions (Shen et al. 2014; Semonin et al. 2011), QDs are also of great potential in
bioimaging and drug delivery. Hong et al. (2012) prepared biocompatible
6PEG-Ag2S QDs with emission in the second NIR region (1000–1350 nm) by
coating surfactant dihydrolipoic acid (DHLA) and functionalizing amino-functional
six-armed PEG on hydrophobic Ag2S QDs, and applied it for imaging xenograft
tumors in vivo (Fig. 3.10). The 6PEG-Ag2S QDs had a long circulation half-life of
about 4 h and a high tumor internalization of 10% injected dose/gram, and could be
cleared via the biliary route. Muhammad et al. (2011) loaded the anticancer drug

Fig. 3.10 Time-dependent NIR-II fluorescence images of 6PEG-Ag2S QDs in vivo. Reproduced
with permission from reference (Hong et al. 2012)
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DOX and targeting ligand folic acid onto ZnO QDs. The folic acid could lead the
drug nanocarrier to cancer cells and DOX was released after the degradation of ZnO
QDs under acidic intracellular condition. Hsu et al. (2013) fabricated a biolumi-
nescence resonance energy transfer (BRET) based QD-Renilla luciferase 8
(QD-RLuc8) for photodynamic therapy without external light source (Fig. 3.11).
When QD-RLuc8 was exposed to coelenterazine substrate to generate RLuc8
bioluminescence, BRET could occur from RLuc8 to QD. Then the photosensitizer
was activated by the energy transfer from QDs, and reactive oxygen species were
generated to kill cancer cells.

However, QDs usually contain heavy metals, such as Cd, Pb, or Hg, which
would induce health and environmental concerns for their biomedical applications.
Therefore, biocompatible QDs without heavy metals still need to be developed for
their further applications in vivo and in clinic.

3.3.2 Gold Nanomaterials

3.3.2.1 Gold Nanoparticles

Gold nanoparticles (AuNPs) are one type of Au nanostructures with size of
1.5-180 nm and localized surface plasmon resonance (LSPR) peak position from
520 to 650 nm, which are usually synthesized through reducing HAuCl4 in a
solution phase (Yang et al. 2015a). Taking advantage of good biocompatibility and
easy functionalization, AuNPs could function as universal vehicles for bioimaging
and cancer therapy. In fact, two AuNP-based therapeutics are under clinical trials
with the potential to target solid tumors: Aurimmune, PEG-thiol AuNPs modified
with tumor necrosis factor (TNF)-a, and AuroShell, silica nanoparticles coated with
gold (Kumar et al. 2013). Till now, AuNPs have showed their versatility to ferry a

Fig. 3.11 Schematic
illustration of QD-RLuc8 for
photodynamic therapy.
Reproduced with permission
from reference (Hsu et al.
2013)
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wide range of chemotherapeutic agents such as cisplatin (Kumar et al. 2014),
oxaliplatin (Brown et al. 2010), kahalalide F (Hosta et al. 2009), DOX (Nam et al.
2014), 5-hydroxydecanoate (Zhuge et al. 2015), methotrexate (Chen et al. 2007),
gemcitabine (Patra et al. 2010), b-lapachone (Park et al. 2009a, b), tamoxifen
(Dreaden et al. 2009), 5-FU (Agasti et al. 2009), curcumin (Manju and Sreenivasan
2012), docetaxel (De Oliveira et al. 2013) and PTX (Ding et al. 2013) to cancer
cells.

Agasti et al. (2009) devised an AuNP-based platform to deliver 5-FU antineo-
plastic agent by conjugating 5-FU to AuNPs via a photocleavable ortho-nitrobenzyl
(ONB) group (Fig. 3.12). When near-UV irradiation (365 nm) was employed, 82%
of 5-FU was easily cleaved from the AuNP surface. The cytotoxicity studies
demonstrated that after 4 days of incubation, the viability of MCF-7 breast cancer
cells declined with the increased duration of irradiation. Moreover, limited cyto-
toxicity was observed when the drug and light treatments were applied separately,
and cytotoxicity was only observed when the drug and light treatments were
administered simultaneously. Hosta et al. (2009) reported that by conjugating
antitumor kahalalide F, a marine cyclodepsipeptide isolated from a mollusk, with
AuNPs, selective delivery and cytotoxic activity could be enhanced. The AuNPs
with various sizes (40 nm and 20 nm) were also functionalized with peptides
(D-Cys or L-Cys) to introduce a positive charge, enabling better accumulation and
cellular penetration in HeLa cervical cancer cells compared to the bare AuNPs. The
drug and peptide conjugated AuNPs showed favored targeting to lysosomes that
were the target of kahalalide F. By ligating to AuNPs of 40 nm, the cytotoxicity
was enhanced as compared to the free drug due to facilitated cellular entry by
AuNPs with larger size. Brown et al. (2010) reported that platinum-tethered
PEGylated AuNPs could present similar or even better cytotoxicity than free
oxaliplatin in various cancer cell lines (A549 lung epithelial cancer cell line and
colon cancer cell lines HCT116, HCT15, HT29, RKO) and the unexpected

Fig. 3.12 Schematic illustration of light-mediated release of 5-FU from 5-FU loaded AuNPs.
Reproduced with permission from reference (Agasti et al. 2009)
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propensity to nuclear uptake in the lung cancer cells (Fig. 3.13). In the A549 cell
line, the nanodrug was about 6-fold more cytotoxic than oxaliplatin. In the colon
cancer cell lines, the nanodrug was up to 5.6-fold more active or at least of similar
activity as oxaliplatin.

