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Preface

Today’s microprocessors are the powerful descendants of the von Neumann
computer dating back to a memo! of Burks, Goldstine, and von Neumann
of 1946. The so-called von Neumann architecture is characterized by a se-
quential control flow resulting in a sequential instruction stream. A program
counter addresses the next instruction if the preceding instruction is not a
control instruction such as, e.g., jump, branch, subprogram call or return. An
instruction is coded in an instruction format of fixed or variable length, where
the opcode is followed by one or more operands that can be data, addresses
of data, or the address of an instruction in the case of a control instruction.
The opcode defines the types of operands. Code and data are stored in a
common storage that is linear, addressed in units of memory words (bytes,
words, etc.).

The overwhelming design criterion of the von Neumann computer was
the minimization of hardware and especially of storage. The most simple
implementation of a von Neumann computer is characterized by a microar-
chitecture that defines a closely coupled control and arithmetic logic unit
(ALU), a storage unit, and an I/O unit, all connected by a single connection
unit. The instruction fetch by the control unit alternates with operand fetches
and result stores for the ALU. Both fetches access the same storage and are
performed over the same connection unit — this turned out to be a bottleneck,
sometimes coined by latter authors as the von Neumann bottleneck.

The sequential operating principle of the von Neumann architecture is still
the basis for today’s most widely used high-level programming languages, and
even more astounding, of the instruction sets of all modern microprocessors.
While the characteristics of the von Neumann architecture still determine
those of a contemporary microprocessor, its internal structure has consider-
ably changed. The main goal of the von Neumann design — minimal hardware
structure - is today far outweighed by the goal of maximum performance.
However, the architectural characteristics of the von Neumann design are still
valid due to the sequential high-level programming languages that are used
today and that originate in the von Neumann architecture paradigm.

U A.P. Burks, H.H. Goldstine, J. von Neumann, Preliminary Discussion of the
Logical Design of an Electronic Computing Instrument. Report to the U.S. Army
Ordnance Department, 1946. Reprint in: W. Aspray, A.P. Burks (eds.) Papers
of John von Neumann. MIT Press, Cambridge, MA, 1987, pages 97-146.
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A slightly more efficient implementation than the alternating of instruc-
tion fetch and operand fetch is the overlapping of the following two steps:
next PC computation and instruction fetch and decode, with operand fetch,
instruction execution, and result storage. This overlapping already defines
two-stage instruction pipelining.

A more consistent use of overlapping results in an instruction pipeline
with the following basic steps that are characteristic of so-called reduced in-
struction set computer (RISC) processors: instruction fetch, instruction de-
code and operand fetch, instruction execution, memory access in the case of
a load/store instruction, and result write-back. Ideally each step takes about
the same amount of time.

However, a storage access today needs much more time than a single
pipeline step. The introduction of registers on the processor chip and re-
stricting the operands of ALU instructions to register accesses allows the
pipeline to be balanced again. However, the problem of the memory accesses
— the von Neumann bottleneck — is still one of the main hindrances to high
performance even today. A whole memory hierarchy of cache storages now
exists to widen that bottleneck.

Current superscalar microprocessors are a long way from the original von
Neumann computer. However, despite the inherent use of out-of-order paral-
lelism within superscalar microprocessors today, the order of the instruction
flow as seen from outside by the compiler or assembly language programmer
still retains the sequential program order as defined by the von Neumann
architecture.

Radically different operating principles, such as the dataflow principle and
the reduction machine principle, were surveyed very early on. The dataflow
principle states that an instruction can be executed when all operands are
available (data-driven) while the reduction principle triggers instruction exe-
cution when the result is needed (demand-driven). We find a modified variant
of the dataflow principle, called local dataflow, in today’s superscalar micro-
processor cores to decide when instructions are issued to the functional units.

Since present-day microprocessors are still an evolutionary progress from
the von Neumann computer, at least four classes of future possible develop-
ments can be distinguished:

e Microarchitectures that retain the von Neumann architecture principle (the
result sequentiality), although instruction execution is internally performed
in a highly parallel fashion. However, only instruction-level parallelism can
be exploited by contemporary microprocessors. Because instruction-level
parallelism is limited for sequential threads, the exploited parallelism is en-
hanced by speculative parallelism. Besides the superscalar principle applied
in commodity microprocessors, the superspeculative, multiscalar, and trace
processor principles are hot research topics. All these approaches belong to
the same class of implementation techniques because result sequentiality
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must be preserved. A reordering of results is performed in a retirement
phase in order to conform this requirement.

o Processors that modestly deviate from the von Neumann architecture but
allow the use of the sequential von Neumann languages. Programs are com-
piled to the new instruction set principles. Such architectural deviations
include very long instruction word (VLIW), SIMD in the case of multime-
dia instructions, and vector operations.

e Processors that optimize the throughput of a multiprogramming workload
by executing multiple threads of control simultaneously. Each thread of
control 1s a sequential thread executable on a von Neumann computer.
The new processor principles are the single-chip multiprocessor and the
simultaneous multithreaded processor.

o Architectures that break totally with the von Neumann principle and that
need to use new languages, such as, e.g., dataflow with dataflow single-
assignment languages, or hardware-software codesign with hardware de-
scription languages. The processor-in-memory, reconfigurable computing,
and the asynchronous processor approaches also point in that direction.

In particular processor architecture covers the following two aspects of com-
puter design:

o the instruction set architecture which defines the boundary between hard-
ware and software (often also referred to as the “architecture” of a proces-
sor), and

o the “microarchitecture”, i.e., the internal organization of the processor con-
cerning features like pipelining, superscalar techniques, primary cache or-
ganization, etc.

Moreover, processor architecture must take into account the technological
aspects of the hardware, such as logic design and packaging technology.

Intended Audience

The primary intended audience of this book are computer and/or elec-
trical engineers and researchers in the fields of computer science. It can also
be used as a textbook for processor architecture or advanced microproces-
sor courses at the graduate student level of computer science or electrical
engineering. As such it is not intended for beginners.

The book surveys architectural mechanisms and implementation tech-
niques for exploiting fine-grained and coarse-grained parallelism within
microprocessors. It starts with a review of the basic instruction set architec-
ture and pipelining techniques, continues with a comprehensive account of
state-of-the-art superscalar and VLIW techniques used in microprocessors.
It covers both the concepts involved and implementations in modern
microprocessors. The book ends with a thorough review of the research
techniques that will lead to future microprocessors.
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Using the book

Each book chapter comprises a tutorial on the specific techniques and
comprehensive sections on sample processors. The reader may quickly browse
the sample processor sections, if interested mainly in learning the techniques.
The conversant reader may even start with Chap. 4 — the main chapter of
the book, while the student is advised to read at least Chaps. 1 and 3.

Chapter 1
RISC,
Instruction Set Architecture,
and Basic Pipelining

lee]
0
2
2.
3]

RISC example processors

Chapter 2 Chapter 3

CISC, Scoreboarding, and

Dataflow T Tomasulo's Scheme

Dataflow processors

"‘U
5]
21
ixs

Sample CISC processors

Yy
Chapter 4

Superscalar and VLIW

Contemporary:
Contemporary superscalar and
VLIW processor examples

Chapter 5§ Chapter 6 Chapter 7

Future Fine-Grain > Future Coarse-Grain > Processor-in-Memory,
Processors Processors Reconfigurable, and
Asynchronous Processors

Future:

Overview of the book

Chapter 1. Basic Pipelining and Simple RISC Processors. Af-
ter a period of programming in assembly language, the permanent desire for
reduced software costs ultimately resulted in the appearance of high-level pro-
gramming languages. However, at that time — about two decades after the von
Neumann architecture had been proposed — processor design did not provide
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hardware-based support for most of the high-level language features. Thus,
the programmer’s view of the machine was removed from the architect’s view
— the so-called semantic gap appeared. In the 1970s, microelectronic technol-
ogy made it possible to replace software with hardware and, in particular,
to incorporate high-level language features in the processor instruction set
architecture. This resulted in complex instruction set computer (CISC) pro-
cessors characterized by a large number of instructions, addressing modes,
and nstruction formats. As an alternative, the RISC approach was born in
the mid-1970s, advocating the hardware support of only the most frequent
instructions while implementing the others as instruction sequences. After
the pioneering architecture of the IBM 801, the main initial research in RISC
was carried out by teams at Berkeley and Stanford University. While the
former relied on a large number of registers to minimize the memory latency,
the later pared hardware down to a minimum and relied on a smart compiler.
The two research studies initiated a number of other projects that resulted
in modern RISC microprocessors.

The goal of RISC architecture during the 1980s was to develop processor
designs that can come close to issuing one instruction each clock cycle. This
was made possible by using hardwired, instead of microcoded, control, by
supporting a small set of equal-length instructions, most of which are of the
register-register type, by relying on a high-performance memory hierarchy
as well as instruction pipelining and optimizing compilers. Moreover,
superpipelined processors allowed for higher clock rates by a longer pipeline,
although they still issue one instruction after the other. Since all these RISC
processors issue only one instruction at a time, they are said to be scalar.
Instruction set architecture and basic pipelining techniques are explained in
this chapter in the context of scalar RISC processors. When more than one
Instruction can be issued at once, the resulting overlap between instructions
is called instruction-level parallelism. The processors capable of utilizing
instruction-level parallelism and issuing more than one instruction each clock
cycle are superscalar and VLIW processors, as well as dataflow processors.

Chapter 2. Dataflow Processors. Dataflow computers have the poten-
tial for exploiting all the parallelism available in a program. Since execution
is driven only by the availability of operands at the inputs to the functional
units, there 1s no need for a program counter in this architecture, and its
parallelism 1s limited only by the actual data dependences in the application
program. Dataflow architectures represent a radical alternative to the von
Neumann architecture because they use dataflow graphs as their machine
language. Dataflow graphs, as opposed to conventional machine languages,
specify only a partial order for the execution of instructions and thus provide
opportunities for parallel and pipelined execution at the level of individual
instructions.
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While the dataflow concept offers the potential of high performance, the
performance of an actual dataflow implementation can be restricted by a
limited number of functional units, limited memory bandwidth, and the
need to match pending operations associatively with available functional
units. Since the early 1970s, there have been significant developments in
both fundamental research and practical realizations of dataflow models of
computation. In particular, there has been active research and development
in the multithreaded architectures that have evolved from the dataflow
model. These developments have also had a certain impact on the conception
of high-performance processor architectures in the “post-RISC” era.

Chapter 3. CISC Processors. Even stronger impact on the high-
performance “post-RISC” architecture was made by CISC processors. These
processors date back to the mainframe computers of the 1960s, exemplified by
the CDC 6600, IBM System /360, DEC PDP-11, etc. which were rack-based
machines implemented with discrete logic. Their processors used complex
instruction sets with hundreds of instructions, dozens of addressing modes,
and more than ten different instruction lengths. In the 1970s, several break-
throughs in technology made it possible to produce microprocessors. Sev-
eral CISC-type microprocessor families were developed, including the Intel
80x86 and Motorola MC 680xx, whose descendants such as the PentiumII
and MC 68060 represent a strong alternative to the RISC-type processors.

The competition between CISC and RISC continues, with each of the
two taking ideas of the other and using them to increase its performance.
Such an idea, originating from CISC machines, is out-of-order execution
where instructions are allowed to complete out of the original program order.
In the CDC 6600 the control of out-of-order execution was centralized (with
scoreboarding), while in the IBM System/360 Model 91 it was distributed
(with Tomasulo’s scheme). Scoreboarding and Tomasulo’s scheme faded
from use for nearly 25 years before being broadly employed in modern
microprocessors in the 1990s. Other old ideas are being revived: out-of-order
execution implemented with scoreboarding or Tomasulo’s scheme is quite
similar to dataflow computing with simplified matching and handling of
data structures.

Chapter 4. Multiple-Issue Processors. Superscalar processors
started to conquer the microprocessor market at the beginning of the 1990s
with dual-issue processors. The principal motivation was to overcome the
single-issue of scalar RISC processors by providing the facility to fetch, de-
code, issue, execute, retire, and write back results of more than one instruc-
tion per cycle. One technique crucial for the high performance of today’s and
future microprocessors is an excellent branch handling technique. Many in-
structions are in different, stages in the pipeline of a wide-issue superscalar
processor. However, approximately every seventh instruction in an instruction
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stream 1s a branch instruction which potentially interrupts the instruction
flow through the pipeline.

VLIW processors use a long instruction word that contains a (normally)
fixed number of operations that are fetched, decoded, issued, and executed
synchronously. VLIW relies on a sequential stream of long instruction words,
1.e., instruction tuples, in contrast to superscalar processors, that issue from
a sequential stream of “normal” instructions. The instructions are scheduled
statically by the compiler, in contrast to superscalar processors which rely on
dynamic scheduling by the hardware. VLIW is not as flexible as superscalar
and therefore has been confined to signal processors during the last decade.
Recently the VLIW technique has come into focus again in the explicitly
parallel instruction computing (EPIC) design style proposed by Intel for its
[A-64 processor Merced.

The chapter presents all components of superscalar and VLIW-based
multiple-issue processors in detail and provides descriptions of nearly all
major superscalar microprocessors.

Chapter 5. Future Processors to Use Fine-Grain Parallelism.
Current microprocessors utilize instruction-level parallelism by a deep pro-
cessor pipeline and by the superscalar instruction issue technique. VLSI tech-
nology will allow future generations of microprocessors to exploit aggressively
instruction-level parallelism up to 16 or even 32 instructions per cycle. Tech-
nological advances will replace the gate-delay by an on-chip wire-delay as the
main obstacle to increase chip complexity and cycle rate. The implication for
the microarchitecture is a functionally partitioned design with strict nearest
neighbor connections.

One proposed solution is a uniprocessor chip featuring a very aggres-
sive superscalar design combined with a trace cache and superspeculative
techniques. Superspeculative techniques exceed the classical dataflow limit
which says: Even with unlimited machine resources a program cannot execute
any faster than the execution of the longest dependence chain introduced by
the program’s data dependences. Superspeculative processors also speculate
about data dependences.

The trace cache stores dynamic instruction traces contiguously and fetches
instructions from the trace cache rather than from the instruction cache. Since
a dynamic trace of instructions may contain multiple taken branches, there is
no need to fetch from multiple targets, as would be necessary when predicting
multiple branches and fetching 16 or 32 instructions from the instruction
cache.

Multiscalar and trace processors define several processing cores that spec-
ulatively execute different parts of a sequential program in parallel. Multi-
scalar uses a compiler to partition the program segments, whereas a trace
processor uses a trace cache to generate dynamically trace segments for the
processing cores.
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A DataScalar processor runs the same sequential program redundantly
on several processing elements with different data sets.

Chapter 6. Future Processors to Use Coarse-Grain Parallelism.
The instruction-level parallelism found in a conventional instruction stream is
limited. Recent studies have shown the limits of processor utilization even of
today’s superscalar microprocessors. The solution is the additional utilization
of more coarse-grained parallelism. The main approaches are the multipro-
cessor chip and the multithreaded processor which optimize the throughput
of multiprogramming workloads rather than single-thread performance. The
multiprocessor chip integrates two or more complete processors on a single
chip. Every unit of a processor is duplicated and used independently of its
copies on the chip.

In contrast, the multithreaded processor stores multiple contexts in dif-
ferent register sets on the chip. The functional units are multiplexed between
the threads in the register sets. Because of the multiple register sets, context
switching 1s very fast. The multiprocessor chip is easier to implement, but
does not have the capability of multithreaded processors to tolerate memory
latencies, by overlapping the long-latency operations of one thread with the
execution of other threads.

The performance of a superscalar processor suffers when instruction-level
parallelism is low. The underutilization due to missing instruction-level par-
allelism can be overcome by simultaneous multithreading, where a processor
can issue multiple instructions from multiple threads each cycle. Simultane-
ous multithreaded processors combine the multithreading technique with a
wide-issue superscalar processor such that the full issue bandwidth is utilized
by potentially issuing instructions from different threads simultaneously.
Depending on the specific simultaneous multithreaded processor design, only
a single instruction pipeline is used, or a single issue unit issues instructions
from different instruction buffers simultaneously.

Chapter 7. Processor-in-Memory, Reconfigurable, and Asyn-
chronous Processors. Architectural techniques that partly give up the re-
sult serialization that i1s characteristic of von Neumann architectures arise
from an on-chip processor-memory integration and from reconfigurable ar-
chitectures. Such innovations have the potential to define highly parallel chip
architectures.

The processor-in-memory or intelligent RAM approach integrates pro-
cessor and memory on the same chip to increase memory bandwidth. The
starting points for processor and memory integration can be either a scalar
or superscalar microprocessor chip that is enhanced by RAM memory rather
than cache memory, or 1t can be a RAM chip combined with some computing
capacity. Researchers at Sun Microsystems propose a processor-in-memory
design that couples a RISC processor with multi-banked DRAM memory.



Preface XV

The Mitsubishi M32R /D is a similar processor-in-memory approach designed
for embedded systems applications. Vector intelligent RAM processors cou-
ple vector processor execution with large, high-bandwidth, on-chip DRAM
banks. The Active Page approach is at the other end of the design spectrum
which may be characterized as smart memory approaches. Active pages pro-
vide data access and manipulation functions for data arrays integrated in a
RAM chip, the processor staying off-chip.

Reconfigurable computing devices replace fixed hardware structures with
reconfigurable structures, in order to allow the hardware to adapt to the
needs of the application dynamically at run-time. The MorphoSys reconfig-
urable architecture combines a reconfigurable array of processing elements
with a RISC processor core. The Raw architecture approach 1s a set of repli-
cated tiles, wherein each tile contains a simple RISC-like processor, a small
amount of bit-level reconfigurable logic and some memory for instructions and
data. Each Raw tile has an associated programmable switch which connects
the tiles in a wide-channel point-to-point interconnect. The Xputer defines
a non-von-Neumann paradigm implemented on a reconfigurable Datapath
Architecture.

Conventional synchronous processors are based on global clocking
whereby global synchronization signals control the rate at which different
elements operate. For example, all functional units operate in lockstep under
the control of a central clock. As the clocks get faster, the chips get bigger
and the wires get finer. As a result, 1t becomes increasingly difficult to ensure
that all parts of the processor are ticking along in step with each other.

The asynchronous processors attack clock-related timing problems by
asynchronous (or self-timed) design techniques. Asynchronous processors
remove the internal clock. Instead of a single central clock that keeps
the chip’s functional units in step, all parts of an asynchronous processor
(e.g., the arithmetic units, the branch units, etc.) work at their own pace,
negotiating with each other whenever data needs to be passed between them.
Several projects are presented, one of these — the Superscalar Asynchronous
Low-Power Processor (SCALP) - is presented in more detail.

Additional Information

The book’s home page provides various supplementary information on
the book, its topics, and the processor architecture field in general. Lecture
slides are available in PowerPoint, PDF, and Postscript, covering the whole
book. Over time, enhancements, links to processor architecture-related
web sites, corrigenda, and reader’s comments will be provided. The book’s
home page is located at goethe.ira.uka.de/~ungerer/proc-arch/
and can also be accessed via the Springer-Verlag home page
www.springer.de/cgi-bin/search_book.pl?isbn=3-540-64798-8.
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The home pages of the authors are www-csd.ijs.si/silc for
Jurij Silc, www-csd.ijs.si/robic/robic.html for Borut Robi&, and
goethe.ira.uka.de/people/ungerer for Theo Ungerer.

Additional information can be drawn from the “WWW Com-
puter Architecture Home Page” of the University of Wisconsin at
WWW.cs.wisc.edu/~arch/www/ which provides comprehensive information
on computer architecture research. Links are provided to architecture re-
search projects, the home pages and email addresses of people in computer
architecture, calls for papers, calls for conference participation, technical or-
ganizations, etc.

The  National = Technology = Roadmap  for  Semiconductors
www.sematech.org/public/home.htm is a description of the semiconductor
technology requirements for ensuring advancements in the performance of
integrated circuits. Sponsored by the Semiconductor Industry Association
(SIA) and published by SEMATECH, this report is the result of a collab-
orative effort between industry manufacturers and suppliers, government
organizations, consortia, and universities.

The CPU Info Center of the University of California, Berkeley, at
infopad.eecs.berkeley.edu/CIC/ collects information on commercial mi-
croprocessors such as, e.g., CPU announcements, on-line technical documen-
tations, a die photo gallery, and much more.

An excellent guide to resources on high-performance microprocessors is
the “VLSI microprocessor” home page www.microprocessor.sscc.ruat the
Supercomputer Software Department RAS.

The newest commercial microprocessors are presented at the Micro-
processor Forum, the Hot Chips Conference, and the International Solid
State Circuit Conference (ISSCC). The most important conferences on
research in processor architecture are the Annual International Symposium
on Computer Architecture (ISCA), the biennial International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), the International Symposium on High-Performance
Computer Architecture (HPCA), the Annual International Symposium on
Microarchitecture (MICRO), and the Parallel Architectures and Compilation
Techniques (PACT) conferences.
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1. Basic Pipelining and Simple RISC Processors

What is “reduced” in a RISC? Practically everything: the number of
instructions, addressing modes, and formats. ..
. The application area of RISCs is expected to widen in the future.

Daniel Tabak
Advanced Microprocessors

(McGraw-Hill, 1995)

1.1 The RISC Movement in Processor Architecture

CISC. Conventional state-of-the-art computers in the 1960s and 1970s, ex-
emplified by the IBM System/370, and the DEC PDP-11 minicomputer se-
ries and VAX-11/780 super minicomputer, were rack-based machines imple-
mented with discrete logic and only rarely with microchips. A processor of
such a machine used a complex instruction set, consisting of as many as 304
instructions, 16 addressing modes, and more than 10 different instruction
lengths in the case of VAX.

What were the reasons for such a large number of instructions ? In fact,
computers before the 1960s were limited in their instruction sets. That was
due to the hardware technology of that time. Computer architecture of the
1960s and early 1970s was dominated by high hardware cost, in particular
by the high cost of memory. Technology at that time only allowed a small
main memory and slow memory access compared to more recent technology.
High-speed local memory was not yet available except for a few general-
purpose registers. Instruction fetch was done from main memory and could
be overlapped with decode and execution of previous instructions. As a re-
sult, CISC processors were based on the observation that the number of cycles
per instruction was determined by the number of cycles taken to fetch the
instruction. It was acceptable to increase the average number of cycles taken
to decode and execute an instruction. To improve performance, the two prin-
cipal goals of CISC were to reduce the number of instructions and to encode
these instructions densely. With these assumptions, CISC processors evolved
densely encoded instructions at the expense of decode and execution time
inside the processor. Multiple-cycle instructions reduce the overall number of

|. Silc et al., Processor Architecture
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2 1. Basic Pipelining and Simple RISC Processors

instructions, and thus reduce the overall execution time because they reduce
the instruction-fetch time (Johnson [150]).

In addition, as long as they were programmed in assembler, the pro-
grammer’s view of the machine was close to the computer architect’s
view. However, the permanent desire for reducing software cost by sim-
plifying the task of software design ultimately resulted in appearance of
high-level languages (HLL). Because the computer design did not provide
any hardware-based support for HLL features (such as array management,
handling of procedure parameter passing, process and memory management,
etc.), this introduced a wide semantic gap between HLL and the machine
design. Thus the programmer’s view of the machine deviated from the
architect’s view. In the 1970s, several breakthroughs in microelectronic
technology made it possible to replace software with hardware. This was
done in HLL computer architectures, which attempted to incorporate HLL
features in their instruction sets. A HLL instruction set provided powerful
instructions with a wide range of flexibility. This resulted in complex
instruction set computers (CISC) characterized by a complex instruction set
architecture (ISA), i.e., a large number of instructions, addressing modes,
and instruction formats. Unfortunately, these instructions often did more
work than was required in the frequent case, or they did not even exactly
match the requirements of the language.

RISC. In mid-1970s, researcher noticed that, instead of providing the ISA
with a large number of instructions, a promising approach would be to sup-
port only the most frequently used instructions (see Table 1.1) while leaving
less frequent operations to be implemented as instruction sequences. Systems
having such a reduced ISA were called reduced instruction set computers

(RISC).

Table 1.1. The ten most frequently used instructions in the SPECint92 benchmark
suite for the CISC Intel x86 microprocessor

Instruction Average
(% total executions)

load 22
conditional branch 20
compare 16
store 12
add 8
and 6
sub 5
move register-register 4

call 1
return 1
Total 95
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Historically, ideas of having a small number of instructions can be traced
back to 1964, when the Control Data Corporation CDC 6600 supercomputer
(see Thornton [295, 296]) used a small (64 opcodes) load/store and register-
register instruction set. In the mid-1970s, when researchers at IBM developed
the 801 architecture (see Radin [237]), they found that about 80 % of the com-
putations of a typical program required only about 20 % of the instructions
in a processor’s instruction set. The most frequently used instructions were
simple instructions such as load, store, and add. IBM 801 emphasized the
importance of the cooperation between a well-chosen set of simple instruc-
tions implemented directly in hardware and an optimizing compiler. Because
this approach abandoned microcode implementations of complex instructions
in favor of a few simple instructions implemented with hardwired control, it
was called RISC architecture. Some time after the IBM 801, around 1980,
researchers at the University of California at Berkeley (Patterson and Ditzel
[231]) and at Stanford University (Hennessy et al. [133]) began parallel efforts
in RISC technology. The Berkeley team concentrated on understanding the
principles for achieving the most effective use of the area on a VLSI chip for
building computers. Since the limited number of instructions required a rel-
atively small amount of on-chip control logic, more chip space could be used
for other functions, thus enhancing the performance and versatility of the
processor. For example, efficient procedure parameter passing was enabled
by having a large CPU register file, whose global registers were accessible
to all procedures while the so-called window registers acted both as input
registers for one procedure and output registers for another. This register
window approach is nowadays used in the Scalable Processor ARChitecture
(SPARC) family of microprocessors (see Sect. 1.7.2). The Stanford team con-
centrated in its project, called Microprocessor without Interlocking Pipeline
Stages (MIPS), on combining an optimizing compiler with the design of a
VLSI RISC processor. MIPS used the pipeline technique to enable a num-
ber of instructions to be active at once. Since the pipeline hardware was not
able to recognize so-called pipeline hazards, the compiler had to guarantee
correct instruction execution in the pipeline and improve its efficiency. MIPS
has been also called the single register set approach because it uses a small
register file with no register windows. The developments of Berkeley’s RISC
and Stanford’s MIPS initiated a number of projects that resulted in modern
scalar and superscalar RISC microprocessors.

The fundamental theme of RISC architectural design is that of maximiz-
ing the effective speed of a design by performing most functions in software,
except those whose inclusion in hardware yields a net performance gain. The
basic design principles are:

o Simple instructions and few addressing modes: CISC architecture includes
an extensive set of ways for addressing system memory, many of which
require the processor to use several different parameters to calculate an
effective address during program execution. Complex instructions and ad-
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dressing modes warrant microcode or multi cycle execution and complicate
the processor and compiler design. In contrast, RISC designs are able to
eliminate microcode because they have a small and simple set of instruc-
tions and addressing modes. The ISA is designed so that most instructions
remain only a single cycle in each pipeline stage.

Register-register (or load/store) design: References to data in system mem-
ory are limited to load/store instructions. All other instructions operate on
data in registers. A load instruction moves data from memory to registers,
where the data can be rapidly processed and temporarily held for fur-
ther access. When appropriate, a store instruction returns the data to its
place in memory. In contrast, CISC architectures support arithmetic-logic
instructions denoting memory operands.

Pipelining: Modern processor design generally includes a multistage
pipeline to increase the rate of instruction execution. Because each pipeline
stage is responsible for an individual execution phase, such as instruction
decoding or operand fetching, a pipelined processor is actually working on
several instructions simultaneously. CISC processor pipelines are subject
to various kinds of inefliciencies, such as the use of complex addressing
modes, that slow down instruction execution in the pipeline. In a RISC
design, however, the predictability of the time required to perform instruc-
tions allows pipelines to operate with high efficiency.

Hardwired control, with little or no microcode: RISC designs eliminate mi-
crocode ROM and implement instructions directly in hardware. This means
that there is no translation from a machine instruction to primitive mi-
crocoded operations, which would increase the number of cycles required
to execute the instruction. In the case of a RISC implemented as a micro-
processor, this also frees up chip space and gives the opportunity to use it
for performance-enhancing functions.

Reliance on optimizing compilers: Optimizing compilers recognize when
the contents of a register can be re-used in subsequent instructions with-
out reloading the data from system memory. When a memory reference
cannot be avoided, the compiler rearranges the instructions so that useful
work that is not dependent on the referenced data can be performed while
the processor is waiting for the data to be loaded into a register. The large
number of registers, the small, simple instruction set, and the limited num-
ber of addressing modes in RISC designs make it easier for an optimizing
compiler to limit references to memory, recognize computations that can
be streamlined, and reorganize instructions to ensure maximum pipeline
efficiency. An optimizing compiler for RISC machines can calculate the
savings of an optimization more simply because, ideally, all instructions
require equal execution time.

High-performance memory hierarchy: As RISC design increases the per-
formance of the CPU, it is important to provide a fast, efficient memory
hierarchy to keep pace with the processor. In a RISC system, the memory
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hierarchy typically consists of a large register file (i.e., a set of on-chip regis-
ters), fast static RAMs for split data cache (D-cache) and instruction cache
(I-cache), and write buffers. Usually, there is also an on-chip memory man-
agement unit. Recent advances in the cost, density, and speed of semicon-
ductor memory have contributed to the ability to design high-performance
memory hierarchies which support the speed of a RISC processor.

We will investigate ISA features and basic pipelining in the rest of this chapter
in the context of RISC processors, because the relative simplicity of RISC
facilitates understanding. However, most of the techniques apply equally well
to either RISC or CISC processors.

1.2 Instruction Set Architecture

The instruction set architecture refers to the programmer-visible instruction
set. It defines the boundary between hardware and software. Often it is identi-
fied with the processor architecture. The processor microarchitecture refers to
the internal organization of the processor. The microarchitecture comprises
implementation techniques like the number and type of pipeline stages, issue
bandwidth, number of FUs, size and organization of on-chip cache memo-
ries, etc. All these features cannot be seen in the ISA. Yet, an optimizing
compiler may also use the knowledge of microarchitecture features. Several
specific processors with differing microarchitectures may share the same ar-
chitecture.

The programmer’s view of the machine depends on the answers to the
following five questions:

How is data represented?

Where can data be stored?

How can data be accessed?

What operations can be done on data?
How are instructions encoded?

® o ¢ o o

The answers to these questions define the instruction set architecture (ISA)
of the machine. In what follows, we describe some common features of RISC
ISA. We will partly follow the presentation given by Tabak [286].

How is data represented? The programmer can usually declare data of
different data formats. One of the key ISA 1issues is to support several data
formats by providing representations for characters, integers, floating-point
numbers; etc. For instance, in DEC Alpha there is byte, 16-bit word, 32-bit
longword, and 64-bit quadword. Integer data formats can be signed or
unsigned. There are two ways of ordering byte addresses within a word,
big-endian (most significant byte first) and little-endian (least significant
byte first). There are also packed and unpacked BCD numbers, and ASCII
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characters. Floating-point data formats can be, according to the ANSI/IEEE
754-1985 standard, basic or extended, each having two widths, single or
double. Multimedia data formats are 32-bit or 64-bit words (sometimes also
128-bit) including several 8-bit or 16-bit pixel representations.

Where can data be stored? For storing data, several address spaces
are often distinguished by the (assembly language) programmer, such as
register space, stack space, heap space, text space, I/O space, and control
space. Except for the registers, all other address spaces are mapped onto
a single contiguous memory address space, which is accessed by the RISC
processor. A RISC ISA additionally contains a register file, which consists
of a relatively large number of general-purpose CPU registers. Early RISC
processors contained thirty-two 32-bit general purpose registers, or register
windowing (RISC I and SPARC processors). Contemporary RISC processors
provide an additional register set with thirty-two 64-bit floating-point
registers.

How can data be accessed ? The way in which data can be accessed is
defined by the addressing mode. In modern processors several of the following
addressing modes can be found (Table 1.2):

e Register mode, which is used when the operand is stored in one of the
registers.

o Immediate (or literal) mode, if the operand is a part of the instruction.

e Direct (or absolute) mode, where the address of the operand in memory is
stored in the instruction.

e Register indirect (or register deferred) mode, where the address of the
operand in memory is stored in one of the registers.

e Autoincrement (or register indirect with postincrement) mode, which is like
register indirect, except that the content of the register is incremented after
the use of the address. This mode offers an automatic address increment
useful in loops and 1n accessing byte, halfword, or word arrays of operands.

o Autodecrement (or register indirect with predecrement) mode, where the
content of the register is decremented and 1s then used as a register indi-
rect address. This mode can be used to scan an array in the direction of
decreasing indices.

o Displacement (also register indirect with displacement or based) mode,
where the effective address of the operand is the sum of the contents of a
register and a value, called displacement, specified in the instruction.

o Indered and scaled indered mode that works essentially as the register
indirect. The register containing the address is called the index register.
The main difference between the register indirect and the indexed modes is
that the contents of the index register can be scaled by a scale factor (e.g.,
1, 2, 4, 8 or 16). The availability of the scale factor, along with the index
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Table 1.2. Addressing modes

Addressing mode Example instruction / Meaning

Register load Regl,Reg2
Regl « (Reg2)
Immediate load Regl, #const
Regl <« const
Direct load Regl, (const)
Regl ¢« Mem[const]
Register load Regl, (Reg2)
indirect Regl ¢« Mem[ (Reg2)]
Autoincrement load Regl, (Reg2)+
Regl < Mem[ (Reg2)], Reg2 <« (Reg2) + step
Autodecrement load Regl, - (Reg2)
Reg2 ¢« (Reg2) - step, Regl « Mem[ (Reg2)]
Displacement load Regl,displ (Reg2)
Regl ¢ Mem[displ + (Reg2)]
Indexed and load Regl, (Reg2*scale)
scaled indexed Regl « Mem[ (Reg2) *scale]
Indirect load Regl, (Reg2,Reg3*scale)
scaled indexed Regl « Mem[ (Reg2) + (Reg3) *scale]
Indirect scaled indexed | load Regl,displ (Reg2,Reg3*scale)
with displacement Regl « Mem[displ + (Reg2) + (Reg3)*scale]
PC-relative branch displ
PC < PC + step + displ (ifbranch taken)
const,displ ... decimal, hexadecimal, octal or binary numbers
step ... €.g., 4 in systems with 4-byte uniform instruction size
scale ... scaling factor, e.g., 1,2, 4, 8, 16

register, permits scanning of data structures of any size, at any desired
step.

o Indirect scaled indezed mode, where the effective address is the sum of the
contents of the register and the scaled contents of the index register.

o Indirect scaled indered with displacement mode, which is essentially as the
indirect scaled indexed, except that a displacement is added to form the
effective address.

o PC-relative mode, where a displacement is added to the program counter
(PC). The PC-relative mode is used automatically with program control
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instructions in many systems. Branches and jumps that use PC-relative
addressing mode are advantageous, because the targets are often near the
current branch/jump instruction. Therefore specifying the displacement
requires fewer bits.

RISC ISAs have a small number of addressing modes, not usually exceeding
four. Note that the displacement mode already includes the direct mode
(by setting the register content to zero) and the register indirect mode (by
setting the displacement to zero).

What operations can be performed on data? One of the key features
of a computer is its instruction set, i.e., a specific set of basic operations that
a given computer can perform. One can distinguish the following types of
instructions:

—

Data movement instructions, which transfer data from one location to
another. When there is a separate I/O address space, these instructions
also include special I/O instructions. Stack manipulation instructions (e.g.,
push, pop) also fall into this category.

Integer arithmetic and logical instructions, which can be one-operand (e.g.,
complement), two-operand, or three-operand instructions, with the latter
offering a more compact program code. In some processors, different in-
structions are used for different data formats of their operands. For in-
stance, there may be separate signed and unsigned multiply/divide in-
structions.

Shift and rotate instructions, which perform either left or right shifts and
rotations. There are two types of shifts,! logical and arithmetic, depending
on what is transferred into the vacated positions.

Bit manipulation instructions, which operate on specified fields of bits. The
field is specified by its width and offset from the beginning of the word.
Instructions usually include test (affecting certain flags), set, clear, and
possibly others.

Multimedia instructions can process multiple sets of small operands and
obtain multiple results with a single instruction. The operations include
packing and unpacking, arithmetic, comparisons, logic, and shifting of val-
ues that usually represent pixels. The pixels are represented as packed data
types, such as eight bytes, four 16-bit words, or two 32-bit doublewords,
all packed inside one 64-bit quadword.

Floating-point instructions, which may include, depending on the system,
floating-point data movement, arithmetic, comparison, square root, abso-
lute value, transcendental functions, and others.

Control transfer instructions, which consist primarily of jumps, branches,
procedure calls, and procedure returns. We assume that jumps are uncon-

Many modern microprocessors perform fast shifting by special hardware, such
as barrel shifters.
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ditional and branches are conditional. Some systems may also have return
from exception instructions.

o System control instructions, which allow the user to influence directly the
operation of the processor and other parts of the computer system.

o Special function unit instructions, which perform particular operations on
special function units (e.g., graphic units). Another type of special instruc-
tion is the atomic instruction for controlling access to critical sections in
multiprocessors.

Depending on how its operands are specified, an instruction can, in princi-
ple, be one of the following types: register-register, memory-register, register-
memory, or Memory-memory.

In a RISC ISA, all operations except load and store are register-register
instructions (an ISA of this type is called a load/store ISA). As for addressing
modes, the number of instructions is also reduced in a RISC ISA (e.g., up to

128).

Table 1.3. Program g:gtg coded in four classes of ISA instruction formats
Machine

Register-Register Register-Memory  Accumulator Stack
load Regl,A load Regl,A load A push B
load Reg2,B add Regl,B add B push A
add Reg3,Regl,Reg2 store C,Regl store C add

store C,Reg3 load Regl,C load C pop C
load Regl,C sub Regl,B sub B push B
load Reg2,B store D,Regl store D push C
sub Reg3,Regl,Reg? sub

store D,Reg3 pop D

How are instructions encoded? The instruction format specifies the
pieces of information needed to execute an instruction. Besides the instruc-
tion opcode, other addresses may be needed to specify sources (i.e., operands),
destination, and the next instruction. The next instruction is explicitly speci-
fied in the case of control transfer instructions; for other types of instructions
it is implicitly defined by the PC. With respect to arithmetic-logic instruc-
tions, we distinguish four classes of ISAs, each of them characterizing the
corresponding machine (Table1.3):

e 3-address instruction format consisting of |opcode|Dest|Srci|Scr2| and
used by the register-register (also called load/store) machine.

e 2-address instruction format consisting of |opcode|Dest/Srci|Scr2|, often
supported by register-memory machines.



10 1. Basic Pipelining and Simple RISC Processors

e l-address instruction format consisting of |opcode|Src| and supported by
the accumulator machine.

o (-address instruction format consisting only of |opcode| and supported by
the stack machine.

ISA encoding can be fixed length with a 32-bit format or variable length.
Most RISC ISAs use a 3-address instruction format where all instructions
have a uniform length of 32 bits. CISC ISAs often use register-memory with
variable instruction lengths. Variable instruction length can also be found
in stack machines, exemplified today by the Java processors. Accumulator
machines are today mostly found in microcontrollers.

1.3 Examples of RISC ISAs

In the following we give some examples of (super)scalar RISC instruction
set architectures. These include SPARC, MIPS, ARM, HP PA-RISC, DEC
Alpha, IBM POWER, and IBM/Motorola/Apple PowerPC. Many of them
have appeared in several versions and found their implementation in several
microprocessors. The primary objective of RISC ISAs was to be sufficiently
simple so that implementations could have a very short cycle time, which
would result in processors that could execute instructions at the fastest
possible clock rate.

SPARC ISA. SPARC is the industry’s only openly defined and evolved
RISC architecture. Unlike other RISC designs, the SPARC Architecture
Committee did not specify a hardware implementation, but an open ISA
devoted to the community of SPARC vendors and users. After SPARC ISA
version 7 (1986) there were two versions of the SPARC ISA: a 32-bit version
8 (1990) and a 64-bit version 9 (1992). Table 1.4 gives some vendors and
their products complying with the SPARC ISA proposal.

Table 1.4. Some SPARC vendors and their processors

Vendor Processor  Year ISA Version
Fujitsu Microelectronics, Inc.| SPARClite 1992 8
Ross Technology HyperSPARC 1993 8
Sun Microelectronics, Inc. | SuperSPARC 1993 8
SIDSA SPARC 1994 8
HAL Computer Systems SPARC 64 1995 9
Sun Microelectronics, Inc. | UtraSPARC 1995 9
T.sqware SPARClet 1996 8
Fujitsu Microelectronics, Inc.{ TurboSPARC 1996 8
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MIPS ISA. MIPS Technologies (former MIPS Computer Systems) has de-
fined several versions of ISA that were implemented in several CPU designs:

Table 1.5. MIPS II ISA

Data byte, 16-bit halfword, 32-bit word, 64-bit doubleword
formats big- or little-endian, ANSI/IEEE 754-1985

Integer (CPU) registers (64- or 32-bit):
32 registers r 0 to r31, program counter PC, two multiply and divide
registers HI (remainder for divide) and LO (quotient for divide); r 0 is
Register hardwired to a zero, r31 is the link register for jumps and link instructions.
file Floating-point (FPU) registers:
32 floating-point registers FGRO to FGR31; can be configured as 16
64-bit registers; 32-bit implementation/revision register FCRO with
implementation and revision number of the FPU,
32-bit control/status register FCR31.

Addressing | register, immediate, register indirect, displacement,
modes PC-relative

Instruction | load/store (24), computational (51), jump and branch (22), special (2),
set (163) | exception (16), floating point (30), coprocessor (9), memory management (9)

register-register, 3-address format
Immediate (I-types):
6-bit opcode, 5-bit src register specifier,
5-bit dst register specifier or branch condition,
16-bit immediate value or branch displacement.
Instruction | Jump (J-types):
formats 6-bit opcode, 26-bit jump target address.
Register (R-type):
6-bit opcode, 5-bit src register specifier,
5-bit src register specifier, 5-bit dst register specifier,
5-bit shift amount, 6-bit function field

MIPS I (1984, 32-bit, implemented in R2000, R3000),

MIPS 1I (1990, 64-bit coprocessor, implemented in R6000, see Table 1.5),
MIPS III (1991, 64-bit, implemented in R4000, R4400),

MIPS 1V (1994, 64-bit, in R5000, R7000, R8000, and R10000),

MIPS V (1996, 64-bit, implemented in R12000).

In 1996, MIPS Technologies defined a multimedia extension to their ISA
called?> MDMX (MIPS Digital Media eXtensions) which is used by the
R12000 processor (see Sect.4.9.8). At the same time, a MIPS;s ISA was

2 ... and pronounced “Mad Max”
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defined to be used in a 16-bit TinyRISC processor. In Table 1.5 we give some
basic features of MIPS II ISA.

Advanced RISC Machines ARM ISA. Since 1986, when the first ARM
ISA appeared, four main ISAs of this family were defined. Table 1.6 presents
several processor implementations based on the four ISAs. After the 64-bit
ISA version 4, a low cost ISA version 4T was designed for the 16-bit Thumb
instruction set (as was the case with the MIPS;6 ISA).

