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Preface

Understanding and interpreting data, both experimental data and the vast

quantity of observational data that is now routinely available in the public

domain, need not be linked solely to comprehension of a prescribed set of

mathematical expressions. Introducing students to the beauty of statistics can

be bothmotivational and interesting without being encumbered by equations.

In fact, it is our view that the goal of an introductory statistics course should

be to foster an appreciation for the role of statistics and associated data

analysis approaches in our everyday lives rather than to prepare the students

to be statistical analysts—if necessary, there will be time enough for that

secondary emphasis as they begin to concentrate on their chosen fields of

study. An introductory course should foster appreciation for the relevance

and importance of using statistical methods for summarizing and interpreting

data, but not at the expense of enjoying the process. While it is, of course,

necessary to include common statistics such as the sample mean, standard

deviation, correlation, etc. in an introductory statistics course, they do little to

motivate and “grab” the students and can be introduced after a student has

come to appreciate the nature of the basic information that is provided in

collections of data. This desire leads us in this book to emphasize counting
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and ranking approaches as initial tools for eliciting information from data

collections rather than as a fallback only when sample means and standard

deviations are not effective. Not only can students easily understand such

counting and ranking techniques, but they also find them to be quite valuable

as they explain their analyses to others.

The second point of emphasis in this text is that examples should not be

chosen simply to illustrate how a statistical procedure can be applied. Dull,

contrived examples can make even interesting statistical analyses uninterest-

ing. On the other hand, an example to which students easily relate can go a

long way in both piquing and sustaining their interest in the associated

statistical analysis. While they learn a statistical technique, they also unearth

some information of interest to them in its own right. We all learn best when

we see the relevance of a topic in our own lives. We have worked hard to

motivate the statistical discussions in our text through experimental settings

and data collections that we ourselves find interesting and that raise questions

that we can use statistical tools to address. While we are the first to confess

that our view of the world may not match up completely with that of high

school juniors and seniors or college freshmen and sophomores, we have tried

to include data sets in both the examples and the exercises that are both real

(not just realistic) and of general relevance for the students.

A third new feature for this text is the way in which we have chosen to

present the chapter exercises. In addition to the usual set of exercises at the

end of each section (and there are many), we have included a substantial

number of comprehensive exercises at the end of each chapter that include

conceptual exercises, data analysis/computational exercises, exercises involv-

ing hands-on student activities, and exercises associated with a student’s use

of the Internet to access interesting and relevant data sets and statistical

analyses. This provides instructors with a wide variety of exercises to chal-

lenge the individual interests of students in their classes.
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The fourth and final unique feature of this introductory text is the inclu-

sion of the necessary R functions to enable instructors and students to ana-

lyze data sets without the tedium often accompanying many statistical

computations. Examples throughout the text still provide all of the details of

the associated statistical calculations so that students are fully aware of how

the various statistics elicit information from a data set(s). However, we also

provide the appropriate R procedures that can be used to make the same

calculations. It is easy enough for instructors to bypass the R procedures if

they choose, but including them as part of the basic course would permit their

students to apply the associated statistical procedures to large data sets where

the direct numerical calculations by hand would be prohibitive. The use of

these R programs also eliminates the need to include the normal, t, andχ2

tables, as well as the relevant nonparametric null distribution tables as part of

the text. We have also organized all of the R programs used in the text into a

documented collection that is formally registered as an R package IIS specifi-

cally linked to this text.

The text is specifically designed for use in an AP statistics course for high

school juniors or seniors or in a one-semester or two-quarter introductory

precalculus statistics course for college freshmen or sophomores. How well

we have succeeded in reaching these groups of students will clearly deter-

mine the impact of our not-just-one-more introductory statistics textbook!

Many friends and colleagues have helped with both the initial develop-

ment and improvement of this text over the years. We owe a particular debt of

gratitude to Brad Hartlaub for his invaluable help in initiating this project in

the first place and his dedicated effort to move it forward over a number of

succeeding years. We also appreciated his input from teaching much of this

material in statistics classes at Kenyon College. Similarly, we owe thanks to

Deborah Rumsey and Elizabeth Stasny for their feedback from using early

drafts of the project in introductory statistics courses at The Ohio State
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University. We also owe thanks to Jungwon Byun, Ben Chang, Neha Hebbar,

Cindy Smith, and all of the attendees of the so-called “data party” at Upstart

for providing a fertile testing ground for the material and concepts. Finally,

we owe a special thank you to the computer support group in the Department

of Statistics at The Ohio State University for their patience in helping us work

through the various versions of MSWord that were confronted over the many

years in preparation of the text.

Our editors Michael Penn and Hannah Bracken, who originally signed us

to publish with Springer, and Rebekah McClure, who assumed our project

when Hannah returned to school, were dedicated from the start of the project

and provided tremendous support to see it through to publication. Our

production manager Christina Oliver skillfully guided the manuscript

through the production process.

To everyone who helped over the many years, our heartfelt thanks.

Columbus, OH, USA Douglas A. Wolfe

San Carlos, CA, USA Grant Schneider
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Exploratory Data Analysis: Observing
Patterns and Departures from Patterns 1

Data, data, everywhere and we are forced to look at it. We see it in the

newspapers (“63% of the people polled support the president’s decision

to. . . ”), on the news (“scientists at a major research university report that

treatment of Parkinson’s disease with a combination of drugs A and B has the

potential to extend remission of the disease by an average of 2 years. . .”), from

the government (“the nation’s trade deficit narrowed last month, for the first

time in. . . ”), in sports (“over the past two years left-handed hitters have a

batting average of .359 against . . . ”), in finance (“the Dow Jones Industrial

Average rose again today to a new record high, marking the seventh consec-

utive day of record highs, but the broader market. . .”), and social settings

(“despite the robust economy, the percentage of families living below the

poverty line has not dropped substantially over the past six months. . .”), just

to scratch the surface.

We are an information-oriented society–we demand facts in all aspects of

our lives, but we are often overwhelmed by the magnitude of the response.
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However, it is vitally important that we are able to properly interpret the data

we encounter, as well as to understand the circumstances behind the collec-

tion of the numbers. For example, what is it that is causing such a large

increase in sales for a particular item produced by a major snack-food com-

pany? Which states are the safest to drive in and what issues are directly

related to that safety? What percentage of college students are involved in

“binge drinking” and are there consequences? What factors directly affect the

growth of pine seedlings? What is a safe dosage for a new medication to treat

Alzheimer’s disease?

This chapter is about visualizing, summarizing, and interpreting existing

collections of data. In later chapters we turn to the other set of issues regard-

ing data collection and analysis themselves, including what, where, when,

how, and from whom.

1.1 Interpreting Graphical Displays of Data Collections

Data are data are data–we all know what they are–it is as simple as that–

right? Actually, nothing could be further from the truth. The word data itself

is plural, referring to the fact that it corresponds to more than a single piece of

information. The American Heritage College Dictionary (1993) defines the

word data as “Factual information, esp. information organized for analysis.”

or “Values derived from scientific experiments.” While one or the other of

these definitions adequately describes the typical collection of data we might

encounter, neither definition helps us understand or interpret a specific set

of data.

The discipline of statistics offers an organized set of principles and

procedures for addressing these many facets of data. One way to visualize

the role of statistics in the collection and interpretation of data is to think of the

interaction between data and statistics as an interlocking jigsaw puzzle –

sometimes straightforward, sometimes quite intricate, in their connections.
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In order to properly obtain and interpret a collection of data, it is important

that we have taken the necessary steps to produce a fully complete puzzle. As

we have all experienced, visualizing only portions of a jigsaw puzzle can

produce misleading glimpses of the overall picture depicted in the puzzle.

Thus, it is vital that we understand all of the various data-statistics

connections so that every one of the puzzle pieces is in its proper place. This

is the only way to ensure that a study or investigation leads to a correct

representation and interpretation of the problem of interest. Figure 1.1

provides a visualization of this data-statistics jigsaw puzzle.

The types and varieties of data are as numerous as the studies that lead to

their collection. As a result, the very first step in any study or investigation is

to clearly understand what type and how much data should be obtained in

order to address the question of interest. Once this decision has been reached,

the next natural consideration is how to properly collect the appropriate data.

These data-statistics connections relating to the design of an experiment and

collection of the data are depicted as red pieces in the Fig. 1.1 jigsaw puzzle.

Such issues will be discussed further in Chap. 3.

The second set of considerations in the data-statistics puzzle address the

question of how to summarize and describe a data collection obtained from

a properly designed study. How can the data be clustered into useful inter-

pretive categories? What are the appropriate ways to summarize, describe,

and compare the data? These types of data-statistics connections that relate to

summarizing and describing a data collection are depicted as yellow pieces in

Fig. 1.1. Issues related to the major data types and proper methods for

summarizing and describing each type are the topics of Chaps. 1 and 2.

The remaining connections in the data-statistics puzzle deal with appro-

priate methods for analyzing the various types of data and reaching proper

conclusions from these analyses. The data-statistics puzzle pieces associated

with this aspect of data analysis and interpretation are colored blue in Fig. 1.1

and are discussed in detail in Chaps. 6, 7, 8, 9, 10, 11, and 12.
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We collect data because we are interested in the characteristics of some

group or groups of people, places, things, or events. For example, we might

want to know about temperatures in the month of June in Los Angeles, the

intended functions of some clay artifacts excavated at an archaeological site,

or the numbers of eggs for ruby-throated hummingbirds. In these contexts,

temperature, intended function, and number of eggs are called variables.

Fig. 1.1 Data-statistics jigsaw puzzle: an accurate picture only when we
have made all of the proper data-statistics connections

How much data
do we need to

collect?

How should we
summarize

the data
collected?

Do the data
contain unusual

observations
or outliers?

Are these data from an 
observational
study or an
experiment?

Were there any
problems in the
data collection

process?

Is the normal 
model

appropriate for 
these data?

Can you identify
the distinguishing

features of these data?

What inferences,
if any, are 

you hoping to 
make with 
these data?

How would you
explain, in plain

English, the overall patterns
or trends in these
data to a friend?

How will the
data be used?

What should
we collect?

What visual
displays can
be used to
effectively

present the data?
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Definition 1.1 A variable is an attribute of interest in a study. It can

represent the outcomes of a designed experiment, the responses from a

survey, or characteristics of a set of people, places, or things.

Variables assume different values across the group or groups we are

studying. Thus, June temperatures in Los Angeles are different from day to

day and from year to year, and different hummingbirds lay different numbers

of eggs. To understand how a variable varies across a group, it is important to

obtain a ‘representative collection’ of variable values from the group.

Definition 1.2 A particular measurement of an attribute is called an

observation. The goal of a scientific study is to collect enough represen-

tative observations to tell us what we want to know about an attribute.

Each observation is a value of the variable of interest. For example, an

observation at an archaeological site might be: “the clay artifact found in this

location has a ceremonial function”. On the other hand, an ornithologist

might record: “this particular nest contains 3 eggs”. Data sets encountered

on a daily basis are nothing more than collections of observations on

attributes of interest to the collectors of the data–but what types of variables

make up these data collections? The first division that we make is between

quantitative and categorical variables.

Definition 1.3 A categorical variable is one for which the associated

observations are simply listings of physical characteristics or traits of the

subjects or objects being studied. For example, eye color is a categorical

variable, with categories brown, blue, green, etc. Categorical data then

correspond to observed sample counts in each of the possible categories.
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Definition 1.3 (continued)

In the case of eye color, the data would be the number of sample subjects

with brown eyes, the number with blue eyes, the number with green

eyes, etc.

Categorical variables abound in the way we describe people or objects to

others. The classifications tall, young, poor, Hispanic, college graduate, ath-

lete, male, and HIV positive are but a few of the traits that might be important

in studying a human population.

For tabulation purposes, arbitrary numerical values are sometimes

assigned to the classes of possible characteristics or traits for a categorical

variable. However, arithmetic manipulations with such numerical labels are

not meaningful. For example, although we might arbitrarily assign the num-

ber 1 to brown eyes, the number 2 to blue eyes, the number 3 to green eyes,

etc., arithmetic computations with these labels would not make sense; that is,

the sum of 4 for one brown-eyed and one green-eyed subject would not have

the same interpretation as the sum of 4 for two blue-eyed subjects.

Definition 1.4 A quantitative variable is one for which the associated

observations will be numerical and, therefore, such that the usual arith-

metic manipulations make sense. Quantitative data then correspond to

the measured numerical values of a quantitative variable.

We are very familiar with many quantitative variables as well, including

weight, height, time between failures of an electronic device, blood pressure,

number of eggs laid by a hummingbird, and percentage of tornadoes in a

given year which caused at least one death. It makes sense to do arithmetic,

such as adding and dividing by the number of observations to find an average

value, on all of these variables.
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In addition to variables that are clearly either categorical or quantitative, it

is not uncommon to encounter ‘borderline’ variables. For example, consider

an experiment in which each participant is asked to rank a set of five dish

detergents, from most preferred to least preferred. For each participant the

realized data (known as ordinal data) will be a ranking from 1 (best) to

5 (worst) for the five competing detergents. While such data clearly provide

more than simple categorical information (e. g., the detergent labeled as 1 by a

participant is actually preferred to and not just different from a detergent that

he labels 3), they are not quite quantitative, as we have described it in

Definition 1.4. One of the missing features is that numerical calculations are

not valid on these ordinal rank data. Thus, for example, a particular dish

detergent might receive two rankings of 1 and two rankings of 5 from four

participants in the study, while a second detergent might receive all four

rankings of 3 from the same participants. Even though both detergents

received an average ranking of 3, the four participants clearly do not view

the two detergents as equivalent. The averaging process is simply not a valid

operation for such ranking data. While our major emphasis in this text will be

on categorical and numerical data, we will at times also discuss how to deal

with ordinal data.

Graphical Displays of Categorical Data Themain purpose of some studies is

to see how a set of data is distributed across a small set of categories or classes. If

each observation falls into exactly one of the classes, we say that the classes

partition the data collection. For example, the classes urban, suburban, and

rural partition new housing construction, and the categories cats, dogs, and

“other” partition domestic animals. The classes or categories in a partition are

exhaustive and exclusive, meaning that they include every possible observation

and they do not overlap, respectively.

As you learned in Definition 1.3, observations that can be placed into

categories are called categorical data. Gender, hair color, and make of
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automobile are examples of categorical data. For such data we count how

many observations fall into each of the categories. This collection of category

frequency counts describes how the data collection is distributed across the

partition.

Computation of the relative frequencies, corresponding to the frequency

counts divided by the number of items in the sample, for each of the

categories provides an adequate numerical summary measure for most

collections of categorical data. However, there are two graphical techniques,

bar graphs and pie charts that can be used to provide visual summarization of

categorical data. Bar graphs can be used to display either the actual frequency

counts or the relative frequencies (sample percentages) in a sample. Pie charts,

on the other hand, are designed solely to visualize relative frequencies (sam-

ple percentages). Both techniques can be particularly effective when we are

interested in comparing a number of different collections of data using the

same partitioning categories. Examples 1.1 and 1.2 show how to construct bar

graphs and relative-frequency pie charts for categorical data.

Example 1.1. Archaeological Excavations at Naco Valley Ed Schortman and

Pat Urban, Professors in the Department of Anthropology and Sociology at

Kenyon College in Gambier, Ohio, periodically organize and supervise

expeditions for undergraduate students from a number of institutions to

study the history of various regions in Central America. One such study

involved the excavation of individual structures at Site 128 in the northwest

portion of Naco Valley in Honduras. During the period AD 600–1000 (known

as the Late Classic period) this site was the administrative home to a cadre of

bureaucratic functionaries (lesser nobility) and their supporters. Among other

things, the expedition group was interested in the types of artifacts that were

being used by these inhabitants in order to find out if there were differences in

such usage across different structures within Site 128 (possibly occupied by

persons of differing levels of power or wealth, etc.). In one such archaeological
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study, the scientists and their students counted the numbers of the following

types of objects found at a number of different structures within a particular

excavation site:

1. Ocarinas (multi-note clay musical instruments)

2. Figurines (fired clay anthropomorphic and zoomorphic effigies)

3. Incensarios (incense burners)

4. Ground stone tools (used to process grain, primarily corn, into flour)

5. Stamps (for cloth decoration)

6. Sherd disks (possibly spindle whorls for processing thread)

7. Candelaros (for both practical lighting and ceremonial activities)

8. Jewelry (personal adornments made of clay).

The observed frequency counts for two of the structures at this site are

presented in Table 1.1.

We are interested in the artifacts used by the inhabitants of these structures

during the period of their existence, as partitioned into the eight noted artifact

categories or classes. To construct bar charts for these categorical data, we

label the horizontal baseline with the numbers as assigned to the artifact

categories in Table 1.1. (Note that these labeling numbers are purely arbitrary,

as they could have been assigned in any order to the eight categories.) Then

we construct rectangles with common widths above each of the labels, with

the height of a particular rectangle corresponding to the observed frequency

count for the associated category. The bar graphs for Structures 13 and 17 are

presented in Fig. 1.2a and b.

Several things are visually clear from the bar graphs. First, Categories

2 (figurines) and 3 (incensarios) dominate the types of artifacts found at both

of the structures, perhaps indicating that each of them might have played

some sort of ceremonial role for the inhabitants of the site. However, it is also

clear from the bar graphs that the relative importance of Categories 2 and

3 are reversed at the two structures, suggesting that the associated ceremonial
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roles may have differed to some extent. (We will leave that discussion for the

archaeologists!) Finally, there appears to be the possibility of differences in the

use of stamps, sherd disks and jewelry at the two structures as well.

A second form of visual representation for categorical data is provided by

the pie chart. It is most commonly used when we wish to pictorially display

the sample relative frequencies, or percentages, rather than the raw

frequencies for the various classes of the partition. It is particularly effective

for displaying differences between two populations with respect to the same

categories.

Table 1.1 Artifacts recovered at two different structures during the exca-
vation of Site 128 in Naco Valley, Honduras, 1996

Artifact
Frequency count
at structure #13

Frequency count
at structure #17

1. Ocarinas 14 21
2. Figurines 56 53
3. Incensarios 73 35
4. Ground stone tools 21 12
5. Candelaros 10 12
6. Stamps 5 9
7. Sherd disks 5 0
8. Jewelry 4 7

Source: Schortman and Urban (1998).

Fig. 1.2 Bar graphs for the Naco Valley artifact recovery data. (a) Structure
13. (b) Structure 17
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Example 1.2. Motor-Vehicle Deaths by Type of Accident In their annual

report on accident statistics, the National Safety Council (1996) reported the

breakdown of motor-vehicle deaths by type of accident for the period of years

from 1913 through 1995. The population of deaths by motor-vehicle accident

is partitioned into the following nine exhaustive categories:

1. Pedestrians

2. Other motor vehicles

3. Railroad trains

4. Streetcars

5. Pedalcycles

6. Animal-drawn vehicle or animal

7. Fixed objects

8. Noncollision accidents

9. Nontraffic deaths

Do you feel there would be a noticeable change in the relative percentages

for these nine categories from, say, 1949 to 1985? One way to visually help us

answer this question is to create pie charts for the data from those years. The

dataset traffic_accidents contains the motor-vehicle accident data for the inclu-

sive period 1924–1995. Accessing this file, we find the counts for the years

1949 and 1985 displayed in Table 1.2.

Summing, we find that the total number of reported motor-vehicle deaths

in 1949 and 1985 are 32,536 and 47,019, respectively. To create relative

frequencies (or percentages) for the nine categories for each of the years, we

divide the observed frequencies by the total numbers of reported motor-

vehicle deaths in the respective years. For example, the relative frequency

(or percentage) for pedestrian deaths in 1949 is 8800/32,536 ¼ .2705, or

slightly greater than 27%. These relative frequencies are then depicted visu-

ally in the two pie charts displayed in Fig. 1.3, where each relative frequency is
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assigned that percentage of the area of the associated pie (circle). Note that for

purposes of these pie charts, we have combined the figures for streetcars and

animal-drawn vehicles or animals into one category (called others) because of

the small relative frequencies associated with each of them individually. The

main advantage from using pie charts as opposed to bar charts for presenting

categorical data is the visual appeal of the ‘pieces of the pie’ associated with

the various categories.

While much of the general pattern remains similar for the 2 years, it is clear

from the pie charts that there have been substantial increases from 1949 to

1985 in the percentages of motor-vehicle deaths due to fixed objects and other

Table 1.2 Motor-vehicle deaths by type of accident in 1949 and 1985

Type of accident 1949 1985

Pedestrians 8800 8500
Other motor vehicles 10,500 19,900
Railroad trains 1452 538
Streetcars 56 2
Pedalcycles 550 1100
Animal-drawn vehicle or animal 140 100
Fixed objects 1100 3200
Noncollision accidents 9100 12,600
Nontraffic deaths 838 1079
Total 32,536 47,019

Source: National Safety Council (1996)

Fig. 1.3 Pie charts for the motor-vehicle deaths by types of accident data.
(a) 1949. (b) 1985
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motor vehicles, with corresponding decreases in such deaths for pedestrians

and trains. Such findings do, of course, agree with our perceptions of the two

different periods of time and the associated decreases in train traffic and

increases in the number of automobiles and auto speed from 1949 to 1985.

Do you think things have changed again since 1985? Explore this further in

Exercise 1.D.11.

Graphical Displays of Quantitative Data While most data sets for categori-

cal variables can be adequately summarized by simply listing either the

numbers or percentages of outcomes in each of the possible categories (with

visual aids, such as bar charts or pie charts), when we are faced with a

collection of quantitative data of any size it is often difficult to make sense

of the individual measurements directly. It is important to be able to summa-

rize such data in meaningful and insightful ways. While computation of

relevant statistics is a common means for obtaining such useful summaries,

it is often the case that simple graphical ways of picturing or presenting the

data can be just as important in getting a good feel for a data set and in

providing the basis for an insightful interpretation of the data.

We consider three of the more useful graphical techniques, each of which

has its own special merits for summarizing certain types of quantitative data

sets. However, all three provide relevant information about important

features of a data set, such as:

1. Is there a single, dominant center of the data set? Are most of the

observations clustered around this one center or are there a number of

secondary clusters of observations?

2. How spread out are the observations? Are they tightly clustered around

the dominant center of the data or are they rather widely dispersed

away from this center?
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3. What is the general shape or configuration of the data collection? Do

observations tend to be evenly distributed in both directions about the

dominant center of the data set or are they more spread out in one

direction than the other?

4. Are there unusual features of the data configuration? Are there

scattered intervals, or gaps, containing no observations? Are there

unusually large or small observations, called outliers, which are consid-

erably outside the general pattern of the data?

Center, spread, shape, gaps, and outliers are all aspects of the distribution

of a data collection.

Example 1.3. Cost of Engineering Drawings Large industrial complexes

require a wide variety of mechanical devices and pieces of machinery as

part of their manufacturing processes. A number of factors contribute to the

overall cost of each piece of machinery or mechanical device, including those

associated with the preparation of engineering drawings at various stages

(pre-development, production of a prototype, final specification drawings for

the purchaser, etc.) of development of the product. In Table 1.3 we present the

Table 1.3 Total engineering drawing hours contributing to the cost of
pieces of machinery/mechanical devices for a large Ohio-based company

3 9 11 12 14 18 26 44
6 10 12 13 15 18 26 46
6 10 12 13 16 18 30 46
6 10 12 13 16 18 30 46
7 10 12 13 16 22 34 48
7 10 12 13 16 24 36 56
9 10 12 13 18 24 36 60
9 10 12 13 18 24 36 68
9 10 12 13 18 24 36 68
9 11 12 13 18 24 36 84
9 11 12 13 18 24 36 92
9 11 12 14 18 26 36 100
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total number of engineering drawing hours that contributed to the cost of

96 pieces of machinery/mechanical devices for a major Ohio-based company.

While we can simply look at the 96 ordered total hour values in Table 1.3

and get some sense of the overall distribution of the observations, it is difficult

in this raw form to detect any special features or patterns that might be

present in the data. However, graphical displays can be very helpful in this

regard and we describe three such techniques and use them to help provide

informative ‘pictures’ of the total hours data.

Definition 1.5 A dotplot of a set of quantitative data is a technique for

grouping observations that are equal. The horizontal axis is the scale of

the variable being measured and a dot is placed above the value of each

observation. Stacking the dots vertically above the outcome represents

repeated values. This form of graphical display is only useful if there are

a limited number of distinct outcomes among the sample data.

One possible dotplot (with observations grouped by twos) of the total

engineering drawing hours data in Table 1.3 is presented in Fig. 1.4. We can

see clearly that there is a clustering of drawings that required from 10 to

20 total engineering hours per drawing. The plot has a dominant peak or visual

center somewhere between 10 and 12 h. While there is certainly some

Fig. 1.4 Dotplot for total engineering drawing hours
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clustering of data around this visual center, many of the observations are

quite far from the center. Moreover, the data configuration has a long tail

extending to the right that includes values from 30 up to 100. We call such a

configuration skewed to the right. Finally, there are a number of gaps in the data

in the regions beyond 50 h, as well as three unusually large observations. We

might call these three observations outliers, since they seem to fall outside the

overall data pattern.

Definition 1.6 Another way to display quantitative data for which the

number of observations is not too large is known as a stemplot (or a stem

and leaf display). The stem usually corresponds to the first digit

(or digits) in a number and the leaf then represents the final digit. To

produce the stemplot for a given choice of stem and leaf, the stems are

listed in a column from smallest (at the top) to the largest (at the bottom).

Then the leaf for each observation is recorded to the right in the row of

the display containing the observation’s stem. For ease of interpretation,

the leaves are also usually sorted from smallest to largest within a

given stem.

The stemplot of the total engineering drawing hours data in Table 1.3 is

presented in Fig. 1.5. Thus, for example, the eleven drawings that required

18 total engineering drawing hours are listed in the stemplot with a stem of

1 and leaves of 8. Similarly, the one drawing that required 100 total drawing

hours is listed with a stem of 10 and a leaf of 0. As with the dotplot, the cluster

of drawings requiring between 10 and 20 total engineering hours per drawing

is clearly evident in the stemplot, as is the skewness of the data configuration

toward the larger values. The three large outliers are perhaps a bit more

evident in the stemplot since they follow the gap corresponding to the fact

that there are no observations with drawing hours in the seventies.
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Definition 1.7 The third and last graphical display that we discuss at

this time is the histogram. It is the only one of the three presented thus far

that involves an actual condensation or summary of the sample data.

This is obtained by grouping the observations, something that is essential

for effective graphical presentation of large data collections. Once the

data are grouped, the histogram is a plot of either the numbers or relative

frequencies (percentages) of observations in the grouping categories.

1.1.1 Construction of a Histogram

Here are the three steps for constructing a histogram:

Step 1: Divide the range for the observed data values into a reasonable number of interval classes of
equal width. What constitutes a reasonable number of interval classes will become
clear as you work with a given data collection. (While there is nothing to prevent
histograms from being constructed with intervals of unequal width, experience has
shown that it is often difficult to correctly interpret such histograms.)

Step 2: Record the number of observations in each class, either as a straight count or as a percentage
of the total number of observations in the data collection. Thus, this step creates either a
frequency or relative frequency table for the data collection and our particular choice of
interval classes.

Step 3: Graphically display the histogram. The horizontal axis for this display corresponds to
the units of measurement for our observations, divided into the interval classes
specified in Step 1. Either frequency or relative frequency is plotted on the vertical

Fig. 1.5 Stemplot of total engineering drawing hours
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axis, in the form of a bar over the corresponding interval class. The width of the base
of the bar is the common width of our interval classes and the height is the class
frequency or relative frequency. Unless there is an interval class which does not
contain any observations (for which the vertical height would be zero), there are no
gaps between adjacent bars in a histogram.

We illustrate the construction of a histogram with the total engineering

drawing hours data in Table 1.3. Noting that the range of values for the data

collection is from 3 to 100, we select six class intervals, each of length 20 h,

centered at the values 0, 20, 40, 60, 80, and 100. While this choice for class

intervals is surely arbitrary, we shall see that it leads to a reasonable conden-

sation and summary of the drawing hours data. The frequency counts for

each of these intervals for our data collection of 96 observations are then

obtained from Table 1.3 to be:

Class interval Frequency count

[�10, 10) 13
[10, 30) 61
[30, 50) 15
[50, 70) 4
[70, 90) 1
[90, 110) 2

Notice that we have constructed the class intervals so that they include the

lower endpoints but not the upper endpoints. All of the drawings that took

10 h, for example, are counted in the second class interval, since 10 is part of

this interval. We indicate this by using a bracket when the endpoint is

included and a parenthesis when it is not. This provides us with a clearly

defined rule for dealing with those observations with total engineering draw-

ing hours exactly on one of the boundaries of the class intervals.

The histogram for the engineering drawing data with these class intervals

is presented (courtesy of the R function histð Þ) in Figure 1.6. The distribution

of the engineering drawing hours data is clearly very concentrated in the

interval [10, 30), its visual center, with slight concentrations in adjacent
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intervals. There are no complete gaps in the plot. However, there is a clear

indication of heavy skewness to the right (i.e., the observations greater than

the visual center are more spread out than those less than the visual center)

and some evidence that at least the three observations in the final category

[90, 110) are likely outliers for this data collection.

There is no hard and fast rule for the optimal number of interval classes to

use in the construction of a histogram. Too few classes can lead to substantial

loss of information from the data collection, while too many classes will do

little to effectively summarize a large data collection. This is illustrated in

Fig. 1.7 for the state-by-state percentage poverty data collection discussed in

Exercise 1.1.14. Figure 1.7a corresponds to eight interval classes and provides

an appropriately smooth graphical representation of the data collection.

Figures 1.7b and c correspond to four and 25 interval classes, respectively,

and both of these histograms provide misleading graphical representations of

the data collection.

There is too much summarization of the data in (b). While the data

collection is, indeed, a bit skewed to the right (as seen in (a)), it is not as

badly skewed as suggested by (b). In addition, the dominant visual center for

the data collection is completely masked in (b).

These two particular features of the data collection are not lost in (c) when

weuse a larger number of interval classes.However, the under-summarization

that results from using such a large number of interval classes gives the

Fig. 1.6 Histogram of total engineering drawing hours
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Fig. 1.7 Histograms of the state-by-state percentage poverty data collec-
tion. (a) Eight interval classes. (b) Four interval classes. (c) Twenty-five
interval classes
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appearance that the data are relatively ragged in structure, especially to the

right of the dominant visual center. This includes the apparent existence of a

number of gaps in the data. This is also amisleading representation of this data

collection, which is, in fact, a relatively smoothly structured set of data, as

correctly displayed in (a) when eight interval classes are used.

There is nothing optimal about the particular use of eight interval classes,

since using either seven or nine, for example, would yield histograms similar

to the one in (a). However, it is clear that using as few as four or as many as

25 yields a histogram that distorts the true nature of this data collection.

Software packages such as R typically allow the user to specify the number

of endpoints for a histogram. When the user does not specify the endpoints,

the software will use some criteria to choose the “best” endpoints. In the

R function histð Þ, the endpoints can be specified using the breaks argument.

Sometimes there are natural interval classes associated with the very

nature of the data themselves. If not, it is often worthwhile to try several

different choices for the number of interval classes and see which does the best

at providing a good visual representation of the data. Using theR functionhist

ð Þmakes this searching for the ‘optimal’ choice of number of class intervals a

relatively easy task. Why don’t you try it out on the total engineering drawing

hours data collection (available in the dataset engineering_drawing_hours)?

When one of the purposes for construction of a histogram is to compare it

with other histograms of related data collections, it is often better to plot

relative frequencies (i. e., percentages) rather than frequencies. While the

construction and general appearance of frequency and relative frequency

histograms are similar for the same data collection, relative frequency

histograms are more comparable across data collections, especially when

the numbers of observations are quite different in the various collections.

In closing this section, we return to the idea of the general shape or

configuration of a data collection. The histogram in Fig. 1.6 for the total

engineering drawing hours once again clearly illustrates the fact that this
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data collection is more spread out to the right of its dominant visual center

than it is to the left. In general, the overall configuration of a data collection is

considered skewed toward the larger values (i.e., skewed to the right) if the

observations greater than the dominant visual center of the data are more

spread out (i.e., present a longer tail) than those less than the center. If the

converse is true and the observations less than the dominant visual center are

more spread out (i.e., present a longer tail) than those greater than the center,

the overall configuration of the data collection is considered skewed toward the

smaller values (i.e., skewed to the left). If neither of these extremes occurs so that

the shape of the distribution for those observations greater than the dominant

visual center of the data is similar to that for observations less than the center,

we say that the overall configuration of the data collection is roughly symmet-

ric. As noted, Fig. 1.6 provides a good example of a histogram for a data

collection that is skewed to the right. In Figs. 1.8a and b, we present

histograms that are representative of data collections that are skewed to the

left and roughly symmetric, respectively.

Of course, other aspects of a data configuration can be ascertained from a

well-constructed histogram. In (a)–(d) of Fig. 1.9, we present typical

histograms for data collections that are, respectively, (a) heavily concentrated

near a single dominant visual center, (b) considerably spread out from a single

dominant visual center, (c) roughly uniform, and (d) bimodal (i.e., possessing

two dominant visual centers) in shape.

Section 1.1 Practice Exercises

1.1.1. American League Pitchers. You have been asked to evaluate the effec-

tiveness of pitchers in the American Baseball League. Describe at least five

variables that would be relevant for such a study. Which of these variables are

categorical and which are quantitative? For each of your variables, list some
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typical observations that might be obtained in an actual collection of data

from American League pitchers.

1.1.2. Eyewitnesses. In a criminal court trial, eyewitnesses are often asked to

describe the circumstances surrounding the crime that they allegedly

witnessed. Describe at least five variables that would be relevant for such a

description. Which of these variables are categorical and which are quantita-

tive? For each of your variables, list some typical observations that might be

part of such eyewitness testimony.

Fig. 1.8 Histogram examples. (a) Histogram for a data collection that is
skewed to the left. (b) Histogram for a data collection that is roughly
symmetric
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Fig. 1.9 Other typical histograms. (a) Histogram for a data collection that is
heavily concentrated near a single dominant visual center. (b) Histogram for
a data collection that has considerable spread around a single dominant
visual center. (c) Histogram for a data collection that is roughly uniform. (d)
Histogram for a data collection that has two dominant visual centers



1.1.3. National League Pitchers.You have been asked to evaluate how well

pitchers in the National Baseball League perform as hitters. What are some of

the variables that would be relevant for such a study? Which of these

variables are categorical and which are quantitative? For each of your

variables, list some typical observations that might be obtained in an actual

collection of data from National League pitchers.

1.1.4. Best Friends. Think of describing some of your best friends to someone

who does not know them. What are some of the variables that you might use

in these descriptions? Which of these variables are categorical and which are

quantitative? Choose three particular best friends and list the specific

observations of these variables that you would use to describe them.

1.1.5. Course Evaluations. You are asked at the end of each academic term to

evaluate your course instructors. Describe at least five variables that you

might choose to use in such an evaluation. Which of these variables are

categorical and which are quantitative? List the specific observations that

you would provide to describe the set of instructors that you had for your

most recently completed academic term.

1.1.6. Employment after Graduation.After you have completed your academic

career, you will likely seek full time employment in a position that utilizes

what you have learned in college. Describe at least five variables that you will

use in guiding your search for that ideal employment opportunity. Which of

these variables are categorical and which are quantitative? List some typical

observations that you might obtain in an evaluation of your first few employ-

ment opportunities.

1.1.7. Adolescent Behavior. In a study of adolescent sexual behavior, drug use,

and violence, Turner et al. (1998) recorded the following social and demo-

graphic information for each of 1729 males ages 15–19 who were living in

households in the continental United States between February and November
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1995: Race-ethnicity, age, last year of school completed, parents’ education

levels, and marital status. What are the social and demographic variables for

this study? Which of them are categorical and which are quantitative? What

might be some typical observations in the data collection for the Turner et al.

study?

1.1.8. Adolescent Behavior. For the Turner et al. (1998) study described in

Exercise 1.1.7, describe at least three additional social and demographic

variables that might be useful in studying sexual behavior, drug use, and

violence in males ages 15–19 in the United States. Which of these variables are

categorical and which are quantitative? What might be some typical

observations for the group in the Turner et al. study?

1.1.9. Public Restroom Lines. In public places, the lines at women’s restrooms

are usually much longer than those at the corresponding men’s restrooms. Is

this due to fewer facilities available in women’s restrooms or more women

than men attending such events or simply that women are slower in such

situations? Cornell engineering students studying toilet time behavior in

airports, sports arenas, highway rest areas, and conference centers found

that men averaged between 83.6 and 112.5 s in the rest rooms, while women

spent between 152.5 and 180.6 s on average in the rest room. List at least five

variables that might be measured in an attempt to assess why women are

slower in such situations. Which of these variables are categorical and which

are quantitative?

1.1.10. Prostate Cancer. Yoshizawa et al. (1998) investigated the conjecture

that higher selenium intakes might reduce the risk of prostate cancer among

men. In their study, they recorded the following information about 362 male

subjects: age, body mass index (kg/m2), prostate cancer family history, diabe-

tes family history, smoking status (never, past, current), daily food and

nutrient intake for lycopene (μg), calcium (mg), vitamin E with supplement

26 1 Exploratory Data Analysis: Observing Patterns and Departures from Patterns



(International Units), saturated fat (g), and amount of selenium in toenails

(parts per million). Which of these variables are categorical and which are

quantitative?

1.1.11. Residents in Poverty by States. In addition to the well-known

U.S. Census (dictated by the Constitution and conducted every 10 years),

the United States Census Bureau also collects information annually

through the American Community Survey on the population of the United

States and its residents. One of these pieces of information concerns the

number of individuals in each state whose annual income is below the

established poverty level at the time. These state-by-state poverty level

figures from 2013 are presented in Table 1.4 and in the dataset

state_poverty_levels_2013.

(a) Using the following 29 class intervals to partition the total population

data in Table 1.4, obtain frequency and relative frequency counts for

the populations of the fifty states in 2013. (Notice that the last interval

length is much longer than the other equal length intervals in order to

capture the most populated states in a single interval and avoid a

large number of empty intervals in the tabulation.)

[500,000, 1,000,000) [1,000,000, 1,500,000) [1,500,000, 2,000,000)
[2,000,000, 2,500,000) [2,500,000, 3,200,000) [3,200,000, 3,700,000)
[3,700,000, 4,200,000) [4,200,000, 4,700,000) [4,700,000, 5,200,000)
[5,200,000, 5,700,000) [5,700,000, 6,200,000) [6,200,000, 6,700,000)
[6,700,000, 7,200,000) [7,200,000, 7,700,000) [7,700,000, 8,200,000)
[8,200,000, 8,700,000) [8,700,000, 9,200,000) [9,200,000, 9,700,000)
[9,700,000, 10,200,000) [10,200,000, 10,700,000) [10,700,000, 11,200,000)
[11,200,000, 11,700,000) [11,700,000, 12,200,000) [12,200,000, 12,700,000)
[12,700,000, 13,200,000) [13,200,000, 13,700,000) [13,700,000, 14,200,000)
[14,200,000, 14,700,000) [14,700,000, 15,200,000) [15,200,000, 40,000,000)

(b) Partition the total population data into 15 equal length intervals

(closed on the left and open on the right, as in part (a)) and once

again obtain the frequency and relative frequency counts for the
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Table 1.4 State population and poverty numbers in 2013

State Total populationa Number at poverty levelb

Alabama 4,833,996 883,371
Alaska 737,259 67,016
Arizona 6,634,997 1,206,460
Arkansas 2,958,765 565,469
California 38,431,393 6,328,824
Colorado 5,272,086 667,446
Connecticut 3,599,341 373,900
Delaware 925,240 111,327
Florida 19,600,311 3,253,333
Georgia 9,994,759 1,843,768
Hawaii 1,408,987 148,368
Idaho 1,612,843 246,550
Illinois 12,890,552 1,845,393
Indiana 6,570,713 1,015,127
Iowa 3,092,341 379,127
Kansas 2,895,801 393,358
Kentucky 4,399,583 800,635
Louisiana 4,629,284 888,019
Maine 1,328,702 180,639
Maryland 5,938,737 585,571
Massachusetts 6,708,874 770,513
Michigan 9,898,193 1,648,436
Minnesota 5,422,060 592,422
Mississippi 2,992,206 695,915
Missouri 6,044,917 931,066
Montana 1,014,864 163,637
Nebraska 1,868,969 239,433
Nevada 2,791,494 433,576
New Hampshire 1,322,616 111,495
New Jersey 8,911,502 998,549
New Mexico 2,086,895 448,461
New York 19,695,680 3,055,645
North Carolina 9,848,917 1,715,397
North Dakota 723,857 82,398
Ohio 11,572,005 1,796,942
Oklahoma 3,853,118 626,906
Oregon 3,928,068 642,138
Pennsylvania 12,781,296 1,690,405
Rhode Island 1,053,354 144,446

(continued)

28 1 Exploratory Data Analysis: Observing Patterns and Departures from Patterns



populations of the fifty states in 2013. (If you wish, you may use a

longer interval to capture the most populous states as is done in

part (a).)

(c) Which of the two partitions in (a) and (b) do you feel provides a better

summary of the relevant total population information in Table 1.4?

What are your reasons for this preference?

1.1.12. Residents in Poverty by States. Consider the 2013 state-by-state poverty

level numbers, as presented in Table 1.4. Select an appropriate partition and

obtain frequency and relative frequency counts for the 2013 poverty level

numbers in the 50 states.

1.1.13. Residents in Poverty by States. Consider the 2013 state-by-state poverty

level numbers, as presented in Table 1.4.

(a) Compute the percentage of the population that had incomes below

the poverty level in 2013 for each of the 50 states.

Table 1.4 (continued)

State Total populationa Number at poverty levelb

South Carolina 4,771,929 860,380
South Dakota 845,510 115,454
Tennessee 6,497,269 1,126,772
Texas 26,505,637 4,530,039
Utah 2,902,787 361,181
Vermont 626,855 74,058
Virginia 8,270,345 938,733
Washington 6,973,742 967,282
West Virginia 1,853,595 332,347
Wisconsin 5,742,953 755,551
Wyoming 583,223 62,039
aSource: United States Census Bureau, Population Division (2014b)
bSource: United States Census Bureau, American Community Surveys
(2014a)
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(b) Select an appropriate partition of the 2013 percentage poverty level

numbers and obtain frequency and relative frequency counts for the

fifty states.

(c) Compare and contrast the information summaries provided by the

two sets of frequency counts discussed in part (b) and Exercise 1.1.12.

Which do you prefer and why?

1.1.14. Women and Poverty. As dictated by the Constitution, every 10 years

the United States Census Bureau conducts a census of the population of the

United States and compiles information on its residents. One of these pieces of

information concerns the percentage of individuals in each state whose

annual income is below the established poverty level at the time. These

state-by-state poverty level figures from the 2010 Census for women residents

are presented in Table 1.5.

Table 1.5 State percentage poverty rates for women
from the 2010 census

State Percentage at poverty level

Alabama 18.7
Alaska 10.4
Arizona 16.2
Arkansas 18.1
California 15.0
Colorado 13.1
Connecticut 10.4
Delaware 11.3
Florida 15.8
Georgia 17.3
Hawaii 11.4
Idaho 16.0
Illinois 13.5
Indiana 14.8
Iowa 12.8
Kansas 13.8

(continued)

30 1 Exploratory Data Analysis: Observing Patterns and Departures from Patterns



Table 1.5 (continued)

State Percentage at poverty level

Kentucky 18.5
Louisiana 18.7
Maine 12.8
Maryland 10.1
Massachusetts 12.0
Michigan 16.2
Minnesota 11.7
Mississippi 21.6
Missouri 14.8
Montana 14.1
Nebraska 12.5
Nevada 14.3
New Hampshire 9.2
New Jersey 10.3
New Mexico 18.4
New York 14.8
North Carolina 16.8
North Dakota 14.3
Ohio 15.2
Oklahoma 16.1
Oregon 15.2
Pennsylvania 13.3
Rhode Island 13.6
South Carolina 17.6
South Dakota 15.0
Tennessee 16.8
Texas 16.9
Utah 13.1
Vermont 12.7
Virginia 11.5
Washington 13.4
West Virginia 17.8
Wisconsin 12.8
Wyoming 12.4

Source: National Women’s Law Center (2011)
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(a) Select an appropriate partition of these 2010 percentage poverty levels

for women and obtain frequency and relative frequency counts for the

50 states.

(b) Compare and contrast the frequency and relative frequency counts

obtained in part (a) for women in 2010 with the corresponding fre-

quency and relative frequency counts for percentage poverty levels

for all residents in 2013 obtained in part (b) of Exercise 1.1.13.

1.1.15. Participation in Leisure Activities. As part of its data collection process,

the U.S. Census Bureau periodically reports the level of adult participation in

selected leisure activities. Part of this collected information for Autumn 2010

is presented in Table 1.6.

Table 1.6 Frequency of adult participation in selected leisure activities in
Autumn 2010

Activity
Two or more
times a week

Once a
week

Two or three
times a month

Once a
month

Adult education 3116 1973 762 1312
Attend auto shows 313 337 557 721
Attend art galleries/shows 78 215 879 2272
Attend classical music/
opera

99 65 409 900

Attend country music 67 125 239 458
Attend dance performances 122 162 335 403
Attend horse races 159 177 155 379
Attend other music 135 332 1120 2129
Attend rock music 187 173 730 1136
Backgammon 435 366 416 486
Baking 10394 8482 12482 9321
Barbecuing 12497 12939 18871 10473
Billiards/pool 975 1432 2125 2063
Bird watching 6101 1338 1169 876
Board games 2890 3134 6574 7759
Book clubs 285 234 419 2732
Chess 549 533 823 576

(continued)
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Table 1.6 (continued)

Activity
Two or more
times a week

Once a
week

Two or three
times a month

Once a
month

Concerts on radio 1308 747 548 572
Cooking for fun 19162 7495 6795 4415
Crossword puzzles 12866 3136 2811 2674
Dance/go dancing 1636 2162 2728 2964
Dining out 20158 25173 26644 15686
Entertain at home 6976 9139 18565 19611
Fantasy sports league 2855 1559 372 330
Furniture refinishing 201 79 359 406
Go to bars/night clubs 3133 4846 7428 6430
Go to beach 3303 2018 4875 5428
Go to live theater 333 256 896 3331
Go to museums 121 198 1171 3317
Home decoration 890 977 1861 4178
Karaoke 460 401 665 904
Painting/drawing 2360 1288 1625 1609
Photo albums/scrap books 1237 743 1973 2332
Photography 4358 3310 5332 3508
Picnic 281 591 1672 3780
Play bingo 754 1095 811 1342
Play cards 5679 4969 6400 7567
Play musical instrument 7435 2096 1959 1211
Reading books 47483 8298 7513 6312
Reading comic books 1161 636 886 527
Sudoku puzzles 10265 2505 3159 2495
Trivia games 1891 1327 1397 1490
Woodworking 1714 965 1631 1443
Word games 7768 2709 2817 1899
Zoo attendance 189 239 632 2112

Source: United States Census Bureau (2012); GfK Mediamark Research &
Intelligence (2010)
Entries are the numbers of adults (in thousands) participating in each fre-
quency category
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(a) Select an appropriate partition of the numbers of participants data

and obtain frequency and relative frequency counts separately for

each of the four frequencies of participation categories. Do the various

activities appear in the same sections of the partition for the four

frequencies of participation categories? Discuss your findings.

(b) Construct histograms for the numbers of participants separately in

each of the four frequencies of participation categories. Compare and

contrast the histograms. Are there any interesting features of these

data collections?

1.1.16. Bird Variety. In a study designed to determine whether relationships

exist between the numbers and types of bird species found at points along a

river and the structure of the immediate surrounding forest, Groom (1999)

recorded breeding-bird count data for riparian habitat along the Big and Little

Darby Creeks in central Ohio. The data in Table 1.7 are the numbers of bird

species detected in each of 39 distinct 5-min time intervals over the month of

June, 1998.

(a) Use appropriate computer software (e.g., the R function barplotð Þ) to
construct a labeled bar graph for this data collection.

(b) Comment on any unusual features of the data collection that are

evident in this bar graph.

Table 1.7 Numbers of bird species detected in 5-min periods during June,
1998 at various riparian habitats along the Big and Little Darby Creeks in
central Ohio

9 7 11 9 9 13 17 15 10 12 12 17
14 17 12 15 6 11 14 10 12 8 17 16
11 15 10 14 13 12 8 12 16 12 10 14
10 5 7

Source: Groom (1999)
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1.1.17. Bird Variety. Consider the bird species data presented in Table 1.7.

Make a stemplot of these data.

1.1.18. Bird Variety. Consider the bird species data presented in Table 1.7.

Make a dotplot of these data.

1.1.19. Participation in Leisure Activities. As part of its data collection process,

the U.S. Census Bureau periodically reports the level of adult participation in

selected leisure activities. Part of this collected information for Autumn 2010

is presented in Table 1.8.

Table 1.8 Frequency of adult participation in leisure activity
in Autumn 2010

Activity
Participated at least once
in the last 12 months

Adult education 16,640
Attend auto shows 19,346
Attend art galleries/shows 20,985
Attend classical music/opera 9715
Attend country music 11,266
Attend dance performances 10,010
Attend horse races 6654
Attend other music 26,536
Attend rock music 25,176
Backgammon 4234
Baking 57,703
Barbecuing 79,119
Billiards/pool 19,468
Bird watching 13,793
Board games 37,993
Book clubs 5747
Chess 6896
Concerts on radio 6441
Cooking for fun 50,243
Crossword puzzles 29,996
Dance/go dancing 20,995
Dining out 112,477

(continued)
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(a) Make a stemplot and a dotplot for this collection of adult leisure

activity participation data.

(b) Select an appropriate partition of the numbers of participants data

and obtain frequency and relative frequency counts. Discuss your

findings.

(c) Construct a histogram for the adult leisure activity participation data

in Table 1.8. Are there any interesting features of the histogram?

Table 1.8 (continued)

Activity
Participated at least once
in the last 12 months

Entertain at home 87,455
Fantasy sports league 8969
Furniture refinishing 6292
Go to bars/night clubs 43,513
Go to beach 58,670
Go to live theater 30,547
Go to museums 32,960
Home decoration 22,781
Karaoke 8186
Painting/drawing 13,791
Photo albums/scrap books 15,284
Photography 26,173
Picnic 26,321
Play bingo 10,271
Play cards 46,190
Play musical instrument 18,078
Reading books 86,540
Reading comic books 5557
Sudoku puzzles 26,540
Trivia games 11,872
Woodworking 10,202
Word games 22,147
Zoo attendance 28,148

Source: United States Census Bureau (2012); GfK Mediamark
Research & Intelligence (2010)
Entries for the activity categories are the numbers of adults
(in thousands) participating in the activity at least once in the
past 12 months
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(d) In Exercise 1.15 you were asked to construct histograms for adult

leisure activity participation data broken into subcategories

corresponding to frequency of participation. Compare and contrast

the four histograms obtained in Exercise 1.15 with the overall activity

histogram obtained in part (c) of this exercise. Are there any interest-

ing similarities or differences?

1.1.20. Firearms in the Home. State health departments collaborate with the

US Centers for Disease Control and Prevention to operate the Behavioral Risk

Factor Surveillance System (BRFSS). Firearm storage questions were included

in the 2002 BRFSS survey interviews. One of the questions was: “Are any

firearms now kept in or around your home? Include those kept in a garage,

outdoor storage area, car, truck, or other motor vehicle.” The percentages of

households (self reported respondents) with firearms for each of the fifty

states at the time of the 2002 BRFSS survey are given in Table 1.9, as tabulated

and discussed (among other topics) in Okoro et al. (2005).

Table 1.9 Percentages of state households that had
firearms in or around their homes from the 2002 BRFSS
survey interviews

State
Percentage of households
with firearms

Alabama 57.2
Alaska 60.6
Arizona 36.2
Arkansas 58.3
California 19.5
Colorado 34.5
Connecticut 16.2
Delaware 26.7
Florida 26.0
Georgia 41.0
Hawaii 9.7
Idaho 56.8
Illinois 19.7

(continued)
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Table 1.9 (continued)

State
Percentage of households
with firearms

Indiana 39.0
Iowa 44.0
Kansas 43.7
Kentucky 48.0
Louisiana 45.6
Maine 41.1
Maryland 22.1
Massachusetts 12.8
Michigan 40.3
Minnesota 44.7
Mississippi 54.3
Missouri 45.4
Montana 61.4
Nebraska 42.1
Nevada 31.5
New Hampshire 30.5
New Jersey 11.3
New Mexico 39.6
New York 18.1
North Carolina 40.8
North Dakota 54.3
Ohio 32.1
Oklahoma 44.6
Oregon 39.8
Pennsylvania 36.5
Rhode Island 13.3
South Carolina 45.0
South Dakota 59.9
Tennessee 46.4
Texas 35.9
Utah 45.3
Vermont 45.5
Virginia 35.9
Washington 36.2
West Virginia 57.9
Wisconsin 44.3
Wyoming 62.8

Source: Centers for Disease Control and Prevention (2003),
as tabulated and discussed in Okoro et al. (2005)
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(a) Make a histogram of this data collection and describe any unusual

features of the data that are evident in the histogram.

(b) Make a dotplot and stemplot for this data collection. Which do you

prefer (histogram or dotplot/stemplot) for displaying the important

features of these data and why?

1.1.21. Global Warming—Natural or Man-Made? CBS News/New York Times

(2014) conducted a national poll between September 10 – September 14, 2014

in which they asked the following question of respondents: “Which statement

comes closest to your view about global warming? Global warming is caused

mostly by human activity such as burning fossil fuels. Global warming is

caused mostly by natural patterns in the earth’s environment. OR, Global

warming does not exist.” The results of this poll for Democrats, Republicans,

and Independents are as follows:

Mostly
human activity

Mostly
natural
patterns

It does
not exist

Caused
by both

Don’t know
what causes
it/Unsure

Republicans 35 42 18 4 1
Democrats 67 27 3 2 1
Independents 55 29 10 4 3

Using appropriate software, construct pie charts to graphically display these

poll results separately for Republicans, Democrats, and Independents.

1.1.22. Origin and Development of Humans. The Pew Research Center (2009)

conducted a poll that asked for respondents’ views about the origins and

development of living things. They were asked to select which of the follow-

ing categories best reflected their views: (a) Humans and other living things

have evolved over time through a natural selection process; (b) Humans and

other living things have evolved over time with Supreme guidance;

(c) Humans and other living things have existed in their present from since
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the beginning of time; or (d) Unsure/Don’t know. The percentages for

respondents in different age categories are as follows:

Age range

Evolved over time Existed in present
form from onset
of life

Unsure/Don’t
know

Natural selection
process

Supreme
guidance

18–29 40 21 26 13
30–49 35 22 30 13
50–64 30 23 34 13
65+ 23 19 35 23.

Using appropriate software, construct pie charts to graphically display these

poll results for the four age categories. Why do you think there are such large

percentages of Unsure/Don’t know responses in all four age categories? Why

so much larger for the age category 65+?

1.1.23. Where is it Safest to Work? The Bureau of Labor Statistics in the

U.S. Department of Labor annually reports data on unintentional fatalities

from accidents at work by industry. These data for accidental fatalities in 2013

are presented in Table 1.10.

(a) Use an appropriate graphical method to effectively display the raw

number of fatalities by occupation/industry category.

(b) Use an appropriate graphical method to effectively display the num-

ber of fatalities per million hours worked by occupation/industry

category.

(c) Compute the percentage of the total number of unintentional

fatalities from accidents at work in 2013 for each of the occupation/

industry categories. Use an appropriate graphical method to effec-

tively display these percentages.

(d) Compute the percentages of total hours worked in 2013 for each of the

occupation/industry categories and use an appropriate graphical

method to effectively display these percentages.
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(e) Comment on the two graphical displays constructed in parts (c) and

(d). Are there any problems with interpreting your results in part

(c) without knowledge of the information obtained in part (d)? Can

you think of a way to combine the information obtained in parts

(c) and (d) to alleviate this problem?

1.1.24. Sports Injuries. In Table 1.11 we present estimates from the National

Safety Council (2014), as reported by the Insurance Information Institute

Table 1.10 Unintentional fatalities from accidents at work, by
industry, 2013

Occupation/Industry
Number
of fatalities

Total hours
worked
(millions)

Management/Professional 638 106,269
Service 624 43,329
Sales/Office 281 59,770
Construction/Maintenance 1399 25,679
Production/Transportation/Material Moving 1394 33,122
Goods Producing 1733 53,929
Natural Resources 633 6746
Agriculture/Forestry Fishing/Hunting 479 4238
Mining/Quarrying/Oil and Gas Extraction 154 2508
Construction 796 16,972
Manufacturing 304 30,211
Wholesale Trade 190 7484
Retail Trade 253 27,936
Transportation/Warehousing 687 10,477
Utilities 23 1802
Information 39 5489
Financial Activities 84 18,889
Professional/Business Services 408 31,046
Educational/Health Services 131 39,936
Leisure/Hospitality 202 21,514
Other Services 179 12,429
Government 476 37,095

Source: United States Department of Labor (2014).
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(2015), on the numbers of hospital-treated injuries sustained during participa-

tion in a variety of sports in 2012. Use a pie chart to graphically display these

injuries data.

1.1.25. Participation in Sports. In Table 1.12 we present estimates provided by

the U.S. Census Bureau (United States Census Bureau 2012) for the numbers

of participants in a variety of sports in 2009. Consider those sports for which

both the estimated sports participation data in Table 1.12 and the estimated

hospital-treated sports injuries data in Table 1.11 are available. Use an appro-

priate graphical representation to effectively compare the relative safeties of

participation in these sports.

Table 1.11 Estimated numbers of hospital-treated injuries sustained in
2012 during participation in sports

Sport
Number
of injuries Sport

Number
of injuries

Archery 6055 Mountain biking 9176
Baseball 159,220 Mountain climbing 4446
Basketball 569,746 Racquetball/squash/
Bicycle riding 547,499 paddleball 5601
Billiards, pool 4983 Roller skating 62,906
Bowling 18,685 Rugby 15,270
Boxing 20,203 Scuba diving 1437
Cheerleading 39,153 Skateboarding 114,120
Exercise 364,137 Snowboarding 38,805
Fishing 72,629 Snowmobiling 5633
Football 466,492 Soccer 231,447
Golf 36,308 Softball 106,490
Gymnastics 30,600 Swimming 213,464
Hockey (street/roller/field) 8243 Tennis 24,224
Horseback riding 66,543 Track and field 29,679
Horseshoe pitching 1898 Volleyball 61,495
Ice hockey 18,962 Waterskiing 7577
Ice skating 20,873 Weight lifting 100,300
Martial arts 36,065 Wrestling 45,646

Source: National Safety Council (2014), as reported in Insurance Information
Institute (2015)
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1.1.26. Artifacts from Naco Valley, Honduras. In their 1996 study of Site 128 in

the Naco Valley, Honduras (see Example 1.1 for more details), Ed Schortman

and Pat Urban, Professors in the Department of Anthropology and Sociology

at Kenyon College in Gambier, Ohio, also collected information on the per-

centage of objects retrieved from individual excavated structures that were

considered to be “elaborate imports”. These “elaborate import” percentages

for thirteen of the excavated structures at Site 128 in the Naco Valley are given

in Table 1.13. Construct a stemplot for this data collection. What are some of

the important features of the data?

1.1.27. Artifacts from Naco Valley, Honduras. In Example 1.1, we discussed the

makeup of the artifacts found by Professors Schortman and Urban from

Kenyon College for two different structures at Site 128 in Naco Valley,

Honduras in 1996. In Table 1.14 we present similar data for Structures 4 and

23 at the same site.

Table 1.12 Estimated numbers of participants in a variety of sports, 2009

Sport
Number
of participants Sport

Number
of participants

Archery 7,106,000 Paintball games 6,271,000
Baseball 11,507,000 Roller skating 7,874,000
Basketball 24,410,000 Skateboarding 8,418,000
Bicycle riding 38,139,000 Skiing 8,687,000
Billiards, pool 28,172,000 Snowboarding 6,189,000
Boating 23,959,000 Soccer 13,578,000
Bowling 44,972,000 Softball 11,829,000
Exercise 254,235,000 Swimming 50,226,000
Fishing 70,067,000 Table Tennis/Ping Pong 13,306,000
Football 8,890,000 Tennis 10,818,000
Golf 22,317,000 Volleyball 10,733,000
Hunting 25,003,000 Waterskiing 5,191,000
Ice hockey 3,057,000 Weightlifting 34,505,000
Mountain biking 8,368,000 Yoga 15,738,000

Source: United States Census Bureau (2012)
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Table 1.13 Percentage elaborate imports retrieved
at selected excavation structures in Naco Valley,
Honduras, 1996

Excavation structure
number

Percentage elaborate
imports

3 2.93%
4 4.79%
7 3.21%
12 2.00%
13 2.60%
17 4.36%
18 3.14%
19 5.63%
20 5.57%
21 4.00%
23 2.68%
24 3.42%
25 3.88%

Source: Schortman and Urban (1998)

Table 1.14 Artifacts recovered at structures 4 and
23 during the excavation of Site 128 in Naco Valley,
Honduras, 1996

Artifact

Frequency
count at
structure #4

Frequency
count at
structure #23

1. Ocarinas 14 21
2. Figurines 56 53
3. Incensarios 73 35
4. Ground stone tools 21 12
5. Candelaros 10 12
6. Stamps 5 9
7. Sherd disks 5 0
8. Jewelry 4 7

Source: Schortman and Urban (1998)
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(a) Use appropriate computer software (e.g., the R function barplotð Þ) to
construct labeled bar graphs for the data collections at the two

structures.

(b) Comment on any unusual features of these data collections that are

evident in these bar graphs.

1.1.28. Gender and Math SAT Scores. Math SAT scores were collected by

Depew (1999) from seniors graduating in 2013 or 2014 from a small private

school. These scores are presented in Table 1.15, separately for males and

females. Make stemplots and dotplots separately for the collections of male

and female SAT scores in Table 1.15.

1.1.29. SAT Scores for Males. Consider the SAT scores in Table 1.15 for the

male students. Construct four separate histograms for these data, using five,

ten, fifteen, and twenty equal length interval classes. Which of the four do you

feel best depicts the important features of the data collection and why?

Table 1.15 Math SAT scores for seniors graduating in 2013 or 2014 from a
small private school

Males Females

660 510 680 750 510 570 460 400 470 520 740
480 390 680 660 610 430 360 620 550 470 530
700 350 490 400 450 650 580 490 570 350 500
600 510 600 460 570 730 580 560 650 400 390
570 530 650 500 520 670 600 670 570 680 590
600 520 710 550 550 400 510 510 440 520 410
630 650 590 630 570 720 480 440 640 510 500
500 540 440 460 490 590 490 490 620 660 740
740 520 710 580 620 590 670 600 430 570 470
640 730 670 470 480 650 510 680 570 390 570
550 590 680 630 550 500
520 570 500 460 560 470
490 460 530 510 700 540
390

Source: Depew (1999)
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1.1.30. Firearms in the Home. Consider the percentages of state households

that had firearms in 2002 as given in Table 1.9. Construct four separate

histograms for these data, using four, eight, twelve, and sixteen equal length

interval classes. Which of the four do you feel best represents the important

features of the data collection and why?

1.1.31. Histogram Shapes. Pictured below are four histograms with a variety

of shapes. Which of the following adjectives would you use to describe each of

them: symmetric, skewed to the left, skewed to the right, single dominant

visual center, more than one dominant visual center, uninformative, gappy,

containing outliers, low spread, high spread?

(a)

(b)
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(c)

(d)

1.1.32. More Histogram Shapes. Pictured below are four histograms with a

variety of shapes. Which of the following adjectives would you use to describe

each of them: symmetric, skewed to the left, skewed to the right, single

dominant visual center, more than one dominant visual center, uninforma-

tive, gappy, containing outliers, low spread, high spread?

(a)
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(b)

(c)

(d)

1.2 Numerically Summarizing One-Variable Data Collections

While each of the three graphical techniques discussed in Section 1.1 is

useful in capturing a general sense of the important features in a one-variable

data collection, none of them is designed to provide us with more numerically
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descriptive information about the data. This is especially true and trouble-

some if the data collection is rather large. We need better ways of condensing

or summarizing data collections so that we can interpret and compare them

more effectively. This often requires a number of different numerical data

summaries.

Definition 1.8 A statistic S is a number computed from the

observations in a data collection.

A statistic is a function solely of the observations in a data collection, so

that given only the observations the value of the statistic can be determined.

Hence, a statistic is by its very nature a summary of some attribute of the data

collection.

It is easy to construct statistics S that can be computed for a given data

collection. For example, S1 ¼ maximum observed value, S2 ¼ minimum

observed value, S3 ¼ number of observations greater than 7.3, S4 ¼ sum of

the squares of the observations, and S5¼ the number of observations between

3 and 9, inclusive, are all well defined statistics – the list could go on and

on. (Can you think of five different statistics?) However, not all such statistics

provide useful summaries for a data collection. In this section we concentrate

on examples of statistics that can be used to numerically quantify the same

important features of the data collection that we illustrated previously using

graphical techniques; that is, the visual center of the data collection, spread of

the observations around the visual center, shape of the data collection (i.e.,

symmetry versus skewness) and the presence of outliers and gaps in the data.

Measuring the Visual Center of the Data Collection: Mean, Median,

and Trimmed Mean Each individual observation in a data collection

provides information about the visual center of the data collection; that is,
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we have some (limited!) information about the center even if we have col-

lected only a single observation. Moreover, it is quite natural to take the

position that each observation contributes equally to our sample information

about the visual center. Thus, we want a statistic that uses all of the

observations and doesn’t depend on the order in which they were collected.

However, which particular statistic of this type we should use to measure the

visual center of a data collection depends both on what we mean by the

‘center’ and on the observed data configuration.

Mean of the Observations If we interpret the visual center of a data collec-

tion to be the balance point where data values larger than the center are

equally balanced by those that are smaller than the center, the numerical

average or mean is a natural statistic for identifying and measuring the center.

This is the case, for example, when our interpretation of the ‘visual center’

corresponds to a value for which the numerical contribution from data points

that are greater than the ‘center’ is equally balanced by the numerical contri-

bution from those that are less than it. In such settings, the appropriate

statistic to measure this ‘visual center’ is naturally the average, or mean, of

the collected observations.

Definition 1.9 The mean of the observations in a data collection is their

numerical average. That is, the sum of the data values divided by the

number of observations in the data collection. So, if x1, x2, . . ., xn are the n

observations in our data collection, their mean is

�x ¼ 1
n

x1 þ x2 þ . . .þ xnð Þ:

A very convenient way to write the arithmetic average described in

Definition 1.9 is with the summation symbol Σ. You will see it used
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throughout this book and you should become comfortable with this common

notation. Using Σ, we can write the mean of our data collection as

�x ¼ 1
n

Xn
i¼1

xi: ð1:1Þ

You read this as follows: “x bar equals 1 over n times the sum of x sub i, for

i equaling 1 to n”. The expression says, “to find the mean, add up all the data

values x1, x2, . . ., xn, and divide by n”.

Example 1.4. Motor-Vehicle Fatalities in 2012 In their annual report on

accident statistics, the National Highway Traffic Safety Administration

(2013) reported figures for the number of motor-vehicle fatalities per 100 mil-

lion vehicle miles traveled in each of the 50 states during the calendar year

2012. These figures are reproduced in Table 1.16.

Here we have n ¼ 50 observations in our data collection and these

observations can be represented by using the notation x1 ¼ 1.33 (Alabama),

x2 ¼ 1.23 (Alaska), . . ., x50 ¼ 1.33 (Wyoming). The national average of these

statewide fatality rates is then

�x ¼ 1
50

X50
i�1

xi ¼ 1
50

1:33þ 1:23þ 1:37þ . . .þ 1:04þ 1:33½ �

¼ 59:03
50

¼ 1:18 fatalities per 100 million vehicles miles:

We note that this national average is relatively close to most of the

statewide averages displayed in Table 1.16. However, there are a number of

states that have motor-vehicle fatality rates that are considerably higher or

lower than this national average; that is, some of the observations are rather

widely dispersed from the national average. Are they to be viewed as ‘unusu-

ally’ high or low; that is, are they possibly data outliers? Are there reasons for

these outcomes? We return to these questions later in this chapter.
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For many data collections, the mean adequately locates the dominant

visual center of the data. However, it is also clear that the mean, being a

numerical average of all the observations, will be sensitive to either unusually

large or unusually small observations in the collection of data, especially if the

total number of observations is not large. For example, consider the data

collection {1.9, 2.5, 3.6, 3.8, 18.2}. The mean for this data collection is

�x ¼ 1:9þ 2:5þ 3:6þ 3:8þ 18:2ð g
5

¼ 6, which is considerably larger than four

Table 1.16 Total motor-vehicle fatalities per 100 million vehicle miles
traveled in the 2012 calendar year

State Fatality rate State Fatality rate

Alabama 1.33 Montana 1.72
Alaska 1.23 Nebraska 1.10
Arizona 1.37 Nevada 1.07
Arkansas 1.65 New Hampshire 0.84
California 0.88 New Jersey 0.79
Colorado 1.01 New Mexico 1.43
Connecticut 0.75 New York 0.91
Delaware 1.24 North Carolina 1.23
Florida 1.27 North Dakota 1.69
Georgia 1.11 Ohio 1.00
Hawaii 1.25 Oklahoma 1.48
Idaho 1.13 Oregon 1.01
Illinois 0.91 Pennsylvania 1.32
Indiana 0.99 Rhode Island 0.82
Iowa 1.16 South Carolina 1.76
Kansas 1.32 South Dakota 1.46
Kentucky 1.58 Tennessee 1.42
Louisiana 1.54 Texas 1.43
Maine 1.16 Utah 0.82
Maryland 0.89 Vermont 1.07
Massachusetts 0.62 Virginia 0.96
Michigan 0.99 Washington 0.78
Minnesota 0.69 West Virginia 1.76
Mississippi 1.51 Wisconsin 1.04
Missouri 1.21 Wyoming 1.33

Source: National Highway Traffic Safety Administration (2013)
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of the five observations. The outlier 18.2 exerts a tremendous pull on the

mean, moving it substantially away from the other four, more typical, data

values. Thus, in the presence of such outliers the mean will not, in fact,

provide a good representation for the dominant visual center or the typical

value of a set of data.

Median of the Observations A measure of the center that is less sensitive to

unusually large or small observations than the mean is provided by the

median.

Definition 1.10 To find the median, ~x, of a data collection x1, . . ., xn:

1. Sort the n data values in order from smallest to largest.

2. If n is odd, the median, ~x, is the single value in the middle of this

ordered list.

If n is even, there are two “middle values”, and the median, ~x, is

their average.

For example, to find the median of the data collection 2, 4, �1, 6, 5.1, we

first sort the data values from smallest to largest:

Sorted data values : � 1, 2, 4, 5:1, 6:

Since there are n ¼ 5 values in this data collection and 5 is odd, the median, ~x,

is the middle number in this ordered list, namely,

�1, 2, 4, 5:1, 6

"

That is, the median for this data collection is ~x ¼ 4.
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To find the median for the data collection�3.7, 8,�14, 6.3, 3, 6.3, we again

sort the data values from smallest to largest:

Sorted data values : � 14, � 3:7, 3, 6:3, 6:3, 8:

Here n ¼ 6, which is an even number, and there are two “middle values” in

the ordered list, namely,

�14, � 3:7, 3, 6:3, 6:3, 8:

" "

To find the median for this data collection, we average these two middle

values to obtain ~x ¼ 3þ 6:3
2

¼ 4:65.

Notice that for both of these data collections, the median divides the set of

ordered data values in half. In the 5-element data collection, two values are

larger than the median, 4, and two are smaller than it. In the 6-element data

collection, three values are larger than the median, 4.65, and three are smaller.

We note that either a dotplot or a stemplot can be very useful in obtaining

the value of a sample median for a collection of data. Both of these graphical

representations involve the ordered observations and are thus naturally

suited to yield the location of the median for the data.

If you are working with a large data collection or if you want to program a

computer to find the median, it is convenient to have a rule that tells you

which value or values to use from the ordered data collection. To write such a

rule, we need to give names to the values in the ordered data. If x1, x2, . . ., xn is

your data collection, then the ordered data values are denoted by x(1), x(2), . . .,

x(n). The first value in the sorted list, x(1), is the smallest observation in the data

collection. The second value, x(2), is the second smallest observation in the

data collection, and so forth, until x(n) is the largest value in data collection.

With this notation, we can now write our rule for computing the median of

our data collection as follows:
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If n is odd, then ~x ¼ x nþ1
2ð Þ: ð1:2Þ

If n is even, then ~x ¼
x n

2ð Þ þ x n
2þ1ð Þ

2
: ð1:3Þ

Notice how this works for our two previous examples. In the first, we have

n ¼ 5, so that nþ1
2 ¼ 5þ1

2 ¼ 3. From (1.2), we see that the median for this odd

number of observations is then element number 3 from the ordered data set;

that is,~x ¼ x 3ð Þ ¼ 4. In the second example, we have n¼ 6, so that n2 ¼ 6
2 ¼ 3and

n
2 þ 1 ¼ 4. Thus, for this odd number of observations, it follows from (1.3) that

the median is obtained by averaging the 3rd and 4th ordered values; that is,

~x ¼ x 3ð Þ þ x 4ð Þ
2

¼ 3þ 6:3
2

¼ 4:65:

Example 1.5. Cost of Engineering Drawings (Continuation of Example 1.3)

In Table 1.3 we displayed the total engineering drawing hours for 96 pieces of

machinery/mechanical devices for a major Ohio-based company. Here the

number of observations, n¼ 96, is even, so that the median of this collection of

data will be the average of the two “middle values”. Since n
2 ¼ 96

2 ¼ 48, it

follows from (1.3) that the median of the collection of engineering drawing

hours is ~x ¼ x 48ð Þ þ x 49ð Þ
2

. Returning to the stemplot in Fig. 1.4, count up

beginning with the smallest value x(1) ¼ 3 until we obtain x(48) ¼ x(49) ¼
14 h, so that the median number of drawing hours for this collection of data

is~x¼ (14 + 14)/2¼ 14 h. Note that it is clear from the way in which themedian

is calculated that the large observations 84, 92, and 100 do not directly

influence its value; that is, these outliers could even be changed to 184, 192,

and 200, respectively, and the value of the median would be unchanged.

Because of this insensitivity to the effect of outliers, the median is often called

resistant or robust. On the other hand, the mean does not have this feature.
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First, the value of the mean for these 96 total drawing hour values is �x¼ 22.2 h.

It is clear from the stemplot in Fig. 1.5 that the sample mean does not provide

a very good measure of the visual center of this data collection. (Note that the

mean is actually larger than about two-thirds (65 out of 96) of the data values.)

Moreover, changing the outlier observations from their present values of

84, 92, and 100 to 184, 192, and 200, respectively, would also change the

value of the data mean to �x ¼ 25.3 h. This represents an increase of roughly

14% due simply to a substantial change in the three largest observations. This

is not a desirable feature for a measure of the center of a collection of data if

unusually large or small observations are likely to be present. In such settings

the median is the preferred measure.

Example 1.6. Salary Figures for the New York Yankees in 2014 The dataset

american_league_salary_2014 contains the 2014 salaries (as of March 26, 2014)

for all baseball players in the American League. In Table 1.17 we have

recorded the salaries for the players on the New York Yankees, ordered

from largest to smallest. Note that this ordering from largest to smallest,

rather than smallest to largest, still enables us to compute the median. Since

the number of observations here is 33, an odd number, the median 2014 salary

for members of the New York Yankees baseball team will be ~x ¼ x((33+1)/2) ¼
x(17) , the unique middle ordered salary. From Table 1.17 we see that this

median salary belongs to Brian Roberts and he was paid ~x¼ x(17) ¼ $2,000,000

for 2014. How do you feel this 2014 median salary would compare with the

mean salary for the 2014 New York Yankees? Check it out!

Trimmed Mean of the Observations Another estimate of the center of a

collection of data that is also less sensitive to changes in the values of extreme

observations than the mean, but which provides greater sensitivity to changes

in the values of observations near the center of the data collection than the

median, is a trimmed mean. For this measure, a selected portion of the
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Table 1.17 Baseball salaries for members of the
New York Yankees baseball team for 2014 (as of
March 26, 2014)

Name of player Total 2014 salary

CC Sabathia 24,285,714
Mark Teixeira 23,125,000
Masahiro Tanaka 22,000,000
Jacoby Ellsbury 21,142,857
Alfonso Soriano 19,000,000
Brian McCann 17,000,000
Hiroki Kuroda 16,000,000
Carlos Beltran 15,000,000
Derek Jeter 12,000,000
Ichiro Suzuki 6,500,000
Brett Gardner 5,600,000
David Robertson 5,215,000
Alex Rodriguez 3,868,852
Matt Thornton 3,500,000
Ivan Nova 3,300,000
Kelly Johnson 3,000,000
Brian Roberts 2,000,000
Brendan Ryan 2,000,000
Shawn Kelley 1,765,000
Francisco Cervelli 700,000
Eduardo Nunez 576,900
David Phelps 541,425
Michael Pineda 538,475
Adam Warren 527,400
Austin Romine 524,800
Preston Claiborne 511,325
Zoilo Almonte 511,300
Cesar Cabral 510,825
Vidal Nuno 504,500
John Ryan Murphy 502,700
Dellin Betances 502,100
Dean Anna 500,000
Shane Greene 500,000

Source: Petchesky (2014)

1.2 Numerically Summarizing One-Variable Data Collections 57



extreme values are deleted from each end of the ordered collection of data

(this is called the ‘trimming’) and the average of the remaining observations

(the ‘trimmed mean’) is used to provide information about the center of the

data collection. This measure clearly is not influenced directly by the extreme

observations (those trimmed), but is directly responsive to the untrimmed

observations used in its calculation.

Definition 1.11 Let x1, x2, . . ., xn be the n observations in a data collec-

tion and let d be an integer between 0 and n/2. Discard the d largest and

d smallest values from the data collection and compute the average of the

remaining n–2d observations. This average is called the d-th trimmed

mean, �xd.

For most data collections where outliers are a problem, a trimmed mean

based on trimming between 10% and 20% of the observations from each of the

extremes will provide a representative estimate of the center of the

observations. However, trimming proportions as high as 25–30% might be

required if there are still outliers among the observations remaining after

using an initial trimming proportion of 20%.

Once again, the summation notation provides us with a compact way of

writing the definition for the d-th trimmed mean. If x(1), x(2), . . ., x(n) are the

ordered data values, then

�xd ¼
x dþ1ð Þ þ � � � þ x n�dð Þ
� �

n� 2d
¼ 1

n� 2d

Xn�d

i¼dþ1

x ið Þ: ð1:4Þ

Example 1.7. Cost of Engineering Drawings (Continuation of Example

1.3) Consider once again the total engineering drawing hours presented in

Table 1.3 for the 96 pieces of machinery/mechanical devices. Consider a

trimming proportion of roughly 10%, corresponding to trimming 9 extreme

58 1 Exploratory Data Analysis: Observing Patterns and Departures from Patterns



observations from each end of the ordered data. Trimming the nine largest

and smallest observations from the ordered total drawing hour data, we see

that the value of the corresponding trimmed mean is

�x9 ¼ 9þ 9þ 9þ 9þ . . .þ 44þ 46þ 46ð Þ=78 ¼ 18:55 h,

which is between the median, ~x ¼ 14 h, and the mean, �x ¼ 22.2 h, for these

data, as we would expect in view of how the three statistics are calculated.

Measuring the Spread of the Data Collection: Range, Interquartile Range,

and Standard Deviation In the previous section we discussed a number of

statistics that can be used to measure the center of a data collection. Clearly,

however, such measurements only provide partial information about the

nature of the data collection. Consider, for example, the following two data

collections of n ¼ 10 observations:

Collection A: 3, 4, 5, 6, 7, 9, 10, 11, 12, 13

Collection B: 7.5, 7.6, 7.7, 7.8, 7.9, 8.1, 8.2, 8.3, 8.4, 8.5.

Find the mean, median and 10% trimmed mean for each of these data

collections. Are you surprised that all statistics are equal in value? While this

would probably only happen with such especially constructed sets of data, it

is clear from these calculations that the visual center of both of these data

collections is at the value 8. Does that mean that we can treat the two sets of

data as virtually the same for all practical purposes? The answer is clearly no,

as it is obvious from the following dotplots that these two collections do differ

with respect to the spread (or what statisticians call dispersion) of their

observations.
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This feature of a data collection is not captured in the previously discussed

measures of center, as information about dispersion or variability is contained

in the differences between observations, not in the individual values of the

observations, as used in our measures of center. Thus, the pair of numbers

(6, 8) has roughly the same amount of variability as does the pair of numbers

(500, 502), but they certainly differ with respect to their centers. On the other

hand, the pair of numbers (6, 8) has the same center as does (-94, 108), but they

are associated with different amounts of variability.

There are a number of measures of variability that can be applied to data

collections. The most obvious and simplest of these is the range of the data.

Definition 1.12 The range, R, of a data collection is the difference

between the largest and the smallest observations in the collection.

Thus, using the notation we previously developed for the ordered values

in a data collection x1, x2, . . ., xn, we can represent the range by

R ¼ x nð Þ � x 1ð Þ: ð1:5Þ

The range for data collection A is RA ¼ 13 – 3 ¼ 10 and that for data

collection B is RB ¼ 8.5 – 7.5 ¼ 1 and we have a clear indication of the

differences in variability for these two data collections. However, the range

is not an adequate measure of spread for most settings. For example, a third

data collection C,

Collection C: 3, 7.6, 7.7, 7.8, 7.9, 8.1, 8.2, 8.3, 8.4, 13,

has the same measures of location and range as data collection A,

Collection A: 3, 4, 5, 6, 7, 9, 10, 11, 12, 13,
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but the overall variability between the observations in collection C is clearly

less than that for collection A. In order to develop a more differentiating

measure of variability, we will need to take into account more than just the

distance between the largest and smallest observations.

One way to provide a better measure of the variability in a data set is to

use differences between observations in addition to the maximum and

minimum.

Definition 1.13 Let x1, . . ., xn denote the n observations in a data collec-

tion. For a number q between 0 and 100, the qth percentile of the data

collection is a value such that about q percent of the observations are less

than or equal to it. Thus, for example, the median ~x is the 50th percentile

and the maximum x(n) is the 100th percentile. Two percentiles commonly

used to describe sample variability are the first and third quartiles. The

first quartile, Q1, for the data collection (also the 25th percentile) is the

median of the observations that are to the left of the sample median ~x in

the list of ordered data values. The third quartile, Q3, for the data

collection (also the 75th percentile) is the median of the set of

observations that are to the right of the sample median ~x in the list of

ordered data values. The interquartile range, IQR, is the difference

between the third and first quartiles, namely,

IQR ¼ Q3 �Q1: ð1:6Þ

Note that IQR is similar to the range R (1.5). However, the range measures

the maximum difference observed in the data, while the interquartile range

measures the observed spread between more moderate, or typical, data

values.

To illustrate the computation of the interquartile range for an even sample

size, consider the data collection (3, 4, 14, �4, 9, �5, 10, 39, �40, 7, 3, 80). The
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ordered data collection is (�40, �5, �4, 3, 3, 4, 8, 9, 10, 14, 39, 80). Since n ¼
12, it follows from (1.3) that the median for this data collection is the average

of the 6th and 7th ordered values; that is,

~x ¼ x 6ð Þ þ x 7ð Þ
2

¼ 4þ 8
2

¼ 6:

Hence, {�40, �5, �4, 3, 3, 4} and {8, 9, 10, 14, 39, 80} are the sets of

observations that are to the left and right, respectively, of the sample median.

Since each of these sets contains an even number (six) of observations, the

median expression (1.3) is used once again to obtain both quartiles. The first

quartile,Q1, is the median of the six observations {�40,�5,�4, 3, 3, 4} and we

have Q1 ¼ �4þ3
2 ¼ �:5. The third quartile, Q3, is the median of the six

observations {8, 9, 10, 14, 39, 80}, yielding Q3 ¼ 10þ14
2 ¼ 12: It then follows

from (1.6) that the interquartile range is IQR ¼ 12 – (�.5) ¼ 12.5.

For the case of an odd sample size, consider the data collection {3, 6.6, 9.2,

-.4, 7.7, -34, 27, 156, -4, -11, 99}. The ordered data collection is (�34, �11, �4,

�.4, 3, 6.6, 7.7, 9.2, 27, 99, 156). Here, n ¼ 11, and it follows from (1.2) that the

median for this data collection is the 6th ordered value; that is, ~x ¼ x 6ð Þ ¼ 6:6:

Hence, {�34, �11, �4, �.4, 3} and {7.7, 9.2, 27, 99, 156} are the sets of

observations that are to the left and right, respectively, of the sample median.

Since each of these sets contains an odd number (five) of observations, the

median expression (1.2) is used once again to obtain the two quartiles. The

first quartile, Q1, is the median of the five observations {�34, �11, �4, �.4, 3}

and we have Q1 ¼ �4. The third quartile, Q3, is the median of the five

observations {7.7, 9.2, 27, 99, 156}, yielding Q3 ¼ 27. It then follows from

(1.6) that the interquartile range is IQR ¼ 27 – (�4) ¼ 31.

In both of these examples, the same formula that was used to obtain the

median of the entire sample was also used to obtain the two subset medians

for Q1 and Q3; that is, for n ¼ 12, expression (1.3) was used to obtain all three

medians, while expression (1.2) yielded the three medians for n ¼ 11. Do you
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think that this will always be the case; that is, whichever expression, (1.2) or

(1.3), is used to obtain the median of the entire sample will also be used to

obtain both Q1 and Q3? What if the sample size is n ¼ 13?

Example 1.8. Cost of Engineering Drawings (Continuation of Example

1.3) We return to the total engineering drawing hours presented in

Table 1.3 for the 96 pieces of machinery/mechanical devices. In Example 1.5

we found that the median for this data collection is~x¼ 14 h. From Table 1.3 we

see that the first quartile, Q1, is the median of the 48 total drawing hours

values that are to the left of the sample median ~x ¼ 14 h (including one of the

two observed drawings which required 14 total hours) and the third quartile,

Q3, is the median of the 48 total drawing hours that are to the right of the

median ~x ¼ 14 h (again including one of the two observed drawings which

required 14 total hours). Since 48 is an even number, we see from (1.3) and

Table 1.3 thatQ1¼ [x(24) + x(25)]/2¼ [11 + 11]/2¼ 11 h andQ3¼ [x(72) + x(73)]/

2 ¼ [26 + 26]/2 ¼ 26 h. It follows that the interquartile range for the total

drawings data is IQR ¼ Q3 – Q1 ¼ 26 – 11 ¼ 15 h.

For those data sets where outliers are not a major problem and there is no

serious skewness in either direction, the mean provides a satisfactory measure

of the center of the observations. For such settings a different approach based

on individual distances of the observations from the mean can be used to

assess the variability in the sample. If �x is the mean for the n observations x1,

x2, . . ., xn, then the n deviations from the mean are the differences x1 – �x, . . ., xn – �x.

For example, for the data collection {2, 3, 7, 8, 10}, the sample mean is �x¼ 6 and

the n¼ 5 deviations from the mean are 2 – 6¼�4, 3 – 6¼�3, 7 – 6¼ 1, 8 – 6¼
2, and 10 – 6 ¼ 4. Each of the deviations from the mean provides a piece of

information about the variability of the data about their center, as measured

by the mean. In particular, the greater the magnitudes of the deviations from

the mean, the greater the variability present in the data collection. Therefore, a

natural first impulse to assess the variability about the center of the data
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collection would be to simply average these individual deviations from the

mean. However, notice that the sum of the five deviations found above is (�4)

+ (�3) + 1 + 2 + 4 ¼ 0, so that the average of this set of deviations from the

mean is also 0. This is not an accident. The mean of a data collection has

the property that the sum of the deviations from it is always zero; that is,

Xn
i¼1

�
xi � �x

� ¼ 0 for every data collection. For this reason, neither the sum nor

the average deviation of the observations from their mean is a useful measure

of the variability in a data collection.

One way to circumvent this problem is to first square the deviations from

the mean before summing. This continues to equally weight positive

deviations and negative deviations of the same magnitude and the sum of

the squared deviations will always be greater than zero (unless all the data

values are the same, in which case the data quite naturally have zero

variability). In fact, the greater the variability of the data around their mean,

the greater will be this sum of squared deviations from the mean. For exam-

ple, consider once again the two data collections:

Collection A: 3, 4, 5, 6, 7, 9, 10, 11, 12, 13

Collection B: 7.5, 7.6, 7.7, 7.8, 7.9, 8.1, 8.2, 8.3, 8.4, 8.5.

Each of these data collections has a mean value of �x ¼ 8. However the sum

of the squared deviations from this common mean is quite different for the

two data collections. For data collection A we have

X10
i¼1

�
xi � �x

�2 ¼X10
i¼1

xi � 8ð Þ2

¼ 3� 8ð Þ2 þ 4� 8ð Þ2 þ 5� 8ð Þ2 þ 6� 8ð Þ2 þ 7� 8ð Þ2 þ 9� 8ð Þ2 þ 10� 8ð Þ2

þ 11� 8ð Þ2 þ 12� 8ð Þ2 þ 13� 8ð Þ2
¼ 25þ 16þ 9þ 4þ 1þ 1þ 4þ 9þ 16þ 25 ¼ 110,

while for data collection B we have
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X10
i¼1

�
xi � �x

�2 ¼X10
i¼1

xi � 8ð Þ2

¼ 7:5� 8ð Þ2 þ 7:6� 8ð Þ2 þ 7:7� 8ð Þ2 þ 7:8� 8ð Þ2 þ 7:9� 8ð Þ2 þ 8:1� 8ð Þ2

þ 8:2� 8ð Þ2 þ 8:3� 8ð Þ2 þ 8:4� 8ð Þ2 þ 8:5� 8ð Þ2
¼ :25þ :16þ :09þ :04þ :01þ :01þ :04þ :09þ :16þ :25 ¼ 1:10:

The sum of the squared deviations from the common mean �x ¼ 8 for data

collection A is 100 times that for data collection B! This provides good

numerical justification for what can easily be observed directly from the two

data collections themselves.

One natural measure of the variability in a data collection is the typical

squared deviation, which we can find by averaging these n squared

deviations.

Definition 1.14 Let x1, x2, . . ., xn denote the n observations in a data

collection. The variance, s2, for these data is defined to be the sum of the

squared deviations from the mean of the data divided by n –

1. Notationally, we have

s2 ¼
�
x1 � �x

�2 þ � � � þ �xn � �x
�2

n� 1
¼
Pn
i¼1

�
xi � �x

�2
n� 1

: ð1:7Þ

The standard deviation, s, for the data collection is the square root of the

variance s2.

The units for the variance s2 will be the square of the units of the measured

data. However, the standard deviation s will have the same units as the data.

For this reason (and others that will become apparent later), the standard

deviation is generally the quantity of interest for most settings, rather than the
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variance. Computationally, of course, we must first calculate s2 before we can

obtain the value of s.1

Example 1.9. Asbestos Exposure and Lung Function Asbestos is a silicate

mineral compound that is resistant to both heat and chemical reactions. These

properties make it a natural insulator and it has been used for that purpose for

a number of years. However, inhalation of asbestos dust can lead to asbesto-

sis, a progressive disease characterized by chronic inflammation and

congestion in the lungs, which leads to a loss in lung function. Employees of

companies producing asbestos are particularly prone to development of this

disease. Al Jarad et al. (1993) conducted a study in which they examined the

decrease in lung function for a sample of asbestos workers who had not (yet)

contracted asbestosis. The values in Table 1.18 are the percent decreases in

lung function (as measured by a procedure known as FVC) over a period of

slightly longer than 4 years for 20 asbestos workers who did not have asbes-

tosis. The average percent decrease in lung function for these twenty asbestos

workers is

�x ¼ 10þ 2þ . . .þ 25þ 13ð Þ=20 ¼ 232=20 ¼ 11:6:

The 20 sample observations, their deviations from the mean, �x ¼ 11:6, and

the squared deviations are then:

1We note that the sum of the squared deviations from the mean is divided by n-1, not the
seemingly more natural n, in the definition of the variance. While there are a number of
statistical reasons for doing this, we note here only that the constraint implied by the fact thatXn
i¼1

�
xi � �x

� ¼ 0 is one of these reasons. Although we start out with n independent pieces of

information, commonly known as degrees of freedom, from the sample observations x1, . . ., xn,
once we have computed the mean �x and obtained the n deviations from the mean, we are left

with only (n-1) degrees of freedom, since the constraint that
Xn
i¼1

�
xi � �x

� ¼ 0 results in the loss

of one degree of freedom.
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xi xi – 11.6 (xi � 11.6)2

10 �1.6 2.56
2 �9.6 92.16
16 4.4 19.36
2 �9.6 92.16
30 18.4 338.56
0 �11.6 134.56
20 8.4 70.56
14 2.4 5.76
0 �11.6 134.56

(continued)

Table 1.18 Percent decrease in lung function for
asbestos workers who do not have asbestosis

Employee
Percent decrease
in lung function

1 10
2 2
3 16
4 2
5 30
6 0
7 20
8 14
9 0

10 18
11 0
12 8
13 25
14 16
15 0
16 6
17 2
18 25
19 25
20 13

Source: Al Jarad et al. (1993)
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(continued)

xi xi – 11.6 (xi � 11.6)2

18 6.4 40.96
0 �11.6 134.56
8 �3.6 12.96
25 13.4 179.56
16 4.4 19.36
0 �11.6 134.56
6 �5.6 31.36
2 �9.6 92.16
25 13.4 179.56
25 13.4 179.56
13 1.4 1.96
––– ––––-– ––––-–––
232 0 1896.80

Summing the deviations from the mean, we obtain 0, as expected. To

compute the variance, s2, we sum the squares of the deviations from the

mean and divide by (n – 1) ¼ 19 to obtain

s2 ¼ 2:56þ 92:16þ . . .þ 179:56þ 1:96ð Þ=19 ¼ 1896:8=19 ¼ 99:832:

The standard deviation for these asbestos data is then s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
99:832

p ¼ 9:992.

Almost all calculators and computer software packages will also compute

the variance for a collection of data. In addition, a computationally simpler

expression for s2 than that given in (1.7) is discussed in Exercise 1.A.8.

Example 1.10. Motor-Vehicle Fatalities in 2012 (Continuation of

Example 1.4) For the 50 statewide motor-vehicle fatality rates in Table 1.16,

we have already seen in Example 1.4 that �x ¼ 1.18 fatalities per 100 million

vehicle miles. Using the R function summaryð Þ for the "Population Death Rate"

column of the dataset motor_vehicle_death_rate_2012 we obtain the following

output.
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> summary(motor_vehicle_death_rate_2012$"Population Death Rate")
Min. 1st Qu.  Median   Mean 3rd Qu.  Max. 
0.6200  0.9675  1.1600  1.1810  1.4080  1.7600 

Additionally, we can use the R function sdð Þ to obtain s for the motor-vehicle

death rates as follows.

> sd(motor_vehicle_death_rate_2012$"Population Death Rate")

[1] 0.2980303

Aswewill discuss more formally later in the text, the combination of mean

and standard deviation for a data collection can also be used to describe a bit

more of the structure for the data collection. For example, for most data

collections roughly 95% of the observations in the collection can be found

within two standard deviations of the mean; that is, in the interval�
�x � 2s; �x þ 2s

�
. For the 2012 motor-vehicle fatalities, we have�

�x � 2s; �x þ 2s
� ¼ (1.18 – 2(0.298), 1.18 + 2(0.298)) ¼ (0.5849, 1.777)

motor-vehicle deaths per 100 million vehicle miles. Comparing the fatality

rate data in Table 1.16 with this interval, we see that none of the states have a

motor-vehicle death rate that falls outside this interval. Hence for these data,

we actually have 100% (50 out of 50) of the observations in the collection

falling inside the interval
�
�x� 2s; �xþ 2s

�
.

For data sets for which the mean does not provide a satisfactory measure

of the center of the observations, the standard deviation will also not be a

good measure of the variability in the data. We can still use distances from a

measure of the center of the data to assess variability, but we would need to

use a more robust measure of the center, such as the median or a trimmed

mean, as well as something other than the squares of the deviations, since

squaring compounds the effects of any outliers. For more on this issue, see

Exercise 1.A.2.
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Summarizing Quantitative Data Collections Through Percentiles

and Percentages There are two natural ways to describe a data collection in

terms of the ordered values of the observations. Both are based on the concept

of fenceposts.

Definition 1.15 A supply of fenceposts is a group of numerical values

that divide a data collection into categories (i.e., partition the data collec-

tion). Fenceposts can be calculated from the data values themselves

(variable fenceposts) or purposely selected before the data are collected

(fixed fenceposts).

Although the two data summary methods we now describe are somewhat

similar in their approach, one uses variable fenceposts and the other uses

fixed fenceposts. Consequently, they lead to different types of information

summaries of the data.

Measuring Position and Relative Positions: Percentiles, Standardized

Scores, and Boxplots One approach to summarizing a data collection

involves partitioning the data based only on the observations themselves.

Previously we used percentiles of the data to define the interquartile range

IQR (1.6) as a robust measure of variability in the data. However, when

viewed as a package, percentiles provide more summary information about

the data than just what is contained in IQR. In fact, a listing of the 10th,

20th, . . ., 80th, and 90th percentiles (known, collectively, as the nine sample

deciles) provides us with a good sense as to how the data are distributed over

the range of possible values for the variable being measured. We know that

approximately 10% of the observations in the data collection fall in each of the

ten categories created by these nine decile fenceposts. With this approach we

are organizing the data by selecting the fenceposts in such a way that the

number of observations between them is predetermined and the fenceposts
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themselves (i. e., the deciles) are the variables that provide us the summary

information about the data collection; hence, the designation ‘variable

fenceposts’ for this method of data summarization.

Example 1.11. Motor-Vehicle Fatalities in 2012 (Continuation of Example

1.4) The nine deciles for the 50 statewide motor-vehicle fatality rates in

Table 1.16 correspond to values such that there are five of the observed

statewide death rates between each adjacent pair of the deciles, as well as

five death rates below the first decile and five above the ninth decile. Ordering

the 50 statewide rates, we obtain the following ten partitioned sets of five

observations each:

0.62 0.91 1.07 1.25 1.46
0.69 0.91 1.10 1.27 1.48
0.75 0.96 1.11 1.32 1.51
0.78 0.99 1.13 1.32 1.54
0.79 0.99 1.16 1.33 1.58

0.82 1.00 1.16 1.33 1.65
0.82 1.01 1.21 1.37 1.69
0.84 1.01 1.23 1.42 1.72
0.88 1.04 1.23 1.43 1.76
0.89 1.07 1.24 1.43 1.76.

Using these ordered values, we see that the nine deciles are:

d1 ¼ 0:79þ 0:82ð Þ
2

¼ 0:805, d2 ¼ 0:89þ 0:91ð Þ
2

¼ 0:90, d3 ¼ 0:99þ 1:00ð Þ
2

¼ 0:995,

d4 ¼ 1:07þ 1:07ð Þ
2

¼ 1:07, d5 ¼ 1:16þ 1:16ð Þ
2

¼ 1:16, d6 ¼ 1:24þ 1:25ð Þ
2

¼ 1:245,

d7 ¼ 1:33þ 1:33ð Þ
2

¼ 1:33, d8 ¼ 1:43þ 1:46ð Þ
2

¼ 1:445, d9 ¼ 1:58þ 1:65ð Þ
2

¼ 1:615:

Including the minimum and maximum values, 0.62 and 1.76, respectively,

with these nine deciles provides an informative summary of the statewide

motor-vehicle fatality rates in 2012.
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For many data collections, even fewer fenceposts will be needed to paint

an adequate picture of the configuration of the observations.

Definition 1.16 It is often the case that important features of a data

collection can be visualized through the summary provided by the

minimum value x(1), the first quartile Q1, the median ~x, the third quartile

Q3, and the maximum value x(n).This set of five fenceposts x(1) ,Q1, ~x, Q3,

and x(n) is commonly known as the five-number summary of a data

collection.

The R function summaryð Þ can be used to provide the five-number

summary for a data collection. Such R output for the motor-vehicle death

rate data in Table 1.16 was presented in Example 1.10. From that display, we

see that the five-number summary for these data is given by x(1) ¼ 0.62,

Q1 ¼ 0.9675, ~x ¼ 1.16, Q3 ¼ 1.408, and x(50) ¼ 1.76.

A five-number summary is particularly useful for constructing a revealing

graph called a boxplot. The center (as measured by the median), interior

variability, and range of the values in the data collection are clearly apparent

from such a boxplot representation.

Definition 1.17 The boxplot is a visual display of a five-number sum-

mary (x(1), Q1, ~x, Q3, and x(n)) of a data collection and is constructed as

follows:

1. The upper and lower ends of the box (called hinges) are supplied by

the first and third quartiles Q1 and Q3, respectively. Thus, the

length of the box is equal to the interquartile range IQR ¼ Q3 – Q1.

2. The median, ~x, is indicated by a line within the box provided by the

two quartiles.
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Definition 1.17 (continued)

3. Extend two lines (called whiskers) outside the box to the minimum,

x(1), and maximum, x(n).

We illustrate the details involved in the construction of a boxplot with the

data collection ( 3, 4, 14, �4, 9, �5, 10, 30, �15, 8, 3, 34 ). With n ¼ 12, the

median for this data collection is ~x ¼ 6, while the first and third quartiles are

Q1 ¼ �.5 and Q3 ¼ 12, respectively. Combining these three values with the

minimum x(1) ¼ �15 and maximum x(12) ¼ 34, we see that the five-number

summary for this data collection consists of the five fenceposts x(1) ¼ �15, Q1

¼ �.5, ~x ¼ 6, Q3 ¼ 12, and x(12) ¼ 34. Following the guidelines in Definition

1.17, the boxplot for this data collection is then given by:

10
20

D
at

a

0
-1

0
30

The centerline across the box is at the median, ~x ¼ 6, and the lower and

upper hinges (ends) of the box are at the first and third quartiles,Q1¼�.5 and

Q3 ¼ 12, respectively. The whiskers then extend from the box itself to the

minimum, x(1) ¼ �15, and maximum, x(12) ¼ 34, values.

Example 1.12. Cost of Engineering Drawings (Continuation of Example

1.3) In Examples 1.5 and 1.8 we obtained the values of the median, Q1 ¼
11 andQ3¼ 26, for the total engineering drawing hours presented in Table 1.3

for the 96 pieces of machinery/mechanical devices. Adding the minimum, x(1)
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¼ 3, and maximum, x(96) ¼ 100, values provides the five-point summary for

the data collection. A boxplot representation for this data collection (obtained

using the R function boxplotð Þ) is presented in Figure 1.10. Notice that the

R boxplot does not actually extend the whiskers to the smallest and largest

observations in the data collection, as we recommend in Definition 1.17.

Instead the R version of a boxplot extends the whiskers only to the largest

and smallest observations within the region defined by the lower limit Q1 –

1.5 IQR and the upper limit Q3 + 1.5 IQR. For this total hours data collection,

Q1 – 1.5 IQR ¼ 11 – 1.5(26 – 11) ¼ -11.5 and Q3 + 1.5 IQR ¼ 26 + 1.5(26 – 11) ¼
48.5. Thus, while the lower whisker in the R boxplot does, in fact, extend to

the smallest observation, 3, in the data collection, the upper whisker extends

only to 48, the largest observation in the data collection that is smaller than

48.5. The outliers, in this case, the seven observations larger than 48.5 (56, 60,

68, 68, 84, 92, and 100), are indicated by circles. (This example points out how

important it is for you to be very familiar with your particular statistical

software, especially with respect to graphical representations of a data collec-

tion, since many other programs will omit outliers by default.)

Several things are evident from this version of a boxplot of the total

engineering drawing hours. The center of the data collection is at the median

Fig. 1.10 Boxplot for the total engineering drawing hours data
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value, 14, and there is not a lot of variability in the middle portion of the data.

The hinges are located at the quartiles, 11 and 26. However, the boxplot also

provides a clear picture that the data collection is skewed to the right, since

the upper whisker is much longer than the lower whisker. This indicates

greater variability among those drawings with larger total hours than

among those with smaller total hours, in complete agreement with the

impression gathered by looking at the data collection itself.

Measuring Categorical Distribution of Quantitative Data: Fixed

Fenceposts Another type of summary that can be used to describe a slightly

different aspect of a data configuration is constructed by using fixed,

prespecified fenceposts to divide the data into subsets of interest. The collec-

tion of fixed fencepost values used for this division of the data can vary from

simply an equally spaced division of the expected range of measurements

(similar to the approach taken in the construction of a histogram for graphical

display of the data) to a more customized subset of potential data values that

have particular meaning for a study.

Letting f1, . . ., fk denote such a collection of k fixed fencepost values, the

data are then summarized by recording the numbers (or percentages) of

observations falling between each of these fenceposts, as well as the numbers

(or percentages) below f1 and above fk. For convention, we choose to include

values at the boundaries of these divisions (i.e., “on” the fenceposts) in the

counts for the lower of the two involved intervals.

Example 1.13. Cost of Engineering Drawings (Continuation of Example

1.3) A different picture of the engineering drawing hours data in Table 1.3

can be obtained by using the same number of fixed fenceposts equally spaced

along the observed range of total hours from 0 to 100. Taking k¼ 9 and letting

fi ¼ 10 � i, for i ¼ 1, . . ., 9, we record the following numbers (percentages) of
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engineering drawings in the data collection with total hours either no more

than 10, greater than 90, or between two of these fixed fenceposts:

Less than or equal to 10 h 21 (21.9%),
Greater than 10 but not more than 20 h 43 (44.8%),
Greater than 20 but not more than 30 h 12 (12.5%),
Greater than 30 but not more than 40 h 8 (8.3%),
Greater than 40 but not more than 50 h 5 (5.2%),
Greater than 50 but not more than 60 h 2 (2.1%),
Greater than 60 but not more than 70 h 2 (2.1%),
Greater than 70 but not more than 80 h 0 (0%),
Greater than 80 but not more than 90 h 1 (1.0%),
Greater than 90 h 2 (2.1%).

With these nine fixed fenceposts, we get a very clear picture that the bulk

of the drawings in the collection required between 10 and 20 total hours to

complete and that the median for the data is in this range as well. The right-

skewness of the data is also evident in the strongly decreasing trend of the

category percentages once past the 20-h boundary. Finally, since there are

only three (3.1%) of the engineering drawings with total hours belonging to

the final two categories created by these evenly spaced fenceposts, the case is

strengthened for designation of these drawings as outliers for this data

collection.

It is important to note that we have a lot of flexibility in the choice of

these fixed fenceposts, both in their number and in where they are placed. For

some studies, only one fencepost might be adequate to differentiate between

‘large’ and ‘small’ values or two fenceposts to describe ‘minimal’, ‘moderate’,

and ‘extensive’ responses. Also, there is certainly no requirement to use

fixed fenceposts that are equally spaced. For example, to summarize the

2014 American League baseball salary data in the dataset american_lea-

gue_salary_2014, any set of fixed fenceposts would quite naturally include

any preset boundaries established by union contracts with the major league
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teams, such as minimum salaries for starting and relief pitchers, for players in

the starting lineups, for utility players, etc.

Interpretations of the Mean and Standard Deviation: Standardized

Z-Scores The mean and standard deviation for a data collection can also be

used to provide information about a particular observation’s relative place-

ment among the rest of the data.

Definition 1.18 Let �x and s be the mean and standard deviation for a

data collection. Then the standardized z-score for a particular observa-

tion x in the data set is

z-score for observation x ¼ x� �x
s

: ð1:8Þ

The z-score describes the relative location of the observation x within the

data collection by stating how many standard deviations it is away from the

mean. The sign of the z-score indicates the direction from the mean – positive

for those observations which are greater than the mean and negative for those

which are less than the mean. In addition, the larger the magnitude of the z-

score the further it is from the center (0).

Example 1.15. Motor-Vehicle Deaths in 2012 In Examples 1.4 and 1.10 we

obtained the values �x ¼ 1.181 and s ¼ 0.298 to be the mean and standard

deviation for the statewide motor-vehicle death rates for 2012, as listed in

Table 1.16. The z-scores for the states of Massachusetts and Mississippi, for

example, are then

z-scoreMassachusetts ¼ 0:62� 1:181
0:298

¼ �1:88

and
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z-scoreMississippi ¼ 1:51� 1:181
0:298

¼ 1:10,

respectively. Thus Massachusetts’ motor-vehicle death rate is a good deal

better (i. e., lower) than the average of the 50 states, while the motor-vehicle

death rate in Mississippi is somewhat worse (i. e., higher) than this average.

Effect of Changing Units of Measurement on Summary Measures You

have just finished preparing a variety of summary measures and graphs for

the total drawing hours data in Table 1.3 when your boss tells you that you

must convert all of your calculations to minutes and provide a new set of

summary measures and graphs by the end of the day! Before you start

thinking badly of your boss and dive headfirst into the entire process once

again, you need to recall that the conversion of hours to minutes is simply a

linear transformation of the form y ¼ a + bx. For the data in Table 1.3, if

x represents the total hours required for a drawing and y represents the total

minutes required, then y ¼ 60x, which is a linear transformation with a ¼
0 and b ¼ 60. Moreover, fortunately for you, the effect of such linear

transformations on most summary measures and associated graphs is

completely determined by the form of the transformation and can be

accounted for without redoing all of the calculations.

1.2.1 Effects of a Linear Transformation

Let x1, . . ., xn be a data collection and consider the linear transformation yi ¼
a + bxi, i ¼ 1, . . ., n. This transformation scales every data value by a factor of

b and then shifts it by a units. Then we have the following relationship

between statistical summary measures and graphs associated with the two

data sets (x1, . . ., xn) and (y1, . . ., yn):
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1. The basic configuration or shape of the transformed data collection (y1,

. . ., yn) will be the same as for the original data collection (x1, . . ., xn);

that is, if the configuration of the x’s is roughly symmetric (skewed to

the right, skewed to the left), then so will be the configuration of the y’s.

2. Every measure of the center considered in this text (mean, median,

trimmed mean, and all percentiles) is changed by applying the linear

transformation to the appropriate statistic for the (x1, . . ., xn) data. For

example, the median of (y1, . . ., yn) becomes ~y ¼ aþ b~x.

3. Measures of spread or variability are affected differently by linear

transformations than are measures of the center. For example, the

interquartile range is such that IQRy ¼|b| � IQRx, which is the case

with most measures of spread, including the standard deviation, s, and

the range. (Note, however, that the variance s2 is transformed by multi-

plication of b2, rather than |b|, since it involves the squares of the

deviations from the mean.) The fact that measures of spread are unaf-

fected by changes in location (addition of constants) should agree

completely with your intuition.

Based on this information, it is clear that you can easily comply with the

last minute request by your boss. Multiplication of every location and spread

or variability measure that you have already computed in hours by the factor

60 will immediately update your results to the new minute units. In addition,

other information about the data set will carry over as well, including the

general shape of the data configuration (symmetric or either right-skewed or

left-skewed) and which of the observations are unusual or outliers.

Assessing Symmetry of a Data Collection: Triples and Percentile

of the Mean One of the issues that is very important for the selection of

appropriate statistics to summarize and analyze a data collection is whether

or not the configuration of the data is generally symmetric. Earlier in this
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chapter we noted that a single observation provides some information about

the center of data collection, but that it takes at least two observations to

provide information about the variability in the data. How many

observations are required to provide information about the symmetry of a

data collection? If you answered three, you are correct.

Definition 1.19 Take any three data values from a data collection and

order this triple of data values from smallest to largest. If the middle

ordered item is closer to the smallest than to the largest, the triple is said

to be a right triple. If the middle ordered item is closer to the largest, the

triple is said to be a left triple. If the middle ordered value is exactly

halfway between the other two, the triple is neither right nor left.

To measure the symmetry of a data set, we take all possible triples and

classify them as right, left, or neither. A preponderance of right triples in a

data collection is indicative of right-skewness, while a preponderance of left

triples is indicative of left-skewness. If the data collection is roughly symmet-

rically configured, we would expect about an equal number of right and left

triples.

Even for a small number of observations, the total number of triples can be

quite large, making this evaluation of symmetry for a data collection compu-

tationally intensive. You may have learned in a previous math course that

there are n n�1ð Þ n�2ð Þ
6 ways of choosing three items from a collection of n items. It

follows that for a data collection containing n ¼ 10 observations, there are 10

(9)(8)/6 ¼ 120 triples to consider. An alternative method for determining

whether a triple is a right or left triple involves a comparison between the

average of the three observations and their median. If �x and ~x denote the mean

and median, respectively, for a triple of observations (x1, x2, x3), then that

triple will be a right or left triple depending onwhether �x is greater than or less
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than ~x , respectively. (A triple for which the mean and median are equal is

neither a right nor a left triple.)

Example 1.16. Where to Put the Microwave? The microwave oven is a

virtual given in a modern kitchen, but where should it be placed in relation

to other kitchen appliances, equipment, and work centers to optimize both

convenience and efficiency? Yust (1982) reported on a study conducted in the

Home Equipment Laboratory at the University of Minnesota that was

designed to address this question. Twenty-four microwave oven owners

(who did the majority of the meal preparations in their homes) were ran-

domly selected to participate in the study. L-shaped laboratory kitchens were

equipped with both range centers and mix centers and one of the following

four microwave oven configurations:

(i) No microwave oven

(ii) Microwave oven located adjacent to the range center

(iii) Microwave oven located adjacent to the mix center

(iv) Microwave oven separated from both the mix and range centers.

Groups of six subjects were assigned to each of these experimental

arrangements and asked to prepare the same complete meal. Two research

assistants recorded the numbers of trips between work centers and the times

spent at the various work centers for the 24 subjects participating in the study.

The recorded numbers of trips between work centers for the six subjects

working with the microwave separated from both the mix center and the

range center are as follows:

x1 ¼ 91, x2 ¼ 99, x3 ¼ 114, x4 ¼ 141, x5 ¼ 171, x6 ¼ 179:

To get some idea about the symmetrical nature of this small data set, we

list the 6(5)(4)/6 ¼ 20 triples for these data, along with the mean and median

1.2 Numerically Summarizing One-Variable Data Collections 81



for each triple and whether it is a right or left triple. Since there are 12 right

triples and only 8 left triples, we have some indication that there is a slight

skewness toward larger numbers of trips (i., e., to the right) for this set of data.

Does this agree with a visual plot of the six data values?

Triple Mean Median Right or left triple

(91, 99, 114) 101.33 99 Right
(91, 99, 141) 110.33 99 Right
(91, 99, 171) 120.33 99 Right
(91, 99, 179) 123 99 Right
(91, 114, 141) 115.33 114 Right
(91, 114, 171) 125.33 114 Right
(91, 114, 179) 128 114 Right
(91, 141, 171) 134.33 141 Left
(91, 141, 179) 137 141 Left
(91, 171, 179) 147 171 Left
(99, 114, 141) 118 114 Right
(99, 114, 171) 128 114 Right
(99, 114, 179) 130.67 114 Right
(99, 141, 171) 137 141 Left
(99, 141, 179) 139.67 141 Left
(99, 171, 179) 149.67 171 Left
(114, 141, 171) 142 141 Right
(114, 141, 179) 144.67 141 Right
(114, 171, 179) 154.67 171 Left
(141, 171, 179) 163.67 171 Left

Another quick indication of the symmetry or asymmetry of a collection of

data can be provided by directly comparing the mean and the median of the

collection. If the collection is skewed to the right, then the mean will be larger

than the median, while the converse is true if the data are skewed to the left. If

the data collection is roughly symmetric, then we would expect the median

and mean to be relatively close in value. For the total engineering drawing

hours of Table 1.3, for example, we recall from Example 1.5 that �x¼ 22.2 and

~x ¼ 14, which is indicative of skewness to the right. This feature of the total

engineering drawing hours data can also be detected by examining the set of
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data triples for the collection. However, for these data each of 96 95ð Þ 94ð Þ
6 ¼

142,880 triples must be categorized as right, left, or neither. Although this

would be a formidable task to complete by hand or even calculator, an

R program can be used to easily obtain and classify these triples. For the

total engineering drawing hours data collection you are asked in Exercise 1.

B.6 to use this R program to show that the breakdown of the 142,880 triples

is given by:

98,269 right triples

37,832 left triples

6779 triples that are neither right nor left.

This agrees with the previous evidence for skewness to the right provided by

comparison of the mean and median of the data collection.

Finally we point out one additional statistic that provides information

about the symmetry/asymmetry of a data collection. If a data collection is

roughly symmetric, how many observations in the collection would you

expect to be greater than the mean of the collection? Since the mean and

median of a roughly symmetric data collection will be relatively close in

value, then for such a set of data we should expect about one-half of the

observations to be greater than the mean. What do you think would be the

case for right-skewed or left-skewed data collections?

As an example, consider once again the data collection of total engineering

drawing hours. Returning to Table 1.3, we see that only 31 of the

96 observations are greater than the mean �x ¼ 22:2. Does this agree with

your visual feel for these data provided by the dotplot and histogram in

Figs. 1.3 and 1.5, respectively?
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Section 1.2 Practice Exercises

1.2.1. Heights of Classmates. Consider the data collection of heights for all of

your classmates (including you) in this course. Which of the following are

statistics associated with this data collection?

(a) the tallest person in the class

(b) the average height for the students in the class

(c) the height of the shortest person in the class

(d) the number of persons in the class

(e) the building and room number where the class is held

(f) the number of students in the class who are over six feet tall

(g) the difference in the heights of the tallest and the shortest persons in

the class

(h) the median grade point average for the students in this class

(i) the number of students in the class who are shorter than you

(j) the name of the class instructor

(k) the number of students who wore jeans to class today.

1.2.2. Shooting Free Throws. You shoot 65 free throws. Consider the data

collection that simply records whether you make or miss each of these shots.

Which of the following are statistics associated with this data collection?

(a) the total number of free throws that you made

(b) the shot on which you made your first free throw

(c) the number of misses for which you at least hit the rim

(d) the total number of free throws that you missed

(e) the number of free throws you shot left-handed

(f) the number of shots for which your foot was over the free-throw line

(g) the number of free throws you missed before you had made ten of

them

(h) the percentage of made free throws

(i) the average amount of time between free throw shots
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(j) the number of your last ten shots that you make

(k) the largest number of consecutively made free throws.

1.2.3. Airline Passenger Complaints. The U.S. Department of Transportation

(2014) provided data on the numbers of complaints per 100,000 passengers in

December 2013 for the following U.S. airlines:

Airline
Number of complaints
per 100,000 passengers

Airtran 0.89
Alaska 0.60
American 1.99
American Eagle 1.83
Delta 0.53
Frontier 3.29
Hawaiian 0.61
JetBlue 0.63
Skywest 0.85
Southwest 0.36
United 1.89
US Airways 1.27

(a) Find the mean �x and median ~x of the airline complaint rates.

(b) What is the range R of the airline complaint rates?

(c) Describe any unusual features of this data collection.

1.2.4. Consider the data collection {1, 2, 6, 8, 9, 20, 24}.

(a) Find the mean �x and median ~x for this data collection.

(b) What happens to the mean and median if you add another observa-

tion 12 to the data collection? Justify your answers.

(c) What additional observation would have to be added to the original

data collection in order to make the mean of the new data collection

equal to 12? Justify your answer.
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(d) Could one observation be added to the original data collection so that

the median of the new data collection is equal to 12? equal to 8.25?

Justify your answers.

(e) Which of the mean or median would be most affected by the addition

of another observation 100 to the data collection? Justify your answer.

1.2.5. Consider the data collection {1, 2, 6, 8, 9, 20, 24}.

(a) Find the range R and standard deviation s for this data collection.

(b) What happens to the range and standard deviation if you add another

observation 7 to the data collection? Justify your answers.

(c) What happens to the range and standard deviation if you add another

observation 18? Justify your answers

(d) Could one observation be added to the original data collection so that

the range of the new data collection is equal to 20? equal to 25? Justify

your answers.

(e) Give an example of one observation value that could be added to the

original data collection so that the range is affected more by its

addition than is the standard deviation.

1.2.6. Airline Passenger Complaints. Consider the December 2013 airline com-

plaint rates given in Exercise 1.2.3. Compute the value of the l-th trimmed

mean �x1 and compare it with the values of the mean �x and median ~x obtained

in Exercise 1.2.3. What do these values suggest about the data collection?

1.2.7. Gender and Math SAT Scores. Consider the math SAT score data

collections in Table 1.15.

(a) Find the mean �xandmedian ~x for the male students’math SAT scores.

(b) Find the 10-th trimmed mean �x10 for the female students’ math SAT

scores.

(c) What are the separate values of the ranges for the male and female

math SAT scores?
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(d) Find the four quartiles and the interquartile range for the male

students’ math SAT scores.

(e) Find the standard deviation of the math SAT scores for the female

students.

1.2.8. Consider the two data collections:

1; 3; 5; 7; 9; 11f g and 9; 11; 13; 15; 17; 19f g:

Without formal calculation, which of the two data collections do you think

will have the larger mean? Which do you think will have the larger standard

deviation? Now formally justify your conjectures.

1.2.9. Firearms in the Home. Consider the state-by-state percentages of

households with firearms in or around their homes, as given in Table 1.9.

(a) Find the five-number summary for this data collection.

(b) Use an appropriate software package to make a boxplot representa-

tion for the data collection.

(c) What important features of the data collection are observable from

the five-number summary and boxplot?

1.2.10. Bird Variety. Consider the numbers of bird species data collection

presented in Table 1.7.

(a) Find the mean �x and median ~x for these data.

(b) Find the variance s2 and standard deviation s for these data.

1.2.11. Bumped Airline Passengers. The U.S. Department of Transportation

(2014) provided data on the numbers of passengers bumped (i. e., involun-

tarily denied reserved seats on overbooked planes) during the calendar years

2012 and 2013 for the following major U.S. airlines:
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Airline Number of passengers bumped

2012 2013

Airtran Airways 2060 2302
Alaska 1103 714
American 5571 3233
American Eagle 1945 1923
Delta 5342 6070
Frontier 808 1272
Hawaiian 168 172
JetBlue 39 19
Skywest 5990 6768
Southwest 9490 12,221
United 14,394 9015
US Airways 3755 3531

(a) Find the five-number summaries separately for the 2012 and

2013 data.

(b) Use appropriate software to make separate boxplots for the 2012 and

2013 data.

(c) Compute the value of the 1-th trimmed mean �x1 and compare it with

the values of the mean �x and median ~x for the 2013 numbers of

bumped passengers. Does this comparison identify any important

features of the 2013 data collection?

(d) Which airlines have improved their reservation operations from 2012

to 2013? Which have worsened? Justify your conclusions with appro-

priate statistics.

(e) Do you think your conclusions in part (d) might change if the data

were percentages of passengers bumped, rather than the numbers of

passengers bumped? Why or why not? (See Exercise 1.2.27.)
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1.2.12. Bumped Airline Passengers. Consider the data presented in Exercise

1.2.11 for the numbers of bumped passengers in 2012 and 2013 for the 12 listed

airlines.

(a) Find the mean change from 2012 to 2013 in the number of bumped

passengers for the twelve airlines.

(b) Find the variance and standard deviation for the changes in the

number of bumped passengers from 2012 to 2013 for the twelve

airlines.

(c) Repeat parts (a) and (b) of this exercise without the United Airlines

data. Comment on the reason for the observed differences between

the means, variances, and standard deviations with and without the

inclusion of United Airlines.

1.2.13. Best Paid University Professors. Which college/university professors

are paid the most? Average 2011–2012 annual salaries (expressed in

U.S. dollars) for academic employment as a new Assistant Professor, reported

by the College and University Professional Association for Human Resources

(2012), are presented in Table 1.19 for fourteen professional categories.

(a) Find the mean �x and median ~x for the average 2011–2012 academic

salary for new assistant professors for the twenty-four disciplines.

(b) Find the variance s2 and standard deviation s for the average

2011–2012 academic salary for new assistant professors for the

24 disciplines.

(c) What are the standardized z-scores for Engineering and Mathematics

and Statistics?

(d) What are the standardized z-scores for Legal Professions and Visual

and Performing Arts?

(e) Repeat parts (a)–(d) with the twenty-two professional categories

obtained by eliminating the two categories of Business/
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Management/Marketing and Legal Professions. Compare and con-

trast the results with your answers to parts (a)–(d).

1.2.14. Most Employable Doctorates. Which professional disciplines provide

the best opportunities for employment for graduates with Ph. D. degrees? The

data in Table 1.20 are the estimated percentage unemployed as of February

2013 for Ph. D. graduates in eight broad professional discipline categories, as

reported by the National Science Foundation (2014).

Table 1.19 Average annual salaries (U.S. dollars) for academic employ-
ment in 2011–2012 as a new assistant professor in twenty-four broad pro-
fessional categories

Discipline Average annual salary

Agriculture Related Sciences 68,999
Architecture and Related Services 63,386
Biological and Biomedical Sciences 57,249
Business, Management, and Marketing 98,212
Communication, Journalism and Related Programs 54,415
Computer and Information Sciences 74,563
Education 55,618
Engineering 78,650
English Language and Literature 52,405
Ethnic, Cultural, and Gender Studies 61,310
Family and Consumer Sciences 61,198
Foreign Languages, Literatures, and Linguistics 53,457
Health Professions 66,049
History 53,425
Legal Professions 96,955
Library Science 56,551
Mathematics and Statistics 58,266
Natural Resources and Conservation 62,926
Parks, Recreation, Leisure, and Fitness Studies 55,497
Philosophy and Religious Studies 54,340
Physical Sciences 58,786
Psychology 56,195
Social Sciences 60,240
Visual and Performing Arts 52,241

Source: College and University Professional Association for Human Resources
(2012)
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(a) Find the mean �x and median ~x for the percentage unemployed Ph. D.

graduates in February 2013 across the eight categories.

(b) Find the variance s2 and standard deviation s for the percentage

unemployed Ph. D. graduates in February 2013 across the eight

categories.

(c) What are the standardized z-scores for Physical Sciences and for

Biological/Agricultural/Environmental Life Sciences?

(d) What are the standardized z-scores for Computer/Information

Sciences and for Mathematics/Statistics?

1.2.15. A data set contains four observations, x1¼ 30, x2¼ 70, x3¼ 10, and x4

¼ 90. Find the values of x(1), x(2), x(3), and x(4).

1.2.16. A data collection (x1, . . ., xn) contains n observations.

(a) Give a formula for the median, ~x, of this data collection if n ¼ 77.

(b) Give a formula for the median, ~x, of this data collection if n ¼ 100.

1.2.17. Engineering Drawing Hours. Consider the total engineering drawing

hours data displayed in Table 1.3. In Examples 1.5 and 1.8 we found themean,

Table 1.20 Percentage unemployed as of February 2013 for Ph. D.
graduates in eight broad professional discipline categories

Discipline category
Percentage
unemployed

Biological/Agricultural/Environmental Life Sciences 2.2
Computer/Information Sciences 1.8
Mathematics/Statistics 1.2
Physical Sciences 2.7
Psychology 1.6
Social Sciences 1.9
Engineering 1.9
Health 2.0

Source: National Science Foundation (2014).
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median, and interquartile range for these data to be �x ¼ 22:2 h, ~x ¼ 14 h, and

IQR ¼ 15 h, respectively.

(a) If each of the 96 engineering drawing times is converted from hours to

minutes, what will the corresponding values of the mean, median,

and interquartile range be in minutes?

(b) If each of the 96 engineering drawing times is converted from hours to

days, what will the corresponding values of the mean, median, and

interquartile range be in days?

1.2.18. Left and Right Triples. Compute the numbers of left and right triples

for the data collection { 1, 2, 3, 12, 15}. What do the triples indicate about

symmetry versus skewness for the data collection?

1.2.19. Bumped Airline Passengers. Consider the data on numbers of

passengers bumped (i. e., involuntarily denied reserved seats on overbooked

planes) during the calendar year 2013, as given in Exercise 1.2.11 for twelve

major U.S. airlines. Compute the numbers of left and right triples for these

data. What do these numbers tell you about the symmetry/asymmetry of the

data collection?

1.2.20. Bumped Airline Passengers. Consider the data on numbers of

passengers bumped (i. e., involuntarily denied reserved seats on overbooked

planes) during the calendar year 2013, as given in Exercise 1.2.11 for twelve

major U.S. airlines. Compute the mean number of passengers bumped for

these twelve airlines. How many observations in the data collection are less

than this mean? What does this tell you about the symmetry/asymmetry of

the data collection?

1.2.21. Firearms in the Home. Consider the state-by-state percentages of

households with firearms in or around their homes, as given in Table 1.9.

Find the mean for this data collection. How many observations in the data
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collection are less than this mean? What does this tell you about the symme-

try/asymmetry of the data collection?

1.2.22. Male Math SAT Scores. Consider the data collection of male math SAT

scores given in Table 1.15.

(a) Compute the nine deciles for this data collection.

(b) Select nine reasonable fixed fenceposts and summarize this data

collection by recording the percentages of observations falling

between each of the fenceposts.

1.2.23. Firearms in the Home. Consider the state-by-state percentages of

households with firearms in or around their homes, as given in Table 1.9.

(a) Compute the nine deciles for this data collection.

(b) Select nine reasonable fixed fenceposts and summarize this data

collection by recording the percentages of observations falling

between each of the fenceposts.

1.2.24. Residents in Poverty by States. Use the five fixed fenceposts f1 ¼
250,000, f2 ¼ 500,000, f3 ¼ 750,000, f4 ¼ 1,500,000, and f5 ¼ 3,000,000 to

summarize the 2013 Census data in Table 1.4 on the number of individuals

at poverty level in each of the fifty states.

1.2.25. Women and Poverty. Use eight fixed fenceposts of your choosing to

summarize the 2010 Census data in Table 1.5 on percentage poverty rates for

women in each of the fifty states.

1.2.26. Bird Variety. Consider the numbers of bird species data collection

presented in Table 1.7.

(a) Find the five-number summary for this data collection.

(b) Use an appropriate software package to make a boxplot representa-

tion for the data collection.
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1.2.27. Which Airline Carries the Most Passengers? The U.S. Department of

Transportation (2014) provided data on the total numbers of passengers

carried during the calendar years 2012 and 2013 for the following major

U.S. airlines:

Airline Number of passengers carried

2012 2013

Airtran Airways 21,744,193 17,832,245
Alaska 17,375,336 18,517,953
American 75,883,719 76,062,625
American Eagle 18,115,456 16,939,092
Delta 103,957,050 106,783,155
Frontier 10,324,099 10,361,896
Hawaiian 9,476,251 9,928,830
JetBlue 26,915,983 28,166,771
Skywest 25,867,287 26,518,312
Southwest 112,531,171 115,645,836
United 78,728,448 77,212,471
US Airways 55,237,069 57,834,693

(a) Find the five-number summaries separately for the 2012 and

2013 data.

(b) Use appropriate software to make separate boxplots for the 2012 and

2013 data.

(c) Compute the value of the 1-th trimmed mean �x1 and compare it with

the values of the mean �x and median ~x for the 2013 numbers of

passengers carried. Does this comparison identify any important

features of the 2013 data collection?

(d) Which airlines have improved the scope of their operations from 2012

to 2013? Which have worsened? Justify your conclusions with appro-

priate statistics.

1.2.28. Airline Passengers—Carried versus Bumped. Consider the number of

passengers carried and the number of bumped passengers for the major

U.S. airlines, as given in Exercises 1.2.27 and 1.2.11, respectively. Create a
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new data collection for these U.S. airlines corresponding to the number of

passengers bumped per 10,000 passengers carried for each of the years 2012

and 2013. Do the same analyses required in Exercise 1.2.11 for this new data

collection. Compare and contrast your results with those obtained in Exercise

1.2.11 for the number of passengers bumped.

1.3 Comparing One-Variable Data Collections

In the previous two sections we emphasized various ways to describe and

summarize a single one-variable data collection. Now we turn to the problem

of comparison of two such data collections. This type of problem is very

common in statistics as we attempt to use observations to decide if there are

differences between two different groups or treatments or modes of

operation.

In earlier sections of this chapter we presented a number of graphical and

statistical methods for displaying and summarizing a single, quantitative data

collection. It is then natural to compare two such quantitative data collections

by looking at the graphical and statistical summaries for each collection.

For example, in Table 1.16 we presented the motor-vehicle fatality rates

per 100 million vehicle miles traveled for each state during the calendar year

2012 and we illustrated the computation of several measures of center and

variability for this data collection. Now let us see if we can find regional

differences in death rates between the eastern and western halves of the

country. We split the data into two collections, one for the eastern states

and one for the western states, calling the eastern observations x and the

western observations y.

We might want to know which region contains the states with the larger

fatality rates per 100 million vehicle miles traveled. This is a question about

the centers of the two data collections, so we will compute separate measures

of center for each region and compare them. For example, if the difference in

means, �y� �x, is positive, this will suggest that the western region contains the
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states with larger death rates. We could also look at the difference in medians,

~y � ~x, or the difference in trimmed means, �yd � �xd.

On the other hand, we might be interested in finding out which region has

greater spread among its states’ fatality rates. This is a question about

variability, so we will compute statistics such as the range, interquartile

range, or standard deviation for each region. Since measures of variability

are affected by multiplicative (scale) changes in the data but not by changes in

location (shift), to assess possible differences in variability between two data

collections the natural comparisons are obtained by taking ratios rather than

differences in the separate measures of variability. Thus we will look at ratios

like Ry/Rx, IQRy/IQRx, or sy/sx.

Example 1.17. Regional Motor-Vehicle Fatality Rates (Extension

of Example 1.4) In order to see if there are regional differences in these

fatality rates, we divide the 50 states into two subcollections, corresponding

to whether a state is east or west of the Mississippi River. We present the state

fatality rates categorized in this fashion in Table 1.21. We can also create these

two subcollections using the following R commands.

> east_states <- motor_vehicle_death_rate_2012[motor_vehicle_death_rate
_2012$Region == "East",]

> west_states <- motor_vehicle_death_rate_2012[motor_vehicle_death_rate
_2012$Region == "West",]

With this division, the eastern group consists of m ¼ 26 states, while there

are n ¼ 24 states in the western group. As noted previously, we let x and

y correspond to the eastern and western states, respectively. Computing the

means, medians, ranges, interquartile ranges, and standard deviations for the

two groups, we obtain:

Eastern States: �x¼ 1.126, ~x¼ 1.055, Rx ¼ 1.14, IQRx ¼ 0.398, and sx ¼ 0.303

Western States: �y ¼ 1.240, ~y ¼ 1.240, Ry ¼ 1.030, IQRy ¼ 0.383, and sy ¼
0.287.
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It is clear from these summary measures that there are, in fact, distinct

differences between the motor-vehicle fatality rates in 2012 for these western

and eastern groupings of states. The differences in mean and median death

rates are �y – �x ¼ 1.240 – 1.126 ¼ 0.114 and ~y – ~x ¼ 1.240 – 1.055 ¼ 0.185,

respectively, fatalities per 100 million vehicle miles, which indicates higher

Table 1.21 Total motor-vehicle fatalities per 100 million vehicle miles
traveled during calendar year 2012, categorized by location east or west of
the Mississippi River

East of Mississippi West of Mississippi

State Fatalities State Fatalities

Alabama 1.33 Alaska 1.23
Connecticut 0.75 Arizona 1.37
Delaware 1.24 Arkansas 1.65
Florida 1.27 California 0.88
Georgia 1.11 Colorado 1.01
Illinois 0.91 Hawaii 1.25
Indiana 0.99 Idaho 1.13
Kentucky 1.58 Iowa 1.16
Maine 1.16 Kansas 1.32
Maryland 0.89 Louisiana 1.54
Massachusetts 0.62 Minnesota 0.69
Michigan 0.99 Missouri 1.21
Mississippi 1.51 Montana 1.72
New Hampshire 0.84 Nebraska 1.10
New Jersey 0.79 Nevada 1.07
New York 0.91 New Mexico 1.43
North Carolina 1.23 North Dakota 1.69
Ohio 1.00 Oklahoma 1.48
Pennsylvania 1.32 Oregon 1.01
Rhode Island 0.82 South Dakota 1.46
South Carolina 1.76 Texas 1.43
Tennessee 1.42 Utah 0.82
Vermont 1.07 Washington 0.78
Virginia 0.96 Wyoming 1.33
West Virginia 1.76
Wisconsin 1.04

Source: National Highway Traffic Safety Administration (2013)
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centers for the western grouping of states. The ratios of the ranges and

standard deviations, namely, Rx/Ry ¼ 1.107 and sx/sy ¼ 1.056, respectively,

indicate that there is slightly more variability present in the death rates for the

eastern grouping of states. Why do you suppose that these differences exist

for this particular division of the fifty states? Perhaps you can get more insight

into these differences in the death rates by constructing separate histograms

for the two groups. Are there other regional divisions of the United States that

would make sense to examine as groups? Are there reasons other than

geographical for comparing various groupings of the states with respect to

motor-vehicle death rates? What about speed limits and seat-belt laws?

As illustrated in this example, many of the standard comparisons of two

groups with respect to measures of center and variability do not involve any

new forms of graphical or statistical summaries other than those discussed

previously for a single data collection. However, statisticians have developed

a number of graphical and statistical summaries that are specifically designed

for comparison of two or more data collections and we devote the rest of this

section to several of these approaches.

Graphical Displays to Compare Two Quantitative Data Collections: Back-

to-Back Stemplots and Parallel Boxplots Two particularly nice ways to

graphically display similarities or differences in two different data collections

on the same measurement are provided by back-to-back stemplots and paral-

lel boxplots. Since the underlying concepts are already familiar to us from

previous work with a single data collection, we simply illustrate their adap-

tation to comparison of two groups via a pair of examples.

Example 1.18. Asbestosis and Lung Function (Extension of Example 1.9) In

Example 1.9 we discussed the effect of exposure to asbestos dust on the

potential loss of lung function. In that example, we considered a set of data

gathered by Al Jarad et al. (1993) for a sample of twenty asbestos workers who

had not (yet) contracted asbestosis. The same authors also presented similar
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data for a group of 30 such workers who had already been diagnosed with

asbestosis. The percent decreases in lung function over the study period of

slightly longer than 4 years for these thirty subjects with asbestosis are

presented in Table 1.22.

We produce back-to-back stemplots in Fig. 1.12 for the two groups of

decreases in lung function presented in Tables 1.18 and 1.22 for exposed

workers without and with asbestosis, respectively. In this figure we have a

common stem that provides the values of the tenths decimal place for the two

data collections. The leaves then emanate in both directions from this com-

mon stem, to the left for workers with asbestosis and to the right for those

workers free of the disease, and these leaves correspond to the hundredth

decimal place for the observations in the two data collections.

Although no dramatic differences are apparent, the back-to-back

stemplots clearly indicate a slightly higher average decrease in lung function

over the 4 years in the study for those workers diagnosed with asbestosis.

Why don’t you see what other statistical techniques (graphical or summary)

tell you about the decrease in lung function for these two groups?

To illustrate the use of parallel (also known as side-by-side) boxplots, we

return to the regionally divided data on motor-vehicle death rates.

Example 1.19. Regional Motor-Vehicle Death Rates (Continuation

of Example 1.17) A graphical summary of the motor-vehicle fatality rates in

2012 for the groupings of eastern (region 1) and western (region 2) states are

presented in parallel boxplots in Figure 1.13. These side-by-side boxplots

provide good visual verification of a number of the features we discovered

with our numerical calculations in Example 1.17. For example, it is graphically

clear from the parallel boxplots that the eastern grouping of states has a lower

median fatality rate than the western grouping but that this lower median is

accompanied by a slightly greater variability.
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Comparing Categorical Distributions of Quantitative Data: Fixed

Fenceposts For many data collections a simple comparison by means of

fixed fenceposts provides sufficient detail to highlight important similarities

and contrasts. A particularly nice feature of this mode of comparison is that it

Table 1.22 Percent decrease in lung function for
asbestos workers who have asbestosis

Subjects
Percent decrease
in lung function

1 .02
2 .30
3 .08
4 .02
5 .08
6 .24
7 .30
8 .15
9 .02
10 .16
11 .23
12 .30
13 .15
14 .02
15 .25
16 .18
17 .08
18 .22
19 .23
20 .10
21 .11
22 .07
23 .15
24 .10
25 .50
26 .10
27 .15
28 .07
29 .15
30 .23

Source: Al Jarad et al. (1993)
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extends easily to more than two data collections (as does the use of parallel

boxplots). We illustrate this use of fixed fenceposts in a comparison of major

league baseball salary data for 2014.

Example 1.20. Comparison of 2014 Salary Figures for the New York

Yankees and Cincinnati Reds The dataset national_league_salary_2014

contains the 2014 salaries (as of March 26, 2014) for all baseball players in

Fig. 1.12 Back-to-back stemplots for asbestos lung function loss data

Fig. 1.13 Parallel boxplots for motor-vehicle death rates in 1995 for eastern
and western groupings of states
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the National League. In Table 1.23 we have recorded the salaries for the

players on the Cincinnati Reds and we will use fixed fenceposts to compare

this collection of salaries with those for the New York Yankees previously

given in Table 1.17.

Table 1.23 Baseball salaries for members of the
Cincinnati Reds baseball team for 2014 (as of
March 26, 2014)

Name of player Total 2014 salary

Joey Votto 12,000,000
Brandon Phillips 11,083,333
Jay Bruce 10,041,667
Johnny Cueto 10,000,000
Homer Bailey 9,000,000
Ryan Ludwick 8,500,000
Aroldis Chapman 7,835,772
Mat Latos 7,250,000
Jonathan Broxton 7,000,000
Mike Leake 5,925,000
Sean Marshall 5,625,000
Manny Parra 2,000,000
Skip Schumaker 2,000,000
Chris Heisey 1,760,000
Alfredo Simon 1,500,000
Logan Ondrusek 1,425,000
Sam LeCure 1,200,000
Ramon Santiago 1,100,000
Jack Hannahan 1,000,000
Brayan Pena 875,000
Zack Cozart 600,000
Todd Frazier 600,000
Devin Mesoraco 525,000
J. J. Hoover 520,000
Pedro Beato 512,500
Tony Cingrani 512,500
Nick Christiani 500,000
Billy Hamilton 500,000
Brett Marshall 500,000
Neftali Soto 500,000

Source: Petchesky (2014)
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Using the k ¼ 4 fixed fenceposts at f1 ¼ 600,000, f2 ¼ 1,500,000, f3 ¼
3,000,000, and f4 ¼ 10,000,000 (and remembering that the square bracket

indicates inclusion so that, for example, the category ($600,000, $1,500,000]

includes a salary of $1,500,000), we obtain the following numbers

(percentages) of New York Yankee and Cincinnati Reds baseball players

with 2014 salaries in the five categories created by these four fenceposts:

Fencepost categories New York Yankees Cincinnati Reds

� $600,000 13 (39.4%) 10 (33.3%)
($600,000, $1,500,000] 1 (3.0%) 6 (20%)
($1,500,000, $3,000,000] 4 (12.1%) 3 (10%)
($3,000,000, $10,000,000] 6 (18.2%) 8 (26.7%)
> $10,000,000 9 (27.3%) 3 (10%)

If you are a major league ballplayer, does the use of these fixed fenceposts

provide a clear picture ofwhether youwould rather play for the Yankees or the

Reds? How about as a baseball fan–which team would you rather root for?

Comparing Typical Observations from Two Data Collections: Using Indi-

vidual Comparisons and Joint Ranks In many practical problems our pri-

mary interest is simply in a comparison of a typical observation from each of

the two data collections. In such situations, there are more direct statistical

approaches designed specifically for comparison of two data collections.

Suppose that x and y denote single observations randomly selected from

data collections 1 and 2, respectively. If you were asked to use the pair (x, y) to

evaluate the relative nature of typical observations from each of the two data

collections, you would likely consider the difference y – x as the primary

source of information. However, it is important to note that the information in

this difference consists of two components, namely, its sign and its magni-

tude. The sign provides evidence as to whether a typical observation from

data collection 2 is larger or smaller than a typical observation from data
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collection 1. The magnitude |y – x|, on the other hand, helps assess the size of

the difference between typical observations from the two data collections.

With this in mind, suppose we are asked to provide such an assessment of

the similarity or difference between typical observations from the two data

collections (x1, . . ., xm) and (y1, . . ., yn), but now we are permitted to use all of

the data values from both collections. Based on our recent discussion, it is quite

natural to base this assessment exclusively on the differences dij¼ yj – xi, for i¼
1, . . .,m and j¼ 1, . . ., n. Howmany such differences are available to us? For the

data collections (x1, x2, x3) ¼ (1, 4, 7) and (y1, y2) ¼ (3, 9), there are six

differences:

y1 – x1 ¼ 3 – 1 ¼ 2 y2 – x1 ¼ 9 – 1 ¼ 8
y1 – x2 ¼ 3 – 4 ¼ -1 y2 – x2 ¼ 9 – 4 ¼ 5
y1 – x3 ¼ 3 – 7 ¼ -4 y2 – x3 ¼ 9 – 7 ¼ 2.

In this example we have 3 � 2 or 6 differences. In general, when there are

m x’s and n y’s each x can be paired with each y and we have a total of mn

differences at our disposal.

Virtually any statistical method for comparison of the typical observations

from the two data collections will rely exclusively on these differences. Where

the various statistical methods differ is in how they utilize this information.

One important piece of information is contained solely in the signs of the

differences dij.

Definition 1.20 Let (x1, . . ., xm) and (y1, . . ., yn) be two data collections.

The counting statistic U is the proportion of (x, y) pairs for which y is at

least as large as x.

Clearly the statistic U provides us with partial information about the size

relationship between typical observations from each of the two data

collections. Values of U near 1/2 are indicative that the two data collections
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are similar in the sizes of their typical observations, since such values of

U correspond to roughly one-half (mn/2) of the (x, y) pairs being such that

y is at least as large as x, while for the other roughly one-half of the (x, y) pairs

we have x at least as large as y. On the other hand, values of U near 1 provide

rather strong evidence that the typical y observation is larger than the typical

x observation. Conversely, values of U near 0 suggest that typical x’s are

larger than typical y’s.

A convenient way to computeU for two given data collections is to look at

all the differences dij. Count 1 if dij � 0 and count 0 if dij< 0. Then add up these

counts and divide by mn (the total number of dij) to get U.2

In addition to the proportion statistic U that is based solely on the signs of

the observed dij differences, their magnitudes can also be used to provide

information about the magnitude of the typical (y – x) difference. Here we rely

on our ‘old friends’, the mean and median, to summarize the magnitude

information contained in the individual dij differences.

First, consider the mean, �D, of the mn dij differences. If you work through

the arithmetic, you will find that the mean of the dij’s is just �y� �x, the

difference in the means of the two collections! Thus we do not obtain a truly

2Notationally, let hij be defined by

hij ¼ 1, if dij � 0
¼ 0, if dij < 0,

for i ¼ 1, . . ., m and j ¼ 1, . . ., n. Then

U ¼ 1
mn

Xm
i¼1

Xn
j¼1

hij, ð1:10Þ

where the double sum says “add up the h’s for all i and j combinations”.
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new comparison measure for the typical observations from the two data

collections by averaging the pairwise dij differences.

What about the application of our median criterion to the individual dij

differences?We denote themedian of the differences by ~D. Is ~D simply another

representation for thedifference,~y � ~x, in the separatemedians for the twodata

collections, just as �D is for the separate means? The answer is no (as you are

asked to verify in Exercise 1.A.6) and thus ~D provides us with a statistic that is

designed specifically to assess themagnitude of the difference between typical

observations from two data collections. (We should point out that when both

the (x1, . . ., xm) and (y1, . . ., yn) data collections are roughly symmetric in shape

and neither contains a substantial number of outliers, the mean difference �D

and the median difference ~D will generally be numerically close. )

Definition 1.21 Let (x1, . . ., xm) and (y1, . . ., yn) be two data collections.

The median difference statistic is given by

~D ¼ median yj � xi
n o

, ð1:11Þ

where we consider all possible pairs that take one observation from each

data collection.

We note that the counting statistic U (1.10) and the median difference

statistic ~D (1.11) provide quite different pieces of information about the

relationship between a typical y observation and a typical x observation.

Information about the proportion of y observations that are at least as large

as x observations is provided by the statistic U, while the size of the difference

between a typical y observation and a typical x observation is provided by ~D.

Example 1.21. Interstitial Lengths of Pine Species Habitat plays an impor-

tant role in fish behavior, particularly feeding, spawning, and protection/
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security. One of the modern methods of fisheries management is habitat

modification in large, man-made reservoirs. Previous studies have shown

that the type of structure introduced is an important factor in such habitat

modifications. Of particular relevance in many settings is the size of openings

or interstices in the introduced structure. The data in Table 1.24 represent a

subset of that obtained by Kayle (1984) from Alum Creek Lake in Westerville,

Ohio in a study to determine the relative effectiveness of blue spruce and

white pine trees for habitat modification. The measurements in Table 1.24 are

averages (mm) of interstitial lengths (distances between midpoints) of ten

pairs of secondary branches for each of twelve blue spruce and twelve

white pine trees.

Letting the blue spruce and white pine measurements correspond to the

y and x data collections, respectively, we have m ¼ n ¼ 12 and there are 12

(12) ¼ 144 differences yj - xi to compute. For example, the difference between

the first y (blue spruce) observation and the first x (white pine) observation is

y1 – x1 ¼ 46.7 – 75.2 ¼ -28.5, which happens to be the smallest such difference

for the two data sets. Using the R functions outerð Þ and sortð Þ for the dataset

Table 1.24 Mean interstitial lengths for blue spruce
and white pine trees (mm)

Blue spruce (y) White pine (x)

46.7 75.2
60.5 63.7
58.9 73.2
82.9 66.2
65.8 67.4
93.3 69.4
66.9 70.4
70.9 72.3
73.7 63.6
65.8 61.9
90.2 74.4
68.9 70.1

Source: Kayle (1984)
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interstitial_lengths, we obtain the entire 144 dij differences, ordered from least

to greatest, to be the following:

dij dij dij dij

�28.5 �6.9 �0.5 10.0
�27.7 �6.5 �0.4 10.1
�26.5 �6.5 �0.4 10.6
�25.6 �6.3 0.5 11.8
�23.7 �6.3 0.5 12.5
�23.4 �5.7 0.7 12.8
�22.7 �5.5 0.8 13.5
�20.7 �5.4 1.4 15.0
�19.5 �4.8 1.5 15.5
�17.0 �4.7 1.5 15.8
�16.9 �4.6 2.1 16.7
�16.3 �4.6 2.1 17.0
�15.5 �4.3 2.2 17.9
�15.2 �4.3 2.2 18.1
�14.7 �4.3 2.7 18.9
�14.3 �4.3 3.2 19.2
�13.9 �3.6 3.3 19.3
�13.4 �3.6 3.3 19.8
�12.7 �3.5 3.5 20.1
�11.8 �3.5 3.6 20.1
�11.5 �3.4 3.9 20.8
�11.2 �3.2 3.9 21.0
�10.5 �3.2 4.3 21.0
�9.9 �3.1 4.7 22.8
�9.6 �3.0 5.0 22.9
�9.4 �2.5 5.2 23.2
�9.4 �2.3 5.3 23.9
�8.9 �1.6 6.3 24.0
�8.6 �1.6 7.0 25.9
�8.6 �1.5 7.2 26.5
�8.5 �1.5 7.3 26.6
�8.3 �1.4 7.5 27.1
�7.5 �1.4 7.7 28.3
�7.4 �1.2 8.5 29.6
�7.4 �0.7 9.0 29.7
�7.3 �0.5 9.7 31.4
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The R command and output used to obtain this ordered listing follow.

> sort(outer(interstitial_lengths$"Blue Spruce",  interstitial_lengths$"White Pine", "-"))
[1] -28.5 -27.7 -26.5 -25.6 -23.7 -23.4 -22.7 -20.7 -19.5 -17.0 -16.9 -16.3 -15.5 -15.2 -14.7 -14.3 -13.9 -13.4  

[19] -12.7 -11.8 -11.5 -11.2 -10.5  -9.9  -9.6  -9.4  -9.4  -8.9  -8.6  -8.6  -8.5  -8.3  -7.5  -7.4  -7.4  -7.3  

[37]  -6.9  -6.5  -6.5  -6.3  -6.3  -5.7  -5.5  -5.4  -4.8  -4.7  -4.6  -4.6  -4.3  -4.3  -4.3  -4.3  -3.6  -3.6  

[55]  -3.5  -3.5  -3.4  -3.2  -3.2  -3.1  -3.0  -2.5  -2.3  -1.6  -1.6  -1.5  -1.5  -1.4  -1.4  -1.2  -0.7  -0.5  

[73]  -0.5  -0.4  -0.4   0.5   0.5   0.7   0.8 1.4   1.5   1.5   2.1   2.1   2.2   2.2   2.7   3.2   3.3   3.3  

[91]   3.5   3.6   3.9   3.9   4.3   4.7   5.0   5.2   5.3   6.3   7.0   7.2   7.3   7.5   7.7   8.5   9.0   9.7 

[109]  10.0  10.1  10.6  11.8  12.5  12.8  13.5  15.0  15.5  15.8  16.7  17.0  17.9  18.1  18.9  19.2  19.3  19.8 

[127]  20.1  20.1  20.8  21.0  21.0  22.8  22.9  23.2  23.9  24.0  25.9  26.5  26.6  27.1  28.3  29.6  29.7  31.4

From this ordered listing we see that 69 of the 144 dij differences are

positive, so that the proportion of (white pine, blue spruce) sample pairs for

which the blue spruce interstitial length exceeds that for the white pine is U¼
69/144 ¼ .479. Moreover, since mn ¼ 144 is an even number, the median

difference statistic ~D (1.11) is given by the average of the two middle ordered

differences, corresponding to ~D ¼ (�0.5 – 0.5)/2 ¼ �0.5 mm. Since the sample

value of U is close to 1/2 and the median of the mean interstitial length

differences is only �0.5 mm, which is quite small relative to the interstitial

length values, there is little evidence in the two data collections studied by

Kayle to indicate any substantial difference in the typical mean interstitial

lengths for blue spruce and white pine trees. (We note that the difference in

means between the blue spruce and white pine trees is �D ¼ 1.39 mm. Look

once again at the mean interstitial length data in Table 1.24. Why do you think

that the median difference ~D (negative) and the mean difference (positive)

have opposite signs for these two data collections?)

One additional way to provide a direct summary comparison for two data

collections of a common measurement is to consider the relative positions of

the observations from the two data collections. We first consider the relative

positions for observations from a single data collection.
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Definition 1.22 Let (x1, . . ., xn) be a collection of n distinct observations.

The rank of xi, denoted Qi, is the number of observations in the collec-

tion which are less than or equal to xi.

Example 1.22. Mean Interstitial Lengths for White Pine Trees Consider the

data collection of mean interstitial lengths for the 12 white pine trees, as given

in Table 1.24. The following table lists the ranks for these observations. Note

that 75.2 is the largest observation, so it gets rank 12. Since three data values

are less than or equal to 63.7, this observation gets rank 3. Proceeding simi-

larly for the rest of the twelve observations leads to the ranks in the table.

Interstitial length Rank

75.2 12
63.7 3
73.2 10
66.2 4
67.4 5
69.4 6
70.4 8
72.3 9
63.6 2
61.9 1
74.4 11
70.1 7

When the values in a data collection are not distinct (i. e., there are ties

among the observations), we average the ranks associated with the tied

values. Thus, for the data collection (3.4, 5.6, 3.4, 7.2, 5.6), the ranks are

given by
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Observation Rank

3.4 1.5
5.6 3.5
3.4 1.5
7.2 5
5.6 3.5

The two smallest observations should get ranks 1 and 2. Since they are

equal for this data collection, we give them both the average of these ranks,

(1 + 2)/2 ¼ 1.5. Similarly, the two 5.6 observations would have ranks 3 and

4, so they are both assigned the average rank, 3.5 ¼ (3 + 4)/2.

To use the idea of ranks to compare two data collections, we jointly rank

(from least to greatest, with average ranks once again used for ties) the

observations from both collections and then separately list the ranks associated

with each of the data collections. Such a ranking provides an additional

picture of the relative values of the observations in the two data collections.

Often a further summary statistic is computed by obtaining the average rank

associated with each data collection.

Example 1.23. Regional Motor-Vehicle Fatality Rates (Extension

of Examples 1.4, 1.17, and 1.19) In Table 1.21 we presented the motor-vehicle

fatality rates per 100 million vehicle miles traveled in calendar year 2012 for

each of the 50 states categorized by its location east or west of the Mississippi

River. We reproduce the data in Table 1.25, but this time with the joint

ranking (from least to greatest) for each of the states given in bold type

following its fatality rate. Note that an average rank of 6.5 has been assigned

to the values for the two states of Rhode Island and Utah, each with a fatality

rate of 0.82 per 100 million vehicle miles traveled. Similarly, average ranks of

11.5, 14.5, 17.5, 20.5, 25.5, 28.5, 33.5, 35.5, 39.5, and 49.5 were used for the

fatality rates of the pairs of states (Illinois, New York), (Indiana, Michigan),
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(Colorado, Oregon), (Nevada, Vermont), (Iowa, Maine), (Alaska, North

Carolina), (Kansas, Pennsylvania), (Alabama, Wyoming), (New Mexico,

Texas), and (South Carolina, West Virginia), respectively.

An ordered listing of the joint ranks for states in the Eastern and Western

collections, as well as the average rank for each group, follows:

Table 1.25 Joint rankings of statewise motor-vehicle fatality rates per
100 million vehicle miles traveled during calendar year 2012, categorized
by location east or west of the Mississippi River.

East of Mississippi West of Mississippi

State Fatality rate Rank State Fatality Rate Rank

Alabama 1.33 35.5 Alaska 1.23 28.5
Connecticut 0.75 3 Arizona 1.37 37
Delaware 1.24 30 Arkansas 1.65 46
Florida 1.27 32 California 0.88 9
Georgia 1.11 23 Colorado 1.01 17.5
Illinois 0.91 11.5 Hawaii 1.25 31
Indiana 0.99 14.5 Idaho 1.13 24
Kentucky 1.58 45 Iowa 1.16 25.5
Maine 1.16 25.5 Kansas 1.32 33.5
Maryland 0.89 10 Louisiana 1.54 44
Massachusetts 0.62 1 Minnesota 0.69 2
Michigan 0.99 14.5 Missouri 1.21 27
Mississippi 1.51 43 Montana 1.72 48
New Hampshire 0.84 8 Nebraska 1.10 22
New Jersey 0.79 5 Nevada 1.07 20.5
New York 0.91 11.5 New Mexico 1.43 39.5
North Carolina 1.23 28.5 North Dakota 1.69 47
Ohio 1.00 16 Oklahoma 1.48 42
Pennsylvania 1.32 33.5 Oregon 1.01 17.5
Rhode Island 0.82 6.5 South Dakota 1.46 41
South Carolina 1.76 49.5 Texas 1.43 39.5
Tennessee 1.42 38 Utah 0.82 6.5
Vermont 1.07 20.5 Washington 0.78 4
Virginia 0.96 13 Wyoming 1.33 35.5
West Virginia 1.76 49.5
Wisconsin 1.04 19

Source: National Highway Traffic Safety Administration (2013)
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Eastern
Collection:

1, 3, 5, 6.5, 8, 10, 11.5, 11.5, 13, 14.5, 14.5, 16, 19, 20.5, 23, 25.5, 28.5, 30, 32,
33.5, 35.5, 38, 43, 45, 49.5, 49.5

Average joint rank for the Eastern collection ¼ �Q Eastern ¼ 587/26 ¼ 22.58

Western
Collection:

2, 4, 6.5, 9, 17.5, 17.5, 20.5, 22, 24, 25.5, 27, 28.5, 31, 33.5, 35.5, 37, 39.5, 39.5,
41, 42, 44, 46, 47, 48

Average joint rank for the Western collection ¼ �QWestern ¼ 688/24 ¼ 28.67.

This joint ranking provides nice reinforcement for the observations previ-

ously made in Example 1.19 about the parallel boxplots for these data

collections. The fact that the average rank is higher for the Western collection

of states is in agreement with the observation from the parallel boxplots that

the Western grouping has a higher median fatality rate.

This use of joint rankings to ascertain various patterns in more than one set

of similar measurements can be a valuable tool for data analysis. We will

return to such applications throughout the text.

Section 1.3 Practice Exercises

1.3.1. Birthday Candles.How long will birthday candles burn? Is it a function

of how expensive they are? Koga (1999) conducted an experiment to address

these questions. In particular, he was interested in how long it took two

different brands of birthday candles to burn a prescribed length. The two

brands he studied were: “Paper Art” (the cheaper candle) and “Party

Express” (the expensive candle). The burning times (in seconds) data from

his study are presented in Table 1.26.

(a) Compare the typical burning time for these two brands of birthday

candles by computing the differences in the means, �xPA and �xPE, and

medians, ~xPA and ~xPE, for the two data collections. Comment on your

findings.
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(b) Compare the variability in burning times for these two brands of

birthday candles by computing the ratios of ranges, RPA and RPE,

and standard deviations, sPA and sPE, for the two data collections.

Comment on your findings.

1.3.2. Firearms in the Home. Apply the division of the fifty states into “West-

ern States” and “Eastern States” used in Example 1.17 to the percentages of

households that had firearms in or around their homes data in Table 1.9.

(a) Compare the typical percentage of households with firearms from the

2002 BRFSS survey interviews for these two state groupings by com-

puting the differences in the means, �xWestern and �xEastern, and medians,

~xWestern and ~xEastern, for the two data collections.

(b) Compare the variability in percentage of households with firearms

from the 2002 BRFSS survey interviews for these two state groupings

by computing the ratios of ranges, RWestern and REastern, and standard

deviations, sWestern and sEastern, for the two data collections.

1.3.3. Firearms in the Home. Apply the division of the fifty states into “West-

ern States” and “Eastern States” used in Example 1.17 to the percentages of

households that had firearms in or around their homes data in Table 1.9.

Table 1.26 Times (seconds) for birthday candles to
burn a prescribed length

Paper art (y) Party express (x)

543 385
606 739
623 728
634 749
749 427
770 452
760 424
812 473

Source: Koga (1999)
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Compare the percentages of households with firearms from the 2002 BRFSS

survey interviews for these two state groupings by constructing

(a) back-to-back stemplots

(b) parallel boxplots.

1.3.4. Motor-vehicle Fatalities. Consider the total motor-vehicle fatalities per

100 million miles traveled during calendar year 2012 for each of the 50 states

as presented in Table 1.16. Use some reasonable scheme to divide the

50 states into 25 “Northern” and 25 “Southern” states (as was done in

Example 1.23 using the Mississippi River to produce “Eastern” and “West-

ern” states). Discuss the similarities and differences in the motor-vehicle

fatality rates for your groupings of “Northern” and “Southern” states by

making use of

(a) appropriate summary statistics

(b) back-to-back stemplots and parallel boxplots.

1.3.5. Consider the two data collections

x1; x2; x3; x4ð Þ ¼ 1; 6; 9; 12ð Þ and y1; y2; y3
� � ¼ �3; 5; 15ð Þ:

(a) How many dij ¼ yj – xi differences are there for these data collections?

(b) Compute all of these dij differences and obtain the value of ~D (1.11).

What does this tell us about the two data collections?

1.3.6. Consider the two data collections

x1; x2; x3; x4ð Þ ¼ 1; 6; 9; 12ð Þ and y1; y2; y3
� � ¼ �3; 5; 15ð Þ:

(a) How many (xi, yj) pairs are there for these data collections?

(b) What proportion, U, of these (x, y) pairs are such that y is at least as

large as x? What does this tell us about the two data collections?
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1.3.7. Baseball Salaries. The datasets national_league_salary_2014 and

american_league_salary_2014 contain the 2014 salaries (as of March 26, 2014)

for all baseball players in the National and American Leagues, respectively. In

Tables 1.27 and 1.28 we have recorded the salaries for the players on the

St. Louis Cardinals and Baltimore Orioles baseball teams, respectively.

(a) Using the 4 fixed fenceposts at f1 ¼ 600,000, f2 ¼ 1,500,000, f3 ¼
3,000,000, and f4 ¼ 10,000,000, compare the collections of 2014 salaries

for the St. Louis Cardinals and Baltimore Orioles.

(b) Compare the results from part (a) with the similar comparison

between the New York Yankees and the Cincinnati Reds discussed

in Example 1.20. How would you combine these results to compare

the 2014 salaries of all four of these baseball teams?

1.3.8. Baseball Salaries. Consider the 2014 salary data for the St. Louis

Cardinals and Baltimore Orioles baseball teams, as given in Tables 1.27 and

1.28, respectively. Compare the salary data collections for the two baseball

teams by constructing

(a) back-to-back stemplots

(b) parallel boxplots.

1.3.9. Baseball Salaries. Consider the 2014 salary data for the St. Louis

Cardinals and Baltimore Orioles baseball teams, as given in Tables 1.27 and

1.28, respectively.

(a) Compare the typical 2014 salaries for these two baseball teams by

computing the differences in the means, �xSL and �xB, and medians, ~xSL

and ~xB, for the two data collections.

(b) Compare the variability in 2014 salaries for these two baseball teams

by computing the ratios of ranges, RSL and RB, and standard

deviations, sSL and sB, for the two data collections.
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1.3.10. Math SAT Scores. The math SAT scores for seniors graduating in 2013

or 2014 from a small private school are given in Table 1.15. Compare the

collections of these math SAT scores for males and females using:

Table 1.27 Baseball salaries for members of the
St. Louis Cardinals baseball team for 2014 (as of March
26, 2014)

Name of player Total 2014 salary

Adam Wainwright 19,500,000
Matt Holliday 16,252,360
Jhonny Peralta 15,500,000
Yadier Molina 15,200,000
Jaime Garcia 7,875,000
Jason Motte 7,500,000
Mark Ellis 5,250,000
Jon Jay 3,250,000
Randy Choate 3,000,000
Allen Craig 2,750,000
Daniel Descalso 1,290,000
Matt Carpenter 1,250,000
Peter Bourjos 1,200,000
Lance Lynn 535,000
Joe Kelly 523,000
Arnoldi Cruz 521,000
Shelby Miller 521,000
Trevor Rosenthal 521,000
Shane Robinson 519,000
Pete Kozma 518,000
Matt Adams 516,000
Michael Wacha 510,000
Seth Maness 509,000
Carlos Martinez 505,000
Kevin Siegrist 505,000
Joey Butler 500,000
Jorge Rondon 500,000
Kolten Wong 500,000

Source: Petchesky (2014)
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Table 1.28 Baseball salaries for members of the Baltimore
Orioles baseball team for 2014 (as of March 26, 2014)

Name of player Total 2014 salary

Nick Markakis 15,350,000
Adam Jones 13,123,520
Ubaldo Jimenez 10,923,103
Chris Davis 10,350,000
Nelson Cruz 8,000,000
J. J. Hardy 7,916,667
Matt Wieters 7,700,000
Bud Norris 5,300,000
Wei-Yin Chen 4,155,333
Darren O’Day 3,200,000
Tommy Hunter 3,000,000
Brian Matusz 2,400,000
Ryan Webb 1,750,000
Troy Patton 1,100,820
Nolan Reimold 1, 025,000
Steve Pearce 850,000
Edgmer Escalona 550,000
Francisco Peguero 550,000
Chris Tillman 546,000
Miguel Gonzalez 529,000
Zach Britton 521,500
Manny Machado 519,000
Steve Lombardozzi 517,500
Jemile Weeks 515,000
Ryan Flaherty 512,500
David Lough 510,500
Brad Bach 509,500
Steve Johnson 506,000
T. J. McFarland 505,500
Steven Clevenger 505,000
Josh Stinson 504,000
Kevin Gausman 502,500
Henry Urrutia 501,500
Jonathan Schoop 500,500
Michael Almanzar 500,000

Source: Petchesky (2014)
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(a) k ¼ 5 fenceposts

(b) k ¼ 8 fenceposts

(c) Which of the methods of comparison in (a) and (b) do you prefer and

why?

1.3.11. Full Professors’ Salaries. The average 2012–2013 salaries for full

professors for 50 major universities in the United States are presented in

Table 1.29.

(a) Label each university listed in Table 1.29 as either a public or private

institution.

Discuss the similarities and differences in the average full professor salaries

for these groupings of public and private institutions by making use of

(b) appropriate summary statistics

(c) back-to-back stemplots and parallel boxplots.

Table 1.29 Average full professor salaries for 50 major
universities in the United States, 2012–2013

University
Average full
professor salary

Duke 180,200
Vanderbilt 167,900
Washington University, St. Louis 175,800
Tulane 140,200
California Institute of Technology 179,200
Carnegie Mellon 146,500
Cornell 159,800
Virginia 143,200
Texas (Austin) 144,000
Rochester 138,600
Nebraska 116,000
Iowa 132,200
Stanford 207,300
Colorado 127,800
Penn 187,000
Michigan 148,700
Princeton 200,000

(continued)
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Table 1.29 (continued)

University
Average full
professor salary

Iowa State 119,300
Purdue 127,700
Chicago 203,600
Yale 186,300
Wisconsin 118,800
Penn State 138,700
California at Berkeley 158,900
Illinois (Urbana-Champaign) 141,700
Minnesota 134,300
Pittsburgh 135,900
Harvard 203,000
Northwestern 176,700
Missouri 117,200
Indiana 132,000
Florida 122,500
Case Western Reserve 132,300
Brown 160,800
MIT 178,700
Maryland (College Park) 138,100
Ohio State 136,900
North Carolina State 120,600
Syracuse 122,800
Michigan State 131,200
Southern California 160,500
Kansas 118,300
UCLA 167,000
Washington State 104,000
Oregon 110,900
California at San Diego 142,500
Florida State University 109,400
Tennessee 122,500
New York University 187,600
Columbia 212,300

Source: American Association of University Professors
(2013)
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1.3.12. Math SAT Scores. The math SAT scores for seniors graduating in 2013

or 2014 from a small private school are given in Table 1.15. Compare the

collections of these math SAT scores for males and females by constructing

(a) back-to-back stemplots

(b) parallel boxplots.

1.3.13. Lead-poisoned Geese. March et al. (1976) examined the differences

between healthy (normal) and lead-poisoned Canadian geese. One of the

measures studied was plasma glucose (mg/100ml plasma). The data

March et al. obtained for eight healthy and seven lead-poisoned Canadian

geese are given in Table 1.30.

(a) Compare the typical plasma glucose values for healthy and lead-

poisoned Canadian geese by computing the differences in the

means, �xH and �xLP, and medians, ~xH and ~xLP, for the two data

collections.

(b) Compare the variability in the plasma glucose values for healthy and

lead-poisoned Canadian geese by computing the ratios of ranges, RH

and RLP, and standard deviations, sH and sLP, for the two data

collections.

1.3.14. Consider the three data collections:

A ¼ (1, 3, 5, 7, 9, 11), B ¼ (-6, -2, 2, 10, 14, 18), and C ¼ (9, 11, 13, 15, 17, 19).

