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Preface 

Today's microprocessors are the powerful descendants of the von Neumann 
computer dating back to a memo1 of Burks, Goldstine, and von Neumann 
of 1946. The so-called von Neumann architecture is characterized by a se­
quential control flow resulting in a sequential instruction stream. A program 
counter addresses the next instruction if the preceding instruction is not a 
control instruction such as, e.g., jump, branch, subprogram call or return. An 
instruction is coded in an instruction format of fixed or variable length, where 
the opcode is followed by one or more operands that can be data, addresses 
of data, or the address of an instruction in the case of a control instruction. 
The opcode defines the types of operands. Code and data are stored in a 
common storage that is linear, addressed in units of memory words (bytes, 
words, etc.). 

The overwhelming design criterion of the von Neumann computer was 
the minimization of hardware and especially of storage. The most simple 
implementation of a von Neumann computer is characterized by a microar­
chitecture that defines a closely coupled control and arithmetic logic unit 
(ALU), a storage unit, and an I/O unit, all connected by a single connection 
unit. The instruction fetch by the control unit alternates with operand fetches 
and result stores for the AL U. Both fetches access the same storage and are 
performed over the same connection unit - this turned out to be a bottleneck, 
sometimes coined by latter authors as the von Neumann bottleneck. 

The sequential operating principle ofthe von Neumann architecture is still 
the basis for today's most widely used high-level programming languages, and 
even more astounding, of the instruction sets of all modern microprocessors. 
While the characteristics of the von Neumann architecture still determine 
those of a contemporary microprocessor, its internal structure has consider­
ably changed. The main goal of the von Neumann design - minimal hardware 
structure - is today far outweighed by the goal of maximum performance. 
However, the architectural characteristics of the von Neumann design are still 
valid due to the sequential high-level programming languages that are used 
today and that originate in the von Neumann architecture paradigm. 

1 A.P. Burks, H.H. Goldstine, J. von Neumann, Preliminary Discussion of the 
Logical Design of an Electronic Computing Instrument. Report to the u.s. Army 
Ordnance Department, 1946. Reprint in: W. Aspray, A.P. Burks (eds.) Papers 
of John von Neumann. MIT Press, Cambridge, MA, 1987, pages 97-146. 
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A slightly more efficient implementation than the alternating of instruc­
tion fetch and operand fetch is the overlapping of the following two steps: 
next PC computation and instruction fetch and decode, with operand fetch, 
instruction execution, and result storage. This overlapping already defines 
two-stage instruction pipelining. 

A more consistent use of overlapping results in an instruction pipeline 
with the following basic steps that are characteristic of so-called reduced in­
struction set computer (RISC) processors: instruction fetch, instruction de­
code and operand fetch, instruction execution, memory access in the case of 
a load/store instruction, and result write-back. Ideally each step takes about 
the same amount of time. 

However, a storage access today needs much more time than a single 
pipeline step. The introduction of registers on the processor chip and re­
stricting the operands of AL U instructions to register accesses allows the 
pipeline to be balanced again. However, the problem of the memory accesses 
- the von Neumann bottleneck - is still one of the main hindrances to high 
performance even today. A whole memory hierarchy of cache storages now 
exists to widen that bottleneck. 

Current superscalar microprocessors are a long way from the original von 
Neumann computer. However, despite the inherent use of out-of-order paral­
lelism within superscalar microprocessors today, the order of the instruction 
flow as seen from outside by the compiler or assembly language programmer 
still retains the sequential program order as defined by the von Neumann 
architecture. 

Radically different operating principles, such as the dataflow principle and 
the reduction machine principle, were surveyed very early on. The dataflow 
principle states that an instruction can be executed when all operands are 
available (data-driven) while the reduction principle triggers instruction exe­
cution when the result is needed (demand-driven). We find a modified variant 
of the dataflow principle, called local dataflow, in today's superscalar micro­
processor cores to decide when instructions are issued to the functional units. 

Since present-day microprocessors are still an evolutionary progress from 
the von Neumann computer, at least four classes of future possible develop­
ments can be distinguished: 

• Microarchitectures that retain the von Neumann architecture principle (the 
result sequentiality), although instruction execution is internally performed 
in a highly parallel fashion. However, only instruction-level parallelism can 
be exploited by contemporary microprocessors. Because instruction-level 
parallelism is limited for sequential threads, the exploited parallelism is en­
hanced by speculative parallelism. Besides the superscalar principle applied 
in commodity microprocessors, the superspeculative, multiscalar, and trace 
processor principles are hot research topics. All these approaches belong to 
the same class of implementation techniques because result sequentiality 
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must be preserved. A reordering of results is performed in a retirement 
phase in order to conform this requirement. 

• Processors that modestly deviate from the von Neumann architecture but 
allow the use of the sequential von Neumann languages. Programs are com­
piled to the new instruction set principles. Such architectural deviations 
include very long instruction word (VLIW), SIMD in the case of multime­
dia instructions, and vector operations. 

• Processors that optimize the throughput of a multiprogramming workload 
by executing multiple threads of control simultaneously. Each thread of 
control is a sequential thread executable on a von Neumann computer. 
The new processor principles are the single-chip multiprocessor and the 
simultaneous multithreaded processor. 

• Architectures that break totally with the von Neumann principle and that 
need to use new languages, such as, e.g., dataflow with dataflow single­
assignment languages, or hardware-software codesign with hardware de­
scription languages. The processor-in-memory, reconfigurable computing, 
and the asynchronous processor approaches also point in that direction. 

In particular processor architecture covers the following two aspects of com­
puter design: 

• the instruction set architecture which defines the boundary between hard­
ware and software (often also referred to as the "architecture" of a proces­
sor), and 

• the "microarchitecture", i.e., the internal organization of the processor con­
cerning features like pipelining, superscalar techniques, primary cache or­
ganization, etc. 

Moreover, processor architecture must take into account the technological 
aspects of the hardware, such as logic design and packaging technology. 

Intended Audience 

The primary intended audience of this book are computer and/or elec­
trical engineers and researchers in the fields of computer science. It can also 
be used as a textbook for processor architecture or advanced microproces­
sor courses at the graduate student level of computer science or electrical 
engineering. As such it is not intended for beginners. 

The book surveys architectural mechanisms and implementation tech­
niques for exploiting fine-grained and coarse-grained parallelism within 
microprocessors. It starts with a review of the basic instruction set architec­
ture and pipelining techniques, continues with a comprehensive account of 
state-of-the-art superscalar and VLIW techniques used in microprocessors. 
It covers both the concepts involved and implementations in modern 
microprocessors. The book ends with a thorough review of the research 
techniques that will lead to future microprocessors. 



X Preface 

U sing the book 

Each book chapter comprises a tutorial on the specific techniques and 
comprehensive sections on sample processors. The reader may quickly browse 
the sample processor sections, if interested mainly in learning the techniques. 
The conversant reader may even start with Chap. 4 - the main chapter of 
the book, while the student is advised to read at least Chaps. 1 and 3. 

Chapter 2 

Dataflow 

Chapter 1 
RISC, 

Instruction Set Architecture, 
and Basic Pipelining 

RISC example processors 

CISC, Scoreboarding, and 
Tomasulo's Scheme 

Dataflow processors Sample CISC processors 

Contemporary: 

Future Fine-Grain 
Processors 

Overview of the book 

SuperscaJar and VLIW 

Contemporary superscalar and 
VLIW processor examples 

Chapter 6 

Future Coarse-Grain 
Processors 

Processor-in-Memory, 
Reconfigurable, and 

Asynchronous Processors 

Chapter 1. Basic Pipelining and Simple RISC Processors. Af­
ter a period of programming in assembly language, the permanent desire for 
reduced software costs ultimately resulted in the appearance of high-level pro­
gramming languages. However, at that time - about two decades after the von 
Neumann architecture had been proposed - processor design did not provide 
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hardware-based support for most of the high-level language features. Thus, 
the programmer's view of the machine was removed from the architect's view 
- the so-called semantic gap appeared. In the 1970s, microelectronic technol­
ogy made it possible to replace software with hardware and, in particular, 
to incorporate high-level language features in the processor instruction set 
architecture. This resulted in complex instruction set computer (elSe) pro­
cessors characterized by a large number of instructions, addressing modes, 
and instruction formats. As an alternative, the RISe approach was born in 
the mid-1970s, advocating the hardware support of only the most frequent 
instructions while implementing the others as instruction sequences. After 
the pioneering architecture of the IBM 801, the main initial research in RISe 
was carried out by teams at Berkeley and Stanford University. While the 
former relied on a large number of registers to minimize the memory latency, 
the later pared hardware down to a minimum and relied on a smart compiler. 
The two research studies initiated a number of other projects that resulted 
in modern RISe microprocessors. 

The goal of RISe architecture during the 1980s was to develop processor 
designs that can come close to issuing one instruction each clock cycle. This 
was made possible by using hardwired, instead of microcoded, control, by 
supporting a small set of equal-length instructions, most of which are of the 
register-register type, by relying on a high-performance memory hierarchy 
as well as instruction pipelining and optimizing compilers. Moreover, 
superpipelined processors allowed for higher clock rates by a longer pipeline, 
although they still issue one instruction after the other. Since all these RISe 
processors issue only one instruction at a time, they are said to be scalar. 
Instruction set architecture and basic pipelining techniques are explained in 
this chapter in the context of scalar RISe processors. When more than one 
instruction can be issued at once, the resulting overlap between instructions 
is called instruction-level parallelism. The processors capable of utilizing 
instruction-level parallelism and issuing more than one instruction each clock 
cycle are superscalar and VLIW processors, as well as dataflow processors. 

Chapter 2. Dataflow Processors. Dataflow computers have the poten­
tial for exploiting all the parallelism available in a program. Since execution 
is driven only by the availability of operands at the inputs to the functional 
units, there is no need for a program counter in this architecture, and its 
parallelism is limited only by the actual data dependences in the application 
program. Dataflow architectures represent a radical alternative to the von 
Neumann architecture because they use dataflow graphs as their machine 
language. Dataflow graphs, as opposed to conventional machine languages, 
specify only a partial order for the execution of instructions and thus provide 
opportunities for parallel and pipelined execution at the level of individual 
instructions. 
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While the dataflow concept offers the potential of high performance, the 
performance of an actual dataflow implementation can be restricted by a 
limited number of functional units, limited memory bandwidth, and the 
need to match pending operations associatively with available functional 
units. Since the early 1970s, there have been significant developments in 
both fundamental research and practical realizations of dataflow models of 
computation. In particular, there has been active research and development 
in the multithreaded architectures that have evolved from the dataflow 
model. These developments have also had a certain impact on the conception 
of high-performance processor architectures in the "post-RISC" era. 

Chapter 3. CISC Processors. Even stronger impact on the high­
performance "post-RISC" architecture was made by CISC processors. These 
processors date back to the mainframe computers of the 1960s, exemplified by 
the CDC 6600, IBM System/360, DEC PDP-ll, etc. which were rack-based 
machines implemented with discrete logic. Their processors used complex 
instruction sets with hundreds of instructions, dozens of addressing modes, 
and more than ten different instruction lengths. In the 1970s, several break­
throughs in technology made it possible to produce microprocessors. Sev­
eral CISC-type microprocessor families were developed, including the Intel 
80x86 and Motorola MC 680xx, whose descendants such as the Pentium II 
and MC 68060 represent a strong alternative to the RISC-type processors. 

The competition between CISC and RISC continues, with each of the 
two taking ideas of the other and using them to increase its performance. 
Such an idea, originating from CISC machines, is out-of-order execution 
where instructions are allowed to complete out of the original program order. 
In the CDC 6600 the control of out-of-order execution was centralized (with 
scoreboarding), while in the IBM System/360 Model91 it was distributed 
(with Tomasulo's scheme). Scoreboarding and Tomasulo's scheme faded 
from use for nearly 25 years before being broadly employed in modern 
microprocessors in the 1990s. Other old ideas are being revived: out-of-order 
execution implemented with scoreboarding or Tomasulo's scheme is quite 
similar to dataflow computing with simplified matching and handling of 
data structures. 

Chapter 4. Multiple-Issue Processors. Superscalar processors 
started to conquer the microprocessor market at the beginning of the 1990s 
with dual-issue processors. The principal motivation was to overcome the 
single-issue of scalar RISC processors by providing the facility to fetch, de­
code, issue, execute, retire, and write back results of more than one instruc­
tion per cycle. One technique crucial for the high performance of today's and 
future microprocessors is an excellent branch handling technique. Many in­
structions are in different stages in the pipeline of a wide-issue superscalar 
processor. However, approximately every seventh instruction in an instruction 
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stream is a branch instruction which potentially interrupts the instruction 
flow through the pipeline. 

VLIW processors Use a long instruction word that contains a (normally) 
fixed number of operations that are fetched, decoded, issued, and executed 
synchronously. VLIW relies on a sequential stream of long instruction words, 
i.e., instruction tuples, in contrast to superscalar processors, that issue from 
a sequential stream of "normal" instructions. The instructions are scheduled 
statically by the compiler, in contrast to superscalar processors which rely on 
dynamic scheduling by the hardware. VLIW is not as flexible as superscalar 
and therefore has been confined to signal processors during the last decade. 
Recently the VLIW technique has come into focus again in the explicitly 
parallel instruction computing (EPIC) design style proposed by Intel for its 
lA-54 processor Merced. 

The chapter presents all components of superscalar and VLIW-based 
multiple-issue processors in detail and provides descriptions of nearly all 
major superscalar microprocessors. 

Chapter 5. Future Processors to Use Fine-Grain Parallelism. 
Current microprocessors utilize instruction-level parallelism by a deep pro­
CeSsor pipeline and by the superscalar instruction issue technique. VLSI tech­
nology will allow future generations of microprocessors to exploit aggressively 
instruction-level parallelism up to 15 or even 32 instructions per cycle. Tech­
nological advances will replace the gate-delay by an on-chip wire-delay as the 
main obstacle to increase chip complexity and cycle rate. The implication for 
the microarchitecture is a functionally partitioned design with strict nearest 
neighbor connections. 

One proposed solution is a uniprocessor chip featuring a very aggres­
sive superscalar design combined with a trace cache and superspeculative 
techniques. Superspeculative techniques exceed the classical dataflow limit 
which says: Even with unlimited machine resources a program cannot execute 
any faster than the execution of the longest dependence chain introduced by 
the program's data dependences. Superspeculative processors also speculate 
about data dependences. 

The trace cache stores dynamic instruction traces contiguously and fetches 
instructions from the trace cache rather than from the instruction cache. Since 
a dynamic trace of instructions may contain multiple taken branches, there is 
no need to fetch from multiple targets, as would be necessary when predicting 
multiple branches and fetching 15 or 32 instructions from the instruction 
cache. 

Multiscalar and trace processors define several processing cores that spec­
ulatively execute different parts of a sequential program in parallel. Multi­
scalar uses a compiler to partition the program segments, whereas a trace 
processor uses a trace cache to generate dynamically trace segments for the 
processmg cores. 
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A DataScalar processor runs the same sequential program redundantly 
on several processing elements with different data sets. 

Chapter 6. Future Processors to Use Coarse-Grain Parallelism. 
The instruction-level parallelism found in a conventional instruction stream is 
limited. Recent studies have shown the limits of processor utilization even of 
today's superscalar microprocessors. The solution is the additional utilization 
of more coarse-grained parallelism. The main approaches are the multipro­
cessor chip and the multithreaded processor which optimize the throughput 
of multiprogramming workloads rather than single-thread performance. The 
multiprocessor chip integrates two or more complete processors on a single 
chip. Every unit of a processor is duplicated and used independently of its 
copies on the chip. 

In contrast, the multithreaded processor stores multiple contexts in dif­
ferent register sets on the chip. The functional units are multiplexed between 
the threads in the register sets. Because of the multiple register sets, context 
switching is very fast. The multiprocessor chip is easier to implement, but 
does not have the capability of multithreaded processors to tolerate memory 
latencies, by overlapping the long-latency operations of one thread with the 
execution of other threads. 

The performance of a superscalar processor suffers when instruction-level 
parallelism is low. The underutilization due to missing instruction-level par­
allelism can be overcome by simultaneous multithreading, where a processor 
can issue multiple instructions from multiple threads each cycle. Simultane­
ous multithreaded processors combine the multithreading technique with a 
wide-issue superscalar processor such that the full issue bandwidth is utilized 
by potentially issuing instructions from different threads simultaneously. 
Depending on the specific simultaneous multithreaded processor design, only 
a single instruction pipeline is used, or a single issue unit issues instructions 
from different instruction buffers simultaneously. 

Chapter 7. Processor-in-Memory, Reconfigurable, and Asyn­
chronous Processors. Architectural techniques that partly give up the re­
sult serialization that is characteristic of von Neumann architectures arise 
from an on-chip processor-memory integration and from reconfigurable ar­
chitectures. Such innovations have the potential to define highly parallel chip 
architectures. 

The processor-in-memory or intelligent RAM approach integrates pro­
cessor and memory on the same chip to increase memory bandwidth. The 
starting points for processor and memory integration can be either a scalar 
or superscalar microprocessor chip that is enhanced by RAM memory rather 
than cache memory, or it can be a RAM chip combined with some computing 
capacity. Researchers at Sun Microsystems propose a processor-in-memory 
design that couples a RISe processor with multi-banked DRAM memory. 
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The Mitsubishi M32R/D is a similar processor-in-memory approach designed 
for embedded systems applications. Vector intelligent RAM processors cou­
ple vector processor execution with large, high-bandwidth, on-chip DRAM 
banks. The Active Page approach is at the other end of the design spectrum 
which may be characterized as smart memory approaches. Active pages pro­
vide data access and manipulation functions for data arrays integrated in a 
RAM chip, the processor staying off-chip. 

Reconfigurable computing devices replace fixed hardware structures with 
reconfigurable structures, in order to allow the hardware to adapt to the 
needs of the application dynamically at run-time. The MorphoSys reconfig­
urable architecture combines a reconfigurable array of processing elements 
with a RISC processor core. The Raw architecture approach is a set of repli­
cated tiles, wherein each tile contains a simple RISC-like processor, a small 
amount of bit-level reconfigurable logic and some memory for instructions and 
data. Each Raw tile has an associated programmable switch which connects 
the tiles in a wide-channel point-to-point interconnect. The Xputer defines 
a non-von-Neumann paradigm implemented on a reconfigurable Datapath 
Archi tect ure. 

Conventional synchronous processors are based on global clocking 
whereby global synchronization signals control the rate at which different 
elements operate. For example, all functional units operate in lockstep under 
the control of a central clock. As the clocks get faster, the chips get bigger 
and the wires get finer. As a result, it becomes increasingly difficult to ensure 
that all parts of the processor are ticking along in step with each other. 

The asynchronous processors attack clock-related timing problems by 
asynchronous (or self-timed) design techniques. Asynchronous processors 
remove the internal clock. Instead of a single central clock that keeps 
the chip's functional units in step, all parts of an asynchronous processor 
(e.g., the arithmetic units, the branch units, etc.) work at their own pace, 
negotiating with each other whenever data needs to be passed between them. 
Several projects are presented, one of these - the Superscalar Asynchronous 
Low-Power Processor (SCALP) - is presented in more detail. 

Additional Information 

The book's home page provides various supplementary information on 
the book, its topics, and the processor architecture field in general. Lecture 
slides are available in Power Point , PDF, and Postscript, covering the whole 
book. Over time, enhancements, links to processor architecture-related 
web sites, corrigenda, and reader's comments will be provided. The book's 
home page is located at goethe. ira. uka. del "-'ungerer /proc-arch/ 
and can also be accessed via the Springer-Verlag home page 
www.springer.de/cgi-bin/search_book.pl?isbn=3-540-64798-8. 
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The home pages of the authors are www-csd.ijs.si/silc for 
Jurij Silc, www-csd. ij s. si/robic/robic. html for Borut Robie, and 
goethe. ira. uka.de/people/ungerer for Theo Ungerer. 

Additional information can be drawn from the "WWW Com­
puter Architecture Home Page" of the University of Wisconsin at 
www. cs. wisc. edu/ "'arch/www/ which provides comprehensive information 
on computer architecture research. Links are provided to architecture re­
search projects, the home pages and email addresses of people in computer 
architecture, calls for papers, calls for conference participation, technical or­
ganizations, etc. 

The National Technology Roadmap for Semiconductors 
wwv. sematech. org/public/home . htm is a description of the semiconductor 
technology requirements for ensuring advancements in the performance of 
integrated circuits. Sponsored by the Semiconductor Industry Association 
(SIA) and published by SEMATECH, this report is the result of a collab­
orative effort between industry manufacturers and suppliers, government 
organizations, consortia, and universities. 

The CPU Info Center of the University of California, Berkeley, at 
infopad. eecs. berkeley. edu/CIC/ collects information on commercial mi­
croprocessors such as, e.g., CPU announcements, on-line technical documen­
tations, a die photo gallery, and much more. 

An excellent guide to resources on high-performance microprocessors is 
the "VLSI microprocessor" home page www.microprocessor. sscc. ru at the 
Supercomputer Software Department RAS. 

The newest commercial microprocessors are presented at the Micro­
processor Forum, the Hot Chips Conference, and the International Solid 
State Circuit Conference (ISSCC). The most important conferences on 
research in processor architecture are the Annual International Symposium 
on Computer Architecture (ISCA), the biennial International Conference 
on Architectural Support for Programming Languages and Operating 
Systems (ASPLOS), the International Symposium on High-Performance 
Computer Architecture (HPCA), the Annual International Symposium on 
Microarchitecture (MICRO), and the Parallel Architectures and Compilation 
Techniques (PACT) conferences. 
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1. Basic Pipelining and Simple RIse Processors 

What is "reduced" in a RISC? Practically everything: the number of 
instructions, addressing modes, and formats . .. 

The application area of RISCs is expected to widen in the future. 

Daniel Tabak 
Advanced Microprocessors 

(McGraw-Hill, 1995) 

1.1 The RISe Movement in Processor Architecture 

CISCo Conventional state-of-the-art computers in the 1960s and 1970s, ex­
emplified by the IBM System/370, and the DEC PDP-ll minicomputer se­
ries and VAX-ll/780 super minicomputer, were rack-based machines imple­
mented with discrete logic and only rarely with microchips. A processor of 
such a machine used a complex instruction set, consisting of as many as 304 
instructions, 16 addressing modes, and more than 10 different instruction 
lengths in the case of VAX. 

What were the reasons for such a large number of instructions? In fact, 
computers before the 1960s were limited in their instruction sets. That was 
due to the hardware technology of that time. Computer architecture of the 
1960s and early 1970s was dominated by high hardware cost, in particular 
by the high cost of memory. Technology at that time only allowed a small 
main memory and slow memory access compared to more recent technology. 
High-speed local memory was not yet available except for a few general­
purpose registers. Instruction fetch was done from main memory and could 
be overlapped with decode and execution of previous instructions. As a re­
sult, CISC processors were based on the observation that the number of cycles 
per instruction was determined by the number of cycles taken to fetch the 
instruction. It was acceptable to increase the average number of cycles taken 
to decode and execute an instruction. To improve performance, the two prin­
cipal goals of CISC were to reduce the number of instructions and to encode 
these instructions densely. With these assumptions, CISC processors evolved 
densely encoded instructions at the expense of decode and execution time 
inside the processor. Multiple-cycle instructions reduce the overall number of 
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instructions, and thus reduce the overall execution time because they reduce 
the instruction-fetch time (Johnson [150]). 

In addition, as long as they were programmed in assembler, the pro­
grammer's view of the machine was close to the computer architect's 
view. However, the permanent desire for reducing software cost by sim­
plifying the task of software design ultimately resulted in appearance of 
high-level languages (HLL). Because the computer design did not provide 
any hardware-based support for HLL features (such as array management, 
handling of procedure parameter passing, process and memory management, 
etc.), this introduced a wide semantic gap between HLL and the machine 
design. Thus the programmer's view of the machine deviated from the 
architect's view. In the 1970s, several breakthroughs in microelectronic 
technology made it possible to replace software with hardware. This was 
done in HLL computer architectures, which attempted to incorporate HLL 
features in their instruction sets. A HLL instruction set provided powerful 
instructions with a wide range of flexibility. This resulted in complex 
instruction set computers (elSe) characterized by a complex instruction set 
architecture (ISA), i.e., a large number of instructions, addressing modes, 
and instruction formats. Unfortunately, these instructions often did more 
work than was required in the frequent case, or they did not even exactly 
match the requirements of the language. 

RISC. In mid-1970s, researcher noticed that, instead of providing the ISA 
with a large number of instructions, a promising approach would be to sup­
port only the most frequently used instructions (see Table 1.1) while leaving 
less frequent operations to be implemented as instruction sequences. Systems 
having such a reduced ISA were called reduced instruction set computers 
(RISe). 

Table 1.1. The ten most frequently used instructions in the SPECint92 benchmark 
suite for the CISC Intel x86 microprocessor 

Instruction Average 
(% total executions) 

load 22 
conditional branch 20 
compare 16 
store 12 
add 8 
and 6 
sub 5 
move register-register 4 
call 1 
return 1 --Totar----------------------- ----------------95----------------
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Historically, ideas of having a small number of instructions can be traced 
back to 1964, when the Control Data Corporation CDC 6600 supercomputer 
(see Thornton [295, 296]) used a small (64 opcodes) load/store and register­
register instruction set. In the mid-1970s, when researchers at IBM developed 
the 801 architecture (see Radin [237]), they found that about 80 % ofthe com­
putations of a typical program required only about 20 % of the instructions 
in a processor's instruction set. The most frequently used instructions were 
simple instructions such as load, store, and add. IBM 801 emphasized the 
importance of the cooperation between a well-chosen set of simple instruc­
tions implemented directly in hardware and an optimizing compiler. Because 
this approach abandoned microcode implementations of complex instructions 
in favor of a few simple instructions implemented with hardwired control, it 
was called RISe architecture. Some time after the IBM 801, around 1980, 
researchers at the University of California at Berkeley (Patterson and Ditzel 
[231]) and at Stanford University (Hennessy et al. [133]) began parallel efforts 
in RISC technology. The Berkeley team concentrated on understanding the 
principles for achieving the most effective use of the area on a VLSI chip for 
building computers. Since the limited number of instructions required a rel­
atively small amount of on-chip control logic, more chip space could be used 
for other functions, thus enhancing the performance and versatility of the 
processor. For example, efficient procedure parameter passing was enabled 
by having a large CPU register file, whose global registers were accessible 
to all procedures while the so-called window registers acted both as input 
registers for one procedure and output registers for another. This register 
window approach is nowadays used in the Scalable Processor ARChitecture 
(SPARC) family of microprocessors (see Sect. 1.7.2). The Stanford team con­
centrated in its project, called Microprocessor without Interlocking Pipeline 
Stages (MIPS), on combining an optimizing compiler with the design of a 
VLSI RIse processor. MIPS used the pipeline technique to enable a num­
ber of instructions to be active at once. Since the pipeline hardware was not 
able to recognize so-called pipeline hazards, the compiler had to guarantee 
correct instruction execution in the pipeline and improve its efficiency. MIPS 
has been also called the single register set approach because it uses a small 
register file with no register windows. The developments of Berkeley's RISe 
and Stanford's MIPS initiated a number of projects that resulted in modern 
scalar and superscalar RISC microprocessors. 

The fundamental theme of RISC architectural design is that of maximiz­
ing the effective speed of a design by performing most functions in software, 
except those whose inclusion in hardware yields a net performance gain. The 
basic design principles are: 

• Simple instructions and few addressing modes: CISC architecture includes 
an extensive set of ways for addressing system memory, many of which 
require the processor to use several different parameters to calculate an 
effective address during program execution. Complex instructions and ad-
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dressing modes warrant microcode or multi cycle execution and complicate 
the processor and compiler design. In contrast, RISe designs are able to 
eliminate microcode because they have a small and simple set of instruc­
tions and addressing modes. The ISA is designed so that most instructions 
remain only a single cycle in each pipeline stage. 

• Register-register (or load/store) design: References to data in system mem­
ory are limited to load/store instructions. All other instructions operate on 
data in registers. A load instruction moves data from memory to registers, 
where the data can be rapidly processed and temporarily held for fur­
ther access. When appropriate, a store instruction returns the data to its 
place in memory. In contrast, else architectures support arithmetic-logic 
instructions denoting memory operands. 

• Pipelining: Modern processor design generally includes a multistage 
pipeline to increase the rate of instruction execution. Because each pipeline 
stage is responsible for an individual execution phase, such as instruction 
decoding or operand fetching, a pipelined processor is actually working on 
several instructions simultaneously. else processor pipelines are subject 
to various kinds of inefficiencies, such as the use of complex addressing 
modes, that slow down instruction execution in the pipeline. In a RIse 
design, however, the predictability of the time required to perform instruc­
tions allows pipelines to operate with high efficiency. 

• Hardwired control, with little or no microcode: RISe designs eliminate mi­
crocode ROM and implement instructions directly in hardware. This means 
that there is no translation from a machine instruction to primitive mi­
crocoded operations, which would increase the number of cycles required 
to execute the instruction. In the case of a RISe implemented as a micro­
processor, this also frees up chip space and gives the opportunity to use it 
for performance-enhancing functions. 

• Reliance on optimizing compilers: Optimizing compilers recognize when 
the contents of a register can be re-used in subsequent instructions with­
out reloading the data from system memory. When a memory reference 
cannot be avoided, the compiler rearranges the instructions so that useful 
work that is not dependent on the referenced data can be performed while 
the processor is waiting for the data to be loaded into a register. The large 
number of registers, the small, simple instruction set, and the limited num­
ber of addressing modes in RISe designs make it easier for an optimizing 
compiler to limit references to memory, recognize computations that can 
be streamlined, and reorganize instructions to ensure maximum pipeline 
efficiency. An optimizing compiler for RISe machines can calculate the 
savings of an optimization more simply because, ideally, all instructions 
require equal execution time. 

• High-performance memory hierarchy: As RISC design increases the per­
formance of the CPU, it is important to provide a fast, efficient memory 
hierarchy to keep pace with the processor. In a RISe system, the memory 
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hierarchy typically consists of a large register file (i.e., a set of on-chip regis­
ters), fast static RAMs for split data cache (D-cache) and instruction cache 
(I-cache), and write buffers. Usually, there is also an on-chip memory man­
agement unit. Recent advances in the cost, density, and speed of semicon­
ductor memory have contributed to the ability to design high-performance 
memory hierarchies which support the speed of a RISC processor. 

We will investigate ISA features and basic pipelining in the rest of this chapter 
in the context of RISC processors, because the relative simplicity of RISC 
facilitates understanding. However, most ofthe techniques apply equally well 
to either RISC or CISC processors. 

1.2 Instruction Set Architecture 

The instruction set architecture refers to the programmer-visible instruction 
set. It defines the boundary between hardware and software. Often it is identi­
fied with the processor architecture. The processor microarchitecture refers to 
the internal organization of the processor. The microarchitecture comprises 
implementation techniques like the number and type of pipeline stages, issue 
bandwidth, number of FUs, size and organization of on-chip cache memo­
ries, etc. All these features cannot be seen in the ISA. Yet, an optimizing 
compiler may also use the knowledge of microarchitecture features. Several 
specific processors with differing microarchitectures may share the same ar­
chitecture. 

The programmer's view of the machine depends on the answers to the 
following five questions: 

• How is data represented? 
• Where can data be stored? 
• How can data be accessed? 
• What operations can be done on data? 
• How are instructions encoded? 

The answers to these questions define the instruction set architecture (ISA) 
of the machine. In what follows, we describe some common features of RISC 
ISA. We will partly follow the presentation given by Tabak [286]. 

How is data represented? The programmer can usually declare data of 
different data formats. One of the key ISA issues is to support several data 
formats by providing representations for characters, integers, floating-point 
numbers, etc. For instance, in DEC Alpha there is byte, 16-bit word, 32-bit 
longword, and 64-bit quad word. Integer data formats can be signed or 
unsigned. There are two ways of ordering byte addresses within a word, 
big-endian (most significant byte first) and little-endian (least significant 
byte first). There are also packed and unpacked BCD numbers, and ASCII 
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characters. Floating-point data formats can be, according to the ANSI/IEEE 
754-1985 standard, basic or extended, each having two widths, single or 
double. Multimedia data formats are 32-bit or 64-bit words (sometimes also 
128-bit) including several 8-bit or 16-bit pixel representations. 

Where can data be stored? For storing data, several address spaces 
are often distinguished by the (assembly language) programmer, such as 
register space, stack space, heap space, text space, I/O space, and control 
space. Except for the registers, all other address spaces are mapped onto 
a single contiguous memory address space, which is accessed by the RISC 
processor. A RISC ISA additionally contains a register file, which consists 
of a relatively large number of general-purpose CPU registers. Early RISC 
processors contained thirty-two 32-bit general purpose registers, or register 
windowing (RISC I and SPARC processors). Contemporary RISC processors 
provide an additional register set with thirty-two 64-bit floating-point 
registers. 

How can data be accessed? The way in which data can be accessed is 
defined by the addressing mode. In modern processors several of the following 
addressing modes can be found (Table 1.2): 

• Register mode, which is used when the operand is stored in one of the 
registers. 

• Immediate (or literal) mode, if the operand is a part of the instruction. 
• Direct (or absolute) mode, where the address of the operand in memory is 

stored in the instruction. 
• Register indirect (or register deferred) mode, where the address of the 

operand in memory is stored in one of the registers. 
• Autoincrement (or register indirect with postincrement) mode, which is like 

register indirect, except that the content of the register is incremented after 
the use of the address. This mode offers an automatic address increment 
useful in loops and in accessing byte, halfword, or word arrays of operands. 

• Autodecrement (or register indirect with predecrement) mode, where the 
content of the register is decremented and is then used as a register indi­
rect address. This mode can be used to scan an array in the direction of 
decreasing indices. 

• Displacement (also register indirect with displacement or based) mode, 
where the effective address of the operand is the sum of the contents of a 
register and a value, called displacement, specified in the instruction. 

• Indexed and scaled indexed mode that works essentially as the register 
indirect. The register containing the address is called the index register. 
The main difference between the register indirect and the indexed modes is 
that the contents of the index register can be scaled by a scale factor (e.g., 
1, 2, 4, 8 or 16). The availability of the scale factor, along with the index 
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Table 1.2. Addressing modes 

Addressing mode 

Register 

Immediate 

Direct 

Register 
indirect 

Autoincrement 

Autodecrement 

Displacement 

Indexed and 
scaled indexed 

Indirect 
scaled indexed 

Indirect scaled indexed 
with displacement 

PC-relative 

const,displ 

step 

scale 

Example instruction I Meaning 

load Regl,Reg2 
Regl ~ (Reg2) 

load Regl,#const 
Regl ~ const 

load Regl, (const) 
Regl ~ Mem[const] 

load Regl, (Reg2) 
Regl ~ Mem[ (Reg2)] 

load Regl, (Reg2)+ 
Regl ~ Mem[ (Reg2) ], Reg2 ~ (Reg2) + step 

load Regl,-(Reg2) 
Reg2 ~ (Reg2) - step, Regl ~ Mem[ (Reg2) ] 

load Regl,displ(Reg2) 
Regl ~ Mem[displ + (Reg2)] 

load Regl, (Reg2*scale) 
Regl ~ Mem[ (Reg2)*scale] 

load Regl, (Reg2,Reg3*scale) 
Regl ~ Mem[ (Reg2) + (Reg3)*scale] 

load Regl,displ(Reg2,Reg3*scale) 
Regl ~ Mem[displ + (Reg2) + (Reg3)*scale] 

branch displ 
PC +--- PC + step + displ (if branch taken) 

decimal, hexadecimal, octal or binary numbers 

e.g., 4 in systems with 4-byte uniform instruction size 

scaling factor, e.g., 1, 2, 4, 8,16 

register, permits scanning of data structures of any size, at any desired 
step. 

• Indirect scaled indexed mode, where the effective address is the sum of the 
contents of the register and the scaled contents of the index register. 

• Indirect scaled indexed with displacement mode, which is essentially as the 
indirect scaled indexed, except that a displacement is added to form the 
effective address. 

• PC-relative mode, where a displacement is added to the program counter 
(PC). The PC-relative mode is used automatically with program control 
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instructions in many systems. Branches and jumps that use PC-relative 
addressing mode are advantageous, because the targets are often near the 
current branchfjump instruction. Therefore specifying the displacement 
requires fewer bits. 

RISC ISAs have a small number of addressing modes, not usually exceeding 
four. Note that the displacement mode already includes the direct mode 
(by setting the register content to zero) and the register indirect mode (by 
setting the displacement to zero). 

What operations can be performed on data? One of the key features 
of a computer is its instruction set, i.e., a specific set of basic operations that 
a given computer can perform. One can distinguish the following types of 
instructions: 

• Data movement instructions, which transfer data from one location to 
another. When there is a separate I/O address space, these instructions 
also include special I/O instructions. Stack manipulation instructions (e.g., 
push, pop) also fall into this category. 

• Integer arithmetic and logical instructions, which can be one-operand (e.g., 
complement), two-operand, or three-operand instructions, with the latter 
offering a more compact program code. In some processors, different in­
structions are used for different data formats of their operands. For in­
stance, there may be separate signed and unsigned multiply/divide in­
structions. 

• Shift and rotate instructions, which perform either left or right shifts and 
rotations. There are two types of shifts, 1 logical and arithmetic, depending 
on what is transferred into the vacated positions. 

• Bit manipulation instructions, which operate on specified fields of bits. The 
field is specified by its width and offset from the beginning of the word. 
Instructions usually include test (affecting certain flags), set, clear, and 
possibly others. 

• Multimedia instructions can process multiple sets of small operands and 
obtain multiple results with a single instruction. The operations include 
packing and unpacking, arithmetic, comparisons, logic, and shifting of val­
ues that usually represent pixels. The pixels are represented as packed data 
types, such as eight bytes, four 16-bit words, or two 32-bit doublewords, 
all packed inside one 64-bit quadword. 

• Floating-point instructions, which may include, depending on the system, 
floating-point data movement, arithmetic, comparison, square root, abso­
lute value, transcendental functions, and others. 

• Control transfer instructions, which consist primarily of jumps, branches, 
procedure calls, and procedure returns. We assume that jumps are uncon-

1 Many modern microprocessors perform fast shifting by special hardware, such 
as barrel shifters. 
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ditional and branches are conditional. Some systems may also have return 
from exception instructions. 

• System control instructions, which allow the user to influence directly the 
operation of the processor and other parts of the computer system. 

• Special function unit instructions, which perform particular operations on 
special function units (e.g., graphic units). Another type of special instruc­
tion is the atomic instruction for controlling access to critical sections in 
multiprocessors. 

Depending on how its operands are specified, an instruction can, in princi­
ple, be one of the following types: register-register, memory-register, register­
memory, or memory-memory. 

In a RISe ISA, all operations except load and store are register-register 
instructions (an ISA ofthis type is called a load/ store ISA). As for addressing 
modes, the number of instructions is also reduced in a RISe ISA (e.g., up to 
128). 

Table 1.3. Program I g~~~~ I coded in four classes of ISA instruction formats 

Machine 
Register-Register Register-Memory Accumulator Stack 

load Regl,A load Regl,A load A push B 
load Reg2,B add Regl,B add B push A 
add Reg3,Regl,Reg2 store C,Regl store C add 
store C,Reg3 load Regl,C load C pop C 
load Regl,C sub Regl,B sub B push B 
load Reg2,B store D,Regl store 0 push C 
sub Reg3,Regl,Reg2 sub 
store D,Reg3 pop 0 

How are instructions encoded? The instruction format specifies the 
pieces of information needed to execute an instruction. Besides the instruc­
tion opcode, other addresses may be needed to specify sources (i.e., operands), 
destination, and the next instruction. The next instruction is explicitly speci­
fied in the case of control transfer instructions; for other types of instructions 
it is implicitly defined by the pe. With respect to arithmetic-logic instruc­
tions, we distinguish four classes of ISAs, each of them characterizing the 
corresponding machine (Table 1.3): 

• 3-address instruction format consisting of lopcodeiDestlSrcl1Scr21 and 
used by the register-register (also called load/store) machine. 

• 2-address instruction format consisting of lopcodeIDest/Src1IScr21, often 
supported by register-memory machines. 
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• I-address instruction format consisting of iopcodeiSrci and supported by 
the accumulator machine . 

• O-address instruction format consisting only of iopcodei and supported by 
the stack machine. 

ISA encoding can be fixed length with a 32-bit format or variable length. 
Most RISC ISAs use a 3-address instruction format where all instructions 
have a uniform length of 32 bits. CISC ISAs often use register-memory with 
variable instruction lengths. Variable instruction length can also be found 
in stack machines, exemplified today by the Java processors. Accumulator 
machines are today mostly found in microcontrollers. 

1.3 Examples of RISe ISAs 

In the following we give some examples of (super)scalar RISC instruction 
set architectures. These include SPARC, MIPS, ARM, HP PA-RISC, DEC 
Alpha, IBM POWER, and IBM/Motorola/Apple PowerPC. Many of them 
have appeared in several versions and found their implementation in several 
microprocessors. The primary objective of RISC ISAs was to be sufficiently 
simple so that implementations could have a very short cycle time, which 
would result in processors that could execute instructions at the fastest 
possible clock rate. 

SPARe ISA. SPARC is the industry's only openly defined and evolved 
RISe architecture. Unlike other RISC designs, the SPARC Architecture 
Committee did not specify a hardware implementation, but an open ISA 
devoted to the community of SPARC vendors and users. After SPARC ISA 
version 7 (1986) there were two versions of the SPARC ISA: a 32-bit version 
8 (1990) and a 64-bit version 9 (1992). Table 1.4 gives some vendors and 
their products complying with the SPARC ISA proposal. 

Table 1.4. Some SPARC vendors and their processors 

Vendor Processor Year ISA Version 

Fujitsu Microelectronics, Inc. SPARClite 1992 8 
Ross Technology HyperSPARC 1993 8 
Sun Microelectronics, Inc. SuperSPARC 1993 8 
SIDSA SPARC 1994 8 
HAL Computer Systems SPARC 64 1995 9 
Sun Microelectronics, Inc. UltraSPARC 1995 9 
T.sqware SPARClet 1996 8 
Fujitsu Microelectronics, Inc. TurboSPARC 1996 8 
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MIPS ISA. MIPS Technologies (former MIPS Computer Systems) has de­
fined several versions of ISA that were implemented in several CPU designs: 

Table 1.5. MIPS II ISA 

Data 
formats 

Register 
file 

byte, 16-bit halfword, 32-bit word, 64-bit doubleword 
big- or little-endian, ANSI/IEEE 754-1985 
-----------------------------------_ .................. --------- ... -----_ ... _----............... _----------------
Integer (CPU) registers (64- or 32-bit): 

32 registers rO to r31, program counter pc, two multiply and divide 
registers HI (remainder for divide) and 10 (quotient for divide); rO is 
hardwired to a zero, r 31 is the link register for jumps and link instructions. 

Floating-point (FPU) registers: 
32 floating-point registers FGRO to FGR31; can be configured as 16 
64-bit registers; 32-bit implementation/revision register FCRO with 
implementation and revision number of the FPU, 

___ ~_~:~!~~~~~l~~~~~~~_!~_Q~~~~~X_C;~~!~ _________________________________________ _ 

Addressing register, immediate, register indirect, displacement, 
modes PC-relative 

Instruction ioadistorE;(24i:oompuiaiioiiaf(51YTumijaii(jbra;:icti-(22)~-speciai"('2i:-------­

set (163) ~~~..e~i~~_{!?)2_~~~~n.~_~~~~~j~_~t~~!~~~_~~!_{~2~_'!1_~~~rx_~~~_~9~~~n.U~1 

register-register, 3-address fonnat 

Instruction 
formats 

Immediate (I-types): 
6-bit opcode, 5-bit src register specifier, 
5-bit dst register specifier or branch condition, 
16-bit immediate value or branch displacement. 

Jump (J-types): 
6-bit opcode, 26-bit jump target address. 

Register (R-type): 
6-bit opcode, 5-bit src register specifier, 
5-bit src register specifier, 5-bit dst register specifier, 
5-bit shift amount, 6-bit function field 

• MIPS I (1984, 32-bit, implemented in R2000, R3000), 
• MIPS II (1990, 64-bit coprocessor, implemented in R6000, see Table 1.5), 
• MIPS III (1991, 64-bit, implemented in R4000, R4400), 
• MIPS IV (1994, 64-bit, in R5000, R7000, R8000, and R10000), 
• MIPS V (1996, 64-bit, implemented in R12000). 

In 1996, MIPS Technologies defined a multimedia extension to their ISA 
called2 MDMX (MIPS Digital Media eXtensions) which is used by the 
R12000 processor (see Sect. 4.9.8). At the same time, a MIPS 16 ISA was 

2 ••• and pronounced "Mad Max" 
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defined to be used in a 16-bit TinyRISe processor. In Table 1.5 we give some 
basic features of MIPS II ISA. 

Advanced RIse Machines ARM ISA. Since 1986, when the first ARM 
ISA appeared, four main ISAs of this family were defined. Table 1.6 presents 
several processor implementations based on the four ISAs. After the 64-bit 
ISA version 4, a low cost ISA version 4T was designed for the 16-bit Thumb 
instruction set (as was the case with the MIPS 16 ISA). 

Table 1.6. ARM ISAs and implementations 

ISAversion Implementations Selected features 

1 ARM1 
2 ARM2 Added multipliers, coprocessors 
2a ARM3 Added SWP, system coprocessor 
3 ARM6,ARM7 Added 32-bit, more exception modes, 

separate processor state registers (PSR) 
3G Removed backward compatibility with 2a 
3M ARM7DM Added long and signed multipliers 
4 ARM8, StrongARM Added system mode, 

signed-byte and halfword loads/stores 
4T ARM7T, ARM9T Thumb instruction set 

HP PA-RIse ISA. The PA-RISC 1.0 ISA was defined in the early 
1980s (Mahon et al. [189], 1986) to be a single architecture that would 
efficiently span Hewlett-Packard's three computer lines: the HP3000 com­
mercial minicomputers, the HP9000 technical workstations and servers, 
and the HP1000 real-time controllers. Before introduction, the project 
was named SPECTRUM. At introduction in 1986, it was known as HP's 
Precision Architecture, HP-PA, or just PA. Subsequently, the ISA was 
called PA-RISC. Since its introduction, the PA-RISe ISA has remained 
remarkably stable. Only minor changes were made over the next decade to 
facilitate higher performance in floating-point and system processing. In 
1989, driven by the performance needs of the HP9000 technical workstation 
line, PA-RISe 1.1 ISA [131] was introduced with improved floating-point 
capabilities, and added architectural extensions to speed up the processing 
of performance-sensitive abnormal events, such as misses in the translation 
look-aside buffer (TLB, see p.18). PA-RISe 1.1 also added support for 
both endian formats (previously, PA-RISe 1.0 was a consistently big-endian 
machine). The next ISA, PA-RISC 2.0, was the first to make user-visible 
changes to the core integer architecture (Kane [153], 1995). In addition 
to support for 64-bit integer data and 64-bit addresses, other user-visible 
changes have been added to enhance the performance of new user workloads. 
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Table 1.7. DEC Alpha ISA 

Data 
formats 

Register 
file 

byte, 16-bit word, 32-bit longword, 64-bit quadword 
little-endian, ANSIIIEEE 754-1985, VAX floating-point 

Integer registers: 
32 64-bit registers RO to R31, program counter PC, 

R30 is designated as a stack pointer (SP), 
R31 is always equal zero (hardwired to a zero value). 

Floating-point registers: 
32 64-bit floating-point registers F 0 to F 31, 

. ___ X_~];.J~_~I~~1~_~~~~J_~~!_~.l~~!9_~1~~9..~9_~!'~!:9_Y_~~~~L ____________________ _ 

Addressing register, immediate, displacement, 
modes PC-relative 

Instruction 
set(155) 

Instruction 
formats 

integer load/store (12), integer control (14), integer arithmetic (20), 
logical and shift (17), byte manipulation (24), 
floating-point load/store (8), floating-point control (6), 

.!!~?:'~~Jl.:e9J~_t_~£~!:~_~~.l~?Lf!1J~E.~~?:.~~_~~!J!) ___________________________________ _ 

register-register, 3-address format 
Memory instructions: 

6-bit opcode, 5-bit src register specifier, 
5-bit src register specifier, 16-bit memory dst field, 
or function field (for miscellaneous instruction). 

Conditional branch instructions: 
6-bit opcode, 5-bit branch condition, 
21-bit branch displacement. 

Operate instructions: 
6-bit opcode, 5-bit src register specifier, 
5-bit src register specifier + 3-bit should be zero (if 12th bit is 0), 
or 8-bit literal (if 12th bit is 1), 
7-bit function field, 5-bit dst register specifier. 

Floating-point operate instructions: 
6-bit opcode, 5-bit src floating-point register specifier, 
5-bit src floating-point specifier, 11-bit function field, 
5-bit dst floating-point register destination. 

PALcode instructions: 
6-bit opcode, 26-bit Privileged Architecture Library code. 

For example, Multimedia Acceleration eXtension (MAX) and later MAX-2 
have been added to speed up multimedia processing on the main processor, 
rather than on separate hardware. However, the principal aim of keeping the 
programming model stable has been carried forward as much as possible in 
the 64-bit version of the architecture. 
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DEC Alpha ISA. Alpha is a 64-bit load/store RISC ISA that was designed 
in 1992 with particular emphasis on the three elements that mostly affect 
performance: clock speed, multiple instruction issue, and multiple processors. 
Table 1.7 gives a brief description of Alpha ISA. In 1997 DEC announced 
Motion Video Instructions (MVI), an extension first implemented in the 
Alpha 21164PC processor. 

IBM POWER ISA. The IBM's POWER (Performance Optimization 
With Enhanced RISC) Architecture ISA was defined in 1990 and incor­
porated characteristics common to most other RISC ISAs (Levine and 
Thurber [180], Weiss and Smith [323]). It was unique among the existing 
RISC architectures in that it was functionally partitioned, separating the 
functions of program flow control, integer computation, and floating-point 
computation. The architecture's partitioning facilitated the implementation 
of superscalar designs, in which multiple functional units concurrently 
executed independent instructions. In order to avoid the need for a separate 
address computation after each memory access during array manipulation, 
the update forms of most load/store instructions were included. These 
update forms perform, the memory access and place the updated address 
(i.e., the address of the next location to be accessed) in the base address 
register. In addition, a common operation in many floating-point compu­
tational algorithms is to add a value to the product of two other values. 
This observation prompted the inclusion of a floating-point multiply-add 
instruction, which performs this operation. 

IBM/Motorola/ Apple PowerPC ISA. Early in 1991, IBM, Motorola, 
and Apple formed a partnership whose foundation was the use of a common 
ISA derived from the POWER architecture. The PowerPC ISA included most 
of the POWER instructions. Nearly all the excluded POWER instructions 
were those that executed infrequently and the compiler could replace by 
several other instructions that were in both POWER and Power PC. The 
new PowerPC ISA was expected to permit a broad range of implementations 
from low-cost controllers to high-performance processors (with short cycle 
times, aggressive superscalar and multiprocessor features) and offer a 64-bit 
architecture that is a superset of the 32-bit architecture, thus providing binary 
compatibility for 32-bit applications. The PowerPC ISA achieved these goals 
and permits POWER customers to run their existing applications on new 
systems and to run new applications on their existing systems (see Diefendorff 
et al. [66, 67], May et aZ. [195], Weiss and Smith [323]). 
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1.4 Basic Structure of a RISC Processor 
and Basic Cache MMU Organization 

A simple RISC CPU (as shown in Fig. l.1) consists of an arithmetic logic 
unit (ALU) which is connected by two operand input buses and one result 
bus with the register file of thirty-two 32-bit general-purpose registers. Only 
load/store instructions load or store data from the D-cache to a register or 
vice versa. Instruction execution is controlled by the pipeline decode and 
control unit, which receives its instructions from the instruction fetch unit. 
The instruction fetch unit fetches a single instruction each cycle from the 
I-cache. The instruction address is provided by the program counter (PC) 
which is automatically incremented by four assuming the usual 32-bit in­
structions and a byte-addressable machine. In the case of previous control 
transfer instructions, the PC is loaded by a jump or branch target address. 

I 

Pipeline 
Decode & 
Control 

PC 

Instruction 
Fetch 

MMU 

I-cache 

Main Memory 
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Register 
File 

I 
~ 

MMU 

D-cache 

Fig. 1.1. Data path organization of a simple RISC processor 
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As semiconductor technology advanced towards yielding chips with higher 
component densities, the goal of RISC architecture has been to develop 
processors that can come close to issuing one instruction per clock cycle of 
the machine. The measures clock cycles per instruction (CPI) or instructions 
per clock cycle (IPC) are commonly used to characterize high performance 
processor architectures. The achievement of CPI = 1 has been made possible 
by two architectural features: cache memories and instruction pipelining. 
Today's multiple issue processors reach CPI < 1, or IPC > l. Processors 
that can issue only one instruction at a time are said to be scalar; those that 
can issue more than one instruction simultaneously are said to be superscalar. 

Caches. A salient feature of a modern RISC microprocessor is the use of 
on-chip L1 (level-one or primary) caches and associated MMUs. Both are 
described only briefly here. The primary cache is usually split into two cache 
memories, I-cache (instruction cache) and D-cache (data cache), located 
in the retrieval paths for instructions and data, respectively (see Fig. l.1). 
Separate I-cache and D-cache eliminate the structural hazards that arise 

Main Memory Main Memory 

f 
t 

Secondary Cache 
Temporal 
Secondary Cache 

~ 

Spatial Cache 

Primary Cache 
Temporal 
Primary Cache 

f • 
CPU CPU 

(a) (b) 

Fig. 1.2. Cache memory organization (a) conventional (b) split temporal/spatial 

otherwise in a pipeline when the instruction fetch and a memory access 
occur in the same cycle. Each cache is organized into sets that are indexed 
by part of the effective address (instruction address for the I-cache and data 
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address for the D-cache). Each set holds a single cache line (in the case 
of a direct mapped cache organization) or typically two or four cache lines 
(in the cases of so-called 2- or 4-way set-associative cache organization). If 
there exists only a single set, the cache is called fully associative. A cache 
line typically consists of 32 bytes (denoting 8 instructions or an equivalent 
amount of data), a cache tag and state bits. During cache access the set is 
located by part of the address and then the tag of the cache line is compared 
with another part of the address. In the case of a n-way set-associative 
cache organization, all the tags within a set must be compared in parallel. If 
the tag and address part match and the cache line state bits signal a valid 
entry, a cache hit occurs and the least significant bits in the address locate 
the instruction or value to be loaded within the cache line. In the case of a 
cache miss, the missing cache line is fetched from main memory (or from 
a secondary, that is, L2 cache) resulting in several cycles of waiting time 
- bubbles in the pipeline. The newly arriving cache line replaces a cache 
line already in the denoted cache set (a pseudo LRU replacement strategy 
is often used in the case of a set-associative cache organization). Depending 
on the state bits, the replaced cache line has to be written back to memory 
in case of previous store accesses to that cache line. Note that the I-cache 
may be made read-only to reduce complexity, because instructions are only 
fetched from, but never stored in, the I-cache (at least when self-modifying 
code is disabled). If most memory accesses are cache hits in the on-chip 
cache memories, the average main memory access time and the number of 
pipeline bubbles are greatly reduced. 

Cache memory architectures. Existing cache memory architectures 
are based on the application characteristics of spatial locality (i.e., items 
whose addresses are near one another tend to be referenced close together 
in time) and temporal locality (i.e., recently accessed items are likely to 
be accessed again in the near future). The existing cache architectures 
imply one cache organization (see Fig.1.2a) which benefits from both 
localities. Milutinovic et al. [204] describe the split temporal/spatial cache 
(see Fig. 1.2b), where they take special advantage of one locality type in one 
set of conditions, and the other locality type in another set of conditions. 
At compile-time, the data are classified as those exhibiting predominantly 
temporal locality or spatial locality. The "temporal" data need a cache 
hierarchy, with smaller cache capacity at each level satisfying the needs. 
The "spatial" data do not need any hierarchy, and a relatively small prefetch 
buffer is expected to satisfy the needs. This cache splitting makes the overall 
cache memory considerably smaller for approximately the same performance. 

Memory Management Unit. The memory management is performed by 
the memory management unit (MMU), whose task is the translation of the 
virtual address into a physical address. Its primary functions are: 
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• Inclusion and management of a fast-access translation lookaside buffer 
(TLB) for virtual to physical page address translation. The TLB is orga­
nized like a fully associative cache and usually contains 32 to 256 entries. 
Accessing the TLB takes a single machine cycle or less . 

• Support of a paging mechanism involved in the virtual memory organiza­
tion, for the segmentation mechanism (if implemented) and for memory 
protection. 

The MMU access is often overlapped with the set location during cache access 
- a cache organization that is called virtually indexed, physically tagged. 
Otherwise the MMU access can be done before the cache access (a so-called 
physically addressed cache) or after cache access in the case of a cache miss 
(a so-called virtually addressed cache). Physically tagged caches require the 
cache to be compared with the physical address from the MMU. In such 
environments cache miss detection may be a bottleneck in the MMU. A 
virtually tagged cache uses virtual addresses when attempting to find the 
required word in the cache. The least significant part of the virtual address 
is used to access one line of the cache (direct mapped) that may contain 
the required word. The most significant part of the virtual address is then 
compared with the tag address bits for a possible match, or cache hit. This 
scheme ensures that cache misses are quickly detected, and that addresses 
are translated only on a cache miss. 

For more details on caches and MMU organization, see Hennessy and 
Patterson [134] and Shriver and Smith [258]. 

1.5 Basic Pipeline Stages 

One of the major features of modern processors (especially RISC processors) 
is the use of a pipelined instruction execution to achieve an average CPI close 
to l. Pipelining is an implementation technique whereby multiple instructions 
are overlapped in execution. It is not visible to the programmer. Each step is 
called a pipe stage or pipe segment. Pipeline stages are separated by clocked 
pipeline registers (also called latches). A pipeline machine cycle is the time 
required to move an instruction one step down the pipeline. 

Ideally, in a k-stage pipeline an instruction is executed in k cycles by k 
stages. If instruction fetching into the pipeline continues, then at any time 
- assuming ideal conditions - k instructions will be handled simultaneously 
and it will take k cycles for each instruction to leave the pipeline. We define 
latency to be the total time needed for an instruction to pass through all 
k stages of the pipeline. The throughput of the pipeline is defined to be 
the number of instructions that can leave a pipeline per cycle. This rate 
reflects the computing power of a pipeline. In contrast to the n * k cycles 
on a hypothetical non-pipelined processor, the execution of n instructions 
on a k-stage pipeline will take k + n - 1 cycles (assuming ideal conditions 
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with latency k cycles and throughput 1). Hence, the resulting speedup is 
n * kj(k + n - 1) = kj(kjn + 1 - 1jn). If the number of instructions that 
are issued to the pipeline is infinite, then the resulting speedup equals the 
number k of pipeline stages. 

As an example of pipelined instruction execution we assume a simple 
instruction pipeline with the basic stages shown in Fig. 1.3. Overlapped ex­
ecution of the five steps leads to a 5-stage pipeline. The pipeline execution 

Master 
Clock 
Cycle 

IF 

Current CPU Cycle 

Fig. 1.3. Basic pipelining 

IF -- Instruction Fetch 

ID -- Instruction DecodelRegister Fetch 

EX -- Execute/Address Calculation 

-- Write Back 

proceeds in a smooth manner since each pipeline stage is accomplished in a 
single clock cycle. The RISe approach offers such a single cycle execution for 
most instructions. Such a pipeline can be found in the DLX3 RISe of Hen­
nessy and Patterson [134] and in the MIPS R3000 processor (Sect. 1.7.3). 
Today such simple RISC pipelines can be found as core pipelines in signal 
processors and in some multimedia processors. 

Figure 1.4 shows the basic stages ofthe instruction pipeline in more detail. 
Pipeline stages are buffered by different pipeline registers: 

• several program counter registers (PC) in the IF stage, between the IF lID 
and between the ID lEX stages, 

• the instruction register between the IF lID stages, 
• the ALU input registers 1 and 2 and the immediate register between the 

ID lEX stages, 
• the conditional register, the AL U output register, and the store value reg­

ister between the EX/MEM stages, and 
• the load memory data register and AL U result register between the 

MEM/WB stages. 

During instruction execution the following sequence of steps is performed: 

3 DLX (pronounced "Deluxe") is a simple load/store architecture. 
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Fig. 1.4. The implementation of the DLX pipeline 
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l. In the instruction fetch (IF), the instruction pointed to by the PC is 
fetched from I-cache into the instruction register of the CPU, and the PC 
is incremented by four (assuming a fixed 32-bit instruction format and a 
byte-addressable processor) to point to the next instruction in memory. 
In the case of a previous control transfer instruction, the jump/branch 
target address from the MEM stage may be used to set the PC for the 
instruction to be fetched in the next cycle. 

2. In the instruction decode/register fetch (ID), the instruction is decoded, 
and in the second half of the stage one of the following actions is per­
formed depending on the instruction: 
a) register-register (e.g., arithmetic/logical), then the operands are 

transferred from the register file into the AL U input registers; 
b) memory reference (e.g., load/store), then part ofthe memory address 

is transferred from a register to ALU input register 1 and a displace­
ment within the instruction is sign-extended and transferred to the 
immediate register (we assume displacement mode as the most com­
plex addressing mode); in the case of a store instruction, the register 
value to be stored is transferred to the ALU input register 2; 

c) control transfer (e.g., branch on equal), then the displacement within 
the instruction is sign-extended and transferred to the immediate 
register (we allow PC-relative mode only) for computation of the 
jump/branch target address; in the case of a branch instruction, the 
register value that determines the branch direction is transferred to 
ALU input register 2 (we assume that a previous compare instruction 
produced a value that is stored in a general-purpose register). 

3. During execution/effective address calculation (EX), the ALU operates 
on the operands from ALU input registers, from PC in ID/EX, or from 
the immediate register, and eventually puts the result into the ALU out­
put register. The contents of this register depend on the type of instruc­
tion which selects the MUX inputs and determines the ALU operation. 
If the instruction is: 
a) register-register (e.g., arithmetic/logical), then the ALU outputs the 

result of the operation into the ALU output register; 
b) memory reference (e.g., load/store), then the ALU output register 

contains an effective memory address computed from ALU input reg­
ister 1 and the immediate register; in the case of a store instruction, 
the ALU input register 2 (containing the register value to be stored) 
is transferred to the store value register; 

c) control transfer, then the ALU computes the jump/branch target 
address from the PC in ID /EX and the immediate register and stores 
it in the ALU output register and, at the same time, the branch 
direction (which determines whether the branch will be taken or not) 
is tested whether it is zero, and the Boolean result is stored in the 
condition register. 
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4. The memory access/branch completion (MEM) is performed only for 
load, store, and branch instructions. If the instruction is: 
a) register-register, then the ALU output register is transferred to the 

ALU result register; 
b) load, then the data is read from D-cache (as addressed by the AL U 

output register) and is placed in the load memory data register; 
c) store, then the data in the store value register is written into the 

D-cache (as addressed by the ALU output register); 
d) control transfer, then for jumps and taken branches, the PC in the 

IF stage is replaced by the AL U output register; for branches that 
are not taken, the PC remains unchanged (the MUX selection in the 
IF stage is done by the conditional register); 

5. During write back (WB), the result of the instruction execution - register­
register or load instruction - is stored into the register file in the first half 
of the phase. In particular, the load memory data register or the ALU 
result register is written into the register file (the flow of the register 
selector through the pipeline stages is not shown in the Fig. 1.4). 

Only the data flow though the pipeline stages is shown in Fig. 1.4. Control 
information generated during the ID stage from the opcode flows through 
the subsequent pipeline stages and controls the multiplexers and the ALU 
operation. 

Notice that all pipeline stages use different CPU resources. Thus, for 
example, after an instruction has been delivered to ID, resources used by IF 
become free and are used for fetching the next instruction. Ideally, each cycle 
another instruction is fetched and forwarded to the ID stage. The cycle time 
of the pipeline is dictated by the critical path, i.e., the slowest pipeline stage. 

Ideal conditions mean that the pipeline has to be full. Unfortunately, there 
are several potential problems which may disrupt such a smooth instruction 
execution in the pipeline. For instance, if only one memory port exists and 
a load instruction is in the MEM stage, then memory read conflict appears 
between the IF and MEM stages. In this case, the pipeline has to stall one 
of the instructions until the required memory port is available. A stall is 
also called a pipeline bubble. All the various phenomena that can disrupt the 
smooth execution of a pipeline are referred to as pipeline hazards. In the next 
section, we will discuss pipeline hazards and the ways to eliminate them or, 
at least, minimize their effect. 

1.6 Pipeline Hazards and Solutions 

Three types of pipeline hazards can be distinguished: 

• Data hazards, which arise because of the unavailability of an operand. For 
example, an instruction may require an operand that will be the result of 
a preceding, still uncompleted instruction. 
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• Structural hazards, which arise from some combinations of instructions that 
cannot be accommodated because of resource conflicts. For example, if the 
processor has only one register file write port and two instructions want to 
write to the register file at the same time. 

• Control hazards, which arise from branch, jump, and other control flow 
change instructions. For example, if an instruction is a branch, and the 
branch is to be taken, then the flow of instructions into the pipeline has to 
be interrupted, and the branch target must be fetched before the pipeline 
can resume execution. 

1.6.1 Data Hazards and Forwarding 

Several types of dependence may exist between instructions I nsh and I nst2, 
assuming that I nsh occurs before I nst2: 

• I nst2 is (true) data dependent on I nsit, if I nsh writes its output in a 
register Reg (or memory location) that Inst2 reads as its input. 

• I nst2 is antidependent on I nsh, if I nst 1 reads data from a register Reg 
(or memory location) which is subsequently overwritten by I nst2. 

• I nst2 is output dependent on I nsit if both write in the same register Reg 
(or memory location) and Inst2 writes its output after Insit. 

• Inst2is control dependent on Instl, if Instl must complete before a deci-
sion can be made whether or not to execute I nst2' 

A data dependence is sometimes also called true or real data dependence, 
while antidependences and output dependences are sometimes called false 
or name dependences. True dependences represent the flow of data through 
a program, while name dependences stem from the re-use of storage places 
(register or memory). 

Data dependences between instructions may cause data hazards when 
Instl and Inst2 are so close that their overlapping within the pipeline would 
change their access order to Reg. The first three dependences generate the 
following three types of data hazards: 

• read after write (RAW) hazard (caused by data dependence), 
• write after read (WAR) hazard (caused by antidependence), 
• write after write (WAW) hazard (caused by output dependence). 

WAW hazards occur only in pipelines that write in more than one stage, or 
allow an instruction to proceed even when a previous instruction is stalled. 
WAR hazards may occur in a pipeline with a write stage preceding a read 
stage. Therefore, in the simple pipeline of Fig. 1.3, only a RAW hazard 
(demonstrated in Fig. 1.5) may appear, as described below. 
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I I 
cycle time time 

Fig. 1.5. Data hazard in an instruction pipeline 

Problem (true data dependence). Consider a sequence of two register­
register instructions, Instl and Inst2 with Inst2 data dependent on Instl, 
and Instl fetched before Inst2. Suppose that the result of Instl is to be trans­
ferred to Inst2 via register Reg. No problem occurs if the two instructions 
are executed in a nonpipelined fashion. In a pipelined computation, Inst2 
reads Reg during its ID stage. If I nst2 has been fetched immediately after 
I nsit, then at that moment I nst I is still in its EX stage and will write the 
result into Reg during its WB stage two cycles later. Therefore, if no action 
is taken, Inst2 reads the old value from Reg in its ID stage (demonstrated 
in Fig. 1.6). 

add Reg2,Regl,Reg2 

I I 
cycle time time 

Fig. 1.6. Pipeline conflict due to a data hazard 

Software solution. If the pipeline is not able to detect pipeline hazards by 
hardware, the compiler has to control pipeline execution. This can be done by 
putting no-op instructions after each instruction that causes or may cause (in 
the case of a branch) a pipeline hazard. Data hazards, and therefore pipeline 
stalls (or execution of no-ops), can be reduced by the compiler, which appro-
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priately rearranges the program code (eliminating no-ops). In the example 
above, if possible, two instructions that do not generate new data hazards 
should be inserted between I nsh and I nst2. This approach is called instruc­
tion scheduling or pipeline scheduling. Such a static approach was of major 
interest in the 1980s after pipelined processors became more widespread. For 
example, it was used in the MIPS family of microprocessors. 

Hardware solutions. We distinguish the following three hardware solutions 
to the data hazard problem: 

• Interlocking: The simplest way to deal with such a data hazard is to stall 
I nst2 in the pipeline for two cycles. Hardware detection of pipeline hazards 
and stalling is called pipeline interlocking. This solution produces bubbles 
and considerably degrades speedup. In the above example, stalling pro­
duces two bubbles (see Fig. 1. 7). Remember that in our pipeline we assume 
that the register write back is completed in the first half of the WB stage 
and that the same register value can be read again during the operand 
fetch in the second half of the ID stage. 

add Reg2,Regl,Reg2 
r----r----r----r----r---, 

mul Regl,Reg2,Regl 

IF ID 

I",. ..,1 
bubbles 

time 

Fig. 1.7. Data hazard: hardware solution by interlocking 

• Forwarding: There is a more sophisticated solution, requiring a hardware 
investment, which is called forwarding. The key insight is that Inst2 need 
not wait until the result of Inslt is written in Reg during WB, if the 
result in the ALU output of Insh in the EX stage can be immediately 
forwarded back to the AL U input of the EX stage as an operand for I nst2. 
In our example, where both instructions are of the register-register type, 
forwarding removes all bubbles (see Fig. 1.8). 

• Forwarding with interlocking: Unfortunately, forwarding does not resolve 
all types of data hazards. If Instl is a load instruction, forwarding from EX 
is of no use, because the EX stage does not produce the value to be loaded, 
but the effective memory address in the ALU output register. Assuming 
that I nst2 is data dependent on the load instruction I nst l , then I nst2 
has to be stalled until the data loaded by I nslt becomes available in the 
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Fig. 1.8. Data hazard: hardware solution by forwarding 

load memory data register in the MEM stage. Even when forwarding is 
implemented from MEM back to EX, one bubble occurs that cannot be 
removed (see Fig. 1.9 for the hazard and Fig. 1.10 for the resulting bubble). 

load Reg2,B 

I I 
cycle time time 

Fig. 1.9. Pipeline hazard due to data dependence unresolvable by forwarding 

load Reg2,B 

MEM WB 

1 .... 1 
time 

bubble 

Fig. 1.10. Pipeline bubble due to data dependence 

In contrast to static pipeline scheduling, where the compiler separates in­
structions causing data hazards, dynamic (i.e., run-time) pipeline scheduling 
is implemented in hardware. These solutions will be discussed in Sect. 3.2. 
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1.6.2 Structural Hazards 

Problem (resource conflict). Structural hazards do not arise in the sim­
ple pipeline in Fig. 1.3. However, let us suppose that the MEM stage would 
be able to write back an ALU output in the case of a register-register in­
struction (from the ALU output register) into a register file with a single 
write port. Consider a sequence of two instructions, Instl and Inst2, with 
Instl fetched before Inst2, and assume that Instl is a load, while Inst2 is 
a data independent register-register instruction. Due to memory addressing, 
the data requested by Instl arrives at the register file port at the same time 
as the result of I nst2, causing a resource conflict (see Fig. 1.11). 

load Reg2,A 

I I 
cycle time time 

Fig. 1.11. A potential resource conflict due to a structural hazard 

Solutions. When instructions cannot be simultaneously accommodated be­
cause of resource conflicts, two types of hardware based solutions exist: 

• Arbitration with interlocking: Structural hazards can be resolved by hard­
ware that performs resource conflict arbitration and interlocks the in pro­
gram flow succeeding of the two competing instructions. Clearly, bubbles 
may result if this technique is used for resolving structural hazards. In the 
example above, the load instruction writes into the register file, while the 
mul instruction would be deferred, producing one bubble. 

• Resource replication: The effects of structural hazards can be alleviated by 
the replication of hardware resources. No bubbles can appear in this way. In 
the example above, a register file with multiple write ports would enable 
simultaneous writes to different destination registers. In the case of the 
same destination register, either arbitration and interlocking is necessary, 
or (as in Fig. 1.11) the value produced by the load instruction is discarded 
and the ALU output register value of the mul instruction is used. 
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1.6.3 Control Hazards, Delayed Branch Technique, 
and Static Branch Prediction 

Problem (control conflicts). Control hazards can be caused by jumps and 
by branches. Let I nst 1, I nst2, I nst3 ... be a sequence of instructions, fetched 
in this order, one immediately after the other. 

Assume that Instl is a jump. The jump address is computed in the EX 
stage and replaces the PC in the MEM stage, while I nst2 is in the EX stage, 
I nst3 is in the ID stage, and I nst4 is in the IF stage. Assuming that the jump 
address does not point to Inst2, Inst3, or Inst4, the prefetched instructions 
Inst2, Inst3, and Inst4 should be canceled (i.e., nullified or flushed) and 
the instruction at the jump address fetched. The three instructions following 
Instl form the so-called delay slots. A simple solution, which avoids cancel­
lation, is to fill the delay slots with no-op instructions. 

branch 
instruction 

I.,. 

MEM WB 

branch target 
instruction 

.. I 
three bubbles 

IF 

Fig. 1.12. Bubbles after a taken branch 

time 

More troublesome control hazards are caused when Instl is a branch 
instruction. Recall from p. 21, that branch direction and the branch target 
address, which is necessary if the branch is to be taken, are both computed in 
the EX stage (the branch target address replaces the PC in the MEM stage). 
If the branch is taken, the correct instruction sequence can be started with 
a delay of three cycles since three instructions of the wrong branch path are 
already loaded in different stages of the pipeline (see Fig. 1.12). 

In order to reduce the number of delay slots, the calculation of the branch 
direction and the branch target address should be done in the pipeline as early 
as possible. This could be in the ID stage after the instruction has become 
recognized as a branch instruction. However, then the ALU can no longer be 
used for calculating the branch target address, since it may still be occupied 
by the previous instruction. Recall, that this is a structural hazard, which can 
be avoided by an additional ALU for the branch target address calculation 
in ID stage. Assuming an additional ALU and a write-back of the branch 
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target address to the PC already in the ID stage (if the branch is taken) 
only a single cycle delay slot arises, which can often be filled by instruction 
reordering at compile-time. 

Although this reduces the branch delay to a single cycle, now a new 
pipeline hazard may arise. An ALU instruction followed by a branch on the 
result of the instruction will incur a data hazard stall even when the result 
value is forwarded from the EX to the ID stage (similar to the data hazard 
from a load with a succeeding ALU operation that needs the loaded value). 
The main problem with this pipeline reorganization is that the decode, the 
branch target address calculation, and the PC write-back must be done se­
quentially within a single pipeline stage. This may lead to a critical path in 
the decode stage that reduces the cycle rate of the whole pipeline. 

Software solutions. Control hazards can be dealt with by several software­
based techniques: 

• Delayed jump/branch technique: The compiler fills the delay slot(s) with 
instructions that are in logical program order before the jump or branch. Of 
course, this is only possible if these instructions have no effect on the branch 
direction (we assume the branch target address does not point to one of the 
instructions in the delay slots). Notice that, in this case, the instructions 
moved within the slots are executed regardless of the branch outcome. 
This is the simplest solution viewed from hardware side. A cancellation of 
fetched instructions is not necessary, thus sparing hardware complexity (the 
simple pipeline in Fig. 1.4 is of that type). If there is lack of instructions that 
can be moved in the delay slots, no-op instruction(s) are used to fill up the 
slot(s). According to some program trace results, the probability of moving 
one instruction into the delay slot is greater than 60 %, that of moving two 
instructions is about 20 %, and that of moving three instructions is less 
than 10 %. 
Delayed branching was a popular technique in the first generations of 
scalar RISC processors, such as the IBM 801, Berkeley RISC I, and Stan­
ford MIPS. In superscalar processors where more than one instruction can 
be fetched and processed simultaneously (see Sect. 4.1), the delayed branch 
technique complicates the instruction issue logic and the implementation 
of precise interrupts. However, due to compatibility reasons, it is often still 
in the ISA of some of today's microprocessors ~ for example, in SPARC­
or MIPS-based processors . 

• Compiler-directed (static) branch prediction: A bit in the opcode of the 
branch instruction allows the compiler to influence the prediction. Instruc­
tions are fetched from the predicted branch target address. If the prediction 
followed the wrong instruction path, then the instructions wrongly fetched 
are discarded from the pipeline. Static branch prediction means ~ in con­
trast to dynamic branch prediction ~ that the machine cannot dynamically 
alter the branch prediction. So static branch prediction comprises machine­
fixed prediction (e.g., always predict taken) and compiler-driven prediction. 
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Hardware solutions. Control hazards can also be dealt with by hardware­
based techniques: 

• Interlocking: This is the simplest way to deal with control hazards. The 
hardware must detect that the Instl is a branch and apply hardware inter­
locking to stall the next instruction I nsi2' For the pipeline in Fig. 1.3, this 
produces three bubbles in cases of jump or of (taken) branch instructions 
(since the effective branch target address is written back to the PC during 
the MEM stage, see p. 21). 

• Wired taken/not-taken prediction: The static branch prediction can be 
wired into the processor by predicting that all branches will be taken (or 
all not taken). 

• Branch target address cache: The branch target address cache (BTAC) is 
a small cache memory associated with the IF stage of the pipeline. The 
BTAC is a set of tuples each of which contains: 

Field 1: the address of a branch (or jump) instruction (which was exe­
cuted in the past), 
Field 2: the most recent target address for that branch or jump, 
Field 3: information that permits a prediction as to whether or not the 
branch will be taken. 

The BTAC functions as follows: the IF stage compares the PC against the 
addresses of jump and branch instructions in BTAC (Field 1). Suppose 
that there is a match. If the instruction is a jump, then the target address 
is used as the new PC rather than incrementing the PC. All bubbles are 
removed. If the fetched instruction is a branch, a prediction is made based 
on information from BTAC (Field 3) as to whether the branch is to be 
taken or not. If it is to be taken, the most recent branch target address 
is read from BTAC (Field 2) and used to fetch the target instruction. Of 
course, a misprediction may occur. Therefore, when the branch direction 
is actually known in the MEM stage, the BTAC can be updated with the 
corrected prediction information and the branch target address. 
One of the critical issues is how large the BTAC should be and how it 
should be organized (e.g., associative memory, hashed). To keep the size 
of the BTAC as small as possible, only branches that are predicted to 
be taken are stored while those which turned out not to be taken may 
be removed. Since the hardware alters the prediction direction due to the 
"history" of the branch, this kind of branch prediction is an example of a 
simple dynamic branch prediction. The process described above implements 
a one-bit predictor. More dynamic branch prediction techniques follow in 
Sect. 4.3. 

1.6.4 Multicycle Execution 

Problem (multicycle execution). Consider a sequence of two instruc­
tions, I nsh and I nst2, with I nsh fetched before I nst2, and assume that 
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I nst l is a long-running (e.g., floating-point) instruction. Another example of 
a long-running instruction is the load instruction in our example pipeline 
processor. The load instruction needs two cycles to execute - one cycle to 
compute the effective address and a second cycle for MMU look-up and D­
cache access. 

To handle long-running Insh, it would be impractical to require that all 
instructions complete their EX stage in one clock cycle since that would mean 
accepting a slow clock, or using enormous amounts of logic, or both. Instead, 
the EX stage might be allowed to last as many cycles as needed to complete 
Insh. This, however, causes a structural hazard in the EX stage because the 
succeeding instruction I nst2 cannot use the AL U in the next cycle. 

Solutions. Several solutions to this problem can be identified: 

• Interlocking: The simplest way to deal with such a structural hazard is to 
stall I nst2 in the pipeline until I nst 1 leaves the EX stage. 

• Pipelining the EX stage: If the EX stage is pipelined itself, the structural 
hazard is avoided, because the EX stage is able to accept another instruc­
tion in each cycle (through pu t is 1). 

• Multiple functional units: There may be multiple functional units so that 
Inst2 may proceed to some other functional unit and overlap its EX stage 
with the EX stage of I nsh. 

Interlocking is inefficient as it produces bubbles and thus considerably de­
grades speedup. 

Pipelining the EX stage is the solution that was chosen for load instruc­
tion execution in our example pipeline in Fig. 1.4 by providing separate EX 
and MEM stages (instead of a single combined EX/MEM stage). Striving 
for a simple hardware implementation of the two-cycle load instruction was 
the reason for deciding to forward the results of single-cycle arithmetic-logic 
instructions through the MEM stage, which delays write-back of the results 
by one cycle. Delaying write-back of results of simple instructions prevents 
WAW hazards in the pipeline. 

div Reg3,Regll,Reg12 

ID EX EX 

Fig. 1.13. Example of a WAW hazard 

MEM WB 

several cycles 
later 

time 
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A more complex solution is the use of multiple FUs and simultaneous 
execution. This solution, however, implies that instructions may not complete 
in the original program order (see Fig. 1.13). Since the div instruction's EX 
stages may last from one to tens of cycles, the mul instruction proceeds to 
the WB stage before the div instruction. Unfortunately, such an out-oJ-order 
execution may cause a WAW hazard in the case where there is an output 
dependence between the two instructions. There are two solutions to solve 
the WAW hazard in Fig. 1.13: 

• The mul instruction delays its write-back until the div instruction has 
written its result to the register which is subsequently overwritten . 

• The more elegant solution is to write back the result of the mul instruction 
immediately and discard the result of the di v instruction which is never 
used by another instruction in the example in Fig. 1.13. Unfortunately, the 
question arises as how to implement a precise interrupt in the case of, for 
example, a division by zero (solutions are given in Sect. 4.8.3). 

Until now, we have looked at simple pipelined processors that use an in­
order execution pipeline organization; that is, instructions are issued to the 
FUs and execution is initiated in exactly the same order as the dynamic 
sequence of instructions in the program. If multiple FUs are provided, an 
out-of-order execution is the next step. In the case of out-of-order execution, 
WAW hazards must be solved, and even an antidependence can cause a WAR 
hazard if a subsequent instruction starts execution and writes back its result 
before a previous instruction gets its operands. Solutions to this problem 
are delivered by the scoreboarding technique and by the Tomasulo's scheme, 
both described in Chap. 3. 

1. 7 RISe Processors 

In this section some scalar RISC processors will be presented. We start with 
the first RISC processors - IBM 801, Berkeley RISC I and II, Stanford MIPS 
- which are the ancestors of all later commercial RISC processors. We also 
mention the GaAs microprocessor, based on Stanford MIPS, which was de­
veloped by RCA Corp. Next, we describe the SPARC family of processors, 
which originates from Berkeley's RISC project, and dates back to 1987 when 
Sun introduced the first SPARC-based computer Sun-4. After that, we de­
scribe the MIPS R3000 pipelined RISC processor that emerged in 1988 as 
one of the most well-known descendants of Stanford's MIPS project. Note 
that early RISC processors never contained a floating-point unit due to lack 
of chip space. There follows the MIPS R4400 RISC processor whose super­
pipelined architecture provides a good balance of integer and floating-point 
performance. Next we itemize several other pipelined RISC processors, in­
cluding the FairchildjIntergraph Clipper, ARM, Hewlett-Packard PA-RISC, 
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AMD 29000, and Motorola MC 88000. Finally, the pipelined processor pico­
Java I is also included in this section, although its stack-based ISA with too 
many instructions and variable-length instruction format violates the RISC 
philosophy. 

1.7.1 Early Scalar RIse Processors 

IBM801 and ROMP (Radin [237]): The first system to formalize RISC 
principles was the IBM 801 project which began in 1975. The design goal 
was to speed up frequently used instructions while discarding complex 
instructions that slowed the overall implementation. Memory access was 
limited to load/store instructions (locking the register until complete, so 
most execution could continue). Branches were delayed, and instructions 
used a three operand format. Execution was pipelined, allowing CPI = 1. 
There were thirty-two 32-bit registers in the register file, but no floating 
point unit and no floating-point registers. IBM tried to commercialize the 
801 design starting in 1977 but it was not successful. 4 Subsequently, in the 
mid-1980s, a commercial RISC-type processor, the Research Office products 
division Microprocessor (ROMP) was announced. Compared to the 801, it 
had a smaller percentage of instructions executing in a single cycle and 65 % 
of its instructions were 16-bit, while the others were 32-bit. The ROMP was 
used in the IBM RT 6150 and RT 6151 workstations. 

Berkeley RISe I and II (Patterson and Ditzel [231], 1980): The term 
RISC came from Berkeley's project, which was the basis for the later 
SPARC processor. Because of this, their features are similar, including 
a windowed register file (10 global and 22 windowed, vs 8 and 24 for 
SPARC, see also Sect. 1.7.2) with RO wired to zero. Branches are delayed. 
All instructions have a bit to specify whether condition codes should be 
set, and execute in a 3-stage pipeline. In addition, next and current PC 
are visible to the user, and last PC is visible in supervisor mode. The 
Berkeley project also produced an I-cache with some innovative features, 
such as instruction line prefetch that identified jump instructions, fre­
quently used instructions compacted in memory and expanded upon cache 
load, additional cache-chip support, and bits to map out defective cache lines. 

Stanford MIPS (Hennessy et aZ. [133], 1981): The Stanford MIPS project 
was the basis for the MIPS R2000 and R3000. Stanford MIPS used the 

4 This was not the only innovative design developed by IBM which never saw 
daylight. Slightly earlier the Advanced Computer System pioneered superscalar 
design, speculative execution, delayed condition codes, multithreading, imprecise 
traps and instruction streamed interrupts, and load/store buffers, plus compiler 
optimization to support these features. It was expensive and incompatible with 
the System/360, so it was not pursued, but many ideas did find their ways into 
the expensive high-end mainframes. 
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compiler to eliminate register conflicts. Like the R2000, the Stanford MIPS 
had no condition code register, and a special HI/LO register pair was 
used in multiply and divide instructions. Unlike the R2000, the Stanford 
MIPS had only 16 registers, and two delay slots for load/store and branch 
instructions. The PC and the last three PC values were tracked for exception 
handling. Instructions were packed (like the Berkeley RISe), in that many 
instructions specified two operations that were issued in consecutive cycles 
(not decoded by the cache). In this way, it was a dual-issue VLIW, but 
executed sequentially. User assembly language was translated to packed 
format by the assembler. 

