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Preface 

Multiple imputation is a statistical technique designed to take advantage of 
the flexibility in modem computing to handle missing data. With it, each 
missing value is replaced by two or more imputed values in order to 
represent the uncertainty about whch value to impute. The ideas for 
multiple imputation first arose in the early 1970s when I was working on a 
problem of survey nonresponse at Educational Testing Service, here sum- 
marized as Example 1.1. T h s  work was published several years later as 
Rubin (1977a). 

The real impetus for multiple imputation, however, came from work 
encouraged and supported by Fritz Scheuren, then of the United States 
Social Security Administration and now head of the Statistics of Income 
Division at the United States Internal Revenue Service. His concern for 
problems of nonresponse in the Current Population Survey led to a working 
paper for the Social Security Administration (Rubin, 1977b), which ex- 
plicitly proposed multiple imputation. Fritz’s continued support and 
encouragement for the idea of multiple imputation resulted in (1) an 
American Statistical Association invited address on multiple imputation 
(Rubin, 1978a); (2) continued research, such as published in Rubin (1979a); 
(3) joint work with Fritz and Thomas N. Herzog in the late 1970s, 
summarized in several papers including Herzog and Rubin (1983); and (4) 
application of the ideas in 1980 to file matching, which eventually was 
published as Rubin (1986). 

Another important contributor to the development of multiple imputa- 
tion has been the United States Census Bureau, which several years ago 
supported the production of a monograph on multiple imputation (Rubin, 
1980a). This monograph was the first of four nearly complete drafts that 
were supposed to become this book. 
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viii PREFACE 

The second such draft was composed of the collection of chapters 
distributed to my class on survey nonresponse at the University of Chcago, 
Winter Quarter 1983. These stopped short of becoming the book primarily 
because of two Ph.D. students there, IGm Hung Li and Nathaniel Schenker, 
both of whom wrote theses on aspects of multiple imputation (Li, 1985; 
Schenker, 1985). Our efforts provided the foundation for the next level of 
sophistication, and I am extremely grateful for their involvement and for 
the outstandingly colleageal atmosphere at the University of Chcago, 
which made t h s  period so productive. 

The third draft owed its demise to continued work involving Schenker 
and two Ph.D. students at Harvard University, T. E. Raghunathen and 
Leisa Weld, both of whom are completing theses on aspects of multiple 
imputation. This fourth and final version has benefitted from many sugges- 
tions from Raghunathen, Weld, Roderick J. A. Little and Alan Zaslavsky, 
and was facilitated by Raghunathen’s computing help, and Bea Shube’s and 
Rosalyn Farkas’s editorial advice and patience. It too could have been 
postponed, waiting for improved results to come from ongoing research, 
but I believe the existing perspective is highly useful and that publication 
will stimulate new work. In fact, although many of the problem. at the end 
of the chapters are rather standard exercises designed to check understand- 
ing of the material being presented, other problems involve issues that I 
consider research topics for term papers in a graduate-level course on 
survey methods or even points of departure for Ph.D. theses. 

Since the summer of 1983, support for my work on multiple imputation 
and my graduate students’ work at the University of Chicago and Harvard 
University has been primarily provided by a grant from NSF (SES-83- 
11428), and I am very grateful for this funding as well as additional support 
in 1986 from NSF (DMS-85-04332). The SES grant deals explicitly with the 
problem of the comparability of Census Bureau occupation and industry 
codes between 1970 and 1980, summarized here as Example 1.3. The 
creation of 1970 public-use files with multiply-imputed 1980 codes will be, I 
believe, an important milestone in the handling of missing values in 
public-use files. 

T h s  text is directed at applied survey statisticians with some theoretical 
background, but presents the necessary Bayesian and frequentist theory in 
the background Chapter 2. Chapter 3 derives, from the Bayesian perspec- 
tive, general procedures for analyzing multiply-imputed data sets, and 
Chapter 4 evaluates the operating characteristics of these procedures from 
the randomization theory perspective. Particular procedures for creating 
multiple imputations are presented in Chapter 5 for cases with ignorable 
nonresponse and in Chapter 6 for cases with nonignorable nonresponse. 
Chapter 1 and the detailed table of contents are designed to allow the 
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reader to obtain a rapid overview of the theory and practice of multiple 
imputation. 

Multiple Imputation for Nonresponse in Surveys can serve as the basis for 
a course on survey methodology at the graduate level in a department of 
statistics, as I have done with earlier drafts at the University of Chcago and 
Harvard University. When utilized this way, I believe it should be supple- 
mented with a more standard text, such as Cochran (1977), and readings 
from the National Academy of Sciences volumes on Incomplete Data 
(Madow et al., 1983). 

I hope that the reader finds the material presented here to be a stimulat- 
ing and useful contribution to the theory and practice of handling nonre- 
sponse in surveys. 

DONALD B. RUBIN 
Cambridge. Massachurerrs 
January I987 
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C H A P T E R 1  

Introduction 

1.1. OVERVIEW 

In a census of a population, an attempt is made to collect information from 
each unit in the population. For example, in a census of the U.S. popula- 
tion, each person in the United States is contacted, and age, gender, years 
of education, and other characteristics are recorded. 

In a sample survey of a population, the same sort of information is 
sought, but only some of the units in the population, those in the sample, 
are contacted. In well-designed sample surveys, the choice of the sample is 
carefully made in order to make inferences to the population both reliable 
and straightforward to obtain. 

Nonresponse in Surveys 

In many censuses and sample surveys, some of the units contacted do not 
respond to at least some items being asked. Such nonresponse, whch we 
will call survey nonresponse whether it arises from a census or a sample 
survey, is common in practice whenever the population consists of units 
such 2s individual people, households, or businesses. The problem created 
by survey nonresponse is, of course, that data values intended by survey 
design to be observed are in fact missing. These missing values not only 
mean less efficient estimates because of the reduced size of the data base 
but also that standard complete-data methods cannot be immediately used 
to analyze the data. Moreover, possible biases exist because the respondents 
are often systematically different from the nonrespondents; of particular 
concern, these biases are difficult to eliminate since the precise reasons for 
nonresponse are usually not known. 

An extended definition of survey nonresponse includes situations in 
whch missing data arise from the processing of information provided by 
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units rather than from the refusal of units to provide information. For 
example, editing procedures may eliminate responses judged to be impossi- 
ble (e.g., age equals 187 years), and restricted resources may limit the 
coding of open-ended responses to a subsample of units (e.g., although all 
units provide descriptions of their occupations, only a subsample of their 
responses are read and coded by survey staff). An even more extended 
definition of survey nonresponse includes any situation in whch there are 
missing values in the rectangular units-by-variables data matrix to be 
analyzed, even if no attempt was made to record some of the missing values 
(e.g., income questions are only asked of a subsample of the units in the 
survey, or ages of children are only recorded to the nearest year but for 
analysis are needed to the nearest month). Multiple imputation is relevant 
to all such problems of deficient data, and so the broadest definition of 
survey nonresponse is accepted here. 

Multiple Imputation 

Multiple imputation is the technique that replaces each missing or deficient 
value with two or more acceptable values representing a distribution of 
possibilities; this idea was originally proposed by Rubin (1977b, 1978a). 
Figure 1.1 depicts a multiply-imputed data set, where each missing datum is 
replaced by a pointer to a vector of m values. The m values are ordered in 
the sense that the first components of the vectors when substituted for the 
missing values result in one data set, the second components result in a 
second data set, and so on. The imputed values are stored in an auxiliary 
matrix with one row for each missing value and m columns. In common 
practice it would be inconvenient to have an auxiliary matrix of imputa- 
tions much larger than the origmal data matrix, and consequently, a 
multiply-imputed data set is most useful to practice when the fraction of 
values missing is not excessive and when m is modest, say between 2 and 
10. 

In this text we will: 

1. Describe how to generate multiple imputations in general and offer 
specific examples of multiple-imputation procedures that are easy to 
use, easy to communicate, and provide valid inferences. 

2. Show how to draw inferences from a multiply-imputed data set. 
3. Justify the resultant inferences by showing the senses in which they 

4. Present several exploratory applications of multiple imputation to real 
are vahd. 

data. 
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Each row vector of imputations is of length m ,  where 
Model for first imputation = . . . 
Model for second imputation = . . . 

Model for m th imputation = . . 

Figure 1.1. Data set with m imputations for each missing datum. 

Can Multiple Imputation Be Used in Nonsurvey Problems? 

Multiple imputation can be used to handle missing data in nonsurvey 
contexts, but there are several reasons why the technique seems to be 
especially valuable in the survey context. First, surveys quite often collect 
very large amounts of data that will be analyzed by many users; conse- 
quently. there is often a desire to “fix-up” the data base ( e g ,  fill in the 
missing values) before sending it off for general use. Second, the analyses of 
many surveys rely on finely tuned, highly specific estimators and adjust- 
ments, often based on past experience with similar surveys; the existence of 
missing values means that the standard procedures cannot be automatically 
used, and corresponding procedures that appropriately adjust for the miss- 
ing data may not be easy to derive. Third, it is rare that the missing values 
occur completely at random, as they might in some experimental contexts; 
in surveys, it is often reasonable to suspect that nonrespondents systemati- 
cally differ from respondents, and thus it is desirable not only to adjust for 
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nonresponse but also to study the effects of various assumed differences 
between respondents and nonrespondents. Fourth, imputation is common 
in survey practice, and multiple imputations can often be generated from 
simple modifications of existing single-imputation methods such as the 
Census Bureau hot-deck or regression methods. 