3.3.2.2 Gold Nanorods

Gold nanorods (AuNRs) are another type of Au nanostructures with sizes from
20 nm to several lm and LSPR peak position in the range of 600–1800 nm, which
could be prepared via electrochemical reduction, seed-mediated growth, photo-
chemical reduction, bioreduction, microwave-assisted reduction or solvothermal
reduction (Yang et al. 2015a). In addition to easy functionalization and excellent
biocompatibility, the most celebrated property of AuNRs is the ability to trigger
hyperthermia upon NIR light irradiation, depending on the aspect ratio, size and
shape (Tong et al. 2007; Norman et al. 2013). Therefore, AuNRs can serve as

Fig. 3.13 Schematic illustration of the preparation of platinum-tethered PEGylated AuNPs for
enhanced anticancer drug delivery of oxaliplatin. Reproduced with permission from reference
(Brown et al. 2010)
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effective photothermal agents or as the drug nanocarriers for combination therapy
(Zhang et al. 2013).

Min et al. (2010) constructed PEGylated AuNRs to deliver cisplatin. The
cytotoxic effects of the conjugated AuNRs and free cisplatin were studied in three
different cell lines. When compared to the free drug, the cytotoxic effect of the
AuNRs-cisplatin conjugate was observed to be 9, 12, and 66-fold higher in HeLa,
A549, and MCF-7 cell lines, respectively. The platinum uptake study of the
AuNRs-cisplatin conjugate revealed that the platinum accumulated intracellularly
was 2, 1 and 4 times higher in HeLa, A549, MCF-7 cell lines than that for cisplatin,
respectively. Hence, a strong positive relationship between platinum uptake and
cytotoxicity could be confirmed. Zhang et al. (2014a) fabricated a nanocomposite
comprising of AuNRs@SiO2 with pH and thermo sensitive poly
(N-isopropylacrylamide-co-acrylic acid) (PNIPAM) polymer shell having lower
critical solution temperature (LCST) to deliver DOX (Fig. 3.14). Sufficient tem-
perature increase was attained after NIR laser irradiation, and at 30 min postin-
jection, the accumulation of the nanocomposite in heat-treated tumors showed
nearly 8 times higher than the unheated tumors. In addition, more DOX was
released indirectly via the nanocomposite than directly administered free DOX,
regardless whether there was heating involved. The results showed that at lower
temperatures, the therapeutic effect (i.e., tumor inhibition) mainly came from the
chemotherapy, but at higher temperatures, the tumor regression was due to the
hyperthermia effect. This platform demonstrated a novel targeted anticancer strat-
egy without using targeting ligands for controlled and effective NIR laser-induced
cancer thermochemotherapy.

Fig. 3.14 Schematic illustration of the preparation of DOX-loaded nanocomposite (a) and its
application for NIR laser-induced targeted thermochemotherapy (b). Reproduced with permission
from reference (Zhang et al. 2014a)
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Chen et al. (2015) evaluated the high potential of combined dual modalities for
cancer ablation (Fig. 3.15). They coated AuNRs with a heat sensitive polyprodrug
shell (Biotin-PEG-b-PLL(LA)-Azo-DOX). Biotin is the active targeting moiety,
while the role of PEG is to avoid reticuloendothelial system (RES) elimination.
Lipoic acid (LA) was conjugated to poly(L-lysine) (PLL) segment for reacting with
the AuNRs, while DOX was attached onto the PLL using heat-responsive azobis(N-
(2-carboxyethyl)-2-methylpropionamidine) (Azo). Upon NIR light irradiation on
AuNRs to generate heat, the temperature elevation destabilized the heat unstable
Azo linker and stimulated the subsequent DOX release. Off–on demand could be
achieved by tuning the irradiation time and intensity of the NIR light. The in vitro
cytotoxicity assays indicated that pristine AuNRs with NIR irradiation could only
kill the cancer cells by thermotherapy to a limited extent, while more desired
therapeutic effects were achieved by using this nanovehicle and NIR irradiation
simultaneously. In addition, in vivo photothermal/photoacoustic imaging showed
the high retention of the nanovehicle in the tumor, and the temperature was still

Fig. 3.15 Schematic illustration of the preparation of multifunctional AuNRs (a) and its
application for cancer-targeted photothermal/photoacoustic imaging and thermochemotherapy (b).
Reproduced with permission from reference (Chen et al. 2015)
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above 44.5 °C in the tumor even when using NIR illumination a day after
administrating the nanovehicle. Moreover, the in vivo therapeutic efficiency could
be well guided through adjusting the NIR light irradiation duration and intensity.

3.3.3 Mesoporous Silica Nanoparticles

Mesoporous silica nanoparticles (MSNPs) are a kind of silica materials, with pore
size of 2–10 nm and three-dimensional cubic structures (Yang et al. 2012; Li et al.
2012b). The most common MSNPs are MCM-41, MCM-48 and SBA-15. MSNPs
can be prepared through template-assisted method, with cetyltrimethylammonium
bromide (CTAB) as the template to form the pore (Ang et al. 2014b, Fig. 3.16).
During the synthesis, cylindrical assays are first formed from the CTAB micelle,
followed by the controlled formation of silica walls surrounding the arrays. Then,
the channels can be obtained after removing CTAB. Owing to the unique advan-
tages of MSNPs, such as tunable pore size, large surface area, and stable meso-
porous structure, MSNPs have been widely used as drug carriers to encapsulate the
anticancer drugs in the mesopores for cancer therapy (Tang et al. 2012).