RCA GaAs RISC/MIPS (Milutinovic et al. [203], 1986): For its Star Wars 
program in mid-1980s, the US Department of Defense intended to develop 
a microprocessor chip having as much computing power as 100 DEC VAX 
11/780 superminicomputers. One candidate for such a processor was a gal­
lium arsenide (GaAs) version of the Stanford MIPS architecture. GaAs tech­
nology is, at the same power consumption, about a half order of magnitude 
faster than silicon technology, and several orders of magnitude more radiation 
hard. Unfortunately, GaAs is also characterized by some undesirable proper­
ties, such as high cost and low transistor count capability. The requirement 
specified a full 32-bit engine with a clock frequency of 200 MHz and compu­
tation rate 100 MIPS. In his book, Milutinovic [202] takes the reader through 
all phases of the design of such a processor on a VLSI chip, which was very 
much ahead of its time. 

1.7.2 Sun microSPARC-II 

Since SPARC is a large family of RISC processors some of which will also ap­
pear as superscalar RISC processors in Chap. 4, we first briefly describe the 
SPARC's philosophy and an architectural concept, called register window, 
that is common to all of them. SPARC can be thought of as a branch stem­
ming from the Berkeley RISC. It was designed by Sun Microsystems for their 
own use, but in keeping with the open philosophy, Sun licensed it to other 
companies (see Table 1.4). The history of the SPARC architecture dates back 
to 1987 when Sun introduced the Sun-4, the first SPARC-based computer. 
Over the years since its release it has become a vehicle for an array of chips 
from numerous vendors, and the foundation upon which many manufacturers 
are still basing new workstation products. 

While most RISC CPUs at that time (e.g., AMD 29000, MIPS R2000, 
HP PA-RISC) were more conventional, the SPARC design was quite radical, 
omitting multiple cycle multiply/divide instructions5 and using single-cycle 
"step" instructions instead. SPARC usually contains about 128 or 144 regis­
ters. At any time 32 registers are available - 8 of them are global, the rest 

5 Added in later versions. 
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are allocated in a so-called window, which is a subset of registers from the 
register file (see Fig. 1.14). The register window of the procedure currently 
running is called the active window (and is pointed to by the current window 
pointer CWP in the processor state register PSR). During a function call, 
the active window is moved 16 registers down the register file, so that 8 reg­
isters remain local while the upper and lower 8 registers are shared between 
functions for passing and returning values. On return, this window is moved 
up, so registers are loaded or saved only at the top or bottom of the window. 
This allows functions to be called in as little as one cycle with a parameter 
transfer of up to 8 register values. 
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Fig. 1.14. Overlapping windows in SPARC 

If the number of register windows is insufficient during program execution, 
a trap is signaled and a trap routine stores or loads register values to or from 
memory. To reduce loads and saves between functions, SPARC can be scaled 
up to 512 registers, thus allowing a circular stack of up to 32 overlapping 
windows. On the other hand, it can be scaled down to reduce context switch 
time, when the entire register set has to be saved. Function calls are usually 
much more frequent than context switches, so the large register file is usually 
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an advantage, but compilers can now usually produce code that uses a fixed 
register set as efficiently as a windowed register file across function calls. 

Like most RISC processors, global register rO is wired to zero to simplify 
instructions. SPARC is pipelined (though not as deeply as other RISC pro­
cessors) and uses one branch delay slot. Like previous processors, a dedicated 
condition code register (CCR) holds comparison results. 

SPARC is not a chip, but an architectural specification, so there are var­
ious designs of it (see Table 1.4). It has undergone many revisions, and now 
it supports multiply/divide instructions. Original versions were 32-bit, but 
64-bit and superscalar versions were designed and implemented beginning 
with the Texas Instruments and Sun SuperSPARC in late 1992. Later its 
performance lagged behind other RISCs and even behind Intel x86 CISC 
processors until, in late 1995, the UltraSPARC-I and now UltraSPARC-II 
(see Sect. 4.9.5) and SPARC 64 multichip CPU have emerged. These super­
scalar processors will be covered in Chap. 4. Here we describe microSPARC-II, 
which is one of the latest scalar SPARC processors. 

The microSPARC-II 32-bit microprocessor is a highly integrated, high­
performance microprocessor. Implementing the SPARC ISA version 8 speci­
fication, it is well suited for low-cost uniprocessor applications. It is built with 
CMOS technology featuring 0.5 J.Iill geometries, a 3-layer metal silicon pro­
cess, with the core operating at low voltage for optimized power consumption. 
A block diagram of the microSPARC-II chip is shown in Fig. 1.15. 

The microSPARC-II includes an integer unit (IV), an optimized fioating­
point unit (FPU), a memory management unit (MMU), I-cache and D-cache, 
programmable DRAM controller, SBus controller, graphics interface support, 
IEEE 1149.1 boundary scan test bus, power management and clock gener­
ation capabilities. Technical features of some of these components are given 
below: 

• The IV executes SPARC integer instructions defined in the SPARC ISA 
version 8. The IU contains 136 registers organized in 8 windows and 8 
global registers. It operates on prefetched instructions using a 5-stage 
pipeline. The throughput is improved by using branch folding and single 
cycle load/store instructions. 

• The FPU (based on a Meiko design) fully executes all single and double 
precision floating-point instructions as defined in the SPARC ISA version 8. 
The FPU contains thirty-two 32-bit registers, a general-purpose execution 
unit, and a floating-point multiplier allowing in most cases the parallel ex­
ecution of an FPMUL and another floating-point instruction. A 3-instruction 
deep queue of floating-point instructions is provided to increase the effi­
ciency of concurrent floating-point and integer execution. 

• The MMU translates 32-bit virtual addresses of each running process to 
31-bit physical addresses in memory. The 3 high-order bits of the physical 
address are reserved to support memory mapping into 8 different address 
spaces. The unit also serves as an I/O MMU and controls the arbitra-
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Fig. 1.15. Block diagram of the Sun microSPARC-II 

tion between I/O, I-cache, D-cache, and TLB references to memory. The 
MMU contains a 64-entry fully associative TLB. It supports 256 contexts 
and protects memory so that a process can be prohibited from reading or 
writing to the address space of another process. 

• The I-cache is a 16 kB direct-mapped, virtually indexed, virtually tagged 
cache. The I-cache data is organized as 512 lines of 32 bytes plus 32 tag 
bits. Cache refill is done two 32-bit words at a time. Cache streaming and 
bypass are supported. 

• The D-cache is an 8 kB, direct-mapped, virtually indexed, virtually tagged, 
write-through cache with no write allocate. The data store is organized as 
512 lines of 16 bytes plus 32 tag bits. Single-word integer and double-word 
floating-point read/write cache hits take one clock cycle. There is a four­
deep store buffer to hold data being stored from the IU or FPU to memory 
or other physical devices. The store buffer is composed of 64-bit registers. 
Cache refill is done two 32-bit words at a time. Cache streaming and bypass 
are supported. 

• The memory interface is provided by a complete DRAM controller which 
generates all the signals necessary to support up to 256 MB of system 
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memory. The DRAM bus is 64-bit wide with two parity bits, each covering 
32 bits of data. The system DRAM is organized as eight banks, each of 
which may be 2 MB, 8 MB, or 32 MB depending upon the size of DRAM 
used . 

• The SBus interface, as the principal I/O bus interface, performs all the 
functions necessary to connect the processor to the SBus, including dy­
namic bus sizing, cycle re-run control, burst cycle re-ordering, arbitration, 
and general SBus control. The SBus interface works with the MMU to ar­
bitrate the system and memory resources and for I/O address translations . 

• The chip has a five-wire test access port (TAP) interface to support internal 
scan, boundary scan and clock control. This interface is compatible with 
the IEEE 1149.1 specification for standard test access port and bound­
ary scan architecture. This allows efficient access to any single chip in the 
daisy chain without board-level multiplexing. The TAP controller is a syn­
chronous finite state machine (with 16 states) which controls the sequence 
of operations of the test circuitry, in response to changes at the bus. The 
TAP controller is asynchronous with respect to the system clock(s), and 
can therefore be used to control the clock control logic. 

Taking advantage of optimized compiler technology and running with the 
internal CPU clock at 85 MHz, the throughput of the microSPARC-II has 
been measured above 64 SPECint92 and 54 SPECfp92. 

1.7.3 MIPS R3000 

The R3000 processor family (Kane and Heinrich [154]) stems from the Stan­
ford MIPS and is most similar to the DLX. MIPS architecture recognizes four 
coprocessors, denoted CPO through CP3. CPO is the system control copro­
cessor that supports the virtual memory system and exception handling. It 
is always incorporated on the CPU chip. CP1 is the floating-point coproces­
sor, CP2 is reserved for future definition by MIPS, and CP3 provides some 
extensions to the MIPS ISA. 

The R3000 family has been shipped in volume since 1988 as a second­
generation MIPS RISC microprocessor (following up the R2000, the first 
commercially available RISC processor introduced in 1985 by MIPS Com­
puter Systems, the predecessor of MIPS Technologies). One of the principal 
characteristics of the R3000 is its simplicity. The R3000 family consists of 
the R3000 CPU (with CPO on-chip) fabricated at that time in 1.2 J.I.lll CMOS 
technology with an internal frequency of 40 MHz, the R3010 FPU chip (CP1), 
and a variety of other derivatives and support chips. CP1 includes thirty-two 
32-bit registers and performs 32-bit (single precision) and 64-bit (double pre­
cision) ANSI/IEEE 754-1985 standard floating-point operations. The three 
operation units of CP1 (for adding/subtracting, multiplying, and dividing) 
can operate in parallel (Rowen et al. [248]). The derivatives and support 
chips were tailored for specific markets such as embedded controllers and 
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low-cost workstations. There is no CP3 coprocessor since the implementa­
tion of R3000 is based on MIPS liSA. Instructions have fixed 32-bit format 
with three main format types: I-type (immediate), J-type (jump), and R-type 
(register). A block diagram of the R3000 chip is shown in Fig. 1.16. 

The R3000 features a similar 5-stage pipeline as shown in Fig. 1.3: 

1. In the IF stage the instruction physical address is read from the 48-entry 
TLB. 

2. In the ID stage the instruction is fetched from external I-cache. Operands 
are read from the CPU register file while the instruction is being decoded. 

3. During the EX stage the required operation is performed on the 
operand(s). 
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4. In the MEM stage external D-cache is accessed for load/store instruc­
tions. 

5. During the WB stage the ALU result or the value loaded from the D-
cache is stored into the register file. 

One of the features of the MIPS architecture is the partial exposure of the 
pipeline to the programmer since the pipeline hardware is not able to recog­
nize pipeline hazards. 

1.7.4 MIPS R4400 

The MIPS R4400 is a superpipelined6 system with an external frequency 
of 75 MHz and the pipeline running at an internal frequency of 150 MHz. 
Although the R4400 is a fully-fledged 64-bit system, its instructions are uni­
formly 32-bit, as specified in Table 1.5. The processor has an on-chip floating­
point unit (FPU) and an I-cache and D-cache with a capacity of 16 kB each. 
The processor is a 2.2 million transistor chip made in 0.6 Jlm CMOS technol­
ogy (see Kane and Heinrich [154]). 

A block diagram of the R4400 is shown in Fig. 1.17. There is an integer 
unit (CPU), a floating-point unit (FPU, also called CPl), a system control 
coprocessor (CPO), an I-cache and a D-cache. The caches are organized as di­
rect mapped and are each 16 kB in size. The processor supports a secondary 
(L2) cache that can range in size from 128 kB to 4 MB and can either be 
split into I-cache and D-cache (Harvard approach) or unified (Princeton ap­
proach)? The R4400 caches allow the processor pipeline to execute at the 
rate of one clock cycle per instruction and also to minimize the load latency. 

The CPU is capable of handling 64-bit operands and has thirty-two 64-
bit general purpose registers. Two of them have assigned functions: rO is 
hardwired to 0, and r31 is the link register used by jump and link instructions. 
There are three special purpose registers: PC, HI and LO. The latter two either 
hold the product of an integer multiply operation, or the quotient (LO) and 
remainder (HI) of an integer divide operation. Separate multiply and divide 
units allow multiplication and division to take place in parallel with other 
instructions. 

The R4400 incorporates a CPO on chip, responsible for translating vir­
tual addresses to physical addresses, exception handling, as well as some 

6 In the original sense introduced in the context of the R4000 processor, super­
pipelining meant a long pipeline with an internal clock frequency that was twice 
as high as the I/O interface. Today, all processors are clocked two or three times 
as fast as the I/O. Therefore the term superpipeline is no longer used very often. 
Then it usually just means: a long pipeline. 

7 While the Princeton architecture has a single memory for instructions and data, 
the Harvard architecture has separate memories, so simultaneous data and in­
struction access do not conflict. 
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diagnostic capability. The CPO contains a 48-entry TLB and several regis­
ters, some of which are used for memory management while the others are 
exception/ control registers. 

The CPl is fully compliant to the ANSI/IEEE 754-1985 standard. CPl 
has 32 registers which can be accessed as thirty-two 32-bit registers or sixteen 
64-bit registers. There are separate add, multiply, and divide units to allow 
these operations to take place in parallel (with multiply/divide using the 
adder at the end of their operation). 

The R4400 8-stage instruction pipeline is shown in Fig. 1.18. It applies 
superpipelining which effectively stretches R3000's 5-stage pipeline to the 
8-stage pipeline in the R4400. In principle, the time-critical stages of the 
R3000 pipeline are split into two, or even three, stages. The splitting results 
in separate IF and IS stages instead of the single IF stage in R3000, and in 
separate DF, DS, and TC stages replacing R3000's MEM stage. 

The R4400 pipeline stages are: 

1. In the IF stage an instruction address is selected by the branch logic 
and the I-cache fetch begins. The TLB starts virtual to physical address 
translation. 
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2. In the IS stage the I-cache fetch and the TLB translation are completed. 
3. During the RF stage the instruction is decoded and checked for interlock 

conditions. The I-cache tag is checked against the page frame number 
obtained from the TLB. Any required operands are fetched from the 
register file. 

4. The EX stage performs as follows: 
a) for register-register instructions, the AL U performs the arithmetic or 

logical operations; 
b) for load/store instructions, the ALU calculates the data virtual ad­

dress; 
c) for branch instructions, the ALU determines whether the branch con­

dition is true and calculates the virtual branch target address. 
5. The DF stage performs as follows: 

a) register-register instructions perform no operations during the D F, 
DS, and TC stages; 

b) for load/store instructions, the D-cache fetch and the data address 
translation starts; 

c) for branch instructions, the target address translation and TLB up­
date are initiated. 

6. The role of the DS stage is: 
a) for load/store instructions, the D-cache fetch and data address trans­

lation are completed. The shifter aligns the data to the word or dou­
ble word boundary; 

b) for branch instructions, the target address translation and TLB up­
date are completed. 

7. During the TC stage: 
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a) for load/store instructions, the cache performs the tag check, i.e., the 
physical address from the TLB is checked against the cache tag to 
determine whether there is a hit or miss; 

b) for branch instructions no operations occur during the TC and WB 
stages. 

8. In the WB stage: 
a) for register-register instructions, the result is written back to the 

register file; 
b) for load/store instructions the value is either loaded from D-cache to 

the register file or stored from register file to D-cache. 

Superpipelining enables the MIPS R4400 to issue more than one instruction 
within a base clock cycle, but still one instruction after the other. 

1. 7.5 Other Scalar RIse Processors 

Fairchild/lntergraph Clipper (1986): The Clipper C100 was developed by 
Fairchild and later sold to workstation-maker Intergraph which took over 
the chip development and in 1988 produced the C300 processor. Since it 
could not compete in processor technology, Intergraph decided to switch to 
Intel x86-based processors. The ClOO was a three-chip set (like the Motorola 
MC 88000 but predating it by two years), with a Harvard architecture 
CPU and separate cache chips for instruction and data. Instruction lengths 
were 16- and 32-bit. It had sixteen 32-bit user registers and eight 64-bit 
floating-point registers. There was a bank of sixteen supervisor registers 
which completely replaced the user registers. In addition, there were some 
microcoded instructions. 

ARM (1986): Advanced RISC Machine (ARM, originally Acorn RISC 
Machine, from Cambridge, UK) was designed as a processor chip for the 
Archimedes home computer. ARM design was based partly on the Berkeley 
RISC and was fabricated by VLSI Technologies, Inc. It was a 3-stage 
pipeline, and operated in big-endian or little-endian mode. The first ARMs 
(ARM1, 2, and 3) were 32-bit CPU, but used 26-bit addressing. The next 
ARM6 series is a completely 32-bit CPU. It has user, supervisor, and various 
interrupt modes. The ARM architecture has sixteen registers (including 
user-visible PC as R15), though many registers are shadowed in interrupt 
modes so they need not be saved, for fast response (as in PA-RISC, see 
below). Features implemented for high code density include: barrel shifter 
(to perform arbitrary shifts within the same cycle, at no speed penalty), 
conditional execution on every instruction (to eliminate many branches), and 
load/store multiple instructions (for rapid context switching and memory 
transfer). A feature introduced by the ARM is that every instruction is 
predicated (see Sect. 4.3.4) using a 4-bit condition code. This idea was later 
used in the Texas Instruments TMS320C6x processors (Sect.4.10.1), as 
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well as in the forthcoming Hewlett-Packard and Intel processors based on 
IA-64 architecture (Sect. 4.10.2). ARM has also developed a low-cost 16-bit 
version called Thumb, which decodes a subset of ARM CPU instructions 
into 16 bits. Native ARM code can be mixed with Thumb code when the 
full instruction set is needed. The 16-bit instructions are exploded to native 
32-bit ARM instructions without penalty - similar to the CISC decoders 
in Intel x86-compatible and Motorola MC 68060 processors, except they 
decode native instructions into a newer set, while Thumb does the reverse. 
Thumb programs can thus be 30 % to 40 % smaller than already dense 
ARM programs. The newer ARM7 series (from December 1994) increases 
performance by an optimized multiplier, and added DSP extensions includ­
ing 32-bit and 64-bit multiply and multiply/accumulate instructions. The 
ARM7 is a small 32-bit microprocessor with very low power consumption. 
Its 3-stage pipeline features a combined shift ALU execution stage allowing 
a single instruction to specify one of its operands for shifting or rotation 
before it is passed to the ALU. It also doubles cache size to 8 kB. A full 
DSP coprocessor Piccolo (1997) adds an independent set of sixteen 32-bit 
registers (four of which can be used as 48-bit registers) and a complete 
DSP instruction set, using a RISC philosophy similar to the ARM itself. 
Piccolo has its own PC, interacting with the CPU which performs data 
load/store through I/O buffers connected to the coprocessor bus. Piccolo 
shares the main ARM bus, but uses a separate instruction buffer to reduce 
conflicts. Two 16-bit values packed in 32-bit registers can be computed in 
parallel, similar to the HP PA-RISC MAX-1 multimedia instructions. DEC 
has also licensed the architecture, and in 1996 developed the StrongARM 
SA-110 processor, running a 5-stage pipeline at 100 to 233 MHz and using 
only 1 W of power, with 5-port register file, faster multiplier, single cycle 
shift-add, and Harvard architecture (I-cache and D-cache are each 16 kB) 
(see Santhanam [255], Jaggar [149]). To fill the gap between ARM7 and 
StrongARM, ARM also developed the ARMS series which includes many 
StrongARM features. ARM8 extends the ARM7 implementation by two 
additional pipeline stages and a new cache interface that allows instruction 
fetches in parallel with data accesses. Static branch prediction (backward 
branches are predicted taken, forward branches are predicted untaken) with 
a three-cycle misprediction penalty is applied. 

HP PA-RIse (19S6): The PA-RISC (Precision Architecture) was designed 
to replace Motorola MC 68000 processors in HP-3000 minicomputers and 
HP-9000 workstations. It has an unusually large instruction set for a RISC 
processor that includes, for example, a conditional skip instruction which is 
similar in concept to the condition bits in the ARM processor (see above). 
The instruction set is large because initial design of ISA took place before 
RISC philosophy became popular, and partly because careful analysis 
revealed that performance benefited from the instructions chosen. Despite 
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this, PA-RISC has a simple design; for example, the entire original CPU 
had only 115000 transistors, which is less than twice the number in the 
Motorola MC 68000. PA-RISC design is similar to most other mainstream 
RISC processors, like the Fairchild/Intergraph Clipper, and the Motorola 
MC 88000, in particular. It has a 5-stage pipeline with hardware interlocks 
for instructions taking more than one cycle, as well as result forwarding. 
It is a load/store architecture, originally with a Princeton architecture, 
later expanded to a Harvard architecture. It has thirty-two 32-bit integer 
registers (GRO wired to 0, GR31 used as a link register for procedure calls), 
with seven shadow registers that preserve the contents of a subset of the 
GR set during fast interrupts (as in ARM). In addition, it has thirty-two 
64-bit floating-point registers that can be also be used as sixty-four 32-bit or 
sixteen 128-bit registers. 

AMD 29000 (1987): The AMD 29000 is another RISC processor descended 
from the Berkeley RISC design. Like the SPARC design that was introduced 
shortly after, the 29000 has a large set of registers split into local and global 
sets. The 29000 has 64 global registers. It allows variable-sized windows 
allocated from the 128-register stack cache. The current window or stack 
frame is indicated by a stack pointer. A pointer to the caller's frame is stored 
in the current frame, as in an ordinary stack. Spills and fills occur only at 
the ends of the cache, and registers are saved/loaded from the memory stack. 
This allows variable window sizes, from 1 to 128 registers. This flexibility, 
plus the large set of global registers, makes register management easier than 
in SPARC. There is no special condition code register - any general register 
is used instead, allowing several condition codes to be retained, though 
this sometimes makes code more complex. An instruction prefetch buffer 
(using burst mode) ensures a steady instruction stream. Branches to another 
stream can cause a delay, so the first four new instructions are cached - the 
next time a cached branch is taken, the cache supplies instructions during 
the initial memory access delay. Registers are not saved during interrupts, 
allowing the interrupt routine to determine whether the saving overhead is 
worthwhile. In addition, a form of register access control is provided. All 
registers can be protected, in blocks of four, from access. These features 
make the 29000 useful for embedded applications, which is where most of 
these processors are used. The 29000 also includes a memory management 
unit and support for the 29027 floating-point unit. 

Motorola MC88000 (1988): The Motorola MC88000 is a 32-bit processor, 
one of the first RISC processors based on a Harvard architecture (Alsup 
[7], Melear [199]). It is similar to the HP PA-RISC in design although the 
MC 88000 is more modular, has a small and elegant instruction set, no special 
status register (condition codes may be stored in any general register), and 
lacks segmented addressing (thus limiting addressing to 32 bits). It has thirty-
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two 32-bit user registers and up to 8 distinct internal FUs. The processor is 
pipelined with interlocks and result forwarding. The MMU chip MC 88200 
provides dual caches (including multiprocessor support) and support for the 
MC 88100, a version ofMC 88000 processor. Multiple ALUs and floating-point 
units (with thirty-two 80-bit floating-point registers) and 2-issue instruction 
fetching were added to obtain the MC88110 (Diefendorff and Allen [65], 
1992), one of the first superscalar designs. 

1. 7.6 Sun picoJava-I 

A non-RISC processor example of a small-scale microprocessor featuring 
a simple 4-stage pipeline is provided by Sun's picoJava-I microprocessor 
(Wayner [321], O'Connor and Tremblay [216], McGhan and O'Connor [197]) 
which is the first of a series of proposed JavaChips, potentially continued by 
the more complex microJava and UltraJava processors. Java processors are 
designed to execute Java bytecode instructions directly in hardware. Addi­
tionally, hardware support for stack manipulation and thread synchroniza­
tion is provided. The picoJava core features a simple pipeline, but not a 
RISC instruction set. The picoJava core deviates from RISC principles by its 
stack-based ISA, a variable-length instruction format, a partly microcoded 
implementation, and too large an instruction set to count it as a RISC ISA. 

Applications in the Java language are compiled to target the Java Virtual 
Machine (JVM). The JVM (see Meyer and Downing [200]) is the name of 
the (abstract) engine that actually executes a Java program compiled to Java 
bytecode. It details the instruction set, datatypes, operand stack, constant 
pool, method area, heap for run-time data, and the class file format. The JVM 
definition comprises a file format for the executable, called class file, and an 
instruction set that is called Java bytecode. Java bytecode can be interpreted, 
which is relatively slow, or compiled to native machine code by a just-in-time 
(JIT) compiler that speeds up execution on a normal microprocessor but 
expands the code size by a factor of 3 or more. The Java processors render 
JVM software interpretation or JIT compilers superfluous by direct execution 
of Java bytecode. 

A main characteristic of the JVM instruction set is its stack architec­
ture which means that all compute instructions (i.e., arithmetic/logical in­
structions) address their operands implicitly as top-of-stack and next-of-stack 
and write the result back to the top-of-stack (see p. 10). The lack of ex­
plicit operand specification leads to a zero-address addressing format for the 
compute instructions resulting in a very compact machine code by the use 
of different-length instruction formats. The general-purpose registers are re­
placed by a JVM stack that holds local variables, (frame local) operand stack 
and pointers to frames. Some special status information concerns the top-of­
stack index, the thread status information, the current method, the method's 
class and constant pool, and the program counter. 
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Data types include Boolean, char, byte, short, reference, int, long, float 
(32 bit) and double (64 bit), both ANSI/IEEE 754-1985. The data format is 
big-endian as the network order. 

The Java bytecode specifies 226 instructions. All opcodes have eight bits 
followed by a variable number of zero to four operand bytes. The most fre­
quently executed instructions are just one byte long. One-byte instructions 
make up 62 % of bytecode instructions. There exist escape opcodes for in­
struction set extensions. The compact JVM instruction format yields an av­
erage instruction length of only 1.8 bytes, which is extremely small compared 
to the 4-byte instruction format that is standard for most of today's RISC 
processors. 

Not all instructions of the JVM are implemented in hardware in the 
picoJava-I8 instruction set. Most of the hardware-implemented instructions 
execute in one to three cycles. Of the instructions not implemented directly 
in hardware, those deemed critical for system performance are implemented 
in microcode, for example, method invocation. This group of moderately 
complicated instructions contains about 30 bytecode instructions. A small 
microcode ROM contains the microcode; the picoJava core uses two approx­
imately 2 kB ROMs, one in the integer unit and the other in the optional 
floating-point unit. The remaining group of about 30 instructions are either 
very complicated or require services from the underlying operating system, 
or both. These instructions are emulated by core traps - an example would 
be creating a new object, which is a less frequently used instruction. 

The Java security model does not allow direct access of memory. There 
are no Java bytecode instructions that allow access to arbitrary memory 
locations. Java bytecode instructions only operate upon object references, the 
physical storage location of the objects are not known to the programmer. 
The JVM relies on library calls to the underlying operating system of its host 
system. 

Consequently, for a Java processor additional instructions are necessary to 
implement low-level hardware management. In picoJava-I core, 115 instruc­
tions additional to the JVM are defined as extended instructions in reserved 
opcode space with 2-byte opcodes, the first byte being one of the reserved 
JVM opcode bytes. The extended bytecodes implement arbitrary load/store, 
cache management, internal register access, and other miscellaneous instruc­
tions necessary to allow the programmer to write system-level code. Hence, 
the picoJava-I ISA is no longer a JVM ISA, because the JVM cannot execute 
extended bytecode instructions. Moreover, no program containing extended 
bytecode instructions defined for the picoJava-I can be regarded as safe in 
the sense of the Java security model. 

The picoJava-I processor consists of a core that includes a RISC-style 4-
stage pipeline (see Fig. 1.19), an integer FU, and an optional floating-point 

8 The description in this section is given for the picoJava-I core [216]; some features 
are also mentioned that are only in the picoJava-II core [197]. 
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The I-cache stores picoJava-I instructions. The short cache line size of only 
8 bytes contains approximately the same amount of instructions as the normal 
16-byte line used by other RISe processors due to the compact instruction 
format of the Java bytecode. 
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A 12-byte instruction buffer decouples the I-cache from the rest of the core 
pipeline. The instruction buffer write in during the instruction fetch stage is 
four bytes and the read out by the decode stage is five bytes. The picoJava-I 
decodes each cycle up to five bytes at the head of the instruction buffer and 
sends the decoded instructions to the execution stage. 

The branch prediction always predicts not taken. The 4-stage core pipeline 
yields a two-cycle penalty when the branch is taken. Branch delay slots can 
only be used by microcode and are not available to the compiler that compiles 
to the bytecode of the JVM. 

Instructions stay for one or more cycles in the execution stage. The op­
tional floating-point unit follows the ANSI/IEEE 754-1985 single and double 
precision standard. It is not internally pipelined. Compute instructions only 
operate on stack data and never on memory data. The D-cache can be ac­
cessed by load or store instructions during the execution stage. Execution 
result values and values loaded from the D-cache or memory are written 
back into the stack cache in the fourth pipeline stage. 

JVM's stack architecture is implemented in the picoJava-I processor by a 
64-entry on-chip hardware stack ~ called stack cache or stack register file ~ 

that is used instead of a general-purpose register file. The stack register file 
is managed as circular buffer (see Fig. 1.21). The top-of-stack pointer wraps 
around. The stack cache contains both integer and floating-point data which 
facilitates the (rather infrequent) passing of operands between integer and 
floating-point units. Data from the constant pool or from local variables that 
are arranged deeper in the stack have to be pushed on top of the stack before 
being used for execution. Access to these areas is provided by local-variable 
load and store instructions defined by the JVM. Each method invocation 
creates a call frame on the stack at run-time. The frame contains the param­
eters for the method, its local variables, the frame-state-like return address 
and the monitor entered. The hardware stack allows direct parameter passing 
without requiring any copying of the parameters ~ an option important for 
object-oriented languages that typically rely upon plenty of small method 
invocations (0 'Connor and Tremblay [216]). 

A hardware mechanism called a dribbler maintains an automatic spill 
and refill of the hardware stack concurrently to the instruction execution 
in the pipeline. When the hardware stack is almost full, the dribbler writes 
the oldest stack cache entries to the D-cache. Similarly, when the number of 
valid entries gets too low, the dribbler transfers JVM stack entries back in 
the hardware stack. The points at which the dribbler decides to spill or refill 
stack cache entries depends on high and low water marks set in a control 
register (O'Connor and Tremblay [216]). 

Since access of computing instructions is limited to the top portion of the 
stack, a frequently occurring instruction combination consists of an local­
variable load instruction with a succeeding compute instruction that con-
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Fig. 1.21. picoJava I stack architecture 

sumes the loaded value. Elimination of this extra load step during execution 
improves the performance of the stack architecture. 

T ,. LO 
T 
~ T+LO T ~ T+LO 

LO f- LO LO I-- LO 
LO 

Cycle 1: iload_O Cycle 2: iadd Cycle 1: iload_O, iadd 

(a) (b) 

Fig. 1.22. Example offolding (a) without folding, the processor executes iload_O 
during the first cycle and iadd during the second cycle (b) with folding, iload_O 
and iadd execute in the same cycle 

picoJava-I relies on a folding operation that executes a local-variable 
load instruction in the same cycle as the succeeding compute instruction 
(Fig. l.22). The instruction decoder detects this situation and folds the in­
structions together in the execution stage. Simulations show that folding 
eliminates approximately 15 % of the total dynamic instruction count (Ta­
ble l.8, [216]). 

The picoJava-II core which will be implemented in the microJava-701 
processor goes one step further. Up to four instructions can be folded, if 
moves of local data to the top of stack are immediately followed by compute 
instructions that consume the data just moved, and/or compute operations 



1. 7 RIse Processors 51 

Table 1.8. JVM instruction frequencies without and with folding 

Dynamic Dynamic 
frequency frequency 

before after Instructions 
Instruction class folding folding folded 

% % % 
Local-variable loads 34.5 24.4 10.1 
Local-variable stores 7.0 7.0 0.0 
Loads from memory 20.2 20.2 0.0 
Stores to memory 4.0 4.0 0.0 
Compute (integer/floating-point) 9.2 9.2 0.0 
Branches 7.9 7.9 0.0 
Calls/retums 7.3 7.3 0.0 
Push constant 6.8 2.0 4.8 
Miscellaneous stack operations 2.1 2.1 0.0 
New objects 0.4 0.4 0.0 
All others 0.6 0.6 0.0 --TotaT----------------------------- ---1-00~O---------85.r--------1-.Ef----

are immediately followed by local stores of the result just computed. Based 
on a set of grouping rules, the picoJava core scans the incoming stream of 
bytecodes looking for sequences of instructions that can be folded together 
dynamically (MeGhan and O'Connor [197]). 

A 4-way instruction folding is demonstrated in Fig. 1.23. Two local load 
instructions iload_O and iload_i which load the values from local integer 
variables LO and L1 to the top of stack, are followed by an integer addition 
iadd, and by an istore_2 instruction that removes the result from the top 
op stack and stores it in local integer variable L2. All four instructions can 
be folded into a single operation, which is equivalent to a 3-address operation 
iadd L2, LO, L1 of a RISe ISA where LO, Li, and L2 are register specifiers. 

Most of the stack architecture overhead can be removed by such extensive 
folding techniques. Measurements indicate that between 23 and 37 % of all 
instructions executed become folded (MeGhan and O'Connor [197]). 

The picoJava-I core contains a two-entry cache of the two most recent 
monitors that the current thread has entered. Associated with each entry is 
a counter that indicates how many times the thread has entered the moni­
tor, since re-entry of a monitor by the same thread is possible by the Java 
language specification. The monitor entry count is incremented when the 
monitor is entered and decremented when exited. If the counter is zero, the 
monitor is exited completely. On each monitor entry, the monitor cache is 
associatively examined, incremented, and decremented by hardware which 
speeds up performance compared to a pure software solution. However, re­
placements of monitor cache entries are raised by core traps and managed in 
software. 
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Fig. 1.23. Example of 4-way folding (a) without folding (b) with folding 

Simulations show that picoJava-I features excellent performance com­
pared to an Intel Pentium or an Intel 80486 processor running bytecode. 
Benchmarks run 15 to 20 times faster than a 80486 with interpreter and still 
5 times faster than a Pentium with a JIT compiler and equal clock rate (see 
o 'Connor and Tremblay [216]). 

Second in the series of Sun's Java chips is the microJava-701 [283, 284] 
which implements a 32-bit picoJava-II core. Besides Java bytecode C­
compiled code is also supported by the instruction set. The microJava-701 
features a 6-stage pipeline, and an extensive folding that allows up to four 
instructions executed per cycle. Further system features are integrated on­
chip: a memory controller, and a I/O bus controller. Volume production of 
microJava-701 was scheduled for the end of 1998 in 0.251ill1 CMOS technol­
ogy with 2.8 million transistors and a 200 MHz clock cycle rate. 

The picoJ ava-I targets the market of embedded appliances. Stated by Sun 
Microelectronics Whitepapers [282]' Java's simple, secure and small object­
oriented code promotes clean interfaces and software re-use, while its dis­
tributed nature makes it a natural choice for network applications. Java is 
quickly establishing itself as a standard for the market of low-cost, embedded 
network computers. By the end of the decade, the average home will con­
tain between 50 and 100 microcontrollers. There will be millions of cellular 
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phones, set-top boxes, personal digital assistants, low-cost network termi­
nals, and other Internet appliances operating in a networked environment 
and highly optimized for small applications running at top speed. 

The direct execution of Java bytecode, the short pipeline, the hardware 
stack in combination with the dribbler, the garbage collection, and the moni­
tor support provide excellent performance of Java-based code. Java bytecode 
is extremely dense by its stack architecture. Embedded market requirements 
are supported by making caches and floating-point units optional. Hard real­
time requirements often require an exact cycle count for a running service 
routine. Cache misses, the dribbler hardware, and garbage collection may dy­
namically enhance the number of executed cycles, thereby potentially miss­
ing hard real-time deadlines. However, by an appropriate setting of the water 
marks in the control register the dribbler hardware can be disabled. 

The main drawback for Java processors caused by the JVM stack archi­
tecture is, however, that the stack architecture disables most instruction-level 
parallelism (except for folding) that is exploited by multiple-issue processors. 
It will be very difficult to design a superscalar Java processor as is proposed 
by the more complex of Sun's Java processors. One solution might be a dy­
namic translation of stack register accesses to accesses to a directly addressed 
general-purpose register, set by a modified register-renaming stage. This step 
would allow the elimination of the stack architecture register set and thereby 
open the way to exploit more instruction-level parallelism. 

1.8 Lessons learned from RISe 

The goal of RISC architecture was to develop designs that can come close to 
issuing one instruction on each clock cycle. This has been made possible by: 

• using hardwired instead of microcoded control, 
• supporting a small set of equal-length instructions most of which are of the 

register-register type, 
• relying on the optimizing compilers, 
• relying on the high-performance memory hierarchy, 
• and, especially, using instruction pipelining. 

Since the pipelined and superpipelined RISC processors regarded in this chap­
ter issue only one instruction at a time, they are scalar. 

Recall from Sect. 1.7.2 that, besides microSPARC, there is a spectrum 
of other SPARC microprocessors. What differentiates them from the mi­
croSPARC is that they can simultaneously issue more than one instruction 
per cycle. For example, HyperSPARC issues two instructions per cycle, Su­
perSPARC three instructions, and UltraSPARC four instructions per cycle. 
This so-called superscalar or multiple-issue approach offers CPI < 1. Since 
instructions can be evaluated in parallel, we call such a potential overlap 
among instructions instruction-level parallelism (ILP). Rau and Fisher [239] 
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distinguish the following main types of processor architectures capable of 
utilizing ILP by combining processor and compiler design techniques: 

• Sequential architectures where the program provides no explicit informa­
tion regarding instruction parallelism, 

• Dependence architectures where the program explicitly indicates the de­
pendences between instructions, and 

• Independence architectures where the program conveys information as to 
which instructions are independent of one another. 

Sequential architectures are represented by superscalar processors which still 
retain result serialization as required by von Neumann architecture. The basic 
superscalar principles will be discussed in Sect. 4.1, a detailed study follows in 
Sects. 4.2-4.8. In Sect. 4.9 we will describe several state-of-the-art superscalar 
processors. Chapter 2 is devoted to dataflow processors, which belong to de­
pendence architectures. Independence architectures are represented by VLIW 
processors that are covered in Sect. 4.10 and EPIC processors described in 
Sect. 4.10.2. 
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Dataflow stands apart as being the most radical of all approaches to 
parallelism and the one which has been the least successful ... 
. .. If any practical machine based on dataflow ideas and offering real power 
emerges, it will be very different from what the originators of the concept 
had in mind. 

Maurice V. Wilkes 
Computing Perspectives 

(Morgan Kaufmann Publishers, 1995) 

... these instructions [of the Intel Pentium Pro] are ... executed in 
dataflow order (when operands are ready) ... 

Robert P. Colwell and Randy L. Steck 
A O.6pm BiCMOS Processor with Dynamic Execution 
(Int'l Solid State Circuits Conference, February 1995) 

2.1 Dataflow Versus Control-Flow 

Control-Flow. The most common computing model (i.e., a description of 
how a program is to be evaluated) is the von Neumann control-flow com­
puting model. This model assumes that a program is a series of addressable 
instructions, each of which either specifies an operation along with memory 
locations of the operands or it specifies (un)conditional transfer of control to 
some other instruction. A control-flow computing model essentially specifies 
the next instruction to be executed depending on what happened during the 
execution of the current instruction. The next instruction to be executed is 
pointed to and triggered by the program counter PC. This instruction is 
executed even if some of its operands are not available yet (e.g., uninitialized). 

Dataflow. The dataflow model represents a radical alternative to the von 
Neumann computing model since the execution is driven only by the avail­
ability of operands. It has no PC and global updatable store, i.e., the two 
features of the von Neumann model that become bottlenecks in exploiting 
parallelism. 1 

1 The serialization of the von Neumann computing model is a serious limitation 
for exploiting more parallelism in today's microprocessors - e.g., superscalars. 

J. Ši lc et al., Processor  Architecture
© Springer-Verlag Berlin Heidelberg 1999
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In the context of parallel computing, the earliest use of the word "dataflow" 
dates back to 1960s when Karp and Miller [155] studied a dataflow-like model 
of computation. The history of dataflow computers and languages began in 
the late 1960s with two separate strands of research whose similarities were 
not to be generally recognized until the end of the following decade (Glauert 
et al. [101], 1985). The earliest work is mostly concerned with languages and 
notations for parallel computation. The language work led to the development 
of the so-called single-assignment languages, and eventually to the design of 
a single-assignment machine (see the LAU System on p. 61). The notational 
research formed the foundations of the later design of dataflow computer 
systems. The first architecture to embody the dataflow computing model 
was developed in the mid-1970s2 by Dennis and Mis/mas [64]. By the late 
1970s it was clear that dataflow and single-assignment were synonymous, and 
subsequent dataflow machines have all been designed in conjunction with a 
single-assignment language. These languages are characterized by the single­
assignment rule which means that a variable may appear on the left side of 
an assignment only once within the area of the program in which it is active. 
High-level single-assignment programming languages include, for example, 
VAL (Ackerman and Dennis [1], 1979), Id (Heller and Traub [132]' 1985), 
and LUCID (Wadge and Ashcroft [315], 1985). 

A program, which is written in a single-assignment language, is compiled 
into a dataflow graph which is a directed graph consisting of named nodes, 
which represent instructions, and arcs, which represent data dependences 
among instructions. During the execution of the program, data propagate 
along the arcs in data packets, called tokens. This flow of tokens enables some 
of the nodes (instructions) and fires them.3 Figure2.1 shows two dataflow 
graphs. The acyclic graph in Fig. 2.1a represents the function Stats which 
is defined in VAL below and computes the mean and standard deviation of 
three input values. The function returns two real values, Mean and StDev, 
which are defined in the let part of the program. 

function Stats (x,y,z: real returns real, real); 
let 

Mean := (x + y + z)/3; 
StDev := SQRT«x**2 + y**2 + z**2)/3 - Mean**2); 

in 
Mean, StDev 

2 In 1967, however, Tomasulo applied a limited dataflow design to the floating­
point unit for the IBM System 360 Model 91 (see Sect. 3.3.2). 

3 There is also a diametrically opposite method of evaluating dataflow graphs 
called demand-driven execution where an enabled node is fired if there is a de­
mand for the result. The demand-driven execution model leads to so-called reduc­
tion machines (Treleaven et al. [299]). Reduction machines came in two flavors, 
graph reduction and string reduction. In data-driven (e.g., dataflow) comput­
ers, the availability of operands triggers the execution of the operation to be 
performed on them, whereas in demand-driven (e.g., reduction) computers the 
requirement for a result triggers the operation that will generate it. 
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The cyclic graph in Fig. 2.1b represents the following Id program segment 

initial j <- n; k <- 1 
while j > 1 do 

new j <- j - 1; 
new k <- k * j; 

return k ) 

which computes factorial n! of integer n. The CHOOSE node outputs either the 
token from F-input or the token from T-input, depending on the token on 
the control input. The token on the control input of the SWITCH node selects 
either the T-output or F-output, to which the input token will be sent. 

n 

n! 
StDev 

(a) (b) 

Fig. 2.1. Dataflow graphs (a) simple statistic function (b) factorial 

Two important characteristics of dataflow graphs are functionality and 
composability. Functionality means that evaluation of a graph is equivalent 
to evaluation of the corresponding mathematical function on the same input 
data. Compos ability means that graphs can be combined to form new graphs. 

The execution of a dataflow graph proceeds according to the instruction 
enabling and instruction firing rules. The instruction (node) enabling rule is: 

An instruction is enabled (i.e., executable) if all operands are available to it. 

Note that in the von Neumann model, an instruction is enabled ifit is pointed 
to by the PC. The computational rule of the dataflow model, also known as 
the instruction (node) firing rule, specifies when an enabled instruction is 
actually executed. The basic instruction firing rule is: 
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An instruction is fired when it is enabled 
(and when the resources are available). 

The effect of firing an instruction is the consumption of its input data 
(operands), the execution of the instruction, and the generation of output 
data (results). 

Because of the single-assignment rule, parallelism is not constrained by an­
tidependences and output dependences as it is in conventional imperative lan­
guages. Control dependences are transformed into data dependences. Struc­
tural hazards are mostly ignored in dataflow literature, where unbounded 
hardware resources are assumed. We have enhanced the usually idealistic fir­
ing rule by demanding resource availability in the rule stated above. Dataflow 
is said to be self-scheduling since instruction sequencing is constrained only 
by data dependences among instructions. Thus, the flow of control is the 
same as the flow of data among various instructions. 

There are computer architectures that support the pure dataflow compu­
tation model as described above, such as the static, the dynamic, and the 
explicit token store architecture. Advanced architectures, however, support 
augmenting the dataflow computation model with traditional control-flow 
mechanisms, such as multithreading, large-grain computation, complex ma­
chine operations, RISC approach, etc. 

2.2 Pure Dataflow 

Let us first explain the basic principles of pure dataflow computer architec­
tures. A dataflow computer executes a program by receiving, processing, and 
sending out tokens, each containing some data and a tag. Dependences be­
tween instructions are translated into tag matching and tag transformation. 
Processing starts when a set of matched tokens arrives at the execution unit. 
The instruction which has to be fetched from the instruction store (according 
to the tag information) contains information about what to do with data and 
how to transform the tags. The matching unit and the execution unit are con­
nected by an asynchronous pipeline, with queues added between the stages to 
smooth out workload variations. Some form of associative memory is required 
to support token matching. It can be a real memory with associative access, 
a simulated memory based on hashing, or a direct matched memory. Each of 
these three solutions has its proponent but none is absolutely suitable. 

Due to its elegance and simplicity, the pure dataflow model has been the 
subject of many research efforts. Since the early 1970s, a number of dataflow 
computer prototypes have been built and evaluated, and different designs and 
compiling techniques have been simulated (see Treleaven et al. [299], Srini 
[278], Gaudiot and Bic [98], SiZe et aZ. [263]). 

Clearly, an architecture supporting the execution of dataflow graphs 
should support the flow of data. Depending on the way the data are han­
dled, several types of dataflow architectures have emerged in the past: 
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• static, 
• dynamic, and 
• explicit token store. 

We describe them in Sects. 2.2.1-2.2.3, respectively. 

2.2.1 Static Dataflow 

The static (also called single-token-per-arc) dataflow architecture was first 
proposed by Dennis and Misunas [64], 1975. At the machine level, a dataflow 
graph is represented as a collection of activity templates, each containing the 
opcode of the represented instruction, operand slots for holding operand val­
ues, and destination address fields, referring to the operand slots in subse­
quent activity templates that need to receive the result value. Each token 
only consists of a value and a destination address. Note that different tokens 
flowing to the same destination, one after the other, could not be distin­
guished. Therefore, the static dataflow approach allows at most one token to 
reside on anyone arc. This is accomplished by extending the basic firing rule 
as follows: 

An enabled node is fired if there is no token on any of its output arcs 
(and when the resources are available). 

x y 
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sqrt I 

• data token 

o acknowledge signal 
I--__ ----IE--­

~z 
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................. > acknowledgement arc 

(a) (b) 

Fig. 2.2. Acknowledge signals in (a) a dataflow graph (b) activity templates 

To implement the restriction of at most one token per arc, acknowledge sig­
nals, traveling along additional arcs from consuming to producing nodes, are 
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used as additional tokens (Fig. 2.2). Thus, the firing rule can be changed to 
its original form: 

A node is fired at the moment when it is enabled 
(and when the resources are available). 

The major advantage of the single-token-per-arc dataflow model is its sim­
plified mechanism for detecting enabled nodes (see Fig. 2.2). 

Unfortunately, this model of dataflow has a number of serious deficiencies. 
Consecutive iterations of a loop can only be pipelined, which limits the 
amount of parallelism that can be exploited. Another undesirable effect is 
that, due to acknowledgment tokens, the token traffic is doubled. In addition, 
there is a lack of support for programming constructs that are essential to 
any modern programming language (e.g., procedure calls, recursion). Despite 
these shortcomings, several static machines were constructed and served as 
the theoretical and practical basis for subsequent dataflow computers. 

MIT Static Dataflow Machine 

This machine was designed by Dennis and Misunas [64] at the Massachusetts 
Institute of Technology (MIT) (Cambridge, MA) as a direct implementation 
of a single-token-per-arc dataflow model. It comprises a set of processing 

Processing Element 

Operation 
Unit(s) 

Instruction 
Queue 

Activity 
Store 

Communication 

Network 

Fig. 2.3. Communication structure and processing element of the MIT Static 
Dataflow Architecture 
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elements (PEs) interconnected through a communication network (CN) as 
shown in Fig. 2.3. 

Activity templates reside in an activity store (AS), and addresses of fired 
instructions (activity templates) reside in an instruction queue (IQ). This 
queue is accessed by the fetch unit (FU) that removes the first entry in the 
IQ, uses it for fetching the corresponding opcode, data, and destination list 
from AS, packs them into an operation token, forwards this token to an avail­
able operation unit (OU), and finally clears the operand slot in the template. 
The OU executes the operation specified by the opcode using the correspond­
ing operands, generates result tokens for each destination, and sends them to 
the send unit (SU). The SU decides whether the token's destination is in a 
local or a remote PE. If the destination is local, the token is sent to the local 
receive unit (RU) that, in turn, passes it on to the update unit (UU). If the 
destination is not local, however, the result token is routed to the destination 
PE through the CN. All units operate concurrently, so instructions are pro­
cessed in a pipeline fashion. Note that large delays in the CN do not affect 
the performance as long as enough fired instructions are present in each PE. 

A prototype of the MIT Static Dataflow Machine was built in the early 
80s with eight PEs (each emulated by a microprogram mabIe microprocessor) 
and an equidistant packet routing network using 2 x 2 routing elements. The 
machine was used primarily as an engineering model. 

Another implementation of the MIT Static Dataflow Machine was the cell 
block version of that machine which was not a multiprocessor of dataflow PEs, 
but a highly parallel machine consisting of cell blocks and FUs interconnected 
by a distribution and an arbitration network. 

Other projects 

LAU System (Plas et al. [234]' 1976): Researchers at the CERT (Toulouse, 
France) carried out the first project to go through the entire process of graph, 
language, and machine design. Their system, called LAU4, was built in 1979. 
The LAU system used static graphs and had its own dataflow language based 
on single-assignment rule. LAU's architecture contained five major processing 
sections connected in a ring. Four of the five sections managed I/O, task and 
job supervision, and backing memory. The fifth section contained up to 32 
PEs, each of which had its own local memory for graph and data values. Each 
PE was a 16-bit microprogrammed processor built around the AMD 2900 bit­
slice microprocessor. The PC was replaced by two memories: the instruction 
control memory (ICM) and the data control memory (DCM). ICM handled 
control bits associated with each instruction while DCM managed the bit 
associated with each data operand. The LAU prototype system demonstrated 
that a dataflow computer could be built. 

4 "Language it assignation unique" (LAU) IS a French acronym for single­
assignment computation. 
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DDMI (Davis [60], 1978): The Utah Data Driven Machine (DDM1) was 
designed at the University of Utah (Salt Lake City, UT) and was completed 
at the Burroughs Interactive Research Center (La Jolla, CA). The machine 
organization was based on the concept of recursion. It was tree-structured, 
with each PE connected to up to eight descendant PEs. Each PE consisted of 
an agenda queue with fir able instructions, a local program memory, and an 
"atomic" processor. Another significant aspect of this work was the high-level 
graphical language designed to be used on the DDM1 (see Boekelheide [30]). 

TI's DDP (Gornish et at. [54], 1979): The Distributed Data Processor (DDP) 
was a system, designed at Texas Instruments, which aimed to investigate 
the potential of dataflow as the basis of a high-performance computer. The 
DDP was not commercially exploited, but a follow-on design with Ada as 
the programming language had its application in military systems. 

NEG Image Pipelined Processor (Temma et at. [290], 1985): NEC Electronics 
(Japan) developed the first dataflow VLSI microprocessor chip IlPD7281. 
Its architecture was a pipeline with several blocks (i.e., working areas), 
organized in a loop. The program was stored in two tables, called a link 
table and a function table, while data memory was used for temporarily 
storing the tokens to be matched. An address generator and a flow controller 
were responsible for matching two tokens and temporarily storing them 
in the queue before sending them to the processing unit. The IlPD7281 
had a very powerful instruction set designed specifically for digital image 
processing algorithms such as restoration, enhancement, compression, and 
pattern recognition. 

HDFM (Vedder et at. [311], Gaudiot et at. [99], both 1985): The Hughes 
Dataflow Multiprocessor (HDFM) project began in 1981 at Hughes Aircraft 
Co. (USA), prompted by the need for high performance, reliable, and eas­
ily programmable processors for embedded systems. The HDFM consisted of 
many, relatively simple, identical PEs connected by a global packet-switching 
network. The interconnection (3D cube) network was integrated with PEs for 
ease of expansion and minimization of VLSI chip types. The communication 
network was designed to be reliable, with automatic retry on garble messages, 
distributed bus arbitration, alternate path packet routing, and a failed PE 
translation table to allow rapid switch-in and use of spare PEs. The com­
munication network was able to accommodate up to 512 PEs in an 8 x 8 x 
8 configuration. The following candidates proposed for the HDFM network 
were evaluated by Exum and Gaudiot [82]: a 3D cube network, a multi­
stage network, a hypercube network, a mesh network, and a ring network. 
The processor engine was a 3-stage pipelined processor with three opera­
tions overlapped: instruction fetch and dataflow firing rule check, instruction 
execution, and result and destination address combining to form a packet. 
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2.2.2 Dynamic Dataflow 

The performance of a dataflow machine significantly increases when loop 
iterations and subprogram invocations can proceed in parallel. To achieve 
this, each loop iteration or subprogram invocation should be able to execute 
as a separate instance of are-entrant subgraph. This replication, however, 
is only conceptual. In a real implementation, only one copy of any dataflow 
graph is actually kept in memory. Each token has a tag consisting of the 
address of the instruction for which the particular data value is destined and 
other information defining the computational context in which that data is 
to be used. This context is sometimes called the value's color. Each arc can 
be viewed as a bag that may contain an arbitrary number of tokens with 
different tags. The enabling and firing rule is now: 

A node is enabled and fired as soon as tokens with identical tags are present 
on all input arcs (and when the resources are available). 

V-interpreter. A method for assigning tags to each execution of an instruc­
tion was called the U-interpreter (for unraveling interpreter). Each token con­
sists of a tag and data. The tag comprises the context field c that uniquely 
identifies the context in which the instruction is to be invoked, the initiation 
number i that identifies the loop iteration in which this activity occurs, and 
the instruction address n. Note that c can itself be a tag. Since the destina­
tion instruction may require more than one input, each token also carries the 
number of its destination port p. We represent a token by (c.i.n, data)p. 

execution 
~ 

Fig. 2.4. U-interpreter 

In the following, we describe the tag generation mechanism as it was 
proposed by Gostelow and Arvind ([105], 1982). Here, if the node nj performs 
a dyadic function /, and if the port p of nj is the destination of nj, then we 
have 

in: {(c.i.nj, xh, (c.i.ni, Y)2} out: {(c.i.nj, /(x, Y))p} 

as can be seen in Fig. 2.4. 
Figure 2.5a,b shows two basic nodes, referred to as the MERGE and SWITCH, 

which are used to represent branches and loops. 
The branch construct (Fig. 2.6a) is described by 



64 2. Dataflow Processors 

¥ execution ¥ ~, execution ~ ~ 
T F ~ 

T F 

¥ execution ¥ ~ execution ~ ~ T F ~ 
T F 

(a) (b) 

Fig. 2.5. U-interpreter (a) MERGE node (b) SWITCH node 
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Merging of f and 9 outputs with a MERGE node causes no tag duplication. It 
is surprising that no one ever considered evaluating branches speculatively, 
although this is easy due to the single-assignment rule and obviously realized 
with the graph in Fig. 2.6b. In Fig. 2.6b, f and 9 represent the then-path and 
the else-path, respectively. Both paths can be executed concurrently because 
the single-assignment rule guarantees data independence. The SWITCH-node 
is replaced by a CHOOSE-node (see Fig. 2.6b)5 that transports the token either 
from the subgraph f or from the subgraph 9 to the output line, depending 
on the predicate token b. The loop construct (Fig. 2.6c) uses, besides MERGE 
and SWITCH, additional operators L, L -1, D, and D- 1. L is described by 

in: {(c.i.ni,x)} out: {(c'.l.nk, x)}, 

where c' = (c.i.ni). The D operator was introduced because the initiation 
number of a token in a loop must be incremented every time a token goes 
around a loop. This is accomplished by D as follows: 

in: {(c'.j.nj, x)} out: {(c'.j + l.nk, x)}. 

If after k - 1 iterations the loop predicate P becomes false, SWITCH sends 
the last token with initiation number k to the D- 1 operator, which resets the 
initiation number to 1: 

in: {(c'.k.n/,x)} out: {(c'.l.nm , x)}. 

The L -1 sends its input token to an activity whose context and initiation 
number are identical to those of the activity that initiated this loop: 

in: {(c'.l.nm , x)} out: {(c.i.n n , x)}. 

The function application (Fig. 2.6d) uses operators A, A -1, BEGIN, and END. 
The A operator creates a new context c' within which the function to be 

5 The CHOOSE-node is not part of the U-interpreter. 
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Fig. 2.6. U-interpreter (a) branch (b) speculative branch evaluation (CHOOSE­
node) (c) loop (d) function application 

applied arrives on arc q, while the argument on which this function is to be 
applied is passed on arc a: 

in: {(c.i.ni,q)junc,(c.i.ni,a)arg} out: {(c'.l.nbegin,a)}, 

where c' = (c.i.nj) and nj is the address of the A-I operator. The BEGIN 
operator simply replicates tokens for each fork in its output arc. The END 
operator returns the result to the caller by unstacking the return address: 

in: {(c'.l.nend,q(a))} out: {(c.i.nj,q(a))}. 

The A-I operator replicates its output for its successors. 

I-structure. The single-assignment rule in conjunction with a complex data 
structure means that each update of a data structure consumes the structure 
and the value producing a new data structure. However, this is awkward or 
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even impossible to implement. To solve the problem of complex data struc­
tures, the concept of I-structures (for incremental structures) has been pro­
posed by Arvind and Thomas ([17], 1981). An I-structure may be viewed as 
a data repository obeying the single-assignment rule. That is, each element 
of the I-structure may be written only once but it may be read any number 
of times. The basic idea is to associate with each element status bits and a 
queue of deferred reads. The status of each element of the I-structure can be: 

• PRESENT, meaning that the element can be read but not written, 
• ABSENT, meaning that a read request has to be deferred but a write oper­

ation into this element is allowed, 
• WAITING, which means that at least one read request of the element has 

been deferred (since nothing has been written yet). 

The state transition diagram for the I-structure operations is given in Fig. 2.7. 

Fig. 2.7. State transition diagram for I-structure operations 

After an element of the data structure has become defined (recall that 
that can happen exactly once), all deferred reads, which are kept in the 
associated queue, immediately become satisfied. Thus, the I-structure makes 
it possible to use a data structure before it is fully defined. In addition, 
it allows defining complex data structures from existing, though partially 
defined, data structures. 

The following three elementary operations are defined on I-structures: 

• Allocate, which reserves a specified number of elements for a new 1-
structure, 

• I-fetch, which retrieves the contents of the specified I-structure element 
(if the element has not yet been written, this operation is automatically 
deferred), 

• I-store, which writes a value into the specified I-structure element (if that 
element is not empty, an error condition is reported). 

These elementary operations are used to construct nodes SELECT and ASSIGN 
as described in Fig. 2.8. The operation x = A[j] is performed by the SELECT 
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node. First, the address a of the j-th element in the I-structure A is com­
puted. The operation I-fetch then sends a read-token (c.i.nj, a, "read:') to the 
I-structure storage, thus asking for the contents of the element at the address 
a. If the status of the storage location a is PRESENT, the element contains a 
value, say x, so the value is read and a token (c.i.nj, x) is sent to the node nj. 
However, if the status is WAITING, the read request is deferred. Similarly, an 
ABSENT status is changed to WAITING and the request is enqueued in the as­
sociated queue as in the previous case. The I-fetch instruction is implemented 
as a split-phase memory operation, meaning that a read request issued to an 
I-structure is independent in time from the response received and thus does 
not cause a wait by the issuing PE. The operation A[j] = x is performed 
by the ASSIGN node. After the address a is computed, I-store sends a write­
token (a, "write", x) to the I-structure storage. The I-store instruction also 
generates a signal-token (c.i.nj). In spite of firing the ASSIGN node, x may be 
written into the I-structure later. If the status of AU] is ABSENT, then x is 
written and the status is set to PRESENT. If the status is WAITING, the same 
action as in the previous case is performed first, activating all deferred read 
requests for that I-structure element. If a write-token arrives at a non-empty 
location (status is PRESENT), it is treated as a run-time error due to the 
single-assignment rule. 

Dataflow architectures that use the model of execution whereby tags are 
attached to tokens are called dynamic (or sometimes tagged-token) dataflow 
architectures. This model was proposed by Watson and Curd [320] at the 
University of Manchester (England), and simultaneously by Arvind et al. 
[14] at MIT. 

The major advantage of the tagged-token dataflow model is better 
performance (compared with static predecessors) as it allows multiple tokens 
on each arc, thereby unfolding more parallelism. One of the main problems 
of the tagged-token dataflow model was efficient implementation of the 
unit that collects tokens with matching colors. For the sake of efficiency, 
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an associative memory would be ideal. Unfortunately, it would not be 
cost-effective since the amount of memory needed to store tokens waiting 
for a match tends to be very large. As a result, all existing machines use 
some form of hashing technique which is typically not as fast as associative 
memory. In the following, we list the most important tagged-token dataflow 
projects. 

MIT Tagged-Token Dataflow Architecture 

This project originated at the University of California at Irvine (CA) and 
continued at MIT. The Irvine dataflow machine, proposed by Arvind et al. 
[14], 1978, implemented a version of the U-interpreter and array handling 
mechanisms to support I-structures. The machine was proposed to consist 
of multiple clusters interconnected in a token ring. Each cluster consisted of 
four PEs sharing local memory through a local bus and memory controller. 

The MIT Tagged-Token Dataflow Architecture (TTDA) was a modified 
Irvine machine, but was still based on the Id language (Arvind and Nikhil 
[16], 1987). Instead of using a token ring, a n-cube packet network for inter­
processor communication was used (Fig. 2.9). The I-structure storages were 
addressed uniformly and collectively implemented a global address space. 
A single processing element (PE) and a single I-structure storage suffice to 
constitute a complete dataflow computer. 

Processing Element 

Fig. 2.9. Communication structure and processing element of the MIT TTDA 
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A program under execution is distributed over the program storages (PSs) 
of different PEs. Tokens entering the PE go through the token queue (TQ) and 
the following sections. They are first removed from the TQ by the wait-match 
unit (WMU). The WMU is a memory containing a pool of waiting tokens. If 
the entering token is destined for a monadic operator, it goes straight to the 
instruction fetch unit (IFU). Otherwise, a matching phase is initiated. This 
involves comparing the token's tag with the tags of all tokens currently held 
in the WMU. If a match occurs, the token is extracted from the WMU, and 
the two matching tokens are passed on to the IFU. However, if the WMU does 
not contain the partner, the token is left in the WMU to wait for its partner. 
The WMU is thus the rendezvous point for pairs of arguments for dyadic 
operators. It behaves as an associative memory, but is implemented with 
hashing methods. The tag on the operand token entering the IFU identifies 
the instruction to be fetched from the PS. The fetch instruction may also 
include a literal or a reference to a constant to be used as an operand. In 
the latter case, the constant is fetched immediately from the constant store. 
When a complete executable packet is assembled, it is passed to the ALU for 
execution. The ALU computes the result and, in parallel, derives new tags. 
The form token unit (FTU) takes the result and these tags from the ALU 
and combines them into the result token. The result token is forwarded to 
the local TQ, to another PE if the destination address is non-local, or to the 
I-structure storage if the operation is an access to a data structure. 

The implementation ofthe token-matching stage is critical for the TTDA's 
performance. The TTDA requires that a token is checked against all other 
waiting tokens for a possible match. That means that the TTDA requires 
a moderately large associative memory. The dataflow graph is dyadic (i.e., 
nodes may need two input tokens). The experiences gained by the simulated 
TTDA (never built) were used in building its successor, the Monsoon, which 
is described in Sect. 2.2.3. 

Manchester Dataflow Machine 

The researchers led by Watson and Curd ([320], 1979) at the University of 
Manchester focused on the construction of a prototype dataflow computer. 
The graph structure in this machine was static with token labels to keep 
different procedure calls separate. 

The Manchester Dataflow Machine (MDM) was first simulated in 
1977/78, and implemented as a hardware prototype in 1981. It consisted 
of one processing element (PE) and two structure storage modules connected 
with a simple 2 x 2 switch. The MDM prototype is shown in Fig. 2.10. 

Two structure storages can hold a total of 1 M data values with access 
rates of 750 k reads per second and half as many writes per second. The 
structure storage provides reference counts to support garbage collection of 
structures that are no longer needed by the program. 
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Processing Element 

Token 
Queue 

Fig. 2.10. Communication structure and processing element of the MDM 

Each PE had a pipelined internal structure, with tokens passing through 
a token queue (TQ) module, a matching unit (MU) and an instruction store 
unit (ISU) before being processed by one of 20 ALUs in a parallel processing 
unit (PU). The ALUs were microcoded, and different instructions took quite 
different times to execute. Microinstructions are 48 bits wide, and the clock 
period is 67 ns. If all 20 ALUs can be utilized fully, this gives approximately 
a 6 MIPS rate for the whole computer. A hardware hashing mechanism is 
used instead of an associative memory in the MU that can hold up to l.25 M 
unmatched tokens waiting for their partners. The MU has a 155 ns clock 
period and a 150 ns memory cycle time, so it gives rates of 1.29 M matches 
per second for dyadic operators and 6.45 M bypasses per second for monadic 
operators. The ISU is a buffered RAM with a capacity of 64 k instructions. 
The clock period is 40 ns, and the memory access time is 150 ns, resulting in 
a maximum processing rate of 2 M instruction fetches per second. 

To overcome the restriction in the MDM that only two successor instruc­
tions could be specified in one instruction, the TUPlicate operator (iterative 
instruction) was introduced by B6hm et al. [31]. The TUPlicate operator re­
duced the size of the code and led to significant reductions in execution time, 
especially for large programs. 

The Extended Manchester Dataflow Machine (EXMAN) from the Indian 
Institute of Science (Bangalore, India) (Patnaik et al. [228]) incorporated 
three major extensions to the basic MDM: 
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• a multiple MUs scheme, 
• an efficient implementation of the array data structure, and 
• a facility to execute re-entrant routines concurrently. 

To allow all storage functions to be performed concurrently, a prototype 
parallel structure store was developed by Kawakami and Curd [159]. 

Other projects 

NTT's DPAS (Takahashi et at. [287], 1983): The Dataflow Processors Array 
System (DPAS), developed at Nippon Telephone and Telegraph (Japan), was 
a dynamic tagged-token machine intended for large scientific calculations. A 
hardware experimental system Eddy, consisting of 4 x 4 PEs, was built and 
used to test some applications. 

DDDP (Kishi et at. [162]' 1983): The Distributed Data Driven Processor 
(DDDP) from OKI Electric Ind. (Japan) had a centralized tag manager and 
performed token matching by a hardware hashing mechanism similar to that 
of the Manchester Dataflow Machine. A prototype consisting of four PEs 
and one structure store connected by a ring bus achieved 0.7 MIPS. 

SICMA-l (Hiraki et at. [137], 1984): The SIGMA-l system is a super­
computer for large-scale numerical computation and has been operational 
since early 1988 at the Electrotechnical Laboratory (Tsukuba, Japan). It 
consists of 128 PEs and 128 structure elements interconnected by 32 local 
networks (10 x 10 crossbar packet switches) and one global two-stage 
Omega network. Sixteen maintenance processors are also connected with 
the structure elements and with a host computer for I/O operations, system 
monitoring, performance measurements, and maintenance operations. 

PIM-D (Ito et aZ. [147], 1986): The Parallel Inference Machine PIM-D was 
proposed to be one of the candidates for a parallel inference machine in the 
Fifth Generation Computer System and was a joint venture of ICOT and 
OKI Electric Ind. (Japan). This machine was constructed from multiple PEs 
and multiple structure memories interconnected by a hierarchical network 
and exploited three types of parallelism: OR parallelism, AND parallelism, 
and parallelism in unification. 

Q-p (Asada et at. [18], Nishikawa et at. [215], both 1987): The one-chip data­
driven processor Q-p was specifically designed to be a one-chip functional 
element that was easy to program to form various dedicated processing 
functions. Particular design decisions were taken to achieve high flow-rate 
data-stream processing capabilities. In the Q-p, a novel bi-directional elastic 
pipeline processing concept was introduced to implement token matching. 
The Q-p was developed jointly by Osaka University, Sharp, Matsushita 
Electric Ind., Sanyo Electric, and Mitsubishi Electric (Japan). 
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DDA (Koren et al. [166], 1988): A Data-Driven VLSI Array (DDA) was 
designed at Technion (Haifa, Israel) consisting of a set of PEs with each PE 
connected to six neighbors. Before the program starts, the corresponding 
dataflow graph is mapped into the DDA by assigning PEs to nodes and links 
to arcs. During execution, the computation front propagates through the 
DDA, as through the dataflow graph. The DDA is capable of executing any 
arbitrary algorithm. Performance of the DDA was enhanced by improving 
the architecture (Weiss et al. [322]) and the mapping algorithm (Robie and 
Vilfan [244]). 

PATTSY (Narashimhan and Downs [210], 1989): The Processor Array 
Tagged-Token System (PATTSY) was an experimental system that was 
developed at the University of Queensland (Brisbane, Australia), which 
supported the dynamic model of dataflow execution. PATTSY had a host 
computer that provided the user-interface to the machine, accepted user pro­
grams and converted them into dataflow graphs. These graphs were mapped 
onto the PEs, but the actual scheduling of operations was carried out at run­
time. A prototype with 18 PEs was operational. It used an IBM-PC as host 
while the PEs were built from Intel 8085-based single-board microcomputers. 

CSIRAC II (Egan [75], 1990): The origins of the CSIRAC II dataflow com­
puter date from 1978. It was built at the Swinburne Institute of Technology 
(Hawthorn, Australia). The architecture is unusual in that the temporal 
order of tokens with the same color on the same graph arc is maintained. 

SDFA (Snelling [272], 1993): The Stateless Data-Flow Architecture (SDFA) 
was designed at the University of Manchester and inspired by the Manchester 
Dataflow Machine. As its name implies, the SDFA system had no notion of 
states. There were no structure stores, and only extract-wait functionality 
was provided in the matching stores. All the instructions in the instruction­
set were simple and based on RISC principles. There were no iterative or 
vector-style instructions producing more than two tokens per execution. 

2.2.3 Explicit Token Store Approach 

One of the main problems of tagged-token dataflow architectures is efficient 
implementation of token matching. To eliminate the need for costly associa­
tive memory, the concept of the explicit token store (ETS) has been proposed 
by Papadopoulos ([224], 1988). The basic idea is to allocate a separate frame 
in the frame memory (Fig. 2.11) for each active loop iteration or subprogram 
invocation. A frame consists of slots where each slot holds an operand that is 
used in the corresponding activity. Since access to slots is direct (i.e., through 
offsets relative to the frame pointer), no associative search is needed. 

In the middle of Fig. 2.11 a (part of a) program graph is depicted, with 
input token (FP, IP, 3.01) entering the * node. The token consists of a pointer 
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Fig. 2.11. Explicit token store 

FP to the corresponding frame, a pointer IP to the instruction in the instruc­
tion memory, and one operand: 

(FP, IP, operand). 

FP and IP form the token's tag. The instruction fetched from the location 
I P specifies the opcode (e.g., *), the offset in the associated frame where 
the match between the corresponding input operands will take place (e.g., 
FP + 2), and IP-relative displacement(s) to the destination instruction(s) in 
the instruction memory (e.g., instructions at IP + 2 and IP + 1 with opcodes 
+ and sqrt, respectively). 

Figure 2.12 illustrates how matching is performed in the ETS model. 
An unusual characteristic of ETS frames is that each slot has associated a 
presence bit specifying the disposition of the slot. The dynamic dataflow 
firing rule is implemented by a simple state transition of these presence bits. 
For example (see Fig. 2.12), at the moment t = 0, the token (FP, IP, 3.01) 
arrives and, since it is the first of the input tokens, it is treated as follows. 
The slot FP + 2 is found empty, so the operand 3.01 is deposited in that 
slot and the presence bit is set on. At the moment t = 1 the second token 
(FP, IP, 2.0) arrives. Since the slot FP + 2 is found to be full (presence bit is 
on), the waiting operand 3.01 is extracted from it (leaving the slot empty). 
The presence of both operands causes the instruction at IP to be fired, 
producing at t = 2 two result tokens, (FP, IP + 2, 6.02) and (FP, IP + 1,6.02). 
Notice, that at t = 1 another input token (FP', IP, 7.4) arrived. This token 
belongs to some other part of computation, for example, to the next loop 
iteration. 

Bounded loops. The ETS concept can be used for resource control in 
dataflow computers. Most of the critical resources, in particular, concern­
ing the size of the token storage, will be consumed by an unlimited number 
of concurrently active loop iterations. Hence, the k-bounded loops constraint 
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Fig. 2.12. Explicit token store matching scheme 

was devised by Culler [56], allowing at most k - 1 consecutive loop iterations 
to be concurrently active in k ETS frames (Fig.2.13). 

The implementation of Culler's idea uses a new gate operator G, a syn­
chronization tree, and Dk and Dk 2 operators. The G operator has two inputs 
(for control and data) and functions as a loop throttle by passing one token 
from its data input to the output for each token on its control input. At 
the end of each iteration, a new control token is generated by combining the 
output of all Dk operators into a single value using the synchronization tree. 

The Dk operator (with modified semantics of the D operator from p. 64) 
sets the iteration number i of tokens to i + 1 mod k. When a control token 
with iteration number i + 1 mod k has passed the synchronization tree, it is 
guaranteed that the iteration executing in ETS frame i has terminated and 
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no token with iteration number i is still circulating. Next the control token 
with iteration number i + 1 mod k in its tag passes the D;2 operator which 
decrements the iteration number by - 2 mod k yielding the new iteration 
number i-I mod k in the tag. 

The k-bounded loops scheme is initialized (during compile-time or during 
load-time ofthe program) by k-l control tokens (with loop iteration numbers 
0, ... , k-2 in their tags) on the arc from the loop prelude to the gate operator 
G. k - 1 loop iterations may be activated in ETS frames 0, ... , k - 2. Hence, 
there are at most k - 1 consecutive loop iterations active at the same time; 
however, k frames are needed. The iteration with iteration number i-I mod k 
can be started, as soon as the iteration with iteration number i mod k has 
terminated. Thus tokens from different iterations but with the same iteration 
number i-I are prevented from meeting on the arcs before the SWITCH nodes. 

The ETS principle was developed in the Monsoon project, but is used 
in most recent dataflow architectures, for example, as the so-called direct 
matching in EM-4 and Epsilon-2 machines (see Sect. 2.3.1 below). 

Monsoon, an Explicit Token Store Machine 

The Monsoon dataflow multiprocessor was built jointly by MIT and Motorola 
(USA) (Papadopoulos and Culler [225], 1990). In Monsoon, dataflow PEs are 
coupled with each other and with I-structure storage units by a multistage 
packet-switching network (Fig. 2.14). 
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The main objective of the Monsoon dataflow processor architecture was to 
alleviate the waiting/matching problem by using an ETS. Each frame resides 
entirely on a single PE. The FP and IP are conventionally segmented by the 
PE as follows, tag = NpE : (FP.IP), where N pE is the PE's number. 

Processing Element 

Fig. 2.14. Communication structure and processing element of the Monsoon 

Each PE uses an 8-stage pipeline (Fig. 2.14). The first stage is the in­
struction fetch stage which precedes token matching (in contrast to dynamic 
dataflow processors with associative matching units). Such a new arrange­
ment is necessary since the operand fields in an instruction denote the offset 
in the memory frame that itself is addressed by the tag of a token. The ex­
plicit token address is computed from the frame address and operand offset. 
This is done in the second stage (effective address generation), which is the 
first of three pipeline stages that perform the token matching. In the third 
stage, called presence bit operation, a presence bit is accessed to find out 
whether the first operand of a dyadic operation has already arrived. If not, 
the presence bit is set and the current token is stored in the frame slot of 
the frame memory. Otherwise, the presence bit is reset and the operand is 
retrieved from the slot. Operand storing or retrieving is the task of the fourth 
pipeline stage - the frame operation stage. The next three stages are execu­
tion stages, in the course of which the next tag is also computed concurrently. 
The eighth (form-token) stage forms one or two new tokens that are sent to 
the network, stored in a user token queue, a system token queue, or directly 
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recirculated to the instruction fetch stage of the pipeline. In the following, 
we give some details of the Monsoon system: 

• Processing element: 
~ 10 MHz clock 
~ 256 kW Instruction Memory (32-bit wide) 
~ 256 kW Frame Memory (word6 + 3 presence bits) 
~ Two 32 k-token queues (system, user) 

• I-structure storage: 
~ 4 MW (word + 3 presence bits) 
~ 5 M requests/s 

• Network 
~ Multistage, pipelined 
~ Packet Routing Chips (PaRC, 4 x 4 crossbar) 
~ 4 M tokens/s/link (100 MB/s) 

Since September 1990, a 1 PE x 1 I-structure memory configuration (also 
referred to as the two-node system) has been operational while the first 8 x 
8 configuration (16-node system) was delivered in fall 1991. In total, sixteen 
two-node Monsoon systems were constructed and delivered to universities 
across the USA and two 16-node systems were delivered to MIT and Los 
Alamos National Laboratories (USA). 

Until the mid-1990s, dataflow architectures did not permit the use of tra­
ditional storage models. In order to bring the dataflow computational model 
closer to the control-flow model, Kavi et al. ([157], 1995), studied cache de­
sign issues applicable to dataflow architecture, in particular, the design of 
I-cache, D-cache, and I-structure cache memories in the ETS model. 

2.3 Augmenting Dataflow with Control-Flow 

Pure dataflow computers based on the single-token-per-arc or tagged-token 
dataflow model usually perform quite poorly with sequential code. This is 
due to the fact that an instruction of the same thread can only be issued 
to the dataflow pipeline after the completion of its predecessor instruction. 
In the case of an 8-stage dataflow pipeline, instructions of the same thread 
can be issued at most every eight cycles. If the load is low, for instance, for 
a single sequential thread, the utilization of the dataflow processor drops to 
one-eighth of its maximum performance. Another drawback is the overhead 
associated with token matching. For example, before a dyadic instruction is 
issued to the execution stage, two result tokens have to be present. The first 
token is stored in the waiting-matching store, thereby introducing a bubble 
in the execution stage(s) of the dataflow processor pipeline. Only when the 
second token arrives can the instruction be issued. Clearly, this may affect the 

6 Word size: 64-bit data + 8 bits type tag 
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system's performance, so bubbles should not be neglected. For example, the 
pipeline bubbles sum up to 28.75 % when executing the Traveling Salesman 
program on the Monsoon machine (Papadopoulos and Culler [225]). 

Since a context switch occurs in fine-grain dataflow after each instruction 
execution, no use of registers is possible for optimizing the access time to 
data, avoiding pipeline bubbles caused by dyadic instructions, and reducing 
the total number of tokens during program execution. 

One solution to these problems is to combine dataflow with control-flow 
mechanisms. The possible symbiosis between dataflow and von Neumann ar­
chitectures was investigated by a number of research projects developing von 
Neumann/dataflow hybrids (see Table 2.1). The spectrum of such hybrids is 
quite broad, ranging from simple extensions of a von Neumann processor 
with a few additional instructions to specialized dataflow systems attempt­
ing to reduce overhead by increasing the execution grain size and employing 
various scheduling, allocation, and resource management techniques devel­
oped for von Neumann computers. These developments show that dataflow 
and von Neumann computers do not necessarily represent two entirely dis­
joint worlds, but rather two extreme ends of a spectrum of possible computer 
systems. 

Several techniques for combining control-flow and dataflow emerged, such 
as: 

• threaded dataflow, 
• large-grain dataflow, 
• dataflow with complex machine operations, 

• RISC dataflow, 
• hybrid dataflow. 

We will describe these in the following five subsections. For a comparison of 
the techniques, see also Beck et al. [24]. 

2.3.1 Threaded Dataflow 

By the term threaded dataflow we understand a technique where the dataflow 
principle is modified so that instructions of certain instruction streams are 
processed in succeeding machine cycles. In particular, in a dataflow graph 
(program) each subgraph that exhibits a low degree of parallelism is identified 
and transformed into a sequential thread. Such a thread of instructions is 
issued consecutively by the matching unit without matching further tokens 
except for the first instruction of the thread. 

Threaded dataflow covers the repeat-on-input technique used in Epsilon-
1 and Epsilon-2 processors, the strongly connected arc model of EM-4, and 
the direct recycling of tokens in Monsoon. Data passed between instructions 
of the same thread is stored in registers instead of written back to mem­
ory. These registers may be referenced by any succeeding instruction in the 
thread. Single-thread performance is thereby improved. The total number 
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of tokens needed to schedule program instructions is reduced, which in turn 
saves hardware resources. Pipeline bubbles are avoided for dyadic instruc­
tions within a thread. Two threaded dataflow execution techniques can be 
distinguished: 

• direct token recycling, 
• consecutive execution of the instructions of a single thread. 

Direct token recycling is used in the Monsoon dataflow computer. It allows a 
particular thread to occupy only a pipeline frame slot in the 8-stage pipeline. 
This implies that at least eight threads must be active for full pipeline uti­
lization to be achieved. This cycle-by-cycle instruction interleaving of threads 
is used in a similar fashion by some multithreaded von Neumann computers 
(Sect. 6.3.1). 

To optimize single-thread performance, Epsilon and EM-4 execute in­
structions from a thread consecutively. The circular pipeline of fine-grain 
dataflow is retained. However, the matching unit has to be enhanced with a 
mechanism that, after firing the first instruction of a thread, delays matching 
of further tokens in favor of consecutive issuing of all instructions of the thread 
which has been started. For example, in a strongly connected arc model, each 
arc of the dataflow graph is classified as either a normal arc or a strongly con­
nected arc. The set of nodes that are connected by strongly connected arcs is 
called the strongly connected block. Recall that the standard firing rule is that 
a node is fired when all input arcs have matching tokens. The enhancement 
for strongly connected blocks is that such a block is fired if its "source" nodes 
are enabled and the execution of the whole block is conducted as a unit, that 
is, without applying the standard dataflow firing rule for other nodes in that 
block. Figure 2.15 shows an example of strongly connected blocks (threads). 
There are two strongly connected blocks, A and B. When node 5 or node 6 
is fired, block A or block B is executed exclusively. Cycling of tokens that 
would normally flow through the other block is suppressed in the pipeline. 
For example, if node 5 becomes enabled before node 6, nodes 5, 8, and 10 
will be fired before any node in block B. 

In all threaded dataflow machines, the central design problem is the imple­
mentation of an efficient synchronization mechanism (see Sakai [252]). The 
direct matching is a synchronization mechanism that needs no associative 
mechanisms. As in ETS (see Sect. 2.2.3), a matching area in operand mem­
ory is exclusively reserved for a single function instance. This area is called an 
operand segment (OS). The code block in instruction memory corresponding 
to the OS is called a template segment (TS) (see Fig. 2.16). The top address 
of TS is called the template segment number (TSN). An operand segment 
number (OSN) points to the top of the OS (as IP in ETS). A token comprises 
an operand, OSN, a displacement (DPL), and a synchronization flag (SF): 

(SF, OSN, DPL, operand). 
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nonnal arc - ----> 

~ strongly connected arc 

~ strongly connected block 

Fig. 2.15. Strongly connected blocks (threads) 

DPL serves both as a displacement of the destination instruction in the 
instruction memory and a displacement of the matching operand in the 
operand memory. SF indicates the type of synchronization which can be 
either monadic, left dyadic, right dyadic, or immediate. The matching ad­
dress is produced by concatenating OSN and DPL. The instruction address 
is derived by concatenating TSN and the DPL. Each slot in an OS also has 
a presence bit. A dyadic matching is performed by a test-and-set 7 of the 
presence bit. 

SF ~ dyadic right 

:f 
" ll' :'" ....... \ 

",sF,oskDP~~ 6.02> 

.t \ op-code 

Instruction Memory 

* "///'/'\ 1 :;:'~":.~:,,~ I sqrt ,.k. OsN ./ TSN en 0 

............................................................. 
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~ ............................................................. . 

Fig. 2.16. Direct matching: Instruction Memory and Operand Memory 

Some highly influential threaded dataflow projects, EM-4 with its 
successor EM-X, Monsoon, Epsilon-2, and RWC-l are described below. 

7 If the presence bit has already been set, the partner data will be read, the bit 
will be cleared, and the instruction will be executed. Otherwise the arriving data 
will be stored there and the presence bit will be set. 
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EM-4 and EM-X 

In the EM-4 project (Sakai et al. [254], 1989) at Electrotechnical Laboratory 
(Tsukuba, Japan), the essential elements of a dynamic dataflow architecture 
using frame storage for local variables are incorporated into a single chip 
processor. In this design each strongly connected subgraph of a function body 
is implemented as a thread that uses registers for intermediate results. The 
EM-4 was designed for 1024 PEs. The EM-4 prototype with 80 PEs has been 
operational since May 1990. Each PE consists of a processor and I-structure 
memory. 

Processing Element: 

EMC-R_+~~ 

"S Openmd ::> Segments 

1 
U Template 
~ Segments 
~ .. 
~ 

Heap 

Memory 
EMC-R 

Fig. 2.17. Communication structure and processing element of the EM-4 

The organization of the EM-4 is shown in Fig. 2.17. Each PE consists of a 
single-chip gate-array processor EMC-R (without floating-point hardware but 
including a switching unit for the network) and I-structure memory (1.25 MB 
SRAM). The EMC-R consists of a switching unit (SU), an input buffer unit 
(IBU), a fetch/matching unit (FMU), an execution unit (EU), and a memory 
control unit (MCU). The EMC-R communicates with the network through a 
3 x 3 crossbar SUo The processor and its memory (containing OSs and TSs) 
are interfaced with the MCU. The IBU is used as a token store. A 32-word 
FIFO type buffer is implemented using a dual-port RAM on chip. If this 
buffer is full, a part of the off-chip memory is used as secondary buffer. The 
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FMU is used for matching tokens and fetching instructions. It performs direct 
matching for packets and instruction sequencing for a strongly connected 
block (thread). The heart of the EMC-R is the EU, which fetches instructions 
until the end of the thread (if the next instruction is strongly connected with 
the current instruction, instruction fetch and data load of the next instruction 
are overlapped with the execution). Instructions with matching tokens are 
executed. Instructions can emit tokens or write to a register file. 