Table 1.6. ARM ISAs and implementations

ISA version {implementations  Selected features

1 ARM1
ARM2 Added multipliers, coprocessors
2a ARM3 Added SWP, system coprocessor

3 ARM6, ARM7 Added 32-bit, more exception modes,
separate processor state registers (PSR)
3G Removed backward compatibility with 2a
M ARM7DM Added long and signed multipliers

4 ARMS, StrongARM  Added system mode,

signed-byte and halfword loads/stores
4T ARM7T, ARMIT  Thumb instruction set

HP PA-RISC ISA. The PA-RISC 1.0 ISA was defined in the early
1980s (Mahon et al. [189], 1986) to be a single architecture that would
efficiently span Hewlett-Packard’s three computer lines: the HP3000 com-
mercial minicomputers, the HP9000 technical workstations and servers,
and the HP1000 real-time controllers. Before introduction, the project
was named SPECTRUM. At introduction in 1986, it was known as HP’s
Precision Architecture, HP-PA, or just PA. Subsequently, the ISA was
called PA-RISC. Since its introduction, the PA-RISC ISA has remained
remarkably stable. Only minor changes were made over the next decade to
facilitate higher performance in floating-point and system processing. In
1989, driven by the performance needs of the HP9000 technical workstation
line, PA-RISC 1.1 ISA [131] was introduced with improved floating-point
capabilities, and added architectural extensions to speed up the processing
of performance-sensitive abnormal events, such as misses in the translation
look-aside buffer (TLB, see p.18). PA-RISC 1.1 also added support for
both endian formats (previously, PA-RISC 1.0 was a consistently big-endian
machine). The next ISA, PA-RISC 2.0, was the first to make user-visible
changes to the core integer architecture (Kane [153], 1995). In addition
to support for 64-bit integer data and 64-bit addresses, other user-visible
changes have been added to enhance the performance of new user workloads.
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Table 1.7. DEC Alpha ISA

Data
formats

Register
file

Addressing
modes

Instruction
set (155)

Instruction
formats

byte, 16-bit word, 32-bit longword, 64-bit quadword
little-endian, ANSI/IEEE 754-1985, VAX floating-point

Integer registers:
32 64-bit registers RO to R31, program counter PC,
R30 is designated as a stack pointer (SP),
R31 is always equal zero (hardwired to a zero value).
Floating-point registers:
32 64-bit floating-point registers F0 to F31,
F31 is always equal zero (hardwired to a zero value).

register, immediate, displacement,
PC-relative

integer load/store (12), integer control (14), integer arithmetic (20),
logical and shift (17), byte manipulation (24),

floating-point load/store (8), floating-point control (6),
floating-point operate (47), miscellaneous (7)

register-register, 3-address format
Memory instructions:
6-bit opcode, 5-bit src register specifier,
5-bit src register specifier, 16-bit memory dst field,
or function field (for miscellaneous instruction).
Conditional branch instructions:
6-bit opcode, 5-bit branch condition,
21-bit branch displacement.
Operate instructions:
6-bit opcode, 5-bit src register specifier,
5-bit src register specifier + 3-bit should be zero (if 12th bit is 0),
or 8-bit literal (if 12th bit is 1),
7-bit function field, 5-bit dst register specifier.
Floating-point operate instructions:
6-bit opcode, 5-bit src floating-point register specifier,
5-bit src floating-point specifier, 11-bit function field,
5-bit dst floating-point register destination.
PALcode instructions:
6-bit opcode, 26-bit Privileged Architecture Library code.

For example, Multimedia Acceleration eXtension (MAX) and later MAX-2

13

have been added to speed up multimedia processing on the main processor,

rather than on separate hardware. However, the principal aim of keeping the
programming model stable has been carried forward as much as possible in

the 64-bit version of the architecture.
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DEC Alpha ISA. Alpha is a 64-bit load/store RISC ISA that was designed
in 1992 with particular emphasis on the three elements that mostly affect
performance: clock speed, multiple instruction issue, and multiple processors.
Table 1.7 gives a brief description of Alpha ISA. In 1997 DEC announced

Motion Video Instructions (MVI), an extension first implemented in the
Alpha 21164PC processor.

IBM POWER ISA. The IBM’s POWER (Performance Optimization
With Enhanced RISC) Architecture ISA was defined in 1990 and incor-
porated characteristics common to most other RISC ISAs (Levine and
Thurber [180], Wetss and Smith [323]). It was unique among the existing
RISC architectures in that 1t was functionally partitioned, separating the
functions of program flow control, integer computation, and floating-point
computation. The architecture’s partitioning facilitated the implementation
of superscalar designs, in which multiple functional units concurrently
executed independent instructions. In order to avoid the need for a separate
address computation after each memory access during array manipulation,
the update forms of most load/store instructions were included. These
update forms perform the memory access and place the updated address
(i.e., the address of the next location to be accessed) in the base address
register. In addition, a common operation in many floating-point compu-
tational algorithms i1s to add a value to the product of two other values.
This observation prompted the inclusion of a floating-point multiply-add
instruction, which performs this operation.

IBM /Motorola/Apple PowerPC ISA. Early in 1991, IBM, Motorola,
and Apple formed a partnership whose foundation was the use of a common
ISA derived from the POWER architecture. The PowerPC ISA included most
of the POWER . instructions. Nearly all the excluded POWER instructions
were those that executed infrequently and the compiler could replace by
several other instructions that were in both POWER and PowerPC. The
new PowerPC ISA was expected to permit a broad range of implementations
from low-cost controllers to high-performance processors (with short cycle
times, aggressive superscalar and multiprocessor features) and offer a 64-bit
architecture that is a superset of the 32-bit architecture, thus providing binary
compatibility for 32-bit applications. The PowerPC ISA achieved these goals
and permits POWER customers to run their existing applications on new
systems and to run new applications on their existing systems (see Diefendorff
et al. [66, 67], May et al. [195], Weiss and Smith [323]).
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1.4 Basic Structure of a RISC Processor
and Basic Cache MMU Organization

A simple RISC CPU (as shown in Fig.1.1) consists of an arithmetic logic
unit (ALU) which is connected by two operand input buses and one result
bus with the register file of thirty-two 32-bit general-purpose registers. Only
load/store instructions load or store data from the D-cache to a register or
vice versa. Instruction execution is controlled by the pipeline decode and
control unit, which receives its instructions from the instruction fetch unit.
The instruction fetch unit fetches a single instruction each cycle from the
I-cache. The instruction address is provided by the program counter (PC)
which is automatically incremented by four assuming the usual 32-bit in-
structions and a byte-addressable machine. In the case of previous control
transfer instructions, the PC is loaded by a jump or branch target address.

Pipeline Register

Decode & Fil
Control ” e

Result Bus
| ] 1y 1
Operand Bus B
Instruction I I
FetchT * Operand Bus A
MMU MMU
T l A: Address Lines
I-cache D-cache D: Data Lines
PC: Program Counter
Main Memory

Fig. 1.1. Data path organization of a simple RISC processor
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As semiconductor technology advanced towards yielding chips with higher
component densities, the goal of RISC architecture has been to develop
processors that can come close to issuing one instruction per clock cycle of
the machine. The measures clock cycles per instruction (CPI) or instructions
per clock cycle (IPC) are commonly used to characterize high performance
processor architectures. The achievement of CPI = 1 has been made possible
by two architectural features: cache memories and instruction pipelining.
Today’s multiple issue processors reach CPl < 1, or IPC > 1. Processors
that can issue only one instruction at a time are said to be scalar; those that
can issue more than one instruction simultaneously are said to be superscalar.

Caches. A salient feature of a modern RISC microprocessor is the use of
on-chip L1 (level-one or primary) caches and associated MMUs. Both are
described only briefly here. The primary cache is usually split into two cache
memories, I-cache (instruction cache) and D-cache (data cache), located
in the retrieval paths for instructions and data, respectively (see Fig.1.1).
Separate I-cache and D-cache eliminate the structural hazards that arise

Main Memory Main Memory
Temporal
Secondary Cache Secondary Cache
A 4
A
Spatial Cache
\ 4
. Temporal
Primary Cache Primary Cache
CPU CPU

(2) ®)

Fig. 1.2. Cache memory organization (a) conventional (b) split temporal/spatial

otherwise in a pipeline when the instruction fetch and a memory access
occur in the same cycle. Each cache is organized into sets that are indexed
by part of the effective address (instruction address for the I-cache and data
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address for the D-cache). Each set holds a single cache line (in the case
of a direct mapped cache organization) or typically two or four cache lines
(in the cases of so-called 2- or 4-way set-associative cache organization). If
there exists only a single set, the cache is called fully associative. A cache
line typically consists of 32 bytes (denoting 8 instructions or an equivalent
amount of data), a cache tag and state bits. During cache access the set is
located by part of the address and then the tag of the cache line is compared
with another part of the address. In the case of a n-way set-associative
cache organization, all the tags within a set must be compared in parallel. If
the tag and address part match and the cache line state bits signal a valid
entry, a cache hit occurs and the least significant bits in the address locate
the instruction or value to be loaded within the cache line. In the case of a
cache miss, the missing cache line is fetched from main memory (or from
a secondary, that is, L2 cache) resulting in several cycles of waiting time
— bubbles in the pipeline. The newly arriving cache line replaces a cache
line already in the denoted cache set (a pseudo LRU replacement strategy
is often used in the case of a set-associative cache organization). Depending
on the state bits, the replaced cache line has to be written back to memory
in case of previous store accesses to that cache line. Note that the I-cache
may be made read-only to reduce complexity, because instructions are only
fetched from, but never stored in, the I-cache (at least when self-modifying
code is disabled). If most memory accesses are cache hits in the on-chip
cache memories, the average main memory access time and the number of
pipeline bubbles are greatly reduced.

Cache memory architectures. Existing cache memory architectures
are based on the application characteristics of spatial locality (i.e., items
whose addresses are near one another tend to be referenced close together
in time) and temporal locality (i.e., recently accessed items are likely to
be accessed again in the near future). The existing cache architectures
imply one cache organization (see Fig.1.2a) which benefits from both
localities. Mulutinovic¢ et al. [204] describe the split temporal/spatial cache
(see Fig.1.2b), where they take special advantage of one locality type in one
set of conditions, and the other locality type in another set of conditions.
At compile-time, the data are classified as those exhibiting predominantly
temporal locality or spatial locality. The “temporal” data need a cache
hierarchy, with smaller cache capacity at each level satisfying the needs.
The “spatial” data do not need any hierarchy, and a relatively small prefetch
buffer is expected to satisfy the needs. This cache splitting makes the overall
cache memory considerably smaller for approximately the same performance.

Memory Management Unit. The memory management is performed by
the memory management unit (MMU), whose task is the translation of the
virtual address into a physical address. Its primary functions are:
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¢ Inclusion and management of a fast-access translation lookaside buffer
(TLB) for virtual to physical page address translation. The TLB is orga-
nized like a fully associative cache and usually contains 32 to 256 entries.
Accessing the TLB takes a single machine cycle or less.

e Support of a paging mechanism involved in the virtual memory organiza-
tion, for the segmentation mechanism (if implemented) and for memory
protection.

The MMU access is often overlapped with the set location during cache access
- a cache organization that is called virtually indexed, physically tagged.
Otherwise the MMU access can be done before the cache access (a so-called
physically addressed cache) or after cache access in the case of a cache miss
(a so-called virtually addressed cache). Physically tagged caches require the
cache to be compared with the physical address from the MMU. In such
environments cache miss detection may be a bottleneck in the MMU. A
virtually tagged cache uses virtual addresses when attempting to find the
required word in the cache. The least significant part of the virtual address
is used to access one line of the cache (direct mapped) that may contain
the required word. The most significant part of the virtual address is then
compared with the tag address bits for a possible match, or cache hit. This
scheme ensures that cache misses are quickly detected, and that addresses
are translated only on a cache miss.

For more details on caches and MMU organization, see Hennessy and
Patterson [134] and Shriver and Smith [258].

1.5 Basic Pipeline Stages

One of the major features of modern processors (especially RISC processors)
is the use of a pipelined instruction execution to achieve an average CPI close
to 1. Pipelining is an implementation technique whereby multiple instructions
are overlapped in execution. It is not visible to the programmer. Each step is
called a pipe stage or pipe segment. Pipeline stages are separated by clocked
pipeline registers (also called latches). A pipeline machine cycle is the time
required to move an instruction one step down the pipeline.

Ideally, in a k-stage pipeline an instruction is executed in k cycles by k
stages. If instruction fetching into the pipeline continues, then at any time
— assuming ideal conditions — & instructions will be handled simultaneously
and it will take k cycles for each instruction to leave the pipeline. We define
latency to be the total time needed for an instruction to pass through all
k stages of the pipeline. The throughput of the pipeline is defined to be
the number of instructions that can leave a pipeline per cycle. This rate
reflects the computing power of a pipeline. In contrast to the n * k cycles
on a hypothetical non-pipelined processor, the execution of n instructions
on a k-stage pipeline will take k + n — 1 cycles (assuming ideal conditions
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with latency k cycles and throughput 1). Hence, the resulting speedup is
nxk/(k+n—1)=k/(k/n+1—1/n). If the number of instructions that
are issued to the pipeline is infinite, then the resulting speedup equals the
number k of pipeline stages.

As an example of pipelined instruction execution we assume a simple
instruction pipeline with the basic stages shown in Fig. 1.3. Overlapped ex-
ecution of the five steps leads to a 5-stage pipeline. The pipeline execution

Master
Clock

IF -- Instruction Fetch
Cycle

ID  -- Instruction Decode/Register Fetch
EX  -- Execute/Address Calculation
MEM -- Memory Access

WB -~ Write Back

IF | ID | EX |MEM

I
=] &

IF | ID | EX IMEM]| WB

|

IF | ID | EX |MEM| WB

IF | ID | EX [MEM| WB

IF | ID | EX [MEM| WB
||

Current CPU Cycle

Fig. 1.3. Basic pipelining

proceeds in a smooth manner since each pipeline stage is accomplished in a
single clock cycle. The RISC approach offers such a single cycle execution for
most instructions. Such a pipeline can be found in the DLX3 RISC of Hen-
nessy and Patterson [134] and in the MIPS R3000 processor (Sect.1.7.3).
Today such simple RISC pipelines can be found as core pipelines in signal
processors and in some multimedia processors.

Figure 1.4 shows the basic stages of the instruction pipeline in more detail.
Pipeline stages are buffered by different pipeline registers:

e several program counter registers (PC) in the IF stage, between the IF/ID
and between the ID/EX stages,

o the instruction register between the IF /ID stages,

e the ALU input registers 1 and 2 and the immediate register between the
ID/EX stages,

o the conditional register, the ALU output register, and the store value reg-
ister between the EX/MEM stages, and

e the load memory data register and ALU result register between the
MEM/WB stages.

During instruction execution the following sequence of steps is performed:

3 DLX (pronounced “Deluxe”) is a simple load/store architecture.
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Fig. 1.4. The implementation of the DLX pipeline
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1. In the instruction fetch (IF), the instruction pointed to by the PC is
fetched from I-cache into the instruction register of the CPU, and the PC
is incremented by four (assuming a fixed 32-bit instruction format and a
byte-addressable processor) to point to the next instruction in memory.
In the case of a previous control transfer instruction, the jump/branch
target address from the MEM stage may be used to set the PC for the
instruction to be fetched in the next cycle.

2. In the instruction decode/register fetch (ID), the instruction is decoded,
and in the second half of the stage one of the following actions is per-
formed depending on the instruction:

a) register-register (e.g., arithmetic/logical), then the operands are
transferred from the register file into the ALU input registers;

b) memory reference (e.g.,load/store), then part of the memory address
is transferred from a register to ALU input register 1 and a displace-
ment within the instruction is sign-extended and transferred to the
immediate register (we assume displacement mode as the most com-
plex addressing mode); in the case of a store instruction, the register
value to be stored is transferred to the ALU input register 2;

c) control transfer (e.g., branch on equal), then the displacement within
the instruction is sign-extended and transferred to the immediate
register (we allow PC-relative mode only) for computation of the
jump/branch target address; in the case of a branch instruction, the
register value that determines the branch direction is transferred to
ALU input register 2 (we assume that a previous compare instruction
produced a value that is stored in a general-purpose register).

3. During execution/effective address calculation (EX), the ALU operates
on the operands from ALU input registers, from PC in ID/EX, or from
the immediate register, and eventually puts the result into the ALU out-
put register. The contents of this register depend on the type of instruc-
tion which selects the MUX inputs and determines the ALU operation.
If the instruction is:

a) register-register (e.g., arithmetic/logical), then the ALU outputs the
result of the operation into the ALU output register;

b) memory reference (e.g., load/store), then the ALU output register
contains an effective memory address computed from ALU input reg-
ister 1 and the immediate register; in the case of a store instruction,
the ALU input register 2 (containing the register value to be stored)
is transferred to the store value register;

c) control transfer, then the ALU computes the jump/branch target
address from the PC in ID/EX and the immediate register and stores
it in the ALU output register and, at the same time, the branch
direction (which determines whether the branch will be taken or not)
is tested whether it is zero, and the Boolean result is stored in the
condition register.
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4. The memory access/branch completion (MEM) is performed only for
load, store, and branch instructions. If the instruction is:

a) register-register, then the ALU output register is transferred to the
ALU result register;

b) load, then the data is read from D-cache (as addressed by the ALU
output register) and is placed in the load memory data register;

c) store, then the data in the store value register is written into the
D-cache (as addressed by the ALU output register);

d) control transfer, then for jumps and taken branches, the PC in the
IF stage is replaced by the ALU output register; for branches that
are not taken, the PC remains unchanged (the MUX selection in the
IF stage is done by the conditional register);

5. During write back (WB), the result of the instruction execution - register-
register or load instruction — is stored into the register file in the first half
of the phase. In particular, the load memory data register or the ALU
result register is written into the register file (the flow of the register
selector through the pipeline stages is not shown in the Fig. 1.4).

Only the data flow though the pipeline stages is shown in Fig. 1.4. Control
information generated during the ID stage from the opcode flows through
the subsequent pipeline stages and controls the multiplexers and the ALU
operation.

Notice that all pipeline stages use different CPU resources. Thus, for
example, after an instruction has been delivered to 1D, resources used by IF
become free and are used for fetching the next instruction. Ideally, each cycle
another instruction is fetched and forwarded to the ID stage. The cycle time
of the pipeline is dictated by the critical path, i.e., the slowest pipeline stage.

Ideal conditions mean that the pipeline has to be full. Unfortunately, there
are several potential problems which may disrupt such a smooth instruction
execution in the pipeline. For instance, if only one memory port exists and
a load instruction is in the MEM stage, then memory read conflict appears
between the IF and MEM stages. In this case, the pipeline has to stall one
of the instructions until the required memory port is available. A stall is
also called a pipeline bubble. All the various phenomena that can disrupt the
smooth execution of a pipeline are referred to as pipeline hazards. In the next
section, we will discuss pipeline hazards and the ways to eliminate them or,
at least, minimize their effect.

1.6 Pipeline Hazards and Solutions

Three types of pipeline hazards can be distinguished:

e Data hazards, which arise because of the unavailability of an operand. For
example, an instruction may require an operand that will be the result of
a preceding, still uncompleted instruction.
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e Structural hazards, which arise from some combinations of instructions that
cannot be accommodated because of resource conflicts. For example, if the
processor has only one register file write port and two instructions want to
write to the register file at the same time.

e Control hazards, which arise from branch, jump, and other control flow
change instructions. For example, if an instruction is a branch, and the
branch is to be taken, then the flow of instructions into the pipeline has to
be interrupted, and the branch target must be fetched before the pipeline
can resume execution.

1.6.1 Data Hazards and Forwarding

Several types of dependence may exist between instructions Inst; and Inst,,
assuming that Inst; occurs before Inst;:

e Insty is (true) data dependent on Insty, if Inst; writes its output in a
register Reg (or memory location) that Inst, reads as its input.

e Insty is antidependent on Insty, if Inst; reads data from a register Reg
(or memory location) which is subsequently overwritten by Inst,.

o Insty 1s output dependent on Inst; if both write in the same register Reg
(or memory location) and Insty writes its output after Inst;.

o Insty is control dependent on Insty, if Inst; must complete before a deci-
sion can be made whether or not to execute Insts.

A data dependence is sometimes also called true or real data dependence,
while antidependences and output dependences are sometimes called false
or name dependences. True dependences represent the flow of data through
a program, while name dependences stem from the re-use of storage places
(register or memory).

Data dependences between instructions may cause data hazards when
Insty and Insty are so close that their overlapping within the pipeline would
change their access order to Reg. The first three dependences generate the
following three types of data hazards:

o read after write (RAW) hazard (caused by data dependence),
o write after read (WAR) hazard (caused by antidependence),
o write after write (WAW) hazard (caused by output dependence).

WAW hazards occur only in pipelines that write in more than one stage, or
allow an instruction to proceed even when a previous instruction is stalled.
WAR hazards may occur in a pipeline with a write stage preceding a read
stage. Therefore, in the simple pipeline of Fig.1.3, only a RAW hazard
(demonstrated in Fig. 1.5) may appear, as described below.
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load Regl A

IF ID EX MEM WB

load Reg,B /

IF ID EX MEM WB
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Fig. 1.5. Data hazard in an instruction pipeline

Problem (true data dependence). Consider a sequence of two register-
register instructions, Inst; and Insts with Inst, data dependent on Insty,
and Inst; fetched before Inst,. Suppose that the result of Inst; is to be trans-
ferred to Insty via register Reg. No problem occurs if the two instructions
are executed in a nonpipelined fashion. In a pipelined computation, Inst,
reads Reg during its ID stage. If Insts has been fetched immediately after
Insty, then at that moment Inst; is still in its EX stage and will write the
result into Reg during its WB stage two cycles later. Therefore, if no action
is taken, Insty reads the old value from Reg in its ID stage (demonstrated
in Fig.1.6).

add Reg?,Regl Regl

IF ID EX MEM WB

wrong register read!
{Reg2 old | [Reg2 new]

mul Regl,Regl Regl

IF D EX MEM WB

I = } | ] ]
cycle time time

\

Fig. 1.6. Pipeline conflict due to a data hazard

Software solution. If the pipeline is not able to detect pipeline hazards by
hardware, the compiler has to control pipeline execution. This can be done by
putting no-op instructions after each instruction that causes or may cause (in
the case of a branch) a pipeline hazard. Data hazards, and therefore pipeline
stalls (or execution of no-ops), can be reduced by the compiler, which appro-
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priately rearranges the program code (eliminating no-ops). In the example
above, if possible, two instructions that do not generate new data hazards
should be inserted between Inst; and Insts. This approach is called instruc-
tion scheduling or pipeline scheduling. Such a static approach was of major
interest in the 1980s after pipelined processors became more widespread. For
example, it was used in the MIPS family of microprocessors.

Hardware solutions. We distinguish the following three hardware solutions
to the data hazard problem:

e Interlocking: The simplest way to deal with such a data hazard is to stall
Insty in the pipeline for two cycles. Hardware detection of pipeline hazards
and stalling is called pipeline interlocking. This solution produces bubbles
and considerably degrades speedup. In the above example, stalling pro-
duces two bubbles (see Fig. 1.7). Remember that in our pipeline we assume
that the register write back is completed in the first half of the WB stage
and that the same register value can be read again during the operand
fetch in the second half of the ID stage.

add Reg2,Regl,Regd

IF ID EX MEM WB
| Register Reg2 |
mul Regl,Regl,Regl
IF D EX MEM WB
| | | ] ] ] | o
T T > T T T T -
time

bubbles

Fig. 1.7. Data hazard: hardware solution by interlocking

o Forwarding: There is a more sophisticated solution, requiring a hardware
investment, which is called forwarding. The key insight is that Insty need
not wait until the result of Inst; is written in Reg during WB, if the
result in the ALU output of Inst; in the EX stage can be immediately
forwarded back to the ALU input of the EX stage as an operand for Insts.
In our example, where both instructions are of the register-register type,
forwarding removes all bubbles (see Fig. 1.8).

o Forwarding with interlocking: Unfortunately, forwarding does not resolve
all types of data hazards. If Inst; is a load instruction, forwarding from EX
is of no use, because the EX stage does not produce the value to be loaded,
but the effective memory address in the ALU output register. Assuming
that Insty is data dependent on the load instruction Inst;, then Inst,
has to be stalled until the data loaded by Inst; becomes available in the
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add Reg?,Regl, Reg?

IF D EX MEM WB

mul Regl,Regl,Regl

IF D EX MEM WB

! ] —1 | | -
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Fig. 1.8. Data hazard: hardware solution by forwarding

load memory data register in the MEM stage. Even when forwarding is
implemented from MEM back to EX, one bubble occurs that cannot be
removed (see Fig. 1.9 for the hazard and Fig. 1.10 for the resulting bubble).

load Regl,B
IF D EX MEM | WB
add Reg?,Regl,Reg? not possible!
IF ID EX MEM | WB
— + + — } { >
cycle time time

Fig. 1.9. Pipeline hazard due to data dependence unresolvable by forwarding

load RegR,B

IF ID EX MEM WB

add RegR,Regl,Regl

IF ID EX MEM WB

-

time
bubble

Fig. 1.10. Pipeline bubble due to data dependence

In contrast to static pipeline scheduling, where the compiler separates in-
structions causing data hazards, dynamic (i.e., run-time) pipeline scheduling
is implemented in hardware. These solutions will be discussed in Sect. 3.2.
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1.6.2 Structural Hazards

Problem (resource conflict). Structural hazards do not arise in the sim-
ple pipeline in Fig.1.3. However, let us suppose that the MEM stage would
be able to write back an ALU output in the case of a register-register in-
struction (from the ALU output register) into a register file with a single
write port. Consider a sequence of two instructions, Inst; and Insty, with
Inst; fetched before Insts, and assume that Inst; is a load, while Insts is
a data independent register-register instruction. Due to memory addressing,
the data requested by Inst; arrives at the register file port at the same time
as the result of Insts, causing a resource conflict (see Fig.1.11).

load Regl,A
WB
IF ID EX MEM WB
] Register file
mul Reg3,Reg4,Regb
WB
IF ID EX MEM WB
f I % I l —
cycle time time

Fig. 1.11. A potential resource conflict due to a structural hazard

Solutions. When instructions cannot be simultaneously accommodated be-
cause of resource conflicts, two types of hardware based solutions exist:

o Arbitration with interlocking: Structural hazards can be resolved by hard-
ware that performs resource conflict arbitration and interlocks the in pro-
gram flow succeeding of the two competing instructions. Clearly, bubbles
may result if this technique is used for resolving structural hazards. In the
example above, the load instruction writes into the register file, while the
mul instruction would be deferred, producing one bubble.

o Resource replication: The effects of structural hazards can be alleviated by
the replication of hardware resources. No bubbles can appear in this way. In
the example above, a register file with multiple write ports would enable
simultaneous writes to different destination registers. In the case of the
same destination register, either arbitration and interlocking is necessary,
or (as in Fig. 1.11) the value produced by the load instruction is discarded
and the ALU output register value of the mul instruction is used.
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1.6.3 Control Hazards, Delayed Branch Technique,
and Static Branch Prediction

Problem (control conflicts). Control hazards can be caused by jumps and
by branches. Let Insty, Insty, Insts . ..be a sequence of instructions, fetched
in this order, one immediately after the other.

Assume that Inst; is a jump. The jump address is computed in the EX
stage and replaces the PC in the MEM stage, while Insts is in the EX stage,
Insts is in the ID stage, and Insty4 is in the IF stage. Assuming that the jump
address does not point to Insty, Insts, or Insts, the prefetched instructions
Insty, Insts, and Insts should be canceled (i.e., nullified or flushed) and
the instruction at the jump address fetched. The three instructions following
Inst; form the so-called delay slots. A simple solution, which avoids cancel-
lation, is to fill the delay slots with no-op instructions.

branch
instruction
IF ID EX MEM WB
PC
branch target
instruction
IF D EX MEM WB
e e E A E
-] N, .
three bubbles time

Fig. 1.12. Bubbles after a taken branch

More troublesome control hazards are caused when Inst; 1s a branch
instruction. Recall from p.21, that branch direction and the branch target
address, which is necessary if the branch is to be taken, are both computed in
the EX stage (the branch target address replaces the PC in the MEM stage).
If the branch is taken, the correct instruction sequence can be started with
a delay of three cycles since three instructions of the wrong branch path are
already loaded in different stages of the pipeline (see Fig. 1.12).

In order to reduce the number of delay slots, the calculation of the branch
direction and the branch target address should be done in the pipeline as early
as possible. This could be in the ID stage after the instruction has become
recognized as a branch instruction. However, then the ALU can no longer be
used for calculating the branch target address, since it may still be occupied
by the previous instruction. Recall, that this is a structural hazard, which can
be avoided by an additional ALU for the branch target address calculation
in ID stage. Assuming an additional ALU and a write-back of the branch



1.6 Pipeline Hazards and Solutions 29

target address to the PC already in the ID stage (if the branch is taken)
only a single cycle delay slot arises, which can often be filled by instruction
reordering at compile-time.

Although this reduces the branch delay to a single cycle, now a new
pipeline hazard may arise. An ALU instruction followed by a branch on the
result of the instruction will incur a data hazard stall even when the result
value is forwarded from the EX to the ID stage (similar to the data hazard
from a load with a succeeding ALU operation that needs the loaded value).
The main problem with this pipeline reorganization is that the decode, the
branch target address calculation, and the PC write-back must be done se-
quentially within a single pipeline stage. This may lead to a critical path in
the decode stage that reduces the cycle rate of the whole pipeline.

Software solutions. Control hazards can be dealt with by several software-
based techniques:

o Delayed jump/branch technique: The compiler fills the delay slot(s) with

instructions that are in logical program order before the jump or branch. Of
course, this is only possible if these instructions have no effect on the branch
direction (we assume the branch target address does not point to one of the
instructions in the delay slots). Notice that, in this case, the instructions
moved within the slots are executed regardless of the branch outcome.
This is the simplest solution viewed from hardware side. A cancellation of
fetched instructions is not necessary, thus sparing hardware complexity (the
simple pipeline in Fig. 1.4 is of that type). If there is lack of instructions that
can be moved in the delay slots, no-op instruction(s) are used to fill up the
slot(s). According to some program trace results, the probability of moving
one instruction into the delay slot is greater than 60 %, that of moving two
instructions is about 20 %, and that of moving three instructions is less
than 10 %.
Delayed branching was a popular technique in the first generations of
scalar RISC processors, such as the IBM 801, Berkeley RISCI, and Stan-
ford MIPS. In superscalar processors where more than one instruction can
be fetched and processed simultaneously (see Sect.4.1), the delayed branch
technique complicates the instruction issue logic and the implementation
of precise interrupts. However, due to compatibility reasons, it is often still
in the ISA of some of today’s microprocessors — for example, in SPARC-
or MIPS-based processors.

o Compiler-directed (static) branch prediction: A bit in the opcode of the
branch instruction allows the compiler to influence the prediction. Instruc-
tions are fetched from the predicted branch target address. If the prediction
followed the wrong instruction path, then the instructions wrongly fetched
are discarded from the pipeline. Static branch prediction means — in con-
trast to dynamic branch prediction — that the machine cannot dynamically
alter the branch prediction. So static branch prediction comprises machine-
fixed prediction (e.g., always predict taken) and compiler-driven prediction.
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Hardware solutions. Control hazards can also be dealt with by hardware-
based techniques:

o Interlocking: This is the simplest way to deal with control hazards. The
hardware must detect that the I'nst; is a branch and apply hardware inter-
locking to stall the next instruction Inst,. For the pipeline in Fig. 1.3, this
produces three bubbles in cases of jump or of (taken) branch instructions
(since the effective branch target address is written back to the PC during
the MEM stage, see p.21).

o Wired taken/not-taken prediction: The static branch prediction can be
wired into the processor by predicting that all branches will be taken (or
all not taken).

e Branch target address cache: The branch target address cache (BTAC) is
a small cache memory associated with the IF stage of the pipeline. The
BTAC is a set of tuples each of which contains:

Fueld 1: the address of a branch (or jump) instruction (which was exe-

cuted in the past),

Field 2: the most recent target address for that branch or jump,

Field 3: information that permits a prediction as to whether or not the

branch will be taken.
The BTAC functions as follows: the IF stage compares the PC against the
addresses of jump and branch instructions in BTAC (Field ). Suppose
that there is a match. If the instruction is a jump, then the target address
1s used as the new PC rather than incrementing the PC. All bubbles are
removed. If the fetched instruction is a branch, a prediction is made based
on information from BTAC (Field 3) as to whether the branch is to be
taken or not. If it is to be taken, the most recent branch target address
is read from BTAC (Field 2) and used to fetch the target instruction. Of
course, a misprediction may occur. Therefore, when the branch direction
is actually known in the MEM stage, the BTAC can be updated with the
corrected prediction information and the branch target address.
One of the critical issues is how large the BTAC should be and how it
should be organized (e.g., associative memory, hashed). To keep the size
of the BTAC as small as possible, only branches that are predicted to
be taken are stored while those which turned out not to be taken may
be removed. Since the hardware alters the prediction direction due to the
“history” of the branch, this kind of branch prediction is an example of a
simple dynamic branch prediction. The process described above implements
a one-bit predictor. More dynamic branch prediction techniques follow in

Sect. 4.3.

1.6.4 Multicycle Execution

Problem (multicycle execution). Consider a sequence of two instruc-
tions, Inst; and Insts, with Inst; fetched before Insty, and assume that
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Inst, is a long-running (e.g., floating-point) instruction. Another example of
a long-running instruction is the load instruction in our example pipeline
processor. The load instruction needs two cycles to execute — one cycle to
compute the effective address and a second cycle for MMU look-up and D-
cache access.

To handle long-running Inst;, it would be impractical to require that all
instructions complete their EX stage in one clock cycle since that would mean
accepting a slow clock, or using enormous amounts of logic, or both. Instead,
the EX stage might be allowed to last as many cycles as needed to complete
Insty. This, however, causes a structural hazard in the EX stage because the
succeeding instruction [nst; cannot use the ALU in the next cycle.

Solutions. Several solutions to this problem can be identified:

o Interlocking: The simplest way to deal with such a structural hazard is to
stall Insts in the pipeline until Inst, leaves the EX stage.

o Pipelining the EX stage: If the EX stage is pipelined itself, the structural
hazard is avoided, because the EX stage is able to accept another instruc-
tion in each cycle (throughput is 1).

o Multiple functional units: There may be multiple functional units so that
Inst, may proceed to some other functional unit and overlap its EX stage
with the EX stage of Inst;.

Interlocking is inefficient as it produces bubbles and thus considerably de-
grades speedup.

Pipelining the EX stage is the solution that was chosen for load instruc-
tion execution in our example pipeline in Fig. 1.4 by providing separate EX
and MEM stages (instead of a single combined EX/MEM stage). Striving
for a simple hardware implementation of the two-cycle load instruction was
the reason for deciding to forward the results of single-cycle arithmetic-logic
mstructions through the MEM stage, which delays write-back of the results
by one cycle. Delaying write-back of results of simple instructions prevents
WAW hazards in the pipeline.

div Reg3,Regll,ReglR

IF 1D EX EX MEM WB

Register Reg3]  several cycles
later
mul Reg3 Regl Regd }

IF D EX MEM WB

l | ] ] | { | o
T T T T T T T gl

Fig. 1.13. Example of a WAW hazard
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A more complex solution is the use of multiple FUs and simultaneous
execution. This solution, however, implies that instructions may not complete
in the original program order (see Fig. 1.13). Since the div instruction’s EX
stages may last from one to tens of cycles, the mul instruction proceeds to
the WB stage before the div instruction. Unfortunately, such an out-of-order
execution may cause a WAW hazard in the case where there is an output
dependence between the two instructions. There are two solutions to solve
the WAW hazard in Fig. 1.13:

e The mul instruction delays its write-back until the div instruction has
written its result to the register which is subsequently overwritten.

¢ The more elegant solution is to write back the result of the mul instruction
immediately and discard the result of the div instruction which is never
used by another instruction in the example in Fig. 1.13. Unfortunately, the
question arises as how to implement a precise interrupt in the case of, for
example, a division by zero (solutions are given in Sect.4.8.3).

Until now, we have looked at simple pipelined processors that use an in-
order erecution pipeline organization; that 1s, instructions are issued to the
FUs and execution is initiated in exactly the same order as the dynamic
sequence of instructions in the program. If multiple FUs are provided, an
out-of-order execution is the next step. In the case of out-of-order execution,
WAW hazards must be solved, and even an antidependence can cause a WAR
hazard if a subsequent instruction starts execution and writes back its result
before a previous instruction gets its operands. Solutions to this problem

are delivered by the scoreboarding technique and by the Tomasulo’s scheme,
both described in Chap. 3.

1.7 RISC Processors

In this section some scalar RISC processors will be presented. We start with
the first RISC processors — IBM 801, Berkeley RISC I and II, Stanford MIPS
— which are the ancestors of all later commercial RISC processors. We also
mention the GaAs microprocessor, based on Stanford MIPS, which was de-
veloped by RCA Corp. Next, we describe the SPARC family of processors,
which originates from Berkeley’s RISC project, and dates back to 1987 when
Sun introduced the first SPARC-based computer Sun-4. After that, we de-
scribe the MIPS R3000 pipelined RISC processor that emerged in 1988 as
one of the most well-known descendants of Stanford’s MIPS project. Note
that early RISC processors never contained a floating-point unit due to lack
of chip space. There follows the MIPS R4400 RISC processor whose super-
pipelined architecture provides a good balance of integer and floating-point
performance. Next we itemize several other pipelined RISC processors, in-
cluding the Fairchild/Intergraph Clipper, ARM, Hewlett-Packard PA-RISC,
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AMD 29000, and Motorola MC 88000. Finally, the pipelined processor pico-
Javal is also included in this section, although its stack-based ISA with too
many instructions and variable-length instruction format violates the RISC
philosophy.

1.7.1 Early Scalar RISC Processors

IBM 801 and ROMP  (Radin [237]): The first system to formalize RISC
principles was the IBM 801 project which began in 1975. The design goal
was to speed up frequently used instructions while discarding complex
instructions that slowed the overall implementation. Memory access was
limited to load/store instructions (locking the register until complete, so
most execution could continue). Branches were delayed, and instructions
used a three operand format. Execution was pipelined, allowing CPI = 1.
There were thirty-two 32-bit registers in the register file, but no floating
point unit and no floating-point registers. IBM tried to commercialize the
801 design starting in 1977 but it was not successful.* Subsequently, in the
mid-1980s, a commercial RISC-type processor, the Research Office products
division Microprocessor (ROMP) was announced. Compared to the 801, it
had a smaller percentage of instructions executing in a single cycle and 65 %
of its instructions were 16-bit, while the others were 32-bit. The ROMP was
used in the IBM RT 6150 and RT 6151 workstations.

Berkeley RISC I and II (Patterson and Ditzel [231], 1980): The term
RISC came from Berkeley’s project, which was the basis for the later
SPARC processor. Because of this, their features are similar, including
a windowed register file (10 global and 22 windowed, vs 8 and 24 for
SPARC, see also Sect.1.7.2) with RO wired to zero. Branches are delayed.
All instructions have a bit to specify whether condition codes should be
set, and execute in a 3-stage pipeline. In addition, next and current PC
are visible to the user, and last PC is visible in supervisor mode. The
Berkeley project also produced an I-cache with some innovative features,
such as instruction line prefetch that identified jump instructions, fre-
quently used instructions compacted in memory and expanded upon cache
load, additional cache-chip support, and bits to map out defective cache lines.

Stanford MIPS (Hennessy et al. [133], 1981): The Stanford MIPS project
was the basis for the MIPS R2000 and R3000. Stanford MIPS used the

* This was not the only innovative design developed by IBM which never saw
daylight. Slightly earlier the Advanced Computer System pioneered superscalar
design, speculative execution, delayed condition codes, multithreading, imprecise
traps and instruction streamed interrupts, and load/store buffers, plus compiler
optimization to support these features. It was expensive and incompatible with
the System/360, so it was not pursued, but many ideas did find their ways into
the expensive high-end mainframes.
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compiler to eliminate register conflicts. Like the R2000, the Stanford MIPS
had no condition code register, and a special HI/LO register pair was
used in multiply and divide instructions. Unlike the R2000, the Stanford
MIPS had only 16 registers, and two delay slots for load/store and branch
instructions. The PC and the last three PC values were tracked for exception
handling. Instructions were packed (like the Berkeley RISC), in that many
instructions specified two operations that were issued in consecutive cycles
(not decoded by the cache). In this way, it was a dual-issue VLIW, but
executed sequentially. User assembly language was translated to packed
format by the assembler.

RCA GaAs RISC/MIPS (Milutinovi¢ et al. [203], 1986): For its Star Wars
program in mid-1980s, the US Department of Defense intended to develop
a microprocessor chip having as much computing power as 100 DEC VAX
11/780 superminicomputers. One candidate for such a processor was a gal-
lium arsenide (GaAs) version of the Stanford MIPS architecture. GaAs tech-
nology is, at the same power consumption, about a half order of magnitude
faster than silicon technology, and several orders of magnitude more radiation
hard. Unfortunately, GaAs is also characterized by some undesirable proper-
ties, such as high cost and low transistor count capability. The requirement
specified a full 32-bit engine with a clock frequency of 200 MHz and compu-
tation rate 100 MIPS. In his book, Milutinovi¢ [202] takes the reader through
all phases of the design of such a processor on a VLSI chip, which was very
much ahead of its time.

1.7.2 Sun microSPARC-II

Since SPARC is a large family of RISC processors some of which will also ap-
pear as superscalar RISC processors in Chap. 4, we first briefly describe the
SPARC’s philosophy and an architectural concept, called register window,
that is common to all of them. SPARC can be thought of as a branch stem-
ming from the Berkeley RISC. It was designed by Sun Microsystems for their
own use, but in keeping with the open philosophy, Sun licensed it to other
companies (see Table 1.4). The history of the SPARC architecture dates back
to 1987 when Sun introduced the Sun-4, the first SPARC-based computer.
Over the years since its release it has become a vehicle for an array of chips
from numerous vendors, and the foundation upon which many manufacturers
are still basing new workstation products.

While most RISC CPUs at that time (e.g., AMD 29000, MIPS R2000,
HP PA-RISC) were more conventional, the SPARC design was quite radical,
omitting multiple cycle multiply/divide instructions® and using single-cycle
“step” instructions instead. SPARC usually contains about 128 or 144 regis-
ters. At any time 32 registers are available — 8 of them are global, the rest

5 Added in later versions.
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are allocated in a so-called window, which is a subset of registers from the
register file (see Fig.1.14). The register window of the procedure currently
running is called the active window (and is pointed to by the current window
pointer CWP in the processor state register PSR). During a function call,
the active window is moved 16 registers down the register file, so that § reg-
isters remain local while the upper and lower 8 registers are shared between
functions for passing and returning values. On return, this window is moved
up, so registers are loaded or saved only at the top or bottom of the window.
This allows functions to be called in as little as one cycle with a parameter
transfer of up to 8 register values.

Physical registers Logical registers
Previous Window
R127 ] r31 ]
... Ins
[ R120 r24
R119 [ r23
; .. Locals
R112 16 | Active Window
RN r5 3
J .. Outs _"';{ .« Ins
R104 [ r8 || r2a
R103 123 ]
.. Locals
R96 [ r16 | Next Window
| R95 1 [rs5 3]
] ‘ « Outs .. Ins
R8S | [ 8 [ r24
R87 r23
| e [;.TLocals
R80 | ri6
R79 Ms |
' . ouws |
R7T2 | N
(R ] 7
RO

Fig. 1.14. Overlapping windows in SPARC

If the number of register windows is insufficient during program execution,
a trap is signaled and a trap routine stores or loads register values to or from
memory. To reduce loads and saves between functions, SPARC can be scaled
up to 512 registers, thus allowing a circular stack of up to 32 overlapping
windows. On the other hand, it can be scaled down to reduce context switch
time, when the entire register set has to be saved. Function calls are usually
much more frequent than context switches, so the large register file is usually
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an advantage, but compilers can now usually produce code that uses a fixed
register set as efficiently as a windowed register file across function calls.

Like most RISC processors, global register r0 is wired to zero to simplify
instructions. SPARC is pipelined (though not as deeply as other RISC pro-
cessors) and uses one branch delay slot. Like previous processors, a dedicated
condition code register (CCR) holds comparison results.

SPARC is not a chip, but an architectural specification, so there are var-
lous designs of it (see Table 1.4). It has undergone many revisions, and now
it supports multiply/divide instructions. Original versions were 32-bit, but
64-bit and superscalar versions were designed and implemented beginning
with the Texas Instruments and Sun SuperSPARC in late 1992. Later its
performance lagged behind other RISCs and even behind Intel x86 CISC
processors until, in late 1995, the UltraSPARC-I and now UltraSPARC-II
(see Sect.4.9.5) and SPARC 64 multichip CPU have emerged. These super-
scalar processors will be covered in Chap. 4. Here we describe microSPARC-II,
which is one of the latest scalar SPARC processors.

The microSPARC-II 32-bit microprocessor is a highly integrated, high-
performance microprocessor. Implementing the SPARC ISA version 8 speci-
fication, it is well suited for low-cost uniprocessor applications. It is built with
CMOS technology featuring 0.5 um geometries, a 3-layer metal silicon pro-
cess, with the core operating at low voltage for optimized power consumption.
A block diagram of the microSPARC-II chip is shown in Fig.1.15.