Yan et al. (2012) fabricated rotaxane-functionalized MSNPs for remotely
photothermal-controlled curcumin release in vivo (Fig. 3.17). The controlled drug
release was realized via the movement of a-CD ring upon the cis-trans isomer-
ization of azobenzene axle after exposure to visible light and heat. This platform

Fig. 3.16 Process for the synthesis of MSNPs via the template-assisted method. Reproduced with
permission from reference (Ang et al. 2014b)
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demonstrated effective delivery of curcumin for the treatment of heart failure on
zebrafish. Ma et al. (2012) developed DOX and single strand DNA (ssDNA)
co-delivered system based on MSNPs. DOX was loaded in the mesopores of
MSNPs and ssDNA was complexed with the positively charged ammonium that
was functionalized on MSNPs through a disulfide bond. Upon exposure to reducing
agents, disulfide bond was cleaved, resulting in the release of DOX and ssDNA
simultaneously. This drug nanocarrier exhibited enhanced cellular internalization
and effective apoptosis of HeLa cancer cells.

Zhang et al. (2012) constructed MSNP-based targeted drug delivery system with
controlled drug release behavior. DOX inside the mesopores was capped by amino-
b-CD, which was bridged through disulfide bonds. Targeting ligand folic acid was
introduced by adamantane and folic acid bi-functionalized PEG polymer, and the
polymer was attached on the surface of MSNPs through b-CD/adamantane com-
plexation. This developed drug nanocarrier could be internalized by HeLa cells with
overexpressed folate receptor through receptor-mediated endocytosis, and realize
the controlled release of DOX upon response to acidic pH in endosome and high
concentration of glutathione in the cytoplasm, leading to effective inhibition of the
growth of specific cancer cells. Based on the same design, Zhang et al. (2014b)
synthesized MSNP-based drug carriers (PEG-MSNPs-CD-PEG-FA) with three

Fig. 3.17 Schematic illustration of rotaxane-functionalized MSNPs for in vivo drug delivery.
Reproduced with permission from reference (Yan et al. 2012)
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different sizes (48, 72, 100 nm) for potential applications in vivo (Fig. 3.18). The
results showed that the drug carrier with size of 48 nm had enhanced and selective
uptake by tumor, resulting in significant tumor inhibition in mice.

Fig. 3.18 Schematic illustration for the preparation of PEG-MSNPs-CD-PEG-FA with different
sizes (48, 72, 100 nm). Reproduced with permission from reference (Zhang et al. 2014b)
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3.3.4 Carbon Nanomaterials

3.3.4.1 Carbon Nanotubes

Carbon nanotubes (CNTs) were first discovered in the insoluble soot after arc
burning graphite rods in 1991 (Iijima 1991). CNTs are long and tubular fullerene
with hexagonal carbon in the walls and pentagonal rings in the end tips, which can
be divided into two kinds, single-walled CNTs (SWCNTs), and multi-walled CNTs
(MWCNTs). SWCNTs are composed by a graphite cylinder with a rolled-up single
layer, and have a tube diameter of 0.4–2 nm. MWCNTs comprise of graphite sheets
with multiple concentric cylindrical shells, and have an interlayer distance of about
0.36 nm and the diameters of 2–100 nm (Reilly 2007). SWCNTs and MWCNTs
can be prepared by different methods, including carbon arc discharge, chemical
vapor deposition, laser ablation, and pyrolysis (Karimi et al. 2015). CNTs are a kind
of promising materials because of their ultralight weight, high surface area, high
aspect ratio, excellent electronic and thermal properties, great chemical stability and
good mechanical strength, and were applied in various fields ever since, including
energy storage devices, microelectronics, nanoprobes and nanomedicine (Hong
et al. 2015).

CNTs have various intriguing advantages to serve as drug carriers (Sun et al.
2014). First, CNTs can make use of EPR effect to accumulate effectively in the tumor
tissues. Second, CNTs have needle-like shape, which could promote the penetration
across the cellular membrane and accumulation inside cancer cells through the
“nanoneedle”mechanism regardless of cell types or CNT functionalization. Besides,
CNTs can also be internalized by cells through energy-dependent endocytic path-
ways. Third, CNTs possess high surface areas and aspect ratios, which endow them
the excellent ability to load drugs on the surface or inside the core of CNTs.
Importantly, targeting moieties, e.g., folic acid, RGD peptide, antibodies, aptamers,
or magnetic nanoparticles, can be integrated with CNTs to offer active targeting via
receptor-mediated endocytosis or external magnetic field induction. Benefited from
the NIR absorption property of CNTs, CNTs can be used for photothermal therapy
and even multimodal therapy by the integration with other therapeutic agents in the
cancer treatment. However, before using CNTs as drug nanocarriers, some disad-
vantages of CNTs need to be overcome. (1) Residual metal catalysts. The remaining
iron and nickel metals in the synthesized CNTs could produce free radicals in cells to
cause obvious cytotoxicity, as confirmed by cell experiments. To remove residual
metals, CNTs can be dispersed in mixed acids with refluxing. (2) CNT length. The
length of CNTs is usually in the range from several to tens of micrometers, while
studies have found that CNTs with length less than 200 nm are easier to accumulate
inside cells. To truncate CNTs into short pieces, CNTs should be purified via
multiple filtering. (3) Hydrophobic surface. Due to the low solubility of pristine
CNTs in aqueous solution originated from highly hydrophobic surfaces, noncova-
lent or covalent coating methods have been developed to functionalize CNTs with
suitable surface groups (PEG, polysaccharides or other hydrophilic polymers) to
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offer CNTs with water solubility and biocompatibility. Noncovalent functionaliza-
tion coats CNTs with amphiphilic compounds by hydrophobic interaction (e.g., p–p
interaction) and covalent functionalization is realized by amidation and esterification
of oxidized CNTs or cycloaddition reactions on the side walls of CNTs.