In 1993, an upgrade to EM-4, called EM-X, was developed by Kodama et 
al. [164]. It was designed to support: 

• latency reduction by fusing the communication pipeline with the execution 
pipeline, 

• latency hiding via multithreading, and 
• run-time latency minimization for remote memory access. 

The EM-4 can access remote memory by invoking packet system handlers 
on the destination PE. Clearly, when the destination PE is busy, remote 
memory requests are blocked by the current thread execution. To remedy 
this, the EM-X supports a direct remote memory read/write mechanism, 
which can access the memory independently of thread execution. For these 
reasons, the EMC-Y single-chip processor was used in EM-X (instead of the 
EMC-R that was used in EM-4). Some characteristics of the EM-X machine 
are listed below: 

• EMC-Y processor: 
~ 1.0 J.1l11 CMOS gate-array technology 
~ Total 80593 gates 
~ 20 MHz clock 
~ 40 MW/s8 

~ Performances: 20 MIPS and 40 MFLOPS 
~ Network throughput: 10 Mpackets/s/port 

• Memory: 
~ 1 MW SRAM (20 ns) 

• Network: 
~ Circular Omega 
~ Average 5.06 hops and max. 8 hops on 80 PEs system 
~ Deadlock prevention with 3 banked buffers 

Some performance parameters of the 80 PEs EM -X system (operational since 
1994): 

• 1.6 GIPS and 3.2 GFLOPS (peak) 
• 1.26 J..lS remote memory read latency 
• 2.86 J..lS remote function call latency 
• 37.2 MB/s point-to-point throughput 
• 7.8 J..lS barrier synchronization 

8 Word size: 32-bit data + 6-bit data tag + 2-bit parity 
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• Linpack (N = 5000): 600 MFLOPS 
• Radix Sort (16M x 32bits): 1.3s 

Other projects 

Monsoon (Papadopoulos and Traub [226], 1991): The Monsoon dataflow 
processor (see also Sect. 2.2.3) can be viewed as a cycle-by-cycle interleaving 
multithreaded computer due to its capability of direct token recycling. 
Using this technique a successor token is directly fed back in the 8-stage 
pipeline, bypassing the token store. Another instruction of the same thread 
is executed every eighth processor cycle. Monsoon allows the use of registers 
(eight register sets are provided) to store intermediate results within a 
thread, thereby digressing from the pure dataflow execution model. 

Epsilon-2 (Grafe and Hoch [106], 1990): The Epsilon-2 machine developed 
at Sandia National Laboratories (Livermore, CA), supports a fully dynamic 
memory model, allowing single-cycle context switches and dynamic paral­
lelization. The system is built around a module consisting of a processor 
and structure unit, connected via a 4 x 4 crossbar to each other, an I/O 
port, and the global interconnection network. The structure unit is used 
for storing data structures such as arrays, lists, and I-structures. The 
Epsilon-2 processor retains the high performance features of the Epsilon-l 
prototype, including direct matching, pipelined processing, and a local 
feedback path. The ability to execute sequential code as a grain provides 
RISC-like execution efficiency. 

RWC-l (Sakai et al. [253], 1993): The Massively Parallel Architecture Lab­
oratory at Real World Computing Partnership (Tsukuba, Japan) developed 
a massively parallel computer RWC-l which is a descendant of EM-4 (as 
is EM-X). A multidimensional directed cycles ensemble (MDCE) network 
connects up to 1024 PEs. Two small-scale systems, Testbed-I with 64 PEs 
and Testbed-II with 128 PEs are used for testing and software develop­
ment. The PE is based on reduced interprocessor-communication architec­
ture (RICA) which employs superscalar execution (2-issue), a floating-point 
multiplier/adder module, and offers: 

• a fast and simple message handling mechanism, 
• a hard-wired queuing and scheduling mechanism, 
• a hard-wired micro-synchronization mechanism, 
• integration of communication, scheduling and execution, and 
• simplification of the integrated structure (Matsuoka et al. [194]). 
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2.3.2 Large-Grain Dataflow 

Another technique for combining dataflow with control-flow is referred to as 
the coarse-grain (also large-grain) dataflow model. It advocates activating 
macro dataflow actors in the dataflow manner while executing instruction 
sequences, represented by actors, in the von Neumann style. Large-grain 
dataflow machines typically decouple the matching stage (sometimes called 
signal stage, synchronization stage, etc.) from the execution stage by use 
of FIFO buffers. Pipeline bubbles are avoided by decoupling. Off-the-shelf 
microprocessors can be used to support the execution stage. Most of the 
more recent dataflow architectures fall into this category and are listed be­
low. Note that they are often called multithreaded machines by their authors. 

StarT 

The StarT (sometimes also written as *T), started by Nikhil et al. ([214], 
1992), is a direct descendant of dataflow architectures, especially of the Mon­
soon, and unifies them with von Neumann architectures. StarT has a scal­
able computer architecture designed to support a broad variety of parallel 
programming styles including those which use multithreading based on non­
blocking threads (see Sect. 6.3.1). A StarT node consists of the data pro­
cessor (dP), which executes threads, the synchronization coprocessor (sP), 
which handles returning load responses and join operations, and the remote­
memory request processor (RMem) for incoming remote load/store requests. 
The three components share local node memory (see Fig. 2.18). The node is 
coupled with a high performance network having a fat-tree topology with 
high cross-section bandwidth. 

Message 
Queue 

__ -+l~Message 
Queue 

Message 
Queue 

Remote Memory 
Request Processor 
Rmem 

Fig. 2.18. MIT StarT node architecture (concept) 
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In mid-1991 the StarT project was launched by MIT and Motorola. Due 
to its on-chip special-function unit (SFU), the Motorola 50 MHz 2-issue su­
perscalar RISC microprocessor 88110 was chosen as the basis for the node 
implementation. However, in order to keep the communication latency to a 
minimum, a number of logic modules were added to the 88110 chip so that it 
acted as a tightly-coupled network interface. The resulting chip was called the 
88110MP (MP for multiprocessor) with a 10-20 machine cycles overhead for 
sending and receiving data between the node and the network. Two 88110MP 
microprocessors were used to implement the StarT node (see Fig. 2.19). The 
first one operated as dP, with its SFU serving as sP. dP and sP were op­
timized for long and short threads, respectively. The second 88110MP was 
tailored to act as RMem to handle remote memory requests from other nodes 
to the local node memory (64 MB). 

16 out 16 in 

Processing Element (Node): 

~ 
Nl ••• Nl6 

Fig. 2.19. Communication structure and processing element of the StarT 

The fat-tree network was based on the MIT Arctic packed routing chip 
(Boughton [35]) that was twice as fast as Monsoon's PaRC (see p. 77) and 
was expected to drive the interconnection network at l.6 GB/s/link in each 
direction with packet sizes ranging from 16 to 96 bytes. Sixteen nodes were 
packaged into a "brick" (approximately 23 cm cube) with 3.2 GFLOPS and 
3200 MIPS peak performance. Sixteen bricks can be interconnected into a 
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256-node machine (1.5 m cube) with the potential to achieve 50 GFLOPS 
and 50000 MIPS. 

As reported by Arvind et al. [15], MIT decided to go back to the drawing 
board and to start afresh on PowerPC-based StarT machines after Motorola 
and IBM started manufacturing the PowerPC family of RISC microproces­
sors. Thus, the PowerPC 620 was planned in a StarT-ng machine (Ang et 
al. [12]) but the architecture was redesigned once again, this time around a 
32-bit PowerPC 604, and was called the StarT-Voyager machine (Ang et al. 
[13]). This machine, however, bears little resemblance to the original StarT 
architecture and no similarity to Monsoon. 

Other projects 

TAM (Culler et al. [57], 1991): The Threaded Abstract Machine (TAM) 
from the University of California at Berkeley is an execution model for 
fine-grain interleaving of multiple threads, that is supported by an appro­
priate compiler strategy and program representation, instead of elaborate 
hardware. TAM's key features are placing all synchronization, scheduling, 
and storage management under explicit compiler control. 

ADARC (Strohschneider et al. [280], 1994): In the Associative Dataflow 
Architecture (ADARC) the processing units are connected via an associative 
communication network. The processors are equipped with private memories 
that contain instruction sequences generated at compile-time. The retrieval 
of executable instructions is replaced by the retrieval of input operands for 
the current instructions from the network. The structure of the associative 
switching network enables full parallel access to all previously generated 
results by all processors. A processor executes its current instruction (or 
instruction sequence) as soon as all requested input operands have been 
received. ADARC was developed at the J.W.Goethe University (Frankfurt, 
Germany). 

Pebbles (Roh and NaJjar [245], 1995): The Pebbles architecture from 
Colorado State University (Fort Collins, CO) is a large-grain dataflow 
architecture with a decoupling of the synchronization unit and the execution 
unit within the PEs. The PEs are coupled via a high-speed network. The 
local memory of each node consists of an instruction memory, which is read 
by the execution unit, and a data memory (or frame store), which is accessed 
by the synchronization unit. A ready queue contains the continuations 
representing those threads that are ready to execute. The frame store is 
designed as a storage hierarchy where a frame cache holds the frames of 
threads that will be executed soon. The execution unit is a 4-way superscalar 
mIcroprocessor. 
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MTA (Hum et al. [140], 1994) and EARTH (Maquelin et al. [192]' 1995): The 
EARTH (Efficient Architecture of Running Threads), developed at McGill 
University and Concordia University (Montreal, Canada), is based on the 
MTA (Multithreaded Architecture) and dates back to the Argument Fetch 
Dataflow Processor. An MTA node consists of an execution unit (EU) that 
may be an off-the-shelf RISC microprocessor and a synchronization unit (SU) 
to support dataflow-like thread synchronization. The SU determines which 
threads are ready to be executed. The EU and SU share the processor lo­
cal memory which is cached. Accessing data in a remote processor requires 
explicit request and send messages. The EU and SU communicate via FIFO 
queues: a ready queue containing ready thread identifiers links the SU with 
the EU, and an event queue holding local and remote synchronization signals 
connects the EU with the SU, but also receives signals from the network. 
A register-use cache keeps track of which register set is assigned to which 
function activation. MTA and EARTH rely on non-blocking threads. The 
EARTH architecture is implemented on top of the experimental (but rather 
conventional) MANNA multiprocessor. 

2.3.3 Dataflow with Complex Machine Operations 

Another technique to reduce the overhead of the instruction-level synchro­
nization is the use of complex machine instructions, for instance, vector in­
structions. These instructions can be implemented by pipeline techniques 
as in vector computers. Structured data is referenced in block- rather than 
element-wise fashion, and can be supplied in a burst mode. This deviates 
from the I-structure scheme where each data element within a complex data 
structure is fetched individually from a structure store. 

Another advantage of complex machine operations is the ability to 
exploit parallelism at the subinstruction level. Therefore, such a machine 
has to partition a complex machine operation into suboperations that can 
be executed in parallel. The use of a complex machine operation may spare 
several nested loops. The use of FIFO buffers allows the machine to decouple 
the firing and the execution stages to bridge the different execution times 
within a mixed stream of simple and complex instructions issued to the 
execution stage. As a major difference to conventional dataflow architectures, 
tokens do not carry data (except for the values true or false). Data is 
only moved and transformed within the execution stage. This technique is 
used in the Decoupled Graph/Computation Architecture, the Stollmann 
Dataflow Machine, and the ASTOR architecture. These architectures 
combine complex machine instructions with large-grain dataflow, described 
above. The structure-flow technique proposed for the SIG MA-1 enhances 
these fine-grain dataflow computers by structure load/store instructions that 
can move, for instance, whole vectors to/from structure store. Arithmetic 
operations are executed by the cyclic pipeline within aPE. 
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ASTOR 

The Augsburg Structure-Oriented Architecture (ASTOR) was developed by 
Zehendner and Ungerer ([334], 1987) at the University of Augsburg (Ger­
many). It can be viewed as: 

• a dataflow architecture that utilizes task level parallelism by the architec­
tural structure of a distributed memory multiprocessor, 

• instruction-level parallelism by a token-passing computation scheme, and 
• subinstruction-Ievel parallelism by SIMD evaluation of complex machine 

instructions. 

Sequential threads of data instructions are compiled to dataflow macro actors 
and executed consecutively using registers. A dependence construct describes 
the partial order in the execution of instructions. It can be visualized by 
a dependence graph. The nodes in a dependence graph represent control 
constructs or data instructions; the directed arcs denote control dependences 
between the nodes. Tokens are propagated along the arcs of the dependence 
graph. To distinguish different activations of a dependence graph, a tag is 
assigned to each token. The firing rule of dynamic dataflow is applied, that 
is, a node is enabled as soon as tokens with identical tags are present on all 
its input arcs. However, in the ASTOR architecture tokens do not carry data. 

Processing Element 

Fig. 2.20. Communication structure and processing element of the ASTOR 
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The ASTOR architecture consists of PEs connected by an instruction 
communication network to transfer procedure calls and a data communication 
network for parameter passing (Fig. 2.20). No global storage is used. Due to 
the separation of code and data objects, each PE consists of two loosely 
coupled parts: 

• The program flow control part consists of static and dynamic code storage, 
the static and the dynamic code access manager9, the I/O managers, and 
the control construct managers (individually named call, loop, choice, and 
dependency managers). 

• The data object processing part consists of data storage, several data ac­
cess managers, an I/O manager, some data transformation units, and the 
computational structure manager. 

All managers in a PE work in parallel to each other. Asynchronous processing 
and decoupling of the managers is achieved by buffering the links between 
them. 

Other projects 

Stoltman Dataflow Machine (Gliick-Hiltrop et al. [102]' 1989): The Stollman 
dataflow machine from Stoltman GmbH (Hamburg, Germany) is a coarse­
grain dataflow architecture directed towards database applications. The 
dataflow mechanism is emulated on a shared-memory multiprocessor. The 
query tree of a relational query language (such as SQL) is viewed as dataflow 
graph. Complex database query instructions are implemented as coarse-grain 
dataflow instructions and (micro-)coded as a traditional sequential program 
running on the emulator hardware. 

DGC (Evripidou and Gaudiot [81], 1991): In the Decoupled Graph/Compu­
tation (DGC) architecture, developed at the University of Southern California 
(Los Angeles, CA), the token matching and token formatting and routing are 
reduced to a single graph operation called determine executability. The decou­
pled graph/computation model separates the graph portion of the program 
from the computational portion. The two basic units of the decoupled model 
(computational unit and graph unit) operate in an asynchronous manner. 
The graph unit is responsible for determining executability by updating the 
dataflow graph, while the computation unit performs all the computational 
operations (fetch and execute). 

2.3.4 RISe Dataflow 

Another stimulus for dataflow/von Neumann hybrids was the development of 
RISC dataflow architectures that support the execution of existing software 

9 The term manager is used to characterize an abstract component of a PE. The 
manager is an autonomously acting unit that solves a specific task. 
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written for conventional processors. Using such a machine as a bridge between 
existing systems and new dataflow supercomputers should have made the 
transition from imperative von Neumann languages to dataflow languages 
easier for the programmer. The basic philosophy underlying the development 
of the RISe dataflow architecture can be summarized as follows: 

• use a RISe-like instruction set, 
• change the architecture to support multithreaded computation, 
• add fork and join instructions to manage multiple threads (see Fig. 2.21), 
• implement all global storage as I-structure storage, and 
• implement load/store instructions to execute in split-phase mode. 
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Fig. 2.21. "RISCifying" dataflow (a) conceptual (b) encoding of graph 

P-RISC Architecture 

The Parallel RISe (p-RISe) architecture based on the above principles was 
developed at MIT by Nikhil and Arvind ([213], 1989). It consists of a collec­
tion of PEs (with local memory) and global memory (GM), interconnected 
through a packet-switching communication network (Fig. 2.22). 

Following the principles underlying all RISe architectures, the ALU of P­
RISe PEs distinguishes between load/store instructions, which are the only 
instructions accessing GM (implemented as I-structure storage), and arith­
metic/logical instructions, which operate on local memory (registers). Fixed 
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instruction length and one-cycle instruction execution (except for load/store 
instructions) are characteristics of this processor. In addition, P-RISC lacks 
any explicit matching unit. Instead, all operands associated with a sequential 
thread of computation are kept in a frame in local program memory (PM). 
Each execution step makes use of an (IP, FP) pair (similar to Monsoon), where 
I P serves to fetch the next instruction while FP serves as the base for fetching 
and storing operands. The pair is called continuation and corresponds to the 
tagged part of a token in a tagged-token dataflow machine. To make P-RISC 
multithreaded, the stack of frames must be changed to a tree of frames, and 
a separate continuation must be associated with each thread. The frame tree 
allows different threads of instructions to access different branches of the tree 
concurrently while the separate continuation extends the concept of a single 
PC and a single operand base register to multiple instances. Continuations 

Processing Element 

to/from the 
Communication 
Network 

Global (I-structure) 
Memory 

Global 
Memory 

Fig. 2.22. Communication structure and processing element of the P-RISC 

of all active threads are held in the continuation queue (CQ). At each clock 
cycle, a continuation (also called a token) is de queued and inserted into the 
pipeline (Fig. 2.22). It is first processed by the instruction fetch unit (IFU), 
which fetches from instruction memory (1M) the instruction pointed to by 
IP. Next, operands are fetched from PM by the operand fetch unit (OFU). 
The OFU uses operand offsets (specified in the instruction) relative to the 
FP. The executable token is passed to the ALU or, in the case of a load/store 
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instruction, to the GM10. The execution of an ALU instruction produces 
result tokens and new continuations. Result tokens are stored in the appro­
priate frame in (local) frame memory (FM) by the operand store unit (OSU). 
Continuations are new (FP, IP)-pairs, generated by incrementing the current 
IP value or, in the case of a branch instruction, replacing it by the target 
pointer. They are enqueued in the CQ of the local PE. 

2.3.5 Hybrid Dataflow 

The first attempts towards hybrid dataflow computing were made in the 
early 1980s in quite diverse directions. Some of them are listed below. 

JUMBO (Treleaven et al. [299], 1982): The Newcastle Data-Control Flow 
Computer JUMBO was built at the University of Newcastle-upon-Tyne 
(UK) to study the effects of the integration of dataflow and control-flow 
computation. It has a packet communication organization with token 
matching. There are three principal units (matching unit, memory unit, 
processing unit) interconnected in a ring by FIFO buffers. 

PDF (Requa and McGraw [240], 1983): The Piecewise Dataflow Architecture 
(PDF) was designed to address the Lawrence Livermore National Labora­
tory's (Livermore, CA) needs for supercomputing power. This architecture 
blended the strengths found in SIMD, MIMD, and dataflow architectures. 
The PDF contained a SIMD processing unit and a scalar processing unit 
that managed a group of processors (MIMD). Programs that ran on the PDF 
were broken into basic blocks and scheduled for execution using dataflow 
techniques. Two levels of scheduling divided responsibility between the 
software and hardware. The time-consuming analysis of when blocks can 
overlap was done at the compile-time. Individual instruction scheduling was 
done in hardware. 

MUSE (Brailsford and Duckworth [36], 1985): The Multiple Stream Eval­
uator (MUSE) from University of Nottingham (UK) was a structured 
architecture supporting both serial and parallel processing that allowed the 
abstract structure of a program to be mapped onto the machine in a logical 
way. The MUSE machine had many features of dataflow architecture but in 
its detailed operation it steered a middle course between a pure dataflow 
machine, a tree machine, and the graph reduction approach (see p. 56). 

RAMPS (Barkhordarian [22], 1987): The Real Time Acquisition and Mul­
tiprocessing System (RAMPS) was a parallel processing system developed 
at EIP Inc. (USA) for high-performance data acquisition and processing 

10 To solve the memory latency problem, the load/store instructions are imple­
mented to operate in a split-phase manner (see the I-fetch instruction on p. 67). 
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applications. RAMPS used dataflow at a macro level while tasks were 
executed using a sequential model of computation. 

MADAME (Sile and Robie [261]' 1989): The Macro Dataflow Machine 
(MADAME) from Jozef Stefan Institute (Ljubljana, Slovenia) was suitable 
for execution of acyclic dataflow (sub)graphs. While the pure dataflow 
scheme defines an asynchronous computation, MADAME defines a syn­
chronous operation principle whereby more efficient run-time code is 
generated due to compile-time instruction scheduling (Sile and Robie [262], 
1993). This approach is in a certain way opposite to the strongly connected 
arc approach used in the EM-4 machine (see p. 80). The organization of the 
MADAME is circular and consists of five units: instruction store, multiple 
functional units, append unit, insert unit, and I/O unit. For a detailed 
account of this organization, see Sile and Robie [261]. For each instruction 
the most appropriate fire time is computed at compile-time, as well as a 
functional unit identifier indicating where the instruction will be executed. 
Then, at run-time, ready instructions are not executed in the same order as 
they enter the ready instruction pool. Instead, the insert unit stores each 
incoming ready instruction into the ready instruction pool at the proper 
place, depending on the instruction's precomputed fire time and functional 
unit identifier. This makes it possible to schedule the ready instructions in 
a way that improves the machine's performance (Robie et al. [243], 1987). 
Note that similar processor organization and concepts can be found in an 
asynchronous superscalar processor SCALP, where the instructions are also 
statically allocated to FUs, which in turn simplifies some run-time activities, 
such as instruction issuing and result forwarding (see p. 328). 

DTN Dataflow Computer (Veen and van den Born [312], 1990): The 
DTN Dataflow Computer (developed at the Dutch company Dataflow 
Technology Nederland) is a high-performance workstation well suited for 
applications containing relatively small computing-intensive parts with 
enough parallelism to execute efficiently on the dataflow engine. The DTN 
Dataflow Computer contains a standard general purpose host, a graphical 
subsystem (four microprogrammable systolic arrays), and a dataflow engine. 
The dataflow engine consists of eight identical modules interconnected by 
a token routing network. Each module contains four NEC Image Pipelined 
Processors, an interface chip, and image memory. 

FDA (Quenot and Zavidovique [236], 1991): A Functional Dataflow Architec­
ture (FDA) has been developed at ETCA (Arcueil, France) and is dedicated 
to real-time processing. Two types of data-driven PEs, dedicated respectively 
to low- and mid-level processing, are integrated in a regular 3D array. Its de­
sign relies on close integration of dataflow principles and functional program­
ming. For the execution of low-level functions, a custom dataflow processor 
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(DFP) with six bi-directional I/O ports was developed. As in DDA (see p. 72) 
the performance of FDA can be improved by using a more complex graph 
mapping algorithm, which was inspired by previous work on graph mapping 
(Robie et al. [242]). The core of the DFP processor is interfaced to the outside 
world through three input stacks and three output stacks. Each stack is an 
eight 9-bit word, 25 MB/s bandwidth, synchronous FIFO queue and acts as 
a build-in token balancing buffer. A 3-stage pipelined datapath is inserted 
between the input and output stacks. The first stage decodes the input data 
types to generate commands for the following stages. During the second stage, 
8-bit operations (input shifts and multiplications) are performed. 16-bit op­
erations (general-purpose arithmetic and logical, absolute values, minimum, 
maximum, shift) are performed at the third stage. Up to 50 million 8-bit or 
16-bit operations per second can be performed by one DFP processor. 

2.4 Lessons learned from Dataflow 

The latest generation of superscalar microprocessors displays an out-of-order 
dynamic execution that is referred to as local dataflow or micro dataflow by 
microprocessor researchers. 

In 1995, in their first paper on the Pentium Pro [53], Colwell and Steck 
described the instruction pipeline as follows: liThe flow oj the Intel Architec­

ture instructions is predicted and these instructions are decoded into micro­

operations (/-lOps), or series oj /-lops, and these /-lOps are register-renamed, 
placed into an out-oj-order speculative pool oj pending operations, executed 
in dataflow order (when operands are ready), and retired to permanent ma­
chine state in source program order." That is, after a branch prediction (to 
remove control dependences) and register renaming (to remove antidepen­
dences and output dependences), the instructions (or I-J.ops) are placed in 
the instruction window of pending instructions, where I-J.Ops are executed in 
dataflow fashion, and then in a reorder buffer that restores the program order 
and execution states of the instructions. The instruction window and reorder 
buffer may coincide. State-of-the-art microprocessors typically provide 20 (In­
tel Pentium II), 32 (MIPS RlOOOO), or 56 (HP PA-8000) instruction slots in 
the instruction window. Each instruction is ready to be executed as soon 
as all operands are available. A 4-issue superscalar processor issues up to 
four executable instructions per cycle to the execution units, provided that 
resource conflicts do not occur. Issue and execution determine the out-of­
order section of a microprocessor. After execution, instructions are retired in 
program order. 

Comparing dataflow computers with such superscalar microprocessors 
(see Chap. 4) reveals several similarities as well as differences which are briefly 
discussed below. 

While a single thread of control in modern microprocessors often does not 
incorporate enough fine-grained parallelism to feed the multiple functional 
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units of today's microprocessors, the dataflow approach resolves any threads 
of control into separate instructions that are ready to execute as soon as 
all required operands become available. Thus, the fine-grained parallelism 
potentially utilized by a dataflow computer is far larger than the parallelism 
available for microprocessors. 

Data and control dependences potentially cause pipeline hazards in micro­
processors that are handled by complex forwarding logic. Due to the contin­
uous context switches in fine-grain dataflow computers and in cycle-by-cycle 
interleaving machines (see Sect. 6.3.3), pipeline hazards are avoided albeit 
with the disadvantage of poor single thread performance. 

Antidependences and output dependences are removed by register renam­
ing that maps the architectural registers to the physical registers of the mi­
croprocessor. The microprocessor thereby generates internally an instruction 
stream that satisfies the single-assignment rule of dataflow. Modern micro­
processors remove antidependences and output dependences on-the-fly, and 
avoid the high memory requirements and the often awkward solutions for 
data structure storage and manipulation, and for loop control caused by the 
single-assignment rule in dataflow computers. 

The main difference between the dependence graphs of dataflow and the 
code sequence in an instruction window of a superscalar microprocessor is 
branch prediction and speculative execution. The accuracy of branch predic­
tion is surprisingly high: more than 95 % is reported by Chang et al. [46] for 
single SPEC benchmark programs. However, rerolling execution in the case 
of a wrongly predicted path is costly in terms of processor cycles, especially 
in deeply pipelined microprocessors. 

The idea of branch prediction and speculative execution has never been 
evaluated in the dataflow environment. The reason for this may be that 
dataflow was considered to produce an abundance ofparallelismll while spec­
ulation leads to speculative parallelism which is - because of instruction dis­
carding when the branch is mispredicted - inferior to "real" parallelism. 

Due to the single thread of control, a high degree of data and instruction 
locality is present in the machine code of a microprocessor. The locality allows 
the use of a storage hierarchy that stores the instructions and data which may 
potentially be executed in upcoming cycles, close to the executing processor. 
Due to the lack of locality in a dataflow graph, a storage hierarchy is difficult 
to apply in dataflow computers. 

The operand matching of executable instructions in the instruction win­
dow of microprocessors is restricted to a part of the instruction sequence. 
Because of the serial program order, the instructions in this window are 
likely to become executable soon. Therefore, the matching hardware can be 
restricted to a small number of instruction slots. In dataflow computers the 
number of tokens waiting for a match can be very high. A large waiting-

11 This is due to dataflow languages which are inherently fine-grain parallel - each 
statement is parallel to the other and constrained only by data dependences. 
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matching store is required. Due to the lack of locality the likelihood of the 
arrival of a matching token is difficult to estimate, so the caching of tokens 
to be matched soon is difficult in dataflow. 

A large instruction window is crucial for current and future superscalar 
microprocessors in order to find enough instructions for parallel execution. 
However, the control logic for very large instruction windows gets so com­
plex that it hinders higher cycle rates. Therefore an alternative instruction 
window organization is needed. Palacharla et al. [222] proposed a multiple 
FIFO-based organization. Only the instructions at the heads of a number of 
FIFO buffers can be issued to the execution units in the next cycle. Total 
parallelism in the instruction window is restricted in favor of a less costly 
issue that does not slow down the processor cycle rate. The potential fine­
grained parallelism is thereby limited -- a technique somewhat similar to the 
threaded dataflow approaches described above. It might also be interesting 
to look at dataflow matching store implementations and dataflow solutions 
like threaded dataflow as exemplified by the repeat-on-input technique in the 
Epsilon-2, and the strongly connected arcs model of EM-4, or the associa­
tive switching network in the ADARC, etc. For example, the repeat-on-input 
strategy issues very small compiler-generated code sequences serially (in an 
otherwise fine-grained dataflow computer). Transferred to the local dataflow 
in an instruction window, an issue string might be used where a series of data 
dependent instructions are generated by a compiler and issued serially after 
the issue of the leading instruction. However, the high number of speculative 
instructions in the instruction window remains. 
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Out-oj-order execution is not a new concept - it existed twenty years ago 
on [CISC] IBM and CDC computers - but it is innovative Jor single-chip 
implementations . .. 

Mark Brehob, Travis Doom, Richard Enbody, William H. Moore, 
Sherry Q. Moore, Ron Sass, Charles Severance 

Beyond RISC - The Post-RISC Architecture 
(Technical Report TR96-11, Michigan State University, March 1996) 

3.1 A Brief Look at CISC Processors 

Modern superscalar processors, which will be covered extensively in Chap. 4, 
use multiple FUs. To keep these FUs as busy as possible situations must be 
allowed where instructions are executed in a different order from that of the 
original program. Techniques supporting such an out-of-order execution were 
developed even in the mid-1960s in some complex instruction set computers 
(CISC) which were large mainframe computers at that time. It would take 
too much space to describe CISC mainframes in detail. Therefore we only 
briefly itemize some in this chapter and point out those that made a strong 
impact on the micro architecture of today's superscalars. 

The main characteristics of CISC are a large number of instructions and 
a high complexity of some of these instructions. Variable instruction formats 
and over a dozen different addressing modes are used. Since the control in 
traditional CISC is microprogrammed, a control memory (ROM) is needed. 
The average CPI is high (between 2 and 15), due to long microcodes used to 
control the execution of the complex instructions. With few general-purpose 
registers, many instructions are of the memory-register type, so memory is 
often accessed for operands. Conventional CISC architectures usually used 
a unified cache for holding instructions and data (Princeton approach) and, 
therefore, shared the same data/instruction path. 

CISC mainframes influenced microprocessor design in two different ways: 
First a line of CISC microprocessors, namely the Intel x86 and Motorola 
MC 680xO processors, emerged as descendants with ISAs that resemble the 
CISC mainframe ISAs, in particular, the ISAs of DEC VAX and PDP com­
puter lines. Otherwise, the clse microprocessors of the 1980s were much 

J. Ši lc et al., Processor  Architecture
© Springer-Verlag Berlin Heidelberg 1999
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simpler than contemporary mainframes. Second, the out-of-order organisa­
tion principles of CISC mainframes greatly influenced the out-of-order super­
scalar microprocessor design in the mid-1990s. 

3.2 Out-of-Order Execution 

In Chap. 1 we looked at simple pipelined processors that use an in-order 
execution pipeline organization, i.e., instructions are issued to the FUs and 
execution is initiated in exactly the same order as instructions appear in 
the program. Out-oj-order execution is the next step necessary to keep the 
multiple FUs as busy as possible. 

Allowing instructions to complete out of the original program order in­
troduces WAW hazards due to output dependences. Moreover, going one 
step further and allowing instructions to be issued out of order introduces 
a new problem. An antidependence can cause a WAR hazard, if a subse­
quent instruction starts execution and writes back its result before a previ­
ous instruction gets its operands. More precisely, WAR hazards may result 
from antidependences when instructions may be sent to FUs before preced­
ing instructions have read their required operands. For example, suppose an 
instruction Insil has its first operand in register Regl but is waiting for 
the second operand to appear in Reg2 which is eventually produced by a 
long-running instruction I nsia. The next instruction I nsi2 may, due to out­
of-order execution, proceed to the EX stage and write its result into its desti­
nation register Reg2 before instruction Insia terminates (and completes). A 
solution that correctly considers WAW and WAR hazards is scoreboarding. 
Tomasulo's scheme is even able to remove WAW and WAR hazards. Both 
schemes are described below. 

To separate dependent instructions and minimize the number of actual 
hazards and resultant stalls, scheduling must be used, i.e., a process which 
determines when to start a particular instruction, when to read its operands, 
and when to write its result. In static scheduling, compiler techniques are 
used to minimize stalls by separating dependent instructions so that they 
will not lead to hazards. In dynamic scheduling, the processor tries to avoid 
stalling when data dependences are already present. Dynamic scheduling can 
be either: 

• Control-flow scheduling, when performed centrally at the time of decode. In 
control-flow scheduling, data and resource dependences are resolved during 
the decode cycle and the instructions are not issued until the dependences 
have been resolved. This kind of scheduling was introduced in the CDC 6600 
processor, where it was based on the scoreboarding (see Sect. 3.3.1) . 

• Dataflow scheduling, if performed in a distributed manner by the functional 
units themselves at execute-time. In a dataflow scheduling system, the 
instructions leave the decode stage when they are decoded and are held 
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in buffers at the functional units until their operands and the functional 
unit are available. In dataflow scheduling, instructions are, in a sense, self­
scheduled. Dataflow scheduling was first achieved with Tomasulo's register­
tagging scheme in the IBM Systemj360 Model 91 processor (see Sect. 3.3.2). 

The recently increasing interest in dynamic scheduling is motivated by ideas 
that naturally build on it, such as issuing more instructions per clock cycle 
and speculative execution (see Chap.4). 

3.3 Dynamic Scheduling 

In the mid-1960s the CDC 6600 and the IBM Systemj360 Model 91 were built 
in strong competition with each other. In the CISC machine CDC 6600 the 
control of out-of-order execution was centralized (by a technique called score­
boarding), while in another mature but also influent CISC machine, the 
IBM Systemj360 Model 91, control was distributed (by Tomasulo's scheme). 
In the following we describe both machines and the two dynamic scheduling 
principles. 

3.3.1 Scoreboarding 

Scoreboarding is a technique for allowing instructions to execute out-of-order 
when there are sufficient resources and no data dependences. It was intro­
duced in 1963 by Thornton [295, 296] in the CDC 6600 processor. 

The goal of score boarding is to maintain an execution rate of one instruc­
tion per clock cycle (when there are no structural hazards) by executing an 
instruction as early as possible. Thus, when the next instruction to execute 
is stalled, other instructions can be executed (if they do not depend on any 
active or stalled instruction). 

A scoreboard is a hardware unit that keeps track of the instructions that 
are in the process of being executed, the functional units that are doing the 
executing, and the registers that will hold the results of those units. Based 
on its own data structure and by communicating with the functional units, 
a scoreboard centrally performs all hazard detection and resolution and thus 
controls the instruction progression from one step to the next (see Fig.3.1). 

While there are many scoreboard variations, we mention only that of 
Muller and Paul [207, 208], which is based on the original scoreboard as 
introduced in the CDC 6600 and described by Thornton [296]. 

The ID stage of the standard pipeline (see Sect. 1.4) is split into two 
stages, the issue (IS) stage and the read operands (RO) stage, while the EX 
and WB stages are augmented with additional tasks. More precisely: 

1. In the IS stage, if there is no structural hazard (i.e., a FU for the instruc­
tion is free) and no WAW hazard (i.e., no other active instruction has 
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Scoreboard 

Fig. 3.1. Pipeline with scoreboard 

the same destination register), the score board issues the instruction to 
the FU and updates its internal data structure; otherwise, the instruc­
tion issue stalls, and no further instruction is issued until the hazard is 
cleared. 

2. In the RO stage, the scoreboard monitors the availability of the operands, 
and when they are all available,l tells the FU to read them from the reg­
ister file and to proceed to the EX stage. In other words, the scoreboard 
dynamically resolves RAW hazards; instructions may be dispatched into 
the EX stage out of order. 

3. In the EX stage, the FU begins execution (which may take multiple 
cycles) and notifies the scoreboard when the result is ready. 

4. In the WB stage, once the scoreboard is aware that the FU has completed 
execution (i.e., the result is ready), the scoreboard checks for WAR haz­
ards and stalls the completing instruction, if necessary (i.e., if there is an 
instruction that has not read its operand from the destination register of 
the completing instruction). If a WAR hazard does not exist (any more), 
the scoreboard tells the FU to store its result in the destination register. 

Scoreboarding is a single-issue scheme: only one instruction is issued to the 
FUs per cycle. A WAW hazard or a structural hazard (an unavailable FU) 
prevent proceeding the instruction from the IS to the RO stage. No other 
instruction can be issued (an in-order issue scheme). A RAW hazard prevents 
an instruction proceeding from the RO to the EX stage and a WAR hazard 
prevents result write-back. However, other instructions may proceed out of 

1 An operand is available if the register containing the operand is being written by 
a currently active FU, or if no earlier issued active instruction is going to write 
it. 
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order thus preventing interlocking of the pipeline. After the issue to the FU, 
the FU is blocked until the instruction is dispatched and execution starts. 
The FU is blocked even longer until the instruction execution terminates and 
the result is written back to the destination register. No forwarding is applied. 
Operands can be read in the RO stage after they have been written back to 
the register set. 

Let us describe the scoreboard and the corresponding bookkeeping in 
more detail. 

registers 

R 2 r m 

register result status 

F Busy RO EX WB Op Des! Srcl Vldl FUi Src2 Vld2 FU2 

c=JLJLJc=J LJLJc=r=r=r=Jc=Jc=J 

f c=Jc=JLJLJ LJLJ~ ILJLJCJc=J 

n c=JLJLJc=J LJLJI r==Jc=Jc=Jc=J 
phase flags of the FUs instruction information of the FUs 

Fig. 3.2. Structure of the scoreboard 

Structures in the scoreboard. There are three tables (in two parts, R 
and F) in the scoreboard as described in Fig. 3.2: 

• Register result status 
This table holds which FU will produce a result in each register (if any). 
The table is denoted by R. The number of entries in R is equal to the 
number m of registers. If Regr is a register, then 
- R[r] = J denotes that Regr is currently reserved by FU f' which is going 

to produce a result for Regr , 

- R[r] = 0 denotes that no FU has an active instruction whose destination 
is Regr . 

• Phase flags oj the PUs 
This table holds the phase of execution for each instruction. To do this, 
it provides the phase flags Busy, RO, EX, and W B, for each functional 
unit FU f' with the following meaning: 
- F[J, Busy] = 1 when FU f is reserved for an active instruction, while 

F[J, Busy] = 0 when FU f is free; 
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- F[J, RO] = I indicates that FU f has read the operands for its current 
instruction and has switched to the EX phase; 

- F[j, EX] = I indicates that FU f has finished the computation and has 
switched to the WB phase; 

- F[j, W B] = I indicates that FU f has written back the result to the 
destination register. 

• Instruction injormation oj the FUs 
This table has one entry per FU, showing which operation the FU is sched­
uled to do, if any, where its result goes, where its operands come from, and 
whether those results are available. If an operand is not available, the table 
tells which FU will produce it. The table provides the following entries that 
describe the current instruction Inst : op Dest, Srcl, Src2 performed 
by functional unit FU f : 
- opcode: F[J, Op] = op; 
- destination register: F[j, Dest] = Dest; 
- source registers: F[J, Srel] = Srcl and F[j, Src2] = Src2; 
- validity of sources: F[J, Vldl] and F[j, Vld2] are used to check for cur-

rent data. If F[j, Vldl] = 0, the data of F[j, Srel] is not valid yet. 
(Similarly for F[J, Vld2].) 

- FUs producing sources: F[J, FUI] and F[j, FU2] are used to specify 
the FUs which are going to produce values in F[j, Srel] and F[j, Src2]. 
If F[J, FUI] = 0, then the source was already valid on the instruction 
issue; otherwise, F[J, FUI] = 9 denotes that F[j, Srel] will receive the 
value from FUg . (Similarly for F[j, FU2].) 

We used F to denote both the phase flags and the instruction information 
of the FUs. The number of entries in F is equal to the number n of FUs 
(see Fig.3.2). 

Bookkeeping in the scoreboard. On power-up, the scoreboard is initial­
ized by setting all its entries to zero. The scoreboard then issues the instruc­
tions of a program in sequential order to the appropriate FUs, one instruction 
at a time. For each FU, the scoreboard performs bookkeeping and governs 
the resources, as follows: 

1. In the IS stage, the scoreboard issues the next instruction, for example 
Inst : op Dest, Srcl, Src2, as soon as the destination register Dest 
and a FU capable of executing op become available. The scoreboard then 
reserves Dest and such a FU, say FU f. The corresponding register status, 
FU status, and instruction status are initialized, as follows: 

while Inst not issued yet and previous instruction issued do 
if R[Dest] = ° and 

(3 FUf : FUf capable of executing op and F[j, Busy] = 0) 
then dojn_the_same_cycle 

Choose such FU f ; 
1* initialize register status * / 
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R[Dest] := J; 
1* initialize FU status * / 
F[J, Busy] := 1; F[J, RO] := F[J, EX] := F[J, WB] := 0; 
1* initialize instruction status * / 
F[J, Op] := op; 
F[J, Dest] := Dest; 
F[J, Src1] := Src1; 
if R[Src1] = 0 then F[J, Vld1] := 1 else F[J, Vld1] := 0; 
F[J, FU1] := R[Src1]; 
F[J, Src2] := Src2; 
if R[Src2] = 0 then F[J, Vld2] := 1 else F[J, Vld2] := 0; 
F[J, FU2] := R[Src2] 

enddo 

2. In the RO stage, after issuing Inst to FU f, that unit tries to read 
operands from source registers Src1 and Src2. As long as F[J, RO] = 0, 
it checks whether the registers to be read are both up to date (valid), 
i.e., whether F[J, Vld1] = F[J, Vld2] = 1. If so, the source registers are 
read and their validity flags are cleared. Since FU f no longer waits for 
its operands from other FUs, F[J, FU1] and F[J, FU2J, which indicate 
these FUs, are cleared2 • The phase flag F[J, RO] is set, thus allowing 
FU f to proceed to the EX stage. 

while F[J, RO] = 0 do 
if F[J, Vld1] = 1 and F[J, Vld2] = 1 
then do)n_the_same_cycle 

Read operands; 
F[J, FU1] := F[J, FU2] := 0; 
F[J,RO]:= 1 

enddo 

3. FU f remains in the EX stage until its computation is completed, i.e., 
when FU f's result ready flag is set. Then, F[J, EX] is set indicating that 
FU f proceeds to its WB stage. 

while F[J, RO] = 1 and F[J, EX] = 0 do 
do)n_the_same_cycle 

F[J, EX]:= result ready flag of FUf 
enddo 

4. In the WB stage, after the FU has run to completion, the scoreboard 
postpones the write-back (in order to solve WAR hazards) until no FUg , 

9 i= J, exists such that FU f 's destination register Dest is a source register 

2 This is the first improvement to the original scoreboard from the CDC 6600 
to avoid deadlocks, as suggested by Mjjller and Paul [207, 208]. The original 
scoreboard cleared validity flags F[J, Vldl] and F[J, Vld2] instead of F[J, FUl] 
and F[I, FU2]. 
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of FUg and FUg still has to read3 the old (i.e., valid) value of register 
Dest. 

while F[/, EX] = 1 and F[/, W B] = 0 do 

if not (:3 FU g, 9 # / : 
((F[g, Src1] = F[/, Dest] and F[g, Vld1] = 1) or 
(F[g, Src2] = F[/, Dest] and F[g, Vld2] = 1)) 

and F[g, RO] = 0 ) 

then dojn_the_same_cycle 
Write results to F[/, Dest]; 
F[/, WB]:= 1; 
R[F[/, Dest]] := 0 

enddo 

5. After the WB stage, all FUs with a source depending on a result of FU f 
are notified. Their corresponding valid flags are set. 

while F[/, W B] = 1 and F[/, Busy] = 1 do 
forall FUg , 9 # / 

dojn_the_same_cycle 
if F[g, FU1] = / then F[g, Vld1] = 1; 
if F[g, FU2] = / then F[g, Vld2] = 1; 
F[/, Busy] := 0 

enddo 

Example. Let us illustrate the bookkeeping in a scoreboard with the fol­
lowing sequence of instructions: 

mul Reg1, Reg3, RegS 
sub Reg2, Reg4, Reg3 
div Reg6, Reg1, Reg4 
add Reg4, Reg2, Reg3 

1* Reg1 f- Reg3 * RegS 
1* Reg2 f- Reg4 - Reg3 
1* Reg6 f- Reg1 / Reg4 
1* Reg4 f- Reg2 + Reg3 

Assume there are three functional units: FU 1 is an adder (capable of perform­
ing addition as well as subtraction), FU2 is a multiplier, and FU3 is a divider. 
The execution latencies of the multiplier and divider are several times larger 
than the latency of the adder.4 During execution the scoreboard constantly 
changes its state. Three of these states are depicted in Fig. 3.3. 

Figure 3.3a shows the scoreboard when all the instructions are in the 
pipeline, with mul and sub in the EX stage. The add is stalled because of 
the structural hazard, i.e., the adder is not available at that moment. Notice, 

3 Testing "valid and unread" instead of testing only "valid" is the second correction 
to the original scoreboard from the CDC 6600 to avoid deadlocks, also suggested 
by Miiller and Paul [207, 208]. 

4 For latencies of real microprocessors see, e.g., Table 4.4 on p.l72, Table 4.8 on 
p.187, or Table 4.9 on p. 190. 
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Fig. 3.3. Three snapshots of the scoreboard 

however, that an additional adder would not prevent stalling the add at that 
moment, because add is data dependent on sub. Such a data dependency of 
div on mul stalls diY, despite the divider being available at that moment. 

Figure 3.3b shows the scoreboard several cycles later, when mul has just 
completed its WB stage and sub has completed its WB stage several cycles 
earlier due to the shorter latency. The add is in its EX stage, and di v is just 
about to enter its RO stage in the next cycle. 

Finally, Fig. 3.3c shows the scoreboard when only div is in the pipeline 
(in the EX stage). 
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CDC 6600 Architecture 

The CDC 6600 was delivered in 1964 by Control Data Corporation (Thornton 
[295, 296]). The developers introduced several enhancements in pipelining 
and designed the first processor to make extensive use of multiple functional 
units. These parallel units allowed instructions to complete out of the original 
program order. The CDC 6600 processor introduced scoreboarding to achieve 
control-flow dynamic scheduling of instructions. It also introduced a register­
register instruction set (load/store architecture) with a 3-address instruction 
format, and peripheral processors that used a time-shared pipeline. 

Peripheral 
Processors 

Fig. 3.4. The CDC 6600 processor 

Operating Registers 

Instruction 
Stack 

Functional Units 

Add 
Multiply 

Multiply 

Divide 
Fixed sdd 

Increment 
Increment 
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Shift 

Branch 
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In the CDC 6600 processor ten FUs appeared as a multiple execution 
pipeline (see Fig. 3.4). Of the ten FUs, which were able to operate simulta­
neously, four carried out 60-bit floating-point arithmetic among eight 60-bit 
operand registers, while the other six FUs carried out logic, indexing, and 
program control on the eight 18-bit address registers and eight 18-bit in­
crement/index registers. The processor had instruction buffers for each FU. 
Instructions were issued to available FUs regardless of whether register in­
put data were available. The instruction's control information would then 
wait in a buffer for its data to be produced by other instructions. To control 
the correct routing of data between FUs and registers, the CDC 6600 used a 
centralized control unit, the scoreboard described above, which keeps track 
of the registers needed by instructions waiting for the various FUs. When 
all registers had valid data, the scoreboard enabled the instruction execu-
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tion. Similarly, when a FU finished, it signaled the scoreboard to release the 
resources. 

3.3.2 Tomasulo's Scheme 

Tomasulo's scheme is another dynamic scheduling scheme that allows ex­
ecution to proceed in the presence of hazards. It was invented by Toma­
sulo [298] and implemented in the IBM System/360 Model 91 in 1967. The 
scheme addressed the following issues: a small number of floating point reg­
isters, long memory latency, cost effectiveness of FU hardware, and the per­
formance penalties of name dependences (i.e., antidependences and output 
dependences) . 

Assume a name dependence occurs between two instructions, Instl and 
Inst2, that use the same register (or memory location) Reg, but there are no 
data transmitted between I nstl and I nst2' If Reg is renamed so that I nst l 
and Inst2 do not conflict, the two instructions can execute simultaneously or 
be reordered. The technique that dynamically eliminates name dependences 
to avoid WAR and WAW hazards is called register renaming. 

The Tomasulo's scheme combines register renaming with the key elements 
of scoreboarding. However, the centralized scoreboard is now replaced with 
distributed control within the processor. Each FU has one or more reservation 
stations (see Fig. 3.5). Each reservation station (RS) is given a unique number 
called a tag. A RS may be empty or hold an instruction, which is indicated 
by the empty flag Empty. The instruction is either awaiting availability of 
all of its sources, awaiting availability of the FU, or it is executing at that 
FU. For each source operand, RS contains either its value (in field Srcl or 
Src2) or, in case that the value is not available yet, a tag of the RS where 
the value will be produced (in field RSI or RS2). Valid flags (Vldl and 
Vld2) are used to indicate whether the values are available or not. Once 
the operand values are available (i.e., both Vldl and Vld2 are set), and 
the FU can start executing the next instruction, pipelined execution of that 
instruction is initiated. When the execution of the instruction actually starts, 
the InFU flag in the corresponding RS is set and remains set until the 
completion of the instruction. After completion of the instruction from RS 
tagged s, the result token5 (s, result) is formed and passed on the common 
data bus (CDB) to the register file and, by snooping, directly to all RSs (thus 
eliminating the need to get the operand value from a register). The RS with 
tag s (i.e., corresponding to the instruction whose result has been placed 
on the CDB) is cleared by setting its flag Empty. The traffic passing on 
the CDB is continually monitored (snooped) by all reservation stations of all 
FUs. When the result token (s, result) is observed, the result is copied into 
all RSs awaiting it (e.g., having flag Vldl cleared and RSI equal to s) and the 

5 We use the term token in order to point out the similarity with tagged-token 
dataflow (see Chap. 2). 
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Fig. 3.5. Tomasulo's scheme 

associated valid flags are set to indicate the presence of the operand value. 
Note that the CDB allows all units that are waiting for an operand to be 
loaded simultaneously, i.e., the result is forwarded to all waiting instructions. 
Hence, the RS fetches and buffers an operand as soon as it becomes available 
(dataflow principle). The load buffers and load/store reservation stations hold 
data coming from memory, respectively addresses and data going to memory. 
The registers are connected by a pair of buses to the FUs and by a single bus 
to the load/store reservation stations. 

To summarize, a decoded instruction is first sent to the instruction queue, 
proceeds from there to an empty RS based on its opcode, and is subjected 
to the following three pipeline stages: 

1. In the issue (IS) stage, the instruction is retrieved from the instruction 
queue and structural hazards are checked (i.e., if there is no empty RS in 
the case of a floating-point instruction, or no empty load/store buffer in 
the case of a load/store instruction). In the case of a structural hazard, 
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the instruction is stalled until a RS or a buffer is freed. If there is no 
structural hazard and the instruction is floating-point, the instruction 
is sent to a free RS while its operands are sent to the same RS if they 
are in the registers. Similarly, a load/store instruction is sent to a free 
buffer. Register renaming is performed in this stage since the instruction's 
register specifiers for pending operands are renamed to the tags (i.e., 
unique numbers) of those RSs where the instructions producing these 
operands are located. WAW and WAR hazards are removed in this stage 
by register renaming. 

2. In the execute (EX) stage, if at least one of the operands is missing, 
the CDB is monitored (snooped) while waiting for the operand to be 
computed by one of the FUs or supplied via a load buffer. When the 
operand is available, it is placed into the corresponding RS. When both 
operands are available, the execution of the operation is started. Hence, 
this step checks for RAW hazards. 

3. In the write-back (WB) stage, when the result is available, it is put on 
the CDB and from there written into the registers and RSs waiting for 
it. 

Structures in Tomasulols scheme. Let us describe Tomasulo's scheme in 
more detail (Fig. 3.6). First, we introduce two6 data structures for updating 
the status of the registers and reservation stations belonging to the FUs: 

• Register status table 
For each register, it is specified whether the register contains valid data; 
if not, the RS whose instruction will produce that data is specified. The 
table is denoted by R. The number of entries in R is equal to the number 
m of registers. If Regr is a register, then 
- R[r, Value] is the value contained in the register Regr . 

- R[r, Vld] is 1 (0) if R[r, Value] is valid (not valid). 
- R[r, RS] :::: s points to the current source (i.e., the s-th RS) ofthe register 

value (if the latter is not present). 
• Reservation station table 

For each FU j there is a set S j of RSs. Let Inst : op Dest, Src 1, Src2 
be the instruction issued to the RS which is tagged s and belongs to FU j. 
Then: 
- S j [s, Empty] :::: 1 indicates that the RS is empty; 
- Sj[s, InFU]:::: 1 if and only if FU j is executing Inst; 
- Sj[s,Op]:::: op; 
- Sj[s,Dest]:::: Dest; 
- Sj[s,Srcl]:::: Srcl and Sj[s,Src2]:::: Src2; 

6 Actually, there are two more data structures, the load buffer status table and the 
load/store reservation station table. Since they are similar to the register status 
table and the reservation station table, we omit their description. 
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Fig. 3.6. Data structures in Tomasulo's scheme 

- Sirs, Vldl] and Sirs, Vld2] are used to check for current data. If 
Sirs, Vldl] = 0, the data of Sirs, Src1] is not valid yet. (Similarly for 
Sirs, Vld2].) 

- Sirs, RSI] and Sirs, RS2] are used to specify the RSs which are going to 
produce values in Sirs, Src1] and Sirs, Src2]. Hence, Sirs, RSI] = t de­
notes that S i [s, Src1] will receive the value from the t-th RS. (Similarly 
for Sirs, FU2].) 

Bookkeeping in Tomasulo's scheme. Bookkeeping is performed by the 
following algorithms: 

1. In the IS stage, the next instruction, for example Inst : 
op Dest, Src1, Src2, is issued to an empty RS that belongs to 
a FU i capable of executing op. We denote that RS by s. 
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while Inst not issued yet and previous instruction issued do 
if :J/, s : FU f capable of executing op and S 1 [s, Empty] = 1 
then dojn_the_same_cycle 

Choose such pair /, s; 
/* initialize register status * / 
R[Dest, RS] := s; 
R[Dest, Vld] := 0; 
1* initialize reservation station status * / 
SI[s,Empty] := 0; 
SI[s, InFU] := 0; 
SI[s,Op] := op; 
SI[s, Dest] := Dest; 
if R[Src1, Vld] = 1 then SI[s,Srcl]:= R[Srcl, Value]; 
SI[s, Vld1] := R[Srcl, Vld]; 
SI[s, RS1] := R[Srcl, RS]; 
if R[Src2, Vld] = 1 then SI[s, Src2] := R[Src2, Value]; 
S 1 [s, Vld2] := R[Src2, Vld]; 
S 1 [s, RS2] := R[Src2, RS] 

enddo 

2. In the EX stage, FU 1 can start executing instruction Inst contained in 
the s-th RS if Inst has not been started yet, i.e., SI[s, InFU] = 0, and 
Inst has collected both operands, i.e., SI[s, Vld1] = 1, SI[s, Vld2] = l. 

while SI[s, Empty] = 0 and SI[s, InFU] = 0 do 
if S 1 [s, Vld1] = 1 and S 1 [s, Vld2] = 1 

if FU 1 can start executing another instruction, say, Inst 
then dojn_the_same_cycle 

SI[s, InFU] := 1; 
FU 1 gets s, S 1 [s, Op], SI [s, Srcl]' S 1 [s, Src2] 

enddo 

3. In the WB stage, after completion of instruction Inst, the result is writ­
ten into register Dest. The result token is formed and passed on the CDB 
where it is available to RSs (see snooping on CDB below). 

while FU 1 completed Inst from RS tagged s do 
if FU 1 can gain control of the CDB 

then dojn_the_same_cycle 
token.tag := s; token.data := result; 
SI[s,Empty] = 1; 
R[Dest, Value] = token.data; 
R[Dest, Vid] = 1; 
R[Dest, RS] = 0 

enddo 
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4. Snooping on the CDB allows all units that are waiting for an operand to 
be loaded simultaneously. In particular, when the result token (tag, data) 
is observed, the value from token.data is copied into all RSs awaiting it. 

while token.tag =1= 0 and 8, [s, Empty] = 0 and 
(8,[s, Vldl] = 0 or 8,[s, Vld2] = 0) 

if 8,[s, RSl] = token.tag or 8,[s, RS2] = token.tag 
then do)n_the_same_cycle 

if 8,[s, RSl] = token.tag then 
8, [s, Srel] = token.data; 
8,[s, Vldl] = 1; 
8,[s, RSl] = 0 

endif 
if 8,[s, RS2] = token.tag then 

8, [s, Src2] = token.data; 
8,[s, Vld2] = 1; 
8,[s, RS2] = 0 

endif 
enddo 

Example. The bookkeeping in Tomasulo's scheme will be illustrated using 
the same sequence of instructions as in the case of scoreboarding: 

mul Reg1, Reg3, Reg5 
sub Reg2, Reg4, Reg3 
div Reg6, Reg1, Reg4 
add Reg4, Reg2, Reg3 

Again, there are three functional units: an adder (capable of performing ad­
dition as well as subtraction), a multiplier, and a divider. The adder has two 
RSs (with tags 1 and 2), the multiplier has one RS (with tag 3), and the 
divider also has one RS (with tag 4). Three snapshots of Tomasulo's scheme 
data structures are given in Fig. 3.7. 

Figure3.7a shows the situation when all the instructions are in the 
pipeline. Since there was no lack of RSs, all the instructions were issued 
to appropriate RSs, in particular, sub, add, mul, and div were issued to 
RSs tagged 1,2,3, and 4, respectively. The mul and sub are in the EX 
stage. The add is stalled because of the structural hazard on the adder (i.e., 
8 adder[I,InFU] := 1 at that moment). The div is stalled because of the 
unresolved data dependency on mul; that is, 8divider[4, Vldl] := 0 meaning 
that Reg1 does not yet contain a valid operand for div. That operand will 
be provided by the RS tagged 3 (multiplier), i.e., 8divider[4, RSl] := 3. 

Figure 3. 7b shows the situation just after snooping on the CDB has been 
finished following the completion of the WB stage of the mul. The WB stage 
set R[l, Vld] = 1 and R[l, RS] = 0 (i.e., Reg1 contains a valid value). 
Snooping changed 8divider[4, Srel] to the contents of the Reg1, and set 
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Fig. 3.7. Three snapshots of Tomasulo's scheme 
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Sdivider[4, Vldl] = 1 and Sdivider[4, RSl] = O. Observe that sub completed 
its WB stage long before that due to its shorter latency. The add is in its EX 
stage, and di v is just about to enter its EX stage in the next cycle. 

Finally, Fig. 3.7c shows the situation when only div is in the EX stage. 

The IBM System/360 Model 91 Floating-Point Unit 

The IBM System/360 Model 91 belongs to the family of the IBM System/360 
architecture (Amdahl et al. [10], Anderson et al. [11], Flynn [88]) and, there­
fore, shares the ISA with this highly influential CISC machine. It introduced 
many new concepts, including tagging of data, register renaming, dynamic 
detection of memory hazards, and generalized forwarding. 
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Fig. 3.8. IBM System/360 Model 91 floating-point unit 

The IBM System/360 Model91 was deeply pipelined with an overall 
pipeline length of 20 stages. No cache was available yet. The floating-point 
execution unit (see Fig. 3.8) consisted of two separate, fully pipelined floating­
point FUs, the adder and the multiplier/divider. The FUs could be used con­
currently. Addition took 2 cycles, multiplication 3 cycles, and division 11 
cycles. There were three reservation stations (RS) associated with the adder, 
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and two with the multiplier/divider. The RSs associated with a FU made 
the FU behave like several virtual FUs. Results from the two FUs were sent 
back via a common data bus (CDB) to the memory (via store buffers), reg­
ister file, or RSs. The processor used Tomasulo's register-tagging scheme to 
achieve dataflow dynamic scheduling of instructions to virtual FUs. (See ear­
lier in this subsection for details.) A speculative branch prediction was used 
that speculated the target would be taken, when the branch target instruc­
tion was within the last eight instructions in the operation stack. Memory had 
a lO-cycle access, it was fully buffered and 32-way interleaved. The processor 
could have up to 32 memory accesses pending in order to reduce latency. 

3.3.3 Scoreboarding versus Tomasulo's Scheme 

In eliminating stalls, score boarding and Tomasulo's scheme are limited by 
several factors. The first general one is the amount of parallelism available in 
code. The second factor is the in-order issue of scoreboarding and of Toma­
sulo's scheme that prevents instruction to proceed. The third factor is the 
number and types of FUs (respectively RSs in Tomasulo's scheme) since con­
tention for FUs (RSs) leads to structural hazards. Finally, a scoreboard may 
be limited by the presence of anti dependences and output dependences, which 
may lead to WAR and WAW stalls. 

The main advantages of Tomasulo's scheme over scoreboarding is its re­
moval of WAW and WAR hazards (which may lead to instruction stalling in 
the scoreboarding scheme) and result forwarding (results are available as in­
put operands one cycle earlier than in the scoreboarding scheme). The major 
drawback of Tomasulo's scheme is its complexity, which requires a reasonable 
amount of hardware. Namely, the CDB must interact with all the pipeline 
hardware, so, for the snooping process to be efficient, a complex control logic 
is needed, as well as associative stores. 

The full power of dynamic register renaming, as introduced by Tomasulo's 
scheme, finds expression in the execution of loops. If a loop is unrolled and 
(statically) scheduled to avoid interlocks, many registers may be required. 
Distinct from loop unrolling, Tomasulo's scheme supports the overlapped ex­
ecution of multiple copies of the loop with only a small number of registers 
used by the program, since the RSs extend the real register set via the re­
nammg process. 

For the superscalar pipeline the techniques such as register renaming and 
dynamic scheduling are crucial. Some state-of-the-art superscalar processors, 
namely the PowerPC processors, directly enhance the single-issue Tomasulo 
scheme to a modified four-issue Tomasulo scheme. 
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3.4 Some CISC Microprocessors 

In the following, we give a very brief historical account of some CISC-type 
microprocessor families from DEC, Intel, Motorola, Zilog, and National 
Semiconductor. These CISC microprocessors inherited the ISA principles 
from the CISC mainframes, but not the dynamic scheduling which was not 
introduced in microprocessors until the mid-1990s. 

DEC LSI-U 

The DEC PDP-11 was the most popular in the 16-bit PDP (Programmed 
Data Processors) line of CISC minicomputers, a successor to the previously 
popular PDP-8 and remained in production for over 25 years, until the end 
of 1997. The LSI-11 (introduced in 1975) was a popular microprocessor im­
plementation of the PDP-11 using the Western Digital MCP1600 micropro­
grammable CPU, and the architecture influenced the Motorola MC 68000, 
National Semicoductor NS 320xx, and Zilog Z-8000 microprocessors, in par­
ticular. There was also a 32-bit PDP-11 plan as far back as its 1969 intro­
duction. The PDP-11 was finally replaced by the 32-bit VAX architecture. 

Intel x86 family 

Intel was and still is a leader in the microprocessor industry, primarily known 
for its x86 CISC-type family (see Table 3.1). The Intel 8086 (announced 
by Intel in 1978 as the first in the x86 family) was based on the design of 
the 8080/8085 (source compatible with the 8080) with a similar register 
set, but was expanded to 16 bits (Liu and Gibson [185]). The instruction 
lengths varied from one to four bytes. The instruction stream was fed to 
the execution unit through a small prefetch queue, so fetch and execution 
were concurrent - a primitive form of pipelining. The 80286 (introduced 
in 1982) added a protected mode, which extended the directly addressed 
memory space to 16 MB. However all memory access was still restricted to 
64k segments until the 80386 (in 1985), which included much improved 
addressing (with paging support in addition to segmented addressing). The 
80386 was a 32-bit architecture with 32-bit registers and 32-bit address 
space. It also had several processor modes for compatibility with the previous 
design. The 80486 (1989) added full pipelines, single on-chip 8kB cache, 
integrated FPU (based on the stack-oriented register set with eight 80-bit 
registers in the 80387 FPU), and clock doubling versions (like the Z-280). 
Intel's x86 family superscalar descendants Pentium (late 1993), Pentium 
Pro (late 1995), Pentium II (April 1997), and Pentium III (February 1999) 
will be covered in Sect. 4.9.1, as well as the next generation 64-bit processor, 
code named Merced, based on IA-64 ISA, which was defined jointly by Intel 
and Hewlett-Packard. 
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Table 3.1. The Intel x86 family 

Introduction Type Transistors Technology Clock Word AddressableNirtual 
Month Year (x 1000) (Jlm) [MHz) format Memory 

November 1971 4004 2.3 10 0.108 4-bit 640 bytes 
April 1972 8008 3.5 10 0.2 8-bit 16kB 
April 1974 8080 6.0 6 2 8-bit 64 kB 

March 1976 8085 6.5 3 5 8-bit 
June 1978 8086 29 3 8-10 16-bit 1 MB 
June 1979 8088 29 3 8-10 16-bit 

February 1982 80286 134 1.5 6-12 16-bit 16MB/1 GB 
October 1985 Intel386 OX 275 1.5/1 16-33 32-bit 4 GB/64 TB 

June 1988 Intel386 SX 275 1.5/1 16-33 32-bit 16MB/256GB 
April 1989 Intel486 OX 1200 1/0.8 25-50 32-bit 4 GB/64 TB 

October 1990 Intel386 SL 855 1 20-25 32-bit 4 GB/64 TB 
April 1991 Intel486SX 1185 1/0.8 16-33 32-bit 4 GB/64 TB 

March 1992 IntelOX2 1200 0.8 50-66 32-bit 4 GB/64 TB 
November 1992 Intel486 SL 1400 0.8 20-33 32-bit 

March 1994 IntelOX4 1600 0.6 75-100 32-bit 4 GB/64 TB 

Motorola Me 6800 and Me 68000 family 

Motorola started with the 8-bit MC6800 family (in 1974) and continued with 
the 16/32-bit family in 1979. The initial 8 MHz MC68000 was actually a 32-
bit architecture internally, but only had a 16-bit data bus and a 24-bit address 
bus (with version MC68008 having reduced the data bus to 8 bits and the 
address bus to 20 bits). The 68010 added virtual memory support and a spe­
cialloop mode - small decrement-and-branch loops could be executed from 
the instruction fetch buffer. The MC68020 (announced in 1984) expanded the 
external data and address bus to 32 bits, and had a simple 3-stage pipeline 
with a 256 byte I-cache. The MC68030 added 256 byte D-cache and brought 
the MMU onto the chip, which supported two level pages (logical and phys­
ical, rather than the segment/page mapping of the Intel 80386). The 68040 
(1989/90) extended both I-cache and D-cache to 4 kB, deepened the pipeline 
to six stages, and added on-chip FPU. The MC 68060 (Circello et aZ. [50], 
1995) expanded the design to a two-issue superscalar, like the Intel Pentium 
and National Semiconductor's Swordfish before it. 

Zilog Z-8000 and Z-80000 family 

Zilog Co. was another producer of elSC-type microprocessors. The Zilog Z-
8000 was introduced not long after the Intel 8086, but had superior features. 
It was basically a 16-bit processor, but could address up to 23 bits in some 
versions. The Z-8000 was one of the first to feature two modes, one for the 
operating system and one for user programs. A later version, the Z-80000, 
was introduced at about t.he beginning of 1986, about. the same time as 
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the 32-bit Motorola MC68020 and Intel 80386 CPUs, though the Z-80000 
was appreciably more advanced. It was fully expanded to 32 bits internally. 
Finally, the Z-80000 was fully pipelined (six stages), while the fully pipelined 
Intel 80486 and Motorola MC68040 were not introduced until 1991. There 
was a radiation resistant military version, and a CMOS version of the Z-
80000 (the Z-320). However despite being technically advanced, the Z-8000 
and Z-80000 series never met mainstream acceptance, due to initial bugs in 
the Z-8000 (the complex design did not use microcode - it used only 17500 
transistors) and delays in the Z-80000. 

National Semiconductor NS 320xx family 

The National Semiconductor CISC-type NS 320xx family consisted of a CPU 
which was 32-bit internally, and either 32-, 16-, or 8-bit externally. It was 
similar to the Motorola MC 68000 in basic features, such as byte addressing, 
24-bit address bus, memory-to-memory instructions, etc. The NS 320xx also 
had a coprocessor bus and coprocessor instructions for MMU and a floating­
point unit. The series found use mainly in embedded processor products, such 
as the Swordfish (introduced 1991), a two-issue superscalar microcontroller 
(Hintz and Tabak [136]). 

3.5 Conclusions 

With all the preceding components of RISC in place (see Chap. 1), several ad­
vantages of RISC over CISC become apparent. Optimizing compilers can be 
developed that improve efficiency by better utilizing the register file. Further­
more, having only simple instructions reduces the complexity and overhead 
which occurs when several variations of the same instruction are provided. 
The equal length of all instructions in RISC is advantageous for the imple­
mentation of the instruction fetch stage of a pipeline. 

In contrast, the CISC trend has always been toward more complicated and 
feature-rich ISAs. This has been mainly due to the introduction of high-level 
languages and the subsequent effort to minimize the semantic gap between 
the HLL constructs and the machine instruction set. The reasoning behind 
the CISC approach is that complex instructions will execute faster if they are 
implemented in the microcode as opposed to in the software. In addition, it 
should be easier to write compilers when more high-level instructions are pro­
vided as part of the processor's ISA, and theoretically the machine programs 
should be shorter since more complex instructions are provided in the ISA. 
Besides, early CISC machines of the 1960s/1970s had to cope with extremely 
expensive (core) main memory. As a result, code had to be dense and hence 
complex, favoring complex addressing modes and encoded ISA with variable 
instruction lengths. 
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However, RISC designers found that complicated instructions are more 
difficult to utilize since the compiler must tune the source code to match these 
instructions, which are frequently more complicated than is necessary. CISC 
instructions can always be replaced by a sequence of simpler instructions. 
Sometimes the sequence of simpler instructions was executed faster than the 
corresponding single CISC instruction. CISC compilers use simple instruc­
tions most of the time anyway and seldom take advantage of the complex 
instructions. Furthermore, the long opcodes of CISC instructions, which are 
due to both the greater number of instructions and more complex addressing 
modes, tend to increase the overall size of the program. In complex designs of 
CISC, specialized instructions may demand the use of more complicated and 
time-consuming microcode for what would otherwise be a simple operation. 
Compared with CISC, the implementation of a RISC ISA uses much less chip 
space due to the elimination of the microcode control store which is necessary 
to implement the many instructions and addressing modes of a CISC ISA. 
RISC is also much easier to implement in VLSI and performs at least as well 
as comparable CISC chips. 

For RISC to be successful, it must be able to outperform significantly com­
parable CISC technology while maintaining its simplicity and low price. The 
latest advancement in RISC has come with the ability to execute programs in 
54-bit mode. 54-bit processors use an enlarged address space, 54-bit general 
purpose registers and internal data paths. This dramatically extends the ca­
pabilities of the CPU as far as data handling, memory management, and I/O 
operations. 54-bit processors deal with larger and more accurate numbers, 
maintain buses 54 bits wide and greater, and can access huge amounts of 
media space which is not likely to be exceeded for several years. 54-bit RISC 
processors are today's choice for high-performance workstations and server 
computers, while 32-bit processors are found in the PC class of machines. 

While RISC has many definite advantages over CISC, the larger instruc­
tion set and the more compact machine code of CISC still have their merits. 
As generally occurs when two such opposing designs compete, a hybrid com­
bination of the two emerges. It is yet to be seen what the end product will be, 
but even now each of the two technologies is taking components of the other 
and uses them to increase its performance. Principles and techniques that 
have been developed by the CISC approaches have become very important 
in today's multiple-issue (RISC) processors (see Chap. 4). Such a principle 
is out-of-order execution which allows instructions to complete out of the 
original program order. 

Modern microprocessors use ideas from RISC and CISC approaches. If 
unhindered by a legacy CISC ISA, RISC ISA principles are applied such 
as a load/store architecture, fixed instruction length, and simple addressing 
modes only. Multiple-issue and dynamic (out-of-order) scheduling are crucial 
techniques to keep the various functional units of contemporary micropro­
cessors busy. We have demonstrated that out-of-order execution is not a new 
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concept - it existed in the mid-1960s in else machines CDC 6600 (which 
used scoreboarding) and IBM System/360 Model 91 (which used Tomasulo's 
scheme) - but it was innovative for single-chip microprocessors in the mid-
1990s. We remark that an out-of-order scheduling implementation is quite 
similar to dataflow architecture (Brehob et al. [37]). It is referred to as micro 
dataflow by microprocessor researchers. However, the two major problems of 
dataflow implementations, that is token matching and handling complex data 
structures, are trivialized in the restricted internal environment of a micropro­
cessor. Namely, determining which instruction can be executed (matching) 
is easy since all operands are within registers of a microprocessor. Since the 
core of a microprocessor deals with only simple data types, the problem of 
handling complex data structures does not exist. 
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What is the limitation of a multiple-issue approach? If we can issue 
five operations per clock cycle, why not 50? Limits on available instruction 
level parallelism are the simplest and most fundamental . .. 
. .. What is clear is that some level of multiple issue is here to stay and 
will be included in all processors in the foreseeable future. 

John L. Hennessy and David A. Patterson 
Computer Architecture A Quantitative Approach 

(Morgan Kaufmann Publishers, 1996) 

4.1 Overview of Multiple-Issue Processors 

Superscalar processors started to conquer the microprocessor market at the 
beginning of the 1990s with dual-issue processors. The principal motivation 
was to overcome the single issue of scalar RISC processors by providing the 
facility to fetch, decode, issue, execute, and write back results of more than 
one instruction per cycle. In fact, the first commercially successful super­
scalar microprocessor was the Intel i960 RISC processor which hit the mar­
ket in 1990. Further first-generation dual-issue superscalar RISC processors 
were the Motorola 88110, Alpha 21064, and the HP PA-7100. 1 Other super­
scalar RISC processors of the mid-1990s era were the IBM POWER2 RISC 
System/6000 processor, its offspring PowerPC 601, 603, 604, 750 (G3), and 
620, the DEC Alpha 21164, the Sun SuperSPARC and UltraSPARC, the HP 
PA-80DO, and the MIPS R10000. Today's superscalar RISC processors MIPS 
R12000, HP PA-8500, Sun UltraSPARC-II, IIi and III, Alpha 21264, IBM 
POWER2-Super-Chip (P2SC) are 4-issue or 6-issue processors. 

The commercially dominating Intel line of superscalar microprocessors 
continued the legacy Intel x86 ISA with the dual-issue Pentium processor 

1 The Intel i860 of 1989 was not superscalar, it was rather a special kind of VLIW. 
A dual-instruction mode (sometimes called superscalar mode at that time) al­
lowed the execution of two instructions simultaneously. However, dual-instruction 
mode instructions are marked using a bit in the instruction word by the com­
piler. In combination with dual-operation instructions, up to three operations 
were executed simultaneously per cycle. 

J. Ši lc et al., Processor  Architecture
© Springer-Verlag Berlin Heidelberg 1999
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of 1993, the Pentium Pro, the Pentium II and its newer offspring Celeron, 
Klamath, and Pentium III (Katmai). Because of their ISA features these pro­
cessors are viewed as CISC microprocessors. A number of companies designed 
Intel-compatible processors like AMD with its K5, K6, K6-2, and K6-3 pro­
cessors, and Cyrix with its 6x86, M II, and MXi. These CISC microprocessors 
feature a slightly more complex pipeline than the superscalar RISC processors 
with additional stages that generate so-called RISC860ps or /-lOpS from x86 
instructions. All these x86-based microprocessors feature a 32-bit architecture 
targeted for use in personal computers, while the newer ones of the super­
scalar RISCs are 64-bit architecture machines and mainly used in servers.2 
Intel announced its first 64-bit processor with the Merced (P7) processor. 

Multiple-issue comprises superscalar and the even older, but previously 
not very successful, very long instruction word (VLIW) technique that 
now has a strong renaissance in the area of signal processors, multimedia 
processors, and with the Hewlett-Packard and Intel's explicitly parallel 
instructzon computing (EPIC) instruction format that has been proposed 
for the Merced in the general-purpose processor field. 

Components of a state-of-the-art superscalar processor. Let us first 
look at the principal components of a superscalar processor as shown in 
Fig.4.l. 

Such a superscalar RISC microprocessor features a load/store architec­
ture with a fixed instruction format of 32-bit instruction length. The proces­
sor consists of an instruction fetch unit, an instruction decode and register 
rename unit, an issue unit, several independently executing functional units 
(FUs), a retire unit, 32 general-purpose registers, 32 floating-point registers, 
additional rename registers, separate I-cache and D-cache that are connected 
via a bus interface unit with the external memory bus or an external sec­
ondary cache unit, and additional internal buffers like the instruction buffer 
and a reorder buffer. The FUs usually comprise: 

• A load/store unit that loads a data value from the D-cache into one of the 
general-purpose or floating-point registers, or, vice versa, stores a value 
from a register to the D-cache. Generation of load and store addresses is 
supported by a memory management unit (MMU) that comprises a trans­
lation look-aside buffer (TLB) to translate logical addresses into physical 
addresses. In the case of a D-cache miss, a new cache line is automatically 
loaded via the bus interface unit, while the load or store operation that 
triggered the miss is stalled. State-of-the-art non-blocking caches allow the 
execution of succeeding load and store operations that are independent of 
the missing cache line. Moreover, typically load/store units allow loads to 
overtake stores if the data addresses are different . 

• One or more floating-point units perform floating-point operations load­
ing their operands from floating-point registers. The floating-point unit 

2 PowerPC 601, 603, 604, and 750 are also 32-bit processors. 



4.1 Overview of Multiple-Issue Processors 125 

I-cache 
I MMU I BHT BTACI I 32 (61l -- ... 

Branch Instruction Fetch Unit Data 
Unit Bus 

Instruction Decode and 
Register Rename Unit 

32 (64)_ Bus Instruction Buffer 
Instruction Inter- Address 
Issue Unit face Bus 

Reorder Buffer Unit 

LoadJ Floating-
Integer Retire 

Store Point - .. 
Unites) Unit - ... 

Unit Unites) Control 
Bus 

Floating- General 
Rename Point Purpose 
Registers Registers Registers 

MMU 

D-cache 

Fig. 4.1. Components of a superscalar processor 

is pipelined with a 3-stage pipeline with latency 3 and throughput of l. 
Sometimes more complex operations like a combined multiply-add remain 
longer in the pipeline and lead to less throughput. 

• One or more integer units that execute the arithmetic and logical instruc­
tions on general-purpose register values. Depending on the complexity of 
the operation, integer units can be single-stage units with latency of 1 
or, for example, 3-stage pipelined units with latency 3 and throughput l. 
Sometimes division or square root units exist that fall out of the scheme 
by not being pipelined, due to long latencies of 17 and more cycles. 

• A multimedia unit in state-of-the-art processors performs several arith­
metic, masking, selection, reordering, and conversion instructions on 8-
bit, 16-bit or 32-bit values in parallel, accessing either the integer or the 
floating-point registers. 

• A branch unit controls execution of branch instructions. After fetching a 
branch instruction, the branch target may be unknown for several cycles. 
In such a situation, when it is not yet known whether the branch will be 
taken or not, a speculative fetch, decode, and execution of instructions is 
performed using a static or dynamic branch prediction technique. Today's 
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superscalar processors usually employ dynamic branch prediction based on 
the history of previous executions of the program paths. A branch target 
address cache (BTAC) contains jump and branch target addresses and a 
branch history table (BHT) monitors previous branch outcomes. The task 
of the branch unit is to determine the branch outcome, monitor branch 
history, and reroll speculatively executed instructions in the case of a mis­
predicted branch. 

The type and number of FUs vary depending on the specific processor. 

Superscalar processor pipeline. A superscalar pipeline features the same 
stages as a simple RISC pipeline, but several instructions are fetched, de­
coded, and executed, and several results are written back, simultaneously. 
Moreover, additional issue and retire stages are necessary, and additional 
buffers decouple pipeline stages (see Fig. 4.2). 

IF 

Fig. 4.2. Superscalar pipeline 

Issue 

Retire 
and 

Write 
Back 

The pipelining starts with the instruction fetch (IF) stage that fetches 
several instructions from the I-cache into a fetch buffer. Typically at least as 
many instructions as the maximum issue rate are fetched at once. To avoid 
pipeline interlocking due to jump or branch instructions, the BTAC contains 
the jump and branch target addresses that are used to fetch instructions from 
the target address. The fetch buffer decouples the fetch stage from the decode 
stage. 

In the instruction decode (ID) stage, a number of instructions are decoded 
(typically as many as the maximum-issue bandwidth). The operand and re­
sult registers are renamed, i.e., available physical registers are assigned to 
the architectural registers specified in the instructions. Then the instructions 
are placed in an instruction buffer, often called the instruction window. In­
structions in the instruction window are free from control dependences due to 
branch prediction, and free from name dependences due to register renaming. 
So, only data dependences and structural conflicts remain to be solved. 

The issue logic examines the waiting instructions in the instruction win­
dow and simultaneously assigns ("issues") a number of instructions to the 
FUs up to a maximum-issue bandwidth. The program order of the issued 
instructions is stored in the reorder buffer. Instruction issue from the in­
struction window can be in order (only in program order) or it can be out 
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of order. It can be either subject to simultaneous data dependences and re­
source constraints, or divided into two (or more) stages, checking structural 
conflict in the first and data dependences in the next stage (or vice versa). 
In the case of structural conflicts first, the instructions are issued to reserva­
tion stations (buffers) in front of the FUs where the issued instructions await 
missing operands. In contrast to the Tomasulo algorithm (see Sect. 3.3.2), 
several instructions can be issued simultaneously when space is available in 
the respective reservation stations. Depending on the specific processor, reser­
vation stations can be central to a number of FUs (see, for example, the Intel 
Pentium II), or each FU has one or more of its own reservation stations (see 
IBM/Motorola/ Apple PowerPC 604). In the latter case, a structural conflict 
arises if more than one instruction is issued to the reservation stations of 
the same FU simultaneously. In this case only one instruction can be issued 
within a cycle. 

The instructions await their operands in the reservation stations, as in 
the Tomasulo algorithm. An instruction is then said to be dispatched from a 
reservation station to the FU when all operands are available, and execution 
starts. The dispatch sends operands to the execution unit. 3 If all its operands 
are available during issue and the FU is not busy, an instruction is imme­
diately dispatched, starting execution in the cycle following issue. Thus, the 
dispatch is usually not a pipeline stage. An issued instruction may stay in 
the reservation station for zero to several cycles. Dispatch and execution are 
performed out of program order. 

When the FU finishes the execution of an instruction and the result is 
ready for forwarding and buffering, the instruction is said to complete. In­
struction completion is out of program order. During completion the reser­
vation station is freed and the state of the execution is noted in the reorder 
buffer. The state of the reorder buffer entry can denote an interrupt occur­
rence. The instruction can be completed and still be speculatively assigned, 
which is also monitored in the reorder buffer. 

After completion, operations are committed in order. An instruction can 
be committed: 

• if instruction execution is complete, 
• if all previous instructions due to the program order are already committed 

or can be committed in the same cycle, 
• if no interrupt occurred before and during instruction execution, and 
• if the instruction is no longer on a speculative path. 

By or after commitment, the result of an instruction is made permanent in 
the architectural register set, usually by writing the result back from the 
rename register to the architectural register. This is often done in a stage 
of its own, after the commitment of the instruction, with the effect that the 
rename register is freed one cycle after commitment. 

3 In the literature, the meanings of the terms dispatch and issue are often inter­
changed or even indistinguishable. 
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If an interrupt occurred, all instructions that were in program order be­
fore the interrupt-signaling instruction are committed, and all later instruc­
tions are removed. Thus, a so-called precise exception is guaranteed. Precise 
exception means that all instructions before the faulting instruction are com­
mitted and those after it can be restarted from scratch. Depending on the 
architecture and on the type of exception, the faulting instruction should be 
committed or removed without any lasting effect. 

We use the term retired, in conformity with Shriver and Smith [258], 
when the reorder buffer slot of an instruction is freed either because 
the instruction commits (the result is made permanent) or because the 
instruction is removed (without making permanent changes). 

Superscalar. The term superscalar was first time coined by Agerwala and 
Cocke [4], here cited after Diefendorff and Allen [65]: Superscalar machines 
are distinguished by their ability to (dynamically) issue4 multiple instructions 
each clock cycle from a conventional linear instruction stream. 

The meaning of superscalar can be explained as follows: 

• Instructions are issued from a sequential stream of "normal" instructions. 
• The instructions that are issued are scheduled dynamically by the hard­

ware. 
• More than one instruction can be issued each cycle (motivating the term 

"superscalar" instead of "scalar"). 
• The number of issued instructions is determined dynamically by hardware, 

that is, the actual number of instructions issued in a single cycle can be 
zero up to a maximum instruction issue bandwidth. 

• The dynamic instruction issue complicates the hardware scheduler of a 
superscalar processor. The scheduler complexity increases when multiple 
instructions are issued out of order from a large instruction window. 

• It is a presumption that multiple FUs are available. The number of available 
FUs is at least the maximum-issue bandwidth, but often higher to diminish 
potential resource conflicts. 

• One important point is that the superscalar technique is a microarchitec­
ture technique, not an architecture technique. Recall from Sect. l.2 that 
the architecture of a processor is defined as the ISA, i.e., everything that 
is seen outside of a processor. In contrast, the microarchitecture comprises 
implementation techniques. Code that is generated for a scalar micropro­
cessor can also be executed on a superscalar microprocessor of the same 
architecture, and vice versa. This is the case for the scalar microSPARC-II 
and the superscalar SuperSPARC and UltraSPARC processors. 

The term superscalar is often used in a less precise fashion to describe a 
processor with multiple parallel pipelines or a processor with multiple FUs. 5 

4 The term issue is used here instead of the term dispatch in the original definition. 
s In 1991, Johnson defined superscalar as follows [150]: A superscalar processor 

reduces the average number of cycles per instruction beyond what is possible in 
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Both definitions do not allow superscalar to be distinguished from VLIW (see 
Sect. 4.10). 

The ability to execute instructions out of order partitions a superscalar 
pipeline into three distinct sections: 

• an in-order section with the instruction fetch, decode, and rename stages 
- the issue is also part of the in-order section (in the case of an in-order 
issue) , 

• an out-oJ-order section starting with the issue in the case of an out-of-order 
issue processor, the execution stage, and usually the completion stage, 

• and again an in-order section that comprises the retirement and write-back 
stages. 