Background 

The previous literature on the theory and practice of handling missing 
survey data will not be reviewed here. The National Academy of Sciences 
Panel on Incomplete Data has recently produced three volumes, including 
an annotated bibliography, that serve this purpose well (Madow, Nisselson, 
and Olkin, 1983; Madow, O h ,  and Rubin, 1983; Madow and O h ,  
1983.) Here, we focus on developing the theory and practice of multiple 
imputation. 

We assume that the reader is familiar with basic theory and practice of 
sample surveys based on randomization inference, such as presented in 
Cochran (1977), Hansen, Hurwitz, and Madow (1953), and L s h  (1965). In 
particular, we assume that the reader would know how to analyze the 
survey under consideration if there were no nonresponse. We also assume 
that the reader is comfortable with basic Bayesian calculations and 
terminology, such as at the level of the introductory chapters of Box and 
Tiao (1973). The use of Bayesian inference in sample surveys is less well 
known to survey practitioners than randomization inference, although 
evidently used before randomization inference in real surveys. For example, 
in 1780 Laplace used Bayesian methods to estimate the population of 
France (Cochran, 1978). 

1.2. EXAMPLES OF SURVEYS WITH NONRESPONSE 

In order to understand the problem that multiple imputation is supposed to 
solve, and to judge how well it does so, it is important to obtain a feeling 
for a range of examples of survey nonresponse, as well as to see what it 
ideally means to “handle nonresponse” in these examples and the short- 
comings of standard methods typically in use. Multiple imputation has 
been applied, at least in exploratory exercises, to all examples presented 
here. 

Example 1.1. 

In 1971 Educational Testing Service (ETS) conducted a sample survey of 
660 schools for the purpose of studying their compensatory reading pro- 

Educational Testing Service’s Sample Survey of Schools 
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grams. Although some background information on all schools was available 
from Census Bureau records (e.g., median income in ZIP code area), the 
critical information on types of compensatory reading programs and 
achevement levels of students in the schools was to be obtained from a 
questionnaire sent to the principals. By the end 01  the sample survey, only 
472 of the 660 principals had returned this questionnaire, even though all 
had been mailed several reminders and had been contacted by telephone. 

Nonresponse on th s  questionnaire is called unit nonresponse, in contrast 
to item nonresponse, because the unit (i.e., the nonresponding principal) 
refused to respond to any items on the survey instrument. If the principals 
had responded to some questionnaire items but left others unanswered, 
then we would say that the survey had suffered from item nonresponse 
rather than unit nonresponse. 

Since the principals knew that the purpose of the survey was to study 
their compensatory reading programs, concern developed that the 188 
nonresponding principals were systematically different from the 472 re- 
sponding principals, perhaps having students with more severe reading 
problems or, perhaps, having reading programs that were less effective. In 
fact, on the basis of the census background information, it did appear that 
the respondents differed systematically from nonrespondents on observed 
relevant characteristics. Perhaps they also differed systematically on unob- 
served relevant characteristics. If the purpose of the survey had been only 
to select a few exemplary programs for study, t h s  potential bias might have 
been of little concern, but one purpose of the survey was to describe the 
population of programs and their typical cost effectiveness. Consequently, 
the hgh nonresponse rate (188 out of 660) was considered to be a serious 
problem. 

ETS had to try to ensure that its analyses of the data did not misrepre- 
sent the characteristics of the population of compensatory reading pro- 
grams. For example, ETS wanted to produce estimates for “the average 
number of hours per week of compensatory reading that is offered” that 
reflected the increased uncertainty arising from the high nonresponse rate. 

Example 1.2. 

The Current Population Survey (CPS), conducted by the Census Bureau, 
includes approximately 50,000 households monthly and is used to gather a 
variety of information. One type of information that has traditionally been 
relatively quite difficult to obtain and is becoming even more difficult to 
obtain is income data: Inlviduals are not particularly anxious to divulge 
their incomes, whether total, or amounts in certain categories such as social 
security benefits. The current 15-20% nonresponse rate on many income 
items does not just result in reduced efficiency of estimation for users of the 

Current Population S w e y  and Missing Incomes 
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CPS. The more serious problem concerns bias. It is certainly possible that 
those refusing to answer income questions systematically differ from those 
willing to supply it. In fact, there exists evidence to suggest that middle- 
income people are more likely to be income respondents than low- or 
hgh-income people. Low-income individuals apparently tend to be “gen- 
eral nonrespondents” in that they are relatively likely to refuse to respond 
to many items (i.e., tend to generate unit nonresponse) whereas high-income 
individuals tend to be “specific nonrespondents” in that they are relatively 
likely to respond to most items, except income items for which they have a 
very high nonresponse rate (e.g., over 30%). Nonresponse to income items 
in the CPS, especially among high-income individuals, is an example of 
item nonresponse. That is, each unit included in the survey produces 
information on most items, but some units fail to provide information on 
some particular items. Subjects that refuse to participate in the CPS exhibit 
unit nonresponse. 

Since the CPS is a major source of data for economists and other social 
scientists, as well as for businesses, it is important that realistic answers can 
be obtained from the CPS data bases in spite of the problems arising from 
income nonresponse. 

Example 13.  Census Public-Use Data Bases 
and Missing Occupation Codes 

In 1980, the Census Bureau substantially modified its coding of the descrip- 
tions of the occupations held by individuals. An important consequence of 
this change is that public-use data bases from the 1980 Census have 
occupation codings that are not directly comparable to those on public-use 
data bases from previous censuses, in particular, 1970 public-use data bases. 
Estimated costs for double-coding 1970 public-use data bases (i.e., for 
coding all units on 1970 public-use data bases according to the new 1980 
occupation coding system in addition to their existing occupation codes) are 
in the millions of dollars. There exists, however, a double-coded sample of 
120,000 units from the 1970 Census, that is, with both 1980 and 1970 codes 
for all 120,000 units. Consequently, we can thnk of the lack of both codes 
for all units on 1970 public-use data bases as an enormous nonresponse 
problem: for 120,000 units in the 1970 Census public-use data bases, both 
old and new occupation codes are observed, whereas for all remaining 
units, only the old code is observed. Viewed ths  way, nonresponse on 1980 
occupation codes in the 1970 public-use data bases is an example of item 
nonresponse. 

The lack of a common coding system is considered by many economists 
and sociologists to be a very serious problem. If pre-1980 public-use data 
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bases have one coding and the 1980 data bases have another coding, it will 
be very difficult to study such topics as occupational mobility and labor 
force shifts by demographc characteristics. Specific questions that would be 
difficult to address without 1980 codes on 1970 public-use data bases 
concern 1970-1980 shfts in occupational status of jobs held by males and 
females or by whtes and nonwhites. Such questions are important because 
they address the issue of equal opportunity employment. Consequently, 
there is a need to supply both codes on 1970 public-use data bases. 

Example 1.4. 

In 1982, a survey was conducted by the Veterans Administration in Boston 
to investigate drinking behavior in men aged 50-70. A total of 1423 men 
were mailed background and drinking behavior questionnaires: 1272 pro- 
vided essentially complete information; 112 provided background informa- 
tion but were nonrespondents on the drinking behavior questionnaire; and 
39 never even acknowledged receipt of the questionnaires. In 1983, 38 of 
the 112 nonrespondents on drinlung behavior were interviewed, and com- 
plete information on the dnnlung behavior questionnaire was obtained. The 
primary objective of the study was to relate drinlung behavior to retirement 
status and age, as by a linear regression model. 

T h s  example is similar to Example 1.1 in that potential nonresponse 
bias is an issue and the primary concern is with a reahstic analysis rather 
than the production of public-use data bases. A new feature, however, is the 
availability of some followed-up nonrespondents. Although their drinking 
behavior data was collected under different circumstances than the respon- 
dents’ data, there exists the possibility of using the follow-ups’ data to 
adjust, at least partially, for potential systematic differences between 
respondents and nonrespondents. 

Normative Aging Study of Drinking 

1.3. PROPERLY HANDLING NONRESPONSE 

Handling nonresponse means somewhat different things in these examples 
because the purposes of the data collection efforts and the kinds of 
nonresponse are not the same. Current practice is not generally adequate. 

Handling Nonresponse in Example 1.1 

In the ETS survey of schools, the data will be analyzed only by ETS for its 
final report. An appropriate method for dealing with the nonresponse 
satisfies three objectives: First, it adjusts estimates for the fact that on 
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measured background variables the nonrespondents differ from respon- 
dents; second, it expands standard errors of estimates to reflect both the 
reduced sample size from 660 to 472 and the observed differences between 
nonrespondents and respondents; and third, it exposes sensitivity of esti- 
mates and standard errors to possible differences between nonrespondents 
and respondents on unmeasured background variables. The first two objec- 
tives are often not satisfactorily addressed in current practice with such 
data. The third objective is usually entirely ignored even though it is critical 
with data sets in which the reasons for nonresponse are not precisely 
understood. 