Compare and contrast the differences and similarities in these data collections

by making use of

(a) appropriate summary statistics

(b) back-to-back stemplots and parallel boxplots.
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1.3.15. Consider the data collection

x1; . . . ; x10ð Þ ¼ 1:6;�3:4; 5:5; 6:3; 14:9; 223:4; 55:8;�33:5; 20:4; 66:8ð Þ:Compute

the ranks (Q1, . . ., Q10) of (x1, . . ., x10).

1.3.16. Consider the two data collections

x1; x2; x3; x4; x5; x6; x7ð Þ ¼ �34:6; 20:0; 5:7; 16:6;�4:9; 147:9; 20:3ð Þ
and y1; y2; y3; y4; y5

� � ¼ �3:6; 16:6; 27:4; 543:8; 44:4ð Þ:
(a) Compute the joint ranks of the x’s and y’s.

(b) What is the average joint rank for the x’s? for the y’s?

1.3.17. Motor-Vehicle Fatalities by Region. In Exercise 1.3.4 you were asked to

divide the 50 American states into 25 “Northern” and 25 “Southern” states.

For the statewise total motor-vehicle fatality rate data (Table 1.16), what is the

average joint rank of the “Northern” states? of the “Southern” states? Discuss

the implication of your findings.

1.3.18. Baseball Salaries. Consider the salary data for the players on the 2014

NewYork Yankees andCincinnati Reds baseball teams, as given in Tables 1.17

and 1.23, respectively.

Table 1.30 Plasma glucose values (mg/
100ml plasma)

Healthy
geese (y)

Lead-Poisoned
geese (x)

297 293
340 291
325 289
227 430
277 510
337 353
250 318
290

Source: March et al. (1976).
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(a) What is the average joint rank of the Yankees players’ salaries?

(b) How many possible pairings of one Yankees player’s salary with one

Reds player’s salary are there?

(c) What proportion of the possible (Yankees player’s salary, Reds

player’s salary) pairings are such that the Yankees player’s salary is

at least as large as the Reds player’s salary?

1.3.19. Baseball Salaries. The datasets national_league_salary_2014 and

american_league_salary_2014 contain the 2014 salaries (as of March 26, 2014)

for all baseball players in the National and American Leagues, respectively. In

Tables 1.17, 1.23, 1.27, and 1.28 we have recorded the salaries for the players

on the New York Yankees, Cincinnati Reds, St. Louis Cardinals, and

Baltimore Orioles baseball teams, respectively. Jointly rank the salaries of all

four of the baseball teams and obtain the average rank for each of the teams.

Discuss how these average ranks provide information about the relative

payrolls for the four baseball teams.

1.3.20. Full Professors’ Salaries. Consider the 2012–2013 average full professor

salary data in Table 1.29. Use joint ranks to provide a comparison between

public and private institutions with regard to the average salaries of their full

professors in 2012–2013.

1.3.21. Lead-poisoned Geese. Consider the plasma glucose values for healthy

(normal) and lead-poisoned Canadian geese given in Table 1.30. Compute the

value of the median difference statistic ~D for these data collections. What does

this tell us about the data collections?

1.3.22. Lead-poisoned Geese. Consider the plasma glucose values for healthy

(normal) and lead-poisoned Canadian geese given in Table 1.30.

(a) How many (xi, yj) pairs are there for these data collections?

(b) What proportion, U, of these (x, y) pairs are such that y is at least as

large as x? What does this tell us about the data collections?
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Chapter 1 Comprehensive Exercises

1.A. Conceptual

1.A.1. In Definition 1.14 the variance, s2, for a data collection (x1, . . ., xn) is

defined by

s2 ¼
Pn
i¼1

�
xi � �x

�2
n� 1

:

However, the variance can also be computed without first calculating the

value of the mean �x. Show that

s2 ¼ 1
n n� 1ð Þ

X
1�i<j�n

xi � xj
� �2

is an equivalent formula for computing s2.

1.A.2. The variance s2 (1.7) uses the sum of the squared differences of the

observations from the mean, �x, to measure the variability associated with a

data collection (x1, . . ., xn). An alternative statistic often used to measure the

variability in a data collection is the mean absolute deviation (MAD) of the

sample observations from �x, namely,

MAD ¼ 1
n

Xn
i¼1

j xi � �x j :

Compare and contrast these two measures of variability for a data collection.

When do you think it might be more appropriate to useMAD rather than s2 to

assess the variability of a data collection?

1.A.3. Let (x1, x2, x3) denote a triple of observations and let �x and ~x be the

mean and median of these three observations. Show that (x1, x2, x3) is a right

triple if and only if �x > ~x.
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1.A.4. Discuss why there are n(n-1)(n-2)/6 distinct triples of three

observations each that can be constructed from the data collection (x1, . . ., xn).

1.A.5. Consider the two data collections (x1, . . ., xm) and (y1, . . ., yn). The

median difference statistic ~D (1.11) is the median of the (yj – xi) differences for

the mn possible (xi, yj) pairings, i ¼ 1, . . ., m and j ¼ 1, . . ., n. Construct two

specific data collections (x1, . . ., xm) and (y1, . . ., yn) that demonstrate that the

median difference statistic ~D is not equal to~y � ~x, the difference in the separate

medians for the two collections.

1.A.6. Let ~x be the median for the data collection (x1, . . ., xn). Let �xbelow denote

the mean of those observations in the data collection that are smaller than ~x

and let �xabove denote the mean of those observations in the data collection that

are larger than ~x.

(a) Discuss how the values of �xbelow and �xabove can be used to provide

information about the symmetry or lack of symmetry for the data

collection.

(b) Compute �xbelow and �xabove for the total engineering drawing hours data

collection in Table 1.3. What do the values of �xbelow and �xabove tell you

about the symmetry/asymmetry of that data collection?

(c) Describe how percentiles other than (or in addition to) the median ~x

could be used in a similar fashion to help describe the symmetry/

asymmetry characteristics of a data collection. Illustrate your pro-

posal with the total engineering drawing hours data collection in

Table 1.3.

1.A.7. In Section 1.2 we discussed how to use the number of observations

that are smaller than the mean, �x, for a data collection to provide information

about the symmetry/asymmetry of the data collection. In Exercise 1.A.6 we

suggested that the mean, �xbelow, of those observations in the data collection that

are smaller than the median, ~x, and the mean, �xabove, of those observations in
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the data collection that are larger than ~x can also be used to provide informa-

tion about the symmetry/asymmetry characteristics of a data collection.

Discuss how these two approaches to describing the symmetry/asymmetry

characteristics of a data collection are related to the concepts of variable and

fixed fenceposts, as discussed in Section 1.2.

1.A.8. Consider the data collection consisting of two observations (x1, x2).

Compare the values of the median, ~x, and the mean, �x, for this data collection.

What does this say about measuring asymmetry for a collection with fewer

than 3 observations?

1.A.9. In Definition 1.14 the variance, s2, for a data collection (x1, . . ., xn) is

defined by

s2 ¼
Pn
i¼1

�
xi � �x

�2
n� 1

:

Show that the variance can also be obtained using the computationally

simpler formula

s2 ¼ 1
n� 1

Xn
i¼1

x2i �
1
n

Xn
i¼1

xi

 !2
2
4

3
5:

1.A.10. Consider the two data collections (x1, . . ., xm) and (y1, . . ., yn). Let

U be the counting statistic (1.10) equal to the number of (x, y) pairs for which

y is at least as large as x. Let S1, S2, . . ., Sn be the joint ranks for the observations

y1, y2, . . ., yn, respectively, and set V ¼ S1 + S2 + . . . + Sn. If there are no tied

values among the x and y observations, show that

V ¼ U þ n nþ 1ð Þ
2

:
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1.A.11. Government’s Role in Social Nets. Princeton Survey Research

Associates of Princeton, New Jersey (1998) conducted an extensive series of

surveys designed to assess American values about taking care of each other.

Two of the survey questions were:

1. Do you think it is the government’s responsibility to pay the health care

expenses for all retired people?

2. Do you think the government should give people in poverty money to

feed, clothe, and house their children under 18?

When these questions were asked of parents as a group and their adult

children as a group, the percentages responding yes to questions 1 and 2were:

Parents Adult children

Question 1 44% 48%
Question 2 61% 67%

However, it was also reported that only 50% of the adult children agreed with

their parents with regard to Question 1 and that there was only slighter better

54% agreement between parents and their adult children for Question 2. How

can the two groups (parents and adult children) agree so well on the issues in

both Questions 1 and 2, yet there be such little agreement between individual

parents and their own adult children on these two issues?What does this have

to say about family influence on our attitude toward these issues?

1.A.12. AIDS and Prisons. The New York Times (1989) reported on the

results of a study by Dr. Ford Brewer of The Johns Hopkins University School

of Hygiene and Public Health that was designed to estimate the prevalence of

AIDS among male prisoners. Dr. Brewer found that 476 of the 11,198 inmates

in his nationwide study were infected with AIDS. In response to a subsequent

query from the Columbus Dispatch about the prevalence of AIDS among

male prisoners in Ohio, a spokesperson for the Ohio Department of
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Rehabilitation and Correction (ODRC) indicated that Ohio does not test all

male prisoners for AIDS. However, the spokesperson stated that ODRC

projects the AIDS incidence rate for Ohio prisoners to be roughly 6 cases per

1000, “based on the incidence of AIDS among incoming prisoners, who can

undergo voluntary testing for AIDS”. Comment on whether these findings

provide strong evidence that the incidence of AIDS among male Ohio

prisoners is much lower than the national percentage for male prisoners.

1.B. Data Analysis/Computational

1.B.1. Women’s Shoes. What type of shoes do women who work outside the

home wear? The American Orthopedic Foot and Ankle Society (AOFAS)

(1999) conducted a telephone survey of 531 women who identified them-

selves as working outside the home. The women were asked to describe the

shoes they most commonly wear to work. Of the 531 women surveyed,

234 reported wearing “flats” (fashion shoes with heels less than 1 inch) at

work, 159 wore athletic shoes, 90 wore low pumps (heels less than 2 1/4

inches), while 11 respondents reported regularly wearing shoes with a heel

greater than 2 1/4 inches. The rest of the women surveyed did not indicate a

clear, single preference for work footwear.

(a) How many of the surveyed women did not indicate a clear, single

preference for work footwear?

(b) Use an appropriate graphical method to display these data.

1.B.2. Government’s Role in Health Care. The Pew Research Center (2012)

conducted separate surveys in 2009 and 2012 designed to assess American

opinions about the government’s role in health care, among other things. Two

of the survey statements presented to the participants were:
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1. I am concerned about the government becoming too involved in

health care.

2. The government needs to do more to make health care affordable and

accessible.

The participants were asked whether they agreed or disagreed with each of

the statements. The percentages of individuals responding Agree, Disagree,

or Don’t Know to each of these statements in the 2009 and 2012 surveys are:

2009
Agree Disagree Don’t Know

Question 1 46% 50% 4%
Question 2 86% 12% 2%

2012
Agree Disagree Don’t Know

Question 1 59% 39% 2%
Question 2 82% 16% 2%

(a) Display these data in two well-labeled bar graphs, separately for

Question 1 and Question 2.

(b) Use side-by-side pie charts to compare and contrast the results for

Question 1 for the 2 years. Discuss the changes in public responses

from 2009 to 2012.

(c) Use side-by-side pie charts to compare and contrast the results for

Question 2 for the 2 years. Discuss the change in public responses

from 2009 to 2012.

(d) Discuss anything you might find unusual in the public responses to

the two statements in both years.

1.B.3. Taking Care of Sick Parents. Princeton Survey Research Associates of

Princeton, New Jersey (1998) conducted an extensive series of surveys

designed to assess American values about taking care of each other. One of

the questions asked of the respondents in one of these surveys was:
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Who should be responsible for taking care of parents if they become sick or

disabled?

The respondents were also asked to self-classify themselves as Conservative,

Moderate, or Liberal. The breakdown of the 1095 survey respondents

with respect to both their political ideology and their answer to the stated

question is:

Question response

Numbers who gave this response

Conservatives Moderates Liberals

People should feel entirely responsible 346 272 146
People should expect help from the
government

339 409 221

It depends 60 61 28
Don’t know/Refused to answer 8 15 0

(a) Use bar graphs to display these results.

(b) Use side-by-side pie charts to display these results.

1.B.4. City Driving Gas Mileage. The city driving gas mileage (miles per

gallon) for some of the best (excluding electric vehicles) and worst mileage

2015 model automobiles are presented in Table 1.31.

(a) Find the five-number summaries separately for the nine best mileage

and eleven worst mileage 2015 automobile models in Table 1.31.

(b) Use appropriate software to make separate boxplots for the nine best

mileage and eleven worst mileage 2015 automobile models.

(c) Find the mean �x, median ~x, and standard deviation, s, separately for

the nine best mileage and eleven worst mileage 2015 automobile

models.

(d) Combine the nine best mileage and eleven worst mileage automobile

models into one set of 20 automobile models and repeat parts (a), (b),
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and (c). Compare and contrast the results here with those previously

obtained in parts (a)–(c).

1.B.5. Statewise Motor-Vehicle Fatality Rates. Use the computationally simpler

formula for the variance, s2, given in Exercise A.9 to compute the variance for

the statewise motor-vehicle fatality rates data collection in Table 1.16.

1.B.6. Engineering Drawing Hours. Consider the total engineering drawing

hours data collection in Table 1.3. We noted in Section 1.2 that there are n(n-1)

(n-2)/6¼ 96(95)(94)/6¼ 142,880 possible triples involving these data. Use the

R function FindTriplesð Þ for the dataset engineering_drawing_hours to show

that 98,269 of these triples are right triples, 37,832 of them are left triples, and

the remaining 6779 triples are neither right nor left.

1.B.7. Stocking Game Fish. To determine the number of game fish to stock in a

given system and to set appropriate catch limits, it is important for fishery

Table 1.31 City driving gas mileage for some of the best (excluding
electric vehicles) and worst mileage 2015 model automobiles (miles/gallon)

Best mileage Worst mileage

Automobile model
Gas
mileage Automobile model

Gas
mileage

Honda CR-Z 36 Bugatti Veyron 8
Scion iQ 36 Aston Martin D89 13
Audi A3 Diesel 31 Bentley Continental GT 9
Ford Fiesta SFE FWD 31 Maserati GranTurismo 13
Toyota Prius c Hybrid 53 Mercedes-Benz C63

AMG
13

Toyota Prius Hybrid 51 Chevrolet Camaro 12
Ford C-MAX-Hybrid
FWD

42 Rolls-Royce Phantom 11

Honda Fit 33 Bentley Mulsanne 11
Toyota Prius v 44 Ferrari FF 11

Infiniti QX50 17
Mercedes-Benz E63
AMG S

15

Source: U.S. Department of Energy (2015).
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managers to be able to assess potential growth and survival of game fish in

that system. Such growth and survival rates are closely related to the avail-

ability of appropriately sized prey. Young-of-year (YOY) gizzard shad

(Dorosoma cepedianum) are the primary food source for game fish in many

environments. However, because of their growth rate, YOY gizzard shad can

become quickly too large for predators to swallow. Thus to be able to predict

predator growth rates in such settings it is useful to know both the density

and the size structure of the resident YOY shad population in a lake. With this

in mind, Johnson (1984) sampled the YOY gizzard shad population in

Kokosing Lake (Ohio) in summer 1984. The data in Table 1.32 are lengths

(mm) for a subset of the YOY gizzard shad sampled by Johnson.

(a) Provide two different graphical representations of this data collection.

(b) Calculate a set of summary statistics for this data collection.

(c) Describe the most notable features of the data collection.

1.B.8. Stretching a Hit into a Double. The data in Table 1.33 were obtained by

Woodward (1970) in a study of different methods of running to first base,

with the goal of minimizing the time it would take to get from home plate to

second base (i. e., get a double on a base hit). The times (in seconds) in

Table 1.33 are averages of two runs from a point on the first base line 35 ft

from home plate to a point 15 ft short of second base for the method of

running known as “wide angle” for each of 22 different runners.

(a) Provide two different graphical representations of this data collection.

Table 1.32 Length of YOY gizzard shad from Kokosing Lake, Ohio, sam-
pled in summer 1984 (mm)

46 41 42 58 38 28 31 25
28 42 60 27 33 26 30 25
46 45 32 51 26 27 27 24
37 38 42 42 25 27 29 27
32 44 45 52 28 27 30 30

Source: Johnson (1984).
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(b) Calculate a set of summary statistics for this data collection.

(c) Describe the most notable features of the data collection.

(d) Comment on why you think Woodward chose to measure the time

from a point on the first base line 35 ft from home plate to a point 15 ft

short of second base, rather than from home plate to second base.

1.B.9. Disciplining Physicians. The Medical Board of California disciplined a

total of 375 licensed physicians in the state of California between October 1995

and April 1997 (some for multiple offenses) and the State Medical Board of

Ohio disciplined 340 licensed physicians in the state of Ohio between January

1997 and June 1999 (again some for multiple offenses). Morrison and

Wickersham (1998) studied these discipline cases for California and Clay

and Conatser (2003) compared the California data with those for Ohio. The

numbers of offenses leading to the Boards’ actions are provided in Table 1.34

for each of the two states.

(a) Use bar graphs to compare and contrast the California and Ohio data

collections.

Table 1.33 Times from home plate to
second base using the “wide angle”
method of running (sec)

5.55 5.45
5.75 5.45
5.50 4.95
5.40 5.40
5.70 5.50
5.60 5.35
5.35 5.55
5.35 5.25
5.00 5.40
5.70 5.55
5.10 6.25

Source: Woodward (1970)
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(b) Use pie charts to compare and contrast the California and Ohio data

collections.

1.B.10. Disciplining Physicians. The Medical Board of California disciplined a

total of 375 licensed physicians in the state of California during the period

between October 1995 and April 1997. Morrison and Wickersham (1998)

studied these discipline cases and an accounting of the principal offenses

leading to the Board actions are provided in Table 1.35, categorized by the

genders of the doctors being disciplined (343 males and 32 females).

(a) Use bar graphs to display and compare these data collections.

(b) Use pie charts to display and compare these data collections.

1.B.11. Disciplining Physicians. Consider the California physician offense

data discussed in Exercise 1.B.10. Morrison and Wickersham (1998) also

gave an accounting of the type of disciplinary actions taken by the Board.

Table 1.34 Total numbers of various offenses leading to state medical
board actions between October 1995 and April 1997 in California and
between January 1997 and June 1999 in Ohio

Offense

Number of occurrences

California Ohio

Negligence or incompetence 145 34
Inappropriate prescribing, drug possession 62 66
Alcohol and/or other drug use, impairment 56 100
Fraud, kickbacks, tax, worker’s compensation 48 18
Sexual and/or inappropriate patient contact 40 17
Mental and/or physical impairment 21 21
Probation violation of previous action 18 71
Medical education or licensing violations 26 27
Misrepresenting credentials 9 26
Other crime 19 24
Other and/or miscellaneous 21 73

Source: Morrison and Wickersham (1998) and Clay and Conatser (2003).
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These actions are provided in Table 1.36, again categorized by the genders of

the disciplined physicians.

(a) Recalling from Exercise 1.B.10 that there were 343 male and 32 female

physicians who were given disciplinary actions, compute separately

the percentages of male and female doctors who received each of the

five types of disciplinary actions.

(b) Use bar graphs to display and compare the two groups of percentages

obtained in (a).

(c) Could you also use pie charts to display the two groups of

percentages obtained in (a)? Why or why not? [ Hint: What do the

percentages calculated in part (a) tell you about some of the

physicians who were disciplined? ]

1.B.12. Plant Absorption of Soil Nutrients. Vasicular-Arbuscular Mycorrhiza

(VAM) is a fungus that affects the roots of plants and is found in almost all

types of soil. VAM’s relationship with plants is symbiotic, as it facilitates the

absorption of nutrients from the soil and transfers them to the plants. In

return, the plants supply the fungus with manufactured lipids. Brust (1984)

Table 1.35 Principal offenses leading to action by the medical board of
California between October 1995 and April 1997, categorized by gender of
the disciplined doctor

Principal offense
Number
male

Number
female

Negligence or incompetence 115 12
Inappropriate prescribing, drug possession 40 2
Alcohol and/or other drug use, impairment 45 7
Fraud, kickbacks, tax, worker’s
compensation

32 3

Sexual and/or inappropriate patient contact 36 1
Mental and/or physical impairment 16 4
Unlicensed assistant, poor supervision 7 1
Worked for unlicensed person or entity 8 0
Misrepresenting credentials 6 0
Other crime and/or miscellaneous 38 2

Source: Morrison and Wickersham (1998)
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studied the effects that a variety of different tillage systems have on the ability

of the VAM fungus to infect planted corn. In eight different samples of soil

containing corn roots, Brust found the following percentages of roots infected

with the VAM fungus:

20% 6% 38% 18% 60% 45% 53% 43% .

(a) How many possible triples can be constructed from these data?

(b) Use theR functionFindTriplesð Þ to compute howmany of these triples

are right triples, howmany are left triples, and howmany are neither?

What does this say about the data collection?

1.B.13. Stocking Game Fish. In Exercise 1.B.7, we considered length of YOY

gizzard shad fromKokosing Lake, Ohio. There we treated the entire collection

of 40 length measurements as if they were a single random sample from

Kokosing Lake. In reality, Johnson (1984) collected these samples in groups

of ten each from four different sites on the lake. The data collection, properly

allocated to each of the four different sites, is reproduced in Table 1.37.

(a) Provide appropriate graphical representation(s) and a statistical sum-

mary for each of these four site data collections separately.

Table 1.36 Types of disciplinary actions taken by the medical board of
California between October 1995 and April 1997, categorized by gender of
the disciplined doctor

Type of discipline
Number
male

Number
female

Actual revocation of license 70 11
Actual suspension of license 42 7
Revocation or suspension, but action stayed 158 10
Letter of reprimand 73 4
Disciplined by reciprocity (other
jurisdiction)

96 7

Source: Morrison and Wickersham (1998).

136 1 Exploratory Data Analysis: Observing Patterns and Departures from Patterns



(b) Comment on any similarities and differences between the four site

data collections that are apparent from your statistical analyses in

part (a).

1.B.14. Stocking Game Fish. In Exercise 1.B.13, we considered length of YOY

gizzard shad from four different sites in Kokosing Lake, Ohio. In your

separate statistical analyses of these four data collections in Exercise 1.B.13,

you should have discovered that the lengths of YOY gizzard shad are quite

similar at Sites 1 and 2, as well as being quite similar at Sites 3 and 4. Pool the

ten observations from Sites 1 and 2 to constitute a single data collection of

20 observations from Site “A” and do the same for the ten observations

from Sites 3 and 4 to constitute a single data collection of 20 observations

from Site “B”.

(a) What is the average joint rank of the YOY gizzard shad observations

from Site “A”?

(b) How many possible pairings of one YOY gizzard shad length from

Site “A” with one YOY gizzard shad length from Site “B” are there?

Table 1.37 Length of YOY gizzard shad, sampled from four
different sites in Kokosing Lake, Ohio, in summer 1984
(mm)

Site 1 Site 2 Site 3 Site 4

46 42 38 31
28 60 33 30
46 32 26 27
37 42 25 29
32 45 28 30
41 58 28 25
42 27 26 25
45 51 27 24
38 42 27 27
44 52 27 30

Source: Johnson (1984)
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(c) What proportion of the possible (YOY gizzard shad length from Site

“A”, YOY gizzard shad length from Site “B”) pairings are such that

the YOY gizzard shad length from Site “A” is at least as large as the

YOY gizzard shad length from Site “B”?

(d) Discuss the implications of your findings in parts (a)–(c).

1.B.15. Stocking Game Fish. Consider the YOY gizzard shad length data

presented in Table 1.38.

(a) Compute the difference in means and the median difference statistic

~D for the data collections from Sites 1 and 4. Do these two measures

provide similar assessments of the difference in the “centers” of these

data collections? Discuss.

(b) Compute the ratios of the ranges, R1 and R4, and standard deviations,

s1 and s4, for these two data collections. Discuss your findings.

1.B.16. Pine Tree Growth. The Department of Biology at Kenyon College

conducted a long-term experiment to study the growth of pine trees at a site

located on a hill overlooking the Kokosing River Valley just south of Gambier,

Ohio. In April 1990, student and faculty volunteers planted 1000 white pine

(pinus strobus) seedlings on this site. A subset of the data collected between

1990 and 1997 by biology students at Kenyon College is contained in the

dataset pines_1997. Consider the data collection corresponding to the tree

heights of these white pines in 1996. Provide appropriate graphical represen-

tation(s) and a statistical summary for this data collection. What are the

important features of the data collection?

1.C. Activities

1.C.1. Basketball Attendance. Go to your local athletic department and get the

attendance figures for each of your home basketball games. Provide a graphi-

cal representation(s) and a statistical summary for this data collection.

138 1 Exploratory Data Analysis: Observing Patterns and Departures from Patterns



1.C.2. Hospital Admissions. Go to a local hospital and obtain the numbers of

patients admitted on each day in the past year.

(a) Provide graphical representation(s) and a statistical summary for this

annual data collection.

(b) Separate your admission counts into the four seasons of winter,

spring, summer, and autumn. Provide graphical and statistical sum-

mary comparisons for these four data collections.

(c) Separate your admission counts into the 12 months of the year.

Provide graphical and statistical summary comparisons for these

12 data collections.

1.C.3. How old are Our Coins? Go to a bank and get 100 pennies, 100 nickels,

and 100 dimes. Record the last digit in the year for each of the coins. Provide

graphical and statistical summary comparisons for the data collections for

each of the three coin denominations.

1.C.4. Wall Street Profit. Select 50 different stocks traded on the New York

Stock Exchange and obtain their most recent selling prices, as well as their

selling prices exactly 1 year ago. Record how much you would have made

(or lost) per share in the past year for these 50 stocks. Provide an appropriate

graphical representation(s) and a statistical summary for your “profit” data

collection.

1.C.5. HowMuch Sleep Do Students Need?When do students go to bed and at

what time do they get up in the morning? Ask each of your classmates in this

course to write down for you when they typically go to bed and when they

typically get up in the morning. Provide an appropriate graphical representa-

tion(s) for these two data collections. How would you use these data to

provide information about the number of hours that students spend sleeping

(at least at night!)?
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1.D. Internet Archives

1.D.1. U.S. Trade. Search the Internet to find a site that provides the most

recent itemized U.S. trade figures with different countries. Pick two countries

of interest to you and obtain the year-to-date trade data by categories between

the United States and each of these two countries. Provide appropriate

graphical representation(s) to compare these two data collections. What are

the important similarities/differences between our trade with these two

countries?

1.D.2. Gasoline Pump Prices. Search the Internet to find a site that provides

the most recent weekly gasoline pump prices for regular motor gasoline, auto

diesel fuel, and auto propane fuel for various cities in the United States.

Provide appropriate graphical representations and statistical summaries for

each of these three data collections. What are the important features of the

data collections separately and relative to one another?

1.D.3. Cigarette Sales. Search the Internet to find a site that provides the latest

12-month unit-volume comparisons for the leading U.S. cigarette brands for

two recent years. Provide appropriate graphical representations to compare

the cigarette share percentages of these leading brands for the 2 years.

1.D.4. Division I College Basketball Attendance. Search the Internet to find a site

that provides the most recent men’s college basketball average (per game)

attendance figures for Division I institutions. Provide appropriate graphical

representation(s) and a statistical summary for this data collection. What are

the important features of the data collection?

Do the same for women’s college basketball average (per game) attendance

figures for Division I institutions.

Compare the results for men’s and women’s basketball games for Division I

institutions.
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1.D.5. Division I Conference Basketball Attendance. Search the Internet to find

a site that provides the most recent men’s college basketball average (per

game) attendance figures for Division I conferences. Provide appropriate

graphical representation(s) and a statistical summary for this data collection.

What are the important features of the data collection?

Do the same for women’s college basketball average (per game) attendance

figures for Division I conferences.

Compare the results for men’s and women’s basketball games for Division I

conferences.

1.D.6. Weather Comparisons. Search the Internet to find the most recent

climatalogical data for large cities in the United States.

(a) Choose a winter month and provide appropriate graphical represen-

tation(s) and statistical summaries for both mean temperature and

median precipitation for the listed cities. What are the important

features of these two data collections?

(b) Choose a summer month and provide appropriate graphical repre-

sentation(s) and statistical summaries for both mean temperature and

median precipitation for the listed cities. What are the important

features of these two data collections?

(c) Choose appropriate statistical methodology (graphical and/or sum-

mary statistics) to compare the mean temperatures and median pre-

cipitation figures for your chosen summer and winter months.

(d) Divide the mainland U.S. cities (not in Hawaii or Alaska) into four

groups corresponding to the southwest, southeast, northwest, and

northeast portions of the continental United States. Repeat parts (a) –

(c) of this problem separately for each of these four groupings.

1.D.7. National Football League Attendance. Search the Internet to find a site

that provides the most recent National Football League attendance report for
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each of the National Football League teams. Obtain appropriate graphical

representation(s) and statistical summaries for both average home attendance

and average road attendance for the teams.What are the important features of

these data collections?

1.D.8. Chronic Medical Conditions. Search the Internet to find a site that

provides the latest report on the number of chronic medical conditions per

1000 persons, by age, in the United States. Provide appropriate graphical

representation(s) and statistical summaries to compare the numbers of

chronic conditions per 1000 persons for five age groups (spanning 0 to

100 years) of your choosing. What are the important features of these data

collections?

1.D.9. EPA Mileage Ratings. Search the Internet to find a site that provides

the EPA mileage ratings for the latest car models. Pick two of the car

categories and one truck category and provide appropriate graphical repre-

sentation(s) and statistical summaries for both the city miles per gallon and

the highway miles per gallon ratings for the listed vehicles in each of these

categories. What are the important features of these data collections, both

separately and relative to one another?

1.D.10. Causes of Death in the United States. Search the Internet to find a site

that provides the most recent counts of the numbers of deaths resulting from

the ten leading causes of death in the United States. Provide appropriate

graphical representation(s) of this data collection.

1.D.11. Motor Vehicle Fatalities by Type of Accident. In Example 1.2, we com-

pared the motor-vehicle deaths by types of accident for the 2 years 1949 and

1985. Search the Internet to find similar data for the year 2014 and analyze the

data for 2014 in the same way as was done in Example 1.2 for the data from

1949 and 1985. Discuss the similarities and differences in the results for the

3 years.
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Exploring Bivariate and Categorical Data 2

In Chapter 1 we focused on displaying and describing information on one

variable at a time. In this chapter we consider graphical and numerical

methods that can be used to investigate the relationship between two

variables. Section 1 contains methods for exploring the relationship between

two quantitative variables. Descriptive statistics for measuring the strength of

association are provided in Sect. 2. Section 3 deals with relationships between

two categorical variables.

2.1 Exploring the Relationship Between Two Quantitative
Variables

The easiest method for exploring the relationship between two quantita-

tive variables is a visual display of the pairs of observations. A quick look at

this visual display, called a scatterplot, can help identify overall trends or

patterns, deviations from the overall trends or patterns, clusters of

observations, and unusual observations.

# Springer International Publishing AG 2017
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Definition 2.1 A scatterplot is a two-dimensional plot with one vari-

able on the horizontal axis and the other variable on the vertical axis.

Each pair of values, one for each observation in the data set, is

represented on the plot with a dot or some other plotting symbol.

Example 2.1. Looking for Association – Is There any Relationship Between

the Median Weekly Earnings for Male and Female Employees? Data for

median weekly earnings of male and female employees in service

occupations, sales and office occupations, and construction and extraction

occupations for each quarter from 2005 to 2015 are reported in Table 2.1 (and

available in the R dataset weekly_salaries). Perhaps you can answer the ques-

tion by simply looking at the raw data in Table 2.1. However, it is often easier

to answer questions about relationships by constructing a visual display of

the data. Figure 2.1 contains a scatterplot with median weekly earnings for

women on the vertical axis and median weekly earnings for men on the

horizontal axis. You can generate this plot for yourself using the R function

plotð Þ. (We’ll demonstrate this with an example soon.)

While an overall upward sloping pattern is evident, whatever relationship

there might be, it does not necessarily appear to be linear; that is, many of the

plotted data values would not be close to any straight line that you might

choose to draw on the scatterplot.

2.1.1 Common Types of Relationships – No Association, Positive Asso-
ciation, Negative Association

If there is no apparent pattern in the scatterplot, then we say that the

two variables are not associated. When no association exists between

two variables the scatterplot will look like an unstructured collection of

points.
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Example 2.2. Is There any Association Between the Length of Pine Needles

and the Diameter of a Pine Tree? What About the Height and Diameter

of Pine Trees? The Department of Biology at Kenyon College conducted an

experiment to study the growth of pine trees at a site located just south of

Gambier, Ohio, on a hill overlooking the Kokosing River valley. In April 1990,

student and faculty volunteers planted 1000 White Pine (pinus strobus)

seedlings on the Kenyon Center for Environmental Study (KCES). These

seedlings were planted in two grids, distinguished by ten- and fifteen-foot

spacings between the small trees. For a complete description of the design of

the experiment and the measurements, see Example 3.4. A subset of the data

collected by biology students at Kenyon College is contained in the dataset

pines_1997 (Table 2.2).

Figure 2.2 shows a scatterplot of the lengths of pine needles (Needles97)

and the diameters of the pine trees (Diam97) at KCES in 1997. The plot shows

that there is no obvious relationship between needle length and diameter for

these trees. The most striking feature in Fig. 2.2 is the one unusual observa-

tion, with a needle length of approximately 170 mm. You can reproduce this

Fig. 2.1 Scatterplot of median weekly earnings for men and women work-
ing in service, sales and office, and construction and extraction occupations
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Table 2.2 Description of the dataset pines_1997

Column Name Contents

C1 Row Row # in pine plantation
C2 Col Column # in pine plantation
C3 Hgt90 Tree height at time of planting (cm)
C4 Hgt96 Tree height in September 1996 (cm)
C5 Diam96 Tree trunk diameter in September 1996 (cm)
C6 Grow96 Leader growth during 1996 (cm)
C7 Hgt97 Tree height in September 1997 (cm)
C8 Diam97 Tree trunk diameter in September 1997 (cm)
C9 Spread97 Widest lateral spread (cm)
C10 Needles97 Needle length in September 1997 (mm)
C11 Deer95 Type of deer damage: 1 ¼ none, 2 ¼ browsed
C12 Deer97 Type of deer damage: 1 ¼ none, 2 ¼ browsed
C13 Cover95 Amount of thorny cover (0 ¼ none, 1 ¼ <1/3,

2 ¼ between 1/3 and 2/3, 3 ¼ >2/3)
C14 Fert Indicator for Fertilizer (0 ¼ no, 1 ¼ yes)
C15 Spacing Distance (in feet) between trees (10 or 15)

Fig. 2.2 Scatterplot of needle length and tree diameter for pine trees at
KCES in 1997
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plot by calling the R function plotð Þ as follows. The first two arguments

specify the x and y values to be plotted, respectively. The other three are

used to label the axes and give the plot a title. (These are only a few of the

wide range of arguments that you can specify in the plotð Þ function to make

your plot as customized as you like!)

> plot(x = pines_1997$Diam97,
y = pines_1997$Needles97,
xlab = "Diam97",
ylab = "Needles97",
main = "Scatterplot of Needle Length and Tree Diameter")

A scatterplot of height (Hgt97) and diameter (Diam97) of the trees at

KCES in 1997 is shown in Fig. 2.3. The scatterplot is again generated using

the R function plotð Þ, as demonstrated by the following command.

> plot(x = pines_1997$Diam97,
y = pines_1997$Hgt97,
xlab = "Diam97",
ylab = "Hgt97",
main = "Scatterplot of Tree Height and Tree Diameter")

Fig. 2.3 Scatterplot of tree height and tree diameter for pines at KCES in
1997
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Our intuition that short trees have small diameters and tall trees have large

diameters is clearly supported by this plot. When the nature of a relationship

is of this type (i.e., small values of one variable occurring with small values of

the second variable and large values with large values), we say that there is a

positive association between the two variables.

Definition 2.2 Two variables are positively associated if large values

of the variable on the horizontal axis occur with large values of the

variable on the vertical axis and small values of the variable on the

horizontal axis occur with small values of the variable on the vertical

axis. When positive association exists between two variables the

appearance of the scatterplot will be an upward sloping, egg-shaped or

football-shaped, cloud of points.

Example 2.3. Domestic Greenhouse Gas Emissions of Air

Pollutants Table 2.3 contains annual emissions data (in million metric

tons of carbon dioxide equivalents) for four common air pollutants from

1990 to 2014 in the United States. Have methane emissions been reduced

over this period of time?We can again use the R functionplotð Þalong with the

dataset emissions to answer this question.

> plot(emissions$Year, 
emissions$Methane,
xlab = "Year",
ylab = "Methane",
main = "Scatterplot of Methane Emissions and Year")

Figure 2.4 clearly shows such a decreasing pattern over time (although

there appear to be multiple brief increases). As the year increases the amount

of methane emissions tends to decrease. When the nature of a relationship is

such that increases in one variable tend to occur with decreases in the other

variable, we say that there is a negative association.
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Definition 2.3 Two variables are negatively associated if large values

of the variable on the horizontal axis occur with small values of the

variable on the vertical axis and small values of the variable on the

horizontal axis occur with large values of the variable on the vertical

axis. When negative association exists between two variables the appear-

ance of the scatterplot will be a downward sloping, egg-shaped or

football-shaped, cloud of points.

Table 2.3 Domestic greenhouse gas emissions of air pollutants, 1990–2014

Year Carbon Dioxide Methane Nitrous Oxide Fluorinated gases

1990 5115.095 773.8549 406.2285 101.966
1991 5064.88 777.0342 396.1137 92.91026
1992 5170.274 776.8698 404.0521 97.48091
1993 5284.759 764.0897 420.5032 97.06437
1994 5377.492 770.4504 402.4789 99.87502
1995 5441.599 767.9434 420.5857 118.4005
1996 5630.114 762.2038 428.9235 128.5969
1997 5704.997 747.1771 412.318 135.5071
1998 5744.672 737.8214 433.8726 150.4219
1999 5818.972 723.4549 401.1474 146.8679
2000 5992.438 717.4739 401.4002 147.6609
2001 5894.463 712.6768 399.3244 134.435
2002 5935.739 706.3302 400.9179 142.3412
2003 5982.289 708.5545 401.7753 132.355
2004 6096.978 704.8868 428.5542 139.5507
2005 6122.747 717.3562 397.5517 141.121
2006 6042.394 719.5807 410.0662 144.104
2007 6121.654 725.9746 418.9852 155.5943
2008 5923.201 738.8895 396.7771 157.5471
2009 5488.32 735.3587 399.5005 153.0503
2010 5688.756 722.4106 410.3142 163.9762
2011 5559.508 717.4237 416.5218 171.9448
2012 5349.221 714.4012 409.2856 170.1029
2013 5502.551 721.4751 403.3581 172.6038
2014 5556.007 730.8287 403.5098 180.1094

Source: U.S. Environmental Protection Agency (2016, May), Greenhouse Gas
Inventory Data Explorer
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The scatterplot in Fig. 2.4 is a special type of plot, known as a time series

plot. Researchers are often interested in looking at the pattern of variation in a

variable over time and a simple time series plot (scatterplot with some unit of

time on the horizontal axis) is the easiest way to visually display this

variation.

Definition 2.4 Data collected on a variable over some interval of time

(hours, days, weeks, months, years, etc.) is referred to as time series data.

A useful graphical summary for data that is collected over time is called

a time series plot. The plot is constructed by plotting the variable of

interest on the vertical axis and time on the horizontal axis.

2.1.2 Scatterplot Smoothing

Although the pattern of variation in Fig. 2.4 is clear, scatterplot smoothing is a

technique that is available in most modern statistical software packages and

can be used to help the analyst interpret the overall trend in a scatterplot.

Fig. 2.4 Scatterplot of methane emissions versus year in the United States,
1990–2014
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Figure 2.5 was obtained from R by simply replacing the previous call to plotð Þ
by a call to the function scatter:smoothð Þ as follows.

> scatter.smooth(emissions$Year, 
emissions$Methane,
xlab = "Year",
ylab = "Methane",
main = "Scatterplot of Methane Emissions and Year")

While the technical details of these computational smoothing methods are

interesting, they take us beyond the scope of this text.

Example 2.5. Charge-off Rates Over Time Table 2.4 contains twenty-five

years (1991 through 2015) of quarterly charge-off rates (dollars of loans

expected to never be recovered as a proportion of the average dollars of

total loans outstanding) for eight different types of loans as reported by the

Federal Reserve. Each set of charge-off rates corresponds to the quarter which

began on the date indicated by the Quarter column. The eight types of loans

are as follows: Residential Real Estate, Commercial Real Estate, Farmland,

Credit Cards, Other Consumer Loans, Leases, Commercial and Industrial

Loans, and Agricultural Loans. The data in Table 2.4 can also be accessed in

the R dataset chargeoff_rates.

Fig. 2.5 Scatterplot Smoothing for methane emissions versus year in the
United States, 1990–2014
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Table 2.4 Charge-off data from the Federal Reserve for eight types of loans

Quarter

Resid.
real
estate

Comm.
real
estate

Farm-
land

Credit
cards

Other
cons.
loans Leases

Comm.
and
indust.

Agri.
loans

10/1/2015 0.21 0.05 0.05 2.91 0.8 0.23 0.36 0.08
7/1/2015 0.14 0.03 0.01 2.76 0.66 0.18 0.24 0.04
4/1/2015 0.2 0.04 0 3.03 0.58 0.13 0.21 0.06
1/1/2015 0.28 0.02 0 3.03 0.67 0.16 0.15 0.02
10/1/2014 0.27 0.08 0.03 2.98 0.82 0.11 0.26 0.07
7/1/2014 0.26 0.05 �0.01 2.89 0.76 0.13 0.2 0.02
4/1/2014 0.26 0.09 0.1 3.45 0.65 0.06 0.2 0.02
1/1/2014 0.36 0.06 0.03 3.32 0.83 0.02 0.2 0.04
10/1/2013 0.49 0.19 0.11 3.33 0.95 0.03 0.29 0.08
7/1/2013 0.47 0.21 0.02 3.19 0.88 0.02 0.27 0.11
4/1/2013 0.73 0.3 0.03 3.62 0.72 0.17 0.3 0.01
1/1/2013 0.9 0.35 0.14 3.78 0.89 0.38 0.33 �0.01
10/1/2012 1.07 0.67 0.27 3.78 1.13 0.17 0.39 0.35
7/1/2012 1.74 0.67 0.28 3.74 1.03 0.35 0.49 0.24
4/1/2012 1.23 0.76 0.33 4.15 0.95 0.22 0.52 0.29
1/1/2012 1.39 0.74 0.2 4.29 1 0.11 0.51 0.15
10/1/2011 1.4 1.35 0.36 4.53 1.33 0.32 0.77 0.22
7/1/2011 1.52 1.27 0.32 5.63 1.26 0.18 0.76 0.13
4/1/2011 1.67 1.44 0.34 5.58 1.3 0.12 0.82 0.27
1/1/2011 1.71 1.51 0.37 6.96 1.7 0.19 1.05 0.38
10/1/2010 1.99 2.46 0.47 7.7 1.93 0.74 1.45 0.9
7/1/2010 1.91 2.36 0.4 8.55 1.81 0.54 1.73 0.72
4/1/2010 2.14 2.36 0.44 10.97 2.05 0.72 1.76 0.52
1/1/2010 2.44 2.1 0.41 10.5 2.39 0.88 1.87 1.05
10/1/2009 2.78 3.27 0.54 10.19 3.03 1.43 2.65 0.64
7/1/2009 2.41 2.55 0.35 10.1 3.07 1.39 2.54 0.53
4/1/2009 2.32 2.26 0.27 9.77 3.1 1.53 2.31 0.41
1/1/2009 1.81 1.32 0.21 7.62 2.98 0.8 1.71 0.43
10/1/2008 1.62 2.25 0.21 6.3 3.03 0.77 1.55 0.34
7/1/2008 1.79 1.13 0.08 5.8 2.37 0.55 0.98 0.17
4/1/2008 1.16 0.96 0.05 5.47 2.01 0.48 0.79 0.13
1/1/2008 0.85 0.46 0.04 4.7 1.95 0.31 0.61 0.07
10/1/2007 0.47 0.43 0.04 4.18 2.03 0.36 0.82 0.19
7/1/2007 0.25 0.16 0.04 3.95 1.47 0.29 0.42 0.09
4/1/2007 0.18 0.12 0 3.85 1.35 0.14 0.4 0.08
1/1/2007 0.15 0.06 �0.02 3.93 1.38 0.15 0.31 0.06

(continued)
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Table 2.4 (continued)

Quarter

Resid.
real
estate

Comm.
real
estate

Farm-
land

Credit
cards

Other
cons.
loans Leases

Comm.
and
indust.

Agri.
loans

10/1/2006 0.13 0.13 0.09 3.62 1.33 0.3 0.44 0.22
7/1/2006 0.1 0.04 0.01 3.87 1.08 0.09 0.27 0.09
4/1/2006 0.08 0.04 0.05 3.52 0.87 0.09 0.25 0.05
1/1/2006 0.09 0.02 0.02 3.12 0.92 0.19 0.18 0.08
10/1/2005 0.09 0.05 0.01 6.05 1.35 0.77 0.42 0.06
7/1/2005 0.07 0.05 0.03 4.33 2.04 1.04 0.19 0.03
4/1/2005 0.07 0.05 0.1 4.35 1 0.21 0.22 0.13
1/1/2005 0.08 0.04 0.02 4.6 1.11 0.32 0.22 0.05
10/1/2004 0.1 0.09 0.09 4.71 1.6 0.51 0.52 0.13
7/1/2004 0.09 0.06 0.04 4.4 1.19 0.36 0.4 0.16
4/1/2004 0.1 0.07 0.05 5.38 1.16 0.37 0.53 0.21
1/1/2004 0.12 0.06 0.01 5.38 1.28 0.43 0.67 0.26
10/1/2003 0.35 0.13 0.14 6.07 1.45 0.67 1.1 0.5
7/1/2003 0.12 0.15 0.08 5.4 1.36 0.79 1.17 0.36
4/1/2003 0.15 0.13 0.06 6.07 1.36 0.98 1.31 0.27
1/1/2003 0.14 0.09 0.04 5.77 1.41 1 1.38 0.29
10/1/2002 0.16 0.2 0.17 5.63 1.61 1.63 1.76 0.58
7/1/2002 0.15 0.14 0.05 5.94 1.46 0.86 2.03 0.48
4/1/2002 0.16 0.12 0.07 6.27 1.25 1.02 1.76 0.41
1/1/2002 0.15 0.14 0.09 7.8 1.45 0.8 1.44 0.34
10/1/2001 0.21 0.21 0.19 6.43 1.65 0.85 2.37 0.43
7/1/2001 0.45 0.12 0.06 5.23 1.27 0.79 1.29 1.07
4/1/2001 0.16 0.08 0.12 5.24 1.05 0.53 1.16 0.44
1/1/2001 0.13 0.09 0.12 4.7 1.12 0.46 0.87 0.57
10/1/2000 0.16 0.09 0.18 4.7 1.86 0.38 1.23 0.41
7/1/2000 0.12 0.06 0.1 4.31 0.9 0.3 0.66 0.3
4/1/2000 0.1 0.04 0.04 4.19 0.81 0.29 0.65 0.16
1/1/2000 0.11 0.03 �0.16 4.63 0.98 0.27 0.5 0.11
10/1/1999 0.16 0.06 0.11 4.62 1.16 0.4 0.75 0.35
7/1/1999 0.15 0.04 0.07 4.38 1.05 0.27 0.5 0.31
4/1/1999 0.11 0.02 0.04 4.36 0.83 0.31 0.5 0.34
1/1/1999 0.09 0.01 0 5.02 0.98 0.28 0.42 0.18
10/1/1998 0.09 0.06 0.07 5.26 1.16 0.27 0.57 0.45
7/1/1998 0.08 0.01 0 5.25 0.94 0.28 0.37 0.22
4/1/1998 0.08 �0.03 0.05 5.24 0.9 0.28 0.31 0.15
1/1/1998 0.08 0 �0.02 5.26 1 0.28 0.27 0.04

(continued)
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We begin by looking at the overall variation in the quarterly charge-off

rates over this twenty-five-year period. Figure 2.6 contains smoothed

scatterplots for each of the eight loan types. The first of these plots is

generated by the following R commands. (These differ from the earlier call

Table 2.4 (continued)

Quarter

Resid.
real
estate

Comm.
real
estate

Farm-
land

Credit
cards

Other
cons.
loans Leases

Comm.
and
indust.

Agri.
loans

10/1/1997 0.11 0.04 0.24 5.49 1.12 0.39 0.35 0.32
7/1/1997 0.09 0.01 0.05 5.37 0.96 0.2 0.31 0.14
4/1/1997 0.1 0.01 0 5.39 0.92 0.25 0.21 0.19
1/1/1997 0.08 �0.02 �0.02 4.91 0.97 0.24 0.16 0.07
10/1/1996 0.11 0.1 0.09 4.73 1.07 0.26 0.26 0.37
7/1/1996 0.09 0.11 0.03 4.45 0.89 0.33 0.2 0.26
4/1/1996 0.1 0.14 0.03 4.53 0.77 0.22 0.26 0.28
1/1/1996 0.1 0.12 0 4.21 0.78 0.16 0.22 0.18
10/1/1995 0.14 0.32 0.09 4.02 0.89 0.19 0.35 0.37
7/1/1995 0.12 0.24 0.13 3.63 0.64 0.07 0.29 0.14
4/1/1995 0.13 0.51 0.05 3.33 0.56 0.22 0.11 0.15
1/1/1995 0.1 0.22 0 2.94 0.51 0.03 0.13 �0.01
10/1/1994 0.19 0.68 0.11 3.14 0.63 0.14 0.31 0.37
7/1/1994 0.12 0.51 0.06 2.93 0.47 0.14 0.17 0.15
4/1/1994 0.18 0.7 0.02 3.07 0.46 0.07 0.28 0.13
1/1/1994 0.14 0.64 0.02 3.29 0.45 0.04 0.21 0.11
10/1/1993 0.22 1.24 0.22 3.4 0.71 0.37 0.73 0.32
7/1/1993 0.2 1.23 0.14 3.58 0.6 0.35 0.6 0.06
4/1/1993 0.25 1.5 0.08 3.89 0.58 0.33 0.77 0.21
1/1/1993 0.17 1.3 0.04 4.08 0.63 0.47 0.65 0.1
10/1/1992 0.31 2.58 0.23 4.59 1 0.83 1.34 0.34
7/1/1992 0.28 2.57 0.34 4.31 0.83 0.53 1.28 0.38
4/1/1992 0.21 1.74 0.24 4.92 0.86 0.61 1.2 0.3
1/1/1992 0.16 1.69 0.16 4.9 1.01 0.72 1.37 0.19
10/1/1991 0.26 2.78 0.27 4.68 1.3 0.86 2.33 0.78
7/1/1991 0.21 2 0.41 4.73 1.03 0.77 1.79 0.46
4/1/1991 0.18 1.81 0.26 4.69 1.06 0.66 1.69 0.33
1/1/1991 0.16 1.34 0.12 4.16 1.18 0.91 1.05 0.17

Source: http://www.federalreserve.gov/releases/chargeoff/chgallnsa.htm
[Accessed May 8, 2016]
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to the scatter:smoothð Þ function only for aesthetic reasons. By default, the

function does not handle the quarterly time points well and thus the horizon-

tal axis can appear a bit strange. Try it for yourself to confirm!) Note that we

have also specified the span argument to be equal to 1/5. This argument,

whose technical details are beyond the scope of this book, controls how

smooth or rough the smoothed line will be. Again, try a few values to see

for yourself what it does!

Fig. 2.6 Scatterplot smoothing for data from 1991 to 2015 for each of the
eight loan types
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> plot(chargeoff_rates$Quarter, 
chargeoff_rates$ResidentialRE,
xlab = "Quarter",
ylab = "Chargeoff Rate",
main = "Scatterplot of Residential Real Estate and Quarter")

> lines(loess.smooth(chargeoff_rates$Quarter,     
chargeoff_rates$ResidentialRE,
span = 1/5))

The R code to generate the smoothed scatterplots for the other seven loan

types is omitted, but you can replace the references above to “Residential Real

Estate” and “ResidentialRE” with one of the other column names in the

Fig. 2.6 (continued)
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chargeoff_rates dataset. (Hint: You can use the command below to obtain all of

the column names for the dataset.)

> colnames(chargeoff_rates)

Note that some of the charge-off rate values are negative, meaning that in

these particular quarters, banks recovered more dollars on loans that were

previously thought to be lost than actual losses. How well do you think that

Fig. 2.6 (continued)
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the smoothed lines fit the actual data? The real world is often very messy, as

many people unfortunately discovered in the Great Recession of 2008! While

most of the loan types have spikes in charge-off rates, the numbers, sizes, and

timing of such spikes vary quite a bit. Also, note that the scales of the vertical

axes are quite different for some of the loan types.

Fig. 2.6 (continued)
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2.1.3 Including a Third Variable on Scatterplots

Example 2.6. Yearly Charge-Off Rates for Loans Used for Farmland

Separated by Quarter Table 2.5 contains a subset of the charge-off rates on

agricultural loans grouped by quarter for the years 1991 through 2015 (the rest

of the data may be found in the R dataset agricultural_chargeoff_rates_-

by_quarter). Note that this information is contained within Table 2.4, but is

now presented in a different format. Instead of simply creating a time series

plot, it is sometimes useful to create a scatterplot and then use a different

plotting symbol to represent a third variable of interest. In this way three

variables can be represented on a two-dimensional plot. Figure 2.7 contains a

scatterplot of the second- and fourth-quarter charge-off rates for agricultural

loans by year using quarter as the plotting symbol. We generate this by first

selecting the indices of charge-off rates from the second and fourth quarters

and then using these indices and the previous dataset to create a new variable

named q2_q4_agricultural_chargeoff_rates.

Table 2.5 Charge-off rates for agricultural loans by
year and quarter from 1991 to 2015

Year Quarter
Agricultural
loans

2015 4 0.08
2015 3 0.04
2015 2 0.06
2015 1 0.02
2014 4 0.07
. . . . . . . . .
. . . . . . . . .
1992 1 0.19
1991 4 0.78
1991 3 0.46
1991 2 0.33
1991 1 0.17

Source: http://www.federalreserve.gov/releases/
chargeoff/chgallnsa.htm [Accessed May 8, 2016]
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> second_and_fourth_indices <-
agricultural_chargeoff_rates_by_quarter$Quarter %in% c(2,4)

> q2_q4_agricultural_chargeoff_rates <-
agricultural_chargeoff_rates_by_quarter[second_and_fourth_indices,]

We generate the scatter plot as before, using the R function plotð Þ on our

newly defined dataset, but with the extra argument pch (which stands for

“plot characters”) specified. With this argument, we are instructing R to use

the value stored in the Quarter column of our dataset to determine which

symbol to use in the plot.

> plot(q2_q4_agricultural_chargeoff_rates$Year, 
q2_q4_agricultural_chargeoff_rates$AgriculturalLoans,
xlab = "Year",
ylab = "Chargeoff Rate",
main = "Scatterplot of Agricultural Loans and Year, Grouped by 

Quarter",
pch = q2_q4_agricultural_chargeoff_rates$Quarter)

Finally, to make the plot easier to interpret, we add a legend using the

R function legendð Þ. An entire book could be (and many have been!) devoted

to the rich capabilities of R’s plotting functions. We encourage you to explore

this functionality, but in the interest of brevity, we simply provide the follow-

ing function without discussion.

Fig. 2.7 Q2 and Q4 charge-off rates for agricultural loans by year from
1991 to 2015
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> legend("topleft",
inset = c(0.2,0), 
bty = "n", 
legend = c("Q2", "Q4"), 
pch = c(2,4))

This modified scatterplot seems to indicate a higher percentage of agricul-

tural loans charge off in Q4 than in Q2, at least for the 25-year period

examined. Try producing the same scatterplot for all four quarters on your

own, but be warned that the picture becomes much messier!

Section 2.1 Practice Exercises

2.1.1. TIAA-CREF Account Performances. Many teachers, professors, and

other educational professionals have their retirement funds in TIAA-CREF

accounts. In these accounts, individuals can make their own allocation

decisions so it is important to track the performance of the various options.

Table 2.6 contains a subset of historical unit values from January 2, 2015 to

March 15, 2016 for seven TIAA and CREF variable annuities (the full table

may be found in the R dataset tiaa_cref).

(a) Create a histogram for the unit values in the equity index account and

comment on the overall shape of the data collection distribution.

(b) Comment on the pattern in the unit values for the Growth and

Income account over this time period. What visual display do you

think is most appropriate for demonstrating this pattern?

(c) The initial unit values for both the Equity Index and Real Estate

Securities accounts were close to $15.50 on January 2, 2015. Compare

these two sets of unit values over the time periods by constructing

side-by-side boxplots and describe any differences.

(d) One way to compare accounts with different unit values is to create

new variables that measure the percentage increases from January

2, 2015 to March 15, 2016. Explain how to create new variables that

measure such percentage increases for the Global Natural Resources
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and Social Choice Equity accounts. That is, identify the linear

transformations that would be used to create the appropriate

percentages.

(e) Is there any association between the units values for the Equity Index

account and those for the Real Estate Securities account? If so,

describe the nature of the association and comment on the strength

of the association.

2.1.2. TIAA-CREF Account Performances. Use the TIAA-CREF variable

annuities data in Table 2.6 (and the R dataset tiaa_cref) to answer the

following questions.

(a) Create a time series plot for the set of historical unit values for each

TIAA-CREF annuities account.

(b) Comment on the overall patterns and departures from those patterns.

(c) By simply looking at the graphs, which set of unit values appears to

be the most variable?

(d) Calculate two numerical measures of variability for each set of unit

values and compare them across the annuities accounts. Did you

guess correctly in part (c)?

(e) Calculate the percentage change in each account from January 2, 2015

to March 15, 2016.

(f) If a teacher had invested $1000.00 in each of the 8 accounts on

January 2, 2015, what would the value of each account have been

on March 15, 2016?

2.1.3. Median Weekly Earnings. Use the weekly earnings data in Table 2.1

(and the R dataset weekly_salaries) to explore the relationships between the

median weekly earnings for men and women in service occupations and

construction and extraction occupations.
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(a) Plot median weekly earnings for men who work in service

occupations versus women who work in service occupations. Com-

ment on the nature and strength of the association.

(b) Plot median weekly earnings for men who work in construction and

extraction occupations versus women who work in construction and

extraction occupations. Comment on the nature and strength of the

association and compare your results to those in (a).

2.1.4. Median Weekly Earnings. Use the weekly earnings data in Table 2.1

(and the R dataset weekly_salaries) to analyze the time series for median

weekly earnings for men and women in sales and office occupations.

(a) Construct a time series plot of median weekly earnings for men who

work in sales and office occupations.

(b) Construct a time series plot of median weekly earnings for women

who work in sales and office occupations.

(c) Do the plots show similar patterns? Are these patterns what you

would have expected to see before you constructed the plots? Explain.

2.1.5. Pine Tree Growth. Use the pine data in the R dataset pines_1997 to

construct scatterplots and comment on the nature of the association for each

pair of variables listed below. Would you be comfortable predicting the value

of one variable if you were given information regarding the other variable?

(a) Spread97 and Hgt97

(b) Spread97 and Diam97

(c) Needles97 and Spread97

(d) Needles97 and Hgt97

(e) Diam96 and Diam97

(f) Grow96 and Spread97

2.1.6. Pine Tree Growth. Which of the following two relationships do you

think will be stronger for the pine data? Why?
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Hgt90 and Hgt96

or

Hgt96 and Hgt97

After you describe the rationale for your choice, construct appropriate

scatterplots to check your conjecture.

2.1.7. Greenhouse Gas Emissions. Use the domestic greenhouse gas emissions

of air pollutants data in Table 2.3 (and in the R dataset emissions) to evaluate

the time series data on air pollutants from 1990 to 2014.

(a) Construct separate time series plots for carbon dioxide, nitrous oxide,

and fluorinated gases.

(b) Use scatterplot smoothing methods on each of the three plots in

part (a).

(c) Is the decreasing trend that was shown for methane (see Figs. 2.4

and 2.5) clearly visible for the other three air pollutants as well? If

not, identify the pollutants that follow different trends and comment

on the nature of those trends.

(d) How would you estimate the average yearly rate of change for a

particular air pollutant from 1990 to 2014?

(e) Use your method from part (d) to estimate the average rate of change

for each of the four air pollutants. Are the estimates close to one

another? According to your estimates, which pollutant has decreased

the most?

(f) Which pollutant was the most variable over the period from 1990 to

2014? Justify your answer by referring to the time series plots and

computing appropriate measures of variability.

2.1.8. Charge-off Rates. Use the R dataset chargeoff_rates to answer the follow-

ing questions.

2.1 Exploring the Relationship Between Two Quantitative Variables 167



(a) Is there a positive association between the charge-off rates of agricul-

tural loans and credit cards? If so, how strong is the association?

(b) Repeat part (a) for residential real estate loans and commercial real

estate loans.

2.1.9. Kentucky Derby Races. Race statistics for the Kentucky Derby are

presented in Table 2.7 (and are available in theR dataset kentucky_derby_2012)

for 1990–2012.

Table 2.7 Kentucky Derby race statistics (1990–2012)

Date Winner Jockey Net to winner Time Track

1990 Unbridled C. Perret 581,000 2:02 Good
1991 Strike the Gold C. Antley 655,800 2:03 Fast
1992 Lil E. Tee P. Day 724,800 2:03 Fast
1993 Sea Hero J. Bailey 735,900 2:02.4 Fast
1994 Go for Gin C. McCarron 628,800 2:03.6 Sloppy
1995 Thunder Gulch G. Stevens 707,400 2:01.2 Fast
1996 Grindstone J. Bailey 869,800 2:01 Fast
1997 Silver Charm G. Stevens 700,000 2:02.4 Fast
1998 Real Quiet K. Desormeaux 738,800 2:02.2 Fast
1999 Charismatic C. Antley 886,200 2:03.2 Fast
2000 Fusaichi Pegasus K. Desormeaux 1,038,400 2:01 Fast
2001 Monarchos J. Chavez 812,000 1:59.97 Fast
2002 War Emblem V. Espinoza 1,875,000 2:01.13 Fast
2003 Funny Cide J. Santos 800,200 2:01.19 Fast
2004 Smarty Jones S. Elliot 5,854,800 2:04.06 Sloppy
2005 Giacomo M. Smith 2,399,600 2:02.75 Fast
2006 Barbaro E. Prado 2,000,000 2:01.36 Fast
2007 Street Sense C. Borel 2,210,000 2:02.17 Fast
2008 Big Brown K. Desormeaux 2,000,000 2:01.82 Fast
2009 Mine That Bird C. Borel 2,000,000 2:02.66 Fast
2010 Super Saver C. Borel 2,000,000 2:04.45 Fast
2011 Animal Kingdom J. Velazquez 2,000,000 2:02.04 Fast
2012 I’ll Have Another M. Gutierrez 2,000,000 2:01.83 Fast

Source: www.kentuckyderby.ag [Accessed 5/10/16]
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(a) Construct a time series plot for the winning times and comment on

any obvious patterns. (Note that you may need to change the Time

column to be easier to work with and plot.)

(b) Construct a time series plot for the net amount of money paid to the

winner of the race and comment on the pattern over time.

(c) Add a plotting symbol to the time series plot in part (a) that identifies

the condition of the track. Does the condition of the track affect the

winning times? Compute appropriate descriptive statistics to justify

your response.

(d) Add a plotting symbol to the time series plot in part (b) that identifies

the condition of the track. Does the condition of the track effect the net

amount of money paid to the winner? Compute appropriate descrip-

tive statistics to justify your response.

(e) Is there any association between winning time and the net amount of

money paid to the winner? Justify your response.

2.2 Measuring the Strength of Association

As we have seen in Sect. 1, visualizing the raw data with scatterplots can

be very helpful in getting a feel for the overall association between two

variables. However, we would also like to have descriptive statistics to

quantify the overall strength of the association. Two analysts may disagree

in their subjective interpretations of a particular scatterplot so it is useful to

include both visual displays and descriptive statistics in any complete

analysis.

Our first measure of association is known as the Pearson correlation

coefficient and it will be denoted by r. To formally define this statistic, we

need to establish some mathematical notation. Suppose we refer to the vari-

able on the horizontal axis as X and the variable on the vertical axis as Y.
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Since we have n pairs of observations in our bivariate data set, we will refer to

these pairs using subscript notation. The subscript may be written out for

each pair using dot-dot-dot notation, (x1, y1), . . ., (xn, yn), or a generic

subscript and its range may be provided for an arbitrary pair, (xi, yi), for

i ¼ 1, . . ., n. To check whether large values of X occur with large or small

values of Y, the deviation of xi from its mean is multiplied by the deviation of

yi from its mean.

Table 2.8 shows the four nonzero possibilities for the deviations and the

products of the deviations. If both deviations are negative (below average),

then the product of the deviations will be positive. If both deviations are

positive (above average), then the product of the deviations will again be

positive. If one deviation is negative (below average) and the other deviation

is positive (above average), then the product of the deviations will be

negative.

This process of comparing deviations is completed for each pair of

observations. Then, the results of the individual comparisons are combined

by adding together all of the products. This process determines the sign of the

correlation coefficient. The final step in computing the correlation

coefficient is to standardize the statistic so that it will be on a unit-less scale

that can be interpreted appropriately in an arbitrary setting. The required

standardization is provided in Definition 2.5.

Table 2.8 Understanding the direction of the association and the sign of
the Pearson correlation coefficient

Deviation from x mean�
xi � �x

� Deviation from y mean�
yi � �y

� Product of deviations�
xi � �x

��
yi � �y

�
Negative Negative Positive
Negative Positive Negative
Positive Negative Negative
Positive Positive Positive
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Definition 2.5 Suppose that n pairs of observations, (xi, yi) for i ¼ 1, . . .,

n, are obtained on two quantitative variables. The Pearson correlation

coefficient between x and y is

r ¼
Pn
i¼1

�
xi � �x

��
yi � �y

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�
xi � �x

�2 Pn
j¼1

�
yj � �y

�2s ð2:1Þ

Notice that the standardization relies on the sums of the squared

deviations from the means. These sums of squared deviations were also

fundamental in measuring variability about the mean in Chapter 1. In the

exercises you will be asked to show that the Pearson correlation coefficient

can be rewritten in terms of the standard deviations for x (sx) and y (sy) as

r ¼ 1
n� 1

Pn
i¼1

�
xi � �x

��
yi � �y

�
sxsy

ð2:2Þ

Example 2.7. On Time Airline Arrivals Table 2.9 (and the R dataset

airline_arrivals) contains on time arrival records for U.S. flight carriers in

2015. Percentages of on time arrivals and ranks among the carriers are

provided for all four quarters of the year 2015, the month of December, and

the entire year 2015. Do you think there is any association between the

percentages of flights that arrived on time during the first quarter and the

percentages of flights that arrived on time during the second quarter for these

airlines?

Figure 2.8 is a scatterplot of the on time percentages for the first quarter

versus those for the second quarter across the thirteen airlines, which we

again generate using the R function plotð Þ.
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> plot(airline_arrivals$Q1.Percent,
airline_arrivals$Q2.Percent,
xlab = "First Quarter",
ylab = "Second Quarter",
main = "On Time Arrival Percentages in First and Second Quarters 

of 2015")

The scatterplot shows that there is positive association between the on

time arrival percentages for these two quarters. (The association would

be even stronger if it weren’t for Spirit’s nearly 9% drop in on time

arrivals from Q1 to Q2!) Table 2.10 illustrates the steps involved in the

computation of the correlation coefficient r for these data. Columns 3 and

4 contain the deviations from �x ¼ 75:11538 and �y ¼ 78:44615 , respectively.

Column 5 contains the product of the deviations, and Columns 6 and 7 contain

the squared deviations.

To complete the computation of r, we add Columns 5, 6, and 7 and enter

these sums into the formula in (2.1). The sums of Columns 5, 6, and 7 are,

respectively,

Fig. 2.8 Scatterplot of on time arrival percentages of U.S. flight carriers for
the first and second quarters, 2015
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Xn
i¼1

�
xi � �x

��
yi � �y

� ¼ 477:8908

Xn
i¼1

�
xi � �x

�2 ¼ 702:7569

Xn
i¼1

�
yi � �y

�2 ¼ 692:9523

and the correlation coefficient r for these data is then

r ¼ 477:8908ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
702:7569ð Þ 692:9523ð Þp ¼ 0:6848:

Having successfully computed the value of the correlation coefficient, how

do we interpret r¼ 0.6848? Some properties of rwill help us understand more

about what we can and cannot conclude for a value of r ¼ 0.6848. Figure 2.9

contains several scatterplots and the corresponding values of r.

2.2.1 Properties of r

Careful examination of Fig. 2.9 reveals several interesting properties of the

correlation coefficient r. We list some of the properties below and then add

some additional properties for you to think about and experiment with in the

Sect. 2 Exercises.

The correlation coefficient r is always between �1 and 1, inclusive.

A positive value of r indicates positive association. The closer r gets to

1 the stronger the positive association. (Consider the first scatterplot in

Fig. 2.9.)

A negative value of r indicates negative association. The closer r gets to�1

the stronger the negative association. (Consider the fourth scatterplot in

Fig. 2.9.)

Perfect positive (negative) association is indicated by r ¼ 1 (r ¼ �1).
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Fig. 2.9 Values of the correlation coefficient r for a variety of data
scatterplots
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Fig. 2.9 (continued)
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Values of r close to zero indicate very weak (minimal) association. (Con-

sider the second scatterplot in Fig. 2.9.)

Interchanging the labels for x and y will not change the value of r.

Applying linear transformations to x, y, or both variables will not change

the value of the correlation coefficient. The sign may change (if the slope

parameters in the transformations have different signs), but the absolute

value of the correlation coefficient will remain the same. (Consider the

fourth and fifth scatterplots in Fig. 2.9.)

The value of r can be affected by a few unusual observations in the data

set. (Consider the final scatterplot in Fig. 2.9.)

The correlation coefficient r measures only linear association. Two

variables could be perfectly related by some nonlinear relationship (qua-

dratic, periodic, etc.) and the value of r would be very close to zero.

(Consider the third scatterplot in Fig. 2.9.)

The R function corð Þ can also be used to easily compute the value of r for a

given dataset.

2.2.2 An Alternative Measure of Association

The fact that rmeasures only linear association and can be affected by unusual

observations should raise at least some concern about the applicability of this

statistic in some settings. Such concerns led to the development of an alterna-

tive measure of association, known as the Spearman rank correlation.

Spearman’s rank correlation coefficient, which we will denote by rS, is based

on separate ranks of the x’s and y’s. More specifically, let ri be the rank of xi

among x1, . . ., xn and let si be the rank of yi among y1, . . ., yn. The Spearman

rank correlation coefficient rS, which is formally defined in Definition 2.6, is

then simply the correlation coefficient from (2.1) computed on the ranks (ri, si)

instead of the original observations (xi, yi).
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Definition 2.6 Suppose that n pairs of observations, (xi, yi) for i ¼ 1, . . .,

n, are obtained on two quantitative variables. Let ri denote the rank of xi

among x1, . . ., xn and let si denote the rank of yi among y1, . . ., yn. The

Spearman rank correlation coefficient rS for these data is

rs ¼
Pn
i¼1

�
ri � �r

��
si � �s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�
ri � �r

�2 Pn
j¼1

�
sj � �s

�2s ð2:3Þ

Example 2.8. Computing Spearman’s Rank Correlation Coefficient In

Example 2.7 we found the Pearson correlation coefficient of r ¼ 0.6848

between the first quarter and second quarter on time arrival percentages for

U.S. flight carriers. To compute Spearman’s rank correlation coefficient rS, we

return to Table 2.9 and notice that the necessary ranks have already been

provided in Columns 3 and 5. Replacing the columns in Table 2.10 with the

appropriate values for the ranks (or by again using the R function corð Þ, but
with themethod argument specified to be “spearman”), we find rS¼ 0.741. For

these on time arrival percentages there appears to be only a small difference

between Pearson’s correlation coefficient and Spearman’s correlation coeffi-

cient, something you can further investigate in Exercise 2.2.3.

Section 2.2 Practice Exercises

2.2.1. On Time Flight Arrivals. Use the on time arrival data for U.S. flight

carriers in Table 2.9 to compute Pearson’s correlation coefficient for:

(a) first quarter arrival percentages and December arrival percentages;

(b) third quarter arrival percentages and 12-month arrival percentages;

(c) fourth quarter arrival percentages and 12-month arrival percentages;

(d) 12-month arrival percentages and December arrival percentages.
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2.2.2. On Time Flight Arrivals. Compute Spearman’s rank correlation coeffi-

cient for each pair of variables in Exercise 2.2.1 and compare the twomeasures

of association. Are the correlation coefficients roughly the same for all four

pairs of variables?

2.2.3. On Time Flight Arrivals. Either by hand or using the R function corð Þ,
compute Pearson’s correlation coefficient and Spearman’s rank correlation

coefficient for the first and second quarter on time arrival percentages as in

Examples 2.7 and 2.8, except now remove Spirit Airlines from your

calculations. Does this affect the coefficients? Why?

2.2.4. Domestic Airline Flights. Table 2.11 shows the aircraft departures, miles

flown, and hours flown for domestic flights of large certified air carriers from

2000 to 2015.

Table 2.11 Number of aircraft departures, miles flown, and hours flown
for domestic flights of large certified air carriers, 2000–2015

Year Number of departures Miles flown (thousands) Hours flown

2000 7,895,860 5,066,796 12,422,456
2001 7,618,250 4,998,018 12,124,521
2002 8,079,009 5,024,072 12,341,520
2003 9,453,415 5,488,549 13,772,989
2004 9,962,389 5,942,197 14,772,895
2005 10,033,140 6,067,796 15,057,919
2006 9,707,992 5,967,798 14,765,098
2007 9,835,733 6,083,414 15,035,358
2008 9,375,728 5,834,031 14,458,611
2009 8,766,874 5,413,362 13,394,974
2010 8,700,353 5,455,511 13,362,769
2011 8,647,658 5,497,877 13,457,621
2012 8,445,486 5,460,376 13,250,921
2013 8,324,013 5,477,514 13,267,592
2014 8,109,302 5,450,627 13,145,456
2015 8,059,756 5,554,106 13,303,173

Source: “U.S. Air Carrier Traffic Statistics” – Bureau of Transportation Statis-
tics www.rita.dot.gov/bts/acts [Accessed 5/15/16]
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(a) Construct a time series plot to investigate the association between

miles flown and hours flown. Comment on the direction and strength

of the association.

(b) Find the two sets of ranks necessary for computing Spearman’s rank

correlation coefficient between year and miles flown. That is, identify

(r1, . . ., r16) and (s1, . . ., s16).

(c) Compute the value of Spearman’s rank correlation coefficient

between year and miles flown.

(d) Compute the value of Pearson’s correlation coefficient between year

and miles flown. Is this value close to the value of Spearman’s rank

correlation coefficient obtained in part (c)?

(e) Suppose that the years were recoded to begin at 1 (2000) and end at

16 (2015) and the correlation coefficients in parts (c) and (d) were

computed using the recoded values. Would the correlation

coefficients remain the same or change? Explain.

2.2.5. Domestic Airline Flights. Use the data in Table 2.11 to explore the

relationship between the number of hours flown and the number of

departures for the large air carriers.

(a) Construct a scatterplot and compare the two statistics for measuring

the strength of association between the number of hours flown and

the number of departures for large air carriers.

(b) Which measure do you prefer for this pair of variables? Why?

2.2.6. A random number generator was used to produce the first column of

data in Table 2.12. The second column was created from the first column by

applying a transformation (not necessarily a linear transformation). The third

and fourth columns show the ranks (ri and si) of the values in columns one

and two, respectively.

(a) Compute the value of Pearson’s correlation coefficient between

x and y.
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(b) Compute the value of Spearman’s rank correlation coefficient

between x and y.

(c) Construct a scatterplot and examine the raw data to determine the

transformation used to create the y-values in column 2 of Table 2.12.

(d) Which measure of association do you prefer for these data? Why?

2.3 Exploring the Relationship between Two Categorical
Variables (Frequency Tables)

Example 2.9. Smoking During Pregnancy and Educational Level

of Mother Is there any association between the educational level of a mother

and whether or not she chooses to smoke during pregnancy? You might

initially think that this question is an easy one to answer: simply collect the

appropriate data and compute one of the two measures of association from

Sect. 2. But there are some major problems with this thought. How are you

going to measure educational level? What will you do with the yes or no

responses from the pregnant mothers? When one or both of the variables of

interest are categorical, there is no easy formula that can be used to measure

Table 2.12 Randomly generated data and
functions of randomly generated data

x y r s

1.16342 1.8321 8 5
�0.49786 0.0614 7 1
�0.99839 0.9936 4 4
�0.81233 0.4354 5 3
�1.17106 1.8807 3 6
�1.34665 3.2887 2 7
�1.79934 10.4822 1 8
�0.68416 0.2191 6 2

182 2 Exploring Bivariate and Categorical Data



association. Instead, the analyst must compute appropriate percentages and

use visual displays to answer the question.

Table 2.13 shows the percentages of mothers in the United States from

2010 to 2014 who smoked during pregnancy for various categories of educa-

tional level. Figure 2.10 is a bar graph of the percentages for the year 2010

Table 2.13 Percentages of mothers who smoked during pregnancies by
educational level, 2010–2014

Education level 2010 2011 2012 2013 2014

8th grade or less 4.24 4.75 4.75 4.65 5.06
9th through 12th grade with no diploma 19.85 20.07 20.20 20.09 20.51
High school graduate or GED completed 17.01 16.41 16.06 15.97 15.81
Some college, but not a degree 11.83 11.53 11.54 11.19 10.96
Associate degree 7.08 6.63 6.69 6.44 6.24
Bachelor’s degree 1.46 1.35 1.33 1.27 1.20
Master’s degree 0.57 0.58 0.54 0.52 0.49
Doctorate or Professional degree 0.42 0.38 0.34 0.33 0.32

Source: Centers for Disease Control and Prevention (CDC) “WONDER Online
Database, February 2016. [Accessed at http://wonder.cdc.gov/natality-cur
rent.html on May 20, 2016]

Fig. 2.10 Bar graph of percentages of mothers who smoked during
pregnancies in 2010
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generated using the R function barplotð Þ and the dataset mother_smoking_

education_2010 as follows.

> barplot(mother_smoking_education_2010$Percentage, 
ylab = 'Percentage', 
names.arg = mother_smoking_2010$Education,
las = 2,
main = "Percentages of Mothers Who Smoked During Pregnancies

in 2010")

Note that the barplotð Þ function takes many of the same arguments that we

have seen previously when dealing with the plotð Þ function. In addition to

those we’ve encountered before, we use the names.arg argument to specify the

names for the x axis and the las argument to specify the orientation of these

names. (If we had left them horizontal rather than vertical, the bar graph

would be much harder to read!) There appears to be a clear relationship

between educational level and the percentage of mothers who smoked—as

educational level increases the percentage of mothers who smoked during

pregnancies tends to decrease, suggesting a negative association. This pattern

appears to hold for all education levels except for “8th grade or less”. Having

checked the data on the CDC website, the rate of smoking during pregnancy

for mothers who stop going to school in the 8th grade or earlier is consistently

less than for mothers who finish 9th–12th grade but do not graduate across all

age levels. Your authors’ best guess is that mothers who drop out of school

before high school avoid the associated peer pressure which may lead many

of these mothers to start smoking in the first place. What do you think

explains this phenomenon?

Do you think this association is the same for the other years 2011–2014? To

investigate the association between these two categorical variables over time,

we can create another bar graph by putting year on the x-axis and using

different colors to identify the educational level of the mother. Figure 2.11

uses the R dataset mother_smoking_education to clearly show that the negative

association is present for all 5 years. Note that the R function barplotð Þ does
not have an easy way to generate grouped bar graphs like the one in Fig. 2.11,
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so the plot was generated using the ggplot2 package, which is a very

powerful (but also more complicated to learn!) plotting tool.

Section 2.3 Practice Exercises

2.3.1. Age Related Smoking During Pregnancies. Table 2.14 shows the percent-

age of mothers in the United States who smoked during pregnancies from

2010 to 2014 for various age categories. The data are also available in the

R dataset mother_smoking_age.

(a) Create a bar graph to compare the percentages of mothers who

smoked during pregnancies for each age category in 2010. Is there a

strong association between age and whether or not a mother chooses

to smoke during pregnancy?

Fig. 2.11 Bar graph of percentages of mothers who smoked during
pregnancies, 2010–2014
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(b) Similar to Fig. 2.11, create bar graphs grouped by year (using multiple

plots if necessary) to compare the association for all 5 years. Do you

see any consistent pattern?

(c) How do you think the data in Table 2.14 were obtained by the Centers

for Disease Control?

2.3.2. Educational Level and Smoking During Pregnancies. Table 2.15 shows the

percentages of mothers in the United States from 1989 to 1993 who smoked

during pregnancy for various categories of educational level. The data are

also available in the R dataset mother_smoking_education_1989_1993.

Table 2.14 Percentages of mothers who smoked during pregnancies by
age, 2010–2014

Age 2010 2011 2012 2013 2014

Under 15 2.94 2.29 2.99 2.59 2.68
15–19 years 14.19 13.24 12.53 11.88 11.37
20–24 years 16.88 16.37 15.98 15.37 14.92
25–29 years 10.23 10.00 9.91 9.83 9.91
30–34 years 6.00 6.04 6.02 6.03 6.05
35–39 years 4.74 4.71 4.60 4.58 4.80
40–45 years 4.87 4.63 4.48 4.27 4.31
45–49 years 3.11 2.89 2.72 2.24 2.68
50–54 years 1.5 2.04 1.21 0.85 1.95

Source: Centers for Disease Control and Prevention (CDC) “WONDER Online
Database, February 2016. [Accessed at http://wonder.cdc.gov/natality-cur
rent.html on May 20, 2016]

Table 2.15 Percentages of mothers who smoked during pregnancies by
educational level, 1989–1993

Educational level 1989 1990 1991 1992 1993

0–8 years 20.8 19.2 18.3 16.8 15.2
9–11 years 35 33.3 31.9 30.6 29
12 years 22.2 21.2 20.6 20.1 19.3
13–15 years 13.6 12.7 12.4 12 11.3
16 years or more 5 4.5 4.2 3.9 3.1

Source: Centers for Disease Control and Prevention, National Center for
Health Statistics, Health, United States, 1995
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(a) Create a bar graph to compare the percentages of mothers who

smoked during pregnancies for each educational level in 1990. In

1990, was there a strong association between age and whether or

not a mother chooses to smoke during pregnancy? Compare this

with the findings about the relationship between mothers’ smoking

habits and education in 2010 that were discussed in Example 2.9.

(b) Similar to Fig. 2.11, create bar graphs grouped by year (using multiple

plots if necessary) to compare the association for all 5 years. Do you

see any consistent pattern?

(c) What do you notice about the overall levels of smoking in Table 2.15

compared to those in Table 2.13? Do the changes in these levels seem

to affect all education levels equally? What do you think the data will

look like in 2031–2035?

2.3.3. Does Where You Live Affect Your Health? Table 2.16 shows a sample of

“chronic disease indicators”, as reported by the CDC’s Division of Population

Health, for the four states California, Michigan, Ohio, and West Virginia.

These values represent the following indicators for the states:

1. Prevalence of obesity among adults 18 or older (age-adjusted, as of

2013)

2. Prevalence of heavy drinking among adults 18 or older (age-adjusted,

as of 2013)

Table 2.16 U.S. Chronic Diseases Indicators (CDI)

State Obesity Heavy drinking Life expectancy Poverty

CA 24.10 6.30 78.80 17.00
MI 31.30 6.30 76.90 17.40
OH 30.20 5.50 76.49 16.30
WV 35.50 4.10 75.28 17.80

Source: Centers for Disease Control and Prevention http://catalog.data.gov/
dataset/u-s-chronic-disease-indicators-cdi-ff843 [Accessed on May 21, 2016]
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3. Life expectancy at birth (as of 2001)

4. Prevalence of poverty (as of 2012)

The data are also available in the R dataset state_cdi.

(a) Create a bar graph to compare the prevalence of obesity for these

states. Is the relationship between state and obesity what you would

have expected?

(b) Create similar bar graphs for the four states and each of the other

three indicators. Does the pattern you found for obesity hold as well

for the other indicators?

(c) Create a scatterplot of the four pairs of observations for obesity and

life expectancy. Does there appear to be any association between the

two? Would you have expected this before seeing the data?

2.3.4. Is There a Relationship between Political Affiliation and Views Toward

Science? Table 2.17 shows the percentages of people who answered “yes” to

the following questions in a survey conducted by the Pew Research Center in

2014, grouped by political affiliation. The questions were:

1. From what you’ve heard or read, do scientists generally agree that the

earth is getting warmer because of human activity?

2. Thinking about childhood diseases, such as measles, mumps, rubella,

and polio, should parents be able to decide NOT to vaccinate their

children?

Table 2.17 Percentages of respondents who answered “yes” to various
questions about science by political party

Political party Global warming Vaccines Human astronauts GMO

Republican 40.51 33.63 66.82 52.01
Democrat 75.79 20.82 62.15 37.70
Independent 62.57 31.26 60.22 41.19

Source: Pew Internet & American Life Project, Science Issues. http://www.
pewinternet.com/datasets/2014-science-issues/ [Accessed on May 21, 2016]
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3. The cost of sending human astronauts to space is considerably greater

than the cost of using robotic machines for space exploration. As you

think about the future of the U.S. space program, do you think it is

essential to include the use of human astronauts in space?

4. Do you think it is generally safe to eat genetically modified foods?

These values are also available in the R dataset

pew_science_survey_data_by_party.

(a) Create a bar graph to compare the percentages of respondents for

each political party who answered “yes” that scientists generally

agree that the earth is getting warmer because of human activity. Is

there a strong association between political party and whether or not

a person believes that scientists generally agree that global warming

is caused by humans?

(b) Create bar graphs grouped by political party to see the association for

the other three questions. Do you see any consistent pattern? Which

questions produces the most disagreement and agreement,

respectively?

(c) How do you think the data in Table 2.17 were obtained by the Pew

Center? Do you think the manner in which the respondents are

chosen would affect these numbers? What about the wording of the

questions?

2.3.5. Is There a Relationship between Age and Views toward Science? Table 2.18

shows the percentages of people who answered “yes” to the Pew Research

Center survey questions listed in Exercise 2.3.4. These values are also avail-

able in the R dataset pew_science_survey_data_by_age_group.

(a) Create a bar graph to compare the percentages of respondents for

each age group who answered “yes” that scientists generally agree

that the earth is getting warmer because of human activity. Is there a

strong association between age and whether or not a person believes
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that scientists generally agree that global warming is caused by

humans?

(b) Create bar graphs grouped by age to see the association for the other

three questions. Do you see any consistent pattern? Which questions

produces the most disagreement and agreement, respectively?

(c) Which questions seem to get the most consistent responses across age

groups? What about the most variable?

(d) Compare your answers to those you obtained in Exercise 2.3.4.

Assuming the conventional wisdom that Republicans tend to be a

bit older than Democrats on average, do the responses about global

warming being caused by humans across age groups seem similar to

those you observed across political party? What about the responses

as to whether it is okay for parents not to vaccinate their children?

Chapter 2 Comprehensive Exercises

2.A. Conceptual

2.A.1. Use basic algebra to show that the correlation coefficient r in (2.1) can

also be expressed by

Table 2.18 Percentages of respondents who answered “yes” to various
questions about science by age group

Age Global warming Vaccines Human astronauts GMO

18–31 72.85 38.71 61.90 40.51
32–47 66.24 34.33 64.74 38.30
48–58 61.04 25.90 55.64 41.56
59–67 57.14 25.00 64.96 41.72
68+ 49.86 18.65 64.78 47.03

Source: Pew Internet & American Life Project, Science Issues. http://www.
pewinternet.com/datasets/2014-science-issues/ [Accessed on May 21, 2016]
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r ¼ 1
n� 1

Pn
i¼1

�
xi � �x

��
yi � �y

�
sxsy

as noted in (2.2).

2.A.2. An alternative form of Spearman’s rank correlation coefficient rS (2.3)

is given by

rs ¼
12

Pn
i¼1

ri � nþ1
2

� �
si � nþ1

2

� �� �
n n2 � 1ð Þ :

Compute this alternative version of rS for the first and second quarter on

time arrival data in Table 2.9 and verify that it matches the value given in

Example 2.8. Compute �r ¼ 1
n

Xn
i¼1

ri and �s ¼ 1
n

Xn
i¼1

si and compare themwith the

constants used to form the deviations in this version of the formula. What did

you find?

2.A.3. Another alternative form of Spearman’s rank correlation coefficient rS

(2.3) is given by

rs ¼ 1�
6
Pn
i¼1

d2i

n n2 � 1ð Þ ,

where di ¼ si - ri, for i ¼ 1, . . ., n; that is, di is the difference in the ranks for the

ith pair.

(a) Compute the value of this alternative version of rS for the first and

second quarter on time arrival data in Table 2.9 and verify that it is

equal to the value of rS given in Example 2.8 (and computed in

Exercise 2.A.2.).
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(b) What are the di values, for i ¼ 1, . . ., n, if there is perfect positive

association between x and y?

(c) What are the di values, for i ¼ 1, . . ., n, if there is perfect negative

association between x and y?

2.A.4. Construct a set of 8 pairs of observations that are positively associated

and compute the value of r for your data set.

(a) Apply a linear transformation of your choice to the x values only.

Compute the value of r for the transformed data. Did the absolute

value of r stay the same? Did it change sign? What would happen to

the value of r if you change the sign of the slope parameter in your

linear transformation?

(b) Compute rS for the untransformed data (xi, yi) and for the linearly

transformed data (xi
*, yi). Does the value of rS remain the same?

(c) Do you think linear transformations will always affect rS the same

way that they affect r? Why or why not?

2.B. Data Analysis/Computational

2.B.1. Quarterly Delinquency Rates and Charge-off Rates. Consider the twenty-

five years of quarterly delinquency rates for eight different types of loans, as

reported by the Federal Reserve, presented in the R dataset delinquency_rates.

Use R to construct smoothed scatterplots to compare the charge-off rates for

each of the eight types of loans (see Example 2.5) with the corresponding

delinquency rates. Does one set of rates appear more variable than the other?

Do the two sets of rates appear to be related to each other over time?

2.B.2. College Scorecard Comparisons. Consider the College Scorecard Data

reported by the U.S. Department of Education. A subset of these data for the

year 2012 is presented in the R dataset college_rankings_2012. Your task is to
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prepare a report on U.S. educational institutions for a group of concerned

parents. They are particularly interested in:

1. differences between public, private, and for-profit institutions;

2. relationships between faculty salaries and costs;

3. differences between schools of differing sizes.

(a) Compare in-state tuition for each of the three types of institution:

public, private, and for-profit.

(b) Examine the relationship between average monthly faculty salaries

and in-state tuition. Also examine the relationship between monthly

faculty salaries and median graduate debt. Provide both graphical

and numerical evidence to demonstrate any association you find.

(c) Examine the completion rates and average SAT scores of each of the

three university types.

(d) Use enrollment numbers to group the institutions into “large”,

“medium”, and “small” (using whatever thresholds you deem rea-

sonable). Examine the relationship between school size and admis-

sion rates and that between school size and completion rates.

(e) Examine any other relationships that you think would be of interest

to the concerned parents. Do you notice any patterns as to which

types of schools seem more or less willing to provide data? (Missing

values are denoted as NA in the dataset.)

2.B.3. Population, Birth Rates, and Migration. In this exercise, you will analyze

population data provided by the U.S. Census Bureau at the state level. A

subset of these data as of 2015 is presented in the R dataset popula-

tion_estimates_2015, which contains population estimates, birth rates (per

1000 population), and net migration (per 1000 population) for each year

2011 through 2015.
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(a) Begin by selecting the state you live in and any three other states that

you would like to analyze. For each of these four states, produce a

smoothed scatterplot of population estimates over time.

(b) For the four states you selected in (a), produce bar graphs of birth

rates by year for each state. What patterns do you notice throughout

time? What similarities and differences do you notice between the

states you have selected?

(c) Produce scatterplots for population estimate and net migration for

each of the 20 combinations of the 5 years and four states. What, if

any, association do you see? Would you have expected this? Confirm

your visual findings by computing two numerical measures of

association.

2.B.4. Population, Birth Rates, and Migration. Repeat Exercise 2.B.3, but ana-

lyze the data for each of the four regions (rather than states) this time.

2.B.5. Comparing NBA Teams. In this exercise, you will analyze NBA teams’

performance in the 2015–2016 season. A subset of the data made available

at http://stats.nba.com/league/team/ is accessible in the R dataset

nba_2015_2016, which contains information on various statistics measuring

team performance.

(a) Ultimately, teams care about winning games. Using both graphical

and numerical methods, examine the association between win per-

centage and each of the following statistics: rebounds, assists,

turnovers, steals, and blocks. Based on these associations, if you

were in charge of an NBA team, which area would you focus on

most heavily?

(b) Without looking at the data, write down what you expect the associ-

ation to be between each pair of the following three statistics: field-

goal percent, three-point percent, and free-throw percent. Generate
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scatterplots and at least one numerical measure of these associations.

Do the results agree with what you predicted?

(c) Produce bar graphs for the three percentages discussed in part (b) for

each of the following four teams: Cleveland Cavaliers, Golden State

Warriors, Los Angeles Lakers, and Philadelphia 76ers. Comment on

any patterns you observe when comparing these teams.

2.C. Activities

2.C.1. You will need a standard measuring tape to collect information on a

small group of people who are willing to participate in this activity. Collect

the information described below for each individual. Construct an appropri-

ate scatterplot for each pair of variables. Are the various pairs of variables

associated? If so, explain the nature of the associations. Compute and com-

pare two different measures of association for each pair of variables.

(a) Waist and neck sizes.

(b) Foot and forearm sizes.

(c) Shirt and shoe sizes.

(d) Inseam length and circumference of head.

(e) Height and distance from belly button to the floor.

(f) Height and weight.

2.C.2. Who is better at rolling sixes? Obtain a few standard six-sided dice and

split participants into groups along a categorical variable (for example: hair

color, height, gender, etc.). Each member of each group should roll a die five

times and record the number of sixes that he or she obtains. Does group

membership appear to be associatedwith ability to roll sixes? If so, explain the

nature of the association. Repeat the experiment 5 times and construct a bar

graph for the proportion of sixes for each group by experiment. Do your

conclusions about each group’s ability to roll sixes change when you analyze

five repetitions of the experiment rather than one?
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2.C.3. Tossing Quarters. Stand approximately 15 feet from a wall. Toss a

U.S. quarter toward the wall and try to get it as close to the wall as you can.

After some practice trials, record the distance from the edge of the wall to the

closest edge of the coin for 15 consecutive tosses.

(a) Create a time series plot for the distance from the edge of the wall to

the edge of the quarter.

(b) Describe any patterns or unusual observations you see on the plot.

Did you get better or worse over time?

(c) Now try a different method of tossing the coin. After some practice

trials, record the distance from the edge of the wall to the edge of the

coin for 15 consecutive tosses. Create a time series plot for these

distances and compare the plot with the one in part (a).

(d) Is one method clearly better than the other method for you? Justify

your answer with appropriate descriptive statistics and graphical

displays.

2.C.4. Weather Forecasts. Go online and find the 10-day weather forecasts for

your local area, for Flint, Michigan, and for Tempe, Arizona. Record the

temperatures for each of the 10 days at each of the three locations.

(a) Create a time series plot for the daily temperature at each location.

(b) What similarities and differences do you notice between the patterns

of temperature at these locations?

(c) How do you think your answers to (a) and (b) would change if you

were to repeat the exercise for hourly temperatures rather than daily

temperatures?

(d) How do you think your answers to (a) and (b) would be affected if

you were to repeat this activity in 6 months? (It may be helpful to find

monthly average temperatures for each location.)
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2.D. Internet Archives

2.D.1. Visit www.guessthecorrelation.com to check your intuition regarding

the shape of a scatterplot and a statistic that measures the strength of linear

association.

2.D.2. Performance Statistics for the New York Stock Exchange. Find a website

that enables you to obtain recent performance statistics for stocks traded on

the New York Stock Exchange (NYSE). Enter a ticker symbol for a stock of

interest to you and obtain plots of performance statistics for your stock for

each of the following time periods: intraday, 1-week, 1-month, 3-month, YTD

(year-to-date), 1-year, 3-year, and 5-year. Do all of the plots show the same

overall trend? If so, comment on that overall pattern. If not, what does this tell

you about the importance of considering an appropriate scale for the hori-

zontal axis?

2.D.3. Kentucky Derby Races. Find a website that provides data for all of the

previous Kentucky Derby races (Derby charts, race statistics, etc.). Select a

25-year period of interest to you. Download the data from the 25-year period

you selected and load it into R. (Hint: you can use the read:csvð Þ function to

load a .csv file into R.)

(a) Construct a time series plot for the winning times and comment on

any obvious patterns.

(b) Construct a time series plot for the net amount of money paid to the

winner of the race and comment on the pattern over time.

(c) Add a plotting symbol to the time series plot in part (a) that identifies

the condition of the track at the time of the race. Does the condition of

the track affect the winning times? Compute appropriate descriptive

statistics to justify your response.

(d) Add a plotting symbol to the time series plot in part (b) that identifies

the condition of the track at the time of the race. Does the condition of
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the track affect the net amount of money paid to the winner? Com-

pute appropriate descriptive statistics to justify your response.

(e) Is there any association between winning time and the net amount of

money paid to the winner? Justify your response.

2.D.4. Stock Performances. Visit YAHOO! Finance at finance.yahoo.com.

Enter a ticker symbol for a company of interest to you and then click

Go. (If you don’t know the ticker symbol, you can do a quick search by typing

a company name in the Quote Lookup.) After looking at the recent perfor-

mance statistics, click the chart to see a time series plot of closing prices. Select

1-year under the time period options to get a different chart.

(a) Another method of smoothing time series data to search for trends is

to compute moving averages of the prices. At the top of the chart you

can add moving averages to your plot by clicking Indicator, then

clicking Simple Moving Average, and finally entering the number of

days you want to include in the moving average in the Period field.

Select 25 and click the chart to add a 25-day moving average to your

1-year time series plot. Does the addition of the 25-day moving

average help you see the overall trend?

(b) Now add a 50-day moving average to your 1-year time series plot. Do

you see the same overall pattern with the 50-day moving average that

you do with the 25-day moving average?
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Designing a Survey or Experiment:
Deciding What and How to Measure 3

Over the past few decades, storing data has become increasingly affordable.

One measure of this, hard drive cost per gigabyte in U.S. Dollars, has fallen

from over $10,000 in 1990 to about 3 cents in 2014 according to data available

at http://www.mkomo.com/cost-per-gigabyte-update. This steep decline

has had a number of consequences, one of which is the explosion in popular-

ity of so-called “big data”. Technology companies are able to leverage this

resource to conduct experiments at breakneck speeds and scales that would

have been unthinkable at any other time in human history.

One of the more famous (or maybe infamous?) experimenters in the

technology industry is the social network Facebook. According to the

company’s statistics page, as of June 2016, the site had 1.13 billion daily active

users! One of the most important aspects of the social network is the “News

Feed”, which filters content according to Facebook’s proprietary algorithms

in order to deliver the most relevant content to each user. A highly publicized
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experiment was conducted in early 2012 to determine the effect that positive

and negative content have on users’ emotions.

The (generally negative) press focused on whether or not this sort of

psychological experimentation was acceptable and whether the information

gleaned from the study could actually serve any business purpose. However,

beneath the heated debate about whether Facebook should have conducted

the experiment lie many interesting and challenging questions which needed

to be answered before the study could begin. What information should be

collected? How can emotions be quantified? How can the researchers be sure

that their personal biases about the importance of the News Feed do not affect

the results? How many users’News Feeds would they need to alter? For each

News Feed that they decided to alter, how many stories would they change?

These are some of the typical questions that all researchers must answer

before they begin a research project or investigation, whether that investiga-

tion is conducted by observing the behavior of millions of people on the

Internet, the medically-supervised reactions of dozens of people to an experi-

mental drug, or countless other scenarios. Deciding what and how to measure

are very often difficult questions to answer. However, without careful

thought and planning before the data collection phase of a project, the entire

investigation may be meaningless.

In Chaps. 1 and 2 we focused on displaying and describing data that were

already available. In this chapter we step back and focus on the planning and

data collection phases of a research project. Although there is a tendency to

think that this is the “easiest” and “least important” of the numerous phases

of a research project, nothing could be further from the truth. Devoting

adequate time to careful planning in the early stages of a project is vital for

its success. In Sect. 3.1 we describe several different methods of data collec-

tion. In Sect. 3.2 we focus on planning a survey or poll. In Sect. 3.3 we return to

further examine the Facebook team’s research question, as well as describe

other types of designs.
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3.1 Methods of Data Collection

If we are interested in a particular population, one way to obtain informa-

tion on a set of traits or characteristics for this population is to gather and

record information for every member of the population. This method of

gathering information is referred to as a census.

Definition 3.1 A census is a complete enumeration or specification

of characteristics for every member of a population of interest.

An admissions director may be interested in the SAT scores of all students

attending her institution, a coach may be interested in the speed of the

members on her team, a provost may be interested in the salaries for all full-

time faculty members at her institution, or an analyst may be interested in the

price of a particular stock for the last 30 days. In each of these situations the

characteristic of interest can be collected for every member of the population

and the techniques in Chaps. 1 and 2 can be used to interpret the data.

Example 3.1. Mathematics Faculty and Staff Salaries Table 3.1 (and the

R dataset osu_math_salaries_2015) provides a complete list of the 2015 salaries

of faculty and staff in the Mathematics Department at The Ohio State Univer-

sity. The population of interest is the faculty and staff of the Mathematics

Department at The Ohio State University and the characteristic of interest is

2015 salary for these Individuals. Do any of the values surprise you?

Example 3.2. Student Report Cards As part of a major assessment effort the

chancellor for high schools in the City of New York decided to start sending

report cards home to parents. These report cards, called “School Quality

Snapshots” did not contain student grades; they contained “grades” for the

city school districts. The hope was that these report cards would help parents
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and students assess basic performance measures like teacher retention, grad-

uation rates, math proficiency, reading proficiency, and standardized test

scores. A subset of the provided characteristics is given in Table 3.2 and in

the R dataset school_report_cards_2014. While the former displays a handful of

schools for illustrative purposes, the latter contains data on all 484 high

schools with data reported by the chancellor. (The additional characteristics

Table 3.1 Salaries for all 226 math faculty and staff at The Ohio State
University in 2015 (dollars)

237,980 105,924 80,433 53,768 42,240 24,530 12,800 4700
201,616 105,597 78,756 53,723 42,000 23,680 11,360 4322
187,594 104,537 78,390 52,730 40,368 23,163 11,080 3583
176,726 104,225 76,532 52,664 38,815 23,133 10,829 3341
174,460 103,342 71,438 51,762 38,540 22,895 10,800 3001
168,915 102,907 71,080 51,752 37,552 21,720 10,604 3001
167,775 102,808 69,940 50,733 37,539 21,456 10,604 3001
166,902 102,133 69,040 50,360 37,440 21,043 10,604 3001
165,638 101,774 66,872 50,360 37,331 21,003 9895 3001
162,352 100,788 66,554 49,998 36,368 21,003 9400 3001
146,111 99,468 66,138 49,739 36,340 20,883 9400 3001
140,696 98,703 63,816 48,540 36,186 20,883 9180 3001
140,548 96,525 63,688 48,449 35,616 20,619 9144 3001
137,076 96,448 63,360 48,396 33,589 20,300 8460 3001
131,473 95,628 62,736 47,718 33,133 20,180 8300 3001
128,465 94,716 62,016 47,416 32,883 18,820 7740 2940
128,319 93,204 62,016 46,956 31,988 18,258 7540 2870
127,463 92,251 57,912 46,757 31,676 18,140 7500 2477
122,436 92,248 57,726 46,600 31,604 16,620 7408 2090
119,020 91,968 56,296 45,924 31,440 16,360 7400 2030
118,183 90,436 56,296 45,585 31,007 16,280 6260 1820
116,016 90,388 56,176 45,009 30,743 15,990 6060 1501
114,954 89,240 56,072 44,336 30,723 15,080 6060 1109
114,349 89,088 55,832 44,336 30,300 15,040 5564
113,136 88,840 54,988 44,136 28,775 14,960 5400
108,610 86,978 54,852 44,060 28,542 14,780 5400
108,328 85,104 54,036 42,741 25,120 14,600 5040
106,588 84,360 53,858 42,443 25,036 13,872 5030
106,180 82,820 53,812 42,280 25,013 13,720 5030

Source: Cleveland.com (2016)
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that we have omitted may be found by visiting http://schools.nyc.gov.) The

population of interest contains the students attending high schools in

New York City during the 2013–2014 school year. The characteristics

provided for each city school are: name, enrollment, average grade 8 English

proficiency (out of 4), average grade 8 math proficiency (out of 4), quality

review rating (the school’s overall grade), average SAT score, four-year grad-

uation rate, and attendance rate.

Even though collecting data on particular characteristics for every member

of a population of interest sounds like an easy task, imagine the amount of

time and energy that are involved in this task as the size of the population

increases. Observing, examining, questioning, or surveying every member of

a population and recording the appropriate information become overwhelm-

ing tasks. The problem is not a lack of technical resources, since modern

technology can handle the huge volume of data and other data management

issues. Instead, the problem is the cost and time involved in completing a

census.

The United States Census Bureau has been dealing with this problem for

decades. Their mission is “to be the pre-eminent collector and provider of

timely, relevant and quality data about the people and economy of the United

States.” As of July 1, 2015, the U.S. Census Bureau (www.census.gov)

estimated that the size of the U.S. population was 321,418,820. Can you

imagine trying to collect and record characteristics for every member of the

U.S. population? That is exactly what the U.S. Census Bureau must do every

10 years, but there has been considerable debate in the United States Congress

as to whether or not it is really necessary to conduct a complete census. Many

people, including most statisticians, believe that the accuracy of the popula-

tion estimates can actually be improved by collecting information from prop-

erly selected subsets of the population, called samples, and then using the

information from these samples to provide estimates for the corresponding

population characteristics.
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Definition 3.2 A sample is a subset of the population.

Sampling is used to collect complete information on a subset of the

population that is representative of the population. Thus, you are reducing

the amount of information that must be obtained and the time involved in

collecting it. The beauty of this method is that it cuts down on the required

amount of time and effort, but it only works if the sample is representative of

the population. How do we obtain a sample that is representative of the

population? In Sect. 3.2 we will see that there are many plausible answers to

this question, depending on the complexity of the situation being considered.

There is, however, one thing that all reasonable solutions have in common;

they rely on chance or randomization in some way.

Example 3.3. Teaching Evaluations Faculty members are evaluated by

students in a variety of ways. Mandatory course and instructor evaluation

forms, www.ratemyprofessor.com, informal word of mouth, reputation, and

letter writing are just a few examples. Suppose the college policy at a particu-

lar institution requires the Provost to randomly select students from a faculty

member’s classes to participate in the evaluation process. The Provost decides

that 5 students are to be selected from an introductory class of 25 students.

How should she randomly select these 5 students? One method is to put the

25 names on 25 slips of paper, put the 25 slips of paper in a bag, shuffle the

contents, and then pick 5 slips. The names appearing on the selected slips will

be the 5 students who are asked to participate in the evaluation. Another

method relies on the use of random numbers. Each of the 25 students is

assigned a random number using a random number generator. The list of

names is then sorted according to the random numbers and the students with

the 5 smallest numbers are asked to participate in the evaluation. Table 3.3

contains a list of 25 students and random numbers assigned using the
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R function runif ð Þ, which will randomly generate numbers uniformly

between 0 and 1. Danny, Mattie, Laney, Olivia, and George would be the

five students asked to participate in the faculty review. Alternatively, this

random selection can be done by defining a vector containing the 25 names

and using the R function sampleð Þ.
Another method of collecting data is experimentation. In an experiment, a

new set of conditions or treatments is deliberately imposed on the subjects or

experimental units by researchers. We are referring to treatments in a generic

sense in this text. A treatment could refer to a typical medication like a cough

Table 3.3 Class list and assigned random numbers

Name Random number

Freddy 0.359234
Luke 0.940090
Molly 0.934925
JoAnne 0.809115
Elise 0.787670
Danny 0.154661
Joel 0.873139
Christian 0.812036
Monique 0.923244
Patricia 0.340109
Elizabeth 0.446112
Sara 0.482329
Jacob 0.927142
Chris 0.754434
Jed 0.521955
Jessica 0.403488
Olivia 0.102106
Mattie 0.197304
Whitney 0.480334
Vanessa 0.900897
Oliver 0.582211
George 0.323056
Chad 0.968394
Jimmy 0.485099
Laney 0.288986
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suppressant or an antibiotic or it could refer to a new teaching technique, a

new assembly method, a new fertilizer, etc. or to a new set of conditions such

as limiting smoking, increased exercise, etc. Characteristics of the subjects or

experimental units are recorded in order to investigate some research

hypothesis.

Definition 3.3 An experiment is a research study where treatments are

deliberately imposed on a set of experimental units or subjects.

Characteristics of interest are measured and recorded after some pre-

scribed event or time period (and often prior to the treatment to serve as

baseline measurements).

One of the major differences between a sample and an experiment is the

manner in which the data are collected. In sampling, the subjects or experi-

mental units are randomly selected from a population and the characteristics

of interest are recorded. In experimentation, there are typically only a limited

number of appropriate subjects or experimental units available for the study.

These subjects or experimental units are randomly assigned to one of the

treatment groups and the characteristics of interest are recorded after a certain

amount of time has passed or some prescribed event has taken place.

Example 3.4. Pine Tree Growth As discussed briefly in Example 2.2, the

Department of Biology at Kenyon College conducted an experiment to

study the growth of pine trees at a site located just south of Gambier, on a

hill overlooking the Kokosing River valley. In April 1990, student and faculty

volunteers planted 1000 white pine (pinus strobus) seedlings at the Kenyon

Center for Environmental Study (KCES). These seedlings were planted in two

grids, distinguished by 10 and 15 foot spacings between the small trees (see

Fig. 3.1).
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Fig. 3.1 Locations of pine trees planted in April 1990 at the Kenyon
Environmental Center. Rows 1 through 23 are spaced at 15 feet intervals.
Rows 24 through 44 were planted at 10 feet intervals. An X denotes a pine
that is fertilized and an O denotes a pine that is not fertilized

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 O O O O O O O O O X X X X X X X X X
2 O O O O O O O O O X X X X X X X X X
3 O O O O O O O O O X X X X X X X X X
4 O O O O O O O O O X X X X X X X X X
5 O O O O O O O O O X X X X X X X X X
6 O O O O O O O O O X X X X X X X X X
7 O O O O O O O O O X X X X X X X X X
8 O O O O O O O O O X X X X X X X X X
9 O O O O O O O O O X X X X X X X X X
10 O O O O O O O O O X X X X X X X X X
11 O O O O O O O O O X X X X X X X X X
12 O O O O O O O O O X X X X X X X X X
13 X X X X X X X X X O O O O O O O O O
14 X X X X X X X X X O O O O O O O O O W
15 X X X X X X X X X O O O O O O O O O S + N
16 X X X X X X X X X O O O O O O O O O E
17 X X X X X X X X X O O O O O O O O O
18 X X X X X X X X X O O O O O O O O O
19 X X X X X X X X X O O O O O O O O O
20 X X X X X X X X X O O O O O O O O O
21 X X X X X X X X X O O O O O O O O O
22 X X X X X X X X X O O O O O O O O O
23 X X X X X X X X X O O O O O O O O O
24 O O O O O O O O O O O O O X X X X X X X X X X X X X X X X X
25 O O O O O O O O O O O O O X X X X X X X X X X X X X X X X X
26 O O O O O O O O O O O O O X X X X X X X X X X X X X X X X X
27 O O O O O O O O O O O O O X X X X X X X X X X X X X X X X X
28 O O O O O O O O O O O O O X X X X X X X X X X X X X X X X X
29 O O O O O O O O O O O O O X X X X X X X X X X X X X X X X
30 O O O O O O O O O O O O O X X X X X X X X X X X X X X X
31 O O O O O O O O O O O O O X X X X X X X X X X X X X X
32 O O O O O O O O O O O O O X X X X X X X X X X X X X X
33 O O O O O O O O O O O O O X X X X X X X X X X X X X X
34 X X X X X X X X X X X X X O O O O O O O O O O O O O O
35 X X X X X X X X X X X X X O O O O O O O O O O O O O O
36 X X X X X X X X X X X X X O O O O O O O O O O O O O O
37 X X X X X X X X X X X X X O O O O O O O O O O O O O O
38 X X X X X X X X X X X X X O O O O O O O O O O O O O O
39 X X X X X X X X X X X X X O O O O O O O O O O O O O O
40 X X X X X X X X X X X X X O O O O O O O O O O O O O O
41 X X X X X X X X X X X X X O O O O O O O O O O O O O O
42 X X X X X X X X X X X X X O O O O O O O O O O O O O O
43 X X X X X X X X X X X X X O O O O O O O O O O O O O O
44 X X X X X X X X X X X X X O O O O O O O O O O O O O O
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The following events occurred between the time that the pine growth

measurements were started in 1992 and the time that the measurements

were concluded in 1997:

Fertilization –Spring 92, Fall 92, 93, 94, 95, 96;

Mowing between rows – Fall 93 (50 trees damaged or lost), Summer 95, 96,

97; and

Removing thorny vegetation in contact with trees – Summer 96.

Some notable environmental conditions that occurred between the beginning

of the experiment in 1990 and the ending in 1997 are:

Rainfall

1992 – continuation of 5th year with low precipitation during the summer

1993 – record amounts of rainfall in July ends the period of low

precipitation

1995 – heavy rainfall in June followed by very little precipitation

1996 – record amounts of rainfall in June

Winter Conditions

1994 – extreme cold combined with snow cover most of the winter

1995 – continuous snow cover during January and February

1996 –continuous snow cover during much of December and January

1997 – very little snow cover all winter; sixth coldest spring on record

The goal of this study was to determine which factors cause pines in the

KCES to vary in growth rates. Potentially important factors that were exam-

ined include soil nutrients, the presence of competitors, and herbivores. A

subset of the data collected by biology students at Kenyon College is

contained in the R dataset pines_1997.
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Many research studies are conducted by simply observing and comparing

the characteristics or traits of interest for different subsets of the sample. The

researchers do not deliberately impose the treatments – they just observe and

record the information, which may or may not be obtained from randomly

selected individuals. The major difference between such an observational

study and an experiment is the manner in which the experimental units or

subjects are assigned to the treatment groups. If the experimental unit or

subject makes the choice and the researcher simply observes and records the

characteristics of interest, then the investigation is an observational study. If

the experimental units or subjects are randomly assigned to the treatment

groups by the researcher, then it is an experiment.

Definition 3.4 An observational study is a research study where the

experimenters do not decide which treatment group the subjects will be

in and the researchers simply observe and record the characteristics of

interest. Often the experimental units or subjects were born into or have

made the choice to belong to their corresponding treatment group.

Example 3.5. Reading Habits How do reading habits vary by demographic

and socio-economic categories? To answer questions related to this along with

investigating the effect that the emergence of e-books is having on these

habits, the Pew Research Center conducted a study in 2011 and released a

report titled “The Rise of E-reading”.

Notice that this was an observational study rather than an experiment,

since treatment groups (for example: age, income, education level, etc.) were

not assigned by researchers, but rather were predetermined. While the Pew

researchers asked many other questions, we will restrict ourselves to consid-

ering the responses to the following two survey questions.
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1. During the past 12 months about how many books did you read either

all or part of the way through? Please include any print, electronic, or

audiobooks you may have listened to.

2. Please tell me if you happen to have a handheld device made primarily

for e-book reading, such as a Nook or Kindle e-reader.

Apparently the survey respondents included many avid readers, so the

decision was made to censor responses to the first question to be a number

between 0 and 96, inclusive, or simply “97 or more”.

In addition to the responses to these questions of interest, we will consider

responses to a few questions about demographics as well. Responses for a

subset of the people interviewed by Pew are displayed in Table 3.4 and the

responses of the full set of interviewees may be accessed in the R dataset

reading_habits_2011.

Although a formal analysis of this study requires statistical inference

methods which we will learn in Chaps. 7 and 8, we can use graphical methods

from Chaps. 1 and 2 to make appropriate comparisons. For example, we can

construct a bar graph of e-reader usage grouped by education level from the

following R code. We first use the aggregateð Þ function to compute the

averages and store them in a data.frame.

> average_e_reader_use_by_education <--

aggregate(e_reader=='Yes' ~ education, 
data = reading_habits_2011, 

mean)

> colnames(average_e_reader_use_by_education)[2] <-"e_reader_numeric"

We next use the barplotð Þ function introduced in the previous chapter to

construct the plot shown in Fig. 3.2.

> barplot(average_e_reader_use_by_education$e_reader_numeric * 100,

ylab = 'Percentage Using E-readers', 

ylim = c(0,45),
names.arg = average_e_reader_use_by_education$education,

cex.names = .75, las =2,
main = "Use of E-readers by Education Level in 2011")
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As you might have guessed, the rate of e-reader usage appears to increase

with education level. Do you have any hypothesis about what the pattern will

look like with respect to the respondents’ incomes? With only a few small

changes, we can replace “education” by “income” in the R code above to

produce Fig. 3.3. This plot seems to indicate that a similar, possibly stronger

relationship exists between income and e-reader usage. (In fact, you can

download the raw data from the Pew Research Center Study and see the

free-form responses given when participants who did not use e-readers were

asked why they did not; one of the most common reasons was the cost of such

devices.)

While census, sampling, experimentation, and observational studies are

the most common and reliable methods of collecting data, there is one other

method that is often used. Unfortunately, this method is not based on sound

scientific principles. It relies on collecting information from isolated incidents,

which are typically striking or alarming. Do you have a relative or friend who

has smoked for years but is still in good health? Most people will respond yes

Fig. 3.2 Barplot of e-reader usage by education, 2011
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to this question, but that does not provide any useful information for a

scientific assessment of the association between smoking and lung cancer.

(Current scientific research clearly shows a link between smoking and lung

cancer.) Anecdotal evidence gathered by looking at particular individuals or

cases may be interesting and unusual, but it should certainly not be the basis

for reaching valid scientific conclusions.

Definition 3.5 Anecdotal evidence is data collected on isolated

individuals or cases because of their unusual or striking characteristics.

Although anecdotal evidence is the most widely accessible source of data,

try to resist the temptation to draw inferences based on a few such isolated

cases. If you do not have the time or the money to complete a census, as will

often be the case in practice, inferences concerning a population should be

based on information obtained from carefully collected samples and designed

experiments.

Fig. 3.3 Barplot of e-reader usage by income, 2011
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Section 3.1 Practice Exercises

3.1.1. Golf Handicaps. The United States Golf Association (USGA) has devel-

oped a handicapping system that is based on the 20 most recent scores for a

golfer. The handicapping system is supposed to enable two golfers of differ-

ing abilities to compete in a fair match. A golfer’s handicap is based on the

10 best handicap differentials in the last 20 rounds of golf. (For more informa-

tion, see www.usga.org.) Is a golfer’s handicap based on a sample or census?

Explain.

3.1.2. Cardiovascular Exercise and Strength Training. Does performing cardio-

vascular exercise and strength training together increase the effectiveness of

both? Ho, Dhaliwal, Hills, and Pal (2012) studied the percent body fat and

total weight lost by study participants over 12 weeks of participation in

moderate-intensity aerobic, resistance, or combined exercise training. Do

you think this is an example of an observational study or an experiment?

Explain.

3.1.3. Exercise and Pulse Rate. In order to estimate the effect of short, quick

spurts of exercise on pulse rates, an instructor asked the students in her class

to take their pulses by counting the number of times their heart beat in 1 min.

The students were then asked to do some form of exercise (push-ups, sit-ups,

jumping jacks, jog-in-place, etc.) for 3 minutes. Immediately after the 3-minute

exercise period, the students took their pulses again. Is this an observational

study or an experiment? Explain.

3.1.4. A large family has been getting their cars serviced at the same garage

for years. One of the family members notices that the tires he purchased from

the garage were starting to show some serious signs of wear. After searching

through his records he discovers that he only traveled 10,000 miles on these

tires. He asks the other driving members of his family (parents, aunts, uncles,
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nieces, nephews, etc.) to check their records. After gathering the data, he

discovers that two other members of the family have had problems with tire

wear. Based on this evidence, he decides to contact a lawyer to inquire about

filing a claim in court against the company. Would you consider the evidence

collected to be the result of an observational study, the result of an experi-

ment, or anecdotal data? Explain.

3.1.5. Provide a graphical and numerical summary for the salary data listed

in Table 3.1.

3.1.6. Teaching Evaluations. To evaluate the effectiveness of its instructors, a

university department distributes surveys to all students enrolled in one of its

classes. Not all of the students have returned their surveys, but the depart-

ment has created a database for the responses they have received. Do you

think this database should be referred to as a census or a sample of the

students?

3.1.7. School Report Cards. Use the report card data available in the R dataset

school_report_cards_2014 (and partially shown in Table 3.2) to answer the

following questions.

(a) Which city school had the lowest graduation percentage.

(b) Create a scatterplot to examine the relationship between SAT scores

and attendance rates for these high schools. Comment on the rela-

tionship you find.

(c) Create graphical displays to compare the four-year graduation rates

for each of the possible quality review ratings. Note that some schools

are missing this rating. Discuss the approach you decide to take in

handling this missing data.

(d) Is there any association between enrollment numbers and average

grade 8 English proficiency?
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3.1.8. A youth soccer team contains 13 girls, but only 8 can play at a time.

The names of the girls are Alison, Anna, Annie, Cindy, Jamie, Jenny, Johanna,

Jungwon, Natalia, Neha, Ning, Victoria, and Xi. Use a random number

generator (such as the R function runif ð Þ) to explain how the coach should

randomly decide who to start for the next game.

3.1.9. Repeat the experiment discussed in Example 3.3 using the R function

sampleð Þ. Provide the code you used to conduct the experiment and the

results you obtained.

3.1.10. Pine Tree Growth. Use the R dataset pines_1997 to answer the follow-

ing questions.

(a) Did the trees that were fertilized grow better than those that were not

fertilized? Use at least two different measures of center to make your

comparison.

(b) Are the trees that are planted at 15 feet intervals taller than the trees

that were planted at 10 feet intervals?

(c) Is there any difference in the variability of the tree heights for those

trees that were fertilized and those trees that were not fertilized?

Would you prefer S or IQR as your measure of spread for these tree

heights? Provide a rationale for your choice.

3.1.11. Reading Habits. Analyze the number of books read in the past

12 months as presented in Table 3.4. That is, instead of looking at e-reader

use as we did in Example 3.5, look at the number of books read. Note that

you’ll need to convert this column into a numeric vector. (Hint: use the

R function as:numericð Þ but be careful handling the values of “97 or more”!)

Obtain the average number of books read by educational level and create a

plot similar to Fig. 3.3. Does your plot show a pattern similar to that in

Fig. 3.3?
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3.1.12. Reading Habits—Part Two. Repeat Exercise 3.1.11 for average number

of books read in the past 12 months by income level.

3.1.13. Reading Habits—Part Three. Repeat Exercise 3.1.11 for average num-

ber of books read in the past 12 months by all possible combinations of sex

and levels of Internet access.

3.2 Planning and Conducting Surveys or Polls

Time pressures and the costs associated with data collection often restrict

our studies to subsets of a population. When this is the case, we are faced with

an interesting and challenging problem. How do we select a subset of the

population that is both manageable and representative of the population?

One method that is used often in the popular media is self-selection.

Example 3.6. Homework and Family Stress In the 2015 study Homework and

Family Stress: With Consideration of Parents’ Self Confidence, Educational Level,

and Cultural Background, 1173 parents who visited one of 27 pediatric offices in

the Greater Providence area of Rhode Island answered the question: How

many minutes does your child spend on homework per night? Among other

things, researchers were interested in determining whether children are being

assigned too much or too little homework, as compared to the “10 Minute

Rule” recommended by the National Education Association, which states that

the recommended nightly time spent on homework should be 10 min.

multiplied by the child’s grade level. For example, a second-grade student is

recommended to be assigned 20 min. of nightly homework on average, while

a ninth-grade student is recommended to be assigned 90 min. Table 3.5

provides a summary of the average responses by grade, as estimated from a

plot in Pressman et al. (2015).

Notice that this survey was conducted while parents waited in doctors’

offices. While this may be a convenient location to find many parents with
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spare time to answer questions, it seems possible that the stress of having a

sick child might cause parents to answer the question differently than if they

were surveyed at home. Do you think it is safe to assume that the amount of

homework assigned nightly in Providence is representative of the quantity

assigned in the United States as a whole? Finally, note that the parents whose

responses were recorded had chosen to take the time to fill out the survey.

That is, there were many parents who chose not to voice their opinion on the

amount of homework assigned. Would you expect there to be a relationship

between the amount of homework a parent believes is being assigned and

whether or not the parent self-selects himself or herself into the survey?

Definition 3.6 Self-selected samples are samples obtained by allowing

subjects or experimental units to choose whether or not they want to

participate in a survey or poll.

Table 3.5 Average minutes spent on home-
work per night

Grade
Average minutes spent
on homework per night

Kindergarten 25
1st 29
2nd 29
3rd 34
4th 36
5th 35
6th 43
7th 51
8th 41
9th 50
10th 54
11th 53
12th 52

Source: R. M. Pressman, D. B. Sugarman, M. L. Nemon, J. Desjarlais, J. A.
Owens, and A. Schettini-Evans (2015)
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Surveys or polls based on self-selected samples often yield different results

than those based on statistically designed samples. The reason for this is that

self-selected samples tend to have different characteristics than the general

population of interest.

Definition 3.7 Self-selection bias is a bias that results from the use of

voluntary or self-selected samples. The respondents in such samples

typically favor one response over another because of a certain character-

istic or strong feeling regarding a particular issue.

After CNN reported the study in a story with the headline “Kids have

three times too much homework, study finds; what's the cost?”, the Brookings

Institute (a research organization) published an article titled “CNN’s

Misleading Story on Homework” that was quick to point out the flaws in

this interpretation and potential sources of inaccuracy in the study itself.

The Internet has made it easier and cheaper to gauge public opinion via

online surveys. This convenience comes at a cost, however. Many Internet

users will only be willing to respond when they feel strongly about a subject,

so you should be wary of such polling techniques because they are loaded

with self-selection bias. As an analogy, think of Yelp reviews of a local

restaurant. While there certainly exist some avid Yelp users who will provide

a rating each time they dine at a restaurant (and similarly, there exist Internet

users who are willing to give their opinion on every topic presented to them!),

generally it’s true that people are more likely to write a review when they

have a very good or a very bad experience (in other words, a strong opinion).

Now we know what we should not be doing, but we still do not have an

answer to our question regarding proper selection of a subset of the popula-

tion that is both manageable and representative of the population. This

answer relies on the use of chance or randomization in some planned way.
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One natural method for selecting a proper sample is to use some chance or

randommechanism that gives each element in the population an equal chance

of being selected. Such a sample is called a simple random sample.

Definition 3.8 A simple random sample of size n is a subset of the

population that is selected by using a chance or random mechanism that

assigns an equal probability to every subset of n members of the

population.

Example 3.7. Gallup Poll – Presidential Approval Ratings Since the 1930s

the Gallup Organization has been evaluating presidents by conducting public

opinion polls. Although their methods have changed over the years (from

1935 to the mid-1980s they used in-person interviews from across the country,

while today they use telephone interviews), the idea has always been the

same: randomly select around 1500 American adults to represent the opinions

of the entire adult population in the United States. The samples are selected

from a list of numbers generated using a random digit dialing procedure.

Since approximately 30% of American households have unlisted phone num-

bers, random digit dialing is used to avoid a listing bias. Table 3.6 shows the

results of such job approval polls for President Obama during the first

8 months of 2016.

The use of chance and randomization to ensure an equal probability of

selection for all equal-sized subsets of the population is absolutely essential in

order to obtain reliable data from surveys and polls. Not only does this

randomization eliminate selection bias, but it also saves time and money by

allowing us to focus on this small, representative portion of the population.

However, there are also other sources of bias which we must be careful to

avoid. Suppose that we are interested in the public opinion of The First Lady.

How do we phrase a question regarding the President’s spouse? Should we

include both her title and her name, just her name, or just her title? While this
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Table 3.6 Obama job approval ratings for January through August 2016

Do you approve or disapprove of the way Barack Obama is handling his
job as president?

Date Approve (%) Disapprove (%) No opinion (%)

2016 Aug 22–28 51 45 5
2016 Aug 15–21 51 44 4
2016 Aug 8–14 52 44 4
2016 Aug 1–7 52 45 4
2016 Jul 25–31 53 44 4
2016 Jul 18–24 49 47 4
2016 Jul 11–17 49 46 5
2016 Jul 4–10 51 45 4
2016 Jun 27-Jul 3 51 45 5
2016 Jun 20–26 50 46 5
2016 Jun 13–19 53 44 4
2016 Jun 6–12 53 43 4
2016 May 30-Jun 5 51 44 5
2016 May 23–29 52 44 4
2016 May 16–22 51 45 5
2016 May 9–15 51 45 4
2016 May 2–8 52 44 4
2016 Apr 25-May 1 51 46 4
2016 Apr 18–24 51 45 4
2016 Apr 11–17 48 47 4
2016 Apr 4–10 51 45 4
2016 Mar 28-Apr 3 51 45 4
2016 Mar 21–27 53 44 3
2016 Mar 14–20 50 46 4
2016 Mar 7–13 51 45 4
2016 Feb 29–Mar 6 50 46 4
2016 Feb 22–28 48 47 5
2016 Feb 15–21 48 48 4
2016 Feb 8–14 48 48 4
2016 Feb 1–7 47 50 3
2016 Jan 25–31 48 48 4
2016 Jan 18–24 48 47 5
2016 Jan 11–17 48 47 5
2016 Jan 4–10 47 49 4

Source: Gallup, Inc. (September 2016)
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may seem like an unimportant detail, the choice we make could bias the

responses in one direction or another. The wording of the questions may be

the biggest source of bias in data obtained from surveys and polls.

Example 3.8. Another Opinion Poll – Congressional Approval The Gallup

Organization also polls respondents about their opinion of Congress. The

results of these opinion polls are shown in Table 3.7. How does the approval

of Congress compare to the approval of the President? Note that the survey of

Congressional approval is conducted much less frequently than that of Presi-

dential approval. Does this surprise you?

The Gallup Organization carefully chooses its wording for survey

questions and then keeps that same wording on such questions over time.

If you are designing your own survey, how should you decide on the precise

wording of a question? Perhaps the best starting point is to conduct a pilot

study where you “field test” these questions on a small group of individuals

and evaluate their reactions and responses to different wordings. For exam-

ple, universities often gauge faculty opinions on a variety of work-related

issues. One common topic of interest in surveys like these (and similar ones

Table 3.7 Congressional job approval ratings for January through
August 2016

Do you approve or disapprove of the way Congress is handling its job?

Date Approve (%) Disapprove (%) No opinion (%)

2016 Aug 3–7 18 78 4
2016 Jul 13–17 13 83 4
2016 Jun 1–5 16 80 4
2016 May 4–8 18 78 4
2016 Apr 6–10 17 79 4
2016 Mar 2–6 13 84 3
2016 Feb 3–7 14 81 4
2016 Jan 6–10 16 80 4

Source: Gallup, Inc. (September 2016)
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conducted by private employers) is faculty attitudes concerning salaries. One

possible wording for this question is: Are you happy with your cost of living

salary increases over the last 5 years?What if the word happy is replaced with

unhappy to form an alternative wording of the question? Notice that chang-

ing one word in the question changes the entire tone. We could also replace

happy with satisfied or unsatisfied, delete the cost of living qualifier, or

restructure the entire question. The decisions you make regarding the precise

wording of your survey questions could have a substantial impact on the

responses and your final conclusions.

Example 3.9. Stratified Sampling As new policies are considered at a college

or university, the administration often seeks feedback from various groups.

Instead of asking for opinions from every member of every such group (that

is, taking a census) or using randomization to select a simple random sample,

it is sometimes reasonable to consider other factors. For example, the views of

scientists may differ from those of artists, and the views of humanists may

differ from those of social scientists, and the opinions of historians may differ

from those of political scientists. To take into account these possible

differences among the different specialties, a small number of people can be

randomly selected from each specialty. This division of a population by

specialty is known as stratification.

Definition 3.9 Stratification is the division of a population according to

some characteristic. Each division or subgroup of the population is

referred to as a stratum.

Sampling within the different divisions or subsets of a population, known

as stratified sampling, is often used to compare the opinions or attitudes of

different groups. For example, political polls are commonly stratified by party
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affiliation, health surveys are conducted separately for men and women, and

student surveys are stratified by class year. The major difference between

stratified sampling and simple random sampling is that the randomization is

carried out separately for each subgroup or stratum of the population.

Section 3.2 Practice Exercises

3.2.1. A zoning board in a small county with both urban and rural residents

is interested in public opinion on the minimum lot size for a new subdivision

of homes that has been proposed by a developer. Would you suggest simple

random sampling or stratified sampling? Provide a rationale for your choice

and describe how to implement your sampling plan. Your description should

include the use of chance in some planned way.

3.2.2. A local community group is interested in findingout if residents are in

favor of extending an existing bicycle/jogging path through their neighbor-

hood. To estimate the appropriate population characteristic, the director of

the community group uses the local telephone directory to randomly call

residents and ask them their opinions on this issue. What population charac-

teristic is the community group trying to estimate? Identify at least two

sources of bias that the community group should be concerned about in

their survey.

3.2.3. Do you think that residents who choose to have their phone number

listed in the local phone directory are similar to those who keep their phone

number unlisted? Identify at least one characteristic you would be interested

in comparing for these two groups of residents. Explain how you would

implement your sampling plan to collect appropriate data to respond to this

question.

3.2.4. A Provost at a small liberal arts college is responsible for soliciting

evaluations from students for faculty reviews. The faculty handbook suggests
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that these students should be randomly selected from the faculty member’s

courses since the last review. The Provost creates a list of students who have

been taught by this faculty member since the last review, puts the list in

alphabetical order, and then requests a letter from every 5th student on the

ordered list. The Provost is using a sampling method known as systematic

sampling. Although this sampling method can be very useful, especially in

quality control programs for manufacturing processes, some faculty members

were outraged when they heard about this practice. Why do you think some

faculty members were so concerned and others were pleasantly surprised? Do

you think this systematic sampling method will produce a representative

sample of the student opinions?

3.2.5. Nielsen Media Research relies on statistical methods to create ratings

and indices for television programs across the country. Do you think Nielsen

Media Research uses simple random sampling or stratified sampling to create

their ratings? Justify your response.

3.2.6. A steering committee is beginning to plan for the addition of new

campus recreational facilities for students, faculty, and staff members.

Existing recreational facilities are located on the south side of campus and

the steering committee is interested in getting feedback on two different plans.

Plan A would expand the existing facilities on the south side of campus and

keep all recreational facilities in one location. Plan B specifies that the new

recreational facility be placed on the north side of campus. Suggest a method

for getting feedback from interested subgroups of students, faculty, and staff

members. What subgroups would you be most interested in hearing from if

you were on the steering committee? Is it reasonable to give all opinions equal

weight in this decision?

3.2.7. An email has been sent to a random sample of all students to ask for

their opinions on a new housing policy. Only 20% of all the randomly selected
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students responded to the message. If the Student Life Committee uses the

information received from these responses to make inferences, what are they

assuming about the responses for the other 80% of the randomly selected

students who did not respond to the message?

3.3 Planning and Conducting Experiments

We begin our discussion of planning and conducting experiments by

returning to the research question of Facebook. Recall that the researchers’

primary interest was in determining the effect that positive and negative

content have on users’ emotions.

Example 3.10. Positive and Negative Facebook Posts—Emotional

Contagion In order to test the hypothesis that emotional contagion exists,

that is, that people who see more positive content are likely to produce more

positive and fewer negative Facebook posts (and the opposite for people who

see more negative content), the researchers began by dividing the 689,003

selected users into two experiments to be run in parallel: one to test positive

contagion and another to test negative contagion. In each experiment, the

treatment group received a reduced number of either positive or negative

stories (one or the other, depending on which experiment). The actual reduc-

tion was determined randomly; depending on the user, a positive

(or negative) story was suppressed with between 10 and 90% probability. In

the control groups, posts were omitted at similar rates without consideration

of whether they were positive, negative, or neutral. Posts were determined to

be positive or negative using specialized software called “Linguistic Inquiry

and Word Count”, which is an example of work in an interesting branch of

statistics known as “Natural Language Processing”. While well beyond the

scope of this book, we strongly encourage you to research this topic if you’re

interested!
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The researchers found evidence for emotional contagion, as users who had

the amount of positive content in their Feeds reduced were less likely to post

status updates with positive words and more likely to post them with nega-

tive words. The opposite appeared to happen when negativity was reduced.

Although the sizes of the effects were small, the researchers point out that the

amount of manipulation of the users was quite small as well. Their results are

displayed graphically in Fig. 3.4.

The largest source of controversy concerning this story was the fact that

users were not aware of their participation in the study. While Facebook

claims that users agree to participate in such experiments as a condition of

Fig. 3.4 Effect of reducing negativity and positivity on status updates
(Source: A. D. I. Kramer, J. E. Guillory, and J. T. Hancock (2014))
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using the service, privacy advocates worried about the potential

consequences of manipulating the emotions of unsuspecting users. Can you

think of any issues that may have arisen if the researchers had asked

participants for explicit consent and then only conducted the experiment on

those who agreed?

Designing an experiment requires careful thought. A step-by-step

approach to this planning process, as advocated by Dean and Voss (1999), is

extremely helpful, but rarely does everything go as planned in experimenta-

tion. Some important factors may be overlooked, measurements on particular

subjects may be difficult or impossible to obtain, equipment may break down

during the experiment, etc. Scientific experimentation is an iterative process

where the information and knowledge gained from one investigation is used

to improve upon the next. Our goal in this section is to provide a basic

introduction to the important planning process that should be part of every

experiment. If the experiment is not properly designed, the objective of the

experiment may be completely irrelevant. There is no magic formula

statisticians can apply to fix design flaws in an experiment. Collecting rele-

vant data in the proper way is absolutely essential for a successful experiment.

Step-by-Step Process for Planning an Experiment

Step 1. Identify your objective.

Step 2. Decide what information to collect.

Step 3. Decide how to collect the information.

Step 4. Decide how many experimental units are needed.

Step 5. Use randomization to assign experimental units to treatments.

Step 6. Collect the data.

Step 7. Analyze the data.
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Example 3.11. Breaking Strengths for Mechanical Pencil Leads J. Ted

Hunter (1997), a student in a design of experiments course, was searching

for an idea for his course project. Like many other users of mechanical pencils,

he was frustrated because the lead tip from his pencil kept breaking off while

he was trying to write. After reading the promotional slogan on the side of his

lead storage container, the student decided to test the manufacturer’s claim

that he was using the strongest lead in America. Testing a claim is a common

objective in many experiments. More specifically, the student’s objective was

to compare the breaking strengths of pencil leads for different brands,

thicknesses, and graphite densities. Brand, thickness, and graphite density

are known as possible sources of variation in the breaking strength of pencil

lead and are referred to as treatment factors.

Definition 3.10 Treatment Factors are controllable potential sources of

variation in an experiment. Although the term treatment might make

you think of medical or agricultural experiments, we will use it in a more

generic sense throughout this text.

Three different brands (labeled A, B, and C), two different thicknesses

(0.5 mm and 0.7 mm), and three different graphite densities (H, HB, and 2H)

were used in this experiment. These specific settings or characteristics of the

treatment factors are referred to as levels.

Definition 3.11 Levels are specific settings or characteristics of the treat-

ment factors.

Moving to the second step in the planning process Ted decided to collect

breaking strengths for sticks of pencil lead. The individual sticks of lead are

referred to as experimental units.
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Definition 3.12 Experimental units are the subjects, individuals, or

objects used in an experiment.

The third step presented an interesting challenge. How would breaking

strength be measured? Ted decided to construct a small basket that could be

attached to each stick of lead (see Fig. 3.5).

The ends of the sticks of lead were then placed on two even stacks of books

and nickels were gently placed into the basket until the lead snapped. The

response variable of interest, breaking strength of the lead, is the number of

nickels that are placed in the basket before the lead snapped. There are

obviously more sophisticated ways to measure the breaking strength of pencil

lead, but this method is a reasonable approach if care is taken to avoid other

possible sources of variation. For example, if different people placed the

nickels in the basket or different methods of placement were used, the

responses may differ because of these unwanted sources of variation. This

would result in a problem known as confounding. We would not know if the

Fig. 3.5 Diagram of instrument used to measure breaking strengths of
pencil lead
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observed differences were due to the treatment factors or these unwanted

sources of variation. Ideally, we would like to eliminate all possible sources of

variation, except for the variability in the treatment factors we are interested

in considering and random measurement error. One way to do this is called

blocking.

Definition 3.13 Blocking is the formation of homogeneous subgroups

of experimental units based on some characteristic or unwanted poten-

tial source of variation. The primary purpose of blocking is to create

experimental conditions that are as identical as possible for the experi-

mental units.

The next step in the process is to decide how many sticks of lead will be

needed for the experiment. Since we have 3 brands, 2 thicknesses, and

3 graphite densities, we will need at least 3 � 2 � 3 ¼ 18 sticks of lead.

However, using just 18 sticks of lead would allow us to measure the breaking

strength for each treatment combination only one time. We would like to be

able to repeat or replicate the experiment several times at each treatment

combination to see if any patterns emerge. The problem is that this takes

more time and typically requires more money. Thus, we have conflicting

goals here. We want to replicate this experiment as often as we can so that

we can be comfortable with our ability to detect treatment effects, but we also

want to keep the number of replications as small as we can to help control the

amount of time and money we spend on the experiment. A complete answer

to the question of how many experimental units are needed requires more

statistical concepts than we have mastered at this point, but the dilemma we

are facing should be clear. Suppose that Ted decided to replicate this experi-

ment 6 times for each treatment combination. Then he would need

6 � 18 ¼ 108 sticks of lead.
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Step 5 in the planning process is to randomly assign, using a table of

random digits or a random number generator, the experimental units to the

treatments. In this case, we have 108 sticks of lead with different treatment

characteristics, so one way of completing this randomization is to label the

sticks from 1 to 108 and then randomly decide on the order in which the

breaking strengths for the 108 sticks will be measured.

The Importance of Randomization Randomization should always be

used in Step 5 to eliminate potential bias and to “evenly distribute”

unknown sources of variation.

The data collection process is often the place where some unknown

sources of variation first become evident. For the moment, descriptive statis-

tics and graphical displays from Chaps. 1 and 2 can be used to complete the

data analysis step. More formal statistical inference procedures are presented

in Chaps. 6, 7, 8, 9, 10, 11 and 12.

Example 3.12. The Placebo Effect As discussed in the 2010 NPR article “The

Growing Power of the Sugar Pill”, a new treatment for Parkinson’s disease

was being studied at the University of Colorado. The treatment involved

major surgery, where cells from embryos were implanted in the brains of

patients suffering from Parkinson’s disease to replace the cells killed by the

disease. George Doeschner, a patient suffering from Parkinson’s disease,

agreed to participate in a medical experiment designed to evaluate the effec-

tiveness of this new surgical technique. George flew to Denver, was prepped

for surgery, and was taken into the operating room like all other patients.

However, George did not know exactly what was going to happen while he

was in the operating room. There were two possibilities: either he was going

to get the complete treatment or he was going to get a placebo (fake
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treatment). The surgeons actually drilled a hole in George’s head and sewed it

back upwithout doing anything else! Youmight be surprised to learn that this

did not bother George a bit.

Many people are surprised when they first learn of the widespread use of

such “fake” treatments in the medical research community. In fact, even

though placebos have been advocated by statisticians for decades, the use of

placebos can be controversial, and in some fields such as cancer clinical trials,

still not the norm. Although it can be difficult to imagine giving a sugar pill to

a person with a deadly disease when a promising experimental treatment is

readily accessible, scientists believe that the benefits of using control groups

for comparison purposes far outweigh the risks, even in major surgical

operations. In fact, an article in TIME magazine (1999) claims that the

National Institutes of Health rejects proposals from surgical researchers

who do not employ placebo surgeries.

Interestingly, these fake treatments can have real effects. Kaptchuk et al.

(2006) found that two different types of placebos (a sugar pill and fake

acupuncture) both had the desired outcome of reducing arm pain. Further-

more, they both appeared to cause the side effects that participants were told

the treatments could produce. The NPR article also cited a paper by Rief et al.

(2009) that even suggests that the placebo effect has grown stronger over time

as our expectations change!

Definition 3.14 A placebo is a fake treatment. A group of randomly

selected experimental units are given a placebo to form a control group.

This control group is used to measure the placebo effect and serve as a

benchmark for comparison with the treatment group.

Even if the step-by-step process is followed and a randomly selected

control group is used, other problems can destroy the experiment.
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Example 3.13. Stopping Clinical Trials Early Due

to Unanticipated Harm In 2007, a late stage clinical trial was being

conducted in India and a handful of African countries to test the effectiveness

of an HIV treatment called Ushercell, which was being developed by the

nonprofit organization CONRAD. The compound, known as a “microbicide”,

was believed to reduce the rate of HIV infection in women who used it in gel

form. However, researchers were shocked to learn that the gel actually

seemed to increase the rate of HIV infection in the women who used it. (This

contradicted nearly a dozen previous trials involving Ushercell.) Because of

this increase compared to the placebo gel, the trial was immediately halted

and the women in the treatment group were no longer given Ushercell.

Honey (2007) discusses the steps taken by CONRAD and the researchers to

better the science behind how exactly this could have happened.

Clinical trials can also be stopped early under more favorable conditions:

for example, if the treatment appears to be so effective that the researchers feel

that it would unethical to delay the development of the drug by waiting for

the experiment to conclude. This is a somewhat controversial topic in the

medical research community, however, and it is important to consider the

conditions under which the trial would be stopped early before the experiment

begins (rather than after seeing the data).

Designing a good experiment is difficult, some say impossible, if the

researchers know which experimental units are in the control group and

which experimental units are in the treatment group. To eliminate this poten-

tial source of bias, researchers should not be informed which patients are

assigned to which group. Experiments where neither the patients nor the

researchers know which group the experimental units have been assigned

to are known as double-blind experiments.
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Section 3.3 Practice Exercises

For each of the settings described in the following Exercises 3.2.1–3.2.6,

complete Steps 1–4 in the step-by-step process for planning an experiment.

3.2.1. Design a taste test to compare consumer preferences for three different

types of cola. Your design should include a detailed description of blocking

factors and the randomization step.

3.2.2. Several consumers have filed complaints with a snack food company.

The company produces a one-pound bag of chips, but the consumers feel that

the bags of chips are starting to contain more air than chips. Design an

experiment to test the company’s claim that this product contains 1 pound

of chips.

3.2.3. Is bottled water safer than tap water? Design an experiment to com-

pare these two types of water.

3.2.4. Which brand of paper towels is the strongest? Design an experiment to

compare the strengths of two different brands of paper towels.

3.2.5. Are certain pain relievers more effective than others? Design an exper-

iment to compare Advil, Tylenol, and Aleve.

3.2.6. To compare the prices at supermarket Awith those at supermarket B a

student randomly selected 50 products from supermarket A and 50 products

from supermarket B, computed the total bill at each store, and repeated these

sampling procedures 28 times for each store. The student suggested that the

average of the 28 bills for store A be compared with the average of the 28 bills

for store B to decide which store offers the lowest prices, on average. Another

student randomly selected 50 items from a list of products which the two

stores have in common, computed the difference in the prices for each of the
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50 products, and found the average of these 50 differences. She repeated this

process 28 times and suggested that the average of the 28 average differences

be used to decide which store offers the lowest prices on average. Which

design do you prefer? Why?

3.2.7. In Example 3.11 the breaking strengths of the pencil leads are

measured by counting the number of nickels that are placed in the basket

before the lead snapped. Do you think it matters if the order of the nickels is

the same for all sticks of lead? Would you prefer using randomization to

decide on the order of the nickels for each stick of lead or using the same order

for all sticks of lead? Explain.

Chapter 3 Comprehensive Exercises

3.A. Conceptual

3.A.1. A doctor wants to investigate the effect of a cholesterol-lowering drug

on mental acuity, so she recruits 20 patients from the hospital she works at

and conducts a series of tests to measure mental fitness. The patients are

selected in such a way that 10 of them take the cholesterol-lowering drug

and 10 of them do not. Is this an observational study or an experiment?

3.A.2. Suppose that the doctor in the previous exercise instead recruits

20 patients upon entry to the hospital and gives the drug to the first 10 patients

and does not give the drug to the last 10 patients.

(a) Is this an observational study or an experiment? Explain.

(b) Are there any aspects of the doctor’s implementation which you

would change?

3.A.3. Fish Oil and Epilepsy. DeGiorgio et al. (2014) investigated the effects of

fish oil on drug-resistant epilepsy. They were interested in testing both low
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dosage and high dosage amounts versus a placebo. However, due to practical

limitations, they were only able to recruit 24 patients who participated

throughout the study. Further complicating things was the fact that the

baseline number of seizures varied widely (from as little as 3 per month to

as many as 60 per month). Discuss how you would design an ideal study to

examine these effects if the number of patients was not an issue and then

discuss how you might work around this limitation.

3.B. Data Analysis/Computational

3.B.1. Are Mac Users Charged More for Travel? A 2012 Wall Street Journal

article suggested that Mac users would pay $20 to $30 more per night for

hotels on the online travel site Orbitz than PC users would. Partner with a

classmate to design an experiment to test the validity of this claim. Collect and

report the data from your experiment.

3.B.2. Why Do Mac Users Pay More? The article discussed in Exercise 3.B.1

was often misrepresented by third parties as claiming that Mac users would

be charged more for the same hotel rooms. However, the article actually

suggests that the Mac users would be steered to higher-end hotels, which

end up costing $20 to $30 more per night. With this in mind, discuss any

changes you would make to the design of your experiment in Exercise 3.B.1

and collect new data according to this updated experimental design.

3.B.3. Police Body-Worn Cameras and Citizen Complaints. Citizen complaints

against police officers are often seen as being indicative of the level of compli-

ance with police procedure and proper conduct. Ariel et al. (2016) conducted a

study of the effect of police body-worn cameras on the number of complaints

made by citizens. They randomly assigned officer shifts at seven police

departments to either wear cameras or not wear them on a weekly basis.

The results of their study are displayed in Table 3.8.
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(a) Was this an experiment or an observational study?

(b) What is the treatment and what is the control? From looking at the

data, do you think there is a strong treatment effect?

(c) Both the treatment and the control groups appear to havemany fewer

complaints than the same groups did before the experiment started.

Why do you think this might be?

(d) The researchers initially reached out to 10 police departments and

then reported the results based on the 7 sites which agreed to partici-

pate. What effect might this have on the results of the study?

3.C. Activities

3.C.1. Effect of Salt on Ice. Youwill need a tray of ice cubes and some table salt

for this activity. The goal will be to determine whether salt causes ice to melt

faster. Design an experiment to test this hypothesis. Describe your procedure,

including what the experimental units are, what the outcome of interest is,

what the treatment and control groups are, what process you used to assign

experimental units to each group, and discuss any data that you collect.

3.C.2. M & M Colors. Do the colors of M&M’s vary by which type of M&M

they are? Although the company no longer posts the proportion of colors in

each batch of M&M’s, various sources on the Internet claim that there are, in

fact, different color mixes for different types of M &M’s. To test this, purchase

two bags of M&M’s, one each of two different types (for example, milk

chocolate and peanut) and record the proportion of orange M&M’s in each

bag. Is there much difference in these proportions? Aggregate your results

with those of your classmates to obtain a larger set of data. Is this an experi-

ment or an observational study?

3.C.3. Heart Rate and Exercise. How do various activities affect your heart

rate? Gather the necessary materials to measure your pulse and then measure
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it separately after performing 30 seconds of each of the following activities:

jumping jacks, walking, sprinting, sitting in a chair, and lying on the ground.

(a) Is this an observational study or an experiment?

(b) What would you consider to be the placebo or baseline heart rate?

(c) Do you think the order in which these activities are performed will

affect your results? If so, list a few steps that you can take to eliminate

these effects.

3.D. Internet Archives

3.D.1. The polling company Reuters routinely conducts surveys on various

topics of interest to Americans. You can view the results of recent polls in

categories such as “Government & Policy”, “Business & Finance”, “Society &

Lifestyle”, and more by visiting http://polling.reuters.com/. Select a poll on

a topic you find interesting or controversial.

(a) How many people participated in the poll?

(b) How were these people selected?

(c) Discuss any aspects of the poll that you might find surprising.

3.D.2. NASA Experiments. NASA makes available a list of all experiments

that have been completed or are currently being conducted on the Interna-

tional Space Station (ISS) at http://www.nasa.gov/mission_pages/station/

research/experiments/experiments_by_name.html. Find an experiment of

interest to you and summarize it.

(a) How were the data collected?

(b) What were the treatment and control groups?

(c) What was the conclusion of the experiment and what practical use

does this knowledge have?
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Understanding Random Events:
Producing Models Using Probability
and Simulation

4

There are few things in life of which we are absolutely certain. Not knowing

what is going to happen or how someone or something is going to react in a

particular situation is what keeps life interesting. Let’s take a moment to think

about some of the things you do on a daily basis and list the events that have

some chance or uncertainty associated with them. How do youwake up in the

morning? Many people rely on an alarm clock, but what if the electricity is out

or your alarm clock malfunctions or you forgot to set the alarm the night

before?What are you going to wear? Usually youmake this decision based on

the weather forecast. Will it be warm or cold? Will it rain or not? Many of us

have daily appointments and meetings that we must attend. Will you make it

to your lunch meeting on time? Will this be one of those days filled with

unforeseen problems? And after a long day at school or the office, will your

team win the soccer game tonight? What other events can you think of that

involve uncertainty?

# Springer International Publishing AG 2017
D.A. Wolfe, G. Schneider, Intuitive Introductory Statistics, Springer Texts in Statistics,
DOI 10.1007/978-3-319-56072-4_4
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In this chapter we will develop your understanding of chance and uncer-

tainty by focusing on some natural probability models for several basic

settings. There are three common interpretations for the probability of an

event.

Interpretation 1. Relative Frequency

The probability of an event A, say P(A), is the long-run relative fre-

quency of the event. That is, we independently repeat a random experi-

ment n times and record the fraction of the experiments in which the

event A occurs. The relative frequency interpretation of P(A) is then the

long-run proportion of independent experiments in which A occurs or,

notationally, P Að Þ ¼ limitn!1
# of experiments in which A occurs

n .

Interpretation 2. Logical Probability

If a random experiment can result in any one of n equally likely

outcomes, then the probability of an event A, say P(A), is equal to one

over the number of equally likely outcomes, or notationally, P Að Þ ¼ 1
n.

Interpretation 3. Subjective Probability

The probability of an event A, say P(A), is a number between 0 and

1, inclusive, which measures an individual’s degree of belief in the event.

Although subjective probabilities are commonly used in everyday conver-

sation, we will focus on the first two interpretations of probability in this text.

Example 4.1. Rolling a Pair of Fair Dice Consider the simple random experi-

ment that consists of rolling a pair of fair dice and suppose we are interested
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in the probability of getting an even number. Using the relative frequency

interpretation of probability, we would roll the dice over and over again and

compute the fraction of times the event E ¼ {even number} occurs. If you

actually conduct this experiment with a pair of fair dice, you will find that this

fraction converges to 1/2 as your number of trials increases. Try it!

Alternatively, we know that when we roll a pair of dice we are

either going to get an even number or an odd number, each corresponding

to 18 of the 36 possible combinations of numbers on the dice. Thus, there are

two equally likely outcomes, even and odd, so the logical interpretation

of probability implies that the probability of getting an even number is

P(E) ¼ 1/2.

We must be very careful in applying Interpretation 2. For example, even

though the outcome from rolling a pair of dice is either an even number in the

set {2, 4, 6, 8, 10, 12} or an odd number in the set {3, 5, 7, 9, 11}, it is not correct

to conclude that P(E) ¼ 6/11. When applying Interpretation 2 we are assum-

ing that the basic outcomes are equally likely and the eleven outcomes {2, 3, 4,

5, 6, 7, 8, 9, 10, 11, 12} are not equally likely!

4.1 Probability as Relative Frequency: Law of Large Numbers

In this section we introduce the Law of Large Numbers, one of the most

important, yet widely misunderstood, concepts in probability.

Example 4.2. Checking Your Intuition and Your Random Number

Generator Suppose we generate two sets of 100 random numbers from the

interval (0, 1). Then we create a new set of values corresponding to the

differences between these two sets of random numbers. What should the

collection of differences look like? Will it be symmetric? Where do you expect

the center of the collection of differences to be located?What is the chance that

a given number in the second column is greater than the corresponding

number in the first column?
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We first generate the two sets of random numbers using two calls to the

R function runifð Þ while specifying the option n ¼ 100. The following

commands generate these two sets of 100 numbers and store them to local

variables named first_set and second_set.

Next we compute and store the differences between the 100 pairs of

numbers in a local variable named differences.

Finally, we generate the numerical and graphical summaries displayed in

Fig. 4.1 using the summaryð Þ and histð Þ functions.

Was your intuition correct? The collection of the differences is roughly

symmetric and centered at zero. Now, let’s use the random numbers in

first_set and second_set to estimate the probability that the number in the

Fig. 4.1 Numerical and graphical summaries for differences between two
sets of random numbers selected from the interval (0,1)

-1.0 -0.5 0.5 1.00.0

differences

F
re

qu
en

cy

15

Histogram of differences

10
5

0

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.90240 -0.43380 -0.07015 -0.09158 0.21100 0.87640

246 4 Understanding Random Events: Producing Models Using Probability and Simulation



second set will be greater than the number in the first set. We first create a new

variable, second_greater_than_first, which will be a vector whose ith element is

TRUE when the ith number in second_set is greater than the ith number in

first_set and FALSE otherwise.

Indicator variables like the one we have just created are often used to

document whether an event of interest occurred. The TRUE and FALSE

values (or, often, ones and zeroes) that are typically used for indicator

variables make counting very easy. For example, if we count the number of

TRUE values in second_greater_than_first, we will find out howmany times the

random number in the second set was greater than the random number in the

first set. We can easily do this by using the R function sumð Þ, which will

automatically convert the TRUE values to ones and the FALSE values to

zeroes and then add them up for us.

For our simulated values the sum is 57 and so 57% of the time the number in

the second column was greater than the number in the first column. Was your

guess close to 50% or 0.5?

Another interesting way to view these simulation results is to keep a

running total of the number of times the second number is larger than the

first number. That is, suppose you generated two random numbers, com-

pared them, and added one to a counter if the second number was greater

than the first number. Do you think the percentage of times that the second

number is greater than the first will always be close to 50%?

We can use theR function cumsumð Þ to get the running total of the number

of times that the second number is larger than the first and then divide that

total by the number of trials to get the cumulative proportion. If we multiply
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by 100, we’ll have the cumulative percentages after each of the 100 trials. The

following command does exactly that and stores the result in the variable

cumulative_percentages.

We use the following commands to create the scatterplot of these results

(and to add a horizontal line at 50%) shown in Fig. 4.2.

Looking at Fig. 4.2 we notice that there is a considerable amount of

variability in the cumulative percentages for the first few dozen trials. How-

ever, as we look at more and more pairs of random numbers (that is, the trial

number increases), the estimates settle down and become less variable. This

long-run stability is very important in the fields of probability and statistics. It

leads to our relative frequency interpretation of probability and is known as

the Law of Large Numbers.

Fig. 4.2 Scatterplot of cumulative percentages versus trial number
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Definition 4.1 The Law of Large Numbers says that if we repeat a

random experiment a “large” number of times, then the cumulative

fraction of times an event of interest occurs will converge to the proba-

bility of the event. Notationally, we have

limit
n!1

# of experiments in which A occurs
n

¼ P Að Þ:

Alternatively, the Law of Large Numbers says that the absolute value of

the difference between the cumulative fraction and the probability of

interest converges to zero; that is,

limit
n!1

# of experiments in which A occurs
n

� P Að Þ
����

���� ¼ 0:

Far too often people think that the Law of Large Numbers is applicable to

situations where the number of trials is small. In short, there is no such thing

as the Law of Small Numbers. If you repeat the simulation described in

Example 4.2 several times (as you’re asked to do in Exercise 4.1.3), you will

find that the regularity described by the Law of Large Numbers is only

present in the long-run.

Many states now have lotteries and there are always people trying to take

advantage of the common fallacy or belief in the “Law of Small Numbers.”

For example, several papers publish lists of so-called “hot” lottery numbers;

that is, numbers that have occurred more frequently than others in recent

drawings. What does the Law of Large Numbers say about “hot” and “cold”

numbers if the lottery is fair?

Section 4.1 Practice Exercises

4.1.1. Checking Your Intuition By Comparing Sequences of Events. A sequence of

nine coin tosses could result in the sequence HTTHHHTHH. One property of
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this sequence that may be of interest is the total number of heads, 6 in this

case. Some other properties of interest in sequences of events are the number

of runs and the lengths of those runs. A run is a string of outcomes that are the

same. This sequence of 9 coin tosses has 2 runs of length 1, 2 runs of length

2, and 1 run of length 3. Now let’s investigate these properties for some longer

sequences.

(a) Write down a sequence of 50 outcomes (H or T) that you think could

result from flipping a coin 50 times. (Don’t actually flip the coin yet—

just use your intuition to write down a sequence of 50 random

outcomes.) How many heads are in the sequence? How many runs

are in the sequence? Find out how long each run is by counting the

number of H’s or T’s in the run and create a frequency table for run

length. What is the length of the longest run?

(b) Flip a coin 50 times and record the sequence of 50 outcomes. How

many heads are in the sequence? Howmany runs are in the sequence?

Find out how long each run is by counting the number of H’s or T’s in

the run and create a frequency table for run length. What is the length

of the longest run? Compare your answers with your intuition in part

(a).

(c) Use R (for example, the function rbinom ð Þ may be helpful) to simu-

late 50 flips of a coin 30 separate times. For each of the 30 sequences,

determine the number of heads and the number of runs in the

sequence. Create graphical summaries for the number of runs and

the number of heads. How do the values from your sequence in part

(b) compare with those in the simulated distributions?

(d) Can you tell which the two sequences below was simulated and

which was an intuitive guess?

Sequence R HHHHTHTHHTTHTHTHHHHTHHTTT
HHHTHHTHTHTTTHTHHHHTHHTHH

Sequence G HTHHHTTHHTTTHHHHTTTHTHTTH
HTTTTHHTTHHHTTTHTHTHHHTTT
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4.1.2. Functions of Random Numbers. SupposeU is a random number between

0 and 1. Show what you need to do to U arithmetically to produce:

(a) a random number X between 1 and 10;

(b) a random number X between �1 and 1;

(c) a random integer X that is either 0 or 1 (consider a statement such as

“if U < 0.5 then . . .”);

(d) a random integer in the set {1, 2, 3, 4, 5, 6};

(e) Describe how you could use your random number U to make a

random five letter word.

4.1.3. Intuition, Random Number Generation, and the Law of Large Numbers. Use

a random number generator to create two separate sets of 100 random num-

bers each from the interval (0, 1). Call the sets R1 and R2.

(a) Obtain the 100 differences D ¼ (R2 – R1) between the two sets of

random numbers.

(b) What does the collection of differencesD look like? Is it symmetric? Is

the center of the collection of differences D located where you

expected it to be? Explain.

(c) Create a new set of 100 values, say Q, that correspond to 1 if the

number in R1 is at least as large as the corresponding number in R2 or

0 if the number in R2 is larger.

(d) Find the sum of the values in Q. What does this statistic tell you?

Explain how you would use this statistic to estimate the chance that

one randomly generated number from the interval (0, 1) will be larger

than a second randomly generated number from (0, 1).

(e) Compute the cumulative percentages of pairs for which R2 is larger

than R1 as you move consecutively from the first to the 100th pair of

random numbers.

(f) Create a scatterplot of the cumulative percentage of pairs for which

R2 is larger than R1 against trial number.
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(g) Describe the pattern in your scatterplot. How is this pattern related to

the Law of Large Numbers?

4.1.4. A student is taking a standardized exam for the third time. When his

parents ask him how he feels about his preparation, he responds with the

following statement. “Well, I know that there are only three possibilities—I

am either going to do the same, improve, or do worse. Using logical proba-

bility, I know that there is only a 1/3 chance that I will do worse, so I am

feeling pretty good about the upcoming exam.” Identify the flaw in the

student’s reasoning. Which interpretation of probability would you use to

estimate his chance of doing worse on the exam? Explain.

4.1.5. Use the relative frequency interpretations of probability to identify the

chance of getting a head when tossing a coin that is:

(a) balanced;

(b) unbalanced with heads being twice as likely as tails;

(c) unbalanced with heads being 5 times as likely as tails;

(d) unbalanced with heads being 1/4 as likely as tails.

4.1.6. Use the relative frequency interpretations of probability to identify the

chance of getting an even number when rolling a die that is:

(a) balanced;

(b) weighted so that {1, 3, 5} are twice as likely as {2, 4, 6};

(c) weighted so that {1, 3, 5} are 1/3 as likely as {2, 4, 6}.

4.1.7. When listening to your local weather forecast, you often hear

comments that involve probabilities. For example, there is a 60% chance of

rain tomorrow or there is a 30% chance of snow. Do you think the

meteorologists are using logical, relative frequency, or subjective

probabilities? Explain.
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4.1.8. A mutual fund manager invests $1 million in a particular stock and

then tells shareholders in the fund that she thinks there is a 75% chance that

the company stock will increase in value by over 30% in the next 6 months. Do

you think she is using the logical, relative frequency, or subjective interpreta-

tion of probability?

4.2 Some Basic Probability Rules

Definition 4.2 The sample space S of a random experiment is the set

of all possible basic outcomes.

Example 4.3. Tossing Coins Consider the random experiment that consists

of tossing three coins. The sample space for this experiment contains 23 ¼ 8

basic outcomes that we list as S ¼ {HHH, HHT, HTH, HTT, THH, THT, TTH,

TTT}. Figure 4.3 shows a convenient method of displaying this sample space.

Although tree diagrams like the one shown in Fig. 4.3 are useful for

displaying sample spaces, often we are interested in particular characteristics

of the basic outcomes rather than the basic outcomes themselves. For exam-

ple, when tossing 3 coins we might be interested in the total number of heads,

a random quantity determined from the basic outcomes of the random exper-

iment, with its own derived sample space H ¼ {0, 1, 2, 3}.

Fig. 4.3 Tree diagram for tossing three coins
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Definition 4.3 A random variable is a function with numerical values

determined by the outcome of a random experiment. Random variables

are typically denoted by capital letters.

We are often interested in calculating probabilities for events that can be

written as functions (unions or intersections) of other events. When this is the

case, we can usually calculate the probabilities of interest a number of differ-

ent ways. For instance, in Example 4.1 we found that the probability of getting

an even number, {2 or 4 or 6 or 8 or 10 or 12}, when we roll a pair of fair dice is

1/2. How would you calculate the probability of getting an odd number

when rolling a pair of fair dice? You could go back to the original sample

space and calculate the probability the same way we did in Example 4.1 or

you could save time by using a simple relationship. Since each outcome is

either even or odd, we know that P(even) + P(odd)¼ 1. We also know that the

probability of getting an even number is 1/2, so P(odd) ¼ 1–1/2 ¼ 1/2.

The “trick” that we just used can be applied in many probability problems

so we formally present it now.

Definition 4.4 If two events A and B do not have any basic outcomes in

common (i.e., the intersection A \ B is the empty set) then we say that A

and B are disjoint events.

Definition 4.5 Two events A and B are said to be complementary if the

union A [ B ¼ S, the sample space, and they are disjoint events. The

complement of an eventA, denoted byAc, is the set of all basic outcomes

that are not in A.

254 4 Understanding Random Events: Producing Models Using Probability and Simulation



Complement Rule The probability of the complement of an event A is

P(Ac) ¼ 1 � P(A).

Example 4.4. Rolling Dice Many board games use dice to determine the

number of spaces that a player will move when it is their turn. If you roll a

pair of fair dice, what is the probability of getting something other than a sum

of six on the upward facing sides? If we let A¼ {sum of six on the roll of a pair

of fair dice}, then we want to find P(Ac). Now, we can list all 62 ¼ 36 equally

likely outcomes and calculate P(Ac) by counting the number of equally likely

outcomes that are not equal to six or we can count the number of equally

likely outcomes that are equal to six and then use the complement rule. Since

there are only five ways to get a six, namely, {(1, 5), (2, 4), (3, 3), (4, 2), and

(5, 1)}, P(A) ¼ 5/36 and P(Ac) ¼ 1–5/36 ¼ 31/36.

Counting is a fundamental principle in probability. Often a probability

problem can be reduced to counting the number of equally likely outcomes of

interest. Although this sounds like a very simple task, careful attention to

details in counting are required. We will return to some general counting

techniques later in this chapter.

In the next few subsections we introduce some basic rules for calculating

probabilities. While it is easy to fall into the trap of viewing these rules or

formulas as something that must be memorized, we are hoping that you resist

this temptation. Instead, try to view them as problem solving aids and

continue to think about their intuitive nature.

4.2.1 Addition Rule

When an event can be written as the union of two or more events the addition

rule can often provide a convenient way to calculate the probability of

interest.
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Addition Rule If AandBare two events of interest, then the probability

that only A occurs or only B occurs or both A and B occur is

P A [ Bð Þ ¼ P Að Þ þ P Bð Þ � P A \ Bð Þ:

If A and B are disjoint events, then P(A \ B) ¼ 0 and the addition rule

simplifies to

P A [ Bð Þ ¼ P Að Þ þ P Bð Þ:

That is, ifA and B are disjoint, then the probability of their union is equal

to the sum of the individual probabilities.

Example 4.5. Drawing a Card When drawing a card from a standard deck of

52 playing cards, what is the probability that the card is either red or a queen?

Let R ¼ {red card is drawn from the deck} and Q ¼ {queen is drawn from the

deck} denote the two events of interest. Using the addition rule, we find

P R [Qð Þ ¼ P Rð Þ þ P Qð Þ � P R \Qð Þ ¼ 26
52 þ 4

52 � 2
52 ¼ 7

13. An alternative

method of solution works directly with the 52 equally likely cards. Since

26 of the cards are red and there are two black Queens, P R [Qð Þ ¼ 28
52 ¼ 7

13.

The addition rule can be extended to the union of m events A1, A2, . . ., Am.