Another aspect of superscalar is that instruction pipelining and super­
scalar techniques both exploit fine-grain (instruction-level) parallelism. While 
pipelining (see also superpipelining in Sect. 1.7.4) utilizes "temporal" par­
allelism, the superscalar technique also utilizes "spatial" parallelism. Per­
formance can be increased by temporal parallelism, using longer pipelines 
(deeper pipelining) and faster transistors (a faster clock). Provided that 
enough fine-grain parallelism is available, performance can also be increased 
by spatial parallelism using more FUs and a higher issue bandwidth by ap­
plying more transistors in the superscalar case. 

4.2 I-Cache Access and Instruction Fetch 

A so-called Harvard architecture (separate instruction and data memory and 
access paths) is used internally in a high-performance microprocessor with 
separate on-chip primary I-cache and D-cache. The I-cache is less compli­
cated to control than the D-cache, because the I-cache is read-only6, and it 
is not subjected to cache coherence in contrast to the D-cache. Typically the 
primary I-cache consists of 8-32 kB cache size, organized as direct-mapped 
or 2-way set-associative in 32-byte cache lines holding eight 32-bit instruc­
tions each. If an instruction format like the x86 ISA allows variable length 
instructions, the fetch block contains a varying number of instructions and 
the beginning of the instructions is yet to be determined - this complicates 
instruction decode and needs more sophisticated instruction fetch techniques. 

Sometimes the instructions in the I-cache are predecoded (see also 
Sect.4.4) on their way from the memory interface to the I-cache to sim­
plify the decode stage (e.g., due to predecoding in the PowerPC 620 the 

a pipelined, scalar RISC processor by allowing concurrent execution of instruc­
tions in the same pipeline stage, as well as concurrent execution of instructions 
in different pipeline stages. The term superscalar emphasizes multiple, concur­
rent operations on scalar quantities, as distinguished from multiple, concurrent 
operations on vectors or arrays as is common in scientific computing. 

6 Self-modifying code is usually not, or at least not efficiently, supported in today's 
processors. 
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decode, rename and issue can be done in a single pipeline stage, instead of 
two separate stages in the PowerPC 604). 

The main problem of instruction fetching is the control transfer performed 
by jump, branch, call, return, and interrupt instructions. The sequential ad­
dressing of instructions by the PC is disrupted. Moreover, the disruption may 
occur in the middle or shortly after the beginning of a fetched instruction 
block, rendering all fetched instructions after the disruption useless. Wallace 
and Bagherzadeh [319] show that an 8-issue superscalar processor with simple 
fetching hardware could only expect to fetch less than four usable instructions 
per cycle with programs of the SPECint95 benchmark suite. 

A straightforward technique for simple instruction fetch from the I-cache 
is to fetch as many instructions per portion as the cache line size. However, if 
the starting PC address is not the address of the cache line, fewer instructions 
than the fetch width are returned. As with all fetching techniques, if there is 
a control transfer instruction, then instructions after it are invalidated. 

If the cache line size is extended beyond the width of the fetch block, the 
number of instructions that will be lost when fetching after a control transfer 
instruction with an unaligned target address is reduced. 

However, the problem with target instruction addresses that are not 
aligned to the cache line addresses can be solved completely in hardware 
using a self-aligned instruction cache. Such an I-cache reads and concate­
nates two consecutive lines within one cycle to be able always to return the 
full fetch bandwidth. A self-aligned I-cache can be implemented either by use 
of a dual-port I-cache, by performing two separate cache accesses in a single 
cycle, or by a two-banked I-cache. Using a two-banked I-cache is preferred 
for both space and timing reasons (Wallace and Bagherzadeh [319]). 

All these techniques can be used in conjunction with instruction prefetch­
ing. Prefetching improves the instruction fetch performance, but fetching is 
still limited because instructions after a control transfer must be invalidated. 
Here instruction fetch prediction helps to determine the next instructions to 
be fetched from the memory subsystem. Instruction fetch prediction is ap­
plied in conjunction with branch prediction which foretells the outcome of 
conditional branch instructions. 

A multiple cache lines fetch from different locations may be needed in 
future, very wide-issue processors where more than one branch will often 
be contained in a single contiguous fetch block. It may also be useful to 
support eager execution of both sides of a branch or to support multithreaded 
processors. 

4.3 Dynamic Branch Prediction and Control 
Speculation 

Excellent branch handling techniques are essential for current and future 
microprocessors. Many instructions are in different stages in the pipeline of 
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a wide-issue superscalar processor. Instruction issue also works best with 
a large instruction window, leading to even more instructions that are "in 
flight" in the pipeline. However, approximately every seventh instruction in 
an instruction stream is a branch instruction which potentially interrupts the 
instruction flow through the pipeline. 

The task of high performance branch handling consists of the following 
requirements: 

• an early determination of the branch outcome (the so-called branch reso­
lution) , 

• buffering of the branch target address in a BTAC after its first calculation 
and an immediate reload of the PC after a BTAC match, 

• an excellent branch predictor (i.e., branch prediction technique) and spec­
ulative execution mechanism, 

• often another branch is predicted while a previous branch is still unresolved, 
so the processor must be able to pursue two or more speculation levels, 

• and an efficient rerolling mechanism when a branch is mispredicted (mini-
mizing the branch misprediction penalty). 

An early branch resolution is supported by forwarding as soon as possible to 
the branch instruction the results of compare instructions that may be stored 
in a general-purpose register or in a special condition-code register. Branch 
testing could be moved forward in the pipeline as far as the ID stage, as was 
demonstrated in Sect. 1.6.3. Previous calculations of branch target addresses 
are cached in a BTAC (see Sect. 1.6.3 and the next section) and accessed 
during the IF stage. 

The performance of branch prediction depends on the prediction accuracy 
and the cost of misprediction. Prediction accuracy can be improved by invent­
ing better branch predictors. In Sect. 1.6.3 we have already seen some static 
branch prediction techniques. An alternative to static prediction is dynamic 
branch prediction which usually has superior performance. 

When a branch is not predicted correctly, there is rarely a penalty of less 
than two cycles, even in simple RISC pipelines. However, the misprediction 
penalty depends on many organizational features: the pipeline length (favor­
ing shorter over longer pipelines), the overall organization of the pipeline, 
whether misspeculated instructions can be removed from internal buffers, or 
have to be executed and can only be removed in the retire stage. Further 
dynamic aspects that influence the misprediction penalty are the number 
of speculative instructions in the instruction window or the reorder buffer. 
Typically only a limited number of instructions can be removed each cycle. 
Therefore, rerolling when a branch is mispredicted is typically expensive, for 
example, 11 or more cycles in the Pentium II or the Alpha 21264 processors. 
The high misprediction penalty in current and prospective future micropro­
cessors shows the importance of excellent branch prediction mechanisms for 
the overall performance of a processor. 
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Other techniques to handle branches are predication using so-called pred­
icated or conditional instructions that allow the removal of the branch from 
the instruction flow, and eager execution of both branch sides (see Sect. 4.3.4). 

Eager execution is especially effective when the branch direction changes 
in an irregular fashion which means the branch is not predictable. In that 
case the expensive rerolling mechanism slows down execution. However, eager 
execution is not possible with today's superscalar processors because the 
ability to pursue two instruction streams in parallel is necessary. 

4.3.1 Branch-Target Buffer or Branch-Target Address Cache 

The branch target address is needed at the same time as the prediction. In 
particular, it should be known already in the IF stage whether the as-yet­
undecoded instruction is a (conditional or unconditional) branch to allow an 
instruction fetch at the target address in the next cycle. The branch-target 
buffer (BTB) or branch-target (address) cache (BTAC) is a branch-prediction 
cache that stores the predicted address for the next instruction after a branch 
(Lee and Smith [175]). The BTB is accessed during the IF stage. It consists 
of a table with branch addresses, the corresponding target addresses, and 
prediction information (see Fig. 4.3 for a simple BTB). The PC for the next 
instruction to fetch is compared with the entries in the BTB. If a matching 
entry is found in the BTB, fetching can start immediately at the target 
address. 

The BTB stores branch and jump target addresses. Branch target ad­
dresses are predicted addresses, while jump target addresses always transfer 
control. Jumps (unconditional branches) are usually much less frequent than 
conditional branches. 

Prediction 
Branch address Target address bits 

Fig. 4.3. Branch-target buffer 

Fetching instructions from a new target address is fast if the fetch address 
hits in the I-cache. A variation of the BTB that was popular for older pro­
cessors without on-chip I-caches is to store one or more target instructions 
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additionally to the target address. Such a BTB is often called a branch-target 
cache (BTC) instead of a branch-target (address) cache (BTAC). 

Moreover, for procedure calls and returns a small stack of return addresses 
is often used in addition to, and independent of, a BTB. Such a return address 
stack (RAS) appears, for example, in the Alpha 21164 organized as a 12-entry 
circular buffer that makes the last 12 return addresses available. 

4.3.2 Static Branch Prediction Techniques 

Static branch prediction is a simple prediction technique which either always 
uses a fixed prediction direction or allows the compiler to determine the 
prediction direction. The prediction direction of a branch instruction is never 
changed. 

Simple hardware-fixed direction mechanisms can be: 

• Predict always not taken: This is the simplest scheme because the assump­
tion is a straight instruction flow. Unfortunately, due to frequent loops 
in an instruction flow, this technique is not very effective. This predic­
tion technique should not be confused with the delayed branch technique 
(see Sect.1.6.3). The instruction in the delay slot is always executed, while 
the predict-not-taken-technique executes the instructions after the branch 
speculatively and squashes the instruction execution in the case of mispre­
diction. 

• Predict always taken: Here branches at the end of a loop iteration are 
correctly predicted as long as the loop loops. The branch target address 
has to be stored within the instruction fetch unit to allow a zero delay. 

• Backward branch predict taken, forward branch predict not taken: Here the 
idea is that branches with branch target addresses pointing backwards stem 
from loops and should be predicted taken, while other kind of branches are 
preferably not taken. 

Sometimes a bit in the branch opcode allows the compiler to decide the 
prediction direction either directly (bit set means "predict taken", bit not set 
means "predict not taken") or by reversing the hardware-determined direction. 

The compiler may use several techniques for a good compiler-based static 
prediction. It may either: 

• examine the program structure for prediction (branches at the end loop 
iteration code should be predicted as taken, if-then branches predicted as 
not taken), 

• relegate prediction to the programmer by compiler directives, or 
• use a profile-based prediction by predicting the branch directions based on 

prior runs of the program with recording of the branch behavior. 

The profile-based prediction is nearly always better than the simpler 
direction-based predictions. 
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4.3.3 Dynamic Branch Prediction Techniques 

In a dynamic branch prediction scheme, prediction is decided on the 
computation history of the program. After a start-up phase of the program 
execution, where a static branch prediction might be effective, historical 
information is gathered and dynamic branch prediction becomes more effec­
tive. In general, dynamic gives better results than static branch prediction, 
but at the cost of increased hardware complexity. 

One-bit predictor. The simplest dynamic branch prediction scheme is a 
simple branch prediction buffer or branch history table (BHT). The BHT is a 
small buffer memory containing branch addresses indexed by the lower bits 
of the address of a branch instruction. Each entry of the BHT contains one 
bit that indicates whether the branch was recently taken or not. If the bit is 
set, the branch is predicted taken. If the bit is not set, the branch is predicted 
not taken. In the case of a misprediction, the bit state is reversed and so is 
the prediction direction. 

One-bit predictors can also be implemented in the BTB by only storing 
the target addresses of predicted taken branches. 

The prediction states of a one-bit predictor are shown in Fig. 4.4 (T stands 
for taken and NT stands for not taken). 

NT 

T 

Fig. 4.4. One-bit predictor states 

Such a one-bit predictor correctly predicts a branch at the end of a 
loop iteration, as long as the loop does not exit. However, in nested loops, 
a one-bit prediction scheme will cause two mispredictions for the inner 
loop: one at the end of the loop, when the iteration exits the loop instead 
of looping again, and one when executing the first loop iteration, when it 
predicts exit instead of looping. Such a double misprediction in nested loops 
is avoided by a two-bit predictor scheme. 

Two-bit predictors. In a two-bit prediction scheme two bits instead of one 
are assigned to each entry in the BHT. The two bits stand for the prediction 
states "predict strongly taken", "predict weakly taken", "predict strongly not 
taken", "predict weakly not taken". In the case of a misprediction in the 
"strongly" state cases, the prediction direction is not changed, rather the 
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prediction goes into the respective "weakly" state. A prediction must miss 
twice before it is changed when a two-bit prediction scheme is applied. 

Two kinds of two-bit prediction schemes are used: the saturation up-down 
counter scheme demonstrated in Fig. 4.5 and the scheme given in Fig. 4.6. 

T 

(11) 
NT 

(10) 

~f---"- predict weakly 
taken -""'1-->0... 

T T 

(01) 

Fig. 4.5. Two-bit predictor saturation counter states 

T 

T 

Fig. 4.6. Two-bit predictor states 
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predict strongly 
~-T->"'" not taken 

NT 

In the two-bit saturation up-down counter scheme, the counter is incre­
mented for each taken branch occurrence, and decremented each time the 
branch is not taken. The counter is saturating, i.e., it is not decremented 
past 0, nor is it incremented past 3. The most significant bit determines the 
prediction. 

The other scheme given in Fig. 4.6 differs from the saturation up-down 
counter scheme by changing directly from the "weakly" to the "strongly" 
states in the case of a second misprediction. This scheme is applied in 
the UltraSPARC-I processor. Branches without prediction are initialized by 
the UltraSPARC-I processor to "predict weakly not taken" (Tremblay and 
O'Connor [301]). 

Hennessy and Patterson [134] showed that the mispredictions of SPEC89 
programs vary from 1 % (nasa7, tomcatv) to 18 % (eqntott), with spice at 
9 % and gcc at 12 %, assuming a 4096-entry BHT. 

The two-bit prediction scheme is extendable to a n-bit scheme. However, 
studies have shown that a two-bit prediction scheme does almost as well as 
a n-bit scheme with n > 2. 

Two-bit predictors can be implemented in the BTB, assigning two state 
bits to each entry in the BTB. Another solution, which is proposed for the 
PowerPC 604 and 620, is to use a BTB for target addresses and a BHT as 
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a separate prediction buffer. While the BTB is accessed in the IF stage, the 
BHT prediction is performed in the PowerPC 604 and 620 one cycle later in 
the ID stage and may override the previous BTB prediction. 

A mispredict in the BHT occurs for two reasons: either a wrong guess for 
that branch, or the branch history of a wrong branch is used because of the 
way the table is indexed. In an indexed table lookup, part of the instruction 
address is used as an "index" to identify a table entry. Instruction addresses 
with the same bit pattern used as an index share the same table entry, leading 
to frequent mispredicts if the table is small. 

Two-bit predictors work well for scientific floating-point intensive pro­
grams which contain many frequently executed loop-control branches. Short­
comings of the two-bit prediction schemes arise from dependent (correlated) 
branches, which are frequent in integer-dominated programs. 

The following example of two branches, one dependent on the other, 
demonstrates that one-bit and two-bit predictors can potentially mispredict 
every time. Let us look at the following program (see [134]): 

if(d == 0) 1* branch bl *1 
d = 1; 

if (d == 1) 1* branch b2 * I 

In assembly language notation the program can be given as follows (variable 
d is assigned to register Rl): 

bnez R1,L1 branch bl (di 0) 
addi R1 ,RO ,#1 d == 0, so d = 1 

L1 : subi R3,R1,#1 
bnez R3,L2 branch b2 (d i 0) 

L2: 

Consider a sequence where d alternates between 0 and 2 which generates 
a sequence of NT-T-NT-T-NT-T for branches bl and b2. The execution 
behavior is given in the following table: 

? 

initial d d == 0 bl d before b2 
o yes NT 1 
2 no T 2 

? 

d== 1 
yes 
no 

b2 
NT 
T 

If we apply a one-bit predictor which is initialized to "predict taken" for 
branches bl and b2, then every branch is mispredicted. The same behavior 
is shown for the two-bit predictor of Fig. 4.5 starting from the state "predict 
weakly taken". The two-bit predictor of Fig.4.6 mispredicts every second 
branch execution of bl and b2. A (1 , I)-correlating predictor (see below) can 
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take advantage of the correlation between the two branches; it mispredicts 
only in the first iteration when d = 2. 

Correlating branch predictors usually reach higher prediction rates for 
integer-intensive programs than the two-bit predictor scheme and require 
only a small increase in hardware cost. 

Correlation-based predictors. The two-bit predictor scheme only uses 
the recent behavior of a single branch to predict the future of that branch. 
Correlations between different branch instructions are not taken into account. 
Let us also look at the recent behavior of other branches rather than just the 
branch we are trying to predict. 

The so-called correlation-based predictors or correlating predictors devel­
oped by Pan et al. [223] are branch predictors that additionally use the 
behavior of other branches to make a prediction. While two-bit predictors 
use self-history only, the correlating predictor uses neighbor history as well. 
Many integer workloads feature complex control-flows whereby the outcome 
of a branch is affected by the outcomes of recently executed branches. In 
other words, the branches are correlated [223]. 

A correlation-based predictor denoted as an (m, n )-correlation-based pre­
dictor, or in short an (m, ny-predictor, uses the behavior of the last m branches 
to choose from 2m branch predictors, each of which is a n-bit predictor for 
a single branch. The global history of the most recent m branches can be 
recorded in a m-bit shift register - called a branch history register (BHR) 
- where each bit records whether the branch was taken or not taken. Each 
time a branch in execution resolves, its sign bit is shifted into the BHR. The 
contents of the BHR are used to address (index) the entries in a so-called 
pattern history table (PHT).7 Typically two-bit predictors are used in PHTs. 

A (l,l)-predictor uses the behavior of the last branch to choose between 
a pair of one-bit predictors, and a correlation-based predictor denoted as a 
(2,2)-predictor uses a BHR of two bits to choose among four 2-bit prediction 
tables. A two-bit predictor (without global history) can simply be denoted 
as a (0,2)-predictor. 

Figure 4.7 shows the implementation of correlation-based predictor, a type 
(2,2)-predictor with four 1 k-entry PHTs. The BHR bit pattern selects the 
specific PHT. The entries of the 1 k-entry PHTs are generally accessed by 
using the lower order 10 bits of the branch address. Depending on the im­
plementation, the PHTs may alternatively be accessed using 10 bits of the 
address of the instruction immediately prior to the branch under considera­
tion (Pan et al. [223]). The four 1 k-entry PHTs can also be viewed as a single 
4 k-entry PHT. Then 12 bits are required for the PHT lookup. Therefore, two 
bits from the BHR are concatenated with 10 bits from the branch address. 

7 Pan et al. used the terms "branch prediction table" (BPT) instead of "pattern his­
tory table" (PHT), and "m-bit shift register" instead of "branch history register" 
(BHR). 
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Fig. 4.7. Implementation of a (2,2)-predictor 

Two-level adaptive predictors. The two-level adaptive predictor was de­
veloped by Yeh and Patt [331] at the same time as the closely related 
correlation-based prediction scheme. There are several variations of the two­
level adaptive prediction scheme (Yeh and Patt [332]). 

The basic two-level predictor uses a single "global" branch history register 
(BHR) of k bits to index in a pattern history table (PHT) of 2-bit counters. 
The global BHR is updated with outcomes from all branches. Thus, not only 
the history of a branch, but also the history of other branches, influence 
the prediction of the branch. All schemes that use a single global BHR are 
called global history schemes and correspond to Pan et al.'s correlation-based 
predictor schemes. 

In the simplest case there is a single global BHR (denoted G) and a single 
global PHT (denoted g), this simple predictor is called GAg (A stands for 
"adaptive"). All PHT implementations of Yeh and Patt use 2-bit predictors. 
An implementation of a GAg-predictor with a 4-bit BHR length (therefore, 
also denoted as GAg(4)) is shown in Fig. 4.8.8 The BHR is implemented as a 
simple shift register shifting right to left with the sign (1 for branch taken, 0 
for branch not taken) of the last resolved branch at the rightmost bit position. 

In the GAg predictor scheme the PHT lookup depends entirely on the bit 
pattern in the BHR and is completely independent of the branch address. The 
advantages of the "degenerate" GAg scheme are its simple implementation 
and the fact that the predicted outcome of a branch can be known long 
before the execution of that branch [223]. 

A simple GAg(k )-predictor often performs better on integer programs 
than a 2-bit-predictor (with a saturation up-down counter scheme). 

8 The GAg scheme is called the "degenerate case" of the correlation scheme by 
Pan et al. [223]. 



4.3 Dynamic Branch Prediction and Control Speculation 139 

Branch 
History 
Register 
(BHR) 

shift direction 
~ 

11\11 0101 
~1100 

Index 

Branch Pattern 
History Table 

(PHT) 

predict: 
taken 

Fig. 4.8. Implementation of a GAg(4)-predictor 

However, GAg-predictors still suffer from branch patterns that emerge 
several times within a computation. Two code sequences may have the same 
bit pattern in the BHR and thus index the same pattern in the PHT. Since 
the branch behavior of the two code sequences may differ, the shared pattern 
may lead to the wrong predictions. 

Such wrong predictions can be restrained by additionally using: 

• the (full) branch address to distinguish multiple PHTs (called per-address 
PHTs); 

• a subset of branches (e.g., defined by part of the branch address) to dis­
tinguish multiple PHTs (called per-set PHTs); 

• the (full) branch address to distinguish multiple BHRs (called per-address 
BHRs); 

• a subset of branches to distinguish multiple BHRs (called per-set BHRs); 
or 

• a combination scheme. 

In the first two cases, a single global BHR is combined with multiple per­
address selected PHTs, denoted as GAp, or with multiple per-set addressed 
PHTs, denoted as GAs. A GAp predictor with a 4-bit BHR, denoted as 
GAp(4), is shown in Fig. 4.9, and a GAs predictor with a 4-bit BHR, denoted 
as GAs(4,2n), is shown in Fig.4.10. In the GAs(4,2n) predictor n bits of the 
branch address are used to define 2n different branch sets corresponding to 
2n PHTs with 24 entries each. Branches of the same branch set share the 
same PHT in a GAs predictor. 

The three two-level adaptive predictors GAg, GAp, and GAs use a single 
global BHR and together form the global history scheme predictors. These 
predictors are closely related to the correlation-based predictor. 

In fact, by rotating Fig. 4.790 degrees to the right and assuming a 4-bit 
BHR, it can be seen that a correlation-based (4,2)-predictor is equivalent to 
a GAs(4) predictor, assuming n = 10 bits in the branch address (compare 
with Fig. 4.10). 

A second scheme class is defined as the per-address history schemes where 
the first-level branch history refers to the last k occurrences of the same 
branch instruction (using self-history only!). Therefore, a BHR is associated 
with each branch instruction to distinguish the branch history information of 
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Fig. 4.9. Implementation of a GAp( 4) predictor 
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Fig. 4.10. Implementation of a GAs(4,2n ) predictor 

each branch. The BHRs record self-history in contrast to the neighbor-history 
recording BHR used in global history schemes. The per-address branch his­
tory registers are combined in a table which is called the per-address branch 
history table (PBHT) by Yeh and Patt. 

In the simplest per address history scheme, the BHRs index into a single 
global PHT. Such a two-level adaptive predictor is denoted as PAg (multiple 
per-address indexed BHRs, and a single global PHT). An implementation 
of a PAg(4) predictor is shown in Fig. 4.11. Two different branches with the 
same BHT bit pattern select the same PHT entry leading to unnecessary 
misprediction. 

Per-address 
BHT PHT 

Branch address 

Branch address 

Fig. 4.11. Implementation of a PAg(4) predictor 
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The combination of multiple per-address BHRs with multiple per-address 
PHTs, denoted as a PAp predictor, and of multiple per-address BHRs with 
multiple per-set PHTs, denoted as a PAs predictor, is also possible. In the 
PAp scheme each branch has its own BHR and its own PHT. So the number 
of BHRs in the per-address BHT and the number of PHTs is equal. However, 
the numbers are not fixed. They depend on the number of branches in the 
program. 9 Conceptually, the BHR content is used as an index to select an 
entry in its PHT. The PHT is selected by the branch instruction address 
(PAp) or by the branch set (PAs). An implementation of a PAp(4) predictor 
is shown in Fig. 4.12. The figure shows the case of two branches with the 
same BHT bit pattern that indexes the same line in the per-address PHTs. 
However, the branch addresses select different PHTs and thus different PHT 
entries. 

Per-address 
BHT 

Branch address b I ~ I 
~""""'-"-'-"-I 

Branch address b2 ~tl[Immtl-~~~ 

bl b2 

Fig. 4.12. Implementation of a PAp(4) predictor 

Per-address PHTs 

In the per-address history schemes only the execution history of the 
branch itself has an effect on its prediction. The branch prediction is non­
correlating - independent of the execution history of other branches. 

In the per-set history schemes the first-level branch history means the last 
k occurrences of the branch instructions from the same subset. Each BHR 
is associated with a set of branches. The set attributes of a branch can be 
determined by the branch opcode, the branch class which is assigned by the 
compiler, or by part of the branch address. Since a per-set addressed BHR 
is potentially updated with history from all branches in the same set, the 
prediction of a branch is influenced by other branches in the same set ( Yeh and 
Pall [332]). Again the three variations are determined by the variations in the 
organization of the second-level, namely SAg, SAs, and SAp. Implementations 
of a SAg(4) and a SAs(4) predictor are shown in Fig.4.13 and Fig.4.14. 
Figure 4.13 shows that the SAg-predictor may suffer from branch patterns 
that emerge several times within a computation (the same bit pattern in the 
BHRs select the same PHT entry in the global PHT). Moreover, in all per-set 

9 The PAp predictor is mainly of theoretical interest, because the variable numbers 
of BHRs and PHTs cause implementation problems. 
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history schemes, branches which fall into the same set (e.g., having the same 
n bits in the branch address) select the same entry in the BHT (and/or the 
same PHT). This is demonstrated in Fig. 4.14. 
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Fig. 4.13. Implementation of a SAg(4) predictor 
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Fig. 4.14. Implementation of a SAs( 4) predictor 

The full table of Yeh and Patt's two-level adaptive branch predictors is 
given as follows [332]: 

global BHR 
per-address BHT 
per-set BHT 

global PHT 
GAg 
PAg 
SAg 

per-set PHTs 
GAs 
PAs 
SAs 

per-address PHTs 
GAp 
PAp 
SAp 

The denotation of the two-level adaptive branch predictors are derived 
from the following table which gives a simplified estimation of the hardware 
costs [332]: 
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Scheme name BHR Length No. of PHTs Hardware Cost 
GAg(k) k 1 k + 2k x 2 
GAs(k,p) k p k + p X 2k X 2 
GAp(k) k b k + b X 2k X 2 
PAg(k) k 1 b x k + 2k X 2 
PAs(k,p) k p b x k + p X 2k X 2 
PAp(k) k b b x k + b X 2k X 2 
SAg(k) k 1 s x k + 2k X 2 
SAs(k,s x p) k p s x k + p X 2k X 2 
SAp(k) k b s x k + b X 2k X 2 

In the table b is the number of PHTs or entries in the BHT for the per­
address schemes. p and s denote the number of PHTs or entries in the BHT 
for the per-set schemes, assuming that different per-set schemes are possible 
for BHR selection and for PHT selection. 

The simulations of Yeh and Patt [332] using the SPEC89 benchmarks 
show that the performance of the global history schemes is sensitive to the 
branch history length. Interference of different branches that are mapped to 
the same pattern history table is decreased by lengthening the global BHR 
leading to better prediction accuracy. Similarly adding PHTs reduces the 
possibility of pattern history interference by mapping interfering branches 
into different tables. 

In general, the global history schemes are better than the per-address 
schemes for the integer SPEC89 programs, while the per-address schemes are 
better for the floating-point intensive programs. The phenomenon is due to 
the ability of the global history schemes to utilize branch correlation, which 
is often the case in the frequent if-then-else statements in integer programs, 
while the per-address schemes are better in predicting loop-control branches 
which are frequent in the floating-point SPEC89 benchmark programs. The 
per-set history schemes are in between other schemes. 

Comparing the cost effectiveness of the different schemes using the for­
mulas in the table given above and a fixed hardware budget of 8 k bits, the 
most cost-effective global history scheme is GAs(7,32), the best per-address 
scheme is PAs(6,16), and for per-set schemes SAs(6,4x 16) scores best. From 
these three configurations PAs(6,16) achieves the highest average prediction 
accuracy. 

When given a higher hardware budget of 128 k bits, the most cost­
effective global history scheme is GAs(13,32), the best per-address scheme 
is PAs(8,256), and the best per-set scheme is SAs(9,4x32). Of these config­
urations GAs(13,32) achieves the highest measured prediction accuracy of 
97.2%.10 

10 Prediction accuracy measured for SPECint95 or OLTP (online transaction pro­
cessing) programs is much lower than for SPEC89 benchmarks (see Table 4.1). 
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Yeh and Patt conclude that global history schemes perform better than 
other schemes on integer-dominated programs but require higher implemen­
tation costs to be effective overall. However, in the global history schemes, 
the pattern history of different branches interfere with each other if they map 
to the same PHT. Therefore, long BHRs and/or many PHTs should be used. 

Per-address history schemes perform better than other schemes on 
floating-point programs. Per-set history schemes have a performance that 
is similar to global history schemes on integer programs and similar to 
per-address schemes on floating-point intensive programs. 

gselect and gshare predictors. McFarling [196] analyzed the two-bit pre­
dictors and correlation-based predictor schemes and introduced a number 
of new predictors. One set of new correlation-based predictors uses a hash 
function into the PHT instead of indexing the PHT to reduce conflicts. 

Recall that in the correlation-based predictor scheme the (2,2)-predictor 
shown in Fig. 4.7 requires 12 bits for a PHT table lookup (assuming a single 
unified PHT instead of the four PHTs); two bits from the BHR are con­
catenated with 10 bits from the branch address. McFarling calls this bit 
concatenation in a correlation-based or GAs predictor the gselect predictor 
which concatenates some lower order bits of the branch address and of the 
bit pattern in the BHR. 

In contrast to simple indexing, McFarlings's gshare predictor uses the 
bitwise exclusive OR of part of the branch address and the BHR as a hash 
function. To demonstrate the ability of both predictor types, McFarling uses 
the following table: 

Branch Address 
00000000 
00000000 
11111111 
11111111 

BHR 
00000001 
00000001 
00000000 
10000000 

gselect 4/4 
00000001 
00000000 
11110000 
11110000 

gshare 8/8 
00000001 
00000000 
11111111 
01111111 

Strategy gselect 4/4 concatenates the lower order 4 bits of the branch 
address with the lower order 4 bits of the BHR. Strategy gshare 8/8 uses 
the bitwise XOR of all 8 bits of both the branch address and the BHR. 
Comparing gshare 8/8 and gselect 4/4 shows that only gshare is able to 
separate all four cases. The gselect predictor cannot take advantage of the 
distinguishing history in the upper four bits of the BHR. 

Hybrid predictors. The second strategy proposed by McFarling is to com­
bine multiple separate branch predictors, each tuned to a different class 
of branches. Different branch prediction schemes have different advantages. 
Hopefully, such a combining predictor achieves an even better prediction ac­
curacy than either of the predictors used for combination. To predict a given 
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branch, typically two or more predictors and a predictor selection mecha­
nism are necessary in a combining predictor. In principle, all kinds of branch 
predictors are candidates for combination of predictors. 

McFarling combined the two-bit predictor11 with the gshare two-level 
adaptive predictor, and concluded that, in this combination, global informa­
tion can be used if it is worthwhile; otherwise, the usual branch direction as 
predicted by the two-bit predictor can be used. Another combination pro­
posed by the same author is the combination of a PAp predictor12 with the 
gshare scheme. Simulations with SPEC89 benchmarks showed that both hy­
brid predictors outperform the gshare which itself is better than gselect and 
all other predictors for a given counter array size. 

Another kind of hybrid predictor proposed by Young and Smith [333] 
combines a compiler-based static branch prediction with a dynamic predictor 
of the two-level adaptive type. Profiling is used to collect the static prediction 
information [307]. Numerous other selector and hybrid predictor types are 
evaluated and reported in the research literature. Patt et al. proposed a multi­
hybrid branch predictor for an advanced superscalar processor of the one 
giga-transistor chip era (see Sect. 5.2). 

Grunwald et al. [110] compared the SAg, gshare and McFarling's combin­
ing predictor (combining a two-bit predictor with the gshare predictor) using 
the SPECint95 benchmarks. The results are reported in the Table 4.1. The 
table shows that for SPECint95 benchmark programs about every sixth in­
struction of the trace (the executed and committed instructions) is a branch 
instruction and in the mean misprediction rate the combining predictor per­
forms best with 8.1 % mispredictions. Further simulation of Grunwald et al. 
showed that the processor typically issued 20-100 % more instructions than 
actually commit, due to speculative execution [110]. 

Other simulations by Keeton et al. [160] using an OLTP (online trans­
action workload) on a Pentium Pro multiprocessor reported a misprediction 
ratio of 14 % with a branch instruction frequency of about 21 %. The specu­
lative execution factor, given by the number of instructions decoded divided 
by the number of instructions committed, is 1.4 for the database programs. 

Two different conclusions may be drawn from these simulation results: 
branch predictors should be improved further and/or branch prediction is 
only effective if the branch is predictable. If a branch outcome is dependent 
on irregular data inputs, as is often the case in OLTP applications or game­
playing programs, the branch often shows an irregular behavior. This may 
be the reason for the high misprediction rate of the SPECint95 benchmark 
program go. 

11 called a bimodal predictor by McFarling 
12 called a local predictor by McFarling, per-address scheme in Yeh and Patt's 

nomenclature. 
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Table 4.1. SAg, gshare and McFarling's combining predictor 

committed conditional taken misprediction rate 
Application instructions branches branches (%) 

(in millions) (in millions) (%) SAg gshare combining 
compress 80.4 14.4 54.6 10.1 10.1 9.9 
gee 250.9 50.4 49.0 12.8 23.9 12.2 
perl 228.2 43.8 52.6 9.2 25.9 11.4 
go 548.1 80.3 54.5 25.6 34.4 24.1 
m88ksim 416.5 89.8 71.7 4.7 8.6 4.7 
xlisp 183.3 41.8 39.5 10.3 10.2 6.8 
vortex 180.9 29.1 50.1 2.0 8.3 1.7 
jpeg 252.0 20.0 70.0 10.3 12.5 10.4 
mean 267.6 46.2 54.3 8.6 14.5 8.1 

4.3.4 Predicated Instructions and Multipath Execution 

Confidence estimation. If a branch is not, or is not easily, predictable, 
its irregular behavior will frequently yield costly misspeculations. The pre­
dictability of branches can be assessed by additionally measuring the confi­
dence in the prediction. A low confidence branch is a branch which frequently 
changes its branch direction in an irregular way making its outcome hard to 
predict or even unpredictable. 

Confidence estimation is a technique for assessing the quality of a par­
ticular prediction. If applied to branch prediction, a confidence estimator 
attempts to assess the prediction made by a branch predictor. Because each 
branch is eventually determined to have been predicted correctly or incor­
rectly, the confidence estimator assigns a "high confidence" (HC) or a "low 
confidence" (LC) to each prediction. In combination with the two predic­
tion outcomes "correctly predicted" (C) and "incorrectly predicted" (I), four 
confidence classes can be measured: 

• correctly predicted with high confidence C(HC); 
• correctly predicted with low confidence C(LC); 
• incorrectly predicted with high confidence I(HC); and 
• incorrectly predicted with low confidence I(LC). 

When a branch is actually resolved, the branch can be classified as belonging 
to one of these classes (Grunwald et al. [110]). 

To implement a confidence estimator, information from the branch pre­
diction tables is used. Smith [268] proposed already in 1981 to use saturation 
counter information to construct a confidence estimator. The concept was to 
speculate more aggressively when the confidence level is higher [269]. Jacob­
sen et at. [148] used a miss distance counter table (MDC) in addition to the 
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branch predictor. Each time a branch is predicted, the value in the MDC is 
compared to a threshold. If the value is above the threshold, then the branch 
is considered to have high confidence, and low confidence otherwise. Tyson 

et al. [305] observed that a small number of branch history patterns typically 
leads to correct predictions in a PAs predictor scheme. Their confidence esti­
mator assigned high confidence to a fixed set of patterns and low confidence 
to all others [110]. 

Confidence estimation can be used for speculation control provided that 
ways other than branch speculation can be used to utilize the processor 
resources. Such alternative ways can be, for example, thread switching 
in multithreaded processors (see Chap.6) or multipath execution where 
instructions from both branch directions are fetched and executed, and 
the wrong path instructions are afterwards discarded. In a simultaneous 
multithreaded processor (see Sect. 6.4), it may be more cost effective to 
switch threads than speculatively evaluate a branch of low confidence. 
In a multi path execution model both branch paths of a low confidence 
branch may be evaluated, whereas a conventional branch speculation may 
be employed to high confidence branches. Both techniques need the ability 
of a processor to pursue two different instruction streams simultaneously. 
Because of the limitation of a single instruction pointer in today's super­
scalar processors, such techniques are confined to multithreaded processors 
and related processor techniques such as multiscalar (Sect.5.4) and trace 
processors (Sect. 5.5). 

Predicated instructions. One technique that allows us to "evaluate" two 
branch paths in a multiple-issue processor is predication (see Mahlke et al. 

[188], August et al. [19, 20], Hwu [142]). Using this technique, the ISA of 
a processor is enhanced by so-called predicated or conditional instructions 
and one or more predicate registers. The Boolean result of a condition test 
is recorded in a (one-bit) predicate register. Predicated instructions use a 
predicate register as an additional input operand. 

Predication is demonstrated by the following source code sequence: 

if (x == O){ 1* branch bi * / 
a = b + c; 
d = e - f; } 

g = h * i; /* instruction independent of branch bl * / 
Translation of the example source code sequence, using a branch instruc­

tion for the alternative, would lead to a speculative execution with instruction 
g = h * i and all later instructions on the speculative path of branch bi. In the 
case of a misspeculation temporary results of this and all later instructions 
would be unnecessarily discarded. 

However, the source code is translated in the following code sequence using 
predicated instructions (each line represents a single machine operation): 
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(Pred = (x == 0)) /* branch bl: Pred is set to true if x equals 0 * / 
if Pred then a = b + c; /* The operations are only performed * / 
if Pred then d = e - /; /* if Pred is set to true * / 
g = h * i; 
As can be seen from the example, predication is able to eliminate a branch 

and, therefore, the associated branch prediction, increasing the distance be­
tween mispredictions. Also the run length of a code block is increased which 
allows better instruction scheduling by an optimizing compiler. However, the 
compiler must assure that the exception behavior is not changed by moving 
the instruction across a set-predicate instruction. 

Predication affects the instruction set, adds a port to the register file, and 
complicates instruction execution. Predication is most effective when con­
trol dependences can be completely eliminated, such as in an if-then with a 
small then body, and when the condition can be evaluated early. The use of 
predicated instructions is limited when the control flow involves more than a 
simple alternative sequence. Moreover, predicated instructions that are dis­
carded still consume processor resources; the fetch bandwidth is especially 
affected. 

If the full instruction set is predicated (a so-called full predication model), 
predication bits in the opcode are additionally needed for each instruction to 
denote a predicate register. Thus, often only a few instructions of the ISA, 
in most cases the load instructions, are predicated instructions. 

Most signal processors, high-performance micro controllers and some con­
temporary superscalar processors employ predication. As examples, the ARM 
processor ISA is fully predicated; Alpha, MIPS, PowerPC, and SPARC pro­
cessors use conditional move instructions, and the Intel Merced will be fully 
predicated (see Sect. 4.10.2). 

Predicated instructions are fetched, decoded, and placed in the instruction 
window like non predicated instructions. It depends on the processor architec­
ture how far a predicated instruction proceeds speculatively in the pipeline 
before its predication is resolved: 

• A predicated instruction executes only if its predicate is true, otherwise 
the instruction is discarded. In this case predicated instructions are not 
executed before the predicate is resolved . 

• Alternatively, as reported for Intel's IA-64 ISA, the predicated instruction 
may be executed, but commits only if the predicate is true, otherwise the 
result is discarded (Dulong [71]). 

The latter case is similar to the eager or multipath execution model described 
below. 

Eager execution. With the eager or multipath execution model, execution 
proceeds down both paths of a branch, and no prediction is made. When a 
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branch resolves, all operations on the non-taken path are discarded. Conse­
quently, eager execution with unlimited resources, which can be characterized 
as "oracle execution", would give the same theoretical maximum performance 
as a perfect branch prediction. With limited resources, the eager execution 
strategy must be employed carefully. Resource consumption rises exponen­
tially with each level of branches that are executed eagerly. Therefore, instead 
of employing full eager execution, a mechanism is required that decides when 
to employ prediction and when eager execution. 

One decision mechanism is the use of a confidence estimator. If a branch 
prediction can be made with high confidence, branch prediction and single 
path speculative execution is employed; when low confidence is the case, eager 
execution spares the misprediction penalty. 

Until now, the eager execution strategy has rarely been implemented, 
except for limited applications, such as instruction fetch in the SuperSPARC 
processor and in the IBM 360/91 (Uht et al. [307]) and subsequent IBM 
mainframes, for example, the IBM 3090 processor. 

The "nanothreaded" DanSoft processor implements a multi path-execution 
model using confidence information from a static branch prediction mecha­
nism (see Sect. 6.3.5). 

A number of research projects have surveyed eager execution. The Poly­
path architecture (Klauser et al.) [163] enhances a superscalar processor by 
a limited multipath execution feature to employ eager execution. Heil and 
Smith [130] propose selective dual path execution; and Tyson et al. [305] pro­
pose a limited dual path execution. Wallace et at. [318] survey threaded mul­
tipath execution, employing eager execution in a simultaneous multithreaded 
processor model. 

Unger et al. [308, 309] propose a compiler technique called simultaneous 
speculation scheduling in combination with a "minimal" multithreaded execu­
tion model to enable speculative execution of alternative program paths. The 
technique is only applicable for architectures that fulfill certain requirements 
of a base multithreaded processor model: 

• First, the processor must be able to pursue two or more threads of con­
trol concurrently, i.e., it must provide two or more independent program 
counters. 

• All concurrently executed threads of control share the same address space, 
preferably the same register set. 

• The instruction set must provide a number ofthread-handling instructions: 
Here the minimal requirements for multithreading are an instruction for 
creating a new thread (fork) and an instruction that conditionally stops 
its own execution or the execution of some other threads (sync). 

• Creating a new thread by the fork instruction and joining threads by the 
sync instruction must be extremely fast, preferably single-cycle operations. 

Uht and Sindagi [306, 307] propose the disjoint eager execution technique. 
The idea is to assign resources to branch paths whose results are most likely to 
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be used, i.e., branches with the highest cumulative execution probability. Uht 
and Sindagi '8 notion of branch execution probability is closely related to the 
confidence in a branch prediction, for which they use the branch prediction 
accuracy, i.e., the percentage of taken or untaken executions of a branch. 

While a branch path is speculatively executed, further branches may be 
encountered before the first branch resolves, often resulting in a branch spec­
ulation level of 4 or more. The cumulative execution probability accumulates 
the prediction accuracies of a branch and of the pending (predicted but yet 
to be resolved) branches of previous speculation levels. If all branches in such 
a sequence of pending branches are simply assumed to be independent of 
each other, the single prediction accuracies can be multiplied to determine 
the cumulative execution probability of the last branch in the sequence. 

Thus in the disjoint eager execution model, all branches are predicted, the 
cumulative prediction accuracy is computed and compared to the accuracies 
of all branch paths that were yet to be chosen for speculative execution. The 
branch path with the highest cumulative prediction accuracy is executed, 
leading to either another single path speculative execution or an eager exe­
cution. 

The three different possibilities of single path speculative execution as 
produced by the usual speculation methods described above, full eager ex­
ecution, and disjoint eager execution are demonstrated in Fig.4.15 [307]. 
Each line with an arrow represents a branch path marked by its cumula­
tive probability. For illustration, branch prediction accuracy is 70 % for each 
individual branch. All branches are pending. Branch paths with circled num­
bers are in execution, branch paths that are not chosen by the prediction 
are the paths without circled numbers. Circled numbers indicate the order of 
the resource assignment, i.e., the order in which the paths are speculatively 
assigned. Figure4.15(c) shows that the disjoint eager execution strategy al­
locates resources to more likely branch paths than the single path and the 
eager execution models. 

4.3.5 Prediction of Indirect Branches 

All branch prediction techniques reported above are directed towards predic­
tion of direct branches, whose targets are encoded in the instruction itself. 
Indirect branches, which transfer control to an address stored in a register, 
are even harder to predict accurately. Though indirect branches are not as 
frequent as direct branches in C- or FORTRAN-benchmark programs, indi­
rect branches occur with higher frequency in machine code compiled from 
object-oriented programs like C++ and Java. Virtual function tables, used 
in C++ and Java compilers to implement late binding of subroutine invoca­
tions, execute an indirect branch for every polymorphic call. A simple BTB 
is a poor predictor for branches with changing targets. One simple possibility 
is to update the PHT to include the branch target addresses. 
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Fig. 4.15. (a) Single path speculative execution (b) full eager execution (c) dis­
joint eager execution 

Driesen and Hoelzle [70] reported an indirect branch frequency of once 
every 50 instructions for several large object-oriented C++ programs. They 
investigated two-level and hybrid indirect branch predictors and reported a 
misprediction rate of 9.8 % with a 1 k-entry table, 7.3 % with an 8 k-entry 
table, 8.98 % for a 1 k-entry hybrid predictor, and 5.95 % in the 8 k-entry 
hybrid predictor case. 

4.3.6 High-Bandwidth Branch Prediction 

Future microprocessors will require more than one prediction per cycle start­
ing speculation over multiple branches in a single cycle. Here the GAg scheme 
is able to predict multiple branches without knowing the branch instruc­
tion address. However, the instruction fetch is also affected. When multiple 
branches are predicted per cycle, instructions must be fetched from multiple 
target addresses per cycle, complicating I-cache access. A trace cache (see 
Sect. 5.5) in combination with next trace prediction is able to solve both 
problems by fetching from a dynamically assembled trace line, rather than 
from I-cache. 

A combination of branch handling techniques will most likely be applied, 
such as a multi-hybrid branch predictor (Evers et al. [80], Fatt et al. [229]; 
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see Sect. 5.2) combined with support for context switching, indirect jumps, 
and interference handling. 

Table 4.2 shows some branch handling techniques and their implementa­
tions in state-of-the-art microprocessors. 

Table 4.2. Branch handling techniques and implementations 

Technique Implementation examples 

No branch prediction Intel 8086 -_ .. _--.... _-_ ............. -_ ... _--.. -......... - .. -..... _--.. -................ - .... _ ............... ---........ ---.. _-_ ................ --......... _--..... __ .. -...... 
Static prediction: 

always not taken Intel i486 

always taken Sun SuperSPARC 

backward taken, forward not taken HP PA-7xOO 

semistatic with profiling early PowerPCs -----_ ....... _---_ .... _----_ .. _----_ ... _--_ .... _---_ ... _-- ......... _--_ ..... _-----_ .. _-_ ......... _----_ .. _--_ .... _--_ .. _------
Dynamic prediction: 

1-bit DEC Alpha 21064, AMD-K5 

2-bit 
PowerPC 604, MIPS R10000, 
Cyrix 6x86 and M2, NexGen 586 

two-level adaptive Intel Pentium Pro, Pentium II, AMD-K6 
--------------------------------------------- ----------_ ... _-----_ .. _---_ ..... _--_ .... _---_ .... _---_ ...... _-

Hybrid prediction DEC Alpha 21264 . __ .... _---_ .... _---_ .. -----_ .. --.... __ .. --.... __ ... _--..... _ .. -...... ------ ... -----_ .. _----_ .. __ .......... _---_ ..... _--_ ...... _---
IntellHP Merced and most signal 

Predication processors as, e.g., ARM processors, 
TI TMS320C6201 and many other 

-_ .. -----_ ....... _-----_ .... _----_ ... _------_ ... _------- ---_ .. _------...... _ .... ---.... _-----_ .... --- ............ -.............................. 

Eager execution (limited) IBM mainframes: IBM 360/91, IBM 3090 _ ..... _----_ ....... _--_ ..... _-_ ...... - ............................................. _ ... _ .............. _-_ .......... _ .............. __ .......... _-_ .............. _--_ ...... _--_ .... _--
Disjoint eager execution none yet 

4.4 Decode 

For good performance, the processor must fetch and decode instructions at 
a higher bandwidth than it can execute them. If the instruction window is 
kept full, the deeper instruction lookahead allows more instructions to be 
issued to the functional units. Moreover, the processor fetches and decodes 
more (today about twice as many) instructions than it commits, because it 
discards instructions on mispredicted branch paths. 

Typically the decode bandwidth is the same as the instruction fetch band­
width. Multiple instruction fetch and decode is supported by a fixed instruc­
tion length. 
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If the instruction length varies, which is often the case for legacy CISC 
instruction sets such as the Intel x86 ISA, a multistage decode is necessary. 
The first stage determines the instruction limits within the instruction stream 
provided by the fetch unit, and delivers a number of instructions to the second 
decode stage. The second stage decodes the instructions generating one or 
several \lOps from each instruction. Complex CISC instructions are split into 
\lOps which resemble ordinary RISC instructions. 

The advantage of CISC instructions over RISC instructions is the denser 
code (especially if a Huffman encoding is used), the disadvantage is the more 
complex decode. The same argument is valid for a stack register instruction 
set. 

If the opcode organization is adequate, the IF stage can analyze part of 
the opcode and use it for prediction. If a partial decode is done when the 
instructions are transferred from memory or secondary cache to the I-cache 
(see PowerPC 620 or MIPS RIOOOO), the decode stage is simpler. 

For instance, the MIPS RIOOOO predecodes each 32-bit instruction into a 
36-bit format stored in the I-cache. The four extra bits indicate which func­
tional unit should execute the instruction. The predecoding also rearranges 
operand- and destination-select fields to be in the same position for every 
instruction, and modifies opcodes to simplify decoding of integer or floating­
point destination registers (Yeager [330]). Thus the decoder can decode this 
expanded format more rapidly than the original instruction format. 

4.5 Rename 

The aim of register renaming is to remove antidependences and output de­
pendences dynamically by the processor hardware. Register renaming is the 
process of dynamically associating specific physical registers (also called re­
name registers) with the architectural registers (also called logical registers) 
referred to in the instruction set of the architecture. The physical registers 
are internal registers that cannot be accessed directly by the programmer or 
compiler. 

Register renaming is implemented by allocating a new physical register for 
every destination register specified in an instruction. If the same architectural 
register is used by a preceding instruction either as an operand or destination 
register, that register is mapped to another physical register, thus dynami­
cally removing antidependences and output dependences from the instruction 
flow. Succeeding instructions that use the same architectural register as an 
operand register access the newly allocated physical register as an input reg­
ister. After the mapping, register data dependences are simply detected by 
comparing physical register numbers, no longer considering instruction order. 

Each physical register is written only once after each assignment from 
the free list of available registers. If a subsequent instruction needs its value, 
that instruction must wait until it is written (data dependence). After the 
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register is written, it is ready, and its value never changes. When a subse­
quent instruction updates the corresponding architectural register, the result 
is written into a newly assigned physical register. 

Typically there are more physical registers than architectural registers. 
For instance, the Pentium Pro ISA defines 8 architectural integer registers, 
but contains 40 physical registers. Separate sets of physical registers are pro­
vided to rename integer registers and floating-point registers. The MIPS 
RIOOOO ISA defines 33 architectural integer registers (including Hi and Lo 
registers used for integer divides) and 32 architectural floating-point regis­
ters, but provides 64 physical integer registers and 64 physical floating-point 
registers. 

There are two principal techniques to implement renaming: 

• Separate sets of architectural registers and rename (physical) registers are 
provided. The physical registers only contain temporary values (of com­
pleted but not yet retired instructions), while the architectural registers 
store the committed values. After commitment of an instruction, copying 
its result from the rename register to the architectural register is required. 
The PowerPC 604 and 620 provide both types of registers in hardware, 
and a separate copy stage after the commit stage. The physical register is 
freed for re-use when the instruction commits and its result is written back 
to the corresponding architectural register . 

• Only a single set of registers is provided and architectural registers are 
dynamically mapped to physical registers. The physical registers contain 
committed values and temporary results. After commitment of an instruc­
tion, the physical register is made permanent and no copying is necessary. 
This is the mode implemented in the Pentium II and in the MIPS RIOOOO. 
The old physical register can be freed for re-use when a subsequent instruc­
tion writes to the corresponding architectural register. 

The physical registers can be implemented in the reservation stations as is 
the case in Tomasulo's scheme of renaming or they can be separate from the 
reservation stations. 

Another alternative to dynamic renaming is the use of a large register file, 
as defined for the Intel Merced. Antidepencences and output dependences can 
be removed by a static register mapping by the compiler. One problem of this 
approach is that more registers need more bits in the instruction format to 
specify the register numbers. This extra space may not be available in a 
32-bit instruction format. Moreover, the more complex register access may 
limit cycle time or lead to a two-stage register access and write-back, thus 
increasing pipeline length by an additional stage. On the other hand, the 
renaming hardware is saved, leading to less hardware complexity. 

Register mapping is often not a pipeline stage on its own, but is combined 
with the decode stage. After renaming the instruction is written into the 
instruction window, awaiting issue to functional units. 
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4.6 Issue and Dispatch 

The notion of the instruction window comprises all the waiting stations be­
tween the decode (rename) and execute stages. The instruction window iso­
lates the decode/rename from the execution stages of the pipeline. The de­
code stage continues to decode instructions regardless of whether they can 
be executed immediately or not. The decode stage places the decoded (and 
renamed) instructions in the instruction window as long as there is room in 
the window. 

The instructions in the instruction window are free from control depen­
dences, which are removed by branch prediction, and free from antidepen­
dences or output dependences, which are removed by renaming. Thus only 
data dependences and resource conflicts remain to be taken into considera­
tion. 

Instruction issue is the process of initiating instruction execution in the 
processor's functional units. 13 The instruction-issue policy is the protocol 
used to issue instructions. The processor's lookahead capability is the ability 
to examine instructions beyond the current point of execution in the hope of 
finding independent instructions to execute (Johnson [150]). 

Hennessy and Patterson (134] distinguish dynamic from static issue, and 
dynamic from static scheduling. In this terminology, superscalar is character­
ized by a dynamic issue, whereby it is decided by hardware which instructions 
are issued and the issue of a varying number of instructions per clock cycle 
is possible. Dynamic issue can be statically scheduled or dynamically sched­
uled, meaning instructions must be issued in program order as defined by the 
compiler, or the issue can also be performed out of order, i.e., (dynamically) 
scheduled by the hardware. 

VLIW is characterized by a static issue whereby a fixed number of in­
structions is issued each cycle, which are statically scheduled by the compiler. 
The instructions can be organized as one large instruction or as a fixed in­
struction packet. 

To summarize, Hennessy and Patterson distinguish dynamic (superscalar) 
from static (VLIW) issue, and dynamic (out-of-order) from static (in-order) 
scheduling. In-order issue was the rule for superscalar processors until ap­
proximately 1995. Out-of-order issue reaches better IPC (instructions per 
cycle) and is adopted by all state-of-the-art superscalar microprocessors. 

Today, superscalar microprocessors are able to issue up to four or six in­
struction per cycle out of order from a 16-entry to 56-entry instruction win­
dow. A large instruction window and excellent branch prediction is necessary 
to reach an IPe value that is close to the maximum-issue bandwidth.14 

13 We use the term issue for an issue to a FU or a reservation station and the term 
dispatch, if a second issue stage exists, to denote when an instruction begins 
execution in the functional unit. 

14 There exists a strong relation to the dataflow scheme (see Chap. 2). Dynamic 
scheduling can be viewed as a kind of "local dataflow" or "windowed dataflow". 
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One way to implement the instruction window is to centralize the window 
buffering of every instruction for every FU in a common window. The problem 
with a large central instruction window is that an issue from a single large 
instruction window limits future cycle rate increase. In each processor cycle, 
the availability of operands has to be updated, instructions that are ready to 
issue have to be selected, and availability of the appropriate resources must 
be checked. The necessary resources for an instruction to be issued comprise 
a free functional unit (or a free entry in its reservation station) and an entry 
in the reorder buffer. The update and select complexity rises extremely quick 
as the instruction window is made larger. 

Moreover, each instruction issued in a single cycle must be accompanied 
by all its required operands. If the instruction window is distributed to in­
dividual buffers to each FU, these buffers are called reservation stations. As 
in the Tomasulo scheme a single reservation station is able to host a single 
instruction.15 

There exist several alternatives to a single-stage issue from a central in­
struction window: 

• The first alternative is a multistage issue. Operand availability and resource 
availability checking is split into two separate stages. A resource dependent 
issue can be performed first to reservation stations which are arranged in 
front of each FU or in front of a group of related FUs. In the second stage, 
the instruction is dispatched to the FU when operands are available and 
instruction execution starts. 
In principle, the two stages could also be organized in reverse order. Data 
dependence checking is performed first and instructions are issued to (pos­
sibly decoupled) reservation stations. Execution of an instruction starts 
when the appropriate FU is free . 

• A second alternative is the decoupling of instruction windows. A small 
number of instruction windows (or reservation stations) is provided. Each 
instruction window is shared by a group of (usually related) FUs. In the HP 
PA-SOOO, separate floating-point and integer/general-purpose windows are 
provided; in the MIPS RIOOOO floating-point, integer, and address windows 
are distinguished. 
Data dependence checking is simplified, because data dependences are 
mostly limited to each of the instruction windows. A slower exception mech­
anism may be provided for the few dependences between floating-point and 
integer instructions, for example. 

In contrast to the superscalar approach, no renaming is necessary in the dataflow 
scheme because of the single-assignment rule, and no branch prediction or spec­
ulative execution is taken into consideration. In principle, the ''instruction win­
dow" in the dataflow scheme is the capacity of the matching store, and enabling 
of instructions is tested by the matching unit. 

15 In contrast to the definition above, a reservation station is sometimes defined in 
literature as a multiple-entry reservation station - an instruction buffer contain­
ing several entries. We adhere to the original definition given by Tomasulo. 
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• The third alternative is a combination of multistage issue and decoupling 
of instruction windows. The decoupling can even be extended to a com­
plete distribution as done by reservation stations which are dedicated to 
individual FUs (e.g., PowerPC). Instructions can only be dispatched to the 
associated FU. However, the availability of operands may depend on result 
values delivered from an arbitrary FU. 

The issue from each of the instruction windows can be an in-order or an out­
of-order issue. In a two-stage issue scheme, with resource dependent issue 
preceding the data-dependent dispatch, the first stage is still performed in 
order, while the second stage is performed out of order. Moreover, if operands 
are available and the FU is idle, the instruction may be dispatched imme­
diately, during issue to the reservation station, thus avoiding the dispatch 
cycle. The following issue schemes are commonly used: 

• single-level issue out of a central window as in the Pentium II processor 
(see Fig.4.16), 

Decode 
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Fig. 4.16. Single-level, central issue scheme 

• single-level issue with an instruction window decoupling using two separate 
windows (most commonly separate floating point and integer windows as 
in HP 8000 processor; see Fig.4.17), 
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Fig. 4.17. Single-level, two-window issue scheme 
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• two-level issue with multiple windows with a centralized window in the 
first stage and separate windows in the second stage. Figure 4.18 shows a 
two-level issue as performed in the PowerPC 604 and 620 processors. At 
first resource conflicts (structural hazards) are checked and up to four in­
structions are issued in order to the respective reservation stations in front 
of the appropriate FUs. A resource conflict arises when multiple instruc­
tions should be issued to reservation stations of the same FU, when the 
reservation station(s) for the appropriate FUs are full, or when the reorder 
buffer is full. In a second stage an instruction can be dispatched from a 
reservation station to its FU as soon as all input operands are available 
and the FU is not busy. The issue is performed from a central instruction 
window to reservation stations which are separate for each FU. 

Decode 
and 
Rename 

Issue Dispatch 

Reservation Stations 

Fig. 4.18. Example of a two-level issue scheme 

If several instructions are ready for issue, exceeding the issue bandwidth, an 
instruction issue strategy is applied. In superscalar processors the strategy 
is either an oldest-instruction first or a round-robin scheduling concerning 
the entries in the instruction window. Instruction issue strategies get more 
interesting in simultaneous multithreaded processors (see Sect. 6.4) that are 
able to issue instructions of several threads simultaneously and often provide 
more enabled instructions than the issue bandwidth allows. 

In future superscalar processors, the issue may be even more complicated 
by a speculation beyond data dependences. Operand value prediction, load 
value and load address prediction, constant value and stride value prediction, 
and related prediction techniques lead to a speculative execution of data 
dependent instructions (see Sect. 5.3). This may prove useful when a multi­
stage issue is combined with a large issue bandwidth that cannot be filled 
otherwise. 
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4.7 Execution Stages 

A FU executes an instruction in one or several cycles and in pipelined or 
nonpipelined fashion until the execution completes which makes the result 
available for forwarding and buffering. 

There exist various types of FUs that may be classified as single-cycle 
(latency of one) or multi-cycle (latency more than one) units. Single-cycle 
units are the simplest kinds of FUs which produce a result one cycle af­
ter an instruction started execution. Usually they are also able to accept a 
new instruction each cycle (throughput of 1). Multicycle units perform more 
complex operations that cannot be implemented within a single cycle under 
the respective timing constraints of the processor. Multicycle units can be 
pipelined to accept a new operation each cycle or every other cycle or they 
are nonpipelined. Another class of unit exists that performs the operations 
with variable cycle times. 

Types of FUs are: 

• single-cycle (single latency) units: (simple) integer and (integer-based) mul­
timedia units; 

• multi-cycle units that are pipelined (throughput of 1): complex integer, 
floating-point, and (floating-point-based) multimedia unit (also called mul­
timedia vector units); 

• multi-cycle units that are pipelined but do not accept a new operation each 
cycle (throughput less than 1): often the 64-bit floating-point operations 
in a floating-point unit; 

• multi-cycle units that are not pipelined: division unit, square root units, 
complex multimedia units; 

• variable cycle time units: load/store unit (depending on cache misses) and 
special implementations of floating-point units, for example. 

Simple integer unit. A simple integer unit typically contains an ALU 
that handles all the 32-bit (or 64-bit) fixed-point addition instructions and 
the logical instructions. 

Complex integer unit. A complex integer unit handles the more complex 
integer operations as, for example, the 32-bit and 64-bit signed and unsigned 
integer multiplications. The fully pipelined unit can start a new multiply 
instruction every clock cycle with an execution latency of three cycles. The 
multiplier typically uses Booth partial product generators and a Wallace 
tree to sum the partial products. For integer divisions a dedicated division 
unit may be present or divisions are performed by the complex integer 
unit in a nonpipelined fashion. Dividers typically use a radix-4 or radix-8 
SRT algorithm (Sweeney-Robertson-Tosher) with a latency depending on 
the operand type and precision (see Hennessy and Patterson [134] for a 
description of these algorithms). Latencies are typically in the range of 13 
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to 17 cycles for a single-precision division. The divide unit is most often also 
used for square root computations, if such an instruction is present in the 
ISA (as for example in the MIPS R10000). 

Floating-point execution unit. Floating-point execution units are fully 
pipelined and able to perform floating-point operations in ANSI/IEEE 754-
1985 single-precision or double-precision formats. Typically a three-cycle la­
tency is needed, although a special shortcut may reduce the latency for the 
floating-point compare instruction to one cycle. Due to the exceptions in the 
IEEE floating-point standard, the rounding and normalization can especially 
be rather complex. Thus, the full IEEE standard is not usually implemented 
in hardware. 

Load/store unit. Load/store units are rather complex units and cannot be 
covered here in full detail. Therefore only a few basic facts are presented. 
Primary D-cache access is performed in two cycles which results in a two 
cycle load latency in the case of a D-cache hit. After address calculation 
a load instruction simultaneously accesses the TLB for virtual to physical 
address translation, the cache tag array, and the cache data array. Different 
queues are present within the load/store unit for loads that only need an 
address and for stores that need a store address and a value. 

To preserve correct branch speculation rerolling and a precise exception 
mechanism, store operations are allowed to affect the D-cache or memory only 
when the store instruction commits. Therefore, store instructions may block 
succeeding load instructions. This can be avoided when loads are allowed 
to pass store instructions provided that the addresses are different. Thereby 
processor performance is increased, because instructions that are data de­
pendent on the loaded value can be issued faster. However, the sequential 
consistency16 assumed by most programs can no longer be guaranteed. 

A similar potential violation of sequential consistency arises with non­
blocking or lockup-free caches that are state-of-the-art. In this caching scheme 
a cache miss does not block further load/store operations provided that the 
same cache line is not affected. Often up to four memory operations can be 
outstanding. 

16 Sequential consistency was defined by Lamport, 1979 [171] for multiprocessor 
systems as follows: The results of any execution is the same as if the operations 
of all the processors were executed in some sequential order, and the operations 
of each individual processor were to appear in this sequence in the order specified 
by its program. The principal benefit of sequential consistency as an interface to 
shared-memory multiprocessor hardware is that sequential consistency is what 
people expect (Hill [135)). Sequential consistency is defined to guarantee that 
load and store accesses of parallel programs executed on a multiprocessor system 
arrive in program order at the memory, and the parallel programs are executed as 
in multiprogramming fashion on a single-processor system. However, sequential 
consistency prevents reordering of load/store accesses. 
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Typically a load cannot pass a store operation when the store address has 
not yet be computed. In this case the load may be executed speculatively, 
assuming that the load address is different from all addresses of all passed 
store operations. If that is not the case, the loaded value must be discarded. 

The single load/store unit is often a bottleneck for the performance 
of today's microprocessors, but multiple load/store units are difficult to 
implement. 

Media processing. Media processing (digital multimedia information pro­
cessing) is the decoding, encoding, interpretation, enhancement, and ren­
dering of digital multimedia information. One important example for media 
processing is the MPEG-2 video algorithm - the video compression standard 
defined in ISO/IEC 13818-2 [146]- that has been chosen for digital TV (ca­
ble, satellite, terrestrial broadcast), DVD and HDTV. It provides high quality 
video with data rates of 2-20 Mb/s. The MPEG-2 video decompression (or 
decoding) can be divided into the following six steps: 

1. Header decode provides video sequence parameters such as picture rate, 
bit rate, image size, structure, and decoding parameters. 

2. Huffman decode decodes variable-length codes into fixed length numbers, 
which represent quantized inverse DCT (IDCT) coefficients, scaling fac­
tors, and motion vectors. This step includes run-length decoding of zeros 
for the DCT coefficients. 

3. Inverse quantization multiplies coefficients by quantizer factors to restore 
them to the original range. 

4. IDCT changes each 8 x 8 block of IDCT coefficients to convert the data 
from the frequency domain back to the original spatial domain. This gives 
the actual pixel values for I-blocks, but only the differences for each pixel 
for P-blocks and B-blocks. 

5. Motion compensation adds the differences in the IDCT step to the pixels 
in the reference block as determined by the motion vector for P-blocks, 
and to the average of the forward and backward reference blocks for 
B-blocks. 

6. Display converts color from YCbCr coordinates to RGB color coordi­
nates, including upsampling Cb and Cr values, and writing to the frame 
buffer for displaying the decoded video. 

Today's video and 3D graphics require high bandwidth and processing per­
formance. This can be achieved by: 

• separate special-purpose video chips (e.g., for MPEG-2, 3D-graphics, etc.); 
• multi-algorithm video chip sets; 
• programmable video processors which are typically very sophisticated, dig­

ital signal processors (e.g., TMS320C82, Siemens Tricore, or Hyperstone); 
• specialized media processors and media coprocessors (e.g., the Philips Tri­

media TM-l (Rathnam and Slavenburg [238]), the MPACT (I{alapathy 
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[152], Foley [89]) and MPACT2 (Yao [329]) of Chromatic Research, the 
MicroUnity Media processor (Hansen [122]); and 

• multimedia units which are multimedia extensions for general-purpose pro­
cessors. 

Multimedia unit. Based on the single instruction multiple data (SIMD) 
model, media processors and multimedia extensions for general-purpose pro­
cessors process multiple sets of small operands and obtain multiple results 
with a single instruction. The same operation as indicated by the opcode is ap­
plied to several data items within a register simultaneously, thereby utilizing 
very fine-grained parallelism which is often referred to as SIMD parallelism or 
subword parallelism. Such subword parallel instructions deal with arithmetic 
and logical operations on packed data types, such as 8- by 8-bit bytes, 4- by 
16-bit words, or 2- by 32-bit doublewords, all packed inside one 64-bit quad­
word. Operations include packing and unpacking, arithmetic, comparisons, 
logic, shifting, and (on SPARC and Alpha machines) motion estimation for 
motion-video encoding. Figure 4.19 gives an example of a 4- by 16-bit SIMD 
multiplication. 

Rl: R2: 

Fig. 4.19. Typical multimedia instruction execution 

Multimedia units employ SIMD instructions, saturation arithmetic, and 
additional fixed-point arithmetic, masking, selection, reordering, and conver­
sion instructions. 

The MPEG-2 decompression algorithm does benefit highly from special 
multimedia instructions. Steps 3 to 6 of the MPEG-2 decompression algo­
rithm can be executed in parallel for all blocks (and macro blocks ) of a single 
image, applying the SIMD instructions. Such multimedia instruction sets have 
allowed software-only real-time video decompression without extra hardware. 

Several multimedia extensions are applied in current microprocessors: 

• visual instruction set (VIS) for UltraSPARC chips [165, 301]; 
• multimedia acceleration extensions (MAX-I, MAX-2) for HP PA-8000 and 

PA-8500 (Lee [176, 177]); 
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• matrix manipulation extensions (MMX, MMX2) for the Intel x86 (Peleg 
et al. [232, 233]); 

• the Alti Vec extensions for Motorola processors; 
• motion video instructions (MVI) for Alpha processors; and 
• MIPS digital media extensions (MDMX) for MIPS processors. 

Sun Microsystems was one of the first companies to introduce CPU multime­
dia features, with its VIS for its UltraSPARC CPU. Now all major processor 
architectures have defined multimedia instruction extensions, which vary in 
scope and feature sets. These instructions accelerate calculations and make 
most 2D and 3D graphics and/or video, audio, voice-processing, and data 
communications tasks up to several times faster. 

On Intel's P55C and Pentium II chips, the ALUs and eight 64-bit media 
registers are shared with the FPU, so MMX and floating-point instructions 
cannot be processed simultaneously. This is a problem during rendering oper­
ations, where the FPU is doing geometry calculation and MMX instructions 
are simultaneously trying to do texture mapping. Frequent switching between 
floating-point and MMX modes can impair performance. 

VIS, MVI, and MDMX build on 64-bit RISC architectures with three­
operand instructions and large sets of 64-bit registers (which are already 
present) to facilitate multimedia tasks. With the Alpha, on the other 
hand, the thirty-two 64-bit integer registers handle multimedia operations 
simultaneously with other integer instructions. Sun's VIS is similar to DEC's 
MVI in that it enables operation on an entire 4-by-4 matrix directly to its 
32 registers, compared to only 8 registers for Intel's MMX. 

3D graphical enhancement. MPEG-2 decompression is a good example 
for a class of video stream algorithms but not for 3D applications. A floating­
point unit is not necessary for MPEG-2, but would be necessary for 3D 
applications. 

The ultimate goal is the integrated real-time processing of multiple audio, 
video, and 2D and 3D graphics streams on a system CPU, although time is 
still needed to attain that level of performance. 

In the context of multimedia or 3D graphical enhancements, two (or four) 
paired single-precision floating-point operations are executed in parallel on 
two (or four) single-precision floating-point values stored in a 64-bit (or 128-
bit) register. 

To speed up 3D applications by the main processor, fast low-precision 
floating-point operations are required. Moreover, reciprocal instructions are 
of specific importance, for example, square root reciprocal with low precision. 

Such vector operations are defined by the so-called 3Dnow! extension de­
veloped by AMD and by Intel's MMX enhancement internet streaming SIMD 
extension (ISS E) (previously also code-named Katmai new instructions, KNI 
or MMX-2). 
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The 3DNow! defines 21 new instructions which are mainly paired single­
precision floating-point operations, for example, specifying reciprocal and 
root reciprocal functions with single-precision format. Currently, only AMD's 
K6-2 series carry the 3DNow! instruction set. In the future AMD's K6-3 and 
K7, Cyrix's Cayenne (next-generation 6x86MX) and MXi (next generation 
of MediaGX), and IDT's Win Chip 2 3D will all have the 3DNow! instruction 
set. 

While 3DNow! instructions are meant to optimize 3D games and ap­
plications, Intel's MMX was primarily focused on image, audio, and video 
processing. For this reason, Intel introduced the ISSE set of instructions 
which focus on floating-point-intensive 3D graphics acceleration, and thus 
have much heavier memory demands. In 1999, the ISSE instruction set was 
first time implemented in the new Intel Pentium III processor. The 72 new 
instructions operate on a set of eight additional 128-bit SIMD floating-point 
registers. Four 32-bit low-precision floating-point operations are performed 
in parallel by a new SIMD floating-point unit. 

Future Directions. In future, FUs which are possibly very complex are 
envisaged, such as a floating-point vector unit, a high-accuracy inner product 
floating-point unit, specialized multimedia units like a MPEG unit or a 3D­
graphics unit. 

FUs may be grouped relating to their usage. An example is the decou­
pIing of integer units and floating-point units leading to separate instruction 
windows, forwarding paths, and logical and physical register sets. Forwarding 
is faster within a single group than between groups. 

4.8 Finalizing Pipelined Execution 

4.8.1 Completion, Commitment, Retirement and Write-Back 

An instruction is completed when the FU has finished the execution of the 
instruction and the result is made available for forwarding and buffering. 
Instruction completion is out of program order. 

We use the terms retired, committed, and removed in conformity with 
Shriver and Smith [258] in the following way. After completion, operations 
are committed in order. Retiring an operation does not imply the results of 
the operation are either permanent or nonpermanent. Committing an opera­
tion means that the results of the operation have been made permanent and 
the operation retired from the scheduler. Retiring means removal from the 
scheduler with or without the commitment of operation results, whichever is 
appropriate. Timing-wise, commitment and retirement often happen simul-
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taneously. Shriver and Smith use the term removed to mean the operation is 
retired from the scheduler without making permanent changes.17 

A result is made permanent either by making the mapping of architectural 
to physical register permanent (if no separate physical registers exist) or by 
copying the result value from the rename register to the architectural register 
(in the case of separate physical and architectural registers). The latter is 
often done in a write-back stage of its own after the commitment of the 
instruction. The main effect when using a separate write-back stage is that 
the rename register is freed one cycle after commitment. 

4.8.2 Precise Interrupts 

An interrupt or exception is called precise if the saved processor state corre­
sponds with the sequential model of program execution, where one instruction 
execution ends before the next begins. To be more specific, the saved state 
should fulfil the following conditions [270]: 

• All instructions preceding the instruction indicated by the saved program 
counter have been executed and have modified the processor state correctly. 

• All instructions following the instruction indicated by the saved program 
counter are unexecuted and have not modified the processor state. 

• If the interrupt is caused by an exception condition raised by an instruction 
in the program, the saved program counter points to the interrupted in­
struction. The interrupted instruction mayor may not have been executed, 
depending on the definition of the architecture and the cause of the inter­
rupt. Whichever is the case, the interrupted instruction has either ended 
execution or not started. 

If the saved processor state is inconsistent with the sequential architectural 
model and does not satisfy the above conditions, then the interrupt is impre­
cise. Interrupts belong to two classes: 

• Program interrupts or traps result from exception conditions detected dur­
ing fetching and execution of specific instructions. These exceptions may 
be caused by illegal opcodes, numerical errors such as overflow, or they 
may be part of normal execution, e.g., page faults. 

• External interrupts are caused by sources outside the currently executing 
instruction stream (e.g., I/O interrupts and timer interrupts). For such in­
terrupts, restarting from a precise processor state should be made possible. 

Typically in superscalar processors, instructions stay in sequence until the 
time they are issued. Moreover, the processor state is not modified by an 

17 Unfortunately, the terms completion, retirement, and commitment are often used 
interchangeably or with different meaning in the literature. Hennessy and Patter­
son [1341 use the terms completed and committed as follows: when an instruction 
is guaranteed to complete, it is called committed. 



166 4. Multiple-Issue Processors 

instruction before it issues. When an exception condition can be detected 
prior to issue, instruction issuing is simply halted and the processor waits 
until all previous issued instructions are retired. Then the processor is in 
a precise state with the program counter corresponding to the instruction 
being held in the issue register. Registers and main memory are in a state 
consistent with this program counter value. Examples of such exceptions are 
all external interrupts that can be checked at the issue stage, and program 
interrupts such as illegal opcodes or privileged instruction faults [270]. 

Processors often have two modes of operation. One mode guarantees pre­
cise exception and another mode, which is often 10 times faster, does not. 
Such processors are the POWER2, Alpha 21064, and MIPS R8000. The faster 
mode allows more overlap in long-latency floating-point operation, while pre­
cise exceptions are usually supported for integer operations [134]. 

4.8.3 Reorder Buffers 

In this chapter we usually assume a reorder buffer implementation to organize 
an in-order retirement and allow for precise exceptions. The reorder buffer 
keeps the original program order of the instructions after instruction issue and 
allows result serialization during the retire stage. State bits store whether an 
instruction is on a speculative path, or, when the branch is resolved, whether 
the instruction is on a correct path or must be discarded. When an instruction 
completes, the state is marked in its entry. Also, when a program interrupt 
occurs, the exception is marked in the reorder buffer entry of the triggering 
instruction. The reorder buffer is implemented as a circular FIFO buffer. 
Reorder buffer entries are allocated in the (first) issue stage and deallocated 
serially when the instruction retires. 

During the retire stage a number of instructions at the head of the FIFO 
queue are scanned and an instruction is committed if all previous instruc­
tions are committed or can be committed in the same cycle. In the case of 
instructions that are on a misspeculated path, the instructions are removed 
from the reorder buffer and the physical registers freed without making the 
results permanent or copying back results. The same happens for all subse­
quent instructions after an interrupted instruction. The fetch unit is notified 
to restart fetching instructions from the correct path. Typically the retire 
bandwidth is the same as the issue bandwidth. 

There are several differing implementations of the reorder buffer. The 
reorder buffer may also be defined to hold the result values of completed in­
structions instead ofrename registers (see Johnson [150)). The reorder buffer 
described above does not hold result values but only instruction execution 
states. It is close to Johnson's description of a reorder buffer in combination 
with a so-called future file. The future file is the working file used for com­
putation by the FUs, i.e., it is similar to the set of rename registers that are 
separate to the architectural registers. In contrast, Smith and Pleskun [270] 



4.8 Finalizing Pipelined Execution 167 

describe a reorder buffer in combination with a future file, whereby both re­
ceive and store results at the same time. Moreover the instruction window 
can be combined with the reorder buffer into a single buffer unit. 

4.8.4 Checkpoint Repair Mechanism and History Buffer 

There are also a number of other ways to implement recovery and restart 
mechanisms. Besides the different reorder buffer variations, which are most 
common, such ways include checkpoint repair and a history buffer. 

In the checkpoint repair mechanism, the processor provides a set of log­
ical spaces, where each logical space consists of a full set of software-visible 
registers and memory. One is used for current execution, the others contain 
back-up copies of the in-order state that correspond to previous points in 
the execution. At various times during execution, a check point is made by 
copying the architectural state of the current logical state to the back-up 
space. Restarting is accomplished by loading the contents of the appropriate 
back-up stage into the current logical state [150]. 

The history buffer was proposed by Smith and Pleskun ([270], 1985) to­
gether with the reorder buffer and future file as another alternative for re­
covery organization. There are no rename registers in a history buffer organi­
zation. Rather the (architectural) register file contains the current state, and 
the history buffer contains old register values which have been replaced by 
new values. The history buffer is managed as a LIFO stack, and the old values 
are used to restore a previous state, if necessary. A history buffer organization 
was used for the Motorola 88110 microprocessor. 

4.8.5 Relaxing In-order Retirement 

As described above, retiring is always strictly in program order, thereby guar­
anteeing result serialization as demanded by the serial instruction flow of the 
von Neumann architecture. The only relaxation that may exist is in the order 
of load and store instructions which may arrive at the processor in an order 
different to the program order. Thus even a fully parallel and highly specu­
lative processor must sometimes look like a simple von Neumann processor 
when it was state-of-the-art in the 1950s. 

Relaxing in-order retirement is not implemented in today's superscalar 
microprocessors. Nevertheless it is possible. Assume an instruction sequence 
A ends with a branch that predicts an instruction sequence B, and B is 
followed by a sequence C which is not dependent on B. Thus C is executed 
independently from the branch direction. Therefore, instructions in C can 
start to retire before B. If predication is provided by the processor, B can 
also be implemented by predicated instructions to remove the branch. Then 
the instructions in C can be retired before the predicated instructions. 

There are at least two complications. An interrupt signaled by one of 
the instructions in B is hard to implement in a precise manner. Moreover, 
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it is difficult to relax retirement constraints without sacrificing binary code 
compatibility with legacy code. 

4.9 State-of-the-Art Superscalar Processors 

4.9.1 Intel Pentium family 

Intel's family of CISC microprocessors are the most commercially important 
microprocessors to date. The architectural line of the Intel ISA started with 
the CISC microprocessor Intel 8086, successively refined by the scalar proces­
sors 8088, 80286, Inte1386, Intel486 (see Table 3.1) and then continued with 
superscalar processors from the families P5 and P6 (see Table 4.3). 

The Pentium processor was a member of the P 5 family (Alpert and A vnon 
[6]) and was the first Intel 2-issue superscalar processor. In 1995, it was fol­
lowed by the Pentium Pro, which was the first member of the P6 family 
(Colwell and Steck [53], Gwennap [114], Papworth [227]). In 1997, Intel intro­
duced MMX into the P5 and P6 families which resulted in the Pentium MMX 
processor (also called P55C) and the Pentium II processor ([143, 144]; Bhan­
darkar and Ding [27]). In 1999, ISSE instruction set was implemented in the 
Pentium III processor. 

Table 4.3. The Intel P5 and P6 family 

Year Type Transistors Technology Clock L 1cache L2cache Issue Word 
(x1000) (~m) (MHz) format 

2 32-bit 1993 Pentium 3100 0.8 66 2 X 8 kB 
2 32-bit 1994 Pentium 3200 0.6 75-100 2 X 8 kB 
2 32-bit 1995 Pentium 3200 0.6/0.35 120-133 2 X 8 kB 

1996 Pentium 3300 0.35 150-166 2 32-bit 2 X 8 kB 
--1991"--Pentfuiii-MMX--------- -----456o----------0~35--------io6~i3:i------2-------:i2--1i~----2-X-16-kB-----------------

1998 Mobile Pentium MMX 4500 0.25 200-233 2 32-bit 2 X 16 kB 
--199S---PentiuiiiPro----------- -----556o-----------0~3-5--------150~io6------3-------:i2-ii~-----2-i("ii-kB----256/512kB-

1997 PentiumPro 5500 0.35 200 3 32-bit 2 X 8 kB 1 MB 
--i99s---iiiiefCeieron---------- -----756o----------0~2-5--------i66~:io6------3-------:i2--ii~---TX_i6-kB---------::------

1998 Intel Celeron 19000 0.25 300-333 3 32-bit 2 X 16 kB 128 kB 
--i997---Pentiuiii-ii------------- -----756(j----------O~25--------i3-3456------3------:i2--1i~---TX_16-kB-------51-i-ks---

1998 Mobile Pentium II 7500 0.25 300 3 32-bit 2 X 16 kB 512 kB 
1998 Pentium II Xeon 7500 0.25 400-450 3 32-bit 2 X 16 kB 512 kB/1 MB 
1999 Pentium II Xeon 7500 0.25 450 3 32-bit 2 X 16 kB 512 kB/2 MB 

--i999---Peniiuiii-ili------------- -----956o-----------0~25-------450~506------3-------:i2--liiT--Tx-16-kB------51-i-ks---

1999 Pentium III Xeon 9500 0.25 500-550 3 32-bit 2 x 16 kB 512 kB 

In the following, we focus on the P6 family of processors. The first 
processor in this family was the Pentium Pro. In 1997, it was followed 
by the Pentium II, in 1998, by the Pentium II Xeon (targeted for servers 
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and workstations) and Celeron (targeted for desktops), and m 1999, by 
Pentium III and Pentium III Xeon. 

Pentium II 

Let us describe the Pentium II in more detail. Although it is probably the pro­
cessor which is most often written about, its full details are still not known. 
The Pentium II (as other members of P6) implements an out-of-order su-
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Fig. 4.20. The Pentium II microprocessor 

perscalar issue - so-called dynamic execution 18 - which employs register re­
naming, non-blocking caches, and multiprocessor bus support. The ISA is 
Intel IA-32, which is basically the x86 instruction set with some extensions. 
Intel IA-32 instructions begin and end execution in program order. They 

18 This phrase was coined to represent a number of other words that appear in 
the context of dynamic micro dataflow execution, e.g., out-of-order, speculative 
execution, superscalar, and superpipelined. 
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are translated into a sequence of simpler RISe-like micro-operations (J..I.ops) 
which are register-renamed and placed into the central instruction window, 
the so-called reservation station unit which is described as an out-of-order 
speculative pool of pending operations. Once the data arguments and the 
necessary resources are available, the J..I.Ops are issued for execution in their 
out-of-order execution engine. After execution has completed, the J..I.Ops of an 
instruction are held in the reorder buffer until they can be retired, which may 
occur only after all previous instructions' J..I.Ops have been retired, and all of 
the constituent J..I.Ops have completed. Up to three J..I.Ops can be retired per 
clock cycle, yielding a theoretical minimum of 0.33 cycles per J..I.Op. 

The processor is organized in three sections: an in-order section, an out­
of-order execute section, and an in-order retire section (Fig. 4.20). The two in­
order sections guarantee the sequential program semantics for the Pentium II 
as for an Intel 486 processor. 
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Fig. 4.21. Inside the Pentium II fetch/decode/issue section 
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The in-order section. This section is depicted in Fig. 4.21a. The instruc­
tion fetch unit (IFU) contains a non-blocking I-cache and Next _ IP unit. The 
Next_IP unit provides the I-cache index (based on inputs from the BTB), 
trap/interrupt status, and branch misprediction indications from the integer 
FUs. The processor implements a branch prediction scheme derived from the 
two-level adaptive scheme described by Yeh and Fatt [331] (see Sect. 4.3.3).19 
The BTB, which contains 512 entries, maintains branch history informa­
tion and the predicted branch target address. Mispredicted branches incur 

19 Exactly which of Yeh and PaU's schemes has been applied is not publicly known. 
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a penalty of at least 11 cycles, with an average misprediction penalty of 15 
cycles [114]. 