The microSPARC-II includes an integer unit (IU), an optimized floating-
point unit (FPU), a memory management unit (MMU), I-cache and D-cache,
programmable DRAM controller, SBus controller, graphics interface support,
IEEE 1149.1 boundary scan test bus, power management and clock gener-
ation capabilities. Technical features of some of these components are given
below:

e The IU executes SPARC integer instructions defined in the SPARC ISA
version 8. The IU contains 136 registers organized in 8 windows and 8
global registers. It operates on prefetched instructions using a 5-stage
pipeline. The throughput is improved by using branch folding and single
cycle load/store instructions.

e The FPU (based on a Meiko design) fully executes all single and double
precision floating-point instructions as defined in the SPARC ISA version 8.
The FPU contains thirty-two 32-bit registers, a general-purpose execution
unit, and a floating-point multiplier allowing in most cases the parallel ex-
ecution of an FPMUL and another floating-point instruction. A 3-instruction
deep queue of floating-point instructions is provided to increase the effi-
ciency of concurrent floating-point and integer execution.

e The MMU translates 32-bit virtual addresses of each running process to
31-bit physical addresses in memory. The 3 high-order bits of the physical
address are reserved to support memory mapping into 8 different address
spaces. The unit also serves as an I/O MMU and controls the arbitra-
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Fig. 1.15. Block diagram of the Sun microSPARC-II

tion between I/0, I-cache, D-cache, and TLB references to memory. The
MMU contains a 64-entry fully associative TLB. It supports 256 contexts
and protects memory so that a process can be prohibited from reading or
writing to the address space of another process.

o The I-cache is a 16 kB direct-mapped, virtually indexed, virtually tagged
cache. The I-cache data is organized as 512 lines of 32 bytes plus 32 tag
bits. Cache refill is done two 32-bit words at a time. Cache streaming and
bypass are supported.

o The D-cache is an 8 kB, direct-mapped, virtually indexed, virtually tagged,
write-through cache with no write allocate. The data store is organized as
512 lines of 16 bytes plus 32 tag bits. Single-word integer and double-word
floating-point read/write cache hits take one clock cycle. There is a four-
deep store buffer to hold data being stored from the IU or FPU to memory
or other physical devices. The store buffer is composed of 64-bit registers.
Cache refill is done two 32-bit words at a time. Cache streaming and bypass
are supported.

o The memory interface is provided by a complete DRAM controller which
generates all the signals necessary to support up to 256 MB of system
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memory. The DRAM bus is 64-bit wide with two parity bits, each covering
32 bits of data. The system DRAM is organized as eight banks, each of
which may be 2 MB, 8 MB, or 32 MB depending upon the size of DRAM
used.

e The SBus interface, as the principal I/O bus interface, performs all the
functions necessary to connect the processor to the SBus, including dy-
namic bus sizing, cycle re-run control, burst cycle re-ordering, arbitration,
and general SBus control. The SBus interface works with the MMU to ar-
bitrate the system and memory resources and for I/O address translations.

e The chip has a five-wire test access port (TAP) interface to support internal
scan, boundary scan and clock control. This interface is compatible with
the IEEE 1149.1 specification for standard test access port and bound-
ary scan architecture. This allows efficient access to any single chip in the
daisy chain without board-level multiplexing. The TAP controller is a syn-
chronous finite state machine (with 16 states) which controls the sequence
of operations of the test circuitry, in response to changes at the bus. The
TAP controller is asynchronous with respect to the system clock(s), and
can therefore be used to control the clock control logic.

Taking advantage of optimized compiler technology and running with the
internal CPU clock at 85 MHgz, the throughput of the microSPARC-II has
been measured above 64 SPECint92 and 54 SPEC{p92.

1.7.3 MIPS R3000

The R3000 processor family (Kane and Heinrich [154]) stems from the Stan-
ford MIPS and is most similar to the DLX. MIPS architecture recognizes four
coprocessors, denoted CPO through CP3. CPO is the system control copro-
cessor that supports the virtual memory system and exception handling. It
is always incorporated on the CPU chip. CP1 is the floating-point coproces-
sor, CP2 is reserved for future definition by MIPS, and CP3 provides some
extensions to the MIPS ISA.

The R3000 family has been shipped in volume since 1988 as a second-
generation MIPS RISC microprocessor (following up the R2000, the first
commercially available RISC processor introduced in 1985 by MIPS Com-
puter Systems, the predecessor of MIPS Technologies). One of the principal
characteristics of the R3000 is its simplicity. The R3000 family consists of
the R3000 CPU (with CPO on-chip) fabricated at that time in 1.2 um CMOS
technology with an internal frequency of 40 MHz, the R3010 FPU chip (CP1),
and a variety of other derivatives and support chips. CP1 includes thirty-two
32-bit registers and performs 32-bit (single precision) and 64-bit (double pre-
cision) ANSI/IEEE 754-1985 standard floating-point operations. The three
operation units of CP1 (for adding/subtracting, multiplying, and dividing)
can operate in parallel (Rowen et al. [248]). The derivatives and support
chips were tailored for specific markets such as embedded controllers and
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Fig. 1.16. Block diagram of the MIPS R3000

low-cost workstations. There is no CP3 coprocessor since the implementa-
tion of R3000 1s based on MIPS I ISA. Instructions have fixed 32-bit format
with three main format types: I-type (immediate), J-type (jump), and R-type
(register). A block diagram of the R3000 chip is shown in Fig. 1.16.

The R3000 features a similar 5-stage pipeline as shown in Fig. 1.3:

1. In the IF stage the instruction physical address is read from the 48-entry
TLB.

2. In the ID stage the instruction is fetched from external I-cache. Operands
are read from the CPU register file while the instruction is being decoded.

3. During the EX stage the required operation is performed on the
operand(s).
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4. In the MEM stage external D-cache is accessed for load/store instruc-
tions.

9. During the WB stage the ALU result or the value loaded from the D-
cache is stored into the register file.

One of the features of the MIPS architecture is the partial exposure of the
pipeline to the programmer since the pipeline hardware is not able to recog-
nize pipeline hazards.

1.7.4 MIPS R4400

The MIPS R4400 is a superpipelined® system with an external frequency
of 75 MHz and the pipeline running at an internal frequency of 150 MHz.
Although the R4400 is a fully-fledged 64-bit system, its instructions are uni-
formly 32-bit, as specified in Table 1.5. The processor has an on-chip floating-
point unit (FPU) and an I-cache and D-cache with a capacity of 16 kB each.
The processor is a 2.2 million transistor chip made in 0.6 um CMOS technol-
ogy (see Kane and Heinrich [154]).

A block diagram of the R4400 is shown in Fig. 1.17. There is an integer
unit (CPU), a floating-point unit (FPU, also called CP1), a system control
coprocessor (CP0), an I-cache and a D-cache. The caches are organized as di-
rect mapped and are each 16 kB in size. The processor supports a secondary
(L2) cache that can range in size from 128kB to 4 MB and can either be
split into I-cache and D-cache (Harvard approach) or unified (Princeton ap-
proach).” The R4400 caches allow the processor pipeline to execute at the
rate of one clock cycle per instruction and also to minimize the load latency.

The CPU is capable of handling 64-bit operands and has thirty-two 64-
bit general purpose registers. Two of them have assigned functions: r0 is
hardwired to 0, and r31 is the link register used by jump and link instructions.
There are three special purpose registers: PC, HI and LO. The latter two either
hold the product of an integer multiply operation, or the quotient (L0) and
remainder (HI) of an integer divide operation. Separate multiply and divide
units allow multiplication and division to take place in parallel with other
instructions.

The R4400 incorporates a CP0 on chip, responsible for translating vir-
tual addresses to physical addresses, exception handling, as well as some

% In the original sense introduced in the context of the R4000 processor, super-
pipelining meant a long pipeline with an internal clock frequency that was twice
as high as the I/O interface. Today, all processors are clocked two or three times
as fast as the 1/O. Therefore the term superpipeline is no longer used very often.
Then it usually just means: a long pipeline.

" While the Princeton architecture has a single memory for instructions and data,
the Harvard architecture has separate memories, so simultaneous data and in-
struction access do not conflict.
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Fig. 1.17. Block diagram of the MIPS R4400

diagnostic capability. The CP0 contains a 48-entry TLB and several regis-
ters, some of which are used for memory management while the others are
exception/control registers.

The CP1 is fully compliant to the ANSI/TEEE 754-1985 standard. CP1
has 32 registers which can be accessed as thirty-two 32-bit registers or sixteen
64-bit registers. There are separate add, multiply, and divide units to allow
these operations to take place in parallel (with multiply/divide using the
adder at the end of their operation).

The R4400 8-stage instruction pipeline is shown in Fig.1.18. It applies
superpipelining which effectively stretches R3000’s 5-stage pipeline to the
8-stage pipeline in the R4400. In principle, the time-critical stages of the
R3000 pipeline are split into two, or even three, stages. The splitting results
in separate IF and IS stages instead of the single IF stage in R3000, and in
separate DF, DS, and TC stages replacing R3000’s MEM stage.

The R4400 pipeline stages are:

1. In the IF stage an instruction address is selected by the branch logic
and the I-cache fetch begins. The TLB starts virtual to physical address
translation.
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Fig. 1.18. Pipeline stages in the MIPS R4400

2. In the IS stage the I-cache fetch and the TLB translation are completed.

3. During the RF stage the instruction is decoded and checked for interlock
conditions. The I-cache tag is checked against the page frame number
obtained from the TLB. Any required operands are fetched from the
register file.

. The EX stage performs as follows:

a) for register-register instructions, the ALU performs the arithmetic or
logical operations;

b) for load/store instructions, the ALU calculates the data virtual ad-
dress;

c) for branch instructions, the ALU determines whether the branch con-
dition is true and calculates the virtual branch target address.

. The DF stage performs as follows:

a) register-register instructions perform no operations during the DF,
DS, and TC stages;

b) for load/store instructions, the D-cache fetch and the data address
translation starts;

c) for branch instructions, the target address translation and TLB up-
date are initiated.

. The role of the DS stage is:

a) for load/store instructions, the D-cache fetch and data address trans-
lation are completed. The shifter aligns the data to the word or dou-
ble word boundary;

b) for branch instructions, the target address translation and TLB up-
date are completed.

. During the TC stage:
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a) for load/store instructions, the cache performs the tag check, i.e., the
physical address from the TLB is checked against the cache tag to
determine whether there is a hit or miss;

b) for branch instructions no operations occur during the TC and WB
stages.

8. In the WB stage:

a) for register-register instructions, the result is written back to the
register file;

b) for load/store instructions the value is either loaded from D-cache to
the register file or stored from register file to D-cache.

Superpipelining enables the MIPS R4400 to issue more than one instruction
within a base clock cycle, but still one instruction after the other.

1.7.5 Other Scalar RISC Processors

Fairchild/Intergraph Clipper (1986): The Clipper C100 was developed by
Fairchild and later sold to workstation-maker Intergraph which took over
the chip development and in 1988 produced the C300 processor. Since it
could not compete in processor technology, Intergraph decided to switch to
Intel x86-based processors. The C100 was a three-chip set (like the Motorola
MC88000 but predating it by two years), with a Harvard architecture
CPU and separate cache chips for instruction and data. Instruction lengths
were 16- and 32-bit. It had sixteen 32-bit user registers and eight 64-bit
floating-point registers. There was a bank of sixteen supervisor registers
which completely replaced the user registers. In addition, there were some
microcoded instructions.

ARM (1986): Advanced RISC Machine (ARM, originally Acorn RISC
Machine, from Cambridge, UK) was designed as a processor chip for the
Archimedes home computer. ARM design was based partly on the Berkeley
RISC and was fabricated by VLSI Technologies, Inc. It was a 3-stage
pipeline, and operated in big-endian or little-endian mode. The first ARMs
(ARM1, 2, and 3) were 32-bit CPU, but used 26-bit addressing. The next
ARMES series is a completely 32-bit CPU. It has user, supervisor, and various
interrupt modes. The ARM architecture has sixteen registers (including
user-visible PC as R15), though many registers are shadowed in interrupt
modes so they need not be saved, for fast response (as in PA-RISC, see
below). Features implemented for high code density include: barrel shifter
(to perform arbitrary shifts within the same cycle, at no speed penalty),
conditional execution on every instruction (to eliminate many branches), and
load/store multiple instructions (for rapid context switching and memory
transfer). A feature introduced by the ARM is that every instruction is
predicated (see Sect.4.3.4) using a 4-bit condition code. This idea was later
used in the Texas Instruments TMS320C6x processors (Sect.4.10.1), as
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well as in the forthcoming Hewlett-Packard and Intel processors based on
TA-64 architecture (Sect.4.10.2). ARM has also developed a low-cost 16-bit
version called Thumb, which decodes a subset of ARM CPU instructions
into 16 bits. Native ARM code can be mixed with Thumb code when the
full instruction set is needed. The 16-bit instructions are exploded to native
32-bit ARM instructions without penalty — similar to the CISC decoders
in Intel x86-compatible and Motorola MC 68060 processors, except they
decode native instructions into a newer set, while Thumb does the reverse.
Thumb programs can thus be 30% to 40% smaller than already dense
ARM programs. The newer ARM7 series (from December 1994) increases
performance by an optimized multiplier, and added DSP extensions includ-
ing 32-bit and 64-bit multiply and multiply/accumulate instructions. The
ARMYT is a small 32-bit microprocessor with very low power consumption.
Its 3-stage pipeline features a combined shift ALU execution stage allowing
a single instruction to specify one of its operands for shifting or rotation
before it is passed to the ALU. It also doubles cache size to 8kB. A full
DSP coprocessor Piccolo (1997) adds an independent set of sixteen 32-bit
registers (four of which can be used as 48-bit registers) and a complete
DSP instruction set, using a RISC philosophy similar to the ARM itself.
Piccolo has its own PC, interacting with the CPU which performs data
load/store through I/0 buffers connected to the coprocessor bus. Piccolo
shares the main ARM bus, but uses a separate instruction buffer to reduce
conflicts. Two 16-bit values packed in 32-bit registers can be computed in
parallel, similar to the HP PA-RISC MAX-1 multimedia instructions. DEC
has also licensed the architecture, and in 1996 developed the StrongARM
SA-110 processor, running a 5-stage pipeline at 100 to 233 MHz and using
only 1W of power, with 5-port register file, faster multiplier, single cycle
shift-add, and Harvard architecture (I-cache and D-cache are each 16kB)
(see Santhanam [255), Jaggar [149]). To fill the gap between ARM7 and
StrongARM, ARM also developed the ARMS series which includes many
StrongARM features. ARMS8 extends the ARM7 implementation by two
additional pipeline stages and a new cache interface that allows instruction
fetches in parallel with data accesses. Static branch prediction (backward
branches are predicted taken, forward branches are predicted untaken) with
a three-cycle misprediction penalty is applied.

HP PA-RISC (1986): The PA-RISC (Precision Architecture) was designed
to replace Motorola MC 68000 processors in HP-3000 minicomputers and
HP-9000 workstations. It has an unusually large instruction set for a RISC
processor that includes, for example, a conditional skip instruction which is
similar in concept to the condition bits in the ARM processor (see above).
The instruction set is large because initial design of ISA took place before
RISC philosophy became popular, and partly because careful analysis
revealed that performance benefited from the instructions chosen. Despite
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this, PA-RISC has a simple design; for example, the entire original CPU
had only 115000 transistors, which is less than twice the number in the
Motorola MC 68000. PA-RISC design is similar to most other mainstream
RISC processors, like the Fairchild/Intergraph Clipper, and the Motorola
MC 88000, in particular. It has a 5-stage pipeline with hardware interlocks
for instructions taking more than one cycle, as well as result forwarding.
It is a load/store architecture, originally with a Princeton architecture,
later expanded to a Harvard architecture. It has thirty-two 32-bit integer
registers (GRO wired to 0, GR31 used as a link register for procedure calls),
with seven shadow registers that preserve the contents of a subset of the
GR set during fast interrupts (as in ARM). In addition, it has thirty-two
64-bit floating-point registers that can be also be used as sixty-four 32-bit or
sixteen 128-bit registers.

AMD 29000 (1987): The AMD 29000 is another RISC processor descended
from the Berkeley RISC design. Like the SPARC design that was introduced
shortly after, the 29000 has a large set of registers split into local and global
sets. The 29000 has 64 global registers. It allows variable-sized windows
allocated from the 128-register stack cache. The current window or stack
frame is indicated by a stack pointer. A pointer to the caller’s frame is stored
in the current frame, as in an ordinary stack. Spills and fills occur only at
the ends of the cache, and registers are saved/loaded from the memory stack.
This allows variable window sizes, from 1 to 128 registers. This flexibility,
plus the large set of global registers, makes register management easier than
in SPARC. There is no special condition code register — any general register
is used instead, allowing several condition codes to be retained, though
this sometimes makes code more complex. An instruction prefetch buffer
(using burst mode) ensures a steady instruction stream. Branches to another
stream can cause a delay, so the first four new instructions are cached - the
next time a cached branch is taken, the cache supplies instructions during
the initial memory access delay. Registers are not saved during interrupts,
allowing the interrupt routine to determine whether the saving overhead is
worthwhile. In addition, a form of register access control is provided. All
registers can be protected, in blocks of four, from access. These features
make the 29000 useful for embedded applications, which is where most of
these processors are used. The 29000 also includes a memory management
unit and support for the 29027 floating-point unit.

Motorola MC 88000 (1988): The Motorola MC 88000 is a 32-bit processor,
one of the first RISC processors based on a Harvard architecture (Alsup
[7], Melear [199]). It is similar to the HP PA-RISC in design although the
MC 88000 is more modular, has a small and elegant instruction set, no special
status register (condition codes may be stored in any general register), and
lacks segmented addressing (thus limiting addressing to 32 bits). It has thirty-
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two 32-bit user registers and up to 8 distinct internal FUs. The processor is
pipelined with interlocks and result forwarding. The MMU chip MC 88200
provides dual caches (including multiprocessor support) and support for the
MC 88100, a version of MC 88000 processor. Multiple ALUs and floating-point
units (with thirty-two 80-bit floating-point registers) and 2-issue instruction
fetching were added to obtain the MC88110 (Diefendorff and Allen [65],
1992), one of the first superscalar designs.

1.7.6 Sun picoJava-l

A non-RISC processor example of a small-scale microprocessor featuring
a simple 4-stage pipeline is provided by Sun’s picoJava-I microprocessor
(Wayner [321], O’Connor and Tremblay [216], McGhan and O’Connor [197])
which is the first of a series of proposed JavaChips, potentially continued by
the more complex microJava and UltraJava processors. Java processors are
designed to execute Java bytecode instructions directly in hardware. Addi-
tionally, hardware support for stack manipulation and thread synchroniza-
tion 1s provided. The picoJava core features a simple pipeline, but not a
RISC instruction set. The picoJava core deviates from RISC principles by its
stack-based ISA, a variable-length instruction format, a partly microcoded
implementation, and too large an instruction set to count it as a RISC ISA.

Applications in the Java language are compiled to target the Java Virtual
Machine (JVM). The JVM (see Meyer and Downing [200]) is the name of
the (abstract) engine that actually executes a Java program compiled to Java
bytecode. It details the instruction set, datatypes, operand stack, constant
pool, method area, heap for run-time data, and the class file format. The JVM
definition comprises a file format for the executable, called class file, and an
instruction set that is called Java bytecode. Java bytecode can be interpreted,
which is relatively slow, or compiled to native machine code by a just-in-time
(JIT) compiler that speeds up execution on a normal microprocessor but
expands the code size by a factor of 3 or more. The Java processors render
JVM software interpretation or JIT compilers superfluous by direct execution
of Java bytecode.

A main characteristic of the JVM instruction set is its stack architec-
ture which means that all compute instructions (i.e., arithmetic/logical in-
structions) address their operands implicitly as top-of-stack and next-of-stack
and write the result back to the top-of-stack (see p. 10). The lack of ex-
plicit operand specification leads to a zero-address addressing format for the
compute instructions resulting in a very compact machine code by the use
of different-length instruction formats. The general-purpose registers are re-
placed by a JVM stack that holds local variables, (frame local) operand stack
and pointers to frames. Some special status information concerns the top-of-
stack index, the thread status information, the current method, the method’s
class and constant pool, and the program counter.



1.7 RISC Processors 47

Data types include Boolean, char, byte, short, reference, int, long, float
(32bit) and double (64 bit), both ANSI/IEEE 754-1985. The data format is
big-endian as the network order.

The Java bytecode specifies 226 instructions. All opcodes have eight bits
followed by a variable number of zero to four operand bytes. The most fre-
quently executed instructions are just one byte long. One-byte instructions
make up 62 % of bytecode instructions. There exist escape opcodes for in-
struction set extensions. The compact JVM instruction format yields an av-
erage instruction length of only 1.8 bytes, which is extremely small compared
to the 4-byte instruction format that is standard for most of today’s RISC
processors.

Not all instructions of the JVM are implemented in hardware in the
picoJava-I® instruction set. Most of the hardware-implemented instructions
execute 1n one to three cycles. Of the instructions not implemented directly
in hardware, those deemed critical for system performance are implemented
in microcode, for example, method invocation. This group of moderately
complicated instructions contains about 30 bytecode instructions. A small
microcode ROM contains the microcode; the picoJava core uses two approx-
imately 2kB ROMs, one in the integer unit and the other in the optional
floating-point unit. The remaining group of about 30 instructions are either
very complicated or require services from the underlying operating system,
or both. These instructions are emulated by core traps — an example would
be creating a new object, which is a less frequently used instruction.

The Java security model does not allow direct access of memory. There
are no Java bytecode instructions that allow access to arbitrary memory
locations. Java bytecode instructions only operate upon object references, the
physical storage location of the objects are not known to the programmer.
The JVM relies on library calls to the underlying operating system of its host
system.

Consequently, for a Java processor additional instructions are necessary to
implement low-level hardware management. In picoJava-I core, 115 instruc-
tions additional to the JVM are defined as extended instructions in reserved
opcode space with 2-byte opcodes, the first byte being one of the reserved
JVM opcode bytes. The extended bytecodes implement arbitrary load/store,
cache management, internal register access, and other miscellaneous instruc-
tions necessary to allow the programmer to write system-level code. Hence,
the picoJava-1 ISA is no longer a JVM ISA, because the JVM cannot execute
extended bytecode instructions. Moreover, no program containing extended
bytecode instructions defined for the picoJava-I can be regarded as safe in
the sense of the Java security model.

The picoJava-I processor consists of a core that includes a RISC-style 4-
stage pipeline (see Fig.1.19), an integer FU, and an optional floating-point

® The description in this section is given for the picoJava-I core [216]; some features
are also mentioned that are only in the picoJava-Il core [197].
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FU. The core is extended by an optional direct-mapped I-cache with zero to
16 kB and 8-byte line size, and an optional 2-way set-associative write-back

D-cache with zero to 16kB and 32-bit line size (see Fig.1.20).
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Fig. 1.20. picoJava-1 microarchitecture

The I-cache stores picoJava-I instructions. The short cache line size of only
8 bytes contains approximately the same amount of instructions as the normal
16-byte line used by other RISC processors due to the compact instruction
format of the Java bytecode.
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A 12-byte instruction buffer decouples the I-cache from the rest of the core
pipeline. The instruction buffer write in during the instruction fetch stage is
four bytes and the read out by the decode stage is five bytes. The picoJava-1
decodes each cycle up to five bytes at the head of the instruction buffer and
sends the decoded instructions to the execution stage.

The branch prediction always predicts not taken. The 4-stage core pipeline
yields a two-cycle penalty when the branch is taken. Branch delay slots can
only be used by microcode and are not available to the compiler that compiles
to the bytecode of the JVM.

Instructions stay for one or more cycles in the execution stage. The op-
tional floating-point unit follows the ANSI/IEEE 754-1985 single and double
precision standard. It is not internally pipelined. Compute instructions only
operate on stack data and never on memory data. The D-cache can be ac-
cessed by load or store instructions during the execution stage. Execution
result values and values loaded from the D-cache or memory are written
back into the stack cache in the fourth pipeline stage.

JVM’s stack architecture is implemented in the picoJava-1 processor by a
64-entry on-chip hardware stack — called stack cache or stack register file —
that is used instead of a general-purpose register file. The stack register file
is managed as circular buffer (see Fig.1.21). The top-of-stack pointer wraps
around. The stack cache contains both integer and floating-point data which
facilitates the (rather infrequent) passing of operands between integer and
floating-point units. Data from the constant pool or from local variables that
are arranged deeper in the stack have to be pushed on top of the stack before
being used for execution. Access to these areas is provided by local-variable
load and store instructions defined by the JVM. Each method invocation
creates a call frame on the stack at run-time. The frame contains the param-
eters for the method, its local variables, the frame-state-like return address
and the monitor entered. The hardware stack allows direct parameter passing
without requiring any copying of the parameters — an option important for
object-oriented languages that typically rely upon plenty of small method
invocations (O’Connor and Tremblay [216]).

A hardware mechanism called a dribbler maintains an automatic spill
and refill of the hardware stack concurrently to the instruction execution
in the pipeline. When the hardware stack is almost full, the dribbler writes
the oldest stack cache entries to the D-cache. Similarly, when the number of
valid entries gets too low, the dribbler transfers JVM stack entries back in
the hardware stack. The points at which the dribbler decides to spill or refill
stack cache entries depends on high and low water marks set in a control
register (O’Connor and Tremblay [216]).

Since access of computing instructions is limited to the top portion of the
stack, a frequently occurring instruction combination consists of an local-
variable load instruction with a succeeding compute instruction that con-
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sumes the loaded value. Elimination of this extra load step during execution
improves the performance of the stack architecture.

T [ 10 T+LO T T+L0
T
) 50 I L0 LO LO
L0
Cycle 1:iload_0  Cycle 2: iadd Cycle 1: iload_0, iadd
(@ (b

Fig. 1.22. Example of folding (a) without folding, the processor executes iload_0
during the first cycle and iadd during the second cycle (b) with folding, iload_0
and iadd execute in the same cycle

picoJava-I relies on a folding operation that executes a local-variable
load instruction in the same cycle as the succeeding compute instruction
(Fig.1.22). The instruction decoder detects this situation and folds the in-
structions together in the execution stage. Simulations show that folding
eliminates approximately 15% of the total dynamic instruction count (Ta-
ble 1.8, [216]).

The picoJava-II core which will be implemented in the microJava-701
processor goes one step further. Up to four instructions can be folded, if
moves of local data to the top of stack are immediately followed by compute
instructions that consume the data just moved, and/or compute operations



1.7 RISC Processors 51

Table 1.8. JVM instruction frequencies without and with folding

Dynamic  Dynamic
frequency frequency
before after  Instructions
Instruction class folding  folding folded
% % %
Local-variable loads 345 244 10.1
Local-variable stores 7.0 70 0.0
Loads from memory 20.2 20.2 0.0
Stores to memory 40 40 0.0
Compute (integer/floating-point) 9.2 9.2 0.0
Branches 79 79 0.0
Calls/retuns 73 73 0.0
Push constant 6.8 20 48
Miscellaneous stack operations 21 241 0.0
New objects 04 0.4 0.0
All others 0.6 0.6 0.0
Total 100.0 85.1 14.9

are immediately followed by local stores of the result just computed. Based
on a set of grouping rules, the picoJava core scans the incoming stream of
bytecodes looking for sequences of instructions that can be folded together
dynamically (McGhan and O’Connor [197]).

A 4-way instruction folding is demonstrated in Fig. 1.23. Two local load
instructions iload_0 and iload_1 which load the values from local integer
variables L0 and L1 to the top of stack, are followed by an integer addition
iadd, and by an istore_2 instruction that removes the result from the top
op stack and stores it in local integer variable L2. All four instructions can
be folded into a single operation, which is equivalent to a 3-address operation
iadd L2, LO, L1 of a RISC ISA where LO, L1, and L2 are register specifiers.

Most of the stack architecture overhead can be removed by such extensive
folding techniques. Measurements indicate that between 23 and 37 % of all
instructions executed become folded (McGhan and O’Connor [197]).

The picoJava-1 core contains a two-entry cache of the two most recent
monitors that the current thread has entered. Associated with each entry is
a counter that indicates how many times the thread has entered the moni-
tor, since re-entry of a monitor by the same thread is possible by the Java
language specification. The monitor entry count is incremented when the
monitor 1s entered and decremented when exited. If the counter is zero, the
monitor is exited completely. On each monitor entry, the monitor cache is
associatively examined, incremented, and decremented by hardware which
speeds up performance compared to a pure software solution. However, re-
placements of monitor cache entries are raised by core traps and managed in
software.
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Simulations show that picoJava-1 features excellent performance com-
pared to an Intel Pentium or an Intel 80486 processor running bytecode.
Benchmarks run 15 to 20 times faster than a 80486 with interpreter and still
5 times faster than a Pentium with a JIT compiler and equal clock rate (see
O’Connor and Tremblay [216]).

Second in the series of Sun’s Java chips is the microJava-701 [283, 284]
which implements a 32-bit picoJava-Il core. Besides Java bytecode C-
compiled code is also supported by the instruction set. The microJava-701
features a 6-stage pipeline, and an extensive folding that allows up to four
instructions executed per cycle. Further system features are integrated on-
chip: a memory controller, and a I/O bus controller. Volume production of
microJava-701 was scheduled for the end of 1998 in 0.25 pm CMOS technol-
ogy with 2.8 million transistors and a 200 MHz clock cycle rate.

The picoJava-I targets the market of embedded appliances. Stated by Sun
Microelectronics Whitepapers [282], Java’s simple, secure and small object-
oriented code promotes clean interfaces and software re-use, while its dis-
tributed nature makes it a natural choice for network applications. Java is
quickly establishing itself as a standard for the market of low-cost, embedded
network computers. By the end of the decade, the average home will con-
tain between 50 and 100 microcontrollers. There will be millions of cellular
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phones, set-top boxes, personal digital assistants, low-cost network termi-
nals, and other Internet appliances operating in a networked environment
and highly optimized for small applications running at top speed.

The direct execution of Java bytecode, the short pipeline, the hardware
stack in combination with the dribbler, the garbage collection, and the moni-
tor support provide excellent performance of Java-based code. Java bytecode
1s extremely dense by its stack architecture. Embedded market requirements
are supported by making caches and floating-point units optional. Hard real-
time requirements often require an exact cycle count for a running service
routine. Cache misses, the dribbler hardware, and garbage collection may dy-
namically enhance the number of executed cycles, thereby potentially miss-
ing hard real-time deadlines. However, by an appropriate setting of the water
marks in the control register the dribbler hardware can be disabled.

The main drawback for Java processors caused by the JVM stack archi-
tecture is, however, that the stack architecture disables most instruction-level
parallelism (except for folding) that is exploited by multiple-issue processors.
It will be very difficult to design a superscalar Java processor as is proposed
by the more complex of Sun’s Java processors. One solution might be a dy-
namic translation of stack register accesses to accesses to a directly addressed
general-purpose register, set by a modified register-renaming stage. This step
would allow the elimination of the stack architecture register set and thereby
open the way to exploit more instruction-level parallelism.

1.8 Lessons learned from RISC

The goal of RISC architecture was to develop designs that can come close to
issuing one instruction on each clock cycle. This has been made possible by:

o using hardwired instead of microcoded control,

o supporting a small set of equal-length instructions most of which are of the
register-register type,

o relying on the optimizing compilers,

e relying on the high-performance memory hierarchy,

o and, especially, using instruction pipelining.

Since the pipelined and superpipelined RISC processors regarded in this chap-
ter issue only one Instruction at a time, they are scalar.

Recall from Sect.1.7.2 that, besides microSPARC, there is a spectrum
of other SPARC microprocessors. What differentiates them from the mi-
croSPARC is that they can simultaneously issue more than one instruction
per cycle. For example, HyperSPARC issues two instructions per cycle, Su-
perSPARC three instructions, and UltraSPARC four instructions per cycle.
This so-called superscalar or multiple-issue approach offers CPI < 1. Since
instructions can be evaluated in parallel, we call such a potential overlap
among instructions instruction-level parallelism (ILP). Rau and Fisher [239)
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distinguish the following main types of processor architectures capable of
utilizing ILP by combining processor and compiler design techniques:

o Sequential architectures where the program provides no explicit informa-
tion regarding instruction parallelism,

o Dependence architectures where the program explicitly indicates the de-
pendences between instructions, and

o Independence architectures where the program conveys information as to
which instructions are independent of one another.

Sequential architectures are represented by superscalar processors which still
retain result serialization as required by von Neumann architecture. The basic
superscalar principles will be discussed 1n Sect. 4.1, a detailed study follows in
Sects. 4.2-4.8. In Sect. 4.9 we will describe several state-of-the-art superscalar
processors. Chapter 2 1s devoted to dataflow processors, which belong to de-
pendence architectures. Independence architectures are represented by VLIW
processors that are covered in Sect.4.10 and EPIC processors described in
Sect.4.10.2.
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Dataflow stands apart as being the most radical of all approaches to
parallelism and the one which has been the least successful . ..
... If any practical machine based on dataflow ideas and offering real power
emerges, it will be very different from what the originators of the concept
had in mind.

Maurice V. Wilkes
Computing Perspectives
(Morgan Kaufmann Publishers, 1995)

... these instructions [of the Intel Pentium Pro] are ...ezecuted in
dataflow order (when operands are ready) . ..

Robert P. Colwell and Randy L. Steck
A 0.6um BiCMOS Processor with Dynamic Execution
(Int’l Solid State Circuits Conference, February 1995)

2.1 Dataflow Versus Control-Flow

Control-Flow. The most common computing model (i.e.,; a description of
how a program is to be evaluated) is the von Neumann control-flow com-
puting model. This model assumes that a program is a series of addressable
instructions, each of which either specifies an operation along with memory
locations of the operands or it specifies (un)conditional transfer of control to
some other instruction. A control-flow computing model essentially specifies
the next instruction to be executed depending on what happened during the
execution of the current instruction. The next instruction to be executed is
pointed to and triggered by the program counter PC. This instruction is
executed even if some of its operands are not available yet (e.g., uninitialized).

Dataflow. The dataflow model represents a radical alternative to the von
Neumann computing model since the execution is driven only by the avail-
ability of operands. It has no PC and global updatable store, i.e., the two
features of the von Neumann model that become bottlenecks in exploiting
parallelism.!

! The serialization of the von Neumann computing model is a serious limitation
for exploiting more parallelism in today’s microprocessors — e.g., superscalars.

J. Silc et al., Processor Architecture

© Springer-Verlag Berlin Heidelberg 1999
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In the context of parallel computing, the earliest use of the word “dataflow”
dates back to 1960s when Karp and Miller [155] studied a dataflow-like model
of computation. The history of dataflow computers and languages began in
the late 1960s with two separate strands of research whose similarities were
not to be generally recognized until the end of the following decade (Glauert
et al. [101], 1985). The earliest work is mostly concerned with languages and
notations for parallel computation. The language work led to the development
of the so-called single-assignment languages, and eventually to the design of
a single-assignment machine (see the LAU System on p.61). The notational
research formed the foundations of the later design of dataflow computer
systems. The first architecture to embody the dataflow computing model
was developed in the mid-1970s? by Dennis and Misunas [64]. By the late
1970s it was clear that dataflow and single-assignment were synonymous, and
subsequent dataflow machines have all been designed in conjunction with a
single-assignment language. These languages are characterized by the single-
assignment rule which means that a variable may appear on the left side of
an assignment only once within the area of the program in which it is active.
High-level single-assignment programming languages include, for example,
VAL (Ackerman and Denms [1], 1979), Id (Heller and Traub [132], 1985),
and LUCID (Wadge and Ashcroft [315], 1985).

A program, which is written in a single-assignment language, is compiled
into a dataflow graph which is a directed graph consisting of named nodes,
which represent instructions, and arcs, which represent data dependences
among instructions. During the execution of the program, data propagate
along the arcs in data packets, called tokens. This flow of tokens enables some
of the nodes (instructions) and fires them.® Figure2.1 shows two dataflow
graphs. The acyclic graph in Fig. 2.1a represents the function Stats which
is defined in VAL below and computes the mean and standard deviation of
three input values. The function returns two real values, Mean and StDev,
which are defined in the let part of the program.

function Stats (x,y,z: real returns real, real);
let

Mean := (x +y + 2)/3;

StDev := SQRT((x**2 + yx*2 + z*%2)/3 - Mean*x2);
in

Mean, StDev

2 In 1967, however, Tomasulo applied a limited dataflow design to the floating-
point unit for the IBM System 360 Model 91 (see Sect. 3.3.2).

% There is also a diametrically opposite method of evaluating dataflow graphs
called demand-driven execution where an enabled node is fired if there is a de-
mand for the result. The demand-driven execution model leads to so-called reduc-
tion machines ( Treleaven et al. [299]). Reduction machines came in two flavors,
graph reduction and string reduction. In data-driven (e.g., dataflow) comput-
ers, the availability of operands triggers the execution of the operation to be
performed on them, whereas in demand-driven (e.g., reduction) computers the
requirement for a result triggers the operation that will generate it.
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endlet
endfun

The cyclic graph in Fig. 2.1b represents the following Id program segment

( initial j <- n; k <- 1
while j > 1 do
new j <- j - 1;
new k <- k * j;
return k )

which computes factorial n! of integer n. The CHOOSE node outputs either the
token from F-input or the token from T-input, depending on the token on
the control input. The token on the control input of the SWITCH node selects
cither the T-output or F-output, to which the input token will be sent.

F T
CHOOSE

SWITCH
T F

n!
StDev

(a) (b)
Fig. 2.1. Dataflow graphs (a) simple statistic function (b) factorial

Two important characteristics of dataflow graphs are functionality and
composability. Functionality means that evaluation of a graph is equivalent
to evaluation of the corresponding mathematical function on the same input
data. Composability means that graphs can be combined to form new graphs.

The execution of a dataflow graph proceeds according to the instruction
enabling and instruction firing rules. The instruction (node) enabling rule is:

An instruction is enabled (i.e., executable) if all operands are available to t.

Note that in the von Neumann model, an instruction is enabled if it is pointed
to by the PC. The computational rule of the dataflow model, also known as
the instruction (node) firing rule, specifies when an enabled instruction 1is
actually executed. The basic instruction firing rule is:
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An nstruction s fired when it is enabled
(and when the resources are available).

The effect of firing an instruction is the consumption of its input data
(operands), the execution of the instruction, and the generation of output
data (results).

Because of the single-assignment rule, parallelism is not constrained by an-
tidependences and output dependences as it is in conventional imperative lan-
guages. Control dependences are transformed into data dependences. Struc-
tural hazards are mostly ignored in dataflow literature, where unbounded
hardware resources are assumed. We have enhanced the usually idealistic fir-
ing rule by demanding resource availability in the rule stated above. Dataflow
is said to be self-scheduling since instruction sequencing is constrained only
by data dependences among instructions. Thus, the flow of control is the
same as the flow of data among various instructions.

There are computer architectures that support the pure dataflow compu-
tation model as described above, such as the static, the dynamic, and the
explicit token store architecture. Advanced architectures, however, support
augmenting the dataflow computation model with traditional control-flow
mechanisms, such as multithreading, large-grain computation, complex ma-
chine operations, RISC approach, etc.

2.2 Pure Dataflow

Let us first explain the basic principles of pure dataflow computer architec-
tures. A dataflow computer executes a program by receiving, processing, and
sending out tokens, each containing some data and a tag. Dependences be-
tween instructions are translated into tag matching and tag transformation.
Processing starts when a set of matched tokens arrives at the execution unit.
The instruction which has to be fetched from the instruction store (according
to the tag information) contains information about what to do with data and
how to transform the tags. The matching unit and the execution unit are con-
nected by an asynchronous pipeline, with queues added between the stages to
smooth out workload variations. Some form of associative memory is required
to support token matching. It can be a real memory with associative access,
a simulated memory based on hashing, or a direct matched memory. Each of
these three solutions has its proponent but none is absolutely suitable.

Due to its elegance and simplicity, the pure dataflow model has been the
subject of many research efforts. Since the early 1970s, a number of dataflow
computer prototypes have been built and evaluated, and different designs and
compiling techniques have been simulated (see Treleaven et al. [299], Srini
[278], Gaudiot and Bic [98], Silc et al. [263]).

Clearly, an architecture supporting the execution of dataflow graphs
should support the flow of data. Depending on the way the data are han-
dled, several types of dataflow architectures have emerged in the past:
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o static,
e dynamic, and
o explicit token store.

We describe them in Sects. 2.2.1-2.2.3, respectively.

2.2.1 Static Dataflow

The static (also called single-token-per-arc) dataflow architecture was first
proposed by Dennis and Misunas [64], 1975. At the machine level, a dataflow
graph is represented as a collection of activity templates, each containing the
opcode of the represented instruction, operand slots for holding operand val-
ues, and destination address fields, referring to the operand slots in subse-
quent activity templates that need to receive the result value. Each token
only consists of a value and a destination address. Note that different tokens
flowing to the same destination, one after the other, could not be distin-
guished. Therefore, the static dataflow approach allows at most one token to
reside on any one arc. This is accomplished by extending the basic firing rule
as follows:

An enabled node 1s fired if there is no token on any of its output arcs
(and when the resources are available).

* I/

2

3

n;

x

Yy

n sqrt P—

@ datatoken ! I
O acknowledge signal z —z

n;

——> dataarc

e acknowledgement arc

(a) )]
Fig. 2.2. Acknowledge signals in (a) a dataflow graph (b) activity templates

To implement the restriction of at most one token per arc, acknowledge sig-
nals, traveling along additional arcs from consuming to producing nodes, are
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used as additional tokens (Fig.2.2). Thus, the firing rule can be changed to
its original form:

A node s fired at the moment when it 1s enabled
(and when the resources are available).

The major advantage of the single-token-per-arc dataflow model is its sim-
plified mechanism for detecting enabled nodes (see Fig.2.2).

Unfortunately, this model of dataflow has a number of serious deficiencies.
Consecutive iterations of a loop can only be pipelined, which limits the
amount of parallelism that can be exploited. Another undesirable effect is
that, due to acknowledgment tokens, the token traffic is doubled. In addition,
there is a lack of support for programming constructs that are essential to
any modern programming language (e.g., procedure calls, recursion). Despite
these shortcomings, several static machines were constructed and served as
the theoretical and practical basis for subsequent dataflow computers.

MIT Static Dataflow Machine
This machine was designed by Dennis and Misunas [64] at the Massachusetts

Institute of Technology (MIT) (Cambridge, MA) as a direct implementation
of a single-token-per-arc dataflow model. It comprises a set of processing

L |
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SU [« Operation

to/from the Unit(s)

Communication | local |
Network \ 4 communication
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—>

* Instruction
/ Queue
Update Fetch
Unit Unit
\I Activity

Store

Fig. 2.3. Communication structure and processing element of the MIT Static
Dataflow Architecture



2.2 Pure Dataflow 61

elements (PEs) interconnected through a communication network (CN) as
shown in Fig.2.3.

Activity templates reside in an activity store (AS), and addresses of fired
instructions (activity templates) reside in an instruction queue (I1Q). This
queue is accessed by the fetch unit (FU) that removes the first entry in the
IQ, uses it for fetching the corresponding opcode, data, and destination list
from AS, packs them into an operation token, forwards this token to an avail-
able operation unit (OU), and finally clears the operand slot in the template.
The OU executes the operation specified by the opcode using the correspond-
ing operands, generates result tokens for each destination, and sends them to
the send unit (SU). The SU decides whether the token’s destination is in a
local or a remote PE. If the destination is local, the token 1s sent to the local
receive unit (RU) that, in turn, passes it on to the update unit (UU). If the
destination is not local, however, the result token is routed to the destination
PE through the CN. All units operate concurrently, so instructions are pro-
cessed in a pipeline fashion. Note that large delays in the CN do not affect
the performance as long as enough fired instructions are present in each PE.

A prototype of the MIT Static Dataflow Machine was built in the early
80s with eight PEs (each emulated by a microprogrammable microprocessor)
and an equidistant packet routing network using 2 x 2 routing elements. The
machine was used primarily as an engineering model.

Another implementation of the MIT Static Dataflow Machine was the cell
block version of that machine which was not a multiprocessor of dataflow PEs,
but a highly parallel machine consisting of cell blocks and FUs interconnected
by a distribution and an arbitration network.