If no two of the m events have any outcomes in common (they are mutually

disjoint), then the probability of their union is equal to the sum of their

probabilities. That is,

P A1 [ A2 [ � � � [ Amð Þ ¼ P [m
i¼1

Ai

� �
¼
Xm
i¼1

P Aið Þ:

The setting where the m events are not mutually disjoint is discussed in

Exercise 4.1.6.
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4.2.2 Conditional Probability

What is the probability that a newborn baby will have a low birth weight?

Researchers at Baystate Medical Center in Springfield, Massachusetts

conducted a study in 1986 to estimate this probability and to investigate

risk factors associated with low birth weight. A contingency table was

constructed for birth weight (classified as low, medium, or high) and one of

the risk factors, smoking. The output in Fig. 4.4 can be used to estimate the

chance of having a baby with low birth weight.

Based on the summary information in the far right column, we would

estimate the probability of having a baby with a low birth weight to be

59/189 ¼ .3122. However, if we consider the risk factor smoking, we would

estimate the probability of having a baby with a low birth weight to be

30/74 ¼ .4054 for a smoking mother and 29/115 ¼ .2522 for a nonsmoking

mother. Taking this risk factor into account is known in statistics as condi-

tioning. That is, our estimate of the probability depends on whether or not the

mother is a smoker. If the estimates would have been the same then there

would be no need to consider the information on whether or not a mother is a

smoker in assessing the probability of having a baby with low birth weight. In

applied problems it is easy to overlook important conditional factors that may

change your estimates.

Fig. 4.4 Contingency table for birth weights and smoking (rows are levels
of weight, columns are levels of smoking)

noSmoke Smoke total

High 42 13 55

Low 29 30 59

Med 44 31 75

total 115 74 189
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The general form of the definition of conditional probability is given in

Definition 4.6.

Definition 4.6 The conditional probability of an event A, given knowl-

edge of the occurrence of the event B, is

P AjBð Þ ¼ P A \ Bð Þ
P Bð Þ :

4.2.3 Multiplication Rule

If we multiply both sides of the equation in Definition 4.6 by P(B), we obtain a

probability rule for the intersection of two events.

Multiplication Rule If A and B are two events of interest, then the

probability that both A and B occur is

P A \ Bð Þ ¼ P A j Bð ÞP Bð Þ:

An alternative version of the multiplication rule is obtained by simply

reversing the roles of A and B. That is, the probability of the intersection

of A and B can also be obtained from

P B \ Að Þ ¼ P B j Að ÞP Að Þ,

if conditioning on A is more natural in a given problem.

Example 4.6. Low Birth Weight We can use the data in the contingency table

in Fig. 4.4 to estimate the probability that a newborn baby will have a low

birth weight and his/her mother is a smoker. Let L ¼ {birth weight for a

newborn baby is classified as low} and S ¼ {mother is a smoker} denote the

two events of interest. Using the multiplication rule, we estimate

P S \ Lð Þ ¼ P LjSð ÞP Sð Þ � 30
74 � 74

189 ¼ 30
189 ¼ :1587.
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Note that 30 is the table entry for the row labeled Low and the column

labeled Smoke so the probability of the intersection is simply the cell entry

divided by the total number of births. It is conventional to let the cells of a

contingency table denote the counts (or probabilities) of the intersections.

When presented as probabilities, the cell values are referred to as joint

probabilities and the row and column totals are called marginal probabilities.

The general form of a contingency table (using probabilities) for two

categorical variables is shown in Fig. 4.5. The row variable has m categories

or levels and the column variable has n categories or levels. Notice that if you

sum the row totals or the column totals or the I � J cell probabilities you will

always get 1. These three different sets of probabilities denote three different

probability distributions for discrete random variables. In Sect. 3 we will focus

on a number of specific types of discrete random variables and their

associated probability distributions.

In some settings we obtain special contingency tables where P(Ri\Cj) ¼
P(Ri) � P(Cj) for all i ¼ 1, 2, . . ., I and j ¼ 1, 2, . . ., J. When the joint

probability of the intersection is equal to the product of the associated

Fig. 4.5 General form of a contingency table for two categorical variables

Column Variable

C1 C2 CJ Row Totals

Row
Variable

R1 P(R1 C1) P(R1 C2) P(R1 CJ) P(R1)

R2 P(R2 C1) P(R2 C2) P(R2 CJ) P(R2)

RI P(RI C1) P(RI C2) P(RI CJ) P(RI)

Column
Totals

P(C1) P(C2) P(CJ) 1

∩ ∩ ∩

∩∩∩

∩ ∩ ∩
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marginal probabilities for all cells in the two-way table, we say that the row

variable and the column variable are statistically independent.

Definition 4.7 Events A and B are independent if knowledge about the

occurrence of the event A does not change the probability of B and vice

versa. Notationally, P(A|B) ¼ P(A) and P(B|A) ¼ P(B). Basically, the

information given is not informative because the two events are unre-

lated or independent of one another.

If two events are independent then the multiplication rule states that the

probability of their intersection is the product of their individual probabilities.

Multiplication Rule for Independent Events If A and B are indepen-

dent events, then the probability that both A and B occur is

P A \ Bð Þ ¼ P Að ÞP Bð Þ:

The multiplication rule can be extended to the intersection of m events A1,

A2, . . ., Am. If the m events are mutually independent, then the probability of

their intersection is equal to the product of their probabilities. That is,

P A1 \ A2 \ � � � \ Amð Þ ¼ P \m
i¼1

Ai

� �
¼ ∏

m

i¼1
P Aið Þ:

The setting where the m events are not mutually independent is discussed

in Exercise 4.A.7.

Section 4.2 Practice Exercises

4.2.1. Eight-Sided Dice. Consider the set of possible outcomes from rolling a

pair of 8-sided dice.
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(a) Identify the sample space S.

(b) Describe two events A and B that are disjoint and complementary.

(c) Describe two events C andD that are disjoint but not complementary.

4.2.2. Five-Card Hands. Consider the set of possible outcomes from dealing a

hand of 5 cards from a standard deck of 52 playing cards (no jokers).

(a) Describe two events A and B that are disjoint and complementary.

(b) Describe two events C andD that are disjoint but not complementary.

4.2.3. A group of patients has been classified by gender and as having either

high or low blood pressure. Let A be the event that the patient is female and

B the event that the patient has high blood pressure. Are the events disjoint?

Explain.

4.2.4. Candy Colors. Suppose a large bag of candy contains the following

color distribution.

Color Brown Red Yellow Green Orange

Proportion 0.3 0.2 0.2 0.2 0.1

Two pieces of candy are drawn randomly from this bag and we are interested

in the color of each piece of candy.

(a) List the set of possible outcomes in the sample space S.

(b) Are the outcomes equally likely? Explain.

(c) Find the probability that the first piece of candy is red and the second

piece of candy is orange.

(d) Find the probability that both pieces of candy are the same color.

4.2.5. Smoke Detectors. Most homes now have at least two smoke detectors.

Suppose that the probability each smoke detector will function properly in the

presence of smoke is .85 and that the smoke detectors function independently

of one another.
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(a) If you have two smoke detectors in your home, what is the probabil-

ity that both of them will function properly during a fire?

(b) If you have three smoke detectors in your home, what is the proba-

bility that exactly one of them will function properly during a fire?

(c) If you have two smoke detectors in your home, what is the probabil-

ity that at least one of them will NOT function properly during a fire?

(d) Repeat part (c) if you have three smoke detectors in your home and

compare the two probabilities. How do you think this probability

would change if you had four smoke detectors in your home?

4.2.6. Venn Diagrams Can Be Helpful in Solving Probability Problems. A Venn

diagram is a graphical display where the sample space S is represented by a

rectangular region and events are denoted by elliptical or circular subsets of

the rectangular region. The following Venn diagram provides a visual repre-

sentation for a sample space with two disjoint events.

A B

S

(a) Create a Venn diagram for one event A by removing the ellipse

denoting the event B from the diagram above. Identify the comple-

ment of A on your diagram.

(b) Create a Venn diagram for two events A and B that are not disjoint.

Identify the events A \ B, A \ Bc, and Ac \ B on your diagram.

(c) Create a Venn diagram for three events A, B, and C that are not

disjoint. Identify the events A \ B \ C, Ac \ B \ C, A \ Bc \ C, A \
B \ Cc, Ac \ Bc \ C, Ac \ B \ Cc, A \ Bc \ Cc, and Ac \ Bc \ Cc.

4.2.7. Daily Newspapers. Suppose a particular city has two newspapers—one

is delivered in the morning and one in the afternoon. If 75% of the households
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subscribe to the morning paper, 50% of the households subscribe to the

afternoon paper, and 90% of the households subscribe to at least one of the

papers, what proportion of the households subscribe to:

(a) both papers;

(b) the morning paper but not the afternoon paper;

(c) only the afternoon paper;

(d) neither paper.

4.2.8. Dentist Visits. The proportion of individuals visiting the dentist who

have their teeth cleaned is 0.7; a cavity filled is 0.4; a tooth extracted is 0.05;

their teeth cleaned and a cavity filled is 0.25; their teeth cleaned and a tooth

extracted is 0.005; a cavity filled and a tooth extracted is 0.01; and their teeth

cleaned, a cavity filled, and a tooth extracted is 0.0005.

(a) Find the proportion of individuals visiting the dentist who have none

of these things done.

(b) What proportion of those individuals who had their teeth cleaned will

also have a cavity filled?

(c) What proportion of those individuals who had a cavity filled will also

have a tooth extracted?

4.2.9. Sun around the Earth or Earth around the Sun? National Public Radio

(2014) reported on a number of results from a survey conducted by the

National Science Foundation in the United States in 2012. One of the questions

asked in the survey was “Does the earth revolve around the sun, or does the

sun revolve around the earth?”. Twenty six percent of the respondents said

that the sun revolved around the earth! Suppose you randomly select ten

individuals and ask them this question. If the results of the National Science

Foundation survey are applicable:

(a) What is the probability that at least one of the individuals you inter-

view will believe that the sun revolves around the earth?
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(b) What is the probability that exactly half of the individuals you inter-

view will believe that the sun revolves around the earth?

(c) What is the probability that more than half of the individuals you

interview will believe that the sun revolves around the earth?

4.2.10. Express Mail. The staff members in a mailroom at a small company

send 40% of their overnight packages via express mail service with Company

A.Of these packages, 2% arrive after the guaranteed delivery time. Company B

is used to send another 45% of the overnight packages and the remaining 15%

are sent via Company C. Only 1% of the packages sent via Company B arrive

late, while 5% of the packages handled by Company C are delivered late.

(a) If a mail record for an overnight delivery is randomly selected from

the accounting database, what is the probability that the package

went via Company A and was late?

(b) What is the probability that a randomly selected package arrived late?

4.2.11. Dice and Board Games. Many board games rely on the use of six-sided

dice. For example, in “Dungeons and Dragons”, a player rolls three, balanced

six-sided dice and adds the spots on the upward facing sides to assign

intelligence for a character. Yahtzee relies on five balanced six-sided dice.

(a) How many outcomes are in the sample space when rolling three

balanced six-sided dice? Are these outcomes equally likely?

(b) List all of the possible values for the sum of the spots on the upward

facing sides of three balanced six-sided dice? Are all of these values

equally likely?

(c) Find the probability of getting a sum of 5 when rolling three balanced

six-sided dice.

(d) How many outcomes are in the sample space when rolling five

balanced six-sided dice? Are these outcomes equally likely?

(e) Find the probability of getting a sum of 30 when rolling five balanced

six-sided dice.
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4.2.12. Pizza Pies. You work at Mike’s Pizza shop. There are 7 pizzas in the

oven and you know the following information about the pizzas: 3 pizzas have

thick crust, 4 have regular crust, one thick crust pizza and two regular crust

pizzas have only sausage, and two thick crust and two regular crust pizzas

have only mushrooms.

(a) Suppose a pizza is randomly chosen from the oven. Are the events

getting a thick crust pizza and getting a pizza with mushrooms

independent? Explain.

(b) Suppose an 8th pizza is added to the oven. This pizza has thick crust

with cheese only. Now are the events getting a thick crust pizza and

getting a pizza with mushrooms independent? Explain.

4.2.13. Economy and Voting. A survey organization asked respondents their

views on the likely future direction of the economy and whether they had

voted for the President in the last election. The two-way table below shows

the proportion of responses in each category

View on Economy

Optimistic Pessimistic Neutral
Voting
behavior

For President 0.2 0.1 0.1
Against President 0.1 0.15 0.05
Did not vote 0.05 0.1 0.15

What is the probability that a randomly selected respondent:

(a) voted against the President;

(b) is pessimistic about the future of the economy;

(c) voted for the President and is pessimistic about the future of the

economy;

(d) voted for the President but is not pessimistic about the future of the

economy?

(e) Are the respondents’ views on the economy and voting behavior

independent? Explain.
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4.2.14. Space Missions. Prior to the fatal 1986 explosion of the space shuttle

Challenger, many government officials believed that the space shuttle pro-

gram would never have a fatal failure. Within NASA, estimates of the proba-

bility of a mission failure had ranged from 1 in 100,000 (by management) to

1 in 100 (by engineers). The Challenger explosion came on its 26th mission.

(a) What is the probability of 25 successes in the first 25 missions if the

probability of failure on each mission was 1%? 4%? 10%?

(b) What is the probability of at least one failure in the first 26 missions if

the probability of failure on each mission was 1%? 4%? 10%?

4.2.15. Diagnostic Tests. A diagnostic test for the AIDS virus has probability

0.005 of yielding a false positive; i.e., indicating the presence of the AIDS virus

when it is not present. If the 140 employees of amedical clinic are all free of the

AIDS virus and they each take this diagnostic test, what is the probability that

there will be at least one false positive outcome?

4.2.16. Treating Childhood Diseases. Parents of children diagnosed with a

certain disease must decide whether or not to allow their children to be

given a prescribed treatment. The treatment consists of a series of five inde-

pendent shots and the children must receive all five shots. Preliminary studies

of this treatment have shown that the probability of death or serious side

effects associated with each shot in the treatment is 1/1750. A medical doctor

claims that the probability of death or serious side effects from the complete

five shot treatment is 1/1750. Is the medical doctor correct? Explain.

4.3 Discrete Random Variables and Their Probability
Distributions

Discrete random variables are categorical or qualitative variables that can

assume only a fixed number of values. To specify a discrete probability

distribution the possible values of the random variable are listed with their

corresponding probabilities, typically in tabular form.
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Example 4.7. Rebooting Personal Computers Let X be the random variable

that counts the number of times a personal computing system must be

rebooted or restarted in an 8-h workday because of system errors. For a

particular system the probability distribution for X is

Number of Reboots (x) 0 1 2 3 4 5
Probability P(X ¼ x) .53 .22 .13 .07 .03 .02

To find the probability that the system will need to be rebooted at least

once during the next 8-h workday, we can simply add the probabilities

corresponding to 1, 2, 3, 4 and 5 reboots or use the complement rule. Either

way, there is a 47% chance that the computer will need to be rebooted at

least once.

In the next two sub-sections we will focus on two general probability

distributions that occur frequently in practice. In both cases we are interested

in studying random experiments with only two possible outcomes classified

as “success” or “failure.”

Definition 4.8 A Bernoulli trial is a random experiment that can result

in one of only two possible outcomes. One outcome is classified as a

“success” and the other outcome is classified as a “failure.” The classifi-

cation labels “success” and “failure” need not correspond to any rational

interpretation.

In the first setting involving Bernoulli trials, we are interested in counting

the random number of successes in a fixed number, n, of independent

Bernoulli trials. In the second setting we are interested in counting the random

number of Bernoulli trials until the first success occurs.
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4.3.1 Binomial Distribution

We are interested in finding the probability distribution for the total number

of successes in n independent Bernoulli trials with the same probability of

success, p, on each trial. Let Xi be an indicator variable that records the

outcome of the ith Bernoulli trial, for i ¼ 1, . . ., n. That is, Xi ¼ 1 if a “success”

occurs on the ith trial and Xi ¼ 0 if a “failure” occurs. Let B denote the total

number of successes in the n independent Bernoulli trials. That is,

B ¼
Xn
i¼1

Xi: ð4:1Þ

To find the probability distribution of B (called its sampling distribution) we

will list all 2n possible outcomes of the Bernoulli trials, compute the probabil-

ity of each outcome, identify the value of B for each outcome, and tally the

possible values of B and their associated probabilities.

Example 4.8. Binomial Distribution Suppose that four patients are given an

experimental medication to treat an illness. Unfortunately, there is a problem

with side effects for this treatment. The pharmaceutical manufacturer

estimates that there is a 50% chance that a particular patient will experience

side effects under normal usage of the medication. How many of the four

patients will experience side effects with this medication? We don’t know, of

course, but we can use the information provided to determine the probability

distribution for the total number of patients (out of four) who will experience

side effects. With p ¼ ½, the probability of each of the possible outcomes is

(1/2)4 ¼ 1/16. The list of possible outcomes (0 indicates no side effects

and 1 indicates side effects), the common probability 1/16 for each possible

outcome and the value of B for that outcome are shown in Table 4.1.

To complete our derivation of the probability distribution of Bwe combine

the probabilities for each of the possible values of B. The resulting tallies are
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provided in Table 4.2. Notice that the probability distribution of B shown in

Table 4.2 is symmetric about b ¼ 2; that is, P(B ¼ 4) ¼ P(B ¼ 0) and P

(B ¼ 3) ¼ P(B ¼ 1).

Example 4.9. Continuation of Example 4.8. Suppose that the pharmaceutical

manufacturer improves the medication so that there is only a 10% chance

(i.e., p ¼ .1) that a particular patient will experience side effects under normal

usage. How does that change the probability distribution for the number of

patients who will experience side effects from this medication?

Table 4.1 Possible outcomes and probabilities for four
independent Bernoulli trials when the probability of suc-
cess is p ¼ 1/2

Possible outcome
from Bernoulli trials

Probability of
possible outcome Value of B

0000 1/16 0
0001 1/16 1
0010 1/16 1
0011 1/16 2
0100 1/16 1
0101 1/16 2
0110 1/16 2
0111 1/16 3
1000 1/16 1
1001 1/16 2
1010 1/16 2
1011 1/16 3
1100 1/16 2
1101 1/16 3
1110 1/16 3
1111 1/16 4

Table 4.2 Probability distribution for Bwhen n¼ 4 and
p ¼ 1/2

Value of B 0 1 2 3 4
Probability 1/16 1/4 5/8 1/4 1/16
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The possible outcomes and values of B listed in Table 4.1 will remain the

same, but the probability of each possible outcome must be changed to reflect

the change in the probability of success for each trial. Table 4.3 shows the

necessary changes and Table 4.4 shows the new probability distribution for B.

Notice that the probability distribution of B in Table 4.4 for p ¼ .1 is not

symmetric.

As Examples 4.8 and 4.9 illustrate, once the number of trials (n) and the

probability of success (p) are known, computing the probability distribution

Table 4.3 Possible outcomes and probabilities for four
independent Bernoulli trials when the probability of suc-
cess is p ¼ .1

Possible outcome
from Bernoulli trials

Probability of
possible outcome Value of B

0000 (.1)0(.9)4 ¼ . 6561 0
0001 (.1)1(.9)3 ¼ . 0729 1
0010 (.1)1(.9)3 ¼ . 0729 1
0011 (.1)2(.9)2 ¼ . 0081 2
0100 (.1)1(.9)3 ¼ . 0729 1
0101 (.1)2(.9)2 ¼ . 0081 2
0110 (.1)2(.9)2 ¼ . 0081 2
0111 (.1)3(.9)1 ¼ . 0009 3
1000 (.1)1(.9)3 ¼ . 0729 1
1001 (.1)2(.9)2 ¼ . 0081 2
1010 (.1)2(.9)2 ¼ . 0081 2
1011 (.1)3(.9)1 ¼ . 0009 3
1100 (.1)2(.9)2 ¼ . 0081 2
1101 (.1)3(.9)1 ¼ . 0009 3
1110 (.1)3(.9)1 ¼ . 0009 3
1111 (.1)4(.9)0 ¼ . 0001 4

Table 4.4 Probability distribution for Bwhen n¼ 4 and
p ¼ .1

Value of B 0 1 2 3 4
Probability .6561 .2916 .0486 .0036 .0001
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for B basically becomes a counting problem. The notation B(n, p) will be used

to denote the probability distribution for the binomial random variable

corresponding to the number of successes from n independent Bernoulli trials

with probability of success p. We will write B ~ B(n, p) to indicate that the

random variable B is distributed as a binomial random variable with

n independent trials and probability of success on each trial equal to p. The

general form of the B(n, p) probability distribution can be expressed as

follows.

General Form of a Binomial Probability Distribution If B is the num-

ber of successes in n independent Bernoulli trials, each with probability

of success p, then

P B ¼ bð Þ ¼ n
b

� �
pb 1� pð Þn�b, for b ¼ 0, 1, . . . , n,

where n
b

� �
¼ n!

b! n�bð Þ! and n ! ¼ n � (n � 1) � (n � 2) � � � � � 2 � 1.

The coefficient
n
b

� �
counts howmany of the 2n possible outcomes for the

n trials contain exactly b successes and (n-b) failures.

Example 4.10. If B ~ B(15, 0.70), what is P(B ¼ 10)?

P B ¼ 10ð Þ ¼ 15
10

� �
:7ð Þ10 :3ð Þ15�10 ¼ 15!

10!5! :7ð Þ10 :3ð Þ5 ¼ :2061:

You can easily compute this quantity for yourself by using the R function

dbinomð Þ and specifying the x, size, and prob. arguments, which represent the

number of successes, number of trials, and probability of success, respec-

tively, as follows.
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4.3.2 Geometric Distribution

Instead of counting the number of successes in a fixed number, n, of indepen-

dent Bernoulli trials, sometimes we are interested in howmany trials, G, must

be completed until we observe the first success. The random variable, G, that

counts the number of independent Bernoulli trials necessary to obtain the first

success is called a geometric random variable.

Example 4.11. Suppose you were hired by a small telemarketing company to

sell a very expensive product. Company research shows that only 3% of all

calls will result in a successful sale. If we can assume that the results of your

calls to different individuals are independent and that the probability of a sale

is the same for each individual contacted, then we can use the Multiplication

Rule for Independent Events to determine the probabilities of interest. For

example, if G ¼ [the number of calls necessary to get the first sale], then the

probability that we will make our first sale on the third phone call is P

(G ¼ 3) ¼ (.97)2 � . 03 ¼ . 0282. Do you think the assumptions in this tele-

marketing example are reasonable?

The general form of the probability distribution for the geometric random

variable G, corresponding to the number of independent Bernoulli trials with

common probability of success p needed to obtain the first success, is as

follows.

General Form of the Geometric Probability Distribution If G is the

number of independent Bernoulli trials, each with probability of success

p, necessary to obtain the first success, then

P G ¼ gð Þ ¼ 1� pð Þg�1p, for g ¼ 1, 2, . . .

You can also use the R function dgeomð Þ to calculate the value of the

probability distribution for a geometric random variable by specifying the
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arguments x and prob, which are the number of failures (not the number of

trials!) and probability of success, respectively. Running the following com-

mand verifies the result we obtained in Example 4.11.

Notice that the geometric probability distribution assigns positive proba-

bility to an infinite number of values, since there is no limit to the number of

trials it MIGHT take to obtain the first success.

Section 4.3 Practice Exercises

4.3.1. On-the-Job-Stress. In a recent poll, Gallup (November, 2012) found that

33% of employees in the United States were totally dissatisfied with the

amount of stress in their jobs. Suppose you randomly select five employed

individuals and ask them how they felt about the stress in their jobs. Deter-

mine the probability distribution for the number of interviewed individuals

who indicate that they are totally dissatisfied with the amount of stress in

their jobs. How would the probability distribution change if the proportion of

employees in the United States who are dissatisfied with the level of stress in

their jobs were 50% instead of 33%?

4.3.2. Landlines Versus Cell Phones. According to a recent survey by GfK

(2015a), 44% of adults in the United States live in households with cell phones

but no landline. Suppose you place calls to 12 randomly chosen telephone

numbers.

(a) What is the probability that exactly 4 of your calls will be to

households without a landline?

(b) What is the probability that at least 4 of your calls will be to

households without a landline?

(c) What is the probability that at most 4 of your calls will be to

households without a landline?
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(d) What is the probability that more than 4 of your calls will be to

households without a landline?

(e) What is the probability that fewer than 4 of your calls will be to

households without a landline?

4.3.3. Is the binomial distribution B(n, p) always symmetric (regardless of

the number of trials) when the probability of success is 1/2? Does this intui-

tively make sense? Explain. Use the R functions dbinomð Þ and plotð Þ for a few
different numbers of trials to graphically support your answer.

4.3.4. Does Lefty-Lefty Mean Lefty Children? There is a 26% probability that a

child of two left-handed parents will also be left-handed. If a couple who are

both left-handed have four children, find the probability distribution for the

number of their children who are also left-handed. Assume independence of

this trait between births of the children.

4.3.5. A manager at a restaurant is training her new hostess and during the

discussion the new employee asks about the typical size of a group that needs

to be seated. The manager says company research indicates that one of the

following three probability models is appropriate. Identify the correct proba-

bility model and explain the problems with the other two models.

Group Size 1 2 3 4 5 6 7 �8

Model 1 0.15 0.35 0.10 0.15 0.04 0.06 0.01 0.10
Model 2 0.10 0.40 0.05 0.25 0.04 0.06 0.01 0.09
Model 3 0.15 0.35 0.10 0.20 0.05 0.03 0.01 0.20

4.3.6. A box contains four slips of paper marked 1, 2, 3, and 4. Two slips are

selected with replacement between selections. Find the probability distribu-

tion for the random variable that records the difference (second number

minus first number). How does the probability distribution change if the

first drawn slip of paper is NOT replaced before the second slip is drawn?
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4.3.7. Consider the random variable that counts the number of heads in

10 flips of a fair coin. Find the probability of getting

(a) exactly 5 heads;

(b) at most 5 heads;

(c) at least 5 heads;

(d) less than 5 heads;

(e) more than 5 heads.

4.3.8. Find the probability distribution for B ¼ [the number of heads

obtained in 10 flips of an unbalanced coin with probability 0.4 of getting a

head on each of the independent trials].

4.3.9. Suppose that B ~ B(16, .75). Use theR functionsdbinomð Þandpbinomð Þ
to find the following probabilities.

(a) P(B ¼ 12)

(b) P(B � 12)

(c) P(B < 12)

(d) P(B > 12)

(e) P(B � 12)

(f) P(B < 9)

(g) P(B > 10)

(h) P(B � 8)

4.3.10. Suppose that B ~ B(20, .4). Use R to find the complete probability

distribution for B. Graph this probability distribution and comment on the

shape and at least one other feature of the distribution.

4.3.11. Is God on Your Side? USA Today (2013) reported on a number of

results from a survey conducted by the Public Religion Research Institute in

the United States in 2013. One of the questions asked in the survey was “True

or False: God plays a role in determining which team wins a sporting event.”.

4.3 Discrete Random Variables and Their Probability Distributions 275



Twenty seven percent of the respondents answered “True”, indicating that

they believe that God does play a role in determining winners of sporting

events. Suppose you randomly select 20 individuals and ask them this ques-

tion. Let the random variable B denote the number of selected individuals

who answer “True” to the question. If the results of the Public Religion

Research Institute survey are applicable and b 2 {0, 1, 2, . . . , 20}, what is

the expression for

(a) P(B ¼ b)?

(b) P(B < b)?

(c) P(B � b)?

4.3.12. Does God Reward Good Athletes? USA Today (2013) reported on a

number of results from a survey conducted by the Public Religion Research

Institute in the United States in 2013. One of the questions asked in the survey

was “True or False: God rewards athletes who have faith with good health

and success.”. Fifty three percent of the respondents answered “True”,

indicating that they believe that God does reward athletes who have faith

with good health and success. Suppose you randomly select 30 individuals

and ask them this question. Let the random variable B denote the number

of selected individuals who answer “True” to the question. If the results of

the Public Religion Research Institute survey are applicable and

b 2 {0, 1, 2, . . . , 30}, what is the expression for

(a) P(B ¼ b)?

(b) P(B > b)?

(c) P(B � b)?

4.3.13. Big Bang or Not? National Public Radio (2014) reported on a number

of results from a survey conducted by the National Science Foundation in the

United States in 2012. One of the questions asked in the survey was “True or

False: The universe began with a huge explosion.”. Sixty one percent of the

respondents answered False, indicating that they did believe that the universe
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began with a huge explosion. Suppose you randomly select 15 individuals

and ask them this question. If the results of the National Science Foundation

survey are applicable, what is the probability that:

(a) exactly 8 of the selected individuals do not believe that the universe

began with a big explosion;

(b) at most 8 of the selected individuals do not believe that the universe

began with a big explosion;

(c) at least 8 of the selected individuals do not believe that the universe

began with a big explosion;

(d) exactly 8 of the selected individuals believe that the universe began

with a big explosion;

(e) less than half of the selected individuals believe that the universe

began with a big explosion.

4.3.14. A potato chip manufacturer decides whether to purchase a truckload

of potatoes by selecting samples and inspecting them to see if they meet the

company standards. Suppose that 20 potatoes are randomly selected and the

company policy is to purchase the load of potatoes if less than 2 of the

potatoes are deemed unsatisfactory. Find the probability of purchasing a

load of potatoes for which:

(a) 5% are rotten;

(b) 10% are rotten.

4.3.15. From Whence We Came? National Public Radio (2014) reported on a

number of results from a survey conducted by the National Science Founda-

tion in the United States in 2012. One of the questions asked in the survey was

“True or False: Human beings, as we know them today, developed from

earlier species of animals.”. Forty eight percent of the respondents answered

True, indicating that they did believe that human beings did develop from

earlier species of animals. Suppose you randomly select 30 individuals and
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ask them this question. If the results of the National Science Foundation

survey are applicable, what is the probability that:

(a) less than half of the selected individuals indicated that they believe

that human beings developed from earlier species of animals?

(b) more than 20 of the selected individuals indicated that they believe

that human beings developed from earlier species of animals?

(c) at least five of the selected individuals indicated that they do not

believe that human beings developed from earlier species of animals?

4.3.16. Tail-gaiting. The AAA Foundation of Public Safety reported (July,

2016) that 50.8% of drivers acknowledged having aggressively tail-gated

another vehicle to express displeasure at least once during 2014. Consider a

sequence of cars following you on a major highway. Assuming independence

between individual cars behind you on the highway, what is the probability

of being tail-gated for the first time:

(a) by the second car following you?

(b) by the fourth car following you?

(c) before the sixth car following you?

4.3.17. Monopoly. In the game of Monopoly a player must stay in jail until

they roll doubles with a pair of balanced dice (if they do not have the Get Out

of Jail Free card). What is the probability that the player will get out of jail by

rolling doubles:

(a) on their first try;

(b) on their second try;

(c) on their third try;

(d) before their sixth try?

4.3.18. Will You Be More Educated than Your Significant Other? In a 2007

survey, the Pew Research Center (January, 2010) found that 53% of spouses

had the same education level, 19% of husbands hadmore education than their
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wives, and 28% of wives had more education than their husbands. Suppose

you are in a class with ten men and ten women (including yourself). Assume

that all 20 of you will marry (at least once) someone of the opposite gender.

(a) What is the probability that more than half of the men in your class

will marry (for the first time) a woman with more education?

(b) What is the probability that more than half of the women in your class

will marry (for the first time) a man with more education?

(c) (More difficult) What is the probability that more than half of your

class (men and women combined) will marry (for the first time)

someone of the opposite gender with the same education level?

4.4 Simulating Probability Distributions

Suppose you are interested in collecting a set of n different items, such as

baseball cards, figurines, rare coins, or dolls. If you can purchase the entire set

at once or over the course of several weeks then there is no chance involved.

However, we are interested in the more intriguing situation where we are not

certain which one of the items we will receive when we obtain it. This famous

problem is known as the collector’s problem.

Example 4.12. Collector’s Problem Each box of a particular brand of cereal

contains one out of a set of n different prizes. Suppose that the prize in each

box is equally likely to be any one of the n possible prizes. How many cereal

boxes do you think the collector will have to purchase in order to obtain the

complete set of n prizes? The answer will vary randomly from collector to

collector. That is, one collector may be lucky enough to get the complete set of

n prizes in the first n boxes, although, as we shall see, this is highly unlikely if

n is larger than 2. It may take another collector 2n boxes to get the complete

set. Yet another collector may need to purchase n2 boxes of cereal. In general,

we would like to know how many boxes a typical collector must buy to get
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the complete set. In other words we want to find the center of the probability

distribution for the number of purchased boxes required to complete the

collection.

When you are faced with a practical problem like this, one approach is to

use simulation to help you develop a better understanding of the underlying

variability in the process. Suppose there are 6 prizes in the set. You can

simulate the collection process for the set of 6 prizes by:

1. Repeatedly rolling a fair six-sided die and counting how many rolls it

takes until each number appears at least once.

2. Writing the numbers 1 through 6 on identical pieces of paper, placing

them in a container, drawing (with replacement between draws) one

piece of paper at a time, and counting howmany draws you must make

until each number is chosen at least once. (With replacement means that

once you observe the number on the piece of paper you have chosen,

you put that piece of paper back into the container and mix thoroughly

before making your next selection.)

3. Using a random number generator on your calculator or computer and

counting how many random numbers you must generate until each of

the 6 numbers {1,2,3,4,5,6} (or {0,1,2,3,4,5}) appears at least once as the

first number to the right of the decimal point.

Alternatively, we can use R to simulate the number of selections neces-

sary. We begin by defining a variable n which represents the number of

different prizes (in this case, 6) and a variable prize_collected which is a vector

of length n, where the ith element is TRUE if the ith prize has been collected

and FALSE otherwise.

The following three lines represent the process of drawing one of the

6 prizes and indicating that the prize has been collected. The first line will
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randomly select an integer between 1 and 6 and store that as new_prize, while

the second line will set the value of prize_collected corresponding to new_prize

to be TRUE. The third line will handle the bookkeeping of updating the

number of cereal boxes that have been purchased in total.

We now introduce the concept of a “while loop” in R, which will allow us

to repeat the commands abovewhile a certain condition is true. In this case, we

want to continue purchasing boxes and drawing prizes until we have col-

lected all the prizes. That is, (in clumsier English that more closely matches the

R code) “while we have not collected all of the prizes”. The all( ) function will

allow us to check whether every element of prize_collected is TRUE or not,

which will indicate whether we’ve collected all the prizes. Combining all of

the pieces together, we end up with the following code which can be used to

simulate the number of boxes purchased by any single collector. It has been

defined inside a function named CollectorsProblem so that it can be easily

called a repeated number of times.

Finally, we simulate the number of boxes selected for 100 different

collectors, store the results in number_of_boxes_purchased_by_collector and dis-

play a subset of the results in Table 4.5. Numerical and graphical summaries

of the full results can be found in Fig. 4.6.
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Table 4.5 Simulation of collector’s
problem for n ¼ 6

Collector Number of boxes

1 7
2 10
3 19
4 19
5 6
6 26
. . . . . .
95 12
96 13
97 17
98 19
99 26
100 22

Fig. 4.6 Descriptive statistics and graphical summary for collector’s prob-
lem when there are n ¼ 6 prizes
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Based on this simulation we would estimate the center of the probability

distribution to be around 14. Notice that we are using the median as our

estimate of the center, since the distribution of the number of boxes purchased

is clearly skewed to the right. The estimate of the center of the probability

distribution based on the average is 15.17. Thus, if we had to answer the

original question, we would conclude that the typical collector must purchase

around 14 boxes of cereal to get the complete set of n ¼ 6 prizes.

In Exercise 4.B.3 you will be asked to use these simulation techniques to

estimate the number of purchases required when we increase the number of

prizes to n ¼ 10. You can use the same simulation methods, but you must

make sure that each prize is equally likely to be chosen for each selection.

The power of simulation cannot be overstated. However, some situations

require precise mathematical solutions. In Sect. 6 we will take a more mathe-

matical approach to solving the collector’s problem.

Section 4.4 Practice Exercises

4.4.1. Collector’s Problem With Twelve Prizes. How would you use simulation

to solve the collector’s problem when there are 12 different prizes?

(a) Explain how you would use a random number generator that

produces numbers between 0 and 1 to carry out the simulation.

(b) Can you repeatedly roll a pair of fair six-sided dice to carry out the

simulation? Explain why or why not.

4.4.2. Collector’s Problem With Four Prizes. Use simulation to estimate the

number of purchases required by a collector who is interested in obtaining a

complete set of n ¼ 4 prizes.

4.4.3. Stock Prices and RandomWalks. A stock will close either higher or lower

when the market trading ends on a given day (ignore the possibility that the

stock will end the day unchanged). Some economists believe that this day-to-
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day variation in stock prices follows what is known as a random walk, where

it is equally likely that a stock will increase or decrease on a given day and the

days’ changes are independent.

(a) Describe how you would simulate this day-to-day behavior in stock

prices by using a random number generator.

(b) Carry out your simulation for a month with 30 days.

(c) Did your stock close higher or lower at the end of the 30 days?

4.4.4. Movement of Particles and Two-Dimensional Random Walks. Some

physicists believe that under certain conditions particle movements can be

viewed as a random walk (see Exercise 4.4.3) in two dimensions. Imagine

placing a particle in the middle of a grid that looks like a checkerboard.

Describe a simulation study to investigate the movement of a particle on the

grid when:

(a) the particle is equally likely to move to any of the 8 squares

surrounding it;

(b) the particle can only move north, south, east, or west with equal

probability;

(c) the particle can only move north, south, east, or west and the north

and east directions are twice as likely as the south andwest directions.

4.4.5. Streaky Behavior in Sports.

(a) Describe how you would simulate the next 10 at bats for a baseball

player with a batting average of 0.295.

(b) Describe how you would simulate the next 20 free throws for a

basketball player with a successful free throw shooting percentage

of 88%.

(c) Describe how you would simulate the number of one-putts in a

round of golf (18 holes) for a golfer who averages 6 one-putts per

round.
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4.5 Expected Values and Standard Deviations for Random
Variables

The expected value or mean of a random variable measures the center of a

probability distribution in a manner similar to the way �xmeasures the center

of a collection of data.

Definition 4.9 If X is a discrete random variable assuming the values x1,

x2, . . ., xk with probabilities p1, p2, . . ., pk, respectively, then the mean or

expected value of X, denoted by either E(X) or μX (we will use both), is

E Xð Þ ¼ μX ¼ x1 � p1
� �þ x2 � p2

� �þ � � � þ xk � pk
� � ¼Xk

i¼1

xi � pi
� �

:

Notice the similarity between �x and μX. Recall that in computing �x, each of

the n observations has an equal weight of 1/n. In a similar manner, μX is a

weighted average of the possible values of Xwith each value being weighted

by its probability of occurrence. (If the k values of X happen to be equally

likely, then the computation of μX is identical to the computation of �x.)

Example 4.13. Expected Number of Reboots Consider the probability

distribution for the number of reboots in an 8-h workday, as discussed in

Example 4.7. To find the expected number of times the computer must be

rebooted in an 8-h workday, we calculate.

E Xð Þ ¼ μX ¼ 0� :53ð Þ þ 1� :22ð Þ þ 2� :13ð Þ þ 3� :07ð Þ þ 4� :03ð Þ þ 5� :02ð Þ
¼ :91:

Now the question is, how do we interpret μX ¼ .91? A common misinter-

pretation is to say that there is a 91% chance that we will have to reboot the

computer in a given workday. In fact, we found in Example 4.7 that the
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probability we will have to reboot the computer at least once in a given

workday is only .47, not .91. A correct interpretation of μX is that .91 is the

center of the probability distribution for the number of reboots in an 8-h

workday. However, another common interpretation of μX is based on the

Law of Averages. It says that on average we expect to reboot the computer .91

times in an 8-h workday.

Definition 4.10 Let �x be the average of n independent sample

observations from the same probability distribution with mean μX.

Then the Law of Averages states that limit
n!1

�x ¼ μX ; that is, as n gets

larger, the sample mean, �x, converges (i.e., gets closer) to the mean, μX,

of the probability distribution.

Example 4.14. Bernoulli Random Variable Consider a single Bernoulli trial

with probability of success p, and let X ¼ 1 or 0, depending on whether the

trial is a success or failure, respectively, be the associated Bernoulli random

variable. Then the expected value of X is given by

E(X) ¼ μX ¼ 1(p) + 0(1 � p) ¼ p.

Example 4.15. Geometric Random Variable Suppose that G has a geometric

probability distribution with probability of success p. What is the expected

number of Bernoulli trials that will be required to obtain the first success?

Using Definition 4.9, we see that

E Gð Þ ¼ μG ¼
X1
g¼1

g� 1� pð Þg�1 � p:

Making use of properties of a geometric series (which is beyond the scope

of this course), it can be shown that this yields the result
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E Gð Þ ¼ 1
p
:

Although the proof of this result makes use of properties of a geometric series

that are beyond the scope of this course, we want to focus on the intuitive

nature of the result for Bernoulli trials. We saw in Example 4.14 that the

average number of successes per trial is p, so that is it not too surprising

that the average number of trials per success is 1/p.

Knowing the mean μX provides us with information about the center of a

probability distribution, but it does not tell us anything about the associated

variability for the random variable X. To measure this variability, we form the

deviation of each possible value for X from the expected value μX and weight

the square of each deviation by its associated probability. Summing these

weighted squared deviations leads us to the variance of the probability

distribution.

Definition 4.11 If X is a discrete random variable assuming the values

x1, x2, . . ., xk with probabilities p1, p2, . . ., pk, respectively, then the

variance of X is

Var Xð Þ ¼ σ2X ¼ x1 � μXð Þ2 � p1
h i

þ x2 � μXð Þ2 � p2
h i

þ � � �

þ xk � μXð Þ2 � pk
h i

¼
Xk
i¼1

xi � μXð Þ2 � pi:

The standard deviation of X, σX, is then the square root of the variance,

namely, σX ¼
ffiffiffiffiffiffi
σ2X

q
.

Example 4.16. Variance and Standard Deviation of the Number

of Reboots Consider the number of times, X, that a computer must be

rebooted in an 8-h workday, as discussed in Example 4.7. In Example 4.13
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we found that μX ¼ .91. To find the variance and standard deviation for X, we

use Definition 4.11 directly and obtain

σ2X ¼ 0� :91ð Þ2 � :53
h i

þ 1� :91ð Þ2 � :22
h i

þ 2� :91ð Þ2 � :13
h i

þ 3� :91ð Þ2 � :07
h i

þ 4� :91ð Þ2 � :03
h i

þ 5� :91ð Þ2 � :02
h i

¼ 1:5219:

It follows that σX ¼
ffiffiffiffiffiffi
σ2X

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:5219

p
¼ 1:2337.

Example 4.17. Variance and Standard Deviation of a Bernoulli Variable -

Consider a single Bernoulli trial with probability of success p, and let X ¼ 1 or

0, depending on whether the trial is a success or failure, respectively,

be the associated Bernoulli random variable. In Example 4.14 we found that

E(X) ¼ μX ¼ p, so that

σ2X ¼ p 1� pð Þ2 þ 1� pð Þ 0� pð Þ2 ¼ p 1� pð Þ:

It follows that σX ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þp

.

Finally, we note that linear transformations affect the expected value and

standard deviation of random variables in the same way that they affect the

descriptive measures of center and spread we discussed in Chap. 1. In

Exercises 4.A.8 and 4.A.9 you will be asked to verify that

μ aþbXð Þ ¼ E aþ bXð Þ ¼ aþ bμX

and

σ2aþbXð Þ ¼ Var aþ bXð Þ ¼ b2σ2X,

for all possible values of a and b.
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Section 4.5 Practice Exercises

4.5.1. Find the expected number of patients who will experience side effects

for each of the probability distributions in Exercise 4.3.1.

4.5.2. Using the correct probability model for the group size for patrons at a

restaurant in Exercise 4.3.5, find the expected group size. Interpret this value

in language that the new hostess will understand. Is the expected group size

the same as the most likely group size? Explain.

4.5.3. Let X be the outcome when a fair die is rolled once.

(a) Verify that the expected value of X is 3.5.

(b) Suppose that a friend offers to pay you back the $10 they borrowed or

the amount $(35/X) after rolling a fair die. Which choice has the

higher expected payback? Explain.

4.5.4. Attorneys often must decide whether to charge a client a flat rate or

take a percentage of the settlement. Suppose that an attorney has a case where

she could charge $7500 or take 25% of any settlement. The attorney believes

that there is a 35% chance of losing the case. She also believes that, if they win

the case, there is a 60% chance that the judge will award a settlement of

$50,000 and a 40% chance that the judge will award a settlement of $100,000.

(a) Specify the probability distribution for the attorney’s fees if she

decides to take a percentage of the settlement. Don’t forget that

there are three possible values for her fees in this case.

(b) What is the expected fee if she decides to take a percentage of the

settlement?

(c) Would you recommend that the attorney charge a flat rate or take a

percentage of the settlement?

4.5.5. Dungeons and Dragons. In Dungeons and Dragons, a character’s intel-

ligence is assigned by rolling three balanced dice. If X is the total number of

dots on the upward facing sides of the three dice, find:
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(a) the expected value of X;

(b) the variance of X;

(c) the standard deviation of X.

4.5.6. A firm estimates its future profit (with loss expressed as negative

profit) through the probability distribution provided below.

Profit (P) in millions of $ �1 0 1 2 3
Probability 0.1 0.1 0.2 0.4 0.2

(a) Find the probability that the firm’s profit is at least $2 million.

(b) Find the mean and standard deviation for the profit.

(c) The firm does not retain all of its profit because it will pay $1 million

in dividends to shareholders and the executives will share 10% of the

profit as a bonus (or hardship if the profit is negative). The amount the

firm retains is Y ¼ 0.9P � 1 (in million of dollars). Find the mean and

standard deviation of Y.

4.5.7. Keno. Consider the game of Keno where balls numbered from 1 to

100 are placed in a cylinder. Players bet $1 on a number of their choice and the

payoff is $3 if that number is one of the 25 randomly selected balls (without

replacement between draws). Assume that you have been hired to do a few

calculations for a casino.

(a) What is the probability distribution for the payoff?

(b) What is the mean or expected payoff?

(c) Interpret this expected payoff in language that the manager of the

casino would understand. Would you recommend that they add this

game at the casino?

(d) What is the variance of the payoff?

(e) What is the standard deviation of the payoff?
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4.5.8. Keno. Consider the game of Keno described in Exercise 4.5.7, but now

we want to view the game from the gambler’s perspective. The gambler’s

winnings (W) can be written as a linear transformation of the payoff (P),

namely, W ¼ P � 1.

(a) Find the expected value of the gambler’s winnings, E(W).

(b) Explain the relationship between E(W) and E(P).

(c) Find the standard deviation of the gambler’s winnings.

4.6 Combining Random Variables

In Chap. 1 we pointed out how simple linear transformations of one

variable can be very useful in many settings. In this section we extend that

discussion to include situations where we are combining several variables,

typically by summing or averaging. For example, a farmer planting corn on

six plots of land at six different locations would be interested in the total yield

from his farm (all six plots of planted land) during a particular growing

season. If a teacher wishes to assess a new instructional method using an

instrument designed to measure the performance of the students, the teacher

may be interested in comparing class averages as well as individual scores.

With these types of problems in mind, we consider properties of sums and

averages of random variables.

Expected Value of a Sum IfT ¼
Xn
i¼1

Xi is the sum of n random variables

X1, X2, . . ., Xn, then the expected sum is

μT ¼ E
Xn
i¼1

Xi

 !
¼
Xn
i¼1

E Xið Þ ¼
Xn
i¼1

μXi
:

In words, the expected value (mean) of a sum is the sum of the expected

values (means).

4.6 Combining Random Variables 291



Example 4.18. How many successes, B, do we expect to obtain in

n independent Bernoulli trials with common probability of success p? Since

B is the sum of n independent Bernoulli trials X1, X2, . . ., Xn, we can use our

result about the expected value of a sum and the fact that the mean for a

Bernoulli random variable is p (see Example 4.14) to conclude that

E Bð Þ ¼ E
Xn
i¼1

Xi

 !
¼
Xn
i¼1

E Xið Þ ¼ n� p:

Since B ~ B(n, p), we now know that the expected value for a B(n, p)

random variable is μB ¼ np.

The result in Example 4.18 for Bernoulli trials can be generalized to the

sum, T, of any n independent and identically distributed (i.i.d.) random

variables. If X1, X2, . . ., Xn are i.i.d. random variables and T ¼
Xn
i¼1

Xi, then

μT ¼ E
Xn
i¼1

Xi

 !
¼ n� E X1ð Þ:

Variance of a Sum of Independent Random Variables If T ¼
Xn
i¼1

Xi is

the sum of n independent random variables X1, X2, . . ., Xn with

variances σ2X1
, . . . , σ2Xn

, respectively, then the variance of the sum is.

σ2T ¼ Var
Xn
i¼1

Xi

 !
¼
Xn
i¼1

Var Xið Þ ¼
Xn
i¼1

σ2Xi
:

In words, the variance of the sum is the sum of the variances. Note that

this is not the case if the random variables are dependent.
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Example 4.19. Binomial Random Variable What is the variance of the num-

ber of successes, B, in n independent Bernoulli trials with constant probability

of success p? Recall that B can be viewed as the sum of n independent

Bernoulli trials X1, X2, . . ., Xn, so that we have

σ2B ¼ Var
Xn
i¼1

Xi

 !
¼
Xn
i¼1

Var Xið Þ ¼ n� p� 1� pð Þ:

The result in Example 4.19 for Bernoulli trials can be generalized to the

sum, T, of any n independent and identically distributed (i.i.d.) random

variables. If X1, X2, . . ., Xn are i.i.d. random variables and T ¼
Xn
i¼1

Xi, then

σ2T ¼ Var
Xn
i¼1

Xi

 !
¼ n� Var X1ð Þ:

Example 4.20. Collector’s Problem—A Mathematical Approach We return

to the collector’s problem discussed in Example 4.12 and apply some of our

new results so that we can compare the simulation estimates with theoretical

results. Let Tn denote the number of cereal boxes required to get a complete

set of n prizes. We are interested in finding the expected value of Tn, say

μn ¼ E[Tn]. Let Xi denote the number of additional boxes required to get the

ith new prize once (i � 1) different prizes have already been obtained. Then

we can express Tn as

Tn ¼
Xn
i¼1

Xi ð4:2Þ

The collector gets one of the n prizes in the first box, so X1 ¼ 1. Each

subsequent box contains a different prize with probability p ¼ (n � 1)/n and

the same prize with probability 1/n. Thus, X2 is a geometric random variable

with parameter p ¼ (n � 1)/n. Using the property of geometric random
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variables obtained in Example 4.15, we find that E[X2]¼ 1/p¼ n/(n�1). Once

two different prizes have been obtained, each subsequent box contains a new

prize with probability p ¼ (n�2)/n and one of the same prizes already

obtained with probability 2/n. Thus, X3 has a geometric distribution with

parameter p ¼ (n � 2)/n and E[X3] ¼ n/(n � 2). We can continue this process

until we have collected (n � 1) different prizes. Once (n � 1) different prizes

have been obtained, each subsequent box contains the final new prize with

probability p ¼ 1/n and Xn has a geometric distribution with parameter

p ¼ 1/n and E[Xn] ¼ n.

Using the property for the expected value of a sum of random variables,

we find that the expected value (long run average) for the number of boxes

required to get the complete set of n prizes is

μn ¼ E Tn½ � ¼ E
Xn
i¼1

Xi

" #
¼ 1þ n

n� 1
þ n
n� 2

þ � � � þ n
2
þ n

¼ n
1
n
þ 1
n� 1

þ � � � þ 1
2
þ 1

� �
:

For n ¼ 6, for example, we find μ6 ¼ 14.7. Now we can compare the mathe-

matical result E[T6] ¼ 14.7 with the simulation estimate we obtained in

Sect. 4.4 for 35 collectors. Recall that we obtained a simulated average of

15.17 (not too bad!) and a simulated median of 14. The fact that the expected

value is closer to the average than the median should be no surprise since the

expected value of a random variable corresponds to the long run average.

Section 4.6 Practice Exercises

4.6.1. Tossing Coins. Use the R function rbinomð Þ to simulate the tossing of

15 unbalanced coins with common probability 0.4 of getting a head.

(a) How many heads did you get?

(b) How many heads should you expect to get?
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(c) Repeat this entire simulation 100 separate times and record the num-

ber of heads obtained for each simulation.

(d) Create a frequency histogram for your data.

4.6.2. Tossing Different Coins. Repeat Exercise 4.6.1 for unbalanced coins with

common probability 0.1 of getting a head.

4.6.3. Simulating Sales.A salesperson has been very successful in getting new

customers. If she can get people to watch her demonstration of the product,

she has an 85% chance of completing the sale.

(a) Describe how to simulate the total number of sales for the next

20 people who watch her demonstration.

(b) Carry out your simulation and record the total number of sales.

(c) Repeat part (b) 100 times. On average, howmany sales did she make?

How many should she have expected to make?

4.6.4. Expected Keno Payoff. Suppose that a gambler makes a $1 bet on two

separate games of Keno, as described in Exercises 4.5.7 and 4.5.8. Let T denote

the total payoff after the two independent games are completed.

(a) What is the expected total payoff, E(T)?

(b) What is the variance of the total payoff?

(c) What is the standard deviation of the total payoff?

(d) If you add the standard deviations of the payoff for each game, do

you get the standard deviation for the total payoff in part d? Why or

why not?

4.7 Normal Distributions

Normal distributions are the most important and widely used probability

distributions in statistics. They are also referred to as bell curves because of

their general shape, as illustrated in Figs. 4.7, 4.8, and 4.9. Notice that in each

case the distribution is single-peaked and symmetric about a central point.
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The point of symmetry is referred to as the visual center or mean of the

distribution. Although the visual center changes from 0 in Fig. 4.7 to �10 in

Fig. 4.8 and to 100 in Fig. 4.9, all normal distributions have the same general

shape. The two characteristics that change for different normal distributions

are the visual center, which we will denote by μ, and the standard deviation

(or spread), which we will denote by σ.

Fig. 4.7 A normal density curve centered at 0
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Fig. 4.8 A normal density curve centered at �10
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A normal density curve is a function of μ and σ. Once μ and σ are specified,

the normal density curve is completely determined.

Definition 4.12 A normal density curve is completely determined by μ

and σ. The precise mathematical function for the density is

f xð Þ ¼ 1ffiffiffiffiffiffiffi
2πσ2

p e�
x�μð Þ2
2σ2 . Although wewill not work directly with this function,

we will use the shorthand notation N(μ, σ) to identify a normal distribu-

tion with mean μ and standard deviation σ.

The two normal distributions in Fig. 4.9 have a common visual center at

μ ¼ 100, but the spread in the two density curves is clearly different. One of

the curves is a N(100, 10) density curve and the other curve is a N(100, 5)

density curve. Can you correctly label the two curves?

Bell-shaped curves like the ones shown in Figs. 4.7, 4.8, and 4.9 are

commonly used as models for probability distributions of data and to calcu-

late or approximate probabilities of interest. To be useful as a realistic model

these curves must satisfy certain constraints or conditions.

Fig. 4.9 Two normal density curves centered at 100
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Definition 4.13 A probability density curve is a nonnegative function

for which the area under the curve is equal to one. Density curves are

often useful as models for data and areas under such curves correspond

to relative frequencies. Thus, the probability of a region of interest can be

obtained by simply computing the corresponding area under the density

curve.

Figure 4.10 shows a probability density curve that is skewed toward

higher values (we refer to this as skewed “to the right”). We might use a

model like this for variables that are known to have unusually large

possibilities without corresponding unusually small possibilities. To estimate

the probability of getting an observation in the interval from 10 to 15, we

would find the value of the shaded area for this model.

In the next section we focus on calculating probabilities for normal

distributions.

Fig. 4.10 A probability density curve that is skewed “to the right” toward
higher values

5 10
x

15 20

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

298 4 Understanding Random Events: Producing Models Using Probability and Simulation



4.7.1 Probability Calculations for Normal Distributions

Fortunately, all normal distributions have the same general shape and we can

use one special normal distribution, called the standard normal distribution and

denoted byN(0, 1), to calculate probabilities for any normal distribution. Thus

we concentrate first on calculating probabilities for regions of the N(0, 1)

probability distribution. In every problem we suggest that you sketch the

normal distribution and shade the appropriate region of interest before begin-

ning your calculations. The basic types of calculations that will be useful for

normal distributions are illustrated through a series of examples.

Example 4.21. Find the area to the left of �1 for the N(0, 1) distribution.

Step 1. Sketch the N(0, 1) distribution and shade the region of interest.
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z
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0.2

0.1

0

Step 2. Use the R function pnormð Þ (or any of the hundreds of online results

you get when you search “normal distribution calculator”) with the

arguments q and lower.tail specified to be �1 and TRUE, respectively. (Note

that lower.tail ¼ TRUE is the default value, so the result would be the same if

only q were specified, but it’s good to get in the habit of explicitly specifying

the region of interest for these calculations.)
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Notice that we are simply accumulating all of the area under the normal

curve up to the point �1. This area can be viewed as a probability for the

N(0,1) model. That is, if we let Z denote a random variable having the N(0,1)

probability distribution, then the shaded area corresponds to P(Z<�1) and is

equal to roughly 0.1587. If wewere using this curve to model a population, we

would say that the proportion of observations below �1 is 0.1587.

Before moving to our next example, we want to formally introduce the

idea of cumulating the area under a curve at or below a point. This is a

common calculation of interest and leads to a new function that is quite useful

in statistics.

Definition 4.14 The cumulative distribution function (c.d.f.) is a func-

tion that corresponds to the area (or probability) at or below a prescribed

value. We use the notation F(x) ¼ P(X � x) to denote the c.d.f. of the

random variable X evaluated at x.

We use Φ(z) to denote the c.d.f. of the standard normal distribution

evaluated at z. As demonstrated in Example 4.21, the R function pnormð Þ
can be used to provide values ofΦ(z) by specifying the q argument to be equal

to the z value of interest.

Example 4.22. Find the area under the N(0, 1) curve between .6 and 1.4.

Step 1. Sketch the N(0,1) curve and shade the region of interest.
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Step 2. Find the shaded area of interest by calculating the area to the left of 1.4

and then subtracting the area to the left of 0.6. This can be achieved by calling

pnormð Þ for each of the two values and taking the difference.

That is, the probability that a standard normal random variable will be

between 0.6 and 1.4 is Φ(1.4) � Φ(0.6)¼0.1934965.

In general, the probability P(a � Z � b) that the observed outcome of a

standard normal random variable Z falls in the interval [a, b] can be computed

by finding the value of the c.d.f. at the larger number b and subtracting from it

the value of the c.d.f. at the smaller number a, yielding P(a � Z � b) ¼
Φ(b) � Φ(a).

Example 4.23. Find the area under the N(0, 1) curve above 1.4. In Example

4.22, the first call to pnormð Þ gives us P(Z � 1.4) . We can either use the

complement rule to find the area above 1.4 to be P(Z> 1.4)¼ 1� P(Z� 1.4) or

we can specify the lower.tail option to be FALSE. Both methods lead us to the

result that P(Z > 1.4) ¼ 0.0808, as demonstrated below.

4.7 Normal Distributions 301



In general, the area to the right of a number z for the N(0, 1) curve is equal

to 1�Φ(z). Using the symmetry of theN(0, 1) distribution, we also notice that

the area to the right of any number z is equal to the area to the left of �z.

Notationally, we have [1 � Φ(z)] ¼ Φ(�z). You will likely find this relation-

ship to be most useful when you have already calculated one of these areas

and are asked about the other, say, for example in the exercises at the end of

this chapter.

Example 4.24. Find the value z for the standard normal random variable

Z that has area .25 above it.

Step 1. Sketch the N(0, 1) distribution and identify the area of interest.

Step 2. Here instead of calculating the area, we are given the area and are

asked to find the value of z that corresponds to it. This is the inverse

(or reverse) of the problem that we have previously been solving and so it is

natural to use the inverse of the cumulative distribution function to find z.

Since the c.d.f. Φ(z) corresponds to the area to the left of z, we rewrite our

problem in terms of the un-shaded area (0.75). Thus we want to find the value
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of z such that Φ(z) ¼ 0.75. The solution is z ¼ Φ�1(0.75). We can do this using

the qnormð Þ function in either of the following two ways. (Does it make sense

that they produce the same answer?)

Both methods tell us that z ¼ 0.6745. Even though the notation is different,

notice that we have just calculated the third quartile, Q3, for the N(0,1)

distribution.

To calculate probabilities or percentiles for a random variable X that has

an arbitrary N(μ, σ) probability distribution, we can make use of the

standardizing transformation Z ¼ X�μ
σ . In Exercise 4.A.10 you will be asked

to use properties of expected value to show that E[Z] ¼ 0 and Var[Z] ¼ 1. It

can also be shown that the standardized variable Z will always have a

standard normal probability distribution.

Example 4.25. Suppose that the sum of exam scores for a large class roughly

follows the N(275, 43) distribution. What is the probability that a randomly

selected student from the class will have an exam total above 200?

Step 1. Sketch the N(275, 43) distribution and identify the problem of interest.

200 275

4.7 Normal Distributions 303



Step 2. There are several different ways to calculate the shaded area

of interest. One of the easiest ways is to find the value of the c.d.f. at

200 and then subtract that value from 1 (which Rwill do for us automatically

if we specify lower.tail to be FALSE). That is, if we let S denote the exam total

of the randomly selected student, then we can use the R function pnormð Þ
similar to what we did in Exercise 4.23, but now with the mean and sd arg-

uments specified as 275 and 43, respectively, to find that P(S > 200) ¼ 0.9594.

Alternatively, we can use the standardizing transformation

z ¼ 200�275
43 � �1:7442 and compute the probability that a N(0, 1) random

variable is greater than this standardized value. We store the standardized

value as the variable z_value and then use the R function pnormð Þ to get

P(Z > z_value) ¼ P(S > 200) ¼ 0.9594.

Using the standardization technique may be necessary sometimes, for exam-

ple, in a classroom setting where access to software is restricted. Be wary of

rounding errors that may creep into your calculations, though!

Example 4.26. Suppose that the sum of exam scores for a large class roughly

follows the N(430, 100) distribution. How high must a student score on her

exams to be in the top 5%?
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Step 1. Sketch theN(430, 100) distribution and identify the problem of interest.

Step 2. Similar to Example 4.24, here we are given the area and we need to

find the value of x that has area .95 under the N(430, 100) probability density

curve to the left of x. In other words, we need to find the value of the inverse

cumulative distribution function for the N(430, 100) distribution at .1–

.05 ¼ .95. We proceed very similarly to Example 4.24, except with the argu-

ment p updated to be the new percentile of interest and now specifying the

mean and sd arguments. As we saw in Example 4.24, the two following

commands will give us the same result: a student must score above

594.4854 to be in the top 5%.

Note that we can also use the standardization technique shown in Exam-

ple 4.25 and a bit of algebra to arrive at the same result. We first compute and

store the 95th percentile of the N(0,1) distribution as the variable z_95 using

the following command.
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We then set (x – 430)/100 equal to z_95 and solve for x. Again, we find that

the 95th percentile for the sum of the exam scores is 594.4854.

4.7.2 Using Normal Distributions as Models for Measurements

Normal distributions can be very useful in providing estimates of

probabilities and making inferences for populations for many settings. How-

ever, if the normal distribution is inappropriate as a model for a given set of

measurements, then the associated estimates and inferences can be useless. To

help decide whether or not the normal distribution is appropriate for a given

data collection, we recommend two quick checks.

The 1–2–3 standard deviation rule can be used to compare the observed

percentages of observations within 1, 2, and 3 standard deviations of the

sample mean with the expected percentages of observations within 1, 2, and

3 standard deviations of the population mean for a normal model.

Definition 4.15 The 1–2-3 standard deviation rule states that for any

normal model, approximately 68% of the observations will fall within

one standard deviation of the mean, approximately 95% of the

observations will fall within two standard deviations of the mean, and

approximately 99.7% of the observations will fall within three standard

deviations of the mean. Thus, a crude check of normality for a data

collection can be obtained by computing the percentages of observed

values that fall in the intervals,
�
�x� s; �xþ s

�
,
�
�x� 2s; �xþ 2s

�
, and�

�x� 3s; �xþ 3s
�
, where �x and s are the sample mean and standard devia-

tion, respectively, for the data collection, and then comparing these

percentages with 68%, 95%, and 99.7%, respectively.
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A second approach is our recommended,more rigorous, method for checking

normality. A normal probability plot is constructed to compare the empirical

percentiles of the data collection with the theoretical percentiles for the normal

model. The empirical percentiles for a collection of n data observations are the

values of the order statistics X(1), X(2), . . ., X(n). Loosely speaking, the

corresponding theoretical percentiles are the expected values of the n order statis-

tics for a randomsample of size n froma standardnormalmodel.We cangenerate

these percentiles by using the R function ppointsð Þ and properly specifying the

argument n. Alternatively, we can use the R function qqnormð Þ to automatically

generate these theoretical percentiles and plot them along with the observed

percentiles. A linear trend in a normal probability plot indicates that the empirical

percentiles are matching up well with the corresponding theoretical percentiles

and therefore it is not unreasonable to use a normal distribution as a model for

these measurements. On the other hand, curvature in a normal probability plot

indicates that there are somediscrepancies in the comparisons of the empirical and

theoretical percentiles, indicating that the normal model may not be appropriate.

A major problem with this approach is that interpreting probability plots

can be rather subjective. How do we know what to look for in a probability

plot? What types of curvature should we worry about? Will the plot be

perfectly straight if the data are normal? Good judgement comes with experi-

ence so we will use simulation to help develop your understanding of normal

probability plots. We will generate 500 random observations from three

different distributions: the N(0,1) distribution, the Uniform(�3,3) distribution

(whose density curve is constant at 1/6 from�3 to 3 and zero elsewhere), and

the t-distribution with 1 degree of freedom (also known as the Cauchy

distribution), whose pdf at first glance may look similar to the pdf of a normal

distribution, but in fact has much larger amounts of probability assigned to

the tails. The following three lines generate the three sets of values.
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We now use the R function qqnormð Þ to generate the plots discussed

earlier for each of the three samples. To help make the patterns more discern-

ible, we also use the R function qqlineð Þ to add the line y ¼ x to the plots.

First, we have the normal probability plot for the N(0,1) data shown in

Fig. 4.11. Although the plot shows some slight departures from a linear trend,

they are nothing to be concerned about. We are not looking for a perfectly

straight line, just no systematic departures from an overall linear trend.

The normal probability plot in Fig. 4.12 for the Uniform(�3, 3) data clearly

shows some systematic departures from linearity in the two tails. Notice the

sharp turn downward in the lower tail and the sharp turn upward in the

upper tail. These departures from linearity in the tails of the normal probabil-

ity plot are evident because the Uniform(�3, 3) distribution does not have a

smooth decline in the tails like a normal distribution. As mentioned earlier, its

density curve drops to zero at �3 and 3.

Fig. 4.11 Normal probability plot for N(0, 1) data
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The probability plot for the t(1) data in Fig. 4.13 also shows some clear

departures from linearity in the tails. The S-shape indicates that we observed

several values that are much smaller than we would expect from a normal

model, as well as several values that are much larger than we would expect.

The only major difference between the t(1) density curve and a normal density

curve is the aforementioned heavier tails of the t(1) distribution.

Fig. 4.12 Normal probability plot for Uniform(�3, 3) data
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Fig. 4.13 Normal probability plot for t(1) data
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Section 4.7 Practice Exercises

4.7.1. Suppose that Z has a standard normal distribution. Find the following

probabilities:

(a) P(Z < 1.5);

(b) P(Z > 1.5);

(c) P(0 < Z < 1.5);

(d) P(�1.5 < Z < 1.5).

4.7.2. The 1–2-3 standard deviation rule is also commonly referred to as the

68–95-99.7 rule. To understand why, calculate the area under the standard

normal curve for the following intervals:

(a) (�1, 1);

(b) (�2, 2);

(c) (�3, 3).

4.7.3. Find the following percentiles for the standard normal distribution.

(a) 10th

(b) 25th

(c) 50th

(d) 75th

(e) 90th

(f) Explain the relationship between the 10th and 90th and 25th and 75th

percentiles. Identify the general form of this relationship for an arbi-

trary percentile, say zp, for p between 0 and 100 and explain why it

holds.

(g) What is the value of the interquartile range (IQR) for the standard

normal model?

4.7.4. Suppose that X follows the normal distribution with mean 85 and

standard deviation 5; that is, X ~ N(85, 5). Find:

(a) P(X < 78);

(b) P(X > 88);
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(c) P(78 < X < 88);

(d) the value x0.8 such thatP(X � x0.8) ¼ 0.8;

(e) the value x0.05 such thatP(X � x0.05) ¼ 0.05.

4.7.5. Suppose the time taken by a computer on a local area network to

establish a connection to a remote site follows the normal distribution with a

mean of 15 s and a standard deviation of 3 s.

(a) What proportion of the connections will occur in less than 12.2 s?

(b) What proportion of the connections will occur between 12.2

and 16.5 s?

(c) What proportion of the connections will take longer than 10 s?

(d) 90% of the connections will occur in less than how many seconds?

(e) 75% of the connections will take longer than how many seconds?

4.7.6. Suppose the wrapper of a candy bar lists its weight as 8 ounces. The

actual weights, however, of individual candy bars naturally vary to some

extent. Suppose that these actual weights vary according to the normal

distribution with mean μ ¼ 8.3 ounces and standard deviation σ ¼ 0.125

ounces.

(a) What proportion of the candy bars weigh less than the advertised

8 ounces?

(b) What proportion of the candy bars weigh more than 8.5 ounces?

(c) What proportion of the candy bars weigh between 8.1 and 8.4

ounces?

(d) What is the weight such that only 1 candy bar in 1000 weighs less than

that amount?

(e) What is the weight such that 60% of the candy bars weigh more than

this amount?

4.7.7. Suppose high school grade point averages (gpas) for a class of 2000

students are normally distributed with mean 3.3 and standard deviation 0.3.
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(a) What percent of the students in the class have gpas below 2.7?

(b) How high must a student’s gpa be for her to place in the top 5% of the

class?

(c) What percent of the students in the class have gpas above 3.5?

(d) How low must a student’s gpa be for her to place in the bottom 20%

of the class?

(e) What percent of the students in the class have gpas between 2.85 and

3.65?

4.7.8. The annual sales revenues of a new product are normally distributed

with a yearly mean of $45,000 and standard deviation of $3500. The cost of

producing this product is $38,000.

(a) What is the chance that next year’s revenues will cover the cost of

production?

(b) Determine the revenues that mark the 10th and 90th percentiles.

4.7.9. Two companies are bidding on a contract to supply personal

computers to a school district. The first company claims that the mean life

of its computers is 1825 days with a standard deviation of 180 days. The

second company claims that the mean life of its computers is 1770 days with a

standard deviation of 90 days. Assuming no differences in cost and that

computer life is normally distributed, which company would you recom-

mend if the computers need to last at least 1645 days? Justify your choice

with appropriate calculations.

4.7.10. An automobile manufacturer claims that the fuel consumption for a

certain make and model of car should average 28 miles per gallon. After

driving such a car for over 6 months (long enough to get through the typical

break-in period), you notice that you are only getting 20 miles per gallon.

During a phone conversation with a customer service representative for the

company you are told that the standard deviation of the fuel consumption for

312 4 Understanding Random Events: Producing Models Using Probability and Simulation



your car is 3 miles per gallon. Assuming that the company’s claims are valid,

what is the chance that your car would perform as badly as it is or worse?

4.7.11. A soup company claims that one of its products contains 480 mg of

sodium per serving with a standard deviation of 6 mg. Assuming that the

amount of sodium in a particular serving varies according to the normal

distribution, what is the chance that a particular serving contains:

(a) fewer than 475 mg of sodium;

(b) at most 490 mg of sodium;

(c) at least 475 mg of sodium;

(d) more than 490 mg of sodium.

(e) Find the interval of sodium levels that contains 80% of the values for

the amount of sodium in a particular serving.

4.7.12. Use statistical software to generate 100 random numbers that are

uniformly distributed over the following intervals.

(a) (0, 1)

(b) (�1, 1)

(c) (0, 5)

(d) (90, 100)

Construct normal probability plots for each set of random numbers. Do the

plots show the same overall pattern as Fig. 4.11? Construct histograms for

each set of random numbers. Describe the patterns in these histograms.

4.7.13. Are 2014 Major League Baseball Players “Normal”? The datasets

american_league_salary_2014 and national_league_salary_2014 contain the 2014

salaries (as of March 26, 2014) for all baseball players in the American and

National Leagues, respectively. Construct normal probability plots for each

dataset. Would you be willing to use the normal model for salaries of either

American or National League baseball players? Why or why not?
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4.7.14. Are Pine Tree Heights Normally Distributed? The dataset pines_1997

contains a subset of the data on pine trees collected between 1990 and 1997 by

biology students at the Kenyon College Environmental Center. A complete

description of this experiment can be found in Chap. 3.

(a) Construct a normal probability plot for the initial planting heights

(hgt90) of the trees. Are there any obvious departures from a linear

trend on the plot?

(b) Construct a histogram for the initial planting heights (hgt90) of the

trees.

(c) Based on your plots from (a) and (b), would you be willing to use the

normal model for these initial tree heights?

(d) Repeat parts (a), (b), and (c) for the tree heights in 1997 (hgt97).

(e) Repeat parts (a), (b), and (c) for the tree diameters in 1997 (diam97).

4.7.15. A group of 25 students were asked how much they paid for their last

haircut. The responses were: 20, 18, 25, 25, 0, 20, 60, 0, 20, 10, 10, 20, 40, 26, 40,

12, 16, 16, 36, 38, 21, 15, 13, 10, and 10.

(a) Find the percentage of responses that fall within one standard devia-

tion of the mean.

(b) Find the percentage of responses that fall within two standard

deviations of the mean.

(c) Find the percentage of responses that fall within three standard

deviations of the mean.

(d) Based on the 1–2–3 standard deviation rule, would you be willing to

use the normal model for these haircut prices? Why or why not?

(e) Construct a normal probability plot for the haircut prices and com-

ment on whether or not you would be willing to use the normal

model based on the pattern in this plot.
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Chapter 4 Comprehensive Exercises

4.A. Conceptual

4.A.1. Is the B(n, ½) probability distribution always symmetric (regardless of

the number of trials)? Does this make intuitive sense? Explain.

4.A.2. What happens to the B(n, p) probability distribution as the number of

trials n increases and the probability of success p remains fixed?

4.A.3. What happens to the B(n, p) probability distribution as the probability

of success p gets closer to zero or one and the number of trials n remains fixed?

4.A.4. Suppose five patients are given an experimental medication with

potential side effects to treat an illness. The pharmaceutical manufacturer

estimates that 50% of the patients who take this medication will experience

side effects. Use this information to determine the probability distribution for

the total number of patients (out of five) who take this medication and

experience side effects. How would the probability distribution change if

the chance of experiencing serious side effects with use of the medication

increased to .75?

4.A.5. Describe several disjoint events. Describe several complementary

events. Describe several events that are disjoint but not complementary.

4.A.6. Display a Venn diagram for an experiment with three events, say A,

B, and C, that are not mutually disjoint. Carefully label the events A, B, C, A \
B, A \ C, B \ C, and A\B\C on the Venn diagram. Describe how the

probabilities of these events should be combined to form an addition rule

for m ¼ 3 events. Repeat this exercise for m ¼ 4 events. Describe a general

addition rule that can be used for an arbitrary number (m) of events.
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4.A.7. Developing a general multiplication rule is an iterative process. To

find P(A1\A2\A3) we first condition on the event A1\A2 and then apply the

multiplication rule with A ¼ A3 and B ¼ A1\A2. After the first application of

the multiplication rule we have P(A1 \ A2 \ A3) ¼ P(A3|A1 \ A2) � P

(A1 \ A2). Now, we apply the multiplication rule again to the second term

on the right hand side of our equation to obtain P(A1 \ A2 \ A3) ¼ P(A3|

A1 \ A2) � P(A2|A1) � P(A1).

(a) Apply the multiplication rule three times to derive a multiplication

rule for m ¼ 4 events.

(b) Apply the multiplication rule (m - 1) times to derive a general multi-

plication rule for m events.

4.A.8. Verify that the expected value of a linear transformation of a random

variable is equal to the value obtained by applying the linear transformation

to the expected value of the random variable. In other words, show that

μ(a + bX) ¼ E(a + bX) ¼ a + bμX, for all possible values of a and b.

4.A.9. Verify that the variance of a linear transformation of a random vari-

able is equal to the square of the slope coefficient times the variance of the

random variable. In other words, show that σ2aþbXð Þ ¼ Var aþ bXð Þ ¼ b2σ2X, for

all possible values of a and b. Carefully explain why the value of the intercept

a does not play a role in computing the variance of the linear transformation of

a random variable.

4.A.10. If X ~ N(μ, σ) and the standardizing transformation is applied to

create Z ¼ X�μ
σ , show that:

(a) Z is a linear transformation ofX by identifying the slope and intercept

constants;

(b) E(Z) ¼ 0 and Var(Z) ¼ 1. [Hint: Recall how linear transformations

affect the mean and variance (and, hence, the standard deviation).]
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4.B. Data Analysis/ Computational

4.B.1. Using the R function tableð Þ on the “Cover95” and “Deer95” columns

of the pines_1997 dataset produces the following contingency table. (The dnn

argument is used only to label the dimensions of the table for clarity and can

be any vector of strings.) Use this output to answer the following questions.

(a) Estimate the overall probability that a randomly selected tree was

browsed by deer in 1995.

(b) Consider the amount of thorny cover on the tree (0 ¼ no cover,

1 ¼ less than 1/3, 2 ¼ between 1/3 and 2/3, and 3 ¼ greater than

2/3). Separately for each different level of thorny cover, estimate the

probability that deer browsed a randomly selected tree in 1995. Does

knowledge about the amount of thorny cover on the tree affect your

estimate of the probability?

(c) Thorny vegetation in contact with the pine trees was removed during

the summer of 1996. Use the variable “Deer97” to estimate the proba-

bility that deer browsed a randomly selected tree in 1997. How does

this estimate compare with your estimates in parts (a) and (b)?

4.B.2. Describe how to solve the collector’s problem with simulation when

the set contains 12 different prizes. Can you repeatedly roll a pair of six-sided

dice to carry out the simulation? Explain.

4.B.3. Use simulation to estimate the number of purchases required by a

collector who is interested in obtaining a complete set of n ¼ 10 prizes? Find

E[T10] and compare it with your simulation estimate.

Chapter 4 Comprehensive Exercises 317



4.B.4. For large n, approximate values of μn ¼ E[Tn] can be obtained using

Euler’s approximation for the harmonic series. That is,

1þ 1
2
þ 1
3
þ � � � þ 1

n
� ln nð Þ þ γ þ 1

2n
,

where γ ¼ 0.57721566490153286060. . . is Euler’s constant. Approximate μn for

n ¼ 6 and n ¼ 10 and compare these approximations with the exact and

simulated estimates obtained in Example 4.20 and Exercise 4.B.3, respectively.

4.B.5. Use the R functions qqplotð Þ and qqlineð Þ to see if the normal

distribution would be an appropriate model for the variables in the datasets

below.

(a) 2014 salaries for American League baseball players

(american_league_salary_2014)

(b) 2015 salaries for faculty and staff in the Mathematics Department at

The Ohio State University (osu_math_salaries_2015)

(c) Unit values on TIAA and CREF variable annuities (tiaa_cref)

(d) Measurements on pine trees at the Kenyon College Environmental

Center (pines_1997)

(e) Amount of money paid to the winner of the Kentucky Derby from

1990 to 2012 (kentucky_derby_2012).

4.B.6. Romantic Relationships in High School—To Have or Not To Have. The

Pew Research Center (2015b) reported on topics related to teens and the use of

technology in establishing or maintaining romantic relationships. In a

national survey of 1060 teens ages 13–17, they found that 64% of the

respondents had never been in a romantic relationship. Suppose we select a

random sample of n¼ 30 teens ages 13–17 and ask them if they have ever been

in a romantic relationship.

(a) What is the probability that more than 50% of our sample have never

been in a romantic relationship?
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(b) What is the probability that less than 10 students in our sample have

been in a romantic relationship?

(c) How many of the students in our sample should we expect to have

been in a romantic relationship?

4.B.7. Romantic Relationships—How ToMake Them Happen. The Pew Research

Center (2015b) reported on topics related to teens and the use of technology in

establishing or maintaining romantic relationships. In a national survey of

1060 teens ages 13–17, they found that 50% of the respondents had showed a

romantic interest in someone by sharing something funny/interesting with

them online. Suppose we select a random sample of n ¼ 20 teens ages 13–17

and ask them if they had ever showed a romantic interest in someone by

sharing something funny/interesting with them online.

(a) How many of the students in our sample should we expect to have

showed a romantic interest in someone by sharing something funny/

interesting with them online?

(b) What is the probability that no more than 5 students in our sample

have showed a romantic interest in someone by sharing something

funny/interesting with them online?

(c) What is the probability that exactly half of the students in our sample

have showed a romantic interest in someone by sharing something

funny/interesting with them online?

4.B.8. Romantic Relationships—Maintenance. The Pew Research Center

(2015b) reported on topics related to teens and the use of technology in

establishing or maintaining romantic relationships. In a national survey of

1060 teens ages 13–17, they found that among those respondents who had

been or are currently in some kind of romantic relationship, 11% expected to

hear from their partner on an hourly basis! Suppose we select a random

sample of n¼ 40 teens ages 13–17 who are currently in some kind of romantic
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relationship and ask them how often they expect to hear from their romantic

partners.

(a) Howmany of the students in our sample should we expect to say that

they expected to hear from their romantic partners on an hourly

basis?

(b) What is the probability that no students in our sample expected to

hear from their romantic partner on an hourly basis?

(c) What is the probability that more than 30 of the students in our

sample expected to hear from their romantic partners on an hourly

basis?

4.B.9. Romantic Relationships—Control. The Pew Research Center (2015b)

reported on topics related to teens and the use of technology in establishing

or maintaining romantic relationships. In a national survey of 1060 teens ages

13–17, they found that among those respondents who had been or are cur-

rently in some kind of romantic relationship, 26% said that their romantic

partner checked up with them multiple times per day asking where they

were, who they were with, or what they were doing. Suppose we select a

random sample of n ¼ 40 teens ages 13–17 who are currently in some kind of

romantic relationship and ask them if their romantic partner exhibited this

controlling behavior.

(a) Howmany of the students in our sample should we expect to say that

their romantic partner behaved in this manner?

(b) What is the probability that no less than 30% of the students in our

sample say that their romantic partner behaved in this manner?

(c) What is the probability that more than 70% of the students in our

sample say that their romantic partner behaved in this manner?

4.B.10. Romantic Relationships—After Shocks. The Pew Research Center

(2015b) reported on topics related to teens and the use of technology in

establishing or maintaining romantic relationships. In a national survey of
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1060 teens ages 13–17, they found that among those respondents who had

previously been in a romantic relationship that had now ended, 8% said that

their ex-romantic partner called them names, put them down or said really

mean things to them on the Internet or their cellphone. Suppose we select a

random sample of n ¼ 100 teens ages 13–17 who had previously been in a

romantic relationship that had now ended and ask them if their ex-romantic

partner called them names, put them down or said really mean things to them

on the Internet or their cellphone.

(a) What is the probability that exactly 8 of the students in our sample

say that their ex-romantic partner called them names, put them down

or said really mean things to them on the Internet or their cellphone?

(b) What is the probability that more than 8 of the students in our sample

say that their ex-romantic partner called them names, put them down

or said really mean things to them on the Internet or their cellphone?

(c) What is the probability that less than 8 of the students in our sample

say that their ex-romantic partner called them names, put them down

or said really mean things to them on the Internet or their cellphone?

(d) Howmany of the students in our sample should we expect to say that

their ex-romantic partner called them names, put them down or said

really mean things to them on the Internet or their cellphone?

4.B.11. Laughing Online. In a recent Facebook Blog Post, Weinsberg et al.

(2015) presented the results of their analysis of de-identified posts and

comments posted on Facebook in the last week of May, 2015. They found

that 15% of the posts or comments during that period of time included

characters identifiable as laughter. Suppose we select a random sample of

n ¼ 75 recent posts or comments on Facebook and record whether or not they

include laughter characters.

(a) What is the probability that more than 15 of the posts or comments

include laughter characters?
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(b) What is the probability that fewer than 5 of the posts or comments

include laughter characters?

(c) How many of the posts or comments should we expect to include

laughter characters?

4.B.12. Laughing Online—LOL, HaHa, Hehe, or Emoji? In a recent Facebook

Blog Post, Weinsberg et al. (2015) presented the results of their analysis of

those de-identified posts and comments posted on Facebook in the last week

of May, 2015 that contained “at least one string of characters matching

laughter”. They reported that 51.4% of these posts/comments used “haha”,

13.1% used “hehe”, 33.7% used “emoji’, and only 1.9% used “lol” to indicate

laughter. Suppose we select a random sample of n ¼ 60 recent posts or

comments on Facebook that contained “at least one string of characters

matching laughter”.

(a) How many of these sample posts/comments should we expect to

have used “haha”? “hehe”?, “emoji”?, “lol”?

(b) How many of these sample posts/comments should we expect to

have used something other than “emoji”?

(c) What is the probability that more than 50 of our sample posts/

comments used “emoji” to indicate laughter?

(d) What is the probability that less than 5 of our sample posts/

comments used “lol” to indicate laughter?

(e) What is the probability that more than 30% of our sample posts/

comments used either “haha” or “hehe” to indicate laughter?

(f) What is the probability that less than 40% of our sample posts/

comments did not use “haha” to indicate laughter?

4.B.13. Beware of the Gigabyte! The Los Angeles Times (2014) reported on a

number of results from a survey conducted by Vouchercloud.net, a coupons

website. One of the items in the survey asked respondents to select which of a

number of possible choices best defined a “gigabyte”. Twenty seven percent
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of the respondents incorrectly selected the answer that identified a “gigabyte”

as an insect commonly found in South America. Suppose you randomly select

individuals and ask them this question until you find the first respondent that

identifies a “gigabyte” as an insect commonly found in South America. If the

results of the Vouchercloud.net survey are applicable:

(a) What is the probability that you will interview more than six people

before you obtain the first respondent who identifies a “gigabyte” as

an insect commonly found in South America?

(b) What is the probability that you will find the first respondent who

identifies a “gigabyte” as an insect commonly found in South Amer-

ica prior to your fourth interview?

(c) How many individuals would you expect to interview before you

find the first respondent who identifies a “gigabyte” as an insect

commonly found in South America?

4.B.14. Church Attendance and Torture. Does attending church services on a

regular basis (at least once a week) increase your approval of using torture

against suspected terrorists? The Cable News Network (2009) reported on a

number of results obtained in a survey conducted April 14–21, 2009 by the

Pew Research Center. One of the questions asked in the survey was “Do you

think the use of torture against suspected terrorists in order to gain important

information can often be justified, sometimes be justified, rarely be justified,

or never be justified?” Forty two percent of the respondents who “seldom or

never” attend church services agreed that the use of torture against suspected

terrorists is “often” or “sometimes” justified. On the other hand, 54% of the

respondents who attend church services at least once a week agreed that the

use of torture against suspected terrorists is “often” or “sometimes” justified.

Suppose that the results of the Pew Research Center are applicable.

(a) If you select a random sample of 50 individuals who “seldom or

never” attend church services, what is the probability that less than
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half of the individuals you interview will agree that the use of torture

against suspected terrorists is “often” or “sometimes” justified? How

many of the 50 would you expect to agree that the use of torture

against suspected terrorists is “often” or “sometimes” justified?

(b) If you select a random sample of 50 individuals who attend church

services on a regular basis (at least once a week), what is the proba-

bility that more than half of the individuals you interview will agree

that the use of torture against suspected terrorists is “often” or

“sometimes” justified? How many of the 50 would you expect to

agree that the use of torture against suspected terrorists is “often” or

“sometimes” justified?

4.B.15. Stormy Weather and Cloud Computing. The Business Insider (2012)

reported on a number of results from a national survey conducted by

Wakefield Research (commissioned by Citrix) in August 2012. One of the

questions asked in the survey was “Can stormy weather interfere with cloud

computing?”. Fifty one percent of the respondents (including a majority of

Millennials) agreed that stormy weather can interfere with cloud computing!

Suppose you randomly select 30 individuals and ask them this same question.

If the results of the Wakefield Research survey are applicable:

(a) What is the probability that no more than ten of the individuals you

interview will believe that stormy weather can interfere with cloud

computing?

(b) What is the probability that less than 20 of the individuals you

interview will believe that stormy weather can interfere with cloud

computing?

(c) Howmany of the 30 individuals that you interviewwould you expect

to believe that stormy weather can interfere with cloud computing?

(d) P.S. In the Wakefield Research survey, when asked what “the cloud”

is, the participants’ responses included: “a fluffy white thing”, toilet

paper, cyberspace, and pillow.
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4.C. Activities

4.C.1. Checking Your Intuition Using a Random Number Generator—Revisited.

(a) Generate two sets of 10 random numbers each from the same proba-

bility distribution. (You may use any probability distribution you

want, just make sure you use the same one for both sets.)

(b) Create a new set of 100 values corresponding to the differences

between each value in the first set and each value in the second set;

that is, subtract the first value in the second set from all ten values in

the first set. Then subtract the second value in the second set from all

ten values in the first set. Continue this process until you subtract the

tenth value in the second set from all ten values in the first set.

(c) Follow the steps described in Example 4.2 to create the cumulative

proportion of times the second number was larger than the first

number and display the results in a scatterplot like the one in Fig. 4.2.

(d) Comment on the similarities and differences in the two scatterplots.

(e) If you repeated steps (a)–(d) with a different probability distribution

would the overall pattern be the same or different for each distribu-

tion you consider? Explain your answer in language that your friends

would understand. [Hint: You may want to repeat (a)-(d) with a few

different distributions before you formulate your explanation.]

4.C.2. Long Run Relative Frequencies.

(a) Simulate 100 trials of a random experiment with two outcomes,

labeled “success” and “failure”, under the assumptions that the trials

are independent and that a “success” is three times more likely than a

“failure” on each trial.

(b) For each trial, record the outcome, the cumulative number of

successes thus far, and the cumulative proportion of successes

thus far.
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(c) Construct a scatterplot with cumulative number of successes on the y-

axis and trial number on the x-axis.

(d) Construct a scatterplot with cumulative proportion of successes on

the y-axis and trial number on the x-axis.

(e) Repeat parts (a)-(d) several times. Do you notice any similarities in

the plots? Is there any regularity in the plots for the first ten trials?

What happens as the number of trials grows?

4.C.3. Checking Your Intuition By Comparing Sequences of Events.

(a) Write down a sequence of 50 outcomes (H or T) that you think could

result from flipping a fair coin 50 times. (Don’t actually flip the coin

just yet—use only your intuition to write down the sequence.) How

many heads are in the sequence? Howmany runs are in the sequence?

Determine the length of each run by counting the number of H’s or

T’s in the run and create a frequency table for the set of run lengths.

What is the length of the longest run?

(b) Flip a fair coin 50 times and record the sequence of 50 outcomes. How

many heads are in the sequence? Howmany runs are in the sequence?

Determine the length of each run by counting the number of H’s or

T’s in the run and create a frequency table for the observed run

lengths. What is the length of the longest run? Compare these

answers with those from your intuitive sequence in part (a).

(c) Use appropriate statistical software to simulate 30 sets of sequences,

each of which corresponds to flipping a fair coin 50 times. For each of

the observed 30 sequences, determine how many heads and how

many runs are in the sequence. Create graphical summaries for the

number of runs and the number of heads in the 30 sequences. How do

the values from your sequences in parts (a) and (b) compare with

those in the simulated sequences?
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(d) One of the following two sequences was simulated as in part (c) and

the other was just an intuitive guess as in part (a). Which is which?

Why?

Sequence 1 HHHHTHTHHTTHTHTHHHHTHHTTT
HHHTHHTHTHTTTHTHHHHTHHTHH

Sequence 2 HTHHHTTHHTTTHHHHTTTHTHTTH
HTTTTHHTTHHHTTTHTHTHHHTTT

4.C.4. Hitting Streaks.

(a) Find the most recent batting average for your favorite baseball player.

If you don’t have a favorite player then select a player from the Major

League Baseball team that is closest to your hometown. (If baseball is

not in season, you can use the batting average from the end of the

previous season.)

(b) Use statistical software to simulate five at bats for the player you have

selected. How many hits did he get? How many hits would you

expect him to get in five at bats?

(c) Repeat part (b) 25 times and provide numerical and graphical

summaries for the number of hits and the percentage of hits.

(d) Use statistical software to simulate 20 at bats for the player you have

selected. How many hits did he get? How many hits would you

expect him to get in 20 at bats?

(e) Repeat part (d) 25 times and provide numerical and graphical

summaries for the number of hits and the percentage of hits.

(f) Compare your simulation results for parts (c) and (e). Describe the

similarities and differences.

4.C.5. Estimating Probabilities. Carefully describe your method of estimation

in each of the following situations.

(a) Estimate the probability of randomly selecting a red M&M from a

small bag of M&M’s.
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(b) Estimate the probability of randomly selecting an orange candy from

a bag of Reese’s Pieces.

(c) Estimate the probability of randomly selecting a green piece of cereal

from a box of Froot Loops.

(d) Estimate the probability of randomly selecting a yellow bear from a

bag of gummy bears.

(e) Did you enjoy your simulations?

4.D. Internet Archives

4.D.1. Baseball Players’ Bonuses. Search the Internet to find data sets

containing the bonuses received by all National League and, separately, all

American League baseball players at the end of the most recently completed

baseball season. Construct normal probability plots for each of these two

datasets. Would you be willing to use the normal model for season bonuses

for either American or National League baseball players? Why or why not?

4.D.2. Poker Hands. Search the Internet to find a site that provides the exact

probabilities for each of the ten possible five card poker hands (nothing, one

pair, two pairs, three of a kind, straight, flush, full house, four of a kind,

straight flush, and royal flush).

(a) Deal yourself 100 poker hands (each time thoroughly shuffling the

deck between hands).

(b) What is the expected number of times each of the possible poker

outcomes should occur in your 100 hands? Compare these expected

numbers with the observed numbers in your 100 hands. Would these

two sets of numbers get closer if we were to deal 5000 hands instead

of 100? Why?

(c) Compare the observed percentage of times each of the possible poker

outcomes occurred in your 100 hands with the exact probability for
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the outcome. Would these two sets of percentages get closer if we

were to deal 5000 hands instead of 100? Why?

(d) Can you mathematically verify the probabilities for each of the ten

possible poker hands? If not, describe how you could use simulation

to arrive at good empirical evidence that the probabilities are correct.

4.D.3. Roulette. Search the Internet to find a site that provides the basic rules

behind the American version of roulette.

(a) Describe the makeup of the roulette wheel for this version.

(b) What are some of the possible betting schemes for playing the game?

(c) Consider the simple choice of betting on a red color. What is the

probability that you will win with this bet? How much should you

expect to “win” if youplayed this red color bet 100 times for $1 each bet?

(d) Consider the choice of betting that the roulette ball will rest in one of

the even numbers (0 and 00 are NOT considered even or odd num-

bers). What is the probability that you will win with this bet? How

much should you expect to “win” if you played this even number bet

100 times for $1 each bet?

(e) How could you use random number simulation to support your

conclusions in parts (c) and (d)?

(f) Find an Internet site that allows you to simulate playing roulette with

an electronic version of a roulette wheel—no betting involved! Have

fun spending some time providing additional support to your

conclusions in parts (c) and (d).

4.D.4. Monty Hall Problem. Suppose you are on a game show and you are

given the choice of one of three doors. Behind one door there is a new car—

behind the other two doors are goats. You pick a door, say number 3, and the

host of the show (who knows what is behind each of the doors), opens one of

the other two doors, say number 1, to show you that it concealed one of the

two goats. He then asks you if you would like to switch from your original
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choice of door number 3 to door number 2. You win whatever “prize” is

behind your final choice.

(a) Should you make the switch from door number 3 to door number 2?

Does it even matter?

(b) Search the Internet to find a website that allows you to electronically

play this game. (See, for example, www.math.ucsd.edu.) Play the

game 100 times, each time choosing to stick with your originally

chosen door rather than switching after one of the goats is revealed.

What percentage of times did you end up with the car?

(c) Now play the game 100 more times, each time choosing to switch

doors from your original choice after one of the goats is revealed.

What percentage of times did you end up with the car?

(d) Do you want to change your answer to part (a) in view of the

simulation results in parts (b) and (c)?

(e) Can you mathematically show that switching doors after one of the

goats is revealed greatly enhances your probability of winning the

car? How much greater is it?

4.D.5. Simulating From a Large Population. Search the Internet to find a large

dataset that describes characteristics or attributes of the American public that

are of interest to you.

(a) Use a random number generator to select a random sample of size

n ¼ 100 from the population and summarize the data of interest to

you in your sample. How do your sample results compare to the same

features of the entire population?

(b) Repeat part (a) for a random sample of size n ¼ 500. Compare the

results from this larger sample with those for the sample size 100 in

part (a).
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Sampling Distributions
and Approximations 5

Now that we have built a solid foundation based on exploratory data analysis

techniques, proper design of experiments, and basic probability, we will put

the finishing touches on this foundation by studying sampling distributions,

the most important part of statistical inference. Before we can use the infor-

mation we have collected and analyzed from our sample to make inferences

about the population of interest, we must make sure that we understand how

the statistic we have computed varies with repeated sampling. Our goal here

is to describe what might happen if we repeat the entire sampling process and

computation of the desired statistic again and again. Do you think that if you

take a different sample you will get exactly the same value for the statistic?

While it is certainly possible that this could happen, in most practical settings

it is very unlikely that you will get exactly the same value of the statistic. At

first, it might appear that this would be a major problem for the field of

statistics. If we collect different samples and they usually give us different

results, how can we make any inferences? The fact is that even though the
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values of the statistic are likely to differ from sample to sample, they will

follow a pattern. This pattern of variation in repeated sampling is described

by the sampling distribution of the statistic.

Definition 5.1 The sampling distribution of a statistic is the probability

distribution for the set of possible values that can be assumed by the

statistic.

Our goal in this chapter, then, is to learn some results that will help us

understand and describe the nice patterns that are typically encountered in

sampling distributions. In Chap. 6 our understanding of these patterns will

pay off by showing us how to draw conclusions from samples. When we are

interested in some feature of a large population we usually can’t examine

every member of the population, so we take a random sample and use this

incomplete information to make reasonable guesses about the population.

These reasonable guesses based on sampling are what we’ve been calling

statistical inferences. They are expressed using statements like:

“Based on the results of a clinical trial with 30 patients, we have convincing evidence to assert that this
drug is an effective treatment;”

OR

“Based on a random sample of 1000 voters, we are quite confident that somewhere between 45% and
49% of all voters favor Proposition 11.”

If we are going to act on these inferences, by administering the drug to

more patients or campaigning for (or against) Proposition 11, we would like

to know how reliable they are. How surprised would we be if the drug turns

out, in fact, to be ineffective? How surprised would we be if 55% of all voters

favor Proposition 11? Sampling distributions will help us answer these

questions. We can’t eliminate uncertainty – it is a natural consequence of

sampling – but we can learn how to understand and assess it. Our statements

will still be fuzzy, but we will be able to say precisely how fuzzy they are.
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In Sect. 1 we study the sampling distribution for a sample average. In

Sect. 2 we consider the sampling distribution for a sample proportion. The

Central Limit Theorem, perhaps the most important and surprising result in

statistics, is explored in Sect. 3, and it is used to approximate sampling

distributions. Finally, in Sect. 4, we discuss simulation and resampling

techniques to provide additional ways to approximate sampling distributions

of important statistics.

5.1 The Sampling Distribution for a Sample Average

Consider Fig. 5.1 depicting the selection of a random sample X1, . . ., Xn of

size n from a normal population with mean μ and standard deviation σ. We

will use the mean of our sample,

�X ¼ X1 þ X2 þ � � � þ Xn

n
,

as our estimator for the population mean, μ, which is the value we are

interested in. However, if we took a number of different samples, each of

size n, from this population, we would get different values of the sample

average for each of these samples. Before we start drawing conclusions from

such samples, we need to know if the mean of a random sample from a

Fig. 5.1 Selecting a random sample of size n from a N(μ, σ) population

Normal Population

= standard deviationσμ = mean

X1 X2 … Xn
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population is a good estimator for the mean of the population. This concern

can be expressed in two important questions:

1. If we took many samples, would their means average out to the true

population mean?

2. How close to μwill �X typically be? That is, how variable is the mean of a

random sample?

These are both questions about the sampling distribution of �X : “Where is it

centered?“ and ”How does the variability of �X across samples compare to the

variability, σ, in the population?”

Since we will be using �X to estimate μ we would hope that the sampling

distribution of �X is centered at μ. To show that this is indeed the case, we use

the properties of expectation developed in Sects. 4.5 and 4.6. To compute �Xwe

add the n random variables X1, X2, . . ., Xn and divide by n. We learned in

Chap. 4 that the mean of a sum of random variables is the sum of their means,

and that scaling a random variable by a constant scales the mean by the same

constant. Thus,

E
X1 þ X2 þ � � � þ Xn

n

� �
¼ 1

n
E X1ð Þ þ E X2ð Þ þ � � � þ E Xnð Þð Þ:

Since each member of our random sample comes from a population with

mean μ, the expected value of each Xi is μ, so 1
n E X1ð Þ þ E X2ð Þ þ � � �þð

E Xnð ÞÞ ¼ 1
n μþ μþ � � � þ μð Þ ¼ μ. Putting it all together, we have E

�
�X
� ¼ μ.

So the answer to our first question is YES! The sampling distribution of the

sample mean is centered at the population mean μ. Since the center of the

sampling distribution of �X is equal to μ, we say that the statistic �X is an unbiased

estimator of μ.

We assess the variability of �X by its variance, Var
�
�X
�
. The variability in �X

comes from two sources, the randomness in our sample and the variability in

the population we’re sampling from.Wewould expect a larger sample to give
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us better information, so Var
�
�X
�

should decrease as the sample size

n increases. In addition, we would expect a population with a smaller σ to

deliver less variable samples. For example, a sample of the weights of college

sophomores who wear a size 10 will cluster more tightly around the mean

than a sample from all women between the ages of 16 and 50.

Using the properties of variances from Sects. 4.5 and 4.6, we can show that

this intuition is correct: Var
�
�X
� ¼ σ2

n
. Notice that the variability in the sam-

pling distribution of �X is always smaller than the variability in the population.

By taking a sample of size n and computing the sample average, we are

reducing the variability by a factor of 1/n. In other words, the variability in

one random observation from this population is n times larger than the

variability of a sample average of n observations from the population. This

is precisely what allows us to control the fuzziness in statistical inferences.

Even if the population has a large σ, we can get reliable estimates by taking

large enough samples.

We now know how to describe the center and spread of the sampling

distribution of �X, but what about its shape? Theorem 5.1 formally states that

the overall shape of the sampling distribution of the sample average will

resemble that of the underlying bell-shaped normal population.

Theorem 5.1 If �X is the mean of a random sample of size n from a

population that is normal with mean μ and standard deviation σ, then �X

is also normal with mean μ and reduced standard deviation σffiffi
n

p . Using our

� notation we can write this compactly as �X � N μ;
σffiffiffi
n

p
� �

.

This is a particular case of a much more general result that says linear

combintations of normal random variables are normal. Although this general
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theorem is beyond the scope of this text, it is very natural to think that linear

combinations of normal, bell-shaped curves will remain normal and bell-

shaped. We will often apply another special case of this general result when

comparing the sum or difference of two variables with possibly different

normal distributions. Theorem 5.2 states this special case:

Theorem 5.2 If X and Y are independent normal variables with means

μX and μY and variancesσ2X andσ
2
Y, respectively, then the variable aX + bY

is also normal with mean aμX + bμY and variance a2σ2X þ b2σ2Y. In

particular,

X þ Y has mean μX þ μY and variance σ2X þ σ2Y,

and

X � Y has mean μX � μY and variance σ2X þ σ2Y:

Notice that both the sum X + Y and difference X � Y have the same

variance, which is the sum of the variances of the two random variables.

Example 5.1. Lecture Lengths Suppose that the class periods at a particular

university are exactly 50 min in length. However, the actual lecture time on a

particular day for Professor Staub varies according to the normal distribution

with mean 52 min and standard deviation 2 min. Suppose that the lengths of

different lectures are independent of one another and Professor Staub gives

36 lectures during the semester.

1. What is the probability that Professor Staub’s lecture onMonday will be

less than 50 minutes in length?
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If we let L denote the length of Professor Staub’s lecture on Monday, then

we want to find P(L < 50). Standardizing both sides and finding the appro-

priate area under the standard normal distribution yields

P L < 50ð Þ ¼ P Z <
50� 52

2

� �
¼ P Z < �1ð Þ ¼ :1587:

We can verify this calculation in R using the pnormð Þ function, as we did in

Chap. 4, in either of the following two ways.

> pnorm(q = 50, mean = 52, sd = 2)

[1] 0.1586553

> pnorm(q = -1)

[1] 0.1586553

2. What is the probability that Professor Staub’s average lecture time over

the entire semester will be less than 50 min?

Let �L denote Professor Staub’s average lecture time over the 36 lectures in

the semester. From Theorem 5.1, we know that �L is normally distributed with

a mean of 50 min and a standard deviation of 2=
ffiffiffiffiffi
36

p
. Thus, we find

P
�
�L < 50

� ¼ P Z <
50� 52
2=

ffiffiffiffiffi
36

p
 !

¼ P Z < �6ð Þ � 0:

Again, we can verify this calculation with pnormð Þ.

> pnorm(q = 50, mean = 52, sd = 2 / sqrt(36))

[1] 9.865876e-10

> pnorm(q = -6)

[1] 9.865876e-10

Thus, even though there is approximately a 16% chance that Professor

Staub will dismiss the class early on any particular day, it is highly unlikely

that Professor Staub will lecture for less than 50min on average for a semester.

The actual probability is about 10�9, so although it is not at all unlikely for a
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particular lecture to be less than 50 min, there is virtually no chance that the

average of 36 lectures will be this far below 52 min.

Example 5.2. Soccer Competition Two soccer players with equal ability enter

a friendly competition. They will each run one-half mile and if one player

beats the other by 10 s or more, the loser will buy ice cream for the winner.

Suppose that the time for each player to complete one-half mile varies nor-

mally with a mean of 3 min and a standard deviation of 15 s and the two times

are independent. What is the probability that one of the players will have to

buy ice cream for her competitor after the run?

Notice that this is a question about the sampling distribution of X � Y,

where X is the time for the first player and Y is the time for the second player.

Using the results from Theorem 5.2, we know that the difference in the times,

X � Y, is normally distributed with a mean of 0 s and a standard deviation offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
152 þ 152

p
¼ 21:2132 seconds. Thus, the probability that one player will have

to buy ice cream for the other player is P X � Yj j > 10ð Þ. Using symmetry of

the normal distribution and software to calculate areas under normal curves,

we find

P X � Yj j > 10ð Þ ¼ 2� P X � Y < �10ð Þ
¼ 2� P Z <

�10
21:2132

� �
¼ 2� P Z < �:4174ð Þ
¼ 2� :3187
¼ :6374:

We again provide the R command for verification of this number.

> 2 * pnorm(q = -10, mean = 0, sd = sqrt(15^2 + 15^2))

[1] 0.6373519

Thus, there is approximately a 64% chance that one of the players will

have to buy ice cream for the other player.
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5.1.1 Comparing Two Averages

We now turn to the setting where we want to compare two sample averages.

For example, we might want to compare the average height for men with the

average height for women, the average strength for athletes with the average

strength for non-athletes, the average response time for a treatment group

with the average response time for a control group, etc. We will still assume

that both samples are from normal populations.

Let �X denote the sample average for a random sample of size m from a

normal population with mean μX and variance σ2X and let �Y denote the sample

average for a second random sample of size n from a normal population with

mean μY and variance σ2Y. Suppose that the two random samples are also

independent. One way to compare these sample averages is through the

sampling distribution of the difference �X � �Y. Using properties of

expectations and variances, we can easily describe the centers and spreads

of the two separate sampling distributions. More specfically, the centers and

spreads for the sampling distributions of �X and �Y are, respectively,

E
�
�X
� ¼ μX Var

�
�X
� ¼ σ2X

m
;

E
�
�Y
� ¼ μY Var

�
�Y
� ¼ σ2Y

n
:

To find the center and spread for the sampling distribution of the difference

�X � �Ywe again make use of the results in Sect. 4.6. Since the expected value of

a difference is the difference of the expected values, we find that

E
�
�X � �Y

� ¼ μX � μY:

Moreover, since the two samples are independent, we recall that the variance

of a difference is the sum of the variances, so that
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Var
�
�X � �Y

� ¼ σ2X
m

þ σ2Y
n
:

But Theorems 5.1 and 5.2 tell us even more, namely, that the sampling

distribution of �X � �Y is also normal with mean and variance as specified

above. We formally state this as Theorem 5.3.

Theorem 5.3 If X1, X2, . . ., Xm is a random sample from a N(μX, σX)

population and Y1, Y2, . . ., Yn is a second independent random sample

from a N(μY, σY) population, then the sampling distribution of �X � �Y

follows the normal distribution with mean μX – μY and variance
σ2X
m

þ σ2Y
n
;

that is, �X � �Y � N μX � μY;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2X
m

þ σ2Y
n

r !
.

Example 5.3. College Placement Exams Suppose that over the past 5 years

the scores on a college placement exam have varied according to a N(75, 10)

distribution for women and a N(72, 15) distribution for men. If 20 men and

30 women take the placement exam next fall, what is the chance that the

average score for the men on this test is at least as high as the average score for

the women?

Let �Y and �X denote the average scores for the 30 women and 20 men,

respectively. Since it is reasonable to assume that the scores of the men and

women will be independent of one another, Theorem 5.3 implies that the

sampling distribution of �X � �Y follows the normal distribution with mean

72 � 75 ¼ �3 and standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
152
20 þ 102

30

q
¼ 3:8188. The probability

that the average score for men with be at least as large as the average score

for women is then
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P
�
�X � �Y

� ¼ P
�
�X � �Y � 0

� ¼ P Z � 0� �3ð Þ
3:8188

� �
¼ P Z � :7856ð Þ ¼ :2161:

The following command verifies this calculation using the R function

pnormð Þ.

> pnorm(q = 0, mean = -3, sd = sqrt(15^2 / 20 + 10^2 / 30),

lower.tail = FALSE)

[1] 0.2160555

We note that even though the men perform slightly worse than the women

on average, there is still slightly more than a 20% chance that on this particular

exam the men will do as well as or better than the women. This might initially

seem somewhat surprising, since you may have been tempted to think that

women would always do better than men because their average score over the

past 5 exams had been 3 points higher—intuition must be quantified!

Section 5.1 Practice Exercises

5.1.1. Statistics GPAs. The grade point average of all students taking intro-

ductory statistics in the United States varies according to the N(3, .1)

distribution.

(a) What is the sampling distribution of the sample average for a class of

5 students?

(b) What is the sampling distribution of the sample average for a class of

40 students?

(c) What is the sampling distribution of the sample average for a class of

100 students?

5.1.2. Pokemon Cards. A group of young children is wild about Pokemon

cards. The monthly amount of time spent trading these cards by members of

this group is normally distributed with a mean of 40 h and a standard

deviation of 5 h.
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(a) What is the probability that a randomly selected child from this group

spends more than 45 h trading Pokemon cards during the month of

August?

(b) If 40 children are randomly selected from this group, what is the

sampling distribution of the average amount of time they spend

monthly trading Pokemon cards?

(c) What is the probability that a randomly selected group of 40 children

will average more than 45 h of trading Pokemon cards in a particular

month?

(d) How many children would have to be randomly selected from the

group to reduce the standard deviation to 2.5 for the average amount

of time they spend monthly trading Pokemon cards?

(e) How many children would have to be randomly selected to reduce

the standard deviation by a factor of 10 for the average amount of

time they spend monthly trading Pokemon cards?

5.1.3. Statistics Exams. Thirty-two students, 17 women and 15 men, enroll for

a basic statistics course. Assume that the scores on the first exam follow the N

(75, 10) distribution.

(a) What is the sampling distribution of the sample average for all

32 students?

(b) Find the probability that the sample average for all 32 students will be

more than one standard deviation away from its mean.

(c) What is the sampling distribution of the sample average for the

17 women?

(d) Find the probability that the sample average for the 17 women is

greater than 70.

(e) What is the sampling distribution of the sample average for the

15 men?
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(f) Find the probability that the sample average for the 15 men is less

than 60.

(g) Find the probability that the sample average for the 17 women will be

at least five points higher than the sample average for the 15 men.

5.1.4. Sales Commissions. A salesperson earns a 10% commission on all sales

of a particular product. The weekly sales of this product varies according to

the normal distribution with a mean of $3700 and a standard deviation of

$100.

(a) What is the probability that the salesperson will earn more than $350

in any particular week?

(b) What is the probability that she will average more than $350 per week

in a month that contains 4 weeks?

5.1.5. Beverage Content. The content of a bottle of a popular beverage varies

according to the normal distribution with a mean of 20 ounces and a standard

deviation of .5 ounces.

(a) Find the 90th percentile for the content of a typical bottle of this

beverage.

(b) Find the 90th percentile for the average content in a six-pack of this

beverage.

(c) Find the 90th percentile for the average content in a 12-pack of this

beverage.

(d) Comment on the relationship between the percentiles in parts (a), (b),

and (c).

5.1.6. Soda Content. The beverage content in soda cans produced by a bot-

tling company varies according to the normal distribution with a mean of

12 ounces and a standard deviation of .25 ounces.

(a) What is the chance of getting some extra soda (more than the stated

12 ounces) for free in a single can?
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(b) What is the chance of getting more than .25 ounces of free soda in a

single can?

(c) What is the chance of getting .25 free ounces in a six-pack of this soda?

(d) What is the chance of getting .25 free ounces in a 12-pack of this soda?

5.1.7. Pocket Change. The amount of change carried by a group of students

varies normally with a mean of 70 cents and a standard deviation of 10 cents.

Two students are randomly selected and asked to count how much change

each of them has.

(a) What is the expected difference in the amounts?

(b) What is the standard deviation of the difference in the amounts?

(c) What is the probability that one student has at least 10 cents more

than the other student?

(d) Let T be the total amount of change carried by three students riding in

a car. Find the mean and standard deviation of T.

(e) Let Y be the average amount of change carried by three students

riding in a car. Find the mean and standard deviation of Y. Compare

this with the result in part (d).

5.1.8. Learning NewManufacturing Process. The amount of time it takes for an

employee at a manufacturing plant to learn a new packaging process varies

normally with a mean of 30 h and a standard deviation of 10 h. Two

employees are randomly selected from all the employees at the plant.

(a) What is the expected difference in the amount of time it takes the two

employees to learn the new process?

(b) What is the standard deviation for the difference in the amount of

time it takes the two employees to learn the new process?

(c) What is the chance that it will take one employee at least 5 h longer

than the other employee to learn the new process?
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5.1.9. Delivering Sunday Papers. A student earns extra money by delivering

Sunday newspapers. The collections from her customers vary from week to

week, with a weekly mean of $50 and a weekly standard deviation of $5. The

student assumes that her weekly collections can be represented by indepen-

dent random variables, each with a N(50, 5) distribution. She is interested in

the total amount of money she will make during a particular month with five

Sundays.

(a) Find the expected value for the total collections from these five

Sundays.

(b) Find the standard deviation for this total.

(c) What is the chance that the student collects a total of at least $250

during this month?

(d) What is the chance that the student collects a total of at most $225

during this month?

(e) How many Sundays will she have to deliver newspapers for the

expected value of her total collections to be $1000?

5.1.10. Weight of Chips. A snack food company claims there are 16 ounces

of chips in a bag of their product. Actually the contents vary according to

the normal distribution with a mean of 16.05 ounces and a standard deviation

of .1 ounce.

(a) What is the chance that a particular bag of chips contains less than

15.9 ounces?

(b) What is the chance that a case of these chips (a case contains 12 bags)

will have an average bag content of less than 15.9 ounces?

(c) If each of two customers purchase a bag of these chips, what is the

chance that one customer will get 1 ounce more chips than the other

customer?

5.1.11. Average Temperatures. Based on historical records since 1974, as

obtained from Intellicast (2016), the average high temperature for September
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in Columbus, Ohio has been 77 degrees Fahrenheit. In September 2015 the

average high temperature in Columbus was 80.2� Fahrenheit, which is 3.2�

above the historical average. What is the probability that the average for the

30 days in September 2015 would be 3.2� above normal if daily high

temperatures in September in Columbus vary according to the normal distri-

bution with the historical average high temperature and a standard deviation

of 5� Fahrenheit?

5.1.12. Average Precipitation. The long-term average amount of precipitation

for a particular city during the combined months of May and June is 4 inches.

In 2015 this city received 1.80 inches of precipitation in May and 0.65 inches in

June. From the information provided, can you determine if the combinedMay

and June precipitation in 2015 was unusually low? If so, explain how. If not,

identify any other information you would need.

5.2 Sampling Distributions for Proportions and Counts

Suppose that we are sampling from a Bernoulli population with only two

possible outcomes, one labeled “success” and the other labeled “failure”, and

we are interested in the proportion p of successes in the population. For

example, we might be interested in the proportion of patients who experience

side effects with a particular drug, the proportion of voters who are in favor of

re-electing their senator, the proportion of workers who test positive for drug

use, etc. The setting is basically the same as the one described in Sect. 4.3, but

here we are interested in the proportion of successes, p, rather than just the

number of successes, B. Thus it is natural to use p̂ ¼ B
n
, the proportion of

successes in our sample, as our estimate of p.

Example 5.4. Experimental Drug Consider the setting where four patients

are given an experimental drug to treat an illness. If the chance of
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experiencing side effects with this medication is .5 for each patient and the

patients react to the medication independently, what is the sampling distri-

bution for the proportion of patients who will experience side effects?

If this drug is repeatedly given to samples of size four,1 then the propor-

tion of patients experiencing side effects will always be one of the values 0/4,

1/4, 2/4, 3/4, or 4/4. The set of possible Bernoulli outcomes and the proba-

bility of each outcome will be the same as those listed in Table 4.1. The only

difference here is that instead of keeping track of the total number of successes

B (the last column in Table 4.1) we need to tally the proportion of successes,

B/n. The sampling distribution of the proportion of patients who will experi-

ence side effects is almost identical to the one shown in Table 4.2. The only

difference here is the value of the statistic of interest: the numbers of successes

0, 1, 2, 3, and 4 in the last column of Table 4.2 need to be replaced by the

proportions of successes 0/4, 1/4, 2/4, 3/4, and 4/4, respectively. Table 5.1

shows the sampling distribution for the proportion of patients (out of four)

who will experience serious side effects.

The result of Example 5.4 can easily be generalized to any sample size

n and probability of success p. Since the proportion of successes in a sample is

simply the total number of successes divided by the sample size, the sampling

distribution for the sample proportion can always be obtained from the

appropriate binomial distribution for the number of successes B.

Table 5.1 Sampling distribution for p̂ ¼ B
n
when n ¼ 4 and p ¼ 1/2

Value of p̂ ¼ B=n 0 .25 .5 .75 1

Probability 1
16

1
4

3
8

1
4

1
16

1We have made the sample size very small here to simplify the calculations, but small sample
sizes are often typical in clinical trials of treatments for rare illnesses.
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Theorem 5.4 The sampling distribution of the proportion of successes,

p̂ ¼ B=n, in n independent Bernoulli trials with common probability of

success p is given by

P p̂ ¼ b
n

� �
¼ n!

b! n� bð Þ! p
b 1� pð Þn�b, for b ¼ 0, 1, 2, . . . , n:

Notice that the sampling distribution of p̂ in Theorem 5.4 is equivalent

to the B(n, p) binomial distribution discussed in Sect. 4.3. That is,

P
�
p̂ ¼ b=n

� ¼ P B ¼ bð Þ, for b ¼ 0, 1, . . ., n. If we take a moment to stop and

think about what this actually says, the result makes sense. The only way the

proportion of successes can be b/n is if the number of successes is equal to b, so

we are just describing the same event in two different ways. Since the events

are the same, the probabilities must be the same.

Example 5.5. Effect of Increasing Sample Size What happens to the distri-

bution of p̂ ¼ B=n as the number of patients increases and the probability of

experiencing side effects remains fixed at p ¼ 0.5? To answer this question we

use the R function dbinomð Þ to examine the exact sampling distribution of B/n

for n ¼ 10, 25, 50, and 100. Dotplots displaying these sampling distributions

are shown in Figs. 5.2, 5.3, 5.4, and 5.5, respectively. The following R code

generates the plot shown in Fig. 5.2. The other three plots can be obtained by

simply changing the value of n on the first line.

> n <- 10
> prob_vals <- dbinom(x = 0:n, size = n, prob = 0.5)
> plot((0:n)/n,

prob_vals, 
main = paste0("Distribution of B/", n),
xlab = paste0("B/",n),
ylab = "Probability")
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The smooth bell-shaped pattern that emerges is common for many sam-

pling distributions and it reminds us of the normal distributions discussed in

Sect. 4.7. In Sect. 3 we will use this bell-shaped pattern to develop normal

approximations for a number of sampling distributions. These plots also

show the same behavior we saw for sample averages for samples from a

normal population: Increasing the sample size decreases the variability. Here

Fig. 5.2 Exact sampling distribution of B/10 when p ¼ .5 and n ¼ 10
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Fig. 5.3 Exact sampling distribution of B/25 when p ¼ .5 and n ¼ 25
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you can see that as n increases from 10 to 100, the values of B
n cluster more

closely around the population mean of 0.5.

5.2.1 Comparing Two Proportions

Suppose we are interested in comparing two population proportions. For

example, on December 19, 1998 the United States House of Representatives

Fig. 5.5 Exact sampling distribution of B/100 when p ¼ .5 and n ¼ 100
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Fig. 5.4 Exact sampling distribution of B/50 when p ¼ .5 and n ¼ 50
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voted to impeach President William Jefferson Clinton. If we wanted to deter-

mine whether Republicans and Democrats differed on this controversial and

politically charged issue, we could have collected two separate random

samples, one from Republicans and one from Democrats, and compared the

sample proportions p̂R and p̂D of individuals in the separate samples who

supported the impeachment decision. If we were to repeatedly take such

samples (many news organizations at the time were conducting these surveys

on a daily basis), what is the sampling distribution of the difference p̂R � p̂D
between the two independent sample proportions?

Suppose we sample m Republicans and n Democrats. Using Theorem 5.4,

we know that the sampling distribution of BR ¼ mp̂R is B(m, pR) and the

sampling distribution of BD ¼ np̂D is B(n, pD), where pR and pD are the

proportions of all Republicans and Democrats, respectively, who supported

the impeachment decision. Thus, the exact form of the sampling distribution

of the difference p̂R � p̂D can be obtained by using the two separate binomial

distributions. The possible values of p̂R � p̂D range from 0
m � n

n ¼ �1 to
m
m � 0

n ¼ 1 and the computations involved in calculating these probabilities

are tedious. We will not get into the specific details here. Instead we simply

point out the fact that for most practical settings the sampling distribution of

p̂R � p̂D also follows the nice bell-shaped pattern we observed in Figs. 5.2, 5.3,

5.4, and 5.5 and then develop an approximation to this sampling distribution

later in Sect. 3. Even though computation of the exact probabilities for the

values of p̂R � p̂D is tedious, it is easy to obtain the center and spread of the

sampling distribution of p̂R � p̂D using properties of expectations

and variances from Sect. 4.6. The expected value of p̂R � p̂D is

E
�
p̂R � p̂D

� ¼ pR � pD. Since the two samples are independent, it follows

that the variance of p̂R � p̂D is given by

Var
�
p̂R � p̂D

� ¼ pR 1� pR
� �
m

þ pD 1� pD
� �

n
:
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In general, for independent random samples of sizes m and n from

Bernoulli(p1) and Bernoulli(p2) populations, respectively, the center of the

sampling distribution of the difference in sample proportions p̂1 � p̂2 is

p1 � p2 and the variance of the sampling distribution of p̂1 � p̂2 is given by

Var
�
p̂1 � p̂2

� ¼ p1 1� p1
� �
m

þ p2 1� p2
� �

n
. Once again, the exact form of this

sampling distribution can be obtained by using the B(m, p1) and B(n, p2)

binomial distributions, but the calculations are quite tedious. In Sects. 3 and

4 we will examine methods for approximating the sampling distributions for

a sample proportion and for the difference between two independent sample

proportions. Figure 5.6 illustrates the exact sampling distribution of p̂1 � p̂2
when m ¼ 10, p1 ¼ . 4, n ¼ 12, and p2 ¼ . 8. Notice that the distribution is

centered at .4 � . 8 ¼ � . 4 and the overall shape is approximately normal.

5.2.2 Comparing Several Proportions

Consider sampling from a population where each member of the population

belongs to one and only one of k distinct categories. (Basically we are

Fig. 5.6 Exact sampling distribution of p̂1 � p̂2 when m ¼ 10, p1 ¼ . 4,
n ¼ 12, and p2 ¼ . 8
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extending the Bernoulli population, which has only two categories, to a

population that has k distinct categories.) For example, we might be interested

in the hair color of a randomly selected person, the model of an observed

automobile, the categorized weight (light, medium, or heavy) of an object, etc.

What will be the form of the sampling distribution for sample proportions of

such categorical data?

Example 5.6. M & M Colors Mars, Inc. claims that the color ratio in plain

M&M’s is 30% brown, 20% yellow, 20% red, 10% orange, 10% green, and 10%

blue. If 10 M&M’s are randomly selected from a large bag of plain M&M’s,

what is the probability of getting 3 brown, 2 yellow, 2 red, 1 orange, 1 green,

and 1 blue M&M’s, corresponding exactly to the proportions of these colors in

the overall population of M&M’s?

We extend the logic that we used to compute binomial probabilities in

Sect. 4.3 to categorical populations with more than two categories. Since this is

a large bag of M&M’s and we are selecting them at random, it is reasonable to

assume that the color of any M&M chosen will be (at last approximately)

independent of the color of any other chosen M&M. Using the multiplication

rule for independent events and a counting formula, we find that the proba-

bility of selecting a sample of 3 brown, 2 yellow, 2 red, 1 orange, 1 green and

1 blue M&M’s is

P Br ¼ 3; Y ¼ 2; R ¼ 2; O ¼ 1; G ¼ 1; Bl ¼ 1ð Þ

¼ 10!
3!2!2!1!1!1!

:33:22:22:11:11:11 ¼ :0065:

We can also calculate this probability in R using the dmultinomð Þ function as

follows.

> dmultinom(x = c(3,2,2,1,1,1), prob = c(0.3,0.2,0.2,0.1,0.1,0.1))

[1] 0.00653184
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The product of the individual probabilities, :33:22:22:11:11:11, represents

the probability that any particular selection sequence will have the desired

color specification. The coefficient, 10!
3!2!2!1!1!1!, in front of the product of the

individual probability is the number of ways we can pick 3 of the

10 M&M’s to be brown, 2 from the remaining 7 M&M’s to be yellow, 2 from

the remaining 5 M&M’s to be red, 1 from the remaining 3 M&M’s to be

orange, 1 from the remaining 2 M&M’s to be green and have the last one

M&M be blue. That is,

10!
3!2!2!1!1!1!

¼ 10
3

� �
7
2

� �
5
2

� �
3
1

� �
2
1

� �
1
1

� �
¼ 151, 200

is the number of arrangements that give us our desired color specification.

As previously noted, the sample outcome forwhichwe have just calculated

the probability is special: it matches the population proportions perfectly.

If you try different values of the argument x in the dmultinomð Þ function in

order to experiment with sample outcomes that are close to but not perfect

matches with the color proportions claimed by Mars Inc. (check it out!), you

will discover that the outcome in Example 5.6 is, indeed, the most likely

outcome. However, as we have seen, even this perfect match is extremely

unlikely to occur. For comparison, an outcome with 3 brown, 2 yellow, 3 red,

0 orange, 1 green, and 1 blue M&M’s has .0044 chance of occurring, and the

probability of getting a sample of 10 M&M’s with none of the “rare” colors

(orange, green, and blue) is about .0065. To put these small probabilities in

perspective, think a bit about just how many different possible outcomes

there are.

5.2.3 Using Ranks and Counts to Compare Two Samples

Suppose we are interested in comparing a random sample ofm values, sayX1,

X2, . . ., Xm, from some continuous population with an independent random

sample of n values, say Y1, Y2, . . ., Yn, from a second continuous population to
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see if the Y’s are generally bigger than, smaller than, or about the same as the

X’s. For example, suppose we are operating an adult education program. In

preparing our course offerings for the program, we have been assuming that

the age distributions for men and women enrolled in adult education are

similar, but we would like to test this assumption. Although we do not know

the actual age distributions, we do know they are not bell-shaped and normal.

Each of the distributions will likely have two peaks, one for adults a few years

out of college and another for retirees, perhaps looking something like the

relative frequency distribution in Fig. 5.7.

Since such a distribution is clearly not normal, we can not use the

sampling distribution for the difference in normal means that we used in

Example 5.3 to test our assumption that the age distributions for men and

women enrolled in adult education are similar. We now describe a technique

for making this comparison that does not require the inappropriate assump-

tion of normality.

We take independent random samples of m ¼ 10 women and n ¼ 11 men

enrolled in our program. We rank all 21 of these individuals in order of age

from youngest to oldest, using a labelX for the women and Y for the men. Our

labeled list of ranks might look like this:

XYXXXYXXYXXXYYYYXYYYY:

Fig. 5.7 Possible age distribution for individuals enrolled in an adult
education program
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As we look at the sequence we notice that most of the Y’s are larger than

most of the X’s. But how can we quantitatively measure or describe this

outcome? One way to compare the relative locations of the X’s and the Y’s

is to compare the average of the X ranks (ordered placements) with the

average of the Y ranks (ordered placements). Doing so with the sequence of

observed X’s and Y’s above, we find that the average of the X ranks,

(1 + 3 + 4 + 5 + 7 + 8 + 10 + 11 + 12 + 17)/10 ¼ 7.8, is much smaller than

the average of the Y ranks, (2 + 6 + 9 + 13 + 14 + 15 + 16 + 18 + 19 + 20 + 21)/11

� 13.9. The difference (average rank for men) – (average rank for women) is

13.9 – 7.8 ¼ 6.1, which clearly indicates that the men tend to be older.

Another way to compare the X and Y samples is to pair each of the

10 women with each of the 11 men, giving us a total of mn ¼ 110 pairs. For

each pair, we count 1 if the woman is younger and 0 if the man is younger.

Our comparison statistic is then the number of female/male pairs out of

110 for which the woman is younger. Obtaining these counts is tedious, but

statistical software can do it easily. For example, the R function wilcox:testð Þ
will quickly tell us that the woman is older in 23 of the 110 pairs for the rank

sequence above. This comparison also seems to indicate that the men and

women have different age distributions, with the men tending to be older.

Thus, we have identified two statistics that can be used to compare the X’s

and the Y’s even when the populations are not bell-shaped and normal:

W ¼ average of the Y ranks� average of the X ranks

and

U ¼ the number of Xi,Yj
� �

pairs for which Xi < Yj, i ¼ 1, . . . ,m and

j ¼ 1, . . . , n:

For our samples of 10 women and 11 men, we have W ¼ 6.1 and U ¼ 87.

Note that the R function wilcox:testð Þ reports the number of pairs for

which the X value is larger than the Y value, which we will call U0, rather than
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the number of pairs for which the X value is smaller than the Y value. Since we

know that there are a total of mn pairs, we can use U ¼ mn � U0 to determine

the number of pairs for which Xi < Yj. We found that the woman is older than

the man in 23 of the 110 pairs above; equivalently the man is older than the

woman in 110 � 23 ¼ 87 of the pairs.

But simply obtaining numerical values for these statistics is not sufficient.

What we need to know is whether or not outcomes like W ¼ 6.1 and U ¼ 87

are typical for random samples of 10 women and 11 men from identical

populations, or do they instead indicate that we should question our basic

assumption that men and women participants in adult education have about

the same age distribution? To reach an informed conclusion, we need to learn

more about the sampling distributions of W and U.

What are the sampling distributions for the statistics W and U if, in fact,

the X’s and Y’s are actually coming from a common age population? If that

were the case we would expect the X’s and Y’s to be “evenly mixed”, since

then every one of the (m + n)! possible ordered arrangements of themX’s and

n Y’s is equally likely to occur. Using this fact and the fact that there are

actually only mþnð Þ!
m!n! different possible arrangements of the X’s and Y’s, we can

use straightforward enumeration to find the sampling distributions for these

two statistics.

We illustrate how to obtain these sampling distributions with a small-scale

example where it is easier to follow the details of the calculations.

Example 5.7. Sampling Distributions for W and U Suppose that m ¼ 3 and

n¼ 2. Then there are 5!
3!2! ¼ 10possible ordered arrangements of theX’s and Y’s

and each one has the same chance 1
10

� �
of occurring when the X’s and Y’s have

the same distribution. These ten ordered arrangements, associated X and

Y ranks, common probability for each arrangement, and the corresponding

values of W and U are shown in Table 5.2.
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Thus, the sampling distributions of W and U for m ¼ 3 and n ¼ 2 are

given by:

P W ¼ �2:5ð Þ ¼ P W ¼ 2:5ð Þ ¼ P W ¼ �1
2
3

� �
¼ P W ¼ 1

2
3

� �
¼ 0:1

P W ¼ �5
6

� �
¼ P W ¼ 5

6

� �
¼ P W ¼ 0ð Þ ¼ 0:2,

and

P U ¼ 0ð Þ ¼ P U ¼ 6ð Þ ¼ P U ¼ 1ð Þ ¼ P U ¼ 5ð Þ ¼ 0:1

P U ¼ 2ð Þ ¼ P U ¼ 3ð Þ ¼ P U ¼ 4ð Þ ¼ 0:2,

respectively. Notice that the sampling distribution of W is symmetric about

0 and the sampling distribution of U is symmetric about 3.

For our samples of m ¼ 10 women and n ¼ 11 men, a table like Table 5.2

would be huge—in fact it would have 21!
10!11! ¼ 352; 716 rows! However, using a

simulation method that we will develop in Sect. 4 (or the R functions pwilcox

ð Þ and qwilcoxð ÞÞ we can get a very good idea of what the sampling

distributions of W and U look like in this case with m ¼ 10 and n ¼ 11. The

Table 5.2 Possible ordered arrangements and values of W and U for
m ¼ 3 and n ¼ 2

Arrangement Y Ranks X Ranks Probability Value of W Value of U

YYXXX 1,2 3, 4, 5 0.1 -2 ½ 0
YXYXX 1,3 2, 4, 5 0.1 �1 ⅔ 1
YXXYX 1,4 2, 3, 5 0.1 �5/6 2
YXXXY 1,5 2, 3, 4 0.1 0 3
XYYXX 2,3 1, 4, 5 0.1 �5/6 2
XYXYX 2,4 1, 3, 5 0.1 0 3
XYXXY 2,5 1, 3, 4 0.1 5/6 4
XXYYX 3,4 1, 2, 5 0.1 5/6 4
XXYXY 3,5 1, 2, 4 0.1 1 ⅔ 5
XXXYY 4,5 1, 2, 3 0.1 2 ½ 6
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histograms in Fig. 5.8 show the sampling distributions for W and U in this

setting.

It is clear from these sampling distribution histograms that our observed

samples with W ¼ 6.1 and U ¼ 87 would be very unusual if women and men

actually had identical age distributions. In fact, if the ages were equally

distributed the chance of a sample this unusual is roughly 0.012. We can

verify this using the R function pwilcoxð Þ as follows, keeping in mind that

we need to specify U0 ¼ 23 instead of U ¼ 87.

Fig. 5.8 Sampling distributions of W and U for samples of m ¼ 10 X’s
(women) and n ¼ 11 Y’s (men)
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> pwilcox(q = 23, m = 10, n = 11, lower.tail = TRUE)

[1] 0.01207771

Thus, we conclude that it is very likely that the age distributions for men and

women in adult education are, indeed, different.

Section 5.2 Practice Exercises

5.2.1. Sampling Distribution of p̂ . Obtain the sampling distribution of p̂ ¼ B
n

by listing all the possible values of the sample proportion and calculating the

appropriate probabilities for each of the following settings.

(a) n ¼ 5, p ¼ .5.

(b) n ¼ 5, p ¼ .9.

(c) n ¼ 5, p ¼ .1.

(d) Discuss the relationship between the distributions in parts (b) and (c).

5.2.2. Sampling Distribution of p̂ . Obtain the sampling distribution of p̂ ¼ B
n

by listing all the possible values of the sample proportion and calculating the

appropriate probabilities for each of the following settings.

(a) n ¼ 8, p ¼ .5.

(b) n ¼ 8, p ¼ .75.

(c) n ¼ 8, p ¼ .25.

(d) Discuss the relationship between the distributions in parts (b) and (c).

5.2.3. Values of p̂1 � p̂2. List all possible values of p̂1 � p̂2 when 10 p̂1 � B

(10, .5) and 5 p̂2 � B(5, .5).

5.2.4. Sampling Distributions of U andW.Obtain the sampling distributions of

the two statistics U and W when m ¼ n ¼ 3.

5.2.4. Sampling Distributions of U andW.Obtain the sampling distributions of

the two statistics U and W when m ¼ 4 and n ¼ 2.
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5.2.5. Sun around the Earth or Earth around the Sun? National Public Radio

(2014) reported on a number of results from a survey conducted by the

National Science Foundation in the United States in 2012. One of the questions

asked in the survey was “Does the earth revolve around the sun, or does the

sun revolve around the earth?”. Twenty six percent of the respondents said

that the sun revolves around the earth! Suppose you randomly select

60 individuals and ask them this question. If the results of the National

Science Foundation survey are applicable:

(a) What is the probability that exactly 1/3 of your respondents will say

that the sun revolves around the earth?

(b) What is the probability that at least 1/3 of your respondents will say

that the sun revolves around the earth?

(c) What is the probability that at most 1/3 of your respondents will say

that the sun revolves around the earth?

(d) What is the probability that more than 1/3 of your respondents will

say that the sun revolves around the earth?

(e) What is the probability that less than 1/3 of your respondents will say

that the sun revolves around the earth?

(f) How many of the respondents would you expect to say that the sun

revolves around the earth?

5.2.6. Moving Aging Parents in to Live with You—Mom or Dad? In a national

survey of 1118 individuals aged 40 and older with both living parents,

Visiting Angels (2013), one of the largest in-home senior care companies in

the United States, asked respondents the following question: “If you had to

choose only one of your aging parents to move in and live with you, would

you choose your mom or your dad? 745 of the respondents said they would

choose mom over dad.
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Suppose you randomly select 60 individuals aged 40 and older with both

living parents and ask them this question. If the results of the Visiting Angels

survey are applicable:

(a) How many of your interviewees would you expect to choose mom

over dad?

(b) What is the probability that exactly 2/3 of your interviewees would

choose mom over dad?

(c) What is the probability that more than 2/3 your interviewees would

choose mom over dad?

(d) What is the probability that at most 2/3 of your interviewees would

choose dad over mom?

(e) Explain why the probabilities in (a), (b), and (c) do not sum to one.

5.2.7. Coin Tosses.When tossing a balanced coin ten times, what is the chance

that exactly 50% of the outcomes will have heads facing up?

5.2.8. Rolling a Fair Die.When rolling a balanced six-sided die 12 times, what

is the chance that more than 40% of the rolls will result in even numbers?

5.2.9. Multiple Choice Exam. An exam contains 25 multiple choice questions

with 5 possible responses for each question. Assume that a student did not

have time to study and is simply guessing at the correct answer for each

question.

(a) What percentage of the questions would you expect the student to

answer correctly?

(b) What is the standard deviation of the percentage of questions the

student will answer correctly?

(c) Repeat parts (a) and (b) for a student who knows the correct answers

for 13 questions and must simply guess for the remaining

12 questions.
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5.2.10. University Seating Policy. Suppose that 40% of the women at a univer-

sity are supportive of a new seating policy in the dining halls, but only 25% of

the men are supportive of the policy. If we survey 20 men and 20 women at

random, where would you expect the sampling distribution of the difference

in the sample proportions, p̂women � p̂men, to be centered? Identify the variance

of the difference p̂women � p̂men.

5.2.11. Peanut M&M’s. According to Mars, Inc., the color ratio for peanut

M&M’s is 20% brown, 20% yellow, 20% red, 10% orange, 10% green, and 20%

blue. If six peanut M&M’s are selected randomly from a large bag of peanut

M&Ms., what is the chance that 1/3 are brown, 1/3 are yellow, and 1/3 are

red?

5.2.12. Class Sizes. Suppose there are roughly the same numbers of students

in each of the four classes (Freshman, Sophomore, Junior, and Senior) at a

small university. If a random sample of 12 students is selected from this

university, what is the chance of getting exactly 3 students from each class?

Do you think this is the most likely configuration of students in the sample?

Explain.

5.2.13. Heart Rates. Suppose we are interested in comparing heart rates for

athletes and non-athletes at your school. If we select 15 athletes and

15 non-athletes at random, how many pairs of individuals would we have

to compare to determine the number of athletes that have lower heart rates

than non-athletes in these two samples?

5.2.14. Do Children Know Where Household Firearms Are Stored? In a survey of

parents and children in households with firearms, Baxley and Miller (2006)

collected information from 201 such households in rural Alabama. The

parents in 60 of those households reported that their children did not know

the storage place for the firearms. Suppose you randomly select 30 additional
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households with firearms in rural Alabama and ask them whether their

children know the storage place for the firearms. If the results of the Baxley-

Miller survey are applicable:

(a) In how many of the 30 households in your survey would you expect

that the parents indicate that their children know the storage place for

the firearms?

(b) What is the probability that the parents say their children know the

storage place for the firearms in more that ten of your 30 surveyed

households?

(c) What is the probability that the parents say their children know the

storage place for the firearms in less than five of your 30 surveyed

households?

5.2.15. What Parents Don’t Know! Consider the survey of parents and chil-

dren in households with firearms discussed in Exercise 5.2.14. Baxley and

Miller followed up their initial survey with a second set of questions for the

children without their parents being present. For those 60 households where

the parents reported that their children did not know the storage place of the

firearms, Baxley and Miller found that children from 23 of these households

did, in fact, know where the firearms were stored!

(a) What percentage of the total 201 households surveyed by Baxley and

Miller were such that the parents were not aware that their children

knew of the storage place for their firearms?

As in Exercise 5.2.14, suppose you randomly select 30 additional

households with firearms in rural Alabama.

(b) In how many of the 30 households in your survey would you expect

that the parents were not aware that their children knew the storage

place for the firearms?
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(c) What is the probability that there were no households in your survey

where the parents were not aware that their children knew the stor-

age pale for the firearms?

(d) Would it be surprising if you found that ten of the 30 households in

your survey were such that the parents were not aware that their

children knew the storage plae for the firearms? Justify your answer.

5.2.16. Does God Reward Good Athletes? USA Today (2013) reported on a

number of results from a survey conducted by the Public Religion Research

Institute in the United States in 2013. One of the questions asked in the survey

was “True or False: God rewards athletes who have faith with good health

and success.” Fifty three percent of the respondents answered “True”,

indicating that they believe that God does reward athletes who have faith

with good health and success. Suppose you randomly select 30 individuals

and ask them the same question. If the results of the Public Religion Research

Institute’s Survey are applicable:

(a) Howmany of your respondents would you expect to answer “True”?

(b) What is the probability that more than 20 of your respondents answer

“True”?

(c) What is the probability that less than 15 of your respondents answer

“True”?

(d) What is the probability that exactly 15 of your respondents answer

“True”?

(e) What is the probability that between 12 and 18, inclusive, of your

respondents answer “True”?

5.2.17. Multinomial Distribution. Consider the general setting where we have

a population with k distinct categories C1, . . . ,Ck, and let pi denote the

proportion of the population that belongs to category Ci, for i ¼ 1, . . ., k.

(Note that
Xk
i¼1

pi ¼ 1.) Suppose we collect a random sample of size n from this
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population and let Bi denote the number of sample items that belong to

category Ci, for i ¼ 1, . . ., k. (Note that
Xk
i¼1

Bi ¼ n.) (You may assume that

the population is large enough so that (p1, . . . , pk) remain constant throughout

the sampling process.) Using counting techniques similar to those used in the

discussion in Example 5.6, find a general expression for the joint sampling

distribution of (B1, . . . ,Bk).

5.3 Approximating Sampling Distributions

Exact sampling distributions for a variety of statistics were presented in

Sects. 1 and 2. While the sampling distributions are absolutely essential for

making inferences based on those statistics, the computations involved in

obtaining exact probabilities for the discrete distributions in Sect. 2 can

become tedious and time consuming as the sample size(s) increases. Even

using R as discussed in the previous sections, there will always be a point

where exact calculations for these distributions are just not practical. This is

precisely the case in the following example.

Example 5.8. Binomial Distribution for a Large Number of Bernoulli

Trials Suppose we want to compute the probability that the proportion of

successes is exactly equal to .5 when sampling 10,000 observations from a

Bernoulli(p ¼ .5) population. In other words, we want the probability of

getting exactly 5000 successes in 10,000 such Bernoulli trials. As we did in

Example 5.5, we can use the R function dbinomð Þ to compute this probability.

Behind the scenes, however, the function is not calculating the value in

Theorem 5.4 directly. In fact, some other statistical software programs will

produce an error rather than the number. To see why, consider the first term

of Theorem 5.4, known as “n choose b”. We can try to compute this with
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n ¼ 10,000 and b ¼ 5000 in R using the arguments n and k in the chooseð Þ
function as follows.

> choose(n = 10000, k = 5000)

[1] Inf

But certainly this probability can’t be infinite! The point of this example is

not to illustrate a limitation of the R functions, but rather to increase our

awareness of what we are asking the software to do. Computing the quantity
10000!

5000!5000! is difficult even for the most sophisticated technology. Note that,

because the dbinomð Þ is such a commonly used distribution, the authors

have implemented a clever workaround to avoid needing to calculate these

factorials. (The details, which you can read by running ?dbinom, are well

beyond the scope of this book.) However, for general distributions that we

may encounter, there is no guarantee that such clever workarounds will

always exist and will have already been implemented.

We are thus faced with a difficult situation. We need sampling

distributions to carry out proper statistical inferences, but it is problematic

for even the latest available technology to do all of the exact computations that

are often required. What can we do in such situations? The answer is one of

the most surprising, yet most important results, in the entire field of statistics.

Students have been heard to say that this result is shocking, amazing, counter

intuitive, impossible, etc. No matter what your initial reaction is, think about

the upcoming result very carefully because it is the cornerstone of many

statistical inference procedures.

Looking closely at the sampling distributions presented in Sects. 1 and 2,

we notice that every one of the statistics considered there can be viewed as a

sum or an average of individual pieces of information. Wemight be averaging

0’s and 1’s, adding counts, averaging normal observations, or adding ranks,

but in each case we are adding or averaging. When a statistic can be viewed as

a sum or average of many individual pieces of information, the sampling
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distribution of this statistic will often be approximated well by an appropriate

normal distribution. Yes, it is true!! No matter what distribution the individ-

ual pieces of information follow -- different pieces can even follow different

distributions -- the combination of this information through adding or aver-

aging will generally lead to a sampling distribution that can be approximated

well by an appropriate bell-shaped normal distribution!

Formal statements of these types of results are collectively known as

Central Limit Theorems. Theorem 5.5 details a version that applies in the setting

where the n pieces of information, X1, X2, . . ., Xn, are independent and have

identical distributions. In Exercise 5.3.1, you are asked to consider

components of a version of the Central Limit Theorem for the setting where

the pieces of information, Xi, are independent, but could have different

distributions. There are also Central Limit Theorems that are appropriate

even when the pieces of information are not independent, but such settings

are beyond the scope of this text.

Theorem 5.5 A Central Limit Theorem If X1, X2, . . ., Xn are a random

sample from a population with mean μ and standard deviation σ, then as

the sample size n increases the sampling distributions of

Zsum ¼
Pn
i¼1

Xi � nμ

σ
ffiffiffi
n

p and Zaverage ¼
�X � μ

σ=
ffiffiffi
n

p

can both be well approximated by the standard normal distribution with

mean 0 and standard deviation 1.

Before applying Theorem 5.5 to some of the count and average statistics

presented earlier in this chapter, a few general remarks are in order. Central

Limit Theorems are mathematical results that deal with sampling

distributions of statistics as the sample size, n, approaches infinity. The
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accuracy of the approximation will differ from one application to another.

While we will provide some general rules of thumb regarding the use of

Central Limit Theorems, you must always remain aware that these are only

approximations to the exact distributions. As we will see, in many cases the

approximations are very, very good, but there are cases, especially for small

and moderate sample sizes (values of n), where the approximations are

inappropriate or can be improved upon by making some adjustments.

It is also important to remember that you do not need the Central Limit

Theorem to tell you about the mean and standard deviation of the average of

any sample of size n. An argument exactly like the one we used for a normal

population in Sect. 1 shows that for a random sample X1, X2, . . ., Xn from any

population with mean μ and standard deviation σ, the sample average �X has

mean μ and standard deviation σffiffi
n

p . So even without the Central Limit Theo-

rem we know that as the sample size increases the variability in the sampling

distribution of �Xwill decrease. In other words, the larger the sample size, the

more concentrated the distribution will be around its center, μ.

What the Central Limit Theorem adds to this discussion is the fact that the

distribution of �X also becomes approximately normal as the sample size

increases. Theorem 5.5 tells us how to use the standardized statistics Zsum

and Zaverage and the standard normal distribution to obtain approximate

detailed information about the sampling distributions of
Xn
i¼1

Xi and �X.

In Exercise 5.3.2 you are asked to show that the center and spread of the

sampling distribution for the sum of the observations in a random sample

depend on the sample size. The center of the sampling distribution for the

sum will not be the same for all sample sizes, unless μ ¼ 0. As we sum

different amounts of information, the center of the sampling distribution

will typically depend on how many pieces of information we are including

in our sum.
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Now let’s apply the Central Limit Theorem to the settings we have

previously discussed. Hopefully, as you see more and more such applications

you will begin to appreciate the magnitude of this result. The easiest applica-

tion is to the sample average presented in Sect. 1. There we assumed that the

samples were from normal populations. Now, we remove the normal

assumption and stipulate that the sample sizes are large. The implications of

this change are relatively straightforward. The computations remain the

same, but the results are now only approximately correct.

The application of Theorem 5.5 to binomial counts B requires some addi-

tional attention. Recall that B is the total number of successes in n independent

Bernoulli(p) trials. Since we have n independent pieces of information and B is

a sum, the only remaining issue is identifying μ and σ in Theorem 5.5. Since

the theorem is written in terms of the individual pieces of information, we

need to recall that the mean and variance of the individual Bernoulli(p)

random variables are μ ¼ p and σ2 ¼ p(1 � p), respectively. Thus, Theorem

5.5 implies that the standardized count

Zsum ¼ B� npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np 1� pð Þp is approximately N 0; 1ð Þ:

Note that this is equivalent to saying that B is approximately normal with

mean np and variance np(1-p) for large n.

Example 5.9. Normal Approximation for Binomial Counts Consider the

sampling distribution of the number of successes in n ¼ 30 independent

Bernoulli(p ¼ .6) trials. In order to check the accuracy of the Central Limit

Theorem in this situation, we compute the probability of getting at most

25 successes using both the exact sampling distribution and the normal

approximation.

Let B denote the number of successes in the 30 Bernoulli trials. We know

that B� B(n¼ 30, p¼ .6), so that the probability of getting at most 25 successes

is exactly equal to
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P B 	 25ð Þ ¼
X25
i¼1

P B ¼ ið Þ ¼
X25
i¼1

30
i

� �
:6ð Þi 1� :6ð Þ30�i ¼ :9985:

Using the normal approximation for this probability, we find

P B 	 25ð Þ ¼ P Zsum 	 25� 30 :6ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30 :6ð Þ 1� :6ð Þp

 !
¼ P Zsum 	 2:6087ð Þ � Φ 2:6087ð Þ

¼ :9955:

Since the difference in these two probabilities, namely, .9985 � .9955 ¼ . 003,

is close to zero, the normal approximation does a good job in this situation.

Finally, we need to decide when it is reasonable to use the normal approx-

imation to the sampling distribution of B. In short, the answer depends on p. If

p ¼ .5, the sampling distribution of B is symmetric and the approach to

normality is relatively fast. If p is close to 0 or 1, however, the sampling

distribution of B is skewed and the approach to normality is slower. A general

rule of thumb is that if np and n(1 � p) are both at least 10 then it is reasonable

to use the normal approximation. As wewill see in Example 5.10, the accuracy

of the normal approximation varies from application to application.

Normal Approximation for Binomial Counts If B is the number of

successes in n independent Bernoulli(p) trials and n is reasonably large

(i.e., np � 10 and n(1 � p) � 10), then the sampling distribution of B is

approximately N np;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np 1� pð Þp� �

. Thus, under these conditions, the

probability that B is in the interval [a, b], where a and b are integers

such that 0 	 a < b 	 n, is approximately

P a 	 B 	 bð Þ ¼ P
a� npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np 1� pð Þp 	 Zsum 	 b� npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

np 1� pð Þp
 !

� Φ
b� npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np 1� pð Þp

 !
�Φ

a� npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np 1� pð Þp

 !
:
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Figure 5.9 provides a graphical illustration of the normal approximation

for the sampling distribution of binomial counts. The bars of the histogram

represent the exact binomial probabilities. The shaded area under the normal

curve between a and b provides an approximation for the probability of

getting at least a but no more than b successes.

Theorem 5.4 specified how the exact sampling distribution for a propor-

tion is directly related to a binomial distribution. Thus, the application of the

Central Limit Theorem to sampling distributions for proportions will be very

similar to the result above. The only major difference is that the sample

proportion, p̂, is an average. Thus, we will apply Theorem 5.5 with μ ¼ p and

σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þp

.

Normal Approximation for Proportions If p̂ is the proportion of

successes in n independent Bernoulli(p) trials and n is reasonably large

(i.e., np � 10 and n(1 � p) � 10), then the sampling distribution of p̂

is approximately N p;
ffiffiffiffiffiffiffiffiffiffiffi
p 1�pð Þ

n

q� �
. The probability that p̂ is in the interval

[a/n, b/n], where a and b are integers such that 0 	 a < b 	 n, is

approximately

Fig. 5.9 Graphical illustration of normal approximation for binomial
probabilities

a b
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a
n
	 p̂ 	 b

n

� �
¼ P

a
n
� pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p 1� pð Þ
n

r 	 Zaverage 	
b
n
� pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p 1� pð Þ
n

r
0
BB@

1
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� Φ

b
n
� pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p 1� pð Þ
n

r
0
BB@

1
CCA�Φ

a
n
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n

r
0
BB@

1
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Example 5.10. Normal Approximation for Binomial Counts and

Percentages Let’s compare the normal approximation for binomial counts

with the normal approximation for proportions and the exact binomial prob-

ability for a particular event of interest. Consider a B(40, 0.3) random variable

for which we want to find the probability of getting at most 30% successes.

Since 30% of 40 equals 12, this problem can be rewritten as P(B 	 12), where

B � B(40, 0.3). Using the pbinomð Þ function in R, we find that P

(B 	 12) ¼ . 5772.

> pbinom(q = 12, size = 40, prob = 0.3)

[1] 0.5771809

Figure 5.10 shows the normal approximation for P(B 	 12) based on

counts. Since the shaded area under the N 12;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
40 :3ð Þ 1� :3ð Þp� �

curve to the

left of 12 accounts for half of the total area under this normal distribution, we

have P(B 	 12) � 0.5. The difference between the exact probability and the

approximate probability is 0.5772 � 0.5 ¼ 0.0772. Even though our rule of

thumb is satisfied, since 40(.3) ¼ 12 � 10 and 40(.7) ¼ 28 � 10, this approxi-

mation is not as accurate as the one in Example 5.9. The reason for this loss of

accuracy is the slight skewness in the shape of the exact B(40, 0.3) distribution,

since p ¼ 0.3 is further from 0.5. Although the normal distribution does not fit

quite as well in this situation, it still provides a reasonably good

approximation.
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To apply the normal approximation for proportions we need to use the

N :3;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:3ð Þ 1�:3ð Þ

40

q� �
distribution to find P

�
p̂ 	 :3

�
. Since half the area under the

N :3;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:3ð Þ 1�:3ð Þ

40

q� �
curve will be to the left of .3, we get the same answer

using the normal approximation for proportions, namely, P
�
p̂ 	 :3

� � 0:5, as

we did when we used the normal approximation for counts. The bottom

line is that it doesn’t matter if you use the approximation for counts or the

approximation for proportions—you will always get the same answer. If

you are more comfortable with one or the other, please take that approach

to solving problems—just be sure to use the mean and standard deviation

that are appropriate for your choice.

Section 5.3 Practice Exercises

5.3.1. Normal Approximations. Suppose X1, . . ., Xn are independent random

variables with means μ1, . . ., μn and standard deviations σ1, . . ., σn, respec-

tively. In most practical applications the sampling distributions for
Xn
i¼1

Xi and

�X will become approximately normal as n increases.

Fig. 5.10 Normal approximation for P(B 	 12) when B ~ B(40,0.3)
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(a) Find the means of the approximate sampling distributions for
Xn
i¼1

Xi

and �X.

(b) Find the standard deviations of the approximate sampling

distributions for
Xn
i¼1

Xi and �X.

(c) Identify the standardized variables Zsum and Zaverage for this setting,

where we are summing or averaging independent but not identically

distributed random variables.

5.3.2. Approximate Sampling Distribution. Rewrite the statement in Theo-

rem 5.5 in terms of an approximate sampling distribution for
Xn
i¼1

Xi and

comment on the center and spread of this approximate sampling distribution.

Does the center of the sampling distribution depend on n? What happens in

the special case where μ ¼ 0?

5.3.3. Unbalanced Coin Tosses. Consider the experiment where you toss an

unbalanced coin with probability .4 for obtaining a head. Calculate the prob-

ability of getting at least 20 heads in 40 tosses using:

(a) the binomial distribution;

(b) the normal approximation;

(c) Comment on the accuracy of the approximation.

5.3.4. Bernoulli Trials. Consider the sampling distribution for the number of

successes in 20 independent Bernoulli trials with p ¼ .1. Calculate the proba-

bility of getting less than 3 successes using:

(a) the binomial distribution;

(b) the normal approximation;

(c) Comment on the accuracy of the approximation.
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5.3.5. Baseball and Beer. Baseball is the American pastime, but what goes with

watching a baseball game? The well-known song says peanuts and cracker-

jack, but how about some beer to wash those snacks down?Wolfe et al. (1998)

conducted a study to see just how much beer and baseball had become

synonymous. Male spectators of drinking age were sampled over a three-

game period—on a Friday night, a Saturday afternoon, and a Monday

night—during the 1993 season at two major ballparks. Wolfe et al. found

that 65 out of 166 sampled spectators in the age group 20–35 had consumed

alcohol immediately prior to entering the ballpark.

(a) What percentage of their interviewees had consumed alcohol imme-

diately prior to entering the ballpark?

Assume that this percentage is applicable to all male spectators at baseball

games. Suppose that you interview your own sample of 75 male baseball

spectators in the age group 20–35 at the next baseball game you attend.

(b) How many of your 75 interviewees would you expect to have con-

sumed alcohol immediately prior to entering the ballpark?

(c) What is the approximate probability that the sample percentage of

your interviewees who had consumed alcohol immediately prior to

entering the ballpark is greater than 50%?

(d) What is the approximate probability that fewer than 20 of your

interviewees had consumed alcohol immediately prior to entering

the ballpark?

(e) Do you think the results obtained by Wolfe et al. remain valid today?

How do you think they might have changed? What about female

spectators at baseball games? Are their alcohol consumption habits

similar to male spectators? How would you support your opinions?

Check it out!

5.3.6. College Alumni Surveys. Past experience indicates that about 40% of all

college alumni who receive a survey will take the time to complete and return
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it. A self-study committee at a small liberal arts college mails a survey to 4000

randomly selected alumni.

(a) What are the mean and standard deviation for the random number of

alumni who complete and return the survey?

(b) Approximate the probability that at least 1650 alumni complete and

return the survey.

5.3.7. Multiple Choice Exams. Your instructor has decided to construct a

250 question multiple choice final exam for the course, with five possible

choices for each question. Suppose that you get so busy that you do not find

time to study for this final exam. As a result, you decide to simply guess

(select one of the five choices in a completely random fashion) on each

question.

(a) What is the sampling distribution for your number of correct

responses on the exam?

(b) What is your expected score on the exam?

(c) Compute the variance and standard deviation for your number of

correct responses.

(d) Is it likely that you will score over 50% on this exam? Justify your

response.

5.3.8. Art and the Color Purple.Wypijewski (1997) reported on the results of a

comprehensive scientific poll of American tastes in art, as commissioned by

Vitaly Komar and Alexander Melamid in conjunction with the National

Institute, a nonprofit offshoot of The Nation magazine. A random sample of

526 females were aked to name their favorite color. Thirty-seven females

indicated that purple was their favorite color.

(a) What percentage of the respondents named purple as their favorite

color?

Suppose you were able to interview a random sample of 125 of the

participants in this study.
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(b) How many of your 125 interviewees would you expect to name

purple as their favorite color?

(c) What is the expected value of the sample proportion of your

interviewees who name purple as their favorite color?

(d) What is the standard deviation of the sample proportion?

(e) What is the approximate probability that more than 10% of your

interviewees name purple as their favorite color?

(f) What is the approximate probability that fewer than 10 of your

interviewees name purple as their favorite color?

(g) What is the exact probability that more than 40 of your interviewees

name purple as their favorite color? Justify your answer.

5.3.9. Crates of Potatoes. The weight of a crate of potatoes averages 1200 pounds

with a standard deviation of 25 pounds. At the end of the day, 20 crates of

potatoes are still sitting in a storage area. Approximate the probability that

more than 25,000 pounds of potatoes are in the storage area. What

assumptions are you making in your calculations?

5.3.10. Grocery Bills. Suppose the average weekly grocery bill for a family of

four is $140 with a standard deviation of $10.

(a) Estimate the amount of money that this family will spend on grocery

bills in 1 year.

(b) Will the standard deviation of the annual grocery expense be larger or

smaller than $10? Explain.

(c) Will the standard deviation of the average weekly grocery expense

for 1 year be larger or smaller than $10? Explain.

(d) Approximate the probability that the average weekly grocery

expense for 1 year is less than $135.

5.3.11. Stress. Suppose 75% of the American people feel more stress this year

than theydid last year. A random sample of 150 individuals is selected.
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(a) What is the approximate probability that 105 or more of the

individuals in the sample feel more stress this year than they did

last year?

(b) What is the approximate probability that 70% or more of the selected

individuals feel more stress this year than they did last year?

5.3.12. Airline Overbookings. An airline would like to fill an airplane with

107 seats. Since some individuals do not show up for their flights (even

though they purchase tickets), the airline typically overbooks flights.

(a) Suppose the airline sells 110 tickets for this flight. If the chance that an

individual passenger will not show up for the flight is .01 (indepen-

dently of all the other passengers), what is the probability that the

plane will not be full when it takes off?

(b) If the airline sells 110 tickets for this flight and the chance that an

individual passenger will not show up for the flight is .03 (indepen-

dently of all the other passengers), what is the probability that the

plane will not be full when it takes off?

5.3.13. Family Vacation Times. A selective program would like to have

250 students participate each week of its summer institute. The director of

the program knows that July 4 is a popular vacation time for families so he

admits 300 students for the week of July 4. If the chance of a student accepting

the offer and attending the institute is .8 (independently of all the other

students), what is the probability that the director will get more participants

than he wants during the week of July 4? Will this probability increase or

decrease if the chance of a student accepting the offer and attending the

institute drops to .7?
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5.4 Simulating Sampling Distributions

In this section we take a different approach to approximating sampling

distributions. Technology has changed the way the world operates and statis-

tical methodology and practice is no exception. The techniques in this section

make heavy use of modern technology, but they are also very intuitive and

easy to understand. The methods we discuss, simulation and bootstrapping/

resampling, represent two of the most important developments in the field of

statistics in the last few decades and their use will only continue to expand

over the years to come.

The ideas are very simple. To understand the features (shape, center,

spread, etc.) of a sampling distribution for a particular statistic, we simply

simulate samples again and again from the appropriate population or a

representative sample, compute the value of the statistic of interest for each

simulated sample, and combine these values to form a simulated sampling

distribution for the statistic. This simulated sampling distribution can then be

used to approximate the shape, center, spread, or other characteristics of

interest, as well as relevant probabilities, for the true sampling distribution

of the statistic.

Figure 5.11 illustrates the first of two common simulation methods that

will be used repeatedly throughout this text. It is applicable whenever we

know everything about the distribution of the population from which we are

sampling or when we are willing to make an assumption about the form of

the underlying population. Our goal is to learn about a sampling distribution

that we cannot explicitly obtain analytically and is very difficult and tedious

to compute directly. We have already used this method twice before in Sect. 2.

To construct Fig. 5.6, samples were repeatedly obtained from B(10, 0.4) and B

(12, 0.8) distributions, the corresponding sample proportions p̂1 and p̂2 were

created, and then the differences p̂1 � p̂2 were formed. Figure 5.8 was created

by repeatedly selecting 10 integers at random from the set of possible ranks

380 5 Sampling Distributions and Approximations



{1, 2,. . ., 21} to assign as ranks for the women, with the remaining 11 ranks

assigned to the men. Exact sampling distributions can be obtained in both

settings, but the calculations involved are very tedious. By repeatedly using

random sampling to obtain different samples from either a known population

or the complete set of possible values, we can obtain reliable approximate

sampling distributions. After computing the statistic of interest (e.g., mean,

median, IQR, sample percentage, difference in rank averages, standard devi-

ation, etc.) for each random sample and aggregating these values, we can use

the techniques from Chap. 1 to display the approximate sampling distribution

for the statistic.

The more repetitive samples we take (i.e., increasing r), the better the

approximation will become. This technique is used in a wide variety of

statistical and practical settings.

Example 5.11. A Classroom Activity to Simulate the Sampling Distribution

for Making Inferences About the Proportions in a Categorical

Population Mars, Inc. claims that the color ratio in plain M&M’s is 30%

Fig. 5.11 Basic idea behind the use of simulation to approximate sampling
distributions

Known Underlying Distribution or Set of Possible Values

Randomization

Sample 1 Sample 2 … Sample r

Computation

Statistic Statistic … Statistic

Aggregation

Approximate Sampling Distribution of Statistic
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brown, 20% yellow, 20% red, 10% orange, 10% green, and 10% blue. Further-

more, the company claims that each large production batch is blended pre-

cisely to the ratios specified above andmixed thoroughly. Suppose we select a

large bag of plain M&M’s from a grocery store shelf and count how many of

each color are in the bag. For illustrative purposes only, we assume there are

400 plain M&M’s in the bag and the color distribution for our bag is given in

Table 5.3. Do you think the observed counts in Table 5.3 are generally in line

with the color distribution stipulated by Mars, Inc. or does there appear to be

some concern with their claim based on this one sample?

If the company’s claim is true then we would expect to get 400(.3) ¼ 120

brown, 400(.2) ¼ 80 each of yellow and red, and 400(.1) ¼ 40 each of orange,

green, and blue M&M’s. These expected counts are also shown in Table 5.3.

Now, the question is what statistic should we use to measure the overall

difference between what we observed and what we expected to observe if the

Mars, Inc. claim is true? A natural choice is known as the Pearson goodness of fit

statistic and is given by

G ¼
X

all categories

observed count� expected countð Þ2
expected count

:

Note that this is just one possible statistic that can be used to compare the

observed counts with the expected counts. Perhaps you might be interested in

averaging the absolute value of the differences or looking at some other

function of the differences. The beauty of this simulation approach is that

you can investigate whichever statistics you think are reasonable! Of course,

Table 5.3 Color distribution for a bag of 400 plain M&M’s

Color Brown Yellow Red Orange Green Blue

Observed count 104 71 93 33 38 61
Expected count 120 80 80 40 40 40
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you should choose wisely, as you would still need to convince others that

your statistic is appropriate for evaluating the color distribution claim.

Table 5.4 shows the calculations necessary to compute G. After finding

G ¼ 17.60833 for our particular bag of plain M&M’s, we still need to have a

way to assess whether or not this observed value of the statistic is in reason-

able agreement with the Mars, Inc. claim. To make this decision, we simulate

the sampling distribution of G by selecting r¼ 100 independent samples, each

of size n ¼ 400, from a multinomial distribution with p1 ¼ .3, p2 ¼ .2, p3 ¼ .2,

p4 ¼ .1, p5 ¼ .1, and p6 ¼ .1, corresponding to the categorical color proportions

claimed by Mars, Inc. We can use the R functions rmultinomð Þ and chisq:testð Þ
to generate samples and to calculate the goodness of fit statistic, respectively.

Using the following code, we generated 100 independent samples of size

400 each, calculated G for each of the samples, and stored the results in the

local variable g_results.

> color_proportions <- c(0.3, 0.2, 0.2, 0.1, 0.1, 0.1)
> n_samples <- 100
> 
> samples <- rmultinom(n = n_samples, size = 400, prob = color_proportions)
> g_results <- numeric(n_samples)
> for(i in 1:n_samples){

g_results[i] <- chisq.test(samples[,i], p=color_proportions)$statistic

}

The 100 simulated values of G are listed in Table 5.5 (from smallest to

largest) and displayed graphically with a histogram in Fig. 5.12. This Figure

Table 5.4 Calculating the Pearson goodness of fit statistic G for our bag of
M & M’s

Color O – E (O � E)2 (O � E)2/E

Brown 104–120 ¼ �16 256 256/120 ¼ 2.1333
Yellow 71–80 ¼ �9 81 81/80 ¼ 1.0125
Red 93–80 ¼ 13 169 169/80 ¼ 2.1125
Orange 33–40 ¼ �7 49 49/40 ¼ 1.225
Green 38–40 ¼ �2 4 4/40 ¼ 0.1
Blue 61–40 ¼ 21 441 441/40 ¼ 11.025

G ¼ 17.60833
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also shows the results of a simulation for 1000 values of G (we use the same

code as above, but change n_samples to be 1000). These histograms provide

approximations for the sampling distribution of G (the approximation is more

accurate, of course, using r ¼ 1000 samples than for using only r ¼ 100) and

can be used to describe the shape, center, and spread in the sampling distri-

bution, as well as compute approximate probabilities for G.