The cache line corresponding to the index from the Next _ IP and the 
next line are fetched from the I-cache. The 16 bytes are aligned in order to 
mark the beginning and end of each of the fetched IA-32 CISC instructions 
(which are of variable length and up to 7 bytes long). The instruction decoder 
unit (IDU) is composed of three separate decoders, one for each aligned IA-
32 instruction (Fig. 4.21 b). A decoder breaks the IA-32 instruction down to 
JlOps which are the atomic units of work in the P6 processor, each comprised 
of an opcode, two source operands, and one destination operand. These !lOps 
are of fixed length. Most IA-32 instructions are converted directly into single 
JlOps (by any of the three decoders), some instructions are decoded into one 
to four !lOps (by the general decoder), while more complex instructions are 
used as indices into the microcode instruction sequencer (MIS) which will 
generate the appropriate stream of !lOps. In general, simple register-register 
and load instructions are only one !lOP; store and read-modify instructions 
are translated into two !lOps; simple register-memory instructions have two 
to three JlOps; and simple read-modify-write instructions have four !lOps. 
Decoding at most three IA-32 instructions generates at most six !lOps per 
clock cycle (four by the general decoder and one by each simple decoder). At 
most three !lOps can be forwarded from the IDU into the pipeline. The P6 
may be viewed as a three-issue superscalar processor. 

The !lOps are queued, and sent to the register alias table (RAT) where 
register renaming is performed, i.e., the logical IA-32-based register refer­
ences are converted into references to physical registers. Then, with added 
status information, !lOps continue to the reorder buffer (ROB) and to the 
reservation station unit (RSU). 

The out-of-order execute section. The !lOps have to go to the ROB to 
ensure in-order retirement after out-of-order completion. Thus, when the JlOps 
flow into the ROB they effectively take a place in line so that it is remembered 
how to retire them later and keep the sequential program semantics. !lOps also 
go to the RSU which forms a central instruction window with 20 reservation 
stations (RS), each capable of hosting one !lOp. If the status indicates that a 
JlOP has all of its operands, and if the FU needed by that !lOP is also available, 
the RSU removes that !lOP and issues it to the FU where it is immediately 
executed. !lOps are issued to the FUs according to dataflow constraints and 
resource availability, without regard to the original ordering of the program. 
The RSU has five ports and can issue at a peak rate of 5 !lOps per clock cyIe, 
though a sustained rate of 3 !lOps per clock cyle is more typical (Fig. 4.22). 

Several FUs can be clustered on a port: integer FUs on port 0 and 1, 
floating-point FUs on port 0, MMX FUs on port 0 and 1, a jump FU (port 
1). Ports 2, 3, and 4 are dedicated to memory access with a load FU attached 
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Table 4.4. Latencies and throughput for different Pentium II FUs 

RSU Port FU 
Integer arithmetic/logical 
Shift 
Integer mul 

o Floating-point add 
Floating-point mul 
Floating-point div 
MMX arithmetic/logical 
MMXmul 

Latency 
1 
1 
4 
3 
5 

long 
1 
3 

Throughput 

0.5 
nonpipelined 

1 

---------------iiiieger-aj;-thiiieiiCilogicar----------------------------------

2 

MMX arithmeticllogical 
MMXshift 
Load 3 

3 Store address 3 1 ------;r------Sicire-diiia-------------------------r---------------r-------

to port 2, and two store FUs attached to port 3 and 4. Table 4.4 gives latencies 
and throughtputs for different FUs. 

After completion the result goes to two different places, RSU and 
ROB. There may be other J.1ops in RSU waiting for the result before they 
themselves become ready. Therefore, each port has its own write-back path 
back to the RSU. There is a full crossbar between all those ports so that any 
returning result could be bypassed to any other FU for the next clock cycle. 

The in-order retire section. The other place where the result of a J.1op 
goes is the ROB. The retire section (see Fig. 4.23) controls the in-order re­
tirement of J.1ops. A J.1op can be retired if its execution is completed, if it is its 
turn in program order, and if no interrupt, trap, or misprediction occurred. 
Retirement means taking data that was speculatively created and writing it 
into the retirement register file (RRF). Three J.1ops per clock cycle can be 
retired. 

Branch J.1ops are tagged (in the in-order pipeline) with their fall-through 
address and the destination that was predicted by the BTB. After the branch 
resolution the branch outcome is compared against what was predicted. If 
they coincide, the branch J.1op eventually commits and the speculatively 
executed J.1ops between it and the next branch in ROB can be retired. If 
they do not coincide, however, the jump FU changes the status of all of the 
J.1ops behind the branch to remove them from the ROB. In that case the 
proper branch destination is provided to the BTB which restarts the whole 
pipeline from the new target address [145]. 

The Pentium II pipeline. The flow of J.1ops through the processor is con­
trolled by the pipeline shown in the Fig. 4.24. The pipeline is segmented into 
three pieces: an in-order pipeline, out-of-order execute pipelines, and an in-
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Fig. 4.22. Inside the Pentium II issue/execute/complete section 

order retire pipeline.2o As the J..I.ops flow from one segment into the next, the 
reservation station scheduling and retirement scheduling is performed. 

The details of these pipeline sections are: 

• The in-order pipeline section involves nine clock cycles (Fig. 4.24a). The 
first two identify the next instruction pointer (Next_IP). It is the BTB 
deciding where is the best place to look in the I-cache for the next cache 
line. The I-cache access and instruction alignment and predecode take the 
next three clock cycles. The instruction is decoded in the next two cycles 
using two simple decoders and one general decoder. Register renaming 
takes the next clock cycle. The final stage of the in-order pipeline, ROB 
read, can usually be overlapped with at least one of the clock cycles in the 
next pipeline segment . 

• The out-of-order execute pipelines are used to execute integer, jump, 
floating-point, MMX, and memory access functions (Fig. 4.24b). These 
pipelines share the beginning stage, RSU write, during which the RSU 

20 This is why Intel uses the term superpipeline. 
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Fig. 4.23. Inside the Pentium II retire section 

identifies !lOPS that have all the operands and are ready to be issued to 
FUs. For an integer !lOP one cycle is needed for the execution and the 
return of the results. For a floating-point !lOP the execution stretches out 
over several additional cycles. For a load/store !lOP even more additional 
clock cycles are needed to perform address calculation, access to D-cache 
(which is pseudo-dual ported via interleaving with one port dedicated to 
loads and the other to stores), and L2 cache access, if necessary. Once a 
FU has created its result, it sends it back to the RS to enable future !lOps 
and also into the ROB to enable retirement . 

• The in-order retire pipeline takes two clock cycles, one for ROB write-back 
and one for the retiring (Fig. 4.24c). Since an instruction may be mapped 
into several !lOps, the retirement process has to make sure that if any of 
these !lOps is retired, all of them are retired automatically. Otherwise the 
processor might enter an inconsistent state if an interrupt appeared during 
partial retirement of these !lOps. 

Pentium II offsprings 

The next Pentium II core is Pentium III in February 1999, initially at 450 MHz 
and 500 MHz. Pentium III (initially code-named Katmai) has the internet 
streaming SIMD extension (ISSE)21 instruction set, which includes floating­
point SIMD instructions and eight new 128-bit floating-point SIMD registers 

21 The old name of ISSE was Katmai new instructions (KNI) or MMX2. 
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to accelerate 3D graphics. The Pentium III is very similar to the Pentium II 
except for the ISSE ISA enhancement, the new floating-point SIMD reg­
isters, and a SIMD FUs. Further extensions are a higher-performant write 
buffer, cache prefetch instruction, and a non-cached store instruction. Pen­
tium III Xeon (initially code-named Tanner) is Pentium II Xeon with ISSE 
and starting off with 500 or 550 MHz in March 1999. 

Coppermine will be a shrink of Pentium III down to 0.18 J.l.lIl. Cascades 
will be a cheaper version of Pentium III Xeon with a clock speed of more than 
600 MHz, with on-die 256 kB L2 cache. For mid-2000 Intel expects to launch 
Merced, which is to be the first member of the Intel's P7 family of 64-bit 
processors. The P7 processors will be based on the EPIC design style that 
was developed by Hewlett-Packard and Intel (see Sect. 4.10.2). 

Alternatives to the Pentium 

Several (super)scalar processors compete with Intel's Pentium to meet the 
needs of the basic personal computer market. Among these are mP6 designed 
by Rise Technology Company, AMD-K6 designed by Advanced Micro Device, 
M II designed by Cyrix, and WinChip C6 designed by Integrated Device 
Technology. A comparison of their basic features is given in Table 4.5. 

We now describe in more detail the approaches taken by AMD and Cyrix. 

4.9.2 AMD-K5, K6 and K7 families 

Based on the 29000 series of scalar processors, Advanced Micro Device de­
signed in 1990 a superscalar processor 29050. The processor has a redesigned 
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Table 4.5. Some of the competitors for the personal computer market 

Pentium Pentium II Celeron AMD·K6 Mil mP6 WinChipC6 
Company Intel Intel Intel AMD Cyrix Rise IDT 
Superscalar Yes Yes Yes Yes Yes Yes No 
x861PC 2 3 3 2 2 3 1 
MMXIPC 2 2 2 1 1 3 1 
Pipelined FPU Yes Yes Yes No No Yes No 

floating-point unit so that four instructions can be issued to execute out of 
order and speculatively. 

In late 1995 AMD dropped development ofthese processors in favor of the 
more profitable clones of the Intel 80x86 processors. Much of the development 
of the 29000 superscalar core was shared with the new AMD-K5 processor. 
This processor, compatible with Intel's Pentium, was able to translate IA-32 
instructions to RISC-style instructions. Its performance stems from AMD's 
independently developed 4-issue superscalar 5-stage pipelined architecture 
with 6 parallel FUs. This 32-bit processor contains a 16 kB I-cache and an 
8 kB D-cache. Several versions of the AMD-K5 processor have been made 
between 1995 and 1997 operating on frequencies from 50 MHz up to 166 MHz. 

In 1997 AMD introduced the AMD-K6 processor (Shriver and Smith 
[258]), which contains parallel decoders, a centralized RISC86 operation 
scheduler, and seven FUs that support superscalar operation of Intel's IA-
32 instructions. AMD's RISC86 micro architecture implements the IA-32 in­
struction set by internally decoding IA-32 instructions into the simpler, fixed­
length RISC86 operations (RISC860ps). 22 

The Ll cache is two-way set-associative with a separate 32 kB I-cache and 
a 32 kB D-cache. The 32-byte cache lines are prefetched from main memory 
using an efficient pipelined burst transaction. As the I-cache is filled, each 
IA-32 instruction is analyzed using predecoding logic. More precisely, the 
predecode logic supplies the predecode bits associated with each IA-32 in­
struction byte. Among other information, the predecode bits indicate the 
number of bytes to the start of the next IA-32 instruction. These bits are 
stored in the I-cache beside each IA-32 instruction byte. 

Up to 16 bytes (with predecode bits) per clock cycle can be fetched from 
the I-cache or BTC and sent to a 16-byte instruction buffer which, in turn, 
feeds them directly into the decoders. The decoders translate up to two IA-32 
instructions per clock cycle into RISC860ps. There are four decoders: 

• two parallel short decoders, which translate the most commonly used IA-
32 instructions into zero, one, or two RISC860ps each, and are designed to 

22 A similar approach is taken by the Intel P6 processors which translate IA-32 
instructions into I.I.Ops. 
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decode up to two IA-32 instructions per clock cycle (of the two instructions, 
at most one can be a MMX instruction); 

• one long decoder, which handles commonly used IA-32 instructions that 
can be represented in four or fewer RISC86ops; and 

• one vectoring decoder for handling all other translations in concert with 
RISC860ps sequences fetched from an on-chip ROM. 

The instruction scheduling is performed by the instruction control unit (ICU), 
which buffers and manages up to 24 RISC860ps at a time in order to use 
efficiently the 6-stage pipeline and the 7 parallel FUs. ICU controls the out­
of-order execution, data forwarding, register renaming, simultaneous issuing 
and retirement of multiple RISC86ops, and speculative execution. In one 
clock cycle, the scheduler accepts up to 4 RISC860ps from the decoders, 
issues up to 6 operations to FUs (floating-point, multimedia, branch, load, 
store, and two integer) and retires up to 4 operations. There are 48 physical 
registers in the register file, 24 of which are general registers and the other 24 
are renaming registers. The processor's two-level dynamic branch prediction 
logic consists of an 8192-entry BHT, a BTC and a return address stack. 
Since the BHT does not store predicted target addresses, special address 
ALUs calculate target addresses on-the-fly during instruction decode. The 
BTC augments predicted branch performance by avoiding a one-cycle cache 
fetch penalty. This specialized target cache supplies the first 16 bytes oftarget 
instructions to the decoders when the branches are predicted. 

The AMD-K6 is fabricated in 0.35 and 0.25 !lm technology, contains 8.8 
million transistors and runs on frequencies from 180 to 233 MHz. Table4.6 
summarizes some of the features of the AMD-K6 and Intel Pentium II. 

In 1998, the AMD-K6-2 processor was launched. This is the first AMD 
processor to feature the new 3DNow! technology which is aimed to enhance 
floating-point intensive 3D graphics and multimedia performance. 23 The pro­
cessor operates at clock speeds of 300-400 MHz (450 MHz in 1999), and is 
fabricated in 0.25 Jlffi technology with 9.3 million transistors. The AMD-K6-
3 is a forthcoming improved version ofthe AMD-K6-2 processor with on-chip 
256 kB L2 cache operating at the processor's frequency (at least 450 MHz), 
and optionally supporting L3 caches. Due to the on-chip L2 cache the AMD­
K6-3 will consist of 21.3 million transistors. Table 4.6 summarizes some of the 
features of the AMD-K6-3 and Intel Pentium III (see Stiller [279], 1999). 

In 1999, the next generation of AMD-K7 processors with 3DNow! is ex­
pected. These processors will run at more than 500 MHz, and will feature 
a 9-issue superscalar microarchitecture, superscalar pipelined floating-point 
execution unit, 128 kB of on-chip L1 cache, and support for scalable multi­
processmg. 

23 A similar direction is taken by the Intel's ISSE instruction set that is used by 
the Pentium III. 
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Table 4.6. AMD-K6 vs Pentium II and AMD-K6-3 vs Pentium III 

Features AMD-K6 Pentium II Features AMD-K6-3 Pentium III 
RISCcore Yes Yes L 1 cache (kB) 2x32 2 x 16 
Speculative execution Yes Yes L2 cache (kB) 256 512 
Out-of-order execution Yes Yes 

L2 cycle rate 1:1 1:2 
Data forwarding Yes Yes 
Register renaming Yes Yes Integer 

6 12 
2 short pipeline depth 

or 2 simple Integer units 2 2 
IA-32 decoders 1 long and Floating-point 1 1 

or 1 general units (nonpipelined) (pipelined) 
1 vector MMXunits 2 2 

Execution pipelines 6 5 Floating-point 
Branch prediction Yes Yes SIMDunits 2 1 + mul/div 
BHT 8192-entry 512-entry 
BTC 16-entry - Floating-point 

Executes MMX Yes Yes SIMD registers 64 bit 128 bit 

L 1 l-cachelD-cache 32/32 kB 16/16 kB lenght 

Bus width 64-bit 64-bit Floating-point 8x2 8x4 
Max. memory bandwidth 528 MB/s 528 MB/s SIMD registers single precision single precision 

4.9.3 Cyrix M II and M 3 Processors 

Cyrix was already well known for its x86-based scalar processor 6x86 and its 
many scalar offspring (e.g., the low-voltage version 6x86L, MMX-supporting 
versions 6x86MX, 3D application-oriented Cayenne, two-chip low-cost Medi­
aGX and its 2D- and 3D-supporting upgrade MXi). In 1997, however, the 
Cyrix M II processor appeared, based on the proven low-cost 6x86 proces­
sor core, but as a superscalar processor that operates at higher frequences 
(233 MHz with 0.25 JlIIl technology) and contains two separate pipelines. It 
features a 64kB unified Ll cache (4-way associative, dual-port address), a 
two-level TLB and a 512-entry BTB. The Cyrix M II processor supports the 
MMX ISA extension. Cyrix's next generation processor M 3 (code-named 
Jalapeno), is expected to debut in late 1999. Since the 6x86 processor, M 3 
will be the first completely new architecture, with an ll-stage pipeline, a 
completely new floating-point unit, a 3D graphics engine, 256 kB on-chip L2 
cache (8-way associative, 8-way interleaved, fully pipelined), on-chip mem­
ory controller allowing 3.2 GB/s transfer rate. The M 3 will be produced in 
0.18 JlIIl technology and will run in the 600-800 MHz clock speed range. Sim­
ilarly to AMD-K7 processor, the M 3 will support execution of both MMX 
and 3DNow! instructions. 

4.9.4 DEC Alpha 21x64 family 

In the early 1990s DEC introduced the Alpha architecture which is a 64-
bit RISC architecture designed with particular emphasis on clock speed and 
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multiple instruction issue (see Sites [265]). In the following years, three gen­
erations of implementations of Alpha architecture appeared, and the fourth 
is to come in mid-2000 (see Table 4.7). 

The first generation started in 1992 with the 21064 processor, which was a 
64-bit 2-issue RISC microprocessor running at 200 MHz. It was fabricated in 
0.75)llll CMOS technology and contained 1.68 million transistors (DobberpuhZ 
et aZ. [69], 1992). The 0.51J.m technology made it possible to use 2.5 million 
transistors to double the on-chip cache to 32 kB (compared with the 21064) 
and thus to produce the 21064A processor, which was running at frequencies 
up to 300 MHz. Another two representatives of the first Alpha generation 
were the 21066A and 21068 processors. The 21066A was a highly integrated 
implementation for high-performance, PCI-based systems. On-chip functions 
included an industry-standard PCI I/O controller and a 21066A-exclusive 
graphics accelerator. The processor was offered with clock frequency up to 
233 MHz. The 21068 processor was a lower-frequency version of the 21066, 
running at 66 MHz. 

The second generation of Alpha implementations introduced 4-issue su­
perscalar processors 21164 and 21164PC (Edmondson et aZ. [74], 1995). 
The 21164 is a 64-bit in-order issue processor running at frequencies up to 
612 MHz, and is fabricated in 0.351J.m technology with 9.3 million transistors. 
The 21164PC is based on the 21264 and uses DEC's MVI to enhance visual 
computing and multimedia performance. The operating frequency is up to 
533 MHz. 

Table 4.7. The Alpha 21x64 family 

Year Type Technology Clock Issue Out-of·order Word Internal SPECint95 SPECfp95 
(11m) (MHz) issue format caches (kB) 

1992 21064 0.75 200 2 No 64-bit 2 X 8 2.31 166 MH:22 
-------------------------- ------------------------------------------------------------------------------------------------.@------------------

1994 21064A 0.5 200-300 2 No 64-bit 2 X 16 4.18 266 MH~78 
-------------------------- ------------------------------------------------------------------------------------------------.@------------------

1996 21164 0.35 300-600 4 No 64-bit 2 X 8 + 96 18.0 600 MH~7.0 
-------------------------- ------------------------------------------------------------------------------------------------.@------------------

1997 21164PC 0.35 400-533 4 No 64-bit 8 + 16 12.6 533 MH:6.1 

-------------------------- ------------------------------------------------------------------------------------------------.@------------------
1998 21264 0.35 575 6 Yes 64-bit 2 X 64 30.3 575 MH:7.7 

-------------------------- ------------------------------------------------------------------------------------------------.@------------------
1999 21264 0.25 600-1000 6 Yes 64-bit 2 X 64 100+ 150+ 

2000 21364 0.18 1200+ N/A N/A 64-bit N/A 140+ 200+ 

The third generation of Alpha implementations introduces out-of-order 
execution with its 6-issue 21264 processor (see Gwennap [115]). The 21264 
was scheduled for volume production in late 1998 in 0.35 IJ.m technology. It 
contains 15.2 million transistors; although most are in the large caches and 



180 4. Multiple-Issue Processors 

the branch predictor, the CPU core contains about 6 million transistors. The 
Alpha 21264 is expected to operate at more than 1000 MHz by the year 2000. 
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Fig. 4.25. The Alpha 21264 microprocessor 

As Fig. 4.25 shows the 21264 processor contains a fetch unit, two general­
purpose units, two address arithmetic logic units, two floating-point units, a 
retire unit, and a bus interface unit. 

Simple instructions are processed in the following 7-stage pipeline (for 
load/store instructions 9 stages are necessary, floating-point operations need 
additional execute stages, see Fig.4.26): 

1. Fetch: fetch instructions using branch prediction, 
2. Transit: transfer instructions to the decoder, 
3. Map: rename registers, 
4. Queue: place the instructions either in the integer or in the floating-point 

instruction queue, 
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5. Register: read operands and issue to FU, 
6. Execute: execute integer (single cycle) or floating-point instructions (sev­

eral cycles), 
7. Write: write results. 

The processor can keep up the peak execution rate of 6 IPC and a sustainable 
rate of 4 IPC on either integer or floating-point code. Up to 80 instructions 
can be in process at once in different pipeline stages. Let us describe this in 
more detail. 

Four instructions per cycle 

I Register I Execute I Write 

: Integer Pipeline 

I Register I Addr I Cache II Cache 21 Write 

Fetch I Transit I Map I Queue I : Load/Store Pipeline 

Ir.R~e-g~is~re-rl~E~x-e~I~I~E~x-e~2-'~E~x-e~3-'~E~xe~4-'~W~n~'t-e~ 

: Floating-point Pipeline 

Fig. 4.26. Pipelines in Alpha 21264 microprocessor 

The 21264 has on-chip 1- and D-caches, which are 64 kB 2-way set­
associative primary (L1) caches. Unfortunately, it generally takes two cycles 
to access such large primary caches: the cache access can be done in one cy­
cle, but it takes nearly a full cycle, leaving no time to move the address/data 
any significant distance across the large die. This is especially the case with 
the D-cache. As a result, it takes two cycles for a load instruction to get an 
address to the D-cache, access the cache array, and return the data from the 
cache to the requester. Consequently, an instruction must wait if it requires 
data from an immediately preceding load instruction. Nevertheless, being an 
out-of-order execution processor, the 21264 may execute other independent 
instructions while waiting for the D-cache and thus compensate for the per­
formance degradation caused by the additional cache access cycle. 24 

In the I-cache, each line holds four instructions along with a next-line 
predictor and a set predictor. Since the 21264 cache can produce a result 
in a single cycle, these two fields are immediately sent back to the cache 
inputs to start the next access (see Fig. 4.27). If the line contains a branch 
that is predicted taken, the predictor fields point to the cache line and set 
of the predicted target. Thus, assuming the prediction fields are correct, a 
taken branch has a zero-cycle delay, since the target group of instructions is 
fetched immediately after the branch. The predictors are initialized to point 
to the sequential address; they are updated with the branch target address 
when a branch is predicted taken. 

24 DEC estimates that adding a cycle of D-cache latency costs about 4 % in overall 
performance. 
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Fig. 4.27. Instruction fetch in the Alpha 21264 microprocessor 

The prediction fields are controlled by the branch prediction unit, resulting 
in a high degree of accuracy (see Fig. 4.27). In the 21264, the average mis­
predicted branch penalty is more than 11 cycles; therefore, the extra I-cache 
cycle results in about a 10 % increase in the mispredicted branch penalty. 
The impact on overall performance is about 1 %. The processor uses a hybrid 
predictor developed by McFarling [196] (see p.144). The cost of this branch 
prediction is about 35 kbits of storage for all the requisite branch history in­
formation, which consumes about 2 % of the processor's total die area. This 
figure does not include the predicted target addresses which are st.ored in the 
I-cache on a per-line basis, adding another 48 kbits. 

Such a fetch stage allows feeding four inst.ructions per cycle into t.he decode 
unit with little external intervention. Registers are renamed on-the-fly, with 
41 extra integer registers (out of 80 in the integer register file) and 41 extra 
floating-point registers (out of 72 in the floating-point register file). After 
decode, instructions are assigned to either the integer instruction queue (20 
entries) or the floating-point instruction queue (15 entries). Each cycle, all 
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instructions that have their operands available arbitrate for access to the 
FUs, with instructions that have been in the queue longest having the highest 
priority. After arbitration, instructions can be issued to the FUs. Instructions 
that are data dependent and are waiting for data, are bypassed in favor of 
those that can execute right away, thus creating opportunities for out-of-order 
execution. 

The 21264 includes four integer FUs: two general-purpose units and two 
address AL Us. The first pair execute arithmetic and logical operations, shifts, 
and branches; one general-purpose unit has a multiplier while the other han­
dles the MVI instructions, which are also included in the 21264's instruction 
set (see Sect. 4.7). The address ALUs execute all load/store instructions (for 
either integer or floating-point) and can also perform simple arithmetic and 
logical operations. Hence, the integer FUs can execute four instructions per 
cycle for most instruction mixes. 

A standard implementation of the above would require a register file with 
eight read ports and six write ports. The physical width of such a register file 
would cause the entire datapath to be distended, increasing the cycle time 
beyond the tight target. Instead, the integer register file was duplicated, with 
each copy having four read and six write ports, reducing the datapath width 
significantly. Each register file copy services one general-purpose unit and 
one address ALU in a grouping called a cluster. The register file copies are 
kept synchronized to ensure correct execution. However, due to the physical 
distance between the two register files and the minimal cycle time, it takes 
an extra cycle25 to write data from one cluster's FU to the other's register 
file. The instruction queue understands the difference between the two clus­
ters and issues instructions in an efficient26 manner by issuing a stream of 
dependent instructions to the same cluster. 

With only two floating-point FUs (add/div/sqrt unit and multiply unit) 
and a single physical register file, the floating-point part of the 21264 is 
organized more traditionally. Since floating-point load/store instructions are 
executed in address ALUs, the 21264 can sustain up to four floating-point 
instructions per cycle. Both floating-point FUs are fully pipelined, with a 
latency of 4 for add, multiply, and most other operations. A double-precision 
divide takes 16 cycles, while a double-precision square root requires 33 cycles; 
these operations are not pipelined. 

The D-cache is dual ported, able to supply two independent 64-bit results 
per cycle by starting a new access on each half-clock cycle. In parallel to 
the D-cache access, virtual addresses are sent to the fully-associative 128-

25 DEC's simulations showed a 1 % performance degradation from this penalty 
which is a small price to avoid degrading the cycle time. 

26 In addition, as simple integer instructions enter the queue, they are preassigned 
to either the general-purpose units or the address ALUs. This method speeds 
the arbitration logic since it reduces the number of instructions potentially arbi­
trating for each FU. DEC's simulations showed this simplification causes only a 
1-2 % performance loss. 
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entry data TLB and the tag array. These structures, which have a slightly 
longer access time than the cache data array, are duplicated to support the 
dual porting. After translation, memory addresses are logged in the memory 
reorder buffer, where they are held until the associated instruction is retired. 
This structure checks for multiple accesses to the same physical address; if 
detected, such pairs of instructions must be executed in program order to 
avoid errors. Up to eight cache miss requests are held in the miss address 
queue, waiting for access to the external cache. Cache lines displaced from 
the D-cache are held in an 8-entry victim buffer. Both L1 and L2 caches are 
non-blocking, continuing to service other requests while these transactions 
are pending. 

To increase the bandwidth of the system bus and at the same time keep the 
package size within limits, DEC decided to use a 64-bit system bus (instead 
of 128-bit as in the 21164 processor) but applied high-frequency design to run 
the bus at speeds up to 333 MHz. At this speed, the bus can sustain 2.0 GB/s. 
The external L3 cache is controlled directly by the processor and can be as 
large as 16 MB, although practical systems will probably implement 1 MB to 
8MB. 

Compaq/DEC's future microprocessor, the 21364, is expected to enter 
volume production in mid-2000. The 21364 is scheduled to debut at 750 MHz 
and will eventually reach 1.2 GHz. It will be designed for use in SMP imple­
mentations, where up to 64 processors can be used in a single server. On-chip 
transistor count will jump to the 100 million range. The 21364 will also 
implement some of the advanced code-optimization techniques. The major 
difference between Merced and the 21364 in this respect is static vs dynamic: 
Merced is doing everything as statically as it possibly can, the 21364 is doing 
everything as dynamically as it possibly can. 

4.9.5 Sun UltraSPARC family 

UltraSPARC (Tremblay and O'Connor [301]) is Sun's new line in the SPARC 
microprocessor family and supports the SPARC ISA version 9, a 64-bit ISA 
with a multimedia extension called VIS. VIS instructions are used for special­
ized pixel operations that can operate in parallel on 8-bit, 16-bit, or 32-bit 
integer values packed in a 64-bit floating-point register. It also includes some 
3D to 2D conversion, edge processing, data alignment, pixel distance, packing, 
etc. The UltraSPARC also added a block move instruction which bypasses 
the caches to avoid disrupting it. 

Like all other SPARC members, the UltraSPARCs use register windows 
for integers (see Sect. 1.7.2). This makes register renaming extremely difficult 
to implement efficiently. Without register renaming, however, there is little 
to be gained from out-of-order execution. As a result, in UltraSPARC in-
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structions are issued in order and retired in order. 27 To do this, the following 
multiple-issue 9-stage pipeline is used: 

1. instructions are fetched from the I-cache, 
2. instructions are decoded and placed in the instruction buffer, 
3. up to four instructions are grouped and issued to FUs, 
4. integer instructions are executed and virtual addresses are calculated, 
5. the D-cache is accessed; cache hits and misses are determined, and 

branches are resolved, 
6. if a cache miss was detected, the loaded miss enters the load buffer, 
7. the integer pipe waits for the floating-point/graphics pipe to fill, 
8. traps are resolved, and 
9. all results are written to the register files and instructions are retired. 

The latency of most instructions is 9 but some instructions may require more 
than that due to the nature of the instruction, a cache miss, or other resource 
contentions. 

Figure 4.28 shows a functional block diagram of the UltraSPARC archi­
tecture with a pre/etch and issue unit (PU), an integer execution unit (lEU), 
a floating-point unit (FPU), a memory management unit (MMU), a load and 
store unit (LSU), an external cache unit (ECU), a graphics unit (G RU), 
I-cache, and D-cache. 

The PU ensures that all FUs remain busy by fetching instructions before 
they are needed in the pipeline. Instructions are retrieved from all levels 
of the memory hierarchy, predecoded and placed in the I-cache. A 12-entry 
pre/etch buffer allows fetching to continue while the execution pipeline is 
stalled due to a dependency or cache miss. Conversely, FUs can continue to 
work even when the instruction fetch has a cache miss. I-cache is 16 kB 2-way 
associative and is physically indexed and tagged. UltraSPARC uses dynamic 
branch prediction based on a two-bit prediction scheme with a 2048-entry 
BHT. UltraSPARC provides single-cycle branch following, i.e., it can rapidly 
fetch predicted branch targets. 

Eight integer register windows and four sets of global registers are pro­
vided. Two ALUs form the main computational part of the lEU. An early-out 
multicycle integer multiplier and a multicycle integer divider are also part of 
the lEU. Loads, stores, and branches are also executed by lEU but outstand­
ing load/store instructions are tracked by the LSU. The LSU is responsible 
for generating the virtual address of all loads and stores, for accessing the 
D-cache, for decoupling load misses from the pipeline through the 9-entry 
load queue and decoupling the stores through an 8-entry store queue. These 
queues allow overlapping of load/store instructions reducing the apparent 
memory latency. When a load instruction is issued, the lEU reads the re­
quired address-operands from the register file. If at least one address-operand 

27 The exceptions are some long-latency instructions - such as floating-point divide 
and square root, load/store, and multi-cycle integer instructions - which can be 
retired out of order. 
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Fig. 4.28. The UltraSPARC microprocessor 

is contained in the pipeline, it is extracted from the pipeline (bypassing the 
register file read), used to calculate the D-cache address of the item needed, 
and cache access is started. The accessed data is registered in the lEU and 
written to the register file. In the case of store instruction, the register file 
may be bypassed if the required operands can be obtained from the pipeline 
and used to calculated the virtual address. The data to be stored is then 
written to the D-cache. 

There is a 32-entry floating-point register file where each entry can contain 
a 32-bit value or a 64-bit value. Three separate execution units (add, mul­
tiply, divide/sqrt) in the FPU allow UltraSPARC to issue and execute two 
floating-point instructions per cycle. Most instructions are fully pipelined. 
The divide and square-root instructions are not pipelined but they do not 
stall the processor: other instructions can be issued, executed, and retired to 
the register file before the divide/sqrt unit finishes. Two graphics execution 
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units in the GRU provide VIS instruction execution. Execution latencies of 
some operations are given in Table 4.8. 

Table 4.8. Some execution latencies in UltraSPARC-Ii and UltraSPARC-III 

UltraSPARC-1I UltraSPARC-1II 
64-bit Integer Mul 5-35 9 
64-bit Integer Divide 64 64 
FP Add (double-precision)* 3 4 
FP Mul (double-precision)* 3 4 
FP Divide 12 17 
FP Square Root 12 24 
FP Divide (double-precision) 22 20 
FP Square Root (double-precision) 22 24 
*Plpehned operations. 

The MMU handles all memory operations, provides memory protection 
and performs the arbitration function between I/O, D-cache, I-cache, and 
TLB (64-entry, fully-associative). The MMU also implements virtual mem­
ory and translates virtual addresses to physical addresses in memory. The 
memory interface unit (MIU) handles I/O between local resources, including 
the processor, main memory, control space, and all external system resources. 

The I-cache and D-cache are 16 kB, virtually-indexed and virtually-tagged 
caches. They are organized as 512 lines with 32 bytes per line in the case of 
I-cache and 2 x 16 bytes per line in the case of D-cache. Therefore, on a 
cache miss, 32 bytes are written from main memory in the case of I-cache 
and 16 bytes in the case of D-cache. I-cache is 2-way set-associative, while 
D-cache is direct-mapped. The ECU efficiently handles I-cache and D-cache 
misses, handling one access per cycle to the external cache. UltraSPARC 
supports a variety of external cache sizes ranging from 512 kB to 4 MB. 

For scalable workstations and servers Sun plans to offer the follow­
ing high-performance s-series of UltraSPARC processors: UltraSPARC-IIs 
(480 MHz, 0.25 J1.m, in 1999), UltraSPARC-IIIs (600-750 MHz, 0.18 J1.m, in 
1999), UltraSPARC-IVs (1 GHz, 0.15 J1.m, in 2000), and UltraSPARC-Vs 
(1.5 GHz, 0.07 J1.m, in 2002). To lower the cost of single processor systems, Sun 
has integrated many system functions onto the i-series of UltraSPARC proces­
sors and will offer: UltraSPARC-IIi (400-480 MHz, 1999), UltraSPARC-IIIi 
(600-700 MHz, 2000), and UltraSPARC-IVi (1 GHz, 2001). 

4.9.6 HAL SPARC64 family 

HAL Computer Systems' first processor in the SPARC64 family was 
SPARC64-I. This processor was a six-chip design consisting of CPU, MMU, 
and four identical cache chips. It had nearly 22 million transistors, 87 % of 
which are in the MMU chip and four identical cache chips. Because of the 
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way the MMU implements buffers (to cache page tables) and algorithms (for 
searching page tables in memory and reloading them into TLBs), HAL had 
to develop its own operating system and software development tools. 

HAL's second processor, the SPARC64-II, combines similar MMU chip 
and cache chips with an improved CPU chip. That CPU chip has an 8 kB 
I-cache and a 2 k BHT (twice as large as in the SPARC64-I). The number 
of register windows was increased from four to five. Fabricated in Fujitsu's 
O.341Jill process, the SPARC64-II operates at speeds up to 161 MHz. 
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Fig. 4.29. The SPARC64-II1 microprocessor 

HAL's latest design, the SPARC64-III, is designed to deliver high over­
all performance on server applications that use large data sets and intensive 
floating-point operations. It offers multiprocessor capability, which has be­
come mandatory for today's server-class processors. The SPARC64-III inte­
grates the SPARC64-II CPU chip, two cache chips with minor improvements, 
and a new memory subsystem onto a single die, as depicted in Fig. 4.29 (see 
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Song [275], 1997). The resulting I-cache and D-cache have 64 kB each with 4-
way set-associative organization. The two-million transistor MMU chip from 
SPARC64-II is replaced with TLBs, an L2 cache interface, and a system bus 
that is compatible with Sun's UltraSPARC Port Architecture (UPA) bus. 
The new MMU design is compatible with Sun's Solaris operating system. In 
order to provide better support for huge applications, such as operating sys­
tems or database programs, the MMU supports page sizes up to 4 GB. The 
SPARC64-III has three 32-entry micro-TLBs to translate three addresses in 
each cycle - one for each instruction fetch and two for load/store accesses. 
An access that misses the micro-TLB takes four extra cycles to access the 
main 256-entry TLB. The processor has two 128-bit wide data buses for the 
L2 cache and system bus interfaces. The cache interface operates at either 
the full speed or half the speed of the processor, delivering 4 GB/s of peak 
bandwidth using 250 MHz SRAMs. The system bus can operate at 1/2, 1/3, 
1/4, or 1/5 the speed of the processor. 
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Fig. 4.30. Pipeline in the SPARC64-1II 

The SPARC64-III uses the pipeline as depicted in Fig. 4.30. In each cy­
cle, up to four instructions are fetched from the LO (level-zero) I-cache and 
placed in the 12-entry instruction buffer. The 16 kB direct-mapped LO I-cache 
provides the recoded instructions and the predecoded bits. In the issue and 
dispatch stages, four instructions from the buffer are decoded, their destina­
tion registers are mapped to rename registers, and the rename registers for 
their source operands are identified. The source operands are read from the 
register file or the rename registers, or are forwarded from the FUs via result 
buses. The instructions and their operands are sent to the appropriate RSs 
by the end of the dispatch stage. RSs of a FU can accept two instructions per 
cycle. The load/store instructions are sent to both the address adders and 
load/store RSs. 

The SPARC64-III uses a large BHT and a gselect prediction scheme (see 
p. 144). Its 8 k BHT is indexed using the 5-bit global history register con­
catenated with eight bits of the branch address, providing two bits of branch 
history. The global history register and the BHT entry are accessed during 
the fetch stage. Instead of waiting until the branch condition is known, the 
SPARC64-III speculatively updates the global history register and the BHT 
entry one cycle after the branch instruction is fetched. 
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The SPARC64-1II has two integer units, two floating-point units, two ad­
dress adders, and two load/store units. The first floating-point unit executes 
only add and subtract instructions, but occupies only half the area of the 
second, which is a multiply-add unit. Execution latencies of some operations 
are given in Table 4.9. 

Table 4.9. Some execution latencies in the SPARC64-III 

SPARC64·111 
64-bit Integer Mul 6 
64-bit Integer Divide 2-37 
FP Add (double-precision)* 30r4 
FP Mul (double-precision)* 4 
FP Divide 12 
FP Square Root 12 
FP Divide (double-precision) 22 
FP Square Root (double-precision) 22 
·Plpehned operations. 

The SPARC64-III has a highly out-of-order execution core that can pro­
cess 63 instructions at once. Each integer, address generation and floating 
point unit has eight RSs and dispatches up to two instructions per cycle. 
Since the operands use rename registers, there is generally no restriction 
on dispatching instructions out of order, provided that the oldest two are 
dispatched when more than two are ready. However, certain load/store in­
structions must be executed in program order, such as when the programming 
model requires an in-order execution or when the instructions access the same 
address. The D-cache has two banks, interleaved on eight byte boundaries, 
to support two accesses per cycle. 

The SPARC64-1II is built in Fujitsu's 0.24 J.I.IIl process with 17.6 million 
transistors, of which 11.6 million are in the caches and TLBs and 6 million 
are used for the out-of-order execution engine. The processor is expected 
to operate at 250 MHz. At this frequency, HAL expects the chip to deliver 
13 SPECint95 and 18 SPECfp95, using a 4 MB L2 cache and a 60 ns EDO 
DRAM. HAL is also working on a 0.18 J.I.IIl derivative of the SPARC64-1II 
design, hoping to reach a clock speed of 500 MHz. 

4.9.7 HP PA-7000 family and PA-8000 family 

In the early 1990s (see Table 4.10)' Hewlett-Packard introduced the micro­
processor PA-7l00, which was HP's first superscalar implementation of its 
PA-RISC 1.1 ISA. At about the same timePA-7100LC appeared. This was 
the first processor to implement a multimedia instruction extension of an 
ISA (the extension was called MAX-l by HP). The PA-7l00 was a two-issue 
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superscalar processor, with the restriction that only an integer and a floating­
point instruction could be issued together for execution. A later version, the 
PA-7200 (1994), added a second integer unit. The original 48-bit addressing 
was expanded to 64 bits, using a segmented addressing scheme. The PA-
7200 included a tightly integrated cache and memory management unit, a 
high-speed 64-bit bus. There was also a fast but complex fully-associative 
2 kB on-chip assist cache between the simpler direct-mapped D-cache and 
main memory, which reduced thrashing (i.e., repeatedly loading the same 
cache line) when two memory addresses were aliased (i.e., mapped to the 
same cache line). Instructions were predecoded into a separate I-cache. The 
last 32-bit superscalar implementation of the PA-RISe was the PA-7300LC 
(Blanchard and Tobin [29]). 

Table 4.10. The PA-RIse processor family 

Year Type Technology Clock Issue Out-of-order Word Internal SPECint95 SPECfp95 
(flm) (MHz) issue format caches IkB) 

1992 PA-7100 0.8 66-100 No 32-bit none 

1992 PA-7100LC 0.8 100 No 32-bit none 

1994 PA-7150 0.8 125 No 32-bit none 

1994 PA-200 0.55 120 2 No 32-bit none 

1995 PA-7300LC 0.5 160 No 32-bit 2X64 

1996 PA-8000 0.5 180 4 Yes 64-bit none 11.8 180MH~0.2 
-------------------------- -------------------------------------------------------------------------------------------------@------------------

1997 PA-8200 0.5 240 4 Yes 64-bit none 17.4 240 MH~8.5 
-------------------------- -------------------------------------------------------------------------------------------------@------------------

1998 PA-8500 0.25 440 4 Yes 64-bit 512 + 1024 30+ 50+ 

HP's next processors, named PA-8000, PA-8200, and PA-8500, imple­
mented the 64-bit PA-RISC 2.0 ISA. The PA-8000 was introduced in 1996 
(Hunt [141], Kumar [169)). The processor was a 4-issue superscalar and bor­
rowed almost nothing from the older PA-7200, with the exception of the 
off-chip I-cache and D-cache. The PA-8000 micro architecture served as the 
basis for the follow-up program which introduced the PA-8200 and PA-8500. 
The PA-8200 processor increased the number of TLB and BHT entries, and 
its operating frequency up to 300 MHz which resulted in 16.1 SPECint9.5 and 
25.5 SPECfp95 performance (Scott et al. (257)). 

The next PA-8500 processor also builds upon the foundation established 
in the PA-8000 but breaks with HP tradition by adding on-chip L1 caches -
0.5 MB I-cache and 1 MB D-cache (Lesartre and Hunt [179]). In two cycles, 
these L1 caches provide access to more data than many other processors 
provide in 10 or more cycles (via L1 and L2 cache). Thus, a challenge was 
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to create such a large on-chip cache that could fit into the allocated die area 
and still keep up with the instruction reorder buffers whose responsibility it 
is to extract independent instructions and keep the FUs busy. 
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Fig. 4.31. Pipelines in the PA-8500 microprocessor 

The length of the PA-8500 pipeline depends on the type of the instruc­
tion performed (Fig. 4.31). First, each instruction proceeds through a 4-stage 
pipeline (IFO, IF1, DEC, QU) performed by the fetch unit as follows: up to 
four instructions per cycle are fetched from I-cache in program order, and 
after being predecoded are inserted into the instruction reorder buffer. After 
arbitrating (ARB), up to four instructions can execute at once: two compu­
tation and two load/store instructions. Integer computations take one cycle 
(EX), while floating-point computation uses three cycles (MUL, ADD, RND). 
Similarly, load/store instructions take three cycles, one for address calcula­
tion (AC) and two for D-cache access (DCO, DCl). Once an instruction has 
executed, a temporary rename register holds its result and makes it available 
to subsequent instructions. As instructions retire (WB), the contents of the 
rename registers transfer to the architectural registers. 

The PA-8500 supplies ten FUs: two integer ALUs, two integer shift/merge 
units, two floating-point multiply accumulate units (FMAC), two floating­
point divide/square-root units, and two load/store units. See Fig. 4.32 for 
details. The FMAC units have a three-cycle latency and are fully pipelined 
to deliver up to four floating-point operations per cycle. The divide units 
have latency 17 and are not pipelined, but they run concurrently with the 
FMACs. 

To keep most of these FUs busy, PA-8500 employs dynamic scheduling to 
extract the maximum parallelism from the instruction stream. Accordingly, 
the PA-8500 has a large decoupled instruction window called the instruction 
reorder buffer (IRB), which examines the 56 most current instructions to find 
four that can execute simultaneously. 

The instruction fetch unit fetches blocks of four quad word-aligned in­
structions per cycle from the I-cache. The I-cache is a 0.5 MB four-way set­
associative pipelined cache that provides 128 bits of instruction plus pre­
decode bits per cycle to the instruction fetch unit. The fetch unit passes 
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(512kB 4-way cache) 

Instruction 
Reorder 
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Fig. 4.32. The PA-8500 microprocessor 

System Bus Interface 

them to a sort unit which decodes and inserts four instructions into the IRB. 
The IRB consists of two 28-entry buffers: an AL U buffer that holds instruc­
tions destined for the integer units and floating-point units, and a memory 
buffer that holds load/store instructions. Certain instruction types enter both 
buffers; among these are branch instructions which in this way help recovery 
from misprediction. The IRB serves as the central control unit by supporting 
full register renaming for all instructions in the IRB and tracking instruction 
dependences to allow dataflow execution through the entire 56-instruction 
window. Registers are renamed via 56 rename registers (one for each IRB 
slot) and 64 architectural registers (32 integer and 32 floating-point). An in­
struction can be issued out of order but observing data dependences. Each 
of the ALU and memory buffers dispatches two instructions per cycle. When 
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an instruction has been successfully executed it is sent to the retire unit. Up 
to four instructions per cycle can be retired. 

When a load/store instruction in an IRB slot has received all its operands, 
it requests to be issued, just like an ALU instruction, but the destination is 
one of the load/store address adder units, to calculate its effective address. 
The calculated address is stored in a third 28-entry address reorder buffer 
(ARB), whose slots are associated one-to-one with the slots of the IRB's 
memory buffer. The effective address also goes to the TLB, which returns a 
physical address that is placed into the same ARB slot. With its address in 
the ARB, the load/store instruction starts arbitrating for access to the D­
cache. The ARB hardware also checks data dependences and prevents RAW 
hazards. The ARB allows the memory control to track up to 28 loads, stores, 
and prefetches simultaneously and these memory operations can be completed 
in any order. 

The D-cache supports two simultaneous memory operations while main­
taining a two-cycle access to the dual-bank cache system (as in the PA-8000's 
off-chip D-cache). Access to the two banks is controlled by the ARB, which 
receives addresses that have been calculated by the load/store address adder 
units, gives priority to corresponding memory accesses, and then picks one 
access for each bank each cycle. A bypass path is provided to route an ad­
dress directly from the address units if there is no outstanding access held in 
the ARB. This arrangement enables the cache ports to be utilized efficiently 
even when simultaneously calculated addresses happen to access the same 
half of the cache. Any delay in obtaining data in this scenario is hidden by 
the reorder buffers. 

With on-chip L1 caches larger than most L2 caches, combined with the 
scheduling capabilities of its 56-entry IRB, the PA-8500 does not need to 
support a tightly coupled L2 cache directly from the cPU. This eliminates 
the need to include an integrated L2 cache controller. 

Although priority is given to increasing the frequency of the PA-8500 by 
implementing it in 0.25 IIDl technology, some improvements have also been 
made by changing the branch prediction hardware which combines the ad­
vantages of static and dynamic two-bit branch prediction methods. The BHT 
in the PA-8500 is a standard array of 2-bit counters which record whether or 
not the branch went in the direction indicated by the static hint supplied by 
the compiler. If the static hint disagrees with the actual direction the branch 
followed, the counter is incremented; otherwise it is decremented. Each time 
a branch is fetched, the BHT is consulted and, if the counter is zero or one, 
the static hint encoded in the instruction is followed. If the counter is two or 
three, the hardware predicts that the branch will go in the direction opposite 
to the static hint. 

HP pioneered the addition of multimedia instructions with the MAX-1 
extensions in the 32-bit PA-7100LC and MAX-2 extensions in the 64-bit PA-
8000, which allowed vector operations on two or four 16-bit subwords in 32-bit 
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or 64-bit integer registers. This only required circuitry to slice28 the integer 
ALU, adding only 0.1 % to the PA-8000 CPU area - using the floating-point 
registers like Sun's VIS and Intel's MMX would have required duplicating 
ALU functions. In favor of powerful "mix" and "permute" packing/unpacking 
operations, 8- and 32-bit support, multiplication, and complex instructions 
were also omitted. 

Hewlett-Packard and Intel are working together on a new microprocessor 
architecture, IA-64, in order to provide breakthrough performance gains over 
current technology. The new processor will offer binary compatibility with 
PA-RISC software and Intel IA-32 software. 

4.9.8 MIPS RIOOOO and descendants 

Recall from Chap. 1 that between 1985 and 1994 MIPS Technologies (and 
its predecessor MIPS Computer Systems) introduced several scalar RISC 
processors and thus implemented three generations of their ISA (MIPS I to 
MIPS III, see p.ll). The fourth generation, MIPS IV ISA, was implemented 
in 1994 by the scalar processor R8000, and in 1995 by the first 4-issue su­
perscalar processor R10000 (Yeager [330]). The 2-issue superscalar R5000 
processor, which was introduced in 1996, is the third MIPS processor to im­
plement the MIPS IV ISA. 

In the following we discuss some of the R10000 features. The processor 
fetches and decodes four instructions per cycle and then appends them to 
one of three instruction queues. Each queue performs dynamic scheduling of 
instructions. The queues determine the execution order based on the avail­
ability of the required FUs. Though initially fetched and decoded in order, 
instructions can be issued, executed, and completed out of order, allowing the 
processor to have up to 32 instructions in various stages of execution. The 
high throughput is achieved through the use of wide, dedicated data paths, 
and large on-chip and off-chip caches. Running at 250 MHz, the R10000 de­
livers 14.7 SPECint95 and 24.5 SPECfp95. The processor is fabricated in 
0.35 j.lIIl CMOS technology with 6.7 million transistors and operates at up to 
275 MHz. 

F=~_"~ I Issue I Execute I Write 
per cycle 

Issue I Execute I Write 

Fetch I Decode I Issue Addr I Cache Write 

Issue Exe 1 I Exe2 Exe3 Write 

I Issue Exe 1 I Exe2 Exe3 I Write 

Fig. 4.33. Pipelines in the MIPS RlOOOO microprocessor 

28 Similar to bit-slice processors, such as the AMD 2901. 

Integer ALU #1 Pipeline 

Integer ALU #2 Pipeline 

Load/Store Pipeline 

Floating-point Adder Pipeline 

Floating-point Multiply Pipeline 



196 4. Multiple-Issue Processors 

The R10000 is pipelined, with the pipeline depth depending on the type 
of the instruction (Fig. 4.33). Initially, instructions proceed through the in­
struction fetch pipeline which consists of fetch, decode, and issue stages: 

1. in the fetch stage, four instructions are fetched and aligned, 
2. in the decode stage, the instructions are decoded, register renaming is 

performed, and branch instructions are predicted, 
3. in the issue stage (first half), the instructions are written to one ofthree 16-

entry instruction queues; the validity of the operands is also determined. 

Depending on its type, the instruction proceeds to one of the five execution 
pipelines. There are two integer and two floating-point pipelines, and one 
load/store execution pipeline. Each of these pipelines begins when a queue 
issues an instruction (issue stage) and continues as follows: 

3. in the issue stage (second half), the processor reads operands from the 
register files, 

4. the execution begins and takes 
a) one stage in the case of integer pipelines 
b) two stages in the case of the load/store pipeline 
c) three stages in the case of floating-point pipelines 

5-7. in the last stage (depending on the type of the instruction) the result is 
written into the register file. 

Figure 4.34 shows a block diagram of the R10000 microprocessor. 
The D-cache is 32 kB in size and is arranged as two identical 16 kB 

banks. The cache is two-way interleaved. Each of the two banks is 2-way 
set-associative. Cache line size is 32 bytes. The virtual indexing allows the 
cache to be indexed in the same clock cycle in which the virtual address is 
generated. However, the cache is physically tagged as the L2 cache. The L2 
cache interface provides a 128-bit data bus which can operate at a maximum 
of 200 MHz, yielding a peak data transfer rate of 3.2 GB/s. The L2 cache 
size is between 512 kB and 16 MB and the cache line size is programmable at 
either 64 or 128 bytes. 

The I-cache is 32 kB with 64-byte line size and is 2-way set-associative. 
Instructions are predecoded before being placed in the I-cache. Four extra 
bits are appended to each instruction to identify the necessary FU. 

The processor predicts the direction a branch will take by a 2-bit dynamic 
branch predictor and fetches instructions speculatively along the predicted 
path. To locate branch instructions in the instruction fetch pipeline, a branch 
bit is appended to each instruction in the decode stage. The path a branch 
will take is predicted using a 2-bit 512-entry BHT. The BHT is indexed by 
bits 11:3 of the branch instruction address. The MIPS architecture prescribes 
the delayed branch technique with one delay slot following a jump or branch 
instruction. The feature was retained for the R10000 for compatibility. The 
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Fig. 4.34. The MIPS RIOOOO microprocessor 

RIOOOO allows up to four outstanding branch predictions which can be re­
solved in any order. An on-chip 4-entry branch stack contains an entry for 
each branch instruction being speculatively executed. 

Each entry contains the information needed to restore the processor's 
state if the speculative branch is incorrectly predicted (e.g., alternate branch 
addresses and corresponding register renaming). This allows the processor to 
restore the pipeline quickly when a branch misprediction occurs. When the 
branch stack is full, the processor continues decoding only until it encounters 
the next branch instruction. Decoding then stalls until resolution of one of 
the pending branches. 

Let us briefly describe the register renaming. In the case of integer in­
structions 32 logical integer registers can be mapped to 64 physical integer 
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registers; in the case of floating-point instructions 32 logical floating-point 
registers can be mapped to 64 physical floating-point registers. The renam­
ing uses three structures: a mapping table, an active list, and a free list. 
Separate mapping tables and free lists are provided for integer and floating­
point instructions while only one active list exists. The active and the free 
list can each contain a maximum of 32 values. After an instruction is fetched 
from the I-cache it is placed in the mapping table where logical registers are 
assigned to physical registers, i.e., register renaming is performed. Currently 
unassigned physical registers are kept in the free list. The active list main­
tains a listing of all instructions currently active within the processor. The 
instructions in the instruction queues can be executed out of order. Thus, 
before the result can be stored as final, it must be stored in order as, de­
termined by the active list which is always kept in order. Once the result is 
stored it becomes obsolete, so the instruction can be retired and the logical 
destination can then be returned to the free list. 

After being decoded, the instruction is placed into one of the three 16-
entry instruction queues (integer/branch, floating-point, address) for schedul­
ing. Theses queues supply instructions for five execution pipelines. An in­
struction is issued from the queue in out-of-order fashion, when the required 
operands and FU are available. The integer queue can get up to four integer 
or branch instructions per cycle and supplies two integer ALUs. Similarly, the 
floating-point queue can get up to four floating-point instructions per cycle 
and supplies either the floating-point adder or floating-point multiplier. The 
address queue is a circular FIFO that preserves the original program order 
of load/store instructions so that memory address dependences may be com­
puted easily. An issued load/store instruction may fail to complete because 
of a memory dependency, a cache miss, or a resource conflict. In these cases 
the address queue must reissue the instruction until it is completed. 

The R10000 contains five FUs which operate independently of one an­
other: two integer ALUs, two floating-point units and a load/store unit. Both 
integer ALUs perform standard add, subtract, and logical operations. One 
integer ALU handles all branch and shift instructions, while the other han­
dles all multiply and divide operations using iterative algorithms. The adder 
floating-point unit handles add operations and the multiply floating-point 
unit handles multiply operations. In addition, two secondary floating point 
units exist which handle long-latency operations such as divide and square 
root. The load/store unit consists of the address queue, address calculation 
unit, a 64-entry TLB, address stack, store buffer, and L1 D-cache. This unit 
performs load, store, prefetch, and cache instructions. 

By scaling the R10000 design up to 300 MHz in clock speed, increasing 
the number of instructions that can be in various stages of execution from 
32 to 48, adding a 32-entry two-way BTC, and quadrupling in size the BHT, 
the resulting R12000 microprocessor ensures a corresponding increase in ap­
plicaton performance. The R12000 was introduced in 1998. A faster version, 
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operating at 400 MHz, and called R14000, has been scheduled for the second 
half of the 1999. 

4.9.9 IBM POWER family 

After the scalar RISC processors IBM 801 and ROMP (see p.33), IBM in 
1990 started designing superscalar processors based on IBM's POWER ISA. 
These processors were used in RS/6000 workstations and the RS/6000 SP 
multiprocessor (Oehler and Groves [217]). 

The first processor POWER1 (initially called POWER CPU), which was 
one of the pioneering superscalars, was implemented on three chips for the 
CPU with two or four additional cache chips (8-32 kB I-cache and 32-64 kB 
D-cache). The CPU chips were branch unit (BU), integer unit (IU) and 
floating-point unit (FPU). In 1992, the RSC (RISC Single Chip) design inte­
grated BU, IU, FPU, cache, memory controller, and I/O controller into one 
chip. 

In 1993, IBM continued with a POWER ISA-based design and produced 
the POWER2 processor. This was also a multichip design with two floating­
point load/store units, 256 kB D-cache, and added 128-bit floating-point sup­
port and a square root instruction. The processor could issue up to six in­
structions and four simultaneous load/store instructions. POWER2 was re­
designed in 1996 into one chip called the POWER2 Super Chip (P2SC) which 
operated at up to 160 MHz and was made in 0.29 J.UIl technology. 

In 1998, the first unified POWER/PowerPC microprocessor POWER3 
emerged. The 64-bit chip features eight FUs (three integer, two floating­
point, two load/store, and branch) fed by a 6.4 GB/s memory subsystem. 
The POWER3 also has on-chip 64 kB D-cache and a 32 kB I-cache. The 
target operating frequency is 200 MHz with 0.25 J.UIl technology. There are 
two high-bandwidth buses: a 128-bit 6XX architecture bus to main memory 
and a 256-bit bus to the L2 cache that runs at the processor speed. The 
POWER3 architecture provides the ability for thousands of microprocessors 
to be combined into a supercomputer.29 Future versions of the POWER3 
will be manufactured in a 0.20 J.tm process, that adopts copper wiring, and 
silicon on insulator technology, driving the POWER3 into the GHz range and 
beyond by 2001. 

4.9.10 IBM/Motorola/Apple PowerPC family 

Several 32-bit as well as 64-bit implementations of the PowerPC ISA appeared 
in the 1990s (see Table 4.11). The PowerPC ISA is based upon the IBM 
POWER architecture. 

29 The POWER3 processor is at the heart of a 4096-processor RS/6000 SP su­
percomputer called Deep Blue. When the system is upgraded with POWER3 
processors, it is expected to deliver 3.0 TFLOPS. 
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Table 4.11. The PowerPC processor family 

Year Type Technology Clock Issue Out-of-order Word Internal SPEClnt95 SPECfp95 
(f1III) (MHz) execution Fonnal caches(kB) 

1993 PowerPC 601 0.6 66-80 3 Yes 32-biI 32 

---~-~;~-------~~~-;~-~~~-- ------~:~---------;~~~;~~------;----------~~~---------;;~;;-------;~-~----------7T-~~~-~~!.2----

---------------------------------- ----------------------------------------------------------------------------------------~------------------
1995 PowerPC 602 0.5 66-80 2 Yes 32-b~ 2X4 

1995 PowerPC 604 0.25 166-350 4 Yes 32-bit 2X32 14.6 350 MH~'O 
---------------------------------- ------------------------------------------------------------------------------------------~------------------

1998 PowerPC 740 0.25 200-266 4 Yes 32-b~ 2X32 11.5 266 MH~·9 
---------------------------------- ---------------------------------------------------_.-------------------------------------~------------------

1998 PowerPC 750 0.25 233400 4 Yes 32-bit 2X32 17.6 400 M~:·2 
---------------------------------- ------------------------------------------------------------------------------------------~-----------------

1994 PowerPC 620 0.5 133 4 Yes 64·bit 2X32 

1995 PowerPC RS64 165 3 Yes 64-bit 2X64 

1995 PowerPC RS64-11 262 4 Yes 64-bit 2X64 

In 1993, the PowerPC 601 processor reached the market (Potter et al. 
[235], Becker et al. [25]) as the first member of the first generation (G1) 
of PowerPC ISA implementations. Being a bridge, Power PC 601 included 
both POWER and PowerPC features. The processor was based on the IBM 
POWER1 processor, except it had a single 32 kB cache rather than separate 
I-cache and D-cache. 

In the same year, the PowerPC 603 processor (Burgess et at. [44] Sues­
smith and Paap [281]) was announced to be the first in the second PowerPC 
generation (G2). It further separated the main FVs by removing load/store 
operations from the integer unit and provided separate fetch, issue, and retire 
units. For speculative execution the PowerPC 603 used a rename buffer in 
the issue unit and renamed integer and floating-point registers, which were 
ordered properly by the retire unit, or discarded for mispredicted branches 
and exceptions. L1 cache was split into I-cache and D-cache with either 8 kB 
or 16 kB each. 

The next processor, PowerPC 604, appeared in 1995 (Ryan and Thompson 
[250], Song et at. [276]). The 4-issue PowerPC 604 added dynamic branch 
prediction using a BHT, split the integer unit (IU) into three IUs (two for 
single-cycle operations and one complex IV for multicycle operations), and 
was capable of issuing four instructions at once. 

The microarchitecture of the PowerPC 604 (see Fig.4.35) extends the 
Tomasulo algorithm (see Sect. 3.3.2) to a four-issue scheme. Instructions are 
fetched from 16 kB I-cache in 4-instruction segments. During the fetch stage 
basic flow prediction is performed using a 256-entry BTAC. A second level 
of branch prediction during the decode/issue stage may override the flow 
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prediction in the fetch stage. Branch prediction in the decode/issue stage 
uses a 2-bit prediction scheme. The bits are stored in the 512-entry BHT. 

Fetch 
Unit I BTAC 11----1~ MMU!I-cache 

Retire Unit Decode! 
Issue Unit 

Branch 
Unit EJ 
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... Issue and Completion Buses .. 
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Address Data 

Fig. 4.35. The PowerPC 604 processor 

Fetched instructions proceed into an 8-entry instruction queue. The bot­
tom four entries of this queue decode the instructions, i.e., determine the re­
sources that each instruction requires. Once decoded, up to four instructions 
per cycle can be issued in order to reservation stations in front of each FU. 
Results are moved into the appropriate architectural register after the instruc­
tion commits. When an instruction is decoded and issued, a logical rename 
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register is allocated for the result of the operation. There are eight rename 
registers for 32 floating-point registers and twelve for 32 general-purpose reg­
isters. In addition, four loads and six stores can be buffered, further increasing 
the number of instructions issued. 

The decode/issue unit30 also assigns each instruction an entry in the 16-
entry reorder buffer, which tracks the status of every instruction - including 
whether the instruction is executing speculatively - from issue to retirement. 
Thus, the PowerPC 604 can have no more than 16 instructions executing, 
speculatively or otherwise, at anyone time. If the reorder buffer is full, issue 
stops until one or more entries become available. 

Each FU is fronted by two reservation stations (RS). If the execution 
stage is busy, issued instructions wait in RSs until the first execution stage 
is clear. They also wait in RSs if any of their operands are not available. 
A data-forwarding mechanism feeds the RSs, allowing operands to be made 
available to data dependent instructions before the instructions that produce 
them commits. Note that if an instruction with all its operands available is 
issued to an idle FU whose RS is empty, the instruction dispatches immedi­
ately to the execution stage. With the branch, floating-point, and load/store 
units, instructions dispatch in order from the RS to the FU. With the integer 
units, an instruction can be dispatched out of order. Thus, the PowerPC 604 
supports in-order issue; in-order dispatch within the branch, load/store, and 
floating-point units; out-of-order dispatch in the integer units; and out-of­
order execution. 

The retire unit uses the reorder buffer to retire instructions. It retires in­
structions in program order, up to four instructions per cycle. Recall that the 
retire unit knows the order of instructions because this information is sup­
plied to the reorder buffer when the instructions are issued. It does not retire 
an instruction that is labeled speculative, nor an instruction that executed 
out of order unless all previous instructions have been retired. 

In 1997, the PowerPC 604e operated at 350 MHz with 14.6 SPECint95 
and 9.0 SPECfp95. The chip was fabricated in 0.25 11m technology with ap­
proximately 5.1 million transistors. 

The PowerPC 620 is the first 64-bit implementation of the PowerPC ar­
chitecture (Gwennap [113]). The PowerPC 620 is 4-issue superscalar with 
six FUs: three IUs, an FPU, a load/store unit, and a branch unit. The latter 
performs branch prediction and four-level speculative execution. The microar­
chitecture ofthe PowerPC 620 is similar to that of the PowerPC 604. It differs 
mainly in the 64-bit wide registers and data paths, and it has more reser­
vation stations for speculative execution. It has the same 16-entry reorder 
buffer as the PowerPC 604, which tracks instructions from dispatch to com­
pletion to facilitate out-of-order execution. Since the PowerPC 620 releases 

30 In most of the papers on the PowerPC microprocessors cited in the references 
the terms issue and dispatch are used with reverse meaning and completion is 
also used with the meaning of retire. To avoid confusion, we use the terms as 
defined at the beginning of this chapter. 
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up to four instructions per cycle (compared to two in the PowerPC 604), it 
needs only 16 rename buffers, compared to 20 in the PowerPC 604. 

Another two 64-bit processors, PowerPC RS64 and RS64-II, added deci­
mal arithmetic and string instructions. The PowerPC RS64 (RS64-II) has a 
four (five) FUs, and can sustain a decode and execution rate of three (four) 
IPC. The PowerPC RS64 runs at 165 MHz (262 MHz in the case of RS64-
II) and has large caches, high data path bandwidth and low latency. Both 
processors have separate 64 kB I-cache and D-cache. The PowerPC RS64 con­
tains an L2 cache controller and a dedicated 16 byte (32 byte in the case of 
RS64-II) interface to a private external 2-way set-associative 4 MB (4-way, 
8 MB in the RS64-II) L2 cache. The L2 interface runs at full processor speed 
and provides 2 GB/s (8 GB/s) of bandwidth. The PowerPC RS64-II processor 
also has a separate 16 byte system bus interface. 

The 32-bit PowerPC 750 (G3, early 1998) refined the design and perfor­
mance, adding a PowerPC 620-style backside cache bus, but made no other 
significant changes to the Power PC 604. It is, however, the first micropro­
cessor featuring the new copper CMOS technology. As a result, higher clock 
speeds and lower power consumption are achieved. 

The PowerPC microprocessor roadmap expects the start of the G4 series 
of microprocessors in 1999 with new 32-bit and 64-bit microarchitecture, and 
advanced design methods with up to 50 million transistors in 0.25-0.181-UIl 
technology. 

4.9.11 Summary 

Table 4.12 and Table 4.13 summarize selected features of some of the state­
of-the-art superscalar processors. It can be seen that 64-bit processors as well 
as multimedia support have become standard. 

4.10 VLIW and EPIC Processors 

VLIW (very long instruction word) processors use a long instruction word 
that usually contains a fixed number of operations that are fetched, decoded, 
issued, and executed synchronously. All operations specified within a VLIW 
instruction must be independent of one another, otherwise the VLIW instruc­
tion would be similar to a sequential, multi-operation CISC instruction. 

Some of the key issues of a VLIW processor that were described by Colwell 
[52] are: 

• very long instruction word (128 to 1024 bits per instruction), 
• each instruction consists of multiple independent parallel operations, 
• each operation requires a statically known number of cycles to complete, 
• a central controller that issues a long instruction word every cycle, 
• multiple FUs connected through a global shared register file. 
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VLIW can best be explained as follows by setting it in contrast to superscalar: 

• VLIW relies on a sequential stream oflong instruction words, i.e., instruc­
tion tuples, in contrast to superscalar processors that issue from a sequen­
tial stream of "normal" instructions. 

• The instructions are scheduled statically by the compiler (in contrast to 
superscalar processors which rely on dynamic scheduling by the hardware). 

• More than one instruction can be issued each cycle, as in superscalar pro­
cessors, but the number of simultaneously issued instructions is fixed during 
compile-time. Only in-order issue is possible. 

• The instruction issue is, therefore, less complicated than the hardware 
scheduler of a superscalar processor. Complexity is moved from the hard­
ware into the compiler by the VLIW technique. By explicitly encoding 
parallelism in the long instruction, a VLIW processor can eliminate the 
hardware needed to detect parallelism. 

• Instruction parallelism and data movement in a VLIW processor are com­
pletely specified at compile-time. Run-time resource scheduling and syn­
chronization are, therefore, completely eliminated. The disadvantage is that 
VLIW processors cannot react to dynamic events such as, for example, 
cache misses, with the same flexibility as superscalar processors. 

• The number of instructions in a VLIW instruction word is usually fixed. 
Padding VLIW instructions with no-ops is needed in case the full issue 
bandwidth is not met. This increases code size. More recent VLIW archi­
tectures use a denser code format which allows removal of the no-ops. 

• VLIW is an architectural technique, whereas superscalar is a microarchi­
tecture technique (see p. 5). A 6-issue VLIW code cannot be executed on 
a 4-issue VLIW processor. 

• VLIW processors take advantage of spatial parallelism, like superscalar 
processors, by using multiple FUs to execute several operations of a VLIW 
instruction concurrently. 

The compiler groups independent instructions, executable in parallel, using 
optimization techniques such as software pipelining and loop unrolling, and 
schedules code blocks speculatively by predicting branch outcomes statically 
using a compiler technology called trace scheduling. 

VLIW is not a recent concept; in fact, it originated as an extension of 
horizontal microcoding techniques31 (Fisher [84]). 

31 CISC computers in the 1970s were microprogrammed machines. A complex in­
struction was decoded into a sequence of microinstructions that were executed 
serially under the control of a microcode sequencer. A microinstruction defined 
control points which activated connections between registers. Horizontal microin­
structions partitioned control point actions into many different classes, any of 
which could be activated within any given cycle. In contrast, since the micropro­
gram storage was expensive, vertical microinstructions encoded control points in 
some fashion, but required additional decoding to process the encoded control 
point information. 
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Due to the use of very long instruction words early VLIW processors were 
mostly implemented with microprogrammed control. Thus the clock rate is 
slow with the use of read-only memory (ROM). A large number of microcode 
access cycles may be needed for some instructions. 

As stated by Gwennap [112], the objective of VLIW is to eliminate the 
complicated instruction scheduling and issue of superscalar microprocessors. 
Therefore, one can view a VLIW processor as an extreme instance of a super­
scalar processor in which all independent or unrelated operations are already 
synchronously compacted together in advance. 

Older VLIW processors include the Trace Machine and the ELI-52 VLIW 
processor developed by Fisher [85]. VLIW is common in signal processors. 
As an example of this processor class, we will describe next the most sophis­
ticated signal processor to date. 

4.10.1 TI TMS320C6x VLIW Processors 

In February 1997, Texas Instruments introduced the TMS320C6x (or 'C6x) 
generation of high-performance digital signal processors. Based on the so­
called VelociTI VLIW architecture for a digital signal processor (DSP), the 
'C6x processor family defines a family of high-performance DSPs as exempli­
fied by the 'C6201 and the 'C6701 which use an 8-issue VLIW technique. 

DSPs are distinguished from general-purpose microprocessors by the abil­
ity to reach extremely high fixed-point or floating-point performance on 32-bit 
values. Typical applications for DSPs are mass market applications in signal 
and image processing, image recognition, and data and voice communication. 

The first processor in this new generation of DSPs is the 'C6201 fixed­
point DSP [292] which features a maximum of eight instructions per cycle, 
200 MHz clock rate, 1600 MIPS. 

The second DPS in the 'C6x family, the 'C67x, differs from the 'C6201 
only in the floating-point functionality of six of its eight functional units 
and its wider bus structure. The 'C62x and 'C67x members of the 'C6x 
generation of DSPs are to date the industry's highest performing fixed-point 
and floating-point DSPs. 

Figure 4.36 shows the overall structure of the TMS320C6201 processor. 
Besides the processor core which is described below, the 'C6201 proces­

sor contains a 16-bit host port interface (HPI), four direct memory access 
(DMA) channels with bootloading capability, a 32-bit external memory in­
terface (EMIF), two multichannel buffered serial ports (McBSPs) for simpli­
fied interface to telecommunication truncs and interprocessor communication, 
and two 32-bit timers. 

The 32-bit EMIF supports a variety of synchronous and asynchronous 
memories including SDRAM, SBRAM, SRAM. Additionally, the host has 
direct access to the processor data memory by way of the separate 16-bit 
HPI. The 'C6201 can be booted from 8-, 16-, or 32-bit external ROM using 
one of the two DMA channels available on the chip. 
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Fig. 4.36. TMS320C6201 processor overview 

Figure 4.37 shows the structure of the TMS320C6201 processor core. The 
VLIW core contains eight functional units (six arithmetic-logic units and two 
load/store units) and thirty-two 32-bit general purpose registers. 

The execution stage features two sets of functional units, each set with 
four units and a register set. One set contains functional units denoted .Ll, 
.SI, .Ml, and .Dl, the functional units in the other set are denoted .D2, .M2., 
.S2, and .L2. The two .M units are dedicated for multiplies, the two .S and 
.L units perform a general set of arithmetic, logical, and branch operations 
with single-cycle latency, and the .L units are load/store units. 

The data addressing units .Dl and .D2 are responsible for all data trans­
fers between the register files and the memory. 

The two register files contain sixteen 32-bit registers each. Each register 
file features its own connection to the memory. 
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Fig. 4.37. TMS320C6201 processor core 

The functional units in a set can freely share the sixteen registers belong­
ing to the set. The register sets are connected by a data bus by which the 
two sets of functional units can access data from the other register file. The 
data bus supports only a single read and a single write access per cycle to 
the other register file. 

128 kB on-chip RAM is split into 512 kbit internal data memory and 
512 kbit internal program memory that can also be configured as cache mem­
ory. 

The 'C6201 fetches a 256-bit wide VLIW packet with eight 32-bit instruc­
tions every clock cycle. The least significant bit of every 32-bit instruction 
chains the instructions together to execute packets. A "I" determines that the 
instruction belongs to the same execute packet as the previous instruction, 
while a "0" breaks the chain, determining that the next instruction should 
be executed in the following clock cycle as part of the next execute packet. 
Execute packets are dispatched to their respective functional units at the rate 
of one per cycle and the next 256-bit fetch packet is not fetched until all the 
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execute packets from the current fetch packet have been dispatched. After 
decoding, the instructions in an execute packet are issued simultaneously to 
the functional units for a maximum execution rate of eight instructions every 
clock cycle. 

The processor employs a load/store architecture; all instructions operate 
on registers. 

All instructions are conditional (predicated instructions) and most can 
access anyone of the 32 registers. Some registers support specific addressing 
modes only or act as condition registers for conditional instructions. 

Figure 4.38 is taken from [337] and shows execution of a FIR filter code 
using the 8-issue VLIW format of the 'C6201 processor. The six instructions 
(ADD, SUB, LDW, LDW, B, and MVK) of the inner loop kernel of the FIR filter 
algorithm are condensed into a single VLIW instruction. 

The 'C67x floating-point DSP [293] features 1 GFLOPS, 167 MHz (6 ns cy­
cle time), eight 32-bit instructions per cycle of which six can be 32-bit IEEE 
floating-point instructions per cycle and reaches 1 GFLOPS single-precision 
and 420 MFLOPS double-precision performance. The 'C67x DSP adds float­
ing point capability to six of the eight functional units available on the 'C6x 
VelociTI architecture. Therefore, the 'C67x instruction set is a superset of 
the 'C62x fixed point instruction set. All 'C62x instructions run unmodified 
on the 'C67x CPU. 

The following is a list of the four functional units and their fixed and 
floating-point capabilities. 

• The L-unit features 
- 32/40-bit fixed-point arithmetic and compare operations, 
- 32/64-bit floating-point arithmetic and compare operations (IEEE single 

and double precision), 
- 32-bit fixed-point logical operations, 
- fixed/floating-point conversions, and 
- 64 to 32-bit floating-point conversions. 

• The S-unit executes 
- 32-bit fixed-point arithmetic operations, 
- 32/40-bit shifts and 32-bit bit-field operations, 
- branching and constant generation, 
- 32/64-bit floating-point reciprocal, absolute value, compares, and l/sqrt 

operations, and 
- 32 to 64-bit floating-point conversions. 

• The M-unit executes 
- 16 x 16-bit fixed-point multiplies, 
- 24 x 24-bit fixed-point multiplies, 
- 32 x 32-bit fixed-point multiplies, 
- 32 x 32-bit single-precision floating-point multiplies, and 
- 64 x 64-bit double-precision floating-point multiplies. 

• The D-Unit performs 
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Fig. 4.38. Execution of a FIR filter code on the TMS320C6201 processor 
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- 32-bit add, subtract, linear, and circular address calculation, 
- 8/16/32/64-bit loads, and 
- 8/16/32-bit stores. 

These highly orthogonal functional units provide code generation tools with 
many execution resources enabling these tools to maximize performance with­
out extensive hand-coding of assembly instructions by software developers. 
The 'C67x's instruction-packing feature also allows these instructions to be 
executed in parallel, in serial or in parallel/serial combinations. This opti­
mized scheme enables significant reductions in code size, program fetches 
and power consumption. 

Just as with the 'C62x, the 'C67x core includes 8-byte, 16-byte, and 32-
byte addressability; 8 bits of overflow protection; saturation; bit-field extract, 
set and clear; bit counting; normalization and two additional integer multiply 
functional units with 32-bit and 24-bit multiply support. 

The 'C67x series of DSPs will begin sampling in the second half of 1998, 
with the first devices providing 1 GFLOPS of performance which will be 
fabricated by a 0.18 iJ.ll1 / 5-level metal process. By the year 2000 the 'C67x 
technology will allow devices that triple in performance to a full 3 GFLOPS. 

4.10.2 EPIC Processors, Intel's IA-64 ISA 
and Merced Processor 

Aimed at providing advanced technologies for workstation, server, and 
enterprise-computing products, Hewlett-Packard and Intel announced in June 
1994 their joint R&D project, which includes development of the 64-bit in­
struction set and compiler optimization. This resulted in the explzcitly paral­
lel instruction computing (EPIC) design style, which includes several features 
and techniques, such as (Gwennap [117], 1997; and Dulong [71], 1998): 

• specifying ILP explicitly in the machine code, that is, the parallelism is 
encoded directly into the instructions similarly to VLIW; 

• a fully predicated instruction set; 
• an inherently scalable instruction set (i.e., the ability to scale to many of 

FUs); 
• many registers; 
• speculative execution of load instructions, 

which complement each other and can be effectively used by the compiler to 
enhance the performance of wide-issue processors (August et al. [19], 1998). 

Also jointly developed by HP and Intel is the Intel 64-bit Architecture32 

(IA-64), which implements EPIC: 

32 In official HP-Intel announcements it was called 64-bit Instruction Set Architec­
ture, 64-bit ISA. Although IA-64 is being developed jointly by HP, Intel is the 
only company authorized to manufacture and market microprocessors based on 
it. 
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• The IA-64 ISA specifies 128 64-bit general-purpose registers, 128 80-bit 
floating-point registers, and 64 1-bit predicate registers.33 

• IA-64 instructions are 40-bit long and consist of op-code, predicate field 
(6 bits), two source register addresses (7 bits each), destination register 
address (7 bits), and special fields (including integer and floating-point 
arithmetic). The 6-bit predicate field in each IA-64 instruction refers to a 
set of 64 predicate registers. 

• IA-64 instructions are packed by compiler into bundles. A bundle is a 128-
bit long instruction word (LIW) containing three IA-64 instructions along 
with a so-called template that contains instruction grouping information. 
For example, 16 instructions could be packaged into six different bundles 
(three in each of the first five bundles, and one in the sixth), each bundle 
with its own template. Unlike some previous VLIW architectures, the IA-64 
does not insert no-op instructions to fill slots in the bundles. The template 
explicitly indicates parallelism, that is, whether the instructions in the 
bundle can be executed in parallel or one or more must be executed serially 
(due to operand dependences) and whether the bundle can be executed in 
parallel with neighboring bundles. Thus, the bundled instructions do not 
have to be in their original program order, and they can even represent 
entirely different paths of a branch. The compiler can also mix dependent 
and independent instructions together in a bundle, because the template 
keeps track of which is which. 

Scalability. A single bundle containing three instructions corresponds to a 
set of three FUs. If an IA-64 processor had n sets of three FUs each, then 
using the template information it would be possible to chain the bundles to 
create an instruction word of n bundles in length. Although not absolutely 
perfect, this is the way to provide scalability of IA-64 to any number of FUs. 

Predication in IA-64 ISA. Predication was already introduced in 
Sect. 4.3.4. Its use is described here as applied to the IA-64 ISA. Normally, 
a compiler turns a source code branch statement into alternate blocks of 
machine code arranged in a sequential stream (Fig. 4.39a). Depending on the 
outcome ofthe branch, the processor will execute one of those basic blocks by 
jumping over the others. Today's superscalar processors predict the branch 
outcome and speculatively execute the target block, paying a heavy penalty 
in lost cycles if they mispredict. IA-64 compilers will use predication to re­
move the penalties caused by mispredicted branches and by the need to fetch 
from noncontiguous target addresses by jumping over blocks of code beyond 
branches. When the compiler finds a branch statement it marks all the in­
structions that represent each path of the branch with a unique identifier 
called a predicate (Fig. 4.39b). IA-64 defines a 6-bit field {predicate register 

33 128 registers are a considerable number when compared with the 8 general­
purpose registers of the x86 family. 
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address) in each instruction to store this predicate. Thus, there are 64 unique 
predicates available at anyone time. Any instructions that share a particular 
branch path will share the same predicate. After marking the instructions 
with predicates, the compiler determines which instructions the processor 
can execute in parallel,34 Specifically, the main idea of predication is that 
when the processor encounters a predicated branch at runtime, it will begin 
executing the code along all destinations of the branch, exploiting as much 
parallelism as possible (see Mahlke et al. [188], 1995). Now the compiler can 
start assembling the machine code instructions into 128-bit bundles of three 
instructions each. 

if 
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Fig. 4.39. An if-then-else statement (a) four basic blocks in traditional architecture 
(b) one basic block in EPIC architecture 

At run-time, the CPU scans the templates, picks out the independent 
instructions, and issues them in parallel to the FUs. When the processor finds 
a predicated branch, it begins executing the code for every possible branch 
outcome. Suppose that predicate register PR1 has been associated to the 
instructions in the THEN path, and the predicate register PR2 to those in the 
ELSE path of the branch. Eventually, the processor will evaluate the compare 
operation of the branch and the branch outcome will become known. If the 
condition is (say) TRUE, the processor will store a 1 in PR1 to represent 
TRUE, and it will store a 0 in PR2 to represent FALSE. In spite of the 
fact that the processor has probably executed some instructions from both 

34 This requires the compiler to know the processor's microarchitecture well, be­
cause different IA-64 chips will have different numbers and types of FUs. 
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possible paths, none of the (possible) results has been stored yet. To do this, 
the processor checks the predicate register of each of these instructions. If 
the predicate register contains a 1 (in our example that would be PR1), the 
instruction is on the TRUE path (i.e., valid path), so the processor retires 
the instruction and stores the result. If the register contains a 0 (PR2 in our 
example), the instruction is invalid, so the processor discards the result. 

Simulations indicate that predication can eliminate more than half of the 
branches in a typical program and, therefore, reduce by half the number of 
potential mispredictions. This has several benefits: 

• code fragmentation is reduced because the compiler can merge small basic 
blocks into larger blocks that branches do not chop up, 

• the compiler has more freedom to rearrange instructions for parallel exe­
cution (due to larger blocks), 

• the number of mispredicted branches is drastically reduced because many 
branches do not require the processor to predict their outcome, 

• the FUs are kept busy because more instructions can be issued in parallel. 

The downside of predication is that whether the predicated condition 
evaluates TRUE or FALSE, the processor does perform redundant work. 

Speculative loading. Another key feature of IA-64 is speculative loading. 
This technique allows IA-64 processors to load data from memory well before 
the program needs it, and thus to effectively minimize the impact of memory 
latency. Like predication, speculative loading is a combination of compile­
time and run-time optimizations. 

The compiler is looking for any instructions that will need data from 
memory and, whenever possible, hoists a load at an earlier point in the in­
struction stream, well ahead of the instruction that will actually use the 
data. In most of today's superscalar processors the load can be hoisted up to 
the first branch instruction which represents a barrier (see Fig. 4.40a). Since 
branches typically occur about every seven instructions, it seems that they 
also severely inhibit the lA-64's ability to load data from memory long be­
fore needed. However, speculative loading combined with predication gives 
the compiler more flexibility to reorder instructions and to hoist loads above 
branches. We call such a shifted load a speculative load instruction and denote 
it by Id. 5. The compiler also inserts a matching speculative check instruc­
tion, denoted by check. 5, immediately before the particular instruction that 
will use the data (see Fig. 4.40b). At the same time, the compiler rearranges 
the surrounding instructions so that the processor can issue them in parallel. 

At run-time, the processor encounters the Id. 5 instruction first and tries 
to retrieve the data from the memory. More precisely, Id. 5 performs memory 
fetch and exception detection (e.g., checks the validity of the address). If an 
exception is detected, Id. 5 does not deliver the exception (i.e., it does not 
call the operating system routine for handling the exception). Instead, Id.5 
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Fig. 4.40. Control speculation (a) in traditional architecture a branch is the barrier 
for hoisting a load instruction (b) in EPIC a load can be initiated even before the 
branch 

only marks the target register (by setting a token bit). The exception delivery 
is the responsibility of the matching check. s instruction. When encountered, 
check. s calls the operating system routine if the target register is marked 
(i.e, if the corresponding token bit is set), and does nothing otherwise. Of 
course, whether the check. s instruction will be encountered depends on the 
outcome of the branch instruction. Thus, it may happen that an exception 
detected by this Id. s is never delivered (see Dulong [71], 1998). 