There exists a variety of methods that practitioners tend to use with such 
data. One common practice would simply discard the 188 schools with 
incomplete data; thls obviously will bias results if reasons for nonresponse 
are correlated with values of variables. For example, if the nonrespondents 
have lower-achleving students, analyses based on the respondents alone wdl 
overestimate the typical achievement of students in compensatory reading 
programs. A standard technique for improving the estimates based on 
responding units is to weight the responding units’ data to compensate for 
the nonresponding units’ missing data. Thus, in the ETS example, a 
responding school that is similar to two nonresponding schools with respect 
to the measured background variables would receive weight 1 + 2 = 3, and 
so forth, where the total weight for the 472 responding schools would equal 
660, the original sample size. This method implicitly assumes no nonre- 
sponse bias beyond that explained by the measured background variables. 
Furthermore, the method’s apparent simplicity &sappears with multivariate 
outcomes and item nonresponse since each unit then has, in principle, a 
different weight for each item. Thus, weighting adjustments tend to be 
confined to problems of unit nonresponse. 

Many users of survey data confronted with item or unit nonresponse 
simply fill in the missing data. For example, the mean for each variable 
based on the 472 responding schools might be filled in for the missing 
values of the corresponding variable. Such a procedure, though easy, can 
easily bias results. First, the means of the filled-in variables are the same as 
the respondents’ means, which may not be appropriate for nonrespondents 
because of nonresponse bias. Second, relationships among variables- for 
instance, as measured by correlations-can be badly distorted even in the 
absence of nonresponse bias. 

A final ad hoc procedure often used when analyses are based on 
estimated means, variances, and correlations is to estimate the mean and 
variance of a variable using all units responding to that variable, and to 
estimate the correlation between two variables using all units responding to 
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both variables. Although such a method might seem sensible, as with the 
other ad hoc procedures, it too can lead to biased results. For example, the 
resultant mean and variance are still truly appropriate only for respon- 
dents; also, a negative-definite correlation matrix can result, which would 
lead to negative eigenvalues in a principal components analysis, or negative 
variances in a regression analysis. 

Handling Nonresponse in Example 1.2 

The second example, nonresponse on income items in the CPS, exhibits a 
serious problem not present in the first example. The Census Bureau creates 
public-use data bases from the CPS, and these are released to many users 
with varying degrees of statistical sophstication. The Bureau, being the 
producer of these data bases, has an obligation to try to ensure that typical 
users can analyze these data bases with the standard statistical methods at 
their disposal, and moreover, that the resultant answers will not be mislead- 
ing because of editing methods employed by the Bureau. 

Current practice for handling missing income data in the CPS is to use a 
rather complicated “ hot-deck” procedure for imputation, that is, for esti- 
mating and filling in the missing values. A hot-deck procedure finds for 
each nonrespondent a matching respondent, where matchmg means close 
with respect to variables observed for both. The CPS hot-deck employs 
many variables and modifies the coarseness of the matching variables 
depending on the ability to find matches. For example, “region of country” 
has five levels, but if no match can be found, it might be modified to have 
only two levels (e.g., North versus South). Even though this hot-deck 
imputation allows the Bureau to produce public-use data bases that can be 
analyzed by complete-data methods, the results of such analyses systemati- 
cally underestimate variabihty because they treat imputed values as if they 
were known with certainty; tlus underestimation of variability might be 
serious in some cases since the nonresponse rate can be as high as 30% for 
some types of subjects. It is not obvious how to adjust the analyses to 
correct t h s  problem. Furthermore, the reasons for nonresponse are not 
fully understood, and yet there is no indication of the sensitivity of 
inference to different assumptions about differences between nonrespon- 
dents and respondents. Nevertheless, the hot-deck is a standard Census 
Bureau tool, even being used, for example, in the Decennial Census to 
estimate the number of individuals living in unclassified households for the 
purpose of allocating congressional seats to the states. It would be im- 
portant for practice if the hot-deck could be modified to properly handle 
nonresponse in the CPS. 
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Handling Nonresponse in Example 1.3 

In Example 1.3, the reason for nonresponse on 1980 occupation codes on 
1970 public-use data bases is precisely known-the Census Bureau decided 
in 1970 to record 1970 codes rather than 1980 codes. Consequently, in this 
example, there is no need to be concerned with sensitivity to different 
models of the reasons for nonresponse, whch was an objective with 
Examples 1.1 and 1.2. There is, however, a serious problem that arises from 
the need to create public-use data bases: the public-use data bases are more 
than 10 times the size of the double-coded sample, which implies a 
nonresponse rate of over 90% on 1980 codes! 

Two distinct options were initially proposed to handle missing 1980 
occupation codes. The first option is to eliminate the missing data by 
spending the money to double-code the 1970 public-use data bases. The 
second option is to use some form of imputation. A hot-deck procedure and 
lopt ic  regression modeling method, both based on the double-coded 
sample of 120,000 units, have been considered. The hot-deck imputation 
would find, for each 1970 unit without a 1980 occupation code, a unit in the 
double-coded sample that has similar values of variables recorded for both 
units, such as 1970 occupation code, income, gender, and age. The matchng 
unit’s observed 1980 occupation code is then imputed (i.e., filled in) for the 
missing 1980 value. Logistic regression imputation would build a model 
from the double-coded sample that would predict 1980 occupation code 
from 1970 occupation code and other predictors such as income, gender, 
and age, and then apply this model to the units with predictors observed 
but 1980 occupation code missing, in order to impute the most likely 
occupation. Although producing a filled-in data base by such imputation 
methods allows the typical user to employ standard complete-data methods 
of analysis, the results of such analyses systematically underestimate vari- 
ability because they treat imputed values as if they were real. 

Handling Nonresponse in Example 1.4 

The issues created by the nonresponse in the Normative Agng Study are 
similar to those created in the ETS survey of schools (Example l.l), with 
the additional feature that the follow-ups provide an opportunity for a 
data-based adjustment of differences between respondents and nonrespon- 
dents. If the follow-ups are regarded as a random sample of the nonrespon- 
dents, simple estimands such as the population mean can be handled using 
special double-sampling estimation techniques such as described in 
Cochran (1977, Chapter 12). More complicated estimands, such as regres- 
sion coefficients, or analyses when it is not assumed that the follow-ups are 
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a random sample from the nonrespondents, however, are generally not 
appropriately handled by standard procedures. 

The Variety of Objectives When Handling Nonresponse 

In order to handle the variety of types of nonresponse problems just 
described, we require a technique that has at least the following capabihties. 
First, it should allow standard complete-data methods to be used. Second, 
it should be capable of yielding valid inferences that (a) produce estimates 
that adjust for observed differences between respondents and nonrespon- 
dents and (b) produce standard errors that reflect the reduced sample size 
as well as the adjustment for the observed respondent-nonrespondent 
diff'erences. Thrd ,  it should display the sensitivity of inferences to various 
plausible models for nonresponse. Current practice for handhg  nonre- 
sponse does not satisfy all of these objectives. 

1.4. SINGLE IMPUTATION 

Single imputation, that is, filling in a value for each missing value, is 
probably the most common method for handling item nonresponse in 
current survey practice. There are two major attractive features supporting 
this practice. First, standard complete-data methods of analysis can be used 
on the filled-in data set. Second, in the context of public-use data bases, the 
possibly substantial effort required to create sensible imputations need be 
carried out only once, by the data producer, and these imputations can 
incorporate the data collector's knowledge. Just as these two advantages are 
rather obvious and important, there are equally obvious and important 
disadvantages of single imputation: the single value being imputed can 
reflect neither sampling variability about the actual value when one model 
for nonresponse is being considered nor additional uncertainty when more 
than one model is being entertained. Both the advantages and disad- 
vantages of single imputation deserve further comment. 

Imputation Allows Standard Complete-Data Methods of Analysis to Be Used 

The first major advantage of imputation is that once the values have been 
filled in, standard complete-data methods of analysis can be used. In 
contrast, some mathematical statistical approaches to nonresponse require 
new and possibly specialued computer programs in order to handle the 
nonresponse problem. 
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From a practitioner’s point of view, it may not be at all obvious that the 
extra expense and effort required to design, write, and validate special 
computer programs is really worthwhile, say relative to field efforts aimed 
at reducing nonresponse or increasing sample size. The practical question is 
whether the answers under new theoretical models are really that much 
better than (or even as good as) the answers that can be found following 
straightforward imputation procedures. 

It is easy to be sympathetic toward the imputation position because 
much practice and experience has verified many standard data analysis 
techniques as being appropriate in the absence of nonresponse, especially in 
particular contexts. Minimally, general acceptance of statistical conclusions 
and general understanding of substantive conclusions may be lost when 
these standard methods of data analysis are not used. Also, statistically 
unsophisticated users are probably more likely to reach reasonable conclu- 
sions when using familiar statistical techniques rather than sophsticated 
models beyond their understanding. Consequently, there is substantial 
practical advantage if imputation methods can be made theoretically sound. 