Other projects

LAU System (Plas et al. [234], 1976): Researchers at the CERT (Toulouse,
France) carried out the first project to go through the entire process of graph,
language, and machine design. Their system, called LAU*, was built in 1979.
The LAU system used static graphs and had its own dataflow language based
on single-assignment rule. LAU’s architecture contained five major processing
sections connected in a ring. Four of the five sections managed 1/0, task and
job supervision, and backing memory. The fifth section contained up to 32
PEs, each of which had its own local memory for graph and data values. Each
PE was a 16-bit microprogrammed processor built around the AMD 2900 bit-
slice microprocessor. The PC was replaced by two memories: the instruction
control memory (ICM) and the data control memory (DCM). ICM handled
control bits associated with each instruction while DCM managed the bit
associated with each data operand. The LAU prototype system demonstrated
that a dataflow computer could be built.

* “Language a assignation unique” (LAU) is a French acronym for single-
assignment computation.



62 2. Dataflow Processors

DDM1 (Davis [60], 1978): The Utah Data Driven Machine (DDM1) was
designed at the University of Utah (Salt Lake City, UT) and was completed
at the Burroughs Interactive Research Center (La Jolla, CA). The machine
organization was based on the concept of recursion. It was tree-structured,
with each PE connected to up to eight descendant PEs. Each PE consisted of
an agenda queue with firable instructions, a local program memory, and an
“atomic” processor. Another significant aspect of this work was the high-level
graphical language designed to be used on the DDMI1 (see Boekelheide [30]).

TI’s DDP (Cornish et al. [54], 1979): The Distributed Data Processor (DDP)
was a system, designed at Texas Instruments, which aimed to investigate
the potential of dataflow as the basis of a high-performance computer. The
DDP was not commercially exploited, but a follow-on design with Ada as
the programming language had its application in military systems.

NEC Image Pipelined Processor (Temma et al. [290], 1985): NEC Electronics
(Japan) developed the first dataflow VLSI microprocessor chip uPD7281.
Its architecture was a pipeline with several blocks (i.e., working areas),
organized in a loop. The program was stored in two tables, called a link
table and a function table, while data memory was used for temporarily
storing the tokens to be matched. An address generator and a flow controller
were responsible for matching two tokens and temporarily storing them
in the queue before sending them to the processing unit. The pPD7281
had a very powerful instruction set designed specifically for digital image
processing algorithms such as restoration, enhancement, compression, and
pattern recognition.

HDFM (Vedder et al. [311], Gaudiot et al. [99], both 1985): The Hughes
Dataflow Multiprocessor (HDFM) project began in 1981 at Hughes Aircraft
Co. (USA), prompted by the need for high performance, reliable, and eas-
ily programmable processors for embedded systems. The HDFM consisted of
many, relatively simple, identical PEs connected by a global packet-switching
network. The interconnection (3D cube) network was integrated with PEs for
ease of expansion and minimization of VLSI chip types. The communication
network was designed to be reliable, with automatic retry on garble messages,
distributed bus arbitration, alternate path packet routing, and a failed PE
translation table to allow rapid switch-in and use of spare PEs. The com-
munication network was able to accommodate up to 512 PEs in an 8 x 8 x
8 configuration. The following candidates proposed for the HDFM network
were evaluated by Erum and Gaudiot [82]: a 3D cube network, a multi-
stage network, a hypercube network, a mesh network, and a ring network.
The processor engine was a 3-stage pipelined processor with three opera-
tions overlapped: instruction fetch and dataflow firing rule check, instruction
execution, and result and destination address combining to form a packet.
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2.2.2 Dynamic Dataflow

The performance of a dataflow machine significantly increases when loop
iterations and subprogram invocations can proceed in parallel. To achieve
this, each loop iteration or subprogram invocation should be able to execute
as a separate instance of a re-entrant subgraph. This replication, however,
is only conceptual. In a real implementation, only one copy of any dataflow
graph is actually kept in memory. Each token has a tag consisting of the
address of the instruction for which the particular data value is destined and
other information defining the computational context in which that data is
to be used. This context is sometimes called the value’s color. Each arc can
be viewed as a bag that may contain an arbitrary number of tokens with
different tags. The enabling and firing rule is now:

A node is enabled and fired as soon as tokens with identical tags are present
on all input arcs (and when the resources are available).

U-interpreter. A method for assigning tags to each execution of an instruc-
tion was called the U-interpreter (for unraveling interpreter). Each token con-
sists of a tag and data. The tag comprises the context field ¢ that uniquely
identifies the context in which the instruction is to be invoked, the tnitiation
number i that identifies the loop iteration in which this activity occurs, and
the instruction address n. Note that ¢ can itself be a tag. Since the destina-
tion instruction may require more than one input, each token also carries the
number of its destination port p. We represent a token by (c.i.n, data),.

(cii.ni,y)z

execution

—_— (ein, flxy)),

=

Fig. 2.4. U-interpreter

In the following, we describe the tag generation mechanism as it was
proposed by Gostelow and Arvind ([105], 1982). Here, if the node n; performs
a dyadic function f, and if the port p of n; is the destination of n;, then we
have

in:{{c.ini, 2)1, {cing, y)a} out: {{c.ing, flx,y))p}

as can be seen in Fig.2.4.

Figure 2.5a,b shows two basic nodes, referred to as the MERGE and SWITCH,
which are used to represent branches and loops.

The branch construct (Fig.2.6a) is described by
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Fig. 2.5. U-interpreter (a) MERGE node (b) SWITCH node

in :{(e.i.n, ) data, (€8, D)contrat}  out : {gzz:ﬁ ?)}} ;f b=F

Merging of f and g outputs with a MERGE node causes no tag duplication. It
is surprising that no one ever considered evaluating branches speculatively,
although this is easy due to the single-assignment rule and obviously realized
with the graph in Fig. 2.6b. In Fig. 2.6b, f and g represent the then-path and
the else-path, respectively. Both paths can be executed concurrently because
the single-assignment rule guarantees data independence. The SWITCH-node
is replaced by a CHOOSE-node (see Fig.2.6b)° that transports the token either
from the subgraph f or from the subgraph g to the output line, depending
on the predicate token b. The loop construct (Fig.2.6c) uses, besides MERGE
and SWITCH, additional operators L, L™!, D, and D~!. L is described by

in : {(c.ing,x)}  out : {{c'.L.ng, )},

where ¢/ = (c.i.n;). The D operator was introduced because the initiation
number of a token in a loop must be incremented every time a token goes
around a loop. This is accomplished by D as follows:

in: {(c'.jnj, )} out:{(c'.j+ L.ng, z)}.

If after k — 1 iterations the loop predicate P becomes false, SWITCH sends
the last token with initiation number k to the D=1 operator, which resets the
initiation number to 1:

in:{(c kg, z)}  out: {{(c'.1.ny, z)}.

The L1 sends its input token to an activity whose context and initiation
number are identical to those of the activity that initiated this loop:

i {(c" Longy,, )} out: {{c.in,, z)}.

The function application (Fig.2.6d) uses operators A, A~!  BEGIN, and END.
The A operator creates a new context ¢’ within which the function to be

® The CHOOSE-node is not part of the U-interpreter.
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Fig. 2.6. U-interpreter (a) branch (b) speculative branch evaluation (CHOOSE-
node) (c) loop (d) function application

applied arrives on arc ¢, while the argument on which this function is to be
applied is passed on arc a:

in : {{c.ini, @) func, (c-1.ni, @)arg}  out : {(¢'.1.0pegin, a)},

where ¢’ = {(c.i.n;) and n; is the address of the A=! operator. The BEGIN
operator simply replicates tokens for each fork in its output arc. The END
operator returns the result to the caller by unstacking the return address:

in : {{c' 1.neng, (@)} out : {{c.i.nj, q(a))}.
The A~! operator replicates its output for its successors.
I-structure. The single-assignment rule in conjunction with a complex data

structure means that each update of a data structure consumes the structure
and the value producing a new data structure. However, this is awkward or
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even impossible to implement. To solve the problem of complex data struc-
tures, the concept of I-structures (for incremental structures) has been pro-
posed by Arvind and Thomas ([17], 1981). An I-structure may be viewed as
a data repository obeying the single-assighment rule. That is, each element
of the I-structure may be written only once but it may be read any number
of times. The basic idea is to associate with each element status bits and a
queue of deferred reads. The status of each element of the I-structure can be:

e PRESENT, meaning that the element can be read but not written,

e ABSENT, meaning that a read request has to be deferred but a write oper-
ation into this element is allowed,

® WAITING, which means that at least one read request of the element has
been deferred (since nothing has been written yet).

The state transition diagram for the I-structure operations is given in Fig. 2.7.

ABSENT

Fig. 2.7. State transition diagram for I-structure operations

After an element of the data structure has become defined (recall that
that can happen exactly once), all deferred reads, which are kept in the
assoclated queue, immediately become satisfied. Thus, the I-structure makes
it possible to use a data structure before it is fully defined. In addition,
it allows defining complex data structures from existing, though partially
defined, data structures.

The following three elementary operations are defined on I-structures:

o Allocate, which reserves a specified number of elements for a new I-
structure,

o [-fetch, which retrieves the contents of the specified I-structure element
(if the element has not yet been written, this operation is automatically
deferred),

o [-store, which writes a value into the specified I-structure element (if that
element is not empty, an error condition is reported).

These elementary operations are used to construct nodes SELECT and ASSIGN
as described in Fig. 2.8. The operation z = A[j] is performed by the SELECT
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Fig. 2.8. [-structure (a) selection (b) assignment

node. First, the address a of the j-th element in the I-structure A is com-
puted. The operation I-fetch then sends a read-token (c.i.n;, a, “read”) to the
I-structure storage, thus asking for the contents of the element at the address
a. If the status of the storage location @ is PRESENT, the element contains a
value, say z, so the value is read and a token (c.i.n;, x) is sent to the node n;.
However, if the status is WAITING, the read request is deferred. Similarly, an
ABSENT status 1s changed to WAITING and the request is enqueued in the as-
soclated queue as in the previous case. The [-fetch instruction is implemented
as a split-phase memory operation, meaning that a read request issued to an
I-structure is independent in time from the response received and thus does
not cause a wait by the issuing PE. The operation A[j] = z is performed
by the ASSIGN node. After the address a is computed, I-store sends a write-
token (a, “write”; z) to the I-structure storage. The I-store instruction also
generates a signal-token (c.2.n;). In spite of firing the ASSIGN node, x may be
written into the I-structure later. If the status of A[j] is ABSENT, then z is
written and the status is set to PRESENT. If the status is WAITING, the same
action as in the previous case is performed first, activating all deferred read
requests for that I-structure element. If a write-token arrives at a non-empty
location (status is PRESENT), it is treated as a run-time error due to the
single-assignment rule.

Dataflow architectures that use the model of execution whereby tags are
attached to tokens are called dynamic (or sometimes tagged-token) dataflow
architectures. This model was proposed by Watson and Gurd [320] at the
University of Manchester (England), and simultaneously by Arvind et al.
[14] at MIT.

The major advantage of the tagged-token dataflow model is better
performance (compared with static predecessors) as it allows multiple tokens
on each arc, thereby unfolding more parallelism. One of the main problems
of the tagged-token dataflow model was efficient implementation of the
unit that collects tokens with matching colors. For the sake of efficiency,
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an associative memory would be ideal. Unfortunately, it would not be
cost-effective since the amount of memory needed to store tokens waiting
for a match tends to be very large. As a result, all existing machines use
some form of hashing technique which is typically not as fast as associative
memory. In the following, we list the most important tagged-token dataflow
projects.

MIT Tagged-Token Dataflow Architecture

This project originated at the University of California at Irvine (CA) and
continued at MIT. The Irvine dataflow machine, proposed by Arvind et al.
[14], 1978, implemented a version of the U-interpreter and array handling
mechanisms to support I-structures. The machine was proposed to consist
of multiple clusters interconnected in a foken ring. Each cluster consisted of
four PEs sharing local memory through a local bus and memory controller.

The MIT Tagged-Token Dataflow Architecture (TTDA) was a modified
Irvine machine, but was still based on the Id language (Arvind and Nikhil
[16], 1987). Instead of using a token ring, a n-cube packet network for inter-
processor communication was used (Fig.2.9). The I-structure storages were
addressed uniformly and collectively implemented a global address space.
A single processing element (PE) and a single I-structure storage suffice to
constitute a complete dataflow computer.
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Fig. 2.9. Communication structure and processing element of the MIT TTDA
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A program under execution is distributed over the program storages (PSs)
of different PEs. Tokens entering the PE go through the token queue (TQ) and
the following sections. They are first removed from the TQ by the wait-match
unit (WMU). The WMU is a memory containing a pool of waiting tokens. If
the entering token is destined for a monadic operator, it goes straight to the
instruction fetch unit (IFU). Otherwise, a matching phase is initiated. This
involves comparing the token’s tag with the tags of all tokens currently held
in the WMU. If a match occurs, the token is extracted from the WMU, and
the two matching tokens are passed on to the IFU. However, if the WMU does
not contain the partner, the token is left in the WMU to wait for its partner.
The WMU is thus the rendezvous point for pairs of arguments for dyadic
operators. It behaves as an associative memory, but is implemented with
hashing methods. The tag on the operand token entering the IFU identifies
the instruction to be fetched from the PS. The fetch instruction may also
include a literal or a reference to a constant to be used as an operand. In
the latter case, the constant is fetched immediately from the constant store.
When a complete executable packet is assembled, it is passed to the ALU for
execution. The ALU computes the result and, in parallel, derives new tags.
The form token unit (FTU) takes the result and these tags from the ALU
and combines them into the result token. The result token is forwarded to
the local TQ, to another PE if the destination address is non-local, or to the
I-structure storage if the operation is an access to a data structure.

The implementation of the token-matching stage is critical for the TTDA’s
performance. The TTDA requires that a token is checked against all other
waiting tokens for a possible match. That means that the TTDA requires
a moderately large associative memory. The dataflow graph is dyadic (i.e.,
nodes may need two input tokens). The experiences gained by the simulated
TTDA (never built) were used in building its successor, the Monsoon, which
is described in Sect.2.2.3.

Manchester Dataflow Machine

The researchers led by Watson and Gurd ([320], 1979) at the University of
Manchester focused on the construction of a prototype dataflow computer.
The graph structure in this machine was static with token labels to keep
different procedure calls separate.

The Manchester Dataflow Machine (MDM) was first simulated in
1977/78, and implemented as a hardware prototype in 1981. It consisted
of one processing element (PE) and two structure storage modules connected
with a simple 2 x 2 switch. The MDM prototype is shown in Fig. 2.10.

Two structure storages can hold a total of 1 M data values with access
rates of 750k reads per second and half as many writes per second. The
structure storage provides reference counts to support garbage collection of
structures that are no longer needed by the program.
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Fig. 2.10. Communication structure and processing element of the MDM

Each PE had a pipelined internal structure, with tokens passing through
a token queue (TQ) module, a matching unit (MU) and an instruction store
unit (ISU) before being processed by one of 20 ALUs in a parallel processing
unit (PU). The ALUs were microcoded, and different instructions took quite
different times to execute. Microinstructions are 48 bits wide, and the clock
period is 67 ns. If all 20 ALUs can be utilized fully, this gives approximately
a 6 MIPS rate for the whole computer. A hardware hashing mechanism is
used instead of an associative memory in the MU that can hold up to 1.25 M
unmatched tokens waiting for their partners. The MU has a 155ns clock
period and a 150 ns memory cycle time, so it gives rates of 1.29 M matches
per second for dyadic operators and 6.45 M bypasses per second for monadic
operators. The ISU is a buffered RAM with a capacity of 64k instructions.
The clock period is 40 ns, and the memory access time is 150 ns, resulting in
a maximum processing rate of 2 M instruction fetches per second.

To overcome the restriction in the MDM that only two successor instruc-
tions could be specified in one instruction, the TUPlicate operator (iterative
instruction) was introduced by Béhm et al. [31]. The TUPlicate operator re-
duced the size of the code and led to significant reductions in execution time,
especially for large programs.

The Extended Manchester Dataflow Machine (EXMAN) from the Indian
Institute of Science (Bangalore, India) (Patnatk et al. [228]) incorporated
three major extensions to the basic MDM:
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¢ a multiple MUs scheme,
e an efficient implementation of the array data structure, and
e a facility to execute re-entrant routines concurrently.

To allow all storage functions to be performed concurrently, a prototype
parallel structure store was developed by Kawakam: and Gurd [159).

Other projects

NTT’s DPAS (Takahashi et al. [287], 1983): The Dataflow Processors Array
System (DPAS), developed at Nippon Telephone and Telegraph (Japan), was
a dynamic tagged-token machine intended for large scientific calculations. A
hardware experimental system Eddy, consisting of 4 x 4 PEs, was built and
used to test some applications.

DDDP (Kushi et al. [162], 1983): The Distributed Data Driven Processor
(DDDP) from OKI Electric Ind. (Japan) had a centralized tag manager and
performed token matching by a hardware hashing mechanism similar to that
of the Manchester Dataflow Machine. A prototype consisting of four PEs
and one structure store connected by a ring bus achieved 0.7 MIPS.

SIGMA-1 (Hiraki et al. [137], 1984): The SIGMA-1 system is a super-
computer for large-scale numerical computation and has been operational
since early 1988 at the Electrotechnical Laboratory (Tsukuba, Japan). It
consists of 128 PEs and 128 structure elements interconnected by 32 local
networks (10 x 10 crossbar packet switches) and one global two-stage
Omega network. Sixteen maintenance processors are also connected with
the structure elements and with a host computer for I/O operations, system
monitoring, performance measurements, and maintenance operations.

PIM-D (Ito et al. [147], 1986): The Parallel Inference Machine PIM-D was
proposed to be one of the candidates for a parallel inference machine in the
Fifth Generation Computer System and was a joint venture of ICOT and
OKI Electric Ind. (Japan). This machine was constructed from multiple PEs
and multiple structure memories interconnected by a hierarchical network
and exploited three types of parallelism: OR parallelism, AND parallelism
and parallelism in unification.

Q-p (Asada et al. [18], Nishikawa et al. |215], both 1987): The one-chip data-
driven processor Q-p was specifically designed to be a one-chip functional
element that was easy to program to form various dedicated processing
functions. Particular design decisions were taken to achieve high flow-rate
data-stream processing capabilities. In the Q-p, a novel bi-directional elastic
pipeline processing concept was introduced to implement token matching.
The Q-p was developed jointly by Osaka University, Sharp, Matsushita
Electric Ind., Sanyo Electric, and Mitsubishi Electric (Japan).

bl
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DDA (Koren et al. [166], 1988): A Data-Driven VLSI Array (DDA) was
designed at Technion (Haifa, Israel) consisting of a set of PEs with each PE
connected to six neighbors. Before the program starts, the corresponding
dataflow graph is mapped into the DDA by assigning PEs to nodes and links
to arcs. During execution, the computation front propagates through the
DDA, as through the dataflow graph. The DDA is capable of executing any
arbitrary algorithm. Performance of the DDA was enhanced by improving
the architecture (Weiss et al. [322]) and the mapping algorithm (Robi¢ and
Vilfan [244]).

PATTSY (Narashimhan and Downs [210], 1989): The Processor Array
Tagged-Token System (PATTSY) was an experimental system that was
developed at the University of Queensland (Brisbane, Australia), which
supported the dynamic model of dataflow execution. PATTSY had a host
computer that provided the user-interface to the machine, accepted user pro-
grams and converted them into dataflow graphs. These graphs were mapped
onto the PEs, but the actual scheduling of operations was carried out at run-
time. A prototype with 18 PEs was operational. It used an IBM-PC as host
while the PEs were built from Intel 8085-based single-board microcomputers.

CSIRAC II (Egan [75], 1990): The origins of the CSIRAC II dataflow com-
puter date from 1978. It was built at the Swinburne Institute of Technology
(Hawthorn, Australia). The architecture is unusual in that the temporal
order of tokens with the same color on the same graph arc is maintained.

SDFA (Snelling [272], 1993): The Stateless Data-Flow Architecture (SDFA)
was designed at the University of Manchester and inspired by the Manchester
Dataflow Machine. As its name implies, the SDFA system had no notion of
states. There were no structure stores, and only extract-wait functionality
was provided in the matching stores. All the instructions in the instruction-
set were simple and based on RISC principles. There were no iterative or
vector-style instructions producing more than two tokens per execution.

2.2.3 Explicit Token Store Approach

One of the main problems of tagged-token dataflow architectures is efficient
implementation of token matching. To eliminate the need for costly associa-
tive memory, the concept of the explicit token store (ETS) has been proposed
by Papadopoulos ([224], 1988). The basic idea is to allocate a separate frame
in the frame memory (Fig.2.11) for each active loop iteration or subprogram
invocation. A frame consists of slots where each slot holds an operand that is
used in the corresponding activity. Since access to slots is direct (i.e., through
offsets relative to the frame pointer), no associative search is needed.

In the middle of Fig.2.11 a (part of a) program graph is depicted, with
input token (FP, IP,3.01) entering the * node. The token consists of a pointer
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FP to the corresponding frame, a pointer IP to the instruction in the instruc-
tion memory, and one operand:

(FP, 1P, operand).

FP and IP form the token’s tag. The instruction fetched from the location
IP specifies the opcode (e.g., %), the offset in the associated frame where
the match between the corresponding input operands will take place (e.g.,
FP + 2), and IP-relative displacement(s) to the destination instruction(s) in
the instruction memory (e.g., instructions at IP + 2 and IP + 1 with opcodes
+ and sqrt, respectively).

Figure2.12 illustrates how matching is performed in the ETS model.
An unusual characteristic of ETS frames is that each slot has associated a
presence bit specifying the disposition of the slot. The dynamic dataflow
firing rule is implemented by a simple state transition of these presence bits.
For example (see Fig.2.12), at the moment ¢t = 0, the token (FP,IP,3.01)
arrives and, since it is the first of the input tokens, it is treated as follows.
The slot FP + 2 is found empty, so the operand 3.01 is deposited in that
slot and the presence bit is set on. At the moment ¢ = 1 the second token
(FP, 1P, 2.0) arrives. Since the slot FP + 2 is found to be full (presence bit is
on), the waiting operand 3.01 is extracted from it (leaving the slot empty).
The presence of both operands causes the instruction at IP to be fired,
producing at ¢t = 2 two result tokens, (FP,IP+2,6.02) and (FP,IP+1,6.02).
Notice, that at ¢ = 1 another input token (FP’,IP,7.4) arrived. This token
belongs to some other part of computation, for example, to the next loop
iteration.

Bounded loops. The ETS concept can be used for resource control in
dataflow computers. Most of the critical resources, in particular, concern-
ing the size of the token storage, will be consumed by an unlimited number
of concurrently active loop iterations. Hence, the k-bounded loops constraint
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Fig. 2.12. Explicit token store matching scheme

was devised by Culler [56], allowing at most k — 1 consecutive loop iterations
to be concurrently active in k ETS frames (Fig.2.13).

The implementation of Culler’s idea uses a new gate operator G, a syn-
chronization tree, and Dy and D;Z operators. The G operator has two inputs
(for control and data) and functions as a loop throttle by passing one token
from its data input to the output for each token on its control input. At
the end of each iteration, a new control token is generated by combining the

output of all D; operators into a single value using the synchronization tree.
The Dy operator (with modified semantics of the D operator from p. 64)
sets the iteration number ¢ of tokens to 7 + 1 mod k. When a control token
with iteration number 7 + 1 mod k has passed the synchronization tree, it is
guaranteed that the iteration executing in ETS frame 7 has terminated and
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no token with iteration number ¢ is still circulating. Next the control token
with iteration number 7 + 1 mod k in its tag passes the D,:Q operator which
decrements the iteration number by —2 mod k yielding the new iteration
number ¢ — 1 mod k in the tag.

The k-bounded loops scheme is initialized (during compile-time or during
load-time of the program) by k—1 control tokens (with loop iteration numbers
0,...,k—2in their tags) on the arc from the loop prelude to the gate operator
G. k — 1 loop iterations may be activated in ETS frames 0, ...,k — 2. Hence,
there are at most £ — 1 consecutive loop iterations active at the same time;
however, k frames are needed. The iteration with iteration number :—1 mod &
can be started, as soon as the iteration with iteration number ¢ mod k has
terminated. Thus tokens from different iterations but with the same iteration
number ¢—1 are prevented from meeting on the arcs before the SWITCH nodes.

The ETS principle was developed in the Monsoon project, but is used
in most recent dataflow architectures, for example, as the so-called direct
matching in EM-4 and Epsilon-2 machines (see Sect.2.3.1 below).

Monsoon, an Explicit Token Store Machine

The Monsoon dataflow multiprocessor was built jointly by MIT and Motorola
(USA) (Papadopoulos and Culler [225], 1990). In Monsoon, dataflow PEs are
coupled with each other and with I-structure storage units by a multistage
packet-switching network (Fig.2.14).
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The main objective of the Monsoon dataflow processor architecture was to
alleviate the waiting/matching problem by using an ETS. Each frame resides
entirely on a single PE. The FP and IP are conventionally segmented by the
PE as follows, tag = Npg : (FP.IP), where Npg is the PE’s number.

I-Structure
PE €= €
Multistage Storage
Packet
Switching
. Network I-Structure
Processing Element PE € <—>
Storage

Instruction
Memory

y
. Effective
o] Instruction
T Fewch > Address
L 2
Presence
Bit [
Operation

to/from the
Communication
Network

Frame Memory

Frame
Operation

System Queue
User Queue

Fig. 2.14. Communication structure and processing element of the Monsoon

Each PE uses an 8-stage pipeline (Fig.2.14). The first stage is the in-
struction fetch stage which precedes token matching (in contrast to dynamic
dataflow processors with associative matching units). Such a new arrange-
ment Is necessary since the operand fields in an instruction denote the offset
in the memory frame that itself is addressed by the tag of a token. The ex-
plicit token address is computed from the frame address and operand offset.
This is done in the second stage (effective address generation), which is the
first of three pipeline stages that perform the token matching. In the third
stage, called presence bit operation, a presence bit is accessed to find out
whether the first operand of a dyadic operation has already arrived. If not,
the presence bit is set and the current token is stored in the frame slot of
the frame memory. Otherwise, the presence bit is reset and the operand is
retrieved from the slot. Operand storing or retrieving is the task of the fourth
pipeline stage — the frame operation stage. The next three stages are execu-
tion stages, in the course of which the next tag is also computed concurrently.
The eighth (form-token) stage forms one or two new tokens that are sent to
the network, stored in a user token queue, a system token queue, or directly
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recirculated to the instruction fetch stage of the pipeline. In the following,
we give some details of the Monsoon system:

o Processing element:
— 10 MHz clock
— 256 kW Instruction Memory (32-bit wide)
~ 256 kW Frame Memory (word® + 3 presence bits)
— Two 32 k-token queues (system, user)
o [-structure storage:
— 4MW (word + 3 presence bits)
— 5M requests/s
o Network
— Multistage, pipelined
— Packet Routing Chips (PaRC, 4 x 4 crossbar)
— 4 M tokens/s/link (100 MB/s)

Since September 1990, a 1 PE x 1 I-structure memory configuration (also
referred to as the two-node system) has been operational while the first 8 x
8 configuration (16-node system) was delivered in fall 1991. In total, sixteen
two-node Monsoon systems were constructed and delivered to universities
across the USA and two 16-node systems were delivered to MIT and Los
Alamos National Laboratories (USA).

Until the mid-1990s, dataflow architectures did not permit the use of tra-
ditional storage models. In order to bring the dataflow computational model
closer to the control-flow model, Kavi et al. ([157], 1995), studied cache de-
sign issues applicable to dataflow architecture, in particular, the design of
I-cache, D-cache, and I-structure cache memories in the ETS model.

2.3 Augmenting Dataflow with Control-Flow

Pure dataflow computers based on the single-token-per-arc or tagged-token
dataflow model usually perform quite poorly with sequential code. This is
due to the fact that an instruction of the same thread can only be issued
to the dataflow pipeline after the completion of its predecessor instruction.
In the case of an 8-stage dataflow pipeline, instructions of the same thread
can be issued at most every eight cycles. If the load is low, for instance, for
a single sequential thread, the utilization of the dataflow processor drops to
one-eighth of its maximum performance. Another drawback is the overhead
associated with token matching. For example, before a dyadic instruction is
issued to the execution stage, two result tokens have to be present. The first
token is stored in the waiting-matching store, thereby introducing a bubble
in the execution stage(s) of the dataflow processor pipeline. Only when the
second token arrives can the instruction be issued. Clearly, this may affect the

 Word size: 64-bit data + 8bits type tag
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system’s performance, so bubbles should not be neglected. For example, the
pipeline bubbles sum up to 28.75 % when executing the Traveling Salesman
program on the Monsoon machine (Papadopoulos and Culler [225]).

Since a context switch occurs in fine-grain dataflow after each instruction
execution, no use of registers is possible for optimizing the access time to
data, avoiding pipeline bubbles caused by dyadic instructions, and reducing
the total number of tokens during program execution.

One solution to these problems is to combine dataflow with control-flow
mechanisms. The possible symbiosis between dataflow and von Neumann ar-
chitectures was investigated by a number of research projects developing von
Neumann/dataflow hybrids (see Table2.1). The spectrum of such hybrids is
quite broad, ranging from simple extensions of a von Neumann processor
with a few additional instructions to specialized dataflow systems attempt-
ing to reduce overhead by increasing the execution grain size and employing
various scheduling, allocation, and resource management techniques devel-
oped for von Neumann computers. These developments show that dataflow
and von Neumann computers do not necessarily represent two entirely dis-
joint worlds, but rather two extreme ends of a spectrum of possible computer
systems.

Several techniques for combining control-flow and dataflow emerged, such
as:

threaded dataflow,

large-grain dataflow,

dataflow with complex machine operations,
RISC dataflow,

hybrid dataflow.

We will describe these in the following five subsections. For a comparison of
the techniques, see also Beck et al. [24].

e 6 o o o

2.3.1 Threaded Dataflow

By the term threaded dataflow we understand a technique where the dataflow
principle is modified so that instructions of certain instruction streams are
processed in succeeding machine cycles. In particular, in a dataflow graph
(program) each subgraph that exhibits a low degree of parallelism is identified
and transformed into a sequential thread. Such a thread of instructions is
issued consecutively by the matching unit without matching further tokens
except for the first instruction of the thread.

Threaded dataflow covers the repeat-on-input technique used in Epsilon-
1 and Epsilon-2 processors, the strongly connected arc model of EM-4, and
the direct recycling of tokens in Monsoon. Data passed between instructions
of the same thread is stored in registers instead of written back to mem-
ory. These registers may be referenced by any succeeding instruction in the
thread. Single-thread performance is thereby improved. The total number
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Table 2.1. Augmenting dataflow with control-flow
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of tokens needed to schedule program instructions is reduced, which in turn
saves hardware resources. Pipeline bubbles are avoided for dyadic instruc-
tions within a thread. Two threaded dataflow execution techniques can be
distinguished:

o direct token recycling,
o consecutie execution of the instructions of a single thread.

Direct token recycling is used in the Monsoon dataflow computer. It allows a
particular thread to occupy only a pipeline frame slot in the 8-stage pipeline.
This implies that at least eight threads must be active for full pipeline uti-
lization to be achieved. This cycle-by-cycle instruction interleaving of threads
18 used in a similar fashion by some multithreaded von Neumann computers
(Sect.6.3.1).

To optimize single-thread performance, Epsilon and EM-4 execute in-
structions from a thread consecutively. The circular pipeline of fine-grain
dataflow is retained. However, the matching unit has to be enhanced with a
mechanism that, after firing the first instruction of a thread, delays matching
of further tokens in favor of consecutive issuing of all instructions of the thread
which has been started. For example, in a strongly connected arc model, each
arc of the dataflow graph is classified as either a normal arc or a strongly con-
nected arc. The set of nodes that are connected by strongly connected arcs is
called the strongly connected block. Recall that the standard firing rule is that
a node is fired when all input arcs have matching tokens. The enhancement
for strongly connected blocks is that such a block is fired if its “source” nodes
are enabled and the execution of the whole block is conducted as a unit, that
is, without applying the standard dataflow firing rule for other nodes in that
block. Figure 2.15 shows an example of strongly connected blocks (threads).
There are two strongly connected blocks, A and B. When node 5 or node 6
is fired, block A or block B is executed exclusively. Cycling of tokens that
would normally flow through the other block is suppressed in the pipeline.
For example, if node 5 becomes enabled before node 6, nodes 5, 8, and 10
will be fired before any node in block B.

In all threaded dataflow machines, the central design problem is the imple-
mentation of an efficient synchronization mechanism (see Saka: [252]). The
direct matching 1s a synchronization mechanism that needs no associative
mechanisms. As in ETS (see Sect.2.2.3), a matching area in operand mem-
ory is exclusively reserved for a single function instance. This area is called an
operand segment (OS). The code block in instruction memory corresponding
to the OS is called a template segment (TS) (see Fig.2.16). The top address
of TS is called the template segment number (TSN). An operand segment
number (OSN) points to the top of the OS (as IP in ETS). A token comprises
an operand, OSN, a displacement (DPL), and a synchronization flag (SF):

(SF, OSN, DPL, operand).
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DPL serves both as a displacement of the destination instruction in the
instruction memory and a displacement of the matching operand in the
operand memory. SF indicates the type of synchronization which can be
either monadic, left dyadic, right dyadic, or immediate. The matching ad-
dress is produced by concatenating OSN and DPL. The instruction address
is derived by concatenating TSN and the DPL. Each slot in an OS also has
a presence bit. A dyadic matching is performed by a test-and-set” of the

presence bit.
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Some highly influential threaded dataflow projects, EM-4 with its

successor EM-X, Monsoon, Epsilon-2, and RWC-1 are described below.

" If the presence bit has already been set, the partner data will be read, the bit
will be cleared, and the instruction will be executed. Otherwise the arriving data

will be stored there and the presence bit will be set.
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EM-4 and EM-X

In the EM-4 project (Sakai et al. [254], 1989) at Electrotechnical Laboratory
(Tsukuba, Japan), the essential elements of a dynamic dataflow architecture
using frame storage for local variables are incorporated into a single chip
processor. In this design each strongly connected subgraph of a function body
is implemented as a thread that uses registers for intermediate results. The
EM-4 was designed for 1024 PEs. The EM-4 prototype with 80 PEs has been
operational since May 1990. Each PE consists of a processor and I-structure
memory.

Processing Element:

EMC-R Processor + Memory ? PE [€>

PE |6

Omega Network

Fetch/Matching
Unit =
5 Operand
- > 3 Segments
= \ 4
5 Instruction g
g Fetch =1 O [® ]| Template
2 5 g Segments
o ]
2 & o L)
g 5 Execute and =
- = . | Heap
Emit Tokens
Execution Unit

Memory

Switching
Unit
A
v

to/from the
Communication
Network

Fig. 2.17. Communication structure and processing element of the EM-4

The organization of the EM-4 is shown in Fig. 2.17. Each PE consists of a
single-chip gate-array processor EMC-R (without floating-point hardware but
including a switching unit for the network) and I-structure memory (1.25 MB
SRAM). The EMC-R consists of a switching unit (SU), an input buffer unit
(IBU), a fetch/matching unit (FMU), an ezecution unit (EU), and a memory
control unit (MCU). The EMC-R communicates with the network through a
3 x 3 crossbar SU. The processor and its memory (containing OSs and TSs)
are interfaced with the MCU. The IBU is used as a token store. A 32-word
FIFO type buffer is implemented using a dual-port RAM on chip. If this
buffer is full, a part of the off-chip memory is used as secondary buffer. The
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FMU is used for matching tokens and fetching instructions. It performs direct
matching for packets and instruction sequencing for a strongly connected
block (thread). The heart of the EMC-R is the EU, which fetches instructions
until the end of the thread (if the next instruction is strongly connected with
the current instruction, instruction fetch and data load of the next instruction
are overlapped with the execution). Instructions with matching tokens are
executed. Instructions can emit tokens or write to a register file.

In 1993, an upgrade to EM-4, called EM-X, was developed by Kodama et
al. [164]. It was designed to support:

e latency reduction by fusing the communication pipeline with the execution
pipeline,

e latency hiding via multithreading, and

e run-time latency minimization for remote memory access.

The EM-4 can access remote memory by invoking packet system handlers
on the destination PE. Clearly, when the destination PE is busy, remote
memory requests are blocked by the current thread execution. To remedy
this, the EM-X supports a direct remote memory read/write mechanism,
which can access the memory independently of thread execution. For these
reasons, the EMC-Y single-chip processor was used in EM-X (instead of the
EMC-R that was used in EM-4). Some characteristics of the EM-X machine
are listed below:

e EMC-Y processor:
— 1.0 um CMOS gate-array technology
— Total 80593 gates
— 20 MHz clock
- 40MW/s®
— Performances: 20 MIPS and 40 MFLOPS
— Network throughput: 10 Mpackets/s/port
e Memory:
— 1MW SRAM (20 ns)
e Network:
— Circular Omega
— Average 5.06 hops and max. 8 hops on 80 PEs system
— Deadlock prevention with 3 banked buffers

Some performance parameters of the 80 PEs EM-X system (operational since

1994):
1.6 GIPS and 3.2 GFLOPS (peak)

1.26 us remote memory read latency
2.86 us remote function call latency
37.2 MB/s point-to-point throughput
7.8 us barrier synchronization

8 Word size: 32-bit data + 6-bit data tag + 2-bit parity
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e Linpack (N = 5000): 600 MFLOPS
e Radix Sort (16 M x 32bits): 1.3s

Other projects

Monsoon (Papadopoulos and Traub [226], 1991): The Monsoon dataflow
processor (see also Sect. 2.2.3) can be viewed as a cycle-by-cycle interleaving
multithreaded computer due to its capability of direct token recycling.
Using this technique a successor token is directly fed back in the 8-stage
pipeline, bypassing the token store. Another instruction of the same thread
is executed every eighth processor cycle. Monsoon allows the use of registers
(eight register sets are provided) to store intermediate results within a
thread, thereby digressing from the pure dataflow execution model.

Epsilon-2 (Grafe and Hoch [106], 1990): The Epsilon-2 machine developed
at Sandia National Laboratories (Livermore, CA), supports a fully dynamic
memory model; allowing single-cycle context switches and dynamic paral-
lelization. The system 1s built around a module consisting of a processor
and structure unit, connected via a 4 x 4 crossbar to each other, an 1/0
port, and the global interconnection network. The structure unit is used
for storing data structures such as arrays, lists, and I-structures. The
Epsilon-2 processor retains the high performance features of the Epsilon-1
prototype, including direct matching, pipelined processing, and a local
feedback path. The ability to execute sequential code as a grain provides
RISC-like execution efficiency.

RWC-1 (Sakai et al. [253], 1993): The Massively Parallel Architecture Lab-
oratory at Real World Computing Partnership (Tsukuba, Japan) developed
a massively parallel computer RWC-1 which is a descendant of EM-4 (as
is EM-X). A multidimensional directed cycles ensemble (MDCE) network
connects up to 1024 PEs. Two small-scale systems, Testbed-I with 64 PEs
and Testbed-II with 128 PEs are used for testing and software develop-
ment. The PE is based on reduced interprocessor-communication architec-
ture (RICA) which employs superscalar execution (2-issue), a floating-point
multiplier/adder module, and offers:

a fast and simple message handling mechanism,

a hard-wired queuing and scheduling mechanism,

a hard-wired micro-synchronization mechanism,

integration of communication, scheduling and execution, and
simplification of the integrated structure (Matsuoka et al. [194]).
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2.3.2 Large-Grain Dataflow

Another technique for combining dataflow with control-flow is referred to as
the coarse-grain (also large-grain) dataflow model. It advocates activating
macro dataflow actors in the dataflow manner while executing instruction
sequences, represented by actors, in the von Neumann style. Large-grain
dataflow machines typically decouple the matching stage (sometimes called
signal stage, synchronization stage, etc.) from the execution stage by use
of FIFO buffers. Pipeline bubbles are avoided by decoupling. Off-the-shelf
microprocessors can be used to support the execution stage. Most of the
more recent dataflow architectures fall into this category and are listed be-
low. Note that they are often called multithreaded machines by their authors.

StarT

The StarT (sometimes also written as *T), started by Nikhil et al. ([214],
1992), 1s a direct descendant of dataflow architectures, especially of the Mon-
soon, and unifies them with von Neumann architectures. StarT has a scal-
able computer architecture designed to support a broad variety of parallel
programming styles including those which use multithreading based on non-
blocking threads (see Sect.6.3.1). A StarT node consists of the data pro-
cessor (dP), which executes threads, the synchronization coprocessor (sP),
which handles returning load responses and join operations, and the remote-
memory request processor (RMem) for incoming remote load/store requests.
The three components share local node memory (see Fig.2.18). The node is
coupled with a high performance network having a fat-tree topology with
high cross-section bandwidth.
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Fig. 2.18. MIT StarT node architecture (concept)
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In mid-1991 the StarT project was launched by MIT and Motorola. Due
to its on-chip special-function unit (SFU), the Motorola 50 MHz 2-issue su-
perscalar RISC microprocessor 88110 was chosen as the basis for the node
implementation. However, in order to keep the communication latency to a
minimum, a number of logic modules were added to the 88110 chip so that it
acted as a tightly-coupled network interface. The resulting chip was called the
88110MP (MP for multiprocessor) with a 10-20 machine cycles overhead for
sending and receiving data between the node and the network. Two 88110MP
microprocessors were used to implement the StarT node (see Fig.2.19). The
first one operated as dP, with its SFU serving as sP. dP and sP were op-
timized for long and short threads, respectively. The second 88110MP was
tailored to act as RMem to handle remote memory requests from other nodes
to the local node memory (64 MB).
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Fig. 2.19. Communication structure and processing element of the StarT

The fat-tree network was based on the MIT Arctic packed routing chip
(Boughton [35]) that was twice as fast as Monsoon’s PaRC (see p. 77) and
was expected to drive the interconnection network at 1.6 GB/s/link in each
direction with packet sizes ranging from 16 to 96 bytes. Sixteen nodes were
packaged into a “brick” (approximately 23 cm cube) with 3.2 GFLOPS and
3200 MIPS peak performance. Sixteen bricks can be interconnected into a
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256-node machine (1.5m cube) with the potential to achieve 50 GFLOPS
and 50 000 MIPS.

As reported by Arvind et al. [15], MIT decided to go back to the drawing
board and to start afresh on PowerPC-based StarT machines after Motorola
and IBM started manufacturing the PowerPC family of RISC microproces-
sors. Thus, the PowerPC 620 was planned in a StarT-ng machine (Ang et
al. [12]) but the architecture was redesigned once again, this time around a
32-bit PowerPC 604, and was called the StarT-Voyager machine (Ang et al.
[L3]). This machine, however, bears little resemblance to the original StarT
architecture and no similarity to Monsoon.

Other projects

TAM (Culler et al. [57], 1991): The Threaded Abstract Machine (TAM)
from the University of California at Berkeley is an execution model for
fine-grain interleaving of multiple threads, that is supported by an appro-
priate compiler strategy and program representation, instead of elaborate
hardware. TAM’s key features are placing all synchronization, scheduling,
and storage management under explicit compiler control.

ADARC (Strohschneider et al. [280], 1994): In the Associative Dataflow
Architecture (ADARC) the processing units are connected via an associative
communication network. The processors are equipped with private memories
that contain instruction sequences generated at compile-time. The retrieval
of executable instructions is replaced by the retrieval of input operands for
the current instructions from the network. The structure of the associative
switching network enables full parallel access to all previously generated
results by all processors. A processor executes its current instruction (or
instruction sequence) as soon as all requested input operands have been
received. ADARC was developed at the J.W.Goethe University (Frankfurt,
Germany).