Fig. 5.12 Histograms for simulated sampling distribution for Pearson
goodness of fit statistic G for r ¼ 100 and r ¼ 1000 random samples
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Notice that the value G ¼ 17.60833 that we obtained for our one sample

bag of plain M&M’s is equal to the largest value of G observed in the

100 simulated samples. This is not a coincidence. In fact, to make a point we

picked our counts in Table 5.3 so that they would yield the largest value of

G from our simulation. Now YOU take a sample of 400 pieces from a real bag

of plain M&M’s, count the colors, and compute the value of G for your

sample. (Of course, enjoy the candy, too!) Where is the value of the statistic

G for your sample located in the ordered list in Table 5.5? Where does it

appear on the histogram? Is it somewhere in the middle or is it more toward

one of the tails? What does this tell you about the color distribution claim by

Mars, Inc.? If the value of your test statistic happens to be larger than

17.60833, what does that tell you about the claim?

When sampling from a categorical population with k categories, the

statistic G is often used to compare observed counts with expected counts.

A formal description of the Pearson goodness of fit statistic is provided in

Definition 5.2. Although the simulated sampling distributions in Fig. 5.12

provide reasonable approximations to the exact distribution of G, some

readers may be uncomfortable relying completely on simulation and not

having a mathematical approximation to the sampling distribution of G.

For a large number of sample observations, n, a mathematical approximation

to the sampling distribution of G is provided by the chi-square distribution

with (k � 1) degrees of freedom. (We point out that the simulated sampling

distribution for G given in Fig. 5.12 for r ¼ 1000 random samples looks very

much like the corresponding chi-square distribution with k – 1 ¼ 5 degrees of

freedom.) While the mathematical function for a chi-square distribution is not

of interest to us, percentiles for chi-square distributions can be found using

the pchisqð Þ and qchisqð Þ functions in R with the relevant degrees of freedom

specified.
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Definition 5.2 Consider a categorical population with k distinct

categories C1, . . ., Ck and proportions pi in category Ci, for i ¼ 1, . . ., k.

When collecting a random sample of size n from such a population, the

Pearson goodness of fit statistic G for comparing observed (Bi) and

expected (npi) counts, is given by G ¼
Xk
i¼1

Bi � npi
� �2

npi
. The approximate

(n large) sampling distribution for G is the chi-square distribution with

(k – 1) degrees of freedom.

We will also make use of a second simulation method known as

bootstrapping or resampling. In this setting very little is known about the

distribution of the population. In fact, the only information we have about

the population is contained in a single random sample from it. We use

randomization to resample from this one set of data and assume that these

samples, known as bootstrap2 samples, are representative of what we might

see if we were to sample repeatedly from the whole population, even though

they are all based solely on the single observed random sample. We can

bootstrap to estimate parameters for the population, investigate the overall

shape of the sampling distribution for a statistic, or make inferences about the

population. The size of each bootstrap sample is often taken to be equal to the

size of the single observed sample, so the bootstrap sampling is usually done

with replacement, as will be the case in our examples. Impact of the choice for

how many bootstrap samples to obtain when resampling is explored in the

next example.

2 The term bootstrap originates from an old expression that encouraged individuals to
improve matters by lifting themselves up by their own bootstraps. Real life bootstraps are
not very common now, but the process is similar to the more common concept of rebooting a
computer from a core set of instructions. When all else fails, reboot. In statistical settings,
when the calculations are tedious or the situation is difficult because you cannot remember
the detailed formulas for a distribution, try bootstrapping.
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Example 5.12. Bootstrapping the Age Distribution of U.S. Pennies An

introductory class of 25 students collected 374 United States pennies and

calculated the ages of the pennies by subtracting the minting dates printed

on the pennies from the current year.

The age distribution of the 374 pennies, which can be accessed via the

R dataset pennies_age, is shown in Fig. 5.13 and some descriptive statistics are

provided below.

> summary(pennies_age)

Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
0.000   3.000   6.000   9.053  12.000  65.000

> sd(pennies_age)

[1] 9.439653

> hist(pennies_age,

breaks = 50,
xlab = "Age")

Although the 374 pennies were not randomly selected, we will assume

that they are representative of the age of U.S. pennies currently in circulation.

Not surprisingly, the age distribution is clearly skewed to the right. To

Fig. 5.13 Age distribution of 374 U.S. pennies
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investigate the shape (and other properties) of the sampling distribution of the

average age, �X, for the pennies, we take 1000 individual samples of size

5 each, 1000 individual samples of size 10 each, 1000 individual samples of

size 20 each, and 1000 individual samples of size 40 each from the

374 observed ages, all sampling done, of course, with replacement. For each

of the 4000 samples we compute the average age, yielding 1000 sample

average ages for size 5 samples, 1000 sample average ages for size 10 samples,

1000 sample average ages for size 20 samples, and 1000 sample average ages

for size 40 samples. Figures 5.14, 5.15, 5.16, and 5.17 present the approximate

sampling distributions of the sample average obtained in this manner for

sample sizes 5, 10, 20, and 40, respectively. The R code to generate the plot for

1000 sample averages for size 5 samples, which uses the replicateð Þ and sample

ð Þ functions and specifies a handful of arguments for the histð Þ function for

aesthetics, is provided below and can be modified for the other sample sizes.

> hist(x = replicate(1000, mean(sample(pennies_age, 5, replace = TRUE))),
breaks = 50,
xlim = c(0,35),
xlab = "Means",
main = "Histogram of 1000 Replicates of Mean for 5 Sampled Pennies ")

Fig. 5.14 Approximate sampling distribution for sample average age of
5 U.S. pennies
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We are using the information contained in our one observed sample of

374 U. S. pennies to estimate what the sampling distribution of �X would look

like for samples of various sizes (5, 10, 20, and 40) drawn from the entire

population of all U. S. pennies in circulation. We are not really interested, for

Fig. 5.16 Approximate sampling distribution for sample average age of
20 U.S. pennies
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Fig. 5.15 Approximate sampling distribution for sample average age of
10 U.S. pennies
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example, in the average ages for the individual 1000 samples of size 5 selected

from our 374 pennies, but, instead, we are interested in what these 1000

sample averages of size 5 are able to tell us about the sampling distribution

for the sample average of a single sample of size 5 selected from the entire

population of all U. S. pennies in circulation. We don’t want to collect addi-

tional pennies from the full population, so we resample from the ones we’ve

already collected, letting them serve as representatives of the entire popula-

tion. We are simply trying to extract as much information as we can from this

one random sample of 374 pennies that we have already collected.

Notice that the approximate sampling distributions for the various sample

averages are NOT skewed to the right like the original age distribution for the

374 pennies shown in Fig. 5.13. In fact, they are roughly bell-shaped and

symmetric! The centers of all four approximate sampling distributions appear

to be somewhere between 8 and 10 years, agreeing roughly with the average

age of 9.053 for all 374 pennies. As the sample size increases from 5 to 40, the

approximate sampling distributions become more bell-shaped and the

variability clearly decreases. While the main thrust of this example has been

Fig. 5.17 Approximate Sampling Distribution for Sample Average Age of
40 U.S. pennies.
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to illustrate how to use the bootstrapping technique to simulate the sampling

distribution of �X for sample sizes n ¼ 5, 10, 20, and 40, the histograms also

provide bonus empirical evidence to support the Central Limit Theorem

presented in Sect. 3. As the sample size n increases from 5 to 40, the true

sampling distribution of �X looks more and more like a N 9:053; 9:439653ffiffi
n

p
	 


, as

formally prescribed by the Central Limit Theorem.

This bootstrapping technique can be used for any statistic, not just the

sample mean �X. For example, instead of computing the sample average for all

4000 samples we could have computed the sample median, range, standard

deviation, IQR, etc. Figures 5.18, 5.19, 5.20, and 5.21 depict the bootstrap

approximate sampling distributions of the sample median for samples of

size 5, 10, 20, and 40, respectively. Notice that the approximate sampling

distributions for the sample median do NOT look like either the approximate

sampling distributions for the sample average OR the original age distribu-

tion for all 374 pennies. Although the exact form of the sampling distribution

for the sample median depends on the distribution of the ordered sample

Fig. 5.18 Approximate sampling distribution for sample median age of
5 U.S. pennies
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items (i.e., order statistics) and is beyond the scope of this course, we can

clearly use bootstrapping to approximate it.

Bootstrapping can be used in a wide variety of settings. The power, utility,

and simplicity of bootstrapping make it one of the most important recent

Fig. 5.20 Approximate sampling distribution for sample median age of
20 U.S. pennies
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Fig. 5.19 Approximate sampling distribution for sample median age of
10 U.S. pennies
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developments in the field of statistics. Figure 5.22 summarizes the major steps

involved in using bootstrapping/resampling methods to approximate a sam-

pling distribution. One remaining question that we need to address is: How

many bootstrap samples are needed? The short (and a bit amazing) answer is

that, for any original sample size n, as we increase the number of bootstrap

Fig. 5.22 Summary of bootstrapping/resampling technique for approxi-
mating sampling distributions
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Fig. 5.21 Approximate sampling distribution for sample median age of
40 U.S. pennies
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samples (i.e., the number of runs in our simulation) the simulated sampling

distribution will look more and more like the true sampling distribution for

the statistic of interest. Using 500 or more bootstrap samples will almost

always be enough to get a reasonable approximation to a sampling distribu-

tion. In fact, there are many situations where using 100 or fewer bootstrap

samples will yield rough approximations that are sufficient to address the

questions of interest.

Section 5.4 Practice Exercises

5.4.1. Random Numbers. Use the R function runif ð Þ to simulate r ¼ 5 samples

of size n ¼ 10 each chosen randomly from the interval (0,1).

(a) Create histograms for each of the 5 samples.

(b) Do the histograms vary from sample to sample?

(c) Are there similarities in the histograms?

(d) Sketch the distribution that these histograms are approximating.

(e) Repeat part (a) for r ¼ 5 samples of size n ¼ 20 each from the

interval (0,1).

(f) Repeat part (a) for r ¼ 5 samples of size n ¼ 30 each from the

interval (0,1).

(g) What happens to the approximating histograms as n increases?

5.4.2. Random Numbers. Simulate r ¼ 50 samples of size n ¼ 10 each chosen

randomly from the interval (0, 1) using the R function runif ð Þ. Find the

sample mean for each of the 50 samples. Display the approximate sampling

distribution for the sample mean and comment on its shape. Repeat the

simulation. Does the approximate sampling distribution from your second

simulation look exactly like the one obtained in your first simulation?

5.4.3. RandomNumbers. Simulate r¼ 1000 samples of size n¼ 10 each chosen

randomly from the interval (0, 1) using the R function runif ð Þ. Find the

sample mean for each of the 1000 samples. Display the approximate sampling
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distribution for the sample mean. Repeat the simulation for samples of size

n ¼ 20. What happens to the center and spread of the approximate sampling

distributions as n increases from 10 to 20?

5.4.4. RandomNumbers. Simulate r¼ 1000 samples of size n¼ 10 each chosen

randomly from the interval (0, 1) using the R function runif ð Þ. Find the

sample median for each of the 1000 samples. Display the approximate sam-

pling distribution for the sample median and comment on its main features.

5.4.5. RandomNumbers. Simulate r¼ 1000 samples of size n¼ 10 each chosen

randomly from the interval (0, 1) using the R function runif ð Þ. Find the

sample standard deviation for each of the 1000 samples. Display the approxi-

mate sampling distribution for the sample standard deviation and comment

on its main features.

5.4.6. Pay Increases. Suppose the average pay increase for 52 employees at a

company was 3.4% in 2004. A particular employee was unhappy with the size

of his pay increase andwanted to learnmore about the minimum raise offered

by the company. He has asked you to help him simulate r ¼ 500 samples of

size n ¼ 52 each from a normal distribution with mean 3.4 and standard

deviation 0.5 using theR function rnormð Þ. For each of the random samples he

wants you to compute and save the smallest pay increase for that random

sample. Display the approximate distribution for the sample minimum (i.e.,

smallest pay increase). If the employee received a 1% raise, do you think his

unhappiness is justified?

5.4.7. Bernoulli Simulation. Simulate r ¼ 100 random samples of size n ¼ 25

each from a Bernoulli population with p ¼ 0.5 using the R function rbinomð Þ.
Display the approximate sampling distribution of the sample percentage p̂.

Repeat the simulation for p ¼ 0.1 and p ¼ 0.8. Do the shapes of the sampling

distributions for p̂ appear the same for all three simulations? Where are the

sampling distributions centered? What about the variability in the sampling

distributions?
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5.4.8. Coin Flips. Simulate 25 flips of a balanced coin 100 separate times and

compute the percentage p̂ of heads for each of the 100 iterations using the

R function rbinomð Þ. Display the approximate sampling distribution of p̂.

Repeat your simulation for 100 and 400 tosses of a balanced coin. Display the

three approximate sampling distributions of p̂, using the same horizontal and

vertical scale. What happens to the center and spread of the sampling

distributions as the number of flips increases?

5.4.9. Age of Pennies. The dataset pennies_age contains the ages of 374 U.S.

pennies. Simulate r ¼ 1000 bootstrap samples of size n ¼ 10 each using the

R function sampleð Þ and find the sample standard deviation for each sample.

Display the approximate bootstrap sampling distribution for the sample

standard deviation for samples of size 10.

5.4.10. Home Values. The dataset homes_prices contains the total assessed

values for a sample of homes in Wake County, North Carolina. Simulate

r ¼ 100 bootstrap samples of size n ¼ 25 each using the R function sampleð Þ
and compute the sample mean and sample median for each sample. Display

the approximate sampling distributions for the sample mean and sample

median. Comment on the similarities and differences in these two approxi-

mate sampling distributions.

Chapter 5 Comprehensive Exercises

5.A. Conceptual

5.A.1. Continuity Correction for the Normal Approximation to a Binomial Distri-

bution. The accuracy of the normal approximation for binomial counts can be

improved by making one simple modification. Since B is a count of the total

number of successes, it can assume only integer values. When we consider the

sampling distribution of B to be approximately normal, however, we are also
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permitting B to assume values between the integers. To correct for the fact that

we are using a continuous distribution to approximate a distribution that can

assume only integer values we can adjust the process by acting as if the values

of B are obtained by rounding to the nearest integers. This amounts to adding

or subtracting 1/2 to the number of successes and is referred to as the

continuity correction. Figure 5.23 illustrates the use of this continuity correction

for the probability
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� npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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bþ 1

2
� npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

np 1� pð Þp
0
B@

1
CA

� Φ
bþ 1

2
� npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

np 1� pð Þp
0
B@

1
CA�Φ

a� 1
2
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Compare Fig. 5.23 with Fig. 5.9 and then apply the normal approximation

with continuity correction to approximate P(B 	 25) when B � B(30, .6)

using the R function pbinomð Þ. Compare your answer with that obtained in

Example 5.9 using the normal approximation without the continuity

correction.

Fig. 5.23. Normal approximation for binomial counts using the continuity
correction

a-.5 b+.5
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5.A.2. Continuity Correction for the Normal Approximation to a Binomial

Distribution. Consider the sampling distribution for the number of successes

in 20 independent Bernoulli trials when p ¼ 0.5. Calculate the probability of

getting less than 8 successes using:

(a) the exact binomial distribution;

(b) the normal approximation without the continuity correction;

(c) the normal approximation with the continuity correction.

5.A.3. Continuity Correction for the Normal Approximation to a Binomial Distri-

bution. Consider the sampling distribution for the number of successes in

40 independent Bernoulli trials when p ¼ 0.4. Calculate the probability of

getting at most 20 successes using:

(a) the exact binomial distribution;

(b) the normal approximation without the continuity correction;

(c) the normal approximation with the continuity correction.

5.A.4. Continuity Correction for the Normal Approximation to a Binomial Distri-

bution. Consider the sampling distribution for the number of successes in

50 independent Bernoulli trials when p ¼ 0.45. Calculate the probability of

getting at least 20 successes using:

(a) the exact binomial distribution;

(b) the normal approximation without the continuity correction;

(c) the normal approximation with the continuity correction.

5.A.5. Continuity Correction for the Normal Approximation to a Binomial Distri-

bution. Consider the sampling distribution for the number of successes in

100 independent Bernoulli trials when p ¼ 0.8. Calculate the probability of

getting more than 82 successes using:

(a) the exact binomial distribution;

(b) the normal approximation without the continuity correction;

(c) the normal approximation with the continuity correction.
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5.A.6. Continuity Correction for the Normal Approximation to the Distribution of

a Sample Proportion. Modify the normal approximation to the sampling distri-

bution for a proportion (corresponding to counts of Bernoulli random

variables) to adjust for the fact that we are approximating a discrete distribu-

tion with a continuous normal curve. That is, specify the appropriate continu-

ity correction for using the normal distribution to approximate the sampling

distribution for a proportion.

5.B. Data Analysis/Computational

5.B.1. Football Yardage. A football team averages 3.5 yards per run with a

standard deviation of 2 yards. If the team calls 30 running plays per game and

the number of yards gained per rush is approximately normally distributed,

what is the probability that they will rush for over 120 yards in a game?

5.B.2. Loss of Smell?—Might Not Bode Well. In a study investigating a link

between the loss of our sense of smell and increased risk of dying, Devanand

et al. (2015) collected information from 1169 adults in New York City. At their

initial evaluations, participants took a “scratch and sniff” test (known as

UPSIT) in which they were asked to identify 40 common odors. In a follow

up study several years later, the authors found that 45.36% of the participants

with the lowest UPSIT scores in the range [0, 20] had died during the follow

up period. Suppose we selected a random sample of n ¼ 100 of the

participants in this study with UPSIT scores in the range [0, 20].

(a) How many of the participants in our sample would we expect to still

be alive at the end of the follow up period?

(b) Use the R function pbinomð Þ to determine the exact probability that at

least half of the participants in our sample were still alive at the end of

the follow up period.
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(c) Use the R function pnormð Þ to approximate the probability that at

least half of the participants in our sample were still alive at the end of

the followup period. Compare this result with your finding in part (a).

(d) What is the approximate probability that more than 40 of the

participants in our sample died during the follow up period?

(e) What is the approximate probability that fewer than 20 of the

participants in our sample were still alive at the end of the follow

up period?

5.B.3. Smelling Fine?—Enjoy the Wine. Consider the olfactory study by

Devanand et al. (2015) described in Exercise 5.B.2. The authors also reported

that only 18.39% of the participants with the highest UPSIT scores in the range

(31, 40] had died during the follow up period. Suppose we selected a random

sample of n ¼ 100 of the participants in this study with UPSIT scores in the

range (31, 40].

(a) How many of the participants in our sample would we expect to still

be alive at the end of the follow up period?

(b) Use the R function pbinomð Þ to determine the exact probability that at

least half of the participants in our sample were still alive at the end of

the follow up period.

(c) Use the R function pnormð Þ to approximate the probability that at

least half of the participants in our sample were still alive at the end of

the followup period. Compare this result with your finding in part (a).

(d) What is the approximate probability that more than 40 of the

participants in our sample died during the follow up period?

(e) What is the approximate probability that fewer than 20 of the

participants in our sample were still alive at the end of the follow

up period?

(f) Compare your findings for these participants with high UPSIT scores

with what you obtained in Exercise 5.B.2 for participants with low

UPSIT scores.
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5.B.4. Having Heart Surgery?—Get Married First. Neuman andWerner (2015)

used data from the University of Michigan Health and Retirement Study

(http://hrsonline,isr.umich.edu), a longitudinal panel survey that has

enrolled 29,053 adults 50 years of age or older since 1998, to study the

postoperative function characteristics of married and unmarried patients

undergoing cardiac surgery between 2002 and 2010. Of the 1026 married

cardiac surgery patients, 199 died or developed new ADL (Activities of

Daily Living) dependencies following surgery prior to their first scheduled

postoperative interview. Of the 550 unmarried (separated, divorced,

widowed, or never married) cardiac surgery patients, 172 died or developed

new ADL dependencies following surgery prior to their first scheduled post-

operative interview. Suppose we select a random sample of n ¼ 100 of the

married cardiac surgery patients in this study and an independent random

sample of m ¼ 50 of the unmarried cardiac surgery patients in the study.

(a) How many of the married cardiac surgery patients in our sample

would we expect to have either died or developed new ADL

dependencies following surgery prior to their first scheduled postop-

erative interview?

(b) Use the normal distribution to approximate the probability that fewer

than 20% of the married cardiac surgery patients in our sample had

either died or developed new ADL dependencies following surgery

prior to their first scheduled postoperative interview.

(c) What is the approximate probability that more than 15% of the

married cardiac surgery patients in our sample had either died or

developed new ADL dependencies following surgery prior to their

first scheduled postoperative interview?

(d) Repeat parts (a) – (c) for the unmarried cardiac surgery patients in our

second sample. Compare with your findings in parts (a) – (c).

(e) Let p̂M and p̂U denote the percentages of the 100 married and

50 unmarried cardiac surgery patients, respectively, in our random
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samples who either died or developed new ADL dependencies fol-

lowing surgery prior to their first scheduled postoperative interview.

What is the approximate sampling distribution of p̂U � p̂M?

5.B.5. One-Party Government?—Depends on When You Ask. Gallup, Inc.

(2015d) conducted telephone interviews September 9-13, 2015 with a random

sample of 1025 adults, aged 18 and older, living in all 50 U.S. states and the

District of Columbia. The participants were asked to state their political party

preference (Democrat, Independent, or Republican) and whether or not they

favored one party control of both Congress and the Presidency. Among those

participants whose party preference was Republican, 40% had a preference

that the same party should control both Congress and the Presidency. Sup-

pose we collect a random sample of n ¼ 80 from the Republican participants

in these telephone interviews.

(a) How many individuals in our random sample would we expect to

have a preference that the same party should control both Congress

and the Presidency?

(b) What is the exact probability that more than half of the Republicans in

our random sample have a preference that the same party should

control both Congress and the Presidency?

(c) What is the approximate probability that less than 30 of the

Republicans in our random sample have a preference that the same

party should control both Congress and the Presidency?

(d) Gallup, Inc. had conducted a similar poll in 2014 prior to the

November 2014 elections and found that only 24% of Republicans

in that poll had a preference that the same party should control both

Congress and the Presidency. Suppose we were able to collect a

random sample of n ¼ 80 Republican participants in the 2014 poll.

Answer parts (a) – (c) for this random sample of 2014 poll

participants.
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(e) Compare your answers in parts (a)–(c) with those obtained in part (d).

Can you think of possible reasons that might have led to such a

sudden change in governance principles among Republicans from

2014 to 2015?

5.B.6. Company Branding—Do Employees Get It? Gallup, Inc. (2012a) asked

more than 3000 randomly selected workers whether they agreed with the

statement: “I know what my company stands for and what makes our

brand(s) different from our competitors.” Only 41% of the respondents

strongly agreed with this statement. Suppose we were able to collect a

random sample of n ¼ 200 from the workers who participated in this survey.

(a) How many individuals in our random sample would we expect to

have strongly agreed with the statement?

(b) What is the probability that exactly 41% of the individuals in our

sample strongly agreed with the statement?

(c) What is the approximate probability that less than 41% of the

individuals in our sample strongly agreed with the statement?

(d) What is the approximate probability that between 80 and 120, inclu-

sive, of the individuals in our sample strongly agreed with the

statement?

5.B.7. Smoking in Public Places. In recent years there has been a strong push

by states and cities to ban cigarette smoking in public places (such as

restaurants and bars) to protect non-smokers from secondhand smoke. How

does the American public feel about such laws? As part of their annual

Consumption Habits survey during the period July 7-10, 2014, Gallup, Inc.

(2014) conducted telephone interviews with a random sample of 1013 adults,

aged 18 and older, living in the U. S. states and the District of Columbia. They

found that 56% of the respondents supported a ban on smoking in public

places. Suppose we were able to collect a random sample of n ¼ 150 from

among the participants in these telephone interviews.
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(a) How many individuals in our random sample would we expect to

have supported the ban on smoking in public places?

(b) What is the approximate probability that more than 2/3 of the

individuals in our random sample supported the ban on smoking in

public places?

(c) What is the approximate probability that less than half of the

individuals in our random sample supported the ban on smoking in

public places?

(d) Do you think the public opinion on this issue might differ among

different age groups? When do you think the public opinion changed

from supporting smoking in public places to banning it? Do you think

the public supports a total ban on smoking? Go to Gallup, Inc. (2014)

and find out!

5.B.8. Teenagers and Sports.National Public Radio (2015), in conjunction with

the Robert Wood Johnson Foundation and the Harvard T. H. Chan School of

Public Health, supported a major study about sports and health in America.

They polled 2506 adults during the period January 29-March 8, 2015. In

particular, they asked 437 parents with children currently attending middle

school, junior high school, or high school and participating in a sport to name

the sport their child participated in MOST OFTEN during the previous year.

The results of their poll are as follows:

Sport Participated in MOST OFTEN
Percentage
of Children

Basketball 16
Soccer 14
Baseball/softball 11
Football 9
Running/jogging/trail running/track 7
Volleyball 6
Swimming 5
Others 32
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Suppose we select a random sample of n ¼ 8 children from the group

represented in this poll. Use the R functions dmultinomð Þ and pbinomð Þ to

answer the following questions.

(a) What is the probability that the sport participated in most often by the

children in our sample was basketball(3), soccer(2), baseball/softball

(2), and other(1)?

(b) What is the probability that more than half of the children in our

sample participated most often in basketball?

(c) What is the probability that all of the eight children participated most

often in “other” sports?

5.B.9. Adults and Sports/Moderate/Vigorous Exercise. National Public Radio

(2015), in conjunction with the Robert Wood Johnson Foundation and the

Harvard T. H. Chan School of Public Health, supported a major study about

sports and health in America. They polled 2506 adults during the period

January 29-March 8, 2015 and asked them about their sports/exercise partici-

pation during the previous year. For those 690 respondents who indicated

that they DID NOT play sports or do vigorous- or moderate-intensity exer-

cise in the previous year, 47% gave health-related reasons, 38% gave time

availability/cost /lack of opportunity reasons, and the remaining 15% cited a

lack of interest. Suppose we select a random sample of n ¼ 30 of the adults in

this study who DID NOT play sports or do vigorous- or moderate-intensity

exercise in the previous year. Use the R functions dmultinomð Þ and pbinomð Þ
to answer the following questions.

(a) What is the probability that 10 adults in our sample gave health-

related reasons, 10 of them gave time availability/cost/lack of oppor-

tunity reasons, and 10 of them cited lack of interest.

(b) What is the probability that more than half of the adults in our sample

gave health related reasons?
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(c) What is the probability that none of the adults in our sample cited

lack of interest?

(d) What is the probability that none of the adults in our sample cited

health-related reasons and twice as many of them gave time/avail-

ability/cost/lack of opportunity reasons as gave lack of interest as the

reason?

5.B.10. Math SAT Scores. Consider the Math SAT scores for seniors

graduating in 2013 or 2014 from a small private school, as presented in

Table 1.15.

(a) Find the sample average and sample standard deviation for the

79 male graduates.

(b) Find the sample average and sample standard deviation for the

50 female graduates.

Assume that these sample averages and standard deviations can be used

as reasonable surrogates for the corresponding population means and

standard deviations for all graduating seniors from small private schools.

Suppose you collect additional random samples of m ¼ 60 male and

n ¼ 50 female seniors graduating from other small private schools.

(c) What is the probability that the average SAT score for your sample of

60 male graduating seniors will be less than 600?

(d) What is the probability that the average SAT score for your sample of

50 female graduating seniors will exceed 550?

(e) What is the probability that the average SAT score for your sample of

60 male graduating seniors will be larger than the average SAT score

for your sample of 50 female graduating seniors?

5.B.11. Stretching a Hit into a Double.Woodward (1970) conducted a study of

different methods of running to first base, with the goal of minimizing the

time it would take to get from home plate to second base (i.e., get a double on

a base hit). The times (in seconds) given in Table 1.33 are averages of two runs
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from a point on the first base line 35 ft from home plate to a point 15 ft short of

second base for the method of running known as “wide angle” for each of

22 different runners.

(a) Find the sample average and sample deviation for the 22 runners.

Assume that this sample average and sample standard deviation can be

used as reasonable surrogates for the corresponding population mean and

population standard deviation for all baseball players similar in caliber to

the sampled runners. Suppose you collect an additional random sample of

n ¼ 40 baseball players and measure the average of two “wide-angle”

runs from home plate to second base for each of them.

(b) What is the probability that the “wide-angle” time for any one of your

ballplayers is between 5.35 and 5.45 seconds?

(c) What is the probability that the average “wide-angle” time for your

40 ballplayers is between 5.35 and 5.45 seconds?

(d) What is the probability that the average “wide-angle” time for your

40 ballplayers is less than 5.20 seconds?

(e) How many of your ballplayers would you expect to have a “wide-

angle” time between 5.35 and 5.45 seconds?

(f) What is the probability that all of your 40 ballplayers record “wide-

angle” times less than 5.20 seconds?

5.B.12. How Long Are Movies? The Movie and Video Guide is a ratings and

information guide to movies that had been prepared annually by Leonard

Maltin. Moore (2006) selected a random sample of 100 movies from the 1996

edition of the Guide. He compiled the dataset movie_facts containing relevant

information about the selected movies. One of the pieces of information

provided is the running length of the movies, in minutes.

(a) Find the mean and standard deviation for the running length of this

random sample of 100 movies.
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Suppose you collect a new random sample of running length times for

50 current movies. Assume that the distribution of running lengths for

current movies is similar to those produced in 1996.

(b) What are the mean and standard deviation of the average running

length for your sample of 50 current movies?

(c) What is the probability that the average running length for your

sample of 50 current movies is less than 2 h?

(d) What is the probability that the average running length for your

sample of 50 current movies is between 1 h 50 min and 2 h 10 min?

(e) Howmany of the current movies in your sample would you expect to

have running lengths of at least 2 h?

(f) What is the probability that none of your movies has a running length

of more than 2 h 15 min?

5.B.13. Gender Differences in Body Temperature. Mackowiak et al. (1992) col-

lected body temperature data from 148 individuals aged 18 through 40 years.

The dataset body_temperature_and_heart_rate contains body temperature

values (artificially generated by Shoemaker 1996, to closely recreate the origi-

nal data obtained by Mackowiak et al.) for 65 male and 65 female subjects.

(a) Obtain the mean and standard deviation for the body temperatures of

the 65 male subjects in this dataset.

(b) Obtain the mean and standard deviation for the body temperatures of

the 65 female subjects in this dataset.

Suppose you now collect additional random samples of 50 female and

50 male subjects and measure their body temperatures. Assume that the

current populations from which you selected your random samples are

similar to the populations that led to the random samples in the

Mackowiak et al. study.

(c) What is the probability that the average body temperature for your

sample of 50 female subjects is greater than 98.6 degrees Fahrenheit?
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(d) What is the probability that the average body temperature for your

sample of 50 male subjects is between 98 and 99 degrees Fahrenheit?

(e) What is the probability that the average body temperature for your

sample of 50 male subjects will be greater than the average body

temperature for your sample of 50 female subjects?

(f) How many of your 50 male subjects would you expect to have body

temperatures between 98 and 99 degrees Fahrenheit?

5.B.14. Gender Differences in Heart Rate. Mackowiak et al. (1992) collected

heart rate data from 148 individuals aged 18 through 40 years. The dataset

body_temperature_and_heart_rate contains heart rate values (artificially

generated by Shoemaker, 1996, to closely recreate the original data obtained

by Mackowiak et al.) for 65 male and 65 female subjects.

(a) Use the R function sampleð Þ to simulate r ¼ 750 bootstrap samples of

size n ¼ 15 each from the heart rates for the 65 male subjects and find

the sample average for each sample. Display the approximate

bootstrap sampling distribution for the sample average for samples

of size 15.

(b) Simulate r ¼ 500 bootstrap samples of size n ¼ 12 each from the heart

rates for the 65 female subjects and find the sample standard devia-

tion for each sample. Display the approximate bootstrap sampling

distribution for the sample standard deviation for samples of size 12.

(c) Simulate r ¼ 1000 bootstrap samples of size n ¼ 20 each separately

from the male and female subjects. Find the difference in the sample

medians for the male and female subjects for each of the 1000 pairs of

samples. Display the approximate bootstrap sampling distribution

for the difference in sample medians for common sample sizes of

20 each.

5.B.15. How Much Do Euros Weigh? The Euro is the common currency coin

for the countries comprising the European Union. According to information
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from the “National Bank of Belgium”, the 1 Euro coin is stipulated to weigh

7.5 g. Shkedy et al. (2006) obtained eight separate packages of 250 Euros each

from a Belgian bank and their assistants Sofie Bogaerts and Saskia Litière

individually weighed each of these 2000 coins using a weighing scale of the

type Sartorius BP310, which provided an accurate reading up to one thou-

sandth of a gram. These 2000 weights, indexed by package number, are

provided in the dataset weight_of_Euros.

(a) Using only the 250 coins from package number 2, simulate r ¼ 500

bootstrap samples of size n ¼ 25 each and find the minimum Euro

weight for each of the 500 samples. Display the approximate boot-

strap sampling distribution for the minimum Euro weight for

samples of size 25.

(b) Using only the 250 coins from package number 4, simulate r ¼ 1000

bootstrap samples of size n ¼ 30 each and find the average Euro

weight for each of the 1000 samples. Display the approximate

bootstrap sampling distribution for the sample average for samples

of size 30.

(c) Using only the 250 coins from package number 5, simulate r ¼ 750

bootstrap samples of size n ¼ 40 each and find the range of the Euro

weights for each of the 750 samples. Display the approximate

bootstrap sampling distribution for the sample range for samples of

size 40.

(d) Combining the 500 coins from packages numbered 4 and 5, simulate

r ¼ 1000 bootstrap samples of size n ¼ 30 each and find the average

Euro weight for each of the 1000 samples. Display the approximate

bootstrap sampling distribution for the sample average for samples of

size 30. Compare your results with those obtained in part (b).

5.B.16. An automobile manufacturer claims that the fuel consumption for a

certain make and model of car averages 28 miles per gallon with a standard
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deviation of 3 miles per gallon. Suppose you test a random sample of n ¼ 25

cars of this make and model.

(a) What is the probability that the average fuel consumption for your

random sample of 25 cars will be greater than 30 miles per gallon?

(b) What is the probability that the average fuel consumption for your

random sample of 25 cars will be between 26 and 31 miles per gallon?

(c) How many of your cars would you expect to have fuel consumptions

between 26 and 31 miles per gallon?

(d) What is the probability that none of your random sample of 25 cars

has fuel consumption greater than 28 miles per gallon?

5.B.17. How Well Does Your Beer Hold Its Foam? Two features of bottled beer

that are important to beer consumers are the amount of initial head formation

when a beer is poured and how long the head lasts. Ault et al. (1967)

measured the height of the initial head formation upon pouring, the percent-

age adhesion of the head, and the percentage collapse of the head 4 min after

pouring for 20 bottles selected from two different production lots of the beer.

The dataset beer_head contains the results of their study.

(a) Find the sample average and standard deviation for the maximum

head formation for the sample of 20 bottles of beer from the first

production lot.

(b) If you were to collect another random sample of n¼ 30 bottles of beer

from the first production lot, what is the probability that the average

maximum head formation for your sample of 30 bottles would be

greater than 175?

(c) Find the sample average and standard deviation for the percentage

collapse of the head 4 min after pouring for the sample of 20 bottles of

beer from the second production lot.

(d) If you were to collect another random sample of n¼ 40 bottles of beer

from the second production lot, what is the probability that the
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average percentage collapse for your sample of 40 bottles would be

less than 80 percent?

(e) Find the sample averages and standard deviations for the percentage

adhesion of the head separately for the two production lots.

(f) If you were to collect additional random samples of n ¼ 20 bottles of

beer from each of the two production lots, what is the probability that

the average percentage adhesion for the sample from the second

production lot would exceed the average percentage adhesion for

the sample from the first production lot?

5.C. Activities

5.C.1. Age of U.S. Dimes. Collect a large sample of U.S. dimes and find the

ages of the dimes (in years). Simulate r ¼ 1000 bootstrap samples of size

5 each, 1000 bootstrap samples of size 10 each, 1000 bootstrap samples of size

20 each, and 1000 bootstrap samples of size 40 each from this large sample of

dimes and compute the sample mean for each of these 4000 samples. Display

the approximate sampling distributions for sample averages of sizes 5, 10,

20, and 40 from the age distribution of all dimes in circulation at the time.

Compare your average age distributions with those for U.S. pennies, as

displayed in Figs. 5.14, 5.15, 5.16, and 5.17.

5.C.2. Age of U.S. Quarters. Repeat Exercise 5.C.1 for U.S. quarters.

5.C.3. Peanut M&Ms. Collect a sample of Peanut M&Ms. and compute the

Pearson goodness of fit statistic for the sample relative to the claim by Mars,

Inc. that the color combination in M&M’s Peanuts is 20% brown, 20% yellow,

20% red, 10% orange, 10% green, and 20% blue. Use simulation to assess their

claim.

5.C.4. Peanut Butter and Almond M&Ms. Collect a sample of Peanut Butter or

Almond M&M’s and compute the Pearson goodness of fit statistic for the
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sample relative to the claim by Mars, Inc. that the color combination in both

M&M’s Peanut Butter and M&M’s Almond is 20% brown, 20% yellow, 20%

red, 20% green, and 20% blue. Use simulation to assess their claim.

5.C.5. Reese’s Pieces. Collect a sample of Reese’s Pieces and compute the

Pearson goodness of fit statistic relative to the claim by Mars, Inc. that Reese’s

Pieces are evenly mixed among two colors, orange and brown. Use simulation

to assess their claim.

5.D. Internet Archives

5.D.1. Country Characteristics/Attributes. Search the Internet to find a dataset

that contains the characteristics or attributes for a sample of individuals

residing in a particular country of interest to you. Use these data and boot-

strap simulation to obtain the approximate sampling distribution for the

sample average of 30 individuals from this country for one of these

characteristics or attributes.

5.D.2. Drug Studies/Medical Treatment. Search the Internet to find an article

that provides details for the results of a clinical trial studying the effectiveness

of a new drug or medical procedure. Use these data and bootstrap simulation

to obtain the approximate sampling distribution for the average effect of the

new drug or medical procedure on a sample of 20 additional individuals who

might use it.

5.D.3. Church Attendance. Search the Internet to find the results of a survey

dealing with weekly church attendance in the United States. Using these

results and bootstrap simulation, obtain the approximate sampling distribu-

tion for the percentage of all Americans who attend church weekly.

5.D.4. Political Survey. Search the Internet to find the results of a political

survey that includes questions of interest to you. Select a question with at least
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five possible responses indexed by a categorical variable with at least four

categories. Use the responses of the survey participants to this question and

bootstrap simulation to obtain the approximate sampling distribution for the

Pearson goodness of fit statistic G for a sample of size n ¼ 200 from the

population of interest.

5.D.5. Time to Degree. Search the Internet for a study that provides informa-

tion about times to degree for a collection of undergraduate students. Use the

results of this study to simulate the sampling distribution for the average time

to degree for a random sample of 100 undergraduate students.
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Statistical Inference: Estimating
Probabilities and Testing
and Confirming Models

6

In the previous three chapters we have discussed various aspects of the

following three important topics:

(a) What data are required to address a question of interest and how

should these data best be obtained?

(b) What models are appropriate for the relevant data and which

properties of these models are important for the question of interest?

(c) Using the data models to help us understand the proper data collec-

tion process, how do we then best summarize the information

contained in the resulting observations?

All of these topics relate most directly to the preliminary planning stage

for an investigation of the question of interest and to the initial summary of

the amassed sample data. For some studies, such as population censuses or

preliminary investigations designed to help in planning more comprehensive

later studies, dealing effectively with these three issues might be sufficient.
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However, for most scientific investigations we take a sample to learn more

about the population from which the sample data were obtained. This still

involves choosing a model and summarizing the data we collect (questions

(b) and (c)), but now we want to go further and use our data to draw

conclusions about the underlying population. These conclusions about a

population based on statistical evidence from the sample are called

inferences. We illustrate these relationships between the population and

sample in Fig. 6.1.

For example, what can be said about the general effectiveness of a medi-

cation designed to halt or reverse the balding of men based on the results of

the use of this medication on a properly chosen sample of 24 men who are

showing signs of losing their hair? What conclusions can be drawn about

college students, in general, based on the information that 17 out of a sample

of 52 first-year college students worked more than 20 h per week, while 34 out

of a sample of 73 college seniors did the same? Using data collected from such

samples of a population of college graduates, what can be said, in general,

about the health benefits or detriments from having participated in intercolle-

giate athletics versus either an active involvement in intramural athletics or

virtually no athletic participation?

In this chapter we begin the discussion of using sample data to make

inferences about properties of the population(s) from which the data were

obtained. Such inferences will generally take one or more of the following

three forms for important attributes of the population(s):

Fig. 6.1 Relationships between population and sample
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(a) simple numerical estimation of the attributes;

(b) interval estimation of the attributes, with some indication of both the

accuracy and reliability of the intervals;

(c) tests of hypotheses about the attributes, with some indication as to the

effectiveness of the test procedures.

We introduce these three modes of inference through discussion of how to

use a random sample from a single population to make inferences about the

relative frequency of an event A in the population. This relative frequency is

also the probability P(A) that a single random observation drawn from the

population will result in occurrence of the event A.

Example 6.1. Impact of Community Nature on Flower Color Ecologists are

often interested in the results of natural selection. Ostler and Harper (1978)

studied the evolution of flower parts and colors in relation to community

structures, particularly open (i.e., communities such as meadows and

grasslands which lack woody vegetation) and closed (i.e., communities for-

ested with several species of trees). One interesting attribute of a community

structure is its relative distribution of white versus colored flowers. Meadows,

for example, are usually full of color in spring and summer, and it is possible

that white flowers do not stand out in sharp contrast to their surroundings in

such a setting. In a forest, however, white flowers may have an advantage

over colors because they are pale against a dark background, thereby

attracting pollinators and ensuring continuation of the species.

In this ecological study, there are several questions wemight ask about the

floral colorings of open and closed communities. For example, is there a

difference in the percentage of white flowers for the two types of

communities? What is the probability that a randomly selected flower from

an open community will be white? from a closed community? For newly

created communities of either type with initially balanced percentages of
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white and colored flowers, is there a tendency over time to move toward

dominance of one or the other color category?

All these questions deal with the particular attribute ‘percentage of white

flowers’ in a community. Ostler and Harper collected sample data to address

these questions and make inferences based on these data for the general

populations of closed and open communities. We will return to this example

to illustrate a number of the statistical concepts and procedures discussed

later in this chapter.

6.1 Point Estimation

General Concept Let X1, ..., Xn denote the collected measurements for a

random sample from an underlying population that may be either continuous

or discrete. A population parameter is a numerical attribute of a population

that is often unknown. Common examples of parameters include the popula-

tion mean, median, and variance, as well as the probability that a randomly

selected member of the population will have a particular characteristic. How-

ever, it is often the case that the attributes of a probability distribution that are

most of interest are not adequately expressed by these four parameters. Thus,

for example, we might be interested in whether the underlying population

has a probability distribution that is symmetric or in how likely it is that we

might experience unusually large or small observations (commonly called

‘outliers’) when sampling from this population. Other attributes of interest

(parameters) can be represented by categorical probabilities. For example,

what is the probability that a randomly selected observation from the popu-

lation will exceed an important threshold value (e.g., that the lifetime of a part

in our new automobile will exceed the manufacturer’s warranty or that a

randomly selected individual from a diseased population will respond better

to an innovative new medical treatment than to the current standard
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treatment for the disease). In this text, we will often denote parameters of

interest by lower case Greek letters.

Whatever the form of a parameter, say θ, of interest for a given population,

there are a variety of criteria that statisticians have used to develop natural

and effective methods for estimation of θ based on sample data X1, ..., Xn

obtained from the population. One such criterion is to estimate the parameter

θ by its natural statistical counterpart in the sample. Thus, for example, we

would estimate the population mean μ by its sample analog, the sample mean

�X ¼ X1 þ . . .þ Xnð Þ=n, the population median θ by its sample analog

~X ¼ median X1; . . . ;Xnf g, and the percentage, p, of the population with a

certain characteristic by the percentage of the sample observations that have

this characteristic.

In Sect. 5.2 we used the notation p̂ to denote the sample proportion of

successes used to estimate the population proportion of successes, p. In

general in this text when we use the sample analog to estimate a population

parameter we will use the ‘hat’ (^) notation to distinguish the sample estima-

tor. Thusbθ represents a sample estimator (based on the sample data X1, ..., Xn)

for the population parameter θ.

Probability of an Event Let A denote an event of interest in the underlying

population and let p denote the parameter representing the probability that

this event occurs when we sample a single observation from our population.

For this population parameter p, the natural sample analog associated with a

random sample of size n from the population is simply the proportion of

sample observations for which the event A occurs.

For example, suppose you are driving a long distance at night and decide

to pass the time by counting the number of cars youmeet and keeping track of

how many of them have only one working headlight. Here, A corresponds to

the event that a car has only one working headlight and p is the proportion of
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cars that have only a single working headlight in the area through which you

are traveling. If 73 of the 896 cars you encountered that evening had only one

working headlight, you would naturally estimate p by your observed propor-

tion, 73/896 ¼ .0815, of one-headlight cars.

In general, if we let B denote the number of times the event A occurs

among the sample observations X1, ..., Xn, then our point estimator for p will

be the sample statistic:

p̂ ¼ number of times the event A occurs in the sample½ �=n ¼ B
n
: ð6:1Þ

We call p̂ a point estimator because it estimates pwith a single number. Later in

this chapter we will see how to estimate p more reliably by providing an

interval in which we expect p to lie.

For your headlight data, p ¼ {proportion of cars that have only one

working headlight in the area through which you are traveling}, n ¼

896, and B ¼ 73. The natural point estimate for p is then p̂ ¼ 73
896

¼ :0815:

We illustrate the use of this estimator for the probability of an event in two

different settings, one where the sample data themselves simply record the

occurrence or non-occurrence of the event A, and a second where information

in addition to the occurrence or non-occurrence of A is contained in the

collected sample data.

Example 6.2. Estimation of Percentage White Flowers (Continuation

of Example 6.1) In their study to assess the effect that community structure

(open or closed) has on the coloration of flowers in the community, Ostler and

Harper (1978) collected floral characteristic data from 14 open and 11 closed

plant communities in the Wasatch Mountains of northern Utah and adjacent

Idaho. At each site, the authors conducted a complete census of the flowers in

the community and reported the percentage of white flowers present. The

resulting data are presented in Table 6.1.
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The authors were concerned with a number of general differences between

open and closed communities. One such comparison of interest would be the

proportions of these two types of communities that contain more than 50%

white flowers. The associated events are {a randomly selected open commu-

nity contains more than 50% white flowers} and {a randomly selected closed

community contains more than 50% white flowers} and the related

parameters are pOpen and pClosed, respectively. Viewing the data collected by

Ostler and Harper as a representative random sample ofm¼ 14 open and n¼
11 closed communities, we see that only one of the sample open communities

exhibited more than 50% white flowers, while nine of the closed communities

had a majority white flowers. Once again from Eq. (6.1) we obtain the point

estimates p̂Open ¼ 1=14 ¼ :0714 and p̂Closed ¼ 9=11 ¼ :8182, indicating a con-

siderable estimated difference between the two types of communities with

respect to the predominance of white versus colored flowers.

For our second example concerned with estimation of the probability of an

event, we consider the results of a formally designed medical study to assess

the effectiveness of a possibly improved treatment for patients with

Alzheimer’s disease. Here the subjects in the study serve as their own controls

and we are interested in evaluating whether or not the new treatment regime

leads to improvements in cognitive awareness for the subjects.

Table 6.1 Percentage white flowers in open and closed communities in the
Wasatch Mountains of northern Utah and adjacent Idaho

Community type Percentage white flowers

Open communities 52.6 42.6 43.4 39.4
15.3 34.9 38.9 45.6
32.7 27.9 23.8 17.6
24.4 29.7

Closed communities 54.8 75.8 60.1 55.8
55.7 44.9 45.8 58.6
62.6 70.8 69.2

Source: Ostler and Harper (1978)
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Example 6.3. Medical Improvements for Subjects with Alzheimer’s

Disease As the population of the industrial world continues to increase in

age, we are faced with ever increasing physical andmental health needs of the

elderly. One of the most serious of these needs is that associated with people

who suffer from Alzheimer’s disease and their caregiving families. One

accepted form of medical treatment for Alzheimer patients has been the use

of cholinesterase inhibitors (such as tacrine and physostigmine), designed to

inhibit enzymatic degradation at nerve connections, thereby enabling

improved nerve-to-nerve communications. In an attempt to see if the positive

effects of such cholinesterase inhibitors can be enhanced by supplementing

the treatment with low doses of l-deprenyl (previously shown to be effective in

animal studies), Schneider et al. (1993) undertook a study with ten outpatients

with probable Alzheimer’s disease living in the Los Angeles area. The six

women and four men who were part of this study had previously completed

multicenter clinical trials of either tacrine or sustained-release physostigmine

salicylate and had continued receiving the medication after that clinical trial

ended. These ten patients were randomly assigned to receive either a 4-week

trial of oral l-deprenyl (5 mg b.i.d.) followed by 4 weeks of placebo or a 4-week

trial of placebo followed by 4 weeks of l-deprenyl (5 mg b.i.d.). The l-deprenyl

and placebo were administered as identical-appearing tablets. The study was

also double-blinded in the sense that neither the subjects nor the persons

administering the dosages knew which of the participants received a particu-

lar order of the placebo and l-deprenyl (see Chap. 3 for more discussion of

double-blinded experiments). Assessment of the effects of the placebo and

l-deprenyl was made at the end of each 4-week period by a psychometrician

who was also blinded to the treatment assignments. The cognitive subscale of

the Alzheimer’s Disease Assessment Scale was used to assess the state of the

subjects at each of these times. Values of these subscale data for both periods

of measurement and each of the ten subjects are given in Table 6.2, where

lower scores indicate preferable behavior patterns.
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To assess the enhancement effect of l-deprenyl, we look at the subject

differences between cognitive subscale scores for the 4-week placebo period

and those for the 4-week period of treatment with l-deprenyl. One aspect of

interest in this study relates to the population event, D, that a randomly

selected Alzheimer patient would show improvement in cognate subscale

score from the combined use of l-deprenyl and a cholinesterase inhibitor relative

to the latter in combination with a placebo. Let X and Y denote the l-deprenyl

and the placebo cognitive subscale scores, respectively, for a randomly

selected Alzheimer patient and set Z ¼ Y - X to be the “improvement” (i.e.,

lowering of cognitive subscale scores) associated with the use of l-deprenyl.

Then the probability of the event D is p ¼ P(Z > 0), corresponding to the

proportion of all Alzheimer patients for whom this treatment would lead to

improved cognitive subscale scores. To estimate p using our sample data, we

let Xi and Yi denote the cognitive subscale score for the ith subject after the

4-week period of treatment with l-deprenyl and after the 4 weeks of placebo,

respectively. The observed “improvement” in cognitive subscale score for the

Table 6.2 Scores on the cognitive subscale of the Alzheimer’s disease
assessment scale for 10 patients with Alzheimer’s disease under treatment
with Tacrine or Physostigmine Salicylate plus l-deprenyl

Cognitive subscale scores

Subject Sex Placebo l-deprenyl “Improvement” Positive?

1 F 29 26 3 Yes
2 M 40 32 8 Yes
3 M 42 36 6 Yes
4 M 45 41 4 Yes
5 F 41 40 1 Yes
6 F 24 27 �3 No
7 M 32 34 �2 No
8 F 53 50 3 Yes
9 F 38 32 6 Yes
10 F 28 29 �1 No

Source: Schneider et al. (1993)
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ith subject associated with the use of l-deprenyl is then represented by Zi ¼ Yi -

Xi, for i ¼ 1, ..., 10. For the event {Z > 0}, we then use Eq. (6.1) to provide us

with the point estimate p̂ ¼ (sample percentage of subjects who show an

improvement with the use of l-deprenyl) ¼ # {Zi’s > 0}/10 ¼ 0.70.

Thus, based on these sample data, we estimate that the probability is .70

that a randomly chosen Alzheimer patient being treated with a cholinesterase

inhibitorwill show additional improvement in behavior patterns if l-deprenyl is

added to the treatment regime. Comparing this .70 estimate with the baseline

value of p ¼ .50 (corresponding to no effect from the treatment and only a

50–50 chance that an Alzheimer patient would have greater cognitive sub-

scale scores after receiving the treatment) provides some indication of the

impact that the treatment has on Alzheimer patients. (The magnitude of the

expected improvement in behavior patterns from the use of l-deprenyl is also

likely to be of interest in this study. Can you think of an intuitive way to

estimate this magnitude effect using the collected data? We return to this

example to formally address that issue in Chap. 8.)

In Examples 6.2 and 6.3, respectively, we used sample data to estimate

that 81.82% of all closed communities will contain a majority of white flowers

and that 70% of Alzheimer’s patients will show improvement with the new

treatment. We know that these are both just rough estimates, but “how

rough” are they? Since our estimate of 81.82% is based on a sample of only

11 closed communities, would we be too surprised to find out that the true

percentage of closed communities with a majority of white flowers is 75%? In

view of the fact that we used data from a random sample of only

10 Alzheimer’s patients to obtain our 70% point estimate, how unusual

would it be to find out that only 62% of all Alzheimer patients actually

experience improvement with l-deprenyl? One way to answer these questions

is to make interval estimates rather than point estimates, and in the next

section we look at the process of building such reliable interval estimates.
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Section 6.1 Practice Exercises

6.1.1. Grass Greener on the Other Side of the Fence? Jobvite (2014) presented the

results of a nationwide survey about the social, mobile job seeker. They

reported that 51% of the survey respondents who had employment were

actively seeking or open to a new job. Is the boldface number a statistic or

parameter? Describe the population and population parameter of interest in

this survey.

6.1.2. Snoring Intensity. Wilson et al. (1999) used polysomnographic testing

to measure the sound intensity of snoring for 1139 patients who had been

referred to the sleep laboratory of a primary care hospital. One of the

measures of snoring intensity studied by the authors is L10, recorded in dBA

units (a sound pressure measurement in decibels that employs the A-

weighting network). The average L10 for the patients in the study was 48.8

dBA units. Which of the boldface numbers are statistics? Describe the popula-

tion and a population parameter of interest in this portion of their study.

6.1.3. Snoring Intensity and Noise Restrictions. Regulations of the Minnesota

Pollution Control Agency (MPCA) restrict the acceptable outdoor nighttime

noise level to an L10 value no higher than 55 dBA. In their investigation (see

Exercise 6.1.2) of the sound intensity of snoring, Wilson et al. (1999) found that

12.3% of the 1139 patients in their study had snoring levels higher than

55 dBA. Which of the boldface numbers are statistics? Describe the population

and a population parameter of interest in this portion of their study.

6.1.4. The average grade on an examination for a large lecture introductory

statistics course is 78.5. You attend a particular 8:30 am recitation section for

this course, and you want to find out if the 30 students in your section did

better on this examination than the average. The morning the examination is

handed back, only 15 of the students in your recitation show up. The average
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score on the examination for these 15 students is 83.5. Which of the boldface

numbers are statistics? Describe the population and a population parameter

of interest.

6.1.5. A manufacturing process produces light bulbs with an average burn-

ing life of 2000 h. Over the course of a year, you purchase 40 of their light

bulbs and find that the average burn life for these bulbs is 1570 h.Which of the

boldface numbers are statistics? Describe the population and population

parameter of interest.

6.1.6. Depression among Twins. The Virginia Twin Study of Adolescent

Behavioral Development is a prospective study of more than 1400 male and

female juvenile twin pairs. Silberg et al. (1999) used the data from this study to

compare the trajectory of depressive symptoms among boys and girls from

childhood to adolescence. The Child and Adolescent Psychiatric Assessment

(CAPA), a semistructured, investigator-based psychiatric interview

administered by separate skilled interviewers to a pair of twins and at least

one of the twins’ parents, provided the data used to assess psychopathology.

The study included 338monozygotic (MZ – identical) and 156 dizygotic (DZ –

fraternal) female twin pairs and 252MZ and 158 DZmale twin pairs. Describe

a relevant population for this study and list at least four population events

(and associated probabilities) that would be of interest to the investigators.

6.1.7. Cigarette Demand among Adolescents. Pierce et al. (1998) were interested

in the proposition that tobacco industry advertising and promotional

activities were contributing causal agents in the stimulation of demand for

cigarettes among adolescents. A total of 1752 adolescent never smokers who

were not susceptible to smoking when first interviewed in 1993 in a telephone

survey in California were reinterviewed in 1996. More than half the sample

named a favorite cigarette advertisement in 1993 (with Joe Camel

advertisements being the most popular). Describe a relevant population for
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this study and list at least two population events (and associated

probabilities) that would be of interest.

6.1.8. Coffee and Stress. Lane (1999) measured the blood pressures and stress

hormone levels for 72 habitual coffee drinkers (those who typically drink four

or five cups of coffee in a morning) on days when they drank coffee and days

when they voluntarily abstained from coffee. Describe a relevant population

for this study and list at least two population events (and associated

probabilities) that would be of interest in this setting.

6.1.9. Stress and Coronary Heart Disease. Cardiovascular reactivity (CVR) has

been hypothesized as one possible mechanism linking stress to risk for coro-

nary heart disease (CHD). To demonstrate the feasibility of the reactivity

hypothesis, investigators must evaluate the cardiovascular activities of

individuals during common and naturally occurring activities, including

those that are stressful as well as those that do not produce stress. Brondolo

et al. (1999) conducted one such study involving 115 New York City traffic

enforcement officers (TEAs). Measures of systolic blood pressure (SBP), dia-

stolic blood pressure (DBP), and heart rate (HR) were collected throughout a

workday via the Suntech Accutracker II, using a blood pressure cuff attached

to the non-dominant arm and three standard electrocardiogram chest

electrodes. One question of interest in the study was “Do traffic enforcement

agents have higher levels of blood pressure and heart rate when they are in

stress-related situations than when they are involved in non-stressful daily

activities?”What are the population and the population event of interest here?

What is the point estimate for the probability of this event if 87 of the

115 subject TEAs exhibited higher systolic blood pressure when talking to

motorists than when they talked to coworkers or supervisors?
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6.1.10. Women’s Shoe Preferences. The American Orthopedic Foot and Ankle

Society (1998) conducted a telephone interview of 531 women who worked

outside the home.

(a) They reported that 234 of the women interviewed indicated that they

typically wore “flats” (fashion shoes with heels less than 1 inch) at

work. What are the population and event of interest here? What is the

sample estimate for the probability of this event?

(b) They also reported that 58% of the women in their survey with more

than 4 years of college typically wore flats to work, 46% of the women

with 4 years of college typically wore flats to work, and 37% of the

women in the survey who completed the 12th grade or less typically

wore flats to work. What are the relevant populations and events of

interest in this portion of the study?What are the sample estimates for

the probabilities of these events?

6.1.11. Who are More Stubborn—Women or Men? Men have long had a repu-

tation for being more stubborn than women when it comes to asking for

directions when they are lost while driving. In a study, digital map developer

Navigation Technologies (1999) conducted a nationwide telephone survey

with 503 men and 502 women between the ages of 18 and 65. They asked the

respondents what they did when they were lost while driving.

(a) They reported that 400 of the male respondents indicated they would

stop and ask for directions or consult a map, while 306 of the female

respondents indicated they would do the same. What are the relevant

populations and events of interest in this portion of their study?What

are the sample estimates for the probabilities of these events?

(b) The authors also reported that 756 of all (male and female)

respondents indicated that the main emotion felt when they were

lost while driving was that of frustration. What is the relevant
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population and event of interest in this portion of the study? What is

the sample estimate for the probability of this event?

(c) Finally, the authors reported that 11.9% of older Americans (ages

54-64) in their survey reported that they had experienced being lost

when driving, while 23.1% of the younger drivers (ages 18-24) sur-

veyed reported the same. What are the relevant populations and

events of interest in this portion of the study? What are the sample

estimates for the probabilities of these events?

6.1.12. Connection between Psychological and Physical Health. Can addressing a

patient’s psychological needs produce both psychological and physical health

benefits? In particular, can writing about stressful life experiences affect a

patient’s disease status? Smyth et al. (1999) conducted a study to address this

question for patients with asthma or rheumatoid arthritis. In the study,

107 patients with asthma or rheumatoid arthritis were assigned either to a

control group (37 patients) or an experimental group (70 patients). Patients in

the control group were asked to write about emotionally neutral topics, while

those in the experimental group were asked to write about the most stressful

events in their lives. Using standard quantitative measures of medical status,

the authors found that 33 of the patients in the experimental group had an

improved disease status following the writing exercise, while 9 of the control

group patients showed such an improvement. What are the relevant

populations and events of interest in this study? What are the sample

estimates for the probabilities of these events?

6.1.13. American Tastes in Art. What do Americans want to see in their art,

particularly paintings? Komar et al. (1997) presented the results of an exten-

sive poll regarding American tastes in art. A group of 1001 randomly selected

subjects answered a list of 102 individual questions about their art

preferences. Of the 1001 respondents, 681 indicated that they preferred the

colors in a painting to be blended into each other, rather than kept separate.
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What is the relevant population and event of interest in this question from

their study? What is the sample estimate for the probability of this event?

6.1.14. Do Paintings Need to Have Meaning? In the art opinion poll discussed

in Exercise 6.1.13, the authors reported that 751 of the respondents indicated

that paintings do not necessarily have to teach us any lessons to be

appreciated. What is the event of interest in this question from their study?

What is the sample estimate for the probability of this event?

6.2 Interval Estimation

General Concept In the previous section, discussion centered around how to

use data in a random sample X1, ..., Xn to provide a point estimator bθ for a

population parameter θ. While the particular value of this estimator for our

observed sample data does, indeed, yield information about the unknown

value of θ, we must also recognize the fact that it has been obtained in the

process of random sampling from the underlying probability distribution.

Thus the value of the estimator bθ will vary from random sample to random

sample; that is, bθ is a sample statistic with its own probability distribution,

known as the sampling distribution ofbθ. As we discussed previously in Chap. 5,

this sampling distribution of bθ contains important information about the

chance variation that accompanies the fact that our estimate is based on the

realization of a specific, single random sample. The sampling distribution can

be used to provide us with estimates of the margin of error that accompanies

the use of bθ to estimate the parameter θ, thereby enabling us to develop not

only a plausible interval of values for θ but also to attach a specific confidence

that the true value of θ will, in fact, be captured by this interval.

We encounter information of this type on a daily basis in the media,

whether it is newspapers, magazines, radio, television, or on the Internet.

For example, the results of an opinion poll regarding how well Americans
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think the President is doing his job might be reported (in any of the aforemen-

tioned media) as a 57% favorable job approval rating with a stated margin of

error of � 4%. The 57% approval rating obtained in the poll provides the

sample estimate, p̂ ¼ :57, of p ¼ {proportion of all Americans who approved

of the way the President was doing his job at the time of the opinion poll}. On

the other hand, the � 4% margin of error results from the fact that the

observed sample percentage of respondents who believe that the President

is doing a good job (57% for this particular sample) would, in all likelihood, be

something other than 57% if we interviewed a different set of randomly

selected subjects in a second random sample; that is, the percentage who

approve of the way the President is doing his job will vary from sample to

sample. The stated margin of error (� 4% for this example) is a direct

consequence of this sampling variability and the confidence we wish to

have that the observed interval (53%–61% for this example) does, indeed,

contain the true percentage of all Americans who approve of the way the

President is doing his job. Survey results such as these are usually stated with

a margin of error that provides us with 95% confidence that the obtained

interval does indeed contain the true percentage.

Using this preliminary discussion of typical poll results to help motivate

the concept and guide us through its various components, we consider now

the formal definition of a confidence interval for a population parameter θ

based on a random sample from the population.

Definition 6.1 Let X1, ..., Xn be a random sample from a probability

distribution for which θ is a parameter of interest and let CL be a number

between 0 and 1. A level CL confidence interval for the parameter θ is

an interval that depends on the sample X1, . . ., Xn in such a way that our

sampling process has probability CL of producing an observed interval

that contains the unknown value of θ.
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We commonly let (bθL , bθU ) represent a level CL confidence interval for θ,

where bθL and bθU are a pair of sample statistics. Then the sampling process is

such that we have probability CL of obtaining sample values X1 ¼ x1, ..., Xn ¼
xn for which the observed interval (bθL , bθU ) contains the unknown value of θ;

that is, for which

bθL < θ < bθU: ð6:2Þ

Once our sample values x1, ..., xn have been observed, we say that we are

100CL% confident that the true value of θ is in the attained interval ( bθL , bθU ).

The level CL, which represents our confidence in the observed interval, is

almost always taken to be at least .90 (most commonly, .95) and only rarely

would one ever use a level smaller than .80.

The percent confidence that an interval will contain the true unknown

value of θ is usually related to the variability from one sample to another of a

point estimator bθ for θ. The more variable is the estimator bθ, the larger will be

the required number of observations in our sample in order to attain a desired

confidence level.

As discussed in Chap. 5, such information about the sampling variability

of an estimatorbθ is provided directly by its sampling distribution. We shall see

explicitly in later examples in this section how to use the sampling distribu-

tion for a point estimator bθ to establish an appropriate confidence level CL

prior to collecting our random sample X1, . . ., Xn. On the other hand, compu-

tation of the values of the statistics bθL and bθU for a specific set of sample data

and the resulting determination of the confidence interval for θ are functions

solely of the single, observed values, x1, . . ., xn of our random sample.

It is important to understand why the interval estimates for a parameter θ

are called “confidence intervals” rather than “probability intervals”, which

might at first impression seem more natural. The distinction relates to the fact
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that the randomness involved in developing the interval of plausible values

for θ is associated entirely with the process of obtaining the random sample,

not with the parameter itself. Thus, for example, if we have a pair of statisticsbθL and bθU such that (bθL , bθU ) is a 95% confidence interval for θ, the proper

interpretation is that 95% of all possible random samples that could be chosen

from the underlying population will yield data for which the computed value

of (bθL , bθU ) will, in fact, contain the unknown value of the population

parameter θ. In terms of a probability statement, this corresponds to

P we select a random sample X1; . . . ;Xn such that bθL < θ < bθUn o
¼ :95:

On the other hand, once we actually select our random sample and obtain the

sample data X1 ¼ x1, ..., Xn ¼ xn, the corresponding observed confidence

interval (bθL, bθU ) will, with certainty, either contain the true (unknown) value

of θ or it will not. There is no longer any probability (i.e., randomness)

associated with the statement that we are 95% confident that bθL < θ < bθU.
We are either right or wrong and we have no way to know which. However,

we have high confidence in the procedurewe used to construct our interval. In

fact, we know that 95% of the confidence intervals we could build using this

procedure do, in fact, contain the true value of the parameter θ. We return at

the end of the section to illustrate with a specific example this important

relationship between the pre-sampling determination of the level of a confidence

interval and the observed confidence intervals produced by different individual

samples.

As an illustrative example of the concepts involved in the construction of a

confidence interval for a parameter, consider the estimation of the percentage

white flowers discussed in Examples 6.1 and 6.2. One of the quantities of

interest in these examples was the proportion of closed community structures

that contain more than 50% white flowers, denoted by pClosed. From the data
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collected by Ostler and Harper (1978), recall that nine of the eleven closed

communities studied had a majority of white flowers, yielding the point

estimate p̂Closed ¼ 9=11 ¼ :8182 for pClosed. However, we also know that if

we were to examine other randomly selected groups of eleven closed

communities, we might very well observe that eight or ten (or, in fact, any

number from zero to eleven) of them have a majority of white flowers. This

phenomenon represents the variability inherent in the sampling process and

information about this uncertainty is provided by the sampling distribution of

p̂Closed ¼ [percentage of eleven randomly selected, closed communities that

have a majority white flowers]. While our best estimate of the true value of

pClosed for our obtained data is, in fact, .8182, we also know that we COULD

have obtained nine out of eleven closed communities having a majority white

flowers even if the true value of pClosed is .7 or .9 or, in fact, any value strictly

between 0 and 1. Intuitively, we feel that the observed outcome p̂Closed ¼ 9=11

is more likely to have occurred if the true value of pClosed is in the interval

(.7, .9), as opposed to being in the interval (.1, .3), for example.

Now, the sampling distribution of p̂Closed contains information about the

variability of p̂Closed associated with the sampling process. In fact, we can use

this sampling distribution to obtain estimates of the random error of the

estimator p̂Closed and use this error estimate to provide an interval of plausible

values for pClosed , say ( p̂L, p̂U ), such that a prescribed percentage, say 90%, of

all possible random samples of eleven closed communities would provide

sample observations for which the true value of pClosed belongs to the

observed confidence interval ( p̂L, p̂U ). Then we can state that (p̂L, p̂U) is a

90% confidence interval for pClosed , with the interpretation that 90% of all

possible random samples of eleven closed communities would produce

values of p̂L and p̂U for which pClosed is where we say it is, namely, between

p̂L and p̂U.
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As in this example about pClosed, it is often the case that a confidence

interval for a parameter θ has a very intuitive representation. Such an interval

is commonly centered at a point estimatebθ for the parameter and the length of

the interval is related to both the desired percentage confidence in the interval

and the sampling variability associated with the estimate bθ ; that is, the

confidence interval for θ is of the form

bθ �margin of error for bθ as an estimator of θ, ð6:3Þ

where the margin of error increases as a function of both the stipulated

confidence level CL and the sampling variability of the estimator bθ. A confi-

dence interval is thus typically centered at our best estimate of θ, and the

degree of uncertainty we have in that estimate is directly reflected in the

width of the confidence interval. In Figs. 6.2 and 6.3 we present two

possible sampling distributions for a point estimator bθ . It is clear from the

figures that both sampling distributions are centered at the true parameter

value θ ¼ 5. However, it is also clear that the sampling variability associated

with the sampling distribution of bθ is considerably greater for Fig. 6.3 than it

is for Fig. 6.2. Confidence intervals of the form (6.3) for θwould directly reflect

Fig. 6.2 Sampling distribution of bθ with small sampling variability
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this fact in the sense that the margin of error for bθ will be much larger for the

sampling distribution in Fig. 6.3 than for the one in Fig. 6.2. This would result

in wider confidence intervals for θ under the sampling distribution conditions

of Fig. 6.3.

Example 6.4. Survey Data–the Buckeye State Poll To illustrate the confi-

dence interval expression displayed in Eq. (6.3), consider the results of the

Buckeye State Poll (conducted by The Ohio State University College of Social

and Behavioral Sciences by telephone during the period February 17–26,

1998) reported in the April 9, 1998 issue of the Columbus Dispatch newspa-

per. That poll involved 936 women in central Ohio and a number of questions

in the poll dealt with issues related to whether standards governing sex and

violence on television should be tightened. For one such question, 431 of the

936 respondents indicated that they considered the television industry to be a

greater danger to society than government restriction on what appears on

television. Based on these sample data, it was estimated that (431/936)% ¼
46% of all women in central Ohio consider the television industry to be a

greater danger to society than government restrictions on what can appear on

television, with a margin of error of � 3.2%. As we shall see later, this margin

of error is not only a function of the estimated percentage (46%), but also the

Fig. 6.3 Sampling distribution of bθ with large sampling variability
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number of women included in the poll and the stated confidence level (95%)

for the interval. The end result is that (42.8%, 49.2%) is an approximate 95%

confidence interval for the proportion of all central Ohio women who con-

sider the television industry to be a greater danger to society than government

restrictions on what can appear on television.

Many, but not all, of the confidence intervals that we study in this text will

be of the form given in (6.3), namely,bθ�margin of error forbθ. However, even

those that we consider which do not formally match the structure in (6.3) will

have the same flavor; namely, the center of the interval will be roughly

associated with a point estimate of the parameter and the length of the

interval will be directly related to the variability associated with the sampling

distribution of the point estimator.

Probability of an Event Let A denote an event of interest with respect to the

underlying population and let p denote the probability that this event occurs

when we randomly sample a single observation from our population (i. e., p is

the proportion of the population that belongs to event A). For the Buckeye

State Poll data, for example, we are interested in the population of central

Ohio women and the event A corresponds to the statement that the television

industry is a greater danger than government restrictions on television. The

parameter p is then the proportion of central Ohio women who view the

television industry to be the greater danger.

As discussed in Sect. 1, the natural estimator for p is p̂ (6.1), the proportion

of the sample observations for which the event A occurs. Labeling a response

that rates the television industry as a greater danger than government regula-

tion to be a success, the survey data collected in the Buckeye State Poll

recorded the number of successes (431) obtained in the polling of the

sample of 936 central Ohio women. This led to the point estimate of

p̂ ¼ 431=936 ¼ :46.

6.2 Interval Estimation 439



The estimator p̂ provides us with a natural place to start in our search for a

confidence interval for p. However, in order to determine the appropriate

upper and lower endpoints for a confidence interval for p, we also need to

have additional information about the variability of p̂ from random sample to

random sample. This leads us naturally to the sampling distribution of p̂ or,

equivalently, that of the random variable B¼ np̂¼ [number of times the event

A occurs in a random sample of size n]. Thus, for the Buckeye State Poll data it

is necessary to know the sampling variability associated with the numbers of

‘successes’ that might be obtained in interviews of different random samples

of 936 central Ohio women. As we shall see later, this is the additional

information that was used by the Buckeye State Poll to construct the 95%

confidence interval of 42.8% to 49.2% for p.

Previously, in Sect. 4.3,we discussed the fact that a statistic corresponding

to the number of successes observed in n independent Bernoulli trials with

constant probability of success p has a sampling distribution that is binomial

with parameters n and p. Since the statistic B is such a count of independent

Bernoulli successes, its sampling distribution will be binomial with

parameters n and p. In particular, this means that p̂ is an unbiased estimator

for p (i.e., that E
�
p̂
� ¼ p) and that the standard deviation of p̂ (measuring the

variability of the estimator from random sample to random sample) is

p 1�pð Þ
n

h i1=2
. These facts can be used along with the R function binom:testð Þ to

obtain exact confidence intervals for p even for small sample sizes n. See, for

example, Section 2.3 of Hollander et al. (2014). However, in our discussion

here we will concentrate on the use of the large sample approximation to the

sampling distribution of p̂ (or, equivalently, B) to provide more intuitive

approximate confidence intervals for p. These large sample approximations

will be quite adequate for most settings where the sample size n is at least 50.

First we note that the standard deviation of p̂, namely, p 1�pð Þ
n

h i1=2
, depends on
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the unknown value of p. However, an intuitive sample estimator for this

standard deviation is provided by simply replacing p by its sample estimator,

p̂, yielding
p̂
�
1� p̂

�
n

� �1=2
. This estimated standard deviation is called the

standard error of the estimator p̂ and we denote this standard error by S.E.(

p̂). It is then quite reasonable to construct confidence intervals for the param-

eter p that are of the form

p̂ � kS:E:
�
p̂
� ¼ p̂ � k

p̂
�
1� p̂

�
n

� �1=2
, ð6:4Þ

where k is an appropriate constant chosen to be the proper number of

standard errors we are required to add and subtract from p̂ to achieve the

approximate desired confidence in the resulting interval. Thus, while the

point estimator p̂ provides us with the center of the interval, we must rely

on the standard error of p̂ to help determine the width of the interval. In

addition, the constant k is an increasing function of the confidence associated

with the interval. In order to increase our confidence in the interval (6.4) for a

fixed value of the point estimator p̂, we must increase our value of k, which, in

turn, results in a wider confidence interval.

One last piece of the puzzle remains to be completed. For an interval of the

form (6.4) we need to know how to compute the approximate confidence level

CL for a given k and how to find the value of k that will yield a desired

approximate confidence level CL. Once again, this requires the sampling

distribution of p̂ (or, equivalently, of B ¼ np̂ ). In Sect. 5.3, we pointed out

that the sampling distribution of the standardized variable

Zp̂ ¼ �
p̂ � p

�
= p̂
�
1� p̂

�
=n

� �1=2
can be approximated by theN(0, 1) probability distribution for a large number

of observations n. Thus, for large n, we have
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P �k < Zp̂ < k
� 	 � P Z < kf g � P Z < �kf g, ð6:5Þ

where Z ~ N(0, 1). This central probability CL for a standard normal distribu-

tion is illustrated using R in Fig. 6.4.

Because we want the probability between –k and k to be CL, the symmetry

of the standard normal distribution implies that the probability to the right of

k and the probability to the left of –k must both be equal to (1-CL)/2. This is

satisfied if we choose k to be the upper (1-CL)/2th percentile for the standard

normal distribution, z(1 � CL)/2, since then

P �z 1�CLð Þ=2 < Zp̂ < z 1�CLð Þ=2
� � � P Z < z 1�CLð Þ=2

� �� P Z < �z 1�CLð Þ=2
� �

¼ 1� 1� CL
2


 �
� 1� CL

2
¼ CL:

ð6:6Þ

It follows that

P �z 1�CLð Þ=2 < Zp̂ < z 1�CLð Þ=2
� �
¼ P p̂ � z 1�CLð Þ=2S:E:

�
p̂
�
< p < p̂ þ z 1�CLð Þ=2S:E:

�
p̂
�� 	

,

and Eq. (6.6) implies that

Fig. 6.4 Standard normal distribution with central probability CL
between –k and k

-k k

CL

442 6 Statistical Inference: Estimating Probabilities and Testing and Confirming Models



P p̂ � z 1�CLð Þ=2S:E:
�
p̂
�
< p < p̂ þ z 1�CLð Þ=2S:E:

�
p̂
�� 	 � CL:

Hence, it follows that an approximate 100CL% confidence interval for the

parameter p that is appropriate for large n is given by�
p̂L; p̂U

� ¼ p̂ � z 1�CLð Þ=2S:E:
�
p̂
�
; p̂ þ z 1�CLð Þ=2S:E:

�
p̂
�� �

¼ p̂ � z 1�CLð Þ=2S:E:
�
p̂
�
: ð6:7Þ

Thus we see that getting a confidence interval for pwith approximate level

.05 (that is, an approximate 95% confidence interval) involves using the upper

2.5% point for the standard normal distribution, while an approximate 90%

confidence interval for p uses the upper 5% point for the standard normal

distribution. In general, getting a confidence interval for p with approximate

level CL uses the upper (1-CL)/2% point, z(1 � CL)/2, for the standard normal

distribution.

Example 6.5. Confidence Intervals for Open and Closed Communities

(Continuation of Examples 6.1 and 6.2) In Example 6.2 we saw that the

point estimates of pOpen ¼ [proportion of open communities which contain a

majority white flowers] and pClosed ¼ [proportion of closed communities

which contain a majority white flowers] based on the Ostler-Harper data

are p̂Open ¼ :0714 and p̂Closed ¼ :8182. Moreover, these estimates are based

on samples of nOpen ¼ 14 and nClosed ¼ 11 open and closed communities,

respectively. Note that both of these sample sizes are much smaller than the

recommended size of 50 for best use of the large sample approximation in

Eq. (6.6). However, we choose to illustrate the confidence interval in (6.7) with

these small sample sizes in order to point out difficulties that can occur in such

applications. (For discussion of an alternative approach to obtaining confi-

dence intervals for a population probability when we have a small sample

size, see Exercises 6.A.19, 6.B.20, and 6.B.22.)
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To compute an approximate 95% confidence interval for pOpen, we set CL

¼ .95 and find z(1-CL)/2 ¼ z.05/2 ¼ z.025 ¼ 1.96. We can also find this upper tail

probability by using the R function qnormð Þ with the lower:tail argument

specified to be FALSE as follows.

> qnorm(0.025, lower.tail=FALSE)

[1] 1.959964

From (6.7), the approximate 95% confidence interval for pOpen is then

given by

p̂Open � z:025S:E:
�
p̂
� ¼ :0714� 1:96 :0714 1� :0714ð Þ=14½ �1=2

¼ :0714� :1349 ¼ �:0635; :2063ð Þ:

Since pOpen is a probability, it must be strictly between 0 and 1, inclusive.

Hence, the lower bound of -.0635 provided in the approximate confidence

interval for pOpen is not reasonable. This is a direct consequence of the fact that

the large sample approximation used in construction of the approximate 95%

confidence interval for pOpen is not sufficiently accurate for a sample size as

small as n ¼ 14. In such cases, we simply truncate the lower limit of the

confidence interval at 0 and state that we are approximately 95% confident

that no more than 20.63% of all open communities will have a majority of

white flowers.

On the other hand, we see that a corresponding approximate 95% confi-

dence interval for pClosed is given by

p̂Closed � z:025S:E:
�
p̂
� ¼ :8182� 1:96 :8182 1� :8182ð Þ=11½ �1=2

¼ :8182� :2279 ¼ :5903; 1:0461ð Þ:

Here we see that the inaccuracy of the normal approximation for the small

sample size n ¼ 11 manifests itself in an unreasonable upper bound of 1.0461

for the probability pClosed. Once again the proper approach is to truncate the

upper limit for the confidence interval at 1 and state that we are
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approximately 95% confident that no less than 59.03% of all closed

communities will have a majority white flowers.

We note that the approximate confidence intervals for pOpen and pClosed do

not contain any values in common, providing some evidence that there likely

is a difference between the percentages of all open and closed communities

that have a majority of white flowers. We will return to formally assess this

conjecture in Sect. 3.

We point out that the form of the approximate 100CL% confidence interval

for p in (6.7) implies that we are roughly 100CL% confident that our margin of

error in using p̂ to estimate p will not be more than �z 1�CLð Þ=2 S:E:
�
p̂
�
. Thus

from the approximate 95% confidence interval for pClosed discussed in Exam-

ple 6.4, we are roughly 95% confident that our estimate of pClosed, namely,

p̂Closed ¼ :8182, is not in error by more than �z:025 S:E:
�
p̂
� ¼ �:2279.

A similar discussion applies to the Buckeye State Poll data reported in the

April 9, 1998 issue of the Columbus Dispatch and discussed previously in

Example 6.4. There we noted that a survey of 936 women in central Ohio led

to the approximate 95% confidence interval of (42.8%, 49.2%) for the propor-

tion, p, of all central Ohio women who consider the television industry to be a

greater danger to society than government restrictions on what can appear on

television. Thus we estimate the proportion p to be 46% and we are roughly

95% confident that our margin of error with this estimate is no more than �
3.2%, as noted in the Dispatch article. Now we know where this 3.2% comes

from, since it is the margin of error in (6.7); that is, for this particular question

from the February 1998 Buckeye State Poll survey, we have (with 95% confi-

dence) that the margin of error associated with our estimate p̂ ¼ 46% is

�z:025S:E:
�
p̂
� ¼ �1:96 :46ð Þ 1� :46ð Þ=963½ �1=2 ¼ �:0315,

in agreement (up to possible rounding error) with the margin of error of �
3.2% quoted in the Dispatch article.
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What Should One Expect of the Approximate Confidence Interval for p

in (6.7)? When we introduced the general concept of confidence intervals in

Sect. 2 we made a special point to emphasize that the randomness associated

with a given confidence interval is in the sampling process to obtain the data.

The population parameter θ for which we are seeking an interval estimate is a

constant that does not vary from sample to sample. Thus if (bθL , bθU ) is a 95%

confidence interval for the parameter θ, the proper interpretation is that 95%

of all possible random samples will yield observed confidence limitsbθL andbθU
for which the interval (bθL , bθU ) contains θ, and the other 5% of the random

samples will yieldbθL andbθU values for which (bθL ,bθU ) fails to contain θ, that is,

either θ > bθU or θ < bθL. Any specific confidence interval computed from a

particular random sample either will or will not contain θ. Moreover, since the

value of θ is unknown, we would have no way to deduce whether the single

confidence interval resulting from our one random sample has, in fact, suc-

cessfully covered θ . However, we remain 95% confident that the process of

collecting our random sample has provided us with a set of data for which

this is the case.

We illustrate the process of simulation using R and the approximate

confidence interval for the parameter p ¼ P(event A occurs) given in

Eq. (6.7). Taking 1 - CL ¼ .05 and obtaining the upper .025 percentile for the

N(0,1) distribution, z.025 ¼ 1.96, we see that the approximate 95% confidence

interval for p has the form p̂ � 1:96S:E:
�
p̂
�
. For our simulation study we

consider the setting where p¼ .6 and our sample size is n¼ 100. We obtain the

results of one such sample in R as follows.

> rbinom(n = 1, size = 100, prob = 0.6)

[1] 61

Note that in the rbinomð Þ function, the argument n refers to the number of

samples, and the argument size refers to the sample size (which we denote in
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this text by n). If we had specified n ¼ 100 and size ¼ 1, we would have ended

up with 100 samples of size 1 (which could then be added together to obtain

1 sample of size 100). For our randomly generated sample, we can use

the R function binconf ð Þ to construct the approximate 95% confidence in-

terval for p.

> binconf(x = 61, n = 100, method = 'asymptotic')

PointEst     Lower     Upper
0.61 0.5144028 0.7055972

Note that in the binconf ð Þ function, the argument n refers to the sample

size (which agrees with our notation). By specifying the method argument to be

asymptotic, we obtain the 95%confidence interval of the form p̂ � 1:96S:E:
�
p̂
�

(rather thanoneof thealternative forms;details canbe foundusing the command

?binconf ).

We see that for the above sample, the approximate confidence interval

contains the true value p ¼ 0.6 using the following commands to compare the

true value to the second and third numbers output by the binconf ð Þ function
(since the first number output is p̂).

> binconf(x = 61, n = 100, method = 'asymptotic')[2] < 0.6

[1] TRUE

> binconf(x = 61, n = 100, method = 'asymptotic')[3] > 0.6

[1] TRUE

To get some idea of the variability from random sample to random sample

(remember that is the only variability associated with the confidence interval),

we can repeat this entire sampling process M ¼ 50 times, in each case

constructing the approximate 95% confidence interval for p and recording

whether it contains the true value .6. With our understanding of the proper

interpretation of a 95% confidence interval, we should expect that roughly .95

(50) ¼ 47.5 of the confidence intervals so constructed will, in fact, contain 0.6.
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We first obtain the results of the M ¼ 50 simulations by setting the

argument n ¼ 50 in the function rbinomð Þ and storing the results in the

variable binomial_ci_results.

> binomial_ci_results = rbinom(n = 50, size = 100, prob = 0.6)

For each result stored in binomial_ci_results, we compute the approximate

95% confidence interval and check to see whether or not it contains 0.6. (This

is achieved using a for loop.) The results of the simulation are presented in

Table 6.3, along with the indication whether each of the fifty observed confi-

dence intervals actually contains the true probability .6.

Table 6.3 Fifty approximate 95% confidence intervals for p, each based on
100 randomly generated independent Bernoulli variables with constant
probability of success p = .6

Sample
number

Number of
occurrences
of event A p̂

Lower
CB

Upper
CB

Does the observed
interval contain
the true value p = .6?

1 62 0.62 0.524864 0.715136 Yes
2 56 0.56 0.462708 0.657292 Yes
3 55 0.55 0.452491 0.647509 Yes
4 49 0.49 0.392020 0.587980 No
5 62 0.62 0.524864 0.715136 Yes
6 63 0.63 0.535370 0.724630 Yes
7 58 0.58 0.483263 0.676737 Yes
8 59 0.59 0.493601 0.686399 Yes
9 57 0.57 0.472965 0.667035 Yes

10 57 0.57 0.472965 0.667035 Yes
11 64 0.64 0.545920 0.734080 Yes
12 59 0.59 0.493601 0.686399 Yes
13 56 0.56 0.462708 0.657292 Yes
14 64 0.64 0.545920 0.734080 Yes
15 61 0.61 0.514401 0.705599 Yes
16 58 0.58 0.483263 0.676737 Yes
17 60 0.60 0.503980 0.696020 Yes
18 69 0.69 0.599351 0.780649 Yes

(continued)
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Table 6.3 (continued)

Sample
number

Number of
occurrences
of event A p̂

Lower
CB

Upper
CB

Does the observed
interval contain
the true value p = .6?

19 58 0.58 0.483263 0.676737 Yes
20 64 0.64 0.545920 0.734080 Yes
21 70 0.70 0.610182 0.789818 No
22 62 0.62 0.524864 0.715136 Yes
23 60 0.60 0.503980 0.696020 Yes
24 50 0.50 0.402000 0.598000 No
25 58 0.58 0.483263 0.676737 Yes
26 54 0.54 0.442314 0.637686 Yes
27 54 0.54 0.442314 0.637686 Yes
28 71 0.71 0.621063 0.798937 No
29 62 0.62 0.524864 0.715136 Yes
30 62 0.62 0.524864 0.715136 Yes
31 67 0.67 0.577838 0.762162 Yes
32 65 0.65 0.556514 0.743486 Yes
33 62 0.62 0.524864 0.715136 Yes
34 64 0.64 0.545920 0.734080 Yes
35 56 0.56 0.462708 0.657292 Yes
36 55 0.55 0.452491 0.647509 Yes
37 61 0.61 0.514401 0.705599 Yes
38 64 0.64 0.545920 0.734080 Yes
39 63 0.63 0.535370 0.724630 Yes
40 54 0.54 0.442314 0.637686 Yes
41 56 0.56 0.462708 0.657292 Yes
42 57 0.57 0.472965 0.667035 Yes
43 66 0.66 0.567153 0.752847 Yes
44 52 0.52 0.422078 0.617922 Yes
45 56 0.56 0.462708 0.657292 Yes
46 52 0.52 0.422078 0.617922 Yes
47 58 0.58 0.483263 0.676737 Yes
48 68 0.68 0.588571 0.771429 Yes
49 59 0.59 0.493601 0.686399 Yes
50 60 0.60 0.503980 0.696020 Yes
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We see that 46 of the 50 (92%) constructed confidence intervals correctly

contain the true value p ¼ .6. While this is slightly below the ‘expected’

number of 47.5 (95%) successful confidence intervals, it is certainly not unrea-

sonable in view of what we have learned about sampling variation. We note

that two of the four observed confidence intervals which did not contain .6

were such that the upper confidence bound was less than .6 while the other

two unsuccessful intervals were such that the lower confidence bound

exceeded .6. This is also not unexpected in view of the symmetric nature of

our confidence interval for p.

To further add to our understanding of the proper interpretation of confi-

dence intervals, we use R to generate a second set of 50 approximate 95%

confidence intervals for p based on random samples of size 100 with proba-

bility .6 for occurrence of the event A. The results of this second simulation are

presented in Table 6.4.

Table 6.4 A second set of fifty approximate 95% confidence intervals for p,
each based on 100 randomly generated independent Bernoulli variables
with constant probability of success p = .6

Sample
number

Number of
occurrences
of event A p̂

Lower
CB

Upper
CB

Does the observed
interval contain
the true value p = .6?

1 59 0.59 0.493601 0.686399 Yes
2 63 0.63 0.535370 0.724630 Yes
3 57 0.57 0.472965 0.667035 Yes
4 60 0.60 0.503980 0.696020 Yes
5 55 0.55 0.452491 0.647509 Yes
6 54 0.54 0.442314 0.637686 Yes
7 58 0.58 0.483263 0.676737 Yes
8 61 0.61 0.514401 0.705599 Yes
9 62 0.62 0.524864 0.715136 Yes

10 64 0.64 0.545920 0.734080 Yes
11 55 0.55 0.452491 0.647509 Yes
12 63 0.63 0.535370 0.724630 Yes
13 60 0.60 0.503980 0.696020 Yes

(continued)
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Table 6.4 (continued)

Sample
number

Number of
occurrences
of event A p̂

Lower
CB

Upper
CB

Does the observed
interval contain
the true value p = .6?

14 61 0.61 0.514401 0.705599 Yes
15 59 0.59 0.493601 0.686399 Yes
16 60 0.60 0.503980 0.696020 Yes
17 61 0.61 0.514401 0.705599 Yes
18 64 0.64 0.545920 0.734080 Yes
19 57 0.57 0.472965 0.667035 Yes
20 59 0.59 0.493601 0.686399 Yes
21 59 0.59 0.493601 0.686399 Yes
22 59 0.59 0.493601 0.686399 Yes
23 58 0.58 0.483263 0.676737 Yes
24 67 0.67 0.577838 0.762162 Yes
25 72 0.72 0.631996 0.808004 No
26 59 0.59 0.493601 0.686399 Yes
27 57 0.57 0.472965 0.667035 Yes
28 57 0.57 0.472965 0.667035 Yes
29 59 0.59 0.493601 0.686399 Yes
30 55 0.55 0.452491 0.647509 Yes
31 54 0.54 0.442314 0.637686 Yes
32 55 0.55 0.452491 0.647509 Yes
33 61 0.61 0.514401 0.705599 Yes
34 66 0.66 0.567153 0.752847 Yes
35 63 0.63 0.535370 0.724630 Yes
36 63 0.63 0.535370 0.724630 Yes
37 57 0.57 0.472965 0.667035 Yes
38 59 0.59 0.493601 0.686399 Yes
39 65 0.65 0.556514 0.743486 Yes
40 58 0.58 0.483263 0.676737 Yes
41 65 0.65 0.556514 0.743486 Yes
42 62 0.62 0.524864 0.715136 Yes
43 61 0.61 0.514401 0.705599 Yes
44 59 0.59 0.493601 0.686399 Yes
45 65 0.65 0.556514 0.743486 Yes
46 60 0.60 0.503980 0.696020 Yes
47 65 0.65 0.556514 0.743486 Yes
48 59 0.59 0.493601 0.686399 Yes
49 53 0.53 0.432177 0.627823 Yes
50 53 0.53 0.432177 0.627823 Yes
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For this second set of simulated results, we see that 49 of the 50 (98%)

constructed confidence intervals correctly contain the true value p ¼ .6. Thus

in this case we slightly exceed the ‘expected’ number of 47.5 (95%) successful

confidence intervals. However, we are certainly still in rough agreement with

the 95% confidence that we place in the randomness of the sampling process.

(We note in passing that if the two sets of 50 confidence intervals are com-

bined to make a single set of 100 confidence intervals, we would, in fact, have

exactly 95 of them which contain the true value .6, in perfect agreement with

the ‘expected’ number of successful confidence intervals! Of course, this is

simply the luck of the draw, as another randomly generated set of 100 such

confidence intervals could easily have 92 or 97 or even 88 intervals that

correctly contain .6.)

In practice, of course, we would collect only one sample of

100 observations (rather than the 50 samples of 100 observations in each of

the two simulations) and it would lead to a single approximate 95% confi-

dence interval for p. Moreover, since p is unknown we would have no way to

know whether or not it belonged to the one observed confidence interval. For

the case of p ¼ .6, for example, we might obtain an interval that does, indeed,

contain .6, such as one of the 95 successful intervals in our simulation study.

On the other hand, we might be unfortunate and obtain an interval (such as

the interval (.610182, .789818) from the first set of 50 simulated samples, for

example) that does not correctly contain .6. Once we have collected our single

random sample and computed our one approximate 95% confidence interval

for p, we cannot know whether or not we are correct in our assertion that the

observed interval contains p. However, what we can say is that we are 95%

confident that our random sampling and interval construction process did, in

fact, produce an interval that contains p. Thus the proper interpretation of our

95% confidence interval for p is that if we always compute the interval in the

prescribed fashion in every situation, then 95% of the intervals obtained will

contain the true parameter value p.
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Selecting the Sample Size In constructing the approximate 95% confidence

interval for pClosed, the proportion of closed communities that contain a

majority white flowers, in Example 6.4, we found that the computed upper

limit for the interval was 1.0461. Since we knew that pClosed can not exceed

1, we truncated the upper limit to be 1 to obtain the approximate 95%

confidence interval (.5903, 1) for pClosed. This problem with the computed

upper confidence limit is due to the fact that the accuracy of the approxima-

tion used in construction of the confidence interval for p given in (6.7) is

directly related to the number of observations in the sample. The approxima-

tion is simply not very accurate for the Ostler and Harper sample size n ¼ 11.

The approximation would, of course, have been much better if we had been

able to collect a greater number of sample observations. In particular, for the

approximate 95% confidence interval for pClosed, suppose for purposes of

illustration that Ostler and Harper had included n ¼ 110 closed communities

in their study (instead of the eleven that they examined) and found that 90 of

these closed communities had a majority white flowers. For this larger data

set, we would still have p̂Closed ¼ 90=110 ¼ :8182. However, now the approxi-

mate confidence interval for pClosed would be given by

:8182� 1:96 :8182 1� :8182ð Þ=110½ �1=2 ¼ :8182� :0721
¼ :7461; :8903ð Þ:

With these “additional 99 observations” our new interval is still centered at

the point estimate p̂Closed ¼ :8182. However, we no longer have a problem

with the upper limit (.8903) exceeding the known boundary (1) for pClosed. In

addition, we notice that the length of the approximate 95% confidence inter-

val has decreased from 1 - .5903 ¼ .4097 for n ¼ 11 closed communities to

.8903 - .7461 ¼ .1442 for the hypothetical n ¼ 110 closed communities. Thus

we would be able to make a much stronger statement (with the same approx-

imate 95% confidence and observed point estimate .8182) about the unknown

value of pClosed had we observed 110 observations than we can with the
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11 observations collected by Ostler and Harper. This is no accident and it

should not be a surprise. If we were able to consider larger random samples,

we would expect less variability in our point estimator from sample to

sample. This fact translates into a smaller margin of error (i. e., more accuracy)

for our point estimator and thus shorter confidence intervals from the partic-

ular sample observed.

This naturally raises the question about whether we can decide before we

collect our sample how large a sample size is necessary in order for our

achieved confidence interval to have a margin of error no greater than some

prespecified level with which we are comfortable. To proceed along these

lines, we note that the margin of error for the approximate 100CL% confidence

interval for p given in (6.7) is �z 1�CLð Þ=2S:E:
�
p̂
� ¼ �z 1�CLð Þ=2 p̂

�
1� p̂

�
=n

� �1=2,
which depends on the value of the point estimate p̂ from our sample.

Fortunately, it can be shown mathematically that the quantity p̂
�
1� p̂

�
can

be no larger than 1
2 1� 1

2

� � ¼ 1
4; that is, the greatest margin of error for a fixed

sample size n will occur when the estimate p̂ is equal to 1/2. This is not too

surprising, since it says that the most variability in our observed sample

percentages will be associated with those events A that are least predictable

(i.e., events A for which there is a 50-50 chance of occurrence), while those

events that are virtually certain to occur (p near 1) or virtually certain not to

occur (p near 0) will yield sample percentages that vary little from sample to

sample.

Using this upper bound of 1/4 for the quantityp̂
�
1� p̂

�
, we see that the

margin of error for the approximate 100CL% confidence interval for p given in

(6.7) is never any greater than�z 1�CLð Þ=2 1
4n

� �1=2. Hence if we desire an approx-

imate 100CL% confidence interval for p with margin of error (either plus or

minus) no greater than a pre-specified value d, it suffices to choose a sample

size n such that
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z 1�CLð Þ=2
1
4n

� �1=2
¼ z 1�CLð Þ=2

2
ffiffiffi
n

p � d

or, equivalently, such that

ffiffiffi
n

p � z 1�CLð Þ=2
2d

:

Squaring both sides yields the required inequality

n � z21�CLð Þ=2=4d
2

for the necessary sample size.

Sample Size Adequate to Provide Desired Margin of Error In order to

obtain an approximate 100CL% confidence interval for the probability, p,

of an event A, that has margin of error no greater than � d, it suffices to

collect at least

n � z21�CLð Þ=2=4d
2 ð6:8Þ

sample observations and estimate the probability p by the

corresponding sample percentage p̂ ¼ number of times the event½
A occurs in the sample�=n.

Example 6.6. Sample Survey Design You have been hired to design and

conduct a sample survey in the state of Tennessee to determine the strength of

support among eligible voters for legalized casino gambling in the state. Let

p denote the proportion of eligible voters in Tennessee who favor legalizing

casino gambling in the state. It is important to your employers that you obtain
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accurate information regarding the statewide sentiment on this issue. Conse-

quently, they have asked you to provide them with an estimate of p for which

you are confident that the margin of error is not greater than � 2%. Since you

will be using the data from a random sample to obtain your estimate, you

cannot, of course, guarantee such a margin of error with certainty. However,

you can do so with any desired approximate confidence. For example, if 90%

confidence is taken to be adequate for the study, we see from Eq. (6.8) that to

satisfy the prescribed requirements, you will need to interview at least

n � zz:05=4d
2 ¼ 1:645ð Þ2=4 :02ð Þ2 ¼ 1691:3

randomly selected eligible state voters. Rounding up to maintain the desired

confidence and maximum margin of error, you decide to interview 1692

eligible state voters. With this size random sample, you can be approximately

90% confident that the observed percentage of your sample in favor of

legalizing casino gambling will not differ from the unknown p by more than

� 2%. (We point out that the actual process of obtaining a random sample of

1692 eligible voters in the state of Tennessee to interview on this question is

not necessarily an easy task. We refer you to Chap. 3 for some of the possible

approaches for creating such a random sample, as well as discussion of some

of the potential hazards to avoid in the sampling process.)

We note that if one has additional knowledge (for instance, from a prelim-

inary study) that the true value of the probability p for an event A is greater

than or equal (or less than or equal) to some known value p* 6¼ .5, the

necessary sample size to have prescribed confidence in an upper bound for

the margin of error of the sample estimator p̂ can sometimes be substantially

lower than the worst case scenario (using p¼ .5) provided by the conservative

approach in Eq. (6.8).
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Section 6.2 Practice Exercises

6.2.1. Below are three statements about a 95% confidence interval
�bθL;bθU�

for the population parameter θ. Which of them are true statements? For each

of the false statements, give a brief explanation why it is false.

(a) If the true value of θ is 2, then the probability is .95 that we will obtain

a sample for which the observed value of the statistic bθL is less than

or equal to 2 and the observed value of the statistic bθU is greater than

or equal to 2.

(b) If the observed values of the statisticsbθL andbθU for our sample arebθL¼
3.68 and bθU ¼ 8.44, then the probability is .95 that θ is between 3.68

and 8.44.

(c) If we were to collect 1000 independent samples and numerically

compute the values of the confidence interval
�bθL;bθU� for each of

them, we would expect that the true value of θwould be contained in

approximately 950 of these intervals.

6.2.2. Below are three statements about a 90% confidence interval
�bθL;bθU�

for the population parameter θ. Which of them are true statements? For each

of the false statements, give a brief explanation why it is false.

(a) Once we have collected our sample and numerically computed the

value of the confidence interval, we will be able to tell whether it

contains the true value of θ.

(b) We have collected ten separate random samples of data and numeri-

cally computed the value of the confidence interval for each of them.

If each of the first nine of these intervals does, indeed, contain the true

value of θ, then the tenth confidence interval will not contain θ.

(c) Since the endpoints of the interval bθL and bθU are statistics, their values

will vary from sample to sample. However, the probability is .95 that
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the random sample we collect will produce values of bθL and bθU such

that the true value of θ is between them.

6.2.3. If a level CL confidence interval
�bθL;bθU� for the population parameter

θ is based on a sample estimator bθ, how does the sampling variability of bθ
affect the interval? How does the choice of confidence level CL affect the

interval?

6.2.4. Stress and Blood Pressure. Consider the blood pressure study discussed

in Exercise 6.1.9. What is the standard error for the point estimate of

p ¼ P(a person will have higher blood pressure in stress-related situations

than during non-stressful daily activities)?

6.2.5. Women’s Shoe Preferences. Consider the shoe preference data in Exer-

cise 6.1.10. What is the standard error for the point estimate of the proportion

of those women who work outside the home who typically wear “flats” to

work?

6.2.6. Who Are More Stubborn—Women or Men? Consider the results of the

survey presented in Exercise 6.1.11. What is the standard error for the point

estimate of the proportion of men who would not stop and ask for directions

or consult a map if they were lost?

6.2.7. Stress and Blood Pressure. Using the blood pressure data in Exercise

6.1.9, find an approximate 92% confidence interval for

p ¼ P(a person will have higher blood pressure in stress-related situations

than during non-stressful daily activities).

6.2.8. Women’s Shoe Preferences. Consider the shoe preference data in Exer-

cise 6.1.10.
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(a) Find an approximate 95% confidence interval for the proportion of

those women who work outside the home who typically wear “flats”

to work.

(b) Find an approximate 99% confidence interval for the proportion of

those women who work outside the home who typically wear “flats”

to work.

(c) Discuss the differences between the two confidence intervals obtained

in parts (a) and (b).

6.2.9. Women’s Shoe Preferences. Consider the shoe preference data for

women with more than 4 years of college who work outside the home, as

presented in part (b) of Exercise 6.1.10. Can you use these data to find an

approximate 98% confidence interval for the proportion of women with more

than 4 years of college who work outside the home and who typically wear

“flats” to work? If yes, find the confidence interval. If no, explain why not.

6.2.10. Lost While Driving. Consider the results of the survey presented in

Exercise 6.1.11. Can you use these data to find an approximate 90% confi-

dence interval for the proportion of younger drivers (ages 18-24) who have

experienced being lost while driving? If yes, find the confidence interval. If no,

explain why not.

6.2.11. Using an appropriate software package (such as R), simulate 50 ran-

dom samples, each with sample size n ¼ 100, from a population with p ¼ P

(event A occurs) ¼ .9. For each of these 50 random samples, compute an

approximate 95% confidence interval for p and record whether or not .9 is in

the interval (i.e., whether or not the observed confidence interval does, in fact,

contain the true value of p).

(a) Howmany of the 50 confidence intervals should we expect to contain

the value p ¼ .9?
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(b) How many of the 50 simulated confidence intervals actually did

contain the value p ¼ .9?

(c) Repeat the entire process another 50 times and answer parts (a) and

(b) once again for this next set of random samples. Comment on your

findings from the two sets of 50 random samples.

(d) Compare these results with the corresponding outcomes discussed in

the text when p ¼ .6. In particular, what are the average center and

average length for the one hundred 95% confidence intervals when

p¼ .6?What are the corresponding average center and average length

for the one hundred 95% confidence intervals obtained in this exercise

when p ¼ .9? Discuss similarities or differences between these sum-

mary statistics for the two sets of simulations.

6.2.12. Using an appropriate software package (such as R), simulate 50 ran-

dom samples, each with sample size n ¼ 100, from a population with p ¼ P

(event A occurs) ¼ .9. For each of these 50 random samples, compute an

approximate 90% confidence interval for p and record whether or not .9 is in

the interval (i.e., whether or not the observed confidence interval does, in fact,

contain the true value of p).

(a) Howmany of the 50 confidence intervals should we expect to contain

the value p ¼ .9?

(b) How many of the 50 observed confidence intervals actually did

contain the value p ¼ .9?

(c) Repeat the entire process another 50 times and answer parts (a) and

(b) once again for this next set of random samples. Comment on your

findings from the two sets of 50 random samples.

(d) Compare these results with the corresponding outcomes for the 95%

confidence intervals discussed in Exercise 6.2.11 when p ¼ .9. In

particular, what are the average center and average length for the

one hundred 95% confidence intervals when p ¼ .9? What are the
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corresponding average center and average length for the one hun-

dred 90% confidence intervals obtained in this exercise when p ¼ .9?

Discuss similarities or differences between these summary statistics

for the two sets of simulations.

6.2.13. Using an appropriate software package (such as R), simulate 50 ran-

dom samples, each with sample size n ¼ 100, from a population with p ¼ P

(event A occurs) ¼ .6. For each of these 50 random samples, compute an

approximate 99% confidence interval for p and record whether or not .6 is in

the interval (i.e., whether or not the observed confidence interval does, in fact,

contain the true value of p)

(a) Howmany of the 50 confidence intervals should we expect to contain

the value p ¼ .6?

(b) How many of the 50 observed confidence intervals actually did

contain the value p ¼ .6?

(c) Repeat the entire process another 50 times and answer parts (a) and

(b) once again for this next set of random samples. Comment on your

findings from the two sets of 50 random samples.

(d) Compare these results with the corresponding outcomes for the 95%

confidence interval discussed in the text when p ¼ .6. In particular,

what are the average center and average length for the one hundred

95% confidence intervals when p ¼ .6? What are the corresponding

average center and average length for the one hundred 99% confi-

dence intervals obtained in this exercise when p ¼ .6? Discuss

similarities or differences between these summary statistics for the

two sets of simulations.

6.2.14. Let p be the probability of the event A in a population. Suppose that

A occurs 18 times in a random sample of 25 observations from the population.

What approximate confidence do we have that p is contained in the interval

(.544, .896)?
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6.2.15. Let p be the probability of the event A in a population. If (.1788, .3212)

is an approximate 90% confidence interval for p based on a random sample of

size n from the population, in what percentage of the sample observations did

the eventA occur? Howmany observations were there in the random sample?

6.2.16. Let p be the probability of the event A in a population. Suppose that

(.1877, .4123) is a confidence interval for p based on a random sample of size

n from the population.

(a) In what percentage of the sample observations did the event A occur?

(b) What approximate confidence do we have in the interval (.1877,

.4123) if the sample size is n ¼ 64?

(c) If we have approximate confidence 98.58% in the interval (.1877,

.4123), what is the sample size n?

(d) Discuss the implications of your answers to (b) and (c).

6.2.17. Let p be the probability of the event A in a population. Suppose that

A occurs in 37 out of 82 observations from the population. Compute the

approximate 90%, 95%, and 99% confidence intervals for p. Discuss the

similarities and differences in these three intervals.

6.2.18. Let p be the probability of the event A in a population. Suppose that

A occurs in 30 out of 50 observations from the population.

(a) Compute an approximate 92% confidence interval for p.

(b) What approximate confidence do you have in the interval obtained in

part (a) if the sample size had been 100 (with 60 event A occurrences)

instead of 50?

(c) What approximate confidence do you have in the interval obtained in

part (a) if the sample size had been 25 (with 15 event A occurrences)

instead of 50?

(d) Discuss your findings in parts (a) – (c).
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6.2.19. Let p denote the probability of the event A in a population. Consider

the approximate 95% confidence interval for p based on a random sample of

size 100 from the population, as given in expression (6.7). Suppose we collect

10 independent samples, each of sample size n¼ 100, from the population and

compute the 95% confidence interval for each of these samples. Let B denote

the number of these ten confidence intervals that contain the true value of p.

(a) How many of the ten confidence intervals should we expect to con-

tain the true value of p?

(b) What is the sampling distribution of the statistic B?

(c) If the true value of p is .75, what is the probability that B is greater

than 7?

(d) Does your answer to part (c) change if the true value of p is .34?

Explain.

6.2.20. Let p denote the probability of the event A in a population. You wish

to use a random sample of size n from the population to construct an

approximate 95% confidence interval for p.

(a) How large should n be if you want your confidence interval to have a

margin of error no greater than � .10?

(b) How large should n be if you want your confidence interval to have a

margin of error no greater than � .01?

6.2.21. Let p denote the probability of the event A in a population. You wish

to use a random sample of size n from the population to construct an

approximate confidence interval for p that will have a margin of error no

greater than .05.

(a) How large should n be if you want your approximate confidence in

the interval to be 95%?

(b) How large should n be if you want your approximate confidence in

the interval to be 90%?
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6.2.22. Women’s Shoe Preferences. Consider the shoe preference data for

women with more than 4 years of college who work outside the home, as

presented in part (b) of Exercise 6.1.10. Let p denote the proportion of this

group of women who typically wear ‘flats’ to work. How many women with

this educational background would have to have been part of the telephone

interviewing process in order to guarantee that the approximate 95% confi-

dence interval for p would not be in error by more than � .04?

6.2.23. Lost While Driving. Consider the study discussed in Exercise 6.1.11

regarding a number of issues about being lost while driving. In part (c) of that

exercise, it was noted that 11.9% of older Americans (ages 54-64) in the survey

reported that they had experienced being lost while driving. Let p denote the

proportion of all Americans in this age group who have experienced being

lost while driving. Howmany Americans would have to have been part of the

survey in order to guarantee that the approximate 90% confidence interval for

p would not be in error by more than � .25?

6.2.24. Whose Rights Do the Courts Protect? In a telephone interview survey

conducted on February 2, 1994, ABC News found that 447 out of

520 interviewed adults agreed with the following statement: “The court

system in the United States does too much to protect the rights of people

who are accused of crimes, and not enough to protect the rights of crime

victims.”

(a) Let p denote the percentage of all adults who agree with the given

statement. Using the ABC News data, find an approximate 94%

confidence interval for p.

(b) Can we conclude from the findings of the ABC News telephone

interviews that a large majority of adults feel that the court system

in the United States does too much to protect the rights of people who

are accused of crimes? Or that a large majority of adults feel that the

court system in the United States does not do enough to protect the
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rights of crime victims? Comment on the wording of the statement

used by ABC News in their telephone interviews.

6.2.25. Men and Candy. In a study of 7841 men, Lee and Paffenbarger (1998)

found that 3312 of the respondents indicated that they ‘almost never’ ate

candy. This was taken to be the ‘non-consumer’ group. The remaining 4529

men made up the ‘candy consumer’ group.

(a) Let p denote the percentage of all men who almost never eat candy.

Viewing the 7841 men in the Lee and Paffenbarger study as a random

sample from the population of all men, find an approximate 96%

confidence interval for p.

(b) In reality, the 7841 men in the Lee and Paffenbarger (1998) study were

Harvard alumni who had been undergraduates at Harvard between

1916 and 1950. Does this affect the interpretation of the confidence

interval for p obtained in part (a)? If so, how?

6.2.26. Men and Candy. Consider the candy-consumer survey data discussed

in Exercise 6.2.25. Lee and Paffenbarger (1998) also found that 1565 of the

non-consumers of candy and 1987 of the candy-consumers in their sample

took vitamin or mineral supplements on a regular basis.

(a) Viewing the 3312 male non-consumers in the Lee-Paffenbarger sam-

ple as representative of all male non-consumers of candy, find an

approximate 95% confidence interval for the percentage of male

non-consumers of candy who take vitamin or mineral supplements

on a regular basis.

(b) Viewing the 4529 male candy-consumers in the Lee-Paffenbarger

sample as representative of all male candy-consumers, find an

approximate 95% confidence interval for the percentage of male

candy-consumers who take vitamin or mineral supplements on a

regular basis.
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(c) Compare the two confidence intervals obtained in parts (a) and (b).

What can be said about the vitamin and mineral supplements habits

of the male non-consumer and candy-consumer groups?

6.3 Hypothesis Testing

The General Concept Thus far in our study of statistical inference we have

concentrated directly on point and interval estimation of a population param-

eter θ of interest. In some settings such estimation is in itself the most

appropriate way to address the important questions in a study and additional

methods of inference are not necessary. However, in many settings we are

also interested in using the sample data to assess the validity of some claim

(hypothesis) about the population. In such cases, we need statistical

procedures, called hypothesis tests, that will enable us to use the evidence

available in the collected sample observations to reach a logical and defensible

conclusion about the validity of the a priori (“from the earlier” in Latin)

hypothesis. Often the appropriate hypothesis tests are themselves based on

point or interval estimators of a relevant population parameter. However, the

statistical methodology for testing hypotheses and the associated procedural

steps needed to reach a conclusion regarding the hypotheses are generally

more complicated than those associated with either point or interval estima-

tion. We introduce the structure associated with hypothesis testing with the

following example.

A ‘good’ friend of yours has asked you to spend a nice sunny afternoon

playing a ‘friendly’ game of chance out on the college oval. She suggests that

you flip a coin and she will pay you a dime for every tail that occurs and you

must pay her a dime for every head that occurs. Since it is a beautiful day and

you like your friend’s company, you agree to meet her on the oval at 2 p.m.

However, as the day moves along you begin to have a few concerns about the

game. After all, you have heard that several students created biased coins
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with P(heads) ¼ .9 in an industrial arts class and your friend is in that class.

You would not be so worried except for the fact that she said she would bring

the coin and that she really felt that heads would be lucky for her today!! This

leaves you with a dilemma--you certainly do not want to unfairly accuse your

friend of trying to cheat you, but you also do not want to lose the money you

worked so hard to earn.

Such a setting is ideally suited for hypothesis testing. Once you meet on

the oval you convince your friend that you would like to ‘warm up’ for the

game by practice flipping the coin eight times, to which she agrees. Unknown

to your friend, you have decided to base your decision about whether to flip

the coin for money solely on the outcome of these eight flips. There are two

very different hypotheses or claims involved in this situation. One, which we

will call the null hypothesis and denote by H0, is that your friend is playing

with a fair coin and simply wants to enjoy the sunny afternoon with you.

Since she is your friend, this is the hypothesis that you are willing to believe

(or accept) if, in fact, you were not able to collect any data at all. The second,

more sinister, hypothesis is that your friend has chosen to use her weighted

coin to take a bit of the ‘chance’ out of your game of chance. We refer to this as

the alternative hypothesis and denote it by HA. It is a conjecture about what

your friend MIGHT be doing and requires sufficient sample evidence before

you are willing to reject H0 in favor of this conjecture. Thus for this setting we

are interested in testing the null hypothesis

H0 : the coin is fair; that is;P headð Þ ¼ :5½ �

versus the alternative hypothesis

HA : the coin is weighted such thatP headð Þ > :5
� �

:

The next step in constructing our hypothesis test is to decide which

possible outcomes for our eight practice flips will provide sufficient evidence
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to reject H0 in favor of HA. Letting B denote the number of heads obtained in

our eight practice flips, we know that the set of possible outcomes for B (i. e.,

the sample space) is S¼ {0, 1, ...., 7, 8}. Clearly large values of B are going to be

in better agreement with the alternative hypothesis HA than with the null

hypothesis H0, while the opposite is true for small values of B. In order to

make our decision totally objective (and not be influenced by any glare that

you might be getting from your friend), we need to divide the total sample

space into two regions, one set of outcomes which will cause you to reject H0

and refuse to play the game with your friend and the complementary set of

outcomes which will not lead you to reject H0 and proceed to play the game

with your friend. One such division of the sample space S would be to reject

H0 and refuse to play the game only if you obtain at least 6 heads in your

8 flips; that is,

Reject H0 if and only if B � 6:

Thus, we choose to rejectH0 only if the ‘evidence’ provided by our 8 coin flips

is sufficiently unlikely (i. e., we obtain at least 6 heads) to have resulted from a

fair coin. (We note that the choice of 6 as ‘extreme’ is up to you and other

options for this ‘critical value’ would certainly be reasonable. We return to

this issue later and explore the effect that other possibilities, such as 5 or 7, for

the critical value have on the decision process.)

With this example in mind, we state a few fundamental definitions for the

methodology of hypothesis testing.

Definition 6.2 The null hypothesis is a statement of interest that we

wish to evaluate in light of collected sample evidence. We denote a null

hypothesis by H0 (pronounced H naught) and it usually corresponds to

the hypothesis of “no change” or “no effect” from a new procedure

under investigation.
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A null hypothesis can often be viewed as a default statement if there were

no collected data. An individual or organization might make such a statement

about a standard product or treatment. With this in mind, failure to reject H0

on the basis of the collected sample data generally leads to at least temporary

validity for H0 and a continuation of doing things as they were being done

prior to the experimental study.

For the coin tossing quandary with our friend, we would certainly believe

that the null hypothesis H0 of a fair coin is true if we are not permitted to flip

the coin eight times. There would be no reason to accuse our friend of trying

to cheat without sufficient supporting evidence.

Definition 6.3 The alternative hypothesis is denoted by HA and

corresponds to the claim that is being made for the problem of interest.

This claim is almost always the primary reason for conducting the

experiment to collect the data in the first place. Often it is also what the

experimenter hopes or strongly believes to be true, but is not willing or

able to act on unless the evidence in the sample is sufficiently convincing

of the claim.

The alternative hypothesis is the statistical analogue of the ‘guilty’ verdict

in a court of law. A person on trial is presumed innocent (analogue of the null

hypothesis) unless the evidence and the lawyers (analogues of sample data

and statisticians) convince the jury of the person’s guilt (corresponding to the

alternative hypothesis) beyond a reasonable doubt (a concept for which a

statistical analogue will be defined later in this section).

In the case of the projected game with our friend, the alternative hypothe-

sis HA corresponds to the claim that she is using an unfairly weighted coin.

While this is certainly not what we hope to be the truth for this particular

setting, it definitely remains the case that we do not want to act on the claim
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and accuse our friend of trying to cheat unless the evidence (i. e., the number

of heads) obtained from the eight flips is sufficiently unlikely to have resulted

from flipping a fair coin.

Definition 6.4 A hypothesis test of a null hypothesis H0 versus an

alternative hypothesis HA is a rule that, on the basis of appropriate

collected sample observations, leads to a decision whether or not to reject

H0. Such a rule corresponds to a division of the sample space into two

subsets. One of these subsets contains those sample outcomes that pro-

vide sufficient critical evidence supporting HA to warrant rejection of H0.

This subset is called the critical (rejection) region for the test. The second

complementary subset contains those sample outcomes that are not

considered sufficiently incompatible with H0 to warrant its rejection.

Often the division of the sample space into these two subsets is based

on one or two numerical values, known as critical value(s), of a sample

statistic, called the test statistic.

For the experiment with your friend’s coin, the hypothesis test is the

previously stated decision rule

Reject H0 : coin is fair½ � if and only if B � 6,

where here the test statistic B is the number of heads in our eight practice flips.

The associated sample space S ¼ {0, 1, ..., 7, 8} is divided into the two subsets

C ¼ {6, 7, 8}, the critical region, and its complement C0 ¼ {0, 1, ..., 5}. The

complement corresponds to those outcomes that are not sufficiently support-

ive of the alternative hypothesis P(head) > .5 to warrant rejecting the null

hypothesis that the coin is fair. (Note that while the final decision regarding

H0 depends on the eventual observed value of the test statistic B, the formal
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construction of the critical region C for the test does not. Its construction is

based solely on the sampling distribution of the test statistic B under the null

hypothesis condition that the coin is fair and howwilling we are to incorrectly

reject this fairness when it is true.)

The description of this hypothesis test consists of three separate pieces.

First there is the test statistic, B, used to assess the information about the coin’s

fairness that is available from our eight sample flips. The second piece of the

hypothesis test is the ‘direction’ of the critical region. The ‘direction’ of this

test is to reject the fairness of the coin for large (�) values of B. The final

component of the test is stipulation of the degree of sample evidence that is

sufficient to reject H0. This requires specifying the boundary of the critical

region. For the above hypothesis test, this is equivalent to answering the

question ‘How many heads in the eight sample flips is enough to warrant

rejection of fairness for the coin?’ The answer in the stated hypothesis test is ‘6

or more’.

This three-component breakdown is true, in general, for any hypothesis

test. That is, a statistical test of a null hypothesis H0 versus an alternative HA

consists of specifying:

• the appropriate test statistic, say T,

• the direction of the rejection region (i. e., do we rejectH0 for large values

of T, small values of T, or both large and small values of T),

and

• the critical value(s) that delineates the boundary of the critical region

and corresponds to the degree of sample evidence in favor of the

alternative hypothesis HA that we require in order to reject H0.

This construction is illustrated in Fig. 6.5, where t1, t2, t3, and t4 are the critical

values that define the boundaries of the various critical regions.
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The particular problem of interest and the type of data being collected

generally suggest an appropriate test statistic T. The direction of the rejection

region corresponds to those possible values for T that are most indicative that

HA is a more reasonable conclusion than H0. Finally, both the sampling

distribution of the test statistic T under the condition that the null hypothesis

H0 is true and the degree of our willingness to incorrectly reject such a trueH0

play roles in determination of the critical value boundary. (We will return for

a more detailed discussion of this latter aspect later in this chapter.)

For the coin tossing experiment, it is clear that large values of B (i.e.,

obtaining a large number of heads in our eight tosses of the coin) are more

likely to occur if the alternative HA is true than if the null hypothesis H0 is

true. Hence, the natural direction for the rejection region in this case is to

rejectH0 for large values of B. (A hypothesis test with a rejection region of this

form is often referred to as an upper-tailed hypothesis test, because of the

nature of the values of the test statistic that lead to rejection of H0.) The final

piece of the test requires the selection of a critical value, corresponding to the

minimum number of heads that we need to obtain in our eight flips before we

can no longer have faith in the fairness of the coin (i.e., H0). The particular

critical region selected for our example was C ¼ {6, 7, 8}. (Why you might

choose this particular critical value 6--and not 5 or 7, for example--will be

discussed later.)

Fig. 6.5 Three components of a test of hypothesis

TEST STATISTIC DIRECTION OF REJECTION CRITICAL VALUE(S)

Reject for large values of T T t1 (critical value)

T Reject for small values of T T t2 (critical value)

Reject for either small or T t3 (critical value)

large values of T or T t4 (critical value)

�� ≥

� ≤

� ≤
≥
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Type I and Type II Errors When we use sample data to conduct a test of the

null hypothesis H0 versus the alternative hypothesis HA, we have no way of

knowing for certain whether or not our test procedure has led to a correct

decision. Therefore, it is important to be aware of the possibility that our

decision could be in error, and to provide ways to assess the likelihood of this

possibility in different situations.

Whether or not the decision indicated by a test procedure for a specific set

of sample data is correct depends on the true state of the population providing

the sample data. If the population is such that the null hypothesis, H0, is true,

then wewill make a correct decision if the collected sample data do not lead to

rejection of H0. If, on the other hand, the null hypothesis is true but we just

happen, by chance, to obtain a sample that leads to rejection of H0, our

decision is clearly in error. Such a mistake (i. e., rejecting a true null hypothe-

sis) is called a Type I error. In our coin-tossing example, a Type I error would

occur if the coin were actually fair but we obtained, by chance, 6 or more

heads in our 8 flips.

Conversely, if the true state of our population is that the null hypothesis is

false, we make a correct decision when our collected sample data lead to

rejection of H0 by our hypothesis test. Of course if we happen to obtain a

sample that leads us not to rejectH0 when it is false, wewill have reached yet a

different incorrect conclusion, namely, failing to reject H0 when, in fact, it is

false. This type of mistake is called a Type II error.

Definition 6.5 A statistical test of the null hypothesis H0 against the

alternative hypothesis HA is said to result in a Type I error if it rejects

H0 (and thus, at least in effect, does not rejectHA) when, in fact,H0 is true.

If, on the other hand, a test fails to reject a null hypothesis H0 when, in

fact, it is false, we say that a Type II error has occurred.
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The way we state things may seem a bit strange as you first become

acquainted with the language of hypothesis testing. For example, we are

being especially careful to make the statement “fail to reject H0” rather than

the seemingly more natural statement “accept H0”. Simply because the sam-

ple evidence is consistent with the null hypothesis (so that we do not want to

reject it) does not prove that H0 is true. In fact, the same sample evidence is

usually consistent with a number of different hypotheses about the popula-

tion other than the stated null hypothesis H0, so that “accepting H0” is too

strong a conclusion to reach from the results of a hypothesis test.

Suppose, for example, that you conduct the 8 ‘test’ tosses with your

friend’s coin and you observe 5 heads. As this outcome is not in our pre-

scribed critical region, we would not reject H0. This is, of course, a reasonable

conclusion, since observing 5 heads in 8 tosses is not surprising if the coin is

fair. However, such an outcome is also not surprising if P(Heads)¼ 0.47 or, in

fact, if P Headsð Þ ¼ 5
8 ¼ 0:625! There are, in fact, a large number of possible

values for P(Heads) that are consistent with the observed outcome of 5 heads

in 8 tosses. Thus, while it is reasonable to conclude that P(Heads)¼ 0.5 should

not be rejected based on the sample outcome, the evidence is not sufficiently

strong for us to conclude that it is the true description of our friend’s coin. In

fact, it may very well not be true that P(Heads) ¼ 0.5, but we simply have not

obtained enough evidence in our eight tosses to refute it.

Take your time becoming familiar with these hypothesis testing concepts

and related terminology. Study a number of examples until you become

comfortable with the twists and turns of the specialized language.

The different scenarios relating the possible outcomes of a hypothesis test

with the truth of the hypotheses can be represented in the following simple

diagram:
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POPULATION in which either H0 or HA holds

↓

Sample data are collected and analyzed

↓

Based on the sample data and the analysis, you make a decision
about the population with respect to the relative merits of the two
hypotheses H0 and HA

� or �

Reject H0 Do Not Reject H0 

↓ ↓

H0 correct -- Type I Error

HA correct -- Correct Decision

H0 correct – Correct Decision

HA correct -- Type II Error

Unless we miraculously ascertain whether or not the null hypothesis is

actually true, we will never be able to determine if an error (either Type I or

Type II) has occurred with respect to a specific decision from a hypothesis test.

However, it is clear that both errors cannot occur simultaneously. For any

specific set of sample data, a hypothesis test can result in a Type I error only if

the null hypothesis is true or a Type II error only if the alternative hypothesis

is correct. In addition, for a given problem the two errors can be of varying

importance and lead to quite different practical implications should they

occur. For instance, consider the eight practice flips with your friend’s coin.

If the coin is, indeed, fair (i.e.,H0 is true), but our eight flips simply happen by

chance to result in 6 or more heads, we will end up committing a Type I error.

The practical implication of this combination of fair coin with an unusually

large number of heads is that you incorrectly accuse your ‘friend’ of trying to
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use an unfair coin to cheat you out of your money--the net result is probably

at least a strained relationship. On the other hand, if your ‘friend’ is truly

trying to take advantage of you with the weighted coin for which P(heads) ¼
.9, but simply from the random nature of the experiment you end with

fewer than 6 heads in your 8 practice flips, you are likely to have a long,

financially costly afternoon with your ‘friend’--the net result is a ‘friend’ for

(a poorer) life!

As another example of the differences between the two types of error,

consider again the criminal trial setting. Since here the null hypothesis

corresponds to a defendant being innocent, a Type I error occurs when a

jury reaches a verdict of guilty for an innocent defendant. On the other hand, a

Type II error occurs when a guilty defendant is found to be innocent by the

jury. Thus, a Type I error can occur only with a jury finding of guilty and a

Type II error can occur only for an innocent verdict by a jury. What are the

practical implications of the two types of error for this setting? Which do you

feel is the more serious?

Error Probabilities – Significance Level and Power Since the decisions

we make using hypothesis tests are based on samples, it is impossible to be

certain whether or not we have reached a correct decision for a given set of

data. This is similar to the situation we face with interval estimation when

we cannot be certain whether or not an observed confidence interval

actually contains the unknown value of the parameter it is estimating. In the

case of confidence intervals, we are able to rely on the structure of

the sampling process to provide us with some measure of comfort (i. e., the

prescribed confidence) that our observed interval does, in fact, contain

the unknown parameter value. It is this randomness of the sampling

process that saves us once again in evaluating the effectiveness of hypothesis

tests.
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Definition 6.6 The significance level, denoted by the symbol α, for a
statistical test of the null hypothesis H0 versus the alternative hypothesis

HA is the probability of making a Type I error; that is,

α¼ significance level ¼ P Type I error
� 	

¼ P rejecting H0 when it is true
� 	

:

A hypothesis test with significance level α is often called a level α test.

To illustrate the concept of a significance level, we return to the experiment

with your friend’s coin and determine the significance level α for the test that

rejects the fairness of the coin (i. e., H0: P(Heads) ¼ .5) if B � 6, where B is the

number of heads obtained in eight flips of the coin. When H0 is true, the

sampling distribution for B is binomial with parameters n ¼ 8 and p ¼ .5. It

follows that the significance level for the stipulated test is given by

α¼ P B � 6 when p ¼ :5ð Þ
¼ P B ¼ 6 when p ¼ :5ð Þ þ P B ¼ 7 when p ¼ :5ð Þ þ P B ¼ 8 when p ¼ :5ð Þ

¼
X8
t¼6

8!
t! 8� tð Þ! :5ð Þ8 ¼ :1094þ :0312þ :0039 ¼ :1445:

Note that this probability can also be found directly using the R function

pbinomð Þ .

> pbinom(q = 5, size = 8, prob = 0.5, lower.tail = FALSE)

[1] 0.1445313

Thus the probability is .1445 (not so small) that you will refuse to play even if

she is not using the biased coin!

What about the performance of the test if your friend is using a biased

coin? How likely is it that this test will detect that event? This leads us to

consider properties of a test when the alternative is true. Usually the alterna-

tive hypothesis HA includes an entire range of values for the parameter of
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interest. For your coin test, H0 is P(Heads) ¼ 0.5 and HA is P(Heads) > 0.5. To

compute how likely it is that your test will detect an unfair (weighted) coin

you need to choose a particular alternative for P(Heads). Since you suspect

that if the coin is weighted at all it is likely that P(Heads) ¼ 0.9, you might use

this value in your computation. We refer to this choice, P(Heads) ¼ 0.9, as a

member of the set of alternatives HA corresponding to P(Heads) > 0.5.

Definition 6.7 The power of a statistical test of the null hypothesis H0

against a particular member of the set of alternatives HA is the proba-

bility that the test will correctly reject the null H0 when that particular

alternative hypothesis is true; that is,

Power against an alternative a* inHA¼P(rejectingH0when a* inHA is true).

It is common statistical language to refer to the measured power of a test

for a particular member of the set of alternatives HA as the power of the test

“against that alternative”. Since a Type II error occurs if we fail to reject H0

when a*2 HA is true, the power of a test against the alternative a*2 HA is also

related directly to the probability of committing a Type II error when a*2HA is

true. Thus, we have

Power at particular alternative α∗2HA

¼ 1� P failing to reject H0 when α∗2HA is true
� �

¼ 1� P Type II error when α∗2HA is true
� �

:

What about the power of the test against your friend’s biased coin with p¼
.9? When this alternative is true, the sampling distribution for B is still

binomial, but now with parameters n ¼ 8 and p ¼ .9. Therefore,
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Power against p¼ :9
� 	¼P RejectH0 when p¼ :9

� �
¼P B¼ 6when p¼ :9ð ÞþP B¼ 7when p¼ :9ð ÞþP B¼ 8when p¼ :9ð Þ

¼
X8
t¼6

8!
t! 8� tð Þ! :9ð Þt :1ð Þ8�t¼ :1488þ :3826þ :4305¼ :9619:

Thus with this test you can be quite confident (with probability .9619) that you

will be able to detect the biased coin if your friend is using it. Stated another

way, this says that the probability of failing to detect your friend’s biased coin

if she is using it (i. e., a Type II error) is just 1 - .9619 ¼ .0381.

Armed with this new information about its power, it is clear that the test

for fairness of your friend’s coin was designed to be more sensitive toward

detecting the use of a biased coin than toward concern about accusing your

friend of using the biased coin when she is not. Perhaps you have gone too far

in that direction. Can we modify the test procedure to make it less likely that

youwill falsely accuse your friend of attempting to use a biased coin when she

is not? Such a modification would require shrinking the critical region, since it

contains the sample outcomes that lead to rejection of H0.

Our original critical region is C1 ¼ { 6, 7 or 8 heads on the eight flips of the

coin}. Thus there are two natural modifications, namely, shrinking C1 to C2 ¼
{7 or 8 heads on the eight flips} or to C3 ¼ {all eight flips are heads}. Suppose

you decide to give your friendship a bit more credit and relax the stipulations

for rejecting H0 to C2. The significance level for the test procedure using

critical region C2 is then

α2 ¼ P B � 7 jp ¼ :5ð Þ ¼
X8
t¼7

8!
t! 8� tð Þ! :5ð Þ8 ¼ :0312þ :0039 ¼ :0351,

which is certainly more appealing than the significance level α ¼ .1445 for the

original test. However, we must also see what you have given up in the way

of power to obtain this reduced probability of incorrectly accusing your friend
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of using the biased coin when she is not. The power of the new test with

critical region C2 is

Power against p ¼ :9 using critical region C2

¼ P B � 7 jp ¼ :9ð Þ

¼
X8
t¼7

8!
t! 8� tð Þ! :9ð Þt :1ð Þ8�t ¼ :3826þ :4305 ¼ :8131:

Thus for this modified test with critical region C2, the probability of failing to

detect your friend’s biased coin if she is using it (i. e., a Type II error) is

increased to 1 - .8131 ¼ .1869. Depending on your relative valuation of this

friendship and money, C2 might be a better critical region than C1 to use to

assess the bias of the coin. What about the third possible critical region C3 ¼
{exactly 8 heads on the eight flips}? You are asked in Exercise 6.B.12 to verify

that the significance level for the critical region C3 is α3 ¼ .0039 and that

[Power of the test with critical region C3 against the alternative p¼ .9]¼ .4305.

We note that in changing from critical region C1 to critical region C2 and

then to critical region C3 we were able to steadily reduce the probability of a

Type I error (i. e., the significance level) for the associated tests. However, this

was accomplished only at the expense of corresponding increases in the

probability that a Type II error (i. e., reduction in power) occurs. This is not

an accident; for any reasonable test procedure there is a natural and inevitable

tradeoff between these two error probabilities. For a given setting and a fixed

sample size, any change in a test procedure that will result in lowering the

probability of one of these two types of error will always lead to an increase in

the probability that the other type of error will occur. The only way to

decrease both error probabilities simultaneously for a given hypothesis test

procedure is to increase the sample size and collect more data. A more

common approach to hypothesis testing is to hold the Type I error probability

fixed and increase the number of observations in our data collection enough
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to reduce the Type II error probability to an acceptable value. (For an example

of this approach, see Exercise 6.A.12.)

Another unusual feature of the language of statistics should be noted here.

Reducing the significance level α for a hypothesis test corresponds to reducing

the Type I error probability for the test. Yet if the sample data leads to

rejection of the null hypothesis H0 at this reduced level, we would conclude

that there is an increased significance of the result! That is, the lower the signifi-

cance level at which we can reject H0, the greater is the significance of the

conclusion! While such a statement likely seems a bit contradictory at first

exposure, as you increase your understanding of the role of the significance

level, you will see this as being a very logical relationship between signifi-

cance level and the implied significance from the rejection of the null

hypothesis.

Choosing a Significance Level In the previous discussion related to

evaluating your friend’s coin, we took the approach of first specifying the

critical region and then computing the significance level for the associated

hypothesis test. While this is perfectly acceptable, it is not the standard way in

which hypothesis tests are formulated or conducted. In practice, once the null

and alternative hypotheses of interest are stated, an appropriate significance

level α is commonly stipulated first and then the proper critical region for the

test is constructed. This, of course, leaves the choice of “appropriate signifi-

cance level” for a problem rather vague. It is quite natural to want our

significance level to be small, since it is the probability of making a Type I

error. However, we must also remember that the probability of a Type II error

occurring is inversely related to the significance level. Hence, the choice of

significance level depends on the relative seriousness of the consequences of

making the two types of errors, something that is not always easy to evaluate

and is often quite subjective. For example, suppose we are conducting a

study to evaluate the effectiveness of a new medication. A Type I error
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for such a study corresponds to declaring the new medication to be

effective, when in fact it is not. On the other hand, a Type II error occurs

when the new medication is effective and we fail to detect that fact with our

hypothesis test. The relative importance of the two types of errors for this

setting depends heavily on the particular medical problem for which the new

medication has been developed. If the medication is intended to treat a serious

illness, such as lung cancer, what are the consequences of the two types of

error? Which is more serious? Would your answers to these two questions

change if the new medication is intended instead to be a treatment for mild

cases of acne?

As statisticians have dealt with this question over the years, it has become

rather standard practice to simply set the significance level to be an acceptably

small number, typically ranging from .001 to .10, but most commonly taken to

be .01 or .05. If the power of the test associated with such a significance level is

not as high as one would like, collecting additional sample observations is the

option to consider. In fact, in a number of settings statisticians have been able

to predetermine the necessary sample size(s) so that both of the error

probabilities for a particular hypothesis test are acceptably small. Although

this development is beyond the formal scope of our text, the interested reader

is encouraged to learn more about this approach in more advanced statistics

texts.

P-values The purpose of a hypothesis test is to assess the reasonableness of

the null and alternative hypotheses using the evidence presented by the

sample data. When we take the approach of pre-selecting a significance

level α for our test, the eventual outcome of the test procedure will be to

state whether or not the data provided adequate evidence to support the

alternative hypothesis. In such cases, the interpretation of “adequate evi-

dence” is provided by a small probability (α) of incorrectly rejecting a true

null hypothesis. When one’s reason for conducting a given hypothesis test is
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to make a decision and take some specific action based on the outcome of the

test at a prescribed significance level α, then that decision is all that is

important to glean from the data. However, simply stating that a particular

hypothesis test rejects at significance level α ¼ .05, for example, does not

provide the user with all of the information on this issue that is available in

the sample. Knowing that a set of sample data leads to the rejection of H0 at

significance level α ¼ .05 does, in fact, tell us that we would also reject H0 for

any significance level greater than .05. (See Exercise 6.A.11 for more discus-

sion.) However, it does not tell us whether or not the evidence in the sample

data is also sufficient to reject H0 for a smaller significance level such as α ¼
.01. Thus the complete information aboutH0 contained in the sample evidence

is not totally captured in the simple statement that we reject H0 at the specific

significance level .05.

We illustrate this idea in Figs. 6.6 and 6.7, where we depict two critical

regions for a test that rejects the null hypothesis H0 for large values of a

statistic T. The critical region in Fig. 6.6 consists of those possible values of

T greater than or equal to 1.96 and the associated significance level is α¼ .025.

Fig. 6.6 Upper-tail critical region for a test that rejects the null hypothesis
H0 for values of the test statistic T greater than or equal to 1.96

1.96 2.15
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The second critical region in Fig. 6.7 contains possible values of T greater than

or equal to 2.33, with corresponding significance level α ¼ .01. If the observed

value of T is tobs ¼ 2.15, we see that it falls in the critical region depicted in

Fig. 6.6, but not in the smaller critical region in Fig. 6.7. Thus with tobs ¼ 2.15,

we would reject H0 at significance level .025, but not at significance level .01.

What would our decision for this outcome be at significance level α ¼.015

for tobs ¼ 2.15? at significance level α ¼ .020? Do we have to construct a

separate critical region for each specific significance level in order to make the

corresponding decision about whether or not to reject H0 at that level?

Fortunately, the answer is no! There is a way to impart a more complete

picture of the ‘sample evidence’ against the null hypothesis without

constructing a large number of separate critical regions for different possible

significance levels. One such way is to assess just how unlikely it would have

been to collect a random sample with the features in our observed data if the

null hypothesis H0 were true. This ‘sample evidence’ is quantified by finding

the probability under the null hypothesis H0 of getting a value of our test

statistic T (B in our biased coin example) at least as unusual or extreme as the

Fig. 6.7 Upper-tail critical region for a test that rejects the null hypothesis
H0 for values of the test statistic T greater than or equal to 2.33

2.15 2.33
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one we compute for our observed sample data. For the setting described in

Figs. 6.6 and 6.7, this corresponds to finding the probability that T is greater

than or equal to tobs ¼ 2.15 when the null hypothesis is true, as depicted in

Fig. 6.8. The smaller this probability, called the P-value, is (i.e., the more

unusual or extreme is our observed value of T), the more evidence we have

in favor of rejecting H0.

Definition 6.8 Let tobs be the observed sample value of a statistic T used

in testing the null hypothesis H0 against the alternative hypothesis HA.

The probability when the null hypothesis is true of obtaining a random

sample of size n that leads to a T value as extreme or more extreme than

the observed tobs is called the P-value of the test.

Thus, calculation of a P-value depends on the sampling distribution of the

test statistic T when the null hypothesis H0 is true. If the hypothesis test is

designed to reject H0 in favor of the alternative HA for large values of T, the

associated P-value is P0(T � tobs), where the subscript on P0 indicates that the

probability is being computed under the assumption that the null hypothesis

Fig. 6.8 Area depicting the P-value for a test that rejects for large values of
the test statistic T when the observed sample value of T is tobs ¼ 2.15

2.15
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H0 is true. For a test that rejects H0 in favor of HA for small values of T, the

P-value is P0(T� tobs). Finally, for a test that rejectsH0 in favor ofHA for either

small or large values of T, we must first ascertain whether the observed value,

tobs, is ‘large’ or ‘small’; that is, we first compute the smaller of the two

probabilities P0(T � tobs) and P0(T � tobs), providing the observed ‘direction’

of tobs. The P-value for the two-sided test is then 2 � minimum {P0(T � tobs),

P0(T � tobs)}. For any of these alternatives, the smaller the P-value, the greater

the justification provided by the data for rejection of H0 in favor of the

alternative HA.

To illustrate this P-value concept, we return one last time to your friend’s

coin. Suppose that when you actually flip the coin eight times, you obtain

seven heads and one tail; that is, the observed value of the test statistic B ¼
[number of heads] is bobs¼ 7. Since the test procedure we discussed rejectsH0:

p ¼ .5 in favor of H1: p > .5 for large values of B, it follows that the P-value for

these data is given by

P�value ¼ P
�
observe an outcome as extreme or more extreme

than 7 heads in 8 flips if H0 is true
�

¼ P B � 7 jp ¼ :5ð Þ ¼
X8
t¼7

8!
t! 8� tð Þ! :5ð Þ8 ¼ :0351:

Thus obtaining a value of B at least as large as the observed value bobs ¼ 7 is

rather unusual if, in fact, the null hypothesis is true and the coin is fair. Hence

the evidence provided by the P-value is supportive of rejecting H0.

This P-value approach to evaluating sample evidence for testing purposes

provides more information than is associated with simply rejecting H0 at a

prescribed significance level α. In fact, providing the P-value for a hypothesis

test enables us to reach a conclusion as to whether or not to reject H0 at any

specific significance level. To illustrate, given a P-value for a hypothesis test of

the null hypothesis H0 versus the alternative HA, we would reject H0 for all
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significance levels α that are at least as large as the P-value, but not for any

that are smaller than it. That is, the P-value is the smallest significance level

at which we would reject H0 based on the observed sample data. Thus, if

we had, in fact, obtained seven heads and one tail in the eight flips of our

friend’s coin, we would reject H0 for any significance level α � P-value ¼
P(B � 7 | p ¼ .5) ¼ .0351 and fail to reject H0 for significance levels less

than .0351.

Using the P-value concept in this way, a test of any null hypothesis H0

versus an alternative HA at significance level α can be written as

Reject H0 in favor of HA at significance level α if and only if P�value � α:

This general format will be consistent throughout our study in this book.

What will vary as we move among different statistical settings are the test

statistics and null sampling distributions associated with the computation of

the P-value.

What are the advantages and disadvantages of these two approaches to

hypothesis testing? The fixed significance level approach provides a preset

standard to which we must adhere once the data are collected. Observing the

data cannot change our mind in this regard. If we desire our probability of a

Type I Error to be less than or equal to .05, for example, then the use of a preset

significance level .05 guarantees this to be the case, no matter what we find in

the data. Decisions associated with a study can then be made with the

assuredness of a guaranteed maximum Type I Error probability.

On the other hand, the P-value approach enables us to more accurately

report the extremeness of the observed value of our test statistic T without

losing the ability to make a decision at any preset significance level. This

clearly provides consumers of our findings with more information than is

contained in the statement that we did or did not reject H0 at any particular

prescribed significance level.

6.3 Hypothesis Testing 487



Tests for the Probability of an Event When the Sample Size n is Large In

our previous coin-tossing example we discussed how to test hypotheses about

p, the probability of an event A, when the sample size n is small. When the

number of sample observations becomes large, use of the exact binomial

distribution for B to set up appropriate critical regions or to compute P-values

for an observed set of data becomes a bit unwieldy by hand. For such large

sample settings, we can, of course, use R to obtain P-values or set up critical

regions. A second alternative is to turn to the Central Limit Theorem

discussed in Sect. 5.3 for help. Once again we rely on the information

contained in the observed percentage of times, p̂, that the event A occurs in

a sample of n items from the underlying population. As an application of the

Central Limit Theorem, we saw in Sect. 5.3 that the standardized variable

Z ¼ p̂ � pffiffiffiffiffiffiffiffiffiffiffi
p 1�pð Þ

n

q ð6:9Þ

has an approximate N(0, 1) distribution when the sample size n is sufficiently

large (at least 50 for a reasonably good approximation).

Now, suppose that the null hypothesis of interest corresponds to the

probability of the event A being equal to a specified value p0; that is, the

null hypothesis is given by H0: p¼ p0. It follows from expression (6.9) that the

statistic

Z ¼ p̂ � p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 1�p0ð Þ

n

q ð6:10Þ

has an approximate N(0, 1) distribution when the sample size n is large and

the null hypothesis is true. Thus the statistic Z in (6.10) provides us with the

first part of our hypothesis test, namely, an appropriate test statistic. More-

over, knowing that the sampling distribution of Z is approximately N(0, 1)

when H0 is true will enable us to determine critical values that correspond to

significance levels of interest, as well as to compute P-values once the data

have been collected. All that remains, therefore, is to decide on the direction of
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our rejection region--a decision that depends explicitly on which of the three

possible alternative hypothesesHA is of interest for the problem at hand. If the

conjectured alternative is HA: p > p0, it should be intuitively clear that

unusually large values of Z provide the most evidence in favor of HA and

therefore we would want to reject H0 for such large values of Z. (This was the

case in your fair-coin test, since you wanted to know whether P(Heads) ¼ 0.5

was true or whether P(Heads) was greater than 0.5.) For an alternativeHA: p<

p0, the appropriate rejection region would consist of unusually small values of

Z. For the most general, two-sided, alternative HA: p 6¼ p0 either unusually

small or unusually large values of Z ( i. e., large values of |Z| ) would support

rejection of H0.

Combining these three components of a hypothesis test, we have the

following formulation for testing hypotheses about the probability of an

event, p, when the sample size n is large.

Hypothesis Tests for the Probability of an Event, p

Let p be the probability of an event A relative to an underlying population of

interest and let p̂ be the percentage of times the event A occurs in a random

sample of size n from this population. A test of the null hypothesis H0: p ¼ p0

against an alternative HA with approximate significance level α (i. e., a level α

test) has a decision rule given by one of the three forms:

Reject H0 in favor of HA : p > p0 if and only if Ztest � zα,

Reject H0 in favor of HA : p < p0 if and only if Ztest � �zα,

Reject H0 in favor of HA : p 6¼ p0 if and only if Ztestj j � zα=2,

ð6:11Þ

where Ztest is given by the right-hand side of expression (6.10) and zα is the

upper αth percentile for the N(0, 1) distribution. These critical regions are

portrayed in Figs. 6.9, 6.10 and 6.11. Note that the critical values zα, -zα, and

zα/2 are chosen to satisfy P(Ztest � zα when H0 is true) � α, P(Ztest � -zα when
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H0 is true) � α, and P( |Ztest| � zα/2 when H0 is true) � α, so that the

respective tests all have approximate significance levels equal to α.

The associated approximate P-values for these hypothesis tests are

given by:

Fig. 6.9 Approximate level α critical region that rejects the null hypothesis
if the test statistic Ztest is too large

Zα

Ztest

Fig. 6.10 Approximate level α critical region that rejects the null hypothe-
sis if the test statistic Ztest is too small

–Zα

Ztest
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P�value � P Z � ztestð Þ for the alternativeHA : p > p0,

P�value � P Z � ztestð Þ for the alternativeHA : p < p0,

P�value � 2P Z � ztestj jð Þ for the alternativeHA : p 6¼ p0,

ð6:12Þ

where Z has aN( 0, 1) distribution and ztest is the observed value of Ztest (6.10)

for the sample data.

Note that in order to write our hypothesis test procedures precisely we

have introduced some rather complex notation. Here is a summary to help

you keep things straight. We will use capital letters to denote random

variables and lower case letters to denote single observations from a distribu-

tion or for the value of a statistic that we have computed from a particular

sample. In our discussion here, we have:

Ztest is the normalized test statistic
p̂ � p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 1�p0ð Þ

n

q :

ztest is a particular value of this test statistic that we obtain by taking a

sample and carrying out the arithmetic in the formula for Ztest.

Fig. 6.11 Approximate level α critical region that rejects the null hypothe-
sis if the test statistic Ztest is either too large or too small

–Zα/2 Zα/2

Ztest
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Z represents the generic N(0,1) variable

zα is the numerical value such that P(Z � zα) ¼ α.

Using the appropriate P-value expression in (6.12), we note that the three

hypothesis tests stipulated in (6.11) can all be expressed by the single

statement:

Reject H0 in favor of HA at approximate significance level α

if and only if P�value � α:

For this initial exposure to the statistical practice of testing hypotheses, we

have chosen to present the hypothesis tests for p in both the critical region

format (6.11) and the P-value format (6.12). We feel it is important that the

reader see both of these approaches and understand how they relate to one

another. In our next example we will demonstrate how both approaches are

applied to an actual data collection. However, in most of the later examples in

the text we will emphasize the P-value formulation, as it is generally simpler

and provides more information to the statistical consumer than does knowl-

edge of a decision only at a single, pre-specified significance level α.

Example 6.7. Dual-career Couples Many domestic relationships involve

couples where both partners work outside the home. In a report published

in 1998, the research organization Catalyst presented the results of a study on

working couples’ opinions about such issues as whether or not the fact that

both partners were working enabled each of them to have more flexibility in

shaping their separate career options. They conducted interviews with

802 people involved in dual-earner relationships, seeking responses to a

variety of questions on their attitudes regarding advantages and

disadvantages of such work relationships. Catalyst found that 441 of the

802 people interviewed thought that they, in fact, did have more control

over shaping their own careers because their partner was also working.
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Does this provide sufficient evidence to conclude that the majority of all

working couples feel this way? To address this question, let p denote the

proportion of all individuals involved in dual-earner relationships who think

that they have more control over shaping their own careers because their

partner is working. Then it might be of interest to test the null hypothesis H0:

p ¼ .5 versus the one-sided alternative HA: p > .5. In this example we will

illustrate both the critical region and P-value approaches to hypothesis test-

ing. However, use of the P-value is both simpler and more informative than

the formal critical region approach to testing. As a result, in most future

examples we will test the hypotheses of interest by simply finding the appro-

priate P-value for the data.

Using a significance level of α¼ .05, we find z.05¼ 1.645 and the associated

test procedure is obtained from (6.11) to be

Reject H0 in favor of HA : p > :5 if and only if Ztest � 1:645,

where

Ztest ¼ p̂ � :5ffiffiffiffiffiffiffiffiffiffiffiffiffi
:5 1�:5ð Þ

802

q :

Using the data to compute the sample percentage estimator p̂¼ 441/802¼
.5499, we see from (6.10) that the observed value of our test statistic Ztest is

given by

ztest ¼ :5499� :5ffiffiffiffiffiffiffiffiffiffiffiffiffi
:5 1�:5ð Þ

802

q ¼ 2:83:

Since ztest > 1.645, we reject H0: p ¼ .5 at level α ¼ .05.

From the appropriate expression in (6.12), we also find that P-value ¼
P(Z � 2.83) � .0023 for these data, so that the probability of obtaining a

sample for which the value of p̂ is at least as large as the observed .5499 is
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approximately .0023 if the null hypothesis p ¼ .5 were true. This leads to the

conclusion that, in fact, we would have rejected H0: p ¼ .5 in favor of the

alternative HA: p > .5 if our preset significance level α had been any value at

least as large as .0023 (including, as we already knew, α ¼ .05). Thus the

Catalyst study provides rather strong evidence that a majority of all

individuals (i. e., the population) involved in dual-earner relationships do,

in fact, feel that they have more control over shaping their own careers

because their partner is also working.

Example 6.8. Are Good Samaritans Hard to Find? A survey by the National

Highway Traffic Safety Administration (1998) addressed a number of

questions about drivers’ attitudes toward helping victims at traffic accidents.

Among the questions asked in the survey was the following: “You come upon

a traffic accident on a lonely stretch of road. No other cars are in sight. Would

you stop or drive on and call for help down the road?” The study was based

on interviews with 8200 drivers at least 16 years old during the winter of 1996-

97. Of those interviewed, 4264 respondents indicated that they would stop

their vehicle to check on the accident victims. Is this sufficient evidence to

indicate that less than, say 60%, of all eligible drivers would stop to aid traffic

accident victims in such circumstances? Letting p denote the proportion of all

eligible drivers who would stop to assist, we might be interested in testing the

null hypothesis H0: p ¼ .6 versus the one-sided alternative HA: p < .6. The

sample percentage of eligible drivers who said they would stop and help is p̂

¼ 4264/8200 ¼ .52. Hence the value of our test statistic Ztest (6.10) is

ztest ¼ :52� :6ffiffiffiffiffiffiffiffiffiffiffiffiffi
:6 1�:6ð Þ
8200

q ¼ �14:79:

From (6.12), the P-value for these data is P-value ¼ P( Z � -14.79) � 0,

indicating that there is virtually no chance that this observed value of p̂ ¼
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.52 could have resulted if the null hypothesis condition p ¼ .6 were true, and

we would reject H0: p ¼ .6 in favor of the alternative HA: p < .6 for any

reasonable significance level α. Thus there is overwhelming sample evidence

to support our conclusion that less than 60% of all eligible drivers would stop

to aid traffic accident victims on a lonely stretch of road with no other cars in

sight. The strength of this support for the alternative p < .6 is, of course, at

least partly attributable to the very large sample size (n ¼ 8200) for this

survey.

We should also keep in mind that these data are the result of a self-

reported survey, which, as discussed in Chap. 3, raises the issue of reliability

of the responses. For example, some people who say they would not stop

might actually do so in a real situation, while there are likely to be others who

claim that they would stop, even though they might not in a real situation. All

of this simply emphasizes how important it is to do everything possible to

eliminate potential biases and collect reliable data when conducting sample

surveys that involve self-reporting.

Exact P-values for One-sided Alternatives and Small Sample Sizes We

have previously seen in the coin tossing example that the binomial distribu-

tion can be used to obtain exact P-values for tests of the null hypothesis H0:

p ¼ p0 versus either of the one-sided alternatives HA: p > p0 or HA: p < p0.

We further illustrate this process on the cognitive subscale score data from

Example 6.3, where the sample size is n ¼ 10.

Example 6.9. Medical Improvements for Patients with Alzheimer’s

Disease - Exact P-values In Example 6.3 we discussed the investigation by

Schneider et al. (1993) of the potential for treating Alzheimer’s disease with

tacrine or physostigmine salicylate plus l-deprenyl. They found that seven of the

ten subjects (all currently being treated with either tacrine or sustained-release

physostigmine salicylate) in the study showed an improvement (i.e., lowering)
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in the cognate subscale score on the Alzheimer’s Disease Assessment Scale

after a 4-week period of added treatment with l-deprenyl relative to a similar

4-week period with placebo as the only addition to the tacrine or physostigmine

salicylate medication. Let p be the probability that a randomly chosen subject

under treatment for Alzheimer’s disease with either tacrine or physostigmine

salicylate will show an improvement in the cognate subscale score when l-

deprenyl is added to their treatment regime. Even if there is no effect whatso-

ever from the addition of l-deprenyl, we would expect, simply by chance alone,

that roughly 50% of the population of all such subjects would exhibit

improvements in their cognate subscale scores following the l-deprenyl treat-

ment. Hence, it is of natural interest to test the null hypothesis H0: p ¼ .5,

which corresponds to no discernible difference between the placebo effect and

that of l-deprenyl, versus the alternative HA: p > .5, corresponding to an

improvement (over placebo) from the additional use of l-deprenyl for more

than 50% of the population. Setting Btest ¼ [number of subjects in the study

who exhibited improvement from the use of l-deprenyl], we would naturally

reject H0 for large values of Btest. Thus the P-value associated with the

observed value of Btest, namely, btest ¼ 7, is

P�value ¼ P Btest � btest when p ¼ :5ð Þ ¼ P Btest � 7 when p ¼ :5ð Þ:

This upper-tail probability is graphically depicted in Fig. 6.12.

When H0: p ¼ .5 is true, the test statistic Btest has a binomial distribution

with parameters n ¼ 10 and p ¼ .5, and the resulting P-value for these data is
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P�value ¼ P Btest ¼ 7when p ¼ :5ð Þ þ P Btest ¼ 8 when p ¼ :5ð Þ
þ P Btest ¼ 9when p ¼ :5ð Þ þ P Btest ¼ 10 when p ¼ :5ð Þ�

¼
X10
t¼7

10!
t! 10� tð Þ! :5ð Þ8 ¼ :1172þ :0439þ :0098þ :0010 ¼ :1719:

Again we can use the R function pbinomð Þ to calculate the .1719 P-value

for the Alzheimer data.

> pbinom(6,10,.5,lower.tail=FALSE)

[1] 0.171875

Thus, although our point estimate of the percentage of Alzheimer patients

who will show an improvement in cognitive subscale score values if l-deprenyl

is added to treatment with a cholinesterase inhibitor is 70% (i. e., p̂ ¼ .7), the

sample results for the ten patients in the study do not provide compelling

evidence for rejection ofH0: p¼ .5 in favor of the claimed improvement for the

majority of the population. In fact, to conclude that there is such an improve-

ment (i. e., that p > .5) we would have to be willing to use a significance level

at least as large as the P-value¼ .1719. Would this be a reasonable Type I error

Fig. 6.12 P-value for the upper-tail binomial test in Example 6.9
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rate to accept for this setting? That is, would you be willing to claim that there

is a positive effect when l-deprenyl is added to treatment with a cholinesterase

inhibitor if there is a 17% chance that your observed sample result could have

been obtained even when addition of the l-deprenyl had no positive effect

whatsoever? What are the consequences of such a claim? The expense of the

treatment would have to be borne by someone (patient’s family, hospital,

insurance company), patients and their relatives would be given false hope

that the treatment is helpful, and, even more seriously, this false hope might

curtail further research on other potentially more effective treatments of

Alzheimer’s. Under such circumstances, .1719 would probably be an unac-

ceptably high risk of a Type I error for most people.

In Example 6.8 we noted that the overwhelming sample evidence in

support of the conclusion that less than 60% of all eligible drivers would

stop to aid traffic accident victims on a lonely stretch of road with no

other cars in sight was at least partly attributable to the very large sample

size (n ¼ 8200) for that survey. The opposite is true for the l-deprenyl study in

Example 6.9. It is very difficult to obtain statistically significant results with as

few as n ¼ 10 Alzheimer’s patients. Even if the addition of l-deprenyl to

treatment with a cholinesterase inhibitor does benefit Alzheimer’s patients, it

would require extreme evidence in the ten trials to lead to this conclusion (i.e.,

the rejection of H0). This is because the probability of a Type II error becomes

the overriding constraint for such a small sample size. That is, for small

samples it is not unlikely that we would fail to reject H0 when, in fact, HA is

true. In the case of the Alzheimer study, this means that there is a rather high

probability that we would not observe a positive effect in enough of the ten

subjects to lead to rejection of H0 even if the addition of l-deprenyl can, in fact,

lead to an improved treatment of the disease.

The general expressions for obtaining exact P-values for tests of H0: p¼ p0

versus either of the one-sided alternatives HA: p> p0 or HA: p< p0 are then as

follows.
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EXACT P-VALUES FOR TESTS OF H0: p ¼ p0 VERSUS EITHER OF

THE ONE-SIDED ALTERNATIVES HA: p > p0 OR HA: p < p0

Let Btest denote the number of times the event A occurs in a random

sample of size n from a population for which p ¼ P(event A). Then the exact

P-values for a test of H0: p ¼ p0 versus a one-sided alternative are given by

P�value ¼ P Btest � btest when p ¼ p0
� �

for the alternative HA : p > p0

and

P�value ¼ P Btest � btest when p ¼ p0
� �

for the alternative HA : p < p0,

where btest is the observed number of times the eventA occurs in the sample of

size n and Btest has a binomial distribution with parameters n and p0. As we

have seen previously in this chapter, the R function pbinomð Þ can be used to

compute such exact one-sided P-values.

Confidence Interval and Two-sided Hypothesis Test for pA In Example 6.4

we used Buckeye State Poll sample data from the week of February 17-26,

1998 to obtain the approximate 95% confidence interval (.428, .492) for the

proportion, p, of all central Ohio women who consider the television industry

to be a greater danger to society than government restrictions on what can

appear on television. Thus we are 95% confident that the true value of p is

between .429 and .492. However, the flip side of this statement is that the

sample data also provide evidence of being incompatible with other values of

p either above .492 or below .428. Viewed from this perspective, it sounds very

much like a statement that we would be willing to reject such proportions as

possible values for p. This, in turn, is really just a conclusion about potential

null hypotheses for p; that is, based on the 95% confidence interval (.428, .492),

it would seem reasonable to reject the null hypothesis H0: p ¼ p0 for all p0 that
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are at least as small as .428 or at least as large as .492 and fail to rejectH0: p¼ p0

if .428 < p0 < .492.

Such an interpretation of the relationship between this particular confi-

dence interval and hypothesis tests about p is, in fact, quite legitimate. More-

over, it is much more generally valid than just for this particular example.

Relationship Between Two-Sided Level αHypothesis Tests and 100(1�α)%
Confidence Intervals for pA We collect a sample from a population of inter-

est and compute p̂A, the proportion of times an event A occurs among these

sample items. In this chapter we have learned how to use this sample statistic

to make inferences about the relative frequency, pA, of the eventA in the entire

population. In particular, we have discussed ways to use p̂A to test hypotheses

about pA at a prescribed significance level, say .05, and how to construct

confidence intervals for pA at a desired confidence such as 95%.

(1) An approximate 95% confidence interval for pA, for example, looks like

this:

p̂A � 1:96
p̂A
�
1� p̂A

�
n

� �1=2
; p̂A þ 1:96

p̂A
�
1� p̂A

�
n

� �1=2 !
:

This interval is centered at the point estimate p̂A and both the 95%

confidence level and the sampling variability of p̂A determine the

length of the interval.

(2) For some event probability p0 of interest, we test the null hypothesis

H0: pA¼ p0 versus the alternative hypothesisHA: pA 6¼ p0 at significance

level α ¼ .05, for example, by rejecting H0 if the point estimate p̂A is too

far away from the hypothesized value p0. Thus we would not reject

those null hypothesis values p0 that are sufficiently close to the sample

point estimate p̂A. Not surprisingly, both the α ¼ .05 significance level
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and the sampling variability of p̂A also determine what constitutes

“sufficiently close” in this hypothesis testing setting.

It is not just a coincidence that both the length of a 95% confidence interval

for p and the decision criterion for a two-sided hypothesis test about p at the

α ¼ .05 significance level depend explicitly on the sampling variability of the

point estimate p̂A. In fact, there is a direct relationship between these twoways

of using the sampling variability of p̂A to make inferences about p. If a p0 of

interest in our null hypothesisH0 happens to be in the 95% confidence interval

described in (1), then the hypothesis test of H0: pA ¼ p0 versus the alternative

hypothesis HA: pA 6¼ p0 described in (2) will fail to reject H0 at significance

level α ¼ .05. Conversely, none of the values of p ¼ p0 belonging to the 95%

confidence interval described in (1) would be rejected by the hypothesis test of

H0: pA ¼ p0 versus the alternative hypothesis HA: pA 6¼ p0 at the α ¼ .05

significance level. However, all values of p0 that are outside (either too large or

too small) the 95% confidence interval would be rejected by the α ¼ .05

significance level test. Thus, the 95% confidence interval for p is precisely

the set of “acceptable” values of p for the corresponding two-sided hypothesis

test at the α ¼ .05 significance level.

Thus, for example, the approximate 90% confidence interval (.6269, 1)

for pClosed discussed in Example 6.5 is also the set of pClosed values that

would not be rejected as null hypothesis values with an approximate sig-

nificance level α ¼ .10 two-sided hypothesis test; that is, at approximate level

α ¼ .10, pClosed ¼ .75 is compatible with the observed data, while pClosed ¼ .50

is not.

It is clear from the relationship between the level α two-sided hypothesis

test in (6.11) and the corresponding 100(1- α)% confidence interval in (6.7) that

the confidence interval formulation is, in some sense, a good deal more

informative than is a specific hypothesis test. The confidence interval provides

immediately the entire range of parameter values pA that are compatible with
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the sample data, while a given hypothesis test simply certifies that one specific

value of pA is consistent with what has been observed in the sample. Of

course, the P-value for a hypothesis test does provide us with a measure of

the degree of incompatibility between an observed set of data and a specific null

hypothesis, a piece of information that is not readily available from a single

confidence interval.

Similar comments about the relationship between confidence intervals for

a parameter and corresponding hypothesis tests about the parameter apply to

many of the other inference settings discussed in this text, and we will note

this when it happens.

Section 6.3 Practice Exercises

6.3.1. V—chip and Children. The Annenberg Public Policy Center of the

University of Pennsylvania conducts annual surveys about issues related to

media in the home. An issue in one of their 2010 surveys was whether or not a

majority of parents would use the V-chip, if available to them, to control the

programs that could be watched by their children. Interviews with parents

provided data to assess the public opinion about this option. State the null

hypothesisH0 and the appropriate alternative hypothesisHA of interest in this

survey question.

6.3.2. Participation in Team Sports. The National Sporting Goods Association

conducts an annual survey to elicit information about participation in team

sports among 7–12 year old children. Suppose that last year’s survey showed

that 18% of all youth between 7 and 12 years old participated in team sports. If

we want to use the results of this year’s survey to test whether there is an

increasing trend in team sports participation by this age group, what would

be the appropriate null H0 and alternative hypotheses HA of interest?

502 6 Statistical Inference: Estimating Probabilities and Testing and Confirming Models



6.3.3. Hot Lottery Numbers. Newspapers in states with lotteries often report

numbers that are “hot” and numbers that are “not”. (As you are learning

statistics, you should become aware that there are no “hot” or “cold” numbers

in a fair lottery. In one such article, a newspaper reported that, among the

numbers 1 to 40, inclusive, “35” was a hot number and “2” was a cold

number. Suppose you wish to use a sample of randomly selected integers

between 1 and 40, inclusive, to test these conjectures.

(a) What are the appropriate null H0 and alternative HA hypotheses for

testing whether “35” is a “hot” number?

(b) What are the appropriate null H0 and alternative HA hypotheses for

testing whether “2” is a “cold” number?

6.3.4. Doctors’ Visits. Have you ever been to a doctor with a physical com-

plaint for which she can not find an organic cause? It has been conjectured

that this happens in more than 20% of the visits to doctors’ offices. Discuss

how you might collect information to test this conjecture. State specifically the

nullH0 and alternativeHA hypotheses that would be of interest in your study.

6.3.5. Who Are Better Drivers? Do you consider yourself a “better” driver

than most other drivers? Do you believe that men and women might answer

this question differently? Discuss how you might collect information to test

the following conjectures. For each conjecture, state specifically the null H0

and alternative HA hypotheses that would be of interest.

(a) Conjecture: More than 70% of male drivers think they are “better”

drivers than most other drivers.

(b) Conjecture: Fewer than 70% of women drivers think they are “better”

drivers than most other drivers.

(c) Conjecture: The percentage of male drivers who think they are “bet-

ter” drivers than most other drivers is higher than the corresponding

percentage for women drivers.

6.3.6. Let p denote the probability of the event A in a population and let

B equal the number of times A occurs in a random sample of size n ¼ 20 from
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this population. Consider the test of the null hypothesis H0: p ¼ .6 versus the

alternative HA: p > .6 given by:

Reject H0 if and only if B � 15:

(a) Identify the test statistic, critical region, and critical value for this test.

(b) Find the significance level for the test.

(c) If the observed value of B is bobs ¼ 17, what conclusion do you reach

with the test?

(d) If the observed value of B is bobs ¼ 16, what is the P-value for the test?

6.3.7. Let p denote the probability of the event A in a population and let

B equal the number of times A occurs in a random sample of size n ¼ 15 from

this population. Consider the test of the null hypothesis H0: p ¼ .4 versus the

alternative HA: p < .4 given by:

Reject H0 if and only if B � 3:

(a) Identify the test statistic, critical region, and critical value for this test.

(b) Find the significance level for the test.

(c) If the observed value of B is bobs ¼ 4, what conclusion do you reach

with the test?

(d) If the observed value of B is bobs ¼ 2, what is the P-value for the test?