Imputation Can Incorporate Data Collector’s Knowledge 

The second major advantage of imputation is that in many cases the 
imputations can be created just once by the data collector who may have 
much better information about and understanding of the process that 
creates nonresponse than the typical user. Such concerns are especially 
important in cases (such as Examples 1.2 and 1.3) in which the data 
collector (i.e., the Census Bureau) has more information at its disposal for 
imputation (some of it protected by confidentiahty constraints) than will be 
available on the resultant public-use data bases, as well as greater resources 
for analysis than the typical consumer of the resultant data. Consequently, 
it is possible that data analysts, even those with a full arsenal of modem 
statistical tools, might reach better inferences by trusting the data collector’s 
imputations than by applying sophisticated statistical models to a less rich 
data base. Provided imputations are flagged, the data collector’s imputa- 
tions can always be ignored if an explicit model for nonresponse is being 
considered by the statistically sophsticated user. Certamly, statistically 
unsophisticated users would quite often fare better using the data collector’s 
imputations rather than using their own quick-fix imputations such as “ fill 
in the mean.” 

The Problem with One Imputation for Each Missing Value 

The obvious problem with imputation is that the missing values are not 
known, and yet the automatic application of complete-data methods to 
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imputed data sets treats missing values as if they were known. Because of 
this, even if the mechanism creating nonresponse is perfectly understood as 
in Example 1.3, inferences based on the imputed data set will be too sharp 
since the extra variability due to the unknown missing values is not being 
taken into account. Also, quantities such as correlations that depend on 
variabilities can be badly biased. Furthermore, when nonresponse is not 
really understood, no account is being taken of the uncertainty arising from 
not knowing which nonresponse models for imputation are appropriate. 

Example 1.5. 

In a simple random sample with no covariates, standard complete-data 
inferences follow from the statement that 

Best-Prediction Imputation in a Simple Random Sample 

(1.4.1) ( j - F )  is approximately normally distributed 
with mean zero and variance s 2 ( n - l  - W ' )  

where n = sample size 
j = sample mean 

s 2  = sample variance 
N = population size 
Y = population mean. 

See, for example, Cochran (1977, Chapter 2). 
Suppose because of random nonresponse, only n1 of the n values of Y 

are actually observed where j 1  and s: are the sample mean and variance of 
the n1 observed values. Because j 1  and s: are essentially the sample mean 
and sample variance in a simple random sample of size n,, under the usual 
normal assumptions, standard inferences for r can be based on the state- 
ment that 

(1.4.2) ( j l  - r) is approximately normally distributed 
with mean zero and variance s:( n;' - N - ' ) .  

Suppose that instead of using (1.4.2), the best-prediction values of the 
missing Y are imputed, and (1.4.1) is applied with no distinction being 
made for the differing status of observed and imputed values. Under 
assumptions being made, the best prediction of each missing Y is the 
observed sample mean j l .  Hence, the mean of all n values is j l ,  and the 
sample variance is s:(nl - l)/(n - l), since all missing Y are imputed 
equal to the sample mean. As a result, the variance of ( j  - P) in (1.4.1) 
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based on the data set completed by best-prediction imputation is 
s:(n-' - N - ' ) ( n ,  - l)/(n - l), whch in comparison to the actual vari- 
ance of j l  given in (1.4.2), is too small, essentially by a factor of (nl/n)* 
for large n, and N / n , .  Thus, resulting interval estimates of will be too 
short by a factor approximately equal to n,/n, leading to potentially severe 
undercoverage, and test statistics will be too large, leading to excessively 
large significance levels associated with null values of r. There are two 
reasons for these problems. First, we are pretending that the sample size is 
n when it really is n,, and second, we are underestimating the variance by a 
factor, approximately equal to n,/n, because we are imputing all n - n, 
values at the sample mean. 

In general, it is intuitively clear that imputing the best prediction for 
each missing value must underestimate variability. Furthermore, in general, 
imputing the best value will not necessarily lead to correctly centered 
inferences unless the complete-data statistic is a linear function of the 
missing values. For example, consider estimating the population variance of 
Y ;  when best predictions have been imputed for each missing Y,  the 
estimate based on the n values of Y is too small by the factor (n, - 1)/ 
( n  - 1). 

Example 1.6. Drawing Imputations from a Distribution 
(Example 1.5 continued) 

Suppose that in an attempt to avoid the underestimation of variance 
created by best-prediction imputation, the imputed values are drawn so that 
on average the mean of the imputed values is J,, and on average the sample 
variance of all n values is s:. This result is nearly accomplished by draw- 
ing the missing Y randomly from the observed values. Treating the ob- 
served data and design as fixed, j and s 2  in (1.4.1) are random variables, 
where it is easy to show that when the imputed values are drawn with 
replacement, the expected values of J and s 2  are j 1  and s:(l - n;') 
X[1  + n,n- ' (n  - l)-'] 

Even though the imputed values approximately preserve the observed 
distribution of the data, the variance of the reference distribution for 
( J  - r) in (1.4.1), that is, s2(n- '  - It-'), is incorrect. First, suppose the 
imputed values were drawn so that J always equaled j1 azd s 2  always 
equaled s:; the associated variance of ( J  - y )  = (Jl - Y )  should be 
s:(n;' - N - ' )  as in (1.4.2) rather than s2(n-'  - N - ' )  = s:(n-'  - N - ' ) ,  
which is too small by at least the factor n,/n, and so this procedure also 
leads to interval estimates that are too short and test statistics that are too 
big. Second, if the values are imputed with some randomization, (i) the 
actual variance of J is larger than the variance of J,, and (ii) s2  varies 

s:, respectively (see Problems 11 and 12). 
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about x;, with the result that even s:(n;' - N - l )  underestimates the 
actual variance of j based on the randomly imputed data. A related 
problem with random drawing is that the efficiency of j is less than that of 
y,;  for example, when drawing imputed values with replacement, we have 
that the variance of j is larger than the variance of j l  by the factor 

Although values of missing Y could be systematically chosen to give 
j = j1 and s-) = s:n/nl, at least if n - n, > 1, such a pathway is hopeless 
for general practice: Some distributional characteristics are being dstorted, 
and so some population parameters (e.g., the population variance, or with 
two variables, the population correlation) will not be properly estimated by 
standard complete-data analyses. 

[ l  + (1 - n , / n ) ( l  - n , / N ) - ' ( n ,  - l)/n]. 

1.5. MULTIPLE IMPUTATION 

Multiple imputation retains the virtues of single imputation and corrects its 
major flaws. The idea behmd multiple imputation is that for each missing 
datum we impute several values, say rn, instead of just one, as already 
displayed in Figure 1.1. These rn values are ordered in the sense that the 
first set of values imputed for the missing values are used to form the first 
completed data set, and so on. Thus, the rn imputations for each missing 
datum create rn complete data sets. Each completed data set is analyzed 
using standard complete-data procedures just as if the imputed data were 
the real data obtained from the nonrespondents; commonly, such an 
analysis ignores the distinction between respondents and nonrespondents. 
Multiple imputation using modest rn, say between 2 and 10, is designed for 
situations with a modest fraction of information missing due to nonre- 
sponse. Missing information is defined precisely in Chapter 3, but basically 
it measures the increase in variance of estimation due to nonresponse, and 
is determined by response rates and the ability of observed values to predict 
missing values successfully. Examples 1.1-1.4 all exhibit relatively modest 
fractions of missing information for most estimands of interest under 
reasonable models for nonresponse, even Example 1.3 because the missing 
1980 codes are relatively well predicted by the observed values of 1970 
codes, income, gender, age, etc. 

Advantages of Multiple Imputation 

Multiple imputation shares with single imputation the two basic advantages 
already mentioned, namely, the ability to use complete-data methods of 
analysis and the ability to incorporate the data collector's knowledge. In 
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fact, the second basic advantage is not only retained but enchanced because 
multiple imputations allow data collectors to use their knowledge to reflect 
uncertainty about whch values to impute. This uncertainty is of two types: 
sampling variability assuming the reasons for nonresponse are known and 
variability due to uncertainty about the reasons for nonresponse. Under 
each posited model for nonresponse, two or more imputations are created 
to reflect sampling variability under that model; imputations under more 
than one model for nonresponse reflect uncertainty about the reasons for 
nonresponse. 

There exist three extremely important advantages to multiple imputation 
over single imputation. First, when imputations are randomly drawn in an 
attempt to represent the distribution of the data, as illustrated in Example 
1.6, multiple imputation increases the efficiency of estimation. Specific 
results on the increase in efficiency are given in Chapter 4. 

The second distinct advantage of multiple imputation over single impu- 
tation is that when the multiple imputations represent repeated random 
draws under a model for nonresponse, valid inferences- that is, ones that 
reflect the additional variability due to the missing values under that model 
-are obtained simply by combining complete-data inferences in a 
straightforward manner. The procedure is illustrated in Section 1.6 and 
presented in general in Chapter 3. Because of the simplicity of this 
technology, statistically unsoplusticated users can reach valid inferences 
using only familiar complete-data tools. In addition, even when explicit 
models not considered by the data collector are to be applied by the 
statistically sophisticated data user, it may be computationally more effi- 
cient to draw inferences from these explicit models by using multiple 
imputation to simulate the correct inference than to carry out specialized 
mathematical analyses or to write specialized computer programs perhaps 
involving numerical integration. 