So far, many drug delivery systems based on water-soluble CNTs have been
fabricated, and drugs can be loaded on functionalized CNTs via both noncovalent
and covalent linkage. Lay et al. (2010) modified CNTs with PEG-NH2 via covalent
bond and adsorbed anticancer drug PTX onto the surface. Owning to the increased
solubility of PTX, the fabricated PEG-CNT-PTX showed enhanced cytotoxicity
toward HeLa cells and MCF-7 cells. Feazell et al. (2007) utilized hydrophilic group
modified CNTs for loading platinum (IV) via covalent bond (Fig. 3.19). The
developed Pt(IV)-SWNT drug nanocarriers exhibited higher rates of cell death
toward NTera-2 human embryonal cancer cells than cisplatin alone due to the
improved cellular uptake of platinum (IV) by SWNTs. Yang et al. (2009) con-
structed a targeted drug delivery system based on magnetic nanoparticle modified
CNTs under the utilization of external magnetic field (Fig. 3.20). PAA function-
alized CNTs were first synthesized, followed by loading Fe3O4 magnetic
nanoparticles and anticancer drug gemcitabine with a loading efficiency of 62%.
Upon injecting post-subcutaneously, gemcitabine could be localized at lymph
nodes with the guidance of magnetic field and could not be accumulated in other
major organs, while gemcitabine alone did not show preferential accumulation in
lymphatic system.

3.3.4.2 Graphene

Graphene is a two-dimensional single layer consisting of sp2 hybridized carbon
atoms with promising thermal, mechanical, and electrical properties, which was
discovered by Geim and coworkers in 2004 and awarded Noble Prize in Physics in

Fig. 3.19 Schematic illustration of covalently attached platinum (IV) prodrug on SWNTs.
Reproduced with permission from reference (Feazell et al. 2007)
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2010 (Novoselov et al. 2004, 2005). Graphene can be divided into several cate-
gories including single layer graphene, bilayer graphene, multilayer graphene,
graphene oxide (GO), and reduced graphene oxide (rGO) based on the number of
layers or the chemical modifications. Single layer graphene can be prepared by
chemical vapor deposition or repeated mechanical exfoliation, but it is not easy to
prepare single layer graphene without defect in bulk (Sprinkle et al. 2010;
Novoselov et al. 2004). Owning to highly reactive surface, single layer graphene is
also hard to isolate in gas phase and suspend in solutions, which limits its appli-
cation in biomedicine. GO is a chemically modified graphene with high oxidation.
Multilayered GO can be synthesized through rough oxidation of graphite and
dispersed in aqueous solution via sonication or other methods. After repeated
processing, centrifugation, and harsh treatment, monolayer oxidized graphene could
be produced. GO has an amphiphilic structure with carboxylate, epoxide and
hydroxyl groups and free p electrons in the plane, providing colloidal stability and
the ability for drug loading through noncovalent or covalent functionalization (Park
et al. 2009a; Kim et al. 2010; Guo et al. 2011). rGO is synthesized through
chemical, thermal or UV processing of GO with hydrazine or other reducing
molecules in order to reduce the hydrophilicity, oxygen content and surface charge,
and restore the optical absorbance and electrical conductivity in GO (Park et al.
2009b; Bagri et al. 2010).

After functionalizing with small molecules, polymers or nanoparticles, graphene
could be utilized as drug nanocarriers for cancer therapy. Liu et al. (2008)

Fig. 3.20 Schematic illustration of the preparation of hydrophilic CNTs decorated with Fe3O4

magnetic nanoparticles and gemcitabine for magnetic field-guided drug delivery. Reproduced with
permission from reference (Yang et al. 2009)
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functionalized nanoscale GO with PEG polymer, followed by loading with a
camptothecin analog SN38 by noncovalent interaction to prepare NGO-PEG-SN38
hybrid (Fig. 3.21a). This hybrid not only maintained the therapeutic efficiency of
SN38, but also offered good solubility in water. In vitro experimental results
showed that NGO-PEG-SN38 exhibited high toxicity toward HCT-116 cells, which
was about 1000 times more efficient than camptothecin. Sun et al. (2008) developed
a targeted drug delivery system based on nano-GO by conjugating rituxan (CD20+
antibody) and loading DOX through p–p stacking interaction onto PEG-NGO
(Fig. 3.21b). The obtained hybrid showed pH-dependent drug release behavior
in vitro. Kim et al. (2013) loaded DOX onto branched polyethylenimine (BPEI) and
PEG bi-functionalized rGO (PEG-BPEI-rGO) (Fig. 3.22), and the fabricated
PEG-BPEI-rGO/DOX complex could escape from endosomes through proton
sponge effect and photothermally-induced endosomal disruption. Upon DOX
release from the PEG-BPEI-rGO/DOX complex into cytosol by photothermal effect
and glutathione, higher cytotoxicity toward cancer cells was observed with NIR
irradiation when compared with those without NIR irradiation. Wu et al. (2012)
loaded adriamycin (ADR) onto GO by physical mixing in order to overcome the
drug resistance in DOX-resistant MCF-7/ADR cells. The fabricated drug
nanocarriers (ADR-GO) had a high DOX loading amount of 93.6% and could
release DOX under acidic intracellular environment. Benefited from the enhanced
DOX internalization inside cancer cells by GO, ADR-GO exhibited higher thera-
peutic efficiency toward MCF-7/ADR cells than free drug. The above studies
indicate that graphene and its derivatives possess significant applications in nano-
medicine for the cancer treatment.