Pebbles (Roh and Nagjjar [245], 1995): The Pebbles architecture from
Colorado State University (Fort Collins, CO) is a large-grain dataflow
architecture with a decoupling of the synchronization unit and the execution
unit within the PEs. The PEs are coupled via a high-speed network. The
local memory of each node consists of an instruction memory, which is read
by the execution unit, and a data memory (or frame store), which is accessed
by the synchronization unit. A ready queue contains the continuations
representing those threads that are ready to execute. The frame store is
designed as a storage hierarchy where a frame cache holds the frames of
threads that will be executed soon. The execution unit is a 4-way superscalar
MICTOPTOCESSOT.
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MTA (Hum et al. [140], 1994) and EARTH (Magquelin et al. [192], 1995): The
EARTH (Efficient Architecture of Running Threads), developed at McGill
University and Concordia University (Montréal, Canada), is based on the
MTA (Multithreaded Architecture) and dates back to the Argument Fetch
Dataflow Processor. An MTA node consists of an ezecution unit (EU) that
may be an off-the-shelf RISC microprocessor and a synchronization unit (SU)
to support dataflow-like thread synchronization. The SU determines which
threads are ready to be executed. The EU and SU share the processor lo-
cal memory which is cached. Accessing data in a remote processor requires
explicit request and send messages. The EU and SU communicate via FIFO
queues: a ready queue containing ready thread identifiers links the SU with
the EU, and an event queue holding local and remote synchronization signals
connects the EU with the SU, but also receives signals from the network.
A register-use cache keeps track of which register set is assigned to which
function activation. MTA and EARTH rely on non-blocking threads. The
EARTH architecture is implemented on top of the experimental (but rather
conventional) MANNA multiprocessor.

2.3.3 Dataflow with Complex Machine Operations

Another technique to reduce the overhead of the instruction-level synchro-
nization is the use of complex machine instructions, for instance, vector in-
structions. These instructions can be implemented by pipeline techniques
as in vector computers. Structured data is referenced in block- rather than
element-wise fashion, and can be supplied in a burst mode. This deviates
from the I-structure scheme where each data element within a complex data
structure is fetched individually from a structure store.

Another advantage of complex machine operations is the ability to
exploit parallelism at the subinstruction level. Therefore, such a machine
has to partition a complex machine operation into suboperations that can
be executed in parallel. The use of a complex machine operation may spare
several nested loops. The use of FIFO buffers allows the machine to decouple
the firing and the execution stages to bridge the different execution times
within a mixed stream of simple and complex instructions issued to the
execution stage. As a major difference to conventional dataflow architectures,
tokens do not carry data (except for the values true or false). Data is
only moved and transformed within the execution stage. This technique is
used in the Decoupled Graph/Computation Architecture, the Stollmann
Dataflow Machine, and the ASTOR architecture. These architectures
combine complex machine instructions with large-grain dataflow, described
above. The structure-flow technique proposed for the SIGMA-1 enhances
these fine-grain dataflow computers by structure load/store instructions that
can move, for instance, whole vectors to/from structure store. Arithmetic
operations are executed by the cyclic pipeline within a PE.
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ASTOR

The Augsburg Structure-Oriented Architecture (ASTOR) was developed by
Zehendner and Ungerer ([334], 1987) at the University of Augsburg (Ger-

many). It can be viewed as:

¢ a dataflow architecture that utilizes task level parallelism by the architec-
tural structure of a distributed memory multiprocessor,

¢ instruction-level parallelism by a token-passing computation scheme, and

¢ subinstruction-level parallelism by SIMD evaluation of complex machine
instructions.

Sequential threads of data instructions are compiled to dataflow macro actors
and executed consecutively using registers. A dependence construct describes
the partial order in the execution of instructions. It can be visualized by
a dependence graph. The nodes in a dependence graph represent control
constructs or data instructions; the directed arcs denote control dependences
between the nodes. Tokens are propagated along the arcs of the dependence
graph. To distinguish different activations of a dependence graph, a tag is
assigned to each token. The firing rule of dynamic dataflow is applied, that
is, a node is enabled as soon as tokens with identical tags are present on all
its input arcs. However, in the ASTOR architecture tokens do not carry data.
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The ASTOR architecture consists of PEs connected by an instruction
communication network to transfer procedure calls and a data commun:cation
network for parameter passing (Fig. 2.20). No global storage is used. Due to
the separation of code and data objects, each PE consists of two loosely
coupled parts:

e The program flow control part consists of static and dynamic code storage,
the static and the dynamic code access manager®, the I/O managers, and
the control construct managers (individually named call, loop, choice, and
dependency managers).

o The data object processing part consists of data storage, several data ac-
cess managers, an 1/O manager, some data transformation units, and the
computational structure manager.

All managers in a PE work in parallel to each other. Asynchronous processing
and decoupling of the managers is achieved by buffering the links between
them.

Other projects

Stollman Dataflow Machine (Gliick-Hiltrop et al. [102], 1989): The Stollman
dataflow machine from Stollman GmbH (Hamburg, Germany) is a coarse-
grain dataflow architecture directed towards database applications. The
dataflow mechanism is emulated on a shared-memory multiprocessor. The
query tree of a relational query language (such as SQL) is viewed as dataflow
graph. Complex database query instructions are implemented as coarse-grain
dataflow instructions and (micro-)coded as a traditional sequential program
running on the emulator hardware.

DGC (Evripidou and Gaudiot [81], 1991): In the Decoupled Graph/Compu-
tation (DGC) architecture, developed at the University of Southern California
(Los Angeles, CA), the token matching and token formatting and routing are
reduced to a single graph operation called determine executability. The decou-
pled graph/computation model separates the graph portion of the program
from the computational portion. The two basic units of the decoupled model
(computational unit and graph unit) operate in an asynchronous manner.
The graph unit is responsible for determining executability by updating the
dataflow graph, while the computation unit performs all the computational
operations (fetch and execute).

2.3.4 RISC Dataflow

Another stimulus for dataflow/von Neumann hybrids was the development of
RISC dataflow architectures that support the execution of existing software

® The term manager is used to characterize an abstract component of a PE. The
manager is an autonomously acting unit that solves a specific task.
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written for conventional processors. Using such a machine as a bridge between
existing systems and new dataflow supercomputers should have made the
transition from imperative von Neumann languages to dataflow languages
easier for the programmer. The basic philosophy underlying the development
of the RISC dataflow architecture can be summarized as follows:

use a RISC-like instruction set,

change the architecture to support multithreaded computation,

add fork and join instructions to manage multiple threads (see Fig.2.21),
implement all global storage as I-structure storage, and

implement load /store instructions to execute in split-phase mode.
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Fig. 2.21. “RISCifying” dataflow (a) conceptual (b) encoding of graph

P-RISC Architecture

The Parallel RISC (P-RISC) architecture based on the above principles was
developed at MIT by Nikhil and Arvind ([213], 1989). It consists of a collec-
tion of PEs (with local memory) and global memory (GM), interconnected
through a packet-switching communication network (Fig.2.22).

Following the principles underlying all RISC architectures, the ALU of P-
RISC PEs distinguishes between load/store instructions, which are the only
instructions accessing GM (implemented as I-structure storage), and arith-
metic/logical instructions, which operate on local memory (registers). Fixed
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instruction length and one-cycle instruction execution (except for load/store
instructions) are characteristics of this processor. In addition, P-RISC lacks
any explicit matching unit. Instead, all operands associated with a sequential
thread of computation are kept in a frame in local program memory (PM).
Each execution step makes use of an (IP, FP) pair (similar to Monsoon), where
IP serves to fetch the next instruction while FP serves as the base for fetching
and storing operands. The pair is called continuation and corresponds to the
tagged part of a token in a tagged-token dataflow machine. To make P-RISC
multithreaded, the stack of frames must be changed to a tree of frames, and
a separate continuation must be associated with each thread. The frame tree
allows different threads of instructions to access different branches of the tree
concurrently while the separate continuation extends the concept of a single
PC and a single operand base register to multiple instances. Continuations
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Fig. 2.22. Communication structure and processing element of the P-RISC

of all active threads are held in the continuation queue (CQ). At each clock
cycle, a continuation (also called a token) is dequeued and inserted into the
pipeline (Fig.2.22). It is first processed by the instruction fetch unit (IFU),
which fetches from instruction memory (IM) the instruction pointed to by
IP. Next, operands are fetched from PM by the operand fetch unit (OFU).
The OFU uses operand offsets (specified in the instruction) relative to the
FP. The executable token is passed to the ALU or, in the case of a load /store
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instruction, to the GM!?. The execution of an ALU instruction produces
result tokens and new continuations. Result tokens are stored in the appro-
priate frame in (local) frame memory (FM) by the operand store unit (OSU).
Continuations are new (FP,IP)-pairs, generated by incrementing the current
IP value or, in the case of a branch instruction, replacing it by the target
pointer. They are enqueued in the CQ of the local PE.

2.3.5 Hybrid Dataflow

The first attempts towards hybrid dataflow computing were made in the
early 1980s in quite diverse directions. Some of them are listed below.

JUMBO (Treleaven et al. [299], 1982): The Newcastle Data-Control Flow
Computer JUMBO was built at the University of Newcastle-upon-Tyne
(UK) to study the effects of the integration of dataflow and control-flow
computation. It has a packet communication organization with token
matching. There are three principal units (matching unit, memory unit,
processing unit) interconnected in a ring by FIFO buffers.

PDF (Requa and McGraw [240], 1983): The Piecewise Dataflow Architecture
(PDF) was designed to address the Lawrence Livermore National Labora-
tory’s (Livermore, CA) needs for supercomputing power. This architecture
blended the strengths found in STMD, MIMD, and dataflow architectures.
The PDF contained a SIMD processing unit and a scalar processing unit
that managed a group of processors (MIMD). Programs that ran on the PDF
were broken into basic blocks and scheduled for execution using dataflow
techniques. Two levels of scheduling divided responsibility between the
software and hardware. The time-consuming analysis of when blocks can
overlap was done at the compile-time. Individual instruction scheduling was
done in hardware.

MUSE (Brailsford and Duckworth [36], 1985): The Multiple Stream Eval-
uator (MUSE) from University of Nottingham (UK) was a structured
architecture supporting both serial and parallel processing that allowed the
abstract structure of a program to be mapped onto the machine in a logical
way. The MUSE machine had many features of dataflow architecture but in
its detailed operation it steered a middle course between a pure dataflow
machine, a tree machine, and the graph reduction approach (see p.56).

RAMPS (Barkhordarian [22], 1987): The Real Time Acquisition and Mul-
tiprocessing System (RAMPS) was a parallel processing system developed
at EIP Inc. (USA) for high-performance data acquisition and processing

19 To solve the memory latency problem, the load/store instructions are imple-
mented to operate in a split-phase manner (see the I-fetch instruction on p. 67).



94 2. Dataflow Processors

applications. RAMPS used dataflow at a macro level while tasks were
executed using a sequential model of computation.

MADAME (Sile and Robi¢ [261], 1989): The Macro Dataflow Machine
(MADAME) from Jozef Stefan Institute (Ljubljana, Slovenia) was suitable
for execution of acyclic dataflow (sub)graphs. While the pure dataflow
scheme defines an asynchronous computation, MADAME defines a syn-
chronous operation principle whereby more efficient run-time code is
generated due to compile-time instruction scheduling (Silc and Robic [262),
1993). This approach is in a certain way opposite to the strongly connected
arc approach used in the EM-4 machine (see p.80). The organization of the
MADAME is circular and consists of five units: instruction store, multiple
functional units, append unit, insert unit, and 1/0 unit. For a detailed
account of this organization, see Silc and Robi¢ [261]. For each instruction
the most appropriate fire time is computed at compile-time, as well as a
functional unit identifier indicating where the instruction will be executed.
Then, at run-time, ready instructions are not executed in the same order as
they enter the ready instruction pool. Instead, the insert unit stores each
incoming ready instruction into the ready instruction pool at the proper
place, depending on the instruction’s precomputed fire time and functional
unit identifier. This makes it possible to schedule the ready instructions in
a way that improves the machine’s performance (Robi¢ et al. [243], 1987).
Note that similar processor organization and concepts can be found in an
asynchronous superscalar processor SCALP, where the instructions are also
statically allocated to FUs, which in turn simplifies some run-time activities,
such as instruction issuing and result forwarding (see p.328).

DTN Dataflow Computer (Veen and van den Born [312], 1990): The
DTN Dataflow Computer (developed at the Dutch company Dataflow
Technology Nederland) is a high-performance workstation well suited for
applications containing relatively small computing-intensive parts with
enough parallelism to execute efficiently on the dataflow engine. The DTN
Dataflow Computer contains a standard general purpose host, a graphical
subsystem (four microprogrammable systolic arrays), and a dataflow engine.
The dataflow engine consists of eight identical modules interconnected by
a token routing network. Each module contains four NEC Image Pipelined
Processors, an interface chip, and image memory.

FDA (Quénot and Zavidovigue [236], 1991): A Functional Dataflow Architec-
ture (FDA) has been developed at ETCA (Arcueil, France) and is dedicated
to real-time processing. Two types of data-driven PEs, dedicated respectively
to low- and mid-level processing, are integrated in a regular 3D array. Its de-
sign relies on close integration of dataflow principles and functional program-
ming. For the execution of low-level functions, a custom dataflow processor
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(DFP) with six bi-directional I/O ports was developed. As in DDA (see p. 72)
the performance of FDA can be improved by using a more complex graph
mapping algorithm, which was inspired by previous work on graph mapping
(Robic et al. [242]). The core of the DFP processor 1s interfaced to the outside
world through three input stacks and three output stacks. Each stack is an
eight 9-bit word, 25 MB/s bandwidth, synchronous FIFO queue and acts as
a build-in token balancing buffer. A 3-stage pipelined datapath is inserted
between the input and output stacks. The first stage decodes the input data
types to generate commands for the following stages. During the second stage,
8-bit operations (input shifts and multiplications) are performed. 16-bit op-
erations (general-purpose arithmetic and logical, absolute values, minimum,
maximum, shift) are performed at the third stage. Up to 50 million 8-bit or
16-bit operations per second can be performed by one DFP processor.

2.4 Lessons learned from Dataflow

The latest generation of superscalar microprocessors displays an out-of-order
dynamic execution that is referred to as local dataflow or micro dataflow by
microprocessor researchers.

In 1995, in their first paper on the Pentium Pro [53], Colwell and Steck
described the instruction pipeline as follows: “The flow of the Intel Architec-
ture instructions is predicted and these instructions are decoded into micro-
operations (uops), or series of pops, and these pops are reqister-renamed,
placed into an out-of-order speculative pool of pending operations, erecuted
in dataflow order (when operands are ready), and retired to permanent ma-
chine state in source program order.” That is, after a branch prediction (to
remove control dependences) and register renaming (to remove antidepen-
dences and output dependences), the instructions (or pops) are placed in
the instruction window of pending instructions, where pops are executed in
dataflow fashion, and then in a reorder buffer that restores the program order
and execution states of the instructions. The nstruction window and reorder
buffer may coincide. State-of-the-art microprocessors typically provide 20 (In-
tel Pentium IT), 32 (MIPS R10000), or 56 (HP PA-8000) instruction slots in
the instruction window. Each instruction is ready to be executed as soon
as all operands are available. A 4-issue superscalar processor issues up to
four executable instructions per cycle to the execution units, provided that
resource conflicts do not occur. Issue and execution determine the out-of-
order section of a microprocessor. After execution, instructions are retired in
program order.

Comparing dataflow computers with such superscalar microprocessors
(see Chap. 4) reveals several similarities as well as differences which are briefly
discussed below.

While a single thread of control in modern microprocessors often does not
incorporate enough fine-grained parallelism to feed the multiple functional
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units of today’s microprocessors, the dataflow approach resolves any threads
of control into separate instructions that are ready to execute as soon as
all required operands become available. Thus, the fine-grained parallelism
potentially utilized by a dataflow computer is far larger than the parallelism
available for microprocessors.

Data and control dependences potentially cause pipeline hazards in micro-
processors that are handled by complex forwarding logic. Due to the contin-
uous context switches in fine-grain dataflow computers and in cycle-by-cycle
interleaving machines (see Sect.6.3.3), pipeline hazards are avoided albeit
with the disadvantage of poor single thread performance.

Antidependences and output dependences are removed by register renam-
ing that maps the architectural registers to the physical registers of the mi-
croprocessor. The microprocessor thereby generates internally an instruction
stream that satisfies the single-assignment rule of dataflow. Modern micro-
processors remove antidependences and output dependences on-the-fly, and
avoid the high memory requirements and the often awkward solutions for
data structure storage and manipulation, and for loop control caused by the
single-assignment rule in dataflow computers.

The main difference between the dependence graphs of dataflow and the
code sequence in an instruction window of a superscalar microprocessor is
branch prediction and speculative erecution. The accuracy of branch predic-
tion is surprisingly high: more than 95 % is reported by Chang et al. [46] for
single SPEC benchmark programs. However, rerolling execution in the case
of a wrongly predicted path is costly in terms of processor cycles, especially
in deeply pipelined microprocessors.

The idea of branch prediction and speculative execution has never been
evaluated in the dataflow environment. The reason for this may be that
dataflow was considered to produce an abundance of parallelism'! while spec-
ulation leads to speculative parallelism which is — because of instruction dis-
carding when the branch is mispredicted — inferior to “real” parallelism.

Due to the single thread of control, a high degree of data and instruction
locality is present in the machine code of a microprocessor. The locality allows
the use of a storage hierarchy that stores the instructions and data which may
potentially be executed in upcoming cycles, close to the executing processor.
Due to the lack of locality in a dataflow graph, a storage hierarchy is difficult
to apply in dataflow computers.

The operand matching of executable instructions in the instruction win-
dow of microprocessors is restricted to a part of the instruction sequence.
Because of the serial program order, the instructions in this window are
likely to become executable soon. Therefore, the matching hardware can be
restricted to a small number of instruction slots. In dataflow computers the
number of tokens waiting for a match can be very high. A large waiting-

" This is due to dataflow languages which are inherently fine-grain parallel — each
statement is parallel to the other and constrained only by data dependences.
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matching store is required. Due to the lack of locality the likelihood of the
arrival of a matching token is difficult to estimate, so the caching of tokens
to be matched soon is difficult in datafiow.

A large instruction window is crucial for current and future superscalar
microprocessors in order to find enough instructions for parallel execution.
However, the control logic for very large instruction windows gets so com-
plex that it hinders higher cycle rates. Therefore an alternative instruction
window organization is needed. Palacharla et al. [222] proposed a multiple
FIFO-based organization. Only the instructions at the heads of a number of
FIFO buffers can be issued to the execution units in the next cycle. Total
parallelism in the instruction window is restricted in favor of a less costly
issue that does not slow down the processor cycle rate. The potential fine-
grained parallelism is thereby limited — a technique somewhat similar to the
threaded dataflow approaches described above. It might also be interesting
to look at dataflow matching store implementations and dataflow solutions
like threaded dataflow as exemplified by the repeat-on-input technique in the
Epsilon-2, and the strongly connected arcs model of EM-4, or the associa-
tive switching network in the ADARC, etc. For example, the repeat-on-input
strategy issues very small compiler-generated code sequences serially (in an
otherwise fine-grained dataflow computer). Transferred to the local dataflow
in an instruction window, an issue string might be used where a series of data
dependent instructions are generated by a compiler and issued serially after
the issue of the leading instruction. However, the high number of speculative
instructions in the instruction window remains.
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Out-of-order execution 18 not a new concept — it existed twenty years ago
on [CISC] IBM and CDC computers — but it is innovative for single-chip
implementations. ..

Mark Brehob, Travis Doom, Richard Enbody, William H. Moore,
Sherry ). Moore, Ron Sass, Charles Severance

Beyond RISC — The Post-RISC Architecture

(Technical Report TR96-11, Michigan State University, March 1996)

3.1 A Brief Look at CISC Processors

Modern superscalar processors, which will be covered extensively in Chap. 4,
use multiple FUs. To keep these FUs as busy as possible situations must be
allowed where instructions are executed in a different order from that of the
original program. Techniques supporting such an out-of-order execution were
developed even in the mid-1960s in some complex instruction set computers
(CISC) which were large mainframe computers at that time. It would take
too much space to describe CISC mainframes in detail. Therefore we only
briefly itemize some in this chapter and point out those that made a strong
impact on the microarchitecture of today’s superscalars.

The main characteristics of CISC are a large number of instructions and
a high complexity of some of these instructions. Variable instruction formats
and over a dozen different addressing modes are used. Since the control in
traditional CISC is microprogrammed, a control memory (ROM) is needed.
The average CPI is high (between 2 and 15), due to long microcodes used to
control the execution of the complex instructions. With few general-purpose
registers, many instructions are of the memory-register type, so memory is
often accessed for operands. Conventional CISC architectures usually used
a unified cache for holding instructions and data (Princeton approach) and,
therefore, shared the same data/instruction path.

CISC mainframes influenced microprocessor design in two different ways:
First a line of CISC microprocessors, namely the Intel x86 and Motorola
MC 680x0 processors, emerged as descendants with ISAs that resemble the
CISC mainframe ISAs, in particular, the ISAs of DEC VAX and PDP com-
puter lines. Otherwise, the CISC microprocessors of the 1980s were much

|. Silc et al., Processor Architecture

© Springer-Verlag Berlin Heidelberg 1999
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simpler than contemporary mainframes. Second, the out-of-order organisa-
tion principles of CISC mainframes greatly influenced the out-of-order super-
scalar microprocessor design in the mid-1990s.

3.2 Out-of-Order Execution

In Chap.1 we looked at simple pipelined processors that use an in-order
ezecution pipeline organization, i.e., instructions are issued to the FUs and
execution is initiated in exactly the same order as instructions appear in
the program. Out-of-order execution is the next step necessary to keep the
multiple FUs as busy as possible.

Allowing instructions to complete out of the original program order in-
troduces WAW hazards due to output dependences. Moreover, going one
step further and allowing instructions to be issued out of order introduces
a new problem. An antidependence can cause a WAR hazard, if a subse-
quent instruction starts execution and writes back its result before a previ-
ous instruction gets its operands. More precisely, WAR hazards may result
from antidependences when instructions may be sent to FUs before preced-
ing instructions have read their required operands. For example, suppose an
instruction Inst; has its first operand in register Reg; but is waiting for
the second operand to appear in Regs which is eventually produced by a
long-running instruction Insty. The next instruction Insty may, due to out-
of-order execution, proceed to the EX stage and write its result into its desti-
nation register Regs before instruction Insty terminates (and completes). A
solution that correctly considers WAW and WAR hazards is scoreboarding.
Tomasulo’s scheme is even able to remove WAW and WAR hazards. Both
schemes are described below.

To separate dependent instructions and minimize the number of actual
hazards and resultant stalls, scheduling must be used, i.e., a process which
determines when to start a particular instruction, when to read its operands,
and when to write its result. In static scheduling, compiler techniques are
used to minimize stalls by separating dependent instructions so that they
will not lead to hazards. In dynamic scheduling, the processor tries to avoid
stalling when data dependences are already present. Dynamic scheduling can
be either:

o Control-flow scheduling, when performed centrally at the time of decode. In
control-flow scheduling, data and resource dependences are resolved during
the decode cycle and the instructions are not issued until the dependences
have been resolved. This kind of scheduling was introduced in the CDC 6600
processor, where it was based on the scoreboarding (see Sect. 3.3.1).

e Dataflow scheduling, if performed in a distributed manner by the functional
units themselves at execute-time. In a dataflow scheduling system, the
instructions leave the decode stage when they are decoded and are held



3.3 Dynamic Scheduling 101

in buffers at the functional units until their operands and the functional
unit are available. In dataflow scheduling, instructions are, in a sense, self-
scheduled. Dataflow scheduling was first achieved with Tomasulo’s register-
tagging scheme in the IBM System /360 Model 91 processor (see Sect. 3.3.2).

The recently increasing interest in dynamic scheduling is motivated by ideas
that naturally build on it, such as issuing more instructions per clock cycle
and speculative execution (see Chap.4).

3.3 Dynamic Scheduling

In the mid-1960s the CDC 6600 and the IBM System/360 Model 91 were built
in strong competition with each other. In the CISC machine CDC 6600 the
control of out-of-order execution was centralized (by a technique called score-
boarding), while in another mature but also influent CISC machine, the
IBM System /360 Model 91, control was distributed (by Tomasulo’s scheme).
In the following we describe both machines and the two dynamic scheduling
principles.

3.3.1 Scoreboarding

Scoreboarding is a technique for allowing instructions to execute out-of-order
when there are sufficient resources and no data dependences. It was intro-
duced in 1963 by Thornton [295, 296] in the CDC 6600 processor.

The goal of scoreboarding is to maintain an execution rate of one instruc-
tion per clock cycle (when there are no structural hazards) by executing an
instruction as early as possible. Thus, when the next instruction to execute
is stalled, other instructions can be executed (if they do not depend on any
active or stalled instruction).

A scoreboard is a hardware unit that keeps track of the instructions that
are in the process of being executed, the functional units that are doing the
executing, and the registers that will hold the results of those units. Based
on its own data structure and by communicating with the functional units,
a scoreboard centrally performs all hazard detection and resolution and thus
controls the instruction progression from one step to the next (see Fig.3.1).

While there are many scoreboard variations, we mention only that of
Miiller and Paul [207, 208], which is based on the original scoreboard as
introduced in the CDC 6600 and described by Thornton [296].

The ID stage of the standard pipeline (see Sect.1.4) is split into two
stages, the issue (IS) stage and the read operands (RO) stage, while the EX
and WB stages are augmented with additional tasks. More precisely:

1. In the IS stage, if there is no structural hazard (i.e., a FU for the instruc-
tion is free) and no WAW hazard (i.e., no other active instruction has
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Fig. 3.1. Pipeline with scoreboard

the same destination register), the scoreboard issues the instruction to
the FU and updates its internal data structure; otherwise, the instruc-
tion issue stalls, and no further instruction is issued until the hazard is
cleared.

2. In the RO stage, the scoreboard monitors the availability of the operands,
and when they are all available,! tells the FU to read them from the reg-
ister file and to proceed to the EX stage. In other words, the scoreboard
dynamically resolves RAW hazards; instructions may be dispatched into
the EX stage out of order.

3. In the EX stage, the FU begins execution (which may take multiple
cycles) and notifies the scoreboard when the result is ready.

4. In the WB stage, once the scoreboard is aware that the FU has completed
execution (i.e., the result is ready), the scoreboard checks for WAR haz-
ards and stalls the completing instruction, if necessary (i.e., if there is an
instruction that has not read its operand from the destination register of
the completing instruction). If a WAR hazard does not exist (any more),
the scoreboard tells the FU to store its result in the destination register.

Scoreboarding is a single-issue scheme: only one instruction is issued to the
FUs per cycle. A WAW hazard or a structural hazard (an unavailable FU)
prevent proceeding the instruction from the IS to the RO stage. No other
instruction can be issued (an in-order issue scheme). A RAW hazard prevents
an instruction proceeding from the RO to the EX stage and a WAR hazard
prevents result write-back. However, other instructions may proceed out of

! An operand is available if the register containing the operand is being written by
a currently active FU, or if no earlier issued active instruction is going to write
it.
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order thus preventing interlocking of the pipeline. After the 1ssue to the FU,
the FU is blocked until the instruction is dispatched and execution starts.
The FU is blocked even longer until the instruction execution terminates and
the result is written back to the destination register. No forwarding is applied.
Operands can be read in the RO stage after they have been written back to
the register set.

Let us describe the scoreboard and the corresponding bookkeeping in
more detail.

registers

— I e D

register result status

F Busy RO EX WB Op Dest Srcl  Vidl  FUIL Src2  VId2  FU2

functional units
~

T T T I T T T T T T T

phase flags of the FUs instruction information of the FUs

Fig. 3.2. Structure of the scoreboard

Structures in the scoreboard. There are three tables (in two parts, R
and F') in the scoreboard as described in Fig.3.2:

o Reqister result status
This table holds which FU will produce a result in each register (if any).
The table is denoted by R. The number of entries in R is equal to the
number m of registers. If Reg, is a register, then
— R[r] = f denotes that Reg, is currently reserved by FU, which is going
to produce a result for Reg,,
— R[r] = 0 denotes that no FU has an active instruction whose destination
is Reg,.
e Phase flags of the FUs
This table holds the phase of execution for each instruction. To do this,
it provides the phase flags Busy, RO, EX, and W B, for each functional
unit FUy, with the following meaning:
— F[f,Busy] = 1 when FUy; is reserved for an active instruction, while
F(f, Busy] = 0 when FUy is free;
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— F[f, RO] = 1 indicates that FU; has read the operands for its current
instruction and has switched to the EX phase;

— F[f, EX] =1 indicates that FU; has finished the computation and has
switched to the WB phase;

— F[f,WB] = 1 indicates that FU; has written back the result to the
destination register.

o [Instruction information of the FUs

This table has one entry per FU, showing which operation the FU is sched-
uled to do, if any, where its result goes, where its operands come from, and
whether those results are available. If an operand is not available, the table
tells which FU will produce it. The table provides the following entries that
describe the current instruction Inst : op Dest, Srci, Src2 performed
by functional unit FUj:

— opcode: F[f,Op] = op;

— destination register: F[f, Dest] = Dest;

— source registers: F[f, Srel] = Srci and F[f, Src2] = Src2;

— validity of sources: F[f,VIdl] and F[f,V1d2] are used to check for cur-
rent data. If F[f, VIdl] = 0, the data of F[f, Srcl] is not valid yet.
(Similarly for F[f, V1d2].)

— FUs producing sources: F[f, FU1] and F[f, FU2| are used to specify
the FUs which are going to produce values in F[f, Srcl] and F[f, Src2].
If F[f, FU1] = 0, then the source was already valid on the instruction
issue; otherwise, F[f, FU1] = g denotes that F[f, Srcl] will receive the
value from FUy. (Similarly for F[f, FU2].)

We used F to denote both the phase flags and the instruction information

of the FUs. The number of entries in F 1s equal to the number n of FUs

(see Fig.3.2).

Bookkeeping in the scoreboard. On power-up, the scoreboard is initial-
ized by setting all its entries to zero. The scoreboard then issues the instruc-
tions of a program in sequential order to the appropriate FUs, one instruction
at a time. For each FU, the scoreboard performs bookkeeping and governs
the resources, as follows:

1. In the IS stage, the scoreboard issues the next instruction, for example
Inst : op Dest, Srcl, Src2, assoon as the destination register Dest
and a FU capable of executing op become available. The scoreboard then
reserves Dest and such a FU, say FU;. The corresponding register status,
FU status, and instruction status are initialized, as follows:

while Inst not issued yet and previous instruction issued do
if R[Dest] = 0 and
(3 FU; : FU; capable of executing op and F[f, Busy] = 0)
then do_in_the same_cycle
Choose such FUy;
/¥ initialize register status */
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R[Dest] := f;
/* initialize FU status */
F[f, Busy] .= 1; F[f, RO) := F[f, EX] := F[f,WB] := 0;
/¥ initialize instruction status */
F[f,0p] := op;
F[f, Dest] := Dest;
F(f,Srcl] := Srei;
if R[Src1] =0 then F[f,VIdl] :=1 else F[f,VIdl] := 0;
F[f,FU1]:= R[Srcl];
F[f,Src2] := Sre2;
if R[Src2] =0 then F[f,VId2] :=1 else F[f,VId2] := 0;
F(f, FU2| := R[Src2]
enddo

2. In the RO stage, after issuing Inst to FUy, that unit tries to read
operands from source registers Src1 and Src2. As long as F[f, RO] = 0,
it checks whether the registers to be read are both up to date (valid),
i.e., whether F[f VIdl] = F[f,VId2] = 1. If so, the source registers are
read and their validity flags are cleared. Since FU; no longer waits for
its operands from other FUs, F[f, FU1] and F[f, FU2], which indicate
these FUs, are cleared?. The phase flag F[f, RO] is set, thus allowing
FU; to proceed to the EX stage.

while F[f, RO] = 0 do
if F[f,VIidl] =1 and F[f,VId2] =1
then do_in_the same_cycle
Read operands;
F[f,FUl|:= F[f,FU2]:=0;
F[f,RO] =1
enddo

3. FU; remains in the EX stage until its computation is completed, i.e.,
when FU;’s result ready flag is set. Then, F[f, EX] is set indicating that
FU; proceeds to its WB stage.

while F[f, RO| =1 and F[f, EX] =0 do
do_in_the_same _cycle
F[f,EX] = result ready flag of FU;
enddo

4. In the WB stage, after the FU has run to completion, the scoreboard
postpones the write-back (in order to solve WAR hazards) until no FU,,
g # [, exists such that FU;’s destination register Dest is a source register

% This is the first improvement to the original scoreboard from the CDC 6600
to avoid deadlocks, as suggested by Miller and Paul [207, 208]. The original
scoreboard cleared validity flags F{f, Vid1] and F[f,V1d2] instead of F[f, FU1]
and F[f, FU2].
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of FU, and FU, still has to read® the old (i.e., valid) value of register
Dest.

while F[f, FX] =1 and F[f, WB] =0 do
if not (3FU,, g # /-

((Flg, Srel] = F[f, Dest] and F[g,Vidl] = 1) or
(Flg,Src2] = F[f, Dest] and Flg,V1d2] = 1))
and Flg, RO] = 0 )
then do_in_the same_cycle

Write results to F[f, Dest];

Flf,WB] =1,

R[F[f, Dest]] :=0

enddo

5. After the WB stage, all FUs with a source depending on a result of FU¢
are notified. Their corresponding valid flags are set.

while F[f, WB] =1 and F[f, Busy] = 1 do
forall FUy, g # f
do_in_the_same_cycle
if Flg, FU1] = f then F[g,VIdl] = 1;
if Flg, FU2] = f then Flg,VId2] = 1;
F[f, Busy] :=0
enddo

Example. Let us illustrate the bookkeeping in a scoreboard with the fol-
lowing sequence of instructions:

mul Regl, Reg3, Regb /* Regl < Reg3 x Regb
sub Reg2, Reg4, Reg3 /¥ Reg2 + Reg4 — Reg3
div Reg6, Regl, Reg4 /* Reg6 < Regl /Regd
add Reg4, Reg2, Reg3 /* Regd < Reg2 + Reg3

Assume there are three functional units: FU; is an adder (capable of perform-
ing addition as well as subtraction), FUs is a multiplier, and FU3 is a divider.
The execution latencies of the multiplier and divider are several times larger
than the latency of the adder.* During execution the scoreboard constantly
changes its state. Three of these states are depicted in Fig. 3.3.

Figure 3.3a shows the scoreboard when all the instructions are in the
pipeline, with mul and sub in the EX stage. The add is stalled because of
the structural hazard, i.e., the adder is not available at that moment. Notice,

% Testing “valid and unread” instead of testing only “valid” is the second correction
to the original scoreboard from the CDC 6600 to avoid deadlocks, also suggested
by Muller and Paul [207, 208].

* For latencies of real microprocessors see, e.g., Table4.4 on p.172, Table 4.8 on
p. 187, or Table 4.9 on p. 190.
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Fig. 3.3. Three snapshots of the scoreboard

however, that an additional adder would not prevent stalling the add at that
moment, because add is data dependent on sub. Such a data dependency of
div on mul stalls div, despite the divider being available at that moment.

Figure 3.3b shows the scoreboard several cycles later, when mul has just
completed its WB stage and sub has completed its WB stage several cycles
earlier due to the shorter latency. The add is in its EX stage, and div is just
about to enter its RO stage in the next cycle.

Finally, Fig. 3.3c shows the scoreboard when only div is in the pipeline
(in the EX stage).
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CDC 6600 Architecture

The CDC 6600 was delivered in 1964 by Control Data Corporation ( Thornton
[295, 296]). The developers introduced several enhancements in pipelining
and designed the first processor to make extensive use of multiple functional
units. These parallel units allowed instructions to complete out of the original
program order. The CDC 6600 processor introduced scoreboarding to achieve
control-flow dynamic scheduling of instructions. It also introduced a register-
register instruction set (load/store architecture) with a 3-address instruction
format, and peripheral processors that used a time-shared pipeline.

Operating Registers
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Fig. 3.4. The CDC 6600 processor

In the CDC6600 processor ten FUs appeared as a multiple execution
pipeline (see Fig.3.4). Of the ten FUs, which were able to operate simulta-
neously, four carried out 60-bit floating-point arithmetic among eight 60-bit
operand registers, while the other six FUs carried out logic, indexing, and
program control on the eight 18-bit address registers and eight 18-bit in-
crement/index registers. The processor had instruction buffers for each FU.
Instructions were issued to available FUs regardless of whether register in-
put data were available. The instruction’s control information would then
wait in a buffer for its data to be produced by other instructions. To control
the correct routing of data between FUs and registers, the CDC 6600 used a
centralized control unit, the scoreboard described above, which keeps track
of the registers needed by instructions waiting for the various FUs. When
all registers had valid data, the scoreboard enabled the instruction execu-
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tion. Similarly, when a FU finished, it signaled the scoreboard to release the
resources.

3.3.2 Tomasulo’s Scheme

Tomasulo’s scheme is another dynamic scheduling scheme that allows ex-
ecution to proceed in the presence of hazards. It was invented by Toma-
sulo [298] and implemented in the IBM System/360 Model 91 in 1967. The
scheme addressed the following issues: a small number of floating point reg-
isters, long memory latency, cost effectiveness of FU hardware, and the per-
formance penalties of name dependences (i.e., antidependences and output
dependences).

Assume a name dependence occurs between two instructions, Inst; and
Instsy, that use the same register (or memory location) Reg, but there are no
data transmitted between Inst; and Insts. If Reg is renamed so that Insty
and Insty do not conflict, the two instructions can execute simultaneously or
be reordered. The technique that dynamically eliminates name dependences
to avoid WAR and WAW hazards is called register renaming.

The Tomasulo’s scheme combines register renaming with the key elements
of scoreboarding. However, the centralized scoreboard is now replaced with
distributed control within the processor. Each FU has one or more reservation
stations (see Fig. 3.5). Each reservation station (RS) is given a unique number
called a tag. A RS may be empty or hold an instruction, which is indicated
by the empty flag Empty. The instruction is either awaiting availability of
all of its sources, awaiting availability of the FU, or it is executing at that
FU. For each source operand, RS contains either its value (in field Srcl or
Sre2) or, in case that the value is not available yet, a tag of the RS where
the value will be produced (in field RS1 or RS2). Valid flags (VIdl and
Vid2) are used to indicate whether the values are available or not. Once
the operand values are available (i.e., both VIdl and VId2 are set), and
the FU can start executing the next instruction, pipelined execution of that
instruction is initiated. When the execution of the instruction actually starts,
the InFU flag in the corresponding RS is set and remains set until the
completion of the instruction. After completion of the instruction from RS
tagged s, the result token® (s, result) is formed and passed on the common
data bus (CDB) to the register file and, by snooping, directly to all RSs (thus
eliminating the need to get the operand value from a register). The RS with
tag s (i.e., corresponding to the instruction whose result has been placed
on the CDB) is cleared by setting its flag Empty. The traffic passing on
the CDB is continually monitored (snooped) by all reservation stations of all
FUs. When the result token (s, result) is observed, the result is copied into
all RSs awaiting it (e.g., having flag VId1 cleared and RS1 equal to s) and the

® We use the term token in order to point out the similarity with tagged-token
dataflow (see Chap. 2).
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Fig. 3.5. Tomasulo’s scheme

associated valid flags are set to indicate the presence of the operand value.
Note that the CDB allows all units that are waiting for an operand to be
loaded simultaneously, i.e., the result is forwarded to all waiting instructions.
Hence, the RS fetches and buffers an operand as soon as it becomes available
(dataflow principle). The load buffers and load/store reservation stations hold
data coming from memory, respectively addresses and data going to memory.
The registers are connected by a pair of buses to the FUs and by a single bus
to the load/store reservation stations.

To summarize, a decoded instruction is first sent to the instruction queue,
proceeds from there to an empty RS based on its opcode, and is subjected
to the following three pipeline stages:

1. In the issue (IS) stage, the instruction is retrieved from the instruction
queue and structural hazards are checked (i.e., if there is no empty RS in
the case of a floating-point instruction, or no empty load/store buffer in
the case of a load/store instruction). In the case of a structural hazard,
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the instruction is stalled until a RS or a buffer is freed. If there is no
structural hazard and the instruction is floating-point, the instruction
is sent to a free RS while its operands are sent to the same RS if they
are in the registers. Similarly, a load/store instruction is sent to a free
buffer. Register renaming is performed in this stage since the instruction’s
register specifiers for pending operands are renamed to the tags (i.e.,
unique numbers) of those RSs where the instructions producing these
operands are located. WAW and WAR hazards are removed in this stage
by register renaming.
. In the ezecute (EX) stage, if at least one of the operands is missing,
the CDB is monitored (snooped) while waiting for the operand to be
computed by one of the FUs or supplied via a load buffer. When the
operand 1s available, it 1s placed into the corresponding RS. When both
operands are available, the execution of the operation is started. Hence,
this step checks for RAW hazards.
In the write-back (WB) stage, when the result is available, it is put on
the CDB and from there written into the registers and RSs waiting for
it.

Structures in Tomasulo’s scheme. Let us describe Tomasulo’s scheme in
more detail (Fig.3.6). First, we introduce two® data structures for updating
the status of the registers and reservation stations belonging to the FUs:

o

Reguster status table
For each register, it 1s specified whether the register contains valid data;
if not, the RS whose instruction will produce that data is specified. The
table is denoted by R. The number of entries in R is equal to the number
m of registers. If Reg, is a register, then
— R([r, Value] is the value contained in the register Reg,.
~ R[r,VId]is 1 (0) if R[r, Value] is valid (not valid).
— R[r, RS] = s points to the current source (i.e., the s-th RS) of the register
value (if the latter is not present).

Reservation station table
For each FU; there is a set §; of RSs. Let Inst : op Dest, Srcl, Src2
be the instruction issued to the RS which is tagged s and belongs to FUy.
Then:
— S¢[s, Empty] = 1 indicates that the RS is empty;

[s, InFU] = 1if and only if FUy; is executing Inst;

_ Sf
= Syls,
— S¢[s, Dest] = Dest;

S¢ls, Srel] = Srei and S¢ls, Src2] = Src2;

Actually, there are two more data structures, the load buffer status table and the

load/store reservation station table. Since they are similar to the register status
table and the reservation station table, we omit their description.
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Fig. 3.6. Data structures in Tomasulo’s scheme

— S¢[s,VIdl] and S¢[s,VId2] are used to check for current data. If
S¢[s, VId1l] = 0, the data of S¢[s, Srcl] is not valid yet. (Similarly for
S¢ls,Vid2].)

— S¢[s, RS1] and S¢[s, RS2] are used to specify the RSs which are going to
produce values in S¢[s, Srcl] and S¢[s, Src2]. Hence, S¢[s, RS1] =t de-
notes that S¢[s, Srcl] will receive the value from the ¢-th RS. (Similarly
for S¢[s, FU2].)

Bookkeeping in Tomasulo’s scheme. Bookkeeping is performed by the
following algorithms:

1. In the IS stage, the mnext instruction, for example Inst :
op Dest, Srci, Src2, is issued to an empty RS that belongs to
a FU; capable of executing op. We denote that RS by s.
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while Inst not issued yet and previous instruction issued do
if 3f,s : FU; capable of executing op and S¢[s, Empty] =1
then do_in_the same_cycle
Choose such pair f, s;
/* initialize register status */
R[Dest, RS] :=s;
R[Dest, Vid] := 0;
/* initialize reservation station status */
S¢[s, Empty] .= 0;
S¢[s, InFU] = 0;
Sf [SvOp] ‘= OPp;
S¢[s, Dest] := Dest;
if R[Src1,VId] =1 then S¢[s, Srel] := R[Srcl, Value];
S¢[s, VIdl] .= R[Src1, VId];
S¢[s, RS1] .= R[Src1, RS|;
if R[Src2,VId] = 1 then S¢[s, Src2] := R[Src2, Value];
S¢[s,V1d2] .= R[Src2, VId];
S¢[s, RS2] := R[Src2, RS|
enddo

2. In the EX stage, FU; can start executing instruction Inst contained in
the s-th RS if Inst has not been started yet, i.e., S¢[s, InFU] = 0, and
Inst has collected both operands, i.e., S¢[s, VIdl] =1, S¢[s,VId2] = L.

while S;[s, Empty] = 0 and S¢[s, InFU] =0 do
if S¢[s,VIdl) =1 and S¢[s,VId2] =1
if FU; can start executing another instruction, say, Inst
then do_in_the same_cycle
S¢[s, InFU] =1,
FU; gets s, S¢[s,Op], S¢[s, Srcl], S¢[s, Src2]
enddo

3. In the WB stage, after completion of instruction Inst, the result is writ-
ten into register Dest. The result token is formed and passed on the CDB
where it is available to RSs (see snooping on CDB below).

while FU; completed Inst from RS tagged s do
if FU; can gain control of the CDB
then do_in_the same_cycle
token.tag := s; token.data := result;
Stls, Empty] = 1;
R|Dest, Value] = token.data;
R[Dest, VId] = 1;
R[Dest, RS] =0
enddo
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4. Snooping on the CDB allows all units that are waiting for an operand to
be loaded simultaneously. In particular, when the result token (tag, data)
is observed, the value from token.data is copied into all RSs awaiting it.

while token.tag # 0 and Sy[s, Empty] = 0 and
(Sy[s,VId1] = 0 or S¢[s, VId2] = 0)
if S;[s, RS1] = token.tag or Sy[s, RS2] = token.tag
then do_in_the same cycle
if S¢[s, RS1] = token.tag then
S¢ls, Srel] = token.data;
Sf[s, Vldl] = 1;
Sf [S, RSI] =0
endif
if S¢[s, RS2] = token.tag then
S¢(s, Src2] = token.data;
S¢ls, Vid2] =1,
Sf [S, RSQ] =90
endif
enddo

Example. The bookkeeping in Tomasulo’s scheme will be illustrated using
the same sequence of instructions as in the case of scoreboarding:

mul Regl, Reg3, Regb
sub Reg2, Reg4, Reg3
div Reg6, Regl, Reg4é
add Reg4, Reg2, Reg3

Again, there are three functional units: an adder (capable of performing ad-
dition as well as subtraction), a multiplier, and a divider. The adder has two
RSs (with tags 1 and 2), the multiplier has one RS (with tag 3), and the
divider also has one RS (with tag 4). Three snapshots of Tomasulo’s scheme
data structures are given in Fig. 3.7.