The third distinct advantage of multiple imputation is that by generating 
repeated randomly drawn imputations under more than one model, it 
allows the straightforward study of the sensitivity of inferences to various 
models for nonresponse simply using complete-data methods repeatedly. 
This is an endeavor that the statistically unsophisticated user especially is 
extremely unlikely to consider in the absence of multiple imputation; yet it 
is very important because, in general, the analyses are reliant on assump- 
tions unassailable by the observed data. 

The General Need to Display Sensitivity to Models of Nonresponse 

For an artificial example exhibiting the need to rely on external assump- 
tions about the process that creates nonresponse, that is, assumptions 
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external to the survey data, suppose that one-half of the sampled units are 
nonrespondents, and the respondents’ values appear to be exactly the right 
half of a normal distribution. Which is a more appropriate estimate of the 
population mean: the sample mean for respondents or the minimum 
observed value for respondents? If the mean values for respondents and 
nonrespondents in the population were known to be the same, the sample 
mean would be more appropriate, whereas if nonresponse occurs only for 
smaller values of the variable and the values in the population are known 
to be approximately symmetrically distributed, the minimum observed 
value would be more appropriate. 

The observed values for respondents cannot discriminate between these 
alternatives, and consequently inferences for the population mean will 
necessarily be sensitive to the choice of models for the process that creates 
nonresponse. Note that even if we assume nonresponse occurs only for the 
bottom 50% of the population values, the minimum observed value may not 
be a good estimate of the population mean: in large samples, the minimum 
observed value will nearly equal the population median, whch does not 
equal the population mean without further assumptions about the distribu- 
tion of values in the population, such as symmetry. In general, it is 
impossible to estimate a population quantity such as the mean without 
malung assumptions about either the distribution of values for nonrespon- 
dents or the process that creates nonresponse. Such assumptions should 
ideally be based on familiarity with the content or the subject area of the 
survey and psychological aspects of the units of the survey and the survey 
instrument; recent books relevant to this subject include Bradburn and 
Sudman (1979), Dijkstra and Vander Zouwen (1982), Dillman (1978), 
Groves and Kahn (1979), Rosenthal and Rosnow (1975), and Sudman and 
Bradburn (1974). 

If, in a particular survey without follow-up response, there is no single 
accepted class of assumptions about nonresponse, then it is obviously 
prudent to perform data analyses under a variety of plausible models for 
nonresponse. If (a) inferences vary in important ways as the models change 
and (b) the data cannot eliminate some models as inappropriate, then the 
tautological conclusion must be that the data cannot support sharp in- 
ferences without further specification of the models. A recent examination 
of the sensitivity of inferences to models for nonresponse in a particular 
survey is presented in Heitjan and Rubin (1986). 

Disadvantages of Multiple Imputation 

There are three obvious disadvantages of multiple imputation relative to 
single imputation. First, more work is needed to produce multiple imputa- 



18 INTRODUCTION 

tions than single imputations. Second, more space is needed to store a 
multiply-imputed data set. Thud, more work is needed to analyze a 
multiply-imputed data set than a singly-imputed data set. These disad- 
vantages are not serious when m is modest. Modest m is adequate when 
fractions of missing information are modest. When fractions of missing 
information are large, modest-m multiple imputation is not fully satisfac- 
tory, but then single imputation can be disastrous. 

With respect to the first disadvantage, often the multiple-imputation 
version of an existing single-imputation scheme is not difficult to imple- 
ment. The artificial example in Section 1.6 and the examples in later 
chapters illustrate t h s  point. Also, these examples show that in many cases 
it is not difficult to implement new multiple-imputation procedures using 
standard statistical programs. 

With respect to the second disadvantage, in order to store a multiply- 
imputed set, a data analysis system must be able to handle, in addition to 
the full data matrix, an auxiliary matrix of size: (the number of multiple 
imputations per missing value) X (the number of missing values). Suppos- 
ing m imputations per missing value and g percent missing values, ths  
auxiliary data matrix is mg percent as large as the originally hoped-for data 
matrix. For common values of m and g, t h s  auxiliary matrix is relatively 
small. For example, suppose that of 30 variables in a survey, 10 are fully 
observed, 10 are 10% missing, and 10 are 20% missing; then g = 10, and for 
m = 3 the auxiliary matrix is only 30% as large as the original data matrix. 

Finally, the extra work needed to analyze properly a multiply-imputed 
data set is undeniable since standard complete-data analyses must be 
performed on each completed data set and the resultant answers combined 
withn each model represented by the multiple imputations. Often, however, 
once a complete-data analysis is decided upon, the extra effort to perform it 
repeatedly is not great and is often measured in computer time rather than 
investigator time. Combining the resultant answers often only requires the 
calculation of the means and variances of the repeated complete-data 
statistics found under each model. The artificial example in Section 1.6 and 
the real data examples in later chapters illustrate these points too. In cases 
with large data sets that are expensive to analyze repeatedly, it may make 
sense to run exploratory analyses using only one or two of the data sets 
created by multiple imputation, and use all data sets created by the multiple 
imputations only for final analyses. 

The extra effort needed to create, store, and analyze a multiply-imputed 
data set rather than a singly-imputed data set appears to be quite modest 
considering the dual payoffs of valid inferences under models and evalua- 
tion of sensitivity to models. In many cases, this extra effort seems espe- 
cially modest when compared with the extra effort needed to work directly 
with explicit probability models for nonresponse. 
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1.6. NUMERICAL EXAMPLE USING MULTIPLE IMPUTATION 

In order to illustrate the key practical ideas underlying multiple imputation, 
we present a very small numerical example. This example is not meant to 
illustrate good survey design, good estimation procedures, or good imputa- 
tion techniques, but simply the multiple-imputation methodology. 

Suppose we have taken a simple random sample of n = 10 units from a 
population of N = 1000 units. We know the value of the covariate X 
(e.g., 1970 size) for each of the N units and try to record the variable Y 
( e g ,  1980 size) for each of the n units included in the sample, but two units 
refuse to respond. The objective of the survey is to estimate r, the mean of 
Y in the population. We assume that with complete data, the ratio estima- 
tor xj /X would be used with associated approximate 95% interval x j /X  
k 1.96SD/n1,”, where x is the known mean of X in the population, say 
12, j and X are the means of Y and X in the random sample of n units, 
and 

SD’ = ( y - X,j / .? )* / (  n - 1) 
I E 1nc 

where inc refers to the set of units included in the sample. Motivation for 
the estimator and the associated 95% interval is given in Chapter 2. 

Table l . l a  presents the values of y, X I  for the 10 units in the sample, 
where the question marks indicate missing data; the general notation is 
y,,, = (Yobs,  Y,,,) where obs is the set of indices of observed values of Y 
and mis is the set of indices of missing values of Y. Table l . lb  presents 
four imputations for each of the missing values of Y,  two repeated 
imputations under each of two models. In general, any number of models 
can be used with any number of repetitions withn each model. Shortly, we 
describe how these imputed values were created, but for now we con- 
centrate on the analysis of the multiply imputed data set given by Tables 
l . l a  and l . lb ,  assuming the imputations in Table l.lb have been provided 
to us. 

Analyzing This Multiply-Imputed Data Set 

For each set of imputations-that is, for each column of Table l.lb-create 
a complete data set; these are displayed in Tables 1.lc-1.lf. Then analyze 
each completed data set as if there had been no nonresponse. Table 1.2a 
presents the estimates and variances associated with each of the four data 
sets: the estimators are F j / F  and the variances are SD2/n. Next, combine 
the two answers obtained under the same model to obtain one inference for 
Y under each model as displayed in Table 1.2b. The center of the resultant 
interval is the average of the estimates, and the variance associated with t h s  

- 
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TABLE 1.2. Analysis of multiply-imputed data set of Table 1.1. 

(a) Ratio Estimates and Associated Variances of Estimation for Each Completed-Data Set 
Model 1 Model 2 

Repetition Repetition 
1 2 1 2 

Estimate 
Variance 

13.38 13.57 13.85 14.12 
2.96 3.19 3.38 3.84 

(b) Combined Estimates and Variances from Table 1.2a 
Model 1 Model 2 

Estimate 
Variance 

13.48 
3.10 

13.99 
3.66 

(c) 95% Intervals for Mean Y in Population Obtained from Table 1.2b 
Model 1 Model 2 

(10.0, 16.9) (10.2, 17.7) 

estimate has two components: (i) the average within-imputation variance 
associated with the estimate and (ii) the between-imputation variance of the 
estimate. Thus; under model 1, the estimate is (13.38 + 13.57)/2 = 13.48; 
the associated estimated average within variance is (2.96 + 3.19)/2, and 
the associated estimated between variance is [(13.38 - 13.48)' + 
(13.57 - 13.48)']. The estimated variances are combined as (estimated total 
variance) = (estimated average within variance) + (1 + m - ' )  X (estimated 
between variance), where the factor (1 + m - ' )  multiplying the usual unbi- 
ased estimate of between variance is an adjustment for using a finite 
number of imputations. The associated 95% interval estimate for L is 
(10.0,16.9) under model 1 and (10.2,17.7) under model 2. In practice, better 
intervals can be formed by calculating degrees of freedom as a simple 
function of the variance components and using the 95% points appropriate 
to the corresponding t distribution; when either m is large or the 
between-variance component is small relative to the total variance (as in 
this artificial example) the degrees of freedom will be large and thus the 
normal 95% points will be used. The ratio of the between variance to the 
total variance estimates the fraction of information missing about r due to 
nonresponse. T h s  relationshp is made precise in Chapter 3. 