Fig. 3.21 a Schematic illustration of SN38 loaded NGO-PEG (NGO-PEG-SN38). Reproduced
with permission from reference (Liu et al. 2008). b Schematic illustration of DOX-loaded
NGO-PEG-Rituxan (NGO-PEG-Rituxan/DOX). Reproduced with permission from reference (Sun
et al. 2008)
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3.3.4.3 Carbon Dots

Carbon dots are another kind of carbon materials with size less than 10 nm, which
were first prepared through electrophoretic purification of single-walled carbon
nanotubes (Xu et al. 2004). Until now, different methods have been developed for
the synthesis of carbon dots, including top-down methods and bottom-up methods
(Song et al. 2014b). For top-down synthesis, different approaches such as laser
ablation, arc discharge, nitric acid/sulfuric acid oxidation or electrochemical oxi-
dation can be used to break down the carbon structure of amorphous carbon (carbon
black and candle soot) and regular sp2 carbon layers (carbon nanotubes and graphite
rod) (Peng and Travas-Sejdic 2009; Deng et al. 2014; Hu et al. 2009; Zhu et al.
2009). For bottom-up preparation, small molecules with plenty carboxyl, hydroxyl
and amine groups, e.g., citric acid (Zhai et al. 2012), ascorbic acid (Jia et al. 2012),
amino acid (Jiang et al. 2012), and glycerol (Liu et al. 2012a), can be regarded as
the carbon precursors via hydrothermal, microwave-assisted pyrolysis and calci-
nations methods. Moreover, bio-products from animal hair (Sun et al. 2013), silk
(Li et al. 2013; Wu et al. 2013), bovine serum albumin (Wee et al. 2013), barbecue
meat (Wang et al. 2013b) and plant extracts [banana juice (De and Karak 2013),
watermelon peel (Zhou et al. 2012), soy milk (Zhu et al. 2012; Krysmann et al.
2012), and grass (Liu et al. 2012b)] can also be used for the synthesis of carbon
dots.

Carbon dots are also a new class of fluorescent materials with emissive wave-
length from blue to near-infrared. The wide fluorescence range can be obtained by
the excitation-dependent emission or different synthetic and purification methods.
Carbon dots have high quantum yield and good photostability to overcome the
drawbacks of photobleaching for organic dyes or photoblinking for quantum dots.

Fig. 3.22 Schematic illustration of DOX stacking onto BPEI and PEG bi-functionalized rGO
(PEG-BPEI-rGO/DOX). Reproduced with permission from reference (Kim et al. 2013)
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Benefited from these excellent properties, carbon dots can be utilized for
bioimaging both in vitro and in vivo. Zhai et al. (2012) used citric acid and different
amine molecules to prepare carbon dots with high luminescence through a
microwave-assisted pyrolysis method. The amine molecules can be used as both
precursors for N-doping and agents for the surface passivation. The synthesized
carbon dots by citric acid and 1,2-ethylenediamine had a quantum yield of 30.2%
and can be applied for labeling L929 mouse fibroblast cells with blue, green and red
colors with excitation wavelengths of 405, 488, and 543 nm. Tao et al. (2012)
prepared carbon dots by the oxidization of graphite or carbon nanotubes with mixed
acids and proved the capability of carbon dots for NIR fluorescence imaging
in vivo. The results suggested renal and fecal excretion routes for the clearance of
carbon dots, and presented no noticeable in vivo toxicity through time-course blood
tests and histological analysis, indicating a great potential of carbon dots as non-
toxic fluorescent nanoprobes for biomedical bioimaging. Shi et al. (2014) synthe-
sized nitrogen-doped carbon dots with a high yield of 78% via one-step
hydrothermal method by using ethylenediamine tetraaceticacid as a precursor. In
vivo zebrafish bioimaging results showed that green emissive carbon dots could be
adsorbed by swallowing and skin, and were accumulated with tissue-dependent
affinity (in the eye, yolk sac, or tail). The utilization of carbon dots in zebrafish
supports their future application as low-toxic probes in clinic.