Figure 3.7a shows the situation when all the instructions are in the
pipeline. Since there was no lack of RSs, all the instructions were issued
to appropriate RSs, in particular, sub, add, mul, and div were issued to
RSs tagged 1,2,3, and 4, respectively. The mul and sub are in the EX
stage. The add is stalled because of the structural hazard on the adder (i.e.,
Sadder[L, InFU] := 1 at that moment). The div is stalled because of the
unresolved data dependency on mul; that is, Sgiyider[4, VId1] := 0 meaning
that Regl does not yet contain a valid operand for div. That operand will
be provided by the RS tagged 3 (multiplier), i.e., Saiyiger[4, RS1] := 3.

Figure 3.7b shows the situation just after snooping on the CDB has been
finished following the completion of the WB stage of the mul. The WB stage
set R[1,VId] = 1 and R[1,RS] = 0 (i.e., Regl contains a valid value).
Snooping changed S giyiger[4, Srcl] to the contents of the Regl, and set
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Fig. 3.7. Three snapshots of Tomasulo’s scheme
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Sdivider[4, VId1] = 1 and Sgiyiger[4, RS1] = 0. Observe that sub completed
its WB stage long before that due to its shorter latency. The add is in its EX
stage, and div is just about to enter its EX stage in the next cycle.

Finally, Fig. 3.7c shows the situation when only div is in the EX stage.

The IBM System /360 Model 91 Floating-Point Unit

The IBM System /360 Model 91 belongs to the family of the IBM System /360
architecture (Amdahl et al. [10], Anderson et al. [11], Flynn [88]) and, there-
fore, shares the ISA with this highly influential CISC machine. It introduced
many new concepts, including tagging of data, register renaming, dynamic
detection of memory hazards, and generalized forwarding.

From ’ From
Store Uniti Instruction Unit
Floating-Point Floating-Point
Buffers Operating
(FLB) Stack
Y Floating-Point
N Registers
Decoder (FLR)
)
a
e
' 3
A 4 4 L 4 L 4 2
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To Reseryation Stations
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Unit PRI I N ©
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Unit

1 v v

Fig. 3.8. IBM System /360 Model 91 floating-point unit

The IBM System/360 Model 91 was deeply pipelined with an overall
pipeline length of 20 stages. No cache was available yet. The floating-point
execution unit (see Fig. 3.8) consisted of two separate, fully pipelined floating-
point FUs, the adder and the multiplier/divider. The FUs could be used con-
currently. Addition took 2 cycles, multiplication 3 cycles, and division 11
cycles. There were three reservation stations (RS) associated with the adder,
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and two with the multiplier/divider. The RSs associated with a FU made
the FU behave like several virtual FUs. Results from the two FUs were sent
back via a common data bus (CDB) to the memory (via store buffers), reg-
ister file, or RSs. The processor used Tomasulo’s register-tagging scheme to
achieve dataflow dynamic scheduling of instructions to virtual FUs. (See ear-
lier in this subsection for details.) A speculative branch prediction was used
that speculated the target would be taken, when the branch target instruc-
tion was within the last eight instructions in the operation stack. Memory had
a 10-cycle access, it was fully buffered and 32-way interleaved. The processor
could have up to 32 memory accesses pending in order to reduce latency.

3.3.3 Scoreboarding versus Tomasulo’s Scheme

In eliminating stalls, scoreboarding and Tomasulo’s scheme are limited by
several factors. The first general one is the amount of parallelism available in
code. The second factor is the in-order issue of scoreboarding and of Toma-
sulo’s scheme that prevents instruction to proceed. The third factor is the
number and types of FUs (respectively RSs in Tomasulo’s scheme) since con-
tention for FUs (RSs) leads to structural hazards. Finally, a scoreboard may
be limited by the presence of antidependences and output dependences, which
may lead to WAR and WAW stalls.

The main advantages of Tomasulo’s scheme over scoreboarding is its re-
moval of WAW and WAR hazards (which may lead to instruction stalling in
the scoreboarding scheme) and result forwarding (results are available as in-
put operands one cycle earlier than in the scoreboarding scheme). The major
drawback of Tomasulo’s scheme is 1ts complexity, which requires a reasonable
amount of hardware. Namely, the CDB must interact with all the pipeline
hardware, so, for the snooping process to be efficient, a complex control logic
is needed, as well as associative stores.

The full power of dynamic register renaming, as introduced by Tomasulo’s
scheme, finds expression in the execution of loops. If a loop is unrolled and
(statically) scheduled to avoid interlocks, many registers may be required.
Distinct from loop unrolling, Tomasulo’s scheme supports the overlapped ex-
ecution of multiple copies of the loop with only a small number of registers
used by the program, since the RSs extend the real register set via the re-
naming process.

For the superscalar pipeline the techniques such as register renaming and
dynamic scheduling are crucial. Some state-of-the-art superscalar processors,
namely the PowerPC processors, directly enhance the single-issue Tomasulo
scheme to a modified four-issue Tomasulo scheme.
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3.4 Some CISC Microprocessors

In the following, we give a very brief historical account of some CISC-type
microprocessor families from DEC, Intel, Motorola, Zilog, and National
Semiconductor. These CISC microprocessors inherited the ISA principles
from the CISC mainframes, but not the dynamic scheduling which was not
introduced in microprocessors until the mid-1990s.

DEC LSI-11

The DEC PDP-11 was the most popular in the 16-bit PDP (Programmed
Data Processors) line of CISC minicomputers, a successor to the previously
popular PDP-8 and remained in production for over 25 years, until the end
of 1997. The LSI-11 (introduced in 1975) was a popular microprocessor im-
plementation of the PDP-11 using the Western Digital MCP1600 micropro-
grammable CPU, and the architecture influenced the Motorola MC 68000,
National Semicoductor NS 320xx, and Zilog Z-8000 microprocessors, in par-
ticular. There was also a 32-bit PDP-11 plan as far back as its 1969 intro-
duction. The PDP-11 was finally replaced by the 32-bit VAX architecture.

Intel x86 family

Intel was and still is a leader in the microprocessor industry, primarily known
for its x86 CISC-type family (see Table3.1). The Intel 8086 (announced
by Intel in 1978 as the first in the x86 family) was based on the design of
the 8080/8085 (source compatible with the 8080) with a similar register
set, but was expanded to 16 bits (Liu and Gibson [185]). The instruction
lengths varied from one to four bytes. The instruction stream was fed to
the execution unit through a small prefetch queue, so fetch and execution
were concurrent — a primitive form of pipelining. The 80286 (introduced
in 1982) added a protected mode, which extended the directly addressed
memory space to 16 MB. However all memory access was still restricted to
64k segments until the 80386 (in 1985), which included much improved
addressing (with paging support in addition to segmented addressing). The
80386 was a 32-bit architecture with 32-bit registers and 32-bit address
space. It also had several processor modes for compatibility with the previous
design. The 80486 (1989) added full pipelines, single on-chip 8 kB cache,
integrated FPU (based on the stack-oriented register set with eight 80-bit
registers in the 80387 FPU), and clock doubling versions (like the Z-280).
Intel’s x86 family superscalar descendants Pentium (late 1993), Pentium
Pro (late 1995), Pentium II (April 1997), and Pentium III (February 1999)
will be covered in Sect.4.9.1, as well as the next generation 64-bit processor,
code named Merced, based on IA-64 ISA, which was defined jointly by Intel
and Hewlett-Packard.
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Table 3.1. The Intel x8 family

Introduction Type Transistors Technology Clock Word  Addressable/Virtual
Month Year (x 1000) (um) (MHz) format Memory
November 1971 4004 2.3 10 0.108 4-bit 640 bytes
April 1972 8008 3.5 10 0.2 8-bit 16 kB
April 1974 8080 6.0 6 2 8-bit 64 kB
March 1976 8085 6.5 3 5 8-bit
June 1978 8086 29 3 8-10 16-bit 1MB
June 1979 8088 29 3 8-10 16-bit
February 1982 80286 134 15 6-12 16-bit 16 MB/1 GB
October 1985 Intel386 DX 275 1.5/ 16-33 32-bit 4 GB/64 TB
June 1988 Intel386 SX 275 1.5 16-33 32-bit 16 MB/256 GB
April 1989 Inteld86 DX 1200 1/0.8 25-50 32-bit 4 GB/64 TB
October 1990 Intel386 SL 855 1 20-25 32-bit 4 GB/64 TB
April 1991 Intel486 SX 1185 1/0.8 16-33 32-bit 4 GB/64 TB
March 1992 IntelDX2 1200 08 50-66 32-bit 4 GB/64 TB
November 1992 Intel486 SL 1400 08 20-33 32-bit
March 1994 IntelDX4 1600 0.6 75-100  32-bit 4 GB/64 1B

Motorola MC 6800 and MC 68000 family

Motorola started with the 8-bit MC6800 family (in 1974) and continued with
the 16/32-bit family in 1979. The initial 8 MHz MC68000 was actually a 32-
bit architecture internally, but only had a 16-bit data bus and a 24-bit address
bus (with version MC68008 having reduced the data bus to 8 bits and the
address bus to 20 bits). The 68010 added virtual memory support and a spe-
cial loop mode — small decrement-and-branch loops could be executed from
the instruction fetch buffer. The MC68020 (announced in 1984) expanded the
external data and address bus to 32 bits, and had a simple 3-stage pipeline
with a 256 byte I-cache. The MC68030 added 256 byte D-cache and brought
the MMU onto the chip, which supported two level pages (logical and phys-
ical, rather than the segment/page mapping of the Intel 80386). The 68040
(1989/90) extended both I-cache and D-cache to 4 kB, deepened the pipeline
to six stages, and added on-chip FPU. The MC 68060 (Curcello et al. [50],
1995) expanded the design to a two-issue superscalar, like the Intel Pentium
and National Semiconductor’s Swordfish before it.

Zilog 7-8000 and Z-80000 family

Zilog Co. was another producer of CISC-type microprocessors. The Zilog Z-
8000 was introduced not long after the Intel 8086, but had superior features.
It was basically a 16-bit processor, but could address up to 23 bits in some
versions. The Z-8000 was one of the first to feature two modes, one for the
operating system and one for user programs. A later version, the Z-80000,
was introduced at about the beginning of 1986, about the same time as
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the 32-bit Motorola MC68020 and Intel 80386 CPUs, though the Z-80000
was appreciably more advanced. It was fully expanded to 32 bits internally.
Finally, the Z-80000 was fully pipelined (six stages), while the fully pipelined
Intel 80486 and Motorola MC68040 were not introduced until 1991. There
was a radiation resistant military version, and a CMOS version of the Z-
80000 (the Z-320). However despite being technically advanced, the Z-8000
and Z-80000 series never met mainstream acceptance, due to initial bugs in
the Z-8000 (the complex design did not use microcode — it used only 17500
transistors) and delays in the Z-80000.

National Semiconductor NS 320xx family

The National Semiconductor CISC-type NS 320xx family consisted of a CPU
which was 32-bit internally, and either 32-; 16-, or 8-bit externally. It was
similar to the Motorola MC 68000 in basic features, such as byte addressing,
24-bit address bus, memory-to-memory instructions, etc. The NS 320xx also
had a coprocessor bus and coprocessor instructions for MMU and a floating-
point unit. The series found use mainly in embedded processor products, such
as the Swordfish (introduced 1991), a two-issue superscalar microcontroller

(Hintz and Tabak [136]).

3.5 Conclusions

With all the preceding components of RISC in place (see Chap. 1), several ad-
vantages of RISC over CISC become apparent. Optimizing compilers can be
developed that improve efficiency by better utilizing the register file. Further-
more, having only simple instructions reduces the complexity and overhead
which occurs when several variations of the same instruction are provided.
The equal length of all instructions in RISC is advantageous for the imple-
mentation of the instruction fetch stage of a pipeline.

In contrast, the CISC trend has always been toward more complicated and
feature-rich ISAs. This has been mainly due to the introduction of high-level
languages and the subsequent effort to minimize the semantic gap between
the HLL constructs and the machine instruction set. The reasoning behind
the CISC approach is that complex instructions will execute faster if they are
implemented in the microcode as opposed to in the software. In addition, it
should be easier to write compilers when more high-level instructions are pro-
vided as part of the processor’s ISA, and theoretically the machine programs
should be shorter since more complex instructions are provided in the ISA.
Besides, early CISC machines of the 1960s/1970s had to cope with extremely
expensive (core) main memory. As a result, code had to be dense and hence
complex, favoring complex addressing modes and encoded ISA with variable
instruction lengths.
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However, RISC designers found that complicated instructions are more
difficult to utilize since the compiler must tune the source code to match these
instructions, which are frequently more complicated than is necessary. CISC
instructions can always be replaced by a sequence of simpler instructions.
Sometimes the sequence of simpler instructions was executed faster than the
corresponding single CISC instruction. CISC compilers use simple instruc-
tions most of the time anyway and seldom take advantage of the complex
instructions. Furthermore, the long opcodes of CISC instructions, which are
due to both the greater number of instructions and more complex addressing
modes, tend to increase the overall size of the program. In complex designs of
CISC, specialized instructions may demand the use of more complicated and
time-consuming microcode for what would otherwise be a simple operation.
Compared with CISC, the implementation of a RISC ISA uses much less chip
space due to the elimination of the microcode control store which is necessary
to implement the many instructions and addressing modes of a CISC ISA.
RISC is also much easier to implement in VLSI and performs at least as well
as comparable CISC chips.

For RISC to be successful, it must be able to outperform significantly com-
parable CISC technology while maintaining its simplicity and low price. The
latest advancement in RISC has come with the ability to execute programs in
64-bit mode. 64-bit processors use an enlarged address space, 64-bit general
purpose registers and internal data paths. This dramatically extends the ca-
pabilities of the CPU as far as data handling, memory management, and 1/0
operations. 64-bit processors deal with larger and more accurate numbers,
maintain buses 64 bits wide and greater, and can access huge amounts of
media space which is not likely to be exceeded for several years. 64-bit RISC
processors are today’s choice for high-performance workstations and server
computers, while 32-bit processors are found in the PC class of machines.

While RISC has many definite advantages over CISC, the larger instruc-
tion set and the more compact machine code of CISC still have their merits.
As generally occurs when two such opposing designs compete, a hybrid com-
bination of the two emerges. It 1s yet to be seen what the end product will be,
but even now each of the two technologies 1s taking components of the other
and uses them to increase its performance. Principles and techniques that
have been developed by the CISC approaches have become very important
in today’s multiple-issue (RISC) processors (see Chap.4). Such a principle
is out-of-order execution which allows instructions to complete out of the
original program order.

Modern microprocessors use ideas from RISC and CISC approaches. If
unhindered by a legacy CISC ISA, RISC ISA principles are applied such
as a load/store architecture, fixed instruction length, and simple addressing
modes only. Multiple-issue and dynamic (out-of-order) scheduling are crucial
techniques to keep the various functional units of contemporary micropro-
cessors busy. We have demonstrated that out-of-order execution is not a new
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concept — it existed in the mid-1960s in CISC machines CDC 6600 (which
used scoreboarding) and IBM System/360 Model 91 (which used Tomasulo’s
scheme) — but 1t was innovative for single-chip microprocessors in the mid-
1990s. We remark that an out-of-order scheduling implementation is quite
similar to dataflow architecture (Brehob et al. [37]). It is referred to as micro
dataflow by microprocessor researchers. However, the two major problems of
dataflow implementations, that is token matching and handling complex data
structures, are trivialized in the restricted internal environment of a micropro-
cessor. Namely, determining which instruction can be executed (matching)
is easy since all operands are within registers of a microprocessor. Since the
core of a microprocessor deals with only simple data types, the problem of
handling complex data structures does not exist.
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What is the limitation of a multiple-issue approach? If we can tssue
five operations per clock cycle, why not 502 Limits on available instruction
level parallelism are the simplest and most fundamental . ..

. What is clear is that some level of multiple issue is here to stay and
will be included in all processors in the foreseeable future.

John L. Hennessy and David A. Patterson
Computer Architecture A Quantitative Approach
(Morgan Kaufmann Publishers, 1996)

4.1 Overview of Multiple-Issue Processors

Superscalar processors started to conquer the microprocessor market at the
beginning of the 1990s with dual-issue processors. The principal motivation
was to overcome the single issue of scalar RISC processors by providing the
facility to fetch, decode, issue, execute, and write back results of more than
one instruction per cycle. In fact, the first commercially successful super-
scalar microprocessor was the Intel 19960 RISC processor which hit the mar-
ket in 1990. Further first-generation dual-issue superscalar RISC processors
were the Motorola 88110, Alpha 21064, and the HP PA-7100.! Other super-
scalar RISC processors of the mid-1990s era were the IBM POWER2 RISC
System /6000 processor, its offspring PowerPC 601, 603, 604, 750 (G3), and
620, the DEC Alpha 21164, the Sun SuperSPARC and UltraSPARC, the HP
PA-8000, and the MIPS R10000. Today’s superscalar RISC processors MIPS
R12000, HP PA-8500, Sun UltraSPARC-II, 1li and III, Alpha 21264, IBM
POWER2-Super-Chip (P2SC) are 4-issue or 6-issue processors.

The commercially dominating Intel line of superscalar microprocessors
continued the legacy Intel x86 ISA with the dual-issue Pentium processor

1 The Intel i860 of 1989 was not superscalar, it was rather a special kind of VLIW.
A dual-instruction mode (sometimes called superscalar mode at that time) al-
lowed the execution of two instructions simultaneously. However, dual-instruction
mode instructions are marked using a bit in the instruction word by the com-
piler. In combination with dual-operation instructions, up to three operations
were executed simultaneously per cycle.

J. Silc et al., Processor Architecture

© Springer-Verlag Berlin Heidelberg 1999
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of 1993, the Pentium Pro, the PentiumII and its newer offspring Celeron,
Klamath, and Pentium I1I (Katmai). Because of their ISA features these pro-
cessors are viewed as CISC microprocessors. A number of companies designed
Intel-compatible processors like AMD with its K5, K6, K6-2, and K6-3 pro-
cessors, and Cyrix with its 6x86, M IT, and MXi. These CISC microprocessors
feature a slightly more complex pipeline than the superscalar RISC processors
with additional stages that generate so-called RISC86ops or pops from x86
instructions. All these x86-based microprocessors feature a 32-bit architecture
targeted for use in personal computers, while the newer ones of the super-
scalar RISCs are 64-bit architecture machines and mainly used in servers.?
Intel announced its first 64-bit processor with the Merced (P7) processor.

Multiple-issue comprises superscalar and the even older, but previously
not very successful, wvery long wnstruction word (VLIW) technique that
now has a strong renaissance in the area of signal processors, multimedia
processors, and with the Hewlett-Packard and Intel’s explicitly parallel
instruction computing (EPIC) instruction format that has been proposed
for the Merced in the general-purpose processor field.

Components of a state-of-the-art superscalar processor. Let us first
look at the principal components of a superscalar processor as shown in
Fig.4.1.

Such a superscalar RISC microprocessor features a load/store architec-
ture with a fixed instruction format of 32-bit instruction length. The proces-
sor consists of an instruction fetch unit, an instruction decode and register
rename unit, an issue unit, several independently executing functional units
(FUs), a retire unit, 32 general-purpose registers, 32 floating-point registers,
additional rename registers, separate I-cache and D-cache that are connected
via a bus interface unit with the external memory bus or an external sec-
ondary cache unit, and additional internal buffers like the instruction buffer
and a reorder buffer. The FUs usually comprise:

e A load/store unit that loads a data value from the D-cache into one of the
general-purpose or floating-point registers, or, vice versa, stores a value
from a register to the D-cache. Generation of load and store addresses is
supported by a memory management unit (MMU) that comprises a trans-
lation look-aside buffer (TLB) to translate logical addresses into physical
addresses. In the case of a D-cache miss, a new cache line is automatically
loaded via the bus interface unit, while the load or store operation that
triggered the miss is stalled. State-of-the-art non-blocking caches allow the
execution of succeeding load and store operations that are independent of
the missing cache line. Moreover, typically load/store units allow loads to
overtake stores if the data addresses are different.

e One or more floating-point units perform floating-point operations load-
ing their operands from floating-point registers. The floating-point unit

2 PowerPC 601, 603, 604, and 750 are also 32-bit processors.
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Fig. 4.1. Components of a superscalar processor

is pipelined with a 3-stage pipeline with latency 3 and throughput of 1.
Sometimes more complex operations like a combined multiply-add remain
longer in the pipeline and lead to less throughput.

One or more integer units that execute the arithmetic and logical instruc-
tions on general-purpose register values. Depending on the complexity of
the operation, integer units can be single-stage units with latency of 1
or, for example, 3-stage pipelined units with latency 3 and throughput 1.
Sometimes division or square root units exist that fall out of the scheme
by not being pipelined, due to long latencies of 17 and more cycles.

A multimedia unit in state-of-the-art processors performs several arith-
metic, masking, selection, reordering, and conversion instructions on 8-
bit, 16-bit or 32-bit values in parallel, accessing either the integer or the
floating-point registers.

A branch unit controls execution of branch instructions. After fetching a
branch instruction, the branch target may be unknown for several cycles.
In such a situation, when it is not yet known whether the branch will be
taken or not, a speculative fetch, decode, and execution of instructions 1s
performed using a static or dynamic branch prediction technique. Today’s
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superscalar processors usually employ dynamic branch prediction based on
the history of previous executions of the program paths. A branch target
address cache (BTAC) contains jump and branch target addresses and a
branch history table (BHT) monitors previous branch outcomes. The task
of the branch unit is to determine the branch outcome, monitor branch
history, and reroll speculatively executed instructions in the case of a mis-
predicted branch.

The type and number of FUs vary depending on the specific processor.

Superscalar processor pipeline. A superscalar pipeline features the same
stages as a simple RISC pipeline, but several instructions are fetched, de-
coded, and executed, and several results are written back, simultaneously.
Moreover, additional issue and retire stages are necessary, and additional
buffers decouple pipeline stages (see Fig.4.2).

IF B inat £ Issue ™| EX [ and
—>Ra“d -—>§§ L EX || Write
g RENAMEY__ o f = —Ex | Back

Fig. 4.2. Superscalar pipeline

The pipelining starts with the instruction fetch (IF) stage that fetches
several instructions from the I-cache into a fetch buffer. Typically at least as
many instructions as the maximum issue rate are fetched at once. To avoid
pipeline interlocking due to jump or branch instructions, the BTAC contains
the jump and branch target addresses that are used to fetch instructions from
the target address. The fetch buffer decouples the fetch stage from the decode
stage.

In the instruction decode (ID) stage, a number of instructions are decoded
(typically as many as the maximum-issue bandwidth). The operand and re-
sult registers are renamed, i.e., available physical registers are assigned to
the architectural registers specified in the instructions. Then the instructions
are placed in an instruction buffer, often called the instruction window. In-
structions in the instruction window are free from control dependences due to
branch prediction, and free from name dependences due to register renaming.
So, only data dependences and structural conflicts remain to be solved.

The issue logic examines the waiting instructions in the instruction win-
dow and simultaneously assigns (“issues”) a number of instructions to the
FUs up to a maximum-issue bandwidth. The program order of the issued
instructions is stored in the reorder buffer. Instruction issue from the in-
struction window can be in order (only in program order) or it can be out
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of order. It can be either subject to simultaneous data dependences and re-
source constraints, or divided into two (or more) stages, checking structural
conflict in the first and data dependences in the next stage (or vice versa).
In the case of structural conflicts first, the instructions are issued to reserva-
tion stations (buffers) in front of the FUs where the issued instructions await
missing operands. In contrast to the Tomasulo algorithm (see Sect.3.3.2),
several instructions can be issued simultaneously when space is available in
the respective reservation stations. Depending on the specific processor, reser-
vation stations can be central to a number of FUs (see, for example, the Intel
Pentium II), or each FU has one or more of its own reservation stations (see
IBM /Motorola/Apple PowerPC 604). In the latter case, a structural conflict
arises if more than one instruction is issued to the reservation stations of
the same FU simultaneously. In this case only one instruction can be issued
within a cycle.

The instructions await their operands in the reservation stations, as in
the Tomasulo algorithm. An instruction is then said to be dispatched from a
reservation station to the FU when all operands are available, and execution
starts. The dispatch sends operands to the execution unit.? If all its operands
are available during issue and the FU is not busy, an instruction is imme-
diately dispatched, starting execution in the cycle following issue. Thus, the
dispatch is usually not a pipeline stage. An issued instruction may stay in
the reservation station for zero to several cycles. Dispatch and execution are
performed out of program order.

When the FU finishes the execution of an instruction and the result is
ready for forwarding and buffering, the instruction is said to complete. In-
struction completion is out of program order. During completion the reser-
vation station is freed and the state of the execution is noted in the reorder
buffer. The state of the reorder buffer entry can denote an interrupt occur-
rence. The instruction can be completed and still be speculatively assigned,
which is also monitored in the reorder buffer.

After completion, operations are committed in order. An instruction can
be commutted:

¢ if instruction execution is complete,

e if all previous instructions due to the program order are already committed
or can be committed in the same cycle,

¢ if no interrupt occurred before and during instruction execution, and

o if the instruction is no longer on a speculative path.

By or after commitment, the result of an instruction is made permanent in
the architectural register set, usually by writing the result back from the
rename register to the architectural register. This is often done in a stage
of its own, after the commitment of the instruction, with the effect that the
rename register 1s freed one cycle after commitment.

® In the literature, the meanings of the terms dispatch and issue are often inter-
changed or even indistinguishable.
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If an interrupt occurred, all instructions that were in program order be-
fore the interrupt-signaling instruction are committed, and all later instruc-
tions are removed. Thus, a so-called precise exception is guaranteed. Precise
exception means that all instructions before the faulting instruction are com-
mitted and those after it can be restarted from scratch. Depending on the
architecture and on the type of exception, the faulting instruction should be
committed or removed without any lasting effect.

We use the term retired, in conformity with Shriver and Smith [258],
when the reorder buffer slot of an instruction is freed either because
the instruction commits (the result is made permanent) or because the
instruction is removed (without making permanent changes).

Superscalar. The term superscalar was first time coined by Agerwala and
Cocke [4], here cited after Diefendorff and Allen [65]: Superscalar machines
are distinguished by their ability to (dynamically) issuet multiple instructions
each clock cycle from a conventional linear instruction stream.

The meaning of superscalar can be explained as follows:

o Instructions are issued from a sequential stream of “normal” instructions.

o The instructions that are issued are scheduled dynamically by the hard-
ware.

¢ More than one instruction can be issued each cycle (motivating the term
“superscalar” instead of “scalar”).

o The number of issued instructions is determined dynamically by hardware,
that is, the actual number of instructions issued in a single cycle can be
zero up to a maximurmn instruction issue bandwidth.

o The dynamic instruction issue complicates the hardware scheduler of a
superscalar processor. The scheduler complexity increases when multiple
instructions are issued out of order from a large instruction window.

o It is a presumption that multiple FUs are available. The number of available
FUs is at least the maximum-issue bandwidth, but often higher to diminish
potential resource conflicts.

o One important point is that the superscalar technique is a microarchitec-
ture technique, not an architecture technique. Recall from Sect.1.2 that
the architecture of a processor is defined as the ISA, i.e., everything that
is seen outside of a processor. In contrast, the microarchitecture comprises
implementation techniques. Code that is generated for a scalar micropro-
cessor can also be executed on a superscalar microprocessor of the same
architecture, and vice versa. This is the case for the scalar microSPARC-II
and the superscalar SuperSPARC and UltraSPARC processors.

The term superscalar is often used in a less precise fashion to describe a
processor with multiple parallel pipelines or a processor with multiple FUs.%

* The term issue is used here instead of the term dispatch in the original definition.
5 In 1991, Johnson defined superscalar as follows [150]: A superscalar processor
reduces the average number of cycles per instruction beyond what is possible in
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Both definitions do not allow superscalar to be distinguished from VLIW (see
Sect.4.10).

The ability to execute instructions out of order partitions a superscalar
pipeline into three distinct sections:

e an in-order section with the instruction fetch, decode, and rename stages
— the issue is also part of the in-order section (in the case of an in-order
issue),

o an oul-of-order section starting with the issue in the case of an out-of-order
issue processor, the execution stage, and usually the completion stage,

¢ and again an in-order section that comprises the retirement and write-back
stages.

Another aspect of superscalar is that instruction pipelining and super-
scalar techniques both exploit fine-grain (instruction-level) parallelism. While
pipelining (see also superpipelining in Sect.1.7.4) utilizes “temporal” par-
allelism, the superscalar technique also utilizes “spatial” parallelism. Per-
formance can be increased by temporal parallelism, using longer pipelines
(deeper pipelining) and faster transistors (a faster clock). Provided that
enough fine-grain parallelism is available, performance can also be increased
by spatial parallelism using more FUs and a higher issue bandwidth by ap-
plying more transistors in the superscalar case.

4.2 I-Cache Access and Instruction Fetch

A so-called Harvard architecture (separate instruction and data memory and
access paths) is used internally in a high-performance microprocessor with
separate on-chip primary I-cache and D-cache. The I-cache is less compli-
cated to control than the D-cache, because the I-cache is read-only®, and it
is not subjected to cache coherence in contrast to the D-cache. Typically the
primary I-cache consists of 8-32kB cache size, organized as direct-mapped
or 2-way set-associative in 32-byte cache lines holding eight 32-bit instruc-
tions each. If an instruction format like the x86 ISA allows variable length
instructions, the fetch block contains a varying number of instructions and
the beginning of the instructions is yet to be determined — this complicates
instruction decode and needs more sophisticated instruction fetch techniques.

Sometimes the instructions in the I-cache are predecoded (see also
Sect.4.4) on their way from the memory interface to the I-cache to sim-
plify the decode stage (e.g., due to predecoding in the PowerPC 620 the

a pipelined, scalar RISC processor by allowing concurrent execution of instruc-
tions in the same pipeline stage, as well as concurrent execution of instructions
in different pipeline stages. The term superscalar emphasizes multiple, concur-
rent operations on scalar quantities, as distinguished from multiple, concurrent
operations on vectors or arrays as is common in scientific computing.

% Self-modifying code is usually not, or at least not efficiently, supported in today’s
Processors.
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decode, rename and issue can be done in a single pipeline stage, instead of
two separate stages in the PowerPC 604).

The main problem of instruction fetching is the control transfer performed
by jump, branch, call, return, and interrupt instructions. The sequential ad-
dressing of instructions by the PC is disrupted. Moreover, the disruption may
occur in the middle or shortly after the beginning of a fetched instruction
block, rendering all fetched instructions after the disruption useless. Wallace
and Bagherzadeh [319] show that an 8-issue superscalar processor with simple
fetching hardware could only expect to fetch less than four usable instructions
per cycle with programs of the SPECint95 benchmark suite.

A straightforward technique for simple instruction fetch from the I-cache
is to fetch as many instructions per portion as the cache line size. However, if
the starting PC address i1s not the address of the cache line, fewer instructions
than the fetch width are returned. As with all fetching techniques, if there is
a control transfer instruction, then instructions after it are invalidated.

If the cache line size is extended beyond the width of the fetch block, the
number of instructions that will be lost when fetching after a control transfer
instruction with an unaligned target address is reduced.

However, the problem with target instruction addresses that are not
aligned to the cache line addresses can be solved completely in hardware
using a self-aligned instruction cache. Such an I-cache reads and concate-
nates two consecutive lines within one cycle to be able always to return the
full fetch bandwidth. A self-aligned I-cache can be implemented either by use
of a dual-port I-cache, by performing two separate cache accesses in a single
cycle, or by a two-banked I-cache. Using a two-banked I-cache is preferred
for both space and timing reasons ( Wallace and Bagherzadeh [319]).

All these techniques can be used in conjunction with instruction prefetch-
ing. Prefetching improves the instruction fetch performance, but fetching is
still limited because instructions after a control transfer must be invalidated.
Here instruction fetch prediction helps to determine the next instructions to
be fetched from the memory subsystem. Instruction fetch prediction is ap-
plied in conjunction with branch prediction which foretells the outcome of
conditional branch instructions.

A multiple cache lines fetch from different locations may be needed in
future, very wide-issue processors where more than one branch will often
be contained in a single contiguous fetch block. It may also be useful to
support eager execution of both sides of a branch or to support multithreaded
Processors.

4.3 Dynamic Branch Prediction and Control
Speculation

Excellent branch handling techniques are essential for current and future
microprocessors. Many instructions are in different stages in the pipeline of
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a wide-issue superscalar processor. Instruction issue also works best with
a large instruction window, leading to even more instructions that are “in
flight” in the pipeline. However, approximately every seventh instruction in
an instruction stream is a branch instruction which potentially interrupts the
instruction flow through the pipeline.

The task of high performance branch handling consists of the following
requirements:

e an early determination of the branch outcome (the so-called branch reso-
lution),

o buffering of the branch target address in a BTAC after its first calculation
and an immediate reload of the PC after a BTAC match,

o an excellent branch predictor (i.e., branch prediction technique) and spec-
ulative execution mechanism,

o often another branch is predicted while a previous branch is still unresolved,
so the processor must be able to pursue two or more speculation levels,

e and an efficient rerolling mechanism when a branch is mispredicted (mini-
mizing the branch misprediction penalty).

An early branch resolution is supported by forwarding as soon as possible to
the branch instruction the results of compare instructions that may be stored
in a general-purpose register or in a special condition-code register. Branch
testing could be moved forward in the pipeline as far as the ID stage, as was
demonstrated in Sect. 1.6.3. Previous calculations of branch target addresses
are cached in a BTAC (see Sect.1.6.3 and the next section) and accessed
during the IF stage.

The performance of branch prediction depends on the prediction accuracy
and the cost of misprediction. Prediction accuracy can be improved by invent-
ing better branch predictors. In Sect. 1.6.3 we have already seen some static
branch prediction techniques. An alternative to static prediction is dynamic
branch prediction which usually has superior performance.

When a branch is not predicted correctly, there is rarely a penalty of less
than two cycles, even in simple RISC pipelines. However, the misprediction
penalty depends on many organizational features: the pipeline length (favor-
ing shorter over longer pipelines), the overall organization of the pipeline,
whether misspeculated instructions can be removed from internal buffers, or
have to be executed and can only be removed in the retire stage. Further
dynamic aspects that influence the misprediction penalty are the number
of speculative instructions in the instruction window or the reorder buffer.
Typically only a limited number of instructions can be removed each cycle.
Therefore, rerolling when a branch is mispredicted is typically expensive, for
example, 11 or more cycles in the Pentium II or the Alpha 21264 processors.
The high misprediction penalty in current and prospective future micropro-
cessors shows the importance of excellent branch prediction mechanisms for
the overall performance of a processor.
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Other techniques to handle branches are predication using so-called pred-
icated or conditional instructions that allow the removal of the branch from
the instruction flow, and eager execution of both branch sides (see Sect. 4.3.4).

Eager execution is especially effective when the branch direction changes
in an irregular fashion which means the branch is not predictable. In that
case the expensive rerolling mechanism slows down execution. However, eager
execution 1s not possible with today’s superscalar processors because the
ability to pursue two instruction streams in parallel 1s necessary.

4.3.1 Branch-Target Buffer or Branch-Target Address Cache

The branch target address is needed at the same time as the prediction. In
particular, it should be known already in the IF stage whether the as-yet-
undecoded instruction is a (conditional or unconditional) branch to allow an
instruction fetch at the target address in the next cycle. The branch-target
buffer (BTB) or branch-target (address) cache (BTAC) is a branch-prediction
cache that stores the predicted address for the next instruction after a branch
(Lee and Smith [175]). The BTB is accessed during the IF stage. It consists
of a table with branch addresses, the corresponding target addresses, and
prediction information (see Fig.4.3 for a simple BTB). The PC for the next
instruction to fetch is compared with the entries in the BTB. If a matching
entry is found in the BTB, fetching can start immediately at the target
address.

The BTB stores branch and jump target addresses. Branch target ad-
dresses are predicted addresses, while jump target addresses always transfer
control. Jumps (unconditional branches) are usually much less frequent than
conditional branches.

Prediction
Branch address Target address bits

Fig. 4.3. Branch-target buffer

Fetching instructions from a new target address is fast if the fetch address
hits in the I-cache. A variation of the BTB that was popular for older pro-
cessors without on-chip I-caches is to store one or more target instructions
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additionally to the target address. Such a BTB is often called a branch-target
cache (BTC) instead of a branch-target (address) cache (BTAC).

Moreover, for procedure calls and returns a small stack of return addresses
1s often used in addition to, and independent of, a BTB. Such a return address
stack (RAS) appears, for example, in the Alpha 21164 organized as a 12-entry
circular buffer that makes the last 12 return addresses available.

4.3.2 Static Branch Prediction Techniques

Static branch prediction is a simple prediction technique which either always
uses a fixed prediction direction or allows the compiler to determine the
prediction direction. The prediction direction of a branch instruction is never
changed.

Simple hardware-fixed direction mechanisms can be:

o Predict always not taken: This is the simplest scheme because the assump-
tion 1s a straight instruction flow. Unfortunately, due to frequent loops
in an instruction flow, this technique is not very effective. This predic-
tion technique should not be confused with the delayed branch technique
(see Sect.1.6.3). The instruction in the delay slot is always executed, while
the predict-not-taken-technique executes the instructions after the branch
speculatively and squashes the instruction execution in the case of mispre-
diction.

o Predict always taken: Here branches at the end of a loop iteration are
correctly predicted as long as the loop loops. The branch target address
has to be stored within the instruction fetch unit to allow a zero delay.

o Backward branch predict taken, forward branch predict not taken: Here the
idea is that branches with branch target addresses pointing backwards stem

from loops and should be predicted taken, while other kind of branches are
preferably not taken.

Sometimes a bit in the branch opcode allows the compiler to decide the
prediction direction either directly (bit set means “predict taken”, bit not set
means “predict not taken”) or by reversing the hardware-determined direction.

The compiler may use several techniques for a good compiler-based static
prediction. It may either:

e examine the program structure for prediction (branches at the end loop
iteration code should be predicted as taken, if-then branches predicted as
not taken),

o relegate prediction to the programmer by compiler directives, or

o use a profile-based prediction by predicting the branch directions based on
prior runs of the program with recording of the branch behavior.

The profile-based prediction is nearly always better than the simpler
direction-based predictions.
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4.3.3 Dynamic Branch Prediction Techniques

In a dynamic branch prediction scheme, prediction is decided on the
computation history of the program. After a start-up phase of the program
execution, where a static branch prediction might be effective, historical
information is gathered and dynamic branch prediction becomes more effec-
tive. In general, dynamic gives better results than static branch prediction,
but at the cost of increased hardware complexity.

One-bit predictor. The simplest dynamic branch prediction scheme is a
simple branch prediction buffer or branch history table (BHT). The BHT is a
small buffer memory containing branch addresses indexed by the lower bits
of the address of a branch instruction. Each entry of the BHT contains one
bit that indicates whether the branch was recently taken or not. If the bit is
set, the branch is predicted taken. If the bit is not set, the branch is predicted
not taken. In the case of a misprediction, the bit state is reversed and so is
the prediction direction.

One-bit predictors can also be implemented in the BTB by only storing
the target addresses of predicted taken branches.

The prediction states of a one-bit predictor are shown in Fig. 4.4 (T stands
for taken and NT stands for not taken).

. predict not
predict taken

T«
Fig. 4.4. One-bit predictor states

Such a one-bit predictor correctly predicts a branch at the end of a
loop iteration, as long as the loop does not exit. However, in nested loops,
a one-bit prediction scheme will cause two mispredictions for the inner
loop: one at the end of the loop, when the iteration exits the loop instead
of looping again, and one when executing the first loop iteration, when it
predicts exit instead of looping. Such a double misprediction in nested loops
is avoided by a two-bit predictor scheme.

Two-bit predictors. In a two-bit prediction scheme two bits instead of one
are assigned to each entry in the BHT. The two bits stand for the prediction

W ”

states “predict strongly taken”, “predict weakly taken”, “predict strongly not
” 143

taken”, “predict weakly not taken”. In the case of a misprediction in the
“strongly” state cases, the prediction direction is not changed, rather the
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prediction goes into the respective “weakly” state. A prediction must miss
twice before it is changed when a two-bit prediction scheme is applied.

Two kinds of two-bit prediction schemes are used: the saturation up-down
counter scheme demonstrated in Fig.4.5 and the scheme given in Fig. 4.6.

(1n
predict strongly
taken

(10)
predict weakly
taken

on
predict weakly
not taken

(00)
predict strongly
not taken

Fig. 4.5. Two-bit predictor saturation counter states

NT

(1)
predict strongly
taken

(10
predict weakly
taken
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predict weakly
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(00)
predict strongly
not taken

T

Fig. 4.6. Two-bit predictor states

In the two-bit saturation up-down counter scheme, the counter is incre-
mented for each taken branch occurrence, and decremented each time the
branch is not taken. The counter is saturating, 1.e., it 1s not decremented
past 0, nor is it incremented past 3. The most significant bit determines the
prediction.

The other scheme given in Fig.4.6 differs from the saturation up-down
counter scheme by changing directly from the “weakly” to the “strongly”
states 1n the case of a second misprediction. This scheme is applied in
the UltraSPARC-I processor. Branches without prediction are initialized by
the UltraSPARC-T processor to “predict weakly not taken” (Tremblay and
O’Connor [301]).

Hennessy and Patterson [134] showed that the mispredictions of SPEC89
programs vary from 1 % (nasa7, tomcatv) to 18 % (eqntott), with spice at
9% and gee at 12 %, assuming a 4 096-entry BHT.

The two-bit prediction scheme is extendable to a n-bit scheme. However,
studies have shown that a two-bit prediction scheme does almost as well as
a n-bit scheme with n > 2.

Two-bit predictors can be implemented in the BTB, assigning two state
bits to each entry in the BTB. Another solution, which is proposed for the
PowerPC 604 and 620, is to use a BTB for target addresses and a BHT as
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a separate prediction buffer. While the BTB is accessed in the IF stage, the
BHT prediction is performed in the PowerPC 604 and 620 one cycle later in
the ID stage and may override the previous BTB prediction.

A mispredict in the BHT occurs for two reasons: either a wrong guess for
that branch, or the branch history of a wrong branch is used because of the
way the table is indexed. In an indexed table lookup, part of the instruction
address is used as an “index” to identify a table entry. Instruction addresses
with the same bit pattern used as an index share the same table entry, leading
to frequent mispredicts if the table is small.

Two-bit predictors work well for scientific floating-point intensive pro-
grams which contain many frequently executed loop-control branches. Short-
comings of the two-bit prediction schemes arise from dependent (correlated)
branches, which are frequent in integer-dominated programs.