6.3.8. Let p denote the probability of the event A in a population and let

B equal the number of times A occurs in a random sample of size n ¼ 50 from

this population. Consider the test of the null hypothesis H0: p ¼ .5 versus the

alternative HA: p 6¼ .5 given by:

Reject H0 if and only if Ztestj j � 1:85,

where Ztest is given by the right-hand side of expression (6.10) with p0 ¼ .5.

(a) Identify the test statistic, critical region, and critical value for this test.

(b) Find the approximate significance level for the test.
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(c) If the observed value of B is bobs ¼ 17, what conclusion do you reach

with the test?

(d) If the observed value of B is bobs ¼ 18, what is the approximate P-

value for the test?

6.3.9. Let p denote the probability of the event A in a population and let

B equal the number of times A occurs in a random sample of size n ¼ 10 from

this population. Consider the test of the null hypothesis H0: p ¼ .2 versus the

alternative HA: p > .2 given by:

Reject H0 if and only if B � 3:

(a) What is the probability of a Type I Error for this test?

(b) What is the probability of a Type II Error for this test if the null

hypothesis H0 is true?

(c) What is the probability of a Type II Error for this test if the true value

of p is .3? p ¼ .4? What do you think happens to the probability of a

Type II Error when the true value of p is even larger?

6.3.10. Let p denote the probability of the event A in a population and let

B equal the number of times A occurs in a random sample of size n¼ 100 from

this population. Consider the test of the null hypothesis H0: p ¼ .7 versus the

alternative HA: p < .7 given by:

Reject H0 if and only if Ztest � �1:75,

where Ztest is given by the right-hand side of expression (6.10) with p0 ¼ .7.

(a) What is the approximate probability of a Type I Error for this test?

(b) What is the approximate probability of a Type I Error for this test if

the true value of p is .8?

(c) What is the approximate power of this test if the true value of p is .6?

.5? What do you think happens to the approximate power of the test

when the true value of p is even smaller?
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6.3.11. Let p denote the probability of the event A in a population and let

B equal the number of times A occurs in a random sample of size n from

this population. Consider the approximate level α test of the null hypothesis

H0: p ¼ .45 versus the alternative HA: p > .45 given by expression (6.11) with

p0 ¼ .45.

(a) What effect does varying the value of the approximate significance

level α have on the test procedure?

(b) For approximate significance level α ¼ .05 and fixed value of the

percentage, p̂ ¼ B
n
, of times that A occurs in the sample, what affect

does varying the sample size n have on the conclusion reached by the

test?

6.3.12. If the P-value for a test procedure is .073, what conclusion would you

reach with this test for significance level α ¼ .075? α ¼ .10? α ¼ .05? α ¼ .073?

6.3.13. Consider a test procedure with significance level α ¼ .01. What

conclusion do you reach with this test if the data yield a P-value ¼ .04? P-

value ¼ .01? P-value ¼ .001? P-value ¼ .10?

6.3.14. Let p be the probability that an event A occurs. If the interval (.375,

.698) is an approximate 95% confidence interval for p, what conclusion

would you reach for the approximate level α ¼ .05 two-sided test of H0: p ¼
.6 versus HA: p 6¼ .6? for the approximate level α ¼ .05 test of H0: p ¼ .8 versus

HA: p 6¼ .8?

6.3.15. Let p be the probability that an event A occurs. For sample size n ¼
125, consider the approximate level α ¼ .025 test of H0: p ¼ .25 versus the

alternative HA: p > .25, as given in expression (6.12). If the observed value of

B is 35, what conclusion do you reach with the test?
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6.3.16. Let p be the probability that an event A occurs. For sample size n ¼
50, consider testing the null hypothesis H0: p ¼ .33 versus the alternative HA:

p < .33 using the appropriate one-sided procedure in expression (6.12). If the

observed value of B is 13, compute the value of the test statistic Ztest and find

the associated P-value. What conclusion is reached by the approximate level

α ¼ .05 test?

6.3.17. Height of Students. Let p denote the proportion of male students in

your university who are at least six feet tall. You obtain the following heights

(in inches) of a random sample of n ¼ 10 male students who are currently

enrolled in the university:

74, 66, 63, 69, 72, 77, 67, 68, 79, 71:

Find the exact P-value for a test of the null hypothesis H0: p ¼ .3 versus the

alternative HA: p > .3.

6.3.18. Free Throws. The star of your men’s basketball teammakes 80% of his

free throws. A good friend of yours insists that she is better at shooting free

throws than he is and agrees to shoot 100 free throws to convince you.

(a) State the appropriate null H0 and alternative HA hypotheses of inter-

est in this setting.

(b) If your friend makes 90 of her 100 free throws, find the P-value for the

test of H0 versus HA.

(c) What conclusion do you reach with the P-value in part (b) for approx-

imate significance level α ¼ .05?

6.3.19. Men and Candy. Consider the approximate 96% confidence interval

obtained in Exercise 6.2.25 for the percentage, p, of all men who almost never

eat candy. Using only this observed 96% confidence interval, what is the

conclusion of the approximate level α ¼ .04 test of the null hypothesis H0:

p ¼ .4 versus the two-sided alternative HA: p 6¼ .4?
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6.3.20. Women’s Shoe Preferences. Consider the approximate 95% confidence

interval obtained in Exercise 6.2.8 for the percentage, p, of those women who

work outside the home who typically wear “flats” to work. Using only this

observed 95% confidence interval, what is the conclusion of the approximate

level α ¼ .05 test of the null hypothesis H0: p ¼ .5 versus the two-sided

alternative HA: p 6¼ .5?

6.3.21. Lost While Driving. Consider the study discussed in Exercise 6.1.11

regarding a number of issues about being lost while driving. Find the approxi-

mate P-value for a test of the conjecture thatmore 75%of all male drivers would

stop and ask for directions or consult a map if they become lost while driving.

6.3.22. Physical Health and Psychological Needs. Consider the study discussed

in Exercise 6.1.12 regarding possible benefits to a patient’s physical health

from simply addressing his psychological needs. Find the approximate P-

value for a test of the conjecture that addressing the psychological needs of

asthma and rheumatoid arthritis patients leads to improved medical status

for a majority of such patients.

6.3.23. American Tastes in Art. Consider the poll discussed in Exercise 6.1.13

regarding American tastes in art. Using an approximate significance level α ¼
.01, test whether there is sufficient evidence in the survey results to support

the conclusion that more than 60% of Americans prefer the colors in a painting

to be blended into each other, rather than kept separate.

6.3.24. Intimate Partner Abuse. How prevalent is intimate partner abuse

among women? One way to obtain information about this issue is to deter-

mine the prevalence of such intimate partner abuse among female patients

entering Emergency Departments for treatment. Dearwater et al. (1998)

conducted a retrospective study of this type for community hospitals. For

the period from 1995 to 1997 an anonymous survey was sent to 4641 women

who had been treated in community hospital Emergency Departments in
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either Pennsylvania or California. Of the 3455 women who completed this

survey, 489 reported that they had experienced physical and/or sexual abuse

by an intimate partner during the past year.

(a) Find the approximate P-value for a test of the conjecture that more

than 10% of all women patients treated in hospital emergency rooms

have endured physical and/or sexual abuse by an intimate partner

during the prior year.

(b) What do you think these findings imply about women, in general,

who are involved in intimate relationships? Do you feel the percent-

age of all women who are abused while in an intimate relationship is

likely to be higher or lower than the estimate obtained by the

Dearwater et al. study of community hospital Emergency

Departments? Why?

6.3.25. Euthanasia. Is euthanasia (i. e., physician-assisted suicide) a potential

problem commonly faced by practicing physicians in the United States?

Meier et al. (1998) mailed surveys to 3102 physicians whose specialities are

most likely to receive requests from patients for assistance with euthanasia. The

authors received completed questionnaires from 1902 physicians, including

320who indicated that they had received at least one request for such assistance

since they began practicing.

(a) Find the approximate P-value for a test of the conjecture that more

than 15% of all physicians working in the designated specialities have

received at least one request for euthanasia since they began

practicing.

(b) How well do you feel the larger group of 3102 physicians who were

sent the survey are represented by the 1902 physicians who actually

responded? That is, do you believe there is a possibility of

non-response bias in this study? Why or why not?
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Chapter 6 Comprehensive Exercises

6.A. Conceptual

6.A.1. Explain how to properly interpret the following statement.

“(.47, .87) is a 90% confidence interval for the population percentage p.”

6.A.2. Will an approximate 90% confidence interval for a population per-

centage be shorter or longer than an approximate 95% confidence for the

percentage based on the same data collection? Justify your answer.

6.A.3. Is the following statement true or false? Justify your answer.

“If the P-value for rejecting a null hypothesis H0 in favor of an alternative HA

is .17, then the probability is .17 that H0 is true.”

6.A.4. Is the following statement true or false? Justify your answer.

“Suppose that (.37, .64) is a 94% confidence interval for a population percent-

age p. Then we would reject the null hypothesis H0: p ¼ .75 in favor of an

alternative HA: p 6¼ .75 at significance level α ¼ .06.”

6.A.5. Is the following statement true or false? Justify your answer.

“The length of an approximate 93% confidence interval for a population

percentage p is a decreasing function of the sample size n.”

6.A.6. Is the following statement true or false? Justify your answer.

“If we reject a null hypothesis H0 in favor of an alternative HA at significance

level α, then we would also reject H0 in favor of the alternative HA for any

significance level greater than α.”
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6.A.7. Let p be the probability that an event A occurs. If the approximate

level α ¼ .08 test of H0: p ¼ .3 versus HA: p 6¼ .3 leads to rejection of H0, which

of the following are possible approximate 92% confidence intervals for p?

(i) (.459, .683)

(ii) (.663, .994)

(iii) (.104, .898)

(iv) (.255, .388)

(v) (.334, .665).

6.A.8. Explain how to properly interpret the following statement.

“The P-value for rejecting a null hypothesis H0 in favor of an alternative HA

is .07.”

6.A.9. Is the following statement true or false? Justify your answer.

“If we fail to reject a null hypothesis H0 in favor of an alternative HA at

significance level α, then we know that H0 is true.”

6.A.10. Is the following statement true or false? Justify your answer.

“If we reject a null hypothesis H0 in favor of an alternative HA at significance

level α, then we know that H0 is not true.”

6.A.11. Is the following statement true or false? Justify your answer.

“If we fail to reject a null hypothesis H0 in favor of an alternative HA at

significance level α, then we cannot make a Type I Error.”

6.A.12. Is the following statement true or false? Justify your answer.

“If we reject a null hypothesis H0 in favor of an alternative HA at significance

level α, then we cannot make either a Type I or a Type II error.”
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6.A.13. Flowers—Colored or White? In Example 6.5 we used the Ostler-

Harper (1978) data to obtain approximate confidence intervals for the

proportions of all open and closed communities that have a majority white

flowers. The construction and interpretation of these confidence intervals

relies heavily on the particular sample open and closed communities studied

by Ostler and Harper. What must be true about the 14 open and 11 closed

communities in their study in order for these two confidence intervals to

provide reasonable inferences?

6.A.14. Statistics, Earwax, and the Bering Strait. Consider the Petrakis et al.

(1967) study discussed in Exercise 6.B.12. The sample data for the study were

collected from patients and non-patient visitors in wards and outpatient

clinics and from family studies at well-baby clinics. Discuss any reservations

you might have about this sampling technique in view of the fact that the type

of earwax a person has is hereditary.

6.A.15. Statistics, Earwax, and the Bering Strait. Consider the Petrakis et al.

(1967) study discussed in Exercise 6.B.12. The authors also collected earwax

data on a sample of Sioux Indians living primarily in the upper midwest and

western portions of the United States. In contradiction with their data from

the Navaho Indians, the authors found a much lower percentage of dry

earwax for this group (only 54 out of 147 in the sample had dry earwax).

Discuss these findings in conjunction with the fact that the Sioux (and other

Plains Indians) experienced substantial and sustained contact with French

trappers and traders, including extensive intermarriage.

6.A.16. Small Sample Confidence Intervals for a Percentage. In Sect. 2 we

discussed the selection of a sample size n sufficiently large to guarantee a

margin of error no greater than some pre-specified level � d in the approxi-

mate 100CL% confidence interval for the probability, p, of an event A. There

we used the worst case (i.e., most variability) setting, corresponding to p ¼ .5,
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to provide the conservative sample size stipulation given in (6.8). However, if

we have reasonable prior information (either from basic knowledge about the

problem or from a preliminary sample estimate of p) that the true value of p is

greater than some bound p* (or, conversely, less than p*), we can improve on

(i.e., decrease the size of the required sample) the stipulation given in (6.8).

In fact, if we are reasonably certain that p � p* > .5 (or p � p* < .5), then the

required sample size can be reduced to satisfy

n � z21�CLð Þ=2p
∗ 1� p∗ð Þ=d2: ð6:13Þ

(a) Provide an intuitive argument why the less stringent lower bound for

n in (6.13) can be used to provide a rough guarantee that the margin of

error in the approximate 100CL% confidence interval for p will be no

greater than� dwhen it is known that either p� p* > .5 or p� p*< .5?

(Hint: Consider the term p(1-p) as a function of p. Draw a picture of

this function and note that it achieves its maximum value of .25 at p¼
.5. Also observe that the function is strictly decreasing as either

p increases from .5 to 1 or p decreases from .5 to 0.)

(b) Using Eqs. (6.8) and (6.13), compare the sample size requirement

necessary to provide a rough guarantee that the margin of error in a

95% confidence interval for p will be no greater than � d when it is

known that either p � p* or p � p* for

(i) p* ¼ .5 (the conservative setting)

(ii) p* ¼ .6

(iii) p* ¼ .7

(iv) p* ¼ .9 .

6.A.17. Eighteen independent Bernoulli trials, each with probability of suc-

cess p, are to be conducted.

(a) Use the R function qbinomð Þ to obtain the form of the level α ¼ .0210

test of the null hypothesis H0: p ¼ .3 versus the alternative H1: p > .3.
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(b) What is the power of the test in (a) against the alternative p ¼ .4?

p ¼ .6?

(c) What is your conclusion for the test in (a) if nine of the Bernoulli trials

resulted in successes?

(d) What is the P-value for the test in (a) for the sample outcome in (c)?

6.A.18. Eighteen independent Bernoulli trials, each with probability of suc-

cess p, are to be conducted.

(a) Use the R function qbinomð Þ to obtain the form of the level α ¼ .0596

test of the null hypothesis H0: p ¼ .3 versus the alternative H1: p > .3.

(b) What is the power of the test in (a) against the alternative p ¼ .4?

p ¼ .6?

(c) What is your conclusion for the test in (a) if nine of the Bernoulli trials

resulted in successes?

(d) What is the P-value for the test in (a) for the sample outcome in (c)?

(e) Compare and contrast the results of parts (a)-(d) of this exercise with

the similar results for parts (a)-(d) of Exercise A.17.

6.A.19. In Example 6.5 we illustrated one of the problems that can result

from the application of the formula given in (6.7) for an approximate confi-

dence interval for the probability parameter p when the sample size n is not

sufficiently large. For given confidence level CL and an observed value for B¼
[number of times the event A occurs in a sample of n Bernoulli trials], we can

construct a confidence interval (p1(B) , p2(B)) for p that provides confidence of

at least the desired level CL for any sample size n, small or large.

While the technical details behind the construction of this interval are beyond

the assumed level of this text, it can be shown that the endpoints of this 100CL

% confidence interval for p are given by
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p1 Bð Þ ¼ B
Bþ n� Bþ 1ð Þf 1�CL

2

and p2 Bð Þ ¼ 1� n� B
n� Bþ Bþ 1ð Þf∗1�CL

2

,

where f 1�CL
2
is the upper (1�CL

2 )th percentile for an F distribution with degrees of

freedom {d1, d2} ¼ {2(B+1), 2(n-B)} and f∗1�CL
2

is the upper (1�CL
2 )th percentile for

an F distribution with degrees of freedom {d1, d2} ¼ {2(n-B+1), 2B}. For given

values of CL, n, and B, the R function qfð Þ can be used to obtain the required

F distribution upper percentiles and, subsequently, the 100CL% confidence

interval (p1(B) , p2(B)) for p.

(a) For n ¼ 15 and an observed value of B ¼ 11, find a 95% confidence

interval for the probability p.

(b) For n ¼ 30 and an observed value of B ¼ 22, find a 95% confidence

interval for the probability p.

(c) Compare your intervals obtained in parts (a) and (b). Are they cen-

tered at the same value? How do their lengths compare? Comment on

these findings.

6.A.20. Consider testing H0 : p ¼ .5 versus the alternative HA : p > .5. If

12 out of 15 independent Bernoulli trials with probability of success

p resulted in the occurrence of the event A, use the R function qbinomð Þ to

obtain the exact P-value for a test ofH0 versusHA?What is your decision with

this test for significance level α ¼ .0592?

6.A.21. Consider testing H0: p ¼ .5 versus the alternative HA : p > .5.

If 12 out of 15 independent Bernoulli trials with probability of success

p resulted in the occurrence of the event A, use the standard normal distribu-

tion to find an approximate P-value for a test of H0 versus HA. Compare this

approximate P-value with the exact P-value obtained in Exercise 6.A.20.

6.A.22. Consider testing H0 : p ¼ .4 versus the alternative HA : p < .4. Find

the P-value under each of the following sample outcomes:
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(a) Two out of ten independent Bernoulli trials with probability of suc-

cess p resulted in occurrence of the event A.

(b) Four out of twenty independent Bernoulli trials with probability of

success p resulted in occurrence of the event A.

(c) Forty out of two hundred independent Bernoulli trials with probabil-

ity of success p resulted in occurrence of the event A.

(d) Four hundred out of two thousand independent Bernoulli trials with

probability of success p resulted in occurrence of the event A.

(e) Compare the answers you obtained in parts (a) through (d). Discuss

the significance of the comparison.

6.A.23. Let p be the probability of an event A relative to an underlying

population. Consider the approximate level α test of H0: p ¼ .4 versus HA:

p > .4 given in expression (6.11).

(a) Find the form of the critical region for approximate level α ¼ .025.

(b) Suppose the observed value of the test statistic Ztest for a sample of

size n ¼ 100 from the population is ztest ¼ 2.04. What decision is

reached with the level α ¼ .025 test in part (a)?

(c) Based only on the information given in part (b), can you conclude

what decision would be reached with these data if we had used an

approximate level of α ¼ .05 (instead of .025)? α ¼ .035? α ¼ .03? Find

the forms of the three critical regions for the approximate levels .05,

.035, and .03, respectively. Describe how they relate to each other and

to the level α ¼ .025 critical region in part (a). Can this discussion be

generalized to other levels? How?

(d) Based only on the information given in part (b), can you conclude

what decision would be reached with these data if we had used an

approximate level of α ¼ .01 (instead of .025)? α ¼ .015? α ¼ .02? Find

the forms of the three critical regions for the approximate levels .01,

.015, and .02, respectively. Describe how they relate to each other and
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to the observed value of ztest ¼ 2.04. What would your conclusions

have been with each of these other levels?

(e) Find the approximate P-value for the test of H0: p ¼ .4 versus HA: p >

.4 with the observed value of ztest¼ 2.04. Discuss how this P-value can

be used to consolidate the discussion in parts (c) and (d).

6.A.24. Let p be the probability of an event A relative to an underlying

population and let B denote the number of timesA occurs in a random sample

of size n from the population. Consider the level α � .05 test of H0: p ¼ .5

versus the one-sided alternative HA: p > .5 that rejects H0 if and only if B � cn,

where cn is a constant that depends on the sample size n.

(a) Find the appropriate constants cn for each of the sample sizes n ¼
10, 15, 20, 25, 50, and 100.

(b) What are the powers against the alternative p ¼ .6 of the level α � .05

tests for these six sample sizes?

(c) What are the Type II Error probabilities of the level α � .05 tests for

these six sample sizes when the alternative p ¼ .7 is true?

(d) Discuss the implications of your calculations in parts (b) and (c).

6.A.25. Flowers—Colored or White? In Example 6.5 we used the Ostler-

Harper (1978) data to obtain approximate confidence intervals for the

proportions of open and closed communities that have a majority white

flowers. The particular open community in the Ostler-Harper sample that

had 52.6% white flowers was an Alpine wet meadow. Could this information

alone be used to provide a confidence interval for pAlpine wet meadow ¼ [pro-

portion of white flowers in a typical Alpine wet meadow]? Why or why not?

6.B. Data Analysis/Computational

6.B.1. How “Golden” Are the Golden Years? Who has responsibility for aging

parents? In a national survey of 1118 individuals aged 40 and older with both
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living parents, Visiting Angels (2013), one of the largest in-home senior care

companies in the United States, found that 783 of the respondents say they do

not have a plan for taking care of their aging parents.

(a) What are the relevant population and event of interest in this survey?

(b) Find the approximate P-value for a test of the conjecture that more

than 50% of all individuals aged 40 and older with both living parents

do not have a plan for taking care of their aging parents.

(c) Find an approximate 95% confidence interval for the percentage of all

individuals aged 40 and older with both living parents who do not

have a plan for taking care of their aging parents.

6.B.2. Firearms in the Home. The proper storage of firearms is extremely

important in households with children. Baxley and Miller (2006) collected

information from 314 households with children in rural Alabama about the

presence of firearms and, if present, how they were stored.

(a) Of the 314 participating households, 201 were determined to contain

guns. Let p denote the percentage of all households with children in

rural Alabama that also contain guns. Find a point estimate of p and

an approximate 95% confidence interval for p.

(b) Among the 196 parents who reported household guns and provided

complete information about how their guns were stored, 110 of them

stored all of the household guns unloaded and locked away, 61 stored

at least one firearm unloaded and unlocked, and 25 stored at least one

gun loaded. What is the population under consideration here and

what three events are of interest? Find approximate 90% confidence

intervals for the percentages of the population that belong to each of

these events.

(c) Can these results be extended to other populations of households

with children and firearms? Why or why not?
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6.B.3. What is the Status of Vegetarianism in America? The Vegetarian Times

(2008) commissioned the Harris Interactive Service Bureau to conduct a

nationwide poll designed to address this question. The poll collected infor-

mation on 5050 respondents to the survey.

(a) One hundred sixty two of the respondents indicated that they follow

a vegetarian diet. What are the population and event of interest here?

Find an estimate of and an approximate 91% confidence interval for

the percentage, p, of the population that follow a vegetarian diet.

(b) Of the 162 respondents who indicated that they follow a vegetarian

diet, 96 are female and 66 are male. Find the approximate P-value for

a test of H0: p ¼ .50 versus HA: p > .50, where p is the percentage of

vegetarians who are female. At approximate significance level α ¼
.05, do you reject H0?

(c) Of the 162 respondents who indicated that they follow a vegetarian

diet, 68 were younger than 35 years of age. Find an estimate of and an

approximate 98% confidence interval for the percentage, p, of all

vegetarians who are younger than 35 years of age.

6.B.4. What are Americans’ Attitudes Toward the Environment? In a recent

survey, GfK(2015b) asked Americans the following three questions:

(i) Do you believe that brands and companies “have to be” environmen-

tally responsible?

(ii) Do you feel guilty when not being environmentally friendly?

(iii) Do you “only buy” products and services that appeal to your beliefs,

values or ideals?

GfK found that 990 out of 1500 respondents answered yes to question (i),

795 answered yes to question (ii), and 810 answered yes to question (iii).

(a) Define the population of interest in this study and identify the three

percentages corresponding to questions (i), (ii), and (iii), respectively.
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(b) For each of these three questions, use the survey data to obtain an

estimate of and an approximate 95% confidence interval for the

relevant percentage.

(c) Find the approximate P-value for a test of the conjecture that more

than 50% of all Americans feel guilty when they are not being

environmentally friendly.

(d) Find the approximate P-value for a test of the conjecture that more

than 50% of all Americans believe that brands and companies “have

to be” environmentally responsible. At approximate significance level

α ¼ .01, do you reject the associated null hypothesis?

6.B.5. Employment Satisfaction Factors. The Society for Human Resource Man-

agement (SHRM) (2014) conducted an Employee Job Satisfaction and Engage-

ment Survey in which participants were asked to respond to a variety of

statements about their current employment, including the following two:

(i) How important is it to you that you have opportunities to use your

skills and abilities in your work?

(ii) In my organization, employees are encouraged to take action when

they see a problem or opportunity.

The survey involved a random sample of 600 U. S. employees. SHRM

reported that 354 respondents answered “Very Important” to question

(i) and 132 answered “Strongly Agree” to question (ii).

(a) Define the population of interest in this study and identify the two

percentages corresponding to questions (i) and (ii), respectively.

(b) Find the approximate P-value for a test of H0: p ¼ .50 versus HA: p >

.50, where p is the percentage of all U. S. employees who would

respond “Very Important” to statement (i). At approximate signifi-

cance level α ¼ .02, do you reject H0?

(c) Find an estimate of and an approximate 98% confidence interval for

the percentage, p, of all U. S. employees who would respond

“Strongly Agree” to question (ii).

520 6 Statistical Inference: Estimating Probabilities and Testing and Confirming Models



6.B.6. Do Children Know Where Household Firearms Are Stored? Depends on

who you ask!! In a survey of parents and children in households with

firearms, Baxley and Miller (2006) collected information from 201 such

households in rural Alabama.

(a) Parents in 60 of these households reported that their children did not

know the storage location of the firearms. What are the population

and event of interest here? Find an estimate of and an approximate

95% confidence interval for the percentage of the population belong-

ing to this event.

(b) Parents in 140 of these households reported that their children had

never handled a firearm in the home. What are the population and

event of interest here? Find an estimate of and an approximate 90%

confidence interval for the percentage of the population belonging to

this event.

(c) Consider the 60 parents in part (a) who reported that their children

did not know the storage location of the firearms. Children from 23 of

these households reported that they did, in fact, know the storage

location of the firearms in their households. What are the population

and event of interest here? Find an estimate of and an approximate

90% confidence interval for the percentage of the population belong-

ing to this event.

(d) Consider the 140 parents in part (b) who reported that their children

had never handled a firearm in the home. Children from 31 of these

households reported that they had, in fact, handled a firearm in their

homes. What are the population and event of interest here? Find an

estimate of and an approximate 92% confidence interval for the

percentage of the population belonging to this event.

(e) Comment on the implications of the results in parts (c) and (d).
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6.B.7. Moving Aging Parents in to Live with You—Mom or Dad? In a national

survey of 1118 individuals aged 40 and older with both living parents,

Visiting Angels (2013), one of the largest in-home senior care companies in

the United States, asked respondents the following question: If you had to

choose only one of your aging parents to move in and live with you, would

you choose your mom or your dad? 745 of the respondents said they would

choose mom over dad!

(a) What are the relevant population and event of interest in this survey?

(b) Find the approximate P-value for a test of the conjecture that more

than half of all individuals aged 40 and older with both living parents

would prefer to move mom in over dad if they could only choose one

parent.

(c) Find an approximate 95% confidence interval for the percentage of all

individuals aged 40 and older with both living parents who would

prefer to move mom in over dad if they could only choose one parent.

(d) What do you think respondents might have given as some of the

reasons for preferring mom over dad? Check out what the

respondents said at www.visitingangels.com.

6.B.8. Families—Who and How. The Pew Research Center (PRC) (2012)

conducted a wide-ranging survey among residents of the United States on a

number of important issues. In particular, they asked participants whether

they agreed with the following two statements:

(i) One parent can bring up a child as well as two parents together.

(ii) Favor allowing gay and lesbian couples to marry legally.

(a) PRC reported that 65% of the respondents between 18 and 29 years old

(inclusive) agreed with statement (i). What is the relevant population

and event of interest for this setting? Suppose you want to find an

approximate 90% confidence interval for the percentage of all 18–29

year olds (inclusive) who would agree with statement (i). What
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additional information do you need to accomplish this? Consider

three possible values for this additional information and construct

the associated approximate 90% confidence intervals. Discuss your

results.

(b) PRC reported that only 36% of the respondents 65 years of age or older

agreed with statement (i). What is the relevant population and event of

interest for this setting? Using the same possible values for the addi-

tional information from part (a), construct approximate 90% confi-

dence intervals for the percentage of all individuals 65 years of age

or older who would agree with statement (i). Discuss your results in

conjunction with your findings from part (a).

(c) PRC reported that 51% of female respondents agreed with statement

(ii), while only 42% of male respondents agreed. Let pF and pM denote

the percentages of all females and males, respectively, in the United

States who would agree with statement (ii). Using the largest of the

three possible values for the needed additional information you con-

sidered in part (a), find the approximate P-value for a test of the

conjecture that more than half of U. S. women would agree with

statement (ii). Do the same for the conjecture that less than half of

U. S. men would agree with statement (ii). Discuss your findings.

6.B.9. Time Heals. Nearly 40 years after the fall of Saigon brought an end to

the Vietnam War, the Pew Research Center (PRC) (2014) conducted a survey

of 1000 residents of Vietnam on a number of important issues, including their

views of the United States.

(a) PRC reported that 76% of the individuals surveyed expressed a

favorable opinion of the United States. Find an approximate 95%

confidence interval for the percentage, p, of all the Vietnamese who

had a favorable opinion of the United States at the time of the survey.

(b) PRC also reported that 56% of the respondents viewed the United

States as the world’s leading economic power. Find the approximate
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P-value for the conjecture that more than half of all the Vietnamese

had this view as the time of the survey. What decision do you make at

the approximate significance level α ¼ .03?

6.B.10. Online Dating Sites—Who Visits and Who Posts.Online dating services

have become increasing popular as a strategy to find a romantic and possibly

lifelong partner. Valkenburg and Peter (2007) reported on some of the demo-

graphic and social attributes of individuals who use these services. In May

2005, Valkenburg and Peter conducted an online survey of 367 Dutch singles

between 18 and 60 years old. They found that 157 of the respondents had

visited at least one dating site and 122 of the respondents had posted a profile

on at least one dating site.

(a) What two populations and events are of interest here?

(b) Find an estimate of and approximate 94% confidence interval for the

percentage of all Dutch individuals between the ages of 18 and

60 who have visited at least one online dating site.

(c) Find an estimate of the percentage of all Dutch individuals between

the ages of 18 and 60 who have posted a profile on at least one dating

site. Find the approximate P-value for the conjecture that less than

40% of all Dutch individuals between the ages of 18 and 60 have

posted a profile on at least one dating site. What decision do you

make at the approximate significance level α ¼ .07?

6.B.11. Treating Alzheimer’s Disease. Consider the Schneider et al. (1993) data

in Table 6.2 relating to the treatment of Alzheimer’s disease with a cholines-

terase inhibitor (tacrine or physostigmine salicylate) plus l-deprenyl. Find an

approximate 99% confidence interval for the probability that a randomly

selected Alzheimer patient would show improvement in cognate subscale

score from the combined use of l-deprenyl and a cholinesterase inhibitor

relative to the latter in combination only with a placebo.
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6.B.12. Statistics, Earwax, and the Bering Strait.Where did the first Americans

come from? That question has intrigued scientists for many years and is far

from completely answered even today. While it is pretty well agreed that one

source of settlement of the Americas was a major migration across the Bering

Strait roughly 10,000–12,000 years ago, there has also been considerable

scientific discussion about the possibility that the Americas were initially

settled much earlier than that. Evidence uncovered at Monte Verde, in south-

ern Chile, supports the claim that the earliest confirmed settlement of the new

world was at least 12,500 years ago, and there is additional support for the

conjecture that the peopling of America could have begun as early as

20,000–30,000 years ago. Moreover, it is likely that there were a number of

different waves of migration into the Americas, primarily across the Bering

Strait, but also possibly across the Atlantic and Pacific Oceans.

One thing that is generally agreed upon, however, is that the migrations to the

new world were primarily from northern Asia. An interesting article that

supports this claim that many of the first Americans came from northern Asia

was published a number of years ago by Petrakis et al. (1967) and provides an

unusual link between this theory and the makeup of human cerumen, better

known as ‘earwax’.

Matsunaga (1962) had earlier documented that human cerumen occurs in two

phenotypic forms, wet (sticky) and dry (hard). Moreover, you can blame your

parents for the type of earwax that you have, as it is controlled by a single pair

of genes in which the allele for the sticky trait is dominant. Matsunaga also

found substantial differences in the frequencies of these two forms of earwax

among different ethnic groups, ranging from a very high frequency of dry

earwax in the peoples of Northern Asia through intermediate percentages of

dry earwax in Southeast Asia to very low frequencies of dry earwax across the

rest of the world.
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Petrakis et al. (1967) reasoned that if the ancestors of present day Native

Americans had, indeed, migrated from Northern Asia (either via the Bering

Strait or by other routes), the makeup of the cerumen for such Native

Americans should reflect that linkage and be predominantly dry in form

(in variance with the makeup of other present day inhabitants of

the Americas with ancestral links to Europe or Africa). To investigate

this theory, the authors undertook a number of studies relating to the nature

of the cerumen of present day ‘Native Americans’. In this example, we

concentrate on one aspect of their studies associated with data obtained

from Navaho Indians in Arizona and California. In that portion of their

study, Petrakis et al. determined (using otoscopic examination of both ears

as previously employed by Matsunaga) the type of cerumen for 162 Navaho

subjects (satisfactorily determined to be full-blooded, with no known interra-

cial marriages in their ancestry) and found that 113 of them had dry earwax.

(a) Letting pDE:N denote the percentage of all full-blooded Navaho

Indians who have dry earwax, find an approximate 92% confidence

interval for pDE:N.

(b) The percentages of dry earwax observed by Matsunaga (1962) among

various Northern Asian ethnic groups ranged from 62.41% to 95.65%.

Discuss the relevance of this fact in conjunction with the confidence

interval for pDE:N obtained in (a) and the hypothesis that the ancestors

of the Navahos came to the new world from Northern Asia.

6.B.13. Statistics, Earwax, and the Bering Strait. Consider the Petrakis et al.

(1967) study discussed in Exercise 6.B.12. The authors also gathered similar

data on a sample of 45 Caucasian Americans and found that 2 of them had dry

earwax. Use these data to find an approximate 92% confidence interval for

pDE:C, the percentage of Caucasian Americans with dry earwax. Discuss the

implication of this result in conjunction with the confidence interval for pDE:N

obtained in part (a) of Exercise 6.B.12.
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6.B.14. Statistics, Earwax, and the Bering Strait. Consider the Petrakis et al.

(1967) study discussed in Exercise 6.B.12. In part (a) of that exercise, you were

asked to find an approximate 92% confidence interval for pDE:N utilizing the

data for the n ¼ 162 Navaho subjects included in the authors’ sample. The

margin of error associated with the confidence interval for their data is �
.0632. How many Navaho subjects should the authors have included in their

sample in order to be certain that the observed margin of error for their

approximate 92% confidence interval for pDE:N would have been no greater

than � .05?

6.B.15. Flowers—Colored or White? Consider the Ostler and Harper (1978)

data discussed in Examples 6.2 and 6.5 on the relative proportions of white

and colored flowers in open and closed communities.

(a) How many closed communities would they have had to examine if

they wanted an approximate 90% confidence interval for pClosed with

a margin of error no greater than � 3%?

(b) Howwould your answer in (a) change if you knew that at least 3/4 of

all closed communities have a majority of white flowers? (Hint: See

Exercise 6.A.16.)

6.B.16. Casino Gambling in Tennessee? Consider designing the sample survey

to assess the sentiment in support of legalized casino gambling in the state of

Tennessee, as discussed in Example 6.6. How many eligible state voters

would you have to interview in order to obtain an approximate 90% confi-

dence interval for the proportion, p, of eligible voters in Tennessee who favor

legalizing casino gambling in the state, with margin of error no greater than�
2% if, in fact, you were relatively confident that p cannot possibly exceed .40?

(Hint: See Exercise 6.A.16.)

6.B.17. Statistics, Earwax, and the Bering Strait. Consider the Petrakis et al.

(1967) study discussed in Exercise 6.B.12. In part (b) of that exercise, we note
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that the percentages of dry earwax observed by Matsunaga (1962) for various

Northern Asian ethnic groups ranged from 62.41% to 95.65%. Taking the

midpoint of this range (62.42% + 95.65%)/2 ¼ 79.04% to be ‘representative’

of the percentage of dry earwax for Northern Asians, find the approximate

P-value for a test of H0: pDE:N ¼ .79 versus the alternative HA: pDE:N < .79,

where pDE:N denotes the percentage of all full-blooded Navaho Indians who

have dry earwax. What is your conclusion for approximate significance level

α ¼ .05? Discuss the implication of your analysis.

6.B.18. Dual-Career Couples. In Example 6.7 we discussed a study by the

research group Catalyst (1998) dealing with dual-career couples’ opinions

regarding whether they felt they have more control over shaping their own

careers because their partner is also working. Another issue addressed in that

study related to how such couples viewed the relative importance of their

respective jobs in the relationship. Catalyst found that 196 of the 401 women

interviewed felt that their jobs were treated equally in the dual-career rela-

tionship, while 233 of the 401 men interviewed expressed this opinion.

(a) Find an approximate 95% confidence interval for the percentage of all

men in dual-career relationships who feel that both partners’ jobs are

treated equally in their relationships.

(b) Find an approximate 95% confidence interval for the percentage of all

women in dual-career relationships who feel that both partners’ jobs

are treated equally in their relationships.

(c) Comment, informally, on the results obtained in (a) and (b).

6.B.19. Statistics, Earwax, and the Bering Strait. Consider the Petrakis et al.

(1967) study discussed in Exercise 6.B.12. The percentages of dry earwax

observed by Matsunaga (1962) among various Caucasian ethnic groups

were generally below 10%.

(a) Find the approximate P-value for a test of H0: pDE:N ¼ .10 versus the

alternative HA: pDE:N > .10, where pDE:N denotes the percentage of all
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full-blooded Navaho Indians who have dry earwax. What is your

conclusion for approximate significance level α ¼ .05? Discuss the

implication of your analysis.

(b) Compare and contrast the two approaches taken in part (a) of this

exercise and in Exercise 6.B.17 to provide evidence for the Northern

Asian ancestry of the Navaho Indians. In particular, discuss the

different implications associated with Type I and Type II Errors for

the two formulations; that is, what are the consequences of falsely

rejecting a true null hypothesis or incorrectly failing to reject a false

null hypothesis for each of these testing approaches?

6.B.20. Flowers—Colored or White? Consider the flower color data for open

and closed communities, as discussed in Examples 6.2 and 6.5. Use the data

from those examples and the small sample procedure discussed in Exercise 6.

A.19 to obtain a 95% confidence interval for pOpen ¼ [proportion of open

communities that contain a majority white flowers]. Use the R function qf ð Þ
to generate the necessary F distribution percentiles. Compare this small

sample 95% confidence interval for pOpen with the approximate 95% confi-

dence interval for pOpen previously obtained in Example 6.5.

6.B.21. Coin Tossing with a Friend. Consider the third critical region C3 ¼
{exactly 8 heads on the eight flips} for the coin tossing experiment with your

friend discussed in Sect. 3. Verify that this critical region has significance level

α¼ .0039 for testing the null hypothesis of a fair coin (i.e.,H0: p¼ .5) and that it

has power .4305 against the biased coin alternative (i.e., HA: p ¼ .9).

6.B.22. Flowers—Colored or White? Consider the flower color data for open

and closed communities, as discussed in Examples 6.2 and 6.5. Use the data

from those examples and the small sample procedure discussed in Exercise 6.

A.19 to obtain a 95% confidence interval for pClosed ¼ [proportion of closed

communities that contain a majority white flowers]. Use theR functionqfð Þ to
generate the necessary F distribution percentiles. Compare this small sample
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95% confidence interval for pClosed with the approximate 95% confidence

interval for pClosed previously obtained in Example 6.5.

6.C. Activities

6.C.1. How Old Are Your Pennies? What is the percentage, p, of pennies in

circulation that were minted in the 1970’s? Design an experiment to obtain

data for addressing this question. Carry out your experiment and find a point

estimate for p and an approximate 95% confidence interval for p. At approxi-

mate significance level α¼ .05, do you rejectH0: p¼ .25 in favor ofHA: p 6¼.25?

Prepare a short report that discusses your experiment/data collection process

and provides details of your data analysis.

6.C.2. Where Are Your Coins Minted? U. S. coins are currently produced at

two mints, one in Philadelphia and one in Denver. Pennies minted in

Philadelphia do not have a mint mark below the date, while pennies minted

in Denver have a mint mark D below the date. Let p denote the percentage of

U. S. pennies in circulation that were minted in Philadelphia. Design and

conduct an experiment to provide information about p. Use your sample data

to obtain a point estimate of p and an approximate 92% confidence interval for

p. In your data collection you might run across one or more pennies with a

mint mark S below the date. What does the S stand for? Do you have to

discard such S pennies from your study? Why or why not? Prepare a short

report that discusses your experiment/data collection process and provides

details of your data analysis.

6.C.3. College Students and Sleep. What percentage, p, of college students get

an average of at least 6 h of sleep a night? Design and conduct an experiment

to provide information about p. Use your sample data to obtain a point

estimate of p and an approximate 98% confidence interval for p. Find the

approximate P-value for a test of H0: p ¼ .40 versus HA: p < .40. At approxi-

mate significance level α ¼ .05, do you reject H0? Prepare a short report that
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discusses your experiment/data collection process and provides details of

your data analysis.

6.C.4. Semi Trailers on Interstates. It seems like we are always either passing

or being passed by semi trailers when we drive on interstate highways. Is it

reality or simply a figment of our imagination? Design and conduct an

experiment to provide information about the percentage, p, of semi trailers

among the vehicles traveling on interstate highways. Prepare a short report

that discusses your experiment/data collection process and provides details

of an appropriate statistical analysis of your sample data.

6.C.5. Mother’s Day or Father’s Day? Suppose the powers that be decided to

cancel either Mother’s Day or Father’s Day. What percentage, p, of college

students do you think would prefer to see Father’s Day cancelled in favor of

Mother’s Day? Design and conduct an experiment to provide information

about p. Use your sample data to obtain a point estimate of p and an approxi-

mate 94% confidence interval for p. Find the approximate P-value for a test of

H0: p ¼ .50 versus HA: p > .50. At approximate significance level α ¼ .10, do

you reject H0? Prepare a short report that discusses your experiment/data

collection process and provides details of your data analysis.

6.C.6. College Students and Meat. What percentage, p, of college students are

vegetarian? Design and conduct an experiment to provide information about

p. Use your sample data to obtain a point estimate of p and an approximate

94% confidence interval for p. Find the approximate P-value for a test of H0:

p ¼ .10 versus HA: p < .10. At approximate significance level α ¼ .01, do you

reject H0? Prepare a short report that discusses your experiment/data collec-

tion process and provides details of your data analysis.

6.C.7. One-Eyed Autos. When driving at night we often encounter cars with

only a single headlight (or even occasionally NO headlights). How common

an occurrence do you think this is? Design and conduct an experiment to

Chapter 6 Comprehensive Exercises 531



provide information about the percentage, p, of cars that are driven at night

with less than one headlight on. Use your sample data to obtain a point

estimate of p and an approximate 96% confidence interval for p. Prepare a

short report that discusses your experiment/data collection process and

provides details of your data analysis.

6.C.8. Special Plates for Special People. When purchasing license plates for an

auto we are usually given the opportunity to specialize the plates (for a fee, of

course) by either selecting numbers/letters that mean something to us per-

sonally (such as “I M FINE” or “BM ME UP” or “ORTHODOC”) or by

selecting a license plate associated with a designated organization or society

(such as a “university affiliation” or “Save the Seashores” or a “wildlife

picture”). Design and conduct an experiment to provide information about

the two percentages, p1 ¼ percentage of cars that have license plates with

personalized numbers/letters and p2 ¼ percentage of cars that have license

plates associated with designated organizations. Prepare a short report that

discusses your experiment/data collection process and provides details of an

appropriate statistical analysis of your sample data.

6.C.9. Pine Tree Growth. Using the data in the dataset pines_1997, select a

random sample of 100 pine trees from the population of 1000 such trees

planted by Kenyon College student and faculty volunteers in April 1990.

(a) Use your sample to estimate the percentage of the 1000 trees planted

in 1990 that grew more than 5 cm from 1996 to 1997.

(b) Find an approximate 94% confidence interval for the probability that

a randomly selected tree planted in 1990 grew less than 4 cm from

1995 to 1996.

6.C.10. Home Prices in Columbus, Ohio. Find a published list of the prices of

Style 3 homes (split level) that are currently for sale in the Columbus, Ohio

area. Select a random sample of 75 homes from this list. Use this sample to
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find an approximate 98% confidence interval for the proportion of all Style

3 homes for sale in central Ohio that have a listed selling price of more than

$150,000.

6.C.11. Home Prices in Atlanta, Georgia. Find a published list of the prices of

Style 3 homes (split level) that are currently for sale in the Atlanta area. Select

a random sample of 75 homes from this list. Use this sample to find an

approximate 98% confidence interval for the proportion of all Style 3 homes

currently for sale in the Atlanta area that have a listed selling price of more

than $150,000. Compare your confidence interval with that found in Exercise

6.C.10 for the Columbus, Ohio area.

6.D. Internet Archives

6.D.1. Social Issues. Search the Internet to find a site that describes a survey

related to a social issue of particular interest to you. List some of the factors

that were investigated in the study and write a short report discussing the

most important results from the survey.

6.D.2. Political Polls. Search the Internet to find a site that describes a political

poll involving at least three candidates for a statewide or national office.

Discuss the details of the poll and write a short report outlining the most

important conclusions from the poll.

6.D.3. College Students and Participatory Sports. Search the Internet to find a

site that discusses participatory sport preferences for college students. Discuss

the experimental design of the study and write a short report detailing the

most important conclusions from the study.

6.D.4. Public Opinion Poll. Search the Internet to find a site that presents the

results of a public opinion poll on a currently relevant topic of general interest.

Discuss the experimental design of the study and write a short report detail-

ing the most important conclusions from the poll.
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6.D.5. Disease Prevalence. Search the Internet to find a site that discusses the

prevalence of a specific serious disease among the U. S. population, broken

down across geographical regions of the country. Write a short report detail-

ing the most important conclusions from the study.

6.D.6. Medical Treatment Effectiveness. Search the Internet to find a site that

discusses the effectiveness of a specific medical treatment for HIV/AIDS.

Write a short report detailing the most important conclusions from the study.

6.D.7. Presidential Election Voter Opinion Polls. Gallup, Inc. is a private

research group that conducts opinion polls on a variety of issues, including

presidential elections. At its website, gallup.com, Gallup (2015a) reports the

results of its final pre-election Gallup Voter Opinion Poll and the eventual

election results for every presidential election from 1936 through 2012. These

data are also contained in the dataset presidential_elections_polls. Assume for

sake of illustration that each of these final Gallop Voter Opinion Polls was

based on interviews with n ¼ 1000 eligible and ‘likely’ voters.

(a) Select at least three of the presidential elections between 1936 and

2012. For each of them, use the final Gallop Voter Opinion Poll data to

construct an approximate 95% confidence interval for the percentage

of all eligible and ‘likely’ voters who would have (at the time of the

final poll) voted for the eventual election winner.

(b) How many of the confidence intervals constructed in (a) contained

the value of the final percentage of popular votes received by the

winner of the election? Is this a surprise number? Why or why not?

(c) For each of the election years you chose, use the confidence interval

obtained in (a) to test at approximate significance level α ¼ .05 the

conjecture that at least 50% of all eligible and ‘likely’ voters would

have voted (at the time of the final Gallup Voter Opinion Poll) for the

eventual winner in that election. How many of these hypothesis tests

support that conjecture? Is this a surprise? Why or why not?
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(d) Repeat parts (a) – (c) if the interviews had been based on n ¼
100, instead of n ¼ 1000, eligible and ‘likely’ voters.

(e) Repeat parts (a) – (c) if the interviews had been based on n ¼
500, instead of n ¼1000, eligible and ‘likely’ voters.

(f) Compare and contrast your results for the three values of n ¼
100, 500, and 1000.
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Statistical Inference for the Center
of a Population 7

In this chapter we consider the commonly encountered statistical problem of

using sample data for a quantitative variable along with the sampling distri-

bution of an appropriate summary statistic to make inferences about the

center of the corresponding population distribution. For example, Sciulli

and Carlisle (1975) used skeletal remains to obtain sample data on the stature

of a number of prehistoric Amerindian populations living in the Ohio Valley

over the years from 200 BC to 1200 AD. A number of questions naturally arose

in this study. What was the typical height for male and female Amerindians

living in this region of the country during that period of time? As the degree of

plant cultivation increased and the reliance on the availability or scarcity of

fresh game decreased over the years, was there a noticeable change in the

stature of the Amerindian populations? Questions such as these can be

addressed only through the use of appropriate statistical techniques.

The emphasis in this chapter will be on inference about the center of the

distribution of values for a single variable. There are a variety of statistical
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approaches to making such inferences, depending on one’s knowledge about

the population under study. We begin with those procedures that are

broadest in their applicability (i. e., require the least conditions on the popu-

lation distribution). Then we move progressively to procedures that are more

effective when it is reasonable to make additional assumptions about the

population distribution, for example, that it is symmetric or perhaps even

normal. The first three sections of the chapter are devoted to exact procedures

that are appropriate under three different assumptions about the underlying

population. In the fourth section we discuss comparative features of these

three approaches to inference. Approximate procedures that can be used

when we are fortunate enough to have a larger number of sample

observations are presented in Sect. 5. Finally, in Sect. 6 we illustrate how the

technique of bootstrapping can be used to provide approximate inferences for

the median of an arbitrary distribution.

General Setting and Notation Let X1, ..., Xn denote the items of a random

sample of size n from the population of a quantitative variable and consider

the center of the distribution for this variable. As we shall see, this center can

correspond to either the mean, μ, or the median, η, of the distribution,

depending on both the information that is available to us about the popula-

tion and our primary reasons for conducting the study. Since the order in

which we collect our sample observations is not important in this context, the

available information about the center of the distribution is contained solely in

the list of sample values sorted from smallest to largest (i. e., the order

statistics for the sample). We write the sorted observations as X(1), X(2), . . .,

X(n), so that X(1) is the smallest sample value and X(n) is the largest.

The most appropriate choice of a summary statistic and associated statis-

tical methodology for making inferences about the center of a population

depends directly on what information is available about the form of the

underlying distribution for the variable of interest. For instance, is the
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underlying distribution symmetric? What is the probability that a sample

from this distribution will contain outliers? The more we know about the

form of this underlying distribution, the more focused our inferences can be,

resulting in procedures with better properties. Later in this chapter we will

discuss graphical techniques that can be used to evaluate the reasonableness

of certain assumptions about an underlying population.

For a particular problem of interest, you should give careful consideration

to what you know about the underlying distribution and make as many

assumptions as can be supported safely by this information and appropriate

graphical assessments of the observed sample data. The statistical procedures

associated with this set of assumptions should then be applied to the data to

provide the desired inferences about the center of the distribution.

7.1 Exact Inference for the Center of a Population under
a Minimal Assumption

When little is known about the distribution of the variable of interest or

when what is known about the distribution indicates that it is probably

asymmetric (skewed in one direction) and/or heavy-tailed (likely to produce

samples with outliers), then the center of the distribution that most appropri-

ately represents the typical value for the distribution is the population median

η. In this section we present statistical procedures which are appropriate for

making inferences about a population median η under the single assumption

that P(X ¼ η) ¼ 0; that is, the variable X never takes on its median value.

Throughout this chapter we will refer to this condition on the underlying

population as the minimal assumption. At first this may seem like a strange

assumption, but we point out that it is automatically satisfied for every

continuous variable X. We note that the assumption does place a very mild

limitation on settings where these procedures can be used for discrete

variables. For a discrete population, for example, for which the median
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value η has high probability of occurrence, even these procedures developed

for this minimal assumption must be used with caution, if at all. With only

this minimal requirement on the underlying population, both point and

interval estimation of the population median η are based directly on the

order statistics. The natural point estimator for η is the corresponding sample

median, ~X , as defined in Eqs. (1.2) and (1.3) for odd and even sample sizes,

respectively. For confidence intervals and bounds for η we need to also

account for the variability that is associated with our measurements. To

accomplish this, we utilize the observed spread among the order statistics

and the probability distribution of B ¼ [number of sample observations

greater than the population median η].

Under the minimal assumption the population median η is not a possible

value for the variable X. Hence, each individual observation in our random

sample X1, ..., Xn has probability 1/2 of being larger than η and probability

1/2 of being less than η. Moreover, we know that the sample observations are

independent. Hence, if we let Yi¼ 1 or 0 depending on whether the ith sample

observation,Xi, is greater than or less than η, respectively, then the probability

distribution of B ¼
Xn
i¼1

Yi ¼ number of sample observations greater than η
� �

is Binomial with parameters n and p ¼ 1/2; that is, B ~ Binom(n, 1/2).

We now show how to use this Binom(n, 1/2) probability distribution to

construct confidence intervals for η that are valid under the minimal assump-

tion. Since all that we have to work with in this setting are the sample values

themselves, we will use appropriate order statistics X(1), . . ., X(n) as the end

points of our confidence intervals for η, corresponding to the same number of

observations from the top as from the bottom of the ordered sample values.

Thus, for example, if our sample size is n ¼ 7, there are only three possible

confidence intervals using this approach, namely, X(1) < η < X(7), X(2) < η <

X(6), and X(3) < η < X(5). In general, for arbitrary sample size n the possible
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confidence intervals are X(j) < η < X(n-j+1), where j can be any positive integer

less than nþ1
2 . For n ¼ 7, we have nþ1

2 ¼ 4, and, as previously noted, j can be

any of the integers 1, 2, or 3.

Now, to evaluate the confidence level associated with a confidence inter-

val of the form X(j) < η < X(n-j+1), we need to compute P(X(j) < η < X(n-j+1)).

First, suppose that η is very close to the lower end point (i. e., bottom) of our

confidence interval; that is,

_________|__________________________|__________________
X(j) X(n-j+1)

η
↓

Then there are exactly j observations less than η, namely,X(1) throughX(j), and

(n – j) observations greater than η. On the other hand, if η is very close to the

upper end point (i. e., top) of our confidence interval,

_________|__________________________|_____________________
X(j) X(n-j+1)

η
↓

then exactly n – j of the order statistics (up to, but not including, X(n-j+1)) are

less than η and there are j observations greater than η. Thus

P(X(j)< η< X(n-j+1))¼ P( the number of sample observations greater than η

is between j and n – j, including these values)

¼ P j � B � n� jð Þf g,

since B counts the number of sample observations greater than η. Using the

fact that the probability distribution of B is Binom(n, 1/2), the confidence level

CL associated with a confidence interval of the form X(j) < η < X(n-j+1) is then

given by

CL ¼ P X jð Þ < η < X n�jþ1ð Þ
� �

¼
Xn�j

t¼j

n
t

� �
:5ð Þn: ð7:1Þ
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Thus the probability is
Xn�j

t¼j

n
t

� 	
:5ð Þn that we will collect a random sample for

which the observed interval (X(j), X(n-j+1)) contains the unknown value of η.

Selecting the integer j so that
Xn�j

t¼j

n
t

� 	
:5ð Þn ¼ CL then leads to a 100CL%

confidence interval for the population median η.

Point and Interval Estimation of the Population Median η under Minimal

Assumptions Let X(1) � ... � X(n) be the order statistics for a random sample

of size n from a population with median η for which it is reasonable to assume

the minimal condition that P(X ¼ η) ¼ 0. Then the point estimator for the

population median η is the sample median, ~X. Moreover, for any positive

integer j < (n+1)/2, the interval (X(j), X(n-j+1)) provides a confidence interval

for the population median η with confidence level given by

CL ¼
Xn�j

t¼j

n
t

� �
:5ð Þn: ð7:2Þ

Corresponding lower and upper confidence bounds for the population

median η can also be obtained from the order statistics. If η < X(n-j), then the

number of sample observations greater than η must be somewhere between

j and n, inclusive, so that the upper confidence bound X(n-j) has confidence

level

CL ¼
Xn
t¼j

n
t

� �
:5ð Þn: ð7:3Þ

By similar reasoning, the order statistic X(j) provides a lower confidence

bound with confidence level also given by (7.3).
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Since the probability expressions in Eqs. (7.2) and (7.3) are valid for any

underlying population which satisfies the very mild condition P(X ¼ η) ¼
0, the associated exact 100CL% confidence interval and bounds are valid over

this large class of populations.

Example 7.1. Does Regular Aerobic Activity Affect High-Density Lipopro-

tein (HDL) Cholesterol Levels? It has been established that higher levels of

high-density lipoprotein (HDL) cholesterol (i. e., the ‘good’ cholesterol) are

associated with lessened risk of coronary heart disease. It is known that

routine physical activity can reduce this risk as well. That raises the natural

question of linkage between a person’s HDL level and their normal physical

activity pattern. Kerr (1983) examined that issue with data collected from

12 women, ranging in age from 25 to 32, who participated in a spa program

(including aerobic dancing, cycling, and jogging in place) 3–4 times per week

for 45 min – 1 h per session. HDL levels (in mg/dl) were measured for these

women at the Ohio State University Hospital from two blood samples taken

24 h apart, each following 12 h of fasting. The ordered values of the averages

of the twoHDLmeasurements for each of these twelve women are reported in

Table 7.1.

With an even sample size, n ¼ 12, we estimate the median HDL level for

active women in the age range studied to be ~x¼ [x(6) + x(7)]/2 ¼ [52 + 53]/2 ¼
52.5 mg/dl. To obtain a confidence interval for the median HDL level, we use

expression (7.2) to provide an appropriate confidence level. However, since

the B(12, 1/2) distribution is discrete, we have only a limited number of such

confidence levels which can be used. In fact, for n ¼ 12 the available confi-

dence levels are given by the expression
X12�j

b¼j

12
b

� 	
:5ð Þ12 , with j ¼ 1, ..., 6. Thus,

the six available confidence levels for n¼ 12 are CL¼ .9996, .9936, .9614, .8540,

.6124, and .2256, corresponding to j ¼ 1, 2, 3, 4, 5, and 6, respectively. Taking
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j ¼ 3 in expression (7.2), it follows that (x(3) , x(10)) ¼ ( 41, 54) mg/dl is an exact

96.14% confidence interval for the median HDL level, η, for active women in

the age range 25-32. Thus, with only the minimal assumption about the

underlying population, we are 96.14% confident that the median HDL level

for active women in the studied age range will be somewhere between 41 and

54 mg/dl.

We note we can also use R to provide these confidence intervals for the

population median under the minimal assumption. For example, for the

average HDL level data in Table 7.1 (available as the dataset

average_HDL_levels), we can use the R function SIGN:testð Þ from the BSDA

package to provide the following output, which includes the point estimator

and the 96.14% confidence interval obtained above.

Table 7.1 Average HDL levels
(mg/dl) for women involved in regular
active exercise

Subject
number

Average
HDL
level

1 28
2 41
3 41
4 45
5 51
6 52
7 53
8 53
9 53
10 54
11 59
12 66

Source: Kerr (1983)
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> SIGN.test(average_HDL_levels, conf.level = 0.9614)

One-sample Sign-Test

data:  average_HDL_levels
s = 12, p-value = 0.0004883
alternative hypothesis: true median is not equal to 0
96.14 percent confidence interval:
41.00096 53.99976

sample estimates:
median of x 

52.5 

Conf.Level L.E.pt  U.E.pt
Lower Achieved CI     0.8540 45.000 53.0000
Interpolated CI     0.9614 41.001 53.9998
Upper Achieved CI     0.9614 41.000 54.0000

As we previously noted, there are only six available exact confidence

levels for n ¼ 12. The SIGN:testð Þ function reports the CI at the confidence

levels immediately below and immediately above the level given by the conf.

level argument. It then uses these two intervals to interpolate or “fill in” the

approximate (in contrast to the “Achieved CI”s, which are exact) confidence

interval at the specified conf.level.

To test hypotheses about the population median under the minimal pop-

ulation assumption, the individual sample observations once again play the

central role. However, for testing purposes we also have a hypothesized value

for the population median, say, η0, against which the observed data are to be

compared. Hence, the information in our sample data that is relevant for

testing the null hypothesis H0: [η ¼ η0] is contained in the n differences,

D1¼ X1-η0, ...,Dn¼ Xn-η0, between the observed values and the hypothesized

median. Under the minimal assumption, we utilize only the information

about η that is contained in the signs of these differences. In particular, the

sign statistic, B, is simply equal to the number of these signs which are positive;

that is,

B ¼ �the number of sample observations which exceed the
hypothesized median value η0

�
:

ð7:4Þ
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Moreover, when H0: [η ¼ η0] is true, the null sampling distribution of B is

binomial with parameters n and p¼ P(X> η0 )¼ 1/2; that is, B~Binom(n, 1/2)

when H0 is true.

Hypothesis Tests About the Population Median Under the Minimal

Assumption–Sign Test To test the null hypothesis H0: [η ¼ η0] under the

minimal assumption about the underlying population, compute the sign

statistic B (7.4) and let bobs be the attained value of B. The exact P-values for

a test of H0 against the possible alternatives HA are then:

HA P-value

η > η0 P B � bobsð Þ
η < η0 P B � bobsð Þ
η 6¼ η0 2P B � bobsð Þ, if bobs >

n
2

2P B � bobsð Þ, if bobs <
n
2

1, if bobs ¼ n
2
:

We compute all of these probabilities under the assumption that the null

hypothesis is true, so that B has the Binom(n, .5) distribution. Thus we have:

HA P-value

η > η0
Xn
t¼bobs

n
t

� �
:5ð Þn ð7:5Þ

η < η0
Xbobs
t¼0

n
t

� �
:5ð Þn ð7:6Þ

η 6¼ η0 2
Xn
t¼bobs

n
t

� �
:5ð Þn, if bobs >

n
2

2
Xbobs
t¼0

n
t

� �
:5ð Þn, if bobs <

n
2

1, if bobs ¼ n
2

ð7:7Þ
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We note that these sign test procedures are really nothing more than

special cases of the corresponding test procedures for the probability of the

event A ¼ {X > η0 }, as discussed in Sect. 6.3. Following the discussion in that

section, the corresponding probability pA ¼ P(A) ¼ P(X > η0) is naturally

estimated by p̂A ¼ B/n ¼ [percentage of the sample observations which

exceed η0] and approximate confidence intervals for the probability pA can

be obtained from Eq. (6.7).

Example 7.2. High-Density Lipoprotein (HDL) Cholesterol Levels In his

study of the effect that regular aerobic activity has on HDL cholesterol levels,

Kerr (1983) also obtained HDL levels for a number of women who were not

active participants in any routine vigorous activity. For this inactive group, he

found that the median HDL level was 33 mg/dl. Is there evidence in the

collected data to suggest that regular aerobic activity leads to a median

HDL level greater than this baseline of 33 mg/dl? Letting η correspond to

the median HDL level for women of this age group who pursue regular

aerobic activities, we are interested in testing the null hypothesis of no

difference, corresponding to H0: η ¼ 33, against the conjectured one-sided

alternative HA: η > 33 associated with a larger median HDL level for the

exercising group. Here η0 ¼ 33 and the observed value of the sign statistic B¼
[number of sample observations greater than 33] is bobs ¼ 11, since only

subject number 2 had an HDL level that did not exceed 33. Hence, from

(7.5), the P-value for our test of H0: η ¼ 33 against HA: η > 33 is

P�value ¼
X12
t¼11

12

t

� �
:5ð Þ12 ¼ :0030þ :0002 ¼ :0032:

We would reject H0 for any significance level greater than or equal to this

P-value¼ .0032, providing strong sample evidence that the median HDL level

is greater than 33mg/dl for women in the age group 25–32 who pursue regular

aerobic activity.
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We note that the sample estimate of pA ¼ P(X > 33) is p̂A ¼ 11=12 ¼ :9167.

Thus we estimate that 91.67% of all women in the age group 25–32 who

pursue regular aerobic activity will have an HDL level greater than 33 mg/dl.

The R function SIGN:testð Þ can also be used (with the md and alternative

arguments specified to be 33 and ‘greater’, respectively) on the

average_HDL_levels dataset to obtain the following output, which includes

the observed value of B (denoted as s in the R output) and the associated P-

value for this HDL cholesterol level hypothesis test.

> SIGN.test(average_HDL_levels, md = 33, alternative = 'greater')

One-sample Sign-Test

data:  average_HDL_levels
s = 11, p-value = 0.003174
alternative hypothesis: true median is greater than 33
95 percent confidence interval:
43.28727      Inf

sample estimates:
median of x 

52.5 

Conf.Level  L.E.pt U.E.pt
Lower Achieved CI     0.9270 45.0000    Inf
Interpolated CI       0.9500 43.2873    Inf
Upper Achieved CI     0.9807 41.0000    Inf

Section 7.1 Practice Exercises

7.1.1. Consider the discrete random variable Xwith probability distribution

as follows:

P X ¼ �2ð Þ ¼ :25 P X ¼ �1ð Þ ¼ :1 P X ¼ �:5ð Þ ¼ :15

P X ¼ :5ð Þ ¼ :15 P X ¼ 1ð Þ ¼ :1 P X ¼ 2ð Þ ¼ :25:

(a) What is the median for this probability distribution?

(b) Show that the probability distribution is symmetric.

(c) Does this probability distribution satisfy the minimal assumption?

Justify your answer.
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7.1.2. Consider the discrete random variable Xwith probability distribution

as follows:

P X ¼ �6ð Þ ¼ :15 P X ¼ �3ð Þ ¼ :2 P X ¼ 0ð Þ ¼ :3

P X ¼ 3ð Þ ¼ :2 P X ¼ 6ð Þ ¼ :15

(a) What is the median for this probability distribution?

(b) Show that the probability distribution is symmetric.

(c) Does this probability distribution satisfy the minimal assumption?

Justify your answer.

7.1.3. Let X1, . . .., X15 be a random sample of size n ¼ 15 from a distribution

that satisfies the minimal assumption with median η. Let B ¼ [number of

sample observations greater than η].

(a) What are the possible values for B?

(b) Find P(B � 11).

(c) Find P(B � 13).

(d) Use the symmetry of the distribution of B to find P(B � 4).

7.1.4. Let X1, . . ., X20 be a random sample of size n ¼ 20 from a distribution

that satisfies the minimal assumption with median η. Let B ¼ [number of

sample observations greater than η].

(a) What are the possible values for B?

(b) Find P(B � 16).

(c) Find P(B � 12).

(d) Use the symmetry of the distribution of B to find P(B � 8).

7.1.5. Let B have a binomial distribution with parameters n and p¼ .5. Show

that the probability distribution is symmetric about its mean np ¼ .5n; that is,

show that P(B ¼ b) ¼ P(B ¼ n - b) for all b ¼ 0, 1, . . ., n.
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7.1.6. Let X1, . . ., X15 be a random sample of size n ¼ 15 from a population

that satisfies the minimal assumption with median η and let X(1) � . . . � X(15)

be the order statistics for the sample.

(a) List all possible confidence intervals for η that could be constructed

from these order statistics.

(b) What are the exact confidence levels associated with these confidence

intervals?

7.1.7. Let X1, . . ., X20 be a random sample of size n ¼ 20 from a population

that satisfies the minimal assumption with median η and let X(1) � . . . � X(20)

be the order statistics for the sample.

(a) List all possible confidence intervals for η that could be constructed

from these order statistics.

(b) What are the exact confidence levels associated with these confidence

intervals?

7.1.8. Let X1, . . ., X20 be a random sample of size n ¼ 20 from a population

that satisfies the minimal assumption with median η and let X(1) � . . . � X(20)

be the order statistics for the sample.

(a) List all possible upper confidence bounds for ηwith confidence levels

CL at least .5 that could be constructed from these order statistics.

(b) What are the exact confidence levels associated with these upper

confidence bounds?

(c) Compare these upper confidence bounds with the upper endpoints of

the corresponding confidence intervals obtained in Exercise 7.1.7.

7.1.9. Let X1, . . ., X18 be a random sample of size n ¼ 18 from a population

that satisfies the minimal assumption with median η and let X(1) � . . . � X(18)

be the order statistics for the sample.

(a) List all possible lower confidence bounds for ηwith confidence levels

CL at least .5 that could be constructed from these order statistics.
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(b) What are the exact confidence levels associated with these lower

confidence bounds?

7.1.10. Let {4.5, 6.6, 8.9, 12.3, -3.4, 18, 37.4, -23.5, -16.6, 13.3, 2, -8.4, 12.8} be a

random sample of size n ¼ 13 from a population that satisfies the minimal

assumption with median η.

(a) Find the value, bobs, of the sign statistic B ( 7.4) for testing H0: η ¼ 3.

(b) If η ¼ 3, compute P(B � bobs) and P(B � bobs).

7.1.11. Let {33.7, 16.9, -11, 6.7, 12.5, 19.2, - 6.6, 18, -4, 6.9, -4.4, 44} be a random

sample of size n¼ 12 from a population that satisfies the minimal assumption

with median η.

(a) Compute the value, bobs, of the sign statistic B (7.4) for testing H0:

η ¼ 0.

(b) If η ¼ 0, compute P(B � bobs) and P(B � bobs).

7.1.12. Let {4.5, 6.6, 8.9, 12.3, -3.4, 18, 37.4, -23.5, -16.6, 13.3, 2, -8.4, 12.8} be a

random sample of size n ¼ 13 from a population that satisfies the minimal

assumption with median η.

(a) Find a 97.76% confidence interval for η.

(b) Find a 98.88% lower confidence bound for η.

7.1.13. Let {33.7, 16.9, -11, 6.7, 12.5, 19.2, - 6.6, 18, -4, 6.9, -4.4, 44} be a random

sample of size n¼ 12 from a population that satisfies the minimal assumption

with median η.

(a) Find a 99.36% confidence interval for η.

(b) Find a 92.7% upper confidence bound for η.

7.1.14. Bird Variety. Groom (1999) recorded breeding-bird counts for ripar-

ian habitat along the Big and Little Darby Creeks in central Ohio. The data for

thirty-nine 5-min periods in June 1998 are presented in Table 1.7. Viewing this

data collection as a random sample of size n ¼ 39 from the population of all
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such 5-min periods in riparian habitat along the Big and Little Darby Creeks,

complete the following statistical analyses. Assume only theminimal assump-

tion for the underlying population with unknown median η.

(a) Obtain a point estimate of η and find a 94.7% confidence interval for η.

(b) Find the P-value for a test of the null hypothesis H0: η ¼ 13.5 versus

the two-sided alternative HA: η 6¼ 13.5.

(c) Comment on the assumption that these data represent a random

sample of size n ¼ 39 from the population of breeding-bird counts

for all 5-min periods in riparian habitat along the Big and Little Darby

Creeks.

7.1.15. Ultrasound Probes and Bacterial Infections. One of the major sources for

spreading nosocomial (hospital-acquired) infections from patient to patient is

through the use of ultrasound probes at tertiary care facilities. Ali et al. (2015)

presented data for 25 culture swabs from ultrasound probes conducted at the

Radiology Department of the Aga Khan University Hospital in Karachi,

Pakistan. The Colony Forming Unit (CFU) of bacterial counts using a stan-

dard agar plate for the 75 probes are presented in Table 7.2.

Viewing this data collection as a random sample of size n ¼ 25 from the

population of CFU bacterial counts on all ultrasound probes, complete the

following statistical analyses. Assume only the minimal assumption for the

underlying population with unknown median η.

(a) Obtain a point estimate of η and find a 95.7% confidence interval for η.

(b) Find the P-value for a test of the null hypothesis H0: η ¼ 150 colonies

versus the one-sided alternative HA: η > 150 colonies.

7.1.16. Vertical Cliffs and Ages of Trees. Vertical cliffs are known to support

populations of trees possessing characteristics quite different from other tree

populations. For example, they often contain unusual numbers of old and

deformed trees. In addition, cliff trees are commonly slow growing and
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widely dispersed over the terrain. Larson et al. (2000) studied the ages and

radial growth rates for trees on selected cliffs in the United States and in

Western Europe. The estimated ages for a sample of 30 trees from cliffs in

eastern and southern Germany, eastern and southern France, central and

northern England and Wales are presented in Table 7.3.

Table 7.2 Number of Colony Forming Units (CFU)
of bacterial counts for ultrasound probes

Probe number
Number of Colony
Forming Units

1 350
2 142
3 190
4 300
5 409
6 390
7 159
8 198
9 302
10 296
11 322
12 172
13 104
14 151
15 133
16 202
17 102
18 109
19 167
20 79
21 107
22 89
23 202
24 197
25 106

Source: Ali et al. (2015)
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Viewing this data collection as a random sample of size n ¼ 30 from the

population of all trees growing on cliffs in Western Europe, complete the

following statistical analyses. Assume only the minimal assumption for the

underlying population with unknown median η.

(a) Obtain a point estimate of η and find a 97.9% upper confidence bound

for η.

(b) Find the P-value for a test of the null hypothesis H0: η ¼ 300 years

versus the one-sided alternative HA: η < 300 years.

7.2 Exact Inference for the Center of a Continuous Population
Under the Assumption of Population Symmetry

When we have reliable information that a continuous measurement has a

distribution that is approximately symmetric about its population median η,

we can use inference procedures that take advantage of this symmetry condi-

tion. As we might expect, these specialized procedures are generally better

than the corresponding sign statistic procedures (developed under the mini-

mal assumption and discussed in Sect. 1) when the symmetry assumption is

justified.

Let X1, ..., Xn be a random sample of size n from a population that is

symmetric about its median η. We know from the symmetry condition that

the observed value for any of the Xi’s is equally likely to be a given amount

above or below η; that is, the probability that an observation will be d units

above η is the same as the probability that it will be d units below η for an

Table 7.3 Age estimates (in years) for trees growing on selected cliffs in
Western Europe

40 44 60 80 100 110 140 145 152 155
157 159 162 165 170 220 245 280 295 310
325 345 360 375 440 640 800 920 980 1200

Source: Larson (1999)
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arbitrary value d. Thus the symmetry of the population suggests that the

relative values of pairs of sample observations contain additional information

about the median η. One particular consequence of this fact is that we would

expect a typical mini-average of a pair of observations, say, (Xi + Xj)/2, to be

close to the population median η. Since these mini-averages can be

computed for every pair of sample observations (including an observation

with itself), we have available to us many more individual pieces of informa-

tion about η than what is provided just by the n sample observations them-

selves. It is this fact that drives the development of point and interval

estimation of the median η for a symmetric population based on these mini-

averages, (Xi + Xj)/2.

Definition 7.1. Let X1, ..., Xn be a random sample of size n from a

population that is symmetric about its median. Every mini-average of

the form Wij ¼ (Xi + Xj)/2, for 1 � i � j � n, is called a Walsh average.

Since we include averages of each observation with itself (corresponding

to i ¼ j), there are a total of M ¼ n
2

� 	þ n ¼ n nþ 1ð Þ
2

individual Walsh

averages associated with the random sampleX1, ...,Xn. We letW(1)� ...�
W(M) denote the M ordered Walsh averages associated with the random

sample X1, ..., Xn.

Under the assumption of an underlying symmetric distribution we would

expect about half of the M ¼ n(n+1)/2 Walsh averages to be greater than the

population median η and the other half to be smaller than η. It follows that

the median of the Walsh averages, namely, ~W ¼ median Wij; 1 � i � j � n

 �

,

is a natural point estimator of η under this symmetry assumption.

Confidence intervals and bounds for η under the assumption of popula-

tion symmetry are also naturally based on using the additional symmetry

information contained in the Walsh averages. For this, however, we must
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incorporate the sampling variability associated with the Walsh averages. Do

you think the Walsh averages will be more or less variable than the n original

sample observations? Clearly each of the n Walsh averages that is an average

of a single sample observation with itself has the same variability as that

observation. However, the vast majority of the Walsh averages (n n�1ð Þ
2 of them)

are averages of two different sample observations. From our work in Chap. 4

we know that the variance for the average of two sample observations is only

one-half as large as the variance of each of the individual observations. Thus

theWalsh averages are, in general, less variable that the original observations.

(See Exercises 7.B.14 and 7.B.15 for more about this difference in variability

between the Walsh averages and the sample observations.) This reduced

variability for the Walsh averages permits the construction of confidence

intervals for the median η for a symmetric population that are generally

shorter than the confidence intervals that are constructed under the minimal

assumption using only the sample observations themselves (as discussed in

Sect. 1).

To construct confidence intervals for η from the Walsh averages, we

consider the probability distribution of the variable W ¼ [number of Walsh

averages greater than the population median η]. From the fact that the

underlying distribution is symmetric about η, it follows that each of our

M Walsh averages has probability 1/2 of exceeding η. Since W counts the

number of times a Walsh average exceeds the median η, it would appear, at

first glance, that W might have a binomial distribution. However, unlike the

original sample observations X1, ..., Xn, the M Walsh averages are not mutu-

ally independent, as there are n individual Walsh averages involving each of

the sample observations. Thus, it is not appropriate to use the Binomial

distribution to account for the variability among the Walsh averages. Fortu-

nately, however, the probability distribution of W has been developed and

can be obtained using the R function psignrankð Þ. (For more on the
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construction of the probability distribution of W, see Exercises 7.B.16 and 7.

B.17.) For example, if n ¼ 10, we can use the following R commands to find

that P(W � 45) ¼ .042 and P(W � 40) ¼ .116.

> psignrank(q = 44, n = 10, lower.tail = FALSE)

[1] 0.04199219

> psignrank(q = 39, n = 10, lower.tail = FALSE)

[1] 0.1162109

Note that psignrankð Þwill return P(W � q) by default (where q is specified by

the q argument). We specify that we would like the upper-tail probability by

specifying lower.tail ¼ FALSE. This will then return P(W > q), but since we

want P(W � w) ¼ P(W > w-1), we set the q argument to be w-1. In the

examples above, this corresponds to 44 and 39, respectively.

Under the assumption of population symmetry, the probability distribu-

tion of W is symmetric about the point n(n+1)/4, corresponding to half of the

total number of Walsh averages. This implies that P W � n nþ1ð Þ
2

h i
� w

� �
¼ P

W � wð Þ for sample size n and every possible value w. (See Exercises 7.2.5

and 7.2.6.) Again, for n ¼ 10, this symmetry for the distribution of

W implies that :042 ¼ P W � 45ð Þ ¼ P W � 10 10þ1ð Þ
2

h i
� 45

� �
¼ P W � 10ð Þ

and:116 ¼ P W � 40ð Þ ¼ P W � 10 10þ1ð Þ
2

h i
� 40

� �
¼ P W � 15ð Þ. As you might

expect, we can also obtain these probabilities using the R function psignrankð Þ
with the argument lower.tail ¼ TRUE (which is the default, so we do not need

to explicitly specify this) as follows.

> psignrank(q = 15, n = 10)

[1] 0.1162109

> psignrank(q = 10, n = 10)

[1] 0.04199219

We now show how to use the probability distribution for W and the

relationship between W and η to construct confidence intervals for η that are
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valid under the condition of population symmetry. We employ a counting

and interval construction scheme similar to that used in Sect. 1 under the

minimal condition, except here our basic sample pieces of information are the

M ¼ n nþ1ð Þ
2 Walsh averages, rather than the n sample observations themselves.

Letting W(1) � W(2) � . . . � W(M) denote the M ordered Walsh averages, we

construct confidence intervals for η that have endpoints which are the same

number of ordered Walsh averages away from the largest and the smallest

Walsh average, respectively. Thus, for example, if our sample size is n¼ 5, we

have M ¼ 5 6ð Þ
2 ¼ 15 Walsh averages and there are seven possible confidence

intervals using this approach, namely,W(1) < η <W(15),W(2) < η <W(14),W(3)

< η<W(13),W(4)< η<W(12),W(5)< η<W(11),W(6)< η<W(10), andW(7)< η<

W(9). In general, for arbitrary sample size n the possible confidence intervals

areW(q) < η <W(M-q+1), where q can be any positive integer less than Mþ1
2 . For

n ¼ 5, we have Mþ1
2 ¼ 8, and, as previously noted, q can be any of the integers

from 1 through 7.

Now, to evaluate the confidence level associated with a confidence interval

of the form W(q) < η < W(M-q+1) we need to compute P(W(q) < η < W(M-q+1)).

First, suppose that η is very close to (but greater than) the lower end point (i.e.,

bottom) of our confidence interval; that is,

_________|__________________________|_______ 
W(q) W(M-q+1)

η
↓

Then there are exactly q Walsh averages less than η, namely, W(1) through

W(q), and (M - q) Walsh averages greater than η. On the other hand, if η is very

close to (but less than) the upper end point (i. e., top) of our confidence

interval,
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_________|__________________________|_______
W(q) W(M-q+1)

η
↓

then exactly M - q of the Walsh averages (up to, but not including, W(M-q+1))

are less than η and there are q Walsh averages greater than η. Thus

P W qð Þ<η<W M�qþ1ð Þ
� 	¼ P

�
the number of Walsh averages greater than η is

between q andM� q, including these values
	

¼ P q � W � M� qð Þf g,
ð7:8Þ

since W counts the number of Walsh averages greater than η.

Now, if we choose q so thatP W� M� qþ 1ð Þf g¼ P W � q� 1ð Þf g¼ 1�CLð Þ
2 ,

then we have

CL ¼ P q � W � M� qð Þf g: ð7:9Þ

From (7.8) and (7.9) it follows that CL is the probability that we will collect

a random sample for which the observed interval W qð Þ;W M�qþ1ð Þ
� 	

contains

the unknown value of η. Selecting the integer q so that P{q�W� (M - q)}¼ CL

then leads to a 100CL% confidence interval for the population median η.

Point and Interval Estimation of the Population Median η Under

the Assumption of Population Symmetry Let W(1) � ... � W(M), with M ¼
n(n+1)/2, be the orderedWalsh averages for a random sample of size n from a

population that is symmetric about its median η. Then the point estimator

for the population point of symmetry (median) η is the median of the

M ¼ n(n+1)/2 Walsh averages, . Moreover, for any positive integer q < (M

+1)/2, the interval W qð Þ;W M�qþ1ð Þ
� 	

provides a confidence interval for the

population point of symmetry η with confidence level CL given by
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CL ¼ P q � W � M� qð Þf g: ð7:10Þ

Since the distribution of W is symmetric, Eq. (7.10) is equivalent to

using the R function qsignrankð Þ to find the integer q such that P{ W � q-1 }

¼ (1-CL)/2. Once this value of q is obtained, the lower and upper endpoints of

the 100CL% confidence interval W qð Þ;W M�qþ1ð Þ
� 	

for η are simply the qth

smallest (up from the bottom) and qth largest (down from the top) ordered

Walsh averages, respectively. Separate lower and upper confidence bounds

for the population point of symmetry η with confidence level

1� CLð Þ ¼ P W � q� 1f g ð7:11Þ

are given by the qth smallest,W(q), and qth largest,W(M � q + 1), orderedWalsh

averages, respectively.

Since the probability expressions in Eqs. (7.10) and (7.11) are valid for any

underlying continuous population that is symmetric about its median η, the

associated 100CL% confidence interval and bounds are also valid over this

extensive class of populations.

Example 7.3. Peptides–to Direct or Not to Direct, That Is

the Question Biologically active peptides are chemical substances that are

present in all of us to maintain normal host defenses against unwanted

microorganisms and to help the body respond to immunologically induced

inflammation and tissue damage. In times of good health, the polymorpho-

nuclear leukocytes (PMN) in our blood exhibit random movements. How-

ever, C5-derived peptides have the ability to interact with human PMN,

causing it to migrate in a directed (non-random) fashion. Such activity has

the potential to lead to worsened conditions for people already dealing with

other serious diseases. Perez et al. (1983) were interested in whether this

C5-directed migration of PMN plays an important role in the origination

and development of a potentially lethal, respiratory insufficiency known as
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‘shock lung’ in patients with acute pancreatitis. For normal human serum, the

migration of PMN, measured in units of μm/35 min, is 76.8. Perez et al

measured the PMN migration in the sera of eight patients with acute pancre-

atitis and these values are presented in Table 7.4.

PMN migration is clearly a continuous variable. Moreover, from either a

stemplot or histogram of the data in Table 7.3 (check this out using the stemð Þ
and histð Þ functions in R!), it does not seem unreasonable to assume sym-

metry for the underlying distribution of PMN migration for subjects with

acute pancreatitis. Here, the sample size is n ¼ 8 and the required number of

Walsh averages is M ¼ 8(9)/2 ¼ 36. The R function walshð Þ from the Rfit

package can be used with the pmn_migration dataset to obtain these Walsh

averages. The 36 ordered Walsh averages for the PMN migration data are

obtained using the following command and are presented in Table 7.5.

> sort(walsh(pmn_migration))

The estimate of the median PMN migration rate is ~w ¼ w 18ð Þ þ w 19ð Þ
� �

=2

¼ 97:20þ 97:35½ �=2 ¼ 97:275μm=35min: Moreover, since increased PMN

migration activity has the potential to lead to worsened conditions for people

already dealing with other serious diseases, it is natural to be interested in a

Table 7.4 PMN migration in sera from patients
with acute pancreatitis (μm/35 min)

Patient number Migration of PMN

1 75.2
2 109.9
3 119.2
4 80.5
5 114.7
6 103.6
7 75.5
8 108.1

Source: Perez et al. (1983)
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lower confidence bound for η, the median PMN migration activity level. To

obtain a 98.05% lower confidence bound for η, for example, we first use

the R function qsignrankð Þ with arguments p ¼ 0.0195 and n ¼ 8 to find that

P{ W � 3 } ¼ .0195.

> qsignrank(p = 0.0195, n = 8)

[1] 3

Setting q∗-1 ¼ 3, it follows that q∗ ¼ 4. Hence, the exact 98.05% lower

confidence bound for η corresponds to the 4th smallest ordered Walsh aver-

age w(4) ¼ 77.85 μm/35 min. Thus we are 98.05% confident that the

median PMN migration rate for patients with acute pancreatitis is at least

77.85 μm/35 min.

The R function wilcox:testð Þ can also be used with the conf.int argument

specified to be TRUE and the conf.level argument specified to be 0.9610 in

order to obtain the following output, which includes the point estimator and

the lower confidence bound for η.

> wilcox.test(pmn_migration, conf.int = TRUE, conf.level = 0.9610)

Wilcoxon signed rank test

data:  pmn_migration
V = 36, p-value = 0.007813
alternative hypothesis: true location is not equal to 0
96.1 percent confidence interval:
77.85 114.55

sample estimates:
(pseudo)median 

97.275 

Table 7.5 Ordered Walsh averages for the PMN migration data in
Table 7.4

75.20 89.40 92.70 97.35 108.10 112.30
75.35 89.55 94.30 97.60 109.00 113.65
75.50 91.65 94.95 99.85 109.15 114.55
77.85 91.80 95.10 103.60 109.90 114.70
78.00 92.05 95.20 105.85 111.40 116.95
80.50 92.55 97.20 106.75 111.40 119.20
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Notice that the 98.05% lower confidence bound for η corresponds to the lower

endpoint of a 96.10% confidence interval for η in this R output. (Do you see

why the symmetry of the distribution of W causes this to be the case?)

Hypothesis Tests About the Population Median η Under the Assumption

of Population Symmetry—Signed Rank Test Up to this point in Sect. 2 we

have been working entirely with the Walsh averages to obtain point and

interval estimates of the median η under the more informative assumption

that the underlying distribution is symmetric. We now turn our attention to

the problem of hypothesis testing for the median under this additional

assumption. For this purpose, we return to consideration of the sample values

X1, . . ., Xn themselves, rather than the Walsh averages.

In Sect. 1 under the minimal assumption about the underlying distribu-

tion, we used the signs of the differences D1 ¼ X1 - η0, ..., Dn ¼ Xn - η0 to test

the null hypothesis H0: η ¼ η0. However, when we also know that the

underlying distribution is symmetric about its median η, we can use more

than just the signs of the D’s. In fact, the relative distances given by the

absolute values of the D’s, namely, jD1j, ..., jDnj, provide us with additional

information about the plausibility of the null hypothesis H0. The relative

magnitudes of these distances are captured in their ordered ranks. Let Ri

denote the rank, from least to greatest, of jDij among jD1j, ..., jDnj, for

i ¼ 1, ..., n.1 Thus the greatest weight (n) is assigned to the observation that

is furthest from the hypothesized median η0 (providing the most evidence

against the null hypothesis) and the least weight (1) is assigned to the obser-

vation that is closest to η0 (providing the least evidence against the null

1 (If there are ties among the jDj’s, we assign average ranks to the tied values. For example, if
n ¼ 5 and D1 ¼ -4, D2 ¼ 9, D3 ¼ -3, D4 ¼ 4, and D5 ¼ 6, the ordered jDj values are 3, 4, 4, 6,
9. The average rank of 2þ3

2 ¼ 2.5 is assigned to each of the tied absolute values jD1j ¼ jD4j ¼
4. The complete set of ranks for (jD1j, . . ., jD5j) is then (R1, . . ., R5) ¼ (2.5, 5, 1, 2.5, 4).)
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hypothesis). The signed rank test statistic, W+, then adds these absolute value

ranks for those observations that are greater than η0.

Definition 7.2. The signed rank statistic, W+, is the sum of the absolute

value ranks for those observations that are greater than the hypothesized

median η0; that is,

Wþ ¼
X

Xi
0s>η0f g

Ri ¼
X
di>0f g

Ri: ð7:12Þ

Example 7.4. Computation of the Signed Rank Statistic, W+ We illustrate

the computation of the signed rank statistic W+ (7.12) for the PMN migration

data in Table 7.4. Here n ¼ 8 and we take η0 ¼ 76.8 μm/35 min to be the

migration rate for PMN for healthy human serum. The sample jdj ¼ jx - 76.8j
values, their signs, and their absolute value ranks are presented in Table 7.6.

Summing the jdj ranks for those x’s that are greater than 76.8 (i. e., for those x’s

with positive d’s), we obtain the observed value of the signed rank statistic to

be w+ ¼ [6 + 8 + 3 + 7 + 4 + 5] ¼ 33 for these PMN migration data. (Once

again, we use the upper case W+ to denote the computational form of the

Table 7.6 Computation of the signed rank statistic, W+, for the PMN
migration data in Table 7.4

Patient i xi di ¼ xi - 76.8 jdij sign of di Ri, rank of jdij
1 75.2 �1.6 1.6 � 2
2 109.9 33.1 33.1 + 6
3 119.2 42.4 42.4 + 8
4 80.5 3.7 3.7 + 3
5 114.7 37.9 37.9 + 7
6 103.6 26.8 26.8 + 4
7 75.5 �1.3 1.3 � 1
8 108.1 31.3 31.3 + 5
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signed rank statistic and the lower case w+ to represent the observed value of

the statistic for a particular set of sample data.)

Now we must address the issue of how to use the signed rank statistic to

construct appropriate tests of the null hypothesis H0: [η ¼ η0]. If H0 is true, we

would expect about one-half of the sample observations to be greater than

η0 and the other one-half to be less than η0. Moreover, we would expect the

absolute value ranks 1, ..., n to be roughly evenly distributed across the

positively and negatively signed differences. However, when H0 is not true

and η is greater than the hypothesized median η0, we would expect more than

one-half of the observations to be greater than η0 and these observations will be

more likely to have the larger absolute value ranks. When η is less than η0 the

opposite is true, as we would expect more than one-half of the observations to

be less than η0 and to have the larger absolute value ranks. These intuitive

features of the test statisticW+ lead to the signed rank procedures for testingH0:

[η ¼ η0] under the assumption of population symmetry.

Hypothesis Tests About the Population Median η Under the Assumption

of Population Symmetry To test the null hypothesis H0: [η ¼ η0] under the

additional information that the underlying population is symmetric, compute

the signed rank statistic W+ (7.12) and let w+ be the attained value of W+. The

exact P-values for a test of H0 against the possible alternatives HA are then:

HA P-value

η > η0 P Wþ � wþ� 	 ð7:13Þ

η < η0 P Wþ � wþ� 	 ð7:14Þ

η 6¼ η0 2P Wþ � wþ� 	
, if wþ >

n nþ 1ð Þ
4

2P Wþ � wþ� 	
, if wþ <

n nþ 1ð Þ
4

1, if wþ ¼ n nþ 1ð Þ
4

:

ð7:15Þ
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To compute any of these P-values for a given sample size n and observed

value w+, we need the null sampling distribution of the statisticW+. When H0

is true, the symmetry of the underlying population dictates that the

individual signs are independent of the corresponding absolute value ranks

R ¼ (R1, . . . , Rn). Moreover, under H0, the signs are independent Bernoulli

variables with probability 1/2 that any individual observation exceeds η0.

These two facts lead directly to the null sampling distribution of the signed

rank statistic W+ (7.12). (See Exercise 7.A.7 for more details.) To compute the

probability P(W+ � w+ | η ¼ η0), we use the R function wilcox:testð Þ.

Example 7.5. PMNMigration Rates In their study of the PMNmigration rate

for patients with acute pancreatitis, Perez et al. noted that the migration rate

for PMN for healthy human serum is 76.8 μm/35min. That naturally raises the

question of whether the evidence collected in their sample from patients with

acute pancreatitis warrants describing the median PMN migration rate for

such patients as being higher than this norm. If η is the median PMN migra-

tion rate for patients with acute pancreatitis, then H0: η ¼ 76.8 is the appro-

priate null hypothesis and HA: η > 76.8 is the conjectured one-sided

alternative. We can obtain the value of the signed rank statistic for the data

in this study, which isw+ ¼ 33 (as also found in Example 7.4), and the P-value

for this test, which is P( W+ � 33 | η ¼ η0) ¼ .01953, using the following

R command.

> wilcox.test(pmn_migration, mu = 76.8, alternative = "greater")

Wilcoxon signed rank test

data:  pmn_migration
V = 33, p-value = 0.01953
alternative hypothesis: true location is greater than 76.8
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Summarizing the R output, we have:

Null Hypothesis: H0: η ¼ 76:8

Alternative Hypothesis: HA: η > 76:8

Observed Value of Wþ: wþ ¼ 33

P-value: :020

ð7:16Þ

Thus we would reject H0 for any significance level greater than or equal to

.020, suggesting that the median PMN migration rate for patients with acute

pancreatitis is, indeed, greater than the healthy norm of 76.8 μm/35 min. In

addition, since 6 of the 8 signs in Table 7.5 are +, our sample estimate is that

6/8, or 75%, of all patients with acute pancreatitis will have a PMNmigration

rate greater than 76.8 μm/35 min.

Section 7.2 Practice Exercises

7.2.1. Let { 2, 3.2, 6.8, 10.6, 12 } be a random sample of size n ¼ 5 from a

symmetric population.

(a) How many Walsh averages are there for this data collection?

(b) Compute the Walsh averages for this data collection and order them

from least to greatest.

(c) What is the median of the set of Walsh averages computed in part (b)?

7.2.2. Let { -1.3, 0, –4.4, 5.7, 6.4, 10 } be a random sample of size n ¼ 6 from a

symmetric population.

(a) How many Walsh averages are there for this data collection?

(b) Compute the Walsh averages for this data collection and order them

from least to greatest.

(c) What is the median of the set of Walsh averages computed in part (b)?

7.2.3. Let X1, . . ., X8 be a random sample of size n ¼ 8 from a continuous

population that is symmetric about its median η. Let W ¼ [number of Walsh

averages for this sample that are greater than η]. Use the R functions psignrank
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ð Þ and qsignrankð Þ to answer the following questions about the probability

distribution of W.

(a) What are the possible values for W?

(b) Find P(W � 28).

(c) Find P(W � 25).

(d) Use the symmetry of the distribution of W to find P(W � 8).

7.2.4. Let X1, . . ., X11 be a random sample of size n ¼ 11 from a continuous

population that is symmetric about its median η. Let W ¼ [number of Walsh

averages for this sample that are greater than η]. Use the R functions psignrank

ð Þ and qsignrankð Þ to answer the following questions about the probability

distribution of W.

(a) What are the possible values for W?

(b) Find P(W � 50).

(c) Find P(W � 41).

(d) Use the symmetry of the distribution of W to find P(W � 21).

7.2.5. Let X1, . . ., X6 be a random sample of size n ¼ 6 from a continuous

population that is symmetric about its median η. Let W ¼ [number of Walsh

averages for this sample that are greater than η]. For any such continuous

population, the probability distribution for W is given by:

Value of w P(W ¼ w) Value of w P(W ¼ w)

0 .016 11 .078
1 .015 12 .078
2 .016 13 .063
3 .031 14 .062
4 .031 15 .063
5 .047 16 .047
6 .063 17 .031
7 .062 18 .031
8 .063 19 .016
9 .078 20 .015
10 .078 21 .016
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(a) Use an appropriate graphical technique of your choice to show that

the probability distribution of W is symmetric.

(b) Show numerically that the probability distribution ofW is symmetric

by matching up pairs of possible values of W.

(c) What is the point of symmetry (i.e. median) for the probability distri-

bution of W?

(d) Find P(W � 14) directly from the probabilities given above.

(e) Find P(W � 7) directly from the probabilities given above.

(f) Use the result in part (d) and the symmetry of the distribution ofW to

verify the value for P(W � 7) obtained directly in part (e).

7.2.6. Let X1, . . ., X4 be a random sample of size n ¼ 4 from a continuous

population that is symmetric about its median η. Let W ¼ [number of Walsh

averages for this sample that are greater than η]. For any such continuous

population, the probability distribution for W is given by:

Value of w P(W ¼ w) Value of w P(W ¼ w)

0 .062 6 .126
1 .063 7 .124
2 .063 8 .063
3 .124 9 .063
4 .126 10 .062
5 .124

(a) Use an appropriate graphical technique of your choice to show that

the probability distribution of W is symmetric.

(b) Show numerically that the probability distribution ofW is symmetric

by matching up pairs of possible values of W.

(c) What is the point of symmetry (i.e., median) for the probability

distribution of W?

(d) Find P(W � 8) directly from the probabilities given above.

(e) Find P(W � 2) directly from the probabilities given above.

(f) Use the result in part (d) and the symmetry of the distribution ofW to

verify the value for P(W � 2) obtained directly in part (e).
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7.2.7. Let X1, . . ., X4 be a random sample of size n ¼ 4 from a continuous

population that is symmetric about its median η and let W(1) � . . . � W(10) be

the ordered Walsh averages for this sample.

(a) List all possible confidence intervals for η that could be constructed

from these Walsh averages.

(b) What are the exact confidence levels associated with these confidence

intervals?

7.2.8. Let X1, . . ., X7 be a random sample of size n ¼ 7 from a continuous

population that is symmetric about its median η and let W(1) � . . . � W(28) be

the ordered Walsh averages for this sample.

(a) List all possible confidence intervals for η that could be constructed

from these Walsh averages.

(b) What are the exact confidence levels associated with these confidence

intervals?

7.2.9. Let X1, . . ., X6 be a random sample of size n ¼ 6 from a continuous

population that is symmetric about its median η and let W(1) � . . . � W(21) be

the ordered Walsh averages for this sample.

(a) List all possible upper confidence bounds for η with confidence

levels CL at least .50 that could be constructed from these Walsh

averages.

(b) What are the exact confidence levels associated with these upper

confidence bounds?

7.2.10. Let X1, . . ., X7 be a random sample of size n ¼ 7 from a continuous

population that is symmetric about its median η and let W(1) � . . . � W(28) be

the ordered Walsh averages for this sample.

(a) List all possible lower confidence bounds for ηwith confidence levels

CL at least .50 that could be constructed from these Walsh averages.
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(b) What are the exact confidence levels associated with these lower

confidence bounds?

(c) Compare these lower confidence bounds with the lower endpoints of

the corresponding confidence intervals obtained in Exercise 7.2.8.

7.2.11. Let {-4.5, -3.6, 0.3, 2, 3.2, 6.8, -5.5, 10.6, 12, 2.2} be a random sample

of size n ¼ 10 from a population that is symmetric about η.

(a) Find the value, w+, of the signed rank statisticW+ (7.12) for testingH0:

η ¼ 0.

(b) If η ¼ 0, use the R function wilcox:testð Þ to compute P(W+ � w+) and

P(W+ � w+).

7.2.12. Let {4.4, 1.3, 9.9, 18, 6.7, 12, 37.8, -2.0, 0.4} be a random sample of size

n ¼ 9 from a population that is symmetric about η.

(a) Find the value, w+, of the signed rank statistic W+(7.12) for testing

H0: η ¼ 7.

(b) If η ¼ 7, use the R function wilcox:testð Þ to compute P(W+ � w+) and

P(W+ � w+).

7.2.13. Let {4.4, 1.3, 9.9, 18, 6.7, 12, 37.8, -2.0, 0.4} be a random sample of size

n ¼ 9 from a population that is symmetric about η.

(a) Find a 92.6% confidence interval for η.

(b) Find a 98% lower confidence bound for η.

7.2.14. Let {-4.5, -3.6, 0.3, 2, 3.2, 6.8, -5.5, 10.6, 12, 2.2} be a random

sample of size n ¼ 10 from a population that is symmetric about η.

(a) Find a 95.2% confidence interval for η.

(b) Find a 93.5% upper confidence bound for η.

7.2.15. Fir Trees and Fish Habitat. Kayle (1984) studied the mean interstitial

length for a variety of fir trees, with an eye on their potential use in habitat

modification for fish populations. The mean interstitial lengths for 12 blue
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spruce trees are presented in Table 1.24. Viewing these data as a random

sample of size n ¼ 12 from the population of all blue spruce trees, complete

the following statistical analyses under the assumption that this population is

symmetrically distributed about its unknown median η.

(a) Obtain a point estimate of η and find a 97.4% upper confidence bound

for η.

(b) Find the P-value for a test of the null hypothesis H0: η¼ 75mm versus

the one-sided alternative HA: η < 75 mm.

(c) Are you comfortable with the assumption that mean interstitial

length for the population of blue spruce trees is symmetrically

distributed about its median η? Why or why not?

7.2.16. Lead-poisoned Geese. March et al. (1976) studied the plasma glucose

levels for healthy Canadian geese. The plasma glucose levels for eight healthy

Canadian geese are presented in Table 1.30. Viewing these data as a random

sample of size n ¼ 8 from the population of all healthy Canadian geese,

complete the following statistical analyses under the assumption that this

population is symmetrically distributed about its unknown median η.

(a) Obtain a point estimate of η and find a 97.4% upper confidence bound

for η.

(b) Find the P-value for a test of the null hypothesisH0: η¼ 275mg/100ml

plasma versus the one-sided alternative HA: η < 275 mg/100 ml

plasma.

(c) Are you comfortable with the assumption that the plasma glucose

level for the population of healthy Canadian geese is symmetrically

distributed about its median η? Why or why not?

7.2.17. Zooplankton on South Bass Island, Ohio. Terwilliger’s Pond is a shallow

embayment of Lake Erie (not a true pond) on South Bass Island, Ohio,
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connecting to the open lake through a channel that is approximately twelve

feet wide. Hines (1999) was interested in the species composition of zooplank-

ton during the summer months (July and August) in Terwilliger’s Pond.

Using plankton traps, Hines collected seven samples from each of three

different locations in the embayment, and recorded the average numbers

per liter of water of different plankton species for each of the twenty-one

samples. The specific counts for the rotifer Keratella cochlearis for the twenty-

one samples are given in Table 7.7. Viewing these data as a random sample of

size n ¼ 21 from Terwilliger’s Pond, complete the following statistical

analyses under the assumption that the population of Keratella cochlearis

densities in Terwilliger’s Pond in the summer months is symmetrically

distributed about its unknown median η.

(a) Obtain a point estimate of η and find a 95.4% confidence interval for η.

(b) Find the P-value for a test of the null hypothesis H0: η ¼ 50

organisms per liter versus the two-sided alternative HA: η 6¼ 50

organisms per liter.

(c) Are you comfortable with the assumption that the population of

Keratella cochlearis densities in Terwilliger’s Pond in the summer

months is symmetrically distributed about its unknown median η.

Why or why not?

Table 7.7 Numbers per liter of the rotifer Keratella cochlearis in twenty-
one samples from Terwilliger’s Pond

13 56 14 7 116 5 28 30 18 69 263
34 199 12 150 15 30 313 42 199 12

Source: Hines (1999)
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7.3 Inference for the Center of a Normal Distribution–
Procedures Associated with the Sample Mean and Sample
Standard Deviation

If conditions are such that a continuous measurement of interest is known

to have an underlying normal distribution, then we can construct more

effective inference procedures that utilize this additional information. In

such settings, the center of the population is represented equally well by

either the median, η, or the mean, μ, since these two features coincide for all

symmetric distributions, which includes normal distributions. However, our

previous discussion in Chaps. 4 and 5 relied exclusively on the common

statistical practice of taking the mean μ to be the descriptor to represent the

center of a normal distribution.We follow the same approach in this section to

describe inferential procedures for the center of a normal population.

t-Distribution When we have a simple random sample X1, ..., Xn from a

N(μ, σ) population where both μ and σ are unknown, the sample information

about the center and variability for the distribution is best summarized by the

sample mean �X and sample standard deviation S, respectively. In such

settings, it is both natural and optimal to base our inferences about the center

of the distribution on these two statistics.

For such normally distributed data, the optimal point estimator for μ is

quite naturally the sample mean,bμ ¼ �X:To construct confidence intervals and

bounds for μ, however, we also need to incorporate the variability associated

with this point estimator through its sampling distribution. We have previ-

ously seen in Sect. 5.1 that for a normally distributed random sample

the probability distribution of �X is N μ; σ=
ffiffiffi
n

pð Þ, which depends on the

unknown σ. The standardized sample mean
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Z ¼
�X � μ

σ=
ffiffiffi
n

p

has a standard N(0,1) distribution. However, using the sample standard

deviation S to estimate σ in this expression adds additional variability to the

process and the resulting variable no longer has a distribution that is N(0, 1).

Fortunately, the impact on the sampling distribution of the standardized �X

that results from estimating σ by S is easily quantified, leading to another

well-known distribution, called a t-distribution.

Definition 7.3. The class of t-distributions. Suppose that X1, ..., Xn is a

random sample from a N(μ, σ) population and let �X and S denote the

sample mean and standard deviation, respectively. Then the variable

T ¼
�X � μ

S=
ffiffiffi
n

p ð7:17Þ

has a t-distribution with n - 1 degrees of freedom and we write

T � t(n-1).

Like the class of normal distributions, which are indexed by values of the

mean μ and standard deviation σ, there is an entire collection of t-distributions

indexed by a single parameter, its degrees of freedom. This name for this

indexing parameter for the collection of t-distributions comes quite naturally

from applied situations where such distributions often arise as the appropri-

ate sampling distributions. In the construction of the variable T`, for example,

we compute the sample mean �X from the n independent pieces of information

initially provided by our random sample X1, ..., Xn. Thus we begin with

n ‘degrees of freedom’, corresponding to these n independent pieces of infor-

mation. However, we spend one of these degrees of freedom to compensate

for the fact that we do not know the population standard deviation σ and
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must use the sample standard deviation S to estimate it, resulting in n-1

remaining degrees of freedom from our data in the computation of the

T (7.17) variable. Thus, while we are able to use n independent sample

observations X1, ..., Xn to compute the sample mean, the loss of one degree

of freedom is the price we have to pay for the need to estimate the unknown

standard deviation σ by the sample standard deviation S.

The general shapes of the density curves for the t-distributions are similar

in many ways to that of the standard normal distribution. For example, all of

the t-distributions are symmetric about 0 and bell-shaped. However, the t-

distributions have variances that are greater than one (the variance of the

standard normal distribution) and slightly greater probabilities associated

with extreme values (i. e., heavier tails) than does the standard normal

distribution. In the case of T (7.17), this increased probability in the tails of

the t(n-1) distribution is a direct result of the extra variability introduced

through the use of S to estimate the unknown σ. As we encounter other

variables with t-distributions later in this course, there will be similar reasons

for the increased tail probabilities associated with their t-distributions.

The class of t-distributions also has another very important link to the

standard normal distribution. As the degrees of freedom, n-1, for a t-distribu-

tion increases, the t(n-1) density curve approaches that of the N(0, 1) distribu-

tion! This is actually not surprising, since an increase in the degrees of

freedom is directly associated with an increase in the sample size n and, as

the sample size increases, S will provide a more accurate estimate for σ.

Thus, as the sample size increases the variable T will behave more and more

like the variable Z ¼ � �X � μ
	
= σ=

ffiffiffi
n

p� 	
, which we know has a N(0, 1)

distribution.

In Fig. 7.1 we present the density curves for t-distributions with 4 and

10 degrees of freedom and theN(0, 1) density curve. While all three are clearly

similar in shape (i.e., bell-shaped and symmetric about the common center 0),
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the additional probability in the tails of both of the t-distributions is apparent.

It is also clear from the figures that this difference narrows as the degrees of

freedom for the t-distribution increases.

Upper tail probabilities for a specific t-distribution can be obtained using

the R function ptð Þ. For example, we can get the probability that an observa-

tion from the t-distribution with 12 degrees of freedom will exceed 1.782 as

follows.

> pt(q = 1.782, df = 12, lower.tail = FALSE)

[1] 0.05002442

Also, we can find that 1.782 is the upper 5th percentile for this distribution

using the R function qtð Þ. We can write this compactly as t12,.05 ¼ 1.782.

> qt(p = 0.05, df = 12, lower.tail = FALSE)

[1] 1.782288

Armed with the fact that T (7.17) has a t(n-1) probability distribution and

our new knowledge about this class of t-distributions, we now proceed with

Fig. 7.1 Density curves for the t-distribution with 4 degrees of freedom,
the t-distribution with 10 degrees of freedom, and the N(0,1) Distribution
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the discussion concerning statistical inference about the center (mean) of a

normal population. Interval estimates for μ are centered at the point estimator

�X and the width of such an interval is determined by both the estimated

standard error Sffiffi
n

p for �X and the confidence level CL through the appropriate

percentiles of the t(n-1) distribution. To construct a 100CL% confidence inter-

val for μ, we use the upper 1�CLð Þ
2 th percentile for the t-distribution with n-1

degrees of freedom, namely, tn�1, 1�CLð Þ
2
. For example, for confidence level

CL ¼ .90, we have 1�CLð Þ
2 ¼ :10

2 ¼ :05 and we would use the percentile

tn�1,.05, corresponding to n-1 degrees of freedom.

We now describe the procedure for building a confidence interval for a

normal population mean μ with a given confidence level CL. For sake of

illustration, suppose we have sample size n ¼ 13 and that our desired

confidence level is CL¼ .90. There are then d¼ (n – 1)¼ 12 degrees of freedom

and from the qtð Þ command on the previous page, we have t12,.05 ¼ 1.782.

From the fact that the t(12) distribution is symmetric about 0 (see Fig. 7.2),

it follows that

P �1:782 <
�X � μ

S=
ffiffiffi
n

p < 1:782
� �

¼ 1� :05þ :05ð Þ ¼ :90: ð7:18Þ

This leads directly to the probability statement

P �X � 1:782
Sffiffiffi
n

p < μ < �X þ 1:782
Sffiffiffi
n

p
� �

¼ :90 ð7:19Þ

and the desired 90% confidence interval ( �X � 1:782
Sffiffiffi
n

p , �X þ 1:782
Sffiffiffi
n

p ) for

the normal population mean μ.

This same approach can be used to obtain the general form for a 100CL%

confidence interval for the mean μ of a normal population for an arbitrary

sample size n and confidence level CL.
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Point and Interval Estimation of the Mean μ of a Normal Population Let �X

and S be the sample mean and sample standard deviation, respectively, for a

random sample X1, ..., Xn from a N(μ, σ) population. Then the point estimator

for the mean μ is �X. Moreover, an exact 100CL% confidence interval for μ is

provided by the interval

�X � tn�1, 1�CLð Þ
2

Sffiffiffi
n

p ; �X þ tn�1, 1�CLð Þ
2

Sffiffiffi
n

p
� �

, ð7:20Þ

where tn�1, 1�CLð Þ
2

is the upper 1�CL
2

� 	th percentile for the t-distribution with n-1

degrees of freedom. The corresponding 100CL% lower and upper confidence

bounds for μ are given by �X � tn�1, 1�CLð Þ
Sffiffiffi
n

p and �X þ tn�1, 1�CLð Þ
Sffiffiffi
n

p ,

respectively.

For example, suppose a sample of size n ¼ 17 from a normal population

yields a sample mean �x ¼ 8:2 and sample standard deviation s ¼ 1.5. With

confidence level CL ¼ .95 and degrees of freedom n – 1 ¼ 16, we use the

following R command to find that tn�1, 1�CLð Þ
2

¼ t16, :025 ¼ 2:120.

Fig. 7.2. Central CL ¼ .90 probability for the t(12) distribution
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Central CL = .90 probability for the t(12) distribution
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> qt(0.025, 16, lower.tail = FALSE)

[1] 2.119905

From (7.20) it follows that the 95% confidence interval for the mean μ

is given by

8:2� 2:12
1:5ffiffiffiffiffi
17

p
� �

; 8:2þ 2:12
1:5ffiffiffiffiffi
17

p
� �� �

¼ 7:429; 8:971ð Þ:

On the other hand, the 95% upper confidence bound for μ for these data

would be 8:2þ 1:746 1:5ffiffiffiffi
17

p
� �

¼ 8:835. Notice that the upper confidence bound

provides a sharper statement about the value of μ than does the confidence

interval with the same confidence level CL ¼ .95. This is always the case for

any data collection and any confidence level. (See Exercise 7.A.9.)

Example 7.6. Stature of Prehistoric Ohio Hopewell Amerindians Skeletal

analyses are important tools for the study of prehistoric populations. The

stature of an individual is commonly understood to be a result of many

things, including diet, diseases, environmental factors, and genetic makeup.

In prehistoric times a number of different stresses would surely also have had

their impact on the stature of the existing populations. Reliance on animal

proteins must have led to vitamin deficiencies and even those populations

that had developed agricultural features had to deal with droughts, famines,

and crop diseases.

Sciulli and Carlisle (1975) studied a number of prehistoric Amerindian

populations living in the area of the Ohio Valley over the years from 200 BC to

1200 AD (known as the Woodland period). In particular, the Ohio Hopewell

period (approximately 200-400 AD) is known to have involved a number of

changes in both settlement and living patterns, including a substantial

increase in the use of cultivated plants as sources of food. Hence, the stature

of individuals living during this period of time in the Ohio Valley relative to
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similar groups living in the area in previous time periods should provide

some idea of the effect that this increased plant cultivation had on the

populations. Scuilli and Carlisle measured the stature (in centimeters) of

20 female Amerindians from this Ohio Hopewell period recovered from the

Turner site in Cincinnati, Ohio. The heights for these 20 skeletons are reported

in Table 7.8.

One of the conditions affecting the appropriateness of the application of

the t-confidence interval in (7.20) to a data collection is whether the underly-

ing population from which the sample was collected is normally distributed.

There are several graphical ways to check the reasonableness of this assump-

tion, including the previously discussed stemplots, histograms, and normal

probability plots. These graphical displays can be obtained for a data collec-

tion using any of a number of different statistical software packages. While

such displays do not provide a definitive verification of this condition, they

can be used to point out possible areas of concern regarding normality of the

underlying population.

In Fig. 7.3 we show the normal probability plot for the female Hopewell

Amerindian stature data (available as the R dataset female_amerindians) in

Table 7.8. There is obviously some departure from the straight line that we

should expect for this plot if the underlying population of female Hopewell

Amerindian heights is normally distributed. For instance, the one unusually

small height in the data collection appears clearly as an outlier on the plot and

Table 7.8. Stature (centimeters) of twenty female
Amerindians from the Turner site in Cincinnati, Ohio,
representing the Ohio Hopewell period (200-400 AD)

150.8 150.5 149.3 150.2
154.7 153.2 154.8 153.9
137.5 152.2 155.3 154.8
149.0 147.3 152.0 155.4
149.8 144.2 155.3 150.3

Source: Sciulli and Carlisle (1975)
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the largest data values deviate quite a bit from what should be expected of

normally distributed data. Is this sufficient deviation from the straight line to

question the normality assumption? Will statistical analyses based on the

normality assumption lead to invalid conclusions?

For now, we assume that the observed signs of non-normality for the

female Hopewell Amerindian stature data are not serious enough to invali-

date the application of the procedures discussed in this section and we apply

the t-confidence interval procedure in (7.20) to the data collection in Table 7.8.

However, we return to the issue of normality of this data collection in Sect. 4.

Here the sample size is n ¼ 20 and the sample mean and sample standard

deviation are �x ¼ 151:025and s¼ 4.392, respectively. With degrees of freedom

d ¼ 20-1 ¼ 19, we find, using the R function qtð Þ, that t19,.025 ¼ 2.093. Hence

we estimate the mean stature of all female Amerindians living in the Ohio

Valley during the Ohio Hopewell Period to be �x ¼ 151:025 cm and the 95%

confidence interval for μ is

Fig. 7.3. Normal probability plot for the data in Table 7.8
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�x� t19, :025
sffiffiffiffiffi
20

p ¼ 151:025� 2:093
4:392ffiffiffiffiffi

20
p

� �
¼ 151:025� 2:055 ¼ 148:97; 153:08ð Þcm:

Thus we are 95% confident that the mean height for all female Amerindians

living in the Ohio Valley during the Ohio Hopewell period is between 148.97

and 153.08 centimeters. (If you are not comfortable with heights measured in

centimeters, the range is from about 4 feet 1012 inches to 5 feet 1
4 inch.)

In addition to supplying the appropriate t-percentile for these confidence

intervals, R can also be used to obtain these confidence intervals for the mean

of a normal population. For example, for the Amerindian stature data in

Table 7.8, we can use the t:testð Þ function to provide the following output,

which includes the point estimator and the 95% confidence interval for μ.

> t.test(female_amerindians)

One Sample t-test

data:  female_amerindians
t = 153.78, df = 19, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
148.9694 153.0806

sample estimates:
mean of x 

151.025 

The approach to conducting hypothesis tests about the mean μ for normal

populations is very similar to that used in constructing confidence intervals

and bounds for μ under normality. The variable T (7.17) again plays the key

role in the development.

Hypothesis Tests About the Mean of a Normal Population To test the null

hypothesis H0: [μ ¼ μ0] for a N(μ, σ) population, compute the statistic T(7.17)

under the null hypothesis condition that μ ¼ μ0, namely,

7.3 Inference for the Center of a Normal Distribution–Procedures Associated. . . 583



T ¼
�X � μ0
S=

ffiffiffi
n

p , ð7:21Þ

and let tobs be the attained value of T. The exact P-values for normal

populations for a test of H0 against the possible alternatives HA are then:

HA P-value

μ > μ0 P T � tobsð Þ ð7:22Þ

μ < μ0 P T � tobsð Þ ð7:23Þ
μ 6¼ μ0 2P T � tobsð Þ, if tobs � 0

2P T � tobsð Þ, if tobs < 0,
ð7:24Þ

where T � t(n-1).

Example 7.7. Ohio Hopewell Amerindians Sciulli and Carlisle (1975) indi-

cate that the average height of female Amerindians residing in the Ohio

Valley over the years from 200-0 BC (Early Woodland period) was 150.30

cm. This Early Woodland era was marked by an economy based almost

exclusively on hunting, fishing, and gathering, with seasonal occupation of

various sites. These differences in economy between the Early Woodland and

Ohio Hopewell periods leads to speculation that the development of at least a

partially agriculture-based economy during the Ohio Hopewell period would

also have led to a more stabilized diet and, therefore, to an increase in average

stature for the Amerindians of that period. Do the data presented in Table 7.8

for 20 female Amerindians residing in the Ohio Valley during the Ohio

Hopewell period (200-400 AD) provide evidence to support this conjecture?

Letting μ denote the average height for female Amerindians residing in the

Ohio Valley during the Ohio Hopewell period, we are interested in testing

the null hypothesis H0: [μ ¼ 150.3] versus the one-sided alternative

HA: [μ > 150.3]. In Example 7.5 we checked that the underlying normality

assumption is not unreasonable for the stature data collection in Table 7.8 and
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we found the sample average and standard deviation for these data to be

�x ¼ 151:025 and s ¼ 4.392, respectively. Computing the test statistic T (7.21),

we see that tobs ¼ 151:025� 150:3ð Þ= 4:392=
ffiffiffiffiffi
20

p� 	 ¼ :738. Hence from (7.22)

the P-value for our test of H0: [μ ¼ 150.3] against HA: [μ > 150.3] is found

using the ptð Þ function with n-1 ¼ 19 degrees of freedom to be P-value ¼
P(T � .738) ¼ P(t(19) � .738) ¼ .235.

> pt(0.738, df = 19, lower.tail = FALSE)

[1] 0.2347661

Thus there is virtually no evidence in the stature data from the Turner site in

Cincinnati, Ohio to support the conjecture that the average height for female

Amerindians increased from the Early Woodland period (200-0 BC) to the

Ohio Hopewell period (200-400 AD).

The R function t:testð Þ can also be used with the mu and alternative

arguments specified to be 150.3 and “greater”, respectively, to obtain the

following output, which includes the observed value of T and the associated

P-value for this Amerindian stature hypothesis test.

> t.test(female_amerindians, mu = 150.3, alternative =
"greater")

One Sample t-test

data:  female_amerindians
t = 0.73821, df = 19, p-value = 0.2347
alternative hypothesis: true mean is greater than 150.3
95 percent confidence interval:
149.3268      Inf

sample estimates:
mean of x 

151.025 

We note in passing that the average height of 150.30 cm for female

Amerindians residing in the Ohio Valley in the Early Woodlands period is

itself based on sample information obtained in other previous studies. Thus,

there is variability associated with that number as well. In Chap. 9 we will

discuss methods for making inferences about two population means (in this

example, average heights for female Amerindians from the Early Woodland
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and Ohio Hopewell periods) based on random samples from each of the two

populations.

Section 7.3 Practice Exercises

7.3.1. Find the upper 1�CLð Þ
2 th percentile for the t-distribution with n-1

degrees of freedom, namely, tn�1, 1�CLð Þ
2
, for the following values of n and CL.

(a) n ¼ 9, CL ¼ .95

(b) n ¼ 20, CL ¼ .975

(c) n ¼ 15, CL ¼ .90

(d) n ¼ 18, CL ¼ .99 .

7.3.2. Find the designated upper-tail probabilities for the following

t-distributions.

(a) T � t(14), P(T � 1.761)

(b) T � t(20), P(T � 2.528)

(c) T � t(4), P(T � 2.776)

(d) T � t(9), P(T � 3.250) .

7.3.3. Use the R function rtð Þ to simulate a random sample of 1000

observations from each of the following t-distributions and graphically dis-

play each of the sets of sample observations in a normal probability plot.

(a) t(4)

(b) t(8)

(c) t(12)

(d) t(18)

(e) t(25)

(f) t(30)

(g) t(40)

Comment on these normal probability plots in view of the fact that the

t-distribution with d degrees of freedom approaches the N(0, 1) distribution

586 7 Statistical Inference for the Center of a Population



as d increases. Based on these plots, how large do you feel the degrees of

freedom d needs to be for the N(0, 1) distribution to provide a good approxi-

mation for the t-distribution?

7.3.4. Using the R function rnormð Þ, simulate 1000 independent random

samples of size n ¼ 10 each from the N(5, 10) distribution and compute the

value of the T (7.17) variable for each of these random samples. Let T(1) � T(2)

� . . . � T(1000) denote the ordered values of T for the 1000 random samples.

Let t9,.90, t9,.80, t9,.70, t9,.60, t9,.50, t9,.40, t9,.30, t9,.20, and t9,.10 be the nine deciles for

the t(9) distribution.

(a) Use these deciles as fixed fenceposts to summarize the observed

values of T (7.17) for your 1000 samples.

(b) Compute jT(10j) - t9, (1-.1j)j, for j ¼ 1, 2, . . ., 9. Comment on the values of

the differences.

(c) What do your findings in parts (a) and (b) tell you about the

probability distribution of the variable T (7.17) for data arising from

the N(5, 10) distribution?

7.3.5. Using the R function rnormð Þ, simulate 1000 independent random

samples of size n ¼ 10 each from the N(5, 100) distribution and compute the

value of the T (7.17) variable for each of these random samples. Let T(1) � T(2)

� . . . � T(1000) denote the ordered values of T for the 1000 random samples.

Let t9,.90, t9,.80, t9,.70, t9,.60, t9,.50, t9,.40, t9,.30, t9,.20, and t9,.10 be the nine deciles for

the t(9) distribution.

(a) Use these deciles as fixed fenceposts to summarize the observed

values of T (7.17) for your 1000 samples.

(b) Compute jT(10j) - t9, (1-.1j)j, for j ¼ 1, 2, . . ., 9. Comment on the values of

the differences.

(c) What do your findings in parts (a) and (b) tell you about the proba-

bility distribution of the variable T (7.17) for data arising from the

N(5, 100) distribution?
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(d) Compare your results with those obtained in Exercise 7.3.4.

7.3.6. Using the R function rnormð Þ, simulate 1000 independent random

samples of size n ¼ 10 each from the N(25, 10) distribution and compute the

value of the T (7.17) variable for each of these random samples. Let T(1) � T(2)

� . . . � T(1000) denote the ordered values of T for the 1000 random samples.

Let t9,.90, t9,.80, t9,.70, t9,.60, t9,.50, t9,.40, t9,.30, t9,.20, and t9,.10 be the nine deciles for

the t(9) distribution.

(a) Use these deciles as fixed fenceposts to summarize the observed

values of T (7.17) for your 1000 samples.

(b) Compute |T(10j) - t9, (1-.1j)|, for j ¼ 1, 2, . . ., 9. Comment on the values

of the differences.

(c) What do your findings in parts (a) and (b) tell you about the proba-

bility distribution of the variable T (7.17) for data arising from the

N(25, 10) distribution?

(d) Compare your results with those obtained in Exercise 7.3.4.

7.3.7. Using the R function rnorm( ), simulate 1000 independent random

samples of size n ¼ 10 each from the uniform distribution on the interval

(-1, 1) and compute the value of the T (7.17) variable for each of these random

samples. Let T(1) � T(2) � . . . � T(1000) denote the ordered values of T for the

1000 random samples. Let t9,.90, t9,.80, t9,.70, t9,.60, t9,.50, t9,.40, t9,.30, t9,.20, and t9,.10

be the nine deciles for the t(9) distribution.

(a) Use these deciles as fixed fenceposts to summarize the observed

values of T (7.17) for your 1000 samples.

(b) Compute jT(10j) - t9, (1-.1j)j, for j ¼ 1, 2, . . ., 9. Comment on the values of

the differences.

(c) What do your findings in parts (a) and (b) tell you about the proba-

bility distribution of the variable T (7.17) for data arising from this

uniform distribution on the interval (-1, 1)?
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7.3.8. The following data collection is a random sample of size n¼ 50 from a

continuous population:

{14.50, 9.77, 8.18, 11.94, 6.55, 9.62, 7.54, 13.05, 9.27, 8.75, 11.12, 7.84, 8.09, 11.63,

7.91, 5.02, 11.80, 9.84, 9.77, 7.23, 10.17, 14.21, 10.68, 6.23, 14.18, 10.26, 8.65,

10.63, 8.25, 10.78, 8.84, 10.29, 10.37, 11.84, 11.39, 11.77, 13.03, 9.34, 8.80, 13.43,

10.62, 7.25, 8.47, 10.61, 13.21, 11.07, 7.79, 10.57, 10.56, 12.55}.

Use a variety of graphical techniques (e. g., stemplot, histogram, normal

probability plot, etc.) to assess whether it is likely that the underlying popula-

tion from which this sample was collected has a normal distribution.

7.3.9. The following data collection is a random sample of size n ¼ 100 from

a continuous population:

{4.78, -4.25, 5.92, 5.00, 6.02, 7.08, -3.13, 1.11, 7.52, 2.55, 8.28, 2.14, -0.92, 2.71,

2.99, 1.58, 8.14, 2.10, 5.64, 3.27, -7.69, 11.47, -1.98, 5.27, 2.43, 0.23, -1.24, -4.23,

5.83, 1.87, 6.40, 7.80, -1.14, 0.43, 1.49, 6.64, 4.04, 2.85, 4.71, 4.99, 3.32, 7.15, 4.27,

8.65, -0.09, -2.35, 1.07, 2.45, 3.12, 6.68, 4.74, 6.16, -3.37, 4.15, 5.08, 6.54, 1.02,

5.94, 5.21, 2.81, 3.87, 13.94, 10.56, 2.85, 8.82, -6.50, 2.41, 8.71, 5.82, -0.45, 2.60,

4.12, 1.05, -1.37, 9.54, 7.84, 10.27, 6.04, 2.10, 4.57, 0.08, 4.67, 3.14, 10.94, 3.94,

14.50, 5.66, 1.36, 6.56, 5.60, -1.22, -1.62, 11.92, 10.06, -1.42, 0.81, -2.66, 4.66,

10.32, 9.79}.

Use a variety of graphical techniques (e. g., stemplot, histogram, normal

probability plot, etc.) to assess whether it is likely that the underlying popula-

tion from which this sample was collected has a normal distribution.

7.3.10. The following data collection is a random sample of size n ¼ 50 from

a continuous population:

{3.10, -1.80, 7.85, 6.85, 1.02, 4.70, 5.71, 0.95, 4.72, -5.28, 2.06, -6.52, -19.07, 4.47,

3.39, 1.50, 1.21, 1.26, -2.01, 1.07, 7.40, 5.31, 1.86, 9.54, 153.97, 2.91, 0.78, 3.49,
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2.99, 9.53, 1.64, -0.08, 4.50, 5.35, 3.16, -20.71, -341.50, 4.27, -37.20, 18.91, -15.36,

-7.24, 2.67, 146.75, 15.70, -26.88, 23.34, 7.34, 11.24, 2.85}.

Use a variety of graphical techniques (e. g., stemplot, histogram, normal

probability plot, etc.) to assess whether it is likely that the underlying popula-

tion from which this sample was collected has a normal distribution.

7.3.11. The following data collection is a random sample of size n¼ 100 from

a continuous population:

{3.13, 12.80, 3.79, 0.77, 6.91, 11.97, 13.02, 1.87, 13.52, 0.54, 6.73, 3.13, 1.12, 8.67,

2.65, 1.06, 10.87, 7.63, 6.18, 2.95, 1.44, 3.64, 0.25, 0.20, 0.17, 1.65, 6.69, 10.51,

2.37, 3.40, 19.35, 0.64, 10.83, 2.38, 1.64, 33.34, 3.55, 2.28, 2.38, 3.84, 6.67, 3.23,

5.48, 4.11, 9.14, 8.78, 17.82, 14.98, 1.38, 5.92, 6.93, 5.15, 0.53, 0.46, 1.41, 17.08,

1.36, 2.27, 3.01, 0.26, 0.99, 2.18, 1.22, 12.68, 8.49, 5.17, 2.15, 3.82, 3.51, 3.16, 4.56,

21.67, 2.75, 2.14, 0.30, 2.09, 0.52, 7.00, 10.58, 7.30, 8.71, 2.84, 15.01, 2.74, 5.76,

3.20, 8.93, 6.00, 1.60, 0.55, 41.49, 1.67, 3.61, 2.36, 1.73, 3.15, 0.39, 0.55, 1.67, 1.64}.

Use a variety of graphical techniques (e. g., stemplot, histogram, normal

probability plot, etc.) to assess whether it is likely that the underlying popula-

tion from which this sample was collected has a normal distribution.

7.3.12. Asbestos Workers and Lung Function. Al Jarad et al. (1993) studied the

percentage decrease in lung function over roughly a 4-year period for asbestos

workers who do not yet have asbestosis. Their results are presented in

Table 1.18. Viewing these data as a random sample of size n ¼ 20 from the

population of all such asbestos workers, complete the following statistical

analyses under the assumption that the underlying population is normal with

unknown mean μ.

(a) Obtain a point estimate of μ and find a 95% confidence interval for μ.

(b) Find the P-value for a test of the null hypothesisH0: μ¼ 7% versus the

two-sided alternative HA: μ 6¼ 7%.
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(c) Are you comfortable with the assumption that the 4-year percentage

decrease in lung function for the population of all asbestos workers

who do not have asbestosis follows a normal distribution? Why or

why not?

7.3.13. Ultrasound Probes and Bacterial Infections. Consider the CFU bacterial

counts data for ultrasound probes as presented in Table 7.2. Viewing this data

collection as a random sample of size n ¼ 25 from the population of CFU

bacterial counts on all ultrasound probes, complete the following statistical

analyses under the assumption that the underlying population is normal with

unknown mean μ.

(a) Obtain a point estimate of μ and find a 95.7% confidence interval for μ.

(b) Find the P-value for a test of the null hypothesis H0: μ ¼ 150 colonies

versus the one-sided alternative HA: μ > 150 colonies.

(c) Compare your findings with those obtained in Exercise 7.1.15 with

only the minimal assumption about the underlying population.

(d) Are you comfortable with the assumption that the CFU bacterial

counts for all ultrasound probes follows a normal distribution? Why

or why not?

7.3.14. Anesthetics and Treesnakes. Determination of an appropriate anesthetic

for use in short-term medical procedures is an important aspect of the proper

care of animals. Anderson (1999) studied the use of propofol (a non-barbiturate,

substituted isopropyl phenol) in anesthetic induction for brown treesnakes

(Boiga irregularis). She was interested in the effect that propofol has on various

cardiac blood gas values, including partial carbon dioxide pressure, partial

oxygen pressure, bicarbonate level, and percent hemoglobin saturation.

Pre-anesthetic blood gas values were obtained using cardiocentesis for nine

brown treesnakes. The snakes were then administered a 5.0mg/kgweight dose

of propofol by the intracardiac route using an 0.5 ml insulin syringe and a 27.5

gauge needle. A second blood sample for blood gas analysis was taken from
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each of the snakes 15 min after the administration of the propofol. The pre- and

post-anesthetic partial carbon dioxide pressure values for the nine brown

treesnakes are given in Table 7.9. Viewing these data as a random sample of

size n ¼ 9 from the population of all brown treesnakes, complete the following

statistical analyses under the assumption that the change in partial carbon

dioxide pressure for brown treesnakes due to treatment with a 5.0 mg/kg

weight dose of propofol follows a normal distribution with unknown mean μ.

(a) Obtain a point estimate of μ and find a 90% confidence interval for μ.

(b) Find the P-value for a test of the null hypothesis H0: μ ¼ 0 mm Hg

versus the two-sided alternativeHA: μ 6¼ 0mmHg.What does the null

hypothesis μ ¼ 0 correspond to in relation to the use of this dose of

propofol as an anesthetic for brown treesnakes?

(c) Are you comfortable with the assumption that the change in partial

carbon dioxide pressure for brown treesnakes due to treatment with a

5.0 mg/kg weight dose of propofol follows a normal distribution with

unknown mean μ? Why or why not?

Table 7.9 Partial carbon dioxide pressure levels (mmHg) for
brown treesnakes before and after administration of 5 mg/
kg Propofol

Treesnake number Before Propofol After Propofol

1 50.2 39.8
2 43.7 37.7
3 51.5 51.3
4 42.3 46.2
5 38.7 25.3
6 35.2 46.8
7 66.8 58.8
8 35.3 48.5
9 49.5 34.1

Source: N. L. Anderson (1999)
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7.4 Discussion of Methods of Inference for the Center
of a Population

In Sects. 1 through 3 we discussed three complete sets of procedures for

making statistical inferences about the center of a population. These

procedures are differentiated by the assumptions they place on the underly-

ing population from which the sample data arise, ranging from virtually no

assumptions about the population for the sign procedures of Sect. 1, an

additional assumption of symmetry for the signed rank procedures of Sect.

2, to the very specific normality assumptions for the procedures based on the

sample mean and standard deviation discussed in Sect. 3. Clearly, the sign

procedures can be applied to virtually any univariate random sample, while

judgments must be made before accepting the more restrictive conditions of

the signed rank and t procedures. However, if our decision to use a more

restrictive procedure is correct (i. e., the underlying population is, as assumed,

symmetric or normal), then the appropriate procedures for that set of

assumptions will be more efficient and provide better inference for the data

(e. g. , estimators with smaller sampling variability, shorter confidence

intervals, and more powerful tests that are better at detecting correct alterna-

tive hypotheses ).

This raises the natural question of how to decide which set of procedures

should be used to analyze a specific set of data. While there is no definitive

answer to this question, some preliminary evaluation of the sample data can

prove quite useful in the selection process. The data themselves should be

examined for signs of asymmetry or other non-normalities. One or more of the

exploratory data analysis techniques (e. g., dotplots, stemplots, histograms,

boxplots, fixed or variable fenceposts) discussed in Chap. 1 as well as the

normal probability plot discussed in Chap. 4 would certainly be useful in this

regard. If the data are strongly asymmetric, it is always safest to use the sign

procedures of Sect. 1. If the asymmetry is only slight but there are unusually
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large and or small observations (outliers), the signed rank procedures of Sect.

2 are a better choice. Finally, for data that exhibit a roughly bell-shaped

appearance with no appreciable evidence of outliers, the t-procedures of

Sect. 3 generally provide more efficient inference.

We illustrate this screening process for determining which set of

procedures to use with two very specific data sets and then illustrate the

consequences of applying each of the three sets of procedures to the data.

First, consider the Amerindian stature data presented in Table 7.8. In

Sect. 3 we noted some evidences of non-normality for this data collection in

the normal probability plot presented in Fig. 7.3. However, in Examples 7.6

and 7.7 we chose to analyze these data using the t-procedures of Sect. 3. Was

this a good choice? To shed additional light on this question of normality, a

stemplot and boxplot for these data are displayed in Figs. 7.4 and 7.5,

respectively.

It is clear from these two displays that the Amerindian stature data are,

indeed, somewhat skewed to the left (toward smaller values) and that the one

individual with height 137.5 cm might very well have the influence of an

outlier. (Similar insights are obtained from looking at a histogram.) This

agrees with our earlier observations about the normal probability plot for

these data. Are these serious enough to cause concern with our analyses in

Examples 7.6 and 7.7 under the assumption of normality? One way to evalu-

ate this is to analyze the same data under both of the other less restrictive sets

of assumptions. Using the sign procedures (and the R function SIGN:testð Þ
from the BSDA package) of Sect. 1, we obtain the following analogues to the

normality-based results in Examples 7.6 and 7.7:
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Fig. 7.4 Stemplot of female Ohio Hopewell Amerindian stature data from
Table 7.8
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Fig. 7.5 Boxplot of female Ohio Hopewell Amerindian stature data from
Table 7.8
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> SIGN.test(female_amerindians, md = 150.3, alternative = "greater")

One-sample Sign-Test

data:  female_amerindians
s = 12, p-value = 0.1796
alternative hypothesis: true median is greater than 150.3
95 percent confidence interval:
150.1171      Inf

sample estimates:
median of x 

151.4 

Conf.Level   L.E.pt U.E.pt
Lower Achieved CI     0.9423 150.2000    Inf
Interpolated CI       0.9500 150.1171    Inf
Upper Achieved CI     0.9793 149.8000    Inf

Comparison with the results obtained in Examples 7.6 and 7.7 under the

normality assumption shows clearly that there is little difference in the statis-

tical inferences from applying either the sign procedures of Sect. 1 or the

analogous t-procedures of Sect. 3 to the female Ohio Hopewell Amerindian

stature data in Table 7.8. (You are asked in Exercise 7.B.13 to show that this is

also the case for the corresponding signed rank procedures of Sect. 2.)

Thus the presence of some skewness and an apparent outlier, as clearly

indicated by both the stemplot (Fig. 7.4) and boxplot (Fig. 7.5), in the Ohio

Hopewell Amerindian stature data are not serious enough to have a negative

effect on the statistical inferences that are obtained from operating under the

normality assumption. The important thing to note here is that using either

the sign or signed rank procedure for these data provides the same

conclusions as those that result from imposing the normality assumption.

Thus, in situations where there is some doubt about the normality assumption

(as there was with the Ohio Hopewell Amerindian stature data), it is often

wise to play it safe by using either the sign or the signed rank procedure. If the

effect from the non-normality of the data is minimal (as is apparently the case

with the Ohio Hopewell Amerindian stature data), it is not unusual that the

inferences will be the same for all three procedures. However, playing it safe

by using the sign or signed rank procedure can make a big difference in
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reaching the proper conclusions for some data sets where the non-normality is

severe, as we now demonstrate in our second example.

Consider the total number of engineering drawing hours that contributed

to the cost of a particular class of machinery for a major Ohio-based company.

A random sample of n ¼ 17 pieces of this equipment yielded the total

engineering drawing hours presented in Table 7.10.

Looking at any of the evaluative criteria reveals very non-normal features

for these drawing hours data. For example, the stemplot and the normal

probability plot for the data are presented in Figs. 7.6 and 7.7 and provide

clear evidence of non-normality for these data. What effect does such strong

non-normality have on the statistical inferences for the sign, signed rank and

t-based procedures?

As there is no natural null hypothesis value for these drawing hours

data, we consider here only a comparison of the point and interval

estimation results under the three sets of assumptions. Employing a confi-

dence coefficient of approximately .95, the three sets of estimation results are

as follows:

Minimal Assumptions–Sign Procedures:

Point estimator for the median η of the population: ~x ¼ 24 hours

95.1% confidence interval for η: (22, 26) hours

Symmetry Assumption–Signed Rank Procedures:

Point estimator for the median η of the population: ~w ¼ 25 hours

94.8% confidence interval for η: (22, 34) hours

Table 7.10 Total engineering drawing hours for seventeen pieces of
equipment in class D

16 22 24 26 230 16
24 24 34 18 24 26
34 22 24 26 104
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Fig. 7.6 Stemplot for total engineering drawing hours data in Table 7.10
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Fig. 7.7 Normal probability plot for total engineering drawing hours data
in Table 7.10
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Normality Assumption–t-procedures:

Point estimator for the mean of the population: �x ¼ 40:8 hours

95% confidence interval for μ: (13.7, 67.9) hours.

Since we know that the sample mean and sample median for this data

collection are quite different, the symmetry assumption is probably not cor-

rect. However, the point and interval estimates obtained under the minimal

assumptions and the assumption of symmetry are quite similar. Both of them

do a good job of representing the true makeup of the sample data, although

the upper endpoint of the confidence interval based onWalsh averages is a bit

more influenced by the skewness of the data than is the sign procedure

interval. Operating under either of these two sets of assumptions seems

quite reasonable for these data.

However, it is also very clear from our calculations that operating under

the normality assumption is not a wise idea for this setting. The data are, of

course, very non-normal, being skewed right and containing two extreme

outliers. However, in this case the non-normal nature of the data (primarily

because of the outliers) takes its toll on the t-procedures. The t confidence

interval is simply not acceptable, as it is over four times as long as the one

based on Walsh averages and over THIRTEEN times as long as the sign

confidence interval. Part of this is due to the fact that the t confidence interval

is for the mean of the population, while both the sign and signed rank

confidence intervals are for the median of the population. However, it is

quite clear that the sample mean, �x ¼ 40:8 hours, does a very poor job of

representing the visual center (or typical value) of the sample data. All but

two of the sample observations are smaller than �x. In addition, the estimate

provided by the sample mean is not even considered among the possible

values for the center of the population by either of the sign or signed rank 95%

confidence intervals!
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With these two examples in mind, what then should we do when we want

to use a set of sample data to estimate the center of a population? Unfortu-

nately, there is no definitive answer. However, it is clear from these examples

that it is an important issue to address in any data analysis. A researcher

should give serious thought to the question of which population parameter,

the median or the mean, best represents the feature of most interest in the

study. If the underlying distribution is thought to be heavily skewed or have a

rather high probability of producing outliers, we suggest that the median

provides a more realistic picture of the center of such a population. If the

underlying distribution is thought to be roughly symmetric with low proba-

bility of outliers, then the mean and the median provide similar pictures of the

center of the population. In such settings, there is no automatic response as to

which measure is preferred. All that we recommend in these cases is that you

should not jump blindly into making more assumptions about your underly-

ing population than seems reasonable with the given collection of sample

data. Use any number of the exploratory data analysis tools we discussed in

Chap. 1 to get a good, clear picture of the structure of your observed data

set. We particularly recommend that this snapshot of the data include a

normal probability plot, as illustrated in our two examples. (See Exercises 7.4.4

through 7.4.7 for additional guidance in interpreting such normal probability

plots.)

If there do not appear to be any obvious non-normalities exhibited in your

data set, it is probably reasonable to proceed with inferences under the

normality assumption. However, if you have concerns about non-normality

with your data, we would recommend that you proceed with your inferences

based on the sign or signed rank procedures, with the latter being preferred

when the data do not exhibit strong asymmetries.

One good thing to keep in mind through all of this discussion is that the

inference procedures developed under the minimal assumptions are valid for

virtually all populations, while assuming symmetry restricts you to a smaller
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set of populations, and assuming normality restricts you to the smallest set. If

the data arise from a population that satisfies one set of assumptions, but not

the next more stringent set of assumptions, then those procedures based on

the most stringent set of assumptions that are appropriate will provide more

informative results (e. g., shorter confidence intervals and more powerful

tests). Thus, if the data arise from a normal population, the t-based procedures

are the approach of choice. However, as we saw with the total engineering

drawing hours data, if the three sets of procedures are not in relatively close

agreement, then the normality assumption is probably not justified and using

the results from one of the other two procedures makes more sense.

Section 7.4 Practice Exercises

7.4.1. Vertical Cliffs and Ages of Trees. Consider the age estimate data for a

sample of cliff trees in western Europe, as presented in Table 7.3 and

discussed in Exercise 7.1.16.

(a) Conduct statistical analyses similar to those of Exercise 7.1.16, but

now under the more stringent assumption that the age population for

cliff trees in Western Europe has a distribution that is symmetric

about its unknown median η.

(b) Conduct statistical analyses similar to those of Exercise 7.1.16 , but

now under the assumption that the age population for cliff trees in

Western Europe has a normal distribution with unknown mean μ.

(c) Compare and contrast the results from Exercise 7.1.16 with those

obtained in parts (a) and (b). Which of the three sets of analyses do

you prefer and why?

7.4.2. Zooplankton on South Bass Island, Ohio. Consider the rotifer Keratella

cochlearis density data for Terwilliger’s Pond in South Bass Island, Ohio, as

presented in Table 7.7 and discussed in Exercise 7.2.17.

7.4 Discussion of Methods of Inference for the Center of a Population 601



(a) Conduct statistical analyses similar to those of Exercise 7.2.17, but

now under the less stringent minimal assumption about the popula-

tion of Keratella cochlearis densities in Terwilliger’s Pond in the sum-

mer months.

(b) Conduct statistical analyses similar to those of Exercise 7.2.17, but

now under the assumption that the population of Keratella cochlearis

densities in Terwilliger’s Pond in the summer months follows a

normal distribution with unknown mean μ.

(c) Compare and contrast the results from Exercise 7.2.17 with those

obtained in parts (a) and (b). Which of the three sets of analyses do

you prefer and why?

7.4.3. Anesthetics and Treesnakes. Consider the partial carbon dioxide pres-

sure level data for brown treesnakes before and after administration of

propofol, as presented in Table 7.9 and discussed in Exercise 7.3.14.

(a) Conduct statistical analyses similar to those of Exercise 7.3.14, but

now under the least stringent minimal assumption about the distri-

bution of the change in partial carbon dioxide pressure for brown

treesnakes after treatment with a 5.0 mg/kg weight dose of propofol.

(b) Conduct statistical analyses similar to those of Exercise 7.3.14, but

now with only the assumption that the distribution of the change in

partial carbon dioxide pressure for brown treesnakes after treatment

with a 5.0 mg/kg weight dose of propofol is symmetric about its

unknown median η

(c) Compare and contrast the results from Exercise 7.3.14 with those

obtained in parts (a) and (b). Which of the three sets of analyses do

you prefer and why?

7.4.4. The following data collection of n ¼ 30 sample observations was

generated from a normal population. Construct a normal probability plot

for these data and describe its features.
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{0.810, 6.808, 3.230, -8.330, 1.817, 1.040, 0.232, 3.117, -3.734, -2.340, -1.808,

5.265, 3.017, -4.773, -0.699, -0.806, -6.129, -0.560, -3.447, -4.271, -0.563, 1.060,

-6.508, -12.104, -0.831, -2.266, -2.329, -5.240, 5.230, -3.460}.

7.4.5. The following data collection of n ¼ 30 sample observations was

generated from a truncated light-tailed population. Construct a normal prob-

ability plot for these data and describe its features. Compare to the normal

probability plot constructed in Exercise 7.4.4 for data from a normal

population.

{-0.292, -0.678, 0.945, 0.539, 0.642, -0.717, -0.897, -0.888, 0.862, 0.592, 0.925,

0.286, -0.590, -0.906, -0.357, -0.421, 0.756, -0.017, -0.152, 0.422, 0.503, -0.215,

-0.331, 0.118, -0.470, -0.954, -0.882, -0.872, -0.438, -0.607}.

7.4.6. The following data collection of n ¼ 30 sample observations was

generated from a population that is skewed to the right. Construct a normal

probability plot for these data and describe its features. Compare to the

normal probability plot constructed in Exercise 7.4.4 for data from a normal

population.

{4.68, 2.41, 11.64, 16.47, 8.01, 7.03, 1.36, 11.34, 8.42, 12.00, 44.43, 28.80, 15.71,

4.76, 11.50, 0.79, 0.91, 13.26, 11.12, 9.44, 1.63, 1.54, 9.55, 18.89, 30.21, 7.94, 5.61,

1.32, 0.43, 6.63}.

7.4.7. The following data collection of n ¼ 30 sample observations was

generated from a heavy-tailed population that contains both unusually

large and unusually small values. Construct a normal probability plot for

these data and describe its features. Compare to the normal probability plot

constructed in Exercise 7.4.4 for data from a normal population.

{19.79, -9.22, -2.80, 3.06, -0.37, 22.51, 40.84, 3.65, -107.92, -168.18, 4.37, 11.20,

4.42, 33.44, 7.92, 17.36, 9.10, -7.00, 376.89, -8.70, -0.04, -0.68, -2.93, 7.32, -15.65,

11.84, 4.81, -34.73, -3.37, -0.87}.
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7.5 Approximate Inference for the Center of a Population
when the Number of Sample Observations is Large

In Sects. 1 through 3 we considered exact statistical inference procedures

developed under three different sets of assumptions about the underlying

population. The values of the point estimators for these three different settings

depend solely on the observed sample data collection. However, to compute

confidence intervals or carry out hypothesis tests, we need to use the sam-

pling distribution of a related statistic to assess the sampling variability of our

estimate for the center of the population. Thus, for example, in the confidence

interval for the population median η discussed in Sect. 1 and presented in

Eq. (7.2), we require values of appropriate Binomial percentiles. Similarly for

the t-test procedures for normal populations presented in Eqs. (7.22)-(7.24),

the appropriate t-distribution is used to obtain the P-values for the observed

data. These sampling distributions (Binomial and t-distributions, as well as

those associated with theWalsh average and signed rank procedures) depend

directly on the number of observations, n, in our sample.

Percentiles for these sampling distributions can be obtained using the

R functions qbinomð Þ and qtð Þ. However, as we learned in Chap. 4, statistics

that are based on sums or averages of a large number of observations are often

approximately normally distributed. We can use this fact to develop

approximations for percentiles of the sampling distributions we have used

in this section that are quite accurate when the sample size is large. These

approximations will involve the standard normal distribution.

When a random variableX has aN(μ, σ) distribution, we are able to use the

fact that the standardized variable Z ¼ (X-μ)/σ has a N(0,1) distribution to

compute exact probabilities for events associated with X. However, the role of

the standard normal distribution in statistics is much more extensive than

simply computing probabilities for normally distributed random variables. It

also can be used to provide approximations for probabilities associated with
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the sampling distributions of many important statistics when the number of

sample observations is large. This is a consequence of the series of theoretical

results called central limit theorems that we discussed in Chap. 4. These

theorems tell us about the sampling distribution of sums of random variables

when the number of observations is large. In particular, such results can

be used to approximate probabilities associated with the null hypothesis

sampling distributions of all three of the test statistics B (7.4), W+ (7.12), and

T (7.21).

Large Sample Approximations for Inference About the Population Median

η Based on the Sign Statistic B. First we consider the use of an appropriate

central limit theorem to approximate percentiles for the null sampling

distribution of the sign statistic B (7.4). When the null hypothesis

H0: [η ¼ η0] is true, the sampling distribution of the standardized variable

B∗ ¼ B� E0 Bð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var0 Bð Þp ¼ B� n

2ffiffi
n
4

p
can be well-approximated by a standard normal distribution when the sam-

ple size n is large. In particular, if b is the attained sample value of B, then,

for large sample size n, the standard normal approximations to the

probabilities P(B � b) and P(B � b) when η ¼ η0 are given by

P B � bð Þ � P Z � b� n
2ffiffi

n
4

p !
ð7:25Þ

and

P B � bð Þ � P Z � b� n
2ffiffi

n
4

p !
, ð7:26Þ
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respectively, where Z ~ N(0,1). Thus, for large sample size n, these standard

normal probabilities provide approximations for the P-value expressions

given in (7.5), (7.6), and (7.7).

To illustrate this large sample approximation, consider once again the

HDL cholesterol level data discussed in Example 7.2. There we found the

observed value of B was b ¼ 11 and the exact P-value for sample size n ¼
12 was P-value ¼ P(B� 11) ¼ .0032. Using the large sample approximation in

(7.25) we find

P B � 11ð Þ � P Z � 11� 12
2ffiffiffiffi

12
4

q
0B@

1CA ¼ P Z � 11� 6ffiffiffi
3

p
� �

¼ P Z � 2:89ð Þ ¼ :0019:

While this approximation is a bit smaller than the exact P-value, it is not too

far off, especially for a sample size as small as n ¼ 12. It is generally the case

that for sample sizes n � 25, the exact and approximate P-values will be in

reasonably close agreement.

We also note that the integers j in expressions (7.2) and (7.3) that lead to

confidence intervals and confidence bounds, respectively, for the population

median η under the minimal assumption that P(X ¼ η) ¼ 0 are the integers

closest to the following expressions:

j � n
2
� z 1�CLð Þ

2

ffiffiffi
n
4

r
ð7:27Þ

and

j � n
2
� z1�CL

ffiffiffi
n
4

r
, ð7:28Þ

respectively, where z(1-CL)/2 and z(1-CL) are the ({1-CL}/2)th and (1-CL)th

percentiles for the standard normal distribution.
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To illustrate this approximation, consider the confidence interval for the

median HDL level for active women in the age range 25-32, as discussed in

Example 7.1. There we found that (x(3), x(10)) ¼ (41, 54) mg/dl is an exact

96.14% confidence interval for the median HDL level. For this example, we

have n ¼ 12 and CL ¼ .9614. The approximate value for j given in (7.27) is

j � 12
2
� z 1�:9614ð Þ

2

ffiffiffiffiffi
12
4

r
¼ 6� 2:07

ffiffiffi
3

p
¼ 2:415:

Since 2 is the integer closest to 2.415, the approximate 96.14% confidence

interval for the median HDL level corresponding to expression (7.27) would

be (x(2), x(11))¼ (41, 59)mg/dl. While this differs slightly from the exact 96.14%

confidence interval, the sample size n ¼ 12 is not particularly large. It is

generally the case that the exact and approximate confidence intervals and

bounds will be in relative agreement for sample sizes n � 25.

Large Sample Approximations for Inference About the Population Median

η Based on the Signed Rank Statistic W+. An appropriate central limit

theorem is also available to provide normal approximations to the percentiles

of the null sampling distribution of the standardized signed rank statistic W+

(7.12). When the null hypothesis H0: [η ¼ η0] is true, the sampling distribution

of the standardized variable

Wþ	 ¼ Wþ � E0 Wþ� 	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var0 Wþ� 	q ¼ Wþ � n nþ1ð Þ

4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n nþ1ð Þ 2nþ1ð Þ

24

q
can be well-approximated by a standard normal distribution when the sam-

ple size n is large. In particular, if w+ is the attained sample value ofW+, then,

for large sample size n, the standard normal approximations to the

probabilities P(W+ � w+) and P(W+ � w+)when η ¼ η0 are given by
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P Wþ � wþ� 	 � P Z � wþ � n nþ1ð Þ
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n nþ1ð Þ 2nþ1ð Þ
24

q
0B@

1CA ð7:29Þ

and

P Wþ � wþ� 	 � P Z � wþ � n nþ1ð Þ
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n nþ1ð Þ 2nþ1ð Þ
24

q
0B@

1CA, ð7:30Þ

respectively, where Z ~ N(0,1). Thus, for large sample size n, these standard

normal probabilities provide approximations for the P-value expressions

given in (7.13), (7.14), and (7.15). While these expressions are a bit compli-

cated, the argument exact can be specified to be FALSE in the R function

wilcox:testð Þ to compute the approximation directly from the sample data

and avoid doing the calculations by hand. (Note that the documentation of

wilcox:testð Þ indicates that if the exact argument is not specified and the

sample size is larger than n ¼ 50, the approximation will be used by default.)

We illustrate this large sample approximation for the PMN migration

data discussed in Example 7.5. There we found the observed value of W+

was w+ ¼ 33 and the exact P-value for sample size n ¼ 8 was P-value ¼ P(W+

� 33) ¼ .020. Using the large sample approximation in (7.29) we find

P Wþ � 33
� 	 � P Z � 33� 8 9ð Þ

4ffiffiffiffiffiffiffiffiffiffiffiffi
8 9ð Þ 17ð Þ

24

q
0B@

1CA ¼ P Z � 33� 18ffiffiffiffiffi
51

p
� �

¼ P Z � 2:10ð Þ ¼ :0179:

While this approximation is slightly smaller than the exact P-value, it is

remarkably close in view of the fact that the sample size of n ¼ 8 would

hardly be considered large. For sample sizes n � 25, the exact and approxi-

mate P-values will generally be in very close agreement.

In addition, the integers q in expressions (7.10) and (7.11) that lead to

confidence intervals and confidence bounds, respectively, for the population
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median η associated with the signed rank statistic W+ are, for large n,

approximated by the integers closest to the following expressions:

q � n nþ 1ð Þ
4

� z 1�CLð Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n nþ 1ð Þ 2nþ 1ð Þ

24

r
ð7:31Þ

and

q � n nþ 1ð Þ
4

� z 1�CLð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n nþ 1ð Þ 2nþ 1ð Þ

24

r
, ð7:32Þ

respectively, where z(1-CL)/2 and z(1-CL) are the ({1-CL}/2)th and (1-CL)th

percentiles for the standard normal distribution.

To illustrate this approximation, consider the lower confidence bound for

the median PMN migration rate for patients with acute pancreatitis, as

discussed in Example 7.3. There we found that w(4) ¼ 77.85 μm/35 min is

an exact 98% lower confidence bound for the median PMN migration rate.

For this example, we have n ¼ 8 and CL ¼ .98. The approximate value for

q given in (7.32) is

q � 8 9ð Þ
4

� z 1�:98ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 9ð Þ 17ð Þ

24

r
¼ 18� 2:055

ffiffiffiffiffi
51

p
¼ 3:324:

Since 3 is the integer closest to 3.324, the approximate 98% lower confidence

bound for the median PMNmigration rate corresponding to expression (7.32)

would be w(3) ¼ 75.50 μm/35 min. In view of the small sample size n ¼ 8, this

slight difference from the exact 98% lower confidence bound is not too bad. It

is generally the case that the exact and approximate confidence intervals and

bounds will be in relatively good agreement for sample sizes n � 25.

Large Sample Approximations for Inference about the Population Mean μ
Based on the t-statistic T. In Sect. 7.3 we discussed the fact that the variable

T (7.17) has a t-distribution with n-1 degrees of freedom, provided that the

random sample X1, ..., Xn is obtained from a N(μ, σ) population. We also
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pointed out that as the degrees of freedom, n-1, increases, the t(n-1) density

curve approaches that of the N(0, 1) distribution. This fact is a direct conse-

quence of yet another central limit theorem associated with the sample aver-

age, �X, and the fact that the population standard deviation, σ, is well

approximated by the sample standard deviation, S, for n large. However,

the central limit theorem for the sample average provides an additional bonus

that permits far wider applicability of the inference procedures associated

with the T statistic. Although the underlying population for the sample data is

required to be normal in order to use the t(n-1) density curve for the sampling

distribution of Twhen the sample size n is small, this is no longer the case for

large sample sizes; that is, the sampling distribution of T can be well

approximated by the standard normal distribution for ANY underlying dis-

tribution, as long as it satisfies the very mild condition that its standard

deviation, σ, is finite. This is, in fact, the case for most populations you are

likely to encounter in practical settings.

In particular, if t is the attained value of the test statistic T (7.21), then when

μ ¼ μ0 and the sample size n is large, central limit theorems for sample

averages provide the approximations

P T � tð Þ � P Z � tð Þ ð7:33Þ

and

P T � tð Þ � P Z � tð Þ, ð7:34Þ

where Z�N(0,1). Thus, for large sample size n, standard normal probabilities

can be used to provide approximations for the P-value expressions given in

(7.22), (7.23), and (7.24) even when the underlying population is not necessarily

normal. The accuracy of these approximations to the sampling distribution of

T depends on the nature of the underlying distribution fromwhich the sample

data arise, particularly how skewed it is and its probability of producing
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outliers. However, for most practical settings the standard normal

approximations in (7.33) and (7.34) are generally considered adequate for

sample sizes n � 30, unless the data collection is heavily skewed in one

direction or contains a number of unusually large and/or small observations.

In the latter settings, sample sizes of at least 50 may be necessary to assure

acceptable standard normal approximations.

Once again using the central limit theorem for a sample average,

an approximate 100CL% confidence interval for the population mean μ is

given by

�X � z 1�CLð Þ
2

Sffiffiffi
n

p ; �X þ z 1�CLð Þ
2

Sffiffiffi
n

p
� �

ð7:35Þ

and the corresponding approximate 100CL% lower and upper confidence

bounds for μ are �X � z1�CL
Sffiffiffi
n

p and �X þ z1�CL
Sffiffiffi
n

p , respectively. Moreover,

these large sample approximate confidence intervals and bounds no longer

require that the underlying population be normal.

We must keep in mind that all of these large sample approximate

inference procedures associated with T are based directly on the sample

mean, �X, and sample standard deviation, S. As these sample measures are

not resistant to outliers or asymmetry, caution is still the rule when applying

these approximate procedures based on Twhen the data are rather asymmet-

ric or involve a number of outliers. In other words, even with large sample

sizes the primary issue remains to select a set of inference procedures which

best address the population measure of center (mean or median) that is of

most interest in a study. In other words, even though central limit theorems

for sample averages guarantee that these large sample approximate

procedures based on T CAN be used to analyze such data, there is no

corresponding guarantee that they will provide effective inferences (i. e.,

short confidence intervals, small P-values, etc.). Thus, even in the case of a
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large sample size, inferences associated with either the sign statistic B or the

signed rank statistic W+ are generally preferred to those based on T when a

data collection is strongly asymmetric or contains a considerable number of

outliers. For more on such comparisons between procedures based on B, W+,

and T, see Hollander, Wolfe, and Chicken (2014), for example.

Section 7.5. Practice Exercises

7.5.1. Let B (7.4) be the sign statistic. When the null hypothesis H0: [η ¼ η0]

is true, the exact sampling distribution of B is Binom(n, .5). We have also seen

in this section that the sampling distribution of the standardized statistic

B∗ ¼ B� n
2ffiffi

n
4

p
can be approximated by the standard normal distribution when the number

of observations n is large. To evaluate the accuracy of this normal approxima-

tion as a function of the sample size n, compute the following null hypothesis

probabilities using both the exact binomial sampling distribution and the

prescribed normal approximation:

(a) n ¼ 10, P(B � 8), P(B � 8), P(B � 2)

(b) n ¼ 15, P(B � 11), P(B � 4), P(B � 2)

(c) n ¼ 20, P(B � 14), P(B � 1), P(B � 7)

(d) n ¼ 25, P(B � 13), P(B � 5), P(B � 20)

(e) n ¼ 30, P(B � 28), P(B � 2), P(B � 17).

7.5.2. Let W+ (7.12) be the signed rank statistic. When the null hypothesis

H0: [η ¼ η0] is true, the exact sampling distribution of W+ is provided by the

R function wilcox:testð Þ. We have also seen in this section that the sampling

distribution of the standardized statistic
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Wþ∗ ¼ Wþ � n nþ1ð Þ
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n nþ1ð Þ 2nþ1ð Þ
24

q
can be approximated by the standard normal distribution when the number

of observations n is large. To evaluate the accuracy of this normal approxima-

tion as a function of the sample size n, compute the following null hypothesis

probabilities using both the exact sampling distribution for W+ and the

prescribed normal approximation:

(a) n ¼ 10, P(W+ � 41), P(W+ � 8)

(b) n ¼ 15, P(W+ � 82), P(W+ � 35)

(c) n ¼ 20, P(W+ � 150), P(W+ � 70)

(d) n ¼ 25, P(W+ � 235), P(W+ � 109)

(e) n ¼ 30, P(W+ � 304), P(W+ � 151).

7.5.3. Let T be the test statistic given in (7.21). When the null hypothesis H0:

[μ ¼ μ0] is true, the exact sampling distribution of T for data arising from a

normal population is the t(n-1) distribution. We have also seen in this section

that the t(n-1) distribution can be approximated by the standard normal

distribution when the number of observations n is large. To evaluate the

accuracy of this normal approximation as a function of the sample size n,

compute the following null hypothesis probabilities using both the exact

t(n-1) distribution and the normal approximation:

(a) n ¼ 10, P(T � 2.262), P(T � -2.821)

(b) n ¼ 15, P(T � 1.761), P(T � -1.076)

(c) n ¼ 20, P(T � 2.539), P(T � -1.328)

(d) n ¼ 25, P(T � 2.172), P(T � -2.797)

(e) n ¼ 30, P(T � 2.045), P(T � -3.396).

7.5.4. Let X(1) � X(2) � . . . � X(15) be the order statistics for a random sample of

n¼ 15 from a population that satisfies the minimal assumption with median η.

(a) Find the integer j so that (X(j), X(n-j+1) ) is an exact 96.48%

confidence interval for η.
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(b) Evaluate the accuracy of the normal approximation for j given in

(7.27).

7.5.5. LetW(1) �W(2) � . . . �W(210) be theM ¼ 20 20þ1ð Þ
2 ¼ 210 ordered Walsh

averages for a random sample of size n ¼ 20 from a population that is

symmetric about its median η.

(a) Find the integer q so that (W(q),W(211-q)) is an exact 94.68% confidence

interval for η.

(b) Evaluate the accuracy of the normal approximation for q given in

(7.31).

7.5.6. Consider the random sample of n ¼ 50 observations given in Exer-

cise 7.3.8. Use the normal approximations discussed in this section to conduct

the following statistical analyses of these data under the assumption that the

underlying population from which these data were collected is normal with

mean μ.

(a) Find the approximate P-value for the appropriate statistical test

of the null hypothesis H0: μ ¼ 9 versus the one-sided alternative

HA: μ > 9.

(b) Find an approximate 97.5% lower confidence bound for μ.

7.5.7. Consider the random sample of n ¼ 50 observations given in Exercise

7.3.10. Use the normal approximations discussed in this section to conduct the

following statistical analyses of these data under the assumption that the

underlying population from which these data were collected is symmetric

about its median η.

(a) Find the approximate P-value for the appropriate statistical test of the

null hypothesis H0: η ¼ 3 versus the two-sided alternative HA: η 6¼ 3.

(b) Find an approximate 95% confidence interval for η.

7.5.8. Consider the random sample of n ¼ 100 observations given in

Exercise 7.3.11. Use the normal approximations discussed in this section to
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conduct the following statistical analyses of these data with only the minimal

assumption about the underlying population with median η fromwhich these

data were collected.

(a) Find the approximate P-value for the appropriate statistical test

of the null hypothesis H0: η ¼ 6 versus the one-sided alternative

HA: η < 6.

(b) Find an approximate 90% upper confidence bound for η.

7.5.9. Consider the random sample of n ¼ 100 observations given in

Exercise 7.3.9. Use the normal approximations discussed in this section to

conduct the following statistical analyses of these data under the assumption

that the underlying population from which these data were collected is

normal with mean μ.

(a) Find the approximate P-value for the appropriate statistical test

of the null hypothesis H0: μ ¼ 9 versus the one-sided alternative

HA: μ > 9.

(b) Find an approximate 97.5% upper confidence bound for μ.

7.5.10. Repeat Exercise 7.5.6 under the assumption that the underlying

population from which the data were collected is symmetric about its median

η, but that it is not necessarily normal. Compare your answers with those

obtained in Exercise 7.5.6.

7.5.11. Repeat Exercise 7.5.7 under the assumption that the underlying

population from which the data were collected is normal with mean (and

median) μ. Compare your answers with those obtained in Exercise 7.5.7.

7.5.12. Repeat Exercise 7.5.8 under the stronger assumption that the under-

lying population from which the data were collected is symmetric about its

median η. Compare your answers with those obtained in Exercise 7.5.8.

7.5.13. Repeat Exercise 7.5.8 under the most stringent assumption that the

underlying population from which the data were collected is normal with
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mean (and median) μ. Compare your answers with those obtained in

Exercises 7.5.8 and 7.5.12.

7.5.14. Repeat Exercise 7.5.9 with only the minimal assumption about the

underlying population with median η from which the data were collected.

Compare your answers with those obtained in Exercise 7.5.9.

7.6 Approximate Inference for the Median of an Arbitrary
Distribution – Bootstrapping the Sample Median

As we saw in Sect. 5.4, bootstrapping is a powerful tool that allows us to

approximate the distribution of an arbitrary statistic using only a representa-

tive sample from a population. Using the R dataset pennies_age and various

sample sizes, we investigated the approximate sampling distribution of the

mean and median age of pennies. Now, we extend these ideas to demonstrate

an alternative (and often more intuitive than those discussed previously in

this chapter) approach to inference for the population median η.

To conduct hypothesis tests or construct confidence intervals, we need

some way to obtain the standard error of our estimate. Bootstrapping allows

us to approximate this standard error by simulation (as opposed to repeating

the original sampling process many more times, which would typically be

very costly!).

Given the original sample of size n from a population, we draw (with

replacement) a subsample of size n from this sample. This procedure is then

repeated r times to produce the bootstrap replicates. For each of these

replicates, we compute the median ~Xi (or any other arbitrary statistic of

interest) based on the subsampled values. From these r subsample medians

~X1, ~X2, . . . , ~Xr, we estimate the standard error of the replicate values. This

estimate can then be combined with the average of the subsampled medians

to provide inference about the population median.
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The bootstrap estimate of this standard error (or standard deviation of the

estimate) is given by

SEr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPr
i¼1

�
~Xi � ~X

	2
r� 1

vuuut
, ð7:36Þ

where ~X is simply the average of the r subsample medians ~X1, ~X2, . . . , ~Xr.

When the null hypothesis H0: [η ¼ η0] is true, the sampling distribution of

the standardized variable ~X
∗ ¼

~X � η0
SEr

can be approximated by a t-distribu-

tion with r - 1 degrees of freedom. In particular, if ~xobs is the attained

sample value of ~X , then the t-distribution can be used to approximate the

probabilities P
�
~X � ~xobs

	
and P

�
~X � ~xobs

	
when η ¼ η0. These approximate

probabilities are given by

P
�
~X � ~xobs

	 � P T � ~xobs � η0
SEr

� �
ð7:37Þ

and

P
�
~X � ~xobs

	 � P T � ~xobs � η0
SEr

� �
, ð7:38Þ

where T has a t-distribution with r – 1 degrees of freedom.