The essential feature to notice in this illustrative analysis is that only 
complete-data methods of analysis are needed. We merely have to perform 
the complete-data analysis that would have been used in the absence of 
nonresponse on each of the complete data sets created by the multiple 
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imputations. The resultant answers under each model are then easily 
combined to give one inference under each model. 

Creating This Multiply-Imputed Data Set 

We now describe how the multiple imputations given in Table l . l b  were 
generated. Model 1 is an “ignorable” model for nonresponse; ignorable is 
defined precisely in Chapter 2, but essentially it means that a nonrespon- 
dent is just like a respondent with the same value of X .  Model 2 is a 
nonignorable model and posits a systematic difference between respondents 
and nonrespondents with the same value of X .  

The repeated imputations under each model are based on a procedure 
closely related to the hot-deck. We are not advocating the exact procedure 
we describe, but rather indicating how a simple intuitive method can be 
used. More principled methods for creating multiple imputations are pre- 
sented in Chapters 5 and 6. 

For each nonrespondent, we find the two closest matches among the 
respondents, where by a match we mean having the closest values of X .  For 
the first nonrespondent, unit 2, the two closest matches are units 1 and 3, 
and for the second nonrespondent, unit 4, the two closest matches are units 
3 and 5. The repeated imputations for the missing values Y,,,,, are created 
by drawing at random from the two closest matches. For the ignorable 
model, we simply impute the value of r, provided by the matchmg 
respondent. The first two columns of Table l . l b  give the result. For the 
nonignorable model, we simply suppose that the nonresponse bias is such 
that a nonrespondent will tend to have a value of 20% higher than the 
matching respondent’s value of r,. The last two columns of Table l . l b  give 
the result where the values have been rounded to the nearest integer. 

1.7. GUIDANCE FOR THE READER 

Even though multiple imputation is a tool for applied statistics and the 
intention of this text is to improve the handling of nonresponse in real 
surveys through the use of multiple imputation, a substantial amount of 
theoretical development is needed to justify the ideas and procedures such 
as illustrated in the example of Section 1.6. In particular, a satisfactory 
development of Bayesian inference in sample surveys in the presence of 
nonresponse and its relationshlp to standard randomization-based inference 
is not a part of the statistical literature, so t h s  is attempted in Chapter 2. 
T h s  material then forms the conceptual foundation for the Bayesian theory 
underlying the construction and analysis of a multiply-imputed data set 
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presented in Chapter 3, and the randomization-based evaluation of the 
resulting procedures presented in Chapter 4. Chapters 5 and 6 primarily 
deal with the creation of a multiply-imputed data set in ignorable and 
nonignorable situations, respectively, and although they have less new 
conceptual material than Chapters 2-4, they still do contain some theory 
concerning how to draw imputed values under explicit and implicit statis- 
tical models that draws on the preceding development. Consequently, even 
though examples are used throughout to illustrate ideas and tangential 
mathematical formality is avoided, some special guidance may be useful for 
the reader anxlous to obtain an intuitive appreciation for the straightfor- 
ward application of multiple imputation before delving into its theoretical 
underpinnings. 

A careful reading of the example of Section 1.6 and the first two sections 
of Chapter 2 should enable the reader who is familiar with standard 
statistical methods-both frequentist and Bayesian-to follow the summary 
description of procedures for creating and analyzing a multiply-imputed 
data set gven in Section 3.1 and the evaluation of these procedures 
summarized in Section 4.1. The more applied Chapters 5 and 6 can then in 
large part be read, at least at a relatively superficial level, with occasional 
reference to specific examples of analyses and procedures from Chapters 
2-4. Parts of Chapters 5 and 6, however, especially Sections 5.2 and 6.3, 
will be difficult to follow before reading at least Sections 2.3-2.6. 

As with any statistical procedure, a full appreciation of its application 
requires an understanding of its conceptual bases, so after obtaining an 
intuitive appreciation for the use of multiple imputation by following this 
short-cut path through the text, the applied reader should return to the 
conceptual chapters 2-4 before attempting to penetrate the subtleties of 
Chapters 5 and 6. 

PROBLEMS 

Describe the differences between a census and a sample survey. Is a 
census more immune to problems of nonresponse than a sample 
survey? Describe a situation in which a well-designed sample survey of 
a population could be less affected by nonresponse than an equiv- 
alently costly census of the same population. 
Describe a survey you are familiar with that suffers from nonresponse 
(e.g., a telephone survey for presidential candidates) and discuss 
possible systematic differences between respondents and nonrespon- 
dents and how those differences could bias conclusions from the 
survey. 
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3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

INTRODUCTION 

For three variables, create a pattern of missing and observed values 
such that the " pairwise-present'' correlation matrix, which consists of 
correlations based on all units responding to both variables in the 
correlation, is negative definite. 

Summarize major objectives when handling nonresponse, and ad- 
vantages and disadvantages of imputation for missing values. 

For a sample survey with n units and p variables, np data values are 
intended to be recorded for data analysis. These will be stored in an 
n X p data matrix as in Figure 1.1. Suppose there are k missing values 
and m imputations are used for each missing value. How big a matrix 
in addition to the original n X p data matrix is needed to store the 
multiple imputations? Suppose one analysis would be performed if 
there had been no missing data. How many complete-data analyses 
are required of the multiply-imputed data set? If exploratory data 
analyses are being done initially, should we do all exploratory analyses 
on all completed data sets or just the final confirmatory analysis? 

Why is it generally necessary to use multiple rather than single 
imputation for each missing value? Consider issues of point estima- 
tion, interval estimation, and model sensitivity. 

Summarize some of the literature on response behavior (e.g., refer- 
ences in Section 1.4). 

Create an example analogous to the one in Section 1.6 where a 
different method is used for imputation (e.g., a ratio or regression-based 
method), and produce all steps analogous to those displayed in Tables 
1.1 and 1.2. 

Describe a realistic survey in whch there would be few good predic- 
tors of missing values and another survey in which there would exist 
many good predictors of missing values. Comment on the existence of 
good predictors in the four examples presented here and relate these 
to the intuitive idea of the fraction of information missing due to 
nonresponse. 

Describe factors that create the need for more care when creating 
imputations and that create the need for larger m. 

The following problems all concern the following situation: Consider a 
simple random sample of size n with n 1  respondents and n o  = n - n, 
nonrespondents, where j 1  and s: are the sample mean and variance of the 
respondents' data, and j o  and so' are the sample mean and variance of the 
imputed data. 
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11. Show that the mean and variance of all the data, j* and s:, can be 
written as 

and 

12. Suppose imputations are randomly drawn with replacement from the 
n ,  respondents' values. 
(a) Show that j* is unbiased for the population mean r. 
(b) Show that conditional on the observed data, the variance of j* is 

n o s ~ j l  - n l 1 ) / n 2  and that the expectation of s: is s:(1 - n;')  
x[I + n,n- ' (n  - I)-']. 

(c) Show that conditional on the sample sizes n and n1 (and the 
population Y values), the variance of j* is the variance of j1 
times [l + (n, - l)n- '( l  - n l /n ) ( l  - n , / N ) - ' ]  and show that 
this is greater than the expectation of s:(n-' - N - ' ) .  

(d) Assume - n ,  and N / n ,  are large and show that interval estimates of 
Y based on s:(n-' - N - ' )  as the estimated variance of j& are 
too short by a factor (1 + nn;' - n1n-1)1/2. Note that there are 
two reasons: n > n ,  and jJ* is not as efficient as j , .  Tabulate true 
coverages and true significance levels as functions of n l / n  and 
nominal level. 

Suppose multiple imputations are created using the method of Prob- 
lem 12 m times. Let j* be the mean of the j& means and T* be the 
multiple-imputation estimate of the variance of j*, T* = o* + 

(a) Show that conditional on the data, the expected value of B, equals 
the variance of j* .  

(b)  Derive the variance of j* (conditional on n ,  n,, and the popula- 
tion values) and conclude that j* with m > 1 is more efficient 
than j * .  

(c) Tabulate values of the relative efficiency of j* to j 1  for large n ,  
and . N / n , .  

(d) Show that the variance of j* (conditional on n ,  n,, and the 
population Y values) is greater than the expectation of T* by 
approximately s:(l - n,/n)'/n,. 

13. 