The following example of two branches, one dependent on the other,
demonstrates that one-bit and two-bit predictors can potentially mispredict
every time. Let us look at the following program (see [134]):

if (d==0) /* branch bl */
d=1;
if (d==1) /*branch b2 */

In assembly language notation the program can be given as follows (variable
d is assigned to register R1):

bnez R1,L1 ; branch bl (d # 0)

addi R1,RO,#1 ; d==10,s0d=1
L1: subi R3,R1,#1

bnez R3,L2 ; branch b2 (d # 0)

L2:

Counsider a sequence where d alternates between 0 and 2 which generates
a sequence of NT-T-NT-T-NT-T for branches bl and b2. The execution
behavior is given in the following table:

initiald d==0 bl dbeforeb2 d==1 b2
0 yes NT 1 yes NT
2 no T 2 no T

If we apply a one-bit predictor which is initialized to “predict taken” for
branches bl and b2, then every branch is mispredicted. The same behavior
is shown for the two-bit predictor of Fig. 4.5 starting from the state “predict
weakly taken”. The two-bit predictor of Fig.4.6 mispredicts every second
branch execution of bl and b2. A (1,1)-correlating predictor (see below) can
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take advantage of the correlation between the two branches; it mispredicts
only in the first iteration when d = 2.

Correlating branch predictors usually reach higher prediction rates for
integer-intensive programs than the two-bit predictor scheme and require
only a small increase in hardware cost.

Correlation-based predictors. The two-bit predictor scheme only uses
the recent behavior of a single branch to predict the future of that branch.
Correlations between different branch instructions are not taken into account.
Let us also look at the recent behavior of other branches rather than just the
branch we are trying to predict.

The so-called correlation-based predictors or correlating predictors devel-
oped by Pan et al. [223] are branch predictors that additionally use the
behavior of other branches to make a prediction. While two-bit predictors
use self-history only, the correlating predictor uses neighbor history as well.
Many integer workloads feature complex control-flows whereby the outcome
of a branch is affected by the outcomes of recently executed branches. In
other words, the branches are correlated [223].

A correlation-based predictor denoted as an (m,n)-correlation-based pre-
dictor, or in short an (m,n)-predictor, uses the behavior of the last m branches
to choose from 2™ branch predictors, each of which is a n-bit predictor for
a single branch. The global history of the most recent m branches can be
recorded in a m-bit shift register - called a branch history register (BHR)
— where each bit records whether the branch was taken or not taken. Each
time a branch in execution resolves, its sign bit is shifted into the BHR. The
contents of the BHR are used to address (index) the entries in a so-called
pattern history table (PHT).” Typically two-bit predictors are used in PHTs.

A (1,1)-predictor uses the behavior of the last branch to choose between
a pair of one-bit predictors, and a correlation-based predictor denoted as a
(2,2)-predictor uses a BHR of two bits to choose among four 2-bit prediction
tables. A two-bit predictor (without global history) can simply be denoted
as a (0,2)-predictor.

Figure 4.7 shows the implementation of correlation-based predictor, a type
(2,2)-predictor with four 1k-entry PHTs. The BHR bit pattern selects the
specific PHT. The entries of the 1k-entry PHTs are generally accessed by
using the lower order 10 bits of the branch address. Depending on the im-
plementation, the PHTs may alternatively be accessed using 10 bits of the
address of the instruction immediately prior to the branch under considera-
tion (Pan et al. [223]). The four 1k-entry PHTs can also be viewed as a single
4 k-entry PHT. Then 12 bits are required for the PHT lookup. Therefore, two
bits from the BHR are concatenated with 10 bits from the branch address.

" Pan et al. used the terms “branch prediction table” (BPT) instead of “pattern his-
tory table” (PHT), and “m-bit shift register” instead of “branch history register”
(BHR).
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Fig. 4.7. Implementation of a (2,2)-predictor

Two-level adaptive predictors. The two-level adaptive predictor was de-
veloped by Yeh and Patt [331] at the same time as the closely related
correlation-based prediction scheme. There are several variations of the two-
level adaptive prediction scheme ( Yeh and Patt [332]).

The basic two-level predictor uses a single “global” branch history register
(BHR) of k bits to index in a pattern history table (PHT) of 2-bit counters.
The global BHR is updated with outcomes from all branches. Thus, not only
the history of a branch, but also the history of other branches, influence
the prediction of the branch. All schemes that use a single global BHR are
called global history schemes and correspond to Pan et al.’s correlation-based
predictor schemes.

In the simplest case there is a single global BHR (denoted G) and a single
global PHT (denoted g), this simple predictor is called GAg (A stands for
“adaptive”). All PHT implementations of Yeh and Patt use 2-bit predictors.
An implementation of a GAg-predictor with a 4-bit BHR length (therefore,
also denoted as GAg(4)) is shown in Fig.4.8.% The BHR is implemented as a
simple shift register shifting right to left with the sign (1 for branch taken, 0
for branch not taken) of the last resolved branch at the rightmost bit position.

In the GAg predictor scheme the PHT lookup depends entirely on the bit
pattern in the BHR and is completely independent of the branch address. The
advantages of the “degenerate” GAg scheme are its simple implementation
and the fact that the predicted outcome of a branch can be known long
before the execution of that branch [223].

A simple GAg(k)-predictor often performs better on integer programs
than a 2-bit-predictor (with a saturation up-down counter scheme).

8 The GAg scheme is called the “degenerate case” of the correlation scheme by
Pan et al. {223].
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Fig. 4.8. Implementation of a GAg(4)-predictor

However, GAg-predictors still suffer from branch patterns that emerge
several times within a computation. Two code sequences may have the same
bit pattern in the BHR and thus index the same pattern in the PHT. Since
the branch behavior of the two code sequences may differ, the shared pattern
may lead to the wrong predictions.

Such wrong predictions can be restrained by additionally using:

the (full) branch address to distinguish multiple PHTs (called per-address
PHTs);

a subset of branches (e.g., defined by part of the branch address) to dis-
tinguish multiple PHTs (called per-set PHTs);

the (full) branch address to distinguish multiple BHRs (called per-address
BHRs);

a subset of branches to distinguish multiple BHRs (called per-set BHRs);
or

e a combination scheme.

L

L

In the first two cases, a single global BHR is combined with multiple per-
address selected PHTs, denoted as GAp, or with multiple per-set addressed
PHTs, denoted as GAs. A GAp predictor with a 4-bit BHR, denoted as
GAp(4), 1s shown in Fig. 4.9, and a GAs predictor with a 4-bit BHR, denoted
as GAs(4,2"), is shown in Fig.4.10. In the GAs(4,2") predictor n bits of the
branch address are used to define 2" different branch sets corresponding to
2" PHTs with 2 entries each. Branches of the same branch set share the
same PHT in a GAs predictor.

The three two-level adaptive predictors GAg, GAp, and GAs use a single
global BHR and together form the global history scheme predictors. These
predictors are closely related to the correlation-based predictor.

In fact, by rotating Fig.4.7 90 degrees to the right and assuming a 4-bit
BHR, it can be seen that a correlation-based (4,2)-predictor is equivalent to
a GAs(4) predictor, assuming n = 10 bits in the branch address (compare
with Fig. 4.10).

A second scheme class 1s defined as the per-address history schemes where
the first-level branch history refers to the last k& occurrences of the same
branch instruction (using self-history only!). Therefore, a BHR is associated
with each branch instruction to distinguish the branch history information of
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Fig. 4.9. Implementation of a GAp(4) predictor

n bits of branch address
}Q\ Per-set PHTs

BHR
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Index

Fig. 4.10. Implementation of a GAs(4,2") predictor

each branch. The BHRs record self-history in contrast to the neighbor-history
recording BHR used in global history schemes. The per-address branch his-
tory registers are combined in a table which is called the per-address branch
history table (PBHT) by Yeh and Patt.

In the simplest per address history scheme, the BHRs index into a single
global PHT. Such a two-level adaptive predictor is denoted as PAg (multiple
per-address indexed BHRs, and a single global PHT). An implementation
of a PAg(4) predictor is shown in Fig.4.11. Two different branches with the
same BHT bit pattern select the same PHT entry leading to unnecessary
misprediction.

Per-address
BHT PHT

Branch address —w={ 1] 1]0] 0 \

Branchaddress—>1|1|0|0 | = 1|1
Index

Fig. 4.11. Implementation of a PAg(4) predictor
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The combination of multiple per-address BHRs with multiple per-address
PHTs, denoted as a PAp predictor, and of multiple per-address BHRs with
multiple per-set PHTs, denoted as a PAs predictor, is also possible. In the
PAp scheme each branch has its own BHR and its own PHT. So the number
of BHRs in the per-address BHT and the number of PHTs is equal. However,
the numbers are not fixed. They depend on the number of branches in the
program.® Conceptually, the BHR content is used as an index to select an
entry in its PHT. The PHT is selected by the branch instruction address
(PAp) or by the branch set (PAs). An implementation of a PAp(4) predictor
is shown in Fig.4.12. The figure shows the case of two branches with the
same BHT bit pattern that indexes the same line in the per-address PHTs.
However, the branch addresses select different PHTs and thus different PHT
entries.

bl b2

Peri;ig(%fess * ‘ Per-address PHTs

Branch address bl —-[TT [0 ] 0 \

Branchaddressb2—>111|0|0 »1[1][0T1
Index

Fig. 4.12. Implementation of a PAp(4) predictor

In the per-address history schemes only the execution history of the
branch itself has an effect on its prediction. The branch prediction is non-
correlating — independent of the execution history of other branches.

In the per-set history schemes the first-level branch history means the last
k occurrences of the branch instructions from the same subset. Each BHR
is associated with a set of branches. The set attributes of a branch can be
determined by the branch opcode, the branch class which is assigned by the
compiler, or by part of the branch address. Since a per-set addressed BHR,
is potentially updated with history from all branches in the same set, the
prediction of a branch is influenced by other branches in the same set ( Yeh and
Patt [332]). Again the three variations are determined by the variations in the
organization of the second-level, namely SAg, SAs, and SAp. Implementations
of a SAg(4) and a SAs(4) predictor are shown in Fig.4.13 and Fig.4.14.
Figure 4.13 shows that the SAg-predictor may suffer from branch patterns
that emerge several times within a computation (the same bit pattern in the
BHRs select the same PHT entry in the global PHT). Moreover, in all per-set

® The PAp predictor is mainly of theoretical interest, because the variable numbers
of BHRs and PHTs cause implementation problems.
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history schemes, branches which fall into the same set (e.g., having the same
n bits in the branch address) select the same entry in the BHT (and/or the
same PHT). This is demonstrated in Fig.4.14.

Per-set
BHT PHT

n bits of n

branch address A 1] 1]10]0 \
n

n bits of A >
branch address ! I ! |O | 0 Index 1 | 1

Fig. 4.13. Implementation of a SAg(4) predictor

bl, b2

Per-set
e }\ Per-set PHTSs

n bits of
branch address bl

n
n bits of X}\

branch address b2 ™ 1l 1]ofo 11
Index

Fig. 4.14. Implementation of a SAs(4) predictor

The full table of Yeh and Patt’s two-level adaptive branch predictors is
given as follows [332]:

global PHT per-set PHTs per-address PHTs

global BHR GAg GAs GAp
per-address BHT PAg PAs PAp
per-set BHT SAg SAs SAp

The denotation of the two-level adaptive branch predictors are derived
from the following table which gives a simplified estimation of the hardware
costs [332]:
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Scheme name BHR Length No. of PHTs  Hardware Cost

GAg(k) k 1 k+2F x2
GAs(k,p) k p E+px2Fx2
GAp(k) k b k+bx2Fx2
PAg(k) k 1 bxk+2Fx2
PAs(k,p) k p bxk+4px2kx2
PAp(k) k b bxk+bx2Fx2
SAg(k) k 1 sx k+28x2
SAs(k,s x p) k P sxk+px2Fx2
SAp(k) k b s X k+bx2Fx2

In the table b 1s the number of PHTs or entries in the BHT for the per-
address schemes. p and s denote the number of PHTs or entries in the BHT
for the per-set schemes, assuming that different per-set schemes are possible
for BHR selection and for PHT selection.

The simulations of Yeh and Patt [332] using the SPEC89 benchmarks
show that the performance of the global history schemes is sensitive to the
branch history length. Interference of different branches that are mapped to
the same pattern history table is decreased by lengthening the global BHR
leading to better prediction accuracy. Similarly adding PHTs reduces the
possibility of pattern history interference by mapping interfering branches
into different tables.

In general, the global history schemes are better than the per-address
schemes for the integer SPEC89 programs, while the per-address schemes are
better for the floating-point intensive programs. The phenomenon is due to
the ability of the global history schemes to utilize branch correlation, which
is often the case in the frequent if-then-else statements in integer programs,
while the per-address schemes are better in predicting loop-control branches
which are frequent in the floating-point SPEC89 benchmark programs. The
per-set history schemes are in between other schemes.

Comparing the cost effectiveness of the different schemes using the for-
mulas in the table given above and a fixed hardware budget of 8 k bits, the
most cost-effective global history scheme is GAs(7,32), the best per-address
scheme is PAs(6,16), and for per-set schemes SAs(6,4x16) scores best. From
these three configurations PAs(6,16) achieves the highest average prediction
accuracy.

When given a higher hardware budget of 128k bits, the most cost-
effective global history scheme is GAs(13,32), the best per-address scheme
is PAs(8,256), and the best per-set scheme is SAs(9,4x32). Of these config-
urations GAs(13,32) achieves the highest measured prediction accuracy of
97.2 %.10

1% Prediction accuracy measured for SPECint95 or OLTP (online transaction pro-
cessing) programs is much lower than for SPEC89 benchmarks (see Table 4.1).
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Yeh and Patt conclude that global history schemes perform better than
other schemes on integer-dominated programs but require higher implemen-
tation costs to be effective overall. However, in the global history schemes,
the pattern history of different branches interfere with each other if they map
to the same PHT. Therefore, long BHRs and/or many PHTs should be used.

Per-address history schemes perform better than other schemes on
floating-point programs. Per-set history schemes have a performance that
is similar to global history schemes on integer programs and similar to
per-address schemes on floating-point intensive programs.

gselect and gshare predictors. McFarling [196] analyzed the two-bit pre-
dictors and correlation-based predictor schemes and introduced a number
of new predictors. One set of new correlation-based predictors uses a hash
function into the PHT instead of indexing the PHT to reduce conflicts.

Recall that in the correlation-based predictor scheme the (2,2)-predictor
shown in Fig. 4.7 requires 12 bits for a PHT table lookup (assuming a single
unified PHT instead of the four PHTs); two bits from the BHR are con-
catenated with 10 bits from the branch address. McFarling calls this bit
concatenation in a correlation-based or GAs predictor the gselect predictor
which concatenates some lower order bits of the branch address and of the
bit pattern in the BHR.

In contrast to simple indexing, McFarlings’s gshare predictor uses the
bitwise exclusive OR. of part of the branch address and the BHR as a hash
function. To demonstrate the ability of both predictor types, McFarling uses
the following table:

Branch Address BHR gselect 4/4  gshare 8/8
00000000 00000001 00000001 00000001
00000000 00000001 00000000 00000000
11111111 00000000 11110000 11111111
11111111 10000000 11110000 01111111

Strategy gselect 4/4 concatenates the lower order 4 bits of the branch
address with the lower order 4 bits of the BHR. Strategy gshare 8/8 uses
the bitwise XOR of all 8 bits of both the branch address and the BHR.
Comparing gshare 8/8 and gselect 4/4 shows that only gshare is able to
separate all four cases. The gselect predictor cannot take advantage of the
distinguishing history in the upper four bits of the BHR.

Hybrid predictors. The second strategy proposed by McFarling is to com-
bine multiple separate branch predictors, each tuned to a different class
of branches. Different branch prediction schemes have different advantages.
Hopefully, such a combining predictor achieves an even better prediction ac-
curacy than either of the predictors used for combination. To predict a given
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branch, typically two or more predictors and a predictor selection mecha-
nism are necessary in a combining predictor. In principle, all kinds of branch
predictors are candidates for combination of predictors.

McFarling combined the two-bit predictor!! with the gshare two-level
adaptive predictor, and concluded that, in this combination, global informa-
tion can be used if it is worthwhile; otherwise, the usual branch direction as
predicted by the two-bit predictor can be used. Another combination pro-
posed by the same author is the combination of a PAp predictor!? with the
gshare scheme. Simulations with SPEC89 benchmarks showed that both hy-
brid predictors outperform the gshare which itself is better than gselect and
all other predictors for a given counter array size.

Another kind of hybrid predictor proposed by Young and Smith [333]
combines a compiler-based static branch prediction with a dynamic predictor
of the two-level adaptive type. Profiling is used to collect the static prediction
information [307]. Numerous other selector and hybrid predictor types are
evaluated and reported in the research literature. Patt et al. proposed a multi-
hybrid branch predictor for an advanced superscalar processor of the one
giga-transistor chip era (see Sect.5.2).

Grunwald et al. [110] compared the SAg, gshare and McFarling’s combin-
ing predictor (combining a two-bit predictor with the gshare predictor) using
the SPECint95 benchmarks. The results are reported in the Table4.1. The
table shows that for SPECint95 benchmark programs about every sixth in-
struction of the trace (the executed and committed instructions) is a branch
instruction and in the mean misprediction rate the combining predictor per-
forms best with 8.1 % mispredictions. Further simulation of Grunwald et al.
showed that the processor typically issued 20-100 % more instructions than
actually commit, due to speculative execution [110].

Other simulations by Keeton et al. [160] using an OLTP (online trans-
action workload) on a Pentium Pro multiprocessor reported a misprediction
ratio of 14 % with a branch instruction frequency of about 21 %. The specu-
lative execution factor, given by the number of instructions decoded divided
by the number of instructions committed, is 1.4 for the database programs.

Two different conclusions may be drawn from these simulation results:
branch predictors should be improved further and/or branch prediction is
only effective if the branch is predictable. If a branch outcome is dependent
on irregular data inputs, as is often the case in OLTP applications or game-
playing programs, the branch often shows an irregular behavior. This may
be the reason for the high misprediction rate of the SPECint95 benchmark
program go.

! called a bimodal predictor by McFarling

12 called a local predictor by McFarling, per-address scheme in Yeh and Patt’s
nomenclature.
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Table 4.1. SAg, gshare and McFarling’s combining predictor

committed conditional taken misprediction rate
Application | instructions branches branches (%)

(in millions) (in millions) (%) SAg gshare combining
compress 80.4 144 54.6 10.1 10.1 99
gce 250.9 50.4 49.0 12.8 239 12.2
perl 2282 438 526 9.2 259 1.4
go 548.1 80.3 54.5 256 344 24.1
m88ksim 416.5 89.8 "7 47 8.6 47
x1lisp 183.3 418 395 10.3 10.2 6.8
vortex 180.9 291 50.1 2.0 8.3 1.7
jpeg 252.0 20.0 70.0 10.3 12.5 10.4
mean 267.6 46.2 54.3 8.6 14.5 8.1

4.3.4 Predicated Instructions and Multipath Execution

Confidence estimation. If a branch is not, or i1s not easily, predictable,
its irregular behavior will frequently yield costly misspeculations. The pre-
dictability of branches can be assessed by additionally measuring the confi-
dence 1n the prediction. A low confidence branch is a branch which frequently
changes its branch direction in an irregular way making its outcome hard to
predict or even unpredictable.

Confidence estimation is a technique for assessing the quality of a par-
ticular prediction. If applied to branch prediction, a confidence estimator
attempts to assess the prediction made by a branch predictor. Because each
branch is eventually determined to have been predicted correctly or incor-
rectly, the confidence estimator assigns a “high confidence” (HC) or a “low
confidence” (LC) to each prediction. In combination with the two predic-
tion outcomes “correctly predicted” (C) and “incorrectly predicted” (I), four
confidence classes can be measured:

e correctly predicted with high confidence C(HC);

e correctly predicted with low confidence C(LC);

e incorrectly predicted with high confidence I(HC); and
e incorrectly predicted with low confidence I(LC).

When a branch is actually resolved, the branch can be classified as belonging
to one of these classes (Grunwald et al. [110]).

To implement a confidence estimator, information from the branch pre-
diction tables is used. Smith [268] proposed already in 1981 to use saturation
counter information to construct a confidence estimator. The concept was to
speculate more aggressively when the confidence level is higher [269]. Jacob-
sen et al. [148] used a miss distance counter table (MDC) in addition to the
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branch predictor. Each time a branch is predicted, the value in the MDC is
compared to a threshold. If the value is above the threshold, then the branch
is considered to have high confidence, and low confidence otherwise. Tyson
et al. [305] observed that a small number of branch history patterns typically
leads to correct predictions in a PAs predictor scheme. Their confidence esti-
mator assigned high confidence to a fixed set of patterns and low confidence
to all others [110].

Confidence estimation can be used for speculation control provided that
ways other than branch speculation can be used to utilize the processor
resources. Such alternative ways can be, for example, thread switching
in multithreaded processors (see Chap.6) or multipath execution where
instructions from both branch directions are fetched and executed, and
the wrong path instructions are afterwards discarded. In a simultaneous
multithreaded processor (see Sect.6.4), it may be more cost effective to
switch threads than speculatively evaluate a branch of low confidence.
In a multipath execution model both branch paths of a low confidence
branch may be evaluated, whereas a conventional branch speculation may
be employed to high confidence branches. Both techniques need the ability
of a processor to pursue two different instruction streams simultaneously.
Because of the limitation of a single instruction pointer in today’s super-
scalar processors, such techniques are confined to multithreaded processors
and related processor techniques such as multiscalar (Sect.5.4) and trace
processors (Sect. 5.5).

Predicated instructions. One technique that allows us to “evaluate” two
branch paths in a multiple-issue processor is predication (see Mahlke et al.
[188], August et al. [19, 20], Hwu [142]). Using this technique, the ISA of
a processor 1s enhanced by so-called predicated or conditional instructions
and one or more predicate registers. The Boolean result of a condition test
is recorded in a (one-bit) predicate register. Predicated instructions use a
predicate register as an additional input operand.
Predication is demonstrated by the following source code sequence:

if (zx ==0){ /* branch bl */
a=b+g
d=e—f;}
g =h=xi, /* instruction independent of branch bt */

Translation of the example source code sequence, using a branch instruc-
tion for the alternative, would lead to a speculative execution with instruction
g = hxi and all later instructions on the speculative path of branch bl. In the
case of a misspeculation temporary results of this and all later instructions
would be unnecessarily discarded.

However, the source code is translated in the following code sequence using
predicated instructions (each line represents a single machine operation):
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(Pred = (x ==0)) /* branch bl: Pred is set to true if z equals 0 */
if Pred then a = b +¢; /* The operations are only performed */

if Predthend=e¢— f; /*if Pred is set to true */

g=hxi,

As can be seen from the example, predication is able to eliminate a branch
and, therefore, the associated branch prediction, increasing the distance be-
tween mispredictions. Also the run length of a code block is increased which
allows better instruction scheduling by an optimizing compiler. However, the
compiler must assure that the exception behavior is not changed by moving
the instruction across a set-predicate instruction.

Predication affects the instruction set, adds a port to the register file, and
complicates instruction execution. Predication is most effective when con-
trol dependences can be completely eliminated, such as in an if-then with a
small then body, and when the condition can be evaluated early. The use of
predicated instructions is limited when the control flow involves more than a
simple alternative sequence. Moreover, predicated instructions that are dis-
carded still consume processor resources; the fetch bandwidth is especially
affected.

If the full instruction set is predicated (a so-called full predication model),
predication bits in the opcode are additionally needed for each instruction to
denote a predicate register. Thus, often only a few instructions of the ISA,
in most cases the load instructions, are predicated instructions.

Most signal processors, high-performance microcontrollers and some con-
temporary superscalar processors employ predication. As examples, the ARM
processor ISA is fully predicated; Alpha, MIPS, PowerPC, and SPARC pro-
cessors use conditional move instructions, and the Intel Merced will be fully
predicated (see Sect.4.10.2).

Predicated instructions are fetched, decoded, and placed in the instruction
window like nonpredicated instructions. It depends on the processor architec-
ture how far a predicated instruction proceeds speculatively in the pipeline
before its predication is resolved:

o A predicated instruction executes only if its predicate is true, otherwise
the instruction is discarded. In this case predicated instructions are not
executed before the predicate is resolved.

o Alternatively, as reported for Intel’s IA-64 ISA, the predicated instruction
may be executed, but commits only if the predicate is true, otherwise the
result is discarded (Dulong [71]).

The latter case is similar to the eager or multipath execution model described
below.

Eager execution. With the eager or multipath execution model, execution
proceeds down both paths of a branch, and no prediction is made. When a
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branch resolves, all operations on the non-taken path are discarded. Conse-
quently, eager execution with unlimited resources, which can be characterized
as “oracle execution”, would give the same theoretical maximum performance
as a perfect branch prediction. With limited resources, the eager execution
strategy must be employed carefully. Resource consumption rises exponen-
tially with each level of branches that are executed eagerly. Therefore, instead
of employing full eager execution, a mechanism is required that decides when
to employ prediction and when eager execution.

One decision mechanism is the use of a confidence estimator. If a branch
prediction can be made with high confidence, branch prediction and single
path speculative execution is employed; when low confidence 1s the case, eager
execution spares the misprediction penalty.

Until now, the eager execution strategy has rarely been implemented,
except for limited applications, such as instruction fetch in the SuperSPARC
processor and in the IBM 360/91 (Uht et al. [307]) and subsequent IBM
mainframes, for example, the IBM 3090 processor.

The “nanothreaded” DanSoft processor implements a multipath-execution
model using confidence information from a static branch prediction mecha-
nism (see Sect.6.3.5).

A number of research projects have surveyed eager execution. The Poly-
path architecture (Klauser et al.) [163] enhances a superscalar processor by
a limited multipath execution feature to employ eager execution. Heil and
Smith [130] propose selective dual path execution; and Tyson et al. [305] pro-
pose a limited dual path execution. Wallace et al. [318] survey threaded mul-
tipath execution, employing eager execution in a simultaneous multithreaded
processor model.

Unger et al. [308, 309] propose a compiler technique called simultaneous
speculation scheduling in combination with a “minimal” multithreaded execu-
tion model to enable speculative execution of alternative program paths. The
technique is only applicable for architectures that fulfill certain requirements
of a base multithreaded processor model:

o First, the processor must be able to pursue two or more threads of con-
trol concurrently, i.e., it must provide two or more independent program
counters.

o All concurrently executed threads of control share the same address space,
preferably the same register set.

o The instruction set must provide a number of thread-handling instructions:
Here the minimal requirements for multithreading are an instruction for
creating a new thread (fork) and an instruction that conditionally stops
its own execution or the execution of some other threads (sync).

o Creating a new thread by the fork instruction and joining threads by the
sync instruction must be extremely fast, preferably single-cycle operations.

Uht and Sindag: [306, 307] propose the disjoint eager erecution technique.
The idea is to assign resources to branch paths whose results are most likely to
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be used, i.e., branches with the highest cumulative execution probability. Uht
and Sindagi’s notion of branch execution probability is closely related to the
confidence in a branch prediction, for which they use the branch prediction
accuracy, 1.e., the percentage of taken or untaken executions of a branch.

While a branch path is speculatively executed, further branches may be
encountered before the first branch resolves, often resulting in a branch spec-
ulation level of 4 or more. The cumulative execution probability accumulates
the prediction accuracies of a branch and of the pending (predicted but yet
to be resolved) branches of previous speculation levels. If all branches in such
a sequence of pending branches are simply assumed to be independent of
each other, the single prediction accuracies can be multiplied to determine
the cumulative execution probability of the last branch in the sequence.

Thus in the disjoint eager execution model, all branches are predicted, the
cumulative prediction accuracy is computed and compared to the accuracies
of all branch paths that were yet to be chosen for speculative execution. The
branch path with the highest cumulative prediction accuracy is executed,
leading to either another single path speculative execution or an eager exe-
cution.

The three different possibilities of single path speculative execution as
produced by the usual speculation methods described above, full eager ex-
ecution, and disjoint eager execution are demonstrated in Fig.4.15 [307].
FEach line with an arrow represents a branch path marked by its cumula-
tive probability. For illustration, branch prediction accuracy is 70 % for each
individual branch. All branches are pending. Branch paths with circled num-
bers are in execution, branch paths that are not chosen by the prediction
are the paths without circled numbers. Circled numbers indicate the order of
the resource assignment, i.e., the order in which the paths are speculatively
assigned. Figure4.15(c) shows that the disjoint eager execution strategy al-
locates resources to more likely branch paths than the single path and the
eager execution models.

4.3.5 Prediction of Indirect Branches

All branch prediction techniques reported above are directed towards predic-
tion of direct branches, whose targets are encoded in the instruction itself.
Indirect branches, which transfer control to an address stored in a register,
are even harder to predict accurately. Though indirect branches are not as
frequent as direct branches in C- or FORTRAN-benchmark programs, indi-
rect branches occur with higher frequency in machine code compiled from
object-oriented programs like C++ and Java. Virtual function tables, used
in C++ and Java compilers to implement late binding of subroutine invoca-
tions, execute an indirect branch for every polymorphic call. A simple BTB
is a poor predictor for branches with changing targets. One simple possibility
is to update the PHT to include the branch target addresses.
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Fig. 4.15. (a) Single path speculative execution (b) full eager execution (c) dis-
joint eager execution

Driesen and Hoelzle [70] reported an indirect branch frequency of once
every 50 instructions for several large object-oriented C++ programs. They
investigated two-level and hybrid indirect branch predictors and reported a
misprediction rate of 9.8% with a 1k-entry table, 7.3% with an 8k-entry
table, 8.98% for a 1k-entry hybrid predictor, and 5.95% in the 8k-entry
hybrid predictor case.

4.3.6 High-Bandwidth Branch Prediction

Future microprocessors will require more than one prediction per cycle start-
ing speculation over multiple branches in a single cycle. Here the GAg scheme
is able to predict multiple branches without knowing the branch instruc-
tion address. However, the instruction fetch is also affected. When multiple
branches are predicted per cycle, instructions must be fetched from multiple
target addresses per cycle, complicating I-cache access. A trace cache (see
Sect.5.5) in combination with next trace prediction is able to solve both
problems by fetching from a dynamically assembled trace line, rather than
from I-cache.

A combination of branch handling techniques will most likely be applied,
such as a multi-hybrid branch predictor (Evers et al. [80], Patt et al. [229];
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see Sect.5.2) combined with support for context switching, indirect jumps,
and interference handling.

Table 4.2 shows some branch handling techniques and their implementa-
tions in state-of-the-art microprocessors.

Table 4.2. Branch handling techniques and implementations

Technique Implementation examples
No branch prediction Intel 8086
Static prediction:
always not taken Intel i486
always taken Sun SuperSPARC
backward taken, forward not taken | HP PA-7x00
semistatic with profiling early PowerPCs
Dynamic prediction:
1-bit DEC Alpha 21064, AMD-K5
2-bit PowerPC 604, MIPS R10000,
Cyrix 6x86 and M2, NexGen 586
two-level adaptive Intel Pentium Pro, Pentium Il, AMD-K6
Hybrid prediction DEC Alpha 21264

Intel/HP Merced and most signal
Predication processors as, e.g., ARM processors,
T TMS320C6201 and many other

Eager execution (limited) IBM mainframes: IBM 360/91, 1BM 3090
Disjoint eager execution none yet
4.4 Decode

For good performance, the processor must fetch and decode instructions at
a higher bandwidth than it can execute them. If the instruction window is
kept full, the deeper instruction lookahead allows more instructions to be
issued to the functional units. Moreover, the processor fetches and decodes
more (today about twice as many) instructions than it commits, because it
discards instructions on mispredicted branch paths.

Typically the decode bandwidth is the same as the instruction fetch band-
width. Multiple instruction fetch and decode 1s supported by a fixed instruc-
tion length.
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If the instruction length varies, which is often the case for legacy CISC
instruction sets such as the Intel x86 ISA, a multistage decode is necessary.
The first stage determines the instruction limits within the instruction stream
provided by the fetch unit, and delivers a number of instructions to the second
decode stage. The second stage decodes the instructions generating one or
several pops from each instruction. Complex CISC instructions are split into
pops which resemble ordinary RISC instructions.

The advantage of CISC instructions over RISC instructions is the denser
code (especially if a Huffman encoding is used), the disadvantage is the more
complex decode. The same argument is valid for a stack register instruction
set.

If the opcode organization is adequate, the IF stage can analyze part of
the opcode and use it for prediction. If a partial decode is done when the
instructions are transferred from memory or secondary cache to the I-cache
(see PowerPC 620 or MIPS R10000), the decode stage is simpler.

For instance, the MIPS R10000 predecodes each 32-bit instruction into a
36-bit format stored in the [-cache. The four extra bits indicate which func-
tional unit should execute the instruction. The predecoding also rearranges
operand- and destination-select fields to be in the same position for every
instruction, and modifies opcodes to simplify decoding of integer or floating-
point destination registers ( Yeager [330]). Thus the decoder can decode this
expanded format more rapidly than the original instruction format.

4.5 Rename

The aim of register renaming 1s to remove antidependences and output de-
pendences dynamically by the processor hardware. Register renaming is the
process of dynamically associating specific physical registers (also called re-
name registers) with the architectural registers (also called logical registers)
referred to in the instruction set of the architecture. The physical registers
are internal registers that cannot be accessed directly by the programmer or
compiler.

Register renaming is implemented by allocating a new physical register for
every destination register specified in an instruction. If the same architectural
register is used by a preceding instruction either as an operand or destination
register, that register 1s mapped to another physical register, thus dynami-
cally removing antidependences and output dependences from the instruction
flow. Succeeding instructions that use the same architectural register as an
operand register access the newly allocated physical register as an input reg-
ister. After the mapping, register data dependences are simply detected by
comparing physical register numbers, no longer considering instruction order.

Each physical register is written only once after each assignment from
the free list of available registers. If a subsequent instruction needs its value,
that instruction must wait until it is written (data dependence). After the
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register is written, it is ready, and its value never changes. When a subse-
quent instruction updates the corresponding architectural register, the result
is written into a newly assigned physical register.

Typically there are more physical registers than architectural registers.
For instance, the Pentium Pro ISA defines 8 architectural integer registers,
but contains 40 physical registers. Separate sets of physical registers are pro-
vided to rename integer registers and floating-point registers. The MIPS
R10000 ISA defines 33 architectural integer registers (including Hi and Lo
registers used for integer divides) and 32 architectural floating-point regis-
ters, but provides 64 physical integer registers and 64 physical floating-point
registers.

There are two principal techniques to implement renaming:

e Separate sets of architectural registers and rename (physical) registers are
provided. The physical registers only contain temporary values (of com-
pleted but not yet retired instructions), while the architectural registers
store the committed values. After commitment of an instruction, copying
its result from the rename register to the architectural register is required.
The PowerPC 604 and 620 provide both types of registers in hardware,
and a separate copy stage after the commit stage. The physical register is
freed for re-use when the instruction commits and its result is written back
to the corresponding architectural register.

¢ Only a single set of registers is provided and architectural registers are
dynamically mapped to physical registers. The physical registers contain
committed values and temporary results. After commitment of an instruc-
tion, the physical register is made permanent and no copying is necessary.
This is the mode implemented in the Pentium II and in the MIPS R10000.
The old physical register can be freed for re-use when a subsequent instruc-
tion writes to the corresponding architectural register.

The physical registers can be implemented in the reservation stations as is
the case in Tomasulo’s scheme of renaming or they can be separate from the
reservation stations.

Another alternative to dynamic renaming is the use of a large register file,
as defined for the Intel Merced. Antidepencences and output dependences can
be removed by a static register mapping by the compiler. One problem of this
approach is that more registers need more bits in the instruction format to
specify the register numbers. This extra space may not be available in a
32-bit instruction format. Moreover, the more complex register access may
limit cycle time or lead to a two-stage register access and write-back, thus
increasing pipeline length by an additional stage. On the other hand, the
renaming hardware is saved, leading to less hardware complexity.

Register mapping is often not a pipeline stage on its own, but is combined
with the decode stage. After renaming the instruction is written into the
instruction window, awaiting issue to functional units.
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4.6 Issue and Dispatch

The notion of the instruction window comprises all the waiting stations be-
tween the decode (rename) and execute stages. The instruction window iso-
lates the decode/rename from the execution stages of the pipeline. The de-
code stage continues to decode instructions regardless of whether they can
be executed immediately or not. The decode stage places the decoded (and
renamed) instructions in the instruction window as long as there is room in
the window.

The instructions in the instruction window are free from control depen-
dences, which are removed by branch prediction, and free from antidepen-
dences or output dependences, which are removed by renaming. Thus only
data dependences and resource conflicts remain to be taken into considera-
tion.

Instruction issue is the process of initiating instruction execution in the
processor’s functional units.!® The instruction-issue policy is the protocol
used to issue instructions. The processor’s lookahead capability is the ability
to examine instructions beyond the current point of execution in the hope of
finding independent instructions to execute (Johnson [150]).

Hennessy and Patterson [134] distinguish dynamic from static issue, and
dynamic from static scheduling. In this terminology, superscalar is character-
ized by a dynamaic 1ssue, whereby it is decided by hardware which instructions
are issued and the issue of a varying number of instructions per clock cycle
1s possible. Dynamic issue can be statically scheduled or dynamacally sched-
uled, meaning instructions must be issued in program order as defined by the
compiler, or the issue can also be performed out of order, i.e., (dynamically)
scheduled by the hardware.

VLIW 1s characterized by a static issue whereby a fixed number of in-
structions is issued each cycle, which are statically scheduled by the compiler.
The instructions can be organized as one large instruction or as a fixed in-
struction packet.

To summarize, Hennessy and Patterson distinguish dynamic (superscalar)
from static (VLIW) issue, and dynamic (out-of-order) from static (in-order)
scheduling. In-order issue was the rule for superscalar processors until ap-
proximately 1995. Out-of-order issue reaches better IPC (instructions per
cycle) and is adopted by all state-of-the-art superscalar microprocessors.

Today, superscalar microprocessors are able to issue up to four or six in-
struction per cycle out of order from a 16-entry to 56-entry instruction win-
dow. A large instruction window and excellent branch prediction is necessary
to reach an IPC value that is close to the maximum-issue bandwidth.!*

1% We use the term issue for an issue to a FU or a reservation station and the term
dispatch, if a second issue stage exists, to denote when an instruction begins
execution in the functional unit.

' There exists a strong relation to the dataflow scheme (see Chap. 2). Dynamic
scheduling can be viewed as a kind of “local dataflow” or “windowed dataflow”.
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One way to implement the instruction window is to centralize the window
buffering of every instruction for every FU in a common window. The problem
with a large central instruction window is that an issue from a single large
instruction window limits future cycle rate increase. In each processor cycle,
the availability of operands has to be updated, instructions that are ready to
issue have to be selected, and availability of the appropriate resources must
be checked. The necessary resources for an instruction to be issued comprise
a free functional unit (or a free entry in its reservation station) and an entry
in the reorder buffer. The update and select complexity rises extremely quick
as the instruction window is made larger.

Moreover, each instruction issued in a single cycle must be accompanied
by all its required operands. If the instruction window is distributed to in-
dividual buffers to each FU, these buffers are called reservation stations. As
in the Tomasulo scheme a single reservation station is able to host a single
instruction.!®

There exist several alternatives to a single-stage issue from a central in-
struction window:

o The first alternative is a multistage issue. Operand availability and resource

availability checking is split into two separate stages. A resource dependent
issue can be performed first to reservation stations which are arranged in
front of each FU or in front of a group of related FUs. In the second stage,
the instruction is dispatched to the FU when operands are available and
instruction execution starts.
In principle, the two stages could also be organized in reverse order. Data
dependence checking is performed first and instructions are issued to (pos-
sibly decoupled) reservation stations. Execution of an instruction starts
when the appropriate FU is free.

e A second alternative is the decoupling of instruction windows. A small

number of instruction windows (or reservation stations) is provided. Each
instruction window is shared by a group of (usually related) FUs. In the HP
PA-8000, separate floating-point and integer/general-purpose windows are
provided; in the MIPS R10000 floating-point, integer, and address windows
are distinguished.
Data dependence checking is simplified, because data dependences are
mostly limited to each of the instruction windows. A slower exception mech-
anism may be provided for the few dependences between floating-point and
integer instructions, for example.

In contrast to the superscalar approach, no renaming is necessary in the dataflow
scheme because of the single-assignment rule, and no branch prediction or spec-
ulative execution is taken into consideration. In principle, the “instruction win-
dow” in the dataflow scheme is the capacity of the matching store, and enabling
of instructions is tested by the matching unit.

In contrast to the definition above, a reservation station is sometimes defined in
literature as a multiple-entry reservation station — an instruction buffer contain-
ing several entries. We adhere to the original definition given by Tomasulo.

15
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o The third alternative is a combination of multistage issue and decoupling
of instruction windows. The decoupling can even be extended to a com-
plete distribution as done by reservation stations which are dedicated to
individual FUs (e.g., PowerPC). Instructions can only be dispatched to the
associated FU. However, the availability of operands may depend on result
values delivered from an arbitrary FU.

The issue from each of the instruction windows can be an in-order or an out-
of-order issue. In a two-stage issue scheme, with resource dependent issue
preceding the data-dependent dispatch, the first stage is still performed in
order, while the second stage 1s performed out of order. Moreover, if operands
are available and the FU is idle, the instruction may be dispatched imme-
diately, during issue to the reservation station, thus avoiding the dispatch
cycle. The following 1ssue schemes are commonly used:

o single-level issue out of a central window as in the Pentium IT processor

(see Fig.4.16),
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Fig. 4.16. Single-level, central issue scheme

o single-level issue with an instruction window decoupling using two separate
windows (most commonly separate floating point and integer windows as
in HP 8000 processor; see Fig. 4.17),
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Fig. 4.17. Single-level, two-window issue scheme
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¢ two-level issue with multiple windows with a centralized window in the
first stage and separate windows in the second stage. Figure4.18 shows a
two-level issue as performed in the PowerPC 604 and 620 processors. At
first resource conflicts (structural hazards) are checked and up to four in-
structions are issued in order to the respective reservation stations in front
of the appropriate FUs. A resource conflict arises when multiple instruc-
tions should be issued to reservation stations of the same FU, when the
reservation station(s) for the appropriate FUs are full, or when the reorder
buffer is full. In a second stage an instruction can be dispatched from a
reservation station to its FU as soon as all input operands are available
and the FU is not busy. The issue is performed from a central instruction
window to reservation stations which are separate for each FU.

Issue Dispatch

jt—{ Functional Unit|

Decode > Jt—{ Functional Unit]
;l(ne?lame > f—={ Functional Unit|
™ B =] Functional Unit|

Reservation Stations

Fig. 4.18. Example of a two-level issue scheme

If several instructions are ready for issue, exceeding the issue bandwidth, an
instruction issue strategy is applied. In superscalar processors the strategy
is either an oldest-instruction first or a round-robin scheduling concerning
the entries in the instruction window. Instruction issue strategies get more
interesting in simultaneous multithreaded processors (see Sect.6.4) that are
able to issue instructions of several threads simultaneously and often provide
more enabled instructions than the issue bandwidth allows.

In future superscalar processors, the issue may be even more complicated
by a speculation beyond data dependences. Operand value prediction, load
value and load address prediction, constant value and stride value prediction,
and related prediction techniques lead to a speculative execution of data
dependent instructions (see Sect.5.3). This may prove useful when a multi-
stage issue is combined with a large issue bandwidth that cannot be filled
otherwise.
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4.7 Execution Stages

A FU executes an instruction in one or several cycles and in pipelined or
nonpipelined fashion until the execution completes which makes the result
available for forwarding and buffering.

There exist various types of FUs that may be classified as single-cycle
(latency of one) or multi-cycle (latency more than one) units. Single-cycle
units are the simplest kinds of FUs which produce a result one cycle af-
ter an instruction started execution. Usually they are also able to accept a
new instruction each cycle (throughput of 1). Multicycle units perform more
complex operations that cannot be implemented within a single cycle under
the respective timing constraints of the processor. Multicycle units can be
pipelined to accept a new operation each cycle or every other cycle or they
are nonpipelined. Another class of unit exists that performs the operations
with variable cycle times.

Types of FUs are:

e single-cycle (single latency) units: (simple) integer and (integer-based) mul-
timedia units;

e multi-cycle units that are pipelined (throughput of 1): complex integer,
floating-point, and (floating-point-based) multimedia unit (also called mul-
timedia vector units);

e multi-cycle units that are pipelined but do not accept a new operation each
cycle (throughput less than 1): often the 64-bit floating-point operations
in a floating-point unit;

o multi-cycle units that are not pipelined: division unit, square root units,
complex multimedia units;

e variable cycle time units: load/store unit (depending on cache misses) and
special implementations of floating-point units, for example.