Many EPIC ideas are not new. Predication has already appeared in the 
ARM architecture (see p. 43), which has included a form of predication since 
its inception in the 1980's; and in TI's VelociTI architecture which is the 
foundation of the TMS320Cx processors, whose instructions included a con­
ditional field for similar purposes. Speculative loading with Id. s/ check. s 
machine level instructions resembles the TRY/CATCH statements in some 
high-level programming languages (e.g., Java). 

Merced. Merced35 is the code name of Intel's general-purpose 64-bit micro­
processor, which should be the first member ofthe IA-64 family. It is currently 
under development and is scheduled for production in mid-2000 in 0.18 J.U1l 
technology. Not much is publicly known about the Merced at the time of 
writing. The processor is targeted at servers with moderate to large numbers 
of processors, and should provide full compatibility with Intel's x86 family. In 
x86 mode, it will probably match the performance of a 500 MHz Pentium II. 
Merced, which is otherwise expected to operate at speeds of around 800 MHz, 
will deliver 50 SPECint95 and 100 SPECfp95. 

35 The processor is named after Merced city, located near San Jose, CA. 
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Because of the comparable estimated performances of other competitors, 
such as Sun's UltraSPARC-III, DEC's Alpha 21264, and IBM's POWER3, 
Intel and Hewlett-Packard are now pinning their performance hopes on the 
second generation IA-64 processor, code-named McKinley (Gwennap [118], 
1998). 

4.11 Conclusions on Multiple-Issue Processors 

Current microprocessors utilize ILP by a deep processor pipeline and by 
the superscalar instruction issue technique. A superscalar processor is able 
to issue multiple instructions each clock cycle from a conventional linear 
instruction stream. DEC Alpha 21164, IBM/Motorola/Apple PowerPC 604 
and 620, MIPS R10000, Sun UltraSPARC-II or IIi and HP PA-8000 issue 
up to four instructions per cycle from a single thread. DEC Alpha 21264 
already issues six instructions per cycle. VLSI technology will soon allow 
future microprocessors to exploit instruction-level parallelism (ILP) of eight 
or more instructions per cycle. 

As the issue rate of future microprocessors increases, the compiler or the 
hardware will have to extract more ILP by analyzing a larger instruction 
window. However, ILP found in a conventional instruction stream is limited 
(Butler et al. [45], Wall [317], Lam and Wilson [170]). In general, integer­
dominated programs feature a rather low ILP, while a high ILP can be ex­
tracted from floating-point programs by transforming loop-level parallelism 
into ILP using compiler techniques like loop unrolling or software pipelining. 

Recent studies have shown the limits of processor utilization even of to­
day's superscalar microprocessors. Using the SPEC92 benchmark suite, the 
PowerPC 620 showed an execution of 0.96 to 1.77 IPC (see Diep et al. [68]), 
and even an 8-issue Alpha processor will fail to sustain 1.5 IPC (see Tullsen et 
al. [303]). The out-of-order superscalar processors MIPS R10000 and HP PA-
8000 reach a slightly higher IPC due to their larger instruction windows and 
the out-of-order issue facility. All these measurements were usually based 
on the SPEC92 benchmark suite. Similar CPI values between 0.5 and 1.5 
have been reported by Bhandarkar and Ding [27] for SPEC95 benchmark 
programs on the Pentium Pro. 

Newer measurements by Keeton et al. ([160], 1998) of commercial online 
transaction processing (OLTP) database workloads on a quad Pentium Pro 
symmetric multiprocessor show an overall CPI of 3.39. Similar measurements 
by Barroso et al. ([23], 1998) show an even less favorable CPI of 7.0 (IPC of 
only 0.14!) for an OLTP and a CPI of 1.3-1.9 for a decision support system 
(DSS) workload on a four-issue Alpha 21164 processor. The low IPC stems 
from the 75 % of time that is spent stalling for memory accesses due to the 
large working set, common in database transaction processing, that leads to 
a high cache miss ratio even of a large L2 cache. 
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An unsolved problem in today's microprocessors is the memory latency 
caused by cache misses. As reported by Loudon and Lenoski [173] for the 
SGI Origin 2000 distributed shared memory system, these latencies are 11 
processor cycles for a Ll cache miss, 60 cycles for a L2 cache miss, and 
can be up to 180 cycles for a remote memory access (see also p.257 for 
latencies on an Alpha Server 4100 SMP). In many missed instruction slots 
the latencies should be multiplied by the issue bandwidth. Only a small part 
of the memory latency can be removed or hidden in modern microprocessors, 
even when advanced techniques are employed, such as out-of-order execution, 
write buffer, cache preload hardware, lockup-free caches, and a pipelined 
system bus. Thus microprocessors often idle and are unable to exploit the high 
degree of internal parallelism provided by a wide superscalar approach. The 
rapid context switching of dataflow and multithreaded architectures shows a 
superior way out. Idling is avoided by switching execution to another context. 

An 8-issue (or even higher) superscalar processor will be possible in the 
next generation of microprocessors. Finding enough fine-grain parallelism to 
fully exploit the processor will be the main problem. One solution is to en­
large the instruction window to several hundred instruction slots with hope­
fully more simultaneously executable instructions present. However, there are 
two drawbacks to this approach. First, considering that all instructions stem 
from a single instruction stream and that on average every seventh instruc­
tion is a branch instruction, most of the instructions in the window will be 
speculatively assigned with a very deep speculation level (today's depth is 
normally four at maximum). Thereby most of the instruction execution will 
be speculative. The principal problem here arises from the single instruction 
stream that feeds the instruction window. Second, if the instruction window 
is enlarged, the updating of the instruction states in the slots and matching 
of executable instructions lead to more complex hardware logic in the issue 
stage of the pipeline, thus limiting the cycle rate increase which is essential 
for future generations of microprocessors. Solutions include the decoupling of 
the instruction window with respect to different instruction classes as in the 
HP PA-8000, the partitioning of the issue stage into several pipeline stages, 
and alternative instruction window organizations. One alternative instruc­
tion window organization, proposed by Palacharla et al. [222], is the multiple 
FIFO-based organization in the dependence-based microprocessor. Only the 
instructions at the heads of a number of FIFO buffers can be issued to the 
execution units in the next cycle. The total parallelism in the instruction 
window is restricted in favor of a less costly issue that does not slow down 
processor cycle rate. The potential fine-grained parallelism is thereby lim­
ited - a technique somewhat similar to the threaded dataflow approaches 
described in Sect. 2.3.1. 

Another problem of today's superscalar microprocessors may not be found 
in the instruction window organization. It is the necessity of instruction com­
mitment due to the serial semantics of the instruction stream. For example, if 
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a load instruction causes an L2 cache miss, the whole reorder buffer may soon 
be clogged by succeeding instructions (succeeding in sequential program or­
der) that are already executed. Because of the sequential program order that 
should be restored by the retire stage, these instructions cannot be retired 
and removed from the reorder buffer even if the instructions are independent 
of the load instruction that caused the cache miss. The commitment may be 
the main obstacle for further performance increase in microprocessors. 

In principle, an algorithm defines a partial ordering of instructions due to 
control and data dependences. The total ordering in an instruction stream 
for today's microprocessors stems from von Neumann languages. But why 
should 

• a programmer 
- design a partially ordered algorithm, 
- and then code the algorithm in total ordering because of the use of a 

sequential von Neumann language, 
• the compiler 

- regenerate the partial order in a dependence graph, 
- and then generate a reordered "optimized" sequential machine code, 

• the microprocessor 
- dynamically regenerate the partial order in its out-of-order section, exe­

cute due to a micro dataflow principle, 
- and then re-establish the unnatural serial program order for in-order 

commitment in the retire stage? 

Ideally, an algorithm should be coded in an appropriate higher-order lan­
guage (e.g., dataflow-like languages might be appropriate). Next, the com­
piler should generate machine code that still reflects the parallelism and not 
an unnecessary serialization. Here, a dataflow graph viewed as machine lan­
guage might show the right direction. A parallelizing compiler may generate 
this kind of machine code even from a program written in a sequential von 
Neumann language. The compiler could use compiler optimization and cod­
ing to simplify the dynamic analysis and issue out of the instruction window. 
The processor dismisses the serial reordering in the completion stage in favor 
of only a partial reordering. The retire unit retires instructions not in a single 
serial order but in two or more series (as in the simultaneous multithreaded 
processors). Clogging of the reorder buffer is avoided since clogging of one 
thread does not restrict retirement of instructions of another thread. 



5. Future Processors to use Fine-Grain 
Parallelism 

Everything that can be invented has been invented. 

US Commissioner of Patents, 1899 

I think there is a world market for about five computers. 

Thomas J. Watson Sr., IBM founder, 1943. 

5.1 Trends and Principles in the Giga Chip Era 

Forecasting the implications of technology is even harder than forecasting 
technological trends, although even the latter can prove wildly inaccurate. 
This and the next two chapters describe some ideas about future microar­
chitectures based on technological forecasts. Principal problems and possible 
application domains are stated. All architectures described are still in survey 
stage. Up to now only simulation studies exist and very few prototype im­
plementations are available. So most of this and the following two chapters 
is highly speculative. 

This section is organized into subsections separately covering technology­
related aspects such as technological forecasts, future impacts of wire delays, 
and limits in miniaturization; application- and economy-related aspects like 
the growing fabrication costs, the increasing importance of multimedia work­
loads, and consumer and mobile product; and future architecture proposals. 

5.1.1 Technology Trends 

State-of-the-art microprocessors in 1999 feature up to 15-million-transistor 
chips (in the case of the IBM RISC System/6000SP processor) and up to 
600 MHz clock rate (in the case of an Alpha 21164 processor). The most 
advanced processors use a 0.25 J.I.lll CMOS technology. Achieving clock rates 
of 1 GHz has already been demonstrated for a relative simple, scalar RISC 
processor (Hofstee et aZ. [139]). 

In its 1994 road map, the Semiconductor Industry Association (SIA) pre­
dicted the course of semiconductor technology over the next 15 years. The 
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SIA predicted that by 2007, industry would be manufacturing 350-million­
transistor processors, and by 2010, it would be manufacturing 800-million­
transistor processors with thousands of pins, a 1 OOO-bit bus, and clock speeds 
over 2 GHz. Such "giga" chips would produce a predicted maximum of 180 W 
(Burger and Goodman [39]). These large numbers of transistors result from 
greatly reduced feature sizes and lead to higher wiring densities. Thus, a 
major challenge is to use these transistors effectively and to accommodate 
the dramatic shifts in design constraints that will result from these changes 
(Smith and Vajapeyam [271]). 

The 1997 National Technology Roadmap for Semiconductors published 
by the SIA [336] is similar optimistic (see Table 5.1). 

Table 5.1. The 1997 National Technology Roadmap for Semiconductors 

Year of 1st shipment 1997 1999 2001 2003 2006 2009 2012 

Local clock (GHz) 0.75 1.25 1.5 2.1 3.5 6 10 
Across chip (GHz) 0.75 1.2 1.4 1.6 2 2.5 3 
Chip size (mm2) 300 340 385 430 520 620 750 
Feature size (nm) 250 180 150 130 100 70 50 
Number of chip I/O 1450 2000 2400 3000 4000 5400 7300 
Transistors/chip 11M 21M 40M 76M 200M 520M 1.4G 

It foresees that the most powerful processors in 2012 will run at 10 GHz, 
contain 1400 million transistors and feature a 0.05 11m technology. DRAMs 
will grow to 4 Gbits in 2003. An Alpha 21164 processor today contains about 
9.3 million transistors. If 1000 million transistors could be integrated in a 
single chip in 2012, then 100 copies of an Alpha processor could be arranged 
on such a chip. However, to approach feature sizes of 0.1 11m or less, new 
technologies have to be developed [335]. 

According to Tremblay [300], the design challenges for future micropro­
cessors focus on three issues: increasing clock speed, the amount of work that 
can be performed per cycle, and the number of instructions needed to perform 
a task. While these issues can be competing goals, most ideas usually just 
improve one factor, thereby making the others worse. For instance, the orig­
inal RISC idea successfully supported higher clock speeds and a smaller CPI 
count through pipelining, but increased the number of instructions needed to 
perform a task compared to contemporary CISC processors. 

Today's general trend in processor design again goes toward more com­
plex designs and is opposed by the wiring delay within the processor chip 
as the main technological problem. At increasingly higher clock rates with 
sub-quarter-micron designs, on-chip interconnecting wires cause a significant 
portion of the delay time in circuits (Burgess [43)). In particular global in­
terconnects within a processor chip cause problems with higher clock rates. 
Maintaining the integrity of a signal as it moves from one end of the chip to 
the other becomes more difficult. Copper metallization is worth a 20-30 % 
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reduction in wiring delay, but will not in general solve the problem for future 
processor generations (Killian [161]). While in the past designers focused on 
gate delay, in the future wire delay will be an increasingly important issue. 
To compensate for wire delays, a design must be partitioned in a way that 
maximizes the local communication of data values. The architecture, floor 
planning, and circuit design will be more tightly interwoven. 

The study of Palacharla et al. [222] estimated the impacts of delays of 
key pipeline components of superscalar processors, when technology moves to 
smaller features. The study shows that for a given feature size, instruction­
issue logic moderately increases delays for higher degrees of instruction-level 
parallelism (ILP). Reducing feature size decreases the delays, but they are 
likely to remain an important design consideration because of faster clock 
cycles. What really matters are bypass delays: the complexity of bypass paths 
(long wires) grows quadratically with the number offunctional units required 
to support higher ILP. This is significant because wire delays are not likely 
to scale well for smaller features, so bypass delays will become critical (Smith 

and Vajapeyam [271]). 

5.1.2 Application- and Economy-Related Trends 

While the physical limits of how far one can shrink a CMOS processor may 
not be reached in the near future (if we keep shrinking transistors as in the 
past, we will run into the limits of physics within the next 25 years), cost 
is a possibly limiting factor. Economy of scale may hinder the manufacture 
of densely integrated chips as proposed by SIA. Fabrication plants now cost 
about 2000 million USD, a factor of ten more than a decade ago. Manufac­
turers can only sustain such development costs if larger markets with greater 
economies of scale emerge. This problem may be tightened if consumers begin 
to prefer cheaper computers instead of faster ones. 

As Colwell [51] from Intel remarks the real threat for processor design­
ers is shipping 30 million CPUs only to discover they are imperfect in some 
way that causes a recall, threatening the bankruptcy of a firm. This leads 
to the challenge of chip debug, validation, and testing. More than 20 % of 
Pentium Pro design efforts was associated with validation. Formal methods 
prove useful; they are already mature enough that they could have avoided 
the Pentium divide unit flaw. Chip verification techniques potentially ren­
der testing unnecessary. DEC has already been able to verify functionally 
the Alpha 21264 processor (see Rubinfeld [249]). But the performance of to­
day's chip design tools is still rather limited when the task is as complex as 
designing a whole state-of-the-art microprocessor. 

The large design teams necessary for complex processor designs are an­
other obstacle, using much manpower and prolonging the design period. A 
microprocessor design takes about two-and-a-half years, but the lifetime of a 
microprocessor is only one-and-a-half years. It follows that several different 
designs have to be developed at once by the same engineers or by different 
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design teams (Grohoski [107]). Less complex processors will need less time 
for debugging and smaller design teams. 

There is a general agreement among processor designers that future micro­
processors will support user interactions like video, audio, voice recognition, 
speech processing, and 3D graphics. Multimedia features, like video and au­
dio, may prove minor challenges for the future, since there is a limit to what 
the human visual and audio system can perceive. A performance level that is 
sufficient for human perception will be reached within one of the next gener­
ations of microprocessors. Long-term user interaction issues are applications 
that are scalable in their computation requirements. Such scalable applica­
tions that profit from increasingly higher performance microprocessors are 
outstanding 3D graphics, handwriting and speech recognition, object recog­
nition and classification from pictures or videos. Moreover, future computers 
will primarily be communication devices. 

Furthermore, special application challenges will come from large data sets 
and huge databases, large data-mining applications, transaction processing, 
huge EDA applications like CAD/CAM software, virtual reality computer 
games, signal processing, and real-time control. 

5.1.3 Architectural Challenges and Implications 

Further architectural challenges besides the economic and application de­
mands are: 

• Preserving object code compatibility, to deal with legacy binaries, as noted 
in 1998 by Tremblay [300] and Colwell [51]. This may be avoided by a 
virtual machine that targets run-time ISAs, as the Java Virtual Machine 
or Fisher's approach of walk-time techniques [86]. 

• It is necessary to find ways of expressing and exposing more parallelism 
to the processor. It is doubtful whether enough ILP is available. The lan­
guage structures of von Neumann languages used today limit the amount 
of extractable parallelism. We need to look at parallelism at higher than 
ILP and run more than one thread in parallel. Higher-level parallelism al­
lows smaller computational units to work in parallel on these threads and 
thereby favors a modular design approach (Tremblay [300], 1998). 

• Buses may probably scale. Area-array flip-chip packaging will allow the im­
plementation of much wider buses in future (RubinJeld [249], 1998). Slow 
buses are a low-end vendor problem. SGI is already shipping 400 MHz 
chip-to-chip communication by point-to-point unidirectional communica­
tion over five meters of cable (Killian [161]' 1998). 

• A related issue is the memory bottleneck. Memory latency may be solved 
by a combination of technological improvements in memory chip tech­
nology (Katayama [156], 1997) like SLRAM, SLDRAM (Gillingham and 
Vogley [100], 1997) and Rambus (Crisp [55], 1997), and by applying ad­
vanced memory hierarchy techniques such as larger caches, more elaborate 
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cache hierarchies, prefetching, compiler tricks, streaming buffers, intelligent 
memory controllers, and bank interleaving [51, 249]. Many other authors 
disagree with this assumption and center their designs on the memory 
processor bottleneck. 

• Power consumption is of specific importance for the increasing market for 
mobile computers and appliances. 

• Soft errors by cosmic rays of gamma radiation may be met by fault-tolerant 
design through the chip [249]. 

A general-purpose processor will not be able to serve all these differing re­
quirements adequately. Possible solutions are: 

• a focus of processor chips on particular market segments (Killian [161]' 
1998); 

• multimedia pushes desktop personal computers while high-end micropro­
cessors will serve specialized applications due to different performance/cost 
tradeoffs (Burgess [43], 1998); 

• integrate functionalities to systems on a chip, for example, AGP on-chip 
(Colwell [51], 1998); 

• a partition of the microprocessor into a client chip part that focuses on 
general user interaction enhanced by server chip parts that are tailored for 
special applications (Tremblay [300], 1998); 

• a CPU core that works like a large ASIC block and that allows system 
developers to instantiate various devices on a chip with a simple CPU core 
(Grohoski [107], 1998); and 

• reconfigurable on-chip parts that adapt to application program require­
ments. 

An architectural implication of the long interconnect wire delay problem is a 
strict functional partitioning within the microarchitecture and a floor plan­
ning that avoids long interconnects. Designers can probably best accomplish 
this by dividing the microarchitecture into multiple processing elements, each 
no larger than today's superscalar processors. Coordinating these processing 
elements to act as a single, unified processor will require, as noted by Smith 
and Vajapeyam [271], an additional level of microarchitecture hierarchy for 
both control (distribution of instructions) and data (for communicating val­
ues among the processing elements). 

We will see in future whether a modular design is possible for a very 
complex single instruction stream general-purpose processor, or whether the 
pendulum swings back to less complex processors. Several simple processors 
could be combined into a multiprocessor chip or a simple processor could be 
integrated on a DRAM for tighter processor-memory integration. A 256 Mbit 
memory chip together, with memory compression, can afford to devote some 
reasonable percentage of that die to a simple CPU (Grohoski [107], 1998). 
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Very complex uniprocessor approaches that retain the result serialization 
of the von Neumann architecture exhibit the following microarchitecture de­
sign principles: 

• Advanced superscalar processors will scale up from current designs to issue 
16 or 32 instructions per cycle (see Sect. 5.2). 

• Superspeculative processors enhance wide-issue superscalar performance 
by speculating aggressively at every point in the processor pipeline (see 
Sect. 5.3). 

• Multiscalar processors divide a program into a collection of tasks that are 
distributed to a number of parallel processing units under the control of a 
single hardware sequencer (see Sect. 5.4). 

• Trace processors facilitate high ILP and a fast clock rate by breaking up 
the processor into multiple, distinct cores similar to multiscalar, and break­
ing up the program into traces (dynamic sequences of instructions). One 
core executes the current trace while the other cores execute future traces 
speculatively (see Sect. 5.5). 

• A DataScalar processor runs the same sequential program redundantly 
across multiple processors using distributed data sets. Loads and stores 
are performed only locally on the processor memory that owns the data, 
but a local load broadcasts the loaded value to all other processors (see 
Sect. 5.6). 

Multiprocessor alternatives that optimize the throughput of a multiprogram­
ming workload while each thread or process retains the result serialization of 
the von Neumann architecture are: 

• Chip multiprocessors which place a small number of distinct processors (4-
16) on a single chip and run parallel programs and/or multiple independent 
tasks on these processors (see Sect. 6.2.3). 

• Simultaneous multithreaded processors which share an aggressive pipeline 
between multiple tasks when there is insufficient ILP in anyone task to 
use the pipeline fully (see Sect. 6.4). 

Highly parallel chip architectures that deviate from the von Neumann archi­
tecture model are made available by two related approaches that are covered 
in some detail in Chap. 7: 

• The processor-in-memory (PIM) or intelligent RAM (IRAM) approach in­
tegrates processor and memory on the same chip to increase memory band­
width (see Sect. 7.1). 

• Reconfigurable processors allow the hardware to adapt dynamically at run­
time to the needs of an application (see Sect. 7.2). 
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5.2 Advanced Superscalar Processors 

One end of the spectrum of architectural design choices is to enhance to­
day's superscalar multiple issue processors but retain result serialization as 
defined by the von Neumann architecture. To reach highest execution of a 
single instruction stream involves delivering the maximum possible instruc­
tion bandwidth each cycle to the execution core and consuming the delivered 
bandwidth within the execution core. Delivering optimal instruction band­
width requires a high number of instructions fetched each cycle, a minimal 
number of cycles in which instructions that are fetched for a wrongly pre­
dicted path are subsequently discarded, and a very wide, full instruction is­
sue each cycle. Consuming this instruction bandwidth requires sufficient data 
supply so that instructions are not unnecessarily inhibited from executing, 
and sufficient functional units to handle the instruction bandwidth. 

Patt et al. [229] suggest for advanced superscalar processors for one gig a 
transistor chips in year 2005 (see Fig.5.1): 

• an I-cache that provides for out-of-order fetch in the presence of I-cache 
mlsses; 

• a large sophisticated trace cache (Rotenberg et al. [246], 1996) for providing 
a contiguous instruction stream; 

• an aggressive multi-hybrid branch predictor using multiple, separate 
branch predictors, each tuned to a different class of branches with sup­
port for context switching, indirect jumps, and interference handling; 

• a very wide-issue superscalar processing with an issue width of 16 or 32 
IPC; 

• a large number of reservation stations to accommodate approximately 2 000 
instructions; 

• 24 to 48 highly optimized, pipelined functional units; 
• sufficient on-chip D-cache (more than half of the transistors on chip are 

allocated to data and on-chip L2 caches), and 
• sufficient resolution and forwarding logic. 

The trace cache is a new paradigm for caching instructions (see also Sect. 5.5). 
The trace cache is accessed like an I-cache by using the starting address of 
the next block of instructions. Unlike the I-cache, a trace cache stores con­
tiguously fetched and executed instructions in physically contiguous storage. 
A trace cache line stores a segment of the dynamic instruction trace across 
multiple, potentially taken branches. As a group of instructions is processed, 
it is latched into the so-called fill unit that maximizes the size of the trace 
segment, and finalizes a segment when the segment can be expanded no fur­
ther. Finalized segments are written to the trace cache. Instructions can be 
sent from the trace cache to the reservation stations without having to un­
dergo a large amount of processing and rerouting. Because the fill unit is 
outside the critical path, it may take several cycles to analyze and build a 
trace. To measure the performance of a trace cache, three applications from 



228 5. Future Processors to use Fine-Grain Parallelism 

Fill unit 

Two-level 
00 
I=l 

trace cache 
0 ..... 
~ ..... 
00 

I=l 
0 ..... 
~ 
e 

~ Il) 

"'0 0 00 00 ..... Il) Il) .~ u 
:.a Il) ~ ~ 

~ Q) ~ u 
..s:: ~ u t\I 
.,.!. 0.. t\I U ..... ..s:: u I 

~ U I Q 
::s Q -til 

~ 
.0 

L2 caches 

Fig. 5.1. Advanced superscalar architecture 

the SPECint95 benchmarks were simulated by Patt et al. [229] on a 16-wide 
issue machine assuming perfect branch prediction. The simulations showed 
the trace cache as effective in delivering more than one basic block per cycle, 
and the trace cache continued to add performance as the size of the storage 
structure increased. 

As already emphasized in Sect. 4.3 on branch prediction, a fast and accu­
rate branch prediction is essential for advanced superscalar processors with 
hundreds of in-flight instructions. Branch prediction itself is already a well­
developed part of micro architecture design. One observation is that many 
branches display different characteristics that cannot be optimally predicted 
by a single-scheme branch predictor. Evers et af. [80] propose hybrid branch 
predictors, a technique that was previously proposed by combining two pre­
dictors (McFarling [196], 1993) and that is already implemented in the Pow­
erPC 620. Hybrid predictors comprise several predictors, each targeting dif-
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ferent classes of branches. The principal idea is that each predictor scheme 
works best for a particular branch type. 

As predictor tables increase in size, they often take more time to react to 
changes in a program (warm-up time). A hybrid predictor with several com­
ponents can solve this problem by using component predictors with shorter 
warm-up times while the larger predictors are warming up. Examples of pre­
dictors with shorter warm-up times are two-level predictors with shorter his­
tories as well as smaller dynamic predictors [229]. 

The multi-hybrid branch predictor of Evers et al. [80] and Fatt et al. [229] 
uses a set of selection counters for each entry in the branch target buffer, 
in the trace cache, or in a similar structure, keeping track of the predictor 
currently most accurate for each branch, and then using the prediction from 
that predictor for that branch. The multi-hybrid predictor performs better 
than regular hybrid predictors. It reaches a prediction rate of 95 % for 16 kB 
predictor size and up to near 97 % for 256 kB predictors using programs of the 
SPECint95 benchmark suite [229]. Despite this high prediction rate, the re­
maining mispredictions still incur a large performance penalty. Other branch 
techniques must be combined with branch prediction. Such techniques are 
predication (see Sect. 4.3.4) to enlarge the number of instructions between 
two speculative predictions or both-path execution (as in the Poly Path ar­
chitecture by Klauser et al. [163], 1998) in the case of low branch prediction 
confidence (Grunwald et al. [110], 1998). 

To increase instruction supply in case of trace cache misses, an out-of­
order fetch should be employed. An in-order fetch processor, upon encounter­
ing a trace cache miss, waits until the miss is serviced before fetching any new 
segments. An out-of-order fetch processor temporarily ignores the segment 
associated with the miss, attempting to fetch, decode, and issue the segments 
that follow it. After the miss has been serviced, the processor decodes and 
issues the ignored segment. A related technique is to fetch instructions that 
appear after a mispredicted branch, but are not control-dependent upon that 
branch. Out-of-order fetch provides a way to fetch such control-independent 
instructions by skipping the block that follows a hard-to-predict branch until 
either an accurate prediction can be made or the branch is resolved. The 
processor fetches, decodes, and issues instructions that begin at the merge 
point of the alternative paths that follow the branch. These instructions are 
guaranteed to be on the program's correct path. As soon as a prediction can 
be made or the branch is resolved, the fetch unit will return to the branch 
and restart fetching there. Upon reaching the merge point, the processor will 
jump past the instructions that it has already fetched [229]. 

A 16-wide-issue processor will need to execute about eight loads/stores 
per cycle. The primary design goal of the D-cache hierarchy is to provide 
the necessary bandwidth to support eight loads/stores per cycle. The size 
of a single, monolithic, multiported, Ll D-cache would probably be so large 
that it would jeopardize the cycle time. Because of this, Fatt et al. expect 
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the Ll D-cache to be replicated to provide the required ports - a technique 
already proposed for the register file of the Alpha 21264 processor. Further 
features of the data supply system are a larger, L2 D-cache with fewer port 
requirements and less data prefetching. 

In addition to control prediction, data prediction (see Sect. 5.3) will also 
be widely used in future superscalar processors. Whenever the full issue band­
width cannot be filled by enough instructions that are executed in parallel, 
control and data prediction can be applied for better processor utilization 
and a potential performance increase. Patt et aZ. expect prefetching and set 
prediction in caches to become the norm in processor design. Future pro­
cessors will also predict the addresses of loads, allowing loads to be executed 
before the computation of operands needed for their address calculation. Pro­
cessors will predict dependences between loads and stores, allowing them to 
predict that a load is always dependent on some older store (a more extensive 
description of data speculation follows in the next section). 

The execution core must consume 16 to 32 IPC to be as quick as the 
fetch engine is providing the instructions. As in today's superscalar proces­
sors logical registers must be renamed to avoid unnecessary delays due to false 
dependences, and instructions must be executed out of order to compensate 
for the delays imposed by the data dependences that are not predicted. Patt 
et aZ. envision an execution core comprising 24 to 48 functional units supplied 
with instructions from large reservation station units and having a total stor­
age capacity of 2 000 or more instructions. For better functional partitioning 
and shorted signal propagation on the processor die, the execution units will 
be partitioned into clusters of three to five units. Each cluster will maintain 
an individual register file. Each functional unit has its own reservation sta­
tion unit. Data forwarding within a cluster will take one cycle, while data 
forwarding between different clusters will require multiple cycles. Instruction 
scheduling will be done in stages to solve the difficulty of scheduling instruc­
tions from a centralized large instruction window. 

Despite all extensive speculation mechanisms, such highly parallel unipro­
cessors only make sense if enough ILP can be supplied by the application pro­
grams. Patt et al.'s [229] simulations of the SPECint95 with an instruction 
window having 2 048 instructions, perfect caches and perfect branch predic­
tion show an IPC rate of about 10 for an issue/execution width of 16 IPC, 
increasing to 12 for an issue rate of 24, and approximately 13 for an issue rate 
of 32. The simulation results show the high potential for IPC improvements 
over contemporary superscalar processors by applying aggressive superscalar 
techniques. Further improvements may be attained by the value prediction 
and data speculation technique that is still in its infancy (see next section). 
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5.3 Superspeculative Processors 

The basis for the superspeculative approach is the astounding observation 
that instructions generate many highly predictable result values in real pro­
grams. Consumer instructions can thus frequently and successfully speculate 
on their source operand values and begin execution without results from the 
producer instructions. Consequently, a superspeculative processor can remove 
the serialization constraints between producer and consumer instructions, en­
abling program performance potentially to exceed the classical dataflow limit 
which states that a program cannot execute faster than the longest execution 
path set by the program's data dependences. 

The reasons for the existence of value locality are manifold (Lipasti et al. 
[184]). Some reasons are: 

• Due to register spill code the re-use distance of many shared values is very 
short in processor cycles. Many stores do not even make it out of the store 
queue before their values are needed again. 

• Input sets often contain data with little variation (e.g., sparse matrices or 
text files with white spaces). 

• A compiler often generates run-time constants due to error-checking, switch 
statement evaluation, and virtual function calls. 

• The compiler also often loads program constants from memory rather than 
using immediate operands. 

Superspeculative processors enhance wide-issue superscalar performance by 
speculating aggressively at every point in the processor pipeline (Lipasti and 
Shen [182, 183, 184]). Superspeculative processors speculate on data depen­
dences in addition to branch prediction. 

Conventional superscalar processors employ the strong-dependence model 
for program execution, which implies a total instruction ordering of a sequen­
tial program. In the strong-dependence model two instructions are identified 
as either dependent or independent, and when in doubt, dependences are pes­
simistically assumed to exist. Dependences are never allowed to be violated 
and are enforced during instruction processing. To date, most machines en­
force such dependences in a rigorous fashion. This traditional model is overly 
rigorous and unnecessarily restricts available parallelism. 

Instead, the weak-dependence model is applied for superspeculative pro­
cessors, specifying that dependences can be temporarily violated during in­
struction execution as long as recovery can be performed prior to affecting 
the permanent machine state. The weak-dependence model's advantage is 
that the machine can now speculate aggressively and temporarily violate 
the dependences as long as corrective measures are in place to recover from 
misspeculation. If a significant percentage of speculations are correct, the ma­
chine can effectively exceed the performance limit imposed by the traditional, 
strong-dependence model. 
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Similar in concept to branch prediction's implementation in current pro­
cessors, superspeculation uses two interacting engines: 

• The front-end engine assumes the weak-dependence model and is highly 
speculative, predicting instructions to speculate aggressively past them. 
When predictions are correct, these speculative instructions will effectively 
have skipped over certain stages of instruction execution. 

• The back-end engine still uses the strong-dependence model to validate the 
speculations, recover from misspeculation, and provide history and guid­
ance information to the speculative engine. 

Figure 5.2 identifies the three key parameters that a superspeculative ml­
croarchitecture must maximize: 

• instruction flow, the rate at which useful instructions are fetched, decoded, 
and dispatched to the execution core; 

• register dataflow, the rate at which results are produced and register values 
become available; and 

• memory dataflow, the rate at which data values are stored and retrieved 
from data memory. 

These three flows roughly correspond to the processing of branch, arith­
metic/logical, and load/store instructions, respectively. In a superspeculative 
microarchitecture, aggressive speculative techniques are employed to acceler­
ate the processing of all these instruction types. 

The superspeculative processor proposed in 1997 by Lipasti and Shen 
[183] speculates on the instruction flow, the register dataflow, and the memory 
dataflow. 

Speculation on the instruction flow uses a two-phase branch predictor with 
local and global branch history, combined with a trace cache to execute more 
than one taken branch per cycle, which is similar to Patt et al.'s advanced 
superscalar architecture in the previous section. The misprediction latency is 
reduced by data speculation. 

Speculation in the register dataflow comprises source operand value pre­
diction, and value stride prediction. Source operand value prediction elimi­
nates data dependences by use of a dynamic value prediction table per static 
instruction. Value stride prediction speculates on constant, incremental in­
creases in operand values to increase the accuracy of value prediction. In value 
stride prediction, a dynamic hardware mechanism detects constants, incre­
mental increases in operand values (strides), and uses them to predict future 
values. Dependence prediction is applied to predict the inter-instruction de­
pendences. Instructions that are data ready are allowed to execute in parallel 
with the dependence checking for these instructions. Dependence prediction 
is used when the dynamic history shows that value prediction cannot be 
successfully applied. It can be implemented by a dependence prediction table 
with entries that are indexed by hashing together the instruction address bits, 
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Memory dataflow 

Fig. 5.2. Superspeculative architecture 

the gshare branch predictor's BHR, and the relative position of the operand 
being looked up [182]. 

Deeper pipe lining often results in dependence checking and dispatch in 
multiple pipelined stages. With dependence and value prediction a three-cycle 
dispatch nearly matches the performance of single-cycle dispatch. 

The memory dataflow is used to predict load values to bridge the latency 
of accessing the storage device, load addresses to eliminate address genera­
tion interlock (i.e., the delay of a load the address of which is not yet known), 
and aliases with earlier outstanding stores. Load value prediction [184] pre­
dicts the results of load instructions at the time of dispatch by exploiting 
the affinity between load instruction addresses and the values the loads pro­
duce. The predictions are implemented by prediction tables. Memory loads 
are predicted by a load value prediction unit, which consists of a load value 
prediction table for generating value predictions, a load classification table 
for deciding which predictions are likely to be correct, and a constant veri­
fication unit that replaces accessing the conventional memory hierarchy for 
verifying highly predictable loads. 
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Alias prediction is related to dependence prediction. Rather than predict 
the dependence distance to a preceding register write, the alias prediction 
predicts the distance to a preceding store to memory. The predicted distance 
is then used to obtain the load value from that offset in the processor's 
store queue, which hold outstanding stores. For this speculative forwarding 
to occur, neither the load nor the store need to have their addresses available. 
A related approach is called memory dependence prediction which identifies 
stores upon which a load depends. The processor uses a load's store set, i.e., 
the set of stores upon which the load has ever depended, to predict which 
stores a load must wait for before executing (Chrysos and Emer [49]). 

To evaluate superspeculation's performance potential, Lipasti and Shen 

[183] simulated the performance of a superspeculative processor called Su­
perfiow with a fetch width of 32, a 128-entry reorder buffer, 64 kB 4-way 
set-associative D-cache and I-cache with 10-cycle miss delay to a perfect, 
pipelined 16 MB unified L2 cache, and a 128-entry, fully associative store 
queue. Additional resources were a value load table for generating value pre­
dictions, a classification table to decide which predictions are likely to be 
correct, a dependence prediction table, an alias prediction table, and addi­
tional pattern history tables. 

Superflow simulations yielded 7.3 IPC for SPECint95 benchmark suite on 
a realizable processor configuration and up to 9 IPC with an issue bandwidth 
of 32 instructions per cycle (the higher IPC value by Patt et al. mentioned in 
the previous section is reached because of the assumption of perfect caches 
and perfect branch prediction, in contrast to the Superflow simulations). The 
results demonstrate the enormous performance potential of superspeculative 
techniques, although such techniques are far from mature yet. Recent research 
(Gabbay and Mendelson [96, 97], Rychlik et al. [251], Chrysos and Emer 
[49]) in the area of value prediction surveys the impacts of such techniques 
in superscalar, multiscalar, or trace processors, and how to combine value 
prediction techniques in hybrid value predictors. 

5.4 Multiscalar Processors 

The multiscalar model of execution (Franklin [91], Sohi et al. [274]) represents 
another paradigm to extract a large amount of inherent parallelism from a 
sequential instruction flow. A program is divided into a collection of tasks 
by a combination of hardware and software. The tasks are distributed to a 
number of parallel PEs within a processor. Each PE fetches and executes 
instructions belonging to its assigned task. A functional decomposition of 
the processor chip as required in order to reach short wire delays in future 
generation high-density processor chips is thus naturally realized. 

The name multiscalar was chosen because of the structure of the processor 
which can be viewed as a collection of sequential (or scalar) processors that 
cooperate in executing a sequential program (Sohi [273]). The difference to 
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a single chip multiprocessor (CMP) is the denser coupling of the PEs in the 
multiscalar processor. While a CMP executes different threads of control that 
are statically determined by the programmer or by a parallelizing compiler, 
the multiscalar processor executes a sequential program that is enriched by 
sequencing information. 

A static program is represented as a control flow graph (CFG), where 
basic blocks are nodes, and arcs represent the flow of control from one ba­
sic block to another. Dynamic program execution can be viewed as walking 
through the CFG, generating a dynamic sequence of basic blocks which have 
to be executed for a particular run of the program. To achieve high perfor­
mance, the multiscalar processor must walk through the CFG with a high 
level of parallelism. The primary constraint of any parallel walk is that it 
must preserve the sequential semantics assumed in the program. A program 
is statically partitioned into tasks which are demarcated by annotations of 
the CFG. The left side of Fig. 5.3 shows a static program represented as a 
CFG, where each task is a collection of instructions (e.g., part of a (large) 
basic block, a basic block, a collection of basic blocks, a single loop itera­
tion, an entire loop, a function call, etc.). A task sequencer (speculatively) 
sequences through the program a task at a time, assigning the task to aPE, 
which in turn unravels the task to determine the dynamic instructions to be 
executed, and executes them. 

(a) (b) 

Fig. 5.3. Multiscalar mode of execution 
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The right side of Fig.5.3 shows the dynamic instruction stream di­
vided into task-sized steps. The four tasks A, B, D, and E are assigned to 
PEO ... PE3. 

A multiscalar processor walks through the CFG speculatively, taking task­
sized steps, without pausing to inspect any of the instructions within a task. 
A task is assigned to one of a collection of PEs for execution by passing the 
initial program counter of the task to the PE. For each step of its walk, a 
multiscalar processor assigns a task to a PE for execution, without concern 
for the actual content of the task, and continues from this point to the next 
point in the CFG. 

A possible micro architecture for a multiscalar processor is shown in 
Fig. 5.4. A multiscalar processor can be considered as a collection of PEs 
with a sequencer that assigns tasks to the PEs. Once a task is assigned to 
a PE, the PE fetches and executes the instructions of the task until it is 
complete. Multiple PEs, each with its own internal instruction sequencing 
mechanism, support the execution of multiple tasks, and thereby multiple 
instructions, in any given step. Multiple tasks then execute in parallel on the 
PEs, resulting in an aggregate execution rate of multiple IPC [274]. 

The concept proposed by Sohi et al. [274] in 1995 sounds simple, but the 
key point is the proper resolution of inter-task data dependences. That con­
cerns, in particular, data that is passed between instructions via registers and 
memory. It is in this area of inter-task data communication that the multi­
scalar approach differs significantly from the more traditional multiprocessing 
methods. 

To maintain a sequential appearance, a twofold strategy is employed. 
First, each processing element adheres to sequential execution semantics for 
the task assigned to it. Second, a loose sequential order is enforced over the 
collection of processing elements, which in turn imposes a sequential order of 
the tasks. The sequential order on the processing elements is maintained by 
organizing the elements into a circular queue. Head and tail pointers indicate 
respectively the elements that are executing the earliest and the latest of the 
current tasks. 

Because a sequential execution model views storage as a single set of 
registers and memory locations, multiscalar execution must maintain this 
view as well. In order to provide this behavior, communication between tasks 
is synchronized. 

The appearance of a single logical register file is maintained, although 
copies are distributed to each parallel PE. Register results are dynami­
cally routed among the many parallel processing elements with the help of 
compiler-generated masks. 

In the case of registers, the control logic synchronizes the production of 
register values in predecessor tasks with the consumption of these values in 
successor tasks via reservation on the registers. The register values a task 
may produce can be determined statically and maintained in a create mask. 
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Bits in the create mask correspond to each of the logical registers: a bit is 
set to one if the register is potentially written by the task. At the time a 
register value in the create mask is produced, it is forwarded via a circular 
unidirectional ring to later tasks, i.e., to PEs which are logical successors. The 
reservations on registers for a successor task are given in the accum mask, 
which is the union of the create masks of currently active predecessor tasks. 
As values arrive from the predecessor PEs, reservations are cleared in the 
successor PEs. If a task uses one of these values, the consuming instruction 
can proceed only if the value has been received; otherwise, it waits for the 
value to arrive. 

For memory operations, the situation is more complicated. When a PE 
is ready to execute a load, it does not even know whether previous tasks 
have stores, let alone stores to a given memory location. Here multiscalar 
processing employs data dependence speculation ~ speculating that a load 
does not depend on instructions executing in predecessor tasks. Memory 
access may occur speculatively without knowledge of preceding loads and 
stores. Addresses are disambiguated dynamically, many in parallel, and pro-
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cessing waits only for data dependences. An address resolution buffer (ARB) 
is provided to hold speculative memory operations and to detect violations 
of memory dependences. The ARB checks that the speculation was correct, 
squashing instructions if it was not. 

Thus the multiscalar paradigm has at least two forms of speculation (Sohi 
[273]): control speculation, which is used by the task sequencer, and data 
dependence speculation, which is performed by each PE. It could also use 
other forms of speculation, such as data value speculation, to alleviate inter­
task dependences. 

Multiscalar processors use multiple internal sequencers (PCs) to sequence 
through a sequential program. The internal sequencers require information 
about which tasks are possible successors of any given task in the CFG. Such 
information can be determined statically and placed in a task descriptor. Each 
internal sequencer may also speculatively sequence through a task. The task 
descriptors may be dispersed within the program text - for instance, before 
the code ofthe task - or placed in a single location beside the program text. A 
multiscalar program may be generated from existing binaries by augmenting 
the binary with task descriptors and tag bits. 

Compared to superscalar processors each task is equivalent to a subwin­
dow of the instruction window; collectively the multiple sequencers capture 
a portion of the dynamic instruction stream. Interoperation communication 
can be carried out more efficiently if the total instruction window is broken 
into subwindows, with more frequent intrawindow and less frequent interwin­
dow communication. Likewise, instruction scheduling becomes more efficient 
if the overall schedule is treated as an ensemble of (several) smaller schedules, 
where the smaller schedule is the schedule in a subwindow, as is achieved by 
the multiscalar model of execution. 

The Superthreaded Architecture (Tsai and Yew [302], 1996; Li et al. [181]' 
1996) is a related approach using a thread pipelining execution model that 
allows threads with data and control dependences to be executed in parallel. 
As in the multiscalar approach a compiler statically partitions the control­
flow graph of a program into tasks from which it generates threads to be 
executed on the thread processing units of the superthreaded architecture. 
In this architectural model the thread processing units are connected by 
a unidirectional bus to exchange data that arise from loop-carried depen­
dences, similar to the multiscalar proposal. The superthreading technique 
is designed for the exploitation of loop-level parallelism where each inter­
action is executed within another thread. The superthreaded architecture, 
like the multiscalar approach, is to very closely related the CMP and multi­
threaded architectures that are covered in the next chapter. However, both 
the superthreaded and the multiscalar approaches use more closely coupled 
processing elements and are designed to increase single thread performance 
using a compiler-supported task partitioning. 
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5.5 Trace Processors 

The focus of a trace processor is the trace cache which has already been 
mentioned in Sect . 5.2 on advanced superscalar and in the Sect. 5.3 on super­
speculative processors. A trace is a sequence of instructions that potentially 
covers several basic blocks starting at any point in the dynamic instruction 
stream. The number of instructions within a trace is limited by the trace 
cache line size. The number of basic blocks covered is called the branch pre­
dictor throughput. In principle, a trace is fully specified by its starting address 
and a sequence of branch outcomes which describes the path followed. 

A trace cache can be constructed in two ways. The first implementation 
is to store the trace start addresses and only the branch target addresses 
of the branches within a trace. This approach reduces storage space and 
allows the prediction of multiple branches per cycle. However, taken branches 
introduce the problem of noncontiguous instruction fetching: the dynamic 
sequence exists in the I-cache, but the instructions are not in contiguous 1-
cache locations. Therefore, the second and preferred implementation stores 
the whole instruction sequence that makes up a trace. 

A trace cache is a special I-cache that captures dynamic instruction se­
quences in contrast to the I-cache that contains static instruction sequences. 
Each line in the trace cache stores a dynamic code sequence, which may con­
tain one or more taken branches. Each line stores a snapshot , or trace , of the 
dynamic instruction stream. Dynamic instruction sequences are built as the 
program executes. The trace construction is off the critical path; it does not 
lengthen the pipeline. Figure 5.5 shows that a trace cache stores an instruc­
tion sequence contiguously, while the same instruction sequence is stored in 
the I-cache in noncontiguous areas because of branch or jump instructions. 
Moreover, since several predicted branches may be captured within a trace, 
trace prediction automatically leads to multiple predicted branches per cycle 
within the portion of a trace fetched for a wide-issue processor from the trace 
cache. A single entry in the trace cache holds an entire trace. The trace cache 

I-cache Trace cache 

Fig. 5.5. Trace cache principle 

is indexed using the next address field of the previously fetched trace com­
bined with prediction information for next trace prediction . Thus, an entire 
trace consisting of multiple basic blocks is fetched in one clock cycle, without 
the need for multiple cache lookups, multiported caches, or complicated and 
time-consuming mask, alignment, and concatenation operations on multiple 
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cache blocks. Such logic is moved off the critical path to the trace construction 
hardware. 

The main ideas ofthe trace processor were presented in 1997 by Rotenberg 
et ai. [247], Smith and Vajapeyam [271], and Vajapeyam and Mitra [310], who 
proposed to create subsystems similar in complexity to today's superscalar 
processors and combine replicated subsystems into a full processor. A trace 
processor (see Fig. 5.6) is partitioned into multiple distinct PEs (similar to 
multiscalar). The code is broken up into traces that are captured and stored 
by hardware. One PE executes the current trace while the others execute 
future traces speculatively. 

Processing element I 

Processing element 2 

Processing element n 

Fig. 5.6. A trace processor 

Instruction fetch hardware fetches instructions from the I-cache and si­
multaneously generates traces of 8-32 instructions including predicted condi­
tional branches. Traces are built as the program executes and they are stored 
in a trace cache. A trace fetch unit reads traces from the trace cache and 
parcels them out to the parallel PEs. 

A trace cache miss causes a trace to be built through conventional instruc­
tion fetching with branch prediction. Blocks of instructions are preprocessed 
before being put in the trace cache, which greatly simplifies processing after 
they are fetched. Preprocessing can include capturing data dependence rela­
tionships, combining and reordering instructions, or determining instruction 
resource requirements - all of which can be re-used. To support precise in­
terrupts, information about the original instruction order must also be saved 
with the trace. 
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During the dispatch phase, instructions move from the trace cache to 
the instruction buffers in the PEs. Only inter-trace dependence checking and 
register renaming are required. 

Because traces are the basic units for fetching and execution, control-flow 
prediction is moved up to the trace level. The unit of control prediction should 
be a trace, not individual branches. That suggests a next-trace predictor. 
Next-trace prediction predicts multiple branches per cycle. 

Trace processors also employ data value prediction (see Sect. 5.3). Data 
value prediction speculates on the input data values of a trace and is com­
bined with next-trace prediction. Successfully predicting a trace's input data 
values makes the trace independent of data availability, and leads to a further 
decoupling of traces, allowing the trace to execute immediately and in paral­
lel with any other trace. Data value prediction and speculation is restricted 
to inter-trace dependences. 

The expected parallelism within a single trace is suitable for execution 
in a modest superscalar unit that can be chosen to implement the PEs. As 
multiple PEs issue instructions in parallel, both intra-trace and inter-trace 
parallelism are exploited. 

Because the PEs and register files are distributed, so is the communication 
of register data. The relatively simple bypass paths within a unit allow local 
result forwarding in a single cycle. Global paths are used for communicating 
global register results between PEs. The global bypass paths are likely to 
require multiple clock cycles. 

The trace processor uses a conventional set of logical registers. Physical 
registers are divided into local and global sets. The hierarchical organization 
of registers allows small register files with fast access times and fewer ports per 
file. The trace dispatcher remaps the trace's source and destination registers 
to the global registers without the need for intra-trace dependence checking. 
The dispatcher maps local registers with re-usable mappings based on the 
intra-trace dependences detected during instruction preprocessing. Dispatch 
logic can remap a 16-instruction trace line using register rename logic as 
complex as that used by a conventional four-way superscalar processor. 

Memory systems for the trace processor will have to provide very high 
bandwidth to supply enough data to the processor's multiple PEs. Dis­
tributed, multiported caches can be employed, provided that coherence 
among distributed caches is maintained. A large, interleaved cache system 
is also possible, although designers will have to deal with the additional la­
tency in such systems. 

Each PE in the trace processor generates a stream of load and store 
requests to memory. Moreover, these address streams are generated specula­
tively and out of order. The hardware to sort out the address streams and 
make sure that all memory locations are accessed in the correct order will 
have to be fairly sophisticated. The ARB as proposed for multiscalar pro­
cessors (see Sect. 5.4) solves the problem of parallel resolution of memory 
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addressing hazards. However, the ARB is a centralized device, separate from 
D-caches, and must be developed further, using distributed mechanisms that 
merge address resolution and data caching. 

5.6 DataScalar Processors 

The DataScalar model (Burger et al. [42], 1997) of execution runs the same 
sequential program redundantly across multiple processors. The data set is 
distributed across physical memories that are tightly coupled to their dis­
tinct processors. Each processor broadcasts operands that it loads from its 
local memory to all other processors. Instead of explicitly accessing a remote 
memory, processors wait until the requested value is broadcasted. Stores are 
completed only by the processor that owns the operand, and are dropped by 
the others. 

The most heavily accessed data is statically replicated by duplicating 
whole memory pages that are stored in each processor's local memory. Ac­
cess to a replicated page requires no data communication. The address space 
is divided into a replicated and a communicated section. The latter holds 
values that only exist in single copies and are owned by the respective pro­
cessor. Replicated pages are mapped into each processor's local memory, and 
the communicated section of the address space is distributed among the pro­
cessors. 

Figure 5.7 demonstrates the execution of load and store operations for 
replicated and communicated memory. Assume that both processors execute 
a sequence of load-i, store-i, load-2, and store-2. Operations load-i 
and store-i are issued to the replicated memory and can therefore complete 
locally on both processors. Operations load-2 and store-2 are issued to 
the communicated memory of Processor 1. The load-2 of Processor i is 
deferred until the value is broadcasted from Processor i, which owns the 
value. Since all processors are running the same program, they all generate 
the same store value, which is stored only in the communicated memory 
of the processor that owns the value. Therefore, store-2 is completed at 
Processor i, but is dropped at Processor 2. 

The main goal of the DataScalar model of execution is the improvement 
of memory system performance by introducing redundancy in execution by 
replicating processors and part of the data storage. Since all physical memory 
is local to at least one processor, a request for a remote operand is never sent, 
thus reducing memory access latency and bus traffic. All communication is 
one-way. Writes never appear on the global bus. 

The processors execute the same program in slightly different time steps, 
due to asynchronous memory accesses and the ability to perform out-of-order 
execution. One processor, the lead processor, runs slightly ahead ofthe others, 
especially when it is broadcasting while the others wait for the broadcasted 
value. When the program execution accesses an operand that is not owned 
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Fig. 5.7. Accesses of DataScalar processors to replicated and communicated mem­
ory 

by the lead processor, a lead change occurs. All processors stall until the new 
lead processor catches up and broadcasts its operands. The capability for 
each processor to run ahead on computation that involves operands owned 
by the processor is called datathreading and was described by Burger et al. 
[42] in 1997. 

The DataScalar model creates opportunities for new optimizations. Be­
cause each processor executes the instructions in a different order due to 
the out-of-order execution facility, it is possible for a processor to execute a 
private computation, broadcasting only the result and not the operands to 
the other processors. This technique, called result communication, deviates 
from the strict single-program-single-data stream (SPSD) model of DataS­
calar computation. Speculation is another optimization opportunity. How­
ever, the additional bus traffic that might be caused by speculation must be 
weighed against the possible performance advantage. The broadcast of data 
may be a critical limitation of the DataScalar model, and frequent superflu­
ous broadcasts would greatly hinder performance. Possible solutions are to 
hold onto speculative broadcasts until the speculative condition is resolved or 
to send the broadcast immediately upon issue, followed by a corresponding 
squash message if the load that generated the broadcast is squashed. 

The DataScalar model is primarily a memory system optimization in­
tended for codes that are limited in performance by the memory system 
and difficult to parallelize. However, every DataScalar machine is a de facto 
multiprocessor. When codes contain coarse-grain parallelism, the DataScalar 
machine can also run like a traditional multiprocessor. DataScalar and multi­
processing can be viewed as two endpoints on a spectrum, where the DataS­
calar model is restricted to run sequential code and makes no attempt to 
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exploit coarse-grained parallelism in the code, while multiprocessing requires 
compiler and/or programmer support to generate parallel code, and its main 
focus is explicit exploitation of coarse-grain parallelism. 

Simulation results of Burger et aZ. [42] suggest that the DataScalar model 
of execution works best with codes for which traditional parallelization tech­
niques fail. Six unmodified SPEC95 binaries ran from 7 % slower to 50 % 
faster on two nodes, and from 9 % to 100 % faster on four nodes, than on a 
system with a comparable, more traditional memory system. 

However, current technological parameters do not make DataScalar sys­
tems a cost-effective alternative to today's microprocessors. For a DataScalar 
system to be more cost effective than the alternatives, the following three 
conditions must hold: 

• Processing power must be cheap, and the dominant cost of each node should 
be memory. 

• Remote memory accesses should be slower than local memory accesses. 
• Broadcasts should not be prohibitively expensive. 

The DataScalar model can be applied to speed up sequential execution wher­
ever multiprocessor hardware is available without a sufficient load of parallel 
tasks. Three possible candidates for DataScalar systems were proposed: 

• The concept of merging processor and memory on a chip as proposed by 
the IRAM approach (see Sect. 7.1). IRAM-based systems connected by a 
bus or a point-to-point ring would exhibit the parameters needed for a cost­
effective DataScalar implementation, because remote memory accesses to 
other IRAM chips would certainly be more expensive than on-chip memory 
accesses. 

• The DataScalar model of execution may also be applied within a single chip 
to alleviate wiring delays - for example, extending the concept of a CMP 
(see Sect. 6.2.3). CMPs access operands from a processor-local memory 
faster than requesting an operand from a remote processor memory across 
the chip, due to wiring delays. 

• Networks of workstations (NOWs), where DataScalar could be an alterna­
tive to paging, provided that broadcasts were sufficiently inexpensive. Some 
network topologies like fat trees support efficient broadcasts. Alternatively, 
optical interconnects, especially free-space optical interconnects, provide 
extremely cheap broadcasts. However, the data threads of the DataScalar 
model may prove too fine-grained regarding the communication latencies 
of today's NOWs. 

At first glance the DataScalar model looks like an immense waste of process­
ing power. However, conclusions are that the DataScalar model of execution 
may be advantageous, when remote memory accesses are significantly slower 
than local memory accesses, when global broadcasts are relatively inexpen­
sive, and when the cost of additional processors is a only small addition to 
the total system cost. The communication bandwidth itself may be limited. 
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The DataScalar model only produces broadcasts, but never remote stores and 
remote load requests. 

5.7 Conclusions 

It is difficult to look ahead to the next generation of microprocessors early in 
the lifetime of the current generation. However, as a microprocessor gener­
ation matures and future hardware technologies become bet.t.er defined, the 
next generation start.s to become visible. We are at that stage now. The last 
time we were in a similar position was almost 10 years ago - when the su­
perscalar processors emerged. Once again, it is time to lay the ground-work 
for many more years of high-performance processor development. 

In this chapter we have surveyed the uniprocessor alternat.ives, such as 
advanced superscalar, superspeculative, multiscalar, trace, and DataScalar 
processor, which are all examples of new microarchitectures suitable for the 
next generation. Developing superspeculative techniques prepare the way for 
exceeding the classical dataflow limit. imposed by data dependences. The 
multiscalar processor proposed the basics for a functional distribution of pro­
cessing elements working simultaneously on t.asks generat.ed from sequential 
machine programs. The trace processor is similar to the multiscalar processor 
except for its use of hardware-generated dynamic t.races rather than compiler­
generated stat.ic tasks. The DataScalar approach reduces int.erprocessor data 
t.raffic in favor of broadcasting. A real uniprocessor chip of the future will 
most. likely combine some of these execut.ion modes wit.hin a single microar­
chitecture. For instance, Patt et ai.'s advanced superscalar processor proposal 
already uses superspeculative techniques and a trace cache. 

All proposed microarchitecture techniques increase memory bandwidth 
requirement.s compared to today's superscalar microprocessors. Therefore, 
all proposed microarchitect.ure techniques may be combined in future with 
the processor-in-memory (PIM) or intelligent RAM (!RAM) approaches that 
combine processing elements of various complexity with DRAM memory on 
the same chip to solve the memory latency bottleneck. 

All architecture proposals described so far retain result serialization -
the serial instruction flow as seen by the programmer and forced by the 
von Neumann architecture. However, the microarchitectures strive to press 
as much fine-grained or even coarse-grained parallelism from the sequential 
program flow as can be done by hardware. Unfortunately, a large portion of 
the exploited parallelism is speculative parallelism which in case of incorrect 
speculation leads to an expensive reroll mechanism and to a waste of instruc­
tion slots. Therefore, the result serialization of the von Neumann architecture 
poses a severe bottleneck. 



6. Future Processors to use Coarse-Grain 
Parallelism 

There are strong indications that multithreading will be utilized in 
future processor generations to hide the latency of local memory access . .. 
. .. It also establishes an architectural direction that may yield much 
greater latency tolerance in the long term. 

David Culler, laswinder Pal Sing, Anoop Gupta 
Parallel Computer Architecture: A Hardware / Software Approach 

(Morgan Kaufmann Publishers, 1999) 

6.1 Utilization of more Coarse-Grain Parallelism 

Current superscalar microprocessors are able to issue up to six multiple in­
structions each clock cycle from a conventional linear instruction stream. 
VLSI technology will allow future microprocessors with an issue bandwidth 
of 8-32 instructions per cycle. 

However, ILP found in a conventional instruction stream is limited. In 
general, integer-dominated programs feature a rather low ILP, while a high 
ILP can be extracted from floating-point programs. One set of solutions which 
was pursued by the architectural techniques described in the last chapter, is 
to apply an even higher degree of speculation in combination with a functional 
partitioning of the processor. 

The solution surveyed in this chapter is the additional utilization of more 
coarse-grained parallelism. The main approaches are the (single) chip mul­
tiprocessor (eMP) and the multithreaded processor. The chip multiprocessor 
(sometimes called the multiprocessor chip) integrates two or more complete 
processors on a single chip. Therefore, every unit of a processor is duplicated 
and used independently of its copies on the chip. 

In contrast, the multithreaded processor interleaves the execution of in­
structions of different threads of control in the same pipeline. Therefore, 
multiple program counters are available in the fetch unit and the multiple 
contexts are often stored in different register sets on the chip. The func­
tional units are multiplexed between the thread contexts that are loaded in 
the register sets. Depending on the specific multithreaded processor design, 
only a single-issue instruction pipeline (as in scalar RISe processors) is used, 

J. Ši lc et al., Processor  Architecture
© Springer-Verlag Berlin Heidelberg 1999
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or a single issue unit issues instructions from different instruction streams 
simultaneously. 

Supported by multiple register sets, context switching is very fast. Mul­
tithreaded processors tolerate memory latencies by overlapping the long­
latency operations of one thread with the execution of other threads - in 
contrast to the chip multiprocessor approach. While the chip multiprocessor 
is easier to implement, the use of multithreading in addition to a wide-issue 
bandwidth is a promising approach. 

6.2 Chip Multiprocessors 

6.2.1 Principal Chip Multiprocessor Alternatives 

Today the most common organizational principles for multiprocessors (see 
Fig.6.1) are the symmetric multiprocessor (SMP), the distributed shared 
memory multiprocessor (DSM), and the message-passing shared-nothing mul­
tiprocessor. 

The SMP and the DSM multiprocessors feature a common address space, 
which is implemented in the SMP as a single global memory where each mem­
ory word can be accessed in uniform access time by all processors (UMA -
uniform memory access). In the DSM multiprocessor a common address space 
is maintained despite physically distributed memory modules. A processor in 
a DSM may access data in its local memory faster than in the remote memory 
(the memory module local to another processor). DSM multiprocessors are 
therefore nonuniform memory access (NUMA) systems. Shared-nothing mul­
tiprocessors feature physically distributed memory modules and no common 
address space. Therefore, communication can only be performed by passing 
messages between processors. Shared-nothing multiprocessors are highly scal­
able but harder to program than shared-memory multiprocessors. They are 
beyond the scope of today's reasoning about chip multiprocessors, which, by 
their tight physical coupling on a single chip, may also feature a very tight 
coupling of instruction streams, usually expressed by a common memory or­
ganization. 

The principal organizational forms of multiprocessors, as expressed in 
Fig.6.1, do not regard cache organization. Commodity microprocessors, 
which are usually used today as building blocks for multiprocessors, con­
tain on-chip caches, often coupled with off-chip L2 cache memories. Shared­
memory multiprocessors maintain cache coherence by a cache coherence pro­
tocol which is a bus-snooping coherence protocol like M.E.S.1. for SMPs or 
a directory-based coherence protocol for DSMsl. SMPs consist of a moder-

1 DSM multiprocessors can be further classified into cache-coherent NUMA (CC­
NUMA) systems that maintain cache-coherence over the whole system as in the 
Cray/SGI Origin, the HP/Convex Exemplar, and the Sequent NUMA-Q, and 
non-cache-coherent NUMA (NCC-NUMA) such as the Cray T3D and T3E. 
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Fig. 6.1. Organizational principles of multiprocessors 

ate number of commodity microprocessors with cache memories coupled by 
a fast memory bus with the global memory. So, the typical symmetric mul­
tiprocessor is organized as in Fig. 6.2. In the latest SMPs the memory bus 
is replaced by an address bus (necessary for the bus-snooping) and a data 
crossbar switch for faster transfer of cache lines. SMPs are the starting point 
for chip multiprocessors. 

Thread-level parallelism is more coarse-grained than ILP. However, there 
are at least three more levels to distinguish that influence the microarchi­
tecture of a potential chip multiprocessor (and a multithreaded processor, 
too) . 

• The most common coarse-grained thread-level parallelism is to execute 
multiple processes in parallel. This implies for CMPs that different logical 
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Global Mernol)' 

Fig. 6.2. Typical SMP 

address spaces have to be maintained for the different instruction streams 
that are in execution by the processors within the CMP . 

• The parallel execution of multiple threads from a single application usually 
implies a common address space for all threads. Here threads of control are 
identical with the threads (light-weighted processes) of a multithreaded op­
erating system such as Sun Solaris, IBM AIX, and Windows NT, used by 
today's symmetric multiprocessor workstations and servers. This approach 
has several architectural advantages for chip multiprocessors (and for mul­
tithreaded processors as well). Cache organization is simplified, when a 
single logical address space is shared. Moreover, thread synchronization, as 
well as exchange of global variables between threads, can be made very ef­
ficient by providing common on-chip memory structures (shared caches or 
even shared registers). If the threads shared a SPMD program structure, a 
single multiported I-cache might be taken into consideration. However, al­
though most desktop applications like Acrobat, Netscape, Photoshop, Pow­
erpoint, and Winword today use 3-8 threads, most thread activity in these 
program systems is restricted to a single main thread (Lee [174], 1998). 
This drawback may be alleviated by parallelizing compilers in conjunc­
tion with regularly structured application problems such as, for example, 
numerical problems or multimedia applications . 

• Execution of a sequential application may be accelerated by extracting 
threads of control dynamically from a single instruction stream (as exem­
plified by the architectures described in the previous chapter). 

From the applications perspective, whether a CMP works best depends on 
the amount and the characteristics of the parallelism in the applications. 
These fall into three broad classes depending on the degree of interprocessor 
communication, which can be low, moderate, or high. From the architectural 
perspective, the performance of a CMP will depend on the level of the memory 
hierarchy at which the CPUs of the CMP are interconnected. 
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In order to develop insight about the most appropriate memory hierarchy 
level for connecting the CPUs in a CMP, Nayfeh et al. [211] in 1996 compared 
three alternatives: a shared-main memory multiprocessor (i.e., the typical 
symmetric multiprocessor today), a shared-secondary cache multiprocessor, 
and a shared-primary cache multiprocessor (Fig. 6.3). They found that, when 
applications have a high or moderate degree of interprocessor communication, 
both shared-primary cache and shared-secondary cache architectures perform 
similarly and outperform the shared-main memory architecture substantially. 
There are two reasons for this. First, the shared cache was assumed large 
enough to accommodate most of the working sets of independent threads 
running on different CPUs, so that the cache miss rate is low. Second, when 
there is interprocessor communication, it is handled very efficiently in the 
shared (primary or secondary) cache. Even for applications with little or no 
interprocessor communication, the performance of the shared-primary cache 
architecture is still slightly better than shared-main memory architecture. 

To maintain the performance growth of microprocessors, Olukotun et al. 
[219], in 1996, discussed the details of implementing a single chip multipro­
cessor (CMP). We will describe Hydra, a research vehicle currently being 
designed at Stanford University in an effort to evaluate a variant of the 
shared-secondary cache CMP, as an alternative for future microprocessor 
development (Hammond and Olukotun [121], 1995). This is not the first 
project on CMP design, though. In 1994, Texas Instruments introduced the 
TMS320CSO multimedia video processor (MVP) [291], a variant of the shared­
primary cache CMP which contained five processors on a single chip. 

6.2.2 TI TMS320C8x Multimedia Video Processors 

The Texas Instruments TMS320CSx (or 'CSx) family of processors are sin­
gle chip multiprocessors (CMPs) suitable for system-level and embedded 
implementations [291]. Applications include image processing, 2D and 3D 
graphics, audio/video digital compression and playback, real-time encryp­
tion/decryption and digital telecommunications. The processor is dubbed 
MVP, the multimedia video processor. A single MVP replaces several sys­
tem components by integrating multiple processors, memory control logic, 
I-cache and internal memory, an advanced DMA controller, and video tim­
ing generation logic ('CSO only) onto a single chip. They provided an order 
of magnitude increase in computational power over existing digital signal 
processors (DSPs) and general-purpose processors in 1994. 

Two types of processors are combined in the MVP architecture: A single 
RISC master processor (MP) and a number of VLIW DSP-like parallel pro­
cessors (PP) (Fig. 6.4). Moreover, the chip contains a programmable DMA 
transfer controller (TC), a video controller (VC), and a boundary-scan test 
access port (TAP). All processors are interconnected by a crossbar with 1-
caches, and data RAM and parameter RAM areas. 
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Fig. 6.4. TI's Multimedia Video Multiprocessor 

The 'C8x family consists of two members, the 'C80 [291]' which features 
four PPs, and the 'C82 (Golston [104]) with only two on-chip PPs. 

The MP functions as a 32-bit RISC master control processor, and is in­
tended to handle interrupts and external requests, and control the operation 
of the system as a whole. MP has an ANSI/IEEE 754-1985 compliant floating­
point unit. Although the MP ISA is classified as a RISC, it has the capability 
of issuing explicit parallel operations in VLIW fashion. Up to three such op­
erations can be issued: a multiply, an arithmetic/logical, and a load/store 
operation. 

The PPs are designed to perform 64-bit multiply-intensive, multiple pixel, 
and bit-field manipulation operations on data in registers and internal RAM. 
The PPs are a collection of 32-bit fixed-point subprocessors connected by 
data path multiplexers. This allows a wide variety of operations to issue 
simultaneously. A local and global address unit, a three-input ALU, and 
a multiplier unit are integrated along with a barrel rotator2 , bit-detection 
hardware, mask generator, and a bitfield expander. In this way, an algorithm 
can be mapped onto the PP in far fewer overall instructions than traditional 
DSP and superscalar RISC processors. The multiplier supports signed/signed 
or unsigned/unsigned (but not signed/unsigned) multiplies when 16-bit in­
put operands are used, and signed/unsigned or unsigned/unsigned (but not 

2 An FU that is similar to a barrel shifter but performs rotation by an arbitrary 
number of bits in one instruction cycle, as opposed to shifting by an arbitrary 
number of bits. 
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signed/signed) multiplies when 8-bit input operands are used. The ALU is 
capable of executing all 256 combinations of logical operations on three vari­
ables. This allows operations that may take several instructions on most DSPs 
to be performed in a single ALU operation. 

The TC is designed to handle all off-chip data transfer operations required 
by the MP and PPs. The TC is programmed by a 64-byte data structure 
called a packet transfer request (PTREQ) describing the organization of the 
transfer desired, and by internal processor interrupts. The TC completely 
controls the bandwidth utilization of the chip. Hardware for prioritizing re­
quests such as cache-service interrupts, individual PTREQ, and direct exter­
nal access requests (DEA) is built into the TC. Each PTREQ can be linked to 
another PTREQ structure, providing an unbroken transition from one trans­
fer to another, while giving the TC the opportunity to service other transfer 
types. The MP and each PP may make independent PTREQs; the TC ser­
vices them according to an internal priority scheme. The TC thus provides 
the DSP programmer with the necessary tool to interleave data transfer and 
computation. 

The same MVP's memory space is used for program and data accesses, 
and is shared by all of the processors on the chip. The MVP crossbar allows 
each PP to perform two independent parallel data accesses to the on-chip 
shared RAMs and one instruction fetch every cycle. Each PP has three cross­
bar ports. The global port connects to any of the shared RAMs. If an access 
is attempted over this port to an address not in the shared RAMs, a DEA 
request is sent to the TC. The local port connects to any of its local RAMs. 
When a PP attempts a memory access over this port to an address not in 
local RAMs, the access is diverted to the global port and tried on the fol­
lowing cycle. Finally, the instruction port accesses instructions from the PP's 
I-cache. 

The MVP is not a general-purpose microprocessor. Rather it is designed 
and used as an extremely fast digital signal processor. Due to its complex 
architectural structure - a chip multiprocessor structure with two different 
kinds of processors, one of which even features a VLIW ISA - it is difficult to 
develop a compiler that generates efficient code. Therefore, most programs 
have to be hand-coded in assembly language, which is not at all easy. 

6.2.3 Hydra Chip Multiprocessor 

While the TI MVP is an existing commercial microprocessor, the Hydra Chip 
Multiprocessor is simulated in software to evaluate the CMP alternatives for 
future l09-transistor chips. The Hydra proposal (Hammond and Olukotun 
[121], 1998) is composed of four 2-issue superscalar CPUs on a single chip. 
Each of the CPUs is similar to a small MIPS R10000 processor and is attached 
to its own on-chip primary (11) I-cache and D-cache. In addition, a single, 
unified secondary (L2) cache is included on the chip (Fig. 6.5). 
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The Hydra memory system uses a four-level arrangement, that is, an L1, 
L2, L3 SRAM cache and a DRAM main memory. It is a shared-secondary 
cache single-chip multiprocessor. 

The individual L1 I-cache and D-caches are designed to supply each CPU 
in a single cycle while supporting the very high memory bandwidth needed 
to sustain processor performance. Each L1 cache has 16 kB capacity and is 
organized in 32-byte lines. The connection to its CPU is provided by a 64-bit 
bus. In order to maintain cache coherence, each D-cache must snoop the write 
bus and invalidate any lines to which other CPUs write. Measurements have 
shown that, in this way, in typical applications more than 90 % of loads hit in 
L1 caches and thus save the progress further down the memory hierarchy. The 
large 512 kB L2 cache acts as a large on-chip cache to back up the L1 caches 
with a nearby memory which is five or more cycles slower than L1. The L2 
cache is a kind of write buffer between the CPUs and the outside world. On 
the other hand, L2 also acts as a communication medium through which the 
four CPUs can communicate using shared-memory mechanisms. The 8 MB 
off-chip L3 cache has an access time of 10 cycles to the first word, and can 
be accessed through a 128-bit port that operates at half the processor speed. 
Even with a large L3 cache, applications exist with large enough working 
sets to miss in all of the caches frequently. For this reason, up to 128 MB 
DRAM with at least 50 cycles access time is attached to the Hydra chip via 
a Rambus memory interface. 

The read bus and write bus are the principal paths of communication 
across the Hydra chip. The read and the write bus are 256-bit and 64-bit 
wide, respectively. Hammond and Olukotun found that the contention for 
both the read bus and the write bus slows performance by only a few percent 
over a perfect crossbar, even in the worst cases. Furthermore, with the write 
bus-based architecture, no sophisticated coherence protocols are necessary to 
keep the on-chip caches coherent. 

The 1998 Hydra CMP [121] addresses an expensive, high-end design, with 
many high-speed SRAM and DRAM chips, directly attached to the Hydra 
chip. Alternative designs are possible, however, in systems with different con­
straints. One interesting alternative is a design with no off-chip L3 at all. In 
this way the system cost can be reduced dramatically since expensive SRAM 
chips are eliminated and the number of I/Os on Hydra chip is halved. An­
other alternative is that the L2 cache is replaced with on-chip DRAM, thus 
making the L3 superfluous. In 1997, Yamauchio et al. [328] evaluated the per­
formance of a Hydra CMP integrated with 256 MB DRAM. On floating-point 
applications with large working sets, the on-chip DRAM Hydra performed 
on average 52 % faster than the L2-on-chip/L3-off-chip Hydra. 
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6.3 Multithreaded Processors 

6.3.1 Multithreading Approach for Tolerating Latencies 

The memory access latency problem arises for each memory access after a 
cache miss ~ in particular, when a processor of a shared-memory multiproces­
sor accesses a shared-memory variable located in a remote-memory module. 
To perform such a remote-memory access in a DSM multiprocessor, the pro­
cessor issues a request message to the communication network that couples 
the processor ~ memory nodes. The request message traverses the network 
to the memory module. The memory module reads the value, respectively 
the cache line, and sends a result message back to the requesting processor. 
Depending on the coherence scheme, further actions may be necessary to 
guarantee memory consistency or cache coherence before the requested value 
or cache line is sent back. The interval between the sending of the request 
message until the return of the result message is called (remote) memory 
access latency, or often just the latency3. The latency becomes a problem if 
the processor spends a large fraction of its time sitting idle and waiting for 
remote accesses to complete. 

Load access latencies measured on an Alpha Server 4100 SMP with four 
300 MHz Alpha 21164 processors are (Barroso et al. [23], 1998): 

• 7 cycles for a primary cache miss which hits in the on-chip L2 cache of the 
21164 processor, 

• 21 cycles for a L2 cache miss which hits in the L3 (board-level) cache, 
• 80 cycles for a miss that is served by the memory, and 
• 125 cycles for a dirty miss, i.e., a miss that has to be served from another 

processor's cache memory. 

For DSM multiprocessors supporting up to 1 024 processors we can expect 
latencies of 200 cycles or more (see also p. 218 for the SGI Origin 2000 la­
tencies). Furthermore, memory access latencies are expected to increase over 
time as off-chip speeds are reduced more quickly than on-chip speeds. 

In a single-threaded architecture the computation conceptually moves for­
ward one step at a time through a sequence of states, each step corresponding 
to the execution of one enabled instruction. The state of a single-threaded 
machine consists of the memory state (program memory, data memory, stack) 
and the processor state which consists of the continuation or activity specifier 
(program counter, stack pointer) and the register context (a set of register 
contents). The activity specifier and the register context make up what is also 
called the context of a thread. Today most processors are of a single-threaded 
processor architecture. 

3 Latencies that arise in a pipeline are defined with a wider scope - for exam­
ple, covering also long-latency operations like div or latencies due to branch 
interlocking. 
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According to Dennis and Gao [63], a multithreaded architecture differs 
from a single-threaded architecture in that there may be several enabled in­
structions from different threads which all are candidates for execution. Sim­
ilar to the single-threaded machine, the state of the multithreaded machine 
consists of the memory state and the processor state; the latter, however, 
consists of a collection of activity specifiers and a collection of register con­
texts. A thread is a sequentially ordered block of instructions with a grain-size 
greater than one (to distinguish multithreaded architectures from fine-grained 
dataflow architectures). 

Another notion is the distinction between blocking and non-blocking 
threads. A non-blocking thread is formed such that its evaluation proceeds 
without blocking the processor pipeline (for instance by remote memory ac­
cesses, cache misses or synchronization waits). Evaluation of a non-blocking 
thread starts as soon as all input operands are available, which is usually de­
tected by some kind of dataflow principle. Thread switching is controlled by 
the compiler harnessing the idea of rescheduling, rather than blocking, when 
waiting for data. Access to remote data is organized in a split-phase manner 
by one thread sending the access request to memory and another thread ac­
tivating when its data are available. Thus a program is compiled into many, 
very small threads activating each other when data become available. The 
same hardware mechanisms may also be used to synchronize interprocess 
communications to awaiting threads, thereby alleviating operating systems 
overhead. In contrast, a blocking thread might be blocked during execution by 
remote memory accesses, cache misses or synchronization needs. The waiting 
time, during which the pipeline is blocked, is lost when using a von Neumann 
processor, but can be efficiently bridged by a fast context switch to another 
thread in a multithreaded processor. Switching to another thread in a single­
threaded processor usually inhibits too much context switching overhead to 
mask the latency efficiently. The original thread can be resumed when the 
reason for blocking is removed. 

Use of non-blocking threads typically leads to many small threads that 
are appropriate for execution by a hybrid dataflow computer or by a mul­
tithreaded architecture that is closely related to hybrid dataflow. Blocking 
threads may just be the threads (e.g., P(OSIX)threads or Solaris threads) 
or whole UNIX processes of a multithreaded UNIX-based operating system, 
but also even smaller micro threads generated by a compiler to utilize the 
potentials of a multithreaded processor. 

Note that we exclude in this chapter dataflow hybrid architectures that 
are designed for the execution of non-blocking threads. Although these archi­
tectures are often called multithreaded, we have categorized them as threaded 
dataflow (Sect. 2.3.1) or large-grain dataflow (Sect. 2.3.2) because a dataflow 
principle is applied to start the execution of non-blocking threads. Thus, mul­
tithreaded architectures (in the more narrow sense applied here) stem from 
the modification of scalar RISe, VLIW, or even superscalar RISe processors. 



6.3 Multithreaded Processors 259 

Multithreading techniques use coarse-grain parallelism to speedup com­
putation of a multithreaded workload by better utilization of the resources 
of a single processor. The latencies that arise in the computation of a single 
instruction stream are filled by computations of another thread. This ability 
is in contrast to RISe processors or today's superscalar processors, which use 
busy waiting or a time-consuming, operating system-based thread switch. 

The minimal requirement for a multithreaded processor is the ability to 
pursue two or more threads of control in parallel within the processor pipeline 
and a mechanism that triggers a thread switch. Thread-switch overhead must 
be very low, from zero to only a few cycles. A fast context switch is supported 
by multiple program counters and often by multiple register sets on the pro­
cessor chip. 

The following principal approaches to multithreaded processors exist: 

• Cycle-by-cycle interleaving technique: An instruction of another thread is 
fetched and fed into the execution pipeline at each processor cycle (see 
Sect. 6.3.3). 

• Block interleaving technique: The instructions of a thread are executed suc­
cessively until an event occurs that may cause latency. This event induces 
a context switch (see Sect. 6.3.4). 

• Simultaneous multithreading: The wide superscalar instruction issue is 
combined with the multiple-context approach. Instructions are simulta­
neously issued from multiple threads to the FUs of a superscalar processor 
(see Sect. 6.4). 

Research on multithreaded architectures has been motivated by two concerns: 
tolerating latency and bridging of synchronization waits by rapid context 
switches. Older multithreaded processor approaches from the 1980s usually 
extend scalar RISe processors by a multithreading technique and focus at 
effectively bridging very long remote memory access latencies. Such proces­
sors will only be useful as processor nodes in DSM multiprocessors. However, 
developing a processor that is specifically designed for DSM multiproces­
sors is commonly regarded as too expensive. Multiprocessors today comprise 
standard off-the-shelf microprocessors and almost never specifically designed 
processors (with the exception of Tera MTA). Therefore, newer multithreaded 
processor approaches also strive for tolerating smaller latencies that arise from 
primary cache misses that hit in L2 cache, from long-latency operations, or 
even from unpredictable branches. 

Note that multithreaded processors aim at a low execution time of a 
multithreaded workload, while a superscalar processor aims at a low execution 
time of a single program. Depending on the implemented multithreading 
technique, a multithreaded processor running only a single thread does not 
reach the same efficiency as a comparable single-threaded processor. The 
penalty may be only slight in the case of a block-interleaving processor or be 
several times as long as the run-time on a single-threaded processor in the 
case of a cycle-by-cycle interleaving processor. 
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6.3.2 Comparison of Multithreading and Non-Multithreading 
Approaches 

Before we present the different multithreading approaches in detail , we 
briefly review the main principles of architectural approaches that exploit 
instruction-level parallelism and thread-level parallelism. 
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Fig. 6.6. Different approaches possible with scalar processors (a) single-threaded 
scalar (b) cycle-by-cycle interleaving multithreaded scalar (c) block-interleaving 
multithreaded scalar 

Figure 6.6 demonstrates the different approaches possible with scalar (i.e. , 
single-issue) processors: single-threaded (Fig. 6.6a), multithreaded with cycle­
by-cycle-interleaving (Fig. 6.6b), and multithreaded with block interleaving 
(Fig.6 .6c) . 

Another way to look at latencies that arise in a pipelined execution is the 
opportunity cost in terms of the instructions that might be processed while 
the pipeline is interlocked, e.g. , waiting for a remote reference to return. The 
opportunity cost of single-issue processors is the number of cycles lost by 
latencies. Multiple-issue processors (e.g., superscalar, VLIW, etc.) potentially 
execute more than one IPC, and thus the opportunity cost is the product of 
the latency cycles by the issue bandwidth plus the number of issue slots not 
fully filled . We expect that future single-threaded processors will continue 
to exploit further superscalar or other multiple-issue techniques, and thus 
further increase the opportunity cost of remote-memory accesses. 

Figure 6.7 demonstrates the different approaches possible with four-issue 
processors: single-threaded superscalar (Fig . 6.7a) , single-threaded VLIW 
(Fig. 6.7b), superscalar with cycle-by-cycle interleaving (Fig. 6.7c), and VLIW 
with cycle-by-cycle interleaving (Fig. 6.7d). Each row represents the issue 
slots for a single execution cycle. An empty box represents an unused slot ; N 

stands for a no-op operation in the VLIW case. 
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Fig. 6.7. Different approaches possible with multiple-issue processors (a) super­
scalar (b) VLIW (c) cycle-by-cycle interleaving superscalar (d) cycle-by-cycle in­
terleaving VLIW 

The opportunity cost in single-threaded superscalar can be easily counted 
as the number of empty issue slots. It consists of horizontal losses (unfilled 
issue slots when not all issue slots can be filled in a cycle) and the even more 
harmful vertical losses (cycles where no instructions can be issued). In VLIW 
processors, horizontal losses appear as a no-op operation. The opportunity 
cost of single-threaded VLIW is about the same as single-threaded super­
scalar. Cycle-by-cycle interleaving superscalar (or VLIW) is able to fill the 
vertical losses of the single-threaded models by instructions of other threads , 
but not the horizontal losses. Further design opportunities, block-interleaving 
superscalar or VLIW models (not shown in the figures) would fill several suc-
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ceeding cycles with instructions of the same thread before context switching. 
The switching event is more difficult to determine and a context-switching 
overhead of one to several cycles might arise. 
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Fig. 6.8. Issue slot partitioning in (a) simultaneous multithreading (SMT) (b) 
chip multiprocessor (CMP) 

Figure 6.8 demonstrates a four-threaded four-issue simultaneous multi­
threading (SMT) processor (Fig. 6.8a) and a chip multiprocessor (CMP) with 
four two-issue processors (Fig. 6.8b). The processor model in Fig. 6.8a exploits 
ILP by selecting instructions from any thread (four in this case) that can po­
tentially issue. If one thread has high ILP, it may fill all horizontal slots 
depending on the issue strategy of the SMT processor. If multiple threads 
each have low ILP, instructions of several threads can be issued and executed 
simultaneously. In the CMP with four two-issue CPUs on a single chip that 
is represented in Fig. 6.8b, each CPU is assigned a thread from which it can 
issue up to two instructions each cycle. Thus, each CPU has the same oppor­
tunity cost as in a two-issue superscalar model. The CMP is not able to hide 
latencies by issuing instructions of other threads. However , because horizon­
tal losses will be smaller for two-issue than for high-bandwidth superscalars, 
a CMP of four two-issue processors will reach a higher utilization that an 
eight-issue superscalar processor. 