Similarly, approximate bootstrap confidence intervals for η can be

constructed at level CL using the upper (1-CL)/2 percentile of the relevant

t-distribution, similar to the construction of the interval for μ in (7.20). That

is, an approximate 100CL% confidence interval for η is provided by the

interval
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~X � tr�1, 1�CLð Þ
2

SEr; ~X þ tr�1, 1�CLð Þ
2

SEr

� �
, ð7:39Þ

where tr�1, 1�CLð Þ
2

is the upper 1�CL
2

� 	th percentile for the t-distribution with

r – 1 degrees of freedom.

Example 7.8. We return to the R dataset pennies_age examined in

Example 5.12 to create an approximate 90% confidence interval for η. We’ll

use the R functions replicateð Þ and sampleð Þ to generate the bootstrap samples

for the pennies_age data using r ¼ 10,000 replicates and store the subsample

medians as the variable pennies_bootstrap_replicates.

> pennies_bootstrap_replicates <-

replicate(median(sample(x = pennies_age,
size = length(pennies_age),
replace = TRUE)),

n = 10000)

From these subsample medians, we compute the average value and the

standard error, which we save as the variables pennies_bootstrap_average and

pennies_bootstrap_standard_error, respectively.

> pennies_bootstrap_average <- mean(pennies_bootstrap_replicates)

> pennies_bootstrap_standard_error <-
sqrt(

sum((pennies_bootstrap_replicates -
pennies_bootstrap_average)^2) / 

(length(pennies_bootstrap_replicates) - 1)
)

Finally, we define CL to be 0.90 and calculate the lower and upper

endpoints of the approximate 90% confidence interval to be 5.30 and 7.24.
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> CL <- 0.90

> pennies_bootstrap_average -

qt(p = (1-CL)/2,

df = length(pennies_age) - 1,

lower.tail = FALSE) * 

pennies_bootstrap_standard_error

[1] 5.300624

> pennies_bootstrap_average + 

qt(p = (1-CL)/2, 

df = length(pennies_age) - 1,

lower.tail = FALSE) * 

pennies_bootstrap_standard_error

[1] 7.239476

Note that a crucial assumption for the validity of the approximation when

we use bootstrapping is that the original sample used to construct the boot-

strap replicates is representative of the population. Implicitly, this means that

this base sample needs to be large enough to capture all of the important

features of the population. What is “large enough” will depend on how well

behaved the underlying population is.

Also, since this approximate inference assumes normality of the statistics

calculated from the subsamples, it is generally a good idea to check that the

distribution of these r sample values is roughly normal by using a histogram or

anyof the othermethods for assessingnormality thatwerepreviouslydiscussed.

When there is reason to question the normality assumption, we can

alternatively use the bootstrap samples to construct a nonparametric confi-

dence interval by selecting the r(1-CL)/2 smallest and r(1-CL)/2 largest values

of the subsample medians. The following commands will construct such an

interval for CL ¼ 0.90 based on the pennies_bootstrap_replicates vector previ-

ously obtained.

> index_of_value_to_select <-
(1 - CL) / 2 *
length(pennies_bootstrap_replicates)

> sort(pennies_bootstrap_replicates)[index_of_value_to_select]

[1] 5

> sort(pennies_bootstrap_replicates,

+      decreasing = TRUE)[index_of_value_to_select]
[1] 7
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Does it make sense that this interval is similar to but slightly wider than

the one constructed with the additional assumption of normality?

Section 7.6 Practice Exercises

7.6.1. Out of the three values {12, 17, 86} how many possible bootstrap

samples are there? List the possible replicates and the median value for each

of the possible replicates. In light of this, do you think that confidence

intervals constructed based on r¼100, r¼1000, and r¼10,000 replicates will

be very different? Why or why not?

7.6.2. Use the R functions replicateð Þ and sampleð Þ to construct a 95%

confidence interval for the median assessed value of homes in the R dataset

homes_prices. Using a number of replicates that you feel is appropriate, report

your individual sample median values and your confidence interval.

7.6.3. Repeat the construction of the 90% confidence interval from

Example 7.8 using 100 bootstrap samples instead of 10,000. Does this affect

your interval? Why or why not?

7.6.4. Use the R dataset body_temperature_and_heart_rate (see Exercise 5.B.14)

to simulate 500 bootstrap samples and construct a 95% confidence interval for

the median heart rate of the male subjects. Repeat this procedure for the

female subjects. Which interval is wider? Does there appear to be a difference

in the median heart rates between men and women?

7.6.5. Compare and contrast the 90% confidence intervals based on r¼1000

bootstrap samples using the normal method and the nonparametric method

for the median heart rate of the female subjects in the R dataset body_tempera-

ture_and_heart_rate. Which interval do you prefer?
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Chapter 7 Comprehensive Exercises

7.A. Conceptual

7.A.1. Consider a random sample of size n ¼ 5 from a population with

median η ¼ 0. If the value of the signed rank statistic for these data is W+ ¼
13, what are the possible values for the sign statistic B?

7.A.2. Consider a random sample of size n ¼ 8 from a population with

median η ¼ 0. If the value of the sign statistic for these data is B ¼ 3, what

are the possible values for the signed rank statistic W+?

7.A.3. Consider a random sample of size n ¼ 10 from a population

with median η ¼ 0. If the value of the signed rank statistic for these data

is W+ ¼ 9, what are the possible values for the sign statistic B?

7.A.4. Consider a random sample of size n ¼ 15 from a population with

median η¼ 0. If the value of the sign statistic for these data is B¼ 10, what are

the possible values for the signed rank statistic W+?

7.A.5. Construct a set of data for which the sign test rejectsH0: η¼ 0 in favor

of HA: η > 0 at significance level α ¼ .05 but the t-test does not reject H0 in

favor of HA.

7.A.6. Construct a set of data for which the signed rank test rejects

H0: η ¼ 0 in favor of HA: η > 0 at significance level α ¼ .05 but the t-test

does not reject H0 in favor of HA.

7.A.7. Construct a set of data for which the t-test rejects H0: η ¼ 0 in favor of

HA: η > 0 at significance level α ¼ .05 but the sign test does not reject H0 in

favor of HA.
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7.A.8. Construct a set of data for which the t-test rejects H0: η ¼ 0 in favor of

HA: η > 0 at significance level α ¼ .05 but the signed rank test does not reject

H0 in favor of HA.

7.A.9. Construct a set of data for which the signed rank test rejects

H0: η ¼ 0 in favor of HA: η > 0 at significance level α ¼ .05 but the sign test

does not reject H0 in favor of HA.

7.A.10. Construct a set of data for which the sign test rejects H0: η ¼ 0 in

favor ofHA: η> 0 at significance level α¼ .05 but the signed rank test does not

reject H0 in favor of HA.

7.A.11. Construct a set of data for which the t-test rejectsH0: η¼ 0 in favor of

HA: η > 0 at significance level α ¼ .05 but neither the sign test nor the signed

rank test rejects H0 in favor of HA.

7.A.12. Construct a set of data for which the sign test rejects H0: η ¼ 0 in

favor of HA: η > 0 at significance level α ¼ .05 but neither the t-test nor the

signed rank test rejects H0 in favor of HA.

7.A.13. Construct a set of data for which the signed rank test rejects

H0: η ¼ 0 in favor of HA: η > 0 at significance level α ¼ .05 but neither the

sign test nor the t-test rejects H0 in favor of HA.

7.A.14. How many possible values are there for the sign statistic B and

signed rank statistic W+ for a sample of 15 observations?

7.A.15. How many possible values are there for the sign statistic B for a

sample of 10 observations? How large would you have to increase the sample

size to double the number of possible values for B?

7.A.16. How many possible values are there for the signed rank statistic W+

for a sample of 10 observations? How large would you have to increase the

sample size to double the number of possible values for W+?
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7.A.17. Suppose we are interested in a 100CL% confidence interval for the

median of a population η based on a random sample of n ¼ 15 sample

observations. List the exact levels CL that are available if we base our

inferences on the sign statistic.

7.A.18. Suppose we are interested in a 100CL% confidence interval for the

median of a population η based on a random sample of n ¼ 15 sample

observations. List the exact levels CL that are available if we base our

inferences on the signed rank statistic.

7.A.19. Construct a set of sample observations for which the sample median,

~X, is positive, but the median of the Walsh averages, ~W , is negative.

7.A.20. Construct a set of sample observations for which the sample median,

~X, is negative, but the median of the Walsh averages, ~W , is positive.

7.A.21. Consider a sample of n ¼ 20 observations for which the observation

with the largest absolute value is positive. What is the minimum number of

Walsh averages that could be positive?

7.A.22. Consider a sample of n¼ 15 observations for which the observations

with the largest and second largest absolute values are both negative. What is

the maximum number of Walsh averages that could be positive?

7.A.23. Consider a sample of n ¼ 10 observations for which the observation

with the largest absolute value is positive and the observation with the second

largest absolute value is negative. What are the minimum and maximum

number of Walsh averages that could be positive?

7.B. Data Analysis/Computational

7.B.1. Diamonds. In the February 18, 2000 edition of Singapore’s Business

Times, an advertisement (as discussed in Chu, 2001) listed data (weight in
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carats, color purity, grade of clarity, certification body, and value in Singapore

dollars) for 308 round diamond stones. These data are provided in the dataset

diamonds_carats_color_cost. Viewing these data as a random sample of size n¼
308 from the population of all round diamond stones, complete the following

statistical analyses. Assume only the minimal assumption for the underlying

population with unknown median diamond size (in carats) η.

(a) Obtain a point estimate of η and find an approximate 94% confidence

interval for η.

(b) Find the P-value for a test of the null hypothesis H0: η ¼ 0.5 carats

versus the one-sided alternative HA: η > 0.5 carats.

7.B.2. Diamonds Round Two. Carry out the same statistical analyses pre-

scribed in Exercise 7.B.1, but now under the more stringent assumption that

the population of round diamond stone sizes is symmetrically distributed

about its unknown median size (in carats) η. Compare your findings

with those obtained under the minimal assumption of Exercise 7.B.1. Are

you comfortable with the assumption of distributional symmetry? Why or

why not?

7.B.3. Diamonds Round Three. Carry out the same statistical analyses pre-

scribed in Exercise 7.B.1, but now under the even more stringent assumption

that the population of round diamond stone sizes (in carats) is normal with

mean (and median) μ. Compare your findings with those obtained in

Exercises 7.B.1 and 7.B.2 under minimal and symmetry assumptions, respec-

tively. Are you comfortable with the assumption that the population of

sizes (in carats) for round diamond stones is normally distributed? Why or

why not?

7.B.4. HowMuch Do Euros Weigh? The Euro is the common currency coin for

the twenty-eight countries comprising the European Union. According to

information from the “National Bank of Belgium”, the 1 Euro coin is
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stipulated to weigh 7.5 grams. Shkedy et al. (2006) obtained eight separate

packages of 250 Euros each from a Belgian bank and their assistants Sofie

Bogaerts and Saskia Litière individually weighed each of these 2000 coins

using a weighing scale of the type Sartorius BP310, which provides an

accurate reading up to one thousandth of a gram. These two thousand

weights, indexed by package number, are provided in the dataset

weight_of_Euros. Using only the 250 coins from package number 1, conduct

the following analyses under the assumption that the population of Euro

weights is normally distributed with mean μ.

(a) Obtain a point estimate of μ and find an approximate 96% confidence

interval for μ.

(b) Find the P-value for a test of the null hypothesis H0: μ ¼ 7.5 grams

versus the one-sided alternative HA: μ > 7.5 grams.

7.B.5. How Much Do Euros Weigh—Again? Repeat the statistical analyses

from Exercise 7.B.4 using the 500 Euros obtained from combining packages

1 and 2. Compare and contrast the outcome of these two sets of statistical

analyses.

7.B.6. HowMuch Do Euros Weigh—Once More? Repeat the statistical analyses

from Exercise 7.B.4 using only the 250 Euros from package number 8. Com-

pare and contrast the results for package 1 versus the results for package 8.

7.B.7. Is 98.6 Degrees Fahrenheit Truly the Mean Body Temperature? It is a

widely held belief that the normal body temperature for humans is 98.6oF.

Mackowiak et al. (1992) provide a critical evaluation of this statement through

the collection of data from 148 individuals aged 18 through 40 years. The

dataset body_temperature_and_heart_rate contains body temperature and heart

rate values (artificially generated by Shoemaker, 1996, to closely recreate the

original data considered by Mackowiak et al.) for 65 male and 65 female

subjects. Conduct the following analyses under the assumption that the
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population of human body temperatures for healthy individuals is normally

distributed with mean μ.

(a) Obtain a point estimate of μ and find an approximate 94% upper

confidence interval for μ.

(b) Find the P-value for a test of the null hypothesis H0: μ¼ 98.6oF versus

the one-sided alternative HA: μ < 98.6oF.

(c) Carry out similar analyses separately for the 65 male and 65 female

subjects. Discuss the results.

7.B.8. House Sizes in North Carolina. The dataset house_lot_sizes contains the

information about house and lot sizes for a random sample of 100 properties

in Wake County, North Carolina, as collected by Woodard and Leone (2008).

Assume only the minimal assumption for the underlying population of house

sizes in Wake County, North Carolina with unknown median η.

(a) Obtain a point estimate of η.

(b) Find an approximate 96% confidence interval for η.

7.B.9. House Sizes in North Carolina Round Two. Carry out the same statistical

analyses prescribed in Exercise 7.B.8, but now under the more stringent

assumption that the population of house sizes in Wake County, North

Carolina is symmetrically distributed about its unknown median η.

Compare your findings with those obtained under the minimal assumption

of Exercise 7.B.8. Are you comfortable with the assumption of distributional

symmetry? Why or why not?

7.B.10. Lot Sizes in North Carolina. The dataset house_lot_sizes contains the

information about house and lot sizes for a random sample of 100 properties

in Wake County, North Carolina, as collected by Woodard and Leone (2008).

Assume only the minimal assumption for the population of lot sizes in Wake

County, North Carolina with unknown median η.

(a) Obtain a point estimate of η.

(b) Find an approximate 92% confidence interval for η.
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7.B.11. Lot Sizes in North Carolina Round Two. Carry out the same statistical

analyses prescribed in Exercise 7.B.10, but now under the more stringent

assumption that the population of lot sizes in Wake County, North Carolina

is normal with mean (and median) μ. Compare your findings with those

obtained in Exercises 7.B.10 under only the minimal assumption about the

population. Are you comfortable with the assumption that the population of

lot sizes is normally distributed? Why or why not?

7.B.12. Healthy Heart Rate. In Exercise 7.B.7 we discussed the dataset

body_temperature_and_heart_rate generated by Shoemaker (1996) for 65 healthy

female and 65 healthy male subjects. Conduct the following analyses under

the assumption that the population of human heart rates for healthy

individuals is normally distributed with mean μ.

(a) Obtain a point estimate of μ and find an approximate 95% confidence

interval for μ.

(b) Repeat the calculations in part (a) separately for the 65 male and

65 female subjects. Discuss the results.

7.B.13. Movie Ratings. TheMovie and Video Guide is a ratings and information

guide to movies prepared annually by Leonard Maltin. Moore (2006) selected

a random sample of 100 movies from the 1996 edition of the Guide. He

compiled the dataset movie_facts containing relevant information about the

selected movies. One of the pieces of information provided is the rating that

Maltin gave to each of the movies on a rising (worst to best) scale of 1, 1.5,

2, 2.5, 3, 3.5, 4. Assume only the minimal assumption for the population of

moving ratings with unknown median η.

(a) Obtain a point estimate of η and find an approximate 90% confidence

interval for η.

(b) Find the P-value for a test of the null hypothesis H0: η¼ 2.5 versus the

one-sided alternative HA: η < 2.5.
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7.B.14. How Long Are Movies? The Movie and Video Guide is a ratings and

information guide to movies prepared annually by Leonard Maltin.

Moore (2006) selected a random sample of 100 movies from the 1996 edition

of the Guide. He compiled the dataset movie_facts containing relevant infor-

mation about the selected movies. One of the pieces of information provided

is the running length of the movies, in minutes. Conduct the following

analyses under the assumption that the running length of movies is normally

distributed with mean μ.

(a) Obtain a point estimate of μ and find an approximate 93% confidence

interval for μ.

(b) Find the P-value for a test of the null hypothesisH0: μ¼ 90 min versus

the one-sided alternative HA: μ > 90 min.

7.B.15. How Big Are Movies? The Movie and Video Guide is a ratings and

information guide to movies prepared annually by Leonard Maltin. Moore

(2006) selected a random sample of 100 movies from the 1996 edition of the

Guide. He compiled the dataset movie_facts containing relevant information

about the selected movies. One of the pieces of information provided is the

number of listed cast members in each movie. Conduct the following analyses

under the assumption that the population of number of cast members in a

movie is symmetrically distributed about its median η

(a) Obtain a point estimate of η and find an approximate 97% confidence

interval for η.

(b) Find the P-value for a test of the null hypothesis H0: η¼ 6.5 versus the

one-sided alternative HA: η > 6.5.

7.C. Activities

7.C.1. Coffee, Coffee, Coffee. How many cups of coffee does a typical college

student drink in a given day? Design a study to collect data to address this

question. Carry out an appropriate statistical analysis of your collected data.
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7.C.2. Beer, Beer, Beer. How many bottles of beer does a typical college

student drink in a given week? Design a study to collect data to address this

question. Carry out an appropriate statistical analysis of your collected data.

7.C.3. Sleep, Sleep, Sleep. How many hours of sleep does a typical college

student get during the “school nights” of Sunday through Thursday? Design

a study to collect data to address this question. Carry out an appropriate

statistical analysis of your collected data.

7.C.4. Sleep, Sleep, Sleep? How many hours of sleep does a typical college

student get during the weekend nights of Friday and Saturday? Design a

study to collect data to address this question. Carry out an appropriate

statistical analysis of your collected data. Compare your findings with those

you obtained for “school nights” in Exercise 7.C.3.

7.C.5. U.S. Pennies. How long do U.S. pennies remain in circulation? Design

a study to collect data to address this question. Carry out an appropriate

statistical analysis of your collected data. Does your result depend on where

the coins were minted (Denver or Philadelphia)?

7.C.6. U.S. Nickels.How long do U.S. nickels remain in circulation? Design a

study to collect data to address this question. Carry out an appropriate

statistical analysis of your collected data. Does your result depend on where

the coins were minted (Denver or Philadelphia)? Compare your findings with

those you obtained for U.S. pennies in Exercise 7.C.5.

7.C.7. Smart Phones. How much daily time do college students spend on

their smart phones? Design a study to collect data to address this question.

Carry out an appropriate statistical analysis of your collected data.

7.C.8. Exercise. How many hours per week do college students spend

exercising? Design a study to collect data to address this question. Carry out

an appropriate statistical analysis of your collected data.
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7.C.9. Coursework/Studying.Howmany hours per week (outside of the class-

room) do college students spend on coursework, including studying for

examinations? Design a study to collect data to address this question. Carry

out an appropriate statistical analysis of your collected data.

7.C.10. Solitary Time. How many hours per week (other than sleeping) do

college students spend without conversing with another person, either face to

face or through an electronic device? Design a study to collect data to address

this question. Carry out an appropriate statistical analysis of your collecteddata.

7.D. Internet Archives

7.D.1. Social Issues. Search the Internet to find a published research article

that uses data from a random sample to address a social issue of particular

interest to you. Discuss their statistical findings in the context of the

one-sample setting of Chap. 7.

7.D.2. Treating Disease. Search the Internet to find a published research

article that uses data from a random sample to address ways to treat a

potentially fatal disease. Discuss their statistical findings in the context of

the one-sample setting of Chap. 7.

7.D.3. Income Inequality. Search the Internet to find a published research

article that uses data from a random sample to address the issue of income

inequality in the United States. Discuss their statistical findings in the context

of the one-sample setting of Chap. 7.

7.D.4. Sports Injuries. Search the Internet to find a published research article

that uses data from a random sample to address the prevalence of youth

sports injuries. Discuss their statistical findings in the context of the

one-sample setting of Chap. 7.
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7.D.5. Student Loan Debt at Public Universities. Search the Internet to find a

published research article that uses data from a random sample to address the

issue of student loan debt for graduates of public universities. Discuss their

statistical findings in the context of the one-sample setting of Chap. 7.

7.D.6. Student Loan Debt at Private Universities. Search the Internet to find a

published research article that uses data from a random sample to address the

issue of student loan debt for graduates of private universities. Discuss their

statistical findings in the context of the one-sample setting of Chap. 7 and

compare the findings with those in Exercise 7.D.5.

7.D.7. Global Warming. Search the Internet to find a published article that

uses data to address an issue related to global warming. Discuss their statisti-

cal findings in the context of the one-sample setting of Chap. 7.

7.D.8. Trans Fat. Search the Internet to find a published article that uses data

to address the health impact of trans fat in our diets. Discuss their statistical

findings in the context of the one-sample setting of Chap. 7.

7.D.9. Fracking. Search the Internet to find a published article that uses

sample data to address the impact of fracking on society. Discuss their

statistical findings in the context of the one-sample setting of Chap. 7.

7.D.10. Toxic Algae Bloom. Search the Internet to find a published article that

uses sample data to address the causes of toxic algae blooms in a water

system. Discuss their statistical findings in the context of the one-sample

setting of Chap. 7.
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Statistical Inference for Matched Pairs
or Paired Replicates Data 8

In many experimental situations it is of interest to assess how a set of

circumstances or a treatment affects a population of subjects. In such studies

it is important that we take care to control as much as possible for any

additional circumstances or characteristics other than those under investiga-

tion that might also affect the outcome of the measurements to be collected.

For example, gender and age would be important factors to take into account

when evaluating the effect of a medication to treat high blood pressure.

Similarly, environmental living conditions would be an important factor to

consider when comparing subjects with a respiratory disease. Two commonly

used approaches to facilitate experimental control of possible confounding

factors are provided by the experimental research designs known as matched

pairs and paired replicates.

In a matched pairs design, pairs of subjects from the population of interest

are formed so that members of a given pair are similar with respect to one or

more characteristics that might potentially affect the measurement to be
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investigated in the study. Such pairing characteristics could be routine physi-

ological traits such as weight, age, or extent of regular exercise or they could

be directly related to the treatment of interest, such as smoking habits, the

severity of a medical condition, or genetic linkage (e.g., siblings).

Comparisons of the measurement of interest are then made within each pair

of subjects.

For a paired replicates study, subjects serve as their own controls in

providing baseline measurements prior to being exposed to the experimental

set of circumstances or treatment and then they are measured once again after

such exposure. Differences between the pre- and post-observations are then

used to assess the effect of the treatment on the sample subjects.

Matched pairs or paired replicate designs are certainly among the most

commonly used experimental designs. Such designs would be appropriate,

for example, for answering such questions as:

1. Is glaucoma (or the tendency for it) a genetically inherited disease? Here

we would use a matched pairs design with genetic linkage (e. g., twins

or at least siblings) being the factor that matches the pairs.

2. Does aspirin increase the time it takes for a person’s blood to clot? Here

it is natural to use a paired replicates design with pre-aspirin and post-

aspirin blood-clotting times as the sample measurements.

3. Will an experimental medication for high blood pressure have the

desired effect to lower the blood pressure? Here it might be advisable

to use aspects of both the matched pairs and paired replicates designs.

Study subjects would first be matched with respect to the severity of

their high blood pressure and then within the sets of matched pairs (i.e.,

common severity of high blood pressure), the subjects would serve as

their own controls for the purpose of baseline blood pressure

measurements.
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As is the case for the one-sample data discussed in Chap. 7, the particular

inference techniques that are best for analyzing matched pairs or paired

replicates data can depend on what we know (or can reasonably assume)

about the population distribution of matched pairs or paired replicate

measurements.

General Setting and Notation Let (X1, Y1), . . ., (Xn, Yn) denote the items of a

random sample of n matched pairs or paired replicates. The information

about the additive effect of the experimental conditions or treatment is then

contained in the differences Di ¼ Yi � Xi, i ¼ 1, . . ., n, and we are interested in

making inferences about the center of the distribution for the population of

these differences. As is the case for the one-sample setting discussed in

Chap. 7, the information about the center for the distribution of the differences

can sometimes be represented best by its mean, μD, and sometimes best by its

median, ηD, depending on the form of the probability distribution for the

differences.

In Chap. 7 we discussed statistical procedures that are appropriate under a

variety of circumstances for making inferences about the distribution of a

single quantitative variable. Since the difference D ¼ Y � X is itself such a

quantitative variable, it should be no surprise that any of the statistical

procedures discussed in Chap. 7 can be applied under the proper conditions

to the sample differencesD1, . . .,Dn to make inferences about the center of the

difference distribution. Thus, for example, if X represents the radioactivity

level in a toxic waste dump before treatment with a biological agent designed

to reduce the radioactivity and Y represents the level after treatment with the

agent, we can assess the effectiveness of the treatment by analyzing a collec-

tion of differences Di ¼ Yi �Xi, i ¼ 1, . . ., n, for samples taken before and after

administering the agent.
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8.1 Inference for Continuous Paired Replicates or Matched
Pairs Data

In Chap. 7 we considered three different sets of distributional

assumptions, namely, the minimal assumption that the population median

is not a possible value for the variable of interest, the more restrictive assump-

tion that the variable is continuous and that its distribution is symmetric

about its median, and the most restrictive assumption that the variable is

normally distributed.

When we have data that are differences of continuous paired replicates or

matched paired variables, the symmetry of the underlying distribution for

these differences is inherently satisfied in most situations. In particular, if a

pair of variables (X, Y) are such thatX and Y arise from populations that differ

only in their centers, then the difference D ¼ Y � X will have a probability

distribution that is symmetric about the median of the difference, ηD. Since

this condition is quite natural for most paired replicates or matched pairs

data, we can restrict our consideration to the inference procedures associated

with the signed rank statistic or t-statistic discussed in Chap. 7 and applied

here to the differencesD1, . . .,Dn. As is the case for the one-sample setting, the

choice between the use of signed rank or t procedures will depend on the

reasonableness of the assumption of normality for the distribution of the

differences and the sample size n. If the distribution of the differences can

be appropriately represented by a normal distribution, inferences associated

with the appropriate t-procedures are preferred, nomatter what the size of the

sample. If the sample size is small and the distribution of the D differences is

not reasonably represented by a normal distribution, inferences associated

with the signed rank statistic are the only appropriate choices.

If the sample size is large, the choice is a bit less clear. In such a setting, the

approximate procedures associated with either the signed rank statistic or the

t-statistic (discussed in Sect. 7.5 for the one-sample setting) can be applied to
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make inferences about the center of the distribution of the D differences.

Which of these approaches is preferred for a given set of differences depends

primarily on the extent of the non-normality (e. g., presence of outliers or

skewness) exhibited by the collected sample data. The greater this

non-normality for the difference distribution, the more appropriate it is to

use the signed rank procedures rather than the t-procedures to make

inferences about the center of the distribution even if the sample size is large.

Since computational details of the signed rank and t-procedures are

provided in Chap. 7, we simply illustrate the application of these procedures

to differences obtained from paired replicates and matched pairs experiments

via a pair of examples.

Example 8.1. What Effect Does Nest-Sharing Have on the Hatching

of Wood Duck Eggs? Dump nesting is an approach often utilized by wild

ducks to accommodate for a scarcity of suitable nesting sites in a habitat.

Dump nesting is where two or more duck hens lay their eggs in a common

nest or nest box, but where the incubation of the eggs is generally the assumed

responsibility of a single female duck. In an effort to assess the effect that

dump nesting might have on the hatching success of the eggs, Clawson et al.

(1979) collected data for the wood duck population on the Duck Creek

Wildlife Management Area in southeastern Missouri. The primary observa-

tion site was a man-made reservoir of 718 ha (hectares) where 71–118 nest

boxes were available during the 9 years of the study from 1966–1974. Based

on periodic checks of the nest boxes, the authors’ research team gathered data

on the numbers of eggs in both the dump nests and normal nests (i.e., nests

with eggs from a single female wood duck) and the percentages of eggs that

eventually hatched for those nests that were successful (i.e., nests in which at

least one egg hatched). The data in Table 8.1 represent these hatching

percentages for successful nests over the 9-year period of the study.
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Since environmental conditions could have a significant effect on both the

usage and effectiveness of dump nesting, it is important to compare the

outcomes for normal and dump nests under the same set of environmental

conditions. As a result, we will compare the percentage-hatched figure for

dump nests in any given year only with the percentage-hatched figure for

normal nests in the same year (i.e., under the same environmental conditions).

Thus the data in Table 8.1 represent a sample of size n¼ 9 matched pairs data

(X1, Y1) ¼ (80.85, 82.66), . . ., (X9, Y9) ¼ (69.31, 69.80), where we have arbi-

trarily chosen to label the dump nest percentages as X’s and the normal nest

percentages as Y’s.

With these labels, the differences Di ¼ Yi � Xi, i ¼ 1, . . ., 9, for the nine

years are found to be:

D1 ¼ 82.66 � 80.85 ¼ 1.81, D2 ¼ 80.96 � 82.82 ¼ �1.86,
D3 ¼ 73.42 � 58.10 ¼ 15.32, D4 ¼ 70.73 � 56.68 ¼ 14.05,
D5 ¼ 63.50 � 55.29 ¼ 8.21, D6 ¼ 74.27 � 58.49 ¼ 15.78,
D7 ¼ 85.97 � 70.75 ¼ 15.22, D8 ¼ 81.64 � 68.55 ¼ 13.09,

D9 ¼ 69.80 � 69.31 ¼ 0.49.

Table 8.1 Percentages of hatched eggs from successful dump and normal
wood duck nests on a portion of the Duck Creek Wildlife Management
Area in Missouri for the period 1966–1974

Percentage hatched ¼ (Number hatched eggs/Number eggs)

Year Normal nests (Y) Dump nests (X)

1966 267/323 ¼ 82.66% 76/94 ¼ 80.85%
1967 553/683 ¼ 80.96% 135/163 ¼ 82.82%
1968 268/365 ¼ 73.42% 556/957 ¼ 58.10%
1969 58/82 ¼ 70.73% 607/1071 ¼ 56.68%
1970 87/137 ¼ 63.50% 596/1078 ¼ 55.29%
1971 228/307 ¼ 74.27% 365/624 ¼ 58.49%
1972 190/221 ¼ 85.97% 358/506 ¼ 70.75%
1973 329/403 ¼ 81.64% 656/957 ¼ 68.55%
1974 141/202 ¼ 69.80% 847/1222 ¼ 69.31%

Source: Clawson et al. (1979)
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Since the difference �1.86 gives the appearance of a possible outlier, we

choose to apply the signed rank procedures to analyze these differences.

Using the R function walshð Þ on the dataset percentage_hatched_eggs, we

obtain the M ¼ 9(10)/2 ¼ 45 ordered Walsh averages for these n ¼ 9

differences presented in Table 8.2 as follows.

> #Obtain the differences
> differences = percentage_hatched_eggs$normal_nests-
percentage_hatched_eggs$dump_nests

> #Get the Walsh averages for the differences
> walsh_averages = walsh(differences)

> #Sort the Walsh averages, as in Table 8.2
> sort(walsh_averages)

The point estimate of the median, ηD, for theD differences is the median of

the Walsh averages, corresponding to the unique middle ordered Walsh

average, ~w ¼ w 23ð Þ ¼ 8:515%: You can obtain this value using the R function

medianð Þ with the following command.

> median(walsh_averages)
[1] 8.515

We now show how to find a 90.2% confidence interval for ηD. First, why

not choose a “nicer” number such as 90% or 91%? Using the R function

psignrankð Þ, we see that these confidence levels are not available for the

Wilcoxon signed rank statistic based on n ¼ 9 matched pairs.

Table 8.2 Ordered Walsh averages of the differences for the percentage
hatched data in Table 8.1

�1.860 4.350 6.960 8.210 11.765 14.435 15.500
�0.685 5.010 7.270 8.515 11.995 14.635 15.550
�0.025 5.615 7.450 8.565 13.090 14.685 15.780
0.490 6.095 7.855 8.795 13.570 14.915
1.150 6.680 7.905 10.650 14.050 15.220
1.810 6.730 7.930 11.130 14.155 15.270
3.175 6.790 8.135 11.715 14.205 15.320
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> psignrank(7:10 , 9)
[1] 0.03710938 0.04882812 0.06445312 0.08203125

The R output here tells us that, rounded to two decimal places,

P(W� 7)¼ 0.037, P(W� 8)¼ 0.049, P(W� 9)¼ 0.064, and P(W� 10)¼ 0.082.

That is, we could choose (among many other possibilities) to construct 1 –

2 � 0.037 ¼ 92.6%, 1 – 2 � 0.049 ¼ 90.2%, 1 – 2 � 0.064 ¼ 87.2%, or 1 –

2 � 0.082 ¼ 83.6% confidence intervals. Alternatively, we can used the

R function qsignrankð Þ to find q.

> qsignrank(0.049 , 9)
[1] 9

Hence the endpoints of the exact 90.2% confidence interval for ηD correspond

to the 9th smallest and 9th largest ordered Walsh average, namely,

w 9ð Þ;w 37ð Þ
� � ¼ (5.010, 14.635). Thus we are 90.2% confident that the median

hatching percentage from normal nests is somewhere between 5.010 and

14.635% higher than that for dump nests under similar environmental

conditions, as accounted for by the use of matched pairs within years. We

point out that you can obtain these estimation results using the R function

wilcox:testð Þ as well. Note that we specify the conf.int and conf.level arguments

to indicate that we would like the 90.2% confidence interval included in the

R output.

> wilcox.test(differences, conf.int = TRUE, conf.level = 0.902)

Wilcoxon signed rank test

data:  differences
V = 42, p-value = 0.01953
alternative hypothesis: true location is not equal to 0
90.2 percent confidence interval:

5.010 14.635
sample estimates:
(pseudo)median 

8.515 

The natural null hypothesis of interest for the data in Table 8.1 is that of no

difference in percentage hatched between normal and dump nests,

corresponding to ηD ¼ 0. Applying the computational approach illustrated

in Table 7.4 with η0 ¼ 0 to the percentage-hatched differences D1, . . ., D9, we

obtain the value of the signed rank statistic for these differences to be w+
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¼ [2 + 8 + 6 + 4 + 9 + 7 + 5 + 1]¼ 42. Hence, from (7.15) the P-value for a test of

H0: ηD ¼ 0 versus the two-sided alternative HA: ηD 6¼ 0 is given by

P-value ¼ 2�minimum P Wþ � 42jη ¼ 0
� �

;P Wþ � 42jη ¼ 0
� �� �

,

whichwe can obtain via theR functionpsignrankð Þ. Since P(W+� 42 | η¼ 0)¼
P(W+ > 41 | η ¼ 0), we use the following command (with the lower.tail

argument specified to be FALSE since we want an upper tail probability) to

obtain P(W+ > 41 | η ¼ 0).

> psignrank(41, 9, lower.tail = FALSE)
[1] 0.009765625

Multiplying this number by 2 gives us the P-value of 0.195 (rounded to

3 places).

Thus we would reject H0: ηD ¼ 0 in favor of the two-sided alternative HA:

ηD 6¼ 0 for any significance level greater than or equal to .0195, suggesting that

there is rather strong sample evidence that there is a difference between

normal and dump nesting in the median percentages of eggs hatched. As

noted in Chap. 7, we can also use the R function wilcox:testð Þ to obtain the

approximate P-value for this hypothesis test by specifying the exact argument

to be FALSE.

> wilcox.test(percentage_hatched_eggs$normal_nests -
percentage_hatched_eggs$dump_nests,
alternative = 'two.sided',exact=FALSE)

Wilcoxon signed rank test with continuity correction

data:  percentage_hatched_eggs$normal_nests -
percentage_hatched_eggs$dump_nests
V = 42, p-value = 0.02439
alternative hypothesis: true location is not equal to 0

Example 8.2. Will Treatment with Desimipramine, in Conjunction

with Psychotherapy, Help with Weight Gain for Subjects with Anorexia

Nervosa? Anorexia nervosa is a psychosomatic disorder typified by self-

starvation, with substantial weight loss involving more than twenty-five

percent of body weight being its chief physical symptom. It occurs most
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often among adolescent females from middle and upper-middle class

families. Patients with anorexia nervosa are generally treated with a combi-

nation of psychotherapy and pharmacotherapy (i.e., medication). Brambilla

et al. (1985) studied the effect of treatment with the medication desimipramine

in conjunction with psychotherapy on the weight gain of subjects with

anorexia nervosa.

Twelve female patients, ranging in age from 15 through 40 years,

participated in the study. In conjunction with psychotherapy, desimipramine

was given orally, three times a day for 30 days. For the first 15 days, the

dosage for a patient was 1.5 mg per kg of body weight. For the remaining

15 days, the dosage was 2.0 mg per kg of body weight. Blood levels of

desimipramine were monitored periodically to ensure that the drug had

been administered properly.

The body weight (in kg) for each patient in the study was recorded prior to

the beginning of the desimipramine administration (i.e., pre-treatment) and

then again after the last dose of desimipramine had been given (i.e., post-

Table 8.3 Body weight (in kg) for patients with
anorexia nervosa prior to and after desimipramine
treatment in conjunction with psychotherapy

Patient Pre-desimipramine Post-desimipramine

1 37.0 39.0
2 46.0 47.0
3 35.0 34.6
4 39.8 42.0
5 41.6 43.9
6 30.0 30.5
7 39.0 40.0
8 47.5 51.0
9 40.0 40.5
10 47.5 49.0
11 42.0 42.5
12 35.0 34.0

Source: Brambilla et al. (1985)
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treatment). The data in Table 8.3 represent these pre-treatment and post-

treatment body weights for the twelve participants in the study.

Since both the pre-desimipramine and post-desimipramine observations

are collected on the same subjects, the data in Table 8.3 represent paired

replicates data. The sample size is n ¼ 12 and the data pairs are

(X1, Y1) ¼ (37.0, 39.0), . . ., (X12, Y12) ¼ (35.0, 34.0), where we have chosen to

label the pre-desimipramine weights as X’s and the post-desimipramine

weights as Y’s. With these labels, the twelve differences Di ¼ Yi � Xi, i ¼ 1,

. . ., 12, are given by:

D1 ¼ 39.0 � 37.0 ¼ 2.0, D2 ¼ 47.0 � 46.0 ¼ 1.0,
D3 ¼ 34.6 � 35.0 ¼ �0.4, D4 ¼ 42.0 � 39.8 ¼ 2.2,
D5 ¼ 43.9 � 41.6 ¼ 2.3, D6 ¼ 30.5 � 30.0 ¼ 0.5,
D7 ¼ 40.0 � 39.0 ¼ 1.0, D8 ¼ 51.0 � 47.5 ¼ 3.5,
D9 ¼ 40.5 � 40.0 ¼ 0.5, D10 ¼ 49.0 � 47.5 ¼ 1.5,
D11 ¼ 42.5 � 42.0 ¼ 0.5, D12 ¼ 34.0 � 35.0 ¼ �1.0.

As there are no apparent indications of non-normality in these differences,

we will use the appropriate t-procedures to analyze the data. The mean and

standard deviation of the observed sample differences d1, . . ., d12 are �d ¼ 1:133

and sd ¼ 1.248, respectively. We estimate the mean weight change effect, μD,

of the combination desimipramine with psychotherapy treatment to be �d ¼
1:133kilograms. To construct a 95% confidence interval for μD, we first use the

R function qtð Þ to obtain the upper .025 percentile for the t-distribution with

n – 1 ¼ 11 degrees of freedom, namely, t11, .025 ¼ 2.201.

> qt(.025, 11, lower.tail = FALSE)
[1] 2.200985

Then the 95% confidence interval for μD is given by
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�d� t11, :025
sdffiffiffiffiffi
12

p ¼ 1:133� 2:201
1:248ffiffiffiffiffi

12
p

� �

¼ 1:133� 0:793 ¼ 0:34; 1:926ð Þ kilograms:

(Note that if we had decided instead to take the pre-desimipramine weights to

be the Y’s and the post-desimipramine weights to be the X’s, then the

resulting 95% confidence interval for the associated μD based on the pre-

minus post- desimipramine differences would be (�1.926, �0.34) kilograms.

Does this make intuitive sense?)

The natural null hypothesis here is that of no effect on body weight from

the combination desimipramine with psychotherapy treatment,

corresponding to μD ¼ 0, and the alternative of interest is μD > 0,

corresponding to a positive (i.e., increased body weight) effect from the

regime. We compute

t∗obs ¼
�d� 0

sd=
ffiffiffiffiffi
12

p ¼ 1:133

1:248=
ffiffiffiffiffi
12

p� � ¼ 3:14:

You can use the R function t:testð Þ to obtain the P-value of 0.0047 for the

dataset desimipramine using the following command and output.

> t.test(desimipramine$'Post-Desimipramine',
+        desimipramine$'Pre-Desimipramine',
+        paired = TRUE,
+        alternative = 'greater')

Paired t-test

data:  desimipramine$"Post-Desimipramine" and desimipramine$"Pre-
Desimipramine"
t = 3.1464, df = 11, p-value = 0.004651
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
0.4864471       Inf

sample estimates:
mean of the differences 

1.133333 

Thus there is clearly sample evidence to indicate that the combination

desimipramine with psychotherapy treatment does have the positive effect

of increasing the average body weight for patients with anorexia nervosa.

(As illustrated in Chap. 7, R can also be used to obtain both the 95%
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confidence interval for μD and the P-value for this hypothesis test from the

observed differences d1, . . ., d12.)

Notice that in both Examples 8.1 and 8.2 the null hypothesis is H0: μD ¼ 0,

corresponding to no effect from the experimental sets of circumstances or

treatments. While this is by far the most commonly tested null hypothesis for

these matched pairs or paired replicates settings, we can just as easily use the

signed rank or t-test procedures of Chap. 7 to test for nonzero effects of a

specific magnitude for the differences D1, . . ., Dn, if that is more appropriate

for the problem of interest. (See also Exercises 8.A.6 and 8.B.3.)

Section 8.1 Practice Exercises

8.1.1. Let (X1, Y1)¼ (2.3, 4.5), (X2, Y2)¼ (6.5, 9.7), (X3, Y3)¼ (�3.4,�2.2), (X4,

Y4) ¼ (5.0, 5.5), (X5, Y5) ¼ (4.8, 5.2), (X6, Y6) ¼ (�1.9, 1.3), (X7, Y7) ¼ (6.7, 5.6),

(X8, Y8) ¼ (10.5, 8.9), (X9, Y9) ¼ (2.2, 3.3), and (X10, Y10) ¼ (9.9, 11.2) be the

observed values for a sample of n ¼ 10 paired replicates data.

(a) Compute the sample averages, �X and �Y, for the X and Y values.

(b) Compute the sample variances, S2x and S2y, for the X and Y values.

(c) Compute the ten differences Di ¼ Yi � Xi, i ¼ 1, . . ., 10.

(d) Compute the average, �D, and variance, S2d, for the differences in

part (c).

(e) Compare �D with �Y� �X and S2d with S2x þ S2y. In order to apply any of

the t-procedures to these paired replicates data, is it actually neces-

sary for us to compute the ten differences D1, . . ., D10? Why or why

not?

8.1.2. Bison and Species Diversity. Land-use change, among other factors, has

led to a serious decline in species diversity in the planet’s ecosystems. This has

led to an urgent need to provide ecological mechanisms to restore or at least

maintain biodiversity. Collins et al. (1998) conducted two long-term field
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experiments in native grassland to assess the affects of a number of factors,

including fire, nitrogen addition, and grazing or mowing, on plant species

diversity. The data in Table 8.4 are the total numbers of plant species observed

on 16 pairs of 50-m2 matched plots of grassland on the Konza Prairie in

Kansas. For each matched pair of land plots, one of the plots was subjected

to some form of burning only. The second plot in that pair was subjected to

the same burning scheme, but grazing by bison (Bos bison) was permitted

following the burning.

(a) Find the P-value for a test of the conjecture that permitting bison to

graze after burning grassland leads to an increase in the number of

plant species over simply burning the grassland. What is your con-

clusion at significance level .025?

Table 8.4 Total number of plant species on
sixteen pairs of 50-m2 matched plots of grass-
land on the Konza Prairie

Plot
pair

Burned
only

Burned with
Bison Grazing

1 31 41
2 30 53
3 36 59
4 48 69
5 35 36
6 37 54
7 40 66
8 49 76
9 30 54
10 32 60
11 33 71
12 36 81
13 32 49
14 33 52
15 43 64
16 47 89

Source: Collins et al. (1998)
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(b) Find a lower confidence bound for the median change in the number

of plant species as a result of permitting bison to graze after burning

grassland. Select your own reasonable confidence coefficient.

8.1.3. Dilemma Zones and High Speed Accidents. A “dilemma zone” is defined

to be a section of roadway immediately in advance of a signalized intersection

where a driver upon receiving a yellow light must decide whether to brake to a

stop or accelerate to clear the intersection before a red light is displayed. Such

dilemma zones are particularly critical for truck drivers traveling at high

speeds, since semi-trucks take longer to come to a complete stop than the

typical family car. “Prepare to Stop When Flashing” signs are erected on

freeways and expressways in advance of signalized intersections where stan-

dard traffic control devices have failed to solve critical accident problems

associated with a “dilemma zone”. In order to determine the effectiveness of

these signs, the Ohio Department of Transportation selected four dilemma

zones involving high speed approaches (55 mph zones) for study. The number

of accidents at each of these four dilemma zones was recorded at four different

times of the year prior to erection of “Prepare to StopWhen Flashing” signs and

then during the same time periods during the following year after erection of

the signs. (Since the signs were only erected for one or two of the approaches at

these locations, the only accidents used in the evaluation were those that

involved vehicles on one of the approaches with such a sign.) The numbers of

accidents per million vehicles for these dilemma zones with and without the

warning signs for the different times of year are reported in Table 8.5.

(a) Find the P-value for a test of the conjecture that erection of the

“Prepare to StopWhen Flashing” signs has a positive effect (i.e., leads

to a decrease in traffic accidents per vehicle miles) at high speed

dilemma zones. What is your conclusion at significance level .075?

(b) Find a confidence interval for the median change in traffic accidents

per vehicle miles at high speed dilemma zones that results from
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erecting the “Prepare to Stop When Flashing” signs. Select your own

reasonable confidence coefficient.

8.1.4. Percentage Hatched Eggs. Consider the percentage hatched eggs data in

Table 8.1. In Example 8.1 we used signed rank procedures to analyze this data

collection. Carry out similar analyses using the t-procedures under the

assumption of normality. Compare and contrast the two sets of results.

8.1.5. Weight Gain for Anorexia Nervosa Subjects. Consider the desimipramine

treatment data in Table 8.2. In Example 8.2 we assumed normality and used t-

procedures to analyze this data collection. Carry out similar analyses using

the signed rank procedures without the assumption of normality. Compare

and contrast the two sets of results.

Table 8.5 Number of traffic accidents per million vehicles for high speed
approach dilemma zones with and without “Prepare to Stop When Flash-
ing” signs at four different times of the year

Number of accidents per million vehicle miles

Site-time Without signs With signs

Site 1 – Mar–May 2.144 0
Site 1 – June–Aug 3.574 0.715
Site 1 – Sept–Nov 2.144 2.144
Site 1 – Dec–Feb 1.430 0.715
Site 2 – Mar–May 2.144 0
Site 2 – June–Aug 1.430 0
Site 2 – Sept–Nov 0.715 0
Site 2 – Dec–Feb 0 0
Site 3 – Mar–May 0.858 0
Site 3 – June–Aug 0 0
Site 3 – Sept–Nov 0 0.858
Site 3 – Dec–Feb 0 0
Site 4 – Mar–May 0.858 0.858
Site 4 – June–Aug 0.858 1.716
Site 4 – Sept–Nov 0 0.858
Site 4 – Dec–Feb 0 0.858

Source: Ohio Department of Transportation (1980)
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8.2 Inference for Qualitative Differences—Data from Paired
Replicates or Matched Pairs Experiments

The discussion in Sect. 8.1 centered on continuous paired replicates or

matched pairs data. While this is certainly the most common form for such

data, there are also situations where the information collected from a paired

replicates/matched pairs experiment is purely qualitative in nature. For exam-

ple, a random sample of subjects might assess which of two competing

products they prefer based on data collected from trial uses of the products.

In a similar vein, a participant in amedical studymight simply report whether

they considered that a prescribed treatment had improved their medical

condition (or an impartial medical observer might provide her/his profes-

sional opinion about such improvement), without a numerical quantity being

assigned to the degree of improvement. While there is clearly no information

provided by such qualitative data for estimation (either point or interval) of a

quantitative median effect, it is still natural to wish to test appropriate

hypotheses about such attributes of the products or the treatment. Since both

the signed rank and the t procedures illustrated in Sect. 8.1 require quantitative

data, they cannot be used to analyze the qualitative difference-data collected

from such studies. However, procedures similar to those discussed in Sect. 6.3

can be applied to conduct appropriate hypothesis tests for such qualitative

difference-data. We illustrate this approach in the following example.

Example 8.3. Can Infants Less Than Six Months Old Distinguish Patterns

of Visual Stimuli? One item of interest in the eye development of young

infants is the age at which they can begin to effectively differentiate between

a solid visual pattern and a more elaborate visual pattern, such as stripes or

polka dots. In a study designed to address this question, Frantz et al. (1962)

workedwith infants varying in age from 2 to 6 months. Each infant in the study

was placed in a chamber that was illuminated by four 60-watt incandescent

lamps with reflectors in each of the bottom four corners of the chamber, below
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the infant’s eyes. To reduce glare on the chamber walls above the lights, they

were covered with finely knit, medium blue jersey cloth. The chamber ceiling

was also light blue to enhance the infant’s acute vision.

Two visual patterns, one a solid gray pattern and the other consisting of a

striped pattern of white and gray, were placed directly on top of the chamber.

These patterns were visible through two separate holes in the ceiling, each

7 by 5 inches wide, and 12 inches apart, center to center, and 15 1/2 inches

from the infant’s eyes. The ceiling was sufficiently darker than the patterned

surfaces to make reflections of the pattern being looked at in the infant’s eyes.

Each baby was placed in the chamber for a period of 40 sec and observed by

two separate investigators looking through two ¼-inch holes near the infant’s

feet. One observer recorded the percentage of time that the infant’s eyes were

focused on the solid gray pattern (X), while the second observer recorded the

percentage of time that the infant’s eyes were focused on the white/gray

striped pattern (Y). (The infant’s eyes were not focused on either pattern for

the remaining percentage of the 40-s period.)

Frantz et al. (1962) chose to report only which of the two patterns was

observed for the greater percentage of time for each of the infants in their

study, rather than the actual percentages themselves. Thus, for the paired

replicates data (X, Y), they simply indicated which of the two patterns was

qualitatively preferred by each of the infants, with Y>X corresponding to

preference for the gray/white striped pattern and Y<X corresponding to

preference for the solid gray pattern.

To evaluate an additional possible effect due to stripe width size, the

authors studied four different stripe widths (1/64, 1/32, 1/16, and 1/8

inch). Each of forty infants aged from 2 to 4months was placed in the chamber

and the investigators recorded how many of the infants preferred the striped

pattern over the plain gray pattern (i.e., Y > X) separately for each of the four

stripe widths. The results for the forty infants and the four stripe widths are

presented in Table 8.6.
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Clearly these data are, in fact, paired replicates since a given infant was

simultaneously exposed to a particular width striped pattern and the plain

gray pattern and the percentages of observed times for each were noted.

However, Frantz et al. reported only the qualitative preference shown by

each infant for one or the other of the patterns. As a result, the signed rank and

t-procedures for paired data cannot be used to analyze the data in Table 8.6,

since the necessaryD¼ Y -X differences required by both the signed rank and

t-procedures for paired replicates are simply not reported for these infant

preferences.

Fortunately an adaptation of the sign statistic discussed in Sect. 7.1 can be

applied to conduct an appropriate hypothesis test for these preferences. Let p 1
32

¼ P(randomly chosen infant aged 2–4 months prefers the 1/32 inch striped

pattern over the plain gray pattern). We are interested in testing the null

hypothesis H0: [p 1
32
¼ 1

2], corresponding to no preference between the striped

and plain gray patterns, versus the alternativeHA: [p 1
32
> 1

2], corresponding to a

preference for the striped pattern over the plain gray. Letting p̂ 1
32
denote the

percentage of infants aged 2–4 months in the study who preferred the 1/32

inch striped pattern over the plain gray pattern, we see that the sample point

estimate of p 1
32

is p̂ 1
32
¼ 30

40
: The corresponding value of the standardized

statistic Zp̂, 0 (6.10) is then

Table 8.6 Visual preferences by infants aged 2–4 months for striped
patterns of various sizes as opposed to a plain gray pattern

Stripe width

Number preferring
the striped pattern
(Y > X)

Number preferring
the plain gray pattern
(Y < X)

1/64 in 22 18
1/32 in 30 10
1/16 in 32a 7a

1/8 in 34 6

Source: Frantz et al. (1962)
aThe observation for one infant is missing for the 1/16 inch striped pattern
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zp̂, 0 observedð Þ ¼
30
40 � 1

2ffiffiffiffiffiffiffiffiffiffiffi
1
2 1�1

2ð Þ
40

q ¼ 3:16,

and it follows from (6.12) that the associated approximate P-value for the test

of H0: [p 1
32
¼ 1

2] versus HA: [p 1
32
> 1

2] is P( Z � 3.16) ¼ .0008. Thus there is strong

evidence that infants aged 2–4 months can, indeed, differentiate between the

1/32 inch striped pattern (which they prefer) and the plain gray pattern.

We note that approximate confidence intervals for p 1
32
can also be obtained

using expression (6.7). Thus, an approximate 90% confidence interval for p 1
32
is

given by

p̂ 1
32
� z:05

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1

32
1� p̂ 1

32

	 

=40

r
¼ 3

4
� 1:645

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
4

1� 3
4

� �
=40

s

¼ :75� :113 ¼ :637; :863ð Þ:

We can use the R function binconf ð Þ to obtain this confidence interval as

well. We specify the alpha argument to be 0.10 and the method argument to be

“asymptotic” (as opposed to “exact”, which would give an exact, rather than

approximate, confidence interval).

> binconf(30, 40, alpha = 0.10, method='asymptotic')
PointEst     Lower     Upper

0.75 0.6373846 0.8626154

Section 8.2 Practice Exercises

8.2.1. Psychological Needs and Physical Health. Can supporting a patient’s

psychological needs lead to improvement in the condition of the patient’s

physical health? Smyth et al. (1999) addressed this question by studying the

effect that writing about stressful life experiences might have on the medical

conditions of rheumatoid arthritis patients. Thirty-one rheumatoid arthritis

patients participated in the study. Rheumatologists used a five-category

rating scheme (asymptomatic, mild, moderate, severe, very severe) to
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clinically evaluate each of the subjects prior to beginning the study protocol.

Participants were then asked to write for 20 min on each of three consecutive

days about the most stressful life experiences that they had undergone. The

patients were clinically evaluated again 4 months after they had completed

their writing projects. Smyth et al. report that 15 of the participating arthritis

patients were diagnosed as being medically improved (a shift of one or more

rating categories toward asymptomatic) 4 months after the 3-day writing

periods. Let p ¼ [proportion of all rheumatoid arthritis patients who would

exhibit such medical improvement 4 months after writing about their most

stressful life experiences].

(a) Find an approximate 98% confidence interval for p.

(b) Using the confidence interval obtained in part (a), what decision

would you reach in a test of H0: p ¼ .5 versus HA: p 6¼ .5 at approxi-

mate significance level α ¼ .02?

8.2.2. Can Stressful Writing Help Subjects With Rheumatoid Arthritis? Consider

the stressful writing study discussed in Exercise 8.2.1. For this study, the value

p ¼ .5 tested in part (b) of Exercise 8.2.1 does not have much relevance. What

is more important is a comparison of those rheumatoid arthritis patients who

participated in the stressful writing protocol with another control group of

rheumatoid arthritis patients who did not write about their most stressful

lifetime experiences. Smyth et al. (1999) also studied such a control group,

members of which were treated exactly the same as the treatment group,

except for the absence of the stressful writing experiences. Smyth et al. found

that only 4 of the 17 subjects in their control group of arthritis patients were

diagnosed as being medically improved (a shift of one or more rating

categories toward asymptomatic) 4 months after the beginning of the study.

Let pC ¼ [proportion of all rheumatoid arthritis patients who would exhibit

such medical improvement 4 months after onset of the study without writing

about their most stressful lifetime experiences].

(a) Find an approximate 98% confidence interval for pC.
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(b) Compare the confidence interval for p (treatment group) obtained in

part (a) of Exercise 8.2.1 with the confidence interval for pC in part

(a) of this exercise. Discuss the implications of your comparison. What

hypothesis would be of most interest to test in this setting? (We will

return to this study in Chap. 9 and address this issue once again.)

8.2.3. Wisk Versus Tide. A laboratory scientist purchases ten identical new

white towels to be used in a test of the relative effectiveness of the two

detergents Wisk and Tide. Each of the towels is stained with a combination

of grass, strawberry jam, and spaghetti sauce. Five of the towels are washed in

Wisk and the other five towels are washed in Tide. The ten washed towels are

then presented to a panel of eighteen consumers. Each member of the panel is

asked to select the five washed towels they believe to be the whitest. Fourteen

of the panelists select a majority of towels washed in Tide. Let p denote the

proportion of all consumers who believe that Tide does a better job of

removing stains than does Wisk.

(a) Find an approximate 99% confidence interval for p.

(b) Find the approximate P-value for a test of the null hypothesis H0:

p ¼ .5 versus the one-sided alternative HA: p > .5.

8.2.4. Do Infants Prefer Striped or Plain Patterns? Consider the Frantz et al.

(1962) infant visual response data given in Table 8.6.

(a) Find an approximate 95% confidence interval for p 1
16
¼ P(randomly

chosen infant aged 2–4 months will prefer the 1/16 inch striped

pattern over the plain gray pattern).

(b) Use the result in (a) to test the null hypothesis H0: [p 1
16
¼ :5] versus the

two-sided alternative hypothesis HA: [p 1
16
6¼ :5] at approximate signifi-

cance level .05.

654 8 Statistical Inference for Matched Pairs or Paired Replicates Data



Chapter 8 Comprehensive Exercises

8.A. Conceptual

8.A.1. Compare and contrast the differences between matched pairs and

paired replicates designs and associated data. Explain how each of these

designs controls for circumstances or characteristics other than those under

investigation that might also affect the outcome of the measurements of

interest.

8.A.2. Consider the following experimental design for data collection. Is it a

matched pairs design or a paired replicates design?

Experimental Design A laboratory scientist purchases eighteen identical new

white towels to be used in a test of the relative effectiveness of the two

detergents Wisk and Tide. Each of the following nine stains are applied

identically to a different pair of these towels: grass, strawberry jam, mud,

spaghetti sauce, orange juice, rust, wine, oil, and beef gravy. One towel of

each pair is washed in Wisk and the other in Tide. A consumer panel is then

asked to evaluate each such pair and come to a decision whether Tide orWisk

did a better job of removing that particular stain.

8.A.3. Consider the following experimental design for data collection. Is it a

matched pairs design or a paired replicates design?

Experimental Design Twenty subjects with mildly high blood pressure volun-

teer to test a new diet regimen designed to treat such a condition. Each subject

has his/her blood pressure measured each of two consecutive days prior to

beginning the diet regimen and then every other day for 2 months on the diet.

8.A.4. Consider the following experimental design for data collection. Is it a

matched pairs design or a paired replicates design?
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Experimental Design A potential advertiser for a new television program

wishes to ascertain if it is more likely to be watched by men or women.

Each of thirty husband and wife couples is asked to watch five episodes of

the show and then separately rank the show on a scale of 1 (worst) to 10 (best).

8.A.5. Discuss, in general, why the interpretation of an analysis of matched

pairs or paired replicates data is not dependent on which of the pairs is

labeled Y and which is labeled X.

8.A.6. Let Di ¼ Yi � Xi, for i ¼ 1, . . ., n, be a set of n differences for paired

replicate or matched pairs data. In Example 8.1 we illustrated how to use D1,

. . ., Dn to test the null hypothesis H0: ηD ¼ 0, where ηD is the median of the

distribution for the Y – X differences.

(a) Let η* 6¼ 0 be some fixed, known value. Discuss how to modify the Di

values in order to provide a test of the more general null hypothesis

H0: ηD ¼ η*.

(b) Describe how an approach similar to that described in part (a) could

also be used in conjunction with Example 8.2 to provide a test of a

more general null hypothesis about the mean, μD, of the distribution

for the Y � X differences.

8.A.7. Let X and Y be random variables measured in the same units with

variances σ2x and σ2y, respectively, and let D ¼ Y – X. In Chap. 4 we learned

that if X and Y are independent random variables, then the variance of the

difference D is the sum of the X and Y variances; that is, σ2d ¼ σ2x þ σ2y.

However, when the pair (X, Y) are paired replicates or matched pairs

variables, it is most likely that X and Y are dependent random variables.

When this is the case, the variance of the difference, σ2d, can be either larger or

smaller than the sum, σ2x þ σ2y, of the individual variances, depending on how

X and Y are related.
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(a) Consider the pair (X, 2X); that is, let Y ¼ 2X. How does σ2d compare to

σ2x þ σ2y for this choice of Y?

(b) Consider the pair (X,�2X); that is, let Y¼�2X. How doesσ2d compare

to σ2x þ σ2y for this choice of Y?

(c) Based on your findings in parts (a) and (b), what type of relationship

between X and Y do you think will lead to a value of σ2d that is greater

than σ2x þ σ2y? Smaller than σ2x þ σ2y?

(d) Let S2x and S2y be the X and Y sample variances for the paired data (X1,

Y1), . . ., (Xn, Yn), and let S2d be the sample variance for the differences

D1 ¼ Y1�X1, . . ., Dn ¼ Yn�Xn. Choose a small sample size n and

construct a paired replicates data collection for which S2d>S2x +S2y. For

the same sample size, construct a second data collection for which S2d

< S2x + S2y.

8.B. Data Analysis/Computational

8.B.1. Percentage Hatched Eggs. Consider the percentage hatched values

provided in Table 8.1 (and the dataset percentage_hatched_eggs) for normal

and dumpwood duck nests. It seems quite natural to think that dump nesting

might actually be less efficient than normal nesting in regard to leading to

hatched eggs.

(a) What is the one-sided alternative hypothesis that corresponds to this

conjecture?

(b) Use the data in Table 8.1 to find the P-value for an appropriate test of

the null hypothesis H0: ηD ¼ 0 against the one-sided alternative

hypothesis in (a).

(c) Which confidence bound corresponds to the one-sided alternative in

(a)? Select a reasonable confidence level and find the appropriate

confidence bound for the percentage-hatched data In Table 8.1.
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8.B.2. Percentage Hatched Eggs. Consider the wood duck nesting data in

Table 8.1. Let ηD denote the median for the D ¼ Y – X differences, where

X and Y represent the dump and normal nest hatching percentages, respec-

tively. Find the P-value for a test of the conjecture that the hatching percent-

age for normal nests is at least 8% higher than that for dump nests. (See

Exercise A.6.)

8.B.3. Percentage Hatched Eggs. In Example 8.1 we arbitrarily chose to let

X and Y correspond to the dump nest and normal nest percentage hatched,

respectively. With those labels, we found that (5.01%, 14.635%) is a 90.3%

confidence interval for the median, ηD, of the distribution for the variable Y -

X. Suppose that we had chosen instead to reverse these arbitrary labels and let

X and Y correspond to the normal nest and dump nest percentage hatched,

respectively. Describe the resulting confidence interval and provide an inter-

pretation similar to that given in Example 8.1.

8.B.4. Right Versus Left Side of Your Brain. What roles do the right and left

sides of your brain play in distinguishing similarity of objects? This was

among a number of questions addressed by Atkinson and Egeth (1973).

Fifteen right-handed students at The Johns Hopkins University served as

paid volunteers for the study. On each trial, two lines, one directly above

the other, were presented simultaneously for 150 msec, randomly in either the

left visual field (LVF) or in the right visual field (RVF). The subjects were told

to indicate whether or not the two lines were parallel. The authors employed

six different orientations for the pairs of lines:� 15 � from vertical,� 45 � from

vertical, and � 75 � from vertical. On half of the trials the lines were parallel.

On the other half of the trials the lines were either both tilted left or both tilted

right, but were not parallel. The pairs of lines used in the right visual field

were identical with the pairs of lines used in the left visual field. The mean

reaction times (msec) for the subjects to reach their conclusions about same
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(parallel) or different orientations for the twelve LVF and twelve RVF pairs of

lines are given in Table 8.7.

(a) Find the P-value for a test to evaluate the conjecture that right-handed

subjects differentially use the right and left sides of their brain to

distinguish whether objects are similar or not.

(b) Find a confidence interval for the difference between LVF and RVF

mean reaction times for right handed people to distinguish between

the same (parallel) or different pairs of lines. Choose your own rea-

sonable confidence coefficient.

8.B.5. Dump Nests Versus Normal Nests. In Example 8.1 we discussed the

difference in percentage-hatched eggs ¼ (total number of hatched eggs/total

number of successful eggs) for normal and dump wood duck nests at the

Table 8.7 Mean reaction times (msec) for subjects to
reach conclusions about same (parallel) or different
line orientations for twelve LVF and twelve RVF
pairs of lines

Subject LVF RVF

1 474.5 487
2 489 518
3 524 412.5
4 452 471
5 428.5 426
6 490.5 485
7 432 433
8 401 438.5
9 365 387.5
10 383 407.5
11 574.5 598.5
12 427 457.5
13 447.5 483.5
14 419 431.5
15 408.5 427

Source: Atkinson and Egeth (1973)
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Duck CreekWildlife Management Area in Missouri over the years 1966–1974.

Clawson et al. (1979) also obtained the data in Table 8.8 on the number of

eggs hatched and number of nests (dump and normal) over that same time

period.

(a) Consider the variables corresponding to the numbers of hatched eggs

per nest for normal and dump nests. Find the P-value for a test of the

conjecture that the hatching rate per nest is greater for dump nests

than for normal nests over the period 1966–1974. What is your con-

clusion at significance level .05?

(b) Find a confidence interval for the difference in hatching rate per nests

for dump nests and normal nests. Select your own reasonable confi-

dence coefficient.

(c) Compare and contrast the results obtained in (a) and (b) with those

found in Example 8.1 and Exercise 8.B.1.

8.B.6. Do Infants Prefer Striped or Plain Patterns? Consider the Frantz et al.

(1962) visual response data given in Table 8.6 for infants aged 2–4 months. Let

Table 8.8 Number of hatched eggs and number of dump and normal
wood duck nests on a portion of the Duck Creek Wildlife Management
Area in Missouri for the period 1966–1974

Year Normal nests Dump nests

#
Nests

#Hatched
eggs #Nests

#Hatched
eggs

1966 42 267 5 76
1967 89 553 9 135
1968 57 268 47 556
1969 38 58 91 607
1970 35 87 79 596
1971 68 228 53 365
1972 69 190 40 358
1973 64 329 91 656
1974 72 141 109 847

Source: Clawson et al. (1979)
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p1
8
¼ P(randomly chosen infant aged 2–4 months prefers the 1/8 inch striped

pattern over the plain gray pattern). Find the approximate P-value for a test of

the null hypothesis H0: [p1
8
¼ :2] versus the one-sided alternative hypothesis

HA: [p1
8
< :2].

8.B.7. Do Infants Prefer Striped or Plain Patterns? In addition to the visual

response data for infants aged 2–4 months, Frantz et al. (1962) also collected

similar data for infants aged 4–6 months. Their findings for this age group are

reported in Table 8.9. Carry out the same analyses discussed in Example 8.3

for the data in Table 8.9. Comment on the differences between these results for

infants aged 4–6 months and those obtained in Example 8.3 for infants aged

2–4 months.

8.B.8. Do Infants Prefer Striped or Plain Patterns? Consider the Frantz et al.

(1962) visual response data for infants aged 4–6 months given in Table 8.9. Let

p 1
64
¼ P(randomly chosen infant aged 4–6 months prefers the 1/64 inch striped

pattern over the plain gray pattern). Find an approximate 92% lower confi-

dence bound for p 1
64
.

8.B.9. Percentage Eggs Hatched. Consider the wood duck nesting data in

Table 8.1 (and the dataset percentage_hatched_eggs) and let π denote the

Table 8.9 Visual preferences by infants aged 4–6 months to striped
patterns of various sizes as opposed to a plain gray pattern

Stripe
width (in)

Number preferring the
striped pattern (Y>X)

Number preferring the plain
gray pattern (Y<X)

1/64 16a 7a

1/32 20 4
1/16 21 3
1/8 24 0
aThe observation for one infant is missing for the 1/64 inch striped pattern
Source: Frantz et al. (1962)
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probability that the percentage hatched from normal nests will be higher than

the percentage hatched from dump nests in any given year in the Duck Creek

Wildlife Management Area in Missouri. Find an approximate 90% confidence

interval for π.

8.B.10. Weight Gain for Anorexia Nervosa Subjects. Consider the

desimipramine/psychotherapy treatment data in Table 8.3 (and the dataset

desimipramine). Let μD denote the median for theD¼ Y� X differences, where

X and Y represent the pre- and post-desimipramine body weights, respec-

tively. Use the results obtained in Example 8.2 to test the null hypothesis H0:

[μD¼ 2] against the two-sided alternativeHA: [μD 6¼ 2] at significance level .05.

8.B.11. Bison and Species Diversity. In their study of ways to restore or

maintain biodiversity (see Exercise B.1), Collins et al. (1998) obtained data

on the numbers of plant species for plots of grassland that were grazed by

bison without burning first and on control plots (no grazing or burning). The

data in Table 8.10 are the total numbers of plant species observed on 16 pairs

of 50-m2 matched plots of grassland on the Konza Prairie. For each matched

pair of land plots, one of the plots served as the control where nothing was

done to the grassland. Bison were permitted to graze on the second plot in

that pair, but there was no burning of the grassland first.

(a) Find the P-value for a test of the conjecture that permitting bison to

graze on grassland leads to an increase in the number of plant species.

What is your conclusion at significance level .075?

(b) Find a confidence interval for the median change in the number of

plant species as a result of permitting bison to graze on grassland.

Select your own reasonable confidence coefficient.

8.B.12. Dilemma Zones and Low Speed Accidents. In their study of the effec-

tiveness of “Prepare to Stop When Flashing” signs (see Exercise 8.1.3), the

Ohio Department of Transportation also evaluated these signs at dilemma
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zones with low speed (35 mph zones) approaches. The number of accidents at

each of four low speed approaches dilemma zones was recorded at four

different times of the year prior to erection of “Prepare to Stop When Flash-

ing” signs and then during the same time periods during the following year

after erection of the signs. (Since the signs were only erected for one or two of

the approaches at these locations, the only accidents used in the evaluation

were those that involved vehicles on one of the approaches with such a sign.)

The numbers of accidents per million vehicles for these four low speed

dilemma zones with and without the warning signs for the different times

of year are reported in Table 8.11.

(a) Find the P-value for a test of the conjecture that erection of the “Prepare

to Stop When Flashing” signs has a positive effect (i.e., leads to a

Table 8.10 Total number of plant species on sixteen
pairs of 50-m2 matched plots of grassland on the
Konza Prairie

Plot pair Control
Bison
Grazing

1 34 38
2 46 55
3 51 59
4 55 76
5 34 55
6 40 63
7 46 65
8 55 82
9 34 63
10 39 69
11 49 71
12 62 88
13 36 46
14 41 51
15 54 55
16 63 90

Source: Collins et al. (1998)
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decrease in traffic accidents per vehicle miles) at low speed dilemma

zones. What is your conclusion at significance level .075?

(b) Find a confidence interval for the median change in traffic accidents

per vehicle miles at low speed dilemma zones that results from

erecting the “Prepare to Stop When Flashing” signs. Select your

own reasonable confidence coefficient.

8.B.13. Right Versus Left Side of Your Brain. In Exercise B.4 we considered

whether the right and left sides of one’s brain play different roles in

distinguishing similarity of objects. Atkinson and Egeth (1973) also consid-

ered the question of whether one side of the brain might be better attuned to

identifying similar objects, while the other side of the brain might do better at

distinguishing when objects are different. . The mean reaction times (msec) for

the subjects to reach their conclusions about six sets of differently oriented

parallel lines (i.e., same lines) in the left visual field (LVF) and the same six sets

of parallel lines in the right visual field (RVF) are given in Table 8.12. The

mean reaction times (msec) for the subjects to reach their conclusions about six

sets of differently oriented non-parallel lines (i.e., different lines) in LVF and

Table 8.11 Number of traffic accidents per million vehicles for low speed
approach dilemma zones with and without “Prepare to Stop When Flash-
ing” signs at four different times of the year

Number of accidents per million vehicle miles

Site-time Without signs With signs

Site 1 – Mar–May 0.981 2.452
Site 1 – June–Aug 0.490 0
Site 1 – Sept–Nov 0.981 0.981
Site 1 – Dec–Feb 1.471 0
Site 2 – Mar–May 0.638 1.276
Site 2 – June–Aug 2.553 2.553
Site 2 – Sept–Nov 0.638 1.915
Site 2 – Dec–Feb 0.638 2.553

Source: Ohio Department of Transportation (1980)
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the same six sets of non-parallel lines in RVF are given in Table 8.13. (We note

that the mean reaction times in Table 8.7 that are used for the overall assess-

ment of right and left brain activity in Exercise B.4 are simply the averages of

the mean reaction times for the parallel lines given in Table 8.12 and those for

the non-parallel lines in Table 8.13).

(a) Find the P-value for a test to evaluate the conjecture that right-handed

subjects differentially use the right and left sides of their brain to

identify similar objects.

(b) Find a confidence interval for the difference between LVF and RVF

mean reaction times for right-handed people to identify parallel pairs

of lines. Choose your own reasonable confidence coefficient.

Table 8.12 Mean reaction times (msec) for
subjects to reach conclusions about line
orientations for six LVF and six RVF parallel
pairs of lines

Subject LVF RVF

1 471 493
2 477 524
3 303 345
4 428 444
5 418 423
6 517 499
7 412 385
8 381 444
9 343 363
10 390 390
11 501 514
12 429 467
13 439 473
14 377 390
15 401 429

Source: Atkinson and Egeth (1973)
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(c) Find the P-value for a test to evaluate the conjecture that right-handed

subjects differentially use the right and left sides of their brain to

distinguish between non-parallel lines.

(d) Find a confidence interval for the difference between LVF and RVF

mean reaction times for right-handed people to distinguish between

non-parallel pairs of lines. Choose your own reasonable confidence

coefficient.

8.C. Activities

8.C.1. Dominant Hand. Is your dominant hand (i.e., the one you write with)

physically stronger than your other hand? Design an experiment (including

the appropriate data to collect and how to collect it) that will enable you to

Table 8.13 Mean reaction times (msec) for
subjects to reach conclusions about line
orientations for six LVF and six RVF
non-parallel pairs of lines

Subject LVF RVF

1 478 481
2 501 512
3 745 480
4 476 498
5 439 429
6 464 471
7 452 481
8 421 433
9 387 412
10 376 425
11 648 683
12 425 448
13 456 494
14 461 473
15 416 425

Source: Atkinson and Egeth (1973)
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statistically address this conjecture. Collect the relevant data for a sample of

15 of your friends, conduct the appropriate statistical analyses, and write a

two-page report describing your experiment and statistical conclusions.

8.C.2. Exercise and Pulse Rate. How much does exercise increase one’s pulse

rate? Design an experiment (including the appropriate data to collect and how

to collect it) that will enable you to statistically address this question. Collect

the relevant data for a sample of 15 of your friends, conduct the appropriate

statistical analyses, and write a two-page report describing your experiment

and statistical conclusions.

8.C.3. Paired Replicates. Find a journal article in a field of your interest that

presents the results of a study that utilized paired replicates data. Prepare a

short (2–3 pages) summary report of the statistical findings in the article and

attach a copy of the original paper with your summary.

8.C.4. Matched Pairs. Find a journal article in a field of your interest that

presents the results of a study that utilized matched pairs data. Prepare a

short (2–3 pages) summary report of the statistical findings in the article and

attach a copy of the original paper with your summary.

8.D. Internet Archives

8.D.1. Precipitation for U.S. Cities. Search the Internet to find a site that

provides precipitation amounts for U. S. cities for each of the calendar years

2013 and 2014. Do these precipitation amounts across these U. S. cities

represent paired replicates data or matched pairs data? How would you use

these data to compare the precipitation pattern in the United States in these

two calendar years?
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8.D.2. Statewise Average Family Income. Search the Internet to find a site that

provides average family income for each of the fifty states in the United States

for calendar years 2013 and 2014. Do these average family incomes across the

fifty states represent paired replicates data or matched pairs data? How

would you use these data to compare the economic status of families across

the United States during this period of time?
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Statistical Inference for Two
Populations–Independent Samples 9

William Shakespeare penned the famous quote “A rose by any other name

would smell as sweet”. Does this sentiment carry over to names given you by

your parents? Christenfeld et al. (1999) were not so sure after studying the

possible effect that the initials of your namemay have on your life expectancy!

Dividing names into those with “bad initials”, such as DED, SIC, UGH, ROT,

etc., and those with “good initials”, such as GOD, HUG, VIP, WIN, etc., they

studied California death certificates to see if there appeared to be a difference

in age at death for people with initials in these two general categories.

Problems such as this are called two-sample problems because they involve

the comparison of data collected from two distinct populations. They are

among the most common statistical problems encountered in practical

applications. The collected data could be the results of observational studies,

as is the case with the initials data discussed above, or they could be obtained

through a designed experiment where the data are a result of independent

random samples collected separately from each of the involved populations.

# Springer International Publishing AG 2017
D.A. Wolfe, G. Schneider, Intuitive Introductory Statistics, Springer Texts in Statistics,
DOI 10.1007/978-3-319-56072-4_9
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In Sect. 1.3 we discussed a variety of data analysis techniques for compar-

ing such two-sample data. In this chapter we present appropriate procedures

to make formal statistical inferences from these data. As is the case with the

one-sample and paired replicates/matched pairs settings in Chaps. 7 and 8,

respectively, a proper choice of two-sample statistical inference procedures

will depend on both the type of data collected (count or numerical) and the

particular assumptions which are reasonable to make about the two underly-

ing populations.

General Setting and Notation Let X1, ..., Xm and Y1, ..., Yn denote the items

of independent random samples from two distinct populations. Choice of the

most appropriate statistical techniques for comparing typical values from

these populations depends primarily on two issues: (1) Are the data counts

(i. e., tallies of how often a particular event happens) or quantitative in nature?

and (2) What information is available or can reasonably be assumed about the

shapes of the distributions for the two underlying populations?

In Sect. 1 we deal exclusively with procedures designed to produce appro-

priate inferences for two-sample count data. On the other hand, when the

sample data from our two populations are numerical in nature, we are

naturally interested in possible differences in the centers of the two

populations. If we had just a single X and a single Y observation, we would

estimate the difference between the centers of the Y and X populations by the

value of the single sample difference Y - X. The information about the

respective centers contained in this difference consists of two components,

its sign and its magnitude. The sign provides evidence as to whether a typical

observation from the Y population is larger or smaller than a typical observa-

tion from the X population. The magnitude |Y - X|, on the other hand, helps

assess the size of the difference between typical observations from the two

populations.
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Section 2 presents procedures designed to produce appropriate statistical

inferences about possible differences in the two population medians, ηX and

ηY, for arbitrary continuous populations. The final two Sects. 3 and 4 are

devoted to statistical inference procedures for comparing two population

means, μX and μY, when it is reasonable to assume that both underlying

distributions are normal (Sect. 3) or for non-normal settings where both

sample sizes, m and n, are relatively large (Sect. 4). In Sect. 5 we discuss and

compare these competing approaches to making statistical inferences about

the difference in the centers of two distributions.

9.1 Approximate Inference for the Difference in Proportions
for Two Populations

In Chap. 6 we discussed statistical procedures for making inferences about

the probability that an event, say A, occurs when we sample an observation

from a single population; that is, to provide information about the proportion

of the population that possesses the attribute described by the event A. One of

the primary questions of interest in many practical statistical applications is

how the probabilities for such an event A might differ for two distinct

populations; that is, do the proportions in the two populations possessing

the attribute described by the event A differ? For example, we might be

interested in whether men and women differ in regard to their attitudes

toward saving for retirement or whether there is a difference in hearing loss

between smokers and non-smokers or whether athletes and non-athletes

differ relative to the extent of alcohol-related problems on college campuses.

For such questions, the relevant parameters are the proportions, pX and pY,

of the X and Y populations, respectively, which possess the attribute

described by the event A and our interest is in making inferences about

the difference pY - pX. The sample data X1, ..., Xm and Y1, ..., Yn for these

settings are simply indicators of whether or not the sampled units possess the
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A-attribute and statistical inferences about pY - pX are naturally based on the

proportions of sample observations from each of the two populations with the

A-attribute, namely,

p̂X ¼ number of X�sample units with attribute A½ �=m ð9:1Þ
and

p̂Y ¼ number of Y�sample units with attribute A½ �=n: ð9:2Þ
The natural estimate for the difference pY - pX is the analogous observed

difference in the sample proportionsV ¼ p̂Y�p̂X. It follows from the standard

rule for the mean of a difference between two variables (see Sect. 4.5) that the

mean forV is μV¼ pY - pX, since the sample proportions are unbiased estimators

of the corresponding population proportions. Moreover, since the sample

proportions p̂X and p̂Y are based on independent random samples from the

X and Y populations, respectively, the variance forV corresponds to the sum of

the variances for the separate sample proportions (again, see Sect. 4.5); that is,

σ2V ¼ pY 1� pY
� �

n
þ pX 1� pX

� �
m

,

and the corresponding standard deviation for V is.

σV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pY 1� pY
� �

n
þ pX 1� pX

� �
m

s
:

To construct confidence intervals and conduct hypothesis tests about

pY - pX we make use of these expressions for the mean and standard deviation

for V and a central limit theorem (see Sect. 5.3) to infer that the sampling

distribution of the statistic V can be well-approximated for large sample sizes

m and n by the normal distribution with mean μV and standard deviation σV;

that is, when m and n are large, inferences about pY - pX can be based on the

fact that V is approximately normally distributed with mean μV and standard

deviation σV.
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Interval Estimation of the Difference in Two Population

Proportions Since the point estimator V ¼ p̂Y�p̂X for the difference in

proportions pY - pX is approximately normally distributed it is natural to

expect an approximate confidence interval for pY - pX to be of the form

V � z1�CL
2
σV, where z1�CL

2 is the upper ((1-CL)/2)th percentile for the

standard normal distribution. However, the standard deviation σV for

V depends on the unknown population proportions pY and pX. Hence,

we must first estimate σV by its sample analogue

bσv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂Y
�
1� p̂Y

�
n

þ p̂X
�
1� p̂X

�
m

s
: ð9:3Þ

The approximate 100CL% confidence interval for pY - pX is then provided

by the interval

V � z1�CL
2
bσV ¼ p̂Y � p̂X � z1�CL

2
bσV; p̂Y � p̂X þ z1�CL

2
bσV

� �
, ð9:4Þ

where bσv is given by the expression in (9.3). The corresponding

approximate 100CL% lower and upper confidence bounds for pY - pX

are given by p̂Y � p̂X � z1�CLbσv and p̂Y � p̂X þ z1�CLbσv, respectively.

Example 9.1. College Athletes—Are They Health-Conscious RoleModels?

Alcoholic consumption by college students has been the topic of a substantial

amount of research over the past few decades. The results of this research

show clearly that alcohol is the most commonly used drug on American

college campuses and that the majority of college students drink on a regular

basis. These findings naturally led to questions regarding possible differences

in the demographic characteristics of students who are involved in heavy

drinking and those who are not. In particular, a number of researchers became

interested in a possible connection between participation in intercollegiate

athletics and drinking. Some early investigators conjectured that athletes
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would, of necessity, be less likely to drink excessively than non-athlete

college students in order to maintain the peak physical fitness required by

their sports. However, the findings from a number of studies simply did not

support this conjecture. In fact, it was often found that athletes are actually

more likely to participate in excessive and potentially harmful alcohol con-

sumption than the typical non-athlete student.

In one such definitive study, Leichliter et al. (1998) studied sample data

collected from 51,483 students who participated in Core and Alcohol Surveys

between October 1994 and May 1996 at 125 institutions of higher education

across the United States. Of these sampled students, 8749 were involved in at

least one intercollegiate sport, while the remaining 42,734 were

nonparticipants is such activities. One piece of information gathered from

the survey was whether or not a student had engaged in binge drinking in the

2 weeks previous to completing their survey. The data in Table 9.1 represent

the findings from the study.

Letting X and Y denote the nonparticipant and participant populations,

respectively, and taking A to be the event that a student engaged in binge

drinking at least once in the past 2 weeks, the parameters of interest in this

study are pX ¼ [proportion of students who do not participate in

Table 9.1 Number of students reporting involvement in binge drinking in
the 2 weeks prior to completing the core and alcohol survey

Involvement in intercollegiate sports

Participants Nonparticipants

Number
completing 8749 42,734
survey
Number engaging
in binge drinking 4835 15,513
in the previous
two weeks

Source: Leichliter et al. (1998)

674 9 Statistical Inference for Two Populations–Independent Samples



intercollegiate sports and engage in binge drinking at least once every

2 weeks] and pY ¼ [proportion of student participants in intercollegiate sports

who engage in binge drinking at least once every 2 weeks]. Our point

estimate for the difference pY - pX is then the observed difference in the sample

proportions V ¼ p̂Y � p̂X ¼ 4835
8749

� 15, 513
42, 734

¼ :553� :363 ¼ :19. For an

approximate 94% confidence interval for pY - pX, we first find the estimated

standard deviation for V ¼ p̂Y � p̂X from Eq. (9.3) to be

bσV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:533 1� :533ð Þ

8749
þ :363 1� :363ð Þ

42, 734

s
¼ :00582:

With z 1�:94ð Þ
2 ¼ z:03 ¼ 1:88, the approximate 94% confidence interval for pY - pX

is then given by expression (9.4) to be

:19� 1:88 :00582ð Þ; :19þ 1:88 :00582ð Þð Þ ¼ :179; :201ð Þ:
Thus we are approximately 94% confident that the proportion of student

participants in intercollegiate sports who engage in binge drinking at least

once every 2 weeks is somewhere between .179 and .201 higher than the

proportion of nonparticipating students who engage in binge drinking that

often.

Hypothesis Tests for the Difference between Two Population

Proportions To test the null hypothesis H0: pY ¼ pX, corresponding to no

differences in the proportions of the X and Y populations that possess the

attribute described by the event A, against an appropriate alternative of

interest, we once again rely on the approximate normality of the point esti-

mator V ¼ p̂Y � p̂X. Under the null hypothesis that pY ¼ pX ¼ p, the statistic

V has an approximate normal distribution with mean 0 and standard

deviation.
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σV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þ

n
þ p 1� pð Þ

m

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þ 1

n
þ 1
m

� �s
: ð9:5Þ

When H0 is true, it is natural to estimate the common proportion p by the

overall proportion of sample items possessing the attribute described by the

event A; that is, we combine or pool the counts from both the X and Y samples

to produce the pooled estimate of p given by.

p̂ ¼ number of X sample units with attribute A½ � þ number of Y sample units with attribute A½ �
mþ n

:

ð9:6Þ
Combining (9.5) and (9.6), our pooled point estimate for the standard devia-

tion of V under the null hypothesis that pY ¼ pX ¼ p is

bσV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂
�
1� p̂

� 1
n

þ 1
m

� �s
: ð9:7Þ

Statistical procedures for testing the null hypothesis H0: [pY ¼ pX]

against appropriate alternatives are then based on the fact that the

standardized statistic V∗ ¼ VbσV
has a null (H0) sampling distribution

that can be well-approximated by the standard normal distribution

when the sample sizes m and n are both large. To test H0: [pY ¼ pX}

compute the standardized statistic

V∗ ¼ p̂Y�p̂Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂
�
1� p̂

�
1
n þ 1

m

� �q , ð9:8Þ

with p̂X, p̂Y, and p̂ given by (9.1), (9.2), and (9.6), respectively. Letting v∗

denote the observed value of the test statisticV*, the approximate P-value

for a test of H0: pY ¼ pX against the alternatives HA are:
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HA Approximate P-value

pY > pX � P Z � v∗ð Þ ð9:9Þ
pY < pX � P Z � v∗ð Þ ð9:10Þ
pY 6¼ pX � 2P Z � v∗j jð Þ, ð9:11Þ

where Z � N(0, 1).

Example 9.2. Is there Gender Bias in Children’s Preferences for Musical

Instruments? A number of studies have clearly demonstrated that boys and

girls at young ages generally do not exhibit preferences for the same musical

instruments. Moreover, children’s choices of musical instruments tend to be

in agreement with the way such instruments are gender stereotyped by

adults. One study by Abeles and Porter (1978) found that adults were more

likely to select a ‘feminine’ instrument (i. e., clarinet, flute or violin) for a

daughter and a ‘masculine’ instrument (i. e., drum, trombone or trumpet) for

a son.

In a study designed to assess whether similar gender biases are already

present in young boys and girls, O’Neill and Boulton (1996) conducted

interviews with 72 female and 81 male children between the ages of 9 and

11 residing in north-west England. Among the questions asked of these

youngsters was a question regarding whether or not it was inappropriate

for boys or girls to play specific instruments. The data from this portion of the

interviews by O’Neill and Boulton for six different instruments are presented

in Table 9.2.

Your initial impression from these data is probably that there is striking

agreement between the male and female participants in this study with

respect to which instruments are inappropriate for boys and girls. But notice

that only 10 of 72 girls say the violin is not appropriate for boys, while 29 of
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81 boys hold this opinion. Using these sample percentages, we would like to

test whether the corresponding proportions for the populations of all

9–11 year old boys and girls differ. Letting A correspond to the opinion that

the violin should not be played by boys and denoting the population of

9-11 year old boys by X and that of 9–11 year old girls by Y, we have

pX ¼ [proportion of 9–11 year old boys who believe that boys should not

play the violin] and pY ¼ [proportion of 9–11 year old girls who believe that

boys should not play the violin]. We are interested in testing the null hypoth-

esis H0: pY ¼ pX, corresponding to no gender difference in opinions about

whether boys should play the violin, versus the two-sided alternative HA:

pY 6¼ pX that 9-11 year old boys and girls do, in fact, differ in their opinions

about whether boys should play the violin.

From the data in Table 9.2, we see that p̂X ¼ 29
81

¼ :358 and p̂Y ¼ 10
72

¼ :139.

From (9.6) the pooled estimate of the common p under H0 is

p̂ ¼ 29þ 10
81þ 72

¼ :255. It follows from (9.8) that the observed value of V* is

v∗ ¼ :139� :358ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:255 1� :255ð Þ 1

72 þ 1
81

� �q ¼ �3:10:

Table 9.2 Numbers of survey participants who indicated that girls and
boys should not play each of six different instruments

Female participants Male participants

Indicated that the instrument should not be played by

Boys Girls Boys Girls

Flute 35 0 36 1
Piano 16 0 21 1
Violin 10 0 29 4
Trumpet 2 9 3 19
Guitar 0 32 1 36
Drums 0 44 0 54

Source: O’Neill and Boulton (1996)
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Hence, from (9.11) the approximate P-value for our test of H0: pY ¼ pX against

the two-sided alternative HA: pY 6¼ pX is found using the R function pnormð Þ
to be 2 	 P(Z � |-3.10|) ¼ 2 	 (.00096) ¼ .0019.

> 2 * pnorm(3.1, lower.tail = FALSE)

[1] 0.001935206

Thus there is considerable evidence in the survey results to indicate that boys

and girls aged 9–11 do, indeed, differ in their views as to whether boys should

play the violin. (What about some of the other instruments for which survey

data are given in Table 9.2? See Exercises 9.B.3 and 9.B.4, for example.)

Section 9.1 Practice Exercises

9.1.1. We are interested in the proportions, pX and pY, of two populations

X and Y, respectively, that possess the attribute described by an event A.

Consider independent random samples X1, X2, X3, X4, X5 and Y1, Y2, Y3, Y4

from the X and Y populations and let p̂X (9.1) and p̂Y (9.2) denote the

proportions of these sample observations with the A-attribute.

(a) List the possible sample values for the sample proportions p̂X and p̂Y?

(b) List the possible sample values for the difference in sample

proportions V ¼ p̂Y � p̂X?

9.1.2. The expression for an approximate 100CL% confidence interval for

pY - pX is given in (9.4). We know that this confidence interval is centered at the

observed difference in sample proportions p̂Y � p̂X. What factors affect the

length of the confidence interval?

9.1.3. Let pX and pY denote the proportions of the X and Y populations,

respectively, that possess an attribute described by the event A. Based on

independent random samples X1, . . ., X100 and Y1, . . ., Y100 from the X and

Y populations, let p̂X (9.1) and p̂Y (9.2) denote the proportions of these sample
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observations with the attribute A. Evaluate the approximate 95% confidence

interval for pY – pX given in expression (9.4) for the following five possible

outcomes for the pair
�
p̂X; p̂Y

�
:�

p̂X; p̂Y
� ¼ :4; :5ð Þ, :3; :4ð Þ, :2; :3ð Þ, :1; :2ð Þ, 0; :1ð Þ:

(a) Where are the five 95% confidence intervals centered?

(b) What are the lengths of the five 95% confidence intervals?

(c) Comment on your findings in (a) and (b).

9.1.4. Let pX and pY denote the proportions of the X and Y populations,

respectively, that possess an attribute described by the event A. Based on

equal size (m ¼ n) independent random samples X1, . . ., Xm and Y1, . . ., Ym

from the X and Y populations, let p̂X ¼ :4 and p̂Y ¼ :5 denote the proportions

of these sample observations with the attribute A. Evaluate the approximate

95% confidence interval for pY – pX given in expression (9.4) if the common

sample size m ¼ n is 10, 20, 40, 80, 160, or 500.

(a) Where are the six 95% confidence intervals centered?

(b) What are the lengths of the six 95% confidence intervals?

(c) Comment on your findings in (a) and (b).

9.1.5. Taking Care of One Another—Conservatives Versus Liberals. Consider the

data on American values with respect to taking care of each other, as collected

by Princeton Survey Research Associates of Princeton, New Jersey (1998) and

discussed in Exercise 1.B.3. Let pC and pL denote the proportions of all

Conservatives and Liberals, respectively, who feel that people should expect

help from the government to take care of their parents if they become sick or

disabled. Using the sample data, find an approximate 97% confidence interval

for the difference in proportions, pC – pL.

9.1.6. Taking Care of Each Other—Conservatives Versus Moderates. Consider

the data on American values with respect to taking care of each other, as
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collected by Princeton Survey Research Associates of Princeton, New Jersey

(1998) and discussed in Exercise 1.B.3. Let pC and pM denote the proportions of

all Conservatives and Moderates, respectively, who feel that people should

expect help from the government to take care of their parents if they become

sick or disabled.

(a) Compute the values of the sample estimates, p̂C and p̂M, for pC and pM.

(b) Compute the value of the pooled point estimate for the standard

deviation of V ¼ p̂C � p̂M under the null hypothesis that pC ¼ pM.

(c) Compute the value of the standardized statistic V* (9.8).

9.1.7. Let pX and pY denote the proportions of the X and Y populations,

respectively, that possess an attribute described by the event A. Based on

independent random samples X1, . . ., X100 and Y1, . . ., Y100 from the X and

Y populations, let p̂X (9.1) and p̂Y (9.2) denote the proportions of these sample

observations with the attribute A. Find the approximate P-value for testing

the null hypothesis H0: pY ¼ pX against the one-sided alternative HA: pY > pX

for each of the following five possible outcomes for the pair
�
p̂X; p̂Y

�
:�

p̂X; p̂Y
� ¼ :4; :5ð Þ, :3; :4ð Þ, :2; :3ð Þ, :1; :2ð Þ, 0; :1ð Þ:

Comment on these findings.

9.1.8. Let pX and pY denote the proportions of the X and Y populations,

respectively, that possess an attribute described by the event A. Based on

equal size (m ¼ n) independent random samples X1, . . ., Xm and Y1, . . ., Ym

from the X and Y populations, let p̂X ¼ :4 and p̂Y ¼ :5 denote the proportions

of these sample observations with the attribute A. Find the approximate

P-value for testing the null hypothesis H0: pY ¼ pX against the one-sided

alternative HA: pY > pX if the common sample size m ¼ n is 10, 20, 40, 80,

160, or 500. Comment on these findings.
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9.1.9. Taking Care of One Other—Moderates Versus Liberals. Consider the data

on American values with respect to taking care of each other, as collected by

Princeton Survey Research Associates of Princeton, New Jersey (1998) and

discussed in Exercise 1.B.3. Let pM and pL denote the proportions of all

Moderates and Liberals, respectively, who feel that people should expect

help from the government to take care of their parents if they become sick

or disabled. Find the approximate P-value for a test of the conjecture that

Liberals are more inclined than Moderates to feel that people should expect

help from the government to take care of their parents if they become sick or

disabled.

9.1.10. Young of Year Gizzard Shad. Consider the length of YOY gizzard shad

data displayed in Table 1.38 in Exercise 1.B.13. Pool the ten observations from

Sites 1 and 2 to constitute a single random sample of 20 observations from Site

“C” and do the same for the ten observations from Sites 3 and 4 to constitute a

single random sample of 20 observations from Site “D”. Let pC and pD denote

the proportion of all the YOY gizzard shad from Sites “C” and “D”, respec-

tively, that were at least 30 mm in length at the time that Johnson (1984)

conducted his study.

(a) Compute the values of the sample estimates, p̂C and p̂D, for pC and pD.

(b) Find an approximate 95% confidence interval for the difference in

proportions, pC – pD.

9.1.11. Art and the Color Purple. Wypijewski (1997) reported on the results of

a comprehensive scientific poll of American tastes in art, as commissioned by

Vitaly Komar and Alexander Melamid in conjunction with The Nation Insti-

tute, a nonprofit offshoot of The Nation magazine. Random samples of

475 males and 526 females were asked to name their favorite color. Thirty-

seven females and six males in the samples named purple as their favorite

color.
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(a) Estimate the proportions of all American females and all American

males for whom purple is their favorite color.

(b) Find the approximate P-value for a test of the conjecture that the

proportion of American females for whom purple is their favorite

color is greater than the proportion of American males who prefer

purple.

9.1.12. Intimate Partner Abuse.Often a hospital Emergency Department is the

initial (and sometimes only) contact that abused women have with health care

clinicians. The identification and treatment of abused women by Emergency

Department personnel has become increasingly important as a potential

means for preventing future abuse. In a study to determine the prevalence

of intimate partner abuse among female patients seeking treatment in com-

munity hospital Emergency Departments, Dearwater et al. (1998) conducted

an anonymous survey during the period 1995 through 1997. They inquired

about physical, sexual, and emotional abuse among women aged 18 years or

older who sought treatment in Emergency Departments during selected shifts

in eleven community Emergency Departments in California and

Pennsylvania. A survey respondent was classified as having suffered “past-

year prevalence of physical or sexual abuse“if she answered yes to either or

both of the following questions:

(i) “Within the past year, have you been pushed, shoved, hit, slapped,

kicked, or otherwise physically hurt by your husband, boyfriend, or

partner (or ex-husband, ex-boyfriend, or ex-partner)?

(ii) “Within the past year, has your husband, boyfriend, or partner forced

you to have sexual activities (or ex-husband, ex-boyfriend, or

ex-partner)?

Of the 1538 California respondents to the survey, 268 indicated that they had

suffered “past-year prevalence of physical or sexual abuse”. Of the 1917
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Pennsylvania respondents to the survey, 230 indicated that they had suffered

“past-year prevalence of physical or sexual abuse”. Among all women aged

18 years or older who might seek treatment in an Emergency Department in

California or Pennsylvania, let pC and pP denote the percentages in California

and Pennsylvania, respectively, who have suffered “past-year prevalence of

physical or sexual abuse“.

(a) Estimate pC and pP.

(b) Find the approximate P-value for a test of the conjecture that pC and

pP are not the same.

(c) Find an approximate 94% confidence interval for pC - pP .

9.1.13. Underwear—Importance of Design and Appearance. Wypijewski (1997)

reported on the results of a comprehensive scientific poll of American tastes in

art, as commissioned by Vitaly Komar and AlexanderMelamid in conjunction

with The Nation Institute, a nonprofit offshoot of The Nation magazine.

Random samples of 779 white, 100 African American, and 66 Hispanic

subjects were asked the question: How important would the appearance or

design of underwear be in your decision about whether or not to buy it? One

hundred forty white, thirty-two African American, and twelve Hispanic

respondents indicated that appearance or design was very important in

their decisions.

(a) Estimate the proportions of all white Americans, all African

Americans, and all Hispanic Americans for whom appearance or

design is very important in their decisions about whether or not to

buy underwear.

(b) Find an approximate 96% confidence interval for the difference

between the proportion of all white Americans and the proportion

of all African Americans for whom appearance or design is

very important in their decisions about whether or not to buy

underwear.
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(c) Find an approximate 96% confidence interval for the difference

between the proportion of all white Americans and the

proportion of all Hispanic Americans for whom appearance or design

is very important in their decisions about whether or not to buy

underwear.

(d) Find an approximate 96% confidence interval for the difference

between the proportion of all African Americans and the proportion

of all Hispanic Americans for whom appearance or design is very

important in their decisions about whether or not to buy underwear.

(e) Discuss your findings in parts (b) – (d).

9.1.14. Intimate Partner Abuse—Age Factor. Consider the study by Dearwater

et al. (1998) to determine the prevalence of intimate partner abuse among

female patients seeking treatment in community hospital Emergency

Departments, as discussed in Exercise 9.1.12. One of the questions of interest

to the investigators was whether or not age was a factor in the prevalence of

physical or sexual abuse. Of the 3455 respondents to the survey (California

and Pennsylvania combined), 1693 were in the age group 18-39 and 400 of

these women were classified as having suffered "past year prevalence of

physical or sexual abuse". One hundred of the 1762 respondents who were

at least 40 years old were classified as having suffered “past year prevalence

of physical or sexual abuse”. Among the population of all women who might

seek treatment in an Emergency Department in either California or

Pennsylvania, let p18-39 and p�40 denote the percentages of women in the

age groups 18-39 and �40, respectively, who have suffered "past-year preva-

lence of physical or sexual abuse".

(a) Estimate p18-39 and p�40 .

(b) Find the approximate P-value for a test of the conjecture that among

women who might seek treatment in an Emergency Department in

either California or Pennsylvania, those women in the age group
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18-39 are more likely to have suffered "past-year prevalence of physi-

cal or sexual abuse" than are women who are at least 40 years old.

(c) Find an approximate 98% lower confidence bound for p18-39 - p�40 .

9.1.15. Intimate Partner Abuse—Survey Respondents Versus Non-Respondents.

Consider the study by Dearwater et al. (1998) to determine the prevalence of

intimate partner abuse among female patients seeking treatment in commu-

nity hospital Emergency Departments, as discussed in Exercises 9.1.12

and 9.1.14. A total of 4641 patients were seen at the eleven Emergency

Departments in the study during the periods of data collection. As noted

previously, 3455 of these patients voluntarily agreed to respond to the survey

and be included (anonymously) in the study.

(a) What percentage of the patients voluntarily agreed to participate in

the study?

(b) Discuss possible areas of concern over potential differences between

the groups of respondents and non-respondents to this survey. How

might these potential differences impact the analyses discussed in

Exercises 9.1.12 and 9.1.14?

(c) The authors noted that the respondents to the survey were signifi-

cantly younger than were the non-respondents. Discuss the potential

impact this might have on the statistical conclusions reached in

Exercises 9.1.12 and 9.1.14.

9.1.16. Intimate Partner Abuse—Extrapolation? Consider the study by

Dearwater et al. (1998) to determine the prevalence of intimate partner

abuse among female patients seeking treatment in community hospital

Emergency Departments, as discussed in Exercises 9.1.12 and 9.1.14. In view

of the results obtained in those two exercises, do you feel that it would be

reasonable to infer that the results obtained from these data are also

applicable to:
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(a) all women aged 18 years or older who might seek treatment in an

Emergency Department anywhere in the United States?

(b) all women aged 18 years or older in Pennsylvania (using only the

Pennsylvania data) or all women aged 18 years or older in California

(using only the California data), regardless of whether or not they

might seek treatment in an Emergency Department in that state?

(c) Provide reasons for your answers.

9.2 Inference for the Difference in Medians for Any Two
Continuous Populations

When sample data X1, . . ., Xm and Y1, . . ., Yn from two populations are

numerical in nature, we are naturally interested in possible differences in the

centers of the two populations. If we had just a single X and a single

Y observation, we would estimate the difference between the centers of the

Y and X populations by the value of the single sample difference Y – X. The

information about the respective centers contained in this difference consists

of two components, its sign and its magnitude. The sign provides evidence as

to whether a typical observation from the Y population is larger or smaller

than a typical observation from the X population. The magnitude |Y – X|, on

the other hand, helps us assess the size of the difference between typical

observations from the two populations.

In order to use all of the data when there arem sample observationsX1, . . .,

Xm from the X population and n sample observations Y1, . . ., Yn from

the Y population, it is, therefore, quite natural to base any statistical assess-

ment of possible differences in the typical values and/or centers of the

two populations solely on the mn sample differences Dij ¼ Yj – Xi, for

i ¼ 1,. . ., m and j ¼ 1, . . ., n. Any reasonable statistical procedure will rely

on theseDij differences to summarize the sample information in order to make

inferences about the typical values and/or centers for theX andY populations.

9.2 Inference for the Difference in Medians for Any Two Continuous Populations 687



Where the various statistical inference procedures differ is in how they

choose to utilize this information.

If both the X and Y populations correspond to continuous measurements,

but we do not have any additional information about the shapes of the

populations (e. g., symmetry, outliers, gaps, etc.), we would typically use

the difference between the two population medians ηX and ηY, say Δ¼ ηY - ηX,

to assess the difference between the centers of the populations. An additional

indicator of the difference between typical values from the two populations

for this setting is provided by the probability statement P(X < Y). Note that

P(X < Y) represents the likelihood that a randomly chosen member from the

Y population will have a larger value than a randomly chosen member from

the X population, while Δ ¼ ηY - ηX measures the typical size of the difference

between such randomly chosen X and Y values.

Point Estimation of P(X < Y) and Δ ¼ ηY - ηX Each of the mn sample

differences Dij ¼ Yj – Xi contains information about both P(X< Y) and Δ.

For estimation of P(X < Y), we require only the signs of the Dij

differences, and the associated point estimator for P(X < Y) is

P̂ X < Yð Þ ¼ number of positive D0sþ half the number of zero D0s½ �=mn:

To calculate this estimator, we can define an indicator function I(
) as
follows:

I Dij
� � ¼ 1

:5

0

if Dij > 0

if Dij ¼ 0

if Dij < 0

ð9:12Þ

for i ¼ 1, ..., m and j ¼ 1, ..., n. Using I(
), we can write the point estimator

for P(X < Y) as

P̂ X < Yð Þ ¼
Xm
i¼1

Xn
j¼1

I Dij
� �
mn

: ð9:13Þ
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Note that in the case of no zero differences, the estimator for P(X < Y) is

simply the proportion of sample (Xi, Yj) pairs for which Xi < Yj.

To estimate Δ ¼ ηY - ηX, the signs of the Dij’s are no longer adequate,

as we now require the actual magnitudes of these differences. The

appropriate estimator for Δ without additional information about the

shapes of the populations is then the median of these differences; that is,

our point estimator for Δ ¼ ηY - ηX is

Δ̂ ¼ ~D ¼ median Dij
	 
 ¼ median Yj � Xi

	 

: ð9:14Þ

Example 9.3. You Can Lead a Slug to Food But Will It Eat? Herbivores are

animals that feed solely on plants. The interaction between herbivores and

their food sources can lead to highly coevolved systems. In particular, a

herbivore’s particular liking for a specific plant species can lead to the evolu-

tion of new plant defenses by the species through the creation over time of

internal chemical changes which are toxic (but not necessarily lethal) to the

herbivore. Such changes usually lead to decreased foraging of the now unac-

ceptable plant species by the herbivore, thereby preserving the species.

This naturally raises the question as to how quickly a herbivore is able to

recognize the increased toxicity (non-lethal, of course, as lethal toxicity is

recognized quite soon!) in a plant species. Suppose a herbivore from one

ecological environment is suddenly exposed for the first time to a toxic

plant species from another ecological environment. Will the herbivore know

immediately to select alternative non-toxic food sources? If not, will it learn to

do so relatively quickly?

One study designed to address such questions was conducted by Whelan

(1982) and part of the study involved common slugs of the species Arion

subfuscus. These slugs occur naturally in both waste sites (such as old vegeta-

ble plots, or dumps) and woodland sites. Ten medium-sized slugs were
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obtained from a relatively undisturbed patch of oak wood (woodland site) at

Gadlys Farm, Llansadwrn, North Wales and ten similar-sized slugs were

obtained from an old vegetable plot (waste site) on the same farm (but

separated from the woodland site by a road and a row of houses). Control

discs were prepared containing a gel composed of a mixture of powdered

wheat germ, powdered milk, powdered bran, sodium alginate, dissolved in

lettuce extract prepared by crushing fresh, young lettuce leaves in distilled

water. Test discs were also prepared containing a similar gel with fresh leaves

of an unacceptably toxic plant species Allium ursinum (wild garlic) found

abundantly in the woodland site of the study, but absent from the waste

site. (Thus the woodland slugs would have been previously exposed to the

toxic nature of wild garlic, while it would be new to the waste site slugs.) After

one evening of starvation during which the animals became accustomed to

their test arenas, each of the twenty slugs was exposed to an equal number of

alternating discs of control gel and test gel. The data in Table 9.3 are measured

acceptability indices (AI), corresponding to the ratio of the area of test (unac-

ceptable) gel eaten to the total area of gels eaten, for the ten woodland site and

ten waste site slugs in the study.

Table 9.3 Acceptability indices (AI) for Arion Subfuscus
from woodland and waste sites with the toxic woodland
plant Allium Ursinum (wild garlic) as test gel

Woodland site slugs (X) Waste site slugs (Y)

0.08 0.45
0.24 0.54
0.13 0.38
0.28 0.48
0.42 0.23
0.10 0.41
0.31 0.53
0.19 0.09
0.36 0.08
0.42 0.39

Source: Whelan (1982)
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Letting the X and Y labels correspond to the woodland site and waste site

slug populations, respectively, we see that we have m ¼ n ¼ 10 sample

observations from each population. Thus we need to compute mn ¼ 100

differences Dij ¼ Yj - Xi, i ¼ 1, ..., 10 and j ¼ 1, ..., 10. The R functions

outerð Þ and sortð Þ can be used on the columns of the arion_subfuscus data.

frame to obtain and order these differences as follows.

> differences <- outer(arion_subfuscus$waste,
arion_subfuscus$woodland,"-")

> sort(differences)

These calls to the R functions return the 100 ordered differences presented

in Table 9.4 for the acceptability index data in Table 9.3.

Table 9.4 Ordered differences Dij ¼ Yj - Xi for
the acceptability index (AI) data in Table 9.3

�0.34 �.04 .07 .17 .29
�0.34 �.04 .08 .17 .30
�0.33 �.04 .09 .18 .30
�0.33 �.03 .10 .19 .31
�0.28 �.03 .10 .20 .31
�0.27 �.02 .10 .20 .32
�0.23 �.01 .11 .21 .33
�0.22 �.01 .11 .22 .34
�0.20 �.01 .11 .22 .35
�0.19 �.01 .12 .23 .35
�0.19 .00 .12 .24 .35
�0.19 .01 .12 .25 .37
�0.16 .02 .13 .25 .38
�0.15 .03 .13 .26 .40
�0.13 .03 .14 .26 .40
�0.11 .03 .14 .26 .41
�0.10 .04 .15 .28 .43
�0.08 .05 .15 .28 .44
�0.05 .06 .17 .29 .45
�0.05 .06 .17 .29 .46
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Since 69 of these differences are positive and there is one zero difference, it

follows from (9.13) that the estimate for P(X < Y) is (69 + .5)/10(10) ¼ .695.

Moreover, from expression (9.14), we see that the estimate of Δ ¼ ηY - ηX is

~D ¼ D 50ð Þ þD 51ð Þ
2

, where D(1) � ... � D(100) denote the 100 ordered Dij

differences. Using the ordered values in Table 9.4, we see that our estimate

ofΔ is ~D ¼ :12þ :12
2

¼ :12. Thus, we estimate that the probability is .695 that a

randomly chosen Arion Subfuscus slug from a waste site will have a higher

AI value for the unacceptable woodland plant Allium ursinum (i. e., eat a

higher percentage of it) than a randomly chosen slug from a woodland site. In

addition, we estimate that the ratio of the area of test (unacceptable) gel eaten

to the total area of gels eaten for a typical Arion Subfuscus slug from a waste

site will be about .12 higher than the ratio for a typical slug from a woodland

site. Both estimates indicate that waste site slugs of this species are more

likely to eat the unfamiliar toxic plant Allium ursinum the first time they are

exposed to it than are similar slugs fromwoodland sites where they encounter

the unacceptable plant on a regular basis. Whelan (1982) also addressed the

question of whether the waste site slugs became more aware of the toxicity of

Allium ursinum and adjusted their eating habits after initial exposure to the

plant. (See Exercise 9.B.17.)

Confidence intervals and bounds for Δ ¼ ηY - ηX are also naturally based

on the mn ordered differences D(1) � ... � D(mn). Here, however, we must also

take into account the sampling variability associated with these differences.

To do so we consider the probability distribution of the variable

UΔ ¼ �number of differences Dij ¼ Yj � Xi, i ¼ 1, . . . ,m and j ¼ 1, . . . , n, that

are greater than the difference in population medians Δ ¼ ηY � ηX
�
:

ð9:15Þ
If the only possible difference between the X and Y distributions is in their

population medians, the probability is 1/2 that an arbitrary random
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Y - X difference will exceed Δ and we might immediately think that UΔ

(which is a sum of such counts) has a binomial distribution. However, the

Dij differences are not mutually independent, since, for example, there are

m differences that all involve Y1, and as a result the sampling distribution of

UΔ is not binomial. At first glance, we might also incorrectly think that the

sampling distribution of UΔ depends on Δ. Derivation of the probability

distribution of UΔ shows, however, that this is not the case. Lower tail

probabilities for UΔ can be obtained using the R function pwilcoxð Þ by

specifying sample sizes m and n and the value of UΔ (denoted by q in the

call of the pwilcoxð Þ function). Upper tail probabilities can easily be found by

specifying the lower.tail argument to be FALSE. Alternatively, the probability

distribution of UΔ is symmetric about the point mn/2, corresponding

to exactly one-half of the total number ofDij differences. Thus, if um,n,α denotes

the upper αth percentile for the probability distribution of UΔ for samples of

m X’s and n Y’s, the symmetry implies that 2 mn
2

� �� um,n,α ¼ mn� um,n,α is the

lower αth percentile for the probability distribution of UΔ for samples of m X’s

and n Y’s. This symmetric nature of the distribution of UΔ is illustrated in the

histogram in Fig. 9.1 for the case ofm¼ 8 and n¼ 7. The distribution is clearly

Fig. 9.1 Histogram for the distribution ofUΔ for samples ofm¼ 8 X’s and
n ¼ 7 Y’s
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symmetric about the point mn/2 ¼ 8(7)/2 ¼ 28. The upper α ¼ .076 percentile

for the distribution is indicated on the histogram to be u8,7,.076 ¼ 41 and it

follows from the symmetry of the distribution that the corresponding lower

α ¼ .076 percentile for the distribution is mn - u8,7,.076 ¼ 56 – 41 ¼ 15, as also

indicated on the histogram.

To obtain confidence intervals or bounds for the difference in medians

Δ ¼ ηY - ηX, we use the relationship between UΔ and Δ and the distribution of

UΔ (which can be obtained using the R function pwilcoxð Þ) . For any integer

q < (mn/2), we have

P
	
number of differences Dij greater than Δ is somewhere between

q and mn� qð Þ, inclusive

¼ P q � UΔ � mn� qð Þf g:

ð9:16Þ

But the event {number of differencesDij greater than Δ is somewhere between

q and (mn-q), inclusive} is equivalent to the event {D(q) < Δ < D(mn-q+1)}

involving the mn ordered Y - X differences. It follows that.

P D qð Þ < Δ < D mn�qþ1ð Þ
	 
 ¼ P q � UΔ � mn� qð Þf g, ð9:17Þ

which leads directly to the desired confidence interval for the difference in

population medians Δ ¼ ηY - ηX based on the ordered Y - X differences.

Interval Estimation of Δ ¼ ηY - ηX, the Difference in Two Population

Medians Let D(1) � ... � D(mn) be the ordered Dij ¼ Yj - Xi differences for

random samples of sizes m and n from the X and Y populations, respec-

tively. For any positive integer q < mn/2, the interval (D(q), D(mn-q+1))

provides a confidence interval for the difference in population medians

Δ ¼ ηY - ηX with confidence level given by.

CL ¼ P q � UΔ � mn� qð Þf g: ð9:18Þ
You can use the R function qwilcoxð Þ to choose a value of q that gives you

the confidence level you want. Once the value of q is chosen, the lower
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and upper endpoints of the 100CL% confidence interval (D(q), D(mn-q+1))

for Δ ¼ ηY - ηX are simply the qth smallest (up from the bottom) and qth

largest (down from the top) ordered Y - X differences, respectively.

Separate lower and upper confidence bounds for the difference in

medians Δ ¼ ηY - ηX with confidence level

CL ¼ 1� P UΔ � mn� q∗ þ 1ð Þf g ð9:19Þ
are given by the q*th smallest, D(q*), and q*th largest, D(mn-q*+1), ordered

differences, respectively.

Example 9.4. Interval Estimation for the Difference in Median Acceptabil-

ity Indices for the Two Slug Populations Suppose we want roughly a 95%

confidence interval for Δ ¼ ηY - ηX. We use the R functions qwilcoxð Þ and

pwilcoxð Þ to find that, withm¼ 10 and n¼ 10, P{UΔ� 76}¼ .026¼ (1 - .948)/2.

We first find the smallest value of (mn – q + 1) such that P{UΔ �
(mn – q + 1)}� 0.05/2¼ 0.025 by calling the qwilcoxð Þ function with p¼ 0.025.

> qwilcox(p = 0.025, m = 10, n = 10, lower.tail = FALSE)
[1] 76

We then obtain P{UΔ � 76} ¼ P{UΔ > 75} by setting (mn – q + 1) ¼ 75 and

calling pwilcoxð Þ.

> pwilcox(75, m = 10, n = 10, lower.tail = FALSE)
[1] 0.02621295

Thus, taking (mn – q + 1) ¼ {10(10) – q + 1} ¼ 76 provides us with a 94.8%

confidence interval for Δ, very close to our target of 95% confidence. More-

over, this tells us that D(76) will be the upper endpoint of our confidence

interval. To find the lower endpoint we solve 76 ¼ mn – q + 1 for q, to obtain

q ¼ 101 – 76 ¼ 25 so that our lower endpoint is D(25). (Note that we are really

just finding how far down the 76th ordered D is from the largest D and

counting the same number (25) of ordered D’s up from the smallest D.)
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Hence, the 94.8% confidence interval for Δ ¼ ηY - ηX is defined by the 25th

smallest and 25th largest ordered Dij differences. Using the ordered accept-

ability indices differences presented in Table 9.4, we are thus 94.8% confident

that Δ ¼ ηY - ηX is somewhere in the interval (D(25), D(100-25+1)) ¼ (D(25),

D(76)) ¼ (�.03, .26).

Fortunately, we can avoid all of the trouble above by using the R function

wilcox:testð Þ to construct the confidence interval for Δ. (Note, however, that

we include the discussion above because it’s useful to know what’s going on

behind the scenes in these functions!)

The following call toR provides both the point estimate ofΔ and the 94.8%

confidence interval for Δ.

> wilcox.test(arion_subfuscus$waste,
        arion_subfuscus$woodland,
        conf.int = TRUE,
        conf.level = 0.948,
        correct = FALSE)

     Wilcoxon rank sum test

data:  arion_subfuscus$waste and arion_subfuscus$woodland
W = 69.5, p-value = 0.1402
alternative hypothesis: true location shift is not equal to 0
94.8 percent confidence interval:
-0.02997508  0.26005092
sample estimates:
difference in location
        0.1199828 

To test the null hypothesis H0: ηY ¼ ηX (Δ ¼ 0) we use the statistic

U ¼ mnP̂ X < Yð Þ, where P̂ X < Yð Þ is the point estimator of P(X < Y) given

in (9.13). Thus

U ¼
Xm
i¼1

Xn
j¼1

Dij: ð9:20Þ

Example 9.5. Computation of the Statistic U. We illustrate the computation

of the statistic U (9.20) for the slug Acceptability Indices data in Table 9.3.

Letting the waste site slugs correspond to the Y population and the woodland
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slugs to the X population, we found in Example 9.3 that P̂ X < Yð Þ ¼ :695 for

these data. Since m ¼ n ¼ 10, it follows that U ¼ (10)(10(.695) ¼ 69.5.

The next important question is how to use the value of the statistic

U computed from the X and Y samples to conduct appropriate tests of the

null hypothesis H0: ηY ¼ ηX (Δ ¼ 0). If H0 is true and the X and Y population

medians are equal, then we would expect roughly one-half of the Dij

differences are be positive, corresponding to U being close to mn/2. Large

values of U (closer to mn) would be indicative of the alternative Δ ¼ ηY –

ηX > 0, and similarly, small values ofU (closer to 0) would be indicative of the

alternative Δ < 0. To assess the implication of a particular observed value of

U, we can rely on the probability distribution of U when the null hypothesis

H0: Δ ¼ 0 is true. Since U corresponds to UΔ (9.15) under the null hypothesis

Δ ¼ 0, our previous discussion about the probability distribution of U0 can be

used here as well. Lower tail probabilities for U can be obtained using the

R function pwilcoxð Þ by specifying sample sizes m and n and the value of

U (denoted by q in the call of the pwilcoxð Þ function). Upper tail probabilities

can easily be found by specifying the lower.tail argument to be FALSE.

Hypothesis Tests for the Difference in Two Population Medians

Δ ¼ ηY - ηX To test the null hypothesis H0: ηY ¼ ηX (Δ ¼ 0) for arbitrary

continuous X and Y populations, compute the statistic U (9.20) and let

uobs be the attained sample value of U. The exact P-values for a test of H0

against the alternatives HA are then:

HA P-value

ηY > ηX P U � uobsð Þ ð9:21Þ
ηY < ηX P U � uobsð Þ ð9:22Þ

ηY 6¼ ηX 2P U � uobsð Þ, if uobs � mn
2

2P U � uobsð Þ, if uobs < mn
2
: ð9:23Þ
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To compute any of these P-values for given sample sizes m and n and

observed value uobs, we can use the R function pwilcoxð Þ.

Example 9.6. Testing for Median Acceptability Indices of Woodland Slugs

Versus Waste Site Slugs In his study, Whelan (1982) was interested in

whether there would be a difference in the median feeding habits for the

woodland slugs, who had prior exposure to the toxic woodland plant Allium

Ursinum (wild garlic) and that for the waste site slugs, for whom this was their

first exposures to the plant. We consider here the test ofH0: ηY ¼ ηX versus the

two-sided alternative HA: ηY 6¼ ηX, since the discussion in Whelan (1982)

provides reasonable arguments for the possibility of either directional alter-

native to the null H0. The observed value of the statistic U (9.20) was found in

Example 9.5 to be uobs ¼ 96.5, which is greater than mn
2 ¼ 10 10ð Þ

2 ¼ 50. Using the

R function wilcox:testð Þ we find that the P-value for our test of H0: ηY ¼ ηX
versus HA: ηY 6¼ ηX is 2 P(U � 69.5) ¼ 0.1506.

> wilcox.test(arion_subfuscus$waste, arion_subfuscus$woodland)

Wilcoxon rank sum test with continuity correction

data:  arion_subfuscus$waste and arion_subfuscus$woodland
W = 69.5, p-value = 0.1506
alternative hypothesis: true location shift is not equal to 0

(Note that the R function refers to U as W. Don’t let this confuse you!)

Thus we would reject H0: ηY ¼ ηX in favor of the two-sided alternative

HA: ηY 6¼ ηX only for significance levels greater than or equal to .1056. This

suggests that there is not sufficient evidence in the sample data to indicate that

the median acceptability indices (to Allium Ursinum) for the two populations

of slugs are different.

The result of our hypothesis test is in agreement with the 94.8% confidence

interval (D(25), D(76)) ¼ (�.03, .26) for Δ ¼ ηY - ηX previously obtained in
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Example 9.4, since 0 belongs to that interval and therefore cannot be rejected

as a possible value for Δ. On the other hand, recall that both of our point

estimates P̂ X < Yð Þ ¼ :695 and Δ̂ ¼ :12 from Example 9.3 had suggested that

waste site slugs of this species are more likely to eat wild garlic the first time

they are exposed to it than are similar slugs from woodland sites where they

encounter the plant on a regular basis. However, once we take into account

the innate variability associated with our sampling process (through the use

of either the confidence interval or the hypothesis test) we realize that we

cannot attach statistical significance to these point estimates. This illustrates

an important fact: Statistical significance cannot be concluded from point

estimates alone. We must take into account the natural variability associated

with the sampling process through either a confidence interval or a hypothe-

sis test before we can assert that our results are statistically significant.

Large Sample Approximations The confidence intervals/bounds and

hypothesis tests for the difference in medians Δ ¼ ηY - ηX make use of the

probability distribution of the variable UΔ (9.15) for arbitrary Δ and under

the null hypothesis setting corresponding to Δ¼ 0. A third option is provided

by a two-sample central limit theorem (similar to those used in Chap. 7 to

approximate the probability distributions of several important one-sample

statistics). See, for example, Chap. 4 in Hollander, Wolfe, and Chicken (2014)

for details.

Rank Sum Statistic. The procedures prescribed in Eqs. (9.21) – (9.23) for

testing H0: ηY ¼ ηX against one- or two-sided alternatives are based on the

counting statistic U (9.20). These tests can also be based on the joint ranks of

the m X’s and n Y’s in the combined sample of N ¼ (m + n) observations, with

average ranks used to break tied observations. (In Chap. 1 we employed this

same approach to compare typical observations from two data collections. See
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Example 1.22 for a numerical illustration of how average ranks are used to

break tied observations in the joint ranking.) Define the rank sum statistic, W,

to be the sum of these joint ranks assigned to the Y observations. Letting R1, ...,

Rn denote the joint ranks assigned to the n Y observations Y1, ..., Yn, respec-

tively, the statistic W corresponds to the sum of these Y sample joint ranks;

that is,

W ¼
Xn
j¼1

Rj:

We illustrate the computation of the statistic W using the slug Acceptability

Indices data in Table 9.3. The joint ranks (using average ranks to break the

ranking ties for the two 0.08 and two 0.42 values) for the observations in the

two samples are given in Table 9.5.

Thus the observed joint ranks for the waste site slugs (Y’s) are: r1 ¼ 17,

r2 ¼ 20, r3 ¼ 12, r4 ¼ 18, r5 ¼ 7, r6 ¼ 14, r7 ¼ 19, r8 ¼ 3, r9 ¼ 1.5, and r10 ¼ 13.

Summing these combined sample Y-ranks, we find the observed value of the

ranksumstatisticW tobewobs¼ [17+20+12+18+7+14+19+3+1.5+13]¼124.5

for the slug Acceptability Indices data.

We note that the rank sum statistic W is directly related to the count

statistic U (9.20) that is used in our tests of H0: ηY ¼ ηX. In fact, if there are

Table 9.5 Joint ranks for the acceptability indices (AI) data in Table 9.3

Woodland site Joint ranks Waste site Joint ranks

0.08 1.5 0.45 17
0.24 8 0.54 20
0.13 5 0.38 12
0.28 9 0.48 18
0.42 15.5 0.23 7
0.10 4 0.41 14
0.31 10 0.53 19
0.19 6 0.09 3
0.36 11 0.08 1.5
0.42 15.5 0.39 13
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no ties among the combined sample observations they are linearly related by

the expression

W ¼ U þ n nþ 1ð Þ
2

:

You are asked to prove this relationship in Conceptual Exercise 9.A.1.

Section 9.2 Practice Exercises

9.2.1. For random samples of m ¼ 3 and n ¼ 2 observations from the X and

Y populations, respectively, list all possible values for the estimator P̂ X < Yð Þ
in expression (9.13) when there are no tied observations.

9.2.2. Let {3, 17, �4, 19, 6, 22, 76} and {4, 12, 39, 0, 15, �12} be independent

random samples for the continuous random variables X and Y, respectively.

Use these sample data to estimate P(X < Y).

9.2.3. Let {2.6, 3.5, �6.7, 12.2, 14.8, 19.3, �26.9, 18.8, 97.9, 0.4} and {3.3, 18.9,

�5.5, 22.4, 17.0, �16.8, 9.0, 5.5} be independent random samples for the

continuous random variables X and Y, respectively. Use these sample data

to estimate P(X < Y).

9.2.4. Let {2, 5.3, 9} and {4, 6.6, 17.3, 10} be independent random samples

for the continuous random variables X and Y with medians ηX and ηY,

respectively. Let Δ ¼ ηY - ηX and evaluate the median difference estimator

Δ̂ ¼ ~D (9.14) for these data.

9.2.5. Let {2.6, 3.5, �6.7, 12.2, 14.8, 19.3, �26.9, 18.8, 97.9, 0.4} and {3.3,

18.9, �5.5, 22.4, 17.0, �16.8, 9.0, 5.5} be independent random samples for

the continuous random variables X and Y with medians ηX and ηY, respec-

tively. Let Δ ¼ ηY - ηX and evaluate the median estimator Δ̂ ¼ ~D (9.14) for

these data.
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9.2.6. Let {3.5, 3.7, 4.0, 3.6, 3.7} and {3.8, 3.9, 4.3, 4.2, 4.6} be independent

random samples for the continuous random variables X and Y, respectively.

Use these sample data to estimate P(X < Y) and evaluate the median estima-

tor Δ̂ ¼ ~D (9.14). Comment on the differences in the information about the

sample data conveyed by these two estimates.

9.2.7. Let {3.5, 3.7, 4.0, 3.6, 3.7} and {27.4, 29.3, 3.0, 3.3, 20.6} be independent

random samples for the continuous random variables X and Y, respectively.

Use these sample data to estimate P(X < Y) and evaluate the median estima-

tor Δ̂ ¼ ~D (9.14). Comment on the differences in the information about the

sample data conveyed by these two estimates. Contrast this to the situation

for the sample data in Exercise 9.2.6.

9.2.8. Consider the setting where we have independent random samples of

m ¼ 8 X’s and n ¼ 9 Y’s. Use the R function qwilcoxð Þ to find the value of q so

that (D(q), D(73-q)) provides a confidence interval for the difference in popula-

tion medians Δ ¼ ηY - ηY with confidence level CL close to .95.

9.2.9. Consider the setting where we have independent random samples

of m ¼ 7 X’s and n ¼ 6 Y’s. Use the R function qwilcoxð Þ to find the value of q*

so that D(43-q*) provides an upper confidence bound for the difference in

population medians Δ ¼ ηY - ηY with confidence level CL close to .90.

9.2.10. Let {2, 5.3, 9, 6.6} and {4, 17.3, 10} be independent random samples

for the continuous random variables X and Y with medians ηX and ηY,

respectively, and let Δ ¼ ηY - ηX.

(a) Find a 94.2% confidence interval for Δ.

(b) Find a 94.3% lower confidence bound for Δ.

9.2.11. Let {2.6, 3.5, �6.7, 12.2, 14.8, 19.3, �26.9, 18.8, 97.9, 0.4} and {3.3, 18.9,

�5.5, 22.4, 17.0, �16.8, 9.0, 5.5} be independent random samples for the

702 9 Statistical Inference for Two Populations–Independent Samples



continuous random variables X and Y with medians ηX and ηY, respectively,

and let Δ ¼ ηY - ηX.

(a) Find a 95.6% confidence interval for Δ.

(b) Find a 98.3% upper confidence bound for Δ.

9.2.12. For random samples of m ¼ 3 and n ¼ 2 observations from the X and

Y populations, respectively, list all possible values for the count statistic

U (9.20) when there are no tied observations.

9.2.13. Let X1, . . ., X5 and Y1, . . ., Y6 be independent random samples of

sizes m ¼ 6 and n ¼ 5 from a continuous distribution. Let U be the count

statistic in (9.20) and assume no ties between the X and Y observations.

(a) What are the possible values for U?

(b) Find P(U � 26).

(c) Find P(U � 5).

(d) Use symmetry of the distribution of U to find P(U � 4).

9.2.14. Let X1, . . ., X5 and Y1, . . ., Y5 be independent random samples of

sizes m ¼ 5 and n ¼ 5 from a continuous distribution. Let U be the count

statistic in (9.20) and assume no ties between the X and Y observations.

(a) What are the possible values for U?

(b) Find P(U � 19).

(c) Find P(U � 3).

(d) Use symmetry of the distribution of U to find P(U � 22).

9.2.15. Let {2, 5.3, 9, 6.6} and {4, 17.3, 10} be independent random samples

for the continuous random variables X and Y with medians ηX and ηY,

respectively, and let Δ ¼ ηY - ηX.

(a) Find the value, uobs, of the count statisticU (9.20) for testingH0:Δ¼ 0.

(b) If Δ ¼ 0, compute P(U � uobs) and P(U � uobs).
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9.2.16. Let {2.6, 3.5, �6.7, 12.2, 14.8, 19.3, �26.9, 18.8, 97.9, 0.4} and {3.3,

18.9, �5.5, 22.4, 17.0, �16.8, 9.0, 5.5} be independent random samples for

the continuous random variables X and Y with medians ηX and ηY, respec-

tively, and let Δ ¼ ηY - ηX.

(a) Find the value, uobs, of the count statisticU (9.20) for testingH0:Δ¼ 0.

(b) If Δ ¼ 0, compute P(U � uobs) and P(U � uobs).

9.2.17. House Sizes as Related to Lot Sizes in North Carolina. The dataset

house_lot_sizes contains information about house and lot sizes for a random

sample of 100 properties in Wake County, North Carolina, as collected by

Woodard and Leone (2008). Consider two subsets of this dataset

corresponding to the smallest 25 lot sizes (in acreage) and the largest 25 lot

sizes (in acreage), respectively. Viewing these two subsets as representative

samples of “small” and “large” lot sizes in Wake County, North Carolina,

conduct the following analyses under the assumption that the populations of

house sizes (in square feet) in Wake County, North Carolina for these two

categories have medians ηsmall and ηlarge, respectively.

(a) Estimate the difference in median house sizes, ηlarge � ηsmall.

(b) Find a confidence interval for ηlarge � ηsmall. Choose your own reason-

able confidence level.

(c) Find the P-value for a test of H0: ηlarge ¼ ηsmall against the one-sided

alternative HA: ηlarge > ηsmall. What is your decision at significance

level .02?

9.2.18. Do Women’s Hearts Beat Faster than Men’s? Mackowiak et al. (1992)

collected heart rate data from 148 individuals aged 18 through 40 years. The

dataset body_temperature_and_heart_rate contains heart rate values (artificially

generated by Shoemaker 1996, to closely recreate the original data considered

by Mackowiak et al.) for 65 male and 65 female subjects. Conduct the follow-

ing analyses under the assumption that the median heart rate for women is ηF

and the median heart rate for men is ηM.
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(a) Estimate the difference in median heart rates ηF � ηM.

(b) Find a confidence interval for ηF � ηM. Choose your own reasonable

confidence level.

(c) Find the P-value for a test of H0 : ηF ¼ ηM against the one-sided

alternative HA: ηF > ηM. What is your decision at significance

level .030?

9.2.19. Diamonds—Does Color Matter? In the February 18, 2000 edition of

Singapore’s Business Times, an advertisement (discussed in Chu, 2001) listed

data (weight in carats, color purity, grade of clarity, certification body, and

value in Singapore dollars) for 308 round diamond stones. These data are

provided in the dataset diamonds_carats_color_cost. The top color purity grade

is D and the rating moves down the alphabet E, F, G, . . ..for successively

lower grades of color purity. Separate the 308 diamonds in the dataset into

two groupings, those with either a D or E color purity grade (60 diamonds)

and those with color purity grades of F or lower (248 diamonds). Viewing

these data as random samples of sizesm¼ 60 and n¼ 248 diamonds from the

populations of all round diamond stones with a color purity grade of D or E

and those with a color purity grade of F or lower, respectively, complete the

following statistical analyses under the assumption that the populations for

these two color categories have median values (in Singapore dollars) ηD,E and

ηF or lower, respectively.

(a) Estimate the difference in median diamond value ηD,E � ηF or lower.

(b) Find a lower confidence bound for ηD,E � ηF or lower. Choose your own

reasonable confidence level.

(c) Find the P-value for a test of H0: ηD,E ¼ ηF or lower against the

one-sided alternative HA: ηD,E > ηF or lower. What is your decision at

significance level .040?
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9.2.20. Movie Lengths and Ratings. TheMovie and Video Guide is a ratings and

information guide to movies prepared annually by Leonard Maltin. Moore

(2006) selected a random sample of 100 movies from the 1996 edition of the

Guide. He compiled the dataset movie_facts containing relevant information

about the selected movies. Two of the pieces of information provided are the

rating that Maltin gave each of the movies on a rising (worst to best) scale of

1, 1.5, 2, 2.5, 3, 3.5, 4 and the running time of the movie in minutes. Divide

the 100 movies in the sample into two subsets, corresponding to movies

with ratings of at least 3 (n ¼ 31 movies) and those with ratings of less than

3 (m ¼ 69 movies). Complete the following statistical analyses under the

assumption that the populations of high rated (�3) and low rated (< 3)

movies have median running times η�3 and η<3, respectively.

(a) Estimate the difference in median running times η�3 � η<3.

(b) Find a confidence interval for η�3 � η<3. Choose your own reasonable

confidence level.

(c) Find the P-value for a test of H0: η�3 ¼ η<3 against the two-sided

alternative HA: η�3 6¼ η<3. What is your decision at significance

level .070?

9.2.21. How Well Does Your Beer Hold Its Foam? Two features of bottled beer

that are important to beer consumers are the amount of initial head formation

when a beer is poured and how long the head lasts. Ault et al. (1967)

measured the height of the initial head formation upon pouring, the percent-

age adhesion of the head, and the percentage collapse of the head 4 min after

pouring for 20 bottles selected from two different production lots of the beer.

The dataset beer_head contains the results of their study. Complete the follow-

ing statistical analyses under the assumption that η1 and η2 are the median

percentage head collapse 4 min after pouring for bottles of beer from the first

and second production lots, respectively.
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(a) Estimate the difference in median percentage collapse η1 � η2.

(b) Find a confidence interval for η1 � η2. Choose your own reasonable

confidence level.

(c) Find the P-value for a test of H0: η1 ¼ η2 against the two-sided alter-

native HA: η1 6¼ η2. What is your decision at significance level .033?

9.2.22. Meniscal Repair—FasT-Fix Sutures or Arrows? Surgery is most often

the only option when faced with a torn medial meniscus—but what is the best

surgical method for the repair? Borden et al. (2003) studied the performance

characteristics of three different meniscal repair techniques, namely, the FasT-

Fix Meniscal Repair Suture System (FasT-Fix), the use of biodegradable

Meniscus Arrows (MA), and the Vertical Mattress Sutures (VMS) approach.

Human cadaveric knees were used in the study, with six randomly assigned

to each of the three meniscal surgery techniques. Each repaired meniscus was

loaded into a servohydraulic device and cycled between 5 and 50 Newtons

(N) at 1 Hz for 500 cycles. After cycle testing, the meniscus was subjected to

tension loading at a slow rate of 5 mm/min (similar to the type of stresses that

a meniscus might have to deal with during early rehabilitation) until failure of

the repair occurred. The dataset meniscal_repairs_load_at_ failure contains the

load at failure (Newtons (N)), a displacement measure (mm), and a stiffness

measure (N/mm) for each of the 18 repaired menisci. Conduct the following

analyses under the assumption that the median load to failure for the FasT-Fix

repair technique is ηFastT � Fix and the median load to failure for the Meniscus

Arrows (MA) technique is ηMA.

(a) Estimate the difference in median load to failure ηFasT � Fix - ηMA.

(b) Find a confidence interval for ηFasT � Fix � ηMA. Choose your own

reasonable confidence level.

(c) Find the P-value for a test of H0: ηFasT � Fix ¼ ηMA against the

one-sided alternative HA: ηFasT � Fix > ηMA. What is your decision at

significance level .047?
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9.2.23. Meniscal Repair—FasT-Fix Sutures or Vertical Mattress Sutures?

Consider the study of meniscal repair techniques by Borden et al. (2003)

discussed in Exercise 9.2.22. Conduct the following analyses under the

assumption that the median displacement (mm) for the FasT-Fix repair tech-

nique is ηFasT � Fix and the median displacement (mm) for the Vertical Mattress

Sutures (VMS) technique is ηVMS.

(a) Estimate the difference in median displacement ηFasT � Fix � ηVMS.

(b) Find a confidence interval for ηFasT � Fix � ηVMS. Choose your own

reasonable confidence level.

(c) Find the P-value for a test of H0 : ηFasT � Fix ¼ ηVMS against the

two-sided alternative HA : ηFasT � Fix 6¼ ηVMS. What is your decision

at significance level .078?

9.3 Approximate Inference for the Difference in Means
for Two Populations–Procedures Based on the Two Sam-
ple Averages and Sample Standard Deviations

In Sect. 2 we discussed exact statistical inference procedures for the differ-

ence in medians of two arbitrary continuous distributions. In this section, we

consider an approximate approach to making statistical inferences about the

difference in population means that is applicable to virtually all underlying

distributions.1 Once again these approximate inferences will rely on a central

limit theorem for their justification, this time one which requires that both

sample sizes, m and n, are sufficiently large.

Two-Sample Central Limit Theorem for Sample Averages. Let �X and �Y be

the sample averages and SX and SY the sample standard deviations for

independent random samples X1, ..., Xm and Y1, ..., Yn, from arbitrary

1 The only requirement is that the variances exist for both populations. Neither underlying
normality nor equal population variances is required for the procedures of this section.
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distributions for which the population means, μX and μY, and the population

standard deviations, σX and σY, are all finite, but unknown. The natural

estimator for the difference μY - μX is the observed difference in the sample

averages �Y� �X. The mean for �Y� �X is μ �Y� �X ¼ μY � μX and the variance for

�Y� �X is given by the sum of the variances for the separate sample averages;

that is,

σ2�Y� �X ¼ σ2�Y þ σ2�X ¼ σ2Y
n

þ σ2X
m

and the corresponding standard deviation for �Y� �X is.

σ �Y� �X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Y
n

þ σ2X
m

r
:

It then follows from a standard central limit theorem that for large sample

sizes, m and n, the standardized variable

Z ¼
�
�Y� �X

�� μY � μXð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Y
n þ σ2X

m

q ð9:24Þ

has an approximate standard N(0, 1) distribution. Of course, Z (9.24) cannot

be used directly to make inferences about μY - μX, since the population

variances σ2X and σ2Y are both unknown. However, we can use the X and

Y sample variances, S2X and S2Y, to estimate σ2X and σ2Y, respectively, in

expression (9.24) to yield

Z∗ ¼
�
�Y� �X

�� μY � μXð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2Y
n þ S2X

m

q : ð9:25Þ

Fortunately, we have available yet another central limit theorem that enables

us to state that the sampling distribution of the variable Z* in (9.25) can also be

well-approximated by the standard N(0, 1) distribution when the sample

sizes, m and n, are both large.
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This fact is exactly what is needed to establish approximate interval

estimates for the difference in means, μY - μX. These approximate interval

estimates are centered at the point estimator �Y� �X. The length of the interval

is determined in part by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2Y
n

þ S2X
m

s
, the estimated standard error of �Y� �X,

and in part by the desired confidence. The target confidence interval

endpoints are obtained from the appropriate percentiles of the N(0, 1)

distribution.

Approximate Interval Estimation of the Difference in Population

Means, Δ ¼ μY - μX, for Two Populations with Finite Variances The

approximate 100CL% confidence interval for μY - μX is given by the

interval.

�Y� �X � z 1�CLð Þ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2Y
n

þ S2X
m

s
; �Y� �X þ z 1�CLð Þ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2Y
n

þ S2X
m

s0@ 1A, ð9:26Þ

where z(1-CL)/2 is the upper ((1-CL)/2)th percentile for the

standard normal distribution. The corresponding approximate 100CL%

lower and upper confidence bounds for μY - μX are given by

�Y� �X � z1�CL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2Y
n

þ S2X
m

r
and �Y� �X þ z1�CL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2Y
n

þ S2X
m

s
, respectively.

Example 9.7. Are there Ethnic Differences in Smoking Habits? Lung cancer

and chronic obstructive pulmonary disease (COPD) are diseases primarily

associated with cigarette smokers. Within the population of cigarette

smokers, however, the incidence and mortality of these two diseases differ

between black and white smokers, indicating potentially different cigarette-

smoking behaviors or patterns for these two groups of smokers. In a study to

gather information about such possible differences, Pérez-Stable et al. (1998)
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gathered data on 40 African American and 39 Caucasian smokers in the San

Francisco area. Participating smokers were screened to be in good health,

between the ages of 21 and 64, and self-identified as non-Latino Caucasian or

African American. Potential subjects were excluded from the study for habit-

ual use of any prescription medication, narcotic or sedative drug addiction, or

long-term alcoholism. Pregnant females were also excluded from participa-

tion in the study. The 40 African American and 39 Caucasian smokers selected

to participate in the study were matched by gender (approximately 50%

female in each group) and age (within 5 years), as well as by self-reported

cigarette consumption of either 1 to 9 or 10 or more cigarettes per day. Pérez-

Stable et al. measured a large number of variables for these participants in an

attempt to provide insight into the differential smoking habits for these two

ethnic groups. Among the variables measured were the type of cigarette

smoked (menthol versus non-menthol) and the associated nicotine intake

per cigarette smoked. They found that 31 of the 40 African American

participants smoked menthol cigarettes, while only 2 of the 39 Caucasian

participants were menthol smokers. (You are asked in Exercise 9.B.19 to use

these data to obtain a confidence interval for the difference between the

proportions of all African American and Caucasian smokers who use menthol

cigarettes.) Pérez-Stable et al. also found that the average nicotine intake per

cigarette for the 40 African American smokers in the studywas 1.41mg, with a

sample standard deviation of 0.80 mg. For the 39 Caucasian smokers in the

study, the average nicotine intake per cigarette was 1.09 mg, with a sample

standard deviation of 0.74 mg. Letting X correspond to the population of

Caucasian smokers and Y to the population of black smokers, we estimate

the difference, μY - μX, in mean nicotine intake per cigarette smoked between

African American and Caucasian smokers to be �y� �x ¼ 1:41� 1:09 ¼ :32 mg.

To obtain an approximate 94% lower confidence bound for μY - μX, we first

find the appropriate standard normal percentile, z.06 ¼ 1.555. The approxi-

mate 94% lower confidence bound for μY - μX is then given by
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�
�y� �x

�� z:06

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2Y
n
þ s2X

m

r
¼ :32� 1:555

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:80ð Þ2
40

þ :74ð Þ2
39

s
¼ :32� :2695 ¼ :0505mg:

Thus we are approximately 94% confident that the average nicotine intake per

cigarette for African American smokers is at least .0505 mg higher than the

average nicotine intake per cigarette for Caucasian smokers.

The magnitude (.0505 mg) of the lower bound is not as important in this

study as the simple fact that it is positive. The lower bound being positive

implies that there is strong sample evidence that the per-cigarette nicotine

intake for a typical African American smoker is greater than the per-cigarette

nicotine intake for a typical Caucasian smoker. This result should not, of

course, be taken as any indication that a particular brand of cigarettes affects

African American and Caucasian smokers differently. The observed differ-

ence in per-cigarette nicotine intake is most definitely tied to the type (men-

thol versus non-menthol) of cigarettes preferred by African American and

Caucasian smokers (see Exercise 9.B.19). In addition, nothing in our discus-

sion here addresses possible differences in the total amount of nicotine intake

for typical African American and Caucasian smokers. That issue would

depend not only on the type but also on the typical number of cigarettes

smoked per day by each group.

To find approximate P-values for hypothesis tests about the difference in

means μY - μX for arbitrary populations with finite variances, we once again

make use of the variable Z* (9.25).

Approximate Hypothesis Tests about the Difference in Population

Means, Δ ¼ μY - μX, for Two Populations with Finite Variances To

test the null hypothesis H0: [μX ¼ μY] with two-sample data from arbi-

trary populations with finite variances, compute the statistic Z* (9.25)

under the null hypothesis condition that μX ¼ μY, namely,
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Z∗ ¼
�Y� �Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2Y
n þ S2X

m ,
q ð9:27Þ

and let z∗ be the attained value of Z∗. Then, the approximate P-value for

populations with finite variances for a test of H0 against the alternatives

HA are:

HA P-value

μY > μX � P Z∗ � z∗ð Þ ð9:28Þ
μY < μX � P Z∗ � z∗ð Þ ð9:29Þ
μY 6¼ μX � 2P Z∗ � z∗ð Þ, if z∗ � 0

� 2P Z∗ � z∗ð Þ, if z∗ < 0, ð9:30Þ

where Z∗ � N(0, 1).

Example 9.8. Ethnic Differences in Smoking Habits. In searching for possi-

ble reasons for the higher incidence and morbidity of lung cancer among

African American smokers, Pérez-Stable et al. (1998) were interested in,

among other things, testing whether cigarettes chosen by African American

smokers provided more nicotine intake per cigarette on the average than do

those selected by Caucasian smokers. Using the notation of Example 9.7, this

corresponds to testing the null hypothesis H0: [μY ¼ μX] against the one-sided

alternative HA: [μY > μX]. From Example 9.7, we know that the difference in

sample averages is �y� �x ¼ :32 mg and the standard deviations for the

samples of Caucasian and African American smokers are sX ¼ .74 mg and

sY ¼ .80 mg, respectively. Computing the statistic Z∗ (9.40), we see that.

z∗ ¼ �y� �xffiffiffiffiffiffiffiffiffiffiffiffiffi
s2Y
n þ s2X

m

q ¼ :32ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:80ð Þ2
40 þ :74ð Þ2

39

q ¼ 1:846:

Hence, using (9.28) and the standard normal distribution, the approximate

P-value for our test of H0: [μY ¼ μX] versus HA: [μY > μX] is approximately
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P(Z∗ � 1.846) ¼ . 0322. Thus there is relatively strong evidence in these

sample data to support the Pérez-Stable et al. conjecture that the average

nicotine intake per cigarette is higher for cigarettes (primarily menthol) cho-

sen by African American smokers than for cigarettes (primarily non-menthol)

of choice for Caucasian smokers.

Improved Approximations for Moderate Sample Sizes. We invoked

two-sample central limit theorems to justify using the standard normal distri-

bution as an approximation to the exact distribution of the variable Z* (9.25).

This enables us to construct approximate confidence intervals/bounds for

and test hypotheses about the difference in means μY - μX for populations with

finite variances. When both of the sample sizes, m and n, are sufficiently large

(at least 25), this standard normal approximation is quite adequate. However,

for moderate sample sizes (between 5 and 25) the sampling distribution of Z*

(9.25) can be better approximated by the t-distribution with ‘degrees of

freedom’.

df ¼
S2X
m þ S2Y

n

� �2
S2
X
m

� �2

m�1 þ
S2
Y
n

� �2

n�1

: ð9:31Þ

From previous discussion in this text, we know that the degrees of free-

dom for a t-distribution must be a positive integer. However, the ‘degrees of

freedom’ df defined by (9.31) will, in general, not be an integer. Several

different approaches have been proposed to deal with this situation, includ-

ing: (i) interpolation using the two t-distributions with degrees of freedom

corresponding to the positive integers immediately above and below df,

respectively, (ii) use of a computer algorithm to numerically approximate

the required probabilities associated with the non-integer degrees of freedom

df, and (iii) a conservative approach based on the single t-distribution with

integer degrees of freedom equal to [[df]], where [[u]] is the greatest positive
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integer less than or equal to u. (Thus, for example, if we obtain the value

df ¼ 7.45 from Eq. (9.31), then we would use a t-distribution with [[7.45]] ¼ 7

degrees of freedom in this conservative approach.) In this text we take the

conservative approach (iii) based on use of the t-distribution with degrees of

freedom equal to [[df]] to improve the approximate inference procedures for

the difference in means μY - μX based on Z* (9.25).

For the approximate 100CL% confidence interval for μY - μX this simply

involves replacing the standard normal percentile z(1-CL)/2 in expression (9.26)

by the corresponding percentile t[[df]],(1-CL)/2 for the t-distribution with [[df]]

degrees of freedom. Similarly, for the 100CL% confidence bounds for μY - μX,

z1-CL is replaced by t[[df]],1-CL.

To use this approach to improve the approximation for any of the P-values

in (9.28) - (9.30) when the sample sizes are only moderately large (between

5 and 25), we simply evaluate the relevant probabilities using the t-distribu-

tion with [[df]] degrees of freedom, rather than the standard normal distribu-

tion. Thus, using this t-distribution approach, when the observed value of Z*

(9.27) is z∗, the approximate P-value for testing H0: [μY ¼ μX] against the

alternative HA: [μY > μX], for example, is P(T � z∗), where T has a t-distribu-

tion with [[df]] degrees of freedom.

Example 9.9. Can Goggled Green Turtle Hatchlings Find Their Way

To the Sea? Almost immediately upon hatching in their beach nests, green

turtle (Chelomia mydas) young begin moving toward the sea. One of the

mechanisms suggested for this instinctive ability of green turtle hatchlings

to find the sea is that they react positively to light sources (called positive

phototropotaxis), since for many natural nesting beaches the open seaward

horizon is much brighter than the darker landward vegetation. Mrosovsky

and Shettleworth (1974) studied some of the details surrounding the mecha-

nism of this reaction to light by hatchling green turtles. In particular, they

were interested in whether the direction of the source of visual inputs (thus
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affecting which parts of the retina are stimulated) had an effect on the

orientation and sea-finding ability of such hatchlings. In one of their

experiments, Mrosovsky and Shettleworth selected 36 green turtle hatchlings

on a beach in Bigisanti, Surinam and randomly assigned them to two groups.

The 18 turtles in one of the groups (the control group) were fitted with goggles

that covered the nasal fields of both eyes. The light input for this control group

of turtles was thus restricted, but the restriction was symmetric with respect to

the retinas of a turtle’s two eyes. The 18 turtles in the second group were fitted

with what are known as “harlequin goggles”. They covered the nasal field for

one eye and the temporal field for the other eye, corresponding to asymmetric

restrictions on the light input to the two retinas for a turtle in this group. After

fitting with the appropriate goggles, each of the 36 turtles was placed (one at a

time), facing away from the sea in the center of an arena of 46 meters radius

above the high tide zone of the beach. The arena sloped slightly upward in the

direction of the sea, which was itself not directly visible at turtle eye level from

within the arena. The measurement recorded for each turtle was the number

of times it circled (i. e., crossed its own path) in the first 2 min after it had

begun to crawl. The number of these ‘circles’ for each of the 36 turtles in the

study is given in Table 9.6.

Clearly, these data are not from normal populations. In fact, the

measurements are counts and, therefore, not even continuous random

variables. However, the two-sample central limit theorem that led to the

sampling distribution of Z* (9.25) being approximately standard normal

requires only that the two population variances are finite. This is clearly the

case for the circle measurement data in Table 9.6. Thus the approximate

inference procedures based on the t-distribution with degrees of freedom

[[df]], with df given by (9.31), can be applied to analyze the circling data.

We can use the R function applyð Þwith the argumentMARGIN¼ 2 (telling

R to apply the function by column instead of by row; see ?apply for more

detail) on the data.frame goggled_green_turtles to calculate the results of
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various functions applied by column. Using themeanð Þand sdð Þ functions and
the sample labels (X and Y) designated in Table 9.6, we see that the sample

averages and standard deviations for the circling data are �x ¼ 1:83, �y ¼ 4:89,

sX ¼ 2:60, and sY ¼ 4:31

> apply(goggled_green_turtles, 2, mean)
nasal_field   harlequin

1.833333    4.888889

> apply(goggled_green_turtles, 2, sd)
nasal_field   harlequin

2.595245    4.309891

Evaluating expression (9.31), we see that.

df ¼
2:60ð Þ2
18 þ 4:31ð Þ2

18

� �2
2:60ð Þ2
18

� �2
18�1 þ

4:31ð Þ2
18

� �2
18�1

¼ 1:981
:0083þ :0626

¼ 27:94:

Table 9.6 Number of circles in the two-minute
crawl period

Nasal field goggles (X) Harlequin goggles (Y)

0 0
0 0
0 1
0 2
0 2
0 2
0 2
1 3
1 3
1 3
2 4
2 5
2 6
2 8
2 10
4 11
6 12
10 14

Source: Mrosovsky and Shettleworth (1974)
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Taking the conservative approach to this approximation, we see that

inferences about the difference in the means, μY - μX, for these turtle circlings

data can be based on the t-distributionwith degrees of freedom [[df]]¼ {largest

positive integer less than or equal to 27.94} ¼ 27.

Thus, we estimate the difference, μY - μX, between the mean number of

circles for turtles with harlequin goggles and the mean number for turtles

with symmetric nasal goggles to be �y� �x ¼ 4:89� 1:83 ¼ 3:06 circles. An

approximate 95% confidence interval for μY - μX is obtained from (9.26) with

z.025 replaced by t27,.025, yielding

�
�y� �x

�� t27, :025

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2Y
n
þ s2X

m

r
¼ 3:06� 2:052

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:60ð Þ2
18

þ 4:31ð Þ2
18

s
¼ 3:06� 2:435 ¼ 0:625; 5:495ð Þ circles:

Thus we are approximately 95% confident that the average number of circles

for turtles with harlequin goggles will be somewhere between .625 and 5.495

circles higher than the average number of circles for turtles with symmetric

nasal goggles. This provides a clear indication that the asymmetric distortion

of the light source by the harlequin goggles has a greater negative effect on a

green turtle hatchling’s natural sea-finding instinct than does the symmetric

blocking of the light by the nasal goggles. We note that since the value 0 is not

contained in our approximate 95% confidence interval for μY - μX, we would

also reject H0: [μY ¼ μX] in favor of HA: [μY 6¼ μX] at approximate significance

level α¼ 1 - .95¼ .05. (You are asked in Exercise 9.B.18 to use the t-distribution

with df¼ 27 degrees of freedom tofind the approximateP-value for a test ofH0:

[μY ¼ μX] versus HA: [μY 6¼ μX] for the green turtle hatchling data in Table 9.6.)

Section 9.3 Practice Exercises

9.3.1. House Sizes as Related to Lot Sizes in North Carolina. The dataset

house_lot_sizes contains information about house and lot sizes for a random

sample of 100 properties in Wake County, North Carolina, as collected by

Woodard and Leone (2008). Consider two subsets of this dataset
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corresponding to the smallest 25 lot sizes (in acreage) and the largest 25 lot

sizes (in acreage), respectively. Viewing these two subsets as representative

samples of “small” and “large” lot sizes in Wake County, North Carolina,

conduct the following analyses under the assumption that the populations of

house sizes (in square feet) in Wake County, North Carolina for these two

categories are normally distributed with mean house sizes μsmall and μlarge and

variances σ2small and σ2large, respectively.

(a) Estimate the difference in mean house sizes, μlarge � μsmall.

(b) Find a confidence interval for μlarge � μsmall. Choose your own rea-

sonable confidence level.

(c) Find the P-value for a test of H0 : μlarge ¼ μsmall against the one-sided

alternative HA: μlarge > μsmall. What is your decision at significance

level .02?

(d) Compare your findings in parts (a)–(c) with those obtained in Exer-

cise 9.2.17 without the normality assumption.

9.3.2. Diamonds—Does Color Matter? Carry out statistical analyses similar to

those prescribed in Exercise 9.2.19 but now under the more stringent assump-

tion that the populations for the two color categories are normally distributed

with mean values (in Singapore dollars) μD,E and μF or lower and variances σ2D,E

and σ2F or lower, respectively. Compare your results with those obtained in

Exercise 9.2.19.

9.3.3. Movie Ratings and Running Times. The Movie and Video Guide is a

ratings and information guide to movies prepared annually by Leonard

Maltin. Moore (2006) selected a random sample of 100 movies from the 1996

edition of the Guide. He compiled the dataset movie_facts containing relevant

information about the selected movies. Two of the pieces of information

provided are the rating that Maltin gave each of the movies on a rising

(worst to best) scale of 1, 1.5, 2, 2.5, 3, 3.5, 4 and the running time of the
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movie in minutes. Divide the 100 movies in the sample into two subsets,

corresponding to movies with running times less than 90 minutes and those

with running times of at least 90 minutes. Complete the following statistical

analyses under the assumption that the populations of ratings for shorter

running time (< 90 minutes) movies and longer running time (� 90 minutes)

movies are normally distributed with means μ<90 and μ�90 and variances σ2< 90

and σ2� 90, respectively.

(a) Estimate the difference in mean ratings μ�90 � μ<90.

(b) Find an upper confidence bound for μ�90 � μ<90. Choose your own

reasonable confidence level.

(c) Find the P-value for a test of H0: μ�90 ¼ μ<90. against the one-sided

alternative HA: μ�90 < μ<90. What is your decision at significance

level .0250?

9.3.4. Are Some Dung Piles Better Than Others? Onthophagus lecontei is an

American dung beetle that feeds on the dung of a number of different animal

species. But would it, in fact, be more beneficial if they concentrated more

heavily on wild rabbit (Silvilagus cunicularius) dung? Arellano et al. (2015)

studied the effect of a variety of dung sources on the number, mass, and

volume of the brood masses for dung beetles. The authors randomly paired

adult beetles in the laboratory for breeding purposes and assigned them to

horse, goat, or wild rabbit dung for brood development. They were interested

in a number of factors, including which type of dung leads to longer

(supposedly more competitive) offspring. The 44 offspring reared in wild

rabbit dung had a mean length of �xWR ¼ 5:45cm with standard deviation

sWR ¼ 0.05cm, while the 23 offspring reared in horse dung had a mean length

of �xH ¼ 4:82cmwith standard deviation sH ¼ 0.16cm. Complete the following

statistical analyses under the assumption that the populations of lengths for

adult dung beetles reared in wild rabbit dung and those reared in horse dung

are normally distributed with means μWR and μH and variances σ2WR and σ2H,

respectively.
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(a) Estimate the difference in mean lengths μWR � μH.

(b) Find a lower confidence bound for μWR � μH. Choose your own

reasonable confidence level.

(c) Find the P-value for a test of H0: μWR ¼ μH against the one-sided

alternative HA: μWR > μH. What is your decision at significance

level .010?

9.3.5. Movie Cast Sizes and Ratings. TheMovie and Video Guide is a ratings and

information guide to movies prepared annually by Leonard Maltin. Moore

(2006) selected a random sample of 100 movies from the 1996 edition of the

Guide. He compiled the dataset movie_facts containing relevant information

about the selected movies. Two of the pieces of information provided are the

rating that Maltin gave each of the movies on a rising (worst to best) scale of

1, 1.5, 2, 2.5, 3, 3.5, 4 and the listed number of cast members in each movie.

Divide the 100 movies in the sample into two subsets, corresponding to

movies with 6 or fewer listed cast members (m ¼ 53 movies) and those with

more than 6 listed cast members (n ¼ 47 movies). Complete the following

statistical analyses under the assumption that the populations of ratings for

movies with smaller casts (6 or fewer listed cast members) and movies with

larger casts (more than 6 listed cast members) are normally distributed with

means μ� 6 and μ> 6 and variances σ2� 6 and σ2> 6, respectively.

(a) Estimate the difference in mean ratings μ>6 � μ�6.

(b) Find a lower confidence bound for μ>6 � μ�6. Choose your own

reasonable confidence level.

(c) Find the P-value for a test of H0: μ>6 ¼ μ�6. against the two-sided

alternative HA: μ >6 6¼ μ�6. What is your decision at significance

level .015?

9.3.6. National League Salaries Compared to American League Salaries. Assume

that the 2014 salaries of American League baseball players and the 2014
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salaries of National League baseball players are each normally distributed

with means μA and μN and variances σ2A and σ2N, respectively. In Tables 1.17

and 1.23 we listed the 2014 baseball salaries for members of the New York

Yankees (American League) and Cincinnati Reds (National League) baseball

teams, respectively. Viewing these salaries as random samples from the larger

populations of 2014 salaries for all baseball players in the American and

National Leagues, respectively, conduct the following statistical analyses.

(a) Estimate the difference in average salaries μA � μN.

(b) Find a lower confidence bound for μA � μN. Choose your own rea-

sonable confidence level.

(c) Find the P-value for a test of H0: μA ¼ μN against the one-sided

alternative HA: μA > μN. What is your decision at significance

level .010?

(d) Discuss any concerns you might have about these statistical

“conclusions”.

9.3.7. Clearing Ultrasound Probes of Bacterial Infections. One of the major

sources for spreading nosocomial (hospital-acquired) infections from patient

to patient is through the use of ultrasound probes at tertiary care facilities and

it is essential that hospitals use effective ultrasound probe cleaning

procedures. Ali et al. (2015) presented data for comparing different cleaning

techniques, including the use of sterilized paper towels versus treatment with

a 0.9% saline solution. The Colony Forming Unit (CFU) of bacterial counts

using a standard agar plate were obtained from culture swabs for 50 probes

conducted at the Radiology Department of the Aga Khan University Hospital

in Karachi, Pakistan. Twenty-five of these probes were then wiped with

sterilized paper towels and twenty-five of them were treated with a 0.9%

saline solution. The CFU bacterial counts were then obtained again for each of

the 50 probes after treatment. The before and after treatment CFU counts for

the 50 probes are given in Table 9.7.
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Table 9.7 Number of colony forming units (CFU) of
bacterial counts for ultrasound probes before and after
treatment with sterilized paper towels or 0.9% saline
solution

Probe number Number of colony forming units (CFU)

Before paper After paper
towel wipe towel wipe

1 350 136
2 142 62
3 190 106
4 300 190
5 409 211
6 390 192
7 159 61
8 198 101
9 302 192
10 296 136
11 322 166
12 172 72
13 104 78
14 151 91
15 133 71
16 202 131
17 102 89
18 109 79
19 167 99
20 79 59
21 107 78
22 89 55
23 202 121
24 197 101
25 106 79

Before saline After saline
solution solution

26 292 51
27 302 42
28 261 49
29 302 97
30 192 39
31 201 32

(continued)

9.3 Approximate Inference for the Difference in Means for Two. . . 723



Complete the following statistical analyses under the assumption that the

populations of numerical reduction in CFU counts from wiping with sterile

paper towels and numerical reduction in CFU counts from being treated with

a 0.9% saline solution are normally distributed with means μSPT and μSaline and

variances σ2SPT and σ2Saline, respectively.

(a) Estimate the difference in mean numerical reductions μSPT � μSaline.

(b) Find a confidence interval for μSPT � μSaline. Choose your own reason-

able confidence level.

(c) Find the P-value for a test of H0: μSPT ¼ μSaline against the one-sided

alternative HA : μSPT > μSaline. What is your decision at significance

level .040?

Table 9.7 (continued)

Probe number Number of colony forming units (CFU)

32 192 62
33 289 67
34 290 81
35 233 89
36 209 41
37 289 53
38 301 89
39 189 39
40 161 39
41 231 61
42 142 29
43 190 58
44 203 81
45 297 52
46 219 51
47 161 21
48 232 41
49 171 36
50 193 71

Source: Ali et al. (2015)
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9.3.8. Clearing Ultrasound Probes of Bacterial Infections Part Two. Consider

once again the data on clearing bacteria from ultrasound probes presented

in Exercise 9.3.7. Conduct the exact same statistical analyses prescribed in that

exercise but using the percentage reduction in CFU units rather than the numer-

ical reduction in CFU units resulting from the two methods of treatment.

Discuss how these two approaches to analyzing the data in Table 9.7 differ.

9.3.9. Are All Euros Minted Equal? In Exercises 7.B.4 and 7.B.6 you were

asked to statistically compare the weights of Euro coins contained in two

separate Packages 1 and 8, each containing 250 brand new coins. Now we

have the machinery to make a formal simultaneous comparison of those two

collections of Euros. Assume that the weights of Euros from the mint(s) that

produced Packages 1 and 8 are normally distributed with means μ1 and

μ8 and variances σ21 and σ28, respectively. Viewing the 250 Euro coins in each

of these two packages as simple random samples from the mint(s) that pro-

duced them, carry out the following statistical analyses.

(a) Estimate the difference in mean weights μ1 � μ8.

(b) Find a confidence interval for μ1 � μ8. Choose your own reasonable

confidence level.

(c) Find the P-value for a test of H0: μ1 ¼ μ8 against the two-sided

alternative HA: μ1 6¼ μ8. What is your decision at significance level

.027?

9.3.10. Angioplasty Balloons—To Coat or Not To Coat—That Is the Question.

Atherosclerotic disease is a disease in which plaque builds up inside one’s

arteries, which can, among other problems, compromise blood flow to the

legs and feet. Percutaneous transluminal coronary angioplasty (PTCA) is a

minimally invasive procedure that uses a tiny balloon inserted into a blood

vessel to open blocked coronary arteries and allows blood to more freely

circulate to the legs and feet. Many times, however, the blood vessels once
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again narrow within a year after PTCA, requiring that additional measures,

such as surgically inserting stints, to reduce this narrowing effect. Rosenfield

et al. (2015) reported on the results of a study to investigate whether coating

the angioplasty balloon during PTCA with the antineoplastic compound

paclitaxel could extend the benefits from the procedure. The authors enrolled

476 patients in the study, of which 160 received standard PTCA and

316 received PTCA with a balloon coated with paclitaxel. All 476 patients

were followed for a year post-PTCA. Among other diagnostics, the Walking

Impairment Questionnaire (higher scores demonstrate greater mobility) was

administered to the patients one year after the procedure. As part of this

questionnaire, each patient achieved a walking distance score. The average

walking distance score for the 160 patients who received the standard

PTCA was �xstandard ¼ 22:2 with standard deviation sstandard ¼ 35.4. The

corresponding average walking distance score for the 316 patients

receiving PTCA coated with paclitaxel was �xcoated ¼ 31:5 with standard devia-

tion scoated ¼ 35.4. Assume that the one-year post-procedure walking distance

scores for patients receiving standard PTCA and for patients receiving PTCA

coated with paclitaxel are normally distributed with means μstandard and μcoated

and variances σ2standard and σ2coated, respectively.

(a) Estimate the difference in mean walking distance scores

μcoated � μstandard.

(b) Find a lower confidence bound for μcoated � μstandard. Choose your own

reasonable confidence level.