Simple integer unit. A simple integer unit typically contains an ALU
that handles all the 32-bit (or 64-bit) fixed-point addition instructions and
the logical instructions.

Complex integer unit. A complex integer unit handles the more complex
integer operations as, for example, the 32-bit and 64-bit signed and unsigned
integer multiplications. The fully pipelined unit can start a new multiply
instruction every clock cycle with an execution latency of three cycles. The
multiplier typically uses Booth partial product generators and a Wallace
tree to sum the partial products. For integer divisions a dedicated division
unit may be present or divisions are performed by the complex integer
unit in a nonpipelined fashion. Dividers typically use a radix-4 or radix-8
SRT algorithm (Sweeney-Robertson-Tosher) with a latency depending on
the operand type and precision (see Hennessy and Patterson [134] for a
description of these algorithms). Latencies are typically in the range of 13
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to 17 cycles for a single-precision division. The divide unit is most often also
used for square root computations, if such an instruction is present in the
ISA (as for example in the MIPS R10000).

Floating-point execution unit. Floating-point execution units are fully
pipelined and able to perform floating-point operations in ANSI/IEEE 754-
1985 single-precision or double-precision formats. Typically a three-cycle la-
tency is needed, although a special shortcut may reduce the latency for the
floating-point compare instruction to one cycle. Due to the exceptions in the
IEEE floating-point standard, the rounding and normalization can especially
be rather complex. Thus, the full TEEE standard is not usually implemented
in hardware.

Load /store unit. Load/store units are rather complex units and cannot be
covered here in full detail. Therefore only a few basic facts are presented.
Primary D-cache access is performed in two cycles which results in a two
cycle load latency in the case of a D-cache hit. After address calculation
a load instruction simultaneously accesses the TLB for virtual to physical
address translation, the cache tag array, and the cache data array. Different
queues are present within the load/store unit for loads that only need an
address and for stores that need a store address and a value.

To preserve correct branch speculation rerolling and a precise exception
mechanism, store operations are allowed to affect the D-cache or memory only
when the store instruction commits. Therefore, store instructions may block
succeeding load instructions. This can be avoided when loads are allowed
to pass store instructions provided that the addresses are different. Thereby
processor performance is increased, because instructions that are data de-
pendent on the loaded value can be issued faster. However, the sequential
consistency'® assumed by most programs can no longer be guaranteed.

A similar potential violation of sequential consistency arises with non-
blocking or lockup-free caches that are state-of-the-art. In this caching scheme
a cache miss does not block further load/store operations provided that the
same cache line is not affected. Often up to four memory operations can be
outstanding.

16 Sequential consistency was defined by Lamport, 1979 [171] for multiprocessor
systems as follows: The results of any execution is the same as if the operations
of all the processors were exzecuted in some sequential order, and the operations
of each individual processor were to appear in this sequence in the order specified
by its program. The principal benefit of sequential consistency as an interface to
shared-memory multiprocessor hardware is that sequential consistency is what
people expect (Hill [135]). Sequential consistency is defined to guarantee that
load and store accesses of parallel programs executed on a multiprocessor system
arrive in program order at the memory, and the parallel programs are executed as
in multiprogramming fashion on a single-processor system. However, sequential
consistency prevents reordering of load/store accesses.



4.7 Execution Stages 161

Typically a load cannot pass a store operation when the store address has
not yet be computed. In this case the load may be executed speculatively,
assuming that the load address is different from all addresses of all passed
store operations. If that is not the case, the loaded value must be discarded.

The single load/store unit is often a bottleneck for the performance
of today’s microprocessors, but multiple load/store units are difficult to
implement.

Media processing. Media processing (digital multimedia information pro-
cessing) is the decoding, encoding, interpretation, enhancement, and ren-
dering of digital multimedia information. One important example for media
processing is the MPEG-2 video algorithm — the video compression standard
defined in ISO/IEC 13818-2 [146] — that has been chosen for digital TV (ca-
ble, satellite, terrestrial broadcast), DVD and HDTV. It provides high quality
video with data rates of 2-20 Mb/s. The MPEG-2 video decompression (or
decoding) can be divided into the following six steps:

1. Header decode provides video sequence parameters such as picture rate,
bit rate, image size, structure, and decoding parameters.

2. Huffman decode decodes variable-length codes into fixed length numbers,
which represent quantized inverse DCT (IDCT) coefficients, scaling fac-
tors, and motion vectors. This step includes run-length decoding of zeros
for the DCT coefficients.

3. Inverse quantization multiplies coefficients by quantizer factors to restore
them to the original range.

4. IDCT changes each 8 x 8 block of IDCT coefficients to convert the data
from the frequency domain back to the original spatial domain. This gives
the actual pixel values for I-blocks, but only the differences for each pixel
for P-blocks and B-blocks.

5. Motion compensation adds the differences in the IDCT step to the pixels
in the reference block as determined by the motion vector for P-blocks,
and to the average of the forward and backward reference blocks for
B-blocks.

6. Display converts color from YCbCr coordinates to RGB color coordi-
nates, including upsampling Cb and Cr values, and writing to the frame
buffer for displaying the decoded video.

Today’s video and 3D graphics require high bandwidth and processing per-
formance. This can be achieved by:

e separate special-purpose video chips (e.g., for MPEG-2, 3D-graphics, etc.);

e multi-algorithm video chip sets;

o programmable video processors which are typically very sophisticated, dig-
ital signal processors (e.g., TMS320C82, Siemens Tricore, or Hyperstone);

e specialized media processors and media coprocessors (e.g., the Philips Tri-
media TM-1 (Rathnam and Slavenburg [238]), the MPACT (Kalapathy
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[152], Foley [89]) and MPACT2 (Yao [329]) of Chromatic Research, the
MicroUnity Media processor (Hansen [122]); and

o multimedia units which are multimedia extensions for general-purpose pro-
CESSOrs.

Multimedia unit. Based on the single instruction multiple data (SIMD)
model, media processors and multimedia extensions for general-purpose pro-
cessors process multiple sets of small operands and obtain multiple results
with a single instruction. The same operation as indicated by the opcode is ap-
plied to several data items within a register simultaneously, thereby utilizing
very fine-grained parallelism which is often referred to as SIMD parallelism or
subword parallelism. Such subword parallel instructions deal with arithmetic
and logical operations on packed data types, such as 8- by 8-bit bytes, 4- by
16-bit words, or 2- by 32-bit doublewords, all packed inside one 64-bit quad-
word. Operations include packing and unpacking, arithmetic, comparisons,
logic, shifting, and (on SPARC and Alpha machines) motion estimation for
motion-video encoding. Figure 4.19 gives an example of a 4- by 16-bit SIMD
multiplication.

Rl: R2:
x1 x2 x3 l x4 I y3 y4 I

Y VOV Y
R3: xl*lexZ*y2|x3*y3lX4*y4|

Fig. 4.19. Typical multimedia instruction execution

Multimedia units employ SIMD instructions, saturation arithmetic, and
additional fixed-point arithmetic, masking, selection, reordering, and conver-
sion instructions.

The MPEG-2 decompression algorithm does benefit highly from special
multimedia instructions. Steps 3 to 6 of the MPEG-2 decompression algo-
rithm can be executed in parallel for all blocks (and macroblocks) of a single
image, applying the SIMD instructions. Such multimediainstruction sets have
allowed software-only real-time video decompression without extra hardware.

Several multimedia extensions are applied in current microprocessors:

o visual instruction set (VIS) for UltraSPARC chips [165, 301];
o multimedia acceleration extensions (MAX-1, MAX-2) for HP PA-8000 and
PA-8500 (Lee [176, 177));



4.7 Execution Stages 163

o matriz manipulation extensions (MMX, MMX2) for the Intel x86 (Peleg
et al. [232, 233));
o the AltiVec extensions for Motorola processors;

e motion video instructions (MVI) for Alpha processors; and
e MIPS digital media extensions (MDMX) for MIPS processors.

Sun Microsystems was one of the first companies to introduce CPU multime-
dia features, with 1ts VIS for its UltraSPARC CPU. Now all major processor
architectures have defined multimedia instruction extensions, which vary in
scope and feature sets. These instructions accelerate calculations and make
most 2D and 3D graphics and/or video, audio, voice-processing, and data
communications tasks up to several times faster.

On Intel’s P55C and Pentium II chips, the ALUs and eight 64-bit media
registers are shared with the FPU, so MMX and floating-point instructions
cannot be processed simultaneously. This is a problem during rendering oper-
ations, where the FPU is doing geometry calculation and MMX instructions
are simultaneously trying to do texture mapping. Frequent switching between
floating-point and MMX modes can impair performance.

VIS, MVI, and MDMX build on 64-bit RISC architectures with three-
operand instructions and large sets of 64-bit registers (which are already
present) to facilitate multimedia tasks. With the Alpha, on the other
hand, the thirty-two 64-bit integer registers handle multimedia operations
simultaneously with other integer instructions. Sun’s VIS is similar to DEC’s
MVI in that it enables operation on an entire 4-by-4 matrix directly to its
32 registers, compared to only 8 registers for Intel’s MMX.

3D graphical enhancement. MPEG-2 decompression is a good example
for a class of video stream algorithms but not for 3D applications. A floating-
point unit is not necessary for MPEG-2, but would be necessary for 3D
applications.

The ultimate goal is the integrated real-time processing of multiple audio,
video, and 2D and 3D graphics streams on a system CPU, although time is
still needed to attain that level of performance.

In the context of multimedia or 3D graphical enhancements, two {or four)
paired single-precision floating-point operations are executed in parallel on
two (or four) single-precision floating-point values stored in a 64-bit (or 128-
bit) register.

To speed up 3D applications by the main processor, fast low-precision
floating-point operations are required. Moreover, reciprocal instructions are
of specific importance, for example, square root reciprocal with low precision.

Such vector operations are defined by the so-called 3Dnow! extension de-
veloped by AMD and by Intel’s MMX enhancement internet streaming SIMD
extension (ISSE) (previously also code-named Katmat new instructions, KNI
or MMX-2).
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The 3DNow! defines 21 new instructions which are mainly paired single-
precision floating-point operations, for example, specifying reciprocal and
root reciprocal functions with single-precision format. Currently, only AMD’s
K6-2 series carry the 3DNow! instruction set. In the future AMD’s K6-3 and
K7, Cyrix’s Cayenne (next-generation 6x86MX) and MXi (next generation
of MediaGX), and IDT’s WinChip 2 3D will all have the 3DNow! instruction
set.

While 3DNow! instructions are meant to optimize 3D games and ap-
plications, Intel’s MMX was primarily focused on image, audio, and video
processing. For this reason, Intel introduced the ISSE set of instructions
which focus on floating-point-intensive 3D graphics acceleration, and thus
have much heavier memory demands. In 1999, the ISSE instruction set was
first time implemented in the new Intel PentiumIIl processor. The 72 new
instructions operate on a set of eight additional 128-bit SIMD floating-point
registers. Four 32-bit low-precision floating-point operations are performed
in parallel by a new SIMD floating-point unit.

Future Directions. In future, FUs which are possibly very complex are
envisaged, such as a floating-point vector unit, a high-accuracy inner product
floating-point unit, specialized multimedia units like a MPEG unit or a 3D-
graphics unit.

FUs may be grouped relating to their usage. An example is the decou-
pling of integer units and floating-point units leading to separate instruction
windows, forwarding paths, and logical and physical register sets. Forwarding
is faster within a single group than between groups.

4.8 Finalizing Pipelined Execution

4.8.1 Completion, Commitment, Retirement and Write-Back

An instruction is completed when the FU has finished the execution of the
instruction and the result is made available for forwarding and buffering.
Instruction completion is out of program order.

We use the terms retired, committed, and removed in conformity with
Shriver and Smith [258] in the following way. After completion, operations
are committed in order. Retiring an operation does not imply the results of
the operation are either permanent or nonpermanent. Committing an opera-
tion means that the results of the operation have been made permanent and
the operation retired from the scheduler. Retiring means removal from the
scheduler with or without the commitment of operation results, whichever is
appropriate. Timing-wise, commitment and retirement often happen simul-
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taneously. Shriver and Smith use the term removed to mean the operation is
retired from the scheduler without making permanent changes.!”

A result is made permanent either by making the mapping of architectural
to physical register permanent (if no separate physical registers exist) or by
copying the result value from the rename register to the architectural register
(in the case of separate physical and architectural registers). The latter is
often done in a write-back stage of its own after the commitment of the
instruction. The main effect when using a separate write-back stage is that
the rename register is freed one cycle after commitment.

4.8.2 Precise Interrupts

An interrupt or exception 1s called precise if the saved processor state corre-
sponds with the sequential model of program execution, where one instruction
execution ends before the next begins. To be more specific, the saved state
should fulfil the following conditions [270]:

o All instructions preceding the instruction indicated by the saved program
counter have been executed and have modified the processor state correctly.

e All instructions following the instruction indicated by the saved program
counter are unexecuted and have not modified the processor state.

e If the interrupt is caused by an exception condition raised by an instruction
in the program, the saved program counter points to the interrupted in-
struction. The interrupted instruction may or may not have been executed,
depending on the definition of the architecture and the cause of the inter-
rupt. Whichever is the case, the interrupted instruction has either ended
execution or not started.

If the saved processor state is inconsistent with the sequential architectural
model and does not satisfy the above conditions, then the interrupt is impre-
cise. Interrupts belong to two classes:

e Program interrupts or traps result from exception conditions detected dur-
ing fetching and execution of specific instructions. These exceptions may
be caused by illegal opcodes, numerical errors such as overflow, or they
may be part of normal execution, e.g., page faults.

e External interrupts are caused by sources outside the currently executing
instruction stream (e.g., I/O interrupts and timer interrupts). For such in-
terrupts, restarting from a precise processor state should be made possible.

Typically in superscalar processors, instructions stay in sequence until the
time they are issued. Moreover, the processor state is not modified by an

" Unfortunately, the terms completion, retirement, and commitment are often used
interchangeably or with different meaning in the literature. Hennessy and Patter-
son [134] use the terms completed and committed as follows: when an instruction
is guaranteed to complete, it is called committed.
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instruction before it issues. When an exception condition can be detected
prior to issue, instruction issuing is simply halted and the processor waits
until all previous issued instructions are retired. Then the processor is in
a precise state with the program counter corresponding to the instruction
being held in the issue register. Registers and main memory are in a state
consistent with this program counter value. Examples of such exceptions are
all external interrupts that can be checked at the issue stage, and program
interrupts such as illegal opcodes or privileged instruction faults [270].

Processors often have two modes of operation. One mode guarantees pre-
cise exception and another mode, which is often 10 times faster, does not.
Such processors are the POWER2, Alpha 21064, and MIPS R8000. The faster
mode allows more overlap in long-latency floating-point operation, while pre-
cise exceptions are usually supported for integer operations [134].

4.8.3 Reorder Buffers

In this chapter we usually assume a reorder buffer implementation to organize
an in-order retirement and allow for precise exceptions. The reorder buffer
keeps the original program order of the instructions after instruction issue and
allows result serialization during the retire stage. State bits store whether an
instruction is on a speculative path, or, when the branch is resolved, whether
the instruction is on a correct path or must be discarded. When an instruction
completes, the state is marked in its entry. Also, when a program interrupt
occurs, the exception is marked in the reorder buffer entry of the triggering
instruction. The reorder buffer is implemented as a circular FIFO buffer.
Reorder buffer entries are allocated in the (first) issue stage and deallocated
serially when the instruction retires.

During the retire stage a number of instructions at the head of the FIFO
queue are scanned and an instruction is committed if all previous instruc-
tions are committed or can be committed in the same cycle. In the case of
instructions that are on a misspeculated path, the instructions are removed
from the reorder buffer and the physical registers freed without making the
results permanent or copying back results. The same happens for all subse-
quent instructions after an interrupted instruction. The fetch unit is notified
to restart fetching instructions from the correct path. Typically the retire
bandwidth is the same as the issue bandwidth.

There are several differing implementations of the reorder buffer. The
reorder buffer may also be defined to hold the result values of completed in-
structions instead of rename registers (see Johnson [150]). The reorder buffer
described above does not hold result values but only instruction execution
states. It is close to Johnson’s description of a reorder buffer in combination
with a so-called future file. The future file is the working file used for com-
putation by the FUs, i.e., it is similar to the set of rename registers that are
separate to the architectural registers. In contrast, Smith and Pleskun [270]
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describe a reorder buffer in combination with a future file, whereby both re-
ceive and store results at the same time. Moreover the instruction window
can be combined with the reorder buffer into a single buffer unit.

4.8.4 Checkpoint Repair Mechanism and History Buffer

There are also a number of other ways to implement recovery and restart
mechanisms. Besides the different reorder buffer variations, which are most
common, such ways include checkpoint repair and a history buffer.

In the checkpoint repair mechanism, the processor provides a set of log-
ical spaces, where each logical space consists of a full set of software-visible
registers and memory. One is used for current execution, the others contain
back-up copies of the in-order state that correspond to previous points in
the execution. At various times during execution, a check point is made by
copying the architectural state of the current logical state to the back-up
space. Restarting is accomplished by loading the contents of the appropriate
back-up stage into the current logical state [150].

The history buffer was proposed by Smith and Pleskun ([270], 1985) to-
gether with the reorder buffer and future file as another alternative for re-
covery organization. There are no rename registers in a history buffer organi-
zation. Rather the (architectural) register file contains the current state, and
the history buffer contains old register values which have been replaced by
new values. The history buffer is managed as a LIFO stack, and the old values
are used to restore a previous state, if necessary. A history buffer organization
was used for the Motorola 88110 microprocessor.

4.8.5 Relaxing In-order Retirement

As described above, retiring is always strictly in program order, thereby guar-
anteeing result serialization as demanded by the serial instruction flow of the
von Neumann architecture. The only relaxation that may exist is in the order
of load and store instructions which may arrive at the processor in an order
different to the program order. Thus even a fully parallel and highly specu-
lative processor must sometimes look like a simple von Neumann processor
when 1t was state-of-the-art in the 1950s.

Relaxing in-order retirement is not implemented in today’s superscalar
microprocessors. Nevertheless it is possible. Assume an instruction sequence
A ends with a branch that predicts an instruction sequence B, and B is
followed by a sequence C which is not dependent on B. Thus C is executed
independently from the branch direction. Therefore, instructions in C can
start to retire before B. If predication is provided by the processor, B can
also be implemented by predicated instructions to remove the branch. Then
the instructions in C can be retired before the predicated instructions.

There are at least two complications. An interrupt signaled by one of
the instructions in B is hard to implement in a precise manner. Moreover,
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it is difficult to relax retirement constraints without sacrificing binary code
compatibility with legacy code.

4.9 State-of-the-Art Superscalar Processors

4.9.1 Intel Pentium family

Intel’s family of CISC microprocessors are the most commercially important
microprocessors to date. The architectural line of the Intel ISA started with
the CISC microprocessor Intel 8086, successively refined by the scalar proces-
sors 8088, 80286, Intel386, Intel486 (see Table 3.1) and then continued with
superscalar processors from the families P5 and P6 (see Table 4.3).

The Pentium processor was a member of the P5 family (Alpert and Avnon
[6]) and was the first Intel 2-issue superscalar processor. In 1995, it was fol-
lowed by the Pentium Pro, which was the first member of the P6 family
(Colwell and Steck [53], Gwennap [114], Papworth [227]). In 1997, Intel intro-
duced MMX into the P5 and P6 families which resulted in the Pentium MMX
processor (also called P55C) and the Pentium II processor ([143, 144]; Bhan-
darkar and Ding [27]). In 1999, ISSE instruction set was implemented in the
Pentium III processor.

Table 4.3. The Intel P5 and P6 family

Year Type Transistors Technology Clock Issue Word Licache L2cache
(x1000) {um) (MHz) format

1993 Pentium 3100 0.8 66 2 32-bit 2X8kB

1994 Pentium 3200 0.6 75-100 2 32-bit 2X8kB

1995 Pentium 3200 0.6/0.35 120133 2 32-bit 2X8kB

1996 Pentium 3300 0.35 150-166 2 32-bit  2X8kB

1997 Pentium MMX 4500 0.35 200-233 2 32-bit 2X16kB

1998 Mobile Pentium MMX| 4500 0.25 200233 2 32-bit 2X16kB

1995 PentiumPro 5500 0.35 150-200 3 32-bit 2X8kB  256/512 kB

1997 PentiumPro 5500 0.35 200 3 32-bit 2X8kB 1MB

1998 Intel Celeron 7500 0.25 266-300 3 32bit 2X16kB -

1998 Intel Celeron 19000 0.25 300-333 3 32-bit 2X16kB 128 kB

1997 Pentium il 7500 0.25 233450 3 32-bit 2X16kB 512kB

1998 Mobile Pentium Il 7500 0.25 300 3 32-bit 2X16kB 512kB

1998 Pentium Il Xeon 7500 0.25 400450 3 32-bit 2X16kB 512kB/1 MB

1999 Pentium Il Xeon 7500 0.25 450 3 32-bit 2X16kB 512 kB/2 MB

1999 Pentium [l 9500 0.25 450-500 3 32-bit 2X16kB 512kB

1999 Pentium il Xeon 9500 0.25 500-550 3 32-bit  2x16kB 512 kB

In the following, we focus on the P6 family of processors. The first
processor in this family was the Pentium Pro. In 1997, it was followed
by the PentiumII, in 1998, by the Pentium Il Xeon (targeted for servers



4.9 State-of-the-Art Superscalar Processors 169

and workstations) and Celeron (targeted for desktops), and in 1999, by
Pentium III and Pentium I1I Xeon.

Pentium I1
Let us describe the Pentium IT in more detail. Although it is probably the pro-

cessor which is most often written about, its full details are still not known.
The PentiumII (as other members of P6) implements an out-of-order su-
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Fig. 4.20. The Pentium II microprocessor

perscalar issue — so-called dynamic execution'® — which employs register re-
naming, non-blocking caches, and multiprocessor bus support. The ISA is
Intel IA-32, which is basically the x86 instruction set with some extensions.
Intel TA-32 instructions begin and end execution in program order. They

8 This phrase was coined to represent a number of other words that appear in
the context of dynamic micro dataflow execution, e.g., out-of-order, speculative
execution, superscalar, and superpipelined.
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are translated into a sequence of simpler RISC-like micro-operations (pops)
which are register-renamed and placed into the central instruction window,
the so-called reservation station unit which is described as an out-of-order
speculative pool of pending operations. Once the data arguments and the
necessary resources are available, the pops are 1ssued for execution in their
out-of-order execution engine. After execution has completed, the pops of an
instruction are held in the reorder buffer until they can be retired, which may
occur only after all previous instructions’ pops have been retired, and all of
the constituent pops have completed. Up to three pops can be retired per
clock cycle, yielding a theoretical minimum of 0.33 cycles per pop.

The processor is organized in three sections: an in-order section, an out-
of-order execute section, and an in-order retire section (Fig. 4.20). The two in-
order sections guarantee the sequential program semantics for the Pentium II
as for an Intel 486 processor.

| 1A-32
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Fig. 4.21. Inside the Pentium I fetch/decode/issue section

The in-order section. This section is depicted in Fig.4.21a. The instruc-
tion fetch unit (IFU) contains a non-blocking I-cache and Next_IP unit. The
Next _IP unit provides the I-cache index (based on inputs from the BTB),
trap/interrupt status, and branch misprediction indications from the integer
FUs. The processor implements a branch prediction scheme derived from the
two-level adaptive scheme described by Yeh and Patt [331] (see Sect. 4.3.3).1°
The BTB, which contains 512 entries, maintains branch history informa-
tion and the predicted branch target address. Mispredicted branches incur

19 Exactly which of Yeh and Patt’s schemes has been applied is not publicly known.
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a penalty of at least 11 cycles, with an average misprediction penalty of 15
cycles [114].

The cache line corresponding to the index from the Next IP and the
next line are fetched from the I-cache. The 16 bytes are aligned in order to
mark the beginning and end of each of the fetched TA-32 CISC instructions
(which are of variable length and up to 7 bytes long). The instruction decoder
unit (IDU) is composed of three separate decoders, one for each aligned IA-
32 instruction (Fig.4.21b). A decoder breaks the IA-32 instruction down to
pops which are the atomic units of work in the P6 processor, each comprised
of an opcode, two source operands, and one destination operand. These pops
are of fixed length. Most TA-32 instructions are converted directly into single
uops (by any of the three decoders), some instructions are decoded into one
to four pops (by the general decoder), while more complex instructions are
used as indices into the microcode instruction sequencer (MIS) which will
generate the appropriate stream of pops. In general, simple register-register
and load instructions are only one pop; store and read-modify instructions
are translated into two pops; simple register-memory instructions have two
to three pops; and simple read-modify-write instructions have four pops.
Decoding at most three [A-32 instructions generates at most six pops per
clock cycle (four by the general decoder and one by each simple decoder). At
most three pops can be forwarded from the IDU into the pipeline. The P6
may be viewed as a three-issue superscalar processor.

The pops are queued, and sent to the register alias table (RAT) where
register renaming is performed, i.e., the logical 1A-32-based register refer-
ences are converted into references to physical registers. Then, with added
status information, pops continue to the reorder buffer (ROB) and to the
reservation station unit (RSU).

The out-of-order execute section. The pops have to go to the ROB to
ensure in-order retirement after out-of-order completion. Thus, when the pops
flow into the ROB they effectively take a place in line so that it is remembered
how to retire them later and keep the sequential program semantics. pops also
go to the RSU which forms a central instruction window with 20 reservation
stations (RS), each capable of hosting one pop. If the status indicates that a
pop has all of its operands, and if the FU needed by that pop is also available,
the RSU removes that pop and issues it to the FU where it is immediately
executed. pops are issued to the FUs according to dataflow constraints and
resource availability, without regard to the original ordering of the program.
The RSU has five ports and can issue at a peak rate of 5 pops per clock cyle,
though a sustained rate of 3 pops per clock cyle is more typical (Fig.4.22).
Several FUs can be clustered on a port: integer FUs on port 0 and 1,
floating-point FUs on port 0, MMX FUs on port 0 and 1, a jump FU (port
1). Ports 2, 3, and 4 are dedicated to memory access with a load FU attached
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Table 4.4. Latencies and throughput for different Pentium II FUs

RSU Port FU Latency  Throughput
Integer arithmetic/logical 1 1
Shift 1
Integer mul 4
Floating-point add 3 1
Floating-point mul 5 05
Floating-point div long nonpipelined
MMX arithmetic/logical 1 1
MMX mul 3
Integer arithmetic/logical 1
1 MMX arithmetic/logical 1
MMX shift 1
3
3
1

2 Load
Store address
4 Store data

w

aAlalala a ala

to port 2, and two store FUs attached to port 3 and 4. Table 4.4 gives latencies
and throughtputs for different FUs.

After completion the result goes to two different places, RSU and
ROB. There may be other pops in RSU waiting for the result before they
themselves become ready. Therefore, each port has its own write-back path
back to the RSU. There is a full crossbar between all those ports so that any
returning result could be bypassed to any other FU for the next clock cycle.

The in-order retire section. The other place where the result of a pop
goes is the ROB. The retire section (see Fig.4.23) controls the in-order re-
tirement of pops. A pop can be retired if its execution is completed, if it is its
turn in program order, and if no interrupt, trap, or misprediction occurred.
Retirement means taking data that was speculatively created and writing it
into the retirement register file (RRF). Three pops per clock cycle can be
retired.

Branch pops are tagged (in the in-order pipeline) with their fall-through
address and the destination that was predicted by the BTB. After the branch
resolution the branch outcome is compared against what was predicted. If
they coincide, the branch pop eventually commits and the speculatively
executed pops between it and the next branch in ROB can be retired. If
they do not coincide, however, the jump FU changes the status of all of the
pops behind the branch to remove them from the ROB. In that case the
proper branch destination is provided to the BTB which restarts the whole
pipeline from the new target address [145].

The PentiumII pipeline. The flow of pops through the processor is con-
trolled by the pipeline shown in the Fig.4.24. The pipeline is segmented into
three pieces: an in-order pipeline, out-of-order execute pipelines, and an in-
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Fig. 4.22. Inside the Pentium II issue/execute/complete section

order retire pipeline.?® As the pops flow from one segment into the next, the
reservation station scheduling and retirement scheduling is performed.
The details of these pipeline sections are:

o The in-order pipeline section involves nine clock cycles (Fig.4.24a). The
first two identify the next instruction pointer (Next IP). It is the BTB
deciding where is the best place to look in the I-cache for the next cache
line. The I-cache access and instruction alignment and predecode take the
next three clock cycles. The instruction is decoded in the next two cycles
using two simple decoders and one general decoder. Register renaming
takes the next clock cycle. The final stage of the in-order pipeline, ROB
read, can usually be overlapped with at least one of the clock cycles in the
next pipeline segment.

e The out-of-order execute pipelines are used to execute integer, jump,
floating-point, MMX, and memory access functions (Fig.4.24b). These
pipelines share the beginning stage, RSU write, during which the RSU

2% This is why Intel uses the term superpipeline.
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Fig. 4.23. Inside the Pentium II retire section

identifies pops that have all the operands and are ready to be issued to
FUs. For an integer pop one cycle is needed for the execution and the
return of the results. For a floating-point pop the execution stretches out
over several additional cycles. For a load/store pop even more additional
clock cycles are needed to perform address calculation, access to D-cache
(which is pseudo-dual ported via interleaving with one port dedicated to
loads and the other to stores), and L2 cache access, if necessary. Once a
FU has created its result, it sends it back to the RS to enable future pops
and also into the ROB to enable retirement.

o The in-order retire pipeline takes two clock cycles, one for ROB write-back
and one for the retiring (Fig.4.24c). Since an instruction may be mapped
into several pops, the retirement process has to make sure that if any of
these pops is retired, all of them are retired automatically. Otherwise the
processor might enter an inconsistent state if an interrupt appeared during
partial retirement of these pops.

PentiumII offsprings

The next Pentium I1 core is Pentium 111 in February 1999, initially at 450 MHz
and 500 MHz. Pentium III (initially code-named Katmai) has the internet
streaming SIMD extension (ISSE)?! instruction set, which includes floating-
point SIMD instructions and eight new 128-bit floating-point SIMD registers

%! The old name of ISSE was Katmai new instructions (KNI) or MMX2.
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to accelerate 3D graphics. The Pentium I1I is very similar to the Pentium II
except for the ISSE ISA enhancement, the new floating-point SIMD reg-
isters, and a SIMD FUs. Further extensions are a higher-performant write
buffer, cache prefetch instruction, and a non-cached store instruction. Pen-
tium I1I Xeon (initially code-named Tanner) is PentiumIIXeon with ISSE
and starting off with 500 or 550 MHz in March 1999.

Coppermine will be a shrink of Pentium III down to 0.18 um. Cascades
will be a cheaper version of Pentium III Xeon with a clock speed of more than
600 MHz, with on-die 256 kB L2 cache. For mid-2000 Intel expects to launch
Merced, which is to be the first member of the Intel’s P7 family of 64-bit
processors. The P7 processors will be based on the EPIC design style that
was developed by Hewlett-Packard and Intel (see Sect.4.10.2).

Alternatives to the Pentium

Several (super)scalar processors compete with Intel’s Pentium to meet the
needs of the basic personal computer market. Among these are mP6 designed
by Rise Technology Company, AMD-K6 designed by Advanced Micro Device,
MII designed by Cyrix, and WinChip C6 designed by Integrated Device
Technology. A comparison of their basic features is given in Table 4.5.

We now describe in more detail the approaches taken by AMD and Cyrix.

4.9.2 AMD-K5, K6 and K7 families

Based on the 29000 series of scalar processors, Advanced Micro Device de-
signed in 1990 a superscalar processor 29050. The processor has a redesigned
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Table 4.5. Some of the competitors for the personal computer market

Pentium Pentiumll Celeron AMD-K6 Mil mP6  WinChip C6
Company Intel Intel Intel AMD Cyrix Rise IDT
Superscalar Yes Yes Yes Yes Yes Yes No
x86 IPC 2 3 3 2 2 3 1
MMX IPC 2 2 2 1 1 3 1
Pipelined FPU Yes Yes Yes No No Yes No

floating-point unit so that four instructions can be issued to execute out of
order and speculatively.

In late 1995 AMD dropped development of these processors in favor of the
more profitable clones of the Intel 80x86 processors. Much of the development
of the 29000 superscalar core was shared with the new AMD-K5 processor.
This processor, compatible with Intel’s Pentium, was able to translate TA-32
instructions to RISC-style instructions. Its performance stems from AMD’s
independently developed 4-issue superscalar 5-stage pipelined architecture
with 6 parallel FUs. This 32-bit processor contains a 16 kB I-cache and an
8kB D-cache. Several versions of the AMD-K5 processor have been made
between 1995 and 1997 operating on frequencies from 50 MHz up to 166 MHz.

In 1997 AMD introduced the AMD-K6 processor (Shriver and Smith
[258]), which contains parallel decoders, a centralized RISC86 operation
scheduler, and seven FUs that support superscalar operation of Intel’s TA-
32 instructions. AMD’s RISC86 microarchitecture implements the IA-32 in-
struction set by internally decoding TA-32 instructions into the simpler, fixed-
length RISC86 operations (RISC860ps).??

The L1 cache is two-way set-associative with a separate 32 kB I-cache and
a 32kB D-cache. The 32-byte cache lines are prefetched from main memory
using an efficient pipelined burst transaction. As the I-cache is filled, each
[A-32 instruction is analyzed using predecoding logic. More precisely, the
predecode logic supplies the predecode bits associated with each 1A-32 in-
struction byte. Among other information, the predecode bits indicate the
number of bytes to the start of the next 1A-32 instruction. These bits are
stored in the I-cache beside each 1A-32 instruction byte.

Up to 16 bytes (with predecode bits) per clock cycle can be fetched from
the I-cache or BTC and sent to a 16-byte instruction buffer which, in turn,
feeds them directly into the decoders. The decoders translate up to two IA-32
instructions per clock cycle into RISC86ops. There are four decoders:

¢ two parallel short decoders, which translate the most commonly used TA-
32 instructions into zero, one, or two RISC86ops each, and are designed to

22 A similar approach is taken by the Intel P6 processors which translate [A-32
instructions into pops.
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decode up to two IA-32 instructions per clock cycle (of the two instructions,
at most one can be a MMX instruction);

¢ one long decoder, which handles commonly used 1A-32 instructions that
can be represented in four or fewer RISC86ops; and

e one vectoring decoder for handling all other translations in concert with
RISC860ps sequences fetched from an on-chip ROM.

The instruction scheduling is performed by the instruction control unit (ICU),
which buffers and manages up to 24 RISC86ops at a time in order to use
efficiently the 6-stage pipeline and the 7 parallel FUs. ICU controls the out-
of-order execution, data forwarding, register renaming, simultaneous issuing
and retirement of multiple RISC860ps, and speculative execution. In one
clock cycle, the scheduler accepts up to 4 RISC86ops from the decoders,
issues up to 6 operations to FUs (floating-point, multimedia, branch, load,
store, and two integer) and retires up to 4 operations. There are 48 physical
registers in the register file, 24 of which are general registers and the other 24
are renaming registers. The processor’s two-level dynamic branch prediction
logic consists of an 8 192-entry BHT, a BTC and a return address stack.
Since the BHT does not store predicted target addresses, special address
ALUs calculate target addresses on-the-fly during instruction decode. The
BTC augments predicted branch performance by avoiding a one-cycle cache
fetch penalty. This specialized target cache supplies the first 16 bytes of target
instructions to the decoders when the branches are predicted.

The AMD-KG6 is fabricated in 0.35 and 0.25 wm technology, contains 8.8
million transistors and runs on frequencies from 180 to 233 MHz. Table4.6
summarizes some of the features of the AMD-K6 and Intel Pentium II.

In 1998, the AMD-K6-2 processor was launched. This is the first AMD
processor to feature the new 3DNow! technology which is aimed to enhance
floating-point intensive 3D graphics and multimedia performance.?® The pro-
cessor operates at clock speeds of 300-400 MHz (450 MHz in 1999), and is
fabricated in 0.25 um technology with 9.3 million transistors. The AMD-K6-
3 1s a forthcoming improved version of the AMD-K6-2 processor with on-chip
256 kB L2 cache operating at the processor’s frequency (at least 450 MHz),
and optionally supporting L3 caches. Due to the on-chip L2 cache the AMD-
K6-3 will consist of 21.3 million transistors. Table 4.6 summarizes some of the
features of the AMD-K6-3 and Intel Pentium IT1 (see Stiller [279], 1999).

In 1999, the next generation of AMD-K7 processors with 3DNow! is ex-
pected. These processors will run at more than 500 MHz, and will feature
a 9-issue superscalar microarchitecture, superscalar pipelined floating-point
execution unit, 128 kB of on-chip L1 cache, and support for scalable multi-
processing.

23 A similar direction is taken by the Intel’s ISSE instruction set that is used by
the Pentium I11.
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Table 4.6. AMD-K6 vs Pentium Il and AMD-K6-3 vs Pentium I11

Features AMD-K6  Pentiumll || Features AMD-K6-3  Pentium il
RISC core Yes Yes L1 cache (kB) | 2x32 2x16
Speculative execution Yes Yes L2 cache (kB) 256 512
Out-of-order execution Yes Yes L2 cycle rate 11 12
Data forwarding Yes Yes ' ’
Register renaming Yes Yes Integer 6 12
2 short pipeline depth

or 2 simple Integer units 2 2
1A-32 decoders 1 long and Floating-point 1 1

or 1general [| units (nonpipelined)  (pipelined)
E ecution ooal 1 V“écmf ; MMX units 2 2

xecution pipelines . .

Branch prediction Yes Yes ;:::;':?;ir:mt 2 1+ muldiv
BHT 8192-entry  512-entry
BTC 16-entry - Floating-point
Executes MMX Yes Yes SIMD registers 64 bit 128 bit
L1 l-cache/D-cache 3232k8  16/16k8 || lenght
Bus width 64-bit 64-bit Floating-point 8x2 8x4
Max. memory bandwidth | 528 MB/s 528 MB/s || SIMD registers [single precision single precision

4.9.3 Cyrix MII and M 3 Processors

Cyrix was already well known for its x86-based scalar processor 6x86 and its
many scalar offspring (e.g., the low-voltage version 6x86L, MMX-supporting
versions 6x86MX, 3D application-oriented Cayenne, two-chip low-cost Medi-
aGX and its 2D- and 3D-supporting upgrade MXi). In 1997, however, the
Cyrix MII processor appeared, based on the proven low-cost 6x86 proces-
sor core, but as a superscalar processor that operates at higher frequences
(233 MHz with 0.25 um technology) and contains two separate pipelines. It
features a 64kB unified L1 cache (4-way associative, dual-port address), a
two-level TLB and a 512-entry BTB. The Cyrix M1l processor supports the
MMX ISA extension. Cyrix’s next generation processor M3 (code-named
Jalapeno), is expected to debut in late 1999. Since the 6x86 processor, M 3
will be the first completely new architecture, with an 11-stage pipeline; a
completely new floating-point unit, a 3D graphics engine, 256 kB on-chip L2
cache (8-way associative, 8-way interleaved, fully pipelined), on-chip mem-
ory controller allowing 3.2 GB/s transfer rate. The M 3 will be produced in
0.18 pm technology and will run in the 600-800 MHz clock speed range. Sim-
ilarly to AMD-K7 processor, the M 3 will support execution of both MMX
and 3DNow! instructions.

4.9.4 DEC Alpha 21x64 family

In the early 1990s DEC introduced the Alpha architecture which is a 64-
bit RISC architecture designed with particular emphasis on clock speed and
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multiple instruction issue (see Sites [265]). In the following years, three gen-
erations of implementations of Alpha architecture appeared, and the fourth
is to come in mid-2000 (see Table 4.7).

The first generation started in 1992 with the 21064 processor, which was a
64-bit 2-issue RISC microprocessor running at 200 MHz. It was fabricated in
0.75 um CMOS technology and contained 1.68 million transistors ( Dobberpuhl
et al. [69], 1992). The 0.5 um technology made it possible to use 2.5 million
transistors to double the on-chip cache to 32kB (compared with the 21064)
and thus to produce the 21064A processor, which was running at frequencies
up to 300 MHz. Another two representatives of the first Alpha generation
were the 21066A and 21068 processors. The 21066A was a highly integrated
implementation for high-performance, PCI-based systems. On-chip functions
included an industry-standard PCI 1/O controller and a 21066A-exclusive
graphics accelerator. The processor was offered with clock frequency up to
233 MHz. The 21068 processor was a lower-frequency version of the 21066,
running at 66 MHz.

The second generation of Alpha implementations introduced 4-issue su-
perscalar processors 21164 and 21164PC (Edmondson et al. [74], 1995).
The 21164 is a 64-bit in-order issue processor running at frequencies up to
612 MHz, and is fabricated in 0.35 um technology with 9.3 million transistors.
The 21164PC is based on the 21264 and uses DEC’s MVI to enhance visual
computing and multimedia performance. The operating frequency is up to
533 MHz.

Table 4.7. The Alpha 21x64 family

Year Type |Technology Clock Issue  Out-of-order Word Internal  SPECint95 SPECfp95
(pm) (MHz) issue format caches (kB)
1992 21064 0.75 200 2 No 64-bit 2X8 23 32
: @ 166 MHz

) 418 5.78
1994 21064A 0.5 200-300 2 No 64-bit 2X16 @266 MHz

: 18.0 27.0
1996 21164 0.35 300-600 4 No 64-bit 2X8+96 @600 MHz

) 126 16.1
1997  21164PC 0.35 400-533 4 No 64-bit 8+16 @533 Mz

30.3 4a7.7
212 . -bi

1998 64 0.35 575 6 Yes 64-bit 2X64 @575 Mz
1999 21264 0.25 600-1000 6 Yes 64-bit 2X64 100+ 150+
2000 21364 0.18 1200+ N/A N/A 64-bit N/A 140+ 200+

The third generation of Alpha implementations introduces out-of-order
execution with its 6-issue 21264 processor (see Gwennap [115]). The 21264
was scheduled for volume production in late 1998 in 0.35 um technology. It
contains 15.2 million transistors; although most are in the large caches and
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the branch predictor, the CPU core contains about 6 million transistors. The
Alpha 21264 is expected to operate at more than 1000 MHz by the year 2000.
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Fig. 4.25. The Alpha 21264 microprocessor

As Fig. 4.25 shows the 21264 processor contains a fetch unit, two general-
purpose units, two address arithmetic logic units, two floating-point units, a
retire unit, and a bus interface unit.

Simple instructions are processed in the following 7-stage pipeline (for
load/store instructions 9 stages are necessary, floating-point operations need
additional execute stages, see Fig.4.26):

1. Fetch: fetch instructions using branch prediction,

2. Transit: transfer instructions to the decoder,

3. Map: rename registers,

4. Queue: place the instructions either in the integer or in the floating-point
instruction queue,
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5. Register: read operands and issue to FU,

6. Execute: execute integer (single cycle) or floating-point instructions (sev-
eral cycles),

7. Write: write results.

The processor can keep up the peak execution rate of 6 IPC and a sustainable
rate of 4 IPC on either integer or floating-point code. Up to 80 instructions
can be in process at once in different pipeline stages. Let us describe this in
more detail.

( [Register | Execute| Write |

Integer Pipeline
Four instructions per cycle [Register] Addr | Cache 1] Cache 2] Write |
[ Fetch | Transit | Map ] Queue ]ﬁ Load/Store Pipeline

[Register] Exel | Exe2 | Exe3 | Exed4 | Write |
\: Floating-point Pipeline

Fig. 4.26. Pipelines in Alpha 21264 microprocessor

The 21264 has on-chip I- and D-caches, which are 64kB 2-way set-
associative primary (L1) caches. Unfortunately, it generally takes two cycles
to access such large primary caches: the cache access can be done in one cy-
cle, but it takes nearly a full cycle, leaving no time to move the address/data
any significant distance across the large die. This is especially the case with
the D-cache. As a result, it takes two cycles for a load instruction to get an
address to the D-cache, access the cache array, and return the data from the
cache to the requester. Consequently, an instruction mu