6.3.3 Cycle-by-Cycle Interleaving 

In the cycle-by-cycle interleaving model (sometimes also called fine-grain mul­
tithreading) the processor switches to a different thread after each instruction 
fetch. In principle, an instruction of a thread is fed into the pipeline after the 
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retirement of the previous instruction of that thread. Since cycle-by-cycle in­
terleaving eliminates control and data dependences between instructions in 
the pipeline, pipeline hazards cannot arise and the processor pipeline can be 
easily built without the necessity of complex forwarding paths. This leads to 
a very simple and therefore potentially very fast pipeline - no hardware inter­
locking is necessary. Moreover, the context-switching overhead is zero cycles. 
Memory latency is tolerated by not scheduling a thread until the memory 
transaction has completed. This model requires at least as many threads 
as pipeline stages in the processor. Interleaving the instructions from many 
threads limits the processing power accessible to a single thread, thereby 
degrading the single-thread performance. There are two possibilities to over­
come this deficiency: 

• The dependence lookahead technique adds several bits to each instruction 
format in the ISA. The additional opcode bits allow the compiler to state 
the number of instructions directly following in program order that are not 
data- or control-dependent on the instruction being executed. This allows 
the instruction scheduler in the cycle-by-cycle interleaving processor to feed 
non-data- or control-dependent instructions of the same thread successively 
into the pipeline. The dependence lookahead technique may be applied to 
speed up single-thread performance or in the case where a workload does 
not comprise enough threads . 

• The interleaving technique proposed by Laudon et al. [172], adds caching 
and full pipeline interlocks to the cycle-by-cycle interleaving approach. 
Contexts are interleaved on a cycle-by-cycle basis, yet a single-thread con­
text is also efficiently supported. 

The most well-known examples of cycle-by-cycle interleaving processors are 
the HEP (Smith [267]), the Horizon (Thistle and Smith [294]) and the Tera 
MTA (Alverson et al. [9]). All three employ the dependence-lookahead tech­
nique; the Horizon and Tera MTA feature a VLIW ISA. The HEP processor 
applies a cycle-by-cycle interleaving of instructions of eight threads within 
an 8-stage pipeline. To tolerate even longer memory access latencies, a large 
number of threads and non-blocking memory accesses are necessary. The 
Horizon and the Tera MTA each contain 128 thread contexts and register 
sets per processor node to mask remote memory access latencies effectively. 

Further cycle-by-cycle interleaving processor proposals include the MASA 
(Halstead and Fujita [119]), the SB-PRAM/HPP (Formella et al. [90]), and 
MicroUnity's MediaProcessor (Hansen [122]), as an example of a multi­
threaded signal processor. The SB-PRAM is 32-threaded, and the MediaPro­
cessor interleaves five contexts. In principle, cycle-by-cycle interleaving can 
also be combined with a superscalar instruction issue, but simulations of Eg­
gers et al. [76] confirm the intuition that simultaneous multithreading is the 
more efficient technique (see Sect. 6.5). 



264 6. Future Processors to use Coarse-Grain Parallelism 

Some machines that use cycle-by-cycle interleaving are described in more 
detail below. 

Tera MTA Processor 

The Tera Multi-Threaded Architecture (MTA) computer (Alverson et al. [9]) 
features a powerful VLIW instruction set, uniform access time from any pro­
cessor to any memory location, and zero-cost synchronization and swapping 
between threads of control. It was designed by the Tera Computer Com­
pany (Seattle, WA) research team led by Burton J. Smith, who was also the 
principal architect of the Horizon and HEP computers. 

MTA systems are constructed from resource modules. Each resource mod­
ule contains up to six resources which can be a computational processor (CP), 
an I/O processor (lOP), an I/O cache (IOC) units, and either two or four 
memory units (MUs) (Fig. 6.9). Each resource is individually connected to a 

Computational Processors (max 256) VO Processors (max 256) 

Memories (max 512) VO Caches (max 512) 

Fig. 6.9. The Tera MTA computer system 

separate routing node in the system's 3D toroidal interconnection network. 
This connection is capable of supporting data transfers to and from memory 
at the full processor rate in both directions, as are all of the connections 
between the network routing nodes themselves. The three-dimensional torus 
topology used in MTA systems has 8 or 16 routing nodes per resource module 
with the resources sparsely distributed among the nodes. The network band­
width scales excellently because there are several routing nodes per compu­
tational processor, rather than the several processors per routing node that 
many systems employ. Some MTA configurations are given in Table 6.1. For 
example, in the case of the MTA 256 model, there are 4096 nodes, arranged 
in a 16 x 16 x 16 mesh, consisting of 256 CPs, 256 lOPs, 256 IOC units, 512 
MUs, and 2816 routing nodes. 

The Tera MTA custom chip CP (Fig.6.10) is a multithreaded VLIW 
pipeline processor using the cycle-by-cycle interleaving technique. Each 
thread is associated with one 64-bit stream status word (SSW), thirty-two 64-
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Table 6.1. Some MTA configurations 

Number of Bisection 1/0 
Model Processors Memory Performance BIW BIW 

(GB) (GFLOPS) (GB/s) (GB/s) 

MTA 16 16 CP + 1610P 16-32 16 179 6 
MTA32 32 CP + 32 lOP 32-64 32 179 12 
MTA64 64 CP + 64 lOP 64-128 64 358 25 
MTA 128 128 CP + 128 lOP 128-256 128 717 51 
MTA256 256 CP + 256 lOP 256-512 256 1434 102 

bit general registers, and eight 64-bit target registers. The processor switches 
context every cycle (3 ns cycle period) between as many as 128 distinct 
threads (called streams in the Tera), thereby hiding up to 128 cycles (384ns) 
of memory latency. Since the context switching is so fast, the processor has 
no time to swap the processor state. Instead, it has 128 of everything, i.e., 
128 SSWs, 4096 general registers, and 1024 target registers. In addition, 
each thread can issue as many as eight memory references without waiting 
for earlier ones to finish, further augmenting the memory latency tolerance 
of the processor. A thread implements a load/store architecture with three 
addressing modes and 32 general-purpose 64-bit registers. The 3-wide VLIW 
instructions are 64 bits. Three operations can be executed simultaneously 
per instruction: a memory reference operation (M-op), an arithmetic/logical 
operation (A-op), and a branch or simple arithmetic/logical operation (C­
op). If more than one operation in an instruction specifies the same register 
or setting of condition codes, the priority is M>A>C. Dependences between 
instruction are explicitly encoded by the compiler using explicit dependence 
lookahead. Each instruction contains a 3-bit lookahead field that explicitly 
specifies how many instructions from this thread will be issued before en­
countering an instruction that depends on the current one. Since seven is the 
maximum possible lookahead value, at most eight instructions (i.e., 24 oper­
ations) from each thread can be concurrently executing in different stages of 
a processor's pipeline. 

The clock speed is nominally 333 MHz, giving each processor a data 
path bandwidth of 109 64-bit results per second and a peak performance 
of 1 GFLOPS. The peak memory bandwidth is 2.67 GB/s, and it is claimed 
that the processor sustains well over 95 % of that rat.e. 

The processor implements ANSI/IEEE 754-1985 arithmetic using the 64-
bit. double basic format. Hardware support for infinity arithmetic and denor­
malized operands is provided. Addition, subtraction, multiplication, division, 
and conversion to and from bot.h signed and unsigned integer formats are sup­
port.ed directly. The type of integer rounding can be selected independent of 
t.he rounding mode. There are float.ing-point multiply-add, multiply-subtract 
and multiply-subt.ract-reverse operations. These operations round only once. 
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Division and square root are accomplished with the help of iterations of New­
ton's method. Floating-point maximum and minimum operations are also 
provided. Support for fast, 128-bit double-precision arithmetic is incorpo­
rated. In double precision two floating-point numbers are used to represent a 
single value, yielding approximately twice the precision of ordinary floating 
point. There are instructions that help to compute the double-precision sum, 
difference, product quotient, and square root in a few instructions. 

Every processor has a clock register that is synchronized exactly with 
its counterparts in the other processors and counts up once per cycle. In 
addition, the processor counts the total number of unused instruction issue 
slots (measuring the degree of underutilization of the processor) and the 
time-integral of the number of instruction streams ready to issue (measuring 
the degree of overutilization of the processor). All three counters are user­
readable in a single unprivileged operation. Eight counters are implemented 
in each of the protection domains of the processor. All are user-readable in a 
single unprivileged operation. Four of these counters accumulate the number 
of instructions issued, the number of memory references, the time-integral 
of the number of instruction streams and the time-integral of the number of 
messages in the network. These counters are also used for job accounting. 
The other four counters are configurable to accumulate events from any four 
of a large set of additional sources within the processor, including memory 
operations, jumps, traps and so on. 
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Thus, the Tera MTA exploits parallelism at all levels, from fine-grained 
ILP within a single processor to parallel programming across processors, to 
multiprogramming among several applications simultaneously. Consequently, 
processor scheduling occurs at many levels, and managing these levels poses 
unique and challenging scheduling concerns (Alverson et al. [8]). 

After many delays the MTA reached the market in 1998. In April 1998 a 
two-processor MTA system was delivered to the San Diego Supercomputer 
Center. Currently the MTA processor runs at 145 MHz, but will scale to 
333 MHz. 

Other cycle-by-cycle interleaving processors 

HEP (Smith [266], 1981): The Heterogeneous Element Processor (HEP) 
system was a MIMD shared-memory multiprocessor system developed by 
Denelcor Inc. (Denver, CO) between 1978 and 1985, and was a pioneering ex­
ample of a multithreaded machine (see Fig. 6.11). Spatial switching occurred 
between two queues of processes; one of these controlled program memory, 
register memory, and the functional memory while the other controlled 
data memory. The main processor pipeline had eight stages, matching the 
number of processor cycles necessary to fetch a data item from memory in 
register. Consequently eight threads were in execution concurrently within 
a single HEP processor. In contrast to all other cycle-by-cycle interleaving 
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processors, all threads within a HEP processor shared the same register set. 
Multiple processors and data memories were interconnected via a pipelined 
switch and any register-memory or data-memory location could be used to 
synchronize two processes on a producer-consumer basis by a full/empty bit 
synchronization on a data memory word. 

MASA (Halstead and Fujita [119], 1988): The Multilisp Architecture for 
Symbolic Applications (MASA) was a cycle-by-cycle interleaving multi­
threaded processor proposal for parallel symbolic computation with various 
features intended for effective Multilisp program execution. MASA featured 
a tagged architecture, multiple contexts, fast trap handling, and a syn­
chronization bit in every memory word. Its principal novelty was the use 
of multiple contexts both to support interleaved execution from separate 
instruction streams and to speed up procedure calls and trap handling (in 
the same manner as register windows). 

Network ~r------l 

Fig. 6.12. The Horizon processor 

Horizon (Thistle and Smith [294], 1988): This (paper) architecture was 
based on the HEP but extended to a massively parallel MIMD computer. 
The machine (see Fig. 6.12) was designed for up to 256 processing elements 
and up to 512 memory modules in a 16 x 16 x 6 node internal network. 
Like HEP it employed a global address space, and memory-based synchro­
nization through the use of full/empty bits at each location. Each processor 
supported 128 independent instruction streams by 128 register sets with 
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context switches occurring at every clock cycle. The Horizon is a preversion 
of the Tera MTA. 

M-Machine (Fillo et al. [83], 1995): The MIT M-Machine supports both 
public and private registers for each thread, and uses cycle-by-cycle inter­
leaving. Each processor supports four hardware resident user V-threads, 
and each V-thread supports four resident H-threads. All the H-threads in a 
given V-thread share the same address space, and each H-thread instruction 
is a 3-wide VLIW. Event and exception handling are each performed by a 
separate V-thread. Swapping V-threads between being resident on-chip and 
not resident in memory requires about 150 cycles (1.5 1lS). M-Machine (like 
HEP, Horizon, and Tera MTA) employs full-empty bits for efficient, low-level 
synchronization. Moreover it supports message passing and guarded pointers 
with base and bounds for access control and memory protection. 

SB-PRAM (Bach et al. [21]) and HPP (Formella et al. [90], 1996): The SB­
PRAM (SB stands for Saarbriicken) or High Performance PRAM (HPP) is 
a MIMD parallel computer with shared address space and uniform mem­
ory access time due to its motivation: building a multiprocessor that is as 
close as possible to the theoretical machine model CRCW-PRAM. Processor 
and memory modules are connected by a butterfly network. Network latency 
is hidden by pipelining several so-called virtual processors on one physical 
processor node in cycle-by-cycle interleaving mode. A first prototype (SB­
PRAM) is running with four processors, a second prototype (HPP) is under 
construction. Instructions of 32 so-called virtual processors are interleaved 
round-robin in a single SB-PRAM processor, which is therefore classified as 
32-threaded cycle-by-cycle interleaving processor. The project is in progress 
at the University of Saarland (Saarbriicken, Germany). 

6.3.4 Block Interleaving 

The block interleaving approach (sometimes also called coarse-grain multi­
threading) executes a single thread until it reaches a situation that triggers 
a context switch. Usually such a situation arises when the instruction execu­
tion reaches a long-latency operation or a situation where a latency may arise. 
Compared to the cycle-by-cycle interleaving technique, a smaller number of 
threads is needed and a single thread can execute at full speed until the next 
context switch. Single-thread performance is similar to the performance of a 
comparable processor without multithreading. 

In the following we classify block-interleaving processors by the event that 
triggers a context switch (see Fig. 6.13): 

• Static: A context switch occurs each time the same instruction is executed 
in the instruction stream. The context switch is encoded by the compiler. 
The main advantage of this technique is that context switching can be 
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Fig. 6.13. Interleaving techniques 

triggered already in the fetch stage of the pipeline. The context switching 
overhead is one (if the fetched instruction triggers the context switch and 
is discarded), zero (if the fetched instruction triggers a context switch but 
is still executed in the pipeline), and almost zero (if a context switch buffer 
is applied, see the Rhamma processor below in this section). There are two 
main variations of the static block-interleaving model: 
- If an explicit context switch instruction exists, the model is called 

explicit-switch. This model is simple to implement and requires only 
one additional instruction. 

- In the implicit-switch model, each instruction belongs to a specific in­
struction class and a context switch depends on the instruction class of 
the fetched instruction. 
The switch-an-load version switches after each load instruction to bridge 
memory access latency. However, assuming an on-chip D-cache, the 
thread switch occurs more often than necessary. This makes an extremely 
fast context switch necessary, preferably with zero-cycle context switch 
overhead. 
Switch-an-store switches after store instructions. This technique may 
be used to support the implementation of sequential consistency which 
means that the next memory access instruction can only be performed 
after the store has completed in memory. 
Switch-an-branch switches after branch instructions. The technique can 
be applied to simplify processor design by renouncing branch prediction 
and speculative execution. The branch misspeculation penalty is avoided, 
but single-thread performance is decreased. However, it may be effective 
for programs with a high percentage of branches that are hard to predict 
or even unpredictable . 

• Dynamic: The context switch is triggered by a dynamic event. In general, 
all the instructions between the fetch stage and the stage that triggers 
the context switch are discarded, leading to a higher context switch over-
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head than static context switch strategies. Several dynamic models can be 
defined: 
- The switch-on-cache-miss model switches the context if a load or store 

misses in the cache. The idea is that only those loads that miss in the 
cache have long latencies and cause context switches. Such a context 
switch is detected in a late stage of the pipeline. A large number of 
subsequent instructions have already entered the pipeline and must be 
discarded. Thus context switch overhead is considerably increased. 

- The switch-on-signal model switches context on occurrence of a specific 
signal, for example, signaling an interrupt, trap, or message arrival. 

- However, context switches sometimes also occur sooner than needed. If 
a compiler schedules instructions so that a load from shared memory is 
issued several cycles before the value is used, the context switch should 
not occur until the actual use of the value. This strategy is implemented 
in the switch-on-use model which switches when an instruction tries to 
use the (still missing) value from a load. This can be, for example, a 
load that missed in the cache. The switch-on-use model can also be seen 
as a lazy strategy that extends either the static switch-on-Ioad strategy 
(lazy-switch-on-load) or the switch-on-cache-miss (lazy-switch-on-cache­
miss). 
To implement the switch-on-use model, a valid bit is added to each regis­
ter (by a simple form of scoreboard). The bit is cleared when the loading 
to the corresponding register is issued and set when the result returns 
from the network. A thread switches context if it needs a value from a 
register whose valid bit is still cleared. 

- The conditional-switch model couples an explicit switch instruction with 
a condition. The context is switched only when the condition is fulfilled, 
otherwise the context switch is ignored. A conditional-switch instruction 
may be used, for example, after a group of load/store instructions. The 
context switch is ignored if all load instructions (in the preceding group) 
hit the cache; otherwise, the context switch is performed. Moreover, a 
conditional-switch instruction could also be added between a group of 
loads and their subsequent use to realize a lazy context switch (instead 
of implementing the switch-on-use model). 

The explicit-switch, conditional-switch and switch-on-signal techniques en­
hance the ISA by additional instructions. The implicit switch technique may 
favor a specific ISA encoding to simplify instruction class detection. All other 
techniques are microarchitectural techniques without the necessity of ISA 
changes. 

A previous classification by Boothe and Ranade [33, 34] concerns multi­
threading techniques only in a shared-memory multiprocessor environment 
and is restricted to only a few of the variations of multithreading techniques 
described above. In particular, the switch-on-Ioad in [33] switches only on 
instructions that load data from remote memory, while storing data in re-
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mote memory does not cause context switching. Likewise, the switch-on-miss 
model is defined so that the context is only switched if a load from remote 
memory misses in the cache. 

The MIT Sparcle (below in this section) and the MSparc (Mikschl and 
Damm [201]) processors switch context in case of remote memory accesses or 
failed synchronizations. They can be classified as block interleaving proces­
sors using switch-on-cache-miss and switch-on-signal techniques. Since both 
switching reasons are revealed in a late stage of the pipeline, the succeeding 
instructions that are already loaded in the pipeline cannot be used. Reload­
ing of the pipeline and the software implementation of the context switch 
cause context switch cost of 14 processor cycles in the Sparcle. The MSparc 
processor is similar to the Sparcle except for hardware support for context 
switching. A context switch is performed one cycle after the event is recog­
nized. In the case of the MIT Sparcle, context switches are used only to hide 
long memory latencies since small pipeline delays are assumed to be hidden 
by proper ordering of instructions by an optimizing compiler. 

The multithreaded Rhamma processor (see below) decouples execution 
and load/store pipelines. Both pipelines execute instructions of different 
threads. In contrast to the Sparcle, the Rhamma processor is designed to 
bridge all kinds of latencies by a fast context switch applying various static 
and dynamic block-interleaving strategies. 

Sparcle ~ Switch-on-Cache-Miss Processor 

The MIT Sparcle processor (Agarwal et al. [2], 1993) is derived from a 
SPARe RIse processor. The eight overlapping register windows of a SPARe 
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processor are organized in four independent non-overlapping thread contexts, 
each using two windows (one as a register set, the other as a context for trap 
and message handlers, see Fig. 6.14). 

Context switches are used only to hide long memory latencies since small 
pipeline delays are assumed to be hidden by proper ordering of instructions 
by an optimizing compiler. The MIT Sparcle processor switches to another 
context in the case of a remote cache miss or a failed synchronization (switch­
on-cache-miss and switch-on-signal strategies). Thread switching is triggered 
by external hardware, i.e., by the cache/directory controller (see Fig.6.15). 
Emptying the pipeline of instructions of the thread that caused the context 
switch and organizational software overhead contribute a context switching 
penalty of 14 processor cycles. 

The MIT Alewife DSM multiprocessor (Agarwal et al. [3]) is based on the 
multithreaded Sparcle processor. The multiprocessor has been operational 
since May 1994. A node in the Alewife multiprocessor comprises a Sparcle 
processor, an external floating-point unit, cache and a directory-based cache 
controller that manages cache-coherence, a network router chip, and a mem­
ory module (see Fig. 6.15). 

Cache 

Network 
router 

Cache/directory 
controller 

Fig. 6.15. An Alewife node 

The Alewife multiprocessor uses a low-dimensional direct interconnection 
network. Despite its distributed-memory architecture, Alewife allows efficient 
shared-memory programming through a multilayered approach to locality 
management. Communication latency and network bandwidth requirements 
are reduced by a directory-based cache-coherence scheme referred to as 
LimitLESS directories. Latencies still occur although communication locality 
is enhanced by run-time and compile-time partitioning and placement of 
data and processes. 

Rhamma Switch-on-Load Processor 

The multithreaded Rhamma processor (Grunewald and Ungerer [108, 
109]) was developed between 1993 and 1997 at the University of Karlsruhe 
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(Germany) as an experimental microprocessor that bridges all kinds of laten­
cies by a very fast context switch. The Rhamma processor combines several 
static and dynamic block-interleaving techniques. 

In the Rhamma processor (see Fig. 6.16), the execution unit (ED) and 
load/store unit (LSD) are decoupled and work concurrently on different 
threads. A number of register sets used by different threads are accessed 
by the LSD as well as the ED. Both units are connected by FIFO buffers 
for so-called continuations, each denoting the thread tag and the instruction 
pointer of a thread. 

FIFO 

JIIJ=> instruction instruction data 
fetch decode cache 

load/store 
unit 

instruction 
cache registerframes 

I I I I I I I I I 

'" FIFO 

JIIJ=> instruction instruction operand 
execution execution 

fetch decode fetch unit 

Fig. 6.16. Overall structure of the Rhamma processor 

The ED and the LSD are modeled by a 4-stage instruction pipeline (in­
struction fetch IF, decode DE, operand fetch OF, and a combined execute 
and write-back EX/WB stage) with the full result-forwarding techniques. 
The ED is based on a conventional RISe processor (a variant of the DLX 
processor [134]). The original DLX instruction set is extended by thread man­
agement instructions. A scoreboard determines operand availability prior to 
the EX/WB stage. The result is written into the target register in the EX/WB 
stage. 

In the implementation of the execution pipeline of Rhamma, each instruc­
tion that may cause a latency forces a context switch. Besides the load/store 
instructions the additional instructions concerned are the control instructions 
for jump, branch, thread management, and interrupt management. This de­
sign decision avoids complex hardware solutions which are necessary if, for ex­
ample, a load/store instruction directly follows a branch instruction, thereby 
potentially causing a wrong context switch if the branch is taken. With this 
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solution interlocking of the pipeline is avoided as well as speculative branch 
prediction and its rollback mechanism in the case of a wrong prediction. The 
single thread performance may be slowed down compared to an implementa­
tion with a proper branch prediction strategy. However, overall throughput 
is increased. The context switch is also used to handle instructions that may 
cause interrupts. 

The EU of the Rhamma processor switches the thread whenever a 
load/store or control-flow instruction is fetched. Therefore, if the instruc­
tion format is chosen appropriately, a context switch can be recognized by 
predecoding the instructions already during the IF stage. Pipeline execution 
proceeds without bubbles when a control instruction that has to be executed 
by the EU causes a context switch. No cycle is lost. 

In the case of a load/store, the continuation is stored in the FIFO buffer 
of the LSU, a new continuation is fetched from the EU's FIFO buffer, and 
the context is switched to the register set given by the new thread tag and 
the new instruction pointer. The LSU loads and stores data of a different 
thread in a register set concurrently to the work of the EU. Completion of a 
memory access may be signaled by a load/store acknowledgement. 

There is a loss of one processor cycle in the EU for each sequence of 
load/store instructions. Only the first load/store instruction forces a context 
switch in the EU; succeeding load/store instructions are executed in the LSU. 
When context switching on a control instruction, the instruction is still fed 
into the pipeline (in contrast to a load/store instruction). In this case context 
switching is always performed without the loss of a cycle. 

The loss of one processor cycle in the EU when fetching the first of a se­
quence ofload/store instructions can be avoided by a so-called context switch 
buffer (CSB) whenever the sequence is executed the second time. The CSB 
is a hardware buffer, collecting the addresses of load/store instructions that 
have caused context switches. Before fetching an instruction from the I-cache, 
the IF stage checks whether the address can be found in the context switch 
buffer. In that case the thread is switched immediately and an instruction 
of another thread is fetched instead of the load/store instruction. No bubble 
occurs. If the instruction address is not in the CSB, the next instruction of 
the current thread is fetched. If a load/store instruction is recognized by pre­
decoding (e.g., in case of the first execution of the load/store instruction), a 
loss of one cycle is caused due to the fetch of the load/store instruction that 
cannot be executed in the EU. The instruction address is written into the 
CSB. 

The CSB is implemented similarly to a direct-mapped cache. The in­
struction address is divided into an index part and a tag part. The index 
part selects the buffer line where the tag part of the instruction address is 
stored. Since different instruction addresses may be mapped onto the same 
buffer line, the tag entry is necessary and must be compared with the tag 
part of the instruction address during buffer lookup. An additional bit per 
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buffer line signals whether an entry is a valid tag or not. A lookup in the 
eSB yields one if the instruction address is a valid entry in the eSB. The 
direct-mapped buffer organization was chosen due to its low hardware com­
plexity and fast lookup. All threads share a common eSB with the potential 
danger of thrashing buffer entries. Use of multiple eSBs, one for each thread, 
is possible, but multithreaded programs with a SPMD-structure may profit 
from a shared eSB. 

The implementation of predecoding and a eSB only slightly enhances 
the hardware logic of the IF stage (see Fig. 6.17). The IF stage feeds the 
next instruction into the instruction pipeline. The instruction pointer used 
to access the I-cache is computed from the previous instruction of the current 
thread, i.e., the instruction pointer of the thread is increased. In the case of 
a context switch, the next instruction is denoted by a continuation fetched 
from the FIFO buffer. The instruction address is loaded into the instruction 
pointer register. The thread tag addresses the new current register set. In 
addition to the buses for the thread tag and the instruction pointer of the 
next thread, a signal line enables the other pipeline stages to force a context 
switch. When the context switch signal is high, a context switch is performed 
by the IF stage. Otherwise the current thread tag is stored in a latch and the 
new instruction pointer is computed from the old one. 

kontexl SWiICNt-_____ --, 

L buffer J 
L..-.:..::r':':'-...J context switch? 

I-cache 

Fig. 6.17. The complete IF stage 

To implement the predecoding, a 32-bit instruction format is used, and 
bit 31 - the highest order bit in the opcode - is set to one if the instruction 
forces a context switch in the pipeline of the EU. Otherwise the instruction 
fetch continues with the next instruction of the current thread. Bit 31 is used 
as a new control signal for the instruction fetch as shown in Fig. 6.17. 

The eSB is integrated into the IF stage. As soon as the instruction pointer 
is incremented, it is made available for lookup in the eSB. The output signal is 
connected by an OR-gate with the context switch signal of the other pipeline 
stages and with the instruction predecoding. Thus the thread is switched 
if one of the three signals is activated. The eSB will be only updated by a 



6.3 Multithreaded Processors 277 

context switch buffer miss, so the CSB influences execution only in the second 
and following runs of a basic block. 

All solutions to optimize a fast context switch can be applied in an anal­
ogous way to the LSU. 

The Rhamma processor combines several static and dynamic block inter­
leaving techniques. Due to the decoupling of the execution and the load/store 
pipelines, a context switch is performed if an instruction is to be fetched but 
belongs to the other instruction class. The context switch is recognized by the 
predecoder in the instruction fetch stage by means of a tag in the instruction 
opcode (implicit-switch technique). A context switch is also performed in the 
EU after the fetch of a control flow (branch, jump, or context management) 
instruction (implicit-switch technique). 

Additionally, two further context-switching techniques are applied in 
Rhamma. The availability of register values is tested with a scoreboard in 
the instruction decode stages of both pipelines. If an operand value is un­
available, pipeline interlocking is avoided by a context switch (switch-on-use 
technique). Due to full forwarding techniques implemented in the execution 
pipeline, the switch-on-use technique triggers a context switch only when a 
missing operand is not loaded fast enough from memory. 

Second, a so-called sync instruction performs a context switch only when 
acknowledges ofload/store instructions are pending (conditional-switch tech­
nique). The sync instruction is provided to ease the implementation of dif­
ferent consistency models. 

In order to estimate the performance of the multithreading techniques 
in Rhamma, an execution-based software simulation compared the Rhamma 
processor with a single-threaded single-issue base processor that is similar 
to the DLX processor [134]. The base processor features the same execution 
pipeline and the same memory hierarchy (see Table 6.2) as assumed for the 
Rhamma processor. The base processor uses a static branch prediction tech­
nique. The Rhamma processor uses a CSB with 32 entries and eight register 
frames. 

Table 6.2. Memory hierarchy assumed for Rhamma simulations 

access time cycle time size 
I·cache 1 1 4k 
D·cache 2 1 4k 
Off·chip cache 9 9 1 M 
DRAM 27 14 1 G 

Multiple programs (partly from the Splash-2 benchmark suite) were ex­
ecuted by the simulator. The same program is executed by both processor 
configurations. Table 6.3 shows the speedup relative to the run time of the 
program on the base processor. 
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Table 6.3. Rhamma simulation results 

Threads 
Hilbert 

__ g~~_~_~_~~E.!: __ 
Livermore 
FFT 

1U 
Radix 

124 
0.55 0.84 1.54 
0.64 1.14 1.67 

---O~68--------T3f-------T13---

---OJS---------1-.0S---------T19---
0.77 1.20 1.49 
0.78 1.27 1.79 

The relative run times show clearly that the Rhamma processor with only 
one thread falls behind the base processor. This is because of the two clock 
cycles which are needed to exchange the threads between the pipelines. With 
two threads the Rhamma processor already outperforms the base processor 
(except for the Hilbert benchmark). With four threads the performance of 
the Rhamma processor is substantially better than the performance of the 
base processor. 

As the next step in the design flow, a more detailed version of the 
Rhamma processor was implemented in VHDL code. The implementation 
limits according to ASIC or FPGA technology were determined with the 
help of VHDL simulation and synthesis by the Synopsys system. The VHDL­
description of the Rhamma processor was evaluated by the execution of small 
workloads on the simulator. Because of long run times of the Synopsys sim­
ulator, larger workloads could not be tested. The automatic hardware syn­
thesis performed by the Synopsys system generates from the VHDL-code a 
gate-level description of the circuit that is independent of specific chip tech­
nology. The ES2 1.0 j.l.m library was used to estimate the chip area of the 
Rhamma implementation using ASIC technology. The synthesized circuit of 
the Rhamma processor with a CSB of 32 entries but without register sets, 
code, and D-caches needs an area of 38.35 mm2 on an ASIC-chip with ap­
proximately 20 MHz cycle frequency. A CSB only lengthens the critical path 
of the instruction fetch by 1.8 ns, assuming a 50 ns processor cycle time. The 
pipeline cycle time can be reduced by an improved balancing of the pipelines. 
Moreover, an optimized hardware implementation, used for an industrial pro­
cessor design as well as using modern processor chip technology, namely a 
full custom design, may increase cycle rate significantly. 

The experiences with the Rhamma project showed that a consequent ap­
plication of multithreading techniques to bridge all kinds of latencies avoids 
complex circuits for speculative execution (branch prediction as well as up­
coming value speculation), for out-of-order issue and execution to bridge 
memory access latencies, as well as for traps and interrupts. This is made 
possible only due to the additional hardware solutions that reduce the cost 
of a context switch to one or even almost zero cycles. Fast context switching 
techniques may be applied in general-purpose microprocessors. However, also 
micro controllers and signal processors may profit from these techniques. 
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Currently a multithreaded Java-microcontroller for real-time applications 
is under development at the University of Karlsruhe. 

Other block interleaving processors 

CHoPP (Mankovich et al. [191]' 1987): The Columbia Homogeneous Parallel 
Processor (CHoPP) was a shared-memory MIMD with up to 16 powerful 
computing nodes. High sequential performance is due to issuing multiple 
instructions on each clock cycle, zero-delay branch instructions, and fast 
execution of individual instructions. Each node can support up to 64 threads. 

MDP in I-Machine (Dally et al. [58], 1992): The MIT Jellybean Machine 
(J-Machine) is so-called because it is to be built entirely of a large number 
of 'jellybean" components. The initial version uses an 8 x 8 x 16 cube 
network, with possibilities of expanding to 64K nodes. The 'jellybeans" are 
message-driven processor (MDP) chips, each of which has a 36-bit processor, 
a 4 k word memory, and a router with communication ports for six directions. 
External memory of up to 1 M words can be added per processor. The MDP 
creates a task for each arriving message. In the prototype, each MDP chip 
has four external memory chips that provide 256 k memory words. However, 
access is through a 12-bit data bus, and with an error correcting cycle, the 
access time is four memory cycles per word. Each communication port has a 
9-bit data channel. The routers provide support for automatic routing from 
source to destination. The latency of a transfer is 2 microseconds across the 
prototype machine, assuming no blocking. When a message arrives, a task is 
created automatically to handle it in 1 J..I.S. Thus, it is possible to implement 
a shared memory model using message passing, in which a message provides 
a fetch address and an automatic task sends a reply with the desired data. 

MSparc (Mikschl and Damm [201]' 1996): An approach similar to the Spar­
cle processor was taken at the University of Oldenburg (Germany) with the 
MSparc processor. MSparc supports up to four contexts on chip and is com­
patible to standard SPARC processors. Switching is supported by hardware 
and can be achieved within one processor cycle. However, a four cycle over­
head is introduced due to pipeline refill. The multithreading policy is block 
interleaving with the switch-on-cache-miss policy as in the Sparcle processor. 

PLIPS-Machine (Kavi et al. [158], 1997): The PL/PS-Machine (Preload and 
Poststore) is most similar to the Rhamma processor. It also decouples mem­
ory accesses from thread execution by providing separate units. This de­
coupling eliminates thread stalls due to memory accesses and makes thread 
switches due to cache misses unnecessary. Threads are created when all data 
is preloaded into the register set holding the thread's context, and the results 
from an execution thread are poststored. Threads are non-blocking and each 



280 6. Future Processors to use Coarse-Grain Parallelism 

thread is enabled when the required inputs are available (i.e., data-driven at 
a coarse grain). The separate load/store/sync processor performs preloads 
and schedules ready threads on the pipeline. The pipeline processor executes 
the threads which will require no memory accesses. On completion the results 
from the thread are poststored by the load/store/sync processor. 

6.3.5 Nanothreading and Microthreading 

The nanothreading and the microthreading approaches use multithreading 
but spare the hardware complexity of providing multiple register sets. 

Nanothreading (Gwennap [116], 1997) proposed for the DanSoft proces­
sor dismisses full multithreading for a nanothread that executes in the same 
register set as the main thread. The DanSoft nanothread requires only a 9-bit 
PC, some simple control logic, and it resides in the same page as the main 
thread. Whenever the processor stalls on the main thread, it automatically 
begins fetching instructions from the nanothread. Only one register set is 
available, so the two threads must share the register set. Typically the nan­
othread will focus on a simple task, such as prefetching data into a buffer, 
that can be done asynchronously to the main thread. 

In the DanSoft processor nanothreading is used to implement a new 
branch strategy that fetches both sides of a branch. A static branch pre­
diction scheme is used, where branch instructions include 3 bits to direct 
the instruction stream. The bits specify eight levels of branch direction. For 
the middle four cases, denoting low confidence on the branch prediction, the 
processor fetches from both the branch target and the fall-through path. If 
the branch is mispredicted in the main thread, the back-up path executed in 
the nanothread generates a misprediction penalty of only 1 to 2 cycles. 

The DanSoft processor proposal is a dual-processor CMP, each processor 
featuring a VLIW instruction set and the nanothreading technique. Each 
processor is an integer processor, but the two processor cores share a floating­
point unit as well as the system interface. 

However, the nanothread technique might also be used to fill the instruc­
tion issue slots of a wide superscalar approach as in simultaneous multithread­
mg. 

The microthreading technique (Bolychevsky et al. [32], 1996) is similar to 
nanothreading. All threads share the same register set and the same run­
time stack. However, the number of threads is not restricted to two. When a 
context switch arises, the program counter is stored in a continuation queue. 
The PC represents the minimum possible context information for a given 
thread. Microthreading is proposed for a modified RISC processor. 

Both techniques - nanothreading as well as microthreading - are proposed 
in the context of a block-interleaving technique, but might also be used to 
fill the instruction issue slots of a wide superscalar approach as in simul­
taneous multithreading (see Sect. 6.4). The drawback to nanothreading and 
microthreading is that the compiler has to schedule registers for all threads 
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that may be active simultaneously, because all threads execute in the same 
register set. 

6.4 Simultaneous Multithreading 

Cycle-by-cycle interleaving and block interleaving are multithreading tech­
niques which are most efficient when applied to scalar RISC or VLIW pro­
cessors. Combining multithreading with the superscalar technique naturally 
leads to a technique where all hardware contexts are active simultaneously, 
competing each cycle for all available resources. This technique, called simul­
taneous multithreading4 (SMT), inherits from superscalars the ability to issue 
multiple instructions each cycle; and like multithreaded processors it contains 
hardware resources for multiple contexts. The result is a processor that can 
issue multiple instructions from multiple threads each cycle. Therefore, not 
only can unused cycles in the case of latencies be filled by instructions of 
alternative threads, but so can unused issue slots within one cycle. 

Thread-level parallelism can come from either multithreaded, parallel 
programs or from individual, independent programs in a multiprogramming 
workload, while ILP is utilized from the individual threads. Because a SMT 
processor simultaneously exploits coarse- and fine-grain parallelism, it uses its 
resources more efficiently and thus achieves better throughput and speedup 
than single-threaded superscalar processors for multithreaded (or multipro­
gramming) workloads. The trade-off is a slightly more complex hardware 
organization. 

The SMT approach combines a wide superscalar instruction issue with the 
multithreading approach by providing several register sets on the multiproces­
sor and issuing instructions from several instruction queues simultaneously. 
Therefore, the issue slots of a wide-issue processor can be filled by operations 
of several threads. Latencies occurring in the execution of single threads are 
bridged by issuing operations of the remaining threads loaded on the proces­
sor. In principle, the full issue bandwidth can be utilized. The SMT fetch unit 
can take advantage of the interthread competition for instruction bandwidth 
in two ways. First, it can partition this bandwidth among the threads and 
fetch from several threads each cycle. In this way, it increases the probabil­
ity of fetching only nonspeculative instructions. Second, the fetch unit can 
be selective about which threads it fetches. For example, it may fetch those 
that will provide the most immediate performance benefit (see the ICOUNT 
feedback technique in SMT at the University of Washington below). 

SMT processors can be organized in two ways: 

• They may share an aggressive pipeline among multiple threads when there 
is insufficient ILP in anyone thread to use the pipeline fully. Instructions of 

4 Simultaneous multithreading is also called multithreaded superscalar approach. 
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different threads share all resources like the fetch buffer, the physical regis­
ters for renaming registers of different register sets, the instruction window, 
and the reorder buffer. Thus SMT adds minimal hardware complexity to 
conventional superscalars; hardware designers can focus on building a fast 
single-threaded superscalar and add multithread capability on top. The 
complexity added to superscalars by multithreading include the thread tag 
for each internal instruction representation, multiple register sets, and the 
abilities of the fetch and the retire units to fetch/retire instructions of 
different threads . 

• The second organizational form replicates all internal buffers of a super­
scalar such that each buffer is bound to a specific thread. Instruction fetch, 
decode, rename, and retire units may be multiplexed between the threads 
or be duplicated themselves. The issue unit is able to issue instructions of 
different instruction windows simultaneously to the FUs. This form of or­
ganization adds more changes to the organization of superscalar processors 
but leads to a natural partitioning of the instruction window and simplifies 
the issue and retire stages. 

The main drawback to simultaneous multithreading may be that it com­
plicates the issue stage, which is always central to the multiple threads. A 
functional partitioning as demanded for processors of the 109-transistor era 
cannot therefore be easily reached. 

No simultaneous multithreaded processors exist to date. Projects simu­
lating different configurations of simultaneous multithreading are discussed 
below. 

6.4.1 SMT at the University of Washington 

The SMT processor architecture, proposed in 1995 by Tullsen et al. [303] at 
the University of Washington (Seattle, WA), surveys enhancements of the 
Alpha 21164 processor. Simulations were conducted to evaluate processor 
configurations of an up to 8-threaded and 8-issue superscalar. This maximum 
configuration showed a throughput of 6.64 IPC due to multithreading using 
the SPEC92 benchmark suite and assuming a processor with 32 functional 
units (among them multiple load/store units). 

The next approach was based on a hypothetical out-of-order issue su­
perscalar microprocessor that resembles the MIPS R10000 and HP PA-8000 
(Tullsen et al. [304], 1996; Eggers et at. [76], 1997). This approach evaluated 
more realistic processor configurations, and presented implementation issues 
and solutions to register file access and instruction scheduling for a minimal 
change to superscalar processor organization. 

In the simulations of the latter architectural model (see Fig. 6.18) eight 
threads and an 8-issue superscalar organization are assumed. Eight instruc­
tions are decoded, renamed, and fed to either the integer or floating-point 
instruction window. Unified buffers are used in contrast to thread-specific 
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queues in the Karlsruhe Multithreaded Superscalar approach (see below). 
When operands become available, up to eight instructions are issued out of 
order per cycle, executed, and retired. Each thread can address 32 architec­
tural integer (and floating-point) registers. These registers are renamed to a 
large physical register file of 356 physical registers. The larger SMT regis­
ter file requires a longer access time. To avoid increasing the processor cycle 
time, the SMT pipeline is extended by two stages to allow two-cycle reg­
ister reads and two-cycle writes. Renamed instructions are placed into one 
of two instruction windows. The 32-entry integer instruction window han­
dles integer and all load/store instructions, while the 32-entry floating-point 
instruction window handles floating-point instructions. Three floating-point 
and six integer units are assumed. All FUs are fully pipelined, and four of the 
integer units also execute load/store instructions. The I-cache and D-cache 
are multiported and multibanked, but common to all threads. 
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Fig. 6.18. SMT processor architecture 

The multithreaded workload consists of a program mix of SPEC92 bench­
mark programs that are executed simultaneously as different threads. The 
simulations evaluated different fetch and instruction issue strategies. 

An RR.2.8 fetching scheme to access multiported I-cache, i.e., in each cy­
cle, two times 8 instructions are fetched in round-robin policy from two differ­
ent threads, was superior to different other schemes like RR.1.8, RR.4.2, and 
RR.2.4 with less fetching capacity. As a fetch policy, the ICOUNT feedback 
technique, which gives highest fetch priority to the threads with the fewest 
instructions in the decode, renaming, and queue pipeline stages, proved supe­
rior to the BRCOUNT scheme which gives highest priority to those threads 
that are least likely to be on a wrong path, and the MISSCOUNT scheme 
which gives priority to the threads that have the fewest outstanding D-cache 
misses. The IQPOSN policy that gives lowest priority to the oldest instruc­
tions by penalizing those threads with instructions closest to the head of 
either the integer or the floating-point queue is nearly as good as ICOUNT 
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and better than BRCOUNT and MISSCOUNT, which are all better than 
round-robin fetching. The ICOUNT.2.8 fetching strategy reached an IPC of 
about 5.4 (the RR.2.8 only reached about 4.2). Most interesting is that nei­
ther mispredicted branches nor blocking due to cache misses, but a mix of 
both and perhaps some other effects, proved to be the best fetching strategy. 

In a single-threaded processor, choosing instructions for issue that are 
least likely to be on a wrong path is always achieved by selecting the oldest in­
structions, those deepest into the instruction window. For the SMT processor 
several different issue strategies have been evaluated, like oldest instructions 
first, speculative instructions last, and branches first. Issue bandwidth is not 
a bottleneck and all strategies seem to perform equally well, so the simplest 
mechanism still works. Also doubling the size of instruction windows (but 
not the number of searchable instructions for issue) has no significant effect 
on the IPC. Even an infinite number of FUs increases throughput by only 
0.5%. 

Recently, simultaneous multithreading has been evaluated with database 
workloads (Lo et aZ. [186], 1998) and multimedia workloads (Oehring et 
at. [218], 1999), both achieving roughly a three-fold increase in instruction 
throughput with an eight-threaded SMT over a single-threaded superscalar 
with similar resources. Wallace et aZ. [318] presented the threaded multipath 
execution (TME) model, which exploits existing hardware on a SMT proces­
sor to execute simultaneously alternate paths of a conditional branch in a 
thread. Such a speculative execution increases single program performance 
by 14-23 %, depending on the misprediction penalty, for programs with a 
high branch misprediction rate. 

6.4.2 Karlsruhe Multithreaded Superscalar 

While the SMT processor by Tullsen et at. [303] in 1995 surveys enhance­
ments of the Alpha 21164 processor, the multithreaded superscaZar processor 
approach from the University of Karlsruhe (Sigmund and Ungerer [259, 260], 
1996) is based on a simplified PowerPC 604 processor. Both approaches, how­
ever, are similar in their instruction-issuing policy. 

The multithreaded superscalar processor uses various kinds of modern 
microarchitecture techniques such as separate I-cache and D-cache, BTAC, 
static branch prediction, in-order issue, independent FUs with reservation 
stations, rename registers, out-of-order execution, and in-order completion. 
The processor implements the 6-stage instruction pipeline of the PowerPC 
604 processor (fetch, decode, issue, execute, complete, and write-back) (see 
Sect. 4.9.10) and extends it to employ multithreading. However, the instruc­
tion set is simplified, using an extended DLX instruction set (see Hennessy 
and Patterson [134]) instead. The processor uses static instead of dynamic 
branch prediction, and renounces the floating-point unit. 

The processor is designed to be scalable: the number of parallel threads, 
the sizes of internal buffers, register sets and caches, and the number and type 
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of FUs are not limited by any architectural specification. This allows exper­
iments to find an optimized configuration for an actual processor depending 
on chip size and expected application workload. 

The processor can be divided in four parts: 

• the control pipeline consisting of the fetch unit (FEU), decode unit (DU), 
issue unit (IU), and retire unit (RU); 

• several independent FUs (e.g., simple/complex integer, load/store, branch 
and thread control); 

• caches, cache control, and memory access unit; and 
• register files and activation frame caches. 

Figure6.19 shows a block diagram of an incarnation of the multithreaded 
superscalar processor, here with a single control pipeline equipped with an 
arbitrary number n of queue buffers that are able to host n threads, with two 
integer, one load/store, one thread control and one branch unit, and with n 
register files corresponding to the n queue buffers in the control pipeline. 

Between FEU, DU, IU, and RU exist separate queue buffers for each 
thread. There may be several FEUs and DUs, so that several executions 
in these stages may be performed in parallel. The units can be allocated 
to the actual threads on demand. The I-cache is designed as non-blocking 
cache. The non-blocking-cache design decouples the FEU(s) from the actual 
instruction fetch from memory. When a fetch to the I-cache fails, fetch from 
memory is initiated and the FEU is free again to fetch instructions for another 
thread. The FEUs and DUs always work on a continuous block of instructions. 
The blocks actually fetched may not always be of maximum size, because of 
limitations imposed by the cache line size (instruction fetch can not overlap 
cache lines) and by branches that are predicted to be taken. The maximum 
block size of an instruction fetch is equal with the size of the fetch buffers and 
of the issue reservation queues, and is chosen corresponding to the instruction 
issue bandwidth. There are only a single IU and a single RU. The IU cannot 
be duplicated. The RU may simultaneously retire any number of instructions 
of any thread (up to a total maximum of retired instructions). The IU is 
not restricted with respect to the number of instruction issues according to 
each thread. The limitation is the maximum issue bandwidth - the maximum 
number of instructions that can be issued simultaneously. Instructions of a 
single thread are always issued in program order from the instruction window 
to the reservation stations of the FUs. 

There is no fixed allocation between threads and FUs, otherwise the con­
figuration would define a multiprocessor chip instead of a multithreaded su­
perscalar processor. The instructions are executed out of order by the FUs. 
The use of separate reservation stations for the FUs simplifies the task of 
the IU, because only the lack of instructions, the lack of resources, and the 
maximum bandwidth can limit the simultaneous instruction issue rate. Data 
dependences are handled by rename registers and reservation stations. In­
structions can be issued to the reservation stations without checking for con-



6.4 Simultaneous Multithreading 287 

trol or data dependences. But an instruction will not be executed until all 
source operands are available. 

The rename registers, the BTAC, and the I-cache and D-cache are shared 
by all active threads. There is no fixed allocation of any of these resources to 
specific threads. This allows for maximum performance with any number of 
active threads. Each thread executes in a separate register set. The contents of 
the registers of a register set describe the state of a thread and form a so-called 
activation frame. An activation frame is called active if the thread is currently 
being executed by the processor, i.e., the activation frame is represented in 
a register set. In addition to the active activation frames in the processor, 
an activation frame cache is provided, which holds activation frames that are 
not currently scheduled for execution. The activation frames in the activation 
frame cache and in the register sets can be interchanged without a significant 
penalty. The activation frame cache is also used to implement a derivation 
of a register window technique. A new activation frame is created for every 
subprogram activation, thereby significantly reducing the number of memory 
accesses to the D-cache. 

Except for the load/store and the thread control unit, each kind of FU 
may be arbitrarily duplicated. The thread control unit is responsible for cre­
ation and deletion of threads, for synchronization and communication be­
tween threads. It would be quite difficult to duplicate this unit, and the gain 
would be small, as the percentage of thread control instructions is low. The 
reason for the single load/store unit is discussed later. All standard integer 
operations are executed in a single cycle by the simple integer units. Only 
the multiply and the divide instructions are executed in the complex integer 
unit. The execution of multiply instructions is fully pipelined, in contrast 
to the integer divide. Each branch unit may execute one branch instruction 
per cycle. Branch prediction starts in the FEU using a BTAC. It proceeds 
in the DU using a simple static branch prediction technique. Each forward 
branch is predicted as not taken, each backward branch as taken. A static 
branch prediction simplifies processor design, but reduces the accuracy and, 
consequently, increases the statistical penalty incurred by each conditional 
branch. Within a multithreaded processor latencies are almost all covered by 
other threads, so that the penalty created by static branch prediction should 
not affect average executions per cycle. 

The memory interface is defined as a standard DRAM interface with 
configurable burst sizes and delays. All caches are highly configurable to test 
penalties due to cache thrashing caused by multiple threads. 

Starting with the superscalar base processor a software simulation was 
conducted, evaluating various configurations of the multithreaded superscalar 
processor. All functional units were simulated with correct cycle behavior. 
The simulation workload was generated by a configurable workload genera­
tor, which created random high-level programs, and compiled them to the 
target machine language. The distribution of the machine instructions was 
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similar to that generated from high-level programs, since typical program 
structures were observed by the workload generator. This approach allowed 
the creation of workloads for different types of programs without the need 
for a complete compiler. Optimized instruction scheduling by a compiler was 
not taken into account. For the performance results presented here, a multi­
threaded simulation workload was chosen, which represents general-purpose 
programs without floating-point instructions for a register window architec­
ture. The instruction mix was derived from the SPECint92 benchmark suite, 
enhanced by thread control instructions. A lower percentage ofload/store in­
structions was assumed because arguments of subprogram invocations were 
passed between activation frames located in register sets. Table 6.4 lists the 
percentage of instructions in the instruction mix applied for the simulation 
results presented below. 

Table 6.4. Percentage of instructions for the multithreaded superscalar processor 
simulations 

Instruction type Average use 
(%) 

integer 63.8 
complex integer 1.1 
load 13.2 
store 7.0 
branch 10.8 
thread control 4.1 

With a single load/store unit (used in this approach) the chosen workload 
has a theoretical maximum throughput of about 5 IPC (the frequency of load 
and store instructions sums to 20.2%). 

For the simulation results presented below the following was used: 

• separate 8 kB 4-way set-associative I-cache and D-cache with 32-byte cache 
lines, 

• a cache fill burst rate of 4-2-2-2, 
• a fully associative 32-entry BTAC, 
• 32 general-purpose registers per thread, 
• 64 rename registers, 
• a 12-entry completion queue, 
• 4 simple integer units, single complex integer, load/store, branch, and 

thread control units, each FU with a 4-entry reservation station. 

The number of simultaneously fetched instructions and the sizes of fetch and 
issue buffers were adjusted to the issue bandwidth. The issue bandwidth 
and the number of hosted threads were varied in each case from 1 up to 8, 
according to the total number of FUs. 
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The simulation results in Fig . 6.20 show that the single-threaded 8-issue 
superscalar processor throughput (measured in average IPC) only reached a 
performance of 1.14 executed IPC. The 4-issue approach was slightly better 
with 1.28 IPC, because the need to fetch five or more instructions that were 
not necessarily aligned on a cache line boundary produces some penalty. 
Increasing the number of threads from which instructions were simultaneously 
issued to the eight issue slots also increased performance . The throughput 
reached a plateau at about 3.2 IPC, where neither increasing the number of 
threads nor the issue bandwidth significantly raised the number of executed 
instructions. When issue bandwidth was kept small (1 to 4 IPC), and four 
to eight threads were considered , a full exploitation of the issue bandwidth 
was expected. As seen in Fig. 6.20 , however , the issue bandwidth was only 
utilized by about 75 %. Even a highly multithreaded processor seems unable 
to fully exploit the issue bandwidth. Further analysis revealed the single FEU 
and DU as bottlenecks, leading to starvation of the IU . 

For further simulations two independent FEUs (identical to the RR.2 .8 
fetch policy of Tullsen et al. [304]) and two DUs were applied. The simula­
tions results are shown in Fig. 6.21. The gradients of the graphs represent­
ing the multithreaded approaches are much steeper, indicating an increased 
throughput . The processor throughput in an 8-threaded 8-issue processor is 
about four times higher than in the single threaded 8-issue case. However , the 
range of linear gain , where the number of executed instructions equals the 
issue bandwidth , ends at an issue bandwidth of about 4 IPC. The through­
put reaches a plateau at about 4.2 IPC, where neither increasing the number 
of threads nor the issue bandwidth significantly raises the number of exe­
cuted instructions. Moreover, the diagram on the right of Fig. 6.21 shows a 
marginal gain in instruction throughput, when we advance from a 4-issue to 
an 8-issue bandwidth. This marginal gain is nearly independent of the number 
of threads in the multithreaded processor. Using the considered instruction 
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mix with 20.2 % load and store instructions potentially allows a processor 
throughput of 5 instead of the measured 4.2 IPC with a single load/ store 
unit. In order to locate and remove further bottlenecks, the reasons why the 
expected 5 IPC were not reached will be surveyed. 
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Further simulations (see Fig. 6.22) also showed that a performance in­
crease was not found when the number of slots in the completion queues 
was increased over the 16 slots assumed in the simulations above. Instruction 
execution was limited by true data dependences and by control dependences 
that cannot be removed. Also, 4 write-back ports and 16 rename registers 
seem appropriate . 

Further simulations varied the number of integer FUs from one to four. 
If only a single integer unit is used, this unit proves a bottleneck. Increasing 
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the number of integer units up to four, the integer unit is joined as a bottle­
neck by the thread unit, the load/store unit, and the completion unit. The 
thread unit performs one thread control instruction per cycle. Duplicating 
the thread unit or increasing the performance of the thread unit is difficult 
to organize. The load/store unit and the memory subsystem remained as the 
main bottlenecks that may possibly be removed by a different configuration. 
The load/store unit was limited to the execution of a single IPC, assum­
ing an ideal memory subsystem. Duplication of the load/store unit definitely 
increases performance. However, two or more load/store units accessing a 
single D-cache is difficult to implement because of consistency and thrashing 
problems. 

To find out whether a different memory configuration might increase the 
throughput, different cache sizes, cache line sizes (8-128 bytes), cache schemes 
(direct-mapped, set-associative), workloads, and numbers of active threads 
were simulated. The simulations showed that all latencies caused by cache 
refills (4-2-2-2) are covered by the multithreaded execution model, and that 
the Karlsruhe Multithreaded Superscalar Processor was able to completely 
hide these latencies. It also reached the maximum throughput that was pos­
sible with a single load/store unit. 

It is obvious that different processor configurations can only be compared 
if a measurement for their cost (e.g, in chip space) is used. Otherwise, un­
realistic processors are compared with each other, simply stating that more 
units result in greater performance. 

Table 6.5. Hardware cost formula 

Unit type Estimated cost 
Integer unit 2 
Load/Store unit 3 
Fetch and decode unit 3 
Branch unit 3 
Caches 6 
Registers 2 X Number of threads 
Issue unit 2 X Issue bandwidth 
Retire unit 1 X Number of threads X Issue bandwidth 

To get a rough measurement of the cost for a processor configuration, a 
formula based on the Power PC 604 floor plan was proposed. The formula 
expresses hardware cost based on chip space usage per unit. Estimated cost 
per unit are given in Table 6.5. 

The formula is only a rule of thumb. The formula for the IV is based on 
the required interconnections between the IV, the register sets, and the FVs. 
As each thread's register set and issue queue has to be connected with all 
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FUs, the required chip space is proportional to the product of the number of 
hosted threads and the issue bandwidth of the processor. 
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Fig. 6.23. Average instruction throughput in relation to chip cost 

Figure 6.23 displays the IPe in relation to the hardware cost of a specific 
processor configuration. The solution with four threads and issue bandwidth 
four shows the best performance/ cost relation. However, this observation is 
application- and design-specific. The advantage of multithreading is highly 
dependent on the ratio of load/ store instructions to other instructions in the 
workload. Also the chip cost change with different architectural decisions. 

Using an instruction mix with 20 % load and store instructions, the per­
formance results show for an 8-issue processor with four to eight threads that 
two instruction FEUs, two DUs, four integer units, 16 rename registers, four 
register ports, and completion queues with 12 slots are sufficient. The single 
load/ store unit proves the principal bottleneck because it cannot be easily du­
plicated . The multithreaded superscalar processor (8-threaded 8-issue) is able 
to hide completely latencies caused by 4-2-2-2 burst cache refills. It reaches 
the maximum throughput of 4.2 IPe that is possible with a single load/ store 
unit. 

Subsequent research explored microarchitecture models for a simultaneous 
multithreaded processor with multimedia enhancements. Simulations with a 
multithreaded MPEG-2 video decompression algorithm as workload showed 
that an 8-threaded 8-issue processor may yield up to a threefold perfor­
mance Increase over the single-threaded 8-issue model (see Oehring et al. 
[218], 1999). 

6.4.3 Other Simultaneous Multithreading Processors 

Media Research Laboratory Processor (Hirata et al. [138], 1992) : The 
multithreaded processor of the Media Research Laboratory of Matsushita 
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Electric Ind. (Japan) was the first approach to simultaneous multithreading. 
Instructions of different threads are issued simultaneously to multiple 
functional units. Simulation results on a parallel ray-tracing application 
showed that using 8 threads a speedup of 3.22 in the case of one load/store 
unit, and of 5.79 in the case of two load/store units, can be achieved over a 
conventional RISC processor. However, caches or TLBs are not simulated, 
nor is a branch prediction mechanism. 

Irvine Multithreaded Superscalar (Gulati and Bagherzadeh [111] and 
Loikkanen and Bagherzadeh [187], 1996): This multithreaded superscalar 
processor approach, developed at the University of California at Irvine, 
combines out-of-order execution within an instruction stream with the 
simultaneous execution of instructions of different instruction streams. 
A particular superscalar processor called the Superscalar Digital Signal 
Processor (SDSP) is enhanced to run multiple threads. The enhancements 
are directed by the aim of minimal modification to the superscalar base 
processor. Therefore, most resources on the chip are shared by the threads, 
as for instance the register file, reorder buffer, instruction window, store 
buffer, and renaming hardware. Based on simulations a performance gain 
of 20-55 % due to multithreading was achieved across a range of benchmarks. 

SMV Processor (Espasa and Valero [79], 1997): The Simultaneous Multi­
threaded Vector (SMV) architecture, designed at the Polytechnic University 
of Catalunya (Barcelona, Spain) combines simultaneous multithreaded exe­
cution and out-of-order execution with an integrated vector unit and vector 
instructions. Figure 6.24 depicts SMV architecture. The fetch engine selects 
one of eight threads and fetches four instructions on its behalf. The decoder 
renames the instructions, using a per-thread rename table, and then sends 
all instructions to several common execution queues. Inside the queues, the 
instructions of different threads are indistinguishable, and no thread informa­
tion is kept except in the reorder buffer and memory queue. Register names 
preserve all dependences. Independent threads use independent rename ta­
bles, which prevents false dependences and conflicts from occurring. The vec­
tor unit has 128 vector registers,5 each holding 128 64-bit registers, and has 
four general-purpose independent FUs. 

6.5 Simultaneous Multithreading versus Chip 
Multiprocessor 

In this section, we compare the two main architectural principles capable 
of exploiting multiple threads of instructions, i.e., thread-level (or coarse-

5 The number of registers is the product of the number of threads and the number 
of physical registers required to sustain good performance on each thread. 
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Fig. 6.24. Simultaneous Multithreaded Vector (SMV) architecture 

grain) parallelism, namely the chip multiprocessor CMP and the simultaneous 
multithreading SMT approaches. 

Simulations of Sigmund and Ungerer [259, 260] compare the simultane­
ous multithreading approach of Sect. 6.4.2 with a CMP approach. Sigmund 
and Ungerer simulated various configurations of the SMT model in combi­
nation with the multiprocessor chip approach and compared them to Tullsen 
et al. 's simulations of 1995 [303] (see Table 6.6). The simulations produced 
slightly different results to Tullsen et al. 's simulations, especially viewing the 
8-threaded 8-issue superscalar approach 1x(8,8) in Table 6.6 (px(t,i) means 
p processors per chip, each processor equipped with t threads and i issue 
slots) . 

The reason for the difference in results follows from the high number of 
FUs in Tullsen et al.'s approach; for example, up to eight load/store units 
are used in Tullsen et al.'s simulation ignoring hardware cost and design 
problems, whereas the performance of Sigmund and Ungerer's SMT model 
is restricted by the assumption of a single load/store unit. In Tullsen et al.'s 
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Table 6.6. IPC results of Tullsen et al. and of Sigmund and Ungerer simulations 

Number X (Threads, Issue) Tullsen et at. Sigmund and Ungerer 

1 X (8,8) 6.64 4.19 
8X(1,1) 5.13 6.07 
2 X (4,4) 6.80 6.80 
1 X (4,8) 4.15 3.37 
4 X (1,2) 3.44 4.32 
2X(1,4) 1.94 2.56 

simulations the SMT approach performs better than the CMP approach, 
whereas in Sigmund and Ungerer's simulations the CMP reaches a higher 
throughput than the SMT approach, when using the same issue bandwidth 
and number of threads (comparing the SMT of 1x(8,8) with the CMP of 
8x(1,1)). However, if chip costs are taken into consideration, a 4-threaded 
4-issue superscalar processor shows the best performance/cost relation (see 
Sect. 6.4.2). 

Further simulations of Eggers et al. [76] in 1997 compared SMT, wide­
issue superscalar, cycle-by-cycle interleaving multithreaded superscalar, and 
two-CPU and four-CPU CMP. Comparison of the simulated processor archi­
tecture configurations is given in Table 6.7. The simulation results which are 

Table 6.7. Processor architectures simulated by Eggers et al. 

Features superscalar 
cycle·by·cycle 

CMP2 CMP4 SMT 
superscalar 

number of CPUs 1 1 2 4 1 

CPU issue bandwidth 8 8 4 2 8 

number of threads 1 8 1 per CPU 1 per CPU 8 

number of 
architectural 32 32 per thread 32 per CPU 32 per CPU 32 per thread 
registers 

given in Table 6.8 were obtained on a workload which consisted of a group 
of coarse-grained (parallel threads) and medium-grained (parallel loop iter­
ations) parallel programs. The average instruction throughput of an 8-issue 
superscalar was an IPC of 3.3, which is already high compared to other mea­
sured superscalar IPes (see Sect. 4.11), but rather low compared to the eight 
instructions possibly issued per cycle. The superscalar's inability to exploit 
more ILP or any thread-level parallelism contributed to its lower performance. 
By exploiting thread-level parallelism, a cycle-by-cycle interleaving multi­
threaded superscalar technique provided an average instruction throughput 
of 4.2 IPC. This IPC occurred with only four threads while performance fell 
with additional threads. One of the reasons is that a cycle-by-cycle interleav-
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Table 6.8. Instructions per cycle (IPC) when executing a parallel workload 

Threads superscalar CMP2 CMP4 cycle-by-cycle SMT superscalar 
1 3.3 2.4 1.5 3.3 3.3 
2 4.3 2.6 4.1 4.7 
4 4.2 4.2 5.6 
8 3.5 6.1 

ing multithreaded superscalar can issue instructions from only one thread 
each cycle and therefore cannot hide conflicts from interthread competition 
for shared resources. SMT obtained better speedups than CMP2 and CMP4, 
the latter being chip multiprocessors with respectively, two four-issue, and 
four two-issue CPUs. Speedups on the CMPs were hindered by the fixed par­
titioning of their hardware resources across the CPUs. Bridging of latencies 
is only possible in the multithreaded processor approaches, and not in CMP. 
CPUs in CMPs were idle when thread-level parallelism was insufficient. Ex­
ploiting large amounts of ILP in the unrolled loops of individual threads was 
not possible due to the CPU's smaller issue bandwidth in CMP. On the other 
hand, an SMT processor dynamically partitions its resources among threads, 
and therefore can respond well to variations in both types of parallelism, 
exploiting them interchangeably. 

In contrast to Eggers et at. who compared architectures having constant 
total issue bandwidth (i.e., number of CPUs x CPU issue bandwidth), Ham­
mond et al. [120] established a standard chip area and integration density, 
and determined the parameters for three architectures: superscalar, CMP, 
and SMT (Table 6.9). They argue that design complexity for a 16-issue CMP 
is similar to that of a 12-issue superscalar or a 12-issue SMT processor. In this 

Table 6.9. Processor architectures simulated by Hammond et al. 

Features superscalar CMP SMT 

number of CPUs 1 8 1 

CPU issue bandwidth 12 2 per CPU 12 

number of threads 1 1 per CPU 8 

number of 
architectural 32 32 per CPU 32 per thread 
registers 

case, CMP with eight 2-issue CPUs outperforms a 12-issue superscalar and 
a 12-issue, 8-threaded SMT processor on four SPEC95 benchmark programs. 
Figure 6.25 shows the performance ofthe superscalar, SMT, and CMP on the 
four benchmarks relative to a single 2-issue superscalar. The CMP achieved 
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higher performance than the SMT due to a total of 16 issue slots instead of 
12 issue slots for the SMT. 

6.6 Conclusions 

The performance race between SMT and CMP has yet to be decided. Cer­
tainly, CMP will be easier to implement, but only SMT has the ability to 
hide latencies . A functional partitioning as required by the on-chip wire-delay 
of future microprocessors is not easily reached within a simultaneous multi­
threaded processor due to the centralized instruction issue. A separation of 
the thread queues as in the Karlsruhe Multithreaded Superscalar Processor is 
a possible solution, although it does not remove the central instruction issue. 

A combination of simultaneous multithreading with the CMP is proposed 
by Sigmund and Ungerer [259, 260], and by Krishnan and Torellas [168] . 
Perhaps the simulations of Sigmund and Ungerer show the path towards a 
CMP consisting of moderately equipped (e.g., 4-threaded 4-issue superscalar) 
SMTs. 

Usually, a CMP will feature separate L1 I-cache and D-cache per on-chip 
CPU and an optional unified L2 cache. If the CPUs always execute threads 
of the same process, the L2 cache organization will be simplified, because 
different processes do not have to be distinguished. 

Moreover, the multiprocessor which is formed by the CMPs will be a 
symmetric multiprocessor (SMP) or even a distributed shared-memory mul­
tiprocessor (DSM). 

Similarly, if all (hardware-supported) threads of a SMT processor always 
execute threads of the same process, preferably in SPMD fashion, a unified 
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(primary) I-cache may prove useful, since the code can be shared between the 
threads. Primary D-cache may be unified or separated between the threads 
depending on the access mechanism used. 

If eMP or SMT are the design choice of the future, the impact on mul­
tiprocessor development will favor shared-memory multiprocessors (either 
SMPs or DSMs) over message-passing machines. Since multithreading and 
message passing do not mix well even in state-of-the-art multiprocessor pro­
grams, there is an indication that message-passing programs using PVM or 
MPI will soon be outdated and produce a legacy problem. 



7. Processor-in-Memory, Reconfigurable, and 
Asynchronous Processors 

Looking further into the future, we envision a point at which off-chip 
communication is so expensive that all the system memory resides on the 
processor chip (or module). If a system designer wishes to provide more 
memory than is available on-chip, another of these homogeneous proces­
sor /memory modules is added . .. 

Doug Burger, James R. Goodman, and Alain /{iigi 
Memory Bandwidth Limitations of Future Microprocessors 

(The 23rd Annual Int'l Symposium on Computer Architecture, May 1996) 

Computing devices 10 years from now will include a strong mix of 
software-programmable hardware and hardware-configurable logic . ... 

John Villasenor and William H. Mangione-Smith 
Configurable Computing 

(Scientific American, June 1997) 

7.1 Processor-in-Memory 

7.1.1 The Processor-in-Memory Principle 

Processor-in-memory (PIM) or intelligent RAM (IRAM) chips integrate one 
or more processors with large, high-bandwidth, on-chip DRAM banks, which 
provide the processor(s) with sufficient bandwidth at a reasonable cost. 

Technological trends have produced a large and growing gap between pro­
cessor speed and DRAM access latency. Today, with processor performance 
increasing at a rate of about 60 % per year and memory latency improving by 
just 7 % per year, it takes dozens of cycles for data to travel between the CPU 
and main memory (Kozyrakis et al. [167]). The CPU-centric design philoso­
phy has led to very complex superscalar processors with deep pipelines. Much 
of this complexity is devoted to hiding memory access latency (Saulsbury et 
ai. [256]). 

Extrapolating current trends suggests that soon a processor may be able 
to issue hundreds or even thousands of instructions while loading a single 
value into on-chip memory. Much research has focused on reducing or toler­
ating these large memory access latencies. Researchers have proposed many 
techniques for reducing the frequency and impact of cache misses, such as 

J. Ši lc et al., Processor  Architecture
© Springer-Verlag Berlin Heidelberg 1999
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lockup-free caches, hardware and software prefetching, stream buffers, spec­
ulative loads and execution, and multithreading (Burger et al. [40]). The 
phenomenon that access times are increasingly limiting system performance 
is known as the memory wall (Wulf and McKee [326], Wilkes [324]). 

Experiences with Sun's SPARCStation 5 workstation and its compari­
son with contemporary high-end workstations provide evidence for the pos­
sible benefits of tighter memory-processor integration (Saulsbury et al. [256], 

1996). The SPARCStation 5 contains a single-scalar microSPARC processor 
(see Sect. 1.7.2) with 16 kB I-cache and 16 kB D-cache on-chip and no sec­
ondary cache. The memory controller is integrated onto the chip, so that 
DRAM devices are driven directly by logic on the processor chip. A sepa­
rate I/O-bus connects the processor chip with peripheral devices, which can 
access memory only through the processor chip. A comparable high-end ma­
chine of the same era is the SPARCStation 10/61, containing a superscalar 
SuperSPARC processor with separate 20 kB I-cache and 16 kB D-cache, and 
a shared secondary cache of 1 MB. Compared to the SPARCStation 10/61, 
the SPARCStation 5 has an inferior SPEC92-rating, yet it outperforms it on 
a logic synthesis workload that has a working set of over 50 MB. The reason 
for this discrepancy is the lower main memory latency of the SPARCStation 
5, which compensates for the slower processor. Codes that frequently miss 
the SPARCStation 10's large secondary cache have lower access times on the 
SPARCStation 5. 

During program execution on a contemporary superscalar processor, cy­
cles are lost due to pipeline hazards, wrong branch speculation, the lack of 
ILP, and in particular memory access latencies in the case of cache misses. 
Memory access latency is caused by memory access latency stall times, and 
memory bandwidth stall times. Memory access latency stall times can be 
roughly characterized by the cache access time plus the number of cycles the 
cache line travels from memory to the on-chip cache. Memory bandwidth 
stall times are caused by limited memory bandwidth between processor and 
DRAM memory, often due to insufficient pin bandwidth. 

In conventional microprocessors the effective off-chip bandwidth can be 
increased by providing broader buses and more processor pins, but also by the 
use of compression for data, addresses, and code. All these schemes increase 
the effective bandwidth to memory at the expense of some extra hardware 
on the processor chip. Thus, memory bandwidth stall times are decreased, 
but the memory access latency stall times are not. 

Most PIM approaches combine a processor with on-chip RAM and some­
times also with small on-chip caches. IRAM (Kozyrakis et al. [167], Patterson 
et al. [230], Fromm et al. [92]) is a PIM approach that implements dynamic 
RAM (DRAM) memory instead of SRAM-based cache memory on the pro­
cessor chip. The approach to omit caches totally is based on the fact that 
DRAM can accommodate 30-50 times more data than the same chip area 
devoted to caches. Moreover, cache memory is just a redundant copy of in-



7.1 Processor-in-Memory 301 

formation that would not be necessary if main memory could be accessed at 
processor speed. 

PIM systems have several potential advantages: 

• The main advantage is that on-chip memory can support high bandwidth 
and low latency by using a wide interface and eliminating the delay of pads 
and buses that arises with off-chip memory access. On-chip memory could 
reduce processor-memory latency by factors of 5-10 and increase memory 
bandwidth by factors of 50-200 [230]. 

• The processor-DRAM gap in access speed increases in future. PIM provides 
higher bandwidth and lower latency for memory accesses, thus simultane­
ously decreasing memory access latency stall times and memory bandwidth 
stall times. 

• In many cases the entire application will fit in the on-chip storage. Having 
the entire memory On the chip, coupled to the processor through a high 
bandwidth and low-latency interface, allows for processor designs that de­
mand fast memory systems [230]. 

• Due to memory integration, PIM needs less off-chip traffic than conven­
tional microprocessors. While the majority of pins in conventional micro­
processors are devoted to wide memory interfaces, a PIM chip can have 
a much less powerful memory interface requiring fewer pins. Serial inter­
faces may be directly attached to the PIM chip and provide enough I/O 
bandwidth without being limited by conventional memory buses. 

• Energy consumption is a problem for portable computers. PIM decreases 
energy consumption in the memory system due to the reduction of off-chip 
accesses [92]. 

• Finally, the processing unit with its wide interface to memory can operate 
as a parallel built-in self-test engine for the memory array, significantly 
reducing the DRAM testing time and the associated cost. A processor test 
requires a memory subsystem, and a memory is tested with processor-like 
accesses. All that may be required in a PIM system is to download a self­
test program. 

One challenge to the PIM approach is scaling a system beyond a single PIM. 
The amount of DRAM that can fit on a single PIM chip is bounded. It may be 
sufficient for portable computers, but not for the high-end workstations in the 
future. A potential solution is to back up a single PIM chip with commodity­
external DRAM, using the off-chip memory as secondary storage with pages 
swapped between on-chip and off-chip memory. Alternatively, multiple PIMs 
could be interconnected with a high-speed network to form a parallel com­
puter. Fortunately, historical trends indicate that the end-user demand for 
memory will scale at a lower rate than the available capacity per chip. Thus, 
over time a single PIM chip will be sufficient for increasingly larger systems, 
from portable and low-end pes to workstations and even servers (I<ozyrakis 
et aZ. [167]). 
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The DRAM technology today does not allow on-chip coupling of high 
performance processors with DRAM memory since the clock rate of DRAM 
memory is too low. Logic and DRAM manufacturing processes are fundamen­
tally different. DRAM processes typically support multiple layers of polysili­
con, few metal layers, and 3D structures for maximizing capacitor area. Logic 
processes tend to have more metal levels and are optimized for transistor 
switching speed. DRAM cells in a logic process would not be particularly 
dense: estimates vary from 4 to 20 times less dense than in an optimized 
DRAM process. Gates in a DRAM process are much slower than their logic 
process counterparts. The benefits of processor memory integration may drive 
the development of hybrid processes that improve system performance even 
though they do not match their optimized counterparts for density or speed 
(Burger et al. [41], 1997). The upcoming 0.25 j.IJIl DRAM processes, with two 
or three metal layers, are already capable of supporting a simple 200 MHz 
CPU core (Saulsbury et al. [256]). 

The PIM approach can be combined with most processor organizations. 
The processor(s) itself may be a simple or moderately superscalar standard 
processor; it may also include a vector unit as in the vector IRAM type 
which is described below. It may also follow any of the execution modes 
as described in Sects. 5.2-5.5. To harness coarse-grained parallelism, several 
closely coupled processors could be integrated with memory banks to form 
a shared-memory chip multiprocessor. The difference to the CMP approach 
(see Sect. 6.2) lies in the closer coupling of the processors to the memory 
system, potentially rendering caches unnecessary. 

If PIM technology proves successful, even more dramatic processor and 
memory integrations may be devised, distributing portions of processors 
closer to the individual memory banks. A more radical technique than PIM 
is to build computational ability into the memory system. The processor 
would be able to issue primitives more powerful than simple loads or stores 
to the memory system. Such a smart memory system, exemplified here by 
the Active Page approach (see Sect. 7.1.4), performs computations locally and 
returns the results only. The challenge for such innovative systems is software 
migration. 

On the other hand, all attempts to add more capabilities to DRAMs, such 
as video-buffers (VDRAM), integrated caches (CDRAM), graphic support 
(3D-RAM), and smart, higher-performance interfaces (RamBus, SDRAM) 
are penalized by the extra cost for the non-memory areas [256]. 

If processing becomes cheap enough and/or communication becomes too 
expensive, it is likely that designers will put functional units wherever there 
is storage. These are called memory-centric architectures (Burger et al. [41]). 
Burger et al. [42] have developed a memory-centric architecture - the DataS­
calar model (see Sect. 5.6) - which targets scalar, hard-to-parallelize codes. 
Processors are coupled with regions of the main memory, and each processor 
runs the program redundantly, broadcasting operands from its local mem-
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ory to the other processors. If a processor needs an operand from a remote 
memory bank, it does not need to request that operand. It simply waits for 
the operand to arrive, since it will be sent by the processor at the remote 
memory. 

Looking further into future, Burger et al. [40,41] envision a point at which 
off-chip communication is so expensive that all of the system memory resides 
on the processor chip. If a system designer wishes to provide more memory 
than is available on-chip, another of these homogeneous, processor/memory 
modules is added. Off-chip accesses thus simply become communication with 
another processor, and accesses to remote data have more in common with a 
page fault than with a cache miss. Whether this point is reached by migrating 
computational ability into the DRAM systems, or by migrating DRAM onto 
the processor (or both), the end result is the same. 

7.1.2 Processor-in-Memoryapproaches 

Processor and memory integration can start with a scalar or superscalar 
microprocessor chip that is enhanced by RAM memory rather than cache 
memory. Two proposals for coupling a RISC processor with DRAM memory 
were made by Sun Microsystems and Mitsubishi Electric Corporation. 

Sun PIM Processor 

Saulsbury et al. [256] of Sun Microsystems propose a design that reserves 
about 10 % of a DRAM die size for a processor and additional logic. Utilizing 
10 % of a current 256 Mbit DRAM chip is slightly more than the size of a 
MIPS R4300i processor shrunk to a 0.25 J.ilTl CMOS process. In addition, 
the number of pads and interface circuitry are reduced by using high-speed 
serial-link-based communication. 

A block diagram of the proposed integrated processor and memory device 
is shown in Fig. 7.1. The processor core uses a standard 5-stage pipeline sim­
ilar to the R4300i or the microSPARC-II processors. The chip is dominated 
by the DRAM section, which is organized into multiple banks to improve 
speed. Sixteen independent bank controllers are assumed in a 256 Mbit de­
vice. Memory access time is assumed to be 6 cycles of the 200 MHz clock. 
Each bank is capable of transferring 4 kbits between the sense amplifier array 
of its DRAM cell and three 512-byte column buffers. The column buffers form 
the processor I-cache and D-cache. Two column buffers per bank are used for 
a two-way set-associative D-cache making a total of thirty-two 512-byte lines 
spread across the 16 banks. The remaining 16 column buffers make up a 
direct-mapped I-cache with 512-byte lines. The high transfer rate between 
DRAM memory and the column buffers combined with much shorter DRAM 
access latency can dramatically improve the cache performance. 

The performance of the 16 kB D-cache is enhanced with a fully associative 
victim cache of sixteen 32-byte lines with a LRU replacement policy. A victim 
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cache (Jouppi [151], 1990), implemented as a small, fully associative buffer, is 
used to hold cache lines most recently evicted from the D-cache. The victim 
cache receives a copy of the most recently accessed 32-byte block of a column 
buffer whenever a column buffer is reloaded. 

Two independent 64-bit data paths connect the column buffers with the 
processor core, one for data and one for instruction access. These buses op­
erate synchronously with the 200 MHz processor clock, and each provides 
l.6 GB/s of memory access bandwidth. All off-chip communication is han­
dled via a scalable serial link interconnection system, which can operate at 
2.5 Gbits/s. Four links provide a peak I/O bandwidth of 1.6 GB/s, which 
matches the internal memory bandwidth. All I/O transfer and communica­
tion with other processing elements are controlled by two specialized protocol 
engines. These engines execute a downloadable microcode and can provide 
a message-passing or cache-coherent shared-memory functionality (Saulsbury 
et al. [256]). 

Mitsubishi PIM Processor M32R/D 

It is not unusual for micro controllers to implement a system-on-a-chip ap­
proach with a processor kernel, a small DRAM memory, and I/O controllers. 
The special approach of the M32R/D of Mitsubishi Electric Corporation 
(Nunomura et al. [212], 1997) is to put a relatively large DRAM memory 
instead of peripheral controllers on the processor chip. The M32R/D inte­
grates a simple RISC CPU core with 1 or 2 MB of DRAM memory on a 
single chip. The RISC CPU is connected via an internal 128-bit-wide bus 
with the memory. The chip additionally comprises a 4 kB cache, an instruc­
tion queue of two 128-bit entries, a 128/32 bit selector that adjusts the data 
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transfer between the 128-bit bus and the 32-bit CPU, and a peripheral bus 
interface. The chip design aims at embedded systems applications. The in­
ternal memory bus results in low power dissipation in contrast to an off-chip 
memory solution. 

7.1.3 The Vector IRAM approach 

The Vector IRAM approach was proposed by Kozyrakis et al. [167] in 1997 
as a basic architectural technique for future 109_ transistor microprocessors. 
In a Vector IRAM a scalar processor is combined with a vector unit and the 
memory system on a single die. Large, high-bandwidth, on-chip DRAM banks 
provide the vector unit with sufficient bandwidth. The vector unit contains 
vector registers and multiple parallel pipelines operating concurrently. 

I I I I I I I I I 
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Fig. 7.2. The Vector IRAM processor 

Figure 7.2 shows the Berkeley Vector IRAM design which combines a 
fast in-order processor for scalar operations with a vector unit to create a 
general-purpose processor that is able to deliver high performance. A poten­
tial configuration for a 0.13 11m, 400 mm2 Vector IRAM chip may include: 

• a vector unit with two load, one store and two arithmetic units, 
• a dual-issue processor with L1 I-cache and D-cache, 
• 96 MB memory organized in 32 sections each comprising sixteen 1.5 Mbit 

banks, and 
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• a crossbar switch connecting memory banks with the vector unit and the 
scalar processor. 

Assuming a pipelined synchronous-DRAM interface with 20 ns latency and 
4 ns cycle time provides a 192 GB/s bandwidth to the vector unit, a Vector 
IRAM processor may reach 16 GFLOPS peak performance with a 1 GHz clock 
rate. 

The vector unit itself may contain multiple parallel pipelines operating 
concurrently. Increasing the number of pipelines provides a straightforward 
way to scale performance, as the capacity of integrated circuits increases, 
without requiring changes to the instruction issue logic or recompilation. 
Because of the simplicity of their circuits, vector processors can operate at 
higher clock speeds than other architectural alternatives. The floor plan in 
Fig. 7.2 indicates another advantage of Vector IRAM: the design is highly 
regular with a few unique pieces used repeatedly across the die. Thus the 
development cost of Vector IRAM could be much lower than it would be for 
conventional designs with 109 transistors. 

Vector IRAM processors are not restricted to scientific applications, but 
can also be modified for multimedia, database accesses, data mining, and 
many other applications. Emerging applications like multimedia (video, im­
age, and audio processing) are inherently vectorizable: a vector instruction set 
can be used to express concurrent operations on arrays of data, like pixels or 
audio samples. Many database operations, like sort, search, and hash-join, can 
be vectorized, and memory-intensive database applications like decision sup­
port and data mining could benefit from IRAM systems with a vector proces­
sor. Even integer applications can often achieve significant speedup through 
vectorization of their inner loops. For example, the SPECint95 benchmark 
m88ksim and data decompression achieve speedups respectively of 42 % and 
36 % through vectorization. In pretty good privacy (PGP) encryption, a vec­
tor microprocessor has been shown to outperform significantly an aggressive 
superscalar processor while occupying less than one-tenth of the die area 
(Kozyrakis et aZ. [167]). 

7.1.4 The Active Page model 

Recently, Oskin et aZ. ([220], 1998) proposed the Active Page model, a smart 
memory approach that does not integrate a processor with the RAM chip. 
Instead, it shifts data-intensive computing to the memory system while the 
processor stays off-chip. An active page consists of a data page and a set of 
associative functions that can operate on the data. The Active Page model 
is implemented on Reconfigurable Architecture RAM (RADram), a memory 
system based upon the integration of DRAM and reconfigurable logic (see 
the next section). 

To use active pages, computation must be partitioned between proces­
sor and memory. Active page functions can be used, for example, to gather 
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operands for a sparse-matrix operation and then pass those operands onto 
the processor for execution. To perform such a gather function, the matrix 
data and the gathering function must first be loaded into the RADram-based 
memory system. The processor then starts the gather functions in the mem­
ory system. As the operands are gathered within the Active Page memory 
system, the processor reads them from user-defined output areas in each ac­
tive page, performs the ALU operations, and writes the results back to the 
array data structure in memory. 

Active pages are intended for simple, application-specific operations, leav­
ing the more complex computations to the microprocessor. Examples of oper­
ations that are suitable for active page functions are the multimedia instruc­
tion primitives. Implementing these within the Active Page memory system 
potentially leads to very wide instruction operands. While, for example, a 
MMX instruction is restricted to 64-bit registers, a RADram MMX instruc­
tion could produce up to 256 kB of data per instruction. 