(1 + m- ' )B* .  
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(e) Assume n ,  and N / n ,  are large and tabulate true coverages and 
significance levels as functions of nl/n and nominal level. Com- 
pare with the results in Problem 12 part (d). 

14. (a) Modify the multiple-imputation procedure of Problem 13 to give 
the correct answer for large n, and N / n , .  Hint: For example, add 
S , ~ , - ~ / ~ Z ,  to each imputed value at the fth set of imputations, 
where z, is an independent standard normal deviate. 

(b) Justify the adjustment in (a) based on the sampling variabdity of 
(rl - n. 



C H A P T E R 2  

Statistical Background 

2.1. INTRODUCTION 

In contrast to much of mathematical statistics, which concentrates on the 
estimation of hypothetical unknown parameters (e.g., the mean of the 
hypothetical normal distribution that generated the data), survey methodol- 
ogy concentrates on the estimation of unknown observables such as the 
average income of families in a particular finite population. Throughout, we 
use the noun parameter to denote only hypothetical unknown and un- 
knowable values. Unobserved values in a finite population are considered to 
be missing data, that is, missing values of observable quantities. The observ- 
able quantities of interest in a finite population will be arrayed in a 
units(rows)-by-variables(co1umns) matrix. In any sample survey of the 
population, only some of the values in this matrix are observed. In a 
complete census, an attempt is made to observe all values in the matrix. 

The approach presented here is an extension of that in Rubin (1978b, 
1980a, 1983a) and treats both Bayesian and randomization theory. 

Random Indexing of Units 

We will let the number of units in the finite population be denoted by N ,  
and throughout we will assume that the indices have been assigned to units 
as a random permutation of 1,. . . , N .  

It is important to realize that this assumption is nothing more than a 
notational convenience used to avoid confusion about the inferential con- 
tent of indices. Any information in the units’ labels or names can always be 
encoded explicitly as variables. That is, if there exists auxiliary information 
available on the units and we wish to incorporate it in our survey design or 
data analysis, then without loss of generality this information can be used 
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to create covariates or stratification variables. For example, suppose the 
units are people and the names of the people are considered to be 
informative because of indications of family ties and gender; then co- 
variates can be defined that encode gender and family ties from the names 
of the people, and the indices can be assigned as a random permutation 
with no loss of information. Or suppose the units are school districts and 
the size of the districts are to be used to make sampling decisions as when 
sampling with probability proportional to size; then size (or a function of 
size such as stratum indicators “large,” ccmedium,” “small”) can be a 
covariate available for each school district, and then again unit indices can 
be randomly assigned with no loss of information. 

2.2. VARIABLES IN THE FINITE POPULATION 

Two kinds of variables are defined in the finite population of N units. The 
first kind includes variables that describe characteristics of units that are of 
intrinsic interest to the investigator: covariates X and outcome variables Y. 
The second kind includes indicator variables that are needed to describe 
which values are observed and which are unobserved and to draw in- 
ferences for population quantities: sampling indicators I and response 
indicators R. Figure 2.1 displays the units by variables matrix in the finite 
population. 

Covariates X 

We will let X refer to fully observed covariates, such as stratum indicators 
or size of unit measurements, recorded for all N units in the yepulation: 

where X, will be a row vector if there exists more than one fully observed 
covariate. Often in practical problems, Xi wil l  have many components such 
as demographic characteristics available on each unit in the population. For 
example, letting the units be people where Xi = (Xil, Xi*, Xis), Xi, could 
indicate the gender of the ith unit (Xi, = 1 for male, Xi, = 0 fo- female), 
xi, could give the medium income in the ZIP code area of the residence of 
the ith unit (in dollars), and Xi, could indicate the education of the ith unit 
(Xi, = 1 for high school degree, Xi, = 0 for no high school degree). 
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Outcome sampling Response 
Covariates X Variables Y Indicators I Indicators R 

p 1 ... P q 1 ... p 1 ... 1 ... 

1 X,, .. . Xlq Y,, .. . Ylp Ill . - .  I lp  RIl .. . Rlp  
units . .  . .  . .  

. .  . .  in 
finite i x,, ... ,yq r;, . .-  y p  Ill . . . Ilp Ril . . . R I P  

. .  . .  

Figure 2.1. Matrix of variables in a finite population of N units. 

Outcome Variables Y 

We will let Y refer to variables whose values are not known for all units in 
the population: 

where as with X , ,  wil l  be a row vector if there exists more than one 
outcome variable. Usually Y will include only those variables of primary 
interest in the survey, such as individuals' earned income. In cases with 
background variables that are not fully observed, however, Y will include 
those variables as well, thereby leaving X fully observed. In order to focus 
on problems of nonresponse, we will assume that when a value for Y is 
observed, it is observed without error. 

Indicator for Inclusion in the Survey I 

The variable 

I = [ !  1, 

I N  

will be the indicator for inclusion/exclusion from the survey. In the case of 
just one outcome variable Y,  the indicator Z is binary, with Z, = 1 indicat- 
ing that the i th unit is included in the survey (i-e., an attempt was made to 
record y)  and Z, = 0 indicating that the ith unit is excluded from the 
survey (i.e., no attempt was made to record x). When represents more 
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than one variable, say p variables, I, is also a vector with p components, 
the j t h  component, I,,, indicating whether an attempt was made to record 
Y,, (I,, = 1) or not (I,, = 0). We assume that I is fully observed; that is, I,, 
is known for all units and variables. In a census, all components of I equal 
1; in a sample survey, some components of I are 0 by design. Thus, I is 
called the sampling indicator. 

In complex surveys with several levels of sampling, I reflects the result 
of all levels of sampling. For example, suppose the units are high school 
students in the United States, and that the students in the sample were 
chosen by first selecting a random sample of schools (the school each 
student attends being encoded in X), and then selecting a random sample 
of students within each selected school. Then I, = (0,. . . , 0) for all students 
in schools that are not selected at the first stage of sampling, and I, = 

(0, . . . ,0) for all students in selected schools who were not selected at the 
second stage of sampling; for students who are in schools selected at the 
first stage and who are selected at the second stage of sampling, at least 
some of the components of I, are not zero. 

Indicator for Response in the Survey R 

The variable 

will be the indicator for respondent or nonrespondent. In the case of just 
one outcome variable, R, is binary with R,  = 1 indicating that the ith unit 
will respond (i.e., Y, will be observed if an attempt is made to record 
Y,-that is, if Y, is included in the survey) and R, = 0 indicating that the 
i th unit will not respond (i.e., Y, will not be observed even if Y, is included 
in the survey). When Y, represents p variables, R, is also a vector with p 
components, the j t h  component R,, indicating response or not on Y,,. We 
assume that R,, is known whenever I,, = 1 and unknown whenever I,, = 0. 
That is, response status is known for all y, included in the survey and 
unknown for all Y,, excluded from the survey. Naturally, R is called the 
response indicator. 

Stable Response 

An assumption implicit in the representation summarized in Figure 2.1 is 
that the values of X, Y, and R for this survey are characteristics of the units 
in the population, and thus that their values cannot change as a function of 
which values were included in the survey. That is, (X, Y, R) in Figure 2.1 



PROBABILITY DISTRIBUTIONS AND RELATED CALCULATIONS 31 

takes the same value for all possible I .  If this were not true, repetitions of 
( X, Y, R )  would have to be used to represent the variety of (X, Y ,  R )  values 
that could be observed-for example, one set of values when half or more 
of the units in the population are included in the survey and a second set of 
values when less than half the units are included. This assumption of 
“stable response” is like that of “no interference between units” in experi- 
mental design (Cox, 1958, p. 19), or more generally, “stable unit-treatment 
values” in studies for causal effects (Rubin, 1980b). Nonresponse can be 
modeled without the stable-response assumption, but the job can be sub- 
stantially more demanding. 

Surveys with Stages of Sampling 

Even with the assumption of stable response, the representation of values in 
a survey summarized by Figure 2.1 is not formally adequate to fully 
describe surveys with several stages of sampling and nonresponse possible 
at each stage. For example, in two-stage sampling with schools as the 
clusters and students as the units, at the first stage of sampling, schools are 
drawn and the school principal may refuse to participate. At the second 
stage of sampling, students are drawn within the chosen clusters, and Y 
values are observed for the chosen students who are respondents in schools 
with respondent principals. Or in some sequential surveys, decisions regard- 
ing how many units to sample in the second stage are based on analyses of 
values observed at the first stage (e.g., the sample variance of outcome 
variables, the proportion of respondents in the sample). 

Although in general such multistage surveys require inclusion and re- 
sponse indicators for each stage of sampling, in many common cases the 
simple indicators I,, and R,, representing whether an attempt was made to 
observe y, and whether the attempt was successful are adequate to 
summarize essential features of the survey. Multiple imputation is applica- 
ble to surveys where this simple notation is not adequate, but the general 
notation is more cumbersome with no accompanying increase in the clarity 
of presentation of essential ideas concerning nonresponse. Hence, we re- 
strict our attention to situations where it is adequate to have one indicator 
for inclusion in the survey and one indicator for response. 