(c) Find the P-value for a test of H0 : μcoated ¼ μstandard against the

one-sided alternative HA: μcoated > μstandard. What is your decision at

significance level .056?

9.3.11. Unintended Effects of Pesticides on Earthworms. Insect growth

regulators (IGRs) are advanced insecticides designed to mitigate the negative

effects of harmful insects by preventing them from reaching maturity. They
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are labeled ‘reduced risk’ by the Environmental Protection Agency, meaning

that they specifically target harmful insects while having minimal effects on

beneficial insects. As the concentration of IGRs accumulates in a soil environ-

ment, however, they could lead to unintended negative consequences for

other non-insect soil organisms, such as earthworms, that play important

roles in the enrichment and improvement of soil for plants and other animals,

including humans. In a designed laboratory study using artificially prepared

soil, Badawy et al. (2013) investigated the effects that three different IGRs,

namely, buprofezin, lufenuron, and triflumuron, had on growth changes and

biochemical activity of the earthworm Aporrectodea caliginosa, commonly

found in Egypt. Groups of four earthworms each were exposed to various

dose levels of the three IGRs and a separate set of four earthworms served as a

control in the same soil environment without any IGR infusion. One of the

biochemical attributes studied was Acetylcholinesterase (AChE) activity,

which plays an important role in neuromuscular junctions and brain

synapses. AChE activity measurements were taken on the four control

earthworms after 4 weeks in the pure artificial soil, as well as on the four

earthworms that were exposed for 4 weeks to the same artificial soil infused

with a concentration of 5 mg a.i/kg soil of the IGR lufenuron. The

average AChE activity for the four control earthworms at the end of the

4 weeks was �xcontrol ¼ 39:83 ΔOD412 
min�1 
mg protein�1 with standard

deviation scontrol ¼ 0.481 ΔOD412 
 min�1 
 mg protein�1. The corresponding

average AChE activity for the four earthworms in the soil containing lufenuron

was �xlefenuron ¼ 3:70 ΔOD412 
min�1 
mg protein�1 with standard deviation

slefenuron ¼ 0.741 ΔOD412 
 min�1 
 mg protein�1. Assume that the four week

AChE activity measurements for the control earthworms and for the

earthworms exposed to lufenuron are normally distributed with means μcontrol

and μlufenuron and variances σ2control and σ2lufenuron, respectively.
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(a) Estimate the difference in mean AChE activity μcontrol � μlufenuron.

(b) Find a lower confidence bound for μcontrol � μlufenuron. Choose your

own reasonable confidence level.

(c) Find the P-value for a test of H0: μcontrol ¼ μlufenuron against the

one-sided alternative HA: μcontrol > μlufenuron. What is your decision

at significance level .001?

9.3.12. Bird Diversity During the Wet and Dry Seasons in Tugu Wetland, Ghana.

Nsor and Obodai (2014) conducted a study to assess the effect of environmen-

tal factors on the diversity of bird populations in the wetlands areas of the

Northern Region of Ghana. They observed birds from 7-11 am GMT once a

week for a period of two years at each of six wetlands areas (Kukobila,

Wuntori, Tugu, Adayili, Nabogo, and Bunglung) and the number of different

bird species observed were compiled monthly during that period of time for

each of these six areas. One aspect of their study was to compare the monthly

numbers of bird species observed in each wetlands area during the 7 months

of the dry season (November through May) and the 5 months of the wet

season (June through October) over the two-year period. For one particular

portion of the Tuguwetland (classified as a closed shallowmarsh), they found

that the average of the 14 monthly numbers of bird species observed during

the dry season (over the two-year period) was �xdry ¼ 7:4 species with

standard deviation sdry ¼ 2.1 species. For the same region the average of the

10 monthly numbers of bird species observed during the wet season (over

the two-year period) was �xwet ¼ 9:6 species with standard deviation swet ¼ 3.6

species. Assume that the monthly numbers of species observed in this portion

of the Tugu wetland during dry and wet seasons are normally distributed

with means μdry and μwet and variances σ2dry and σ2wet, respectively.

(a) Estimate the difference in mean number of bird species μwet � μdry.

(b) Find a lower confidence bound for μwet � μdry. Choose your own

reasonable confidence level.
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(c) Find the P-value for a test of H0: μwet ¼ μ dry against the one-sided

alternative HA: μwet > μdry. What is your decision at significance

level .015?

9.3.13. Bird Diversity During the Wet and Dry Seasons in Bunglung Wetland,

Ghana. In the same study discussed in Exercise 9.3.12, Nsor and Obodai

(2014) also collected data from the Bunglung Wetland in Ghana. For one

particular portion of the Bunglung wetland (classified as an artificial wet-

land), they found that the average of the 14 monthly numbers of bird species

observed during the dry season (over the two-year period) was �xdry ¼ 6:2

species with standard deviation sdry ¼ 2.2 species. For the same region the

average of the 10 monthly numbers of bird species observed during the wet

season (over the two-year period) was �xwet ¼ 4:8 species with standard

deviation swet ¼ 1.6 species. Assume that the monthly numbers of species

observed in this portion of the Bunglung wetland during dry and wet seasons

are normally distributed with means μdry and μwet and variances σ2dry and σ2wet,

respectively.

(a) Estimate the difference in mean number of bird species μwet � μdry.

(b) Find an upper confidence bound for μwet � μdry. Choose your own

reasonable confidence level.

(c) Find the P-value for a test of H0: μwet ¼ μdry against the one-sided

alternative HA: μwet < μdry. What is your decision at significance

level .032?

(d) Compare and contrast these results with those you obtained in

Exercise 9.3.12.

9.3.14. Bird Diversity During the Wet Season in the Adayili and Nabogo

Wetlands, Ghana. Nsor and Obodai (2014) conducted a study to assess the

effect of environmental factors on the diversity of bird populations in the

wetlands areas of the Northern Region of Ghana. They observed birds from
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7-11 am GMT once a week for a period of two years at each of six wetlands

areas (Kukobila, Wuntori, Tugu, Adayili, Nabogo, and Bunglung) and the

number of different bird species observedwere compiledmonthly during that

period of time for each of these six areas. One aspect of their study was to

compare the monthly numbers of bird species observed in different wetlands

during the 5 months of the wet season (June through October) over the

two-year period. For comparable portions of the Adayili and Nabogo

wetlands (both classified as riparian wetlands), they found that the averages

of the 10 monthly numbers of bird species observed during the rainy season

(over the two-year period) for the Adayili and Nabogo wetlands were

�xAdayili ¼ 5:4 species and �xNabogo ¼ 7:2 species, respectively, with standard

deviations sAdayili ¼ 1.4 species and sNabogo ¼ 2.6 species, respectively.

Assume that the monthly numbers of species observed in these portions of

the Adayili and Nabogo wetlands during the wet season are normally

distributed with means μAdayili and μNabogo and variances σ2Adayili and σ2Nabogo,

respectively.

(a) Estimate the difference in mean number of bird species

μAdayili � μNabogo.

(b) Find a confidence interval for μAdayili � μNabogo. Choose your own

reasonable confidence level.

(c) Find the P-value for a test of H0 : μAdayili ¼ μNabogo against the

two-sided alternative HA: μAdayili 6¼ μNabogo. What is your decision at

significance level .021?

9.3.15. How Well Does Your Beer Hold Its Foam? Carry out statistical analyses

similar to those prescribed in Exercise 9.2.21 but now under the more strin-

gent assumption that the populations for the two beer production lots are

normally distributed with mean percentage head collapse four minutes after

pouring μ1 and μ2 and variances σ21 and σ22, respectively. Compare your results

with those obtained in Exercise 9.2.21.
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9.3.16. You Can Lead a Slug to Food But Will It Eat? Consider the woodland

and waste site slug study discussed in Example 9.3. Assume that the Accept-

ability Indices (AI) to the plant Allium Ursinum (wild garlic) for Arion

Subfuscus from woodland and waste sites are normally distributed with

mean AI values μwoodland and μwaste and variances σ2woodland and σ2waste,

respectively.

(a) Estimate the difference in mean AI values μwoodland � μwaste.

(b) Find a confidence interval for μwoodland � μwaste. Choose your own

reasonable confidence level.

(c) Find the P-value for a test of H0: μwoodland ¼ μwaste against the

two-sided alternative HA: μwoodland 6¼ μwaste. What is your decision at

significance level .060?

9.3.17. Meniscal Repair—Vertical FasT-Fix Sutures or Horizontal FasT-Fix

Sutures? Surgery is most often the only option when faced with a torn medial

meniscus—but what is the best surgical method for the repair? Kocabey et al.

(2006) studied the performance characteristics of three different meniscal

repair techniques, namely, the Vertical FasT-Fix Meniscal Repair Suture

System (VFasT-Fix), the Horizontal FasT-Fix Meniscal Suture System

(HFasT-Fix), and the RapidLoc Device (RLD) approach. Human cadaveric

knees were used in the study, with six randomly assigned to each of the three

surgery techniques. Each repaired meniscus was loaded into a servohydraulic

device and cycled between 5 and 50 Newtons (N) at 1 Hz for 500 cycles. After

cycle testing, the meniscus was subjected to tension loading at a slow rate of

5 mm/min (similar to the type of stresses that a meniscus might have to deal

with during early rehabilitation) until failure of the repair occurred. One

aspect of their study was to compare the load to failure test results for the

VFasT-Fix and HFasT-Fix repair techniques. The authors found that the

average load to failure for the six menisci repaired using the VFasT-Fix

approach and the six repaired using the HFasT-Fix approach were �xVFasT�Fix
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¼ 125:3N and �xHFasT�Fix ¼ 89:7N, respectively, with standard deviations

sVFasT�Fix ¼ 39N and sHFasT�Fix ¼ 14 N, respectively. Assume that the load

to failure values for VFasT-Fix and HFastT-Fix meniscus repairs are normally

distributed with means μVFasT�Fix and μHFasT�Fix and variances σ2VFasT�Fix and

σ2HFasT�Fix, respectively.

(a) Estimate the difference in mean load to failure values,

μVFasT�Fix � μHFasT�Fix.

(b) Find a lower confidence bound for μVFasT�Fix � μHFasT�Fix. Choose

your own reasonable confidence level.

(c) Find the P-value for a test of H0: μVFasT�Fix ¼ μHFasT�Fix against the -

one-sided alternative HA: μVFasT�Fix > μHFasT�Fix. What is your deci-

sion at significance level .042?

9.3.18. Meniscal Repair—Vertical FasT-Fix Sutures or RapidLoc Device? Con-

sider the study of meniscal repair techniques by Kocabey et al. (2006)

discussed in Exercise 9.3.17. The authors were also interested in comparing

the stiffness of the menisci during cycle loading for the VFasT-Fix and

RapidLoc Device repair techniques. They found that the average stiffness

measurement for the six menisci repaired using the VFasT-Fix approach and

the six repaired using the RapidLoc approach were �xVFasT�Fix ¼ 14:4N=mm

and �xRapidLoc ¼ 9:7N=mm, respectively, with standard deviations

sVFasT�Fix ¼ 2.1 N/mm and sRapidLoc ¼ 0.44N/mm, respectively. Assume that

the average stiffness measurements for VFasT-Fix and RapidLoc meniscus

repairs are normally distributed with means μVFasT�Fix and μRapidLoc and

variances σ2VFasT�Fix and σ2RapidLoc, respectively.

(a) Estimate the difference in mean stiffness measurements,

μVFasT�Fix � μRapidLoc.

(b) Find a confidence interval for μVFasT�Fix � μRapidLoc. Choose your own

reasonable confidence level.
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(c) Find the P-value for a test of H0: μVFasT�Fix ¼ μRapidLoc against the

two-sided alternative HA: μVFasT�Fix 6¼ μRapidLoc. What is your decision

at significance level .057?

9.3.19. Does Believing Help Make It So? Does having a “pro attitude”

(an attitude towards a favorable outcome, a concept considered by

Thalbourne 2004) help individuals in a paranormal task? Storm and

Thalbourne (2005) studied this question using a paranormal symbol-guessing

experiment involving Zener symbols (star, waves, square, circle, and cross).

A total of 131 participants volunteered for this experiment and each of them

was classified as either a “believer” or “skeptic”, depending on whether they

scored at least 17 or less than 17, respectively, on the Australian Sheep-Goat

Scale (ASGS) construct proposed by Thalbourne (1995). Eighty-seven of the

participants were classified as “believers”, while the remaining 44 were

labeled as “skeptics”. On each of 50 trials, participants were required to

guess a computer’s pre-selected Zener symbol by clicking the button under

the symbol he/she thought would be the computer’s pre-selected symbol for

that trial. The number of correct guesses by each of the 131 participants is

given in the dataset believers_skeptics, along with the information about

whether a given participant was a “believer” or a “skeptic”.

(a) How many of the symbols would you expect a participant to predict

correctly if she/he were simply guessing on each trial?

(b) What are the averages and standard deviations for the number of

correct predictions for the 87 “believers”? for the 44 “skeptics”?

(c) What are the null and alternative hypotheses of interest in this study?

(d) Find the P-value for an appropriate test of these hypotheses. What is

your conclusion about “believers” versus “skeptics” at significance

level .01?
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9.4 Inference for the Difference in Means for Two Normal
Populations with Equal Variances–Procedures Based
on the Two Sample Averages and a Pooled Sample
Standard Deviation

When conditions are such that the two continuous measurements X and

Y are known to have underlying normal distributions with equal, but

unknown, variances, we can utilize this information to construct procedures

that are more effective in making inferences about the difference in the

population means Δ ¼ μY - μX. (Note that Δ also corresponds to the difference

in population medians, since the mean and median coincide for normal

distributions.)

Let �X and �Y be the sample averages and SX and SY the sample standard

deviations for independent random samples X1, ..., Xm and Y1, ..., Yn, from

N(μX, σ) and N(μY, σ) populations, respectively, where the population means

μX, μY, and the common population standard deviation σ are all unknown.

The natural estimator of the difference μY - μX is the analogous observed

difference in the sample averages �Y� �X. It follows from properties of expec-

tation for a difference between two variables that the mean for �Y� �X is

μ �Y� �X ¼ μ �Y � μ �X ¼ μY � μX,

since the sample averages are unbiased estimators of the corresponding

population parameters. Moreover, since the sample averages �X and �Y are

based on independent random samples from the X and Y populations, the

variance for �Y� �X corresponds to the sum of the variances for the separate

sample averages; that is,

σ2�Y� �X ¼ σ2�Y þ σ2�X ¼ σ2Y
n

þ σ2X
m

¼ σ2
1
n
þ 1
m

� �
and the corresponding standard deviation for �Y� �X is

σ �Y� �X ¼ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m
þ 1
n

r
:
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Since the underlying populations are normal, it follows that the

standardized variable

Z∗ ¼
�
�Y� �X

�� μY � μXð Þ
σ
ffiffiffiffiffiffiffiffiffiffiffi
1
m þ 1

n

q ð9:32Þ

has a standard N(0, 1) distribution. However, since the common population

standard deviation σ is unknown, we must estimate it in order to be able to

make statistical inferences about the difference in means μY - μX. Since both the

X and Y samples carry information about their common population variance,

it is natural to use both sample variances,S2X andS
2
Y, to estimate σ2 (and, hence,

σ). The optimal way to combine these separate sample variances is to weight

them by their respective sample sizes, thereby allowing the larger sample to

have greater emphasis in this process. The resulting estimator for the common

variance, called the pooled estimator of σ2, is given by.

S2p ¼
m� 1ð ÞS2X þ n� 1ð ÞS2Y

mþ n� 2
: ð9:33Þ

The corresponding pooled estimator of the standard deviation σ is then

Sp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m� 1ð ÞS2X þ n� 1ð ÞS2Y

mþ n� 2

s
: ð9:34Þ

Using this pooled estimator of σ in the standardized expression (9.32)

yields the variable

T ¼
�
�Y� �X

�� μY � μXð Þ
Sp

ffiffiffiffiffiffiffiffiffiffiffi
1
m þ 1

n

q : ð9:35Þ

The probability distribution forT (9.35) is a t-distributionwithm+ n - 2 degrees

of freedom, corresponding to the sum of the degrees of freedom (m - 1) and

(n-1) associated with the X and Y sample variances, respectively.

This fact provides the basis for interval estimation of the difference in

means μY - μX. Such interval estimates for μY - μX are centered at the point
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estimator �Y� �X. The length of the interval is determined by Sp
ffiffiffiffiffiffiffiffiffiffiffi
1
m þ 1

n

q
, which

is the standard error of �Y� �X, and by the confidence level we want. The

desired confidence level is attained through use of the appropriate percentiles

of the t-distribution withm + n� 2 degrees of freedom. Proceeding as in other

normality settings by taking the point estimator and adding and subtracting

the appropriate margin of error, we obtain a confidence interval for the

difference in means μY - μX based on the pooled t-statistic when the two

populations have a common, but unknown, variance σ2.

Point and Interval Estimation of the Difference in Population Means,

Δ ¼ μY - μX, for Two Normal Distributions with Common

Variance The point estimator for the difference in means μY - μX is

�Y� �X. The associated exact 100CL% confidence interval for μY - μX is

provided by the interval

�Y� �X � tmþn�2, 1�CLð Þ=2Sp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m
þ 1
n

r
; �Y� �X þ tmþn�2, 1�CLð Þ=2Sp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m
þ 1
n

r !
,

ð9:36Þ
where tm + n � 2 , (1 � CL)/2 is the upper ((1 - CL)/2)th percentile for the

t-distribution with m + n � 2 degrees of freedom. The corresponding

100CL% lower and upper confidence bounds for μY - μX are given by

�Y� �X � tmþn�2,1�CL Sp
ffiffiffiffiffiffiffiffiffiffiffi
1
m þ 1

n

q
and �Y� �X þ tmþn�2,1�CL Sp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m
þ 1
n

r
,

respectively.

Example 9.10. Will Active-Exercise of a Newborn Infant Lead to an Earlier

Onset of Walking Alone? If a newborn infant is held under her arms with

her bare feet touching a flat surface, she will automatically attempt to make

ordinary walking movements with her feet. In addition, if the backs of her
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feet are placed against the edge of a flat surface, she will make placing

movements similar to those of a kitten. These automatic walking and placing

reflexes are present in all normal infants and generally disappear by the time

an infant reaches the age of eight weeks--but, while present, are they of any

use for the development of the infant? How important is it during these first

eight weeks for these two reflexes to be encouraged and stimulated? Could

such encouragement and stimulation have any effect on the time at which an

infant begins walking alone? Zelazo et al. (1972) conducted a study of new-

born infants specifically designed to address this question. As part of their

study, they enlisted twelve 1-week old male infants from middle-class and

upper-middle-class families in the Boston area. For the study, six of these

infants were randomly assigned to a control group and six were assigned to

an active-exercise group. Infants in the active-exercise group received stimu-

lation of both the walking and placing reflexes each day (four 3-minute

sessions daily) from the beginning of the second week though the eighth

week of age. Infants in the control group received no special training during

this period of time. Mothers of these 12 infants then reported the ages at which

their infants first walked alone. These data (in months) are presented in

Table 9.8.

Here the X and Y sample sizes are m ¼ 6 and n ¼ 6, respectively, and the

corresponding sample averages and sample variances are �x ¼ 11:708,

Table 9.8 Age (in months) at which infants first
walked alone

No-exercise group (X) Active-exercise group (Y)

11.50 9.00
12.00 9.50
9.00 9.75

11.50 10.00
13.25 13.00
13.00 9.50

Source: Zelazo et al. (1972)
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�y ¼ 10:125, s2x ¼ 2:310, and s2y ¼ 2:094. There is nothing in these data to suggest

non-normality for the populations of first walking times for either the

no-exercise group or the active-exercise group. In addition, based on these

12 observations, it seems reasonable to assume equal variances for the two

populations. Therefore, we will construct our confidence interval for μY - μX
based on the pooled estimator of the common standard deviation σ given by

Sp (9.34). For the walking age data of Table 9.7, we have.

sp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� 1ð Þ 2:310ð Þ þ 6� 1ð Þ 2:094ð Þ

6þ 6� 2

r
¼ 1:484:

With pooled degrees of freedom m + n – 2 ¼ 6 + 6 - 2 ¼ 10, we find that

t10,.02 ¼ 2.359. Hence, we estimate the difference in mean first-walking

times, μY - μX, to be �y� �x ¼ 10:125� 11:708 ¼ �1:583 months and the 96%

pooled-t confidence interval for μY - μX is given by (9.36) to be

�y� �x� t10, :02sp

ffiffiffiffiffiffiffiffiffiffiffi
1
6
þ 1
6

r
¼ �1:583� 2:359 1:484ð Þ 0:577ð Þ
¼ �1:583� 2:020 ¼ �3:603; 0:437ð Þ months:

Thus we are 96% confident that the mean first-walking time for newborn

infants provided the active-exercise stimulation is between 3.603 months

earlier (faster) and 0.437 months later (slower) for the active-exercise popula-

tion than for the no-exercise population.

These results can also be obtained from a number of different software

packages. For example, using the data.frame infant_walking based on the data

from Table 9.8, the R function t:testð Þ provides the following output, which

includes estimates of μX and μY and the 96% confidence interval (since we’ve

specified the conf.level argument to be 0.96) for μX - μY. (Be careful to note that

the confidence interval reported by R is μX - μY not μY - μX!)
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> t.test(x = infant_walking$no_exercise, y = infant_walking$exercise,
conf.level = 0.96)

Welch Two Sample t-test

data:  infant_walking$no_exercise and infant_walking$exercise
t = 1.8481, df = 9.9759, p-value = 0.09442
alternative hypothesis: true difference in means is not equal to 0
96 percent confidence interval:
-0.4387392  3.6054059
sample estimates:
mean of x mean of y 
11.70833  10.12500

To conduct hypothesis tests about the difference in means μY - μX for

normal populations with common variance, we once again make use of the

variable T (9.35).

Hypothesis Tests about theDifference in PopulationMeans,Δ¼ μY -μX,

for Two Normal Populations with Common Variance To test the null

hypothesisH0: [μX¼ μY] with two-sample data from normal populations

N(μX, σ) and N(μY, σ) with common variance, compute the statistic

T (9.35) under the null hypothesis condition that μX ¼ μY, namely,

T ¼
�Y� �X

Sp
ffiffiffiffiffiffiffiffiffiffiffi
1
m þ 1

n

q ð9:37Þ

and let tobs be the attained value of T. Then, the exact P-value for normal

populations with common variance for a test of H0: [μY - μX ¼ 0] against

the alternatives HA are:

HA P-value

μY > μX ¼ P T � tobsð Þ ð9:38Þ
μY < μX ¼ P T � tobsð Þ ð9:39Þ
μY 6¼ μX ¼ 2P T � tobsð Þ, if tobs � 0

¼ 2P T � tobsð Þ, if tobs < 0, ð9:40Þ

where T� t(m + n-2), the t-distribution withm + n - 2 degrees of freedom.
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Example 9.11. Active-Exercise and Onset of Walking Alone. Zelazo et al.

(1972) were interested in assessing whether their active-exercise stimulation

for newborn infants during the period 2-8 weeks of age would shorten the

average time to onset of walking alone. Thus, using the notation of Example

9.10, we are interested in testingH0: [μY ¼ μX] versus the one-sided alternative

HA: [μY < μX]. From Example 9.10 we know that the difference in sample

averages is �y� �x ¼ �1.583 months and the sample pooled standard

deviation is sp ¼ 1.484. Computing the pooled t-statistic T (9.35), we see that

tobs ¼ �1:583

1:484
ffiffiffiffiffiffiffiffiffiffi
1
6 þ 1

6

q ¼ �1:848:

Hence, from (9.39) the P-value for our test ofH0: [μY¼ μX] againstHA: [μY< μX]

is P(T � �1.848) ¼ P(t(10) � �1.848) ¼ .0472. With this P-value we would

reject H0: [μY ¼ μX] in favor of HA: [μY < μX] at significance level α ¼ .05, but

not at significance level .025. Thus the data provide a moderate strength of

support for the Zelazo-Zelazo-Kolb conjecture that their active-exercise stim-

ulation for newborn infants during the period 2-8 weeks of age does shorten

the average time to onset of walking alone.

As with the confidence interval for μY - μX, the R function t:testð Þ can be

used to obtain the following output that includes the observed value of T and

the associated one-sided P-value (since we specify alternative ¼ “greater”) for

this first-walking time hypothesis test. (As with the confidence interval,

be careful to note that the value of t reported by R differs in sign from that

in (9.35).)

> t.test(infant_walking$no_exercise, infant_walking$exercise,
alternative = "greater")

Welch Two Sample t-test

data:  infant_walking$no_exercise and infant_walking$exercise
t = 1.8481, df = 9.9759, p-value = 0.04721
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
0.03011819        Inf
sample estimates:
mean of x mean of y 
11.70833  10.12500 
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Large Sample Sizes m and n. When the sample sizes m and n are large, the t

(m + n-2) density curve can be well-approximated by theN(0, 1) density curve.

This fact can be used to provide approximations (for large m and n) for the

confidence interval/bounds and hypothesis tests for Δ ¼ μY - μX described by

Eqs. (9.36) and (9.38) - (9.40), respectively, by simply replacing the t(m + n-2)

percentiles and probabilities wherever they occur by the correspondingN(0,1)

percentiles and probabilities. However, remember that there are alternative

procedures (see Sect. 3) available for such settings where both sample sizes are

large that do not rely on the rather stringent condition (which underlies the

procedures in this section) that the X and Y population variances are equal.

The large sample procedures in Sect. 3 are the preferred methods of statistical

inference when both sample sizes are large and we are interested in the

difference of the two population means, Δ ¼ μY - μX.

Section 9.4 Practice Exercises

9.4.1. Are Men Hotter than Women? It is a widely held belief that the normal

body temperature for humans is 98.6 �F. Mackowiak et al. (1992) provide a

critical evaluation of this statement through the collection of data from

148 individuals aged 18 through 40 years. The dataset body_temperature_and_-

heart_rate contains body temperature and heart rate values (artificially

generated by Shoemaker 1996, to closely recreate the original data considered

by Mackowiak et al.) for 65 male and 65 female subjects. Conduct the follow-

ing analyses under the assumption that the populations of human body

temperatures for females and males are normally distributed with means μF

and μM, respectively, and common variance σ2.

(a) Estimate the difference in mean body temperatures, μM � μF.

(b) Find a confidence interval for μM � μF. Choose your own reasonable

confidence level.

(c) Find the P-value for a test of H0: μM ¼ μF against the one-sided alter-

native HA: μF < μM. What is your decision at significance level .045?
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9.4.2. House Sizes as Related to Lot Sizes in North Carolina. The dataset

house_lot_sizes contains information about house and lot sizes for a random

sample of 100 properties in Wake County, North Carolina, as collected by

Woodard and Leone (2008). Consider two subsets of this dataset

corresponding to the smallest 25 lot sizes (in acreage) and the largest 25 lot

sizes (in acreage), respectively. Viewing these two subsets as representative

samples of “small” and “large” lot sizes in Wake County, North Carolina,

conduct the following analyses under the assumption that the populations of

house sizes (in square feet) in Wake County, North Carolina for these two

categories are normally distributed with mean house sizes μsmall and μlarge,

respectively, and common variance σ2.

(a) Estimate the difference in mean house sizes, μlarge � μsmall.

(b) Find a confidence interval for μlarge � μsmall. Choose your own rea-

sonable confidence level.

(c) Find the P-value for a test of H0: μlarge ¼ μsmall against the one-sided

alternative HA: μlarge > μsmall. What is your decision at significance

level .02?

(d) Compare your results in parts (a)-(c) with those obtained in

Exercise 9.3.1 without the common variance assumption.

9.4.3. Diamonds—Does Color Matter? Carry out statistical analyses similar to

those prescribed in Exercises 9.2.19 and 9.3.2, but now under the assumption

that the populations for the two color categories are normally distributed

with mean values (in Singapore dollars) μD,E and μF or lower and common

variance σ2. Compare your results with those obtained in Exercises 9.2.19

and 9.3.2.

9.4.4. Woodpecker Pads. Woodpeckers play a major role as ecological

engineers in forests as a consequence of their excavation of cavities that in

turn create habitat for secondary cavity users. Tarbill et al. (2015) discuss the
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particular importance of this activity in recently burned forests as part of their

study (over the two-year period 2009-2010) of the nesting characteristics of

woodpecker species in a recently burned section of the Sierra Nevada

Mountains in California. They examined the nest cavities of m ¼ 39 black-

backed woodpeckers and n ¼ 80 hairy woodpeckers. The observed mean

and standard deviation of the cavity heights for the 39 black-backed

woodpeckers were �xbb ¼ 4:72meters and sbb ¼ 3.01 meters, respectively.

The corresponding data for the hairy woodpeckers were �xh ¼ 7:23 meters

and sh ¼ 4.10 meters, respectively. Assuming that the populations of cavity

heights for these two woodpecker species are normally distributed with

means μbb and μh, respectively, and common variance σ2, conduct the follow-

ing statistical analyses.

(a) Find a confidence interval for μh � μbb. Choose your own reasonable

confidence level.

(b) Find the P-value for a test of H0: μh ¼ μbb against the one-sided

alternative HA: μh > μbb. What is your decision at significance

level .037?

(c) Do you think your conclusions would be different if you dropped the

common variance assumption and used the confidence interval and

test procedures discussed in Sect. 9.3? Try it out!

9.4.5. Movie Cast Sizes and Ratings. Carry out statistical analyses similar to

those prescribed in Exercises 9.3.5, but now under the assumption that the

populations of ratings for movies with smaller casts (6 or fewer listed cast

members) and movies with larger casts (more than 6 listed cast members) are

normally distributed with means μ�6 and μ>6 and common variance σ2.

Compare your results with those obtained in Exercises 9.3.5.

9.4.6. Angioplasty Balloons—To Coat or Not To Coat—That Is the Question.

Atherosclerotic disease is a disease in which plaque builds up inside one’s

arteries, which can, among other problems, compromise blood flow to the
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legs and feet. Percutaneous transluminal coronary angioplasty (PTCA) is a

minimally invasive procedure that uses a tiny balloon inserted into a blood

vessel to open blocked coronary arteries and allows blood to more freely

circulate to the legs and feet. Many times, however, the blood vessels once

again narrow within a year after PTCA, requiring that additional measures,

such as surgically inserting stints, to reduce this narrowing effect. Rosenfield

et al. (2015) reported on the results of a study to investigate whether coating

the angioplasty balloon during PTCA with the antineoplastic compound

paclitaxel could extend the benefits from the procedure. The authors enrolled

476 patients in the study, of which 160 received standard PTCA and

316 received PTCA with a balloon coated with paclitaxel. All 476 patients

were followed for a year post-PTCA. Among other diagnostics, the Walking

Impairment Questionnaire (higher scores demonstrate greater mobility/

improvement) was administered to the patients one year after the procedure.

As part of this questionnaire, each patient achieved a walking speed score.

The average walking speed score for the 160 patients who received the

standard PTCA was �xstandard ¼ 17:7 with a standard deviation sstandard ¼ 31.1.

The corresponding average walking speed score for the 316 patients receiving

PTCA coated with paclitaxel was �xcoated ¼ 21:2 with a standard deviation

scoated ¼ 29.0. Assume that the one-year post-procedure walking speed scores

for patients receiving standard PTCA and for patients receiving PTCA coated

with paclitaxel are normally distributed with means μstandard and μcoated, respec-

tively, and common variance σ2.

(a) Estimate the difference in mean walking speed scores

μcoated � μstandard.

(b) Find a lower confidence bound for μcoated � μstandard. Choose your

own reasonable confidence level.
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(c) Find the P-value for a test of H0: μcoated ¼ μstandard against the

one-sided alternative HA: μcoated > μstandard. What is your decision at

significance level .067?

(d) In view of the observed data, does the assumption of common vari-

ance σ2 seem reasonable? Justify your answer.

9.4.7. Bird Diversity During the Wet Season in Kukobila and Wuntori Wetlands,

Ghana. Nsor and Obodai (2014) conducted a study to assess the effect of

environmental factors on the diversity of bird populations in the wetlands

areas of the Northern Region of Ghana. They observed birds from 7-11 am

GMT once a week for a period of two years at each of six wetlands areas

(Kukobila, Wuntori, Tugu, Adayili, Nabogo, and Bunglung) and the number

of different bird species observed were compiled monthly during that period

of time for each of these six areas. One comparison of interest in their study

was the monthly number of bird species observed in different wetlands

during the 5 months of the wet season (June through October) over the

two-year period. For comparable portions of the Kukobila (open deep

marsh) and Wuntori (closed shallow marsh) wetlands, they found that the

averages of the 10 monthly numbers of bird species observed during the wet

season (over the two-year period) for the Kukobila and Wuntori wetlands

were �xKukobila ¼ 6:0 species and �xWuntori ¼ 3:8 species, respectively, with stan-

dard deviations sKukobila ¼ 1.1 species and sWuntori ¼ 0.6 species, respectively.

Assume that the monthly numbers of species observed in these portions of the

Kukobila and Wuntori wetlands during the wet season are normally

distributed with means μKukobila and μWuntori and common variance σ2.

(a) Estimate the difference in mean number of bird species

μKukobila � μWuntori.

(b) Find a lower confidence bound for μKukobila � μWuntori. Choose your

own reasonable confidence level.
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(c) Find the P-value for a test of H0: μKukobila ¼ μWuntori against the

one-sided alternative HA: μKukobila > μWuntori. What is your decision

at significance level .045?

9.4.8. Removing Spots and Stains From Works of Art on Paper. When a work of

art on paper becomes stained or spotted, great care must be taken in

attempting to remove the blemish in order not to have a negative effect on

the appearance of the work. Eirk (1972) studied a total of 31 possible methods

for spot or stain removal, along with six separate controls involving treatment

with distilled water only. She used rag paper obtained from two old ledgers,

one with paper that was relatively white without disfiguring effects, while the

sheets in the second ledger were degraded by foxing andmildew. One feature

used for comparison of the treatments and controls was a brightness measure

of the treated paper followed by a one-hour wash in running de-ionized

water. Powdered sodium formaldehyde sulfoxylate (SFS) applied to damp

sheets and washed after twenty minutes and 1:2 aqueous 5% hypochlorite/

5% sodium metabisulfite (HSM) were two of the treatments studied by the

author. Using the relatively white ledger paper without disfiguring effects,

the average brightness score for ten replicates treated with SFS was

�xSFS ¼ 50:2, with standard deviation sSFS ¼ 0.82, while the average brightness

score for ten replicates with HSM was �xHSM ¼ 55:4, with standard deviation

sHSM ¼ 1.71. Assume that the brightness scores for the SFS and HSM

treatments are normally distributed with means μSFS and μHSM, respectively,

and common variance σ2.

(a) Estimate the difference in mean brightness scores μSFS � μHSM.

(b) Find an upper confidence bound for μSFS � μHSM. Choose your own

reasonable confidence level.

(c) Find the P-value for a test of H0: μSFS ¼ μHSM against the one-sided

alternative HA: μSFS < μHSM. What is your decision at significance

level .015?
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(d) Do you feel comfortable with the assumption of common variance for

the SFS and HSM treatments? Why or why not? What alternative

could you pursue if you are not comfortable with the assumption?

9.4.9. Is Shakespeare Always Shakespeare?Are great English authors consistent

in the pattern of noun repetition they use in their works? In particular, does

Shakespeare use a similar noun repetition pattern in his comedies as he does

in his tragedies? Bennett (1957) thoroughly investigated this question for the

Shakespearian comedy As You Like It and the Shakespearian tragedy Julius

Caesar. He calculated the frequency of occurrence of all of the nouns in each of

these plays and his tally is given in the dataset Shakespeare_noun_use.

(a) Assuming that As You Like It and Julius Caesar are reasonably repre-

sentative of all the comedies (14) and tragedies (12), respectively,

written by Shakespeare, find the P-value for an appropriate test of

the hypothesis that Shakespeare uses the same pattern of noun repe-

tition for his comedies as he does for his tragedies.

(b) Do you think it is reasonable to assume that As You Like It and Julius

Caesar are representative of the 14 comedies and 12 tragedies? Why or

why not? Do you want to add to the dataset by following Bennett’s

lead and count the noun repetitions in Merchant of Venice (comedy)

and King Lear (tragedy)? Let us know what you find out. . .. . .

9.4.10. Goggled Green Turtles. Consider the goggled green turtle hatchlings

study discussed in Example 9.9. Assuming equal variances for the numbers of

circles in the two–minute crawl period for hatchlings fitted with “nasal field”

goggles and those fitted with “harlequin” goggles, find the P-value for a test

of the hypotheses of interest. What is your decision at significance level .039?

Do you believe that the assumption of equal variances is reasonable? Justify

your answer.
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9.5 Discussion of the Methods of Inference for the Difference
Between the Centers of Two Populations with Indepen-
dent Samples.

In Sects. 1, 2, 3, and 4 we discussed procedures for making inferences

about the difference in the centers of two populations based on independent

random samples from each. These procedures use different measures for the

center of a population. The approximate procedures of Sect. 1 related to

comparing appropriate proportions for the two populations. In Sect. 2 the

emphasis is on the difference in medians for continuous populations. Such a

difference is appropriate for all continuous populations, but particularly so

for populations which are not necessarily symmetric. For such asymmetric

populations, the median is often a better measure of center than is the mean,

which can be heavily influenced by either the asymmetry or outliers in the

population. The approximate procedures of Sect. 3 are quite broad in their

applicability. They are appropriate for any populations where we have

reasonably-sized samples from both populations and our primary interest is

in the difference in the population means. The setting for Sect. 4 is the most

restrictive of the four considered in this chapter, as it depends not only on

underlying normality for the two populations but also on the condition that

they have a common variance. An additional caveat for the procedures in

Sects. 3 and 4 is that they might not be the best approach to consider for

settings where the underlying populations are sharply skewed or heavy-

tailed, since for such settings the sample means and sample standard

deviations are not very reliable measures of center and variability for the

two populations.

The important thing to remember is that when the assumptions underly-

ing a particular set of procedures are reasonable for the two populations of

interest, then those procedures will generally provide better inferences (i. e.,

shorter confidence intervals, more differentiating test procedures, etc.) for the

difference in centers for the populations. However, as always, applying
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procedures to populations that do not satisfy the necessary assumptions for

those procedures can often produce misleading inferential conclusions.

Remember that diagnostic tools such as histograms, box plots, and normal

probability plots can provide useful information about the shape and nature

of the underlying populations.

Chapter 9 Comprehensive Exercises

9.A. Conceptual

9.A.1. Let X1, . . ., Xm and Y1, . . ., Yn denote independent random samples

from two distinct (X and Y) continuous populations. LetW andU (9.20) be the

rank sum statistic and counting statistic, respectively, discussed in Sect. 2.

Show that W ¼ U þ n nþ1ð Þ
2 when there are no tied values between the X’s

and/or Y’s.

9.A.2. Let X1, . . ., Xm and Y1, . . ., Yn be independent random samples from

two distinct (X and Y) continuous populations. Let S1, . . ., Sm and R1, . . ., Rn

denote the joint ranks of X1, . . ., Xm and Y1, . . ., Yn, respectively, among the

combined sample of N ¼ (m + n) X and Y observations. Even though each

individual Si and Rj rank is random, explain why the total sum of the ranks,Xm
i¼1

Si þ
Xn
j¼1

Rj, is not random. Show, either in general or for m ¼ 5 and n ¼ 6,

that this total sum of ranks is always equal to the constant N(N + 1)/2.

9.A.3. The rank sum statistic W discussed in Sect. 2 uses only the sum of the

combined samples ranks R1, . . ., Rn of the Y observations. Wouldn’t the

statistic V ¼
Xn
j¼1

Rj �
Xm
i¼1

Si, where S1, . . ., Sm are the combined samples

ranks of X1, . . ., Xm, respectively, be a more informative statistic to use in

testing H0: [ηY ¼ ηX]? Explain why this is not the case.
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9.A.4. Consider the 100CL% confidence interval for the difference in popu-

lation means, μY - μX, as given in (9.26).

(a) For fixed sample sizes m and n and a given set of data, how does the

length of this confidence interval vary as a function of the confidence

level CL?

(b) For a fixed set of data and confidence level CL, how does the length of

this confidence interval vary as a function of the two sample sizes,

m and n?

9.A.5. Consider the 100CL% confidence interval for the difference in popu-

lation means, μY - μX, as given in (9.26) and the corresponding 100CL% upper

confidence bound for μY - μX. For fixed sample sizesm and n and a given set of

data, compare the upper endpoint of the 100CL% confidence interval with the

100CL% upper confidence bound.

9.A.6. Notice that both of the 100CL% confidence intervals for the difference

in population means, μY - μX, given in (9.26) and (9.36) are centered at the

point estimator for μY - μX, namely, �Y� �X. Explain why this is not necessarily

the case for the point estimator ~D (9.14) for the difference in population

medians ηY - ηX and the 100CL% confidence interval for ηY - ηX given in

(9.18). What can be said about ~D relative to the confidence interval in (9.18)?

9.B. Data Analysis/Computational

9.B.1. Binge Drinking and Athletics. Find an approximate 95% lower confi-

dence bound for pY - pX for the athlete/non-athlete binge drinking data in

Example 9.1.

9.B.2. Driving Under the Influence and Athletics. In Example 9.1, we used

sample data from Leichliter et al. (1998) to compare the percentages of

intercollegiate athletes and non-athletes who were involved in binge drinking
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in the 2 weeks prior to completing a Core and Alcohol Survey. Those authors

also reported sample data on whether the respondents had driven under the

influence during the past year. These results are presented in Table 9.9 for

participants and non-participants in intercollegiate sports.

Let ppar and pnonpar denote the percentages of all participants and

non-participants, respectively, in intercollegiate athletics who have driven

under the influence during the prior year.

(a) Find a lower confidence bound for ppar � pnonpar. Choose your own

reasonable confidence level.

(b) Find the approximate P-value for an appropriate test of the conjecture

that participants in intercollegiate athletics are more likely to have

driven while under the influence in the prior year than non-

participants. What is your decision at significance level .06?

(c) How do you think these results would compare with today’s

campuses?

9.B.3. Gender andMusical Instrument Choice.Consider the instrument opinion

data in Table 9.2. Find a confidence interval for pY - pX, where pX¼ [proportion

Table 9.9 Numbers of students reporting that they have driven under the
influence in the last year prior to completing the core and alcohol survey

Involvement in intercollegiate sports

Participants Non-participants

Number completing 8749 42,734
survey
Number who have 3348 12,991
driven under the
influence during the
prior year

Source: Leichliter et al. (1998)
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of 9-11 year old boys who believe that girls should not play the trumpet] and

pY ¼ [proportion of 9-11 year old girls who believe that girls should not play

the trumpet]. Choose your own reasonable confidence level.

9.B.4. Gender andMusical Instrument Choice.Consider the instrument opinion

data in Table 9.2. Find the approximate P-value for a test of the hypothesis

that both girls and boys agree that boys should not play the flute against the

general alternative that they disagree on that issue.

9.B.5. Insect Infection by Parasites. Infection of an insect by a parasite can

either lead directly to a lethal disease in the insect itself or it can be transmitted

further to a vertebrate host by the insect. (Malaria is an example of the latter

case, since it is a disease that is transmitted to man through various mosquito

species carrying the infecting Plasmodia parasite.) An important part of such a

host-parasite relationship is the defense system of the host. In the case of

insects, the presence of the enzyme phenoloxidase has been suggested as a

possible deterrent to infection by parasites. This enzyme produces quinones

that react with proteins to produce a black pigment melanin, which is then

deposited on a parasite by the insect as part of its defense against it. However,

large amounts of active phenoloxidase can also kill insects. Hence, for genera-

tion of an adequate, but not lethal, supply of quinones to respond effectively

to a parasite, close control of the phenoloxidase activity by the insect is essential.

With this question in mind, Pye (1974) studied the activation of propheno-

loxidase in the plasma of immune Galleria mellonella larvae in response to

exposure to a variety of microbial products. For each product, ten Galleria

mellonella larvae were involved, with five of them serving as controls

(no immunization) and the other five being first immunized through injection

of 1.0-μg doses of Shigella flexneri lipopolysaccharide B (Difco). Both the control

and immune larvae were then exposed to the microbial product. Using a

quick freezing method with acetone-dry ice, the level of prophenoloxidase

activation was then obtained for all ten larvae by using a Guilford recording
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spectrophotometer. The data in Table 9.10 represent the results obtained for

five control larvae and five immune larvae exposed to a 1 mg/ml water

mixture of the microbial product Zymosan (a yeast polysaccharide). The

measurements are in units of prophenoloxidase activity per .20 ml plasma of

the larvae.

(a) Estimate the difference in the median prophenoloxidase activation

levels for the control and immune larvae populations after exposure

to the stipulated dose of Zymosan.

(b) Estimate the probability that a randomly selected control larva will

exhibit a smaller prophenoloxidase activation level than a randomly

selected immune larva after exposure of each to a 1 mg/ml water

mixture of Zymosan.

(c) Find a confidence interval for the difference in the median prophenol-

oxidase activation levels for the control larvae population and the

immune larvae population after exposure to the stipulated dose of

Zymosan. Choose your own reasonable confidence level.

(d) Find the P-value for a test of the conjecture that immunization of the

larvae leads to an increase in prophenoloxidase activation resulting

from exposure to a 1 mg/ml water mixture of Zymosan. What is

your decision at significance level .05?

Table 9.10 Prophenoloxidase activation (units
per .20 ml plasma) for control larvae and
immune larvae, both exposed to a 1 mg/ml
water mixture of the microbial product zymosan

Control larvae Immune larvae

79 381
64 361
82 425
13 353

174 339

Source: Pye (1974)
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9.B.6. Anencephalus and Magnesium in Tap Water. Anencephalus is a fatal,

congenital birth anomaly where a child is born without an effectively func-

tioning brain. Links between the occurrence of this disease and a number of

environmental factors were investigated in Elwood (1977) and later by Archer

(1979). One of the factors that Archer considered to be a possible influence on

the anencephalus rate for a region was the magnesium content of its water. He

obtained anencephalus rates (deaths from anencephalus / 1000 total births)

for 36 cities in Canada for the period (1950-1969), as well as the average

magnesium content of their water (parts per million) during that period of

time. These two quantities are presented for these Canadian cities in

Table 9.11.

For this exercise, we divide the Canadian cities into those considered to have

unusually high magnesium tap water levels (� 7.6 ppm) and those with low

magnesium levels (< 7.6 ppm) and search for potential differences in rates of

death from anencephalus. (We consider an alternative approach to analyzing

these same data without grouping by high or low magnesium level in

Chap. 11.)

(a) Provide a list of the anencephalus death rates for the two samples

created by this high/low magnesium criterion. What are the two

sample sizes?

(b) Find a confidence interval for the differences in mean anencephalus

death rate for areas with high magnesium tap water levels and those

with low magnesium levels. Choose your own reasonable confidence

level.

(c) Find the P-value for a test of the conjecture that cities with high

magnesium tap water levels will have greater anencephalus death

rates than those with low manesium levels. What is your decision at

significance level .025?
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Table 9.11 Rate of death from anencephalus per 1000
total births and magnesium in tap water (ppm) for thirty-
six cities in Canada for the period (1950–1969)

Rate of death
from anencephalus

Magnesium
in tap water

1.47 23.9
0.97 8.6
0.77 15.1
0.80 0.5
0.93 10.4
1.39 26.0
1.23 0.6
1.41 8.3
1.32 7.5
1.03 7.9
1.10 26.3
1.51 7.6
1.17 7.5
1.08 8.6
0.74 8.3
1.17 8.4
1.55 2.2
1.60 3.1
1.79 1.7
0.61 27.5
1.24 8.6
2.12 0.7
1.56 0.6
0.90 7.5
1.37 7.7
1.54 6.7
0.77 11.6
1.46 3.0
1.69 2.8
1.28 5.0
1.45 8.7
2.04 0.7
0.79 0.2
1.44 7.5
1.11 7.8
1.28 6.5

Source: Archer (1979)
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9.B.7. Binge Drinking Athletes—Leaders or Not? In Example 9.1, we used

sample data from Leichliter et al. (1998) to compare the percentages of

intercollegiate athletes and non-athletes who were involved in binge drinking

in the 2 weeks prior to completing a Core and Alcohol Survey. Those authors

also differentiated between whether an athlete was simply a member of the

team or was considered a leader on the team. The binge drinking data for

these two subgroups are presented in Table 9.12. Let pmember and pleader denote

the percentages of all participants in intercollegiate athletics who have

engaged in binge drinking in the previous 2 weeks and who are team

members only or leaders of teams, respectively.

(a) Find a confidence interval for pleader � pmember. Choose your own

reasonable confidence level.

(b) Find the approximate P-value for an appropriate test of the conjecture

that leaders on intercollegiate athletic teams are more likely to have

been involved in binge drinking in the previous 2 weeks than are

athletes in lesser positions on their teams. What is your decision at

significance level .045?

9.B.8. Insect Infection by Parasites. In his study of an insect’s prophenoloxidase

activation response to microbial products (see Exercise 9.B.5), Pye (1974) also

Table 9.12 Numbers of intercollegiate athletic team members and leaders
reporting involvement in binge drinking in the 2 weeks prior to completing
the core and alcohol survey

Involvement in intercollegiate sports

Team member Leader

Number completing 6651 2098
survey
Number engaging 3618 1217
in binge drinking in
the previous two weeks

Source: Leichliter et al. (1998)
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considered themicrobial product Pseudomonas aeruginosa. The prophenoloxidase

activation values (units per .20 ml plasma) for five control larvae and five

immunized larvae after exposure to .10 ml aliquots of Pseudomonas aeruginosa

are given in Table 9.13.

(a) Estimate the difference in median prophenoloxidase activation for the

control and immune larvae populations after exposure to the

stipulated dose of Pseudomonas aeruginosa.

(b) Estimate the probability that a randomly selected control larva will

exhibit a smaller prophenoloxidase activation level than a randomly

selected immune larva after exposure of each to .10 ml aliquots of

Pseudomonas aeruginosa.

(c) Find a confidence interval for the difference in median propheno-

loxidase activation for the control larvae population and the immune

larvae population after exposure to the stipulated dose of Pseudomo-

nas aeruginosa. Choose your own reasonable confidence level.

(d) Find the P-value for a test of the conjecture that immunization of the

larvae leads to an increase in prophenoloxidase activation resulting

from exposure to .10 ml aliquots of Pseudomonas aeruginosa. What is

your decision at significance level .05?

Table 9.13 Prophenoloxidase activation
(units per .20 ml plasma) for control larvae
and immune larvae, both exposed to .10 ml
aliquots of Pseudomonas aeruginosa

Control larvae Immune larvae

33 225
90 139
32 287
23 217

130 211

Source: Pye (1974)
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9.B.9. Anencephalus and Geomagnetic Flux. In his study of factors affecting

anencephalus death rates (see Exercise 9.B.6), Archer (1979) also considered

the possible linkage between these rates and the horizontal geomagnetic flux

of a region. The horizontal geomagnetic flux of a region has a strong influence

on where incoming charged cosmic particles strike the earth’s atmosphere,

with higher flux regions diverting the particles to those with low flux. Since

ionizing radiation is a known mutagen and carcinogen, it is possible that

some of the geographical differences in congenital anomalies, such as

anencephalus, could be accounted for by the differing intensities of cosmic

radiation for the geographical regions. Dividing the 36 cities into those with

high (� .0162) and low (< .0162) horizontal geomagnetic flux, respectively,

the corresponding anencephalus death rates are given in Table 9.14.

Table 9.14 Rate of death from anencephalus per 1000
total births for thirty-six cities in Canada, divided into
groups with high (� .0162) and low (< .0162) horizontal
geomagnetic flux values, for the period (1950–1969)

Cities with high flux values Cities with low flux values

1.47 0.77
0.97 0.93
0.80 1.32
1.39 1.51
1.23 1.17
1.41 1.55
1.03 1.60
1.10 1.79
1.08 0.61
0.74 0.90
1.17 1.37
1.24 0.77
2.12 1.46
1.56 1.69
1.54 1.28
1.45 2.04
0.79 1.44
1.11 1.28

Source: Archer (1979)
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(a) Estimate the difference in mean death rates from anencephalus for

cities with high horizontal geomagnetic flux values and those with

low flux values.

(b) Find a lower confidence bound for the difference in mean

anencephalus death rate for areas with high horizontal geomagnetic

flux values and those with low flux values. Choose your own reason-

able confidence level.

(c) Find the P-value for a test of the conjecture that cities with high

horizontal geomagnetic flux values will have greater anencephalus

death rates than those with low flux levels. What is your decision at

significance level .030?

9.B.10. Driving Under the Influence and Gender. In Exercise 9.B.2, we used

sample data from Leichliter et al. (1998) to compare the percentages of

intercollegiate athletes and non-athletes who had driven while under the

influence during the prior year. Those authors also reported the gender of

the respondents. These results are presented in Table 9.15 for participants in

intercollegiate sports.

Let pfemalepar and pmalepar denote the percentages of all female and male

participants in intercollegiate athletics, respectively, who have driven under

the influence during the prior year.

Table 9.15 Numbers of male and female intercollegiate athletes reporting
that they have driven under the influence in the last year prior to complet-
ing the core and alcohol survey

Male athletes Female athletes

Number completing 4860 3.892
survey
Number who have 2181 1165
driven under the influence
during the prior year

Source: Leichliter et al. (1998)
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(a) Find a confidence interval for pfemalepar � pmalepar. Choose your own

reasonable confidence level.

(b) Find the approximate P-value for an appropriate test of the conjecture

that female participants in intercollegiate athletics are less likely to

have driven while under the influence in the prior year than are male

participants in intercollegiate athletics. What is your decision at sig-

nificance level .06?

9.B.11. If You Have Seen One Slug, Have You Seen Them All? In Examples 9.3,

9.4, 9.5, and 9.6 we discussed statistical analyses of the data collected by

Whelan (1982) on how the woodland site and waste site slugs responded to

the toxic plant Allium Ursinum, commonly found in woodland but not waste

sites, as the test gel. It would, of course, also be of interest to see how the two

types of slugs responded to a toxic plant that was commonly found in waste,

but not woodland, sites. In Table 9.16 we present precisely that data for the

toxic waste site plant Rumex obtusifolius.

Conduct the same statistical analyses as in Examples 9.3, 9.4, 9.5, and 9.6 for

the data on the toxic waste site plant Rumex obtusifolius in Table 9.16. Discuss

Table 9.16 Acceptability indices (AI) for Arion
Subfuscus from woodland and waste sites with the toxic
waste site plant Rumex obtusifolius as test gel

Woodland site slugs (X) Waste site slugs (Y)

0.18 0.15
0.03 0.12
0.26 0.09
0.17 0.23
0.22 0.12
0.17 0.00
0.06 0.20
0.47 0.13
0.22 0.10
0.18 0.07

Source: Whelan (1982)
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the similarities and differences between your findings and those obtained in

Examples 9.3, 9.4, 9.5, and 9.6 for the toxic woodland plant Allium Ursinum.

9.B.12. Hospital Admissions—Substance Abuse and/or Mental Illness. In a study

of hospital admissions and related costs, Salit et al. (1998) collected hospital

discharge and admissions records from New York City public and private

hospitals for the 2 years 1992 and 1993. Among other things, they found that

44,959 of the 244,345 public hospital admissions during that period were for

substance abuse and/or mental illness. For private hospitals, 37,982 out of

139,641 admissions were for substance abuse and/or mental illness.

(a) Viewing these data from New York City as reasonably representative

of data from all public and private hospitals, estimate the difference in

the percentages of admissions due to substance abuse and/or mental

illness for private and public hospitals.

(b) Find an approximate 95% confidence interval for the difference in the

percentages of admissions due to substance abuse and/or mental

illness for private and public hospitals.

9.B.13. Baseball and Beer! Baseball is the American pastime, but what goes

with watching a baseball game? The well-known song says peanuts and

crackerjack, but how about some beer to wash those snacks down? Wolfe

et al. (1998) conducted a study to see just how much beer and baseball have

become synonymous. Male spectators of drinking age were sampled over a

three-game period—on a Friday night, a Saturday afternoon, and a Monday

night—during the 1993 season at two major league ballparks. Wolfe et al.

found that 65 out of 166 sampled spectators in the age group 20-35 had

consumed alcohol immediately prior to entering the ballpark. For the age

group 36-50, they found that 44 of the 145 sampled individuals had consumed

alcohol immediately prior to entering the ballpark. Find the approximate

P-value for a test of the conjecture that fans in the age group 20-35 are more
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likely to consume alcohol prior to going to a major league ball game than are

fans in the age group 36-50.

9.B.14. Baseball and Beer and Age. In their study of beer and baseball (see

Exercise 9.B.13), Wolfe et al. (1998) also found that 28 out of 212 sampled

spectators in the age group 20-35 were legally intoxicated at the end of the

fifth inning of the baseball game. The analogous sampling for the age group

51-65 yielded 4 out of 16 sampled spectators who were legally intoxicated at

that stage of the ball game. Find an approximate 90% confidence interval for

the difference in percentages of baseball fans in the age groups 20-35 and

51-65 who will be legally intoxicated at the end of the fifth inning of a

baseball game.

9.B.15. Did All Americans Have the Same Access to a Home Computer? Internet

usage is the norm for Americans today, but were there differences between

groups within America in the 1990’s as far as Internet access was concerned?

Hoffman and Novak (1998) considered data provided by Nielsen Media

Research from the Spring 1997 CommerceNet/Nielsen Internet Demographic

Study (IDS), conducted from December 1996 through 1997. Among other

things, the study found that 2173 of 4906 white respondents owned a home

computer, while the corresponding figures for African Americans were

143 home computer owners out of 493 respondents. Find the approximate P-

value for a test of the conjecture that the percentage of home computer owners

was greater for white Americans than for African Americans in the 1990’s.

9.B.16. Buying a Personal Computer. Hoffman and Novak (1998) considered

data provided by Nielsen Media Research from the Spring 1997

CommerceNet/Nielsen Internet Demographic Study (IDS), conducted from

December 1996 through 1997. One part of the data collected involved the

number of respondents who plan to buy a personal computer in the next

6 months. Those figures for white Americans and African Americans were
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819 out of 4906 and 134 out of 493, respectively. Find an approximate 97.5%

confidence interval for the difference in percentages of white Americans and

African Americans who plan to buy a personal computer in the 6 months

following completion of the survey data collection in 1997. Comment on this

finding in conjunction with the result of Exercise 9.B.15.

9.B.17. Removing Spots and Stains From Works of Art on Paper. Consider the

study by Eirk (1972) in which she compared various approaches to removing

stains or spots fromworks of art on paper, as previously discussed in Exercise

9.4.8. A second feature used for comparison of these treatments was the

bursting strength in pounds per square inch of the dried paper following

treatment. Again using the relatively white ledger paper without disfiguring

effects, the observed average bursting strength for ten replicates of the pow-

dered sodium formaldehyde sulfoxylate (SFS) treatment was �xSFS ¼ 36.4

pounds per square inch, with standard deviation sSFS ¼ 5.17 pounds per

square inch, while the average bursting strength for ten replicates of the 1:2

aqueous 5% hypochlorite/5% sodium metabisulfite (HSM) treatment was

�xHSM ¼ 18.5 pounds per square inch, with standard deviation sHSM ¼ 1.63

pounds per square inch. Assume that bursting strengths for the SFS and HSM

treatments are normally distributed with means μSFS and μHSM, respectively,

and common variance σ2.

(a) Estimate the difference in mean bursting strengths μSFS � μHSM.

(b) Find a lower confidence bound for μSFS � μHSM. Choose your own

reasonable confidence level.

(c) Find the P-value for a test of H0: μSFS ¼ μHSM against the one-sided

alternative HA: μSFS > μHSM. What is your decision at significance

level .001?

(d) Do you feel comfortable with the assumption of common variance for

the SFS and HSM bursting strengths? Why or why not? What alterna-

tive could you pursue if you are not comfortable with the assumption?
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9.B.18. Will My Hair EVER Grow Again? One of the major concerns for men

as they age is whether they will lose some or all of their hair. While it is well

known that much of male baldness can be blamed on genetic inheritance from

mom (guys, look at the men on your mother’s side for clues), hair restoration

after initial loss of hair has become an important cosmetic industry for men.

Kamimura et al. (2000) studied the effect that topical application of

procyanidin B-2 (PB-2) isolated from apple juice might have on new hair

growth. For 6 months they treated one group of 19 balding men twice a day

with 1.8ml of agent containing 1% PB-2, corresponding to 30mg of PB-2 daily.

A second group of 10 balding men served as a control group. They were

treated in exactly the same way, except that the agent contained no PB-2. No

other hair care products except shampoos and rinses were permitted during

the study. Before and after the six-month period, hairs at a predetermined site

were clipped from each participating subject and the diameters of the col-

lected hairs were measured. The change in total hairs per .25 cm2 and the

change in terminal hairs (defined as >60 μm in diameter) for each of the

participants was recorded and is presented in Table 9.17.

(a) Estimate the difference in the medians for total hair growth in the

control and PB-2 treated populations.

(b) Estimate the probability that a randomly selected control individual

will exhibit a smaller amount of total hair growth than a randomly

selected individual treated with PB-2.

(c) Find a confidence interval for the difference in the medians in total

hair growth for the control and PB-2 treated populations. Choose

your own reasonable confidence level.

(d) Find the P-value for a test of the conjecture that treatment with PB-2

improves the amount of total hair growth for balding individuals.

What is your decision at significance level .025?
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9.B.19. Will My Hair EVER Grow Again? Consider the hair growth study by

Kamimura et al. (2000) discussed in Exercise 9.B.18. Answer parts (a) through

(d) of that Exercise again for total terminal hair growth.

Table 9.17 Total and terminal hair growth in
each subject

Total hair change
(hairs/.25cm2)

Total terminal hair change
(hairs/.25 cm2)

Placebo controls
0.3 0.94
1.4 1.27
3.0 �2.58
3.7 3.56

�1.5 �0.25
�2.0 �2.58
0 3.73
4.8 �2.62
2.4 �7.55

�11.3 �2.09
Treated with PB-2

3.5 3.54
5.0 �2.74
7.3 5.87
18.3 3.12
14.5 1.53
6.7 �3.12
9.0 �0.17

�0.7 4.85
7.8 2.81

- 4.0 3.11
6.0 6.69
4.5 0.22
8.0 0.80
11.4 3.95
1.0 2.38
7.3 1.20
8.5 3.03

�0.7 0.71
13.5 0.00

Source: Kamimura et al. (2000)
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9.B.20. Will My Hair EVER Grow Again? Consider the hair growth study by

Kamimura et al. (2000) discussed in Exercise 9.B.18. Assume that total termi-

nal hair growth for the Control and PB-2 treated populations are normally

distributed with means μControl and μPB�2 and variances σ2Control and σ2PB�2,

respectively.

(a) Estimate the difference in mean hair growth μPB�2 � μControl.

(b) Find an upper confidence bound for μControl � μPB�2. Choose your

own reasonable confidence level.

(c) Find the P-value for a test of H0 : μControl ¼ μPB�2 against the

one-sided alternative HA : μPB�2 > μControl. What is your decision at

significance level .010?

9.B.21. Will My Hair EVER Grow Again? Consider the hair growth study by

Kamimura et al. (2000) discussed in Exercise 9.B.18. Assume that total

hair growth for the Control and PB-2 treated populations are normally

distributed with means μControl and μPB�2 and variances σ2Control and σ2PB�2,

respectively.

(a) Estimate the difference in mean total hair growth μPB�2 � μControl.

(b) Find an upper confidence bound for μControl � μPB�2. Choose your

own reasonable confidence level.

(c) Find the P-value for a test of H0 : μControl ¼ μPB�2 against the

one-sided alternative HA : μPB�2 > μControl. What is your decision at

significance level .010?

9.C. Activities

9.C.1. Are Female College Students More Liberal With Regard to Social Issues

Than Male College Students? Design an experiment (including the appropriate

data to collect and how to collect it) that will enable you to statistically

address this question. Collect the relevant data for samples of 10 men and
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10 women, conduct an appropriate set of statistical analyses, and write a

two-page report describing your experiment and statistical conclusions.

9.C.2. Do College Science/Math Majors Spend Less Time Exercising Per Week

than College Non-Science/Non-Math Majors? Design an experiment (including

the appropriate data to collect and how to collect it) that will enable you to

statistically address this question. Collect the relevant data for samples of

10 college science/math majors and 10 college non-science/non-math majors,

conduct an appropriate set of statistical analyses, and write a two-page report

describing your experiment and statistical conclusions.

9.C.3. Just For You! Find a journal article in a field of your interest that

presents the results of a study that involved independent samples from two

distinct populations. Prepare a short (2-3 pages) summary report of the

statistical findings in the article and attach a copy of the original paper with

your summary.

9.C.4. M&M Colors—Peanuts Versus Plain. Mars, Inc. makes both M&M’s

Plain and M&M’s Peanut candies. They claim that their production processes

provide for the same percentage red pieces for both the plain and the peanut

candies. Design an experiment (including the appropriate data to collect and

how to collect it) that will enable you to statistically address this claim. Collect

adequate relevant data, conduct an appropriate set of statistical analyses, and

write a three-page report describing your experiment and statistical

conclusions. (You can eat the M&M’s upon completion of your report!)

9.C.5. Lasting Power—Pennies or Nickels? Is there a difference between the

length of time that U. S. pennies and nickels stay in common circulation?

Design an experiment (including the appropriate data to collect and how to

collect it) that will enable you to statistically address this question. Collect

adequate relevant data, conduct an appropriate set of statistical analyses, and
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write a three-page report describing your experiment and statistical

conclusions.

9.C.6. Do Female College Students Study More Than Male College Students?

Design an experiment (including the appropriate data to collect and how to

collect it) that will enable you to statistically address this question. Collect the

relevant data for samples of 10 male college students and 10 female college

students, conduct an appropriate set of statistical analyses, and write a

two-page report describing your experiment and statistical conclusions.

9.C.7. Do Male College Students Get Better Grades Than Female College

Students? Design an experiment (including the appropriate data to collect

and how to collect it) that will enable you to statistically address this question.

Collect the relevant data for samples of 10 male college students and 10 female

college students, conduct an appropriate set of statistical analyses, and write a

two-page report describing your experiment and statistical conclusions.

9.C.8. Does Smoking Participation Decrease with College Advancement? Design

an experiment (including the appropriate data to collect and how to collect it)

that will enable you to statistically address this question. Collect the relevant

data for samples of 10 underclassmen (freshmen or sophomores) and

10 upperclassmen (juniors or seniors), conduct an appropriate set of statistical

analyses, and write a two-page report describing your experiment and statis-

tical conclusions.

9.C.9. Who Has More Friends on Facebook—Men or Women? Design an experi-

ment (including the appropriate data to collect and how to collect it) that will

enable you to statistically address this question. Collect the relevant data for

samples of 10 men and 10 women, conduct an appropriate set of statistical

analyses, and write a two-page report describing your experiment and statis-

tical conclusions.
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9.C.10. Do College Students Sleep Later on Weekends Than Their Parents?

Design an experiment (including the appropriate data to collect and how to

collect it) that will enable you to statistically address this question. Collect the

relevant data for samples of 20 college students and 20 parents (from different

families), conduct an appropriate set of statistical analyses, and write a

two-page report describing your experiment and statistical conclusions.

9.D. Internet Archives

9.D.1. Surveys. Identify three organizations that routinely collect survey

data on current topics and locate the Internet sites where they periodically

present the results of their surveys. Select one such survey of interest to you

that involves comparison of percentages for at least two groups and prepare a

brief report on its findings.

9.D.2. Federal Government. Identify three government agencies that routinely

gather national data and locate the Internet sites where they periodically

present the updates to their data collections. Select one specific data collection

that is of interest to you and prepare a brief report using the data to compare

two groups.

9.D.3. Professional Societies. Identify three professional societies that rou-

tinely gather information relevant to their membership and locate the Internet

sites where they report their findings. Select one specific data collection that is

of interest to you and prepare a brief report using the data to compare two

groups.

9.D.4. Nonprofit Organizations. Identify three nonprofit organizations that

routinely gather information relevant to their cause and locate the Internet

sites where they report their findings. Select one specific data collection that is

of interest to you and prepare a brief report using the data to compare two

groups.
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9.D.5. Academic Organizations. Identify three academic entities that routinely

gather information relevant to their ongoing research projects and locate the

Internet sites where they report their findings. Select one specific data collec-

tion that is of interest to you and prepare a brief report using the data to

compare two groups.

9.D.6. Medical Research. Use the Internet to locate a paper published in a

medical field within the past 2 years that presents a study involving data

collection and comparison of two groups. If the data are not actually available

in the published article, contact the authors to see if they will allow you to

access the data. If you are successful, use the data to verify the statistical

summary in the published article.

9.D.7. Climate Change Research. Use the Internet to locate a paper published

within the past 2 years on a topic related to climate change that presents a

study involving data collection and comparison of two groups. If the data are

not actually available in the published article, contact the authors to see if they

will allow you to access the data. If you are successful, use the data to verify

the statistical summary in the published article.

9.D.8. Social Science Research. Use the Internet to locate a paper published in

a social science field within the past 2 years that presents a study involving

data collection and comparison of two groups. If the data are not actually

available in the published article, contact the authors to see if they will allow

you to access the data. If you are successful, use the data to verify the

statistical summary in the published article.

9.D.9. Humanities Research. Use the Internet to locate a paper published in a

humanities field within the past 2 years that presents a study involving data

collection and comparison of two groups. If the data are not actually available

in the published article, contact the authors to see if they will allow you to
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access the data. If you are successful, use the data to verify the statistical

summary in the published article.

9.D.10. STEM Research. Use the Internet to locate a paper published in a

STEM field (science, technology, engineering, or mathematics) within the past

2 years that presents a study involving data collection and comparison of two

groups. If the data are not actually available in the published article, contact

the authors to see if they will allow you to access the data. If you are

successful, use the data to verify the statistical summary in the published

article.
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Statistical Inference for Two-Way
Tables of Count Data 10

In Sect. 9.1 we discussed procedures designed for making statistical inference

about the difference in the probabilities of a common event A for two

populations. Those procedures are based on independent random samples

of Bernoulli variables (i. e., either the event A occurs or it does not) from each

of the two populations. One way to represent the observed outcomes of such

Bernoulli random samples is in the following 2 � 2 table:

Population 1 Population 2

Event A occurs O1 O2

Event A does not occur m - O1 n - O2

where m and n are the numbers of Bernoulli observations collected from

Populations 1 and 2, respectively, and O1 and O2 are the numbers of these

Bernoulli variables for which the event A occurred. For this setting and the

statistical procedures of Sect. 9.1, we note that the numbers of observations,

# Springer International Publishing AG 2017
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m and n, from Populations 1 and 2, respectively, are fixed in advance of the

sampling, while O1 and O2 represent the random outcomes of this process.

This 2 � 2 table approach to representing the outcomes of two indepen-

dent Bernoulli random samples can be generalized to deal with other settings

where we have count data that can be categorized by two different criteria.

Suppose that each measurement being collected can belong to one and only

one of I categories, C1, . . ., CI, for one attribute and to one and only one of

J categories, D1, . . ., DJ, of a second defining attribute. Such data can be

represented in the form of counts in an I � J two-way table (often referred

to as a contingency table). In the setting above, for example, we have two

population categories, C1 ¼ {Population 1} and C2 ¼ {Population 2}, and

two event categories, D1 ¼ {event A occurs} and D2 ¼ {event A does not

occur}. Thus I ¼ J ¼ 2 and we can represent the sample count data as noted in

a 2 � 2 table.

In this chapter we discuss a number of test procedures designed to test a

variety of appropriate hypotheses about general I� J two-way tables of count

data. In Sect. 1, we consider an approximate procedure for testing equality of

population proportions for an arbitrary number of populations, I, and an

arbitrary number of categories, J. This procedure will be a direct extension

of the test procedure discussed in Sect. 9.1 (for the special case of I ¼ 2

populations and J ¼ 2 categories) to the more general setting where either

there are more than 2 populations or there are more than 2 categories or both.

In Sect. 2 we present an approximate procedure for testing whether there is

any association between two categorical attributes that can be used to classify

observations; that is, do the two attributes occur independently in the popu-

lation of interest? In Sect. 3 we discuss an exact procedure for testing equality

of two population proportions. Although the procedure of Sect. 3 is more

computationally intensive than the approximate hypothesis test for the same

problem considered in Sect. 9.1, the P-values associated with the test in Sect. 3

are exact, rather than approximate. Finally, in Sect. 4, we present an
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approximate goodness-of-fit procedure for testing hypotheses about the

probabilities associated with each of I > 2 possible categories for a multino-

mial count variable. This is a direct extension of the test procedure described

in Sect. 6.3 for a single binomial variable, corresponding to I ¼ 2 categories.

General Setting and Notation Consider a measurement that can belong to

one and only one of I categories, C1, . . ., CI, for one attribute and to one and

only one of J categories, D1, . . ., DJ, of a second defining attribute. Collecting

N such independent measurements, we record the numbers of these

measurements that fall in the IJ different combinations of the two attribute-

categories. Let Oij denote the observed (random) number of these sample

observations that belong to category Ci for the first attribute and category Dj

for the second attribute, for i ¼ 1, . . ., I and j ¼ 1, . . ., J. These counts can be

represented in the form of the I � J configuration in Table 10.1.

Thus, the entry in the ith row (category Ci) and jth column (category Dj) of

Table 10.1 is Oij ¼ [number of observations possessing both the attribute Ci

and the attributeDj], for i¼ 1, . . ., I and j¼ 1, . . ., J. For this general setting, the

Oij entries represent the random outcomes for our sampling process and they

will provide the basic data to test appropriate hypotheses about the

probabilities of the various combinations of C and D attribute categories.

Table 10.1 Tabular representation of N sample observations categorized
by two attributes

Category for attribute D

D1 D2
. . . DJ-1 DJ Total

C1 O11 O12
. . . O1,J-1 O1J N1.

C2 O21 O22
. . . O2,J-1 O2J N2.

Category for attribute C ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

CI-1 OI-1,1 OI-1,2
. . . OI-1,J-1 OI-1,J N(I-1).

CI OI1 OI2
. . . OI,J-1 OIJ NI.

Total N.1 N.2
. . . N.(J-1) N.J N
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The totalNi. then represents the number of sample observations that belong to

category Ci of the first attribute, for i ¼ 1, . . ., I. Similarly, the total N.j

represents the number of sample observations that belong to category Dj of

the second attribute, for j ¼ 1, . . ., J. How these data are used will depend on

both the hypotheses of interest and the nature of the data collection (i. e.,

sampling) process.

10.1 General Test for Differences in Population Proportions

Consider a categorical variable for which the observed outcome belongs to

one and only one of I possible categories C1, . . ., CI. As a direct extension of the

two population-two category setting of Sect. 9.1, we collect simple random

samples independently from each of J separate populations and sort the

observed outcomes into the I categories. Letting pij denote the probability

that a random outcome from population jwill belong to category Ci, for i ¼ 1,

. . ., I and j ¼ 1, . . ., J, the probability distributions for the J populations across

the I categories can be represented as in Table 10.2. Since the I categories C1,

. . ., CI completely partition each of the populations, the probability entries in

Table 10.2 must satisfy the constraints that p1j + p2j + . . . + pIj ¼ 1 for every

population j ¼ 1, . . ., J.

Table 10.2 Population probabilities for J populations partitioned by
I common categories

Population

1 2 . . . J-1 J

C1 p11 p12
. . . p1,J-1 p1J

C2 p21 p22
. . . p2,J-1 p2J

Partitioning category ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

CI-1 pI-1,1 pI-1,2
. . . pI-1,J-1 pI-1,J

CI pI1 pI2
. . . pI,J-1 pIJ
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A representation similar to Table 10.2 can be used to portray the sample

data collected independently from each of the J populations and sorted into

the I categories. Suppose we collect nj sample observations from population j,

for j ¼ 1, . . ., J. If we let Oij denote the observed number of the sample

observations from population j that belong to category i, then Table 10.3

provides such a representation of these J samples of categorical data.

One of the natural questions of interest in this setting is whether or not

there are differences among the J populations with regard to their

probabilities for the I categories. One way to address this question is test the

null hypothesis

H0 : pi1 ¼ pi2 ¼ . . . ¼ piJ; for i ¼ 1 . . . I
h i

ð10:1Þ

against the general alternative that there are, in fact, differences of some kind

in the category probabilities across the J populations. Notationally, this alter-

native corresponds to

HA: p1s; . . . ; pIs
� � 6¼ p1t; . . . ; pIt

� �
; for at least one pair

�
of populations s; t2 1; . . . ; Jf g�: ð10:2Þ

To test H0 (10.1) against the general alternative HA (10.2), we use the

observed Oij sample counts for the I categories from each of the populations,

Table 10.3 Independent random samples from J populations partitioned
by I common categories

Population

1 2 . . . J-1 J

C1 O11 O12
. . . O1,J-1 O1J

C2 O21 O22
. . . O2,J-1 O2J

Partitioning category ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

CI-1 OI-1,1 OI-1,2
. . . OI-1,J-1 OI-1,J

CI OI1 OI2
. . . OI,J-1 OIJ

Sample size n1 n2 . . . nJ-1 nJ
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as given in Table 10.3. If the null hypothesis is true, the J populations do not

differ in their probabilities for any of these I categories. Under H0 (10.1), we

have pi1 ¼ pi2 ¼ . . . ¼ piJ ¼ some common value, say pi, for each i ¼ 1, . . ., I.

Thus, when the null hypothesis is true, a natural estimator for the common

probability pi for the ith category Ci is the overall observed proportion in that

category, pooled across all J samples; that is, if H0 is true, we would estimate

the common pi by

pi
_

¼ Oi1 þOi2 þ . . .þOiJ

n1 þ n2 þ . . .þ nJ
, for i ¼ 1, . . . , I, ð10:3Þ

or, using the row totals notation of Table 10.1,

pi
_

¼ Ni:

N
, for i ¼ 1, . . . , I: ð10:4Þ

Now, when H0 (10.1) is true, we would expect that each of the J populations

would have something close to the pooled percentage, pi
_

(10.4), of its sample

observations falling in category Ci, for i¼ 1, . . ., I. Thus, the number of sample

observations from the jth population that we would expect to observe in

category Ci when the null hypothesis, H0 (10.1), is true is given by

Eij ¼ njpi
_

¼ njNi:

N
, i ¼ 1, . . . , I and j ¼ 1, . . . , J, ð10:5Þ

or, using both the row and column totals notation of Table 10.1 (where, here,

the column totals simply correspond to the fixed sample sizes from each of the

J populations),

Eij ¼
�
expected number of sample observations from population j in

category Ci when H0 is true
� ¼ Ni:N:j

N
, i ¼ 1, . . . , I and j ¼ 1, . . . , J:

ð10:6Þ
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Now, we have two quantities for each of the IJ category-population

combinations in Table 10.3, namely, the observed counts, Oij, and the

expected counts, Eij (10.6). If the null hypothesis H0 is true, we would not

expect these two counts to differ much across the category-population

combinations. A natural statistic that is used to assess the magnitudes of

these differences between the observed counts and the expected counts is

the chi-square statistic

Q1 ¼
X
all

X
categories

observed� expectedð Þ2
expected

¼
XI

i¼1

XJ

j¼1

Oij � Eij
� �2

Eij
: ð10:7Þ

(Note that Q1 (10.7) is similar to the Pearson goodness of fit statistic G (5.8)

discussed in Sect. 5.4 to illustrate the simulation of sampling distributions.)

Evidence against the null hypothesis H0 (10.1) in favor of the general

alternative HA (10.2) is clearly provided by large values of the chi-square

statistic Q1 (10.7). Moreover, when the null hypothesis is true, the sampling

distribution for Q1 can be well-approximated by the chi-square distribution

with degrees of freedom ¼ (I-1)(J-1), provided the sample sizes n1, . . ., nJ are

sufficiently large so that each of the IJ null expected counts Eij (10.7) is at

least 5.

To test the null hypothesis H0 (10.1) versus the general alternative HA

(10.2) that the J populations do not totally agree on their probabilities for the

I categories C1, . . ., CI, let q1(obs) be the observed value of the chi-square

statistic Q1 (10.7). Then, the approximate P-value for the test of H0 versus

HA is

P�value � P χ2I�1ð Þ J�1ð Þ � q1 obsð Þ
� �

, ð10:8Þ

where χ2I�1ð Þ J�1ð Þ has a chi-square distribution with (I-1)(J-1) degrees of

freedom.
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Example 10.1. Where Will a Yellow-Crowned Night Heron Build Her

Nest? Yellow-crowned night herons nest in colonies that are generally circu-

lar in nature. Location of the individual nests within such a structure is an

important feature of a heron colony. Are there criteria that determine where

an individual female heron will build her nest? One possibility suggested by

Bagley (1985) was that younger, less experienced hens and hens nearing the

end of their reproductive years would be forced to build their nests near the

edges of the colony circle where their nests (and eggs) would be less protected

from predators than would those in the center of the colony. Such structuring

of the nesting pattern would seem to be appropriate for optimal production of

young herons during a breeding season, since the youngest and oldest female

herons are also most likely to be the hens which lay fewer fertile eggs and,

therefore, raise fewer young in the first place.

To study this question, Bagley (1985) observed a colony with forty-seven

yellow-crowned night heron nests. Twenty-two of these nests were consid-

ered to be on the edges of the colony, while the other twenty-five were

designated as interior nests. The numbers of hatched eggs for the 47 nests

are presented in Table 10.4.

Here we have J ¼ 2 populations corresponding to interior and edge nests,

respectively, and I¼ 3 categories associated with the numbers of hatched eggs

in the various nests. For i ¼ 3, 4, and �5, let

Table 10.4 Numbers of nests with three, four, or five or more hatched eggs
for twenty-five interior and twenty-two edge nests in a yellow-crowned
night heron colony

Number of hatched eggs Sample size

3 4 5 or more

Interior nests 1 15 9 25
Edge nests 8 10 4 22

Source: Bagley (1985)
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pi, edge ¼
�
proportion of all nests on the edges of yellow�crowned night

heron colonies with i hatched eggs
�
:

and

pi, interior ¼
�
proportion of allnests in the interior of yellow�crowned

night heron colonies with i hatched eggs
�
:

Then the null hypothesis H0 (10.1) of interest here is given by

H0 : pi, edge ¼ pi, interior; for i ¼ 3; 4; and � 5
h i

and the alternative HA (10.2) corresponds to

HA : p3,edge; p4,edge; p�5,edge

� �
6¼ p3, interior; p4, interior; p�5, interior

� �h i
:

From (10.5) we see that the numbers of interior nests in our sample that we

would expect to have 3, 4 or �5 hatched eggs, respectively, when H0 (10.1) is

true are:

E3,interior ¼ 9 25ð Þ
47

¼ 4:787,E4,interior ¼ 25 25ð Þ
47

¼ 13:298,andE�5,interior¼ 13 25ð Þ
47

¼ 6:915:

Similarly, the numbers of edge nests in our sample that we would expect to

have 3, 4, or �5 hatched eggs, respectively, when H0 (10.1) is true are:

E3, edge ¼ 9 22ð Þ
47

¼ 4:213,E4,edge ¼ 25 22ð Þ
47

¼ 11:702, and E�5,edge ¼ 13 22ð Þ
47

¼ 6:085:

Combining these null expected nest numbers with the observed

frequencies noted in Table 10.4, the value of the chi-square test statistic Q1

(10.7) for the yellow-crowned night heron data becomes
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Q1 ¼
X3
i¼1

X2
j¼1

Oij � Eij
� �2

Eij
¼ 1� 4:787ð Þ2

4:787
þ 15� 13:298ð Þ2

13:298
þ 9� 6:915ð Þ2

6:915

(

þ 8� 4:213ð Þ2
4:213

þ 10� 11:702ð Þ2
11:702

þ 4� 6:085ð Þ2
6:085

)

¼ 2:996þ 0:218þ 0:629þ 3:404þ 0:248þ 0:714

¼ 8:209:

With J ¼ 2 and I ¼ 3, the null distribution of the test statistic Q1 is approxi-

mately chi-square with (3–1)(2–1) ¼ 2 degrees of freedom. Hence, from

Eq. (10.8) and the R function pchisqð Þ, the approximate P-value for these

yellow-crowned night heron hatchlings data is

P�value � P χ22 � 8:209
� � ¼ :016.

> pchisq(8.209, df = 2, lower.tail = FALSE)
[1] 0.01649827

Thus there is some evidence from the sample data that the numbers of

hatchlings do, indeed, differ from edge to interior night heron nests. This

conclusion lends numerical support to Bagley’s postulation that younger, less

experienced hens and hens nearing the end of their reproductive years are

forced to build their nests near the edges of a night heron colony circle.

Section 10.1 Practice Exercises

10.1.1. College Athletes and Alcohol—Male/Female. College athletes are

exposed to a variety of personal demands and social influences that differ

from those of their non-athlete colleagues. These circumstances can often

result in the consumption of more alcohol by collegiate athletes than by

non-athletes. Williams (2012) conducted a study designed to address this

issue among college freshmen. He collected data from 263 freshmen college

athletes at two NCAA Division I universities through the use of a modified

version of the College Athlete Alcohol Survey. Using the North American
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Intercollegiate Athletic Association’s guidelines for safe drinking, participants

were assigned to one of three categories:

Abstainer (drinks no alcohol)

Moderate Drinker (male who consumes alcohol, but drinks fewer than 14

drinks per week and fewer than 4 drinks per occasion, or a female who

consumes alcohol, but drinks fewer than 7 drinks per week and fewer than

3 drinks per occasion)

Heavy Drinker (male who consumes alcohol and drinks at least 14 drinks

per week or 4 or more drinks per occasion, or a female who consumes

alcohol and drinks at least 7 drinks per week or 3 or more drinks per

occasion)

The breakdown of the 263 freshmen college athletes surveyed by Williams is

provided in Table 10.5.

(a) Assuming these 263 athletes are representative of all NCAA Division

I university athletes, state the null hypothesis of interest here.

(b) Construct the table of expected counts if the null hypothesis is true.

(c) Find the approximate P-value for an appropriate test of the null

hypothesis. What is your conclusion at significance level .02?

(d) Comment on the implication of the analysis.

10.1.2. College Athletes and Alcohol—Team/Individual Sport. Consider the

study of alcohol and freshmen athletes by Williams (2012) discussed in

Exercise 10.1.1. He also classified each of the athletes by whether they

participated in an individual or a team sport. The breakdown of the

263 athletes by individual versus team sport is provided in Table 10.6.

Table 10.5 College freshmen male and female athlete drinking habits

Abstainer Moderate Heavy Sample size

Male athletes 51 48 68 167
Female athletes 12 40 44 96

Source: Williams (2012)
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(a) Assuming these 263 athletes are representative of all NCAA Division

I university athletes, state the null hypothesis of interest here.

(b) Construct the table of expected counts if the null hypothesis is true.

(c) Find the approximate P-value for an appropriate test of the null

hypothesis. What is your conclusion at significance level .02?

(d) Comment on the implication of the analysis.

10.1.3. Where Are Students Carrying Weapons? Meilman et al. (1998) reported

on the regional distribution of students who carry weapons on college

campuses, using data obtained from the nationwide Core Alcohol and Drug

Survey of 28,253 students at 61 institutions during the 1994/95 academic

years. Of those respondents, 9886 men and 14,659 women answered the

following question: “During the last 30 days, how often have you carried a

weapon (gun, knife, etc.), not including situations in which carrying the

weapon occurred as “part of your job” or for “hunting purposes”? The

responses are presented in Table 10.7. We are interested in assessing whether

there are regional differences with respect to college students carrying

weapons.

(a) Assuming these college students are representative of all US colleges,

state the null hypothesis of interest here.

(b) Construct the table of expected counts if the null hypothesis is true.

(c) Find the approximate P-value for an appropriate test of the null

hypothesis. What is your conclusion at significance level .045?

(d) Comment on the implication of the analysis.

Table 10.6 College freshmen individual and team athlete drinking habits

Abstainer Moderate Heavy Sample size

Individual athletes 20 33 28 81
Team athletes 43 55 84 182

Source: Williams (2012)
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10.1.4. Does Institution Size Matter where Students with Weapons Are

Concerned? Consider the study by Meilman et al. (1998) discussed in Exercise

10.1.3. They also looked at weapon carrying as a function of sizes of the

college campuses. The breakdown of the survey responses by this criterion

is given in Table 10.8.

(a) Assuming these college students are representative of all US colleges

of similar sizes, state the null hypothesis of interest here.

(b) Construct the table of expected counts if the null hypothesis is true.

(c) Find the approximate P-value for an appropriate test of the null

hypothesis. What is your conclusion at significance level .086?

(d) Comment on the implication of the analysis.

Table 10.7 Number of US college students at institutions in different
regions of the country who reported carrying a weapon at least once in
the previous 30 days

Carried weapon Did not carry weapon Total

Region
Northeast 262 4335 4597
North central 559 7547 8106
South 451 4197 4648
West 446 6748 7194

Source: Meilman et al. (1998)

Table 10.8 Number of US college students at institutions of different sizes
who reported carrying a weapon at least once in the previous 30 days

Carried weapon Did not carry weapon Total

Campus size
< 2500 454 7242 7696
2500–4999 409 5268 5377
5000–9999 236 2507 2743
10,000–19,999 330 3954 4284
> 19,999 293 4152 4445

Source: Meilman et al. (1998)
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10.1.5. Does Belonging to a Union Lead to Better Health Insurance Benefits?

Gallup, Inc. conducted a survey of 2979 employed adults, aged 18 and

older, about various aspects of their workplace environments. One of the

questions asked whether a participant was completely satisfied with “the

health insurance benefits your employer offers”. The responses by the

393 employees who belonged to a union and 2586 employees who did not

belong to a union are presented in Table 10.9.

(a) State the null hypothesis of interest here.

(b) Construct the table of expected counts if the null hypothesis is true.

(c) Find the approximate P-value for an appropriate test of the null

hypothesis. What is your conclusion at significance level .033?

10.1.6. Does Belonging to a Union Lead to Better Recognition at Work for Your

Work Accomplishments? Gallup, Inc. conducted a survey of 2979 employed

adults, aged 18 and older, about various aspects of their workplace

environments. One of the questions asked whether a participant was

completely satisfied with “the recognition you receive at work for your

work accomplishments”. The responses by the 393 employees who belonged

to a union and 2586 employees who did not belong to a union are presented in

Table 10.10.

(a) State the null hypothesis of interest here.

(b) Construct the table of expected counts if the null hypothesis is true.

(c) Find the approximate P-value for an appropriate test of the null

hypothesis. What is your conclusion at significance level .048?

Table 10.9 Numbers of union and non-union employees who were
completely satisfied with their employer’s health insurance benefits

Completely satisfied Not completely satisfied

Union employees 181 212
Non-union employees 905 1681

Source: Gallup, Inc. (2015b)
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10.2 Test for Association (Independence) between Two Cate-
gorical Attributes

For the test procedure discussed in the previous section the count data in

the I � J table corresponds to sample observations from each of J categorical

populations sorted by I different categories C1, . . ., CI. For that setting the

numbers of observations from each of the populations are fixed and the

random component of the I � J table of data is associated with how the

observed sample items are distributed across the I categories C1, . . ., CI.

Thus, in Table 10.3, the column totals are fixed (corresponding the various

sample sizes) and the row totals (representing the combined-samples counts

in each of the categories C1, . . ., CI) are random.

Another setting where the relevant sample data can be represented by an

I � J table occurs when we are interested in assessing whether there is any

statistical relationship between two different categorical variables for

members of a single underlying population; that is, do the various

combinations of the two categorical attributes vary independently across the

population or is there some statistical pattern (i. e., dependence) between

them? Thus, for example, is there a statistical relationship between self-esteem

and problem drinking on campus? Between ethnicity and degree of cigarette

smoking? Are there gender differences in what are viewed as the most

important attributes for dates? For spouses? Is there a relationship between

mental health and substance abuse disorders among homeless Americans?

Table 10.10 Numbers of union and non-union employees who were
completely satisfied with the recognition they received at work for their
work accomplishments

Completely satisfied Not completely satisfied

Union employees 138 255
Non-union employees 1293 1293

Source: Gallup, Inc. (2015b)
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Are there differences in how husbands and wives feel that their jobs are

treated in a marriage?

All of these examples have a common data theme. Each subject under

discussion can be classified into one and only one of at least two possible

categorical levels for each of two different attributes. Thus each subject falls

into one and only one simultaneous category for the two attributes. If we

collect a random sample of N subjects from the population of interest and

place each of them in the single two-attribute category that is appropriate, the

resulting counts for the IJ two-attribute categories once again correspond to

the general data representation in Table 10.1. However, unlike the setting for

the previous section, here only the total number of subjects being distributed

across the IJ two-attribute categories is fixed, since both the row and column

totals are now random quantities that depend on the sample outcomes.

For this two-way categorical classification of sample data from a single

population, one of the relevant questions to ask is whether or not

classifications according to the two attributes are independent; that is, does

knowledge of which category a subject belongs to for one of the attributes

affect the probabilities associated with belonging to the various categories of

the second attribute? To model this question, we add row and column totals

to construct a probability table similar to that in Table 10.2, but now for the

case where a single sample of data is categorized by two attributes. The

resulting two-way classification probability table with row and column

sums is given in Table 10.11.

Thus, for i ¼ 1, . . ., I and j ¼ 1, . . ., J, the probability pij in Table 10.11

represents the probability that a randomly selected member of the

population of interest belongs to both category Ci of attribute one and to

category Dj of the second attribute; that is, pij ¼ P(Ci and Dj) ¼ P(Ci \ Dj). The

row total pi. ¼ pi1 + pi2 + . . . + piJ ¼ P(Ci andD1) + P(Ci andD2) + . . . + P(Ci and

DJ) ¼ P(Ci) then corresponds to the probability that a randomly selected

member of the population of interest belongs to category Ci of attribute one
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without regard to which category of attribute two pertains. Similarly, the

column total p.j ¼ p1j + p2j + . . . + pIj ¼ P(C1 and Dj) + P(C2 and Dj) + . . . + P(CI

and Dj) ¼ P(Dj) corresponds to the probability that a randomly selected

member of the population of interest belongs to category Dj of attribute two

without regard to which category of attribute one pertains.

With these representations for the probabilities of the individual Ci and Dj

categories and their combinations Ci \ Dj, we can use our knowledge about

independence of two events (as discussed in Chap. 4) to write the hypothesis

of independence between the classifications of a subject by the two attributes

as

H0 : P Ci and Dj
� � ¼ P Cið Þ � P Dj

� �
; for i ¼ 1; . . . ; I and j ¼ 1; . . . ; J

� �
, ð10:9Þ

or, equivalently,

H0 : pij ¼ pi: � p:j for i ¼ 1; . . . ; I and j ¼ 1; . . . ; J
h i

: ð10:10Þ

The general dependence alternative to H0 is naturally two-sided in nature,

corresponding to

HA : P Ci and Dj
� � 6¼ P Cið Þ � P Dj

� �
; for at least one i; jð Þ pair� �

, ð10:11Þ

Table 10.11 Population probabilities for categorization by two attributes

Category for attribute D

D1 D2 . . . DJ-1 DJ pi. ¼ P(Ci)

C1 p11 p12 . . . p1,J-1 p1J p1.
C2 p21 p22 . . . p2,J-1 p2J p2.

Category for ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

attribute C CI-1 pI-1,1 pI-1,2 . . . pI-1,J-1 pI-1,J p(I-1).
CI pI1 pI2 . . . pI,J-1 pIJ pI.
p.j ¼ P(Dj) p.1 p.2 . . . p.(J-1) p.J 1
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or, equivalently, to

HA : pij 6¼ p i: � p :j for at least one i; jð Þ pair
h i

: ð10:12Þ

To test the null hypothesis of independence between classifications by the

two attributes, H0 (10.10), versus the general alternative of attribute depen-

dence, HA (10.12), we once again make use of the observed Oij counts in the

various two-way classification cells, as represented in Table 10.1. If the null

hypothesis is true, we can first estimate pi. and p.j and then use the fact that pij

¼ pi. � p.j to estimate pij. For each i ¼ 1, . . ., I and j ¼ 1, . . ., J, the natural

estimators for pi. and p.j are the proportions of observed outcomes in the ith

row and jth column, respectively; that is,

p̂i: ¼
Ni:

N
for i ¼ 1, . . . , I ð10:13Þ

and

p̂:j ¼
N:j

N
for j ¼ 1, . . . , J: ð10:14Þ

Hence, under the null H0 hypothesis that pij ¼ pi. � p.j, the natural estimator

for pij is then

p̂ ij ¼ p̂ i:p̂ :j ¼
Ni:N:j

N2 , for i ¼ 1, . . . , I and j ¼ 1, . . . , J: ð10:15Þ

Now, when H0 (10.10) is true, we would expect to have somewhere close to

the estimated percentage p̂ij ¼
Ni:N:j

N2 of the N total sample observations

falling in the crossed category Ci � Dj, for i ¼ 1, . . ., I and j ¼ 1, . . ., J. Thus,

the number of the N sample observations that we would expect to observe in

the crossed category Ci � Dj, when the null hypothesis, H0 (10.10), is true, is

given by
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Eij ¼
�
expected number of the N sample observations in the crossed

category Ci �Dj when H0 10:10ð Þ is true
�

¼ N p̂ i:p̂ :j ¼ N
Ni:N:j

N2 ¼ Ni:N:j

N
, for i ¼ 1, . . . , I and j ¼ 1, . . . , J:

ð10:16Þ

As in Sect. 1, we now have two quantities for each of the IJ crossed categories

Ci � Dj in Table 10.1, namely, the observed sample counts, Oij, and the

expected counts Eij (10.16). If the null hypothesis H0 is true, we would not

expect these counts to differ by much across the IJ crossed categories Ci � Dj.

We note that the expected counts in (10.16) for this independence setting

are obtained from the I � J table in exactly the same way (but for different

reasons) as the expected counts given in (10.5) for the J population problem.

Thus, the general form of the chi-square statistic Q1 given in eq. (10.7) can

once again be used to assess the magnitudes of the attained differences

between the observed and expected counts.

As in Sect. 1, evidence against the null hypothesisH0 (10.10) in favor of the

general alternative HA (10.12) is provided by large values of the chi-square

statistic Q1 (10.7). Once again, when the null hypothesis H0 (10.10) is true, the

sampling distribution for Q1 can be well-approximated by the chi-square

distribution with degrees of freedom ¼ (I-1)(J-1), provided the number of

sample observations, N, is sufficiently large so that each of the IJ expected

counts Eij (10.16) is at least 5.

To test the null hypothesis H0 (10.10) of independence between the two

attributes versus the general alternative HA (10.12) that the two attributes are

related in some fashion (i. e., they are dependent), let q1(obs) be the observed

value of the chi-square statistic Q1 (10.7) with the expected counts given by

(10.16). Then the approximate P-value for the test of H0 (10.10) versus HA

(10.12) is
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P�value � P χ2I�1ð Þ J�1ð Þ � q1 obsð Þ
� �

, ð10:17Þ

where χ2I�1ð Þ J�1ð Þ has a chi-square distribution with (I-1)(J-1) degrees of

freedom.

Example 10.2. Is Gender an Important Factor in Role Portrayals in Popular

Magazines? When you look at an ad in a magazine, what do you notice

about the people in the ad? Are they male or female? What ethnicity are the

people? What roles are they portraying in the ad? Vigorito and Curry (1998)

considered questions like these as part of their study into links between

gender/ethnic identities and role portrayals in popular magazines. In this

example we concentrate on the relationship between gender and role por-

trayal, leaving a similar discussion of the relationship between ethnicity and

role portrayal for the exercises. Vigorito and Curry gathered data on maga-

zine content from a cross section of 83 popular magazines during the summer

of 1992. They coded 7935 individuals in ad illustrations in these magazines

with regard to race, sex, and the roles they portrayed in the ads. Two hundred

fifty of these individuals were infants for which the sex could not be deter-

mined from the ad illustration. The data in Table 10.12 represent the

Table 10.12 Gender-identified breakdown of role portrayals in magazine
ad illustrations

Gender

Role portrayal Female Male Total

Sport/fitness 114 166 280
Model/consumer 1386 526 1912
Occupational 588 1419 2007
Parent 222 142 364
Spouse/partner 319 287 606
Outdoor recreation 250 411 661
Other 880 975 1855
Total 3759 3926 7685

Source: Vigorito and Curry (1998)

792 10 Statistical Inference for Two-Way Tables of Count Data



breakdown of the remaining 7685 individuals for which gender could be

identified into the following seven role categories: sport/fitness, model/con-

sumer, occupational, parent, spouse/partner, outdoor recreation, and other.

Among the questions of interest to Vigorito and Curry was whether there

is any relationship between gender and the roles that individuals play in

magazine ad illustrations. Table 10.12 contains the observed frequencies in

the fourteen gender-identified role portrayal combinations. In order to

address the relationship between gender and role portrayal in magazine ads

we must next use Expression (10.16) to construct the expected counts in each

of these categories when the null hypothesis H0 (10.10) of independence

between gender and role portrayal in magazine ads is true. We illustrate the

necessary calculations for the fourteen combinations and then summarize the

null expected counts in Table 10.13.

From Expression (10.16) and the observed counts in Table 10.12, we find:

Esport=fitness, female ¼ 280ð Þ 3759ð Þ
7685

¼ 136:96,

Esport=fitness,male ¼ 280ð Þ 3926ð Þ
7685

¼ 143:04,

Table 10.13 Expected counts for gender-identified/role portrayal data in
table 10.12 when the null hypothesis of independence is true

Gender

Role portrayal Female Male Total

Sport/fitness 136.96 143.04 280
Model/consumer 935.23 976.77 1912
Occupational 981.69 1025.31 2007
Parent 178.05 185.95 364
Spouse/partner 296.42 309.58 606
Outdoor recreation 323.32 337.68 661
Other 907.34 947.66 1855
Total 3759 3926 7685
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Emodel=consumer, female ¼ 1912ð Þ 3759ð Þ
7685

¼ 935:23,

Emodel=consumer,male ¼ 1912ð Þ 3926ð Þ
7685

¼ 976:77,

Eoccupational, female ¼ 2007ð Þ 3759ð Þ
7685

¼ 981:69,

Eoccupational,male ¼ 2007ð Þ 3926ð Þ
7685

¼ 1025:31,

Eparent, female ¼ 364ð Þ 3759ð Þ
7685

¼ 178:05,

Eparent,male ¼ 364ð Þ 3926ð Þ
7685

¼ 185:95,

Espouse=partner, female ¼ 606ð Þ 3759ð Þ
7685

¼ 296:42,

Espouse=partner,male ¼ 606ð Þ 3926ð Þ
7685

¼ 309:58,

Eoutdoor recreation, female ¼ 661ð Þ 3759ð Þ
7685

¼ 323:32,

Eoutdoor recreation,male ¼ 661ð Þ 3926ð Þ
7685

¼ 337:68,

Eother, female ¼ 1855ð Þ 3759ð Þ
7685

¼ 907:34,

Eother,male ¼ 1855ð Þ 3926ð Þ
7685

¼ 947:66:

Combining these expected counts under H0 in Table 10.13 with the

observed frequencies noted in Table 10.12 for the fourteen gender/role por-

trayal combinations, the value of the chi-square test statisticQ1 (10.7) for these

data becomes

794 10 Statistical Inference for Two-Way Tables of Count Data



Q1 ¼
X7
i¼1

X2
j¼1

Oij � Eij
� �2

Eij

¼ 114� 136:96ð Þ2
136:96

þ 166� 143:04ð Þ2
143:04

þ 1386� 935:23ð Þ2
935:23

(

þ 526� 976:77ð Þ2
976:77

þ 588� 981:69ð Þ2
981:69

þ 1419� 1025:31ð Þ2
1025:31

þ 222� 178:05ð Þ2
178:05

þ 142� 185:95ð Þ2
185:95

þ 319� 296:42ð Þ2
296:42

þ 287� 309:58ð Þ2
309:58

þ 250� 323:32ð Þ2
323:32

þ 411� 337:68ð Þ2
337:68

þ 880� 907:34ð Þ2
907:34

þ 975� 947:66ð Þ2
947:66

)

¼ 3:849þ 3:685þ 217:266þ 208:026þ 157:883þ 151:166f
þ10:849þ 10:388þ 1:720þ 1:647þ 16:627þ 15:920

þ0:824þ 0:789g
¼ 800:639:

With I ¼ 7 and J ¼ 2, the null distribution of the test statistic Q1 is approxi-

mately chi-square with (7–1)(2–1) ¼ 6 degrees of freedom. Hence, from

Eq. (10.17) and the R function pchisqð Þ, the approximate P-value for these

gender-identified role portrayal magazine ad data is

P�value � P χ26 � 800:639
� � � 0.

> pchisq(800.639, df = 6, lower.tail = FALSE)
[1] 1.120478e-169

Thus there is very strong evidence in the Vigorito-Curry sample data that

gender and magazine ad role portrayal are not independent attributes. Closer

examination of the data shows clearly that the major contributors to the large

observed value for the statistic Q1 are the gender combinations with the

model/consumer and occupational roles, with less sizable, but still important,

contributions from the parent and outdoor recreation roles. Men are

portrayed in occupational or outdoor recreation roles in magazine ads
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significantly more often than women, while the opposite is true for the

model/consumer and parent roles.

We note that this chi-square analysis of the gender-identified role por-

trayal data can also be accomplished through use of the R function chisq:testð Þ
and the data.frame gender_roles.

> chisq.test(gender_roles)

Pearson's Chi-squared test

data:  gender_roles
X-squared = 800.65, df = 6, p-value < 2.2e-16

Section 10.2 Practice Exercises

10.2.1. Taking Care of Sick Parents. Princeton Survey Research Associates of

Princeton, New Jersey (1998) conducted an extensive series of surveys

designed to assess American values about taking care of each other. One of

the questions asked of the respondents in one of these surveys was:

Who should be responsible for taking care of parents if they become sick or

disabled?

The respondents were also asked to self-classify themselves as Conservative,

Moderate, or Liberal. The breakdown of the 1095 survey respondents

with respect to both their political ideology and their answer to the stated

question is:

Question Response

Numbers Who Gave This
Response

Conservatives Moderates Liberals

People should feel entirely
responsible

346 272 146

People should expect help
from the government

339 409 221

It depends 60 61 28
Don’t know/refused to answer 8 15 0
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Is there a relationship between political ideology and viewpoint towards

taking care of parents if they become sick or disabled?

(a) State the null hypothesis of interest here.

(b) Construct the table of expected counts if the null hypothesis is true.

(c) Find the approximate P-value for an appropriate test of the null

hypothesis. What is your conclusion at significance level .01?

(d) Comment on the implication of the analysis.

10.2.2. Is To Know Congress Really To Love Them? Based on a survey by

Gallup, Inc. (2015c), Americans in general do not have a very favorable

view of the U. S. Congress, with 49% rating the way Congress is doing its

job as poor or bad and only 15% rating it as excellent or good. Gallup chose to

follow up and investigate whether these negative opinions might not be based

at least partially on poorly informed public assumptions and impressions

about Congress. They conducted a second poll in which they asked 1017

adult Americans, aged 18 and older, a set of five questions to ascertain their

level of knowledge about Congress and its operations in addition to asking

their opinion on how Congress is doing its job. The results from this second

Gallup poll are presented in Table 10.14.

(a) State the null hypothesis of interest here.

(b) Construct the table of expected counts if the null hypothesis is true.

Table 10.14 Knowledge about Congress and opinion as to how well it is
doing its job

Number of five political questions answered correctly

Rating of congress 0 1 2–3 4–5

Excellent/good 67 53 20 12
Fair 94 91 125 47
Poor/bad 73 131 190 114

Source: Gallup, Inc. (2015c)
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(c) Find the approximate P-value for an appropriate test of the null

hypothesis. What is your conclusion at significance level .059?

(d) Comment on the implication of the analysis.

10.2.3. Birthright Citizenship. Immigration was an important topic for debate

during the 2016 presidential campaign. In particular, birthright citizenship for

U. S.-born children of parents who are not legal residents was a major issue of

discussion. The Pew Research Center (2015c) reported on the results of a poll

that addressed a number of immigration issues, including birthright citizen-

ship. One question they asked of respondents was: “Do you favor changing

the Constitution to bar citizenship for U.S.-born children of parents who are

not legal residents?” The responses from 1441 survey participants who

identified themselves politically as Republican, Democrat, or Independent

are given in Table 10.15.

(a) State the null hypothesis of interest here.

(b) Construct the table of expected counts if the null hypothesis is true.

(c) Find the approximate P-value for an appropriate test of the null

hypothesis. What is your conclusion at significance level .088?

10.2.4. Iran Nuclear Agreement. The Joint Comprehensive Plan of Action

(better known as the Iran Nuclear Agreement) is an international agreement

on the nuclear program of Iran signed in Vienna, Austria on July 14, 2015

between Iran, the P5 + 1 (the five permanent members of the United Nations

Table 10.15 Should the Constitution be changed to bar birthright
citizenship?

Change constitution Do not change constitution

Political identification

Republican 223 198
Democrat 105 351
Independent 209 355

Source: Pew Research Center (2015c)
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Security Council—China, France, Russia, United Kingdom, United States—

plus Germany), and the European Union. The Pew Research Center

conducted a public opinion poll September 3–7, 2015 to assess the U. S.

public’s awareness and support for the agreement. The results of their poll

are given in Table 10.16. The question of interest here is whether knowledge

about the Iran Nuclear Agreement influenced the public’s opinion about the

pact.

(a) State the null hypothesis of interest here.

(b) Construct the table of expected counts if the null hypothesis is true.

(c) Find the approximate P-value for an appropriate test of the null

hypothesis. What is your conclusion at significance level .022?

10.2.5. Is College Worth It? Gallup, Inc. and Purdue University conducted an

extensive survey (from December 16, 2004 to June 29, 2015) of recent college

graduates with a bachelor’s degree or higher. The graduates were asked

questions about student debt, employment, and opinions about the value of

and satisfaction with their college educations, among other things. The results

of this study were disseminated in the Gallup-Purdue Index Report (2015)—

you might find the report interesting. One of the questions asked of the

graduates was the amount of student loan debt they had incurred as

undergraduates. The reported percentages of white, African-American, and

Table 10.16 U. S. public knowledge of and support for the Iran nuclear
agreement

Approve Disapprove Don’t know

How much they had heard
about the agreement

A lot 158 191 19
A little 112 148 68
Nothing at all 40 111 157

Source: Pew Research Center (2015a)
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Hispanic graduates with various levels of undergraduate student loan debt

are presented in Table 10.17.

(a) What is the null hypothesis of interest here? Formally state it.

(b) For sake of this exercise, assume that these percentages are the result

of survey responses from 5000 white graduates, 2000 African Ameri-

can graduates, and 2000 Hispanic graduates. Under this assumption,

convert the percentages in Table 10.17 to the corresponding table with

observed counts in each of the 12 debt level/ethnicity cells.

(c) Construct the associated table of expected counts for these cells if the

null hypothesis is true.

(d) Find the approximate P-value for an appropriate test of the null

hypothesis. What is your conclusion at significance level .050?

10.2.6. Who Were the Nazis? During World War II, the NSDAP (Nationalso-

zialistische Deutsche Arbeiter Partei), better known as the Nazi Party, was led

by Adolph Hitler, but membership came from all walks of life and

backgrounds. Jarausch and Arminger (1989) studied a number of factors

that differentiated between those German teachers (members of the National

Socialist Teachers League, NSLB) who were members of the NSDAP and

those who chose not to join. One of the factors of interest to Jarausch and

Arminger was the religion of the teacher. They examined the historical

Table 10.17 Percentages of groups of alumni who graduated between 2006
and 2015 with various levels of student loan debt incurred as
undergraduates

White African-American Hispanic

Amount of student debt
None 39 20 28
$1 – $25,000 27 30 38
$25,001 – $50,000 21 31 19
> $50,000 13 19 15

Source: Gallup-Purdue Index Report (2015)
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records of 13,566 German teachers who belonged to the NSLB and recorded

their religious preference (Protestant, Catholic, or none) andwhether they had

joined the Nazi Party. Their findings are reported in Table 10.18.

(a) State the null hypothesis that corresponds to the same proportion of

Protestant teachers, Catholic teachers, and teachers indicating no

religion choosing to join the Nazi Party during World War II.

(b) Construct the table of expected outcomes if this null hypothesis

is true.

(c) Find the approximate P-value for an appropriate test of the null

hypothesis . What is your conclusion at significance level .064?

10.3 Exact Procedure for Testing Equality of Two Population
Proportions

In Sect. 9.1 we discussed an approximate hypothesis test for the equality of

two population proportions. For that procedure based on the statistic V*(9.8),

the approximate P-value is obtained by using the fact that the sampling

distribution for V* can be well approximated by the standard normal distri-

bution when both sample sizesm and n are large. In this section we consider a

more computationally intensive test procedure for the same problem, but one

that provides exact, rather than approximate, P-values. It will be the preferred

procedure for testing equality of two population proportions when one or

Table 10.18 Religious preference and choice of membership in the Nazi
Party for German teachers belonging to the National Socialist Teachers
League

Joined the Nazi party Did not join the Nazi party Total

Religion

Protestant 1970 4273 6243
Catholic 787 3327 4114
None 327 2882 3209

Source: Jarausch and Arminger (1989)

10.3 Exact Procedure for Testing Equality of Two Population Proportions 801



both of the sample sizes is not large enough for the standard normal distribu-

tion to provide a good approximation to the sampling distribution of V*.

Consider independent random samples of sizes m and n Bernoulli

variables (either an event A occurs or it does not) from two populations.

Using the notation of Sect. 1, this setting corresponds to J ¼ 2 populations

and I ¼ 2 categories and we can represent the observed outcomes of such

Bernoulli random samples in the following 2 � 2 table, where O11 + O21 ¼ m

and O12 + O22 ¼ n.

Letting p1 and p2 denote the probability that the event A occurs for

populations 1 and 2, respectively, we are interested here in testing the null

hypothesis H0: [p1 ¼ p2] versus either a one-sided or two-sided alternative.

The test procedure, known as Fisher’s exact test, is based on the total number of

times the event A occurs, namely, NA ¼ O11 + O12, and the observed

proportions, O11
NA

and O12
NA

, of these A outcomes that came from each of the two

populations. (We note that an equivalent alternative test could be based on

the total number of times that the eventA does not occur and the corresponding

proportions for each of the two populations.)

Let N ¼ m + n be the total number of sample observations from the two

populations. Then the observed data situation presented in Table 10.19

corresponds to NA of the N observations resulting in the occurrence of the

event A and N – NA of them resulting in the non-occurrence of the event

A. Conditional on the observed column and row totals (m, n, NA, and N – NA)

Table 10.19 Observed numbers of occcurrences of the event A for
independent Bernoulli samples from two populations

Population

1 2 Total

A occurs O11 O12 NA

A does not occur O21 O22 N – NA

Sample size m n N
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in Table 10.19, the sampling distribution of the statistic O11 ¼ [number of

occurrences of the event A from Population 1] when the null hypothesis H0:

[p1 ¼ p2] is true is given by the following expression:

P O11 ¼ xjNA;N �NA;m; nð Þ ¼ NA! N �NAð Þ!m!n!
N!x! m� xð Þ! NA � xð Þ! n�NA þ xð Þ! ,

ð10:18Þ

for integer x values between max(0, NA - n) and min(m, NA).

Evidence against the null hypothesis H0: [p1 ¼ p2] in favor of the general

two-sided alternative HA: [p1 6¼ p2] is clearly provided by either unusually

large or unusually small observed values of O11. For the one-sided alternative

HA: [p2 > p1] only unusually small values of O11 are suggestive that the null

hypothesis is not true, while for the one-sided alternative HA: [p2 < p1] rejec-

tion of H0 is supported by unusually large values of O11.

To test H0: [p1 ¼ p2], let o11(obs)denote the observed number of occurrences

of the event A among the m sample items from Population 1. The exact

P-value for a test of H0: [p1 ¼ p2] against the alternative:

HA : p2 > p1
� �

is P�value ¼ P O11 � o11 obsð ÞjNA;N �NA;m; n
� � ð10:19Þ

HA : p2 > p1
� �

is P�value ¼ P O11 � o11 obsð ÞjNA;N �NA;m; n
� � ð10:20Þ

HA : p2 6¼ p1
� �

is P�value ¼ 2� p∗, ð10:21Þ

where

p∗¼min P O11� o11 obsð ÞjNA;N�NA;m;n
� �

;P O11� o11 obsð ÞjNA;N�NA;m;n
� �� 	

The exact P-values in (10.19)–(10.21) can be obtained using the R function

phyperð Þ (since this distribution is known as the hypergeometric distribution).

They are also provided among the output of the R function fisher:testð Þ, which

you can use (along with actual data) to conduct the hypothesis test.
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Example 10.3. Does Political Affiliation Affect Our Views on Health Care

Spending? Do all people have the right to receive the health care they need,

regardless of how much it costs or are there limits on what our society can

spend, even on health care? This is precisely one of the questions raised in a

major national survey conducted by the Princeton Survey Research

Associates for Americans Discuss Social Security and published in the report

“Generation to Generation: American Values about Taking Care of Each

Other” (1998). Among the groups compared on this question were the Repub-

lican and Democratic political parties. Each person in the survey sample was

asked to select which of the following two statements came closer to the way

he/she felt:

All people have the right to receive the health care they need, regardless of how much it costs.
There are limits on what our society can spend, even on health care.

Seven hundred six self-identified Democrats and 538 self-identified

Republicans responded to this question and the summary of their responses

is given in Table 10.20.

Letting pDem and pRep represent the proportion of all Democrats and

Republicans, respectively, which are in favor of unlimited healthcare, we

are interested in using the survey data in Table 10.20 to test the hull hypothe-

sis H0: [pDem ¼ pRep]. The alternative of interest here is the one-sided alterna-

tive HA: [pRep < pDem], corresponding to the fact that Republican views

generally tend to be a bit more fiscally conservative than those of Democrats.

From Table 10.20 we see that the observed value ofO11 ¼O Dem, Unlimited HC is

Table 10.20 Sample responses on limited versus unlimited health care by
political party affiliation

Democrats Republicans

Unlimited healthcare 396 214
Limited healthcare 310 324
Sample size 706 538

Source: Princeton Survey Research Associates of Princeton, New Jersey (1998)

804 10 Statistical Inference for Two-Way Tables of Count Data



o11(obs) ¼ oDem , Unlimited HC(obs) ¼ 396. From (10.20), it follows that the exact P-

value for testing H0: [pDem ¼ pRep] versus the one-sided alternative HA:

[pRep < pDem] is given by

P�value ¼ P O11 � 396jNUnlimHC ¼ 610;NLimHC ¼ 634;m ¼ 706; n ¼ 538ð Þ:

Using the R function phyperð Þwe see that this P-value for these data is nearly

0, indicating that there is clearly a significant difference in how Republicans

and Democrats view the issue of limited versus unlimited healthcare, no

matter what the costs.

> phyper(396, m = 706, n = 538, k = 610, lower.tail = FALSE)
[1] 3.855707e-09

Note that we could have also used the R function fisher:testð Þ along with the

health_care_by_affiliation data.frame to conduct this hypothesis test.

Section 10.3 Practice Exercises

10.3.1. Is Purple a Female Color?Wypijewski (1997) reported on the results of

a comprehensive scientific poll of American tastes in art, as commissioned by

Vitaly Komar and Alexander Melamid in conjunction with the Nation Insti-

tute, a nonprofit of The Nation magazine. Random samples of 475 males and

526 females were asked to name their favorite color. Thirty-seven females and

six males in the samples named purple as their favorite color. We are inter-

ested in exploring any gender differences among individuals who view

purple as their favorite color.

(a) State the null hypothesis of interest here.

(b) Construct the appropriate table of counts for this setting.

(c) Find the exact P-value for an appropriate test of the null hypothesis.

What is your conclusion at significance level .015?

(d) Compare your analysis with that in Exercise 9.1.11 using the approx-

imate procedure based on a large sample approximation.
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10.3.2. Young of Year Gizzard Shad. Consider the length of YOY gizzard shad

data displayed in Table 1.38 in Exercise 1.B.13. Pool the ten observations from

Sites 1 and 2 to constitute a single random sample of 20 observations from site

“C” and do the same for the ten observations from Sites 3 and 4 to constitute a

single random sample of 20 observations from Site “D”. Let pC and pD denote

the proportion of all the YOY gizzard shad from Sites “C” and “D”, respec-

tively, that were at least 30 mm in length at the time that Johnson (1984)

conducted his study.

(a) State the null hypothesis that corresponds to Sites “C” and “D” being

the same with respect to percentage of its YOY gizzard shad that were

at least 30 mm in length at the time of the study.

(b) Construct the appropriate table of counts for this setting.

(c) Find the exact P-value for an appropriate test of the null hypothesis.

What is your conclusion at significance level .037?

10.3.3. Buyers Beware the Color! The presence or absence of color in marketing

communications (e.g., advertising, packaging) can affect the way a consumer

digests information about a product. Lee et al. (2014) conducted a number of

experiments to better understand this marketing feature. In one of their

experiments, participants were asked to consider camping at a remote site

where they could receive only a single radio station. The campsite manager

offered two radios for rent: Option A was a simple analog radio, that

appeared to be lighter and smaller, for $10 a day; Option B was a fancier

digital radio, that appeared to be larger and heavier, but it had a more

attractive display design along with high-precision tuner buttons and the

ability to preset the radio to automatically receive numerous stations, for

$18 a day. The participants were told that the two radios had the same

sound quality. One group of 47 participants were presented black and white

pictures of both Option A and Option B radios and asked to choose which one

they wished to rent for the camping trip. A second group of 47 participants
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were presented color pictures of both Option A and Option B radios and

asked to choose which one they wished to rent for the camping trip. Given the

constraints of the camping trip, we would expect that participants would

choose the more practical and cheaper Option A radio. The question of

interest is whether the addition of color to the pictures of the radios led to

unexpected choices by the participants. Of the 47 participants presented black

and white pictures of the Option A and Option B radios, 35 chose the more

practical Option A. Of the 47 participants presented color pictures of the

Option A and Option B radios, only 23 chose the more practical Option A.

(a) State the null hypothesis of interest here.

(b) Construct the appropriate table of counts for this experiment.

(c) Find the exact P-value for an appropriate test of the null hypothesis.

What is your conclusion at significance level .036?

10.3.4. Army Rangers. The Pentagon describes the Army Ranger School as

“the Army’s premier combat leadership course, teaching Ranger students

how to overcome fatigue, hunger, and stress to lead soldiers during small

unit combat operations”. Students of the school are forced to train with

minimal food and little sleep as they operate in difficult terrain, including

woods, mountains, and swamplands. For the first time in history, two women

successfully completed this rigorous and exhausting program in August 2015.

Nineteen women and 381 men began the Army Ranger program in April 2015

and two women and 94 men successfully completed it and graduated in

August 2015. What do these data say about the current success rates for

male and female participants in the Army Ranger School?

(a) State the null hypothesis of interest here.

(b) Construct the appropriate table of counts for this experiment.

(c) Find the exact P-value for an appropriate test of the null hypothesis.

What is your conclusion at significance level .080?
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10.3.5. College Students Carrying Weapons—Private Versus Public Institutions.

Consider the study by Meilman et al. (1998) discussed in Exercise 10.1.3. They

also compared weapon carrying at private and public institutions. The break-

down of the survey responses by this criterion is given in Table 10.21.

(a) Assuming these college students are representative of all public and

private US colleges, state the null hypothesis of interest here.

(b) Find the exact P-value for an appropriate test of the null hypothesis.

What is your conclusion at significance level .027?

(c) Comment on the implication of the analysis.

10.4 Goodness-of-fit Test for Probabilities in a Multinomial
Distribution with I > 2 Categories

In Sect. 6.3 we discussed a procedure designed to use Bernoulli (binomial)

sample data to test hypotheses about the value of pA ¼ P(A) ¼ [probability of

the event A] for a population. Such a population is, of course, simply a

categorical population with only I ¼ 2 categories. In this section we discuss

a more general procedure that will allow us to test hypotheses for categorical

populations with an arbitrary number, I � 2, of categories. The test procedure

utilizes multinomial categorical data collected from the population and the

Pearson goodness of fit statistic previously encountered in Sect. 5.4 during our

Table 10.21 Number of US college students at public and private
institutions who reported carrying a weapon at least once in the previous
30 days

Carried weapon Did not carry weapon Total

Type of institution

Public 1205 12,801 14,006
Private 516 10,023 10,539

Source: Meilman et al. (1998)
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discussion of ways to use computer simulation to approximate the sampling

distribution of a statistic.

Consider the setting where each measurement in a population can belong

to one and only one of I > 2 categories, C1, . . ., CI. Collecting N independent

measurements from this population, we record the numbers of these

sample observations, say O1, . . ., OI, that fall in the I population categories

C1, . . ., CI, respectively. These observed category frequencies can be used to

test the plausibility of a prescribed set of category proportions for the

population.

Let pi ¼ P(Ci) denote the proportion of the measurements in the popula-

tion that belong to category Ci, for i ¼ 1, . . ., I. Let p1, 0, . . . , pI, 0 be known

numbers between 0 and 1, inclusive, such that
XI

i¼1

pi, 0 ¼ 1. Thus the I numbers

p1, 0, . . . , pI, 0 represent one possible way in which the population might be

distributed across the categories C1, . . ., CI. A natural question for this setting

is whether or not the observed sample data agree with the division of the

population associated with the set of categorical probabilities p1, 0, . . . , pI, 0.

Thus we are interested in testing.

H0 : pi ¼ pi, 0; for i ¼ 1; . . . ; I
h i

ð10:22Þ

against the general alternative

HA : pi 6¼ pi, 0; forat leastone i ¼ 1; . . . ; I
h i

, ð10:23Þ

corresponding to at least two categories for which the population proportions

do not agree with those prescribed by p1, 0, . . . , pI, 0. This is generally

known as the goodness of fit testing problem, since a test of the null hypothesis

H0 (10.22) can be thought of as a test designed to assess the “goodness of the
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fit” of the hypothesized categorical proportions p1, 0, . . . , pI, 0 to the true

breakdown of the population across the I categories.

In Example 5.10 we discussed a situation involving the distribution of

colors claimed by Mars, Inc. for their M&M’s Plain candy. There we had I ¼ 6

categories, corresponding to the colors brown (C1), yellow (C2), red (C3),

orange (C4), green (C5), and blue (C6), and the production proportions for

these colors claimed by Mars, Inc. are pbrown ¼ .3, pyellow ¼ pred ¼ .2 and

porange ¼ pgreen ¼ pblue ¼ .1. The relevant null hypothesis H0 (10.22)

corresponding to the company’s claim for the M&M Plain color distribution

is then given by

H0 : pbrown ¼ :3; pyellow ¼ pred ¼ :2 and porange ¼ pgreen ¼ pblue ¼ :1
h i

:

In Sect. 5.4 we informally described a way to use the observed colors of

randomly sampled M&M’s Plain candy and the Pearson goodness of fit

statistic G (5.8) to assess this color distribution claim by Mars, Inc. In what

follows we formalize that discussion to deal with an arbitrary categorical

population with any number of categories and hypothesized population

proportions H0 (10.22).

When the null hypothesis is true, we would expect that the proportion of

sample observations falling in each of the categories would be relatively close

to the corresponding population proportion prescribed in Expression (10.22).

Thus, the number of sample observations that we would expect to observe in

category Ci when the null hypothesis, H0 (10.22), is true would be

Ei ¼ Npi, 0, for i ¼ 1, . . . , I: ð10:24Þ

Comparing these expected counts with the observed counts O1, . . ., OI

through the Pearson goodness of fit statistic G (5.8), the test statistic for this

setting is given by
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Q2 ¼
XI

i¼1

Oi � Eið Þ2
Ei

¼
XI

i¼1

Oi �Npi, 0
� �2

Npi, 0
: ð10:25Þ

Evidence against the null hypothesis H0 (10.22) in favor of the general alter-

native HA (10.23) is provided by large values of the test statistic Q2 (10.25).

Once again, we can use an appropriate chi-square distribution to approximate

the sampling distribution of Q2. For this setting the appropriate chi-square

degrees of freedom is I – 1 and the approximation is best if the sample size, N,

is sufficiently large so that each of the expected counts Ei (10.24) is at least 5.

To test the null hypothesis that the population category proportions are as

specified in H0 (10.22) versus the general alternative HA (10.23), let q2(obs) be

the observed value of the chi-square statistic Q2 (10.25). The approximate P-

value for the test of H0 versus HA is then

P�value � P χ2I�1 � q2 obsð Þ
� �

, ð10:26Þ

where χ2I�1 has a chi-square distribution with I – 1 degrees of freedom.

Example 10.4. Are the Color Proportions Claimed by Mars, Inc. for M&M

Plain Candy Correct? In Example 5.10 we discussed a situation involving the

distribution of colors claimed by Mars, Inc. for their M&M’s Plain candy.

There we had I ¼ 6 categories, corresponding to the colors brown (C1), yellow

(C2), red (C3), orange (C4), green (C5), and blue (C6), and the production

proportions of these colors claimed by Mars, Inc. are pbrown ¼ .3,

pyellow ¼ pred ¼ .2 and porange ¼ pgreen ¼ pblue ¼ .1. The null hypothesis H0

(10.22) corresponding to the company’s claim for the M&M Plain color distri-

bution is then given by.

H0 : pbrown ¼ :3; pyellow ¼ pred ¼ :2 and porange ¼ pgreen ¼ pblue ¼ :1
h i

,

ð10:27Þ
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and we are interested in using the observed color counts from a sample of

M&M Plain candy to test this null against the general alternative HA (10.23)

that at least one of the color production proportions for M&M Plain candy is

different from those stipulated in (10.27).

Suppose we observe the color counts for a bag containing N ¼ 800 Plain

M&M’s to be as specified in Table 10.22. From (10.24) we compute the

expected color counts under the null hypothesis stipulation in (10.27) to be:

Ebrown ¼ 800 :3ð Þ ¼ 240, Eyellow ¼ Ered ¼ 800 :2ð Þ ¼ 160,

Eorange ¼ Egreen ¼ Eblue ¼ 800 :1ð Þ ¼ 80:

Combining these expected color counts, as stipulated by the goodness of

fit null hypothesis H0 (10.27), with the observed sample color counts given in

Table 10.22, the value of the chi-square goodness of fit statistic Q2 (10.25) for

these M&M data is given by

Q2 ¼
X6
i¼1

Oi � Eið Þ2
Ei

¼ 251� 240ð Þ2
240

þ 168� 160ð Þ2
160

þ 145� 160ð Þ2
160

þ 71� 80ð Þ2
80

þ 91� 80ð Þ2
80

þ 74� 80ð Þ2
80

¼ 0:504þ 0:4þ 1:406þ 1:013þ 1:513þ 0:45 ¼ 5:286:

Since there are I¼ 6 color categories, the null distribution of the goodness of fit

test statistic Q2 is approximately chi-square with I – 1 ¼ 5 degrees of freedom.

Table 10.22 Observed color counts for a bag of 800 Plain M&M candies

Brown Yellow Red Orange Green Blue

Observed counts 251 168 145 71 91 74
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Hence from Eq. (10.26) and the R function pchisqð Þ, the approximate P-value

for these M&M Plain color data is P�value � P χ25 � 5:286
� � ¼ :382.

> pchisq(5.286, df = 5, lower.tail = FALSE)
[1] 0.3819824

Thus there is virtually no evidence in the observed color counts for our sample

of 800 M&M Plain candies to warrant questioning the color proportions

claimed by Mars, Inc.

Section 10.4 Practice Exercises

10.4.1. Healthy Heart? Does the Answer Depend on Your Birth Month? Cardio-

vascular disease, in particular acute myocardial infarction (AMI), is one of the

major causes of death in developed countries. But is your susceptibility to this

disease a function of which month you were born in? Stoupel et al. (2011)

conducted a study of 22,047 patients diagnosed with AMI and admitted in the

cardiology departments of the tertiary hospital at the Lithuanian University of

Medical Sciences in Kaunas, Lithuania between the years 1990–2010. The

month of birth for each of these patients is recorded in Table 10.23.

(a) It is natural a priori to assume that the month of birth should have no

relationship to the incidence of AMI. State the null hypothesis that

corresponds to this assumption.

(b) Construct the table of expected counts for each month if the null

hypothesis in (a) is true.

(c) Assuming the data in Table 10.22 are representative of all patients

with AMI, find the approximate P-value for an appropriate test of the

null hypothesis in (a). What is your conclusion at significance level

.045?

(d) What do you think could be the factor(s) that led to the result in part

(c)? Do you think the results would be the same if we analyzed

women and men separately? If you are curious, read more about it

in Stoupel et al. (2011).
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10.4.2. Fair Dice. Let X be the sum of the outcomes for the roll of two

ordinary six-sided dice.

(a) What are the possible values for X?

(b) If the two dice are fair (i.e., the probability is 1/6 for each of the

numbers 1, 2, . . ., 6), what is the probability distribution for X?

(c) Our friend brings a new pair of six-sided dice for use in a board game

and we decide to check if the dice are fair. What follows are the

observed sums for 72 rolls of the two dice:

8, 6, 8, 3, 5, 7, 8, 6, 5, 6, 4, 7, 9, 9, 6, 7, 6, 5, 4, 6, 3, 10, 8, 9, 9, 4, 9, 6, 7
7, 7, 4, 6, 3, 7, 7, 11, 10, 7, 8, 7, 9, 7, 10, 5, 6, 3, 10, 4, 6, 6, 8, 6, 7, 3, 4, 8,
7, 7, 7, 9, 6, 5, 4, 10, 6, 10, 6, 10, 9, 9, 3.

(a) What is the null hypothesis that corresponds to the two dice being

fair?

(b) Construct the table of expected outcomes if the two dice are fair.

Table 10.23 Birth month for AMI patients, Kaunas,
Lithuania

Month
Number of AMI patients
born in month

January 2498
February 1934
March 2014
April 1893
May 1999
June 1783
July 1821
August 1694
September 1703
October 1601
November 1488
December 1619
Total 22,047

Source: Stoupel et al. (2011)
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(c) Construct the corresponding table of observed outcomes for the

72 dice rolls.

(d) Find the approximate P-value for an appropriate test of the null

hypothesis that the two dice are fair. What is your conclusion at

significance level .025?

10.4.3. Random Number Generation. When prescribing sampling schemes for

data collection from a population, it is common to use random number

generators to select which items of the population to include in the sample.

Many algorithms are available in the literature and online for generation of

the necessary random numbers. In such algorithms, each item in the popula-

tion must have an equal probability of being included in the sample; that is, if

the population size is N, then the random number generator must have

probability 1/N of including each of the members of the population in the

sample. The following set of 200 numbers were obtained from the set of

integers {0, 1, 2, . . ., 97, 98, 99} using a purported random number generator.

98 69 54 86 66 11 76 62 41 19 58 32
24 24 30 49 75 25 20 45 13 66 50 93
4 61 39 55 77 61 29 90 84 88 77 16
11 72 68 72 62 0 4 38 77 78 59 52
6 20 2 75 57 79 34 21 95 66 58 39
85 18 32 45 21 89 87 9 59 82 93 67
75 49 43 92 96 47 77 65 19 22 67 48
15 43 68 95 66 5 58 49 84 59 85 98
66 81 32 69 26 64 66 79 28 90 39 52
73 95 1 9 59 62 37 65 77 13 16 27
5 14 45 97 2 22 84 46 57 53 81 67
23 60 67 6 39 90 6 45 7 98 78 52
38 33 70 79 64 65 50 67 66 7 6 71
99 77 63 63 18 24 52 68 86 37 43 99
24 56 83 3 7 42 95 15 50 84 2 24
8 54 92 86 44 91 24 21 57 44 46 92
21 88 0 93 85 83 53 88
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(a) What is the null hypothesis that corresponds to these numbers being

generated by an acceptable random number algorithm?

(b) Using each integer as its own category, how many of the generated

numbers should we expect for each integer if the algorithm is a true

random number generator?

(c) Construct the corresponding table of observed integer outcomes for

the 200 generated random numbers.

(d) Find the approximate P-value for an appropriate test of the null

hypothesis that the algorithm is a true random number generator.

What is your conclusion at significance level .046?

10.4.4. Random Number Generation—Approach Two. Consider the integers

generated by the purported random number generator given in Exercise

10.4.3.

(a) Using the interval categories [0,9), [10, 19), [20, 29), [30, 39), [40, 49),

[50, 59), [60, 69), [70, 79), [80, 89), [90, 99), how many of the generated

numbers should we expect for each of these ten categories if the

algorithm is a true random number generator?

(b) Construct the corresponding table of observed category outcomes for

the 200 generated random numbers.

(c) Find the approximate P-value for an appropriate test of the null

hypothesis that the algorithm is a true random number generator.

What is your conclusion at significance level .057?

(d) Compare this result with the result in Exercise 10.4.3.

10.4.5. Random Number Generation—Approach Three. Consider the integers

generated by the purported random number generator given in Exercise

10.4.3.

(a) Using only the two categories of even or odd integer, how many of

the generated numbers should we expect in the two categories if the

algorithm is a true random number generator?
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(b) Construct the corresponding table of observed category outcomes for

the 200 generated random numbers.

(c) Find the approximate P-value for an appropriate test of the null

hypothesis that the algorithm is a true random number generator.

What is your conclusion at significance level .033?

(d) Compare this result with the results in Exercises 10.4.3 and 10.4.4.

10.4.6. Random Number Generation—Approach Four—Does It Matter?

Consider the integers generated by the purported random number generator

given in Exercise 10.4.3.

(a) Using only the two categories of a prime number or not a prime

number, how many of the generated numbers should we expect in

each of the categories if the algorithm is a true random number

generator?

(b) Construct the corresponding table of observed category outcomes for

the 200 generated random numbers.

(c) Find the approximate P-value for an appropriate test of the null

hypothesis that the algorithm is a true random number generator.

What is your conclusion at significance level .015?

(d) Compare this result with the results in Exercises 10.4.3, 10.4.4, and

10.4.5. Does the method of categorization matter?

Chapter 10 Comprehensive Exercises

10.A. Conceptual

10.A.1. Below are two questions of potential research interest. For each of

these questions, describe the appropriate data to collect in order to address the

question and state which procedure discussed in this chapter would provide

the proper statistical analysis of these data.
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Question 1: Does participation in intercollegiate athletics effect the length

of time to graduation or even the graduation rate itself for a college

student?

Question 2: Are the percentages of individuals between the ages of 16 and

25 who do not smoke at all, smoke occasionally (less than a pack a week),

smoke regularly, but not heavily (between one and three packs a week), or

are heavy smokers (more than three packs a week) the same for males and

females?

10.A.2. Degrees of Freedom. There are k categories for the goodness of fit test

procedure discussed in Sect. 4. However, the degrees of freedom for the

chi-square approximation associated with the test statistic Q2 (10.25) is only

k-1, despite the fact that there are k terms (one for each category) in the sum for

Q2. Discuss an intuitive reason why the degrees of freedom for this chi-square

approximation should not be k.

10.A.3. Below are two questions of potential research interest. For each of

these questions, describe the appropriate data to collect in order to address the

question and state which procedure discussed in this chapter would provide

the proper statistical analysis of these data.

• Question 1: Is there any relationship between an individual’s religious

preference and her tolerance of the religious preferences of

others?

• Question 2: Are there differences in drinking habits between college

students who belong to sororities, fraternities or neither?

10.A.4. The test procedures discussed in Sects. 1 and 3 are both designed for

settings where fixed numbers of sample observations are collected from at

least two different populations. The question of interest for both procedures is

whether certain categorical proportions are the same for the populations.

Thus, under certain conditions they are competing test procedures.
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(a) Specify the setting(s) where both procedures are applicable. What

are the advantages and disadvantages of each procedure for such

setting(s)?

(b) Which of the two procedures is more broadly applicable and why?

10.A.5. Both the test for differences in category proportions for two or more

populations discussed in Sect. 1 and the test for association (independence)

between two categorical attributes discussed in Sect. 2 use the same

chi-square statistic Q1 (10.7). Moreover, the two test procedures use the data

in the observed I � J tables of counts in exactly the same way to compute the

expected counts (Eqs. (10.6) and (10.16), respectively) when the appropriate

null hypotheses are true. However, the ways in which the observed tables of

counts are obtained is quite different for the two procedures. Discuss such

data collection differences for the two settings, particularly with respect to the

sampling methods for the two procedures and the interpretations of the

column and row totals for the observed tables of counts.

10.A.6. Degrees of Freedom. Consider the test procedure discussed in Sect. 1

that is designed to test for differences in population proportions. If there are

J populations and I categories, then we have IJ category-population cross

entries in the observed data count Table 10.2. However, the degrees of

freedom associated with the chi-square approximation for the associated

test statistic Q1 (10.7) is only (I-1)(J-1), despite the fact that there are IJ terms

(one for each category-population combination) in the sum for Q1. Discuss an

intuitive reason why the degrees of freedom for this chi-square approxima-

tion should not be IJ.

10.A.7. Lotteries. In a lottery each number between 0 and 9 is designed to

have the same chance of being drawn.
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(a) In 6000 draws for the lottery, how many times should we expect the

number 6 to appear? How many times should we expect the number

9 to appear?

(b) Suppose we make two-digit numbers from each consecutive pair of

numbers drawn. For 6000 draws from the lottery, how many times

should we expect the number 45 to appear? How many times should

we expect that the two-digit number will be at least as large as 60?

(c) Suppose wemake three-digit numbers from each consecutive triple of

numbers drawn. For 6000 draws from the lottery, how many times

should we expect the number 369 to appear? How many of the three-

digit numbers should we expect to be less than 250?

10.B. Data Analysis/Computational

10.B.1. The following is a 5 � 4 table of observed counts collected from an

experiment involving two categorical attributes, A and B:

Category for attribute A
1 2 3 4

1 13 9 15 9
Category for 2 11 5 8 10
attribute B 3 6 4 2 16

4 8 9 10 5
5 3 9 7 11

Find the following expected cross-category counts if there is no association

between the two attributes (that is, they are independent).

(a) [expected count in category 1 for both attribute A and B]

(b) [expected count in category 3 for attribute A and category 2 for

attribute B]

(c) [expected count in category 4 for attribute A]

(d) [expected count in category 3 for attribute B]
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10.B.2. Consider the 5 � 4 table of observed counts in Exercise 10.B.1.

(a) Construct the corresponding table of expected cross-category counts

if there is no association between the two attributes (that is, they are

independent).

(b) Find the approximate P-value for an appropriate test of the hypothe-

sis that there is no association between Attributes A and B (that is,

they are independent).

10.B.3. Lotteries. In a fair lottery it is supposed to be equally likely to draw

each integer number between 0 and 9, inclusive. Suppose we draw 500 such

numbers using the lottery specified method and observe the following counts

for the ten possible outcomes:

Number: 0 1 2 3 4 5 6 7 8 9
Observed Count: 60 42 35 88 50 32 70 55 40 28

(a) If the lottery is fair, what should the expected counts be for the ten

possible outcomes?

(b) State the hypothesis that corresponds to the lottery being fair. Be

explicit about all terms and numerical values.

(c) Using the observed counts given above, find an approximate P-value

for an appropriate test for the fairness of this lottery system.

10.B.4. Alcohol Consumption and Severity of Assault Injuries. Shepherd et al.

(1988) were interested in the possibility of a link between the amount of

alcohol consumed by a victim of an assault and the severity of the injuries

suffered as a result of the assault. For this purpose, they classified the severity

of injuries from an assault into five categories:

• I ¼ one hematoma or one laceration

• II ¼ multiple hematomas or lacerations
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• III ¼ one fracture

• IV ¼ one fracture and hematomas and/or lacerations

• V ¼ more than one fracture.

A victim’s alcoholic consumption was categorized as: none, light (1–10 units),

or heavy (> 10 units), where a unit of alcohol corresponded to either 1/2 pint

of beer or lager, one measure of spirits, or one glass of wine. Following

interviews and examinations of 470 consecutive victims of assault who

came to an inner city accident and emergency service in 1986, they obtained

the cross-categorized counts given in Table 10.24.

(a) State the null hypothesis of interest here.

(b) Construct the table of expected counts if the null hypothesis in

(a) is true.

(c) Find the approximate P-value for an appropriate test of the null

hypothesis in (a). What is your conclusion at significance level .05?

10.B.5. Smoking and Hearing Loss. Smoking has been linked to the occurrence

of a number of serious diseases, including lung cancer, emphysema, and

various forms of heart disease. However, cigarette smoking may also lead

to increased deterioration of other health functions, especially those that tend

to worsen with age anyway. In particular, clinical studies have suggested that

cigarette smoking may be associated with accelerated hearing loss as a person

ages. Cruickshanks et al. (1998) conducted an extensive population-based

Table 10.24 Numbers of treated patients with various combinations of
severity of injury and level of alcohol consumption

Level of alcohol consumption

Severity of injury

I II III IV V

None 54 54 14 20 5
Light 49 96 9 28 17
Heavy 23 63 6 23 9

Source: Shepherd et al. (1988)
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study related to this issue. During the years 1993–1995, they gathered relevant

information from questionnaires and examinations on over 3500 residents of

the city/township of Beaver Dam, Wisconsin. For purposes of their study,

Cruickshanks et al. defined a hearing loss to be a pure-tone average (PTA) of

thresholds at 500, 1000, 2000, and 4000Hz greater than 25-bB hearing level (dB

HL) in the worse ear. In this exercise we concentrate on the relevant data for

comparison of 534 nonsmokers (smoked fewer than 100 cigarettes in their

lifetime), 445 ex-smokers, and 255 current smokers (at the time of the study) in

the age group 48–59. The smoking related breakdown of the subjects in this

age group who were diagnosed as having hearing losses is presented in

Table 10.25.

(a) State the null hypothesis of interest here.

(b) Construct the table of expected counts if the null hypothesis in

(a) is true.

(c) Find the approximate P-value for an appropriate test of the null

hypothesis in (a) What is your conclusion at significance level .01?

10.B.6. Intensity of Smoking and Hearing Loss. In Exercise 10.B.5 we

discussed a portion of the study by Cruickshanks et al. (1998) dealing with

the overall effect of smoking on acceleration of hearing loss as one ages. They

also collected data on the impact of the number of cigarettes and duration of

smoking time on hearing. They defined the total pack-years smoked for a subject

Table 10.25 Prevalence of hearing loss for smoking/non smoking groups
of subjects ages 48–59 in the Beaver Dam, Wisconsin study

Smoking behavior Number of subjects

With hearing loss Without hearing loss

Nonsmokers 86 448
Ex-smokers 101 344
Current smokers 66 189

Source: Cruickshanks et al. (1998)
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to be the number of cigarettes smoked per day divided by 20 cigarettes per

pack, then multiplied by the number of years that the subject had smoked. In

Table 10.26 are recorded the total pack-years smoked for each current or

ex-smoker in the study, along with whether or not that subject was diagnosed

as having a hearing loss.

(a) State the null hypothesis of interest here.

(b) Construct the table of expected counts if the null hypothesis in

(a) is true.

(c) Find the approximate P-value for an appropriate test of the null

hypothesis in (a). What is your conclusion at significance level .01?

10.B.7. Smoking and Hearing Loss. In Exercise 10.B.5 we discussed a portion of

the study by Cruickshanks et al. (1998) dealing with the overall effect of

smoking on acceleration of hearing loss as one ages. There we discussed the

association between smoking behavior and hearing loss for subjects in the age

group 48–59. Similar data for the age group 70–79 are given in Table 10.27.

Find the approximate P-value for a test of the hypothesis that smoking

behavior and hearing loss are independent for this age grouping. Compare

and contrast this result with your conclusion in Exercise 10.B.5.

10.B.8. Intensity of Smoking and Hearing Loss. In Exercise 10.B.6 we discussed

a portion of the study by Cruickshanks et al. (1998) involving the overall

Table 10.26 Prevalence of hearing loss by total pack-years smoked for
subjects ages 48–59 in the Beaver Dam, Wisconsin study

Total pack-years Number of subjects

With hearing loss Without hearing loss

< 10 33 151
10 – 24 47 132
25 – 39 39 132
� 40 45 113

Source: Cruickshanks et al. (1998)
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relationship between smoking and hearing loss as one ages. There we

discussed the association between total pack-years smoking and hearing

loss for smokers in the age group 48–59. Similar data for the age group

70–79 are given in Table 10.28.

Find the approximate P-value for a test of the hypothesis that total pack-years

smoking and hearing loss are independent for subjects in the age group 70–79.

Compare and contrast this result with your conclusion in Exercise 10.B.6.

10.B.9. M&MColors.Mars, Inc. claims that the color mix for M&M’s Peanut

candy is 20% brown, 20% yellow, 20% red, 10% orange, 10% green, and 20%

blue. Suppose we observe the color counts for a bag containing N ¼ 750

Peanut M&M’s to be as specified in Table 10.29.

Table 10.27 Prevalence of hearing loss for smoking/non smoking groups
for subjects ages 70–79 in the Beaver Dam, Wisconsin study

Smoking behavior Number of subjects

With hearing loss Without hearing loss

Nonsmokers 258 171
Ex-smokers 267 105
Current smokers 47 19

Source: Cruickshanks et al. (1998)

Table 10.28 Prevalence of hearing loss by total pack-years smoked
for subjects ages 70–79 in the Beaver Dam, Wisconsin study

Total pack-years Number of subjects

With hearing loss Without hearing loss

< 10 77 30
10–24 66 33
25–39 57 21
� 40 106 37

Source: Cruickshanks et al. (1998)
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(a) If the company’s claim is correct, what would be the expected

observed counts for the six colors?

(b) State the hypothesis that corresponds to the company’s claim. Be

explicit about all terms and numerical values.

(c) Using the observed counts given above, find an approximate P-value

for an appropriate test of the company’s claim. What is your conclu-

sion for significance level .10?

10.B.10. Flicker Squawks and Keos. The common flicker, colapres auratus, has a

diverse vocal repertoire. Flicker nestlings, however, produce only two distinct

calls, squawk and keo. The keo is a common vocalization used by adult birds,

both male and female, as well as by older nestlings to attract the parent(s) to

the nest cavity to feed them (or to express agitation when they do not receive

sufficient food from a parent!). In a number of bird species it is known that the

vocalizations of the young change with time until a final innate template for

the vocalization is achieved. Rosen (1979) conducted a study with flicker

nestlings to see if the duration of their keo vocalizations changed as they

matured. She observed the keo vocalizations for a group of flicker nestlings on

four different days, corresponding to the nestlings being 17, 21, 22, and

24 days old. Using a Kay Electronic Company 6061B Sonograph, she made

sonograms (visual representations -- plotting frequency of the sound on the

ordinate versus time on the abscissa) of the keo vocalizations. The length

(in mm) of the strip it creates on the sonogram represents the duration of an

individual keo vocalization. The durations for the 71 keo vocalizations

recorded by Rosen over the four days of observation are given in Table 10.30.

Table 10.29 Observed color counts for a bag of 750 Peanut M&M candies

Brown Yellow Red Orange Green Blue

Observed counts 168 145 190 83 62 102
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(a) State the null hypothesis of interest here.

(b) Construct the table of expected counts if the null hypothesis in

(a) is true.

(c) Find the approximate P-value for an appropriate test of the null

hypothesis in (a). What is your conclusion at significance level .03?

10.B.11. Saving or Not? Developing a systematic approach to saving is impor-

tant in order to provide sufficient funds to support one’s retirement years. Not

surprisingly, people with higher income households tend to be better at this

than those in lower income households simply because of the economics of

the matter. What other factors might affect whether a person has taken this

step toward systematically putting money away for her retirement? Princeton

Survey Research Associates (1998) addressed a number of possible important

factors, including gender, age, education, and race/ethnicity, in a nationwide

survey conducted for the organization Americans Discuss Social Security. The

results of their survey that relate to the age of the respondent are given in

Table 10.31.

Find the approximate P-value for a test of the hypothesis that age and saving

approach are independent attributes.

10.B.12. Freshman Party Schools. The public often perceives certain

institutions of higher education as ‘party schools’. However, are all such

Table 10.30 Observed counts for lengths (in mm) of keo durations for
flicker nestlings of various ages

Nestling age Numbers of nestlings with keo durations of lengths (mm)

24–26 27–29 30–32 33–36

17 days 5 1 0 7
21 days 5 8 1 1
22 days 1 0 8 11
24 days 1 4 7 11

Source: Rosen (1979)
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institutions created equal with regard to their students’ participation in such

activities? Sax (1997) addressed a number of these and related issues in a

comprehensive survey among college freshman in 1995. Respondents were

asked whether or not they partied at least 6 h per week. The numbers of

respondents from universities categorized as either public, nonsectarian pri-

vate, Protestant private, or Catholic private who answered yes to this question

are provided in Table 10.32. Were there differences among the types of four-

year institutions with respect to partying by their freshmen in 1995?

(a) Formally state the null hypothesis of interest here. Be sure to clearly

identify all relevant parameters.

(b) Construct the table of expected counts if the null hypothesis in

(a) is true.

(c) Find the approximate P-value for an appropriate test of the null

hypothesis in (a). What is your conclusion at significance level .075?

Table 10.31 Survey frequencies of saving approaches among various age
groups of non-retired adults

Age group Number of respondents using saving approach

Systematic savers Casual savers Non-savers

18–34 49 136 118
35–49 90 151 80
� 50 80 131 46

Source: Princeton Survey Research Associates (1998)

Table 10.32 Numbers of college freshmen indicating that they partied at
least 6 hours per week, categorized by type of four-year institution

Type of institution Number partying at least 6 h per week

Public 11,304 out of 36,942 respondents
Nonsectarian private 12,088 out of 42,865 respondents
Protestant private 8104 out of 33,767 respondents
Catholic private 5966 out of 17,243 respondents

Source: Sax (1997)
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10.B.13. Danger for Union Soldiers Based on Rank During the American Civil

War. The American Civil War was a deadly conflict for both Confederate and

Union soldiers, but was it more deadly for some Union Army soldiers than for

others? Lee (1999) investigated the pattern and causes of fatalities among

Union soldiers by rank and placement in the battlefields. Based on a sample

of 4295 recruits who enlisted in 45 companies organized in Ohio for whom

information on both rank and duty was available, Lee compiled the wartime

mortality data presented in Table 10.33 categorized by the soldiers’ ranks.

(a) Formally state the null hypothesis of interest here.

(b) Construct the table of expected counts if the null hypothesis in

(a) is true.

(c) Find the approximate P-value for an appropriate test of the null

hypothesis in (a). What is your conclusion at significance level .061?

10.B.14. Danger for Union Soldiers Based on Battlefield Placement During the

American Civil War. The American Civil War was a deadly conflict for both

Confederate and Union soldiers, but was it more deadly for some Union

Army soldiers than for others? Lee (1999) investigated the pattern and causes

of fatalities among Union soldiers by rank and placement in the battlefields.

Based on a sample of 4295 recruits who enlisted in 45 companies organized in

Ohio for whom information on both rank and duty was available, Lee com-

piled the wartime mortality data presented in Table 10.34 categorized by the

soldiers’ battlefield placements.

Table 10.33 Union soldiers rank and wartime mortality in the American
Civil War

Cause of wartime mortality

Illness Injury Other

Rank
Private 335 75 10
Higher rank 15 11 1

Source: Lee (1999)
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(a) Formally state the null hypothesis of interest here.

(b) Construct the table of expected counts if the null hypothesis in

(a) is true.

(c) Find the approximate P-value for an appropriate test of the null

hypothesis in (a). What is your conclusion at significance level .022?

10.B.15. Danger for Union Soldiers Based on Combination of Rank and Battlefield

Placement During the American Civil War. The American Civil War was a

deadly conflict for both Confederate and Union soldiers, but was it more

deadly for some Union Army soldiers than for others? Lee (1999) investigated

the pattern and causes of fatalities among Union soldiers by rank and place-

ment in the battlefields. Based on a sample of 4295 recruits who enlisted in

45 companies organized in Ohio for whom information on both rank and

duty was available, Lee compiled the wartime mortality data presented in

Table 10.35 categorized by the combination of soldiers’ ranks and battlefield

placements.

(a) Formally state the null hypothesis of interest here.

(b) Construct the table of expected counts if the null hypothesis in

(a) is true.

(c) Find the approximate P-value for an appropriate test of the null

hypothesis in (a). What is your conclusion at significance level .061?

(d) Compare your findings with those in Exercises 10.B.13 and 10.B.14.

Table 10.34 Union soldiers battlefield placement and wartime mortality
in the American Civil War

Cause of wartime mortality

Illness Injury Other

Battlefield placement
Infantry 298 67 9
Non-infantry 52 19 2

Source: Lee (1999)
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10.B.16. Science and Religion. Does the degree of a person’s religious partici-

pation affect their outlook on the impact of science on society? The Pew

Research Center (2009) asked 1976 adults, 18 years of age or older, about

their participation in religious services and whether they saw science as

having a mostly positive or mostly negative effect on society. The results of

the survey are given in Table 10.36.

(a) Formally state the null hypothesis of interest here.

(b) Construct the table of expected counts if the null hypothesis in

(a) is true.

(c) Find the approximate P-value for an appropriate test of the null

hypothesis in (a). What is your conclusion at significance level .025?

Table 10.35 Union soldiers rank and battlefield placement and wartime
mortality in the American Civil War

Cause of wartime mortality

Illness Injury Other

Rank/Battlefield Placement
Private/infantry 285 60 8
Private/non-infantry 50 15 2
Higher rank/infantry 13 7 1
Higher rank/non-infantry 2 4 0

Source: Lee (1999)

Table 10.36 Participation in religious services and view of impact of
science on society

Impact of science on society

Mostly positive Mostly negative No opinion

Attend religious services
Weekly or more 619 78 77
Monthly/yearly 570 33 67
Seldom/never 463 21 48

Source: Pew Research Center (2009)
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10.C. Activities

10.C.1. Hair Color and Educational Level. Discuss how to design an experi-

ment to ascertain if there is any relationship between (true!) hair color and the

highest educational degree a person attains. Specify both the numbers and

types of categories for each of these attributes.

(a) State the hypothesis of interest here.

(b) Collect the necessary data from 20 students, 20 non-faculty employees

and 20 faculty members at your university and test the hypothesis

in (a).

10.C.2. Hair Color and Educational Level. In Question 10.C.1 you were asked

to collect data from 20 students, 20 non-faculty employees and 20 faculty

members at your university to assess whether there is any relationship

between true hair color and a person’s highest educational degree. Couldn’t

you have addressed the same issue more easily by simply sampling

60 students (or 60 staff employees or 60 faculty members)? Why or why not?

10.C.3. Who Studies More? Do freshmen, sophomore, junior, and senior

college students spend about the same amount of time studying

(on average) per week?

(a) Discuss how to design an experiment to address this question.

(b) State the hypothesis of interest here.

(c) Conduct the experiment and use your data to test the hypothesis

in (b).

10.C.4. Bridge. In the card game of bridge, an ordinary deck of 52 cards is

dealt to four players, each receiving a 13-card hand. One of the important

features of the game of bridge is the number of honor cards (ace, king, queen,

jack, and ten) that an individual holds in her hand.
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(a) If a bridge hand is dealt at random to a player, what is the probability

that the hand will not contain any honor cards? one honor card? two

honor cards? more than two honor cards?

(b) Using your answer to (a), state an appropriate null hypothesis regard-

ing honor cards that corresponds to dealing a 13-card hand at random

from an ordinary deck of 52 cards.

(c) Using an ordinary (shuffled) deck of 52 cards, deal a hand of 13 cards

and record whether the hand contains zero, one, two, or more than

two honor cards.

(d) Repeat the experiment in (c) 160 times, with reshuffling between the

dealing of each hand, and use the obtained counts to test the fairness

of your deals.

10.C.5. Bridge Again. In part (d) of Exercise 10.C.4 you were asked to deal

160 separate 13-card hands from an ordinary deck of 52 cards, with reshuffling

between the dealing of each hand. It would have been much easier to simply

deal four complete 13-card hands each time you shuffled the deck. You would

then have had to reshuffle the deck only 40 times, rather than the 160 required

in part (d) of Exercise 10.C.4.

(a) Discuss why this proposed short-cut method is not equivalent to the

more lengthy approach of part (d) of Exercise 10.C.4.

(b) Repeat part (d) of Exercise 10.C.4, but this time deal all four 13-card

hands each time you shuffle the deck and repeat the complete process

only 40 times. Record the number of hands that contain zero, one,

two, or more than two honor cards.

(c) Compare the table of counts you obtained in part (b) with the table of

counts you found in part (d) of Exercise 10.C.4. Are there substantial

differences in the two tables? Discuss your finding.

10.C.6. Religious Preference and Political Affiliation. Is there a relationship

between religious preference and political affiliation?
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(a) Using five religious categories and three political preferences, discuss

how to design an experiment to address this question.

(b) State the hypothesis of interest here.

(c) Conduct the experiment and use your data to test the hypothesis

in (b).

10.C.7. Fair Die? Roll a six-sided die 120 times and record the frequencies

with which each of the numbers 1, 2, 3, 4, 5, and 6 occur. Using your data, find

the P-value for a test of the hypothesis that the die is fair (i.e., that the

outcomes are equally likely).

10.C.8. Does Your Life Expectancy Depend on Your Month of Birth?

Doblhammer and Vaupel (2001) studied the relationship between month of

birth and adult life expectancy. They concluded that people born in the

Northern Hemisphere in autumn (October–December) live longer than

those born in spring (April–June), but that the opposite is true in the Southern

Hemisphere. Suppose you were asked to provide the statistical support for

these conclusions.

(a) State the null and alternative hypotheses of interest here.

(b) What data would you need to test the null hypothesis?

(c) How would you design an experiment to collect the necessary data?

(d) Choose one of the states in the United States to serve as the data

source and use public birth and death records to collect a small

sample of the needed data.

(e) Using your sample data, obtain the approximate P-value for an

appropriate test of the null hypothesis.

10.D. Internet Archives

10.D.1. Original Skittles Flavors. In Exercise 10.B.9 we discussed the

proportions of the various colors of Peanut M & M’s manufactured by
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Mars, Inc. Skittles is another popular candy brand produced andmarketed by

the Wrigley Company, a division of Mars, Inc. Search the Internet to discover

what flavors (colors) make up the original Skittles and in what proportions

the Wrigley Company claims they are produced? Buy ten individual

packages of the original Skittles and count the numbers of pieces of each

color in these ten packages combined. Using these counts, test the hypothesis

that the flavor proportions claimed by the Wrigley Company are correct—

then you can enjoy your Skittles!

10.D.2. Tropical Skittles Flavors. Repeat Activity 10.D.1 for the variety of

Tropical Skittles.

10.D.3. Starburst Flavors. Starburst is another candy brand produced and

marketed by the Wrigley Company, a division of Mars, Inc. Search the

Internet to discover what flavors make up the original Starburst and in

what proportion the Wrigley Company claims they are produced? Buy ten

individual packages of the original Starburst and count the numbers of pieces

of each color in these ten packages combined. Using these counts, test the

hypothesis that the flavor proportions claimed by the Wrigley Company are

correct—then you can enjoy your Starburst!

10.D.4. Freshman Party Schools—Updated. In Exercise 10.B.12 you were asked

to assess if there were any differences in 1995 among the types of four-year

institutions with respect to partying by their freshmen. Search the Internet to

find a published article that addresses a similar question for a more recent

year. Discuss the findings from this update and compare it to the results

for 1995.

10.D.5. Search the Internet to find a journal article that reports on a research

study in which the data collected were used to test for differences in popula-

tion proportions, as discussed in Sect. 1. Prepare a brief summary of the study

and the associated statistical analyses carried out by the authors.

Chapter 10 Comprehensive Exercises 835



10.D.6. Search the Internet to find a journal article that reports on a research

study in which the data collected were used to test for association (indepen-

dence) between two categorical attributes, as discussed in Sect. 2. Prepare a

brief summary of the study and the associated statistical analyses carried out

by the authors.

10.D.7. Search the Internet to find a journal article that reports on a research

study in which the data collected were used to test for goodness-of-fit for

probabilities in a multinomial distribution with I > 2 categories, as described

in Sect. 4. Prepare a brief summary of the study and the associated statistical

analyses carried out by the authors.

10.D.8. Search the Internet to find a journal article that reports on a research

study in which the data collected were used to test for differences in two

population proportions, as described in Sect. 3. Prepare a brief summary of

the study and the associated statistical analyses carried out by the authors. If

they used the approximate test procedure discussed in Sect. 1, repeat their

analyses using the exact test procedure presented in Sect. 3. Compare the

results of the exact and approximate tests.

10.D.9. Gallup, Inc., is an American research-based global performance-

management consulting company that “provides data-driven news based

on U. S. and world polls, daily tracking and pubic opinion research”. Their

website www.gallup.com contains information about current and past public

opinions on education, politics, the economy, and wellbeing, as well as other

topics. Go to their website and find a report on a topic of interest to you that

involves categorical data as discussed in this chapter. Prepare a short sum-

mary of Gallup’s sampling methods, data collection, and statistical analyses

as described in the report.

10.D.10. The Pew Research Center is a nonpartisan American organization

that uses “public opinion polling, demographic research, content analysis,
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and other empirical social science research” to inform the public about “the

issues, attitudes and trends shaping America and the world”. Their interests

include U. S. politics and policy; Internet, science and technology; religion and

public life; and social and demographic trends. The website www.

pewresearch.org contains past and current information they have gathered

about these topics, as well as others. Go to their website and find a report on a

topic of interest to you that involves categorical data as discussed in this

chapter. Prepare a short summary of the Pew Research Center’s sampling

methods, data collection, and statistical analyses as described in the report.
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Statistical Inference for Bivariate
Populations 11

Many questions of interest (both in research and in applications) involve the

relationship between two simultaneously collected variables (bivariate

observations). For example, is there a relationship between the size of alumni

donations to the general fund of a university and the performance of its

basketball and football teams? How does the amount of annual rainfall affect

the wheat yield in the United States? Does the amount of fracking wastewater

injected into deep wells have an effect on the number and severity of

earthquakes in the region? Is there any relationship between CO2 production

and sea levels? How does a prescribed diet-medication regimen affect blood

pressure levels in subjects with severe high blood pressures? Is there any

relationship between pine needle length and diameter of a pine tree? Does

smoking or excessive drinking have an impact onmortality? Problems such as

these are addressed statistically through the use of correlation or regression

analyses.
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In Chap. 2 we focused on graphical and numerical methods to describe

and display the relationship between two numerical or categorical variables.

In this chapter we expand our understanding of such relationships by

discussing statistical inference procedures for bivariate populations.

General Setting and Notation Let (X1, Y1) , . . . , (Xn, Yn) denote the items

of a random sample from a bivariate population. The most appropriate

statistical procedures for assessing the relationship between the X and

Y variables depends on what information is available or can reasonably be

assumed about the form of the underlying bivariate population.

Section 1 discusses correlation procedures for bivariate normal

populations, while Sect. 2 is devoted to competitor rank-based correlation

procedures that do not require bivariate normality. Section 3 introduces the

least squares methodology for fitting straight lines to bivariate data. Section 4

presents linear regression inference methods based on least squares for bivar-

iate normal populations, and Sect. 5 provides linear regression inference

procedures that do not require bivariate normality.

11.1 Correlation Procedures for Bivariate Normal Populations

In this section we assume that the underlying population for our data

(X1, Y1) , . . . , (Xn, Yn) follows what is known as a bivariate normal distri-

bution. In particular, this assumption implies (among other things) that each

of the individual variables X and Y follow univariate normal distributions as

well. Moreover, for this bivariate normal distribution, the two random

variables X and Y are independent (no relationship) if and only if they are

uncorrelated. Thus to assess the strength of a relationship between two

bivariate normal variables X and Y we can concentrate directly on the corre-

lation between them.
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In Sect. 2.2 we introduced the Pearson correlation coefficient r (2.1) as a

measure of the association between two continuous random variables X and

Y. In particular, this statistic can be used to assess the potential correlation

between pairs of variables that follow a bivariate normal distribution. Apply-

ing our formula for r (2.1) to the data in our random sample (X1, Y1) , . . . ,

(Xn, Yn) leads to the Pearson sample correlation coefficient

R ¼
Pn
i¼1

�
Xi � �X

��
Yi � �Y

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�
Xi � �X

�2 Pn
j¼1

�
Yj � �Y

�2s ¼
n
Pn
i¼1

XiYi �
Pn
j¼1

Xj

 ! Pn
k¼1

Yk

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Pn
i¼1

X2
i �

Pn
j¼1

Xj

 !2
vuut

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Pn
i¼1

Y2
i �

Pn
j¼1

Yj

 !2
vuut

:

ð11:1Þ

Recalling our discussion about the Pearson correlation coefficient from

Chap. 2, we are reminded that �1 � R � 1 and large positive (negative)

values of R near 1 (near �1) correspond to positive (negative) association

between the X and Y variables. Values of R near zero are indicative of little or

no association between the variables, which, under the bivariate normality

assumption, corresponds to independence between X and Y. Other useful

properties of R are discussed in Sect. 2.2.1 and Exercise 2.A.4.

To use the sample data (X1, Y1) , . . . , (Xn, Yn) to test hypotheses about

the relationship between the variables X and Y we first compute the test

statistic T given by

T ¼ R
ffiffiffiffiffiffiffiffiffiffiffi
n� 2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

p : ð11:2Þ

The sampling distribution for T when X and Y are independent is a t-distri-

bution with n – 2 degrees of freedom. Moreover, we note that large (small)

values of T correspond to large (small) values of R and values of T near zero

correspond to values of R near zero. Thus P-values for hypothesis tests about

the degree of association (correlation) between X and Y can be obtained from

this sampling distribution for T when X and Y are independent.
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Hypothesis Tests for the Independence of Bivariate Normal

Variables To test the null hypothesis H0: (X and Y are independent)

with data (X1, Y1) , . . . , (Xn, Yn) from a bivariate normal population,

compute the statistic T (11.2) and let t* be the attained value of T. Then the

P-values for a test of H0 against the alternatives HA are:

HA P-value

X and Y positively correlated ¼ P(T � t∗) (11.3)

X and Y negatively correlated ¼ P(T � t∗) (11.4)

X and Y are not independent ¼ 2P(T � jt∗j), (11.5)

where T � t(n-2), the t-distribution with n – 2 degrees of freedom.

Example 11.1. Swinging for Power—All or Nothing? Home runs can be a

major contributor to success for major league baseball teams, but they often

come at the expense of a substantial number of whiffs (strikeouts) as well.