The RADram implementation with its reconfigurable function registers 
naturally builds a bridge from processor and memory integration to recon­
figurable computing which is covered in the next section. 

7.2 Reconfigurable Computing 

7.2.1 Concepts of Reconfigurable Computing 

Instead of integrating processor and memory within a single chip, a proces­
sor can also be combined with reconfigurable units to perform application­
dependent tasks that occasionally change due to environment demands with 
high performance. 

Computer designers face a constant struggle to find the right balance be­
tween speed and generality. The reconfigurable computing approach exploits 
the fact that most of the processing time for computing-intensive tasks is 
spent in a relatively small portion of the code, and hardware acceleration can 
significantly improve performance over a general-purpose microprocessor for 
many applications. 

Application-specific integrated cir'cuits (ASICs) are one alternative to im­
plementing hardware accelerators. However, an ASIC contains fixed circuits 
specialized to a particular task. ASICs provide precisely the functionality 
needed for a specific task, but nothing else. 

Another alternative are field pmgrammable gate arrays (FPGA). FPGAs 
consist of arrays of configurable ("programmable") logic cells that implement 
the logical functions. In FPGAs both the logic functions performed within 
the logic cells and the connections between the cells can be altered by send­
ing signals to the FPGA. FPGAs are the most common devices used for 
reconfigurable computing today ( Villasenor' and Mangione-Smith [313]). 
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The usual FPGA technology only permits FPGAs to be configured once 
(using fusable links to yield a read-only FPGA) or to be reconfigured before 
program start, but not during run-time. Today, configurable FPGAs can be 
reconfigured application-dependent within milliseconds. Newer FPGA tech­
nology can be reconfigured much faster. These FPGAs ~ exemplified by the 
XC6200 FPGA family of Xilinx [327] ~ allow the dynamic reconfiguration 
of the FPGA or parts of the FPGA during run-time. The XC6264 and the 
XC6216 reconfigurable processing units (RPUs) of Xilinx have been opti­
mized for reconfigurable logic applications such as real-time adaptive filtering. 
While traditional FPGAs are usually applied to implement individual logic 
designs, RPUs are intended to support multiple designs in a single FPGA by 
dynamically changing the hardware logic. The XC6200 features fast partial 
reconfiguration, a built-in microprocessor interface, and an open bit stream 
format. 

Although to date the XC6264 FPGA of the Xilinx 6200 series offers the 
high integration of 64000 gates, it is just viewed by the reconfigurable re­
search community as a starting point to envision future reconfigurable FPGA 
chips with much higher integration density. A broader application of re­
configurable computing devices as today may be reached by the design of 
new FPGA chips that can be reconfigured extremely fast. Villasenor and 
Mangione-Smith [313] expect to see devices with configuration times as low 
as 100 IlS within two years. Ultimately, computing devices may be able to 
adapt their hardware almost continuously in response to changes in the in­
put data or processing environment. 

Computing devices can make use of reconfigurable elements in many dif­
ferent ways. One way to characterize the differences among reconfigurable 
computing devices is to consider the frequency with which a system may 
be reconfigured for executing different applications. Reconfiguration is either 
static (execution is interrupted), semi-static (also called time-shared) or dy­
namic (in parallel with execution): 

• Static configuration involves hardware changes at the slow rate of hours, 
days, or weeks, a capability of FPGAs typically used by hardware engineers 
to evaluate prototype chip implementations. 

• Time-sharing is a more interesting approach. If an application can be 
pipelined, it might be possible to implement each phase in sequence on the 
reconfigurable hardware. The switch between the phases is on command: 
a single FPGA performs a series of tasks in rapid succession, reconfiguring 
itself between each one. Such designs operate the chip in a time-sharing 
mode and swap between successive configurations rapidly. 

• The dynamic reconfiguration of FPGAs is the most powerful form of recon­
figurable computing. It involves the hardware reconfiguring itself on-the-fly 
as it executes a task, refining its own programming for improved perfor­
mance (Villasenor and Mangione-Smith [313]). 
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Reconfigurable computing systems (often also called configurable computing 
systems) combine software programmable general-purpose computing with 
reconfigurable hardware. Several different levels of integration of processor 
and reconfigurable hardware can be devised, starting from the coupling of a 
standard microprocessor with FPGA chips available today, then its coupling 
with projected future fast and large reconfigurable FPGA chips, to on-chip 
integration of fixed and reprogrammable circuits. A reconfigurable system 
is called remote if the system's host processor is not on the same chip as 
the programmable hardware, or it is called local if the host processor and 
programmable logic reside within the same chip (Singh et al. [264], 1998). 

Commodity (re)configurable computers combine a standard microproces­
sor with (dynamically reconfigurable) FPGAs. The microprocessor executes 
its program and delegates the computing-intensive tasks to specially config­
ured FPGAs. Using dynamically reconfigurable FPGAs allows the processor 
to execute software commands that alter the FPGA circuits as needed to 
perform a variety of tasks. 

Existing systems typically use the I/O bus to provide a coprocessor-like 
structure. Figure 7.3 illustrates the basic architectural components of such 
reconfigurable computers (Mangione-Smith et al. [190], 1997). 

The state-of-the-art FPGA operates at a much lower cycle rate than mi­
croprocessors and are difficult to interface closely with standard micropro­
cessors. 

Microprocessor 

Programmable 
hardware: Gates 

and/or interconnect 

Fig. 7.3. Coupling of a microprocessor with programmable hardware 

Programmable hardware could also be coupled much more tightly to the 
processor, yielding a truly reconfigurable processor. The reconfigurable hard­
ware could be integrated onto the processor chip as one or more hardware 
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cells, like, for example, the functional units of a processor. The reconfigurable 
hardware cells may be fed by the internal data paths of the processor, oper­
ate directly on the processor's registers and communicate directly with the 
processor's functional units. However, as in the PIM approach, two different 
styles of hardware logic must be mixed within a single chip leading to fabrica­
tion problems. Integrating FPGA technology with fast processor logic shows 
similar technological problems such as processor and DRAM integration. 

A last resort would be to build whole computers from reconfigurable hard­
ware. This is not feasible today, but may lead to innovative parallel operating 
principles in future. Today's FPGAs are slow circuits compared to the high 
clock rate of today's microprocessors. Also the gate capacity of an FPGA 
is very limited. Moreover, FPGAs are not general-purpose, but well capable 
of performing small sets of highly parallel and highly regular tasks demand­
ing relatively slow reconfiguration speed to switch between different tasks. 
FPGA-based computations achieve their speeds by exploiting fine-grained 
parallelism and fast static communication. An FPGA compiler accesses the 
low-level FPGA hardware structures, allowing the software to optimize map­
ping of the user application. However, compilation for FPGAs is slow because 
compilers must target their low-level hardware structures. 

The depth of programmability (single vs multiple) is defined as the number 
of configuration planes resident in a reconfigurable system. The number of 
configuration planes determines the number of different configurations which 
the reconfigurable hardware is able to adopt. Some systems may have only 
a single resident configuration plane. This means that the system is stati­
cally reconfigurable; its functionality is limited to a single context. On the 
other hand, a system may have multiple configuration planes. In this case, 
different tasks may be performed by choosing varying planes for execution. 
Multiple context systems (with multiple configuration planes) favor dynamic 
reconfiguration (Singh et al. [264], 1998). 

Reconfigurable computers can be roughly partitioned into two classes ac­
cording to the level of abstraction, which is expressed by the granularity 
of operations, i.e., bit-level vs word-level. Bit-level operations correspond to 
fine granularity, whereas word-level operations imply coarse granularity (see 
Singh et al. [264]). 

Fine-grained devices are also called netlist computers, according to 
Mangione-Smith et al. [190]. A typical net list computing device today is 
an FPGA containing thousands of FPGA cells that are composed of sin­
gle flip-flops and logic gates. FPGAs have a programmable interconnect that 
is manipulated as individual wires. Because of their fine granularity, net list 
computers are the most flexible reconfigurable computers; their elements can 
be used to implement state machines, data paths, and almost any digital 
circuit. This flexibility is bought with additional silicon, and it results in 
lower performance on certain classes of problems, compared to more coarse 
grained-devices (see below). 
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Examples of net list computers are the DECPeRLE-l (Bertin et ai. [26], 
1989), Splash (Gokhaie et ai. [103], 1991), and Wildfire (McHenry [198], 1995) 
which is commercially available. 

The netlist computer presents a number of serious challenges to applica­
tion development. The developers must be concerned with the size and usage 
of the FPGA devices, the size and usage of the memories, and finally the 
overall interconnection of all devices on the platform during all phases of 
the design process. The design process is therefore more difficult and time­
consuming. Furthermore, modifications can require a significant amount of 
CAD compilation time (Mangione-Smith et ai. [190]). 

To raise the level of abstraction, the programmable hardware can be lim­
ited to the interconnect and, instead of gates and flip-flops, higher-level com­
ponents such as arithmetic logic units (ALUs) or multipliers can be provided. 
In the second class of reconfigurable computers are those which are based on 
more coarse-grained function units such as complete ALUs and multipliers. 
Due to the more coarse-grained units, configuration times are shorter than 
with the fine-grained approach and less configuration data is needed. These 
units are also called chunky function unit architectures [190] and often limit 
the programmable hardware to the interconnect between the function units. 
Chunky function unit architectures address the problem of the poor hardware 
efficiency of fine-grained FPGAs by providing highly optimized function units 
with a programmable interconnect. Advanced FPGAs may contain memory, 
arithmetic processing units and other special-purpose blocks of circuitry. Here 
the building blocks for new highly parallel architectural principles are pro­
vided. The computation model of most coarse-grained reconfigurable systems 
may be described as either SIMD or MIMD. Some systems may follow the 
VLIW model. 

Such new architectural solutions are being pursued by a number of re­
search projects, including the MorphoSys System (see Sect. 7.2.2) at the Uni­
versity of California at Irvine, the Raw machine containing multiple, simple 
reconfigurable processors (see Sect. 7.2.3), the Xputer project which defines a 
non-von Neumann paradigm implemented on a reconfigurable Datapath Ar­
chitecture (also called KressArray) at the University of Kaiserslautern (see 
Sect. 7.2.4), RaPiD at the University of Washington (Ebeling et at. [72], 1996), 
and MATRIX at MIT (Mirsky and DeHon [205], 1996; DeHon et ai. [62], 
1997). 

Each of these architectures presents an abstraction that is much higher 
than logic gates and flip-flops, and more towards simple but highly intercon­
nected processing elements. Consequently, highly regular applications map 
well to such implementations and are likely to achieve high performance. 
Several regular applications can be mapped onto the same implementation, 
for example, by breaking wide-word operations into a composition of the nar­
rower, native hardware function units, or by simply wasting the upper bits 
of the fixed data path to handle narrow-word operations. However, highly ir-
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regular computations will strain gate capacity limits and cause performance 
problems. 

Most reconfigurable computing prototypes today are based on (fine­
grained) FPGAs. Limitations of such FPGAs that may lead to limitations of 
reconfigurable computing systems themselves are seen by Mangione-Smith et 
al. [190] as follows: 

• Insufficient gate capacity: Today's FPGAs provide the equivalent of 10 k 
to 500 k gates which is often large enough to experiment with the basic 
strategies for configuration, but with a limited scope of design. FPGAs have 
become a common component in a wide range of commercial products, but 
the vast majority of FPGAs are used in place of more efficient, but more 
costly, ASICs to reduce development cost and time. The capacity limits are 
due to the use of conservative semiconductor processes, particularly with 
limited metal layers. Recent FPGA devices have moved to leading-edge 
process technology, resulting in FPGAs with up to 500 k gates (exemplified 
by the Xilinx XC4000XV family). The problem of gate density is likely to 
decrease in the future as on-chip delays drive designers toward partitioned 
designs that can be implemented efficiently on multiple chips. 

• Low reconfiguration speed: Most existing FPGAs use relatively slow serial 
paths for device configuration, even when a parallel interface is presented 
through the I/O pins. The reconfiguration time is important for many mod­
els of computation. In particular, those using fast design swapping might 
eventually be limited by reconfiguration time. The industry is moving to­
ward FPGAs that reconfigure faster. 

• Lack of on-chip memory: Furthermore, most FPGAs currently provide very 
little on-chip memory for storage of intermediate results in computations; 
thus, many reconfigurable computing applications require large external 
memOrIes. 

• Lack of memory interfaces: Moreover, most FPGAs have no external mem­
ory interface that can be accessed from the active circuit, which forces sys­
tem designers to sacrifice some FPGA space to build an application-specific 
memory interface. A more efficient approach would be to implement stan­
dard memory interfaces on FPGAs in dedicated hardware. The transfer of 
data to and from the FPGA increases power consumption and may slow 
down the computations. 

Reconfigurable computing is an area of active research. Reconfigurable com­
puting systems have demonstrated the potential for achieving high perfor­
mance for a range of applications, including image filtering, convolution, 
morphology, feature extraction, and object tracking. FPGAs are well suited 
to algorithms composed of bit-level operations, such as pattern matching 
and integer arithmetic, but they are ill-suited to numeric operations, such as 
high-precision multiplication or floating-point calculations. The earliest com­
mercial successes are likely to involve signal processing, particularly image 
processmg. 
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FPGAs will never replace microprocessors for general-purpose computing 
tasks, but the concept of reconfigurable computing is likely to playa growing 
role in the development of high-performance computing systems. The com­
puting power of reconfigurable hardware will make them the devices of choice 
for applications involving algorithms in which rapid adaptation to the input 
is required. 

Current FPGAs still do not come close to exploiting the full possibilities of 
the reconfigurable computing technique. Future FPGAs will be much larger; 
as with many other integrated circuits, the number of gates on a single FPGA 
has doubled roughly every 18 months. Before the decade is out, Villasenor 
and Mangione-Smith [313] expect to see FPGAs that have a million logic 
elements. Such chips will have much broader application, including highly 
complex communications and signal-processing algorithms. 

In addition, the line between programmable processors and FPGAs may 
become less distinct. There are next-generation microprocessors under devel­
opment whose hardware supports limited amounts of FPGA-like reconfigu­
ration. One of these is the Complexity-adaptive Processor (CAP) approach 
(Albonesi [5], 1998) that implements configurability deep within the pipeline 
of an otherwise conventional processor (see end of Sect. 7.2.5). 

Future machines might download new hardware configurations as they 
are needed. Computing devices ten years from now may include a strong mix 
of software-programmable hardware and hardware-configurable logic. 

7.2.2 The MorphoSys system 

The MorphoSys project at the University of California at Irvine (Singh et at. 
[264], 1998) is focused on developing dynamically reconfigurable computing 
systems. Its objective is to design and build a processor with an accompanying 
reconfigurable circuit chip which tolerates much slower operation than the 
processor. The MorphoSys computing system is targeted at image processing 
applications. 

The MorphoSys reconfigurable computing system Ml (see Fig. 7.4) is com­
posed of a control processor with I-cache/D-cache, a reconfigurable array 
with an associated control memory, a data buffer (usually acting as a frame 
buffer), and a DMA controller. The main thread of control is managed by 
the on-chip control processor. The programmable part is an 8 x 8 array of 
reconfigurable cells with multiple context words and operating in SPMD or 
SIMD fashion. MorphoSys is coarse-grain (chunky function unit approach) 
by its reconfigurable cells which resemble small processors with 16-bit data 
paths. 

The main component of MorphoSys is the reconfigumble cell (RC) array. 
It has 64 reconfigurable cells, arranged as an 8 x 8 array. Each cell has an 
ALU /multiplier and a 16-bit wide register file. The RC array functionality 
and interconnection network are configured through 32-bit context words. 
The context words are stored in a context memory in two blocks, one for 
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I-/D-cache 

Main 
Memory 
(external) 

Fig. 7.4. The MorphoSys system M1 

rows and the other for columns. The context memory can store up to 16 
contexts corresponding to an individual row and 16 contexts corresponding 
to an individual column. Thus, each block has eight sets of 16 contexts. The 
MorphoSys design provides the option of broadcasting contexts across rows 
or columns. 

The control processor of MorphoSys is a 32-bit RISC processor, called 
Tiny RISC. Tiny RISC controls the RC array operations, data transfer to 
and from the RC array, as well as to and from the data buffer. The con­
trol processor and the RC array are on the same chip. This prevents I/O 
limitations from affecting performance. In addition, the memory interface is 
through an on-chip DMA controller, for faster data transfers between exter­
nal memory and the data buffer. It also helps in decreasing the configuration 
loading time. 

The MorphoSys system operates as follows. The Tiny RISC processor 
loads the configuration data from the external main memory into the on-chip 
context memory via the DMA controller. Next, it enables the data buffer 
to be loaded with image data from the main memory. This data transfer is 
also performed by the DMA unit. At this point, both configuration and data 
are ready. Now, the Tiny RISC processor issues instructions to the RC array 
for execution. These instructions specify the particular context (among the 
multiple contexts in the context memory) to be executed. The Tiny RISC 
can also enable selective functioning of individual rows or columns, and can 
access data from selected RC outputs. 

The RC array follows the SPMD model of computation. The mode of 
operation can be SIMD where all RC cells perform the same operation on 
different data, but it is not necessarily SIMD, because different control words 
specifying different operations can be assigned to the individual row (or col­
umn) control memory and be activated by the control processor. Each row 
or column is configured by one context, which serves as an instruction word. 
However, each of these cells operates on different data. This model serves the 
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target applications (i.e., applications with a large number of data-parallel 
operations) for MorphoSys very well. 

Each cell of the RC array function is configured by the context word. The 
context word specifies one of several instruction opcodes for the RC array, 
and provides control bits for input multiplexers. It also specifies constant 
values that are needed for computations. 

Dynamic reconfiguration capability is achieved by changing some portion 
of the context memory while the RC array is executing contexts from a differ­
ent portion. For example, while the RC array is operating on the 16 contexts 
in row broadcast mode, the other 16 contexts for column broadcast mode 
can be reloaded. Context loads and reloads are done through Tiny RISC 
instructions. 

7.2.3 Raw Machine 

The Raw architecture approach, which was proposed by Waingold et al. [316] 
in 1997 (see also Lee et al. [178], 1998) for the envisioned 109-transistor era, 
defines a coarse-grained or chunky function unit architecture. A Raw machine 
consists of hundreds of very simple processors, called tiles , each with some 
reconfigurable logic on a single chip (see Fig. 7.5). The principal idea is to 
eliminate the traditional instruction set interface and instead expose the de­
tails of a simple replicated architecture directly to the compiler. This allows 
the compiler to customize the hardware to each application. Execution and 
communication is controlled almost entirely in software. Waingold et al. call 
systems based on this approach Raw architectures, because they implement 
only a minimal set of mechanisms in hardware. 

Fig. 7.5. The RAW processor 

Each tile in a Raw machine contains instruction memory (1M EM) , 
data memories (DMEM), an arithmetic logic unit (ALU) , registers, 
(re)configurable logic (CL), and a programmable switch with its associated 
instruction memory (SMEM). The tile works internally as a simple, RISC­
like pipeline. The tiles are connected with programmable, tightly integrated 
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interconnects over a pipelined, point-to-point network. The programmable 
switches support both dynamic and static routing. The synchronous network 
interface of a Raw machine allows for inter-tile communication with short 
latencies similar to those of register accesses. Static scheduling guarantees 
that operands are available when needed, eliminating the need for explicit 
synchronization. 

Static RAM (SRAM) portions are distributed across the tiles to eliminate 
the memory bandwidth bottleneck and to provide significantly shorter latency 
to each memory module. The focus is on keeping each tile small to maximize 
the number of tiles that can fit on a chip. 

A potential 109-transistor configuration could consist of 128 tiles. Each 
tile uses 5 million transistors for memory: 16 kB IMEM, 16 kB SMEM, and 
32 kB first-level DMEM. Each tile uses 2 million transistors for CPU (MIPS 
R2000 equivalent) and reconfigurable logic. Switched interconnects are ap­
plied between tiles instead of buses. The switches are integrated directly into 
the processor pipelines to support single-cycle message injection and receive 
operations. The processor communicates with the switch using distinct op­
codes to distinguish between accesses to static and dynamic network ports. No 
signal in a Raw machine travels more than a single tile width within a clock 
cycle. Because the interconnect allows inter-tile communication to occur at 
nearly the same speed as a register read, compilers can schedule single-word 
data transfers and exploit ILP, in addition to coarser forms of parallelism. 
The switch multiplexes two logically distinct networks, one static and one 
dynamic, over the same set of physical wires. The dynamic wormhole router 
makes routing decisions based on each message's header, which includes ad­
ditionallines for flow control. 

Each tile includes two sets of control logic and instruction memories. The 
first set controls the processors, the second is dedicated to sequencing rout­
ing instructions for the static switch. Separate controls for the processor and 
the switch let the processor take arbitrary, data-dependent branches without 
disturbing the routing of independent messages passing through the switch. 
Loading a different program into the switch instruction memory changes the 
switch schedule. Programming network switches with compile-time schedules 
lets the compiler statically schedule the computations in each tile, thus pro­
viding the reconfiguration capability of the Raw machine. A drawback of the 
Raw approach is that it must revert to a software-simulated broadcast when 
the compiler cannot statically establish a schedule. 

Each tile supports bit-level, byte-level, and word-level operations and pro­
grammers can use the reconfigurable logic in each tile to construct operations 
uniquely suited to a particular application. The byte-granular reconfigurable 
logic permits the ALUs to be used for either a few wide-word operations or 
many narrow-word computations similar to multimedia operations. The small 
amount of reconfigurable logic in each Raw tile - for which software can se­
lect the data path width - permits a Raw processor to support multigranular 
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operation. Raw machines combine bit-level or byte-level parallelism with spe­
cial communication paths among the individual bits or bytes. This permits 
significantly more powerful multigranular operations than those supplied by 
MMX-like instruction sets. 

A compiler for a Raw machine starts with a sequential or multithreaded 
high-level language program and has full access to the underlying Raw hard­
ware mechanisms. The Raw compiler views the set of tiles in a Raw machine 
as a collection of functional units for exploiting ILP. The principal compiler 
steps are partitioning, placement, routing, global scheduling, and configura­
tion selection for the reconfigurable logic. 

Partitioning generates parallel code for an idealized Raw machine with 
the same number of tiles as the physical architecture. This phase, however, 
assumes an idealized, fully connected switch, an unbounded number of virtual 
registers per tile, and symbolic data references. Placement selects a one-to-one 
mapping from threads to physical tiles. The placement algorithm minimizes 
latency and bandwidth costs and is a variant of a VLSI cell-placement algo­
rithm. Routing and global scheduling allocate physical network resources to 
minimize the overall program execution time. This phase produces a program 
for each tile and switch. 

The configuration selection phase selects an application-specific configura­
tion for loading into the reconfigurable logic. For each custom operation, the 
configuration phase must both output a specification for the reconfigurable 
logic and rewrite the intermediate code. This replaces each compound opera­
tion by a call to the appropriate custom instruction. The compiler will invoke 
a logic synthesis tool to translate a custom operation specification into the 
appropriate bit sequence for the reconfigurable logic. Thus the compiler re­
sembles more a hardware synthesis tool than a high-level language compiler. 
The burden on the compiler is extreme. It is unclear how this complexity 
could be handled; programs will probably need very long compile-times, in 
the order of several hours or days. 

A RawLogic prototype and an associated compilation system was imple­
mented by Waingold et al. [316] in 1997, using commercial FPGA-based logic 
emulation technology. The Raw Logic prototype consists of a logic emulator 
coupled with a Sun SPARCStation 10/51. The emulator also has a SCSI inter­
face for downloading configurations and controlling clock speed and consists 
of five boards, each with 64 directly connected Xilinx 4013 FPGAs. 

The Raw Logic prototype does not support all Raw architecture features. 
It has simple replicated tiles and supports statically scheduled, tightly in­
tegrated communication, multigranularity, and configurability. But it does 
not support the instruction processing of a more general Raw machine. Each 
static control sequence is converted into an individual state machine and 
hardwired into the Raw Logic hardware. As a result, the prototype has the 
problems associated with FPGA-based systems ~ it lacks flexibility and has 
long compilation times. To compile applications for RawLogic, a framework 
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was developed that specifies the dependence structure of a program's loops 
(in C) and the computation it performs (in behavioral Verilog). The program 
specification is used to generate automatically a behavioral Verilog net list for 
the program. A commercial behavioral compiler automatically synthesizes a 
gate-level net list , which is then processed by a VirtualWires compiler. This 
compiler partitions, places, and schedules the logic to produce binary code 
for the FPGA hardware. The Raw Logic prototype achieved a 10-1000-fold 
speedup over an all-software Raw machine simulator. The FPGA compila­
tion step took several hours per board using ten workstations for the larger 
benchmarks. 

In the near future, the Raw architecture approach will be best suited for 
stream-based signal-processing computations. WaingoZd et aZ. [316] believe 
that, in 10 to 15 years, 109-transistor chip densities, faster switching speeds, 
and growing compiler sophistication will allow a Raw machine's performance­
to-cost ratio to surpass that of traditional architectures for future, general­
purpose workloads. Because Raw architectures are field-programmable, they 
may also become a cost-effective alternative to custom hardware, replacing 
ASICs. Thus they may offer a universal solution for both general-purpose 
and special-purpose applications. 

7.2.4 Xputers and KressArrays 

The Xputer principle developed by Hartenstein et aZ. [124, 125, 126, 127, 128] 
at the University of Kaiserslautern (Germany) was specially designed to re­
duce the address and data manipulation overhead in von Neumann comput­
ing. This overhead contributes a significant amount (up to 90 % in image 
processing, 58 % in digital signal processing) to the run time of many types 
of algorithms in digital signal processing, image processing, electronic design 
automation, and mathematical computation-intensive problems. 

The Xputer paradigm and its data-sequencing operation principle reverses 
the control-driven von Neumann paradigm. The Xputer replaces the program 
counter - the instruction sequencer of the von Neumann architecture - by a 
data sequencer, and the hardwired ALUs in a von Neumann computer by re­
configurable ALUs. The data sequencer operates in a data-driven way, but in 
a strictly procedural way that uses a deterministic selection of executables. In 
contrast, dataflow computers also operate in a data-driven way, but instruc­
tions with all input operands available are arbitrarily selected for execution, 
which leads to a nondeterministic operation (see Chap. 2). The Xputer princi­
ple supports the use of reconfigurable data paths, such as in a reconfigurable 
ALU [126], whereas the tight coupling between the instruction sequencer and 
the ALU in von Neumann machines hinders the use of reconfigurable data 
paths. 

The basic structure of an Xputer module consists of three major parts: 

• a reconfigurabZe arithmetic logic unit (rALU), 
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• a reconfigurable data sequencer comprising several genenc address gener-
ators (GAG), and 

• a 2D organized data memory. 

The Xputer principle was first published by Hartenstem et aZ. [124] in 1987 as 
a reconfigurable procedurally data-driven machine architecture called PIxel­
oriented System for image Analysis (PISA) and later renamed to Map­
oriented Machine (MoM). The hardware provided a reconfigurable problem­
oriented logic unit (POLU) to update the so-called scan cache, later called 
the Scan Window. The POLU was activated each time a new set of input data 
was available in the Scan Window. The POLU looked for matches with scan 
pattern in the Scan Window. A scan pattern is the counterpart to control­
flow in von Neumann languages. The address generating Move Control Unit 
of the PIS A machine only supported a single form of scan pattern, a video 
scan with an absolute addressing of pixels. 

Several Xputer architectures, MoM-1 through MoM-3. have been devel­
oped at the University of Kaiserslautern supporting 2D memory organization 
and multiple data sequencer parallel usage. The second generation prototype 
was called MoM-2. The scope of applications was enhanced beyond pattern 
matching-based applications to parallel arithmetic operations and an even far 
wider range of applications. The MoM-2 still provided only a single address 
generator to update the Scan Window, but the repertory of scan patterns 
now included variations of video-scans, shufHe-scans, linear scans, and rela­
tive jumps of the Scan Window. The Scan Window had a variable size and 
shape, bounded by a rectangle, in order to adapt to the requirements of the 
application's data distribution. 

The POLU supported pattern matching and hardware-controlled modifi­
cation of the input data. A custom-designed NMOS circuit supported SRAM­
based pattern matching which allowed the exchange of patterns during run­
time. Although the term FPGA was coined later on, this circuit can be con­
sidered as one of the early SRAM-based FPGAs. which turned out to be an 
important technology platform for Xputers [128]. In the MoM-2, the rALU 
had to be a combinational hardware without any registers. The timing of 
the rALU directly influenced the clock speed of the address generator. A 
task sequencer was introduced in the architecture to combine the address 
generator's scan patterns to arbitrary address sequences. The new machine 
paradigm was called Xputer from then on. 

On the software side, a graphical CAD tool supported an easy way of 
programming the reference and result patterns for the POLU, as well as 
arithmetic operations (although these were not included in the prototype 
hardware due to the lack of suitable FPGAs at that time). This CAD tool 
generated the structural code for the MoM-2 and the sequential code was 
compiled from MoPL-1 (MoM Programming Language 1), the first data pro­
cedural language for Xputers. 



320 7. Processor-in-Memory, Reconfigurable, and Asynchronous Processors 

The latest Xputer prototype built at Kaiserslautern University is the 
MoM-3 [128]. It introduces multiple Scan Windows, whose registers are inte­
grated into the rALU for optimized packaging. The shape of the Scan Win­
dows can be completely arbitrary and their size is increased to 64 memory 
words of 32 bits at most. Each Scan Window is controlled by a GAG, fea­
turing an even richer set of scan patterns than in the MoM-2 version. The 
GAGs are integrated in a coordinating microprogrammable data sequencer. 
A standard interface between the rALU and the data sequencer allows both 
to run at their full speed, so that virtually any FPGA board for custom com­
puting machines can be adapted as a rALU for the MoM-3. The rALU no 
longer has to be a combinational net, which allows the use of pipelining to 
speed up large operators. 

The MoM-3 system architecture allows both direct memory access to the 
host computer's main memory, and multiple parallel accessible local memory 
modules. Pipelining and 32-bit wide arithmetic are supported by their own 
custom FPGA circuit, called reconfigurable Datapath Architecture (rDPA) or 
also KressArray-I. The KressArray consists of a regular array of identical data 
path units. Each data path unit consists of an ALU, a microprogrammable 
control and four registers. There are two levels of interconnection: local near­
est neighbor connections (a mesh network of short wires) and a global bus 
system. The KressArray is dynamically reconfigurable. 

The main difference between the KressArray and conventional FPGAs 
is its more coarse-grained structure, implementing 32-bit wide data paths 
and all operators of the C programming language. The KressArray aims for 
better performance of word-level operations through data paths wider than 
typical FPGA data paths. Moreover, the KressArray features (partial) in­
system reconfiguration at run-time, fully transparent expansion across chip­
boundaries, fully parallel internal communications and a global bus for quick 
distribution of input (and output) data into the array. 

A compiler for Xputers generates code from an extension of C called X-
C. The compiler generates two kinds of machine code: sequential code to 
program the data sequencer (a kind of software code), and reconfiguration 
code to set up application-specific data paths (configured hardware) within 
the KressArray platform. Therefore, a partitioning problem has to be solved 
that corresponds to the partitioning problem in hardware/software co-design. 
From this point of view the data sequencer architecture comprises a particular 
hardware/software interface platform. 

Xputers can be used for acceleration. In particular, for algorithms with 
regular or semi-regular data dependences the Xputer paradigm is much more 
efficient than the von Neumann paradigm. 

There exists a strong relationship between Xputers and systolic arrays. 
The KressArray can be viewed as a generalization of systolic arrays. The 
layout concept of the KressArray is the same as for systolic arrays, but for 
synthesis simulated annealing is used instead of the linear projection methods 
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used for systolic arrays. A data path synthesis tool (DPSS) compiles appli­
cation data paths into structural code for the KressArray hardware. The 
KressArray is much more area-efficient than an FPGA due to the avoidance 
of long-range connections. 

Currently a new Xputer prototype called MoM-PDA (Map-oriented Ma­
chine with Parallel Data Access) is under development at the University of 
Kaiserslautern. The MoM-PDA features a new data sequencer and a new 
memory architecture with banked memory access. Also the KressArray has 
developed into KressArray-III. Besides the underlying concepts, the hardware 
implementation of a field-programmable ALU array (FPAA), the KrAA-III, 
is explained by Hartenstein et al. ([123], 1998). 

7.2.5 Other Projects 

Configurable computing was first proposed in the late 1960s, but it is still 
a young and active field of research. In this section we give some further 
examples of reconfigurable computing projects from the wide field of research 
activities. 

The DECPeRLE-1 and Splash computers were among the first research 
efforts in configurable computing. Both can be classified as netlist computers 
and are constructed as attached accelerators alongside workstations. 

DECPeRLE-l (Bertin et al. [26], 1989): DECPeRLE-1 is organized 
as a 2D mesh and consists of a 4 x 4 array of FPGAs. Each FPGA has 
connections to its nearest neighbors as well as to a column bus and a row bus. 

Splash (Gokhale et al. [103], 1991): The Splash conceptually consists of a 
linear array of processing elements. This topology makes Splash a good 
candidate for linear-systolic applications, which stress neighbor-to-neighbor 
communications. Because of limited routing resources, Splash has not proved 
as effective at implementing multichip applications that are not linear 
systolic. 

Neither DECPeRLE-1 nor Splash provide general-purpose routing 
networks between FPGAs. Instead they require the designer to partition 
the circuit manually during the design phase, ensuring that the available 
interconnect is used as efficiently as possible (Mangione-Smith et al. [190], 
1997). Both systems are fine-grained, with remote interface, single configura­
tion, and static reconfigurability. Other research prototypes with fine-grain 
granularity include DPGA and Garp. 

DPGA (Tau et al. [289], 1995): The Dynamically Programmable Gate 
Array (DPGA) is a fine-grain prototype system that uses traditional 
4-input lookup tables as the basic array element. Each cell can store 4 
context words. DPGA supports rapid run-time reconfiguration. Small 
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collections of array elements are grouped as subarrays that are tiled to 
form the entire array. A subarray has complete row and column connec­
tivity. Configurable crossbars are used for communication between subarrays. 

Garp (Hauser and Wawrzynek [129], 1997): Garp is a fine-grained approach 
that has been designed to fit into an ordinary processing environment, where 
a host processor manages the main thread of control while only certain loops 
and subroutines use the reconfigurable array for speedup in performance. The 
host processor is responsible for loading and execution of configurations on 
the reconfigurable array. The instruction set of the host processor has been 
expanded to accommodate instructions for this purpose. The array is com­
posed of rows of blocks that resemble CLBs of the Xilinx 4000 series. There 
are at least 24 columns of blocks, while the number of rows is implementation 
specific. The blocks operate on 2-bit data. There are vertical and horizontal 
block-to-block wires for data movement within the array. Separate memory 
buses move information (data as well as configuration) in and out of the array. 

Systems with coarse-grain granularity include the KressArray, Raw, and 
Morphosys described already, as well as PADDI, MATRIX, and RaPiD. 

PADDI (Chen and Rabaey [47], 1992): PADDI has a set of concurrently 
executing 16-bit functional units (EXUs). Each of these has an 8-word 
instruction memory. The communication network between EXUs uses 
crossbar switches for flexibility. Each EXU has dedicated hardware for fast 
arithmetic operations. Memory resources are distributed among the EXUs. 

MATRIX (Mirsky and DeHon [205], 1996; DeHon et aZ. [62], 1997): 
The MATRIX project of MIT falls into the class of the chunky function 
architectures. MATRIX aims to unify resources for instruction storage and 
computation. The basic functionaZ unit (BFU) can serve either as a memory 
or a computation unit. The 8-bit BFUs are organized in an array, where each 
BFU has a 256-word memory, ALU-multiply unit, and reduction control 
logic. The interconnection network has a hierarchy of three levels (nearest 
neighbor, length four bypass connection, and global lines ). 

RaPiD (Ebeling et aZ. [73], 1997): RaPiD was developed at the University 
of Washington. It is a linear array of functional units, which is configured 
mostly to form a linear computation pipeline. The identical array cells each 
have an integer multiplier, three ALUs, six registers, and three small local 
memories. A typical array has 8 to 32 of these cells. It uses segmented buses 
for efficient utilization of interconnection resources. 

FPGA-Based ATR System (Villasenor et aZ. [314], 1996): At the University 
of California (Los Angeles) Villasenor et aZ. have built an FPGA-based 
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system for automatic target recognition (ATR), i.e., a single-chip video trans­
mission system that reconfigures itself four times per video frame. It falls in 
the class of the time-share mode, and requires only a quarter of the hardware 
that would be needed for a fixed ASIC. The FPGA first stores an incoming 
video signal in memory, then applies two different image-processing transfor­
mations and finally transforms itself into a modem to send the signal onward. 

DISC (Wirthlin and Hutchings [325], 1995): Another approach to the 
time-shared mode is the Dynamic Instruction Set Computer (DISC) project 
at Brigham Young University which effectively marries a microprocessor to 
an FPGA and demonstrates the potential of automatic reconfiguration using 
stored configurations. DISC involves a custom FPGA-based processor as well 
as configuration components for an FPGA accelerator. The FPGA caches 
configuration components and executes a demand-driven fetch and reload in 
response to a fault. Time sharing also has been used to improve performance 
for a number of applications, including a video communications system and 
image recognition. As a program runs, the FPGA requests reconfiguration if 
the designated circuit is not resident. DISC allows a designer to create and 
store a large number of circuit configurations and activate them much as a 
programmer would initiate a call to a software subroutine in a microprocessor. 

Wormhole (Bittner and Athanas [28], 1997): The Colt Group of Virginia 
Polytechnic Institute and State University is investigating a run-time 
reconfiguration technique called Wormhole that lends itself to distributed 
computing. The unit of computing is a stream of data that creates custom 
logic as it moves through the reconfigurable hardware. 

CAP (Albonesi [5], 1998): In contrast to the Active Page approach already de­
scribed at the end of Sect. 7.1.4, the Complexity-adaptive Processors (CAP) 
implements configurability deeply in the processor. CAPs employ reconfig­
urable hardware for the core superscalar control and cache hierarchy struc­
tures of the processor, potentially selecting the best configuration at critical 
run-time points. To implement this approach the processor, caches, and ex­
ternal interface consist of conventional fixed hardware structures intermixed 
with complexity-adaptive structures under the control of a configuration man­
ager. 

7.3 Asynchronous Processors 

Superscalar processors are also being developed in asynchronous design (in 
addition to asynchronous scalar processors). Therefore, let us briefly describe 
the research in asynchronous processor design. 

Conventional synchronous architectures are based on global clocking 
whereby global synchronization signals control the rate at which different 
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elements operate. For example, all functional units operate in lockstep under 
the control of a central clock. 

As the clocks get faster, the chips get bigger and the wires get finer. 
As a result, it becomes increasingly difficult to ensure that all parts of the 
processor are ticking along in step with each other. Even though the electrical 
clock pulses are travelling at a substantial fraction of the speed of light, 
the delays in getting from one side of a small piece of silicon to the other 
can be enough to throw the chip's operation out. 1 For example, the 1997 
National Technology Roadmap for Semiconductors [336] forecasts that CMOS 
technology will reach a point where the switching delay for a single gate will 
be close to 10 ps while a single chip area will be nearly 7.5 cm2. It will take 30 
clock cycles for the electric signal to cross such a chip. Moreover, the interchip 
clock skew already represents a major problem. 

The clock-related timing problems have been recently attacked by asyn­
chronous (or self-timed) design techniques. These asynchronous processors 
do away with the idea of having a single central clock keeping the chip's 
functional units in step. Instead, each part of the processor - for example, 
the arithmetic units, the branch units, etc. - all work at their own pace, 
negotiating with each other whenever data needs to be passed between them. 

Without a global clock, asynchronous systems enjoy (Takamura et al. 
[288], 1997): 

• Data-dependent cycle time rather than worst case cycle time: The con­
ventionally clocked chip has to be slowed down so that the most sluggish 
function does not get left behind. To deal with this problem one can either 
use some extra circuitry to try to speed up these slow special cases, or 
alternatively just accept it and slow everything down to take account of 
the lowest common denominator. Either way the result is that resources 
are wasted or the chip's speed is determined by an instruction that may 
hardly ever be executed. In the asynchronous approach the chip only be­
comes more sluggish when a tricky operation is encountered . 

• Potential for low power consumption: The conventional processors are be­
coming increasingly power consuming. For example, DEC's Alpha and the 
PowerPC 620 emit around 20 W to 30 W in normal operation. If we were to 
continue to use 5 V supplies, we could expect by the end of 1999 a 0.1 J.l.m 
processor dissipating 2 kW. Reducing the supply to 3 V (or 2 V) would only 
reduce the power dissipation to 660 W (or 330 W). One of the reasons is 
that many of the logic gates switch their states simply because they are 
being driven by the clock, and not because they are doing any useful work. 
Removing the clock in asynchronous processors also removes the unneces­
sary power consumption as CMOS gates only dissipate energy when they 
are switching. 

1 Even if the clock were injected optically to avoid the wire delays. the signals 
issued as a result of the clock would still have to propagate along wires in time 
for the next clock pulse, and a similar problem would remain. 
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• Ease of modular composition, i.e., circuits can be assembled as plug-and­
play. 

• Optimization of frequent operations while rare operations can spend more 
time. 

• No need for clock alignment at the interfaces. 
• Timing fault-tolerance. 

There are also several shortcomings to the asynchronous approach: 

• clock-based computers are easier to build than asynchronous; 
• it is easier to verify a synchronous design due to its deterministic operation 

(by comparison, verifying an asynchronous design, with each part working 
at its own pace, is difficult). 

7.3.1 Asynchronous Logic 

Virtually all digital design today is based on a synchronous approach whereby 
each subsystem is a clocked finite state machine that changes its states on 
the edges of a regular global clock. Such a system behaves in a discrete and 
deterministic way, provided the delays are managed so that the flip-flop set-up 
and hold times are met under all conditions. 

As a contrast, in asynchronous design there is no clock to govern the 
timing of state changes. Subsystems exchange information at mutually nego­
tiated times with no external timing regulation. 

Figure 7.6a shows the structure of a synchronous pipeline with latches 
and combinational logic blocks. All latches are controlled by a single global 
clock signal and operate simultaneously. 

An asynchronous implementation ofthe pipeline is shown in Fig. 7.6b. The 
latches and the combinational logic block are the same as in the synchronous 
pipeline. The timing, however, is controlled differently. Each latch has an 
associated latch control circuit (LCC) which opens and closes the latch in 
response to request signals from the previous stage and acknowledge signals 
from the following stage. There are a few key features which describe most 
current approaches: 

• Delay-insensitive vs speed-independent design: Delay-insensitive designs 
make no assumptions about delays within the system. That is, any gate or 
interconnection may take an arbitrary time to propagate a signal. Speed­
independent systems are tolerable to variations in gate speeds but assume 
instantaneous transmissions along wires. 

• Dual-rail encoding vs data bundling communication protocol: In dual-rail 
encoded data, each Boolean is implemented as two wires. This allows the 
value and the timing information to be communicated for each data bit. 
Bundled data, on the other hand, has one wire for each data bit and a 
separate wire to indicate the timing. 
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• Level vs transition encoding: Level-sensitive circuits typically represent a 
logic one by a high voltage and a logic zero by a low voltage. In transition 
signaling, only changes in the level of signals are taken into account. 

Delay-insensitive circuits with dual-rail communication and encoding with 
transition signaling proved to be ideal for automatic transformation into a 
silicon layout, as the delays introduced by the layout compiler cannot affect 
the functionality. The most popular form in recent years has been dual-rail 
encoding with level-sensitive signaling. Delay insensitivity is achieved at the 
cost of more power dissipation than with transition signaling. The advantage 
of this approach over transition signaling is that the logic processing elements 
can be much simpler. A well-known form of delay-insensitive circuit with 
bundled data communication and encoding with transition signaling is the 
micropipelined approach, which was proposed by Sutherland [285], 1989) and 
adopted in the AMULET project (see below). 

It has been predicted that asynchronous techniques will find their way into 
certain niches, in particular, embedded applications where the work required 
is extremely burst-intensive or where power-saving requirements make the 
approach attractive. Clocked chips with some asynchronous parts may also 
be expected. 
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Table 7.1. Recent asynchronous microprocessors 

Processor Desliln Style ISA Organization 

CAP 
4-phase, dual-rail, 

own 16-bit RiSe-like fetch-execute pipeline 
delay-insensitive 

FAM 
4-phase, dual-rail, 

own RiSe-like pipelined 
delay-insensitive 

STRiP 
variable clock, 

MIPS-X pipelined, forwarding 
synchronous 

ST-RISC 
dual-rail, 

own fetch-execute pipeline 
delay-insensitive 

NSR 
2-phase, 

own 16-bit RiSe-like 
pipelined, no forwarding, decoupled branch and 

bundled data load/store 

2-phase, 
pipelined, multiple execution stages, single 

CFPP SPARe issue, result pipeline, forwarding using 
bundled data 

counter-flow 

AMULET1 
2-phase, 

ARM pipelined, no forwarding 
bundled data 

TITAC·1 
2-phase, dual-rail, 

own 8-bit nonpipelined 
quasi delay-insensitive 

Fred 
2-phase, 

based on 88100 
pipelined, multiple functional units, single issue, 

bundled data no forwarding, decupled branch and load/store 

Hades unspecified own 
pipelined, multiple functional units, multiple 
issue, forwarding 

ECSTAC fundamental mode own variable length pipelined, no forwarding 

AMULET2e 
4-phase, 

ARM pipelined, forwarding 
bundled data 

SCALP 
4-phase, 

own 
pipelined, multiple functional units, multiple 

bundled data issue, explicit forwarding 

2-phase, dual-rail, 
TITAC·2 scalable delay- own 32-bit pipelined, multiple functional units 

insensitive 

AMULET3i 
4-phase, 

ARM 
pipelined, branch prediction, out-of-order 

bundled data completion unrestricted forwardina 
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7.3.2 Projects 

A number of asynchronous microprocessors have been proposed or built re­
cently. The processors described can be divided broadly into two categories: 

• Those that were built using a conservative timing model, suitable for formal 
synthesis or verification, but with a simple architecture. Among these are 
CAP, TITAC, and ST-RISC . 

• Those that were built with a less cautious timing model using an informal 
design approach, but with a more ambitious architecture. These include 
the AMULET processors, NSR, Fred, CPP, Hades, ECSTAC, STRiP, and 
SCALP. 

Table 7.1 summarizes these characteristics. 
Let us describe the architecture and asynchronous design of the asyn­

chronous superscalar processor SCALP, and only briefly, some other projects. 
We follow the presentation of Endecott [78]. 

Superscalar Asynchronous Low-Power Processor 

The first asynchronous superscalar processor was designed in 1996 by Ende­
cott[78] from the University of Manchester. The processor was named SCALP, 
for Superscalar Asynchronous Low-Power Processor. SCALP's main architec­
tural innovation is its lack of a global register file and its result forwarding 
network. Most SCALP instructions do not specify the source of their operands 
and the destination of their results by means of register numbers. Instead, 
Endecott introduced the idea of explicit forwarding whereby each instruc­
tion specifies the destination of its result. That destination is the input to 
another FU consuming the value. Instructions do not specify the source of 
their operands at all; they implicitly use the values provided for them by the 
preceding instructions. 

Figure 7.7 shows the organization of the SCALP processor. SCALP does 
have a register file; it constitutes one of the FUs. It is accessed only by read 
and write instructions which transfer data to and from other FUs by means 
of the explicit forwarding mechanism. Several instructions are fetched from 
memory at a time. Each instruction has a functional unit identifier, which is 
a small number of easily decoded bits that indicate which FU will execute 
the instruction. The instructions are statically allocated to FUs. If there is 
more than one FU capable of executing a particular instruction, one must be 
chosen by the compiler. This simplifies the instruction issuer and is essential 
to the explicit forwarding mechanism. The instruction issuer is responsible for 
distributing the instructions to the various FUs on the basis of the functional 
unit identifier. Each FU has a number of input queues: one for instructions 
and one for each of its possible operands. An instruction begins execution 
once it and all of its necessary operands have arrived at the FU. The FU 
sends the result, along with the destination address, to the result-routing 
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Fig. 7.7. SCALP overall organization 

network. This places the result into the appropriate input queue of another 
FU. 

There are some similarities between the SCALP approach and dataflow 
computing (see Chap. 2). In particular, it is possible to describe SCALP 
programs by means of dataflow graphs. 2 Nevertheless, the flow of control 
in SCALP is determined by a conventional control-flow mechanism, not a 
dataflow mechanism. 

Other Projects 

CAP (Martin et al. [193], 1989): The Caltech Asynchronous Processor 
(CAP) was built at California Institute of Technology (Pasadena, CA). The 
circuit design was delay-insensitive with dual-rail encoded communication. 

2 Note the similarity between the asynchronous control-driven SCALP and the 
synchronous data-driven machine MADAME (see p. 94). 
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The processor featured a RISC-like load/store instruction set with 16 
registers. A number of concurrent processes were responsible for instruction 
fetch, operand read, ALU operate, etc. The processor was implemented in 
a 1.6 J.UIl CMOS process, and operated at 18 MIPS at room temperate and 
5 V. The circuit continued to function at very low supply voltages, with 
optimum energy per operation at around 2 V. It was also tested in liquid 
nitrogen at 77 K when its performance reached 30 MIPS. More recently, a 
GaAs version of CAP has been implemented (Tierno et al. [297], 1994). 

FAM (Cho et al. [48], 1992): FAM was a dual-rail asynchronous processor 
with a RISC-like load/store instruction set. It had a 4-stage pipeline but 
register read, ALU, and register write occurred in a single stage eliminating 
the need for any forwarding. 

STRiP (Dean [61], 1992): STRiP was built at Stanford University. Its 
instruction set was that of the MIPS-X processor. STRiP is included here 
even though it has a global clock signal and could be considered synchronous. 
It is unusual in that the speed of the global clock is dynamically variable in 
response to the instructions being executed, giving much of the advantage 
of an asynchronous system. The performance of STRiP was typically 
twice that of an equivalent synchronous processor. By maintaining global 
synchrony STRiP was able to implement forwarding in the same simple way 
as synchronous processors. 

ST-RISC (David et al. [59], 1993): ST-RISC was an architecture from 
the Israel Institute of Technology. It was delay-insensitive with a dual-rail 
data path. ST-RISC had a 2-stage pipeline (fetch and execute) and a 
3-address-register-based instruction set. 

AMULET (Furber et al. [93, 94, 95], 1993-1998): At the University of Manch­
ester (UK) several asynchronous processors called AMULETl, AMULET2, 
and AMULET3 were implemented. AMULETI was the first asynchronous 
implementation of a commercially important ISA (ARM's ISA version 3 
used in the ARM6 processor) [93], and appeared in early 1993. It was 
designed using a 2-phase bundled data design style, with a 5-stage pipeline 
and no result forwarding. An interlocking was used to stall instructions at 
the register read stage until their operands had been written by previous 
instructions. After being fetched, a branch instruction had to pass through 
ten pipeline or FIFO stages before the target address was sent to memory. 
This resulted in large numbers of prefetched instructions that were discarded 
and a significant number of bubbles. As a result, the pipeline throughput 
was low. AMULETI permitted out-of-order completion of load instructions 
relative to other instructions. AMULETI was about 70 % the speed of a 
20 MHz ARM6 processor, but with faster simple operations (e.g., with three 
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times faster multiplication). In October 1996, the AMULET2 processor 
was designed [94], based on the ARM ISA version 4. The processor used a 
4-phase bundled data design style because this was believed to have benefits 
in terms of speed, size, and power relative to AMULET1. The processor had 
a slightly shorter pipeline than AMULET 1 and employed both forwarding 
and branch prediction. It also incorporated limited forwarding by employing 
a last-result register at the output of the ALU, and forwarding mechanisms 
to use the result of a load instruction in a following instruction. A more 
sophisticated register-interlocking mechanism was used to remove WAW 
hazards. The AMULET2e chip consisted of 454000 transistors including 
a 4 kB fully associative cache. The synchronous equivalent ARM810 used 
almost twice as many transistors, but also an 8 kB cache. With its 40 MIPS, 
the AMULET2 was 3.2 times faster than AMULET1, and with half the per­
formance of a 75 MHz ARM810. The next in the AMULET line, AMULET3, 
is expected to be a commercial product in 1999 [95]. It is expected that the 
key feature of this microprocessor will be a reorder buffer capable of solving 
the problems of result forwarding and exception handling in an asynchronous 
pipeline. This will allow a high degree of flexibility in operation, such as 
out-of-order completion, whilst avoiding RAW hazards (by stalling until 
the relevant value appears) and WAW hazards (averted by the reorder buffer). 

NSR (Brunvand [38], 1993): The Non-synchronous RISC (NSR) processor 
was built using FPGA technology at the University of Utah. It was imple­
mented using a 2-phase bundled data protocol. NSR was a pipelined processor 
with pipeline stages separated by FIFO queues. The idea of the FIFO queues 
is that they decouple the pipeline stages so that an instruction that spends 
a long time in one stage need not hold up any following instructions. The 
disadvantage of this approach is that the latency of the queues themselves 
is significant and, because of the dependencies within a processor pipeline, 
the increase in overall latency is detrimental. NSR used a locking mechanism 
to stall instructions that need operands produced by previous instructions. 
There was no forwarding mechanism. NSR had a 16-bit data path and 16-
bit instructions. The instructions included three 4-bit register specifiers and 
a 4-bit opcode. Some aspects of its instruction set were specialized for the 
asynchronous implementation: branch, load, and store instructions made the 
FIFOs that interconnected the functional units visible to the programmer. 
Conditional branch instructions were decoupled from the ALU that executed 
comparison instructions by a Boolean FIFO. Computed branch instructions 
also used a FIFO to store computed branch addresses. Load instructions had 
two parts. One instruction specifies a load address. A subsequent instruction 
used the load result by reading from a special register r1. There could be an 
arbitrary separation between the two instructions, and it was possible to have 
several load operations outstanding at one time. Store instructions worked 
similarly by writing the data to r1. 
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CFPP (Sproull et aZ. [277], 1994): The Counterflow Pipeline Processor 
(CFPP) was based on extensions of the techniques proposed in [285]. The 
CFPP executed SPARC instructions. Its novel contribution was the result 
forwarding in an asynchronous pipeline. CFPP had two pipelines. In one 
pipeline instructions flowed upwards; in the other results flowed downwards. 
As instructions flowed upwards they watched out for results of previous 
instructions that they had to use as operands flowing downwards. If they 
spotted any such operands they captured them; otherwise, they eventually 
received a value that flowed down from the register file which was at the 
top of the pipelines. When an instruction obtained all of its operands it 
continued to flow upwards until it found a pipeline stage where it could 
compute the result. Once computed, the result was injected into the result 
pipeline for use by any following dependent instructions and was also carried 
forward in the instruction pipeline to be written into the register file. The 
counterflow pipeline neatly solved the problem of result forwarding. 

TITAC (Nanya et al.[209], 1994; Takamura et al. [288], 1997): TITAC-1 was 
a simple 8-bit asynchronous processor built at the Tokyo Institute of Technol­
ogy (Japan). It was based on the quasi delay-insensitive (QDI) timing model 
(where additional assumptions are introduced into the delay-insensitive 
model) and so had to use dual-rail encoding communication. This resulted 
in about twice as many gates in the data path compared to an equivalent 
synchronous data path. Architecturally, TITAC-1 was very straightforward 
with no pipelining and a simple accumulator-based instruction set. In 1997, 
a 32-bit asynchronous microprocessor TITAC-2 was built whose ISA was 
based on the MIPS R2000. It uses a scalable delay-insensitive (SDI) model, 
which unlike the QDI model, assumes that the relative delay ratio between 
any two components is bounded. SDI circuits can run faster than equivalent 
QDI circuits. The measured performance of TITAC-2 was 52.3 MIPS using 
the Dhrystone benchmark. 

Fred (Richardson and Brunvand [241], 1995): Fred is a development of NSR 
and also built at the University of Utah. Like NSR, Fred is implemented using 
2-phase data bundling. It is modeled using VHDL. Fred extends the NSR to 
have a 32-bit data path and 32-bit instructions, based on the Motorola 88100 
instruction set. Fred has multiple functional units. Instructions from the 
functional units can complete out of order. However, the instruction issuer 
can only issue one instruction at a time, and the register file is only able to 
provide operands for one instruction at a time. This allows for a relatively 
straightforward instruction issue and a precise exception mechanism, but 
limits the attainable level of parallelism. There is no forwarding mechanism; 
instructions are stalled at the instruction issuer until their operands have 
been written to the register file. There is no out-of-order issue. Like the 
NSR, Fred uses programmer-visible FIFO queues to implement decoupled 
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load/store and branch instructions. This arrangement has the possibility of 
deadlock if the program tries to read from an empty queue or write to a 
full one. Fred chooses to detect this condition at the instruction issuer and 
generate an exception. 

Hades (Elston et al. [77], 1995): Hades is a proposed superscalar asyn­
chronous processor from the University of Hertfordshire (UK). It is in many 
ways similar to a conventional synchronous superscalar processor; it has a 
global register file, forwarding, and a complex (though in-order) instruction 
issue. Its forwarding mechanism uses a scoreboard to keep track of which 
result is available and from where. 

ECSTAC (Morton et al. [206], 1995): ECSTAC is an asynchronous micropro­
cessor designed at the University of Adelaide (Australia). ECSTAC is imple­
mented using fundamental mode control circuits. It is deeply pipelined with 
a complex variable-length instruction format. It has 8-bit registers and ALU. 
The variable-length instructions and the mismatch between the address size 
and the data path width made the design more complex and slower. There 
is no forwarding mechanism within the data path, and a register interlocking 
scheme is used to stall instructions until their operands are available. 

7.4 Conclusions 

Processor-in-memory, reconfigurable computing, and asynchronous proces­
sors are the most exotic techniques described in this book. All three ap­
proaches are destined for future chip generations envisioning chip technolo­
gies that must still be developed - integration of processor chip technology 
with DRAM technology in the case of the processor-in-memory approach, 
and with reconfigurable logic in the case of reconfigurable computing. 

Viewed from an architectural point of view, most of the PIM or recon­
figurable computing approaches are still rather conventional. However, both 
research directions have the potential to overcome the von Neumann architec­
turallimitations and lead to highly parallel architectural principles in future. 

The asynchronous processor paradigm has the potential to solve the clock­
ing problems in large processor chips. 
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A 

address generation interlock - a mechanism to stall the pipeline for 
one cycle when an address used in one machine cycle is being calculated or 
loaded in the previous cycle. Address generation interlocks cause the CPU to 
be delayed for a cycle. 

addressing - a mechanism to refer to a device or storage location by an 
identifying number, character, or group of characters, which may contain a 
piece of data or a program step. 

addressing mode - defines how a processor determines the destination 
address for an operation. The different addressing modes of a processor de­
termine the variety of ways that an operand or its address can be referenced 
by an instruction. 

addressing range - defines the number of memory locations addressable 
by the CPU. For a processor with one address space, the range is determined 
by the number of signal lines on the address bus of the CPU. 

alignment - placement of operand values in a memory, at addresses rela­
tive to their sizes or length. By naturally aligned data (or aligned, for short) 
we understand that a data item's lowest-addressed byte must reside in the 
memory at an address that is a multiple of the size of the data item (in 
bytes). Thus, a properly aligned value is positioned at an address equal to an 
integral multiple of its size. For example, the address of a naturally aligned 
long word is a multiple of four. 

anti dependence - a potential conflict between two instructions when the 
second instruction alters an operand which is read by the first instruction. 
For correct results, the first instruction must read the operand before the 
second alters it. Also called a write-after-read hazard. 

architectural state - the value of registers, flags, and memory as viewed 
by the programmer. 

architecture - an image of a computing system as seen by a programmer 
capable of programming in machine language. Includes all registers acces-
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sible by any instruction, including the privileged instructions, the complete 
instruction set, all instruction and data formats, addressing modes, and other 
details that are necessary in order to write a machine language program. 

arithmetic instruction - a machine instruction that performs computa­
tion, such as addition or multiplication. 

arithmetic logic unit (AL U) - the logic circuitry that performs arith­
metic calculations on binary numbers and makes logical decisions based on 
Boolean operations. 

associative memory a memory in which each storage location is se­
lected by its contents and then an associated data location can be accessed. 
Requires a comparator with each storage location and hence is more complex 
that random-access memory. Used in fully associative cache memory and in 
some translation lookaside buffers. Also called content addressable memory. 

associativity, in a cache - the number of lines in a set. An n-way set­
associative cache has n lines in each set. The term block is also used for line. 

asynchronous - a system (e.g. computer, circuit, device) in which events 
are not executed in a regular time relationship. They are timing-independent. 
Each event or operation is performed upon receipt of a signal generated by 
the completion of a previous event or operation, or upon availability of the 
system resources required by the event or operation. 

B 

barrel shifter - a shifter, which contains log2(max number of bits shifted) 
stages, where each stage shifts the input by a different power of 2 number of 
positions. It lends itself well to being pipelined. 

benchmark - standard tests that are used to compare the performance of 
computers, processors, circuits, or algorithms. 

big-endian -- a storage scheme in which the most significant unit of data 
or an address is stored at the lowest memory address. 

binary operator - any mathematical operator that requires two data ele­
ments with which to perform the operation. 

block, in a cache - a group of sequential locations held as one unit in a 
cache and selected as whole. Also called a line. 

branch history table (BHT) - a buffer that is used to hold the history 
of previous branch paths taken during the execution of individual branch 
instructions. The BHT is used to improve prediction of the correct branch 
path whenever a branch instruction is encountered. 
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branch penalty - the delay in a pipeline after a branch instruction when 
instructions in the pipeline must be cleared from the pipeline and other in­
structions fetched. Occurs because instructions are fetched into the pipeline 
one after the other and before the outcome of branch instructions is known. 

branch prediction - a mechanism used to predict the outcome of branch 
instructions prior to their execution. Pipelined machines must fetch the next 
instruction before they have completely executed the previous instruction. If 
the previous instruction was a branch, the next instruction fetch could have 
been from the wrong place. Branch prediction is a technique that attempts 
to infer the proper next instruction address, knowing only the current one, 
typically using an associative memory called a branch target buffer. 

branch recovery - when a branch is mispredicted, the speculative state of 
the machine must be flushed and fetching restarted from the correct target 
address. 

branch target address - the address of the instruction to be executed 
after a branch instruction if the conditions of the branch are satisfied. 

branch target buffer (BTB) - a hardware component that holds the 
branch target addresses of previously executed branch instructions. Used to 
predict the outcome of branch instructions when these instructions are next 
encountered. 

c 

cache coherence - state of a multiprocessor computer system having mul­
tiple caches ensuring (by a cache coherence protocol) that a read-data access 
of a processor will always deliver the last memory word written by any other 
processor to that memory address. 

cache, direct-mapped - a cache using random-access memory in which 
each cache line and the most significant bits of its main memory address (the 
tag) are held together in the cache at a location given by the least significant 
bits of the memory address (the index). After the cache line is selected by 
its index, the tag is compared with the most significant bits of the required 
memory address to find whether the line is the required line and to access 
the line. 

cache, fully associative - a cache using associative memory in which the 
addresses of the lines are stored with the lines. All the addresses stored in 
the cache are compared with the incoming address simultaneously to find 
whether the line is in the cache and to access the line. 

cache hit - occurs when the processor requests data from memory and the 
data requested is already in the cache memory. 

cache line - a block of data associated with a cache tag. 
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cache memory - a small, fast, redundant memory used to store the most 
frequently accessed parts of the main memory. 

cache miss - occurs when the processor requests data from memory and 
the data requested is not in the cache memory. When this occurs it is neces­
sary to access the next level in the memory hierarchy (potentially the main 
memory) to retrieve the data. 

cache, set-associative - a cache which is divided into a number of sets, 
each set consisting of groups of lines and each line has its own stored tag 
(the most significant bits of the address). A set is accessed first using the 
index (the least significant bits of the address). Then all the tags in the set 
are compared with that of the required line to find whether the line is in the 
cache and to access the line. 

cache, unified - a cache which can hold both instructions and data. 

central processing unit (CPU) - a part of a computer which performs 
the actual data processing operations and controls the whole computing sys­
tem. 

CISC processor - a processor with a large quantity of instructions, some 
of which may be quite complicated, as well as a large quantity of different ad­
dressing modes, instruction and data formats, and other attributes. A CISC 
processor usually has a relatively complicated control unit. Most CISC pro­
cessors are microprogrammed. 

clock cycle - one complete event of a synchronous system's timer, includ­
ing both the high and low periods. 

context switching - an operation that switches the CPU from one process 
to another, by saving all of the CPU registers for the first and replacing them 
with the CPU registers for the second. 

coprocessor - a processor that is connected to a main processor and oper­
ates concurrently with the main processor, although under the control of the 
main processor. Coprocessors are usually special-purpose processing units, 
such as floating-point, array, DSP, or graphics data processors. 

D 

data dependence - the situation between two sequential instructions in 
a program when the first instruction produces a result that is used as an 
input operand by the second instruction. To obtain the desired result, the 
second instruction must not read the location that will hold the result until 
the first has written its result to the location. Also called a read-after-write 
dependence or a flow dependence. 
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dataflow architecture - an architecture that operates by having source 
operands trigger the issue and execution of each operation, without relying 
on the traditional, sequential von Neumann style of fetching and issuing in­
structions. 

dataflow computer - a computer in which instructions are executed when 
the operands that the instructions require become available rather than being 
selected in sequence by a program counter as in a traditional von Neumann 
computer. Usually, more than one processor is present to execute the instruc­
tions simultaneously when possible. 

dataflow graph - a directed graph consisting of named nodes, which rep­
resent instructions, and arcs, which represent data dependences between in­
structions. During the execution of the program, data propagate along the 
arcs in data packets, called tokens. 

D-cache - a cache that only holds the data of a program (not instructions). 

delayed branch instruction - a form of conditional branch instruction 
in which one or more instructions immediately following the branch instruc­
tion are executed irrespective of the outcome of the branch. The branch then 
takes effect. Used to reduce the branch penalty. 

delay slot - in a pipelined processor, a time slot following a branch instruc­
tion. An instruction issued within this slot is executed regardless of whether 
the branch condition is met, so it may appear that the program is executing 
instructions out of order. Delay slots can be filled (by compilers) by rear­
ranging the program steps, but when this is not possible, they are filled with 
no-op instructions. 

demand-driven - execution where an instruction is executed if there is a 
demand for the result. 

dependence - a logical constraint between two operations based on infor­
mation flowing between their source and/or destination operands; the con­
straint imposes an ordering on the order of execution of (at least) portions 
of the operations. 

digital signal processor (DSP) - a microprocessor specifically designed 
for processing digital signals. 

dynamic scheduling - issuing instructions to functional units out of pro­
gram order. The processor can dynamically issue an instruction as soon as all 
its operands are available and the required functional unit is not busy. Thus, 
an instruction is not delayed by a stalled previous instruction unless it needs 
the results of that previous instruction. 
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E 

exception ~ an event that causes suspension of normal program execu­
tion. Types include addressing exception, data exception, operation excep­
tion, overflow exception, protection exception, and underflow exception. 

explicit token store ~ the concept of allocating a separate frame for each 
active loop iteration or subprogram invocation in the token memory of a 
dataflow processor. 

F 

fetch cycle ~ the period of time during which an instruction is retrieved 
from memory. 

field programmable gate array (FPGA) ~ a programmable logic de­
vice which consists of a matrix of programmable cells embedded in a pro­
grammable routing mesh. The combined programming of the cell functions 
and the routing network define the function of the device. 

firing rule ~ a computational rule of the dataflow model that specifies when 
an instruction can actually be executed. 

floating-point unit (FPU) ~ a circuit that performs floating-point compu­
tations, which are generally addition, subtraction, multiplication, or division. 

flush (pipeline) ~ the act of clearing out all actions being processed in a 
pipeline structure. This may be achieved by aborting all of those actions, or 
by refusing to issue new actions to the pipeline until those present in the 
pipeline have left the pipeline because their processing has been completed. 

forwarding ~ to provide the result of the previous instruction immediately 
to the current instruction, before the result is written to the register file. Also 
called bypass. 

functional unit (FU) ~ a module in which actual instruction execution 
takes place. There may be a number of functional units of different types 
within a single CPU, including integer units, floating-point units, load/store 
units, and branch units. 

G 

general-purpose register ~ a digital storage element inside the CPU which 
is used to hold values temporarily for later transfer to the ALU or memory. 
General-purpose registers are typically not equipped with any dedicated logic 
to operate on the data stored in the register. 
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H 

Harvard architecture - a computer design feature where there are two 
separate memory units: one for instructions and the other for data. 

I 

I-cache - a cache that only holds the instructions of a program (not data). 
I-caches generally do not need a write policy. 

in-order issue - the situation in which instructions are sent to be executed 
in the same order as they appear in the program. 

instruction decoder unit - the module that receives an instruction from 
the instruction fetch unit, identifies the type of instruction from the opcode, 
assembles the complete instruction with its operands, and sends the instruc­
tion to the appropriate functional unit, or to an instruction pool to await 
execution. 

instruction fetch unit - the module that fetches instructions from mem­
ory, usually in conjunction with a bus interface unit, and prepares them for 
subsequent decoding and execution by one or more functional units. If an 
I-cache is existent, the instructions are fetched from the I-cache. 

instruction format - the specification of the number and size of all pos­
sible instruction fields in an instruction set architecture. 

instruction issue - the act of initiating the performance of an instruction 
(not its fetch). Issue policies are important design decisions in systems that 
use parallelism and execution out of program order to achieve more speed. 

instruction-level parallelism (ILP) - the concept of executing two or 
more instructions in parallel (generally instructions taken from a sequential, 
not parallel, stream of instructions) . 

instruction pipeline - a structure that separates the execution of instruc­
tions into multiple phases, and executes separate instructions in each phase 
simultaneously. 

instruction reordering - a technique in which the CPU executes in­
structions in an order different from that specified by the program, with the 
purpose of increasing the overall execution speed of the CPU. 

instruction scheduling - the relocation of independent instructions in 
order to maximize instruction-level parallelism (and/or minimize instruction 
stalls) . 

instruction set - the collection of all the machine-language instructions 
available to the programmer. 
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instruction window - for an out-of-order issue mechanism, a buffer hold­
ing a group of instructions being considered for issue to functional units. 
Instructions are issued from the instruction window when dependences have 
been resolved. 

integer unit - a type of functional unit designed specifically for the execu­
tion of integer-type instructions. 

interleaving, block - instructions of a thread are executed successively 
until an event occurs that may cause latency. This event induces a context 
switch. Also called coarse-grained multithreading. 

interleaving, cycle-by-cycle - an instruction of another thread is fetched 
and fed into the execution pipeline at each processor cycle. Also called fine­
grained multithreading. 

internal forwarding - a mechanism in a pipeline which allows results from 
one pipeline stage to be sent directly back to one or more waiting pipeline 
stages. The technique can reduce stalls in the pipeline. 

I-structure - may be viewed as a data repository obeying the single­
assignment rule. 

J 

Java Virtual Machine - the (abstract) engine that actually executes a 
Java program compiled to Java bytecode. 

L 

Ll cache - in systems with two separate sets of cache memory between 
the CPU and standard memory, the set nearest the CPU. L1 cache is often 
provided within the same integrated circuit that contains the CPU. In op­
eration, the CPU accesses L1 cache memory; if L1 cache memory does not 
contain the required reference, it accesses L2 cache memory, which in turn 
accesses standard memory, if necessary. 

L2 cache - in systems with two separate sets of cache memory between the 
CPU and standard memory, the set between L1 cache and standard memory. 

line, bus - one wire of a bus, which may be used for transmitting a datum, 
a bit of an address, or a control signal. 

line, cache - a group of words from successive locations in memory stored 
in cache memory together with an associated tag, which contains the starting 
memory reference address for the group. 

little-endian - a storage scheme in which the least significant unit of data 
or an address is stored at the lowest memory address. 
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load instruction - an instruction that requests a datum from a memory 
address to be placed in a specified register. 

load/store architecture - a system design in which the only processor 
operations that access memory are simple register loads and stores. 

load/store unit - a functional unit used to process instructions that load 
data from memory or store data to memory. 

local bus - the set of wires that connects a processor to its local memory 
module. 

logical operation - the machine-level instruction that performs Boolean 
operations. 

lookahead - the number of instructions that can be accessed for issue by 
the scheduler of the instruction window (usually corresponding to the length 
of the instruction window). 

M 

machine code - the machine format of a compiled executable, in which 
individual instructions are represented in binary notation. 

main memory - the level of memory hierarchy farthest from the processor. 

memory data register - the processor register that holds data being writ­
ten to or read from memory. 

memory hierarchy - the separation of memory systems into groups based 
on cost and access times. The "top" of the hierarchy is usually the most ex­
pensive, fastest and smallest, from where information "percolates" as it is 
used. 

memory latency - the time between the initiation of a memory request 
and its completion. 

memory management unit (MMU) - a part of a processor, or a separate 
component, that implements virtual memory functions. A MMU translates 
virtual addresses from the processor into real addresses for the memory. 

memory-reference instruction - an instruction that communicates with 
memory, writing to it (store) or reading from it (load). 

memory word - the total number of bits that may be stored in each ad­
dressable memory location. 

M.E.S.1. protocol - a cache coherence protocol for a single-bus multipro­
cessor. Each cache line exists in one of four states, modified (M), exclusive 
(E), shared (S), or invalid (I). 
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microarchitecture, processor - refers to the internal organization of the 
processor. Several specific processors with different microarchitectures may 
share the same architecture. 

microcode - a collection of low-level operations that are executed as a 
result of a single instruction being issued. 

MIMD architecture - a parallel processing system architecture where 
there is more than one processor and where each processor performs different 
instructions on different data values simultaneously. 

multiprocessor - a computer system that has more than one internal 
processor capable of operating collectively on a computation. Normally asso­
ciated with those systems where the processors can access a common mam 
memory. 

multithreaded architecture - supports execution whereby several en­
abled instructions from different threads all become candidates for execution. 

N 

no fetch on write, in a cache - in a write-through cache policy, a line 
is not fetched from the main memory into the cache on a cache miss, if the 
reference is a write reference. Also called non-allocate on write as space IS 

not allocated in the cache on write misses. 

no-op - a computer instruction that performs no operation. It can be used 
to put a delay between the execution of other instructions. 

o 

opcode - a part of an assembly language instruction that represents an 
operation to be performed by the processor. 

operand - specification of a storage location that provides data to or re­
ceives data from an operation. 

operand address - the location of an element of data that will be pro­
cessed by the computer. 

operand address register - the internal CPU register that points to the 
memory location that contains the data element that will be processed by 
the computer. 

out-of-order issue - the situation in which instructions are sent to be 
executed not necessarily in the order that they appear in the program. An 
instruction is issued as soon as any data dependences with other instructions 
are resolved. 
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output dependence - the situation when two sequential instructions in a 
program write to the same location. To obtain the desired result, the second 
instruction must write to the location after the first instruction. Also known 
as write-after-write hazard. 

P 

parallel architecture - a computer system architecture made up of mul­
tiple CPUs. 

parallel computing - performed on computers that have more then one 
CPU operating simultaneously. 

PC-relative addressing - an addressing mechanism for machine instruc­
tions in which the address of the target location is given by the contents of 
the program counter and an offset held as a constant in the instruction, added 
together. Allows the target location to be specified as a number of locations 
from the current (or next) instruction. Generally only used for control trans­
fer instructions (e.g. jumps and branches). 

physical address - the actual address of a value in the physical memory. 

physical register set - an additional register set to hold the results of 
speculative instruction execution until the instruction retires. Physical reg­
isters (also called rename registers) are used to prevent conflicts between 
instructions that would normally use the same registers. See also: speculative 
execution. 

pipeline hazard, control - arises from branch, jump, and other control­
flow change instructions. For example, if a branch is to be taken, the flow of 
instructions into the pipeline has to be interrupted, and the branch target 
must be fetched before the pipeline can resume execution. 

pipeline hazard, data - arises because of the unavailability of an operand. 

pipeline hazard, structural - arises from some combinations of instruc­
tions that cannot be accommodated because of resource conflicts. 

pipeline interlock - a hardware mechanism to prevent instructions from 
proceeding through a pipeline when a data dependence or other conflict ex­
ists. 

pipeline latency - the number of cycles between the time an instruction 
is issued and the time a dependent instruction (which uses its result as an 
operand) can be issued. 

pipeline machine cycle - the time required to move an instruction one 
step down the pipeline. 
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pipeline processor - a processor that executes more than one instruction 
at a time, in pipelined fashion. The execution of each instruction is divided 
into a sequence of simpler suboperations. Each suboperation is performed by 
a separate hardware section called a stage, and each stage passes its result to 
a succeeding stage. Normally, each instruction only remains at each stage for 
a single cycle, and each stage begins executing a new instruction as previous 
instructions are being completed in later stages. Thus, a new instruction can 
often begin during every cycle. Pipelines greatly improve the rate at which in­
structions can be executed, as long as there are no dependences. The efficient 
use of a pipeline requires that several instructions be executed in parallel, 
however the result of any instruction is not available for several cycles after 
that instruction has entered the pipeline. Thus, new instructions must not 
depend on the results of instructions which are still in the pipeline. 

pipeline repeat rate - the number of cycles that occur between the is­
suance of one instruction and the issuance of the next instruction to the same 
functional unit. 

pipeline throughput - the number of instructions that can leave a pipeline 
per cycle. 

pipelining - splitting the CPU into a number of stages, which allows mul­
tiple instructions to be executed concurrently. 

pop instruction - an instruction that retrieves contents from the top of 
the stack and places the contents in a specified register. 

postincreIllentation - an addressing mode in which the address is incre­
mented after accessing the memory value. Used to access elements of arrays 
III memory. 

precise interrupts - an implementation of the interrupt mechanism such 
that the processor can restart after the interrupt at exactly where it was 
interrupted. All instructions that have started prior to the interrupt should 
appear to have completed before the interrupt takes place and all instructions 
after the interrupt should not appear to start until after the interrupt routine 
has finished. 

predecreIllentation - an addressing mode using an index or address regis­
ter in which the contents of the address are reduced by the size of the operand 
before the access is attempted. 

prediction (of branches) - the act of guessing the likely outcome of a 
conditional branch decision. Prediction is an important technique for speed­
ing up execution in overlapped processor designs. Increasing the depth of the 
prediction (the number of branch predictions that can be unresolved at any 
time) increases both the complexity and speed. 
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prefetching - the act of fetching instructions prior to being needed by the 
CPU. 

prefetch queue - a queue of instructions which have been prefetched. 

preincrementation - an assembly language addressing mode in which the 
address is incremented prior to accessing the memory value. Used to access 
elements of arrays in memory. 

Princeton architecture - a computer architecture in which the same 
memory holds both data and instructions. 

processor-in-memory (PIM) - integrates one or more processors with 
large on-chip memory, which provides the processor(s) with sufficient band­
width at a reasonable cost. 

program counter (PC) - a CPU register that contains the address of the 
next instruction in sequence to be executed. 

push instruction - an instruction that stores the contents of a specified 
register(s) on the stack. 

Q 

quadword - a data unit formed from four words. 

queue - a data structure maintaining a first-in, first-out discipline of inser­
tion and removal. 

R 

random-access memory (RAM) - a memory that allows access to any 
element in the same period of time. 

read-only memory (ROM) - a form of random access memory in which 
storage locations can only be accessed for reading, not for writing. Normally 
also has non-volatile characteristics. 

reconfigurable computing system - combines programmable general­
purpose computing with reconfigurable hardware. 

register - a circuit formed from identical flip-flops or latches and capable 
of storing several bits of data. 

register direct addressing - an instruction addressing method in which 
the memory address of the data to be accessed or stored is found in a general­
purpose register. 

register file - a collection of CPU registers addressable by number. 
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register indirect addressing - an instruction addressing method in which 
the register field contains a pointer to a memory location that contains the 
memory address of the data to be accessed or stored. 

register renaming - dynamically allocating a location in a special register 
file for an instance of a destination register appearing in an instruction prior 
to its execution. Used to remove antidependences and output dependences. 

register window - a set, or window, of registers selected out of a larger 
group. 

relative addressing - an addressing mechanism in which the address of 
the target location is given by the contents of a specific register and an offset 
held as a constant in the instruction, added together. 

reorder buffer - a set of storage locations holding instructions (and some­
times also the result values) in program order. 

reservation station - a storage location placed in front of the functional 
units and provided to hold instruction and associated operands until the func­
tional units become available. 

resource conflict - the situation when a component such as a register or 
functional unit is required by more than one instruction simultaneously. 

retire unit - the unit used to assure that instructions are completed in 
program order, even though they may have been executed out of order. 

RISe processor - a processor implementing the computer design phi­
losophy of a relatively simple control unit design with a reduced number of 
instructions (selected to be simple), data and instructions formats, and ad­
dressing modes. The processor is pipelined. One of the particular features of 
a RISC processor is the restriction that all memory accesses should be by 
load and store instructions only (the so-called load/store architecture). All 
arithmetic logic operations in a RISC are register-to-register, meaning that 
both the sources and destinations of all operations are CPU registers. All 
this tends to reduce CPU-to-memory data traffic significantly, thus improv­
ing performance. In addition, RISCs usually have the following properties: 
most instructions execute within a single cycle, all instructions have the same 
size, the control unit is hardwired (to increase the speed of operations), and 
there is a CPU register file of considerable size. 

s 

scalar processor - a CPU that issues at most one instruction at a time. 

scoreboard - a centralized control unit which enables out-of-order execu­
tion of instructions. It holds various information to detect dependences. 
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shared-memory architecture - an organization of a computer system 
having more than one processor in which each processor can access a com­
mon mam memory. 

SIMD architecture - a parallel processing architecture where more than 
one processor performs the same instruction on different data simultaneously. 

simultaneous multithreading (SMT) - when instructions are simulta­
neously issued from multiple threads to the functional units of a superscalar 
processor. 

single-address instruction - an instruction defining an operation and 
exactly one address of an operand or another instruction. 

single-assignment rule - means that a variable may appear on the left­
hand side of an assignment only once within the area of the program in which 
it is active. 

(single)-chip multiprocessor or multiprocessor chip (CMP) - inte­
grates two or more complete processors on a single chip. 

source operand - in ALU operations, one of the input values. 

spatial locality, cache - when items whose addresses are near one another 
tend to be referenced close together in time. 

SPEC benchmarks - suites of test programs created by the System Per­
formance and Evaluation Cooperative. The cooperative was formed by four 
companies, Apollo, Hewlett-Packard, MIPS, and Sun Microsystems, to eval­
uate smaller computers. The programs are actual scientific and engineering 
applications. 

speculative execution - a technique in which instructions are executed 
speculatively and are discarded if speculation was wrong. 

stack - a hardware or software data structure in which items are stored in 
a last-in, first-out manner. 

stack architecture - an architecture that accesses data as though it were 
in a pile and only the top-most elements are directly accessible. 

stall, in a pipeline - a pause in processing instructions in a pipeline, usu­
ally caused by an instruction dependence or resource conflict. 

static prediction - a method of branch prediction which uses machine­
fixed prediction (e.g., predict always taken/not taken) or which relies on the 
compiler selecting one of the two alternative instructions for execution after 
the branch instruction (either the next instruction or that at the target lo­
cation specified in the branch instruction). A bit is provided in the branch 
instruction which is set to a 0 for one alternative and 1 for the other. The 
processor then follows this advice when it executes the branch instruction. 
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store instruction - a machine instruction which copies the contents of a 
register into a memory location. 

superpipelining - a pipeline design technique in which for every external 
clock cycle two or more pipeline stages are processored within the processor; 
because this is standard in contemporary processors, it often means just a 
long pipeline. 

superscalar processor - a processor able to issue multiple instructions 
dynamically each clock cycle from a conventional linear instruction stream. 

symmetric multiprocessor (SMP) - a multiprocessor system where all 
processors are connected by a global memory system (in contrast to a dis­
tributed shared-memory multiprocessor where all memory modules are phys­
ically distributed to the processors). 

synchronous - an operation or operations that are controlled or synchro­
nized by a clocking signal. 

system bus - in digital systems, the main bus over which information flows. 

T 

tag, in caches - a part of a memory address held in a direct mapped or 
set-associative cache next to the corresponding line, generally the most sig­
nificant bits of the address. 

temporal locality, cache - when recently accessed items are likely to be 
accessed in the near future. 

threaded dataflow - a technique where the dataflow principle is modified 
so that instructions of certain instruction streams are processed in succeeding 
machine cycles. 

Tomasulo's scheme - a hardware-dependent resolution scheme that allows 
out-of-order execution of instructions in the presence of hazards. 

trace cache - a new paradigm for caching instructions. 

translation lookaside buffer (TLB) - for a paging system, a high-speed 
hardware lookup table for the conversion of virtual addresses generated by 
the processor into real addresses. The table is of limited size and only holds 
recently used page addresses. 

two-address instruction - a class of instruction in which two operands 
addresses are specified and the third one is implicit. One of the two addresses 
is also used to store the result of the ALU operation. 

two-port memory - a memory system that has two access paths, one path 
is usually used by the CPU and the other by I/O devices. This is also called 
dual-port memory. 
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two-way interleaved -- in memory technology, a technique that provides 
faster access to memory values by interleaving memory values in two separate 
modules. 

v 

V-interpreter - a method in dataflow computing used for assigning tags 
to each execution of an instruction. 

unary operation - an operation a computer performs that involves only 
one data element. 

unconditional branch - an instruction that causes a transfer of control 
to another address without regard to the state of any condition flags. 

user-visible register - an alternative name for general-purpose registers, 
emphasizing the fact that these registers are accessible to the instructions in 
user programs. The counterpart to user-visible registers are registers that are 
reserved for use by privileged instructions, particularly within the operating 
system. 

v 

virtual address - the address generated by the processor in a paging (vir­
tual memory) system. 

virtual memory - a system to handle the memory hierarchy, providing an 
automatic method of transferring the contents of blocks of memory (pages) 
into the main memory when needed. Relies on using two addresses for each 
stored word, a virtual address which is generated by the processor and the 
corresponding real address for accessing the memory. 

VLIW processor - a computer architecture that performs no dynamic 
analysis on the instruction stream of long instruction words and executes 
operations precisely as packed by the compiler into a long machine word. 

W 

write-back cache - locations in cache memory are grouped together in 
blocks and when it is necessary to update main memory to reflect changes 
in the cache, the entire block of main memory is updated rather than just 
individual locations. 

z 

zero-address instruction - an instruction in which the operands are kept 
on a first-in, first out stack in the CPU, and thus require no explicit addresses. 
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