More importantly, carbon dots have also been utilized as drug nanocarriers for
the delivery of chemotherapy drugs, photosensitizers and therapeutic genes for
cancer therapy. Tang et al. (2013) utilized Förster resonance energy transfer
(FRET)-based carbon dots to fabricate a drug delivery system (CDot-FA-DOX,
Fig. 3.23). The carbon dots were synthesized through a modified electrochemical
method and used as both FRET donor and drug nanocarriers. The fluorescent
anticancer drug DOX was used as FRET acceptor and loaded on the surface of
carbon dots by p–p stacking and electrostatic interactions. The release of DOX

Fig. 3.23 Schematic
illustration of the preparation
of FRET-based
CDot-FA-DOX and its
mechanism for real time
monitoring of DOX release.
Reproduced with permission
from reference (Tang et al.
2013)
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could be monitored in real time by FRET signal change upon tuning the pH of the
environment. Moreover, the drug nanocarriers could also be used for two-photon
imaging at tumor tissues of 65–300 lm with the excitation wavelength of 810 nm,
demonstrating the possibility of carbon dots for monitoring the drug release in deep
tumor tissues.

Choi et al. (2014) fabricated a folic acid (FA)-functionalized carbon dots to load
photosensitizer zinc phthalocyanine (ZnPc) for simultaneous biological imaging
and targeted photodynamic therapy (Fig. 3.24). The CD-PEG-FA/ZnPc hybrid was
prepared by the thermal decomposition of a-cyclodextrin and functionalized with
passivation agent PEG and targeting ligand FA, followed by loading ZnPc onto the
surface through p-p stacking interaction. The developed drug delivery system could
target cancer cells with overexpressed folate receptors and reveal targeted photo-
dynamic therapy upon irradiation in vitro and in vivo. The system is expected to
provide a convenient and effective method to enhance photodynamic therapy for the
cancer treatment in future. Liu et al. (2013) used glycerol and branched PEI25k to
synthesize polyethylenimine (PEI) functionalized carbon dots by one-step
microwave-assisted pyrolysis, in which PEI served as both surface passivation
agent for fluorescence enhancement and polyelectrolyte for condensing DNA. By
optimizing the pyrolysis time, the obtained carbon dots could exhibit low toxicity
and high gene expression of plasmid DNA in HepG2 human liver cancer cells and
COS-7 fibroblast-like cells, with excitation wavelength-dependent fluorescent
emission inside cells. These results suggest the promising applications of carbon
dots in bioimaging and gene delivery.

Fig. 3.24 Schematic illustration of the preparation of CD-PEG-FA/ZnPc and its application for
targeted photodynamic therapy. Reproduced with permission from reference (Choi et al. 2014)
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3.3.5 Upconversion Nanoparticles

Lanthanide-doped upconverting nanoparticles (UCNPs) were first developed in 2000
and can convert NIR light to UV or visible light, among which hexagonal NaYF4 (b-
NaYF4) is the commonly used inorganic host and Er3+, Tm3+, and Ho3+ ions are the
popular activators for upconversion luminescence (UCL) generation with the exci-
tation wavelength of 800 nm or 980 nm (Fig. 3.25, Haase and Schaefer 2011; Wu
and Butt 2016). UCNPs could be synthesized through hydro-/solvothermal method,
thermal decomposition method, coprecipitation method, microemulsion method,
sol-gel process, ionic-liquid-based method, and microwave-assisted method (Gai
et al. 2014). Benefited from the advantages of NIR excitation, including negligible
photodamage and deep tissue penetration, UCNPs can serve as promising materials
for deep tissue biomedical applications including UCL bioimaging, photodynamic
therapy, photothermal therapy, and UCNP-assisted photolysis for drug activation
(Dong et al. 2015).

Idris et al. (2012) co-loaded merocyanine 540 (MC540) and zinc phthalocyanine
(ZnPc) into NaYF4:Yb,Er@mSiO2 to afford UCNs-ZnPc-MC540, in which the
absorption peaks of MC540 and ZnPc overlap with the green and red emission

Fig. 3.25 Schematic illustration of different UCNPs. Reproduced with permission from reference
(Wu and Butt 2016)
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peaks of NaYF4:Yb,Er UCNPs. The two photosensitizer-loaded
UCNs-ZnPc-MC540 exhibited increased singlet oxygen generation and enhanced
cell-killing efficiency with irradiation of 980 nm laser, when compared with single
photosensitizer-loaded UCNPs. Moreover, when UCNs-ZnPc-MC540 was injected
to the tumor-bearing mice and irradiated with an NIR laser of 980 nm, the inhi-
bition of tumor growth in vivo was achieved, while no obvious influence was
observed when the tumor-bearing mice was treated with radiation or NaYF4:Yb,
Er@mSiO2 alone. In addition, more efficient antitumor results were realized when
UCNs-ZnPc-MC540 was further conjugated with active targeting ligands (folic acid
or antibody) as compared with unmodified UCNs-ZnPc-MC540.

Cheng et al. (2012b) developed a multifunctional nanoparticle NaYF4:Yb,
Er@Fe3O4@Au-PEG for UCL/MRI dual-modal imaging and magnetically targeted
photothermal therapy (Fig. 3.26). When NaYF4:Yb,Er@Fe3O4@Au-PEG was
injected intravenously in vivo and the tumor was attached on a magnet, UCL signal
increased by several folds and T2-weighted MRI signals decreased by 62.1%.
Moreover, when the tumor was irradiated with an NIR laser of 808 nm, an
increased surface temperature (about 50 °C) was achieved under the magnetic field,
resulting in the disappearance of all the tumors. No obvious temperature change
was observed (about 38 °C) for the tumors without the injection of NaYF4:Yb,
Er@Fe3O4@Au-PEG. The results exhibited a prominent therapeutic efficiency with
100% elimination of tumors. Ma et al. (2013) designed a multifunctional
UCNPs/polymer composite UCNP@P-Pt/RhB for up/down-conversion bioimaging
in vitro and ex/in vivo and the delivery of cisplatin (IV) drug. The
UCNP@P-Pt/RhB could release cytotoxic cisplatin inside the reductive intracellular