Table 11.1 contains the 2016 home run and strikeout statistics for a subset of

major league players

We are interested in using these data to test the conjecture that swinging

for power can lead to strikeouts, corresponding to the statistical statement

that the number of home runs and the number of strikeouts are positively

correlated. Letting X denote the number of home runs and Y the number of

strikeouts, we summarize the 15 data pairs in Table 11.1 as follows:

X15
i¼1

Xi ¼ 496
X15
i¼1

X2
i ¼ 16, 848

X15
i¼1

Yi ¼ 1787
X15
i¼1

Y2
i ¼ 232, 543

X15
i¼1

XiYi ¼ 60, 007:
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Using the computational form of the expression for R (11.1), we see that

R ¼ 15 60; 007ð Þ � 496ð Þ 1787ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15 16; 848ð Þ � 496ð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15 232; 543ð Þ � 1787ð Þ2

q ¼ 13, 753ffiffiffiffiffiffiffiffiffiffi
6704

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
294, 776

p

¼ 0:3094:

Thus the value of T (11.2) becomes

T ¼ :3094
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15� 2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� :3094ð Þ2

q ¼ 1:1156
:9509

¼ 1:1732:

It follows from (11.3) that the P-value for testing the conjecture that the

number of home runs and the number of strikeouts are positively correlated

is given by P(T� 1.1732), where T has a t-distribution with n – 2 ¼ 13 degrees

Table 11.1 2016 home run and strikeout statistics for a subset
of major league players

Player
Number
of home runs

Number
of strikeouts

Mookie Betts 31 80
Robinson Cano 39 100
Yoenis Cespedes 31 108
Chris Bryant 39 154
Andrew McCutchen 24 143
Miguel Cabrera 38 116
Albert Pujols 31 75
Todd Frazier 40 163
Ryan Braun 30 98
Charlie Blackmon 29 102
Josh Donaldson 37 119
Chris Davis 38 219
Justin Turner 27 107
David Ortiz 38 86
Bryce Harper 24 117

Source: rotowire.com (2016)
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of freedom. We can find this P-value to be roughly 0.13 using the R function

ptð Þ as follows.

> pt(q = 1.1732, df = 13, lower.tail = FALSE)

[1] 0.1308819

Hence, there is not sufficient evidence to conclude that major league home

runs and strikeouts are positively correlated.

It is important to emphasize two features of the test procedures based on

the Pearson correlation coefficient R. First, they require that the underlying

bivariate data follow a normal distribution. Properties of the test procedures

in (11.3), (11.4), and (11.5) can be seriously affected if the joint distribution for

the bivariate data differs significantly from the bivariate normal distribution.

In Sect. 2 we consider rank-based correlation procedures that are appropriate

even when the underlying distribution is not bivariate normal. Second, it is

important to note that the test procedures in (11.3), (11.4), and (11.5) are

specifically designed to detect only linear relationships between the two

variables X and Y. They can be quite ineffective at detecting non-linear

relationships between two variables. For the bivariate normal distribution,

zero correlation between the two variables X and Y is equivalent to X and

Y being independent. This is not the case for other bivariate distributions, as

you are asked to consider in Exercises 11.A.5 and 11.A.6.

Section 11.1 Practice Exercises

11.1.1. Consider the following set of n ¼ 20 (x, y) bivariate observations.

(11, 78), (2, 88), (�2, 100), (�11, 83), (�5, 100), (2, 90), (�6, 87), (22, 82),

(21, 92), (8, 90), (25, 85), (9, 93), (7, 92), (8, 96), (18, 100), (�14, 96), (�21, 86),

(�26, 89), (�7, 93), (5, 80).

Compute the value of the Pearson sample correlation coefficient R (11.1).

What does this say about the relationship between the x and y observations?
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11.1.2. Consider the following set of n ¼ 12 (x, y) bivariate observations.

(1.3, 8), (1.8, 6.9), (0.9, 8.1), (1.6, 7), (2.6, 6.3), (1.5, 6.5),

(2.1, 6.4), (3, 5.8), (0.8, 8.3), (2.4, 8.3), (2.5, 6.6), (2.6, 6.6).

Compute the value of the Pearson sample correlation coefficient R (11.1).

What does this say about the relationship between the x and y observations?

11.1.3. Consider the following set of n ¼ 8 (x, y) bivariate observations.

(1, 1), (2, 4), (3, 9), (4, 16), (5, 25), (6, 36), (7, 49), (8, 64).

Compute the value of the Pearson sample correlation coefficient R (11.1).

What does this say about the relationship between the x and y observations?

11.1.4. Does Concurrent Temperature Affect Roost Time Departures for Snow

Geese? Wildlife science often nvolves trying to understand how environmen-

tal conditions affect wildlife habits. Freund et al. (2010) report data on such a

study to assess how a variety of environmental conditions influence the time

that lesser snow geese leave their overnight roost sites to fly to their feeding

areas. In particular, they were interested in the effect that the air temperature

might have on the time that the geese leave their roosts. Table 11.2 contains

the times of roost departure in minutes before (�) or after (+) sunrise and the

concurrent air temperature in degrees Centigrade for 36 different observation

days in the 1987–1988 winter season.

(a) Assuming bivariate normality for the data, use the procedure based

on the Pearson sample correlation coefficient to find the P-value for a

test of the conjecture that departure time and concurrent temperature

are not independent variables.

(b) Are there any concerns about the bivariate normality assumption in

part (a)? Explain.

11.1.5. Birth and Death Rates for the United States. Birth and death rates play

major roles over time (in addition to emigration and immigration rates) in the
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Table 11.2 Snow geese roost departure times in
minutes before (�) or after (+) sunset and concurrent
air temperatures in degrees centigrade (�C)

Date Departure time
Concurrent
temperature (�C)

11/10/87 11 11
11/13/87 2 11
11/14/87 �2 11
11/15/87 �11 20
11/17/87 �5 8
11/18/87 2 12
11/21/87 �6 6
11/22/87 22 18
11/23/87 22 19
11/25/87 21 21
11/30/87 8 10
12/05/87 25 18
12/14/87 9 20
12/18/87 7 14
12/24/87 8 19
12/26/87 18 13
12/27/87 �14 3
12/28/87 �21 4
12/30/87 �26 3
12/31/87 �7 15
01/02/88 �15 15
01/03/88 �6 6
01/05/88 �14 2
01/07/88 �8 2
01/08/88 �19 0
01/10/88 �23 �4
01/11/88 �11 �2
01/12/88 5 5
01/14/88 �23 5
01/15/88 �7 8
01/16/88 9 15
01/20/88 �27 5
01/21/88 �24 �1
01/22/88 �29 �2
01/23/88 �19 3
01/24/88 �9 6

Source: Freund et al. (2010)
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population stability of cities, states, and countries. One would expect (assum-

ing emigration and immigration rates are not major contributors) that the

population stability of such entities would be dependent on the relationship

between their birth and death rates. Table 11.3 contains the birth and death

rates per 1000 population for each of the 50 states in the United States.

(a) Assuming bivariate normality for the data, use the procedure based

on the Pearson sample correlation coefficient to find the P-value for a

test of the hypothesis that statewide birth rate and death rate are

independent variables. Comment on the result.

(b) The overall birth rate for the entire United States in 2006 was 14.3 per

1000 population. Find the five states with the highest birth rates and,

separately, the five states with the lowest birth rates. Comment on

your findings.

(c) The overall death rate for the entire United States in 2006 was 8.1 per

1000 population. Find the six states with the highest death rates and,

separately, the five states with the lowest death rates. Comment on

your findings.

11.1.6. How Effective is State Spending on Secondary Education? Spending for

secondary education is always a matter of concern for state legislatures across

the United States. Merline (1991) used data from the Department of Educa-

tion, National Center for Education Statistics in assessing the relationship

between the amount of money spent on secondary education and various

performance criteria for high-school seniors. Table 11.4 contains the spending

($) per high-school senior and the percentage of those seniors that graduated

for each of the 50 states in the 1987–1988 school year.

(a) Assuming bivariate normality for the data, use the procedure based

on the Pearson sample correlation coefficient to find the P-value for a

test of the conjecture that spending level per pupil and high-school

graduation rate are positively related. Comment on the result.
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Table 11.3 Birth and death rates per 1000 population in 2006 for the
50 states in the United States

State Birth rate Death rate

Alabama 13.8 10.2
Alaska 16.2 5.0
Arizona 16.5 7.5
Arkansas 14.6 9.9
California 15.6 6.5
Colorado 14.9 6.2
Connecticut 12.0 8.4
Delaware 14.1 8.4
Florida 13.1 9.4
Georgia 15.9 7.3
Hawaii 14.9 7.4
Idaho 16.5 7.2
Illinois 14.2 8.0
Indiana 14.1 8.8
Iowa 13.7 9.2
Kansas 14.9 8.9
Kentucky 13.8 9.5
Louisiana 14.9 9.4
Maine 10.8 9.3
Maryland 13.8 7.8
Massachusetts 12.0 8.3
Michigan 12.6 8.5
Minnesota 14.3 7.2
Mississippi 15.9 9.9
Missouri 13.9 9.4
Montana 13.2 8.9
Nebraska 15.2 8.4
Nevada 16.1 7.6
New Hampshire 11.0 7.7
New Jersey 13.3 8.1
New Mexico 15.4 7.9
New York 12.9 7.7
North Carolina 14.4 8.4
North Dakota 13.5 9.2
Ohio 13.1 9.3
Oklahoma 15.1 9.9
Oregon 13.2 8.5

(continued)
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(b) Find the nine states with graduation rates greater than 80% and the

nine states with the lowest graduation rates. Comment on factors

other than spending level per pupil that might contribute to these

clusters.

11.1.7. County Birth and Death Rates. In Exercise 11.1.5 we considered the

possible relationship between statewide birth and death rates across the

United States. It is also of interest to see if this relationship occurs across

counties within a given state. Table 11.5 provides the 2004 birth and death

rates per 1000 population for the 114 counties in the State of Missouri.

Assuming bivariate normality for the data, use the procedure based on the

Pearson sample correlation coefficient to find the P-value for a test of the

hypothesis that Missouri county birth rate and death rate are independent

variables.

Table 11.3 (continued)

State Birth rate Death rate

Pennsylvania 12.0 10.1
Rhode Island 11.7 9.1
South Carolina 14.3 9.0
South Dakota 15.1 9.0
Tennessee 13.9 9.4
Texas 17.1 6.7
Utah 20.7 5.3
Vermont 10.5 8.1
Virginia 14.1 7.6
Washington 13.6 7.2
West Virginia 11.6 11.4
Wisconsin 13.0 8.3
Wyoming 15.0 8.4

Source: United States National Center for Health Statistics, National Vital
Statistics Reports (NVSR) (2009)
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Table 11.4 Spending per high-school senior and the percentage of those
seniors who graduated during the 1987–1988 school year

State $ per pupil % Graduated

Alaska 7971 65.5
New York 7151 62.3
New Jersey 6564 77.4
Connecticut 6230 84.9
Massachusetts 5471 74.4
Rhode Island 5329 69.8
Vermont 5207 78.7
Maryland 5201 74.1
Wyoming 5051 88.3
Delaware 5017 71.7
Pennsylvania 4989 78.4
Oregon 4789 73.0
Wisconsin 4747 84.9
Michigan 4692 73.6
Colorado 4462 74.7
New Hampshire 4457 74.1
Minnesota 4386 90.9
Illinois 4369 75.6
Maine 4246 74.4
Montana 4246 87.3
Washington 4164 77.1
Virginia 4149 71.6
Iowa 4124 85.8
Florida 4092 58.0
Kansas 4076 80.2
Ohio 3998 79.6
Nebraska 3943 85.4
Hawaii 3919 69.1
West Virginia 3858 77.3
California 3840 65.9
Indiana 3794 76.3
Missouri 3786 74.0
Arizona 3744 61.1
New Mexico 3691 71.9
Nevada 3623 75.8
Texas 3608 65.3
North Dakota 3519 88.3

(continued)
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11.2 Rank-Based Correlation Procedures

As noted in the previous section, the correlation procedures based on the

Pearson correlation coefficient R can be ineffective at detecting relationships

between the variables (X, Y) when they do not have a bivariate normal

distribution. Fortunately, however, procedures based on the rankings of Xi

among X1 , . . ., Xn, for i ¼ 1, . . ., n and the separate rankings of Yj among

(Y1, . . . , Yn) can be used to develop rank-based correlation procedures that

are effective at detecting associations between the variables X and Y even

when they do not follow a bivariate normal distribution.

In Sect. 2.2.2 we introduced the Spearman rank correlation coefficient rS

(2.3) as a measure of the association between two random variables X and Y

based on these rankings. Applying this formula for rS (2.3) to the data in our

random sample (X1, Y1) , . . . , (Xn, Yn) leads to the Spearman sample corre-

lation coefficient

Table 11.4 (continued)

State $ per pupil % Graduated

Georgia 3434 61.0
South Carolina 3408 64.6
North Carolina 3368 66.7
South Dakota 3249 79.6
Louisiana 3138 61.4
Oklahoma 3093 71.7
Tennessee 3068 69.3
Kentucky 3011 69.0
Arkansas 2989 77.2
Alabama 2718 74.9
Idaho 2667 75.4
Mississippi 2548 66.9
Utah 2454 79.4

Source: Merline (1991)
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Table 11.5 Birth and death rates per 1000 population in 2004 for the
114 counties in the state of Missouri

County Birth rate Death rate County Birth rate Death rate

1 10.9 8.5 58 11.5 13.2
2 10.5 10.6 59 12.0 13.1
3 9.3 13.6 60 16.4 9.2
4 14.6 10.8 61 13.1 13.1
5 14.8 10.6 62 13.2 12.2
6 12.1 11.1 63 11.7 9.5
7 13.1 12.4 64 13.3 12.4
8 9.3 13.7 65 12.1 11.8
9 11.4 12.9 66 13.9 10.7
10 13.8 5.8 67 15.9 14.3
11 13.6 10.9 68 14.9 10.2
12 14.0 12.3 69 10.5 9.7
13 12.1 10.8 70 13.9 11.5
14 12.6 9.0 71 11.9 12.3
15 10.2 10.9 72 13.5 12.2
16 12.9 9.7 73 13.4 9.2
17 10.2 13.0 74 11.5 8.9
18 14.7 12.2 75 10.9 14.0
19 13.5 7.6 76 13.6 8.0
20 12.4 12.9 77 11.0 14.4
21 11.6 14.1 78 15.5 11.2
22 14.8 7.3 79 14.4 9.3
23 12.0 12.9 80 14.8 10.2
24 14.6 7.0 81 12.5 9.8
25 12.0 11.7 82 12.7 11.5
26 14.1 8.1 83 13.3 6.0
27 10.9 10.4 84 13.9 10.0
28 13.2 10.4 85 14.6 5.9
29 12.1 17.5 86 12.6 14.0
30 14.4 11.0 87 12.2 9.1
31 14.2 11.4 88 14.0 9.8
32 8.8 9.6 89 11.1 11.5
33 11.8 11.6 90 9.3 12.3
34 11.2 11.3 91 14.0 12.5
35 14.2 13.7 92 14.1 5.8
36 13.4 8.7 93 9.9 14.9
37 10.4 13.3 94 9.8 7.8

(continued)
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i¼1

�
Ri � �R

�2 Pn
j¼1

�
Sj � �S

�2s ¼
12
Pn
i¼1

Ri � nþ1
2

� �
Si � nþ1

2

� �� �
n n2 � 1ð Þ , ð11:6Þ

where �R ¼ �S ¼ nþ 1
2

and
Xn
i¼1

�
Ri � �R

�2 ¼Xn
j¼1

�
Sj � �S

�2 ¼ n n2 � 1
� �

12
, as you

are asked to show in Exercise 11.A.1. (In case of ties among the X’s or

separately ties among the Y’s, assign the average of the involved ranks to

each of the tied observations.) Note that RS can also be obtained by using the

computationally simpler expression (see Exercise 11.A.3)

Table 11.5 (continued)

County Birth rate Death rate County Birth rate Death rate

38 13.3 15.4 95 12.5 11.0
39 13.2 9.3 96 12.1 9.3
40 13.7 12.1 97 12.9 14.2
41 12.8 13.9 98 11.4 13.0
42 12.7 13.0 99 13.8 10.2
43 8.0 15.4 100 14.1 9.0
44 11.5 11.7 101 13.1 11.4
45 11.4 11.3 102 14.0 13.9
46 13.9 12.4 103 13.1 12.2
47 13.8 15.4 104 9.2 10.1
48 15.6 9.0 105 16.2 13.6
49 15.6 10.0 106 13.5 10.4
50 13.1 7.3 107 12.2 12.7
51 14.4 7.0 108 14.1 11.4
52 11.4 10.2 109 13.9 9.4
53 14.4 10.2 110 12.4 10.8
54 12.5 10.3 111 10.3 16.1
55 13.0 10.8 112 14.8 7.9
56 10.7 11.2 113 13.8 12.5
57 15.1 8.0 114 14.7 11.1

Source: United States Census Bureau (2010)

11.2 Rank-Based Correlation Procedures 853



RS ¼ 1�
6
Pn
i¼1

D2
i

n n2 � 1ð Þ , ð11:7Þ

where Di ¼ Si � Ri, for i ¼ 1,. . ., n.

As with the Pearson correlation coefficient, �1 � RS � 1, and large posi-

tive (negative) values of RS near 1 (near �1) correspond to positive (negative)

association between the X and Y variables. Values of RS near zero are indica-

tive of little or no association between the variables, corresponding to inde-

pendence betweenX and Y. The sampling distribution of RS whenX and Y are

independent can be used to obtain P-values for hypothesis tests about the

degree of association (correlation) between X and Y.

Rank-Based Hypothesis Tests for the Independence of Bivariate

Variables To test the null hypothesis H0: (X and Y are independent)

with data (X1, Y1) , . . . , (Xn, Yn) from a bivariate population, compute

the Spearman sample correlation coefficient RS (11.6) and let r∗S be the

attained value of RS. Then the P-values for a test of H0 against the

alternatives HA are:

HA P-value

X and Y are positively correlated ¼ P0 RS � r∗S
� �

(11.8)

X and Y are negatively correlated ¼ P0 RS � r∗S
� �

(11.9)

X and Y are not independent ¼ 2P0 RS � jr∗S j
� �

, (11.10)

whereP0 RS � r∗S
� �

,P0 RS � r∗S
� �

, andP0 RS � jr∗S j
� �

are obtained from the

sampling distribution of RS when H0 is true.

Example 11.2. Does Your Baby Lamb Look Like Ewe? One of the focuses of

the Research Farm at Ataturk University, Erzurum, Turkey, is on increasing

meat quality and production in sheep. As part of this research, the sheep are
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sampled periodically in order to monitor their biological growth. In particu-

lar, the ewe’s weight at time of mating and her lamb’s offspring 7months after

birth are routinely recorded. Table 11.6 (and the R dataset sheep_weight)

contains the mother’s mating weight (in kg) and her lamb offspring’s weight

(also in kg) at age 7 months for a subset of twenty ewe-lamb pairs from the

Research Farm.

We are interested in testing whether there is a positive correlation between

a ewe’s mating weight (X) and the weight of her lamb offspring (Y) at seven

months. The separate rankings of the X’s and Y’s (from least to greatest, of

course) are as follows:

Table 11.6 Sheep weight (kg) from the research
farm at Ataturk University

Mother’s mating
weight (X)

Lamb weight at seven
months(Y)

50.5 25.0
44.3 26.5
47.7 23.5
44.8 27.2
51.9 26.6
56.8 31.0
58.4 34.5
51.5 27.5
50.0 22.7
54.9 27.1
52.3 27.9
58.5 29.0
52.6 30.3
55.8 28.4
50.9 23.7
48.0 21.6
55.2 35.5
52.1 26.3
53.3 31.4
50.2 34.4

Source: Özturk et al. (2005)
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i Ri Si Di ¼ Si – Ri

1 7 5 �2
2 1 7 6
3 3 3 0
4 2 10 8
5 10 8 �2
6 18 16 �2
7 19 19 0
8 9 11 2
9 5 2 �3
10 15 9 �6
11 12 12 0
12 20 14 �6
13 13 15 2
14 17 13 �4
15 8 4 �4
16 4 1 �3
17 16 20 4
18 11 6 �5
19 14 17 3
20 6 18 12

Thus, we have

X20
i¼1

D2
i ¼ �2ð Þ2 þ 62 þ 02 þ 82 þ �2ð Þ2 þ �2ð Þ2 þ 02 þ 22 þ �3ð Þ2 þ �6ð Þ2

þ 02 þ �6ð Þ2 þ 22 þ �4ð Þ2 þ �4ð Þ2 þ �3ð Þ2 þ 42 þ �5ð Þ2 þ 32 þ 12ð Þ2
¼ 436:

It follows from (11.7) that

r∗S ¼ 1� 6 436ð Þ
20 20ð Þ2 � 1
n o ¼ 1� :3278 ¼ :6722:

We can verify this result (reported as rho) using the R function cor:testð Þ as

follows.
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> cor.test(x = sheep_weight$mother_weight, 
y = sheep_weight$lamb_weight,
method = "spearman",
alternative = "greater")

Spearman's rank correlation rho

data:  sheep_weight$mother_weight and sheep_weight$lamb_weight
S = 436, p-value = 0.0007789
alternative hypothesis: true rho is greater than 0
sample estimates:

rho 
0.6721805 

From the output of this command, we also see that the P-value for testing H0:

(X and Y are independent) against the one-sided alternative HA: (X and Y are

positively correlated) is given by P0(RS�. 6722) ¼ 0.0008, providing strong

(not surprisingly) evidence that the mother’s weight at mating is positively

correlated with the offspring lamb’s weight at seven months.

Section 11.2 Practice Exercises

For the exercises in this section, you can use the R function cor:testð Þ with

method ¼ “spearman” to avoid performing the necessary calculations by hand.

11.2.1. Consider the following set of n ¼ 20 (x, y) bivariate observations.

(11, 78), (2, 88), (�2, 100), (�11, 83), (�5, 100), (2, 90), (�6, 87), (22, 82),

(21, 92), (8, 90), (25, 85), (9, 93), (7, 92), (8, 96), (18, 100), (�14, 96), (�21, 86),

(�26, 89), (�7, 93), (5, 80).

Compute the value of the Spearman sample correlation coefficient RS (11.6).

What does this say about the relationship between the x and y observations?

11.2.2. Consider the following set of n ¼ 12 (x, y) bivariate observations.

(1.3, 8), (1.8, 6.9), (0.9, 8.1), (1.6, 7), (2.6, 6.3), (1.5, 6.5),

(2.1, 6.4), (3, 5.8), (0.8, 8.3), (2.4, 8.3), (2.5, 6.6), (2.6, 6.6).

Compute the value of the Spearman sample correlation coefficient RS (11.6).

What does this say about the relationship between the x and y observations?
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11.2.3. Consider the following set of n ¼ 8 (x, y) bivariate observations.

(1, 1), (2, 4), (3, 9), (4, 16), (5, 25), (6, 36), (7, 49), (8, 64).

Compute the value of the Spearman sample correlation coefficient RS (11.6).

What does this say about the relationship between the x and y observations?

Contrast your answer with the result obtained in Exercise 11.1.3.

11.2.4. Does Concurrent Temperature Affect Roost Time Departures for Snow

Geese? Consider the snow geese roost departure time data in Table 11.2, as

discussed in Exercise 11.1.4. Using the procedure based on the Spearman

sample correlation coefficient, find the P-value for a test of the hypothesis

that departure time and concurrent temperature are independent variables.

Compare your findings with those obtained in Exercise 11.1.4.

11.2.5. Birth and Death Rates for the United States. Consider the state birth and

death rate data in Table 11.3, as discussed in Exercise 11.1.5. Using the

procedure based on the Spearman sample correlation coefficient, find the P-

value for a test of the hypothesis that birth rate and death rate are indepen-

dent variables. Compare your findings with those obtained in Exercise 11.1.5.

11.2.6. Psychological Relationships for Dizygous Twins. Clark et al. (1961)

investigated a variety of characteristics for dizygous (i.e., non-identical)

twins. The data in Table 11.7 gives the test sores (totals of a number of

different psychological tests) for 13 dizygous male twins.

Using the procedure based on the Spearman sample correlation coefficient,

find the P-value for a test of the conjecture that the psychological test scores

for dizygous twins are positively related.

11.2.7. Does Voter Turnout in Presidential Elections Affect the Winning Percent-

age? Voter turnout in presidential elections has varied over the years,

depending at least partly on the intensity of the election campaigns. Gener-

ally, closer voter preferences between the Democratic and Republican
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candidates is associated with larger turnouts on Election Day, but is this also

associated with smaller popular vote percentage by the winning candidate?

Table 11.8 contains the total popular vote and percentage for the winning

candidate for each of the elections since 1940.

(a) Using the procedure based on the Spearman sample correlation coef-

ficient, find the P-value for a test of the conjecture that the total

popular vote and winning percentage in presidential elections are

negatively related.

(b) Is there something unusual about the 1968 and 1992 elections?

Explain your answer.

11.2.8. What’s In That Hot Dog? Researchers at Consumer Reports analyzed

the caloric and sodium content of poultry based hot dogs. Table 11.9 contains

their reported results on caloric content and milligrams (mg) of sodium for a

test sample of seventeen poultry based hot dogs.

Table 11.7 Psychological test scores for dizygous
male twins

Pair i Twin Xi Twin Yi

1 277 256
2 169 118
3 157 137
4 139 144
5 108 146
6 213 221
7 232 184
8 229 188
9 114 97
10 232 231
11 161 114
12 149 187
13 128 230

Source: Clark et al. (1961)
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Using the procedure based on the Spearman sample correlation coefficient,

find the P-value for a test of the conjecture that there is a positive relationship

between calories and sodium content in poultry based hot dogs.

11.3 Fitting a Least Squares Line to Bivariate Data

In Fig. 2.3 we display a scatterplot of height (Hgt97) and diameter

(Diam97) from the dataset pines_1997 for the pine trees at the Kenyon Center

for Environmental Study (KCES) in 1997. From this scatterplot, it appears that

tree height and tree diameter for the pines at KCES in 1997 are linearly related.

Table 11.8 Popular vote (in thousands) and winning
percentage for presidential elections, 1940–2012

Year
Total popular vote
(in thousands)

Winning
percentage (%)

1940 49,900 54.7
1944 47,977 53.7
1948 48,834 49.6
1952 61,552 54.9
1956 62,027 57.4
1960 68,836 49.7
1964 70,098 61.1
1968 73,027 43.4
1972 77,625 60.2
1976 81,603 50.0
1980 86,497 50.5
1984 92,653 58.8
1988 91,595 53.4
1992 104,427 43.0
1996 96,278 49.2
2000 105,405 47.9
2004 122,295 50.7
2008 131,314 52.9
2012 129,085 51.1

Source: ropercenter.cornell.edu (2016)
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In such situations, it is often of interest to use a reasonable criterion to select a

straight line that “best” represents this relationship.

The equation for a straight line passing through the point (x, y) is given by

y ¼ a + bx, where b is the slope of the line and a is the intercept of the line at

x ¼ 0. Our goal, then, in selecting a straight line that “best” represents this

linear relationship between the x and y variables is equivalent to using our

sample (x, y) data pairs to arrive at our “best” estimates â and b̂of the slope

b and intercept a, respectively. There are many criteria that can be used to

obtain such a line to represent or model the linear association between x and y,

but the most commonly used statistical criterion for fitting a straight line to

bivariate data is known as the least squares principle. Simply stated, the least

squares principle leads to the line that minimizes the sum of all vertical

Table 11.9 Calories and sodium content (mg) for
tested poultry hot dogs

Calories Sodium content (mg)

129 430
132 375
102 396
106 383
94 387

102 542
87 359
99 357

107 528
113 513
135 426
142 513
86 358

143 581
152 588
146 522
144 545

Source: Consumer Reports (1986)
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squared distances of the data pairs (xi, yi), i ¼ 1, . . ., n, from the line. This

approach to obtaining the least squares line is illustrated in Fig. 11.1.

Fortunately, the slope and intercept estimates associated with the least

squares line y ¼ â þ b̂x fitted to the data pairs (xi, yi), i ¼ 1, . . ., n, can be

easily calculated from the sample data. Expressions for calculating these

estimates are provided in Eqs. (11.11) and (11.12).

Fitting the Least Squares Line to Bivariate Data Let (x1,y1) , . . . , (xn,

yn) be n bivariate observations. The least squares fitted line for these data

is y ¼ â þ b̂x, where

b̂ ¼
Pn
i¼1

�
xi � �x

��
yi � �y

�
Pn
j¼1

�
xj � �x

�2 ¼
n
Pn
i¼1

xiyi �
Pn
j¼1

xj

 ! Pn
k¼1

yk

� �

n
Pn
i¼1

x2i �
Pn
j¼1

xj

 !2 : ð11:11Þ

and

Fig. 11.1 Least squares principle: minimizing the vertical squared
distances of observed bivariate data from a line
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â ¼ �y � b̂�x ¼

Pn
i¼1

yi � b̂
Pn
j¼1

xj

n
, ð11:12Þ

with �x ¼
Xn
i¼1

xi=n and �y ¼
Xn
i¼1

yi=n.

Example 11.3. Least Squares Fitted Line Consider the following set of n¼ 33

bivariate (x, y) observations.

(3, 5), (7, 11), (11, 21), (15, 16), (18, 16), (27, 28), (29, 27), (30, 25), (30, 35),

(31, 30), (31, 40), (32, 32), (33, 34), (33, 32), (34, 34), (36, 37), (36, 38), (36, 34),

(37, 36), (39, 37), (39, 36), (39, 45), (40, 39), (41, 41), (42, 40), (42, 44), (43, 37),

(38, 38), (44, 44), (45, 46), (46, 46), (47, 49), (50, 51)

Then we have

X33
i¼1

xi ¼ 1104,
X33
i¼1

yi ¼ 1124,
X33
i¼1

x2i ¼ 41, 086,
X33
i¼1

xiyi ¼ 41, 355,

and it follows that

b̂ ¼ 33ð Þ 41; 355ð Þ � 1104ð Þ 1124ð Þ
33ð Þ 41; 086ð Þ � 1104ð Þ2 ¼ 0:9036

and

â ¼ 1124� 0:903643ð Þ 1104ð Þ
33

¼ 3:8296:

Thus the least squares line fit to these 33 observations is given by y ¼ 3.8296

+ 0.9036 x. These data and the least squares fitted line obtained using the

R function lmð Þ are graphically depicted in Fig. 11.2.
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Section 11.3 Practice Exercises

11.3.1. Consider the following set of n ¼ 20 (x, y) bivariate observations.

(11, 78), (2, 88), (�2, 100), (�11, 83), (�5, 100), (2, 90), (�6, 87), (22, 82),

(21, 92), (8, 90), (25, 85), (9, 93), (7, 92), (8, 96), (18, 100), (�14, 96), (�21, 86),

(�26, 89), (�7, 93), (5, 80).

(a) Plot the 20 bivariate observations.

(b) Does it look like a straight line might be a good way to represent the

relationship between the x and y values? Why?

(c) Find the least squares fitted line for the 20 observations and plot it

with the data.

(d) Comment on how well (or not) the least squares fitted line represents

the data.

(e) Use the fitted least squares line to predict the y value for x ¼ 12.

(f) Comment on the advisability of using the fitted least squares line to

predict the y value for x ¼ 300.

Fig. 11.2 Plot of n ¼ 33 observations from Example 11.3 and fitted least
squares line
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11.3.2. Consider the following set of n ¼ 12 (x, y) bivariate observations.

(1.3, 8), (1.8, 6.9), (0.9, 8.1), (1.6, 7), (2.6, 6.3), (1.5, 6.5),

(2.1, 6.4), (3, 5.8), (0.8, 8.3), (2.4, 8.3), (2.5, 6.6), (2.6, 6.6).

(a) Plot the 12 bivariate observations.

(b) Does it look like a straight line might be a good way to represent the

relationship between the x and y values? Why?

(c) Find the least squares fitted line for the 12 observations and plot it

with the data.

(d) Comment on how well (or not) the fitted line represents the data.

(e) Use the fitted least squares line to predict the y value for x ¼ 1.7.

(f) Comment on the advisability of using the fitted least squares line to

predict the y value for x ¼ �16.

11.3.3. Consider the following set of n ¼ 14 (x, y) bivariate observations.

(17.3, 71.7), (19.3, 48.3), (19.5, 88.3), (19.7, 75), (22.9, 91.7), (23.1, 100),

(26.4, 73.3), (26.8, 65), (27.6, 75), (28.1, 88.3), (28.2, 68.3), (28.7, 96.7),

(29, 76.7), (29.6, 78.3).

(a) Plot the 14 bivariate observations.

(b) Does it look like a straight line might be a good way to represent the

relationship between the x and y values? Why?

(c) Find the least squares fitted line for the 14 observations and plot it

with the data.

(d) Comment on how well (or not) the fitted line represents the data.

(e) Use the fitted least squares line to predict the y value for x ¼ 27.

(f) Comment on the advisability of using the fitted least squares line to

predict the y value for x ¼ 70 or x ¼ 9.
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11.3.4. Consider the following set of n ¼ 8 (x, y) bivariate observations.

(1, 1), (2, 4), (3, 9), (4, 16), (5, 25), (6, 36), (7, 49), (8, 64).

(a) Find the least squares fitted line for the 8 observations.

(b) Plot the 12 bivariate observations and the fitted least squares line.

(c) Comment on how well (or not) the fitted regression line represents

the data.

(d) Do you think there is a better function (than a straight line) to

represent the relationship between the x and y values? Explain.

11.3.5. Let ŷ ¼ bα þ bβx be the least squares fitted line for the n bivariate

observations (x1, y1) , . . . , (xn, yn).

(a) Is the least squares fitted line changed if we add the constant d to each

of the y values while leaving the x values unchanged? How?

(b) Is the least squares fitted line changed if we multiply each of the

y values by the constant d, while leaving the x values unchanged?

How?

(c) What do your answers to parts (a) and (b) imply about the relation-

ship between a fitted least squares line and the data

(x1, y1) , . . . , (xn, yn)?

11.3.6. Let ŷ ¼ â þ b̂x be the least squares fitted line for the n bivariate

observations (x1, y1) , . . . , (xn, yn).

(a) Is the least squares fitted line changed if we add the constant d to each

of the x values while leaving the y values unchanged? How?

(b) Is the least squares fitted line changed if we multiply each of the

x values by the constant d, while leaving the y values unchanged?

How?

(c) What do your answers to parts (a) and (b) imply about the relation-

ship between a fitted least squares line and the data

(x1, y1) , . . . , (xn, yn)?
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11.3.7. Let ŷ ¼ â þ b̂x be the least squares fitted line for the n bivariate

observations (x1, y1) , . . . , (xn, yn).

(a) Is the least squares fitted line changed if we add the constant d to each

of the y values and the constant k to each of the x values? How? What

happens if d ¼ k?

(b) Is the least squares fitted line changed if we multiply each of the

y values by the constant d and multiply each of the x values by the

constant k? How? What happens if d ¼ k?

(c) What do your answers to parts (a) and (b) imply about the relation-

ship between a fitted least squares line and the data

(x1, y1) , . . . , (xn, yn)?

11.4 Linear Regression Inference for Normal Populations

Many statistical applications involve stochastic relationships between a

dependent (response) variable and one or more independent (predictor)

variables. Such statistical procedures are commonly referred to as regression

analyses. These regression models can vary from the simplest linear relation-

ship between the dependent variable and a single independent variable to

very complex nonlinear relationships involving numerous predictor

variables. In this section we present procedures for evaluating a possible

linear relationship between a dependent random variable Y and a single

predictor variable x when the underlying probability distribution is normal.

The linear model for this setting can be represented as follows:

Y ¼ αþ βxþ ε, ð11:13Þ

where Y is the dependent random variable, x is the known independent

(predictor) variable, α and β are unknown parameters, and ε is assumed to
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have a normal distribution with mean 0 and unknown variance σ2 . Another

way to state this model is that, for fixed x, the random variable Y has mean

E[Y| x] ¼ μYjx ¼ α + βx; that is, the expected value of Y is linearly related to

the value of the predictor variable x. The line α + βx is called the regression line

and it represents the assumed relationship between the dependent variable

Y and the predictor variable x. In this section we concentrate on procedures

for testing the null hypothesis H0: β ¼ 0, corresponding to no influence from

the predictor variable x on the dependent variable Y, against appropriate (β>,

< , or 6¼ 0) alternatives.

At each of n fixed values, x1 , . . . , xn, of the independent (predictor)

variable x, we observe the value of the response variable Y. Thus, we collect a

set of n paired observations (x1, y1) , . . . , (xn, yn), where yi is the observed

value of the response variable Yiwhen x¼ xi. We then fit a least squares line to

these paired observations by estimating the slope β and intercept α using the

expressions in (11.11) and (11.12) respectively, to obtain the fitted least

squares line bμYjx ¼ bα þ bβx.
To assess whether the independent (predictor) variable x provides any

useful information about the dependent variable Y, we test the null hypothe-

sis H0: β ¼ 0, corresponding to no statistically significant impact on Y by x

against appropriate non-zero β alternatives. To simplify construction of the

appropriate test statistic, we need some additional notation. Let

Sxx ¼
Xn
i¼1

�
xi � �x

�2, Syy ¼
Xn
j¼1

�
yj � �y

�2 Sxy ¼
Xn
k¼1

�
xk � �x

��
yk � �y

�
, ð11:14Þ

where �x ¼
Xn
i¼1

xi=n and �y ¼
Xn
j¼1

yj=n.
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Hypothesis Tests for a Linear Regression Effect of the Independent

(Predictor) Variable To test the null hypothesisH0: β¼ 0, corresponding

to no linear relationship between the independent variable x and the

dependent variable Y, against appropriate (β >, < , or 6¼ 0) alternatives,

construct the test statistic

T ¼
ffiffiffiffiffiffiffi
Sxx

p bβffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Syy � bβ Sxy

n� 2

s , ð11:15Þ

and let tobs be the observed value of T. Then the P-values for a test of H0

against the alternatives HA are:

HA P-value

β > 0 ¼ P(T � tobs) (11.16)

β < 0 ¼ P(T � tobs) (11.17)

β 6¼ 0 ¼ 2P(T �jtobsj), (11.18)

where T ~ t(n-2), the t-distribution with n – 2 degrees of freedom. Note

that the alternative β > 0 corresponds to a positive linear relationship

between the independent and dependent variables x and Y so that larger

Y values are associated with larger x values. Under the alternative β < 0

there is a negative linear relationship for which larger Y values are

associated with smaller x values. The two-sided alternative β 6¼ 0

represents a general, non-directional, relationship between the predictor

and dependent variables.

Confidence intervals can also be constructed for the slope parameter β (see

Exercise 11.A.11). In addition, the fitted least squares regression line bμYjx ¼
bα þ bβx can be used with care to predict Y outcomes for other potential values

of the independent variable x within the range of the x-values used to obtain

the least squares fit.
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As previously noted in our discussion for the Pearson correlation

coefficient in Sect. 1, always keep in mind that a failure to reject H0: β ¼ 0 is

not equivalent to saying that there is no relationship between the independent

(predictor) variable x and the dependent variable Y. It is simply indicative that

there is no significant linear relationship between them, leaving open the

possibility of a non-linear relationship.

The least squares approach presented in this section can also be used to

test for a linear relationship with fixed slope β0 6¼ 0; that is, testing H0: β ¼ β0
against alternatives β>, <, or 6¼ β0. See Exercise 11.A.10 for details.

Example 11.4. We can use the R dataset pines_1997 to investigate whether

there is a linear relationship between tree height (Hgt97) and tree diameter

(Diam97) for the pine trees at the Kenyon Center for Environmental Study in

1997. We begin by using the R function lmð Þ (short for “linear model”) to fit

the model in (11.13) and store it as the local variable height_by_diameter_model.

> height_by_diameter_model <- lm(Hgt97 ~ Diam97, data = pines_1997)

We can inspect the variable to see the estimated model of tree height regressed

on tree diameter.

> height_by_diameter_model

Call:
lm(formula = Hgt97 ~ Diam97, data = pines_1997)

Coefficients:
(Intercept)       Diam97

126.8         37.2  

From this output, we see that bβ ¼ 37.2, but is this enough to conclude that

there is some linear relationship between height and diameter? To answer

this, we use the R function summaryð Þ on our model, which will give us the

information we need (and much more information that we don’t currently

need but can be useful in other settings!).
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> summary(height_by_diameter_model)

Call:
lm(formula = Hgt97 ~ Diam97, data = pines_1997)

Residuals:
Min       1Q   Median       3Q      Max 

-276.623  -23.594    0.259 24.724  125.573 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 126.8025     4.4891   28.25   <2e-16 ***
Diam97       37.2031     0.7199   51.68   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 39.85 on 857 degrees of freedom
(141 observations deleted due to missingness)

Multiple R-squared:  0.7571,  Adjusted R-squared:  0.7568
F-statistic:  2671 on 1 and 857 DF,  p-value: < 2.2e-16

From the table under the header “Coefficients”, we see in the column titled

“t value” that, at 51.68, the value of T is quite large. In the column after that,

we are given the p-value defined in (11.18), which is practically zero. We can

verify that 51.68 is a very extreme value for the t(n-2) distribution with the

R function ptð Þ.

> pt(51.68, nrow(pines_1997) - 2, lower.tail = FALSE)

[1] 1.089775e-284

Section 11.4 Practice Exercises

11.4.1. Tree Height and Needle Length Consider the 1997 data for the pine trees

at the Kenyon Center for Environmental Study (KCS) contained in the dataset

pines_1997. Find the P-value for a hypothesis test of the conjecture that the

needle length (Needles97) of a pine tree is linearly related with a positive

slope to the diameter (Diam97) of the tree.

11.4.2. Does Size Really Matter? In the February 18, 2000 edition of

Singapore’s Business Times, an advertisement (discussed in Chu, 2001) listed

data, including weight in carats and value in Singapore dollars, for 308 round

diamond stones. These data are provided in the dataset
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diamonds_carats_color_cost. Find the P-value for a hypothesis test of the

conjecture that the value (cost) of a round diamond stone is linearly related

(with positive slope) to the weight of the stone. Does size really matter?

11.4.3. Does Your Baby Lamb Look Like Ewe? Consider the mother and lamb

weight data presented in Table 11.6 and discussed in Example 11.2. Find the

P-value for a hypothesis test of the conjecture that the offspring lamb’s weight

at seven months is linearly related (with positive slope) to the parent ewe’s

weight at time of mating.

11.4.4. Space Shuttle Challenger After many previous successful launches,

disaster struck on January 28, 1986. Only 73 seconds into its flight, the Space

Shuttle Challenger exploded and all seven crewmembers died. In subsequent

post launch analyses, it became clear that the cause of the disaster was the

failure of an O-ring (used to help seal the joints of different components of the

solid rocket booster) on the right solid rocket booster. Lighthall (1991)

addressed some of the issues surrounding this O-ring failure in the Chal-

lenger, including the temperature at the time of the rocket launch. Table 11.10

contains the temperatures (�F) and depths of erosion (in mils, one mil equals

.001 inch) for the O-rings in 22 previous successful space shuttle launches.

(a) Use the procedure based on the Pearson sample correlation coeffi-

cient to find the P-value for a test of the conjecture that O-Ring

temperature at time of launch and depth of O-Ring erosion are

negatively correlated.

(b) Obtain the fitted least squares line for these data, treating temperature

as the independent variable and depth of erosion as the dependent

variable.

(c) Find the P-value for a hypothesis test of the conjecture that the depth

of O-ring erosion is linearly related (with negative slope) to the

temperature of the O-ring at launch.
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(d) At the time of the fateful Challenger launch on January 28, 1986, the

temperature of the O-rings at the launch site was an unusually low

29 �F. Using your fitted least squares line from part (b), what would

you have predicted the O-ring erosion to be for that launch?

(e) Discuss the appropriateness of your statistical analyses in parts (a)-(d)

and the decision to go ahead and proceed with the launch in spite of

the low temperature.

Table 11.10 Temperature (�F) at time of launch and
depth of erosion (mils) for O-rings from 22 successful
space shuttle launches

Temperature of O-ring Depth of erosion

66 0
70 53
69 0
68 0
67 0
72 0
73 0
70 0
57 40
63 0
70 28
78 0
67 0
53 48
67 0
75 0
70 0
81 0
76 0
79 0
75 0
76 0

Source: Lighthall (1991)
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11.4.5. Arts Participation Across the States—Does Reading Lead to Attendance?

The National Endowment for the Arts periodically collects survey informa-

tion from residents of the United States about their participation in the arts. A

portion of the statewide results from the 2015 survey is presented in the

publication Arts Profile #11 (August 2016). In particular, the publication

includes the percentage of each state’s residents who attended a live music,

theater, or dance performance in 2015 and the percentage of each state’s

residents who read literature in 2015. These two percentages are given in

Table 11.11 for 20 of the states.

(a) Obtain the fitted least squares line for these data, treating percentage

reading literature in 2015 as the independent variable and percentage

attending a live event in 2015 as the dependent variable.

(b) Find the P-value for a hypothesis test of the conjecture that the

percentage attending a live event in 2015 is linearly related (with

positive slope) to the percentage reading literature in 2015.

(c) Use the fitted least squares line from part (a) to predict the percentage

attending a live event in 2015 for the state of Ohio, where 46.0% of the

residents read literature in 2015. Compare your prediction with the

true value (from the survey) of 32.7% Ohioans who attended a live

event in 2015.

(d) Use the fitted least squares line from part (a) to predict the percentage

attending a live event in 2015 for the state of West Virginia,

where 34.1% of the residents read literature in 2015. Compare your

prediction with the true value (from the survey) of 21.5% West

Virginians who attended a live event in 2015.

11.5 Rank-Based Linear Regression Inference

When there is concern that the underlying probability distribution for the

dependent variable Y is not necessarily normal, inferences associated with the
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least squares regression line presented in Sect. 4 can be unreliable. In such

settings an approach that relies instead on the Kendall correlation coefficient

(see Exercise 11.A.8) provides a useful alternative.

As in Sect. 4, we consider the linear model given in (11.13) but without the

assumption of normality for the distribution of the dependent variable Y, and,

as before, at each of n values of the independent variable xi, i ¼ 1, . . ., n, we

observe the value of the dependent variable Yi, i ¼ 1, . . ., n. Here we also

assume, without loss of generality, that the x’s are labeled so that

x1 � x2 � . . . � xn. (When you re-label the x values in increasing order, be

sure to keep each Y value linked with its corresponding x value.). Compute

Table 11.11 Percentage of state residents who attended a live
music, theater, or dance performance in 2015 and percentage of
state residents who read literature in 2015

State
Percentage attending
live event

Percentage reading
literature

Alabama 16.2 34.8
Alaska 40.6 59.3
Arizona 27.9 46.8
Arkansas 20.5 39.3
California 32.2 38.9
Colorado 44.4 59.0
Connecticut 42.0 52.0
Florida 24.4 30.5
Georgia 20.8 36.8
Hawaii 29.2 54.7
Illinois 34.7 47.6
Indiana 35.9 48.2
Kansas 37.1 49.4
Louisiana 25.3 36.6
Maine 29.8 45.8
Minnesota 40.5 49.3
Mississippi 17.8 21.7
Montana 40.8 57.8
Texas 27.2 37.5
Utah 51.0 57.0

Source: National Endowment for the Arts (2016)
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the Kendall correlation coefficient K (see Exercise 11.A.8) for the (xi, Yi) pairs,

namely,

K ¼

Pn�1

i¼1

Pn
j¼iþ1

c Yj � Yi
� �

xj � xi
� �	 


n n�1ð Þ
2

h i , ð11:19Þ

where c(t) ¼ �1, 0, 1 if t <, ¼, > 0. Thus, for each pair of subscripts (i, j), with

1 � i < j � n, score 1 if Yj > Yi and xj > xi, score � 1 if Yj < Yi, and xj > xi, and

score 0 if either xj ¼ xi or Yj ¼ Yi.

Note that a pair of pairs (xi, Yi) and (xj, Yj) with i < j receives a score of 1 if

and only if xi < xj and Yi < Yj . Such a pair of pairs is called a concordant pair

since Y increases along with the increase in x. Moreover, a pair of pairs (xi, Yi)

and (xj, Yj) with i < j receives a score of �1 if and only if xi < xj and Yi > Yj.

Such a pair of pairs is called a discordant pair since Y decreases

with the increase in x. The numerator of K (11.19) is then simply

the number of concordant pairs minus the number of discordant pairs for

all
n
2

� �
¼ n n� 1ð Þ

2
pairings of the (x, y) pairs.

Hypothesis Tests for a Monotonic Regression Effect

of the Independent (Predictor) Variable Without the Assumption

of Normality To test the null hypothesis H0: β ¼ 0, corresponding to

no linear relationship between the independent variable x and the depen-

dent variable Y, against appropriate (β >, < , or 6¼ 0) alternatives,

compute the test statistic

K ¼

Pn�1

i¼1

Pn
j¼iþ1

c Yj � Yi
� �

xj � xi
� �	 


n n�1ð Þ
2

h i
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and let kobs be the observed value of K. Then the P-values for a test of H0

against the alternatives HA are:

HA P-value

β > 0 ¼P0(K � kobs) (11.20)

β < 0 ¼P0(K � kobs) (11.21)

β 6¼ 0 ¼2P0(K�jkobsj), (11.22)

where P0(K � kobs), P0(K � kobs), and 2P0(K � jkobsj) are obtained from

the sampling distribution of K when H0 is true.

Note that the alternative β > 0 corresponds to a positive linear

relationship between the independent and dependent variables x and

Y so that larger Y values are associated with larger x values. Under the

alternative β < 0 there is a negative linear relationship for which larger

Y values are associated with smaller x values. The two-sided alternative

β 6¼ 0 represents a general, non-directional, relationship between the

predictor and dependent variables.

Example 11.5. How Hot Is It?—Ask the Crickets Crickets are cold-blooded

animals, so the rates for their physiological processes are directly affected by

temperature. This includes the rate at which they chirp. Pierce (1948) mechan-

ically measured the frequency (in wing vibrations per second) of chirps made

by a striped ground cricket at a variety of temperatures. His findings are

displayed in Table 11.12.

For this experiment, temperature is the independent variable (x) and the

corresponding number of chirps is the dependent (Y) variable and wewill use

the Kendall correlation coefficient K (11.19) to assess whether there is a

positive linear relationship (slope β > 0) between these two variables. Order-

ing the pairs by temperature, we obtain:
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Ordered temperatures Chirps per second

69.4 15.4
69.7 14.7
71.6 16.0
75.2 15.5
76.3 14.4
79.6 15.0
80.6 16.0
80.6 17.1
82.0 17.1
82.6 17.2
83.3 16.2
83.5 17.0
84.3 18.4
88.6 20.0
93.3 19.8

Table 11.12 Cricket chirps per second and concurrent air
temperatures in degrees Fahrenheit (�F)

Chirps per second Concurrent temperature (�F)

20.0 88.6
16.0 71.6
19.8 93.3
18.4 84.3
17.1 80.6
15.5 75.2
14.7 69.7
17.1 82.0
15.4 69.4
16.2 83.3
15.0 79.6
17.2 82.6
16.0 80.6
17.0 83.5
14.4 76.3

Source: Pierce (1948)
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The associated c((Yj – Yi)(xj – xi)) values for these n ¼ 15 data pairs are as

given in the following chart. You can generate these values for yourself using

the R function ConDis:matrixð Þ from the asbio package.

c((Yj – Yi)(xj – xi)) values for cricket chirps data
j\i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2 �1
3 1 1
4 1 1 �1
5 �1 �1 �1 �1
6 �1 1 �1 �1 1
7 1 1 0 1 1 1
8 1 1 1 1 1 1 0
9 1 1 1 1 1 1 1 0
10 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 �1 �1 �1
12 1 1 1 1 1 1 1 �1 �1 �1 1
13 1 1 1 1 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1 1 1 1 1 1 �1

Summing the c((Yj – Yi)(xj – xi)) values in the chart, we obtain

X14
i¼1

X15
j¼iþ1

c Yj � Yi
� �

xj � xi
� �	 
 ¼ 86� 16 ¼ 70,

so that

kobs ¼ 70
15 14ð Þ

2

¼ :6667:

Using the R function cor:testð Þ with method ¼ ‘kendall’ and alterna-

tive ¼ ‘greater’ we see that the P-value for testing H0: β ¼ 0 against the

alternative HA: β > 0 is 0.0002537. Thus, there is very strong evidence that

the rate of cricket chirps per minute has a positive (β > 0) linear relationship

with concurrent temperature.
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> cor.test(x = cricket_chirps$Chirps,
y = cricket_chirps$Temperature, 
method = 'kendall',
alternative = 'greater')

Kendall's rank correlation tau

data:  cricket_chirps$Chirps and cricket_chirps$Temperature
z = 3.4768, p-value = 0.0002537
alternative hypothesis: true tau is greater than 0
sample estimates:

tau 
0.6763364 

Warning message:
In cor.test.default(cricket_chirps$Chirps, cricket_chirps$Temperature,
:
Cannot compute exact p-value with ties

Note that the tau statistic reported by cor:testð Þ is slightly different than

the kobs that we calculated above. This has to do with a slight difference in the

denominator that the R function is using as an adjustment for ties in the data.

Although the details are beyond the scope of this book, the interested reader

can learn more by searching the Internet for information about Kendall’s

Tau-a and Kendall’s Tau-b.

We need to point out that while the conclusions based on the tests in

(11.20), (11.21), and (11.22) based on K are stated in terms of the slope

parameter for the linear model in (11.13), they are actually capable of

detecting any monotonic (not necessarily linear) relationship between x and

Y. This is not the case for the tests in (11.16), (11.17), and (11.18) associated

with the least squares line and based on the assumption of normality.

Tests for Trend In the special case when the x-values are the time order (see,

for example, Exercises 11.5.3 and 11.5.4), the procedures in (11.20), (11.21),

and (11.22) can be viewed as tests against a time trend for the Y variable.
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Section 11.5 Practice Exercises

11.5.1. Does Lighting the Roost Give Snow Geese a Boost?Wildlife science often

involves trying to understand how environmental conditions affect wildlife

habits. Freund et al. (2010) report data on such a study to assess how a variety

of environmental conditions influence the time that lesser snow geese leave

their overnight roost sites to fly to their feeding areas. In particular, they were

interested in the effect that light intensity might have on the time that the

geese leave their roosts. Table 11.13 contains the times of roost departure in

minutes before (�) or after (+) sunrise and the concurrent light intensity for

36 different observation days in the 1987–1988 winter season.

Find the P-value for a test of the conjecture that there is a positive linear

relationship between light intensity and roost departure time.

11.5.2. Does “Strike ‘Em Out” Equate with “Shut ‘Em Down”? A major part of

many major league pitchers’ arsenal is their ability to strike opponents out—

but does that ability correlate with a low overall earned run average?

Table 11.14 contains the nine-inning strikeout rates and the earned run

averages for fifteen major leaguers who pitched at least 140 innings during

the 2016 baseball season.

Use these data to test the conjecture that a major league pitcher’s earned

run average is negatively correlated with his nine-inning strikeout rate.

11.5.3. Median Weekly Earnings for Men in Service Occupations. The median

weekly earnings in dollars for men in service occupations for the period of

time from the first quarter of 2005 through the fourth quarter of 2015 are given

in Table 11.15.

Find the P-value for testing the conjecture that there has been an increasing

trend in median weekly salaries for men over the period of time from the first

quarter of 2005 through the fourth quarter of 2015.
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Table 11.13 Snow geese roost departure times in minutes
before (�) or after (+) sunset and concurrent light intensity

Date Departure time Concurrent light intensity

11/10/87 11 12.6
11/13/87 2 10.8
11/14/87 �2 9.7
11/15/87 �11 12.2
11/17/87 �5 14.2
11/18/87 2 10.5
11/21/87 �6 12.5
11/22/87 22 12.9
11/23/87 22 12.3
11/25/87 21 9.4
11/30/87 8 11.7
12/05/87 25 11.8
12/14/87 9 11.1
12/18/87 7 8.3
12/24/87 8 12.0
12/26/87 18 11.3
12/27/87 �14 4.8
12/28/87 �21 6.9
12/30/87 �26 7.1
12/31/87 �7 8.1
01/02/88 �15 6.9
01/03/88 �6 7.6
01/05/88 �14 9.0
01/07/88 �8 7.1
01/08/88 �19 3.9
01/10/88 �23 8.1
01/11/88 �11 10.3
01/12/88 5 9.0
01/14/88 �23 5.1
01/15/88 �7 7.4
01/16/88 9 7.9
01/20/88 �27 3.8
01/21/88 �24 6.3
01/22/88 �29 6.3
01/23/88 �19 7.8
01/24/88 �9 9.5

Source: Freund et al. (2010)
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11.5.4. Median Weekly Earnings for Women in Service Occupations. The median

weekly earnings in dollars for women in service occupations for the period of

time from the first quarter of 2005 through the fourth quarter of 2015 are given

in Table 11.16.

Find the P-value for testing the conjecture that there has been an increasing

trend in median weekly salaries for women over the period of time from the

first quarter of 2005 through the fourth quarter of 2015. Compare your finding

with that obtained in Exercise 11.5.3.

Chapter 11 Comprehensive Exercises

11.A. Conceptual

11.A.1. Let R1, . . ., Rn be the ranks (from least to greatest) of the variables

X1, . . ., Xn, respectively.

Table 11.14 Nine-Inning strikeout rate and earned run average for
15 major leaguers who pitched at least 140 innings in the 2016 season

Player Earned run average Nine-inning strikeout rate

David Price 3.99 8.92
Max Scherzer 2.96 11.20
Justin Verlander 3.04 10.04
Madison Bumgarner 2.74 9.96
Jon Lester 2.44 8.75
Cole Hamels 3.32 8.97
Adam Wainwright 4.62 7.29
Bartolo Colon 3.43 6.01
Noah Syndergaard 2.60 10.68
Michael Pineda 4.82 10.60
Trevor Bauer 4.26 7.96
Chris Sale 3.34 9.25
Clayton Kershaw 1.69 10.39
Stephen Strasburg 3.60 11.15
Rick Porcello 3.15 7.63

Source: rotowire.com (2016)

Chapter 11 Comprehensive Exercises 883

http://rotowire.com


(a) Use algebra to show that �R ¼ 1
n

Xn
i¼1

Ri ¼ nþ 1
2

.

(b) Use algebra to show that
Xn
i¼1

�
Ri � �R

�2 ¼ n n2 � 1
� �

2
.

11.A.2. Use algebra to show that the two expressions for the slope estimator in

(11.11) are equivalent. That is, show that

Table 11.15 Median weekly earnings (dollars) for men for each quarterly
period between 2005 and 2015

Quarter Median weekly salary Quarter Median weekly salary

Q1—2005 477 Q1—2011 565
Q2—2005 473 Q2—2011 544
Q3—2005 464 Q3—2011 528
Q4—2005 493 Q4—2011 578
Q1—2006 500 Q1—2012 563
Q2—2006 492 Q2—2012 529
Q3—2006 494 Q3—2012 530
Q4—2006 488 Q4—2012 550
Q1—2007 516 Q1—2013 576
Q2—2007 521 Q2—2013 534
Q3—2007 503 Q3—2013 562
Q4—2007 520 Q4—2013 546
Q1—2008 529 Q1—2014 581
Q2—2008 539 Q2—2014 580
Q3—2008 545 Q3—2014 585
Q4—2008 539 Q4—2014 588
Q1—2009 516 Q1—2015 575
Q2—2009 520 Q2—2015 587
Q3—2009 515 Q3—2015 571
Q4—2009 566 Q4—2015 607
Q1—2010 558
Q2—2010 533
Q3—2010 511
Q4—2010 585

Source: United States Department of Labor, Bureau of Labor Statistics (2016)
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Pn
i¼1

�
xi � �x

��
yi � �y

�
Pn
j¼1

�
xj � �x

�2 ¼
n
Pn
i¼1

xiyi �
Pn
j¼1

xj

 ! Pn
k¼1

yk

� �

n
Pn
i¼1

x2i �
Pn
j¼1

xj

 !2 .

11.A.3. Use algebra to show that the value of the Spearman sample correlation

coefficient RS (11.6) can be obtained by using the computationally simpler

expression

Table 11.16 Median weekly earnings (dollars) for women for each
quarterly period between 2005 and 2015

Quarter Median weekly salary Quarter Median weekly salary

Q1—2005 381 Q1—2011 431
Q2—2005 371 Q2—2011 439
Q3—2005 383 Q3—2011 427
Q4—2005 383 Q4—2011 440
Q1—2006 382 Q1—2012 450
Q2—2006 389 Q2—2012 435
Q3—2006 391 Q3—2012 440
Q4—2006 397 Q4—2012 420
Q1—2007 395 Q1—2013 447
Q2—2007 404 Q2—2013 461
Q3—2007 408 Q3—2013 447
Q4—2007 415 Q4—2013 452
Q1—2008 408 Q1—2014 459
Q2—2008 416 Q2—2014 452
Q3—2008 416 Q3—2014 467
Q4—2008 441 Q4—2014 470
Q1—2009 411 Q1—2015 461
Q2—2009 419 Q2—2015 457
Q3—2009 426 Q3—2015 465
Q4—2009 418 Q4—2015 471
Q1—2010 420
Q2—2010 433
Q3—2010 425
Q4—2010 421

Source: United States Department of Labor, Bureau of Labor Statistics (2016)
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RS ¼ 1�
6
Pn
i¼1

D2
i

n n2 � 1ð Þ ,

where Di ¼ Si � Ri, for i ¼ 1,. . ., n.

11.A.4. Construct a set of bivariate observations (X1, Y1), . . ., (Xn, Yn) for

which the Pearson sample correlation coefficient R (11.1) is 0 (least indicative

of a linear relationship between X and Y) but for which Y can be expressed as

an explicit function of X (so their true relationship is perfect).

11.A.5. Construct a set of bivariate observations (X1, Y1), . . ., (Xn, Yn) for

which the Pearson correlation coefficient R (11.1) is 0 (least indicative of a

linear relationship between X and Y) but for which the Spearman rank

correlation coefficient RS (11.6) and the Kendall correlation coefficient K

(11.18) are both 1 (most indicative of a monotone positive relationship

between X and Y).

11.A.6. Let (X, Y) be bivariate random variables. The population correlation

between X and Y is defined by

ρX,Y ¼ E X � μXð Þ Y� μYð Þ½ �
σXσY

,

where μX = E(X), μY = E(Y), σ2X ¼ Var Xð Þ, and σ2Y ¼ Var Yð Þ.

(a) Show that E[(X � μX)(Y � μY)] = E[XY] � μXμY.

(b) Show that ρX,Y = 0 if X and Y are independent random variables.

(c) Is the converse to the statement in part (b) also true? That is, does ρX, Y

= 0 also imply that X and Y are independent random variables?
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Justify your answer.

[Hint: Consider the joint probability distribution given by

P X;Yð Þ ¼ �1; 0ð Þð Þ ¼ P
�
X;Yð Þ ¼ 0; 0ð Þ� ¼ P X;Yð Þ ¼ 1; 0ð Þð Þ ¼ 1

3
:



11.A.7. Let X be a positive random variable (i.e., P(X > 0) ¼ 1). Define a

second random variable Y ¼ X2. Clearly X and Y are dependent random

variables, but they are not linearly related. As a result, the test procedures in

(11.3), (11.4), and (11.5) based on the Pearson sample correlation coefficient

R will not be particularly effective in detecting this dependence.

(a) Will the test procedures in (11.8), (11.9), and (11.10) based on the

Spearman sample correlation coefficient RS be capable of detecting

this dependence? Justify your answer.

(b) Compare and contrast the linear regression andmonotonic regression

procedures discussed in Sects. 4 and 5, respectively, for this setting.

11.A.8. Let (X1, Y1) , . . . , (Xn, Yn) be a random sample from a bivariate

distribution. TheKendall sample correlation coefficient for these data is defined by

K ¼

Pn�1

i¼1

Pn
j¼iþ1

c Yj � Yi
� �

Xj � Xi
� �	 


n n�1ð Þ
2

h i

where c(t) ¼ �1, 0, 1 if t <, ¼, > 0. Thus, for each pair of subscripts (i, j), with

1 � i < j � n, score 1 if Yj > Yi and Xj > Xi, score � 1 if Yj < Yi and Xj > Xi,

and score 0 if either Xj ¼ Xi or Yj ¼ Yi.

(a) Construct a data set for which K ¼ �1.

(b) Construct a data set for which K ¼ 1.

(c) Construct a data set for which K ¼ 0.
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11.A.9. Let RS be the Spearman sample correlation coefficient defined in

(11.6).

(a) Construct a data set for which RS ¼ �1.

(b) Construct a data set for which RS ¼ 1.

(c) Construct a data set for which RS ¼ 0.

11.A.10. Suppose you were interested in testing for a linear or monotonic

regression with fixed null hypothesis slope value β0 6¼ 0. Discuss how you

might use the shifted sample data Y1 � β0x1, . . . ,Yn � β0xn in conjunction

with either the linear regression procedures based on T (11.14) or the mono-

tonic regression procedures based on K (11.18) to test the null hypothesis

H0 : β ¼ β0 against appropriate alternatives β > β0 , β < β0, or β 6¼ β0.

11.A.11. Confidence Interval for the Slope Parameter β for a Normal Population.

Let bβ be the slope estimator given in (11.11) and let Sxx , Sxy , and Syy be as

defined in (11.14). When the underlying distribution is bivariate normal, a

100CL% confidence interval for the slope parameter β is then given by

bβ � tn�2, 1�CLð Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Syy � bβ Sxy

n� 2

s

ffiffiffiffiffiffiffi
Sxx

p ,

where tn�2, 1�CLð Þ
2

is the upper 1�CLð Þ
2 percentile for the t-distribution with n –

2 degrees of freedom. The R functions confintð Þ and lmð Þ can be used together

to obtain this confidence interval for β.

Use the R dataset pines_1997 to obtain a 95% confidence interval for the slope

parameter associated with a linear regression of the 1997 height (Hgt97) on

the 1997 diameter (Diam97) for the pines at the Kenyon Center for Environ-

mental Study (KCES).
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11.A.12. Confidence Interval for the Slope Parameter β for an Arbitrary Popula-

tion. Consider the linear model setting in (11.13) and let Yi denote the value of

the dependent variable Y at fixed value xi of the independent variable x, for

i¼ 1, . . ., n. Suppose that all n x’s are distinct. Compute theN¼ n
2

� �¼ n(n – 1)/

2 individual sample slopes

Sij ¼
Yj � Yi
� �
xj � xi
� � , 1 � i < j � n;

and let S(1) � 	 	 	 � S(N ) be the ordered sample slope values. By properly

specifying the probs argument, the R function quantileð Þ can be used to obtain

a 100CL% confidence interval for β based directly on these ordered sample

slopes S(1) � 	 	 	 � S(N ). For example, given a vector of data x, we can

construct a 90% confidence interval using the following command.

> quantile(x, probs = c(0.05, 0.95))

Use the Sij sample slope values for the cricket chirp rate data from

Table 11.12 in Example 11.5 (without the (x, y) pair (80.6, 17.1) to avoid ties

among the temperature values) to find a 95% confidence interval for the slope

parameter associated with a linear regression of cricket chirp rate on concur-

rent temperature.

11.B. Data Analysis/Computational

11.B.1. Do Strikeouts Affect Batting Averages? In Example 11.1 we found that

there was insufficient evidence to link the number of strikeouts with the

number of home runs hit by major league ballplayers. A related question of

interest is whether the number of strikeouts might be negatively related to the

overall batting average for major leaguers. The data in Table 11.17 contains

the number of strikeouts and final batting average from the 2016 season for

the same 15 major league ballplayers considered in Example 11.1.
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Use these data to test the conjecture that a major leaguer’s batting average

is negatively correlated with his number of strikeouts.

11.B.2. Do Golf Handicaps “Drive” Stock Prices? An investment compensation

expert, Graef Crystal, undertook a study to investigate whether there is any

link between the golf handicap for a company’s CEO and the value of the

company’s publicly traded stock. He reported his findings in the May 31, 1998

issue of The New York Times under the heading “Investing It: Duffers Need

Not Apply”. Table 11.18 contains the golf handicaps (based on data obtained

from the journalGolf Digest) and stock ratings (compiled by Crystal using data

on the stock market performance of the companies) for 51 CEO’s.

Find the P-value for a test of the conjecture that CEO handicap and Stock

Rating are negatively correlated.

11.B.3. Voter Turnout in Presidential Elections. The population of the United

States has steadily grown over the years since it became a nation, so we might

Table 11.17 2016 batting average and strikeout statistics for a subset of
major league players

Player Final batting average Number of strikeouts

Mookie Betts .318 80
Robinson Cano .298 100
Yoenis Cespedes .280 108
Chris Bryant .292 154
Andrew McCutchen .256 143
Miguel Cabrera .316 116
Albert Pujols .268 75
Todd Frazier .225 163
Ryan Braun .305 98
Charlie Blackmon .324 102
Josh Donaldson .284 119
Chris Davis .221 219
Justin Turner .275 107
David Ortiz .315 86
Bryce Harper .243 117

Source: rotowire.com (2016)
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expect that voter turnout in presidential elections would also have grown

consistently over time from election to election. Table 11.19 contains the total

popular vote (in thousands) for each of the elections from 1940 through 2012.

Find the P-value for an appropriate procedure to test if there is, indeed, an

increasing trend in popular vote turnout for presidential elections over the

period 1940–2012.

Table 11.18 Golf handicaps and stock ratings for major company CEOs

CEO handicap Stock rating CEO handicap Stock rating

3.2 97 12.8 49
23.9 95 13.0 48
18.0 95 15.6 46
22.0 92 19.2 45
34.0 89 13.7 44
25.0 89 22.0 43
11.0 85 18.6 41
10.1 83 11.9 40
20.0 82 22.0 38
21.1 79 10.0 37
3.8 77 27.1 35

13.1 75 16.6 35
7.1 74 8.0 33

17.2 73 15.5 31
13.0 72 14.8 29
10.1 67 12.8 29
10.1 66 24.2 25
11.0 64 18.1 24
12.6 64 18.0 22
10.9 58 10.0 22
7.6 58 16.0 20

10.6 55 23.0 15
16.1 54 19.0 13
10.9 54 18.0 12
12.6 51 11.7 3
17.6 49

Source: New York Times (1998)
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11.B.4. Do Caution Flags Really Slow Races? The National Association for

Stock Car Auto Racing (NASCAR) was founded in December 1947. It

sponsors the Winston Cup, currently comprised of 36 races per year, with

up to 43 cars competing in each race. One of the issues surrounding these

races is the potential impact on fan enjoyment from slowing the race due to

caution flags required when an incident (usually an accident) has occurred.

The number of caution flags and winning time (in minutes) for 82 races over

the period of time from 1975 through 2003 are given in Table 11.20. Each of

these 82 races was held on a 2.5 mile track and the winner of each race

completed the full 200 laps. (Thus, the winning times can be compared fairly.)

Table 11.19 Popular vote (in thousands) for presi-
dential elections, 1940–2012

Year Total popular vote (in thousands)

1940 49,900
1944 47,977
1948 48,834
1952 61,552
1956 62,027
1960 68,836
1964 70,098
1968 73,027
1972 77,625
1976 81,603
1980 86,497
1984 92,653
1988 91,595
1992 104,427
1996 96,278
2000 105,405
2004 122,295
2008 131,314
2012 129,085

Source: ropercenter.cornell.edu (2016)

892 11 Statistical Inference for Bivariate Populations

http://ropercenter.cornell.edu


Table 11.20 Number of caution flags and winning times (in minutes) for
82 NASCAR races during 1975–2003

# of caution flags Winning time # of caution flags Winning time

3 195.25 5 269.83
1 213.20 7 197.13
7 258.90 2 218.82
6 195.80 4 233.68
5 233.83 5 187.82
1 210.47 4 217.73
7 208.37 7 260.40
6 225.87 5 168.92
5 241.17 6 231.77
4 176.87 5 194.82
7 264.13 6 259.75
6 251.87 6 192.33
6 233.22 5 261.28
7 198.68 3 217.13
9 247.22 5 174.15
3 215.87 6 223.87
8 202.53 9 264.83
4 170.20 9 245.57
9 246.42 7 218.13
6 237.82 5 244.17
7 202.07 6 228.45
9 254.57 3 180.98

13 248.75 10 241.80
9 202.50 7 244.57
4 187.20 3 208.30
3 223.78 7 193.58
6 217.38 8 224.98
4 191.17 5 232.92
5 220.47 10 211.70
6 217.83 5 223.82
6 194.82 4 215.67
4 207.05 8 202.30
4 214.55 4 211.17
3 173.70 9 254.65
5 222.78 4 185.70

11 252.32 9 256.45
7 199.72 5 214.68

(continued)
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(a) Obtain the fitted least squares line for these data, treating number of

caution flags as the independent variable and winning time as the

dependent variable.

(b) Find the P-value for a test of the null hypothesis that the winning time

for a NASCAR race of 200 laps on a 2.5 mile track is linearly related to

the number of caution flags. Which alternative hypothesis do you

think is appropriate for this setting?

(c) Use the fitted least squares line from part (a) to predict the winning

time for a race of this type with 6 caution flags. Compare this

predicted value with the observed winning times for those races

with 6 caution flags in our sample data.

(d) How would you feel about using the fitted least squares line in (a) to

predict winning times for races with no caution flags? races with

15 caution flags?

11.B.5. Come On—I Just Walked Him! There is a general conception in base-

ball that walks seem to somehow come back to haunt a pitcher by scoring. But

are walks really a major contributor to a pitcher’s earned run average?

Table 11.21 contains the nine-inning walk rates and the earned run averages

for fifteen major leaguers who pitched at least 140 innings during the 2016

baseball season.

Use these data to test the conjecture that a major league pitcher’s earned

run average is positively correlated with his nine-inning walk rate.

Table 11.20 (continued)

# of caution flags Winning time # of caution flags Winning time

7 229.60 3 185.43
7 223.23 6 222.90
9 209.83 5 209.17
5 222.40 8 234.92

Source: Winner (2006); Sporting News Books (2004)
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11.B.6. Careful When You Chirp. Consider the cricket chirp rate data from

Table 11.12 in Example 11.5.

(a) What is the equation of the least squares line fit to these data (consider

temperature as the independent variable x and cricket chirp rate as

the dependent variable y)?

(b) Using this least squares fitted line, what would you estimate the chirp

rate to be when the concurrent temperature is 70 � F?

(c) Using this least squares fitted line, what would you estimate the chirp

rate to be when the concurrent temperature is 100 � F?

(d) Using this least squares fitted line, what would you estimate the chirp

rate to be when the concurrent temperature is 32 � F?

(e) Discuss your answers to parts (c) and (d) in the context of these data.

Table 11.21 Nine-inning walk rate and earned run average for 15 major
leaguers who pitched at least 140 innings in the 2016 season

Player Earned run average Nine-inning walk rate

David Price 3.99 1.96
Max Scherzer 2.96 2.21
Justin Verlander 3.04 2.25
Madison Bumgarner 2.74 2.14
Jon Lester 2.44 2.31
Cole Hamels 3.32 3.45
Adam Wainwright 4.62 2.67
Bartolo Colon 3.43 1.50
Noah Syndergaard 2.60 2.11
Michael Pineda 4.82 2.71
Trevor Bauer 4.26 3.32
Chris Sale 3.34 1.79
Clayton Kershaw 1.69 0.66
Stephen Strasburg 3.60 2.68
Rick Porcello 3.15 1.29

Source: rotowire.com (2016)
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11.B.7. How Important Is a Good Starting Position? The National Association

for Stock Car Auto Racing (NASCAR) was founded in December 1947. It

sponsors the Winston Cup, currently comprised of 36 races per year, with up

to 43 cars competing in each race. Is it important to have a good starting

position in these races? Table 11.22 contains the starting position and finish

position for 42 drivers in a NASCAR race held in 1987.

(a) Using the procedure based on the Spearman sample correlation coef-

ficient, find the P-value for a test of the hypothesis that starting

position and finish position are independent variables against an

appropriate alternative.

Table 11.22 Finish position and starting position for each of 42 drivers in a
NASCAR race in 1987

Finish position Start position Finish position Start position

1 1 2 4
3 11 4 7
5 13 6 6
7 3 8 5
9 31 10 22

11 19 12 15
13 21 14 8
15 37 16 35
17 24 18 14
19 36 20 42
21 27 22 18
23 28 24 40
25 38 26 33
27 2 28 39
29 29 30 10
31 12 32 17
33 23 34 16
35 20 36 34
37 9 38 30
39 26 40 25
41 32 42 41

Source: Winner (2006); Sporting News Books (2004)
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(b) Repeat part (a) using the Kendall sample correlation coefficient. Are

your findings similar?

11.B.8. How Important Is a Good Starting Position?—Part II. Table 11.23

contains the starting position and finish position for 42 drivers in a second

NASCAR race held in 1997.

(a) Using the procedure based on the Spearman sample correlation coef-

ficient, find the P-value for a test of the hypothesis that starting

position and finish position are independent variables against an

appropriate alternative.

Table 11.23 Finish position and starting position for each of 42 drivers in a
NASCAR race in 1997

Finish position Start position Finish position Start position

1 4 2 6
3 20 4 22
5 9 6 11
7 14 8 34
9 17 10 15

11 10 12 5
13 40 14 7
15 32 16 29
17 38 18 37
19 27 20 23
21 1 22 25
23 24 24 13
25 26 26 16
27 33 28 36
29 31 30 12
31 8 32 28
33 35 34 18
35 21 36 19
37 39 38 3
39 42 40 2
41 41 42 30

Source: Winner (2006); Sporting News Books (2004)
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(b) Repeat part (a) using the Kendall sample correlation coefficient. Are

your findings similar?

(c) Compare your results for this race with those obtained for the 1987

race in Exercise 11.B.7.

11.B.9. How Fast Is the Arctic Sea Ice Melting? While the cause of climate

change is bantered about in the popular media, the fact that it is occurring is

not in question. Table 11.24 contains the extent of Arctic Sea Ice (in millions of

square kilometers) in September for the years 1979 through 2012.

(a) Plot the Arctic Sea Ice data versus the years of measurement.

(b) Compute the Kendall sample correlation coefficient for the data in

Table 11.24.

(c) Find the P-value for testing the conjecture that there is a decreasing

trend in the extent of Arctic Sea Ice in September over the period of

time from 1979 through 2012.

(d) Obtain the fitted least squares line for the data in Table 11.24. Plot this

line on the plot of Arctic Sea Ice versus year of measurement. Does it

look like a good fit?

(e) Use this fitted least squares line to find the P-value for a hypothesis

test of the conjecture that there is a linear decline in September Arctic

Sea Ice over the period of time from 1979 through 2012.

11.B.10. Carbon Dioxide and Global Warming. One aspect of climate change

that has received a lot of attention from the scientific community is the effect

of atmospheric CO2 (carbon dioxide) concentration on global temperature.

Table 11.25 contains the atmospheric CO2 concentration in parts per million

and the Global Land-Ocean Temperature Index from the Goddard Institute of

Space Studies (GISTEMP) for the years 1979–2010. GISTEMP is reported in

units of 1/100 of a degree Centigrade increase above the 1950–1980 mean and

is known in the literature as the global surface temperature anomaly.
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Table 11.24 Extent of Arctic Sea ice (millions of
square kilometers) in September for the years
1979–2012

Year Extent of arctic sea ice in september

1979 7.20
1980 7.85
1981 7.25
1982 7.45
1983 7.52
1984 7.17
1985 6.93
1986 7.54
1987 7.48
1988 7.49
1989 7.04
1990 6.24
1991 6.55
1992 7.55
1993 6.50
1994 7.18
1995 6.13
1996 7.88
1997 6.74
1998 6.56
1999 6.24
2000 6.32
2001 6.75
2002 5.96
2003 6.15
2004 6.05
2005 5.57
2006 5.92
2007 4.30
2008 4.68
2009 5.36
2010 4.90
2011 4.61
2012 3.61

Source: Witt (2013); Fetterer et al. (2016)
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Table 11.25 Atmospheric CO2 concentration (parts permillion)
and GISTEMP (1/100 �C), 1979–2010

Year CO2 concentration GISTEMP

1979 336.67 8
1980 338.57 19
1981 339.92 26
1982 341.30 4
1983 342.71 25
1984 344.24 9
1985 345.81 4
1986 347.11 12
1987 348.72 27
1988 351.04 31
1989 352.68 19
1990 353.97 36
1991 355.37 35
1992 356.18 13
1993 356.69 13
1994 358.14 23
1995 360.02 37
1996 361.95 29
1997 363.18 39
1998 365.19 56
1999 367.86 31
2000 368.83 33
2001 370.43 47
2002 372.01 56
2003 374.45 55
2004 376.77 48
2005 378.30 63
2006 380.83 55
2007 382.56 58
2008 384.39 44
2009 386.34 57
2010 388.13 63

Source: Witt (2013); NASA Goddard Institute for Space Studies
(GISS); Earth System Research Laboratory of the National Oceanic
and Atmospheric Administration (NOAA)
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(a) Compute both the Pearson correlation coefficient and the Spearman

rank correlation coefficient between the atmospheric CO2 concentra-

tion and GISTEMP.

(b) Using the Pearson correlation coefficient, find the P-value for a

hypothesis test of the conjecture that atmospheric CO2 concentration

and GISTEMP are positively correlated. Do the same for a hypothesis

test using the Spearman rank correlation coefficient.

(c) Obtain the fitted least squares line for the CO2 concentration and

GISTEMP data in Table 11.25.

(d) Using the Kendall correlation coefficient, find the P-value for a

hypothesis test of the conjecture that atmospheric CO2 concentration

was increasing over the period of time from 1979 to 2010.

11.C. Activities

11.C.1. Sodium and Calories in Canned Food. Go to your favorite supermarket

and randomly select ten different canned food items from the shelves. For

each of these items, record the amount of grams of sodium per serving and

total calories per serving. Using these data, find the P-value for an appropriate

test of the conjecture that grams of sodium and calorie content are positively

correlated for canned foods.

11.C.2. Heart Rate and Blood Pressure. Obtain heart rate (in beats per minute)

and systolic blood pressure (in mm. Hg) values for eight women and eight

men.

(a) Using all of the combined data for women and men, find the P-value

for an appropriate test of the conjecture that heart rate and systolic

blood pressure are positively correlated. Then carry out the same

analysis separately for women and men. Discuss your findings.

Chapter 11 Comprehensive Exercises 901



(b) Find the least squares fitted lines for the combined data and then

separately for women and men. Discuss your findings.

(c) Using the combined data, find the P-value for a test of the conjecture

that there is a positive linear relationship between heart rate and

systolic blood pressure.

11.C.3. Coffee and Bedtime. Survey at least 15 of your friends and/or

classmates to obtain the following information from each of them:

(i) average number of cups of coffee they drink in a 24 h day and (ii) their

average bedtime, in minutes past ten p.m.

(a) Using these data, find the P-value for the conjecture that these two

variables are positively correlated.

(b) Find the least squares fitted line for a linear regression of average

bedtime on average daily cups of coffee. Find the P-value for an

appropriate test of the significance of the linear regression.

11.D. Internet Archives

11.D.1. Grip Strength and Fraility. Chronological age is a natural marker of

frailty. However, it is not a perfect marker, as there is wide variability in

frailty between individuals of the same age. Numerous scientific studies have

been conducted to investigate the possible connection between grip strength

as a more reliable marker of frailty in older individuals. Use the Internet to

find a scientific paper that addresses this association between grip strength

and frailty. Summarize the findings discussed in the paper, particularly how

the authors used correlation and regression to support their conclusions.

11.D.2. Passing Yardage and College Football Victories. Winning a college foot-

ball game is dependent on a lot of performance variables. One of these

variables is passing yardage. Use the Internet to find the following
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information for each of the Division I football games played on the most

recent first Saturday in November:

(i) Passing Yardage for the Winning Team

(ii) Total Points Scored by the Winning Team

(iii) Total Points Scored by the Losing Team.

(a) Find the P-value for a test of the conjecture that total points scored by

the winning team is positively correlated with the passing yardage for

the winning team.

(b) Find the P-value for a test of the conjecture that total points scored by

the losing team is negatively correlated with the passing yardage of

the winning team.

(c) Find the least squares fitted line for the regression of total points

scored by the winning team on the passing yardage for the winning

team. Obtain the P-value for a test of the conjecture that there is a

positive linear relationship between total points scored by the win-

ning team and their passing yardage.

11.D.3. Rushing Yardage and College Football Victories. Use the Internet to find

the rushing yardage for the winning team in each of the Division I football

games played on the most recent first Saturday in November. Complete the

following statistical analyses.

(a) Find the P-value for a test of the conjecture that total points scored by

the winning team is positively correlated with the rushing yardage

for the winning team.

(b) Find the P-value for a test of the conjecture that total points scored by

the losing team is negatively correlated with the rushing yardage of

the winning team.
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(c) Find the least squares fitted line for the regression of total points

scored by the winning team on the rushing yardage for the winning

team. Obtain the P-value for a test of the conjecture that there is a

positive linear relationship between total points scored by the win-

ning team and their rushing yardage.

(d) Compare the results obtained in this exercise with those obtained in

Exercise 11.D.2.

11.D.4. How Important are Three-Point Shots in College Basketball? One of the

more recent changes to the rules of college basketball has been the addition of

the three-point arc, beyond which a made field goal counts for three points

rather than the standard two points. While this is clearly an exciting option for

the fans attending games, how much effect has it actually had on winning or

losing basketball games? Use the Internet to find the following information

for each of the Division I basketball games played on the most recent third

Saturday in January:

(i) Number of Made Three-Point Shots for the Winning Team

(ii) Total Points Scored by the Winning Team.

(a) Find the P-value for a test of the conjecture that total points scored by

the winning team is positively correlated with the number of three-

point shots they make.

(b) Find the least squares fitted line for the regression of total points

scored by the winning team on the number of three-point shots they

make. Obtain the P-value for a test of the conjecture that there is a

positive linear relationship between total points scored by the win-

ning team and the number of three-point shots they make.

11.D.5. Trends in Never-Married Americans. The share of never-married

Americans has been on the rise for the past five decades and men are more

likely than women to have never been married. Use the Internet to find one or
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more reports that provide data to support this statement. Using these data,

find the P-value for a test of the conjecture that there is a positive trend in the

percentage of never-married American women over the period of time from

1960 through 2012. Do the same for never-married American men.

11.D.6. Explosion of Social Networking Sites. As of October 2015, nearly

two-thirds of American adults were using at least one social networking

site. How fast has been the rise in this acceptance of social networking? Use

the Internet to find one or more reports that provide data to address this

question. Using these data, find the P-value for a test of the conjecture that the

use of social networking sites has been increasing since it stood at 7% in 2005.

Are there differences in the rate of this rise due to age, gender, education, and

income? Discuss the relevant findings from your report(s).

11.D.7. Shortage of Marriageable Men? A Pew Research Center report found

that over three-quarters of women surveyed cited that having a partner with a

stable job was a very important attribute that they look for in someone to

marry. But is that criterion becoming more difficult to satisfy? Use the Internet

to find one or more reports that address this question over time for college-

educated women who are 25–35 years old.
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Statistical Inference for More Than
Two Populations 12

Do generic versions of a drug do as well as the brand name version? Are there

differences in blood pressure levels across ethnic groups? Which of three

approaches to meniscal repair leads to the most effective recovery time? Are

there differences between our major cities in the amount of time motorists

spend in traffic congestion? How do competing car brands fare with regard to

miles per gallon in city driving? Are there differences among types of higher

education institutions with regard to the level of remaining student debt ten

years after graduation?

Questions such as these require statistical inference procedures for

analyzing independent random sample data from more than two

populations. In Chap. 9 we discussed statistical inference procedures for

analyzing independent random sample data from two populations. In this

chapter we extend those results to accommodate k > 2 populations, com-

monly known as one-way Analysis of Variance (ANOVA) procedures.
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Section 1 presents one-way rank-based ANOVA methodology for

analyzing independent random sample data frommore than two populations

that does not require normality of the populations. Section 2 details a one-way

ANOVA procedure for more than two normal populations. In Section 3 we

discuss a rank-based ANOVA procedure specifically designed to address

settings where it is anticipated that the responses across the populations

will be monotonically ordered.

General Setting and Notation Let X11; . . . ;Xn11f g, X12; . . . ;Xn22f g, . . . ,
X1k; . . . ;Xnkk
� �

be k mutually independent random samples of sizes n1, . . .,

nk from populations 1, 2, . . ., k, respectively. LetN ¼
Xk
j¼1

nj be the total number

of sample observations from the k populations. We assume that these

populations are related to one another through the following one-factor

ANOVA model:

Xij ¼ τj þ eij, i ¼ 1, . . . , nj, j ¼ 1, . . . k,

where theN e’s have the same probability distribution with median θ and τj is

known as the “ treatment j ” effect, for j ¼ 1, . . ., k. Thus the only possible

differences between the k populations are through their “treatment” effects

τ1, . . . , τk. Throughout this chapter we will be interested in testing the null

hypothesis

H0 : τ1 ¼ τ2 ¼ � � � ¼ τk½ �, ð12:1Þ

corresponding to no differences between the probability distributions for the

k populations, against either general alternatives

H1 : τ1; . . . ; τk not all equal½ � ð12:2Þ

or ordered alternatives
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H2 : τ1 � τ2 � � � � � τk; with at least one strict inequality½ �, ð12:3Þ

corresponding to a monotonically non-decreasing “treatment” effect across

the populations.

12.1 One-way Rank-Based General Alternatives ANOVA
for More Than Two Populations

In Sect. 9.2 we introduced the idea of using joint rankings for independent

random samples from two populations to make inferences about

their medians without requiring the assumption of population normality.

Here we take the same approach tor independent random samples from

k > 2 populations.

First we combine all N ¼
Xk
j¼1

nj observations from the k independent

random samples and order (rank) them from least to greatest. In case of a

group of 2 or more tied observations, use the average rank assigned to that

group for each of the observations in the group. For i ¼ 1, . . ., nj and j ¼ 1, . . .,

k, let Rij denote the rank of Xij in this joint ranking. For j ¼ 1, . . ., k, let Rj and

R:j be the sum and average, respectively, of the joint ranks for the

observations from the jth population; that is,

Rj ¼
Xnj
i¼1

Rij and R:j ¼
Rj

nj
, for j ¼ 1, . . . , k: ð12:4Þ

You are asked to show in Exercise 12.A.1 that the average of all of the ranks

1, . . ., N assigned in this joint ranking is R:: ¼ 1þ2þ���þN
N ¼ Nþ1

2 . If the null

hypothesis H0 : τ1 ¼ τ2 ¼ � � � ¼ τk½ � is true, we would expect the k sample

average ranks R:1, . . . ,R:k to be similar and “close” to the combined average
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rank R:: ¼ Nþ1
2 . To assess possible deviations from H0, we use the Kruskal-

Wallis test statistic

Q ¼ 12
N N þ 1ð Þ

Xk
j¼1

nj R:j � R::

� �2 ¼ 12
N N þ 1ð Þ

Xk
j¼1

nj R:j �N þ 1
2

� �2

: ð12:5Þ

We note that large values of Q provide evidence that the null hypothesis

H0 : τ1 ¼ τ2 ¼ � � � ¼ τk½ � is not tenable. We can use the sampling distribution

of Q when the null hypothesis is true to assess whether this evidence is

sufficient to reject H0 in favor of the general alternatives

H1 : τ1; . . . ; τk not all equal½ � that the k population medians τ1, . . . , τk are not

the same.

One-way Rank-Based General Alternatives ANOVA for More Than

Two Populations To test the null hypothesis H0 : τ1 ¼ τ2 ¼ � � � ¼ τk½ �
against the general alternative H1 : τ1; . . . ; τk not all equal½ � using the

kmutually independent random samples X11; . . . ;Xn11f g, X12; . . . ;Xn22f g
, . . . , X1k; . . . ;Xnkk

� �
from populations 1, 2, . . ., k, respectively, compute

the Kruskal-Wallis statistic Q (12.5) and let qobs be the attained value ofQ.

Then the P-value for a test of H0 (12.1) against the general alternatives H1

(12.2) is given by

P�value ¼ P0 Q � qobs
� �

, ð12:6Þ

whereP0 Q � qobs
� �

is obtained from the sampling distribution ofQwhen

H0 is true.

Often it is easier to compute the Kruskal-Wallis statistic Q (12.5) using the

equivalent representation (see Exercise 12.A.2)
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Q ¼ 12
N N þ 1ð Þ

Xk
j¼1

R2
j

nj

0
@

1
A� 3 N þ 1ð Þ: ð12:7Þ

Example 12.1. Meniscal Repair—Which Will It Be: FasT-Fix Sutures,

Biodegradable Meniscus Arrows, or Vertical Mattress Sutures? Surgery is

most often the only option when faced with a torn medial meniscus—but

what is the best surgical method for the repair? Borden et al. (2003) studied

the performance characteristics of three different meniscal repair techniques,

namely, the FasT-Fix Meniscal Repair Suture System (FasT-Fix), the use of

biodegradable Meniscus Arrows (MA), and the Vertical Mattress Sutures

(VMS) approach. Human cadaveric knees were used in the study, with six

randomly assigned to each of the three meniscus surgery techniques. Each

repaired meniscus was loaded into a servohydraulic device and tension-

loaded (similar to the type of stresses that a meniscus might have to deal

with during early rehabilitation) until failure of the repair occurred. Table 12.1

contains the data for load at failure (Newtons (N)) for the eighteen meniscus

surgeries in the study.

Table 12.1 Load (Newtons (N)) at failure for
meniscal repairs

FasT-Fix Meniscus arrows Vertical mattress

88.0 44.9 97.3
119.8 46.1 106.4
65.8 59.3 118.2
82.9 35.5 99.7

149.9 50.7 106.5
117.1 56.8 84.2

Source: Borden et al. (2003)
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Jointly ranking the eighteen failure times in Table 12.1 from least to

greatest, we find the following ranks for the three repair mechanisms:

FasT-Fix Meniscus arrows Vertical mattress

10 2 11
17 3 13
7 6 16
8 1 12

18 4 14
15 5 9

Summing these ranks within repair mechanisms, we obtain:

.

R1 ¼ RFasT�Fix ¼ 10þ 17þ 7þ 8þ 18þ 15 ¼ 75

R2 ¼ RArrows ¼ 2þ 3þ 6þ 1þ 4þ 5 ¼ 21

R3 ¼ RMattress ¼ 11þ 13þ 16þ 12þ 14þ 9 ¼ 75:

Combining these rank sums with the sample sizes n1 ¼ n2 ¼ n3 ¼ 6

and N ¼ 18, we find from equation (12.7) that the observed value of the

Kruskal-Wallis test statistic Q is

qobs ¼
12

18 18þ 1ð Þ
75ð Þ2
6

þ 21ð Þ2
6

þ 75ð Þ2
6

" # !
� 3 18þ 1ð Þ ¼ 68:310� 57

¼ 11:37:

Using the R function pKWð Þ (from the NSM3 package) along with the

R dataset meniscal_repairs_load_at_failure, it follows that the associated

P-value, P0 Q � 11:37ð Þ, for a test of H0 : τ1 ¼ τ2 ¼ τ3½ � versus the general

alternative H1 : τ1, τ2, τ3 not all equal½ � is approximately 0.0006.

> pKW(meniscal_repairs_load_at_failure)

Group sizes: 6 6 6 
Kruskal-Wallis H Statistic: 11.3684
Monte Carlo (Using 10000 Iterations) upper-tail probability: 6e-04
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Hence, there is strong evidence that the median failure time load is different

for the three meniscal repair techniques FasT-Fix, Meniscus Arrows, and

Vertical Mattress.

This example introduces two new concepts in R that we have not yet

encountered. The first is that the dataset meniscal_repairs_load_at_failure is

stored as a “list” rather than a “data.frame”. The reason for this is that a

data.frame is required to have an equal number of rows in every column.

(In our case this means that each of the k samples would need to be the same

size. Although this is the case in Example 12.1, it won’t necessarily be that way

throughout the rest of the chapter.)

The second new concept is that of a “Monte Carlo” sample. This is an

approximation method that relies on taking a large sample from the null

distribution of Q to estimate the P-value (rather than using the exact distribu-

tion to calculate it directly) because the calculation of the exact distribution

becomes computationally infeasible when the sample sizes are moderately

large.

Often in ANOVA settings when we reject the null hypothesis

H0 : τ1 ¼ τ2 ¼ � � � ¼ τk½ �, it is of interest to know which particular medians τ1

, . . . , τk are not equal. For instance, it would be of interest to know if there is

sufficient statistical evidence from the data in Example 12.1 to conclude that

the Meniscus Arrows technique is inferior to both the FasT-Fix and Vertical

Mattress techniques with regard to median load to failure of the repaired

menisci. Such inferential techniques are called multiple comparison procedures.

For more information on the multiple comparison procedures associated with

the Kruskal-Wallis test, see, for example, Chapter 6 of Hollander et al. (2014).

Section 12.1 Practice Exercises

12.1.1. Arts Participation Across the States—Are There Regional Differences in

Reading Literature? The National Endowment for the Arts periodically collects

survey information from residents about their participation in the arts.
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A portion of the statewide results from the 2015 survey is presented in the

publication Arts Profile #11 (August 2016). In particular, the publication

includes the estimated percentage of each state’s residents who read literature

in 2015. A subset of these statewide reading percentages is presented in

Table 12.2, stratified by regions of the United States.

Find the P-value for a hypothesis test of the conjecture that the median

percentage of state residents reading literature in 2015 differs across these four

graphical regions of the United States.

12.1.2. Are Nonprofit Hospitals Equally Charitable? All nonprofit hospitals are

dedicated to providing charity care (uncollectable debt) for those individuals

who cannot afford it. The extent of this charity, however, can vary

Table 12.2 Percentages of state residents who read literature in 2015,
stratified by regions of the United States

State Percentage Reading Literature (%)

Midwest Illinois 47.6
Kansas 49.4
Minnesota 49.3
Ohio 46.0
South Dakota 52.1

Northeast Delaware 42.6
Maine 45.8
Massachusetts 52.3
New York 48.4
Virginia 42.7

South Alabama 34.8
Florida 30.5
Louisiana 36.6
South Carolina 39.3
Texas 37.5

West Alaska 59.3
California 38.9
Idaho 56.4
New Mexico 50.4
Utah 57.0

Source: National Endowment for the Arts (2016)
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considerably from state to state. Table 12.3 contains the uncollectable debt

(as a percentage of expenses) for a subset of nonprofit hospitals in the states of

Colorado, Michigan, Ohio, and Virginia over the two-year period 2012-2013.

Find the P-value for a test of the conjecture that the median charity care

(as a percentage of total expenses) differs across these four states of Colorado,

Michigan, Ohio, and Virginia.

12.1.3. Want Possums?—Hollow Out a Tree. One of the critical features for the

presence of possums is the availability of large, old, hollow-bearing trees to

provide appropriate habitat for the critters. Lindenmayer et al. (2014)

reported on the results of a study conducted in the montane ash forests of

Table 12.3 Charity care as a percentage of total expenses for a subset of
twenty nonprofit hospitals in Colorado, Michigan, Ohio, and Virginia for
the two-year period 2012–2013

Colorado Michigan Ohio Virginia

6.00% 3.26% 1.41% 2.46%
1.90% 9.76% 2.86% 13.68%
0.02% 7.68% 8.48% 2.20%
8.03% 4.73% 10.77% 2.88%
3.29% 8.42% 2.19% 4.45%

Source: Watchdog.org (2016)

Table 12.4 Number of mountain bushtail possum observed as a function
of the availability of hollow-bearing trees in various sites in the Central
Highlands of Victoria, Southeastern Australia

Number of available hollow-bearing trees

0–4 4–8 8–12 More than 12

0 0 1 4
0 2 3 5
1 2 4 5
1 4 7 6
2 11

Source: Lindenmayer et al. (2014)
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the Central Highlands of Victoria, Southeastern Australia. Table 12.4 contains

a subset of the data they collected.

Find the P-value for the Kruskal-Wallis test of the conjecture that there is a

difference in the median number of possums for these different levels of

available hollow-bearing trees.

12.2 One-way General Alternatives ANOVA for More Than
Two Normal Populations

In this section we make the additional assumption that all k of the under-

lying populations are normally distributed. Thus, we assume that

{X11, ,Xn11
}, {X12,...... ,Xn2 2

},..., {X1k,...,Xnkk
} are k mutually independent random

samples of sizes n1, . . ., nk from normal populations with means ,..., k ,t1 t

respectively, and common variance σ2. We are still interested in testing the

null hypothesis H0 (12.1) against the general alternative H1 (12.2), but here we

will be able to design our procedure to take advantage of the assumed

normality.

The k-sample test for equality of means under the normality assumption is

based on a comparison of (i) the observed variability among the observations

within the separate ‘treatment’ samples and (ii) the differences in variability

between the treatment groups. (This is how the term analysis of variance

(ANOVA) came to be used to describe procedures designed to test for

differences in means from k populations.) To quantify this notion, we first

need to define some sample measures of variability.

Let

�X:j ¼ 1
nj

Xnj
i¼1

Xij ð12:8Þ

be the sample mean for the observations from the jth population, for j¼ 1, . . .,

k, and let
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�X:: ¼ 1
N

Xk
j¼1

Xnj
i¼1

Xij ¼ 1
N

Xk
j¼1

nj �X:j ð12:9Þ

be the grand mean, corresponding to the average of all N ¼
Xk
j¼1

nj sample

observations. The total variation in the sample data corresponds to the total sum

of squares SST given by

SST ¼
Xk
j¼1

Xnj
i¼1

�
Xij � �X::

�2
: ð12:10Þ

This total variation can be broken into two components, one component

corresponding to the between-treatments variation SSB (the sum of squares

attributable to any treatment differences) and a second component

corresponding to the within-treatments variation SSE (the sum of squares due

simply to randomness or sample error) as follows:

SST ¼ SSBþ SSE, ð12:11Þ

where

SSB ¼
Xk
j¼1

nj
�
�X:j � �X::

�2 ð12:12Þ

and

SSE ¼
Xk
j¼1

Xnj
i¼1

�
Xij � �X:j

�2
: ð12:13Þ

(You are asked to verify the relationship in (12.11) in Exercise 12.A.3.)

If the null hypothesisH0 : τ1 ¼ τ2 ¼ � � � ¼ τk½ � is true, each of the k samples

comes from the same normal population with mean μ and variance σ2. Under

that condition, all k of the ‘treatment’ sample means, �X:1, . . . , �X:k, should be
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similar and close to the grand mean, �X::, leading to a small value for the

between-treatments sum of squares SSB relative to the overall within-

treatments error sum of squares SSE. Comparison of these two quantities

will provide information about the validity of the null hypothesis H0. This

comparison is facilitated through the test statistic

F ¼ SSB= k � 1ð Þ
SSE= N � kð Þ , ð12:14Þ

where SSB/(k-1) is commonly referred to as the mean square error due to

‘treatment’ and denoted by MSB, and SSE/(N-k) is commonly referred to as

the mean square due to error (randomness) and denoted by MSE. Large

values of F, corresponding to greater sample variability between treatments

than within treatments, will be indicative of the alternative hypothesis

H1 : τ1; . . . ; τk not all equal½ � and lead to rejection of the null hypothesis

H0 : τ1 ¼ τ2 ¼ � � � ¼ τk½ �.

One-way General Alternatives ANOVA for More Than Two Normal

Populations To test the null hypothesis H0 : τ1 ¼ τ2 ¼ � � � ¼ τk½ � against
the general alternativeH1 : τ1; . . . ; τk not all equal½ � using the kmutually

independent random samples X11; . . . ;Xn11f g, X12; . . . ;Xn22f g, . . . ,
X1k; . . . ;Xnkk
� �

from normal populations 1, 2, . . ., k with common vari-

ance σ2, compute the statistic F (12.14) and let f obs be the attained value of

F. Then the exact P-value for a test of H0 (12.1) against the general

alternatives H1 (12.2) for normal populations with common variance σ2

is given by

P�value ¼ P0 F � f obs
� �

, ð12:15Þ

where F has an f-distribution with numerator degrees of freedom k – 1

and denominator degrees of freedom N – k.
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Often it is easier to calculate sample values for SST and SSB through the

more computationally friendly expressions (which you are asked to verify in

Exercises 12.A.4 and 12.A.5):

SST ¼
Xk
j¼1

Xnj
i¼1

X2
ij �

Pk
j¼1

Pnj
i¼1

Xij

 !2

N
ð12:16Þ

and

SSB ¼
Xk
j¼1

Pnj
i¼1

Xij

� �2

nj

0
BBB@

1
CCCA�

Pk
j¼1

Pnj
i¼1

Xij

 !2

N
: ð12:17Þ

The value of SSE can then be calculated from (12.11) to be SSE ¼ SST – SSB.

Example 12.2. Where are For-Profit Hospitals? Hospitals can be categorized

as either nonprofit, for-profit, or government (all levels). All three categories

are represented in each of the fifty states—but are the relative proportions the

same across the country? Table 12.5 contains data on the proportion of a

state’s hospitals that are for-profit for a subset of states from each of four

regions of the country.

We are interested in using this subset of data to assess whether there are

any overall differences in median proportions of for-profit hospitals across

these four regions of the United States. Letting τMW , τNE, τS, τW denote the

median state percentage of for-profit hospitals in the Midwest, Northeast,

South, and West, respectively, we are interested in testing the null hypothesis

H0 : τMW ¼ τNE ¼ τS ¼ τW½ � against the general alternative

H1 : τMW ; τNE; τS; τW not all equal½ �.
Here we have k ¼ 4, nMW ¼ nNE ¼ nS ¼ nW ¼ 5, and N ¼ 20. We use the

more computationally friendly expressions in (12.16) and (12.17) to compute

12.2 One-way General Alternatives ANOVA for More Than Two Normal Populations 919



SST, SSB, and SSE. First, we obtain the sum of all 20 observations and the sum

of the squares of all 20 observations, as follows:

X4
j¼1

X5
i¼1

Xij ¼ 11þ 13þ 1þ 13þ 8þ 14þ 3þ 4þ 14þ 0þ 39þ 50þ 30½

þ39þ 39þ 9þ 21þ 12þ 39þ 34�
¼ 393

and

X4
j¼1

X5
i¼1

X2
ij ¼ 11ð Þ2 þ 13ð Þ2 þ 1ð Þ2 þ � � � þ 12ð Þ2 þ 39ð Þ2 þ 34ð Þ2

h i

¼ 524þ 417þ 7963þ 3343 ¼ 12, 247:

Table 12.5 Proportion of for-profit hospitals for a subset
of states in four regions of the country

State
Proportion for-profit
hospitals (%)

Midwest Illinois 11
Kansas 13
Minnesota 1
Ohio 13
South Dakota 8

Northeast Delaware 14
Maine 3
Maryland 4
Massachusetts 14
New York 0

South Alabama 39
Florida 50
Louisiana 30
South Carolina 39
Texas 39

West Alaska 9
California 21
Idaho 12
New Mexico 39
Utah 34

Source: American Hospital Association (2012)
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Next, we need to calculate the sum of the observations separately within each

of the four regions. Thus, we have:

X5
i¼1

XiMW ¼ 11þ 13þ 1þ 13þ 8 ¼ 46,

X5
i¼1

XiNE ¼ 14þ 3þ 4þ 14þ 0 ¼ 35,

X5
i¼1

XiS ¼ 39þ 50þ 30þ 39þ 39 ¼ 197,

and

X5
i¼1

XiW ¼ 9þ 21þ 12þ 39þ 34 ¼ 115:

From (12.16) we obtain

SST ¼ 12, 247� 393ð Þ2
20

¼ 12, 247� 7722:45 ¼ 4524:55

and from (12.17)

SSB ¼ 46ð Þ2
5

þ 35ð Þ2
5

þ 197ð Þ2
5

þ 115ð Þ2
5

" #
� 393ð Þ2

20
¼ 11, 075� 7722:45

¼ 3352:55:

It follows from (12.11) that

SSE ¼ SST� SSB ¼ 4524:55� 3352:55 ¼ 1172:

The observed value of the test statistic F(12.14) is then given by

f obs ¼
3352:55= 4� 1ð Þ
1172= 20� 4ð Þ ¼ 1117:52

73:25
¼ 15:256:

12.2 One-way General Alternatives ANOVA for More Than Two Normal Populations 921



The associated P-value for our test is then P0 F�15:256ð Þ, where F has

an F-distribution with numerator degrees of freedom k – 1 ¼ 4 – 1 ¼ 3

and denominator degrees of freedom N – k ¼ 20 – 4 ¼ 16. Using the

R function pf ð Þ we find that the P-value ¼ P0 F�15:256ð Þ ¼ 0.00059.

> pf(q = 15.256, df1 = 3, df2 = 16, lower.tail = FALSE)
[1] 5.936274e-05

Thus, there is very strong evidence in support of the alternative hypothesis

H1 : τMW ; τNE; τS; τW not all equal½ �.
While it is important to understand the details involved in calculating

f obs, as the number of these groups and/or their sizes grow increasingly

large these calculations can become quite tedious. Fortunately, the

R function oneway:testð Þ can be used to calculate f obs and P0 F� f obs
� �

for a

particular dataset. We demonstrate its use (and verify the P-value above)

with the R dataset proportion_for_profit_hospitals. Note that we also specify

that the groups come from populations with equal variances using the var.

equal argument. Although the oneway:testð Þ function can handle situations

when the variances are unequal, such a setting is beyond the scope of this

text.

> oneway.test(formula = Proportion ~ Region,
data = proportion_for_profit_hospitals,
var.equal = TRUE)

One-way analysis of means

data:  Proportion and Region
F = 15.256, num df = 3, denom df = 16, p-value = 5.936e-05

A discussion of multiple comparison procedures designed to assess which

means τ1, . . . , τk are not equal when the F-test leads to rejection of H0 are

discussed in Chapter 6 of Hollander et al. (2014).
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Section 12.2 Practice Exercises

12.2.1. Where Do Mayflies Call Home? The absence of the common mayfly

species Stenacron interpunctatum is sometimes used as an indicator of pollu-

tion conditions in a stream. One of the factors of interest in this regard is the

age distribution of mayflies in different areas of a stream. In particular, do the

mayflies migrate to different parts of the stream as they grow in size? Lamp

(1976) studied the age distribution of Stenacron interpunctatum among four

different habitats in Big Darby Creek, Ohio. One of the measurements he

obtained was head width (in micrometer divisions, 1 division ¼ .0345 mm). A

subset of the data from his study is presented in Table 12.6.

Use the F-test to assess whether there are differences in median mayfly

head widths among the four habitats in Big Darby Creek.

12.2.2. Can Fish Be TOO Big? To determine the number of game fish to stock

in a given system and to set appropriate catch limits, it is important for fishery

managers to be able to assess potential growth and survival of game fish in

that system. Such growth and survival rates are closely related to the avail-

ability of appropriately sized prey. Young-of-year (YOY) gizzard shad

(Dorosoma cepedianum) are the primary food source for game fish in many

Ohio environments. However, because of their fast growth rate, YOY gizzard

shad can quickly become too large for predators to swallow. Thus to be able to

predict predator growth rates in such settings, it is useful to know both the

density and the size structure of the resident YOY shad populations. With this

in mind, Johnson (1984) sampled the YOY gizzard shad populations at four

different sites in Kokosing Lake (Ohio) in summer 1984. The data in Table 12.7

are lengths (mm) for a subset of the YOY gizzard shad sampled by Johnson.

Use the F-test to assess whether there are any differences in median

lengths for the YOY gizzard shad populations in these four Kokosing Lake

sites.
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12.2.3. Meniscal Repair Techniques and Displacement. In Example 12.1, we

considered the differing effects of three meniscal repair options (FasT-Fix

Sutures, Biodegradable Meniscus Arrows, and Vertical Mattress Sutures) on

the load bearing ability of the repaired meniscus. Another issue of concern

Table 12.6 Head widths (in micrometer divisions, 1 division ¼ .0345 mm)
of stenacron interpunctatum nymphs in four habitats of Big Darby
Creek, Ohio

Habitats

A B C D

36 36 20 21 27 27 21
31 20 41 29 28 38 18
30 19 21 24 26 21 24
27 28 19 27 19 20 27
20 23 18 26 29 22
33 28 46 18 26 30
27 31 28 27 44 22
18 25 22 27 23 18
19 26 21 20 20 27
28 29 30 46 24 30
32 19 19 20 22 21
22 20 38 31 24
44 22 27 28 34
37 24 28 20 28
34 20 28 28 31
37 19 18 28 22
28 28 30 34 31
44 24 19 25 31
26 18 23 19 18
73 19 49 30 22
34 22 27 18 35
21 19 32 36 22
42 18 28 30
54 27 27 23
50 29 21 24
25 25 34 23
45 24 34 36

Source: Lamp (1976)
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following such surgery is the degree of displacement of the repaired meniscus

outside the joint. In the study by Borden et al. (2003) discussed in Example

12.1, they also measured the amount of displacement (mm) for the repaired

meniscus under loadbearing. Table 12.8 contains the displacement amounts

(mm) at time of failure for each of the eighteen surgically repaired cadaveric

knees in the study.

Table 12.7 Length (in mm) of YOY gizzard shad
from Kokosing Lake, Ohio

Sites

I II III IV

46 42 38 31
28 60 33 30
46 32 26 27
37 42 25 29
32 45 28 30
41 58 28 25
42 27 26 25
45 51 27 24
38 42 27 27
44 52 27 30

Source: Johnson (1984)

Table 12.8 Displacement (mm) at time of failure for
meniscal repairs

FasT-Fix Meniscus arrows Vertical mattress

18.0 7.9 16.9
18.5 12.5 20.2
9.2 15.5 20.1

18.8 10.2 15.7
22.8 8.9 13.9
17.5 13.3 14.9

Source: Borden et al. (2003)
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Find the P-value for an F-test of the conjecture that the median displace-

ment at time of failure is different for these three meniscal repair techniques.

12.3 One-way Rank-Based Ordered Alternatives ANOVA
for More Than Two Populations

In many practical settings, the ‘treatments” are such that the most appro-

priate alternative to the null (H0) hypothesis of no “treatment” effects

corresponds to increasing “treatment” effects for a natural labeling of the

treatments. We emphasize that this natural ordering of the treatment labels

must be anticipated a priori and cannot depend in any way on the observed

sample data. Examples of such settings include “treatments” associated with

severity of disease, drug dosage levels, intensity of a stimulus, and tempera-

ture. The proper alternative to H0 for these situations is given by H2 (12.3),

corresponding to a monotonically non-decreasing “treatment” effect across

the populations. Such alternatives represent a natural “one-sided” alternative

to H0. (Note that a monotonically non-increasing “treatment” effect alterna-

tive can be addressed as well by simply reversing the order of the treatment

labels.)

Neither the Kruskal Wallis test procedure in (12.6) nor the F test in (12.15)

utilizes this prior information regarding an anticipated ordered alternative,

since values of both the Q (12.5) statistic and the F (12.14) statistic remain the

same for any permutation of the treatment labels. Thus we must design a

statistic that incorporates this anticipated a priori ordering into its evaluation

of the sample data. A natural way to do this is to base our overall test statistic

on individual pairwise two-sample statistics designed to detect one-sided

alternatives, as discussed previously in Sect. 9.2.

For every pair of treatments u and v, with 1� u< v� k, define the statistic

Uuv by
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Uuv ¼
Xnu
s¼1

Xnv
t¼1

ϕ Xsu;Xtvð Þ, 1 � u < v � k, ð12:18Þ

where ϕ a; bð Þ ¼ 1, 1=2, 0 if a <, ¼, > b. Thus Uuv is the number of sample

u before sample v precedences plus ½ of the tied observations across the two

samples. It follows that Uuv will be large if the sample v observations tend to

be larger than the sample u observations. Notice that Uuv is just the statistic

U (9.20) that we used in Chap. 9 to test for equality of medians for two

populations. Here, however, we have sample data from k > 2 populations

and there are n
2

� � ¼ n n� 1ð Þ
2

pairwise Uuv statistics. Thus, we need to combine

the pairwise sample information contained in the Uuv into a single test

statistic. The natural way to accomplish this is to simply add them to obtain

the Jonckheere-Terpstra statistic

J ¼
Xv�1

u¼1

Xk
v¼2

Uuv: ð12:19Þ

Clearly large values of Jwill be associated with a generally increasing trend in

sample values across the k treatments and provide evidence for rejecting the

null hypothesis H0 in favor of the ordered alternatives

H2 : τ1 � τ2 � � � � � τk; with at least one strict inequality½ �.

One-Way Rank-Based Ordered Alternatives ANOVA for More Than

Two Populations To test the null hypothesis H0 : τ1 ¼ τ2 ¼ � � � ¼ τk½ �
against the ordered alternativesH2 : τ1 � τ2 � � � � � τk;½ with at least one

strict inequality � using the k mutually independent random samples

X11; . . . ;Xn11f g, X12; . . . ;Xn22f g, . . . , X1k; . . . ;Xnkk
� �

from populations

1, 2, . . ., k, compute the Jonckheere-Terpstra statistic J (12.19) and let jobs

be the attained value of J. Then the P-value for a test of H0 (12.1) against

the ordered alternatives H2 (12.3) is given by
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P�value ¼ P0 J � jobs
� �

, ð12:20Þ

where P0 J � jobs
� �

is obtained from the sampling distribution of J when

H0 is true.

Example 12.3. Fasting Metabolic Rate of White-Tailed Deer. Seasonal

energy demands for deer and the nutritional quality of the range must be

taken into account to prevent starvation of the animals during critical seasons.

Silver et al. (1969) studied the fasting metabolic rate (FMR) of white-tailed

deer. One of the questions of concern to the investigators was whether or not

FMR is an increasing function of environmental temperature, for which they

collected the data in Table 12.9.

For this setting, we are interested in testing the null hypothesis H0 of no

“treatment” effects against the ordered alternatives H2 in (12.3) with k ¼
4, corresponding to

H2 : τ1 � τ2 � τ3 � τ4; with at least one strict inequality½ �:

Table 12.9 Fasting metabolic rate (FMR) for white-
tailed deer (kcal/kg/day)

Two-month period

January–
February

March–
April

May–
June

July–
August

36.0 39.9 44.6 53.8
33.6 29.1 54.4 53.9
26.9 43.4 48.2 62.5
35.8 55.7 46.6
30.1 50.0
31.2
35.3

Source: Silver et al. (1969)
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Here we have n1 ¼ 7, n2 ¼ 3, n3 ¼ 5, and n4 ¼ 4. To compute the test statistic J

(12.19), we first must compute the 4
2

� � ¼ 4 3ð Þ
2

¼ 6Uuv (12.18) statistics, for 1 �
u < v � 4 . Using the data in Table 12.9, we see that

U12 ¼ 7 + 1 + 7 ¼ 15 U13 ¼ 7 + 7 + 7 + 7 + 7 ¼ 35
U14 ¼ 7 + 7 + 7 + 7 ¼ 28 U23 ¼ 3 + 3 + 3 + 3 + 3 ¼ 15
U24 ¼ 3 + 3 + 3 + 3 ¼ 12 U34 ¼ 3 + 3 + 5 + 1 ¼ 12 .

From (12.19), it follows that jobs ¼ 15 + 35 + 28 + 15 + 12 + 12 ¼ 117. Using

the R function pJCKð Þ with the dataset fmr_white_tailed_deer we verify

this and find that the P-value for our test of H0 against the ordered

alternatives H2 : τ1 � τ2 � τ3 � τ4; with at least one strict inequality½ � is P0

J � jobs
� � ¼ P0 J � 117ð Þ ¼ 0.000023. Thus, there is strong evidence that the

FMR for white-tailed deer is, indeed, an increasing function of environmental

temperature.

> pJCK(fmr_white_tailed_deer)
Group sizes: 7 3 5 4 
Jonckheere-Terpstra J Statistic: 117
Exact upper-tail probability: 2.29768225124262e-05

Note that the R dataset fmr_white_tailed_deer is a list as discussed earlier,

which allows for unequal sample sizes between groups. Here, the exact

distribution of J is computed because the R function pJCKð Þ recognizes that
the sample sizes are small enough to make such computations practical. If we

had chosen a larger dataset (or explicitly specified “Monte Carlo” using the

method argument), the Monte Carlo approximation would have been used,

similar to Example 12.1.

For information on one-sided multiple comparison procedures associated

with rejection of H0 by the Jonckheere-Terpstra test, see, for example,

Chapter 6 of Hollander et al. (2014).
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Section 12.3 Practice Exercises

12.3.1. How Important is Color Purity in the Price of Diamonds? In the February

18, 2000 edition of Singapore’s Business Times, an advertisement (discussed in

Chu, 2001) listed data, including purity of color and value in Singapore

dollars, for 308 round diamond stones. A subset of these data is provided in

Table 12.10 for stones no larger than .75 carat in size. The top color purity is

coded as D, with decreasing level of purity down the alphabet from E through

I (the most impure).

Find the P-value for a test of the conjecture that the value (in Singapore

dollars) of diamond stones no larger than .75 carat is a non-decreasing

function of the color purity of the diamond.

12.3.2. Clearing Ultrasound Probes of Bacterial Infections. One of the major

sources for spreading nosocomial (hospital-acquired) infections from patient

to patient is through the use of ultrasound probes at tertiary care facilities and

it is essential that hospitals use effective ultrasound probe cleaning

procedures. Ali et al. (2015) presented data for comparing three different

probe cleaning procedures: (i) using sterilized paper towels; (ii) treatment

Table 12.10 Value (in Singapore dollars) for round
diamond stones of varying levels of purity and no
larger than .75 carat in size

Color purity

D E F G H I

1302 1327 1427 1202 1126 1098
1641 1510 1468 1260 1222 1126
3490 1555 1551 1410 1316 1299
3921 1738 1593 1447 1420 1572
6372 3501 1956 2532 1485 2892
7368 4138 3480

3635

Source: Chu (2001); Singapore Business Times (2000)
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with a 0.9% saline solution; and (iii) cleaning with a soap solution. The Colony

Forming Unit (CFU) of bacterial counts using a standard agar plate were

obtained from culture swabs for 75 probes conducted at the Radiology

Department of the Aga Khan University Hospital in Karachi, Pakistan.

Twenty-five of these probes were then wiped with sterilized paper towels,

twenty-five of them were treated with a 0.9% saline solution, and the final

twenty-five were cleaned with a soap solution. The CFU bacterial counts were

then obtained again for each of the 75 probes after treatment. The before and

after treatment CFU counts for the 75 probes are given in Table 12.11.

(a) Let τpaper towels, τsaline, and τsoap denote the median reduction in CFU

bacterial counts from using paper towels, saline, and soap,

respectively. Find the P-value for a test of the null hypothesis

H0 : τpaper towels ¼ τsaline ¼ τsoap
� 	

against the natural orderedalternatives

H2 : τpaper towels � τsaline � τsoap
�

with at least one strict inequality].

(b) Using the Kruskal-Wallis procedure from Sect. 1, find the P-value for a

test of the null hypothesis H0 : τpaper towels ¼ τsaline ¼ τsoap
� 	

against the

general alternatives H1 : τpaper towels; τsaline; and τsoap
�

not all equal �.
Compare this P-value with your results from part (a).

12.3.3. Effect of Heat Stress on Stocked Tiger Muskellunge. Survival of stocked

tiger muskellunge (Esox masquinongy) is sometimes unreliable in Ohio

reservoirs. Previous research had shown that one of the factors affecting

stocked muskellunge survival is stress-related mortality associated with the

stocking process itself, including temperature increases during the process.

Mather (1984) studied the glucose response of the fish to the stress of an

increase in temperature. A sample of 24 tiger muskellunge were transferred

from a 15 �C holding tank into a test tank (also held at 15 �C) and allowed

24 hours to recover. (This is the period of time that previous experimenters

had found to be necessary for the fish’s plasma glucose level to return to

normal after a dipnet stressor.) A random sample of eight fish was then
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Table 12.11 Number of colony forming units (CFU) of bac-
terial counts for ultrasound probes before and after treatment
with sterilized paper towels, treatment with a 0.9% saline
solution, or cleaning with a soap solution

Probe
number Number of colony forming units (CFU)

Before paper towel wipe After paper towel wipe

1 350 136
2 142 62
3 190 106
4 300 190
5 409 211
6 390 192
7 159 61
8 198 101
9 302 192
10 296 136
11 322 166
12 172 72
13 104 78
14 151 91
15 133 71
16 202 131
17 102 89
18 109 79
19 167 99
20 79 59
21 107 78
22 89 55
23 202 121
24 197 101
25 106 79

Before saline solution After saline solution

26 292 51
27 302 42
28 261 49
29 302 97
30 192 39
31 201 32

(continued)
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Table 12.11 (continued)

Probe
number Number of colony forming units (CFU)

32 192 62
33 289 67
34 290 81
35 233 89
36 209 41
37 289 53
38 301 89
39 189 39
40 161 39
41 231 61
42 142 29
43 190 58
44 203 81
45 297 52
46 219 51
47 161 21
48 232 41
49 171 36
50 193 71

Before cleaning with soap After cleaning with soap

51 213 11
52 296 13
53 312 9
54 268 7
55 202 5
56 312 4
57 257 8
58 361 2
59 301 6
60 331 6
61 296 3
62 326 2
63 396 6
64 307 2
65 256 1
66 303 3

(continued)
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removed from the tank, anesthetized, blood collected and plasma glucose

determined. These data serve as a baseline or control sample. Next, the

stressor (a 12 �C temperature increase) was applied to the test tank and

blood samples were collected (in the way previously described) for random

samples of eight additional fish at each of the time periods 1 and 4 hours after

Table 12.11 (continued)

Probe
number Number of colony forming units (CFU)

67 309 2
68 268 8
69 292 7
70 302 2
71 368 6
72 317 1
73 314 1
74 316 2
75 309 5

Source: Ali et al. (2015)

Table 12.12 Plasma glucose for tiger muskellunge
(mg%)

Hours after 12 �C temperature increase

0 (baseline) 1 4

61.08 95.45 205.96
86.21 169.19 82.55
90.15 216.16 116.60
72.91 141.92 107.23
83.74 116.16 103.83
76.35 172.22 96.60
91.63 126.26 112.77
56.65 177.78 140.85

Source: Mather (1984)
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the temperature increase. These 24 plasma glucose measurements (mg%) are

given in Table 12.12.

It was expected that the temperature increase of 12�C would have an

immediate effect of raising the mg% of plasma glucose for the fish and then

it would gradually return to normal over a 24 hour period of time after the

temperature increase. Find the P-value for a test of an appropriate hypothesis

test of the conjecture that the 12�C temperature increase led to an increase in

the plasma glucose for the fish within the first hour, but that this impact had

begun to decline already by the time four hours had passed.

12.3.4. Possums and Hollow-Bearing Trees Revisited. Consider the hollow-

bearing tree and number of bushtail possums data given in Table 12.4. Find

the P-value for a test of the conjecture that the median number of bushtail

possums living in a section of montane ash forest is a non-decreasing function

of the number of available hollow-bearing trees. Compare your result with

that obtained in Exercise 12.1.3.

Chapter 12 Comprehensive Exercises

12.A. Conceptual

12.A.1. Show that the average of the ranks 1, . . ., N is R:: ¼ 1þ2þ���þN
N ¼ Nþ1

2 .

12.A.2. Show that the Kruskal-Wallis statistic Q (12.5) can also be computed

from the equivalent expression

Q ¼ 12
N N þ 1ð Þ

Xk
j¼1

R2
j

nj

0
@

1
A� 3 N þ 1ð Þ:

12.A.3. Let SST, SSB, and SSE be as defined in (12.10), (12.12), and (12.13),

respectively. Verify the fundamental identity in (12.11) relating these variance

components.
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12.A.4. Verify the computational formula for SST given in (12.16).

12.A.5. Verify the computational formula for SSB given in (12.17).

12.B. Data Analysis/Computational

12.B.1. Meniscal Repair Techniques and Stiffness. In Example 12.1, we consid-

ered the differing effects of three meniscal repair options (FasT-Fix Sutures,

Biodegradable Meniscus Arrows, and Vertical Mattress Sutures) on the load

bearing ability of the repaired meniscus. Another issue of concern following

such surgery is the degree of stiffness in the repaired meniscus. In the study

by Borden et al. (2003) discussed in Example 12.1, they also measured the

degree of stiffness (Newtons(N)/mm) for the repaired meniscus under

loadbearing. Table 12.13 contains the stiffness measurements (N/mm) at

time of failure for each of the eighteen surgically repaired cadaveric knees in

the study.

Find the P-value for an appropriate test of the conjecture that the median

degree of stiffness at time of failure is different for these three meniscal repair

techniques.

12.B.2. Arts Participation Across the States—Are There Regional Differences in

Performing or Creating Artworks? The National Endowment for the Arts

Table 12.13 Stiffness (N/mm) at time of failure for
meniscal repairs

FasT-Fix Meniscus arrows Vertical mattress

8.0 4.7 8.3
8.3 6.1 7.2
7.6 5.0 6.3
6.4 5.8 7.3
8.2 6.6 8.7
7.7 8.4 8.7

Source: Borden et al. (2003)
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periodically collects survey information from residents about their participa-

tion in the arts. A portion of the statewide results from the 2015 survey is

presented in the publication Arts Profile #11 (August 2016). In particular, the

publication includes the percentage of each state’s residents who performed

or created artworks in 2015. A subset of these statewide art creation/perfor-

mance percentages is presented in Table 12.14, stratified by regions of the

United States.

Find the P-value for a hypothesis test of the conjecture that the median

percentage of state residents performing or creating artworks in 2015 differs

across these four graphical regions of the United States.

Table 12.14 Percentages of state residents who
performed or created artworks in 2015, stratified by
regions of the United States

State
Percentage performing
or creating artworks (%)

Midwest Indiana 53.5
Iowa 47.1
Kentucky 35.0
Nebraska 52.9
Wisconsin 53.4

Northeast Connecticut 56.7
Pennsylvania 48.3
Rhode Island 49.2
Vermont 64.0

South Arkansas 43.6
Georgia 34.2
Mississippi 38.5
Tennessee 42.9

West Arizona 41.0
Hawaii 34.8
Montana 59.9
Nevada 47.0
Washington 52.1

Source: National Endowment for the Arts (2016)
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12.B.3. Caloric Content in Hot Dogs—Beef, Meat, and Poultry. Researchers at

Consumer Reports analyzed the caloric content of beef, meat, and poultry hot

dogs. Table 12.15 contains their reported results for test samples of each type

of hot dog.

Find the P-value for a hypothesis test of the conjecture that the median

caloric content differs for the three types of hot dogs.

12.B.4. How Tall Are You and How High Do You Sing? Choral ensembles are

composed of four basic singing groups: basses, altos, tenors, and sopranos.

Are there general differences in heights for singers from these four groups?

Chambers et al. (1983) consider the self-reported heights of singers in the

Table 12.15 Calories for tested beef, meat, and
poultry hot dogs

Beef Meat Poultry

186 173 129
181 191 132
176 182 102
149 190 106
184 172 94
190 147 102
158 146 87
139 139 99
175 175 107
148 136 113
152 179 135
111 153 142
141 107 86
153 195 143
190 135 152
157 140 146
131 138 144
149
135
132

Source: Consumer Reports (1986)

938 12 Statistical Inference for More Than Two Populations



New York Choral Society in 1979. Table 12.16 contains the self-reported

heights (in inches) for 130 members of the 1979 choral ensemble.

(a) Find the P-value for a test of the conjecture that the median heights for

these four singing groups are not the same.

(b) Perhaps the result in part (a) is not surprising, since the soprano and

alto groups are comprised of female singers, while the tenor and bass

groups are comprised of male singers. Considering only the two male

groups (tenors and basses), find the P-value for an appropriate pro-

cedure from Chap. 9 to test the hypothesis that median heights are

different for tenor and bass singers. Do the same separate analysis for

female soprano and alto singers.

(c) Discuss the implication of your results from parts (a) and (b).

Table 12.16 Heights (inches) for members of the
1979 New York Choral Society

Sopranos Altos Tenors Basses

64 62 65 66 69 67 72 75 72
62 65 62 62 72 64 70 68 70
66 66 68 70 71 72 71 69
65 62 67 65 66 69 70
60 65 67 64 76 73 74
61 63 63 63 74 71 70
65 65 67 65 71 72 75
66 66 66 69 66 68 75
65 65 63 61 68 68 69
63 62 72 66 67 71 72
67 65 62 65 70 66 71
65 66 61 61 65 68 70
62 65 66 63 72 71 71
65 61 64 64 70 73 68
68 65 60 67 68 73 70
65 66 61 66 73 70 75
63 65 66 68 66 68 72
65 62 66 68 70 66

Source: Chambers et al. (1983)
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12.B.5. Cost of Accidents at Nuclear Power Plants. While nuclear reactors

provide an alternative mechanism for supplying global power that has mini-

mal direct effect on global warming and climate change, they do present other

risks associated with radiation contamination from accidents. Table 12.17

contains the costs (in millions of 2006 U. S. dollars) for a subset of the nuclear

accidents that occurred prior to 2010, broken down by the time periods:

(i) Prior to 1990, (ii) 1990 – 2000, and (iii) 2000 – 2010.

(a) Find the P-value for an appropriate hypothesis test of the conjecture

that the median cost of nuclear accidents (in constant 2006 U. S.

dollars) differs for the three time periods.

(b) You might have noticed that there were two extremely expensive

nuclear accidents prior to 1990. These outliers undoubtedly have a

disproportionate effect on the analysis in part (a). Repeat part

(a) without the two extreme values 2400 and 6700 for accidents

prior to 1990. Compare your findings with the results obtained in

part (a).

(c) Do a bit of exploring to learn about the specific nuclear accidents that

led to the two extreme cleanup costs prior to 1990. Has there been

another such extreme nuclear accident since 2010?

Table 12.17 Cost (in millions of 2006 U. S. dollars)
for a subset of nuclear accidents prior to 2010

Prior to 1990 1990–2000 2000–2010

267 62 30
78 254 3
32 384 41

2400 5 700
56 98

6700

Source: Wikipedia (2016)
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12.B.6. Sodium Content in Hot Dogs—Beef, Meat, and Poultry. Researchers at

Consumer Reports analyzed the sodium content (mg) of beef, meat, and poultry

hot dogs. Table 12.18 contains their reported results for test samples of each

type of hot dog.

Find the P-value for a hypothesis test of the conjecture that the median

sodium content differs for the three types of hot dogs. Compare your findings

with those from Exercise 12.B.3 for the caloric content of hot dogs.

12.B.7. Singer Heights Revisited. In Exercise 12.B.4 you were asked to com-

pare the median heights for the four singing groups: sopranos, altos, tenors,

and basses. It might also be of interest to incorporate information about the

Table 12.18 Sodium content (mg) for tested
beef, meat, and poultry hot dogs

Beef Meat Poultry

495 458 430
477 506 375
425 473 396
322 545 383
482 496 387
587 360 542
370 387 359
322 386 357
479 507 528
375 393 513
330 405 426
300 372 513
386 144 358
401 511 581
645 405 588
440 428 522
317 339 545
319
298
253

Source: Consumer Reports (1986)

Chapter 12 Comprehensive Exercises 941



pitch level for these four groups in our analysis. The lowest pitch is, of course,

from the basses, followed in increasing pitch level by the tenors, altos, and,

finally, the sopranos, with the highest pitch. Using the data from Table 12.16,

find the P-value for an appropriate test of the conjecture that median heights

in these four singing groups is an increasing function of the associated pitch

levels. Compare your findings with those obtained in part (a) of Exercise

12.B.4.

12.B.8. Bison, Burning, and Botany. Plant species diversity is an important

component of the health of native grassland prairie in the United States.

Collins et al. (1998) conducted long-term field experiments at the Konza

Prairie Long-Term Ecological Research site in northeastern Kansas to assess

the effects of fire and bison grazing on plant species diversity. In one set of

their experiments they recorded the total number of distinct species (grasses,

forbs (non-grass flowering plants), and woody species) for twelve plots under

each of four experimental conditions (total of 48 plots): control, burning only,

bison grazing only, and the combination of burning and bison grazing. These

species counts are given in Table 12.19.

(a) Find the P-value for an appropriate test of the null hypothesis that

there is no difference in median species diversity under these four

experimental conditions against the general alternative in (12.2).

(b) One possible conjecture might be that the species diversity would be

least under the burning only setting, followed in increasing order by

the control, burning and grazing, and, finally, bison grazing only.

Find the P-value for an appropriate hypothesis test of this conjectured

ordering. Compare your result with that found in part (a).

12.C. Activities

12.C.1. Candle Color and Burning Stamina. Purchase a package of ordinary

birthday candles containing at least six red, six white, and six blue candles.
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Light each of the six red, six white, and six blue candles one at a time and

record the length of time (in seconds) it takes for each of them to burn out.

Find the P-value for an appropriate test of the null hypothesis that there are no

differences in median burning time for the three colored candles against the

general alternative that there is some difference in the medians.

12.C.2. How Long Are the Commercials? Time the length of at least four

separate commercials for each of the following types of television shows:

(i) News Program

(ii) Drama Series

(iii) Comedy Series

(iv) College Football Game.

Table 12.19 Total number of species present in each
of the Konza Prairie experimental plots under the four
experimental conditions

Control
Burning
only

Bison
grazing only

Burning and
bison grazing

34 31 38 41
46 30 55 53
51 36 59 59
55 48 76 69
34 35 55 36
40 37 63 54
46 40 65 66
55 49 81 76
34 30 63 54
39 32 69 60
49 33 71 71
62 35 88 81
36 32 48 49
41 33 51 52
54 43 55 64
63 47 90 89

Source: Collins et al. (1998)
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Find the P-value for an appropriate test of the null hypothesis that there

are no differences in median commercial length across these four types of

television shows against the general alternative that there is some difference

in the medians.

12.C.3. How Much Is It Going to Cost? Pick a future, but arbitrary, Saturday

night and find the price to stay for that Saturday night in a standard room

with two double beds at a Hilton Garden Inn, Hyatt Place, Holiday Inn

Express, and Courtyard by Marriott for each of the following cities:

Chicago Dallas Denver Pittsburgh St:Louis:

Find the P-value for an appropriate hypothesis test of the null hypothesis that

there are no differences in median cost among these four hotel chains for a

roomwith two double beds on a Saturday night in these five cities against the

general alternative that there is some difference in the medians.

12.D. Internet Archives

12.D.1. Only Child, Only Younger Siblings, Only Older Siblings, or Both Youn-

ger and Older Siblings—Does It Matter? Use the Internet to locate a scientific

paper that discusses differences in behavior or achievements between an only

child, those with only younger brothers/sisters, those with only older

brothers/sisters, and those with both older and younger brothers/sisters

(i.e., middle children). Summarize the findings discussed in the paper, partic-

ularly how the authors used ANOVA to support their results.

12.D.2. More About Nonprofit Hospitals. In Exercise 12.1.2 we compared the

charity care (uncollectable debt) provided for those individuals who cannot

afford it by nonprofit hospitals in Colorado, Michigan, Ohio, and Virginia.

Use the Internet to locate similar information for nonprofit hospitals in
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California, Montana, Alabama, and Maine. Compare the information for

these four states with the results in Exercise 12.1.2.

12.D.3. Sense of Smell and Longevity. Scientific researchers have found evi-

dence to link one’s sense of smell with longevity of life; that is, the better you

smell (not how much you smell!), the more likely you are to live longer. Use

the Internet to locate one or more published research papers that address this

issue by comparing the longevity of individuals who have normal smelling

abilities with (i) individuals who have moderate smelling loss and

(ii) individuals who have more acute smelling loss. Discuss the findings in

those publications. Which of the statistical procedures discussed in this chap-

ter would be most appropriate for addressing the conjecture that loss of

smelling has a negative impact on longevity of life?
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Appendix A: Datasets Usage
Throughout IIS

agricultural_chargeoff_rates_by_quarter: Example 2.6;

airline_arrivals: Example 2.7;

american_league_salary_2014: Example 1.6; Page 56, Chapter 1; Exercise

1.3.7; Exercise 1.3.19; Exercise 4.7.13; Exercise 4.B.5;

arion_subfuscus: Example 9.3;

average_HDL_levels: Example 7.1;

beer_head: Exercise 5.B.17; Exercise 9.2.21;

body_temperature_and_heart_rate: Exercise 5.B.13; Exercise 5.B.14; Exercise

7.6.4; Exercise 7.6.5; Exercise 7.B.7; Exercise 7.B.12; Exercise 9.2.18;

Exercise 9.4.1;

chargeoff_rates: Example 2.5; Exercise 2.1.8;

college_rankings_2012: Exercise 2.B.2;

delinquency_rates: Exercise 2.B.1;

desimipramine: Example 8.2; Exercise 8.B.10;

diamonds_carats_color_cost: Exercise 7.B.1; Exercise 9.2.19;

emissions: Example 2.3; Exercise 2.1.7;

engineering_drawing_hours: Page 131, Chapter 1; Exercise 1.B.6;

female_amerindians: Example 7.6;
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fmr_white_tailed_deer: Example 12.3;

gender_roles: Example 10.2;

goggled_green_turtles: Example 9.9;

health_care_by_affiliation: Example 10.3;

homes_prices: Exercise 7.6.2;

house_lot_sizes: Exercise 7.B.8; Exercise 7.B.10; Exercise 9.2.17; Exercise

9.3.1; Exercise 9.4.2;

infant_walking: Example 9.10;

interstitial_lengths: Example 1.21;

kentucky_derby_2012: Exercise 2.1.9; Exercise 4.B.5;

meniscal_repairs_load_at_failure: Exercise 9.2.22; Example 12.1;

mother_smoking_age: Exercise 2.3.1;

mother_smoking_education: Example 2.9;

mother_smoking_education_1989_1993: Exercise 2.3.2;

mother_smoking_education_2010: Example 2.9;

motor_vehicle_death_rate_2012: Example 1.10; Example 1.17;

movie_facts: Exercise 5.B.12; Exercise 7.B.13; Exercise 7.B.14; Exercise

7.B.15; Exercise 9.2.20; Exercise 9.3..3; Exercise 9.3.5;

national_league_salary_2014: Example 1.20; Exercise 1.3.7; Exercise 1.3.19;

Exercise 4.7.13;

nba_2015_2016: Exercise 2.B.5;

osu_math_salaries_2015: Example 3.1; Exercise 4.B.5;

pennies_age: First paragraph, Section 7.6; Example 7.8;

percentage_hatched_eggs: Example 8.1; Exercise 8.B.1; Exercise 8.B.9;

pew_science_survey_by_age_group: Exercise 2.3.5;

pew_science_survey_data_by_party: Exercise 2.3.4;

pines_1997: Exercise 1.B.16; Example 2.2; Exercise 2.1.5; Example 3.4; Exer-

cise 3.1.10; Exercise 4.7.14; Exercise 4.B.1; Exercise 4.B.5; Exercise 6.C.9;

Page 870, Chapter 11; Example 11.4; Exercise 11.A.11;
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pmn_migration: Example 7.3;

population_estimates_2015: Exercise 2.B.3;

presidential_election_polls: Exercise 6.D.7;

proportion_for_profit_hospitals: Example 12.2;

q2_q4_agricultural_chargeoff_rates: Example 2.6;

reading_habits_2011: Example 3.5;

school_report_cards_2014: Example 3.2; Exercise 3.1.7;

sheep_weight: Example 11.2;

state_cdi: Exercise 2.3.3;

state_poverty_levels_2013: Exercise 1.1.11;

tiaa_cref: Exercise 2.1.1; Exercise 2.1.2; Exercise 4.B.5;

traffic_accidents: Example 1.2;

weekly_salaries: Example 2.1; Exercise 2.1.3; Exercise 2.1.4;

weight_of_Euros: Exercise 5.B.15; Exercise 7.B.4;
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Appendix B: R Functions Usage
Throughout IIS

aggregate( ): Example 3.5;

all( ): Example 4.12;

apply( ): Example 9.9;

as.numeric( ): Exercise 3.1.11;

barplot( ): Exercise 1.1.16; Exercise 1.1.27; Example 2.9; Example 3.5;

binconf( ): Page 652, Chapter 8; Example 8.3;

binom.test( ): Page 440, Chapter 6;

boxplot( ): Example 1.12;

chisq.test( ): Example 5.11;

choose( ): Example 5.8;

ConDis.matrix( ): Example 11.5;

confint( ): Exercise 11.A.11;

cor( ): Section 2.2.1; Example 2.8; Exercise 2.2.3;

cor.test( ): Example 11.2; Section 11.2, Practice Exercises; Example 11.5;

cumsum( ): Example 4.2;

dbinom( ): Example 4.10; Exercise 4.3.3; Exercise 4.3.9; Example 5.5; Exam-

ple 5.8;

dgeom( ): Page 272, Chapter 4;

pJCK( ): Example 12.3;
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dmultinom( ): Example 5.6; Page 353, Chapter 5;

FindTriples( ): Exercise 1.B.6; Exercise 1.B.12;

fisher.test( ): Page 803, Chapter 10; Example 10.3;

hist( ): Pages 18, 21, Chapter 1; Example 4.2; Example 5.12; Example 7.3;

legend( ): Example 2.6;

lm( ): Example 11.3; Example 11.4; Exercise 11.A.11;

mean( ): Example 9.9;

median( ): Example 8.1;

outer( ): Example 1.21; Example 9.3;

plot( ): Example 2.1; Example 2.2; Example 2.3; Section 2.1.2; Example 2.6;

Example 2.7; Example 2.9; Exercise 4.3.3;

pbinom( ): Exercise 4.3.9; Example 5.5; Figures 5.2, 5.3, and 5.4; Example

5.10; Exercise 5.A.1; Exercise 5.B.2; Exercise 5.B.3; Exercise 5.B.8; Exercise

5.B.9; Page 406, Chapter 5; Page 477, Chapter 6; Example 6.9; Page 497,

Chapter 6;

pchisq( ): Page 386, Chapter 5; Example 10.1; Example 10.2; Example 10.4;

pf( ): Example 12.2;

phyper( ): Page 803, Chapter 10; Example 10.3;

pKW( ): Example 12.1;

dmultinom( ): Exercise 5.B.8; Exercise 5.B.9;

pnorm( ): Example 4.21; Page 299, Chapter 4; Example 4.22; Example 4.23;

Example 4.25 (twice); Page 341, Chapter 5; Example 5.2; Example 5.3;

Exercise 5.B.2; Exercise 5.B.3; Example 9.2;

ppoints( ): Page 307, Chapter 4;

psignrank( ): Page 556, Chapter 7; Page 557, Chapter 7; Exercise 7.2.3;

Exercise 7.2.4; Example 8.1;

pt( ): Page 585, Chapter 7; Example 7.7; Example 11.1;

pwilcox( ): Example 5.7; Example 9.3; Page 693, Chapter 9; Example 9.4;

Example 9.5; Page 697, Chapter 9;
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qbinom( ): Exercise 6.A.17; Exercise 6.A.18; Exercise 6.A.20; Page 604,

Chapter 7;

qchisq( ): Page 386, Chapter 5;

qf( ): Exercise 6.A.19; Exercise 6.B.20; Exercise 6.B.22;

qnorm( ): Example 4.24;

qqline( ): Pages 308, 318, Chapter 4; Exercise 4.B.5;

qqnorm( ): Pages 307, 308, Chapter 4; Example 6.5;

qqplot( ): Exercise 4.B.5;

qsignrank( ): Page 560, Chapter 7; Example 7.3; Exercise 7.2.3; Exercise

7.2.4; Example 8.1;

qt( ): Pages 577, 578, Chapter 7; Example 7.6; Example 8.2;

quantile( ): Exercise 11.A.12;

qwilcox( ): Example 5.7; Page 358, Chapter 5; Example 9.4; Exercise 9.2.8;

Exercise 9.2.9;

rbinom( ): Exercise 4.1.1; Exercise 4.6.1; Exercise 5.4.7; Exercise 5.4.8;

read.csv( ): Exercise 2.D.3;

replicate( ): Example 5.12; Example 7.8; Exercise 7.6.2;

rmultinom( ): Example 5.11;

rnorm( ): Page 396, Chapter 5; Exercise 5.4.6; Exercise 7.3.4; Exercise 7.3.5;

Exercise 7.3.6; Exercise 7.3.7;

rt( ): Page 586, Chapter 7; Exercise 7.3.3;

runif( ): Example 3.3; Exercise 3.1.8; Example 4.2; Page 246, Chapter 4;

Exercise 5.4.1; Exercise 5.4.2; Exercise 5.4.3; Exercise 5.4.4; Exercise 5.4.5;

sample( ): Example 3.3; Exercise 3.1.9; Example 5.12; Exercise 5.4.9; Exercise

5.4.10; Exercise 5.B.14; Example 7.8; Exercise 7.6.2;

scatter.smooth( ): Section 2.1.2; Example 2.5;

sd( ): Example 1.10; Example 9.9;

SIGN.test( ): Example 7.1; Example 7.2; Page 544, Chapter 7;

sort( ): Example 1.21; Example 9.3;
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stem( ): Example 7.3;

sum( ): Example 4.2;

summary( ): Example 1.10; Page 68, Chapter 1; Example 4.2; Example 11.4;

table( ): Exercise 4.B.1;

t.test( ): Example 7.6; Example 7.7; Example 8.2; Example 9.10; Example

9.11;

walsh( ): Example 7.3; Example 8.1;

wilcox.test( ): Page 356, Chapter 5; Example 7.3; Page 562, Chapter 7;

Exercise 7.2.11; Exercise 7.2.12; Page 571, Chapter 7; Exercise 7.5.2; Exam-

ple 8.1; Example 9.4; Example 9.6;
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Bird diversity

Adayili and Nabogo Wetlands,
Ghana, 729

Bunglung Wetland, Ghana, 729
Kukobila and Wuntori Wetlands,

Ghana, 745
Tugu Wetland, Ghana, 728

Birthright Citizenship, 798
Bison and species diversity, 645, 662
Bivariate population, 840, 854, 855, 858–861,

885, 888–892, 895, 898, 899,
901–905

activities
coffee and bedtime, 902
heart rate and blood pressure, 901
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Bivariate population (cont.)
sodium and calories, canned

food, 901
birth and death rates, 845, 848, 849, 852
conceptual

computationally simpler expression,
885

arbitrary population, 889
normal population, 888

correlation/regression analyses, 839
data analysis/computational

Arctic Sea Ice melting, 898, 899
golf handicaps and stock ratings,

890, 891
Nine-Inning Walk Rate and Earned

Run Average, 895
strikeouts, 889, 890
voter turnout, presidential elections,

890, 892
graphical and numerical methods, 840
hypothesis tests, 842
internet archives

college basketball, 904
grip strength and fraility, 902
never-married americans, 904
passing Yardage and College Football

Victories, 902, 903
shortage of marriageable men, 905
social networking sites, 905

least squares, 862–864
rank-based correlation procedures

birth and death rates, 858
calories and sodium content (mg),

poultry hot dogs, 861
hypothesis tests, 854
presidential elections, 858, 860
psychological relationships, dizygous

twins, 858, 859
sheep weight, 855
snow geese roost departure time, 858

snow geese roost departure
times, 845, 846

spending, secondary education, 847, 850
swinging power, 842

Bootstrapping, 395, 616, 617
Boxplots, 70–74, 98, 99, 101, 113, 115, 116,

121, 122, 130
Buckeye State Poll survey, 440, 445
Business Times, 623

C
Carbon dioxide pressure levels, 592, 898
Cardiovascular disease, 813
Cardiovascular exercise, 215
Categorical data, 5, 6
Central limit theorem, 488, 672
Chelomia mydas, 715
Child and adolescent psychiatric

assessment (CAPA), 428
Cholinesterase inhibitor, 425, 426, 497
Chronic obstructive pulmonary disease

(COPD), 710
Chronological age, 902
Climate change research, 770
Clinical trials, 235
Colapres auratus, 826
Colony forming units (CFU), 552, 722–724,

931, 932
Columbus dispatch, 445
Concordant pair, 876
Conditional probability, 257, 258
Confidence intervals, 434, 443
Contingency table, 774
Coronary heart disease, 429

D
Data analysis, 2, 238–240
Data collections, 2, 7–13, 15–48, 50–56, 58

assessing symmetry, 79–83
full-time faculty members, 201
interpreting graphical displays, 2–48

categorical data, 7–12
histogram construction, 17–48
practice exercises, 22, 25–27, 29–43,

45–47
quantitative data, 13, 15–17

linear transformation effects, 78–95
mathematics faculty, 201, 202
mean and standard deviation, 77
measuring categorical distribution of

quantitative data, 75, 76
measuring position and relative

positions, 70–74
measuring the spread, 59–66, 68, 69
measuring visual center

mean of the observations, 50–52
median of the observations, 53–56
trimmed mean of observations,

56, 58
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one variable, 48–95
pine tree growth, 207–210
practice exercises, 114–119, 121, 123, 124
reading habits, 210, 211, 213
SAT scores, 201
staff salaries, 201, 202
summarizing quantitative data

collections, 70
teaching evaluations, 205–207
traits/characteristics, 201

Degree of incompatibility, 502
Degrees of freedom, 575, 714
Density curves, 577
Department of Education, National

Center for Education
Statistics, 847

Diastolic blood pressure (DBP), 429
Dilemma Zones and High Speed

Accidents, 647
Discordant pair, 876
Disease prevalence, 534
Dorosoma cepedianum, 923
Dotplot, 15, 16, 35, 36, 39
Dual-career couples, 492, 528
Duck Creek Wildlife Management Area

in Missouri, 637, 659, 662
Dump nesting, 637

E
Earthworms, 726, 727
Ecological environment, 689
Ecological study, 419
Emergency departments, 683
Emotional contagion, 227–229
Engineering drawing hours, 597
Environmental protection agency, 727
Equity index account, 163
E-reader usage, 213, 214
Esox masquinongy, 931
Euthanasia, 509
Exercise and pulse rate, 215
Exploratory data analysis tools, 600

F
Facebook posts, 199, 227–229
FasT-Fix Meniscal Repair Suture System

(FasT-Fix), 707, 911
Fasting metabolic rate (FMR), 928
Federal government, 769

Female Ohio Hopewell Amerindian
stature data, 595

Fenceposts, 70, 72, 73, 75, 76, 93
Fisher’s exact test, 802
Fixed fenceposts, 70, 76, 100, 102, 103,

116, 126
Fracking, 631

G
Galleria mellonella, 752
Gallup Poll–presidential approval ratings,

221, 222
Gallup’s sampling methods, 836
Geomagnetic flux, 758
Geometric distribution, 272–279
Geometric random variable, 286
Global Land-Ocean Temperature Index, 898
Global Natural Resources and Social

Choice Equity accounts, 163
Global warming, 631, 898
Goddard Institute of Space Studies

(GISTEMP), 898
Goggled green turtle hatchlings, 747
Golf Handicaps, 215
Goodness of fit testing problem, 809
Graphical techniques, 590

H
Harlequin goggles, 716, 718
Heart rate, 240
High-density lipoprotein (HDL), 543,

544, 547
Histogram, 17–48
Hollow-Bearing Trees, 915
Home Computer, 762
Hopewell Amerindian heights, 581
Horizontal FasT-Fix Meniscal Suture

System (HFasT-Fix), 731
Humanities research, 770
Hypergeometric distribution, 803
Hypothesis testing, 467, 563, 565, 583, 616

components, 472, 489
confidence intervals, 476, 501
critical region, 480
error probabilities, 476
medication, 482
null hypothesis, 467, 469
political polls, 533
PRC, 522
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Hypothesis testing (cont.)
P-values, 482
SHRM, 520
significance level approach, 487, 489
social issues, 533
statistical methodology, 466
test statistic, 470
type I error, 481
type II error, 481
upper-tailed hypothesis test, 472

I
Immigration, 798
Income inequality, 630
Independence attributes

chi-square statistic, 791
gender role portrayals, magazines, 792
mental health and substance abuse

disorders, 787
natural estimator, 790
population probabilities, 789
role portrayals, magazines, 793, 795
self-esteem and problem drinking, 787
sick parents, 796

Inferences, 418, 600
Information-oriented society, 1
Insect growth regulators (IGRs), 726
Internet, 200
Interquartile range, 61
Interval estimation

blood pressure study, 458
candy-consumer survey data, 465
confidence intervals, 434, 437, 445, 450,

453, 457, 463
distribution conditions, 438
estimator, 434, 441
parameters, 437, 440
population parameter, 435, 446, 457
probability intervals, 434, 439
sample size, 436, 453
shoe preference data for women, 464
software package, 459
standard normal distribution, 442, 458

Intimate partner abuse
age factor, 685
extrapolation, 686
identification and treatment, 683
physical/sexual abuse, 683
survey respondents versus

non-respondents, 686

Intuition, 245, 246, 249, 250
Iran Nuclear Agreement, 798, 799

J
Jonckheere-Terpstra test, 927, 929

K
Kendall correlation coefficient, 875–877, 887
Kentucky Derby Race Statistics

(1990–2012), 168
Kenyon Center for Environmental Study

(KCES), 860, 871
Keratella cochlearis, 573, 602
Konza Prairie Long-Term Ecological

Research site, 942
Kruskal Wallis test procedure, 910,

912, 926

L
Law of large numbers, 251–253
l-deprenyl, 424, 425, 496
Lead-poisoned geese, 572
Least squares methodology, 840, 861
Lee-Paffenbarger sample, 465
Left visual field (LVF), 664
Limited vs. Unlimited Health Care, 804
Linear regression inference methods, 840

asbio package, 879
confidence intervals, 869
hypothesis tests, 869
independent (predictor) variable, 867, 868
least squares approach, 870
median weekly earnings, men, 881
median weekly earnings, women, 883, 885
snow geese roost departure times, 881,

882
state residents, 875
tree height and needle length, 871

Logical probabilities, 244
Low speed approaches dilemma zones, 663
Lufenuron, 727
Lung cancer, 710

M
M & M Colors, 240
Magnesium tap water levels, 754
Matched pairs design, 633, 667
Mathematics faculty, 201, 202
Mean, 50
Mean reaction times (msec), 658, 659
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Mean square error (MSE), 918
Mechanical pencil leads, 230–232
Median, 53–56, 59, 61–63, 69, 72–74, 76,

79–89, 91, 92, 94, 106, 109, 123,
125, 138

Median PMN migration rate, 609
Medical Research, 770
Medication, 418
Meniscal repair techniques, 911
Meniscus arrows (MA), 707, 911
Minimal assumption, 539, 613
Minnesota Pollution Control Agency

(MPCA), 427
Monotonic regression procedures, 876, 887
Monte Carlo approximation, 929
Mountain Bushtail Possum, 915
Movie and video guide, 627, 628
Multinomial distribution

Bernoulli (binomial) sample data, 808
chi-square distribution, 811
fair dice, 814
M&M Plain color distribution, 810–813
plausibility, 809
random number generation, 815–817

Multiplication rule, 258–266
Musical instruments, 677–679

N
National Association for Stock Car

Auto Racing (NASCAR), 892–894,
896, 897

National League vs. American League
Salaries, 721

National Socialist Teachers League (NSLB),
800, 801

National Sporting Goods Association, 502
Nationalsozialistische Deutsche Arbeiter

Partei (NSDAP), 800
Nazi Party, 800
Newborn infant

active-exercise group, 737, 740
age (in months), 737
data.frame infant_walking, 738
encouragement and stimulation, 737
hypothesis tests, 739

Nielsen Media Research, 226
Nonprofit organizations, 769, 914, 915
Non-retired adults, 828
Normal distributions, 574, 604

bell curves, 295
density curves, 297
measurements, 306–314
probability calculations, 298–306
visual center, 296

North American Intercollegiate Athletic
Association’s guidelines, 782

Nuclear power plants, 940
Null hypothesis, 467, 469, 490, 572, 613, 617

O
Ohio Department of Transportation, 647
Ohio Hopewell Amerindian stature data,

581, 582, 584, 596
Ohio State University College of Social and

Behavioral Sciences, 438
Ohio Valley, 580
One Variable Data Collections, 48–95
One-way Analysis of Variance (ANOVA),

936–938, 941–943
activities

candle color and burning stamina, 942
television shows types, 943

color purity, 930
conceptual, 935–936
data analysis/computational

arts participation, 936
beef, meat and poultry hot

dogs, 938, 941
meniscal repair techniques and

stiffness, 936
singer heights revisited, 941
state residents, 937

for-profit hospitals, 919, 920
independent random sample

data, 908, 909
internet archives, 944, 945
joint ranking, 909
k-sample test, 916
meniscal repair techniques, 911, 912,

924, 925
Monte Carlo sample, 913
MSE, 918
multiple comparison procedures, 913
null hypothesis, 908
possums and hollow-bearing trees

revisited, 935
repair mechanisms, 912
SSB, 917

Index 971



One-way Analysis of Variance (ANOVA)
(cont.)

statistical inference procedures, 907
test statistic, 918
treatment j effect, 908
variability measurement, 916

Online dating services, 524
Onthophagus lecontei, 720
Opinion poll, 223
O-rings, 872, 873
Ostler-Harper data, 443

P
Paclitaxel, 726, 744
Paired replicates data, 633, 667

binconf( ), 652
confidence interval, 659
data collection, 655
dilemma zones, 647
environmental conditions, 638
exercise and pulse rate, 667
experimental design, 655
hatched values, 637, 657
hypothesis, 654
internet archives, 667–668
LVF and RVF, 664, 665
matched pairs, 633
natural null hypothesis, 644
non-parallel lines, 665
normal distribution, 636
normal nest and dump nest, 658
null hypothesis, 640, 645
one-sample setting, 636
psignrank( )., 641
psychotherapy treatment, 644
P-value, 662, 663
qualitative difference-data, 649
random variables, 656
sign statistic, 651
striped or plain patterns, 660
t.test(.), 644
t-procedures, 636, 637
visual patterns, 650
Walsh average, 639
wilcox.test( ), 641
wood duck nesting data, 658

Parallel boxplots, 101
Pearson correlation coefficient, 169–171,

179, 841, 844

Percentiles, 70–74
Percutaneous transluminal coronary

angioplasty (PTCA), 725, 744
Personal computer, 762
Pew Research Center, 836
Phenoloxidase, 752
Physical/sexual abuse, 684
Physostigmine salicylate, 495
Pine tree growth, 207–210, 217
Placebo effect, 233, 234
Plasmodia, 752
Point estimator, 422
Polymorphonuclear leukocytes (PMN), 560,

561, 566, 608
Population distribution

binomial distribution, 549
bootstrapping, 538
CFU bacterial counts, 552, 553, 591
conceptual, 621–623
confidence bounds, 555, 570, 606, 609
confidence interval procedure, 540, 541,

550, 555, 560, 582, 606
continuous measurement, 554
data collection, 590
density curves, 576
graphical displays, 581
graphical techniques, 589
HDL level, 543, 544, 607
hypothesized median, 565
interval estimation, 542
mean interstitial lengths, 571
non-normalities, 593
normal distribution, 607
normal probability plot, 603
null hypothesis value, 597
parameters, 546
PMN, 561
population median, 539
probability expressions, 543
quantitative variable, 538
random variable, 548
relative values, 555
sample observations, 555
screening process, 594
sign test procedures, 547
single variable, 537
standard deviation, 579, 611
statistical analyses, 554
statistical methodology, 538, 539
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symmetry assumption, 569, 599
t-distributions, 575, 576, 599
testing purposes, 545
upper confidence bound, 580
vertical cliffs, 552
Walsh averages, 556

Powdered sodium formaldehyde
sulfoxylate (SFS), 746, 763

prehistoric populations, 580
Presidential Election Voter Opinion

Polls, 534
Probability distribution

conceptual, 315, 316
data analysis/computational,

317–327
expected values, 285–291
random variables, 285–291
simulation, 279–284

Probability models, 253, 255–279
graphical summaries, 246–248
intuition, 245, 246
law of large numbers, 249
logical probabilities, 244
random number generator, 245, 246
relative frequency, 244
rules

addition, 255, 256
binomial distribution, 268–271
conditional probability, 257, 258
multiplication rule, 258–266
random variables, 266–279
rolling dice, 255
tossing coins, 253
tree diagrams, 253

Procyanidin B-2 (PB-2), 764
Prophenoloxidase, 752, 753, 757
Propofol, 591, 592, 602
Pseudomonas aeruginosa, 757
psignrank( ), 557, 568, 639
Psychological experimentation, 200
Psychometrician, 424
Public Opinion Poll, 533
Pure-tone average (PTA), 823
P-value approach, 485, 487, 492, 495, 610

Q
Qualitative difference, 649–654
Quantitative data collections, 6, 98, 99, 101,

103–109, 111, 112
Quantitative variables, 6, 143–169

R
R function barplot( ), 184
R function binom.test( ), 440
R function cor( ), 178
R function pbinom( ), 477, 497, 499
R function plot( ), 162
R function psignrank(.), 557
R function qbinom( ), 513–515
R function qnorm( ), 444
R function rnorm( ), 587, 588
R function rt( ), 586
R function SIGN.test( ), 548, 594
R function t.test( ), 585
R function walsh( ), 639
R function wilcox.test( ), 562, 612
Random numbers, 251
Random variables, 266–279, 285–291

Bernoulli trials, 292
binomial random variable, 293
instructional method, 291
mathematical approach, 293–295

RapidLoc Device (RLD), 731
Reading habits, 210, 211, 213, 217, 218
Regression analyses, 867
Regression line, 868
Relative frequency, 244
Rfit package, 561
Rheumatoid arthritis patients, 652
Right triple, 80
Right visual field (RVF), 658
Rumex obtusifolius, 760

S
Salt on ice effect, 240
Sample average, 333–346
Sample survey design, 455
Sampling distribution, 432, 437

activities, 413, 414
approximation, 366–379
average comparison, 339–346
conceptual, 397–400
data analysis/computational, 400–413
internet archives, 414, 415
patterns, 332
proportions and counts, 346–366
ranks and counts, 354–366
sample average, 333–346
simulation, 380–383, 385–391, 393–397
statements, 332
statistics, 331
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Scatterplots, 143, 144, 147–169, 171, 173,
175, 176, 178, 181, 182, 188, 194,
195, 197

School report cards, 216
SIGN.test( ) function, 545
Signed rank procedures, 564, 593
Silvilagus cunicularius, 720
Single random sample, 432
Soccer competition, 338
Society for Human Resource Management

(SHRM), 520
Sonograph, 826
Space Shuttle Challenger, 872
Spearman rank correlation coefficient, 178,

179, 851
Spring 1997 CommerceNet/Nielsen

Internet Demographic Study
(IDS), 762

Staff salaries, 201, 202
Standard deviation, 65
Standard normal distribution, 442
Standardized scores, 70–74
Statewide reading percentages, 914
Statewise average family income, 668
Statistical inference procedures, 604,

671–673, 675, 676, 679–682, 684,
685, 687–689, 693–697, 699–721,
725, 731, 732, 734–736, 741–743,
746–748

means
angioplasty balloons, 725, 743
approximate interval estimation, 710
arbitrary continuous distributions,

708
goggled green turtle hatchlings, 715,

716, 718
house lot sizes, 718, 742
human body temperature, 741
hypothesis tests, 712
moderate sample sizes, 714, 715
movie cast sizes and ratings, 719,

721, 743
noun repetition pattern, 747
point and interval estimation,

735, 736
removing spots and stains, 746
sample sizes m and n, 741
smoking habits, 710–714
two-minute crawl period, 717

two-sample central limit theorem, 708,
709, 716

unbiased estimators, 734
medians

beer consumers, 706
herbivores, 689
histogram UΔ, 693
house_lot_sizes dataset, 704
hypothesis tests, 697
independent random samples, 701–703
indicator function I(�), 688
interval estimation, 694, 695
joint rank, 700
large sample approximations, 699
measurements, 688
Meniscal repair—FasT-Fix Sutures/

Arrows, 707
Meniscal repair—FasT-Fix Sutures/

Vertical Mattress Sutures, 708
movie lengths and ratings, 706
rank sum statistic, 699, 700
statistic U, 696
toxicity, 689

proportions
art and color purple, 682
confidence interval, 679, 680
hypothesis tests, 675
interval estimation, 673
parameters, 671
pooled estimate, 676
P-value, 681
underwear design and appearance,

684, 685
variances, 672

STEM Research, 771
Stemplot, 16, 35, 36, 39, 43
Stenacron interpunctatum, 923, 924
Stocked tiger muskellunge, 931, 934
Stratified sampling, 224
Stress, 429, 653
Student report cards, 201, 204, 205
Subjective probabilities, 244
Surveys/polls, 769

community group, 225
homework and family stress, 218–220
local phone directory, 225
steering committee, 226
urban and rural residents, 225

Systolic blood pressure (SBP), 429
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T
Tacrine, 424
t-distribution, 574, 577, 609
Testing equality, 470

Bernoulli variables, 802
health care, 804
marketing communications, 806
P-value, 803

The Nation magazine, 682
The Pew Research Center (PRC), 522
Time series data, 152, 161, 165–167, 169,

181, 196–198
Toxic algae bloom, 631
Traffic enforcement officers (TEAs), 429
Trimmed mean, 56, 58, 59, 69, 79, 86,

88, 94
Two-sample problems, 750–752, 756, 759,

761–763, 765, 766
activities, 766–769
arbitrary continuous populations, 671
components, 670
conceptual, 749, 750
data analysis techniques, 670

baseball and beer, 761, 762
binge drinking athletes, 750, 756
gender and musical instrument

choice, 751, 752
hospital admissions—substance

abuse/mental illness, 761
influence and athletics, 750, 759
insect infection, parasites, 752
removing spots and stains, 763
total and terminal hair growth, 765, 766

independent random samples, 669
internet archives, 769–771
issues, 670
statistical inference procedures, 670

Two-sided hypothesis test, 499–501
Two-way tables, count data, 782, 783,

817–819, 821–828, 831–835
activities

bridge, 832, 833
fair die, 834
hair color and educational level, 832
life expectancy, 834
religious preference and political

affiliation, 833
attributes, 775
chi-square statistic, 779

college athletes and alcohol
male/female, 782, 783
team/individual sport, 783, 784

conceptual
degrees of freedom, 818, 819
lotteries, 819
potential research interest, 817, 818

data analysis/computational
alcohol consumption and severity,

assault injuries, 821, 822
freshman party schools, 827, 828
lotteries, 821
M & M Colors, 825, 826
science and religion, 831
smoking and hearing loss, 822–825

goodness-of-fit procedure, 775
health insurance benefits, 786
independent random samples, 777
internet archives

freshman party schools, 835
skittles flavors, 834
starburst flavors, 835

multinomial count variable, 775
null hypothesis, 777, 778
population probabilities, 776
students carrying weapons, 784, 785
test procedures, 774
work accomplishments, 786, 787
yellow-crowned night herons nest,

780–782
Type I error, 473
Type II error, 473

U
Ultrasound probes, 552, 591, 722
University of Pennsylvania, 502
Upper-tailed hypothesis test, 472, 483,

484, 497

V
Variability, 95, 96, 98, 99, 114, 116, 121, 124
Variable fenceposts, 5, 70, 71
V-chip, 502
Vertical cliffs, 552, 601
Vertical FasT-Fix Meniscal Repair Suture

System (VFasT-Fix), 731
Vertical Mattress Sutures (VMS), 707,

708, 911
Virginia Twin Study, 428
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W
Walking Impairment Questionnaire, 726
Walsh averages, 555, 556, 558,

567, 570, 639
Woodland Slugs Versus Waste Site Slugs,

698, 699
Woodpeckers, 742

Y
Young of Year (YOY) gizzard shad, 682,

806, 923, 925

Z
Zener symbols, 733
Zooplankton, 572, 601
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