Fig. 3.26 Schematic illustration of NaYF4:Yb,Er@Fe3O4@Au-PEG nanoparticle for dual-modal
imaging and magnetically targeted photothermal therapy. Reproduced with permission from
reference (Cheng et al. 2012b)
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condition or tumor-bearing animal models, and could regulate the apoptotic genes
for promoting the apoptosis of tumor cells. This system highlights the mechanism
for the antitumor effects of cisplatin (IV) drug and the potential application of
UCNP@P-Pt/RhB for the cancer treatment.

3.3.6 Two-Dimensional Nanomaterials

In addition to graphene, various two-dimensional nanomaterials with excellent
physical and chemical properties have received tremendous attention in recent
years, which include ultrathin transition metal dichalcogenides (TMDCs) and black
phosphorus nanosheets (Zhang 2015). TMDCs, consisting of MoS2, MoSe2, WS2,
or WSe2 are semiconductors with bandgaps within 1–2 eV for their ultrathin layers
(Lu et al. 2016). Black phosphorus is a semiconductor, with thickness-dependent
bandgap from 2.0 eV for single layer to 0.3 eV for bulk (Tran et al. 2014). These
two-dimensional nanomaterials not only possess promising applications in elec-
tronic and optoelectronic devices, but also reveal fantastic potentials in biological
fields (Kalantar-zadeh et al. 2015; Sun et al. 2015).

Liu et al. (2014) developed a multifunctional drug carrier based on MoS2
nanosheets for combined cancer therapy (Fig. 3.27). MoS2 nanosheets were pre-
pared via chemical exfoliation method from the bulk materials followed by the
functionalization with lipoic acid modified PEG (LA-PEG) through a thiol reaction
to offer the physiological stability and biocompatibility. Owning to strong NIR
absorbance and extraordinary surface-area-to-mass ratio, MoS2-PEG nanosheets
could serve as promising photothermal agents as well as the nanocarriers to load
therapeutic molecules such as a photodynamic agent chlorine e6 (Ce6) or anticancer
drugs 7-ethyl-10-hydroxycamptothecin (SN38) and DOX. Furthermore, combined

Fig. 3.27 Schematic illustration of the preparation of DOX-loaded MoS2-PEG for combined
photothermal and chemotherapy. Reproduced with permission from reference (Liu et al. 2014)
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photothermal and chemotherapy could be achieved both in vitro and in vivo for the
DOX-loaded MoS2-PEG, revealing the great potential of two-dimensional TMDCs
as novel drug nanocarriers for combined cancer treatment. Wang et al. (2015)
illustrated that the exfoliated black phosphorus nanosheets could serve as effective
photosensitizers to generate singlet oxygen with a high quantum yield of about 0.91
for the application in photodynamic therapy (Fig. 3.28). These black phosphorus
nanosheets could inhibit the growth of cells/tumor effectively with a small amount
and short light irradiation both in vitro and in vivo. Compared with other metal-free
photosensitizers, the black phosphorus nanosheets could undergo ready degradation
into biocompatible phosphorus oxides under light irradiation without any residual,
which offer a great therapeutic potential for the cancer therapy. This study could
provide a novel insight into the extensive application of black phosphorus.

3.3.7 Others

Besides quantum dots, gold nanomaterials, mesoporous silica nanoparticles, carbon
nanomaterials, upconversion nanoparticles, and two-dimensional nanomaterials
described above, other inorganic nanomaterials, such as CuS, Bi2S3, and FeS, were
also developed in recent years for applications in cancer therapy (Tian et al. 2011;
Ai et al. 2011; Yang et al. 2015b). These new inorganic nanomaterials not only
serve as the drug carriers to deliver chemo-drugs, photosensitizers or photothermal
agents, but also possess the ability for bioimaging or acting as therapeutic agents
themselves, which could provide new insights to develop potential therapeutic
agents for imaging-guided and combined cancer treatment in clinic.

Tian et al. (2011) synthesized hydrophilic flower-like CuS superstructures for
effective photothermal therapy under the excitation of 980 nm (Fig. 3.29).
Compared with corresponding building blocks (hexagonal nanoplates), CuS
superstructures could enhance the magnitude of NIR photothermal conversion
efficiency by approximate 50%. Upon 980 nm laser irradiation with a power
density of 0.51 W cm−2, the temperature of CuS superstructure aqueous solution
could increase by 17.3 °C in 5 min. Moreover, these CuS superstructures could

Fig. 3.28 Schematic illustration of the preparation of exfoliated black phosphorus (B.P.)
nanosheets for photodynamic therapy. Reproduced with permission from reference (Wang et al.
2015)
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ablate cancer cells in vivo effectively by their photothermal effects. Yang et al.
(2015b) fabricated magnetic FeS nanoplates for photothermal therapy of cancer
with simultaneous magnetic resonance imaging. FeS nanoplates were prepared
through a facile one-step approach and could reveal strong superparamagnetism
with high NIR absorbance after the PEG functionalization (Fig. 3.30). The
FeS-PEG nanoplates had much higher transverse relaxivity (r2, 209.8 mM−1 S−1)
when compared to iron oxide nanoparticles or some clinical approved T2-contrast
agents, and could achieve a high accumulation in tumor after intravenous injection
as confirmed by magnetic resonance imaging. Moreover, FeS-PEG nanoplates
could be cleared from major organs of mice, resulting in little toxicity to the
administrated animals even at a high dose (100 mg/kg). After intravenous injection
of these nanoplates with a dose of 20 mg/kg and upon irradiation with 808-nm NIR
laser, efficient photothermal treatment of cancer in vivo was achieved. These results
showed PEGylated FeS nanoplates may serve as potential therapeutic agents for
future clinical translation.

Fig. 3.29 Schematic illustration of CuS superstructures for effective photothermal therapy.
Reproduced with permission from reference (Tian et al. 2011)

Fig. 3.30 Schematic illustration of PEGylated FeS nanoplates for magnetic resonance
imaging-guided photothermal therapy. Reproduced with permission from reference (Yang et al.
2015b)
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3.4 Organic–Inorganic Hybrid Nanomaterials

In recent years, organic–inorganic hybrid nanomaterials, composed of both organic
and inorganic moieties through covalent or noncovalent interactions, have been
employed as nanocarriers for applications in cancer therapeutics (Hood et al. 2014).
Upon integrating the intrinsic physical/chemical properties of the organic and
inorganic components, organic-inorganic hybrid nanomaterials can possess
improved stability, multiple functionalities, and biocompatibility for the treatment
of cancer more efficiently (Sreejith et al. 2015).

Wang et al. (2012) fabricated polymer-QD hybrid nanoparticles for bioimaging
and chemotherapy (Fig. 3.31). The diblock copolymer folate-PEG-b-poly(N-(N′,N′-
diisopropyl-aminoethyl)aspartamide)-cholic acid (FA-PEG-b-PAsp(DIP)-CA) with

Fig. 3.31 Schematic illustration of PTX and QD loaded micelles for fluorescent imaging and
pH-responsive drug release. Reproduced with permission from reference (Wang et al. 2012)
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pH-sensitive moieties was synthesized and assembled into micelles in aqueous
solution, with CA as the core, PAsp(DIP) as the inner shell, and PEG as the corona.
The anticancer drug PTX could be loaded into the core, negatively charged
quantum dots were introduced into the inner shells for fluorescent imaging, and
folic acid in the coronas was used for active targeting of the cancer cells. PTX drugs
were released under intracellular acidic lysosomal condition, while only few
amounts of drugs were released under physiological pH. The PTX and QD loaded
micelles exhibited efficient inhibition for the tumor growth in vivo.

Wang et al. (2011) developed polymer-UCNP hybrid nanoparticles for photo-
dynamic therapy (Fig. 3.32). PEG-grafted poly(maleicanhydride-alt-1-octadecene)
(C18PMH-PEG) amphiphilic polymer was functionalized onto oleic acid capped
UCNPs, followed by loading photosensitizer Chlorin e6 (Ce6) through hydrophobic
interaction. The formed UCNP-Ce6 could generate singlet oxygen to kill cancer
cells with exposure under NIR light (980 nm). In vivo experiments demonstrated
outstanding photodynamic therapeutic effects of UCNP-Ce6 toward tumor-bearing
mice upon intratumoral injection and NIR light irradiation, and no obvious toxicity
to the mice because of the gradual clearance of UCNP-Ce6 from the body. In
another case, Luo et al. (2013) fabricated hybrid [2]rotaxane-functionalized hollow
mesoporous silica nanoparticles (HMSNs) for targeted and redox-responsive
chemotherapy (Fig. 3.33). Mechanically interlocked molecules ([2]rotaxanes) were
anchored onto the pores of HMSNs via disulfide bonds, and folic acid served as
stoppers of the [2]rotaxanes and active targeting ligands. This hybrid system
showed targeted ability toward tumor tissues in vitro and controlled drug release
under reductive intracellular condition, resulting in excellent therapeutic efficiency
to tumors in vivo.

Fig. 3.32 Schematic illustration of polymer-UCNP hybrid nanoparticles for photodynamic
therapy. Reproduced with permission from reference (Wang et al. 2011)
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Conclusions

In this brief, we introduced various kinds of nanomaterial-based drug delivery
carriers for cancer therapy. Precisely designed nanomaterials including organic,
inorganic, and organic–inorganic hybrid nanomaterials possess increased solubility,
prolonged circulation time and improved biodistribution by the utilization of the
EPR effect or active targeting effect in order to alter the uptake mechanism to
overcome the disadvantageous toxicity, drug resistance, and low stability of con-
ventional chemotherapeutics. Up to date, although numerous nanocarriers have
been developed to treat cancer, there are still limited nanotherapeutics approved for
clinical uses. Certain crucial challenges need to be tackled, including pharma-
cokinetics, and biodistribution (clearance rate and half-life), biocompatibility (im-
munogenic response and elimination route), targeting efficiency (specificity and
sensitivity) and the safety profile of nanocarriers (toxicity and off-target accumu-
lation). Addressing these issues will allow us to create suitable nanomaterial-based
drug delivery carriers for clinical cancer therapeutics. Thus, we expect more
breakthrough researches for translating nanomaterial-based therapeutics into clini-
cal uses in the near future.
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