2.3. PROBABILITY DISTRIBUTIONS 
AND RELATED CALCULATIONS 

We let Pr( . ) indicate probability or probability density depending on 
context. Thus Pr(l) is the probability of a particular value of the sampling 
indicator I .  With one outcome variable, so that I ,  is binary, and a simple 
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random sample of size n, we have 

N N 
Pr(Z) = 1/( f) if Eli  = n and Pr(I)  = 0 if El i  # n. (2.3.1) 

1 1 

With one outcome variable whose N components are independent and 
identically distributed (i.i.d.) according to the standard normal distribution 
[i.e., the normal distribution with mean zero and variance one, N(0, l)], we 
have 

Conditional Probability Distributions 

We let Pr(-l a )  refer to conditional probability or probability density, 
depending on context. Thus Pr(l1X) is the probability of a particular value 
of the sampling indicator I given a particular value of the covariate X. 
Suppose we have only one outcome variable and only one covariate 
indicating size of the unit; further suppose each unit is independently 
chosen to be included in the sample with probability proportional to size, 
say with probability Xi/Xm,, where X,,, is the largest Xi. Then 

N 

Pr(I1X) = n(Xi /Xmux)4[ l  - (X,/XmUx)]’-’‘. (2.3.3) 
i-1 

For a second example of the notation, suppose that given the one 
covariate X, the N components of the outcome variable Y are independent 
normals with having mean Xi and variance 1. Then 

Probability Specifications Are Symmetric in Unit Indices 

As a reflection or formalization of the assumption of random indexing of 
units, all probability Specifications will be symmetric (or exchangeable) in 
the unit indices. That is, Pr(Al, . . ., AN) = Pr(A,,, . . . , A,,) where 
pl,. . . , pN is a permutation of 1,.  . . , N. The previous examples of probabil- 
ity specifications for Pr(Z) in (2.3.1), Pr(Y) in (2.3.2), Pr(l1X) in (2.3.3) and 
Pr(Y1X) in (2.3.4) all satisfied this condition. The following example does 
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not: 
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1 
0 otherwise. 

if I, = 1 for all even i and I, = 0 for all odd i 
Pr(I)  = { 

Bayes’s Theorem 

Bayes’s theorem is a standard tool of mathematical statistics. It is used to 
relate conditional distributions and marginal distributions. If A and B are 
two random variables with joint distribution Pr(A, B), then 

Pr( A ,  B )  = Pr( AIB)Pr( B )  = Pr( A)Pr( BIA) .  (2.3.5) 

Bayes’s theorem is usually stated as 

Pr( AIB) = Pr( A)Pr( BIA)/Pr( B ) .  (2.3.6) 

If there exists an additional variable, C,  being conditioned upon 

Pr( A ,  BIC) = Pr( AIB, C)Pr( SIC) = Pr( AIC)Pr( BIA, C) (2.3.7) 

and 

Pr( AIB, C )  = Pr( AIC)Pr( BIA, C)/Pr( SIC). 

Of course, marginal and joint distributions are related by 

and 

Pr(BIC) = /Pr(A, SIC) d~ (2.3.9) 

where / [ . I  ci.4 represents integration or summation over all possible values 
of A depending on whether A is continuous or discrete. Also, /Pr(A) d4 = 1 
and /Pr(AIB) dA = 1 for all B since distributions must sum to 1. 

For discussion of such relations and the use of Bayes’s theorem in 
applied inference, see, for example, Box and Tiao (1973, Section 1.2). 

Finding Means and Variances from Conditional Means and Variances 

Let E ( A )  represent the expectation (mean) of the scalar random variable A, 
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and V ( A )  represent the variance of A 

Also, let E(AIB)  represent the conditional expectation of A given a fixed 
value of B (a function of the value of B), 

and V( AIB) represent the conditional variance of A given a fixed value of B 
(also a function of the value of B), 

The notations E(AIB)  and V(AIB) wil l  always imply integration over all 
random variables except B. For example, if we introduce another random 
variable C, 

E ( A I B )  = //APr(A,CIB)dAdC 

and 

E ( A )  = ///APr(A, B,C)dAdBdC. 

Equations (2.3.10), (2.3.12), and Bayes’s theorem can be used to prove 
that the expectation of A equals the expectation, over the distribution of B, 
of the conditional expectation of A given B: 

E (  A )  = E [ E (  A ) B ) ]  . (2.3.14) 

That is, by (2.3.10) and (2.3.12), the assertion is that 

/ A  Pr( A )  dA = / [ / A  Pr( A ( B )  dA Pr( B) dB. i2.3.15) 1 
But the right-hand side of (2.3.15) is 

/ / A  Pr( AIB)Pr( B) dA dB, 
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which equals, by Bayes’s theorem, 
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j j A  Pr( A)Pr( BIA) dA dB, 

which equals 

where the factor in brackets is one for all A. 
Similarly, equations (2.3.11), (2.3.13), and Bayes’s theorem can be used 

to prove that the variance of A equals the sum of (a) the variance (over B) 
of the conditional expectation of A given B and (b) the expectation (over 
B) of the conditional variance of A given B: 

V( A )  = v [ E (  A ( B ) ]  + E [ v( AIB)]  . (2.3 -1 6) 

Equations (2.3.14) and (2.3.16) also hold when A is a vector random 
variable. Then E ( . )  is a vector of the same dimension and V ( - )  is a square 
variance-covariance matrix. Also, the quantities ( . ) 2  in equations (2.3.11) 
and (2.3.13) must be replaced by the outer product of the vectors, ( . ) f (  -), 
where ( a )  is a row vector. 

Equations (2.3.14) and (2.3.16) are very useful in many calculations, and 
we use them throughout this text. 

2.4. PROBABILITY SPECIFICATIONS 
FOR INDICATOR VARIABLES 

Probability specifications for the indicator variables Z and R are needed to 
draw inferences for unknown values in the finite population. We call the 
models for these specifications “mechanisms” rather than “models” to 
distinguish them from the more usual statistical models relating to the 
distribution of the variables A’, Y. 

Sampling Mechanisms 

The specification for Pr( ZI X, Y, R) is called the sampling mechanism. All 
formal frameworks currently used to draw inferences in surveys require an 
explicit or implicit description of the sampling mechanism. 
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The sampling mechanism is said to be unconfounded, or more precisely 
unconfounded with (Y, R )  if 

Pr(llX, Y, R )  = Pr(l1X) for all possible (X, Y, R ,  I). (2.4.1) 

If Pr(llX, Y, R )  depends on (Y, R), then the sampling mechanism is 
confounded+ with (Y, R). The sampling mechanism is unconfounded with 
R if 

Pr(IlX, Y, R )  = Pr(llX, Y) ,  (2.4.2) 

and unconfounded with Y if 

Pr(lJX, Y, R )  = Pr(IIX, R) .  (2.4.3) 

A sampling mechanism is said to be probability if it assigns positive 
probability to each yJ  being included in the sample: 

Pr(IIJ = lIX, Y, R )  > 0 for all ZIJ.  (2.4.4) 

If Pr(IiJ = llX, Y, R )  = 0 for some unit i and some Y variable j ,  then the 
sampling mechanism is not a probability sampling mechanism. 

Standard scientific sampling techniques are designed so that there will be 
one commonly accepted specification for Pr(IIX, Y, R). Often, it will be an 
unconfounded probability sampling mechanism, as defined by (2.4.1) and 
(2.4.4). Essentially, these simply imply first that the sampling mechanism 
can use observed X variables such as stratum indicators to choose samples 
but cannot use values of Y or R, and second that each value of Y in the 
population has a chance of being included in the sample. Thus, this 
definition of unconfounded probability sampling mechanisms includes 
standard scientific methods of sampling such as stratified random sampling, 
cluster sampling, and probability-proportional-to-size sampling but ex- 
cludes sequential sampling methods where sampling decisions depend on 
values of previously observed or R i j .  A definition of scientific sampling 
mechanisms appropriate to complex multistage or sequential surveys would 
allow dependence on Y, R, or I values observed from a previous stage; to 
be precise, such a definition would need notation for inclusion and response 
at each stage. 

+When the quantity being conditioned upon is a random variable, “unconfounded” is the 
same as “independent”; recently Dawid (1979) has used “independent” even when the 
quantity being conditioned upon is not a random variable, but statistical tradition (ie., in 
experimental design) has avoided “independent” in favor of “unconfounded” in such cases. 
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Examples of Unconfounded Probability Sampling Mechanisms 

A specific example of an unconfounded probability sampling mechanism is 
given by simple random samphg for scalar Y,, where Pr( ZlX, Y, R )  = Pr( I) 
is gven by equation (2.3.1). Another example of a simple unconfounded 
probability sampling mechanism that does not involve a covariate is 
Bernoulli sampling for scalar Y, with probability .1 of being included in the 
sample: 
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N 

Pr(ZlX, Y ,  R )  = Pr(I)  = n ( .1)f8(.9)1-f8.  (2.4.5) 
1-1 

A specific example of an unconfounded probability sampling mechanism 
involving a covariate is given by (2.3.3). For a similar example with scalar 
q, suppose X, > 0 is a scalar measure of size of the ith unit, where larger 
units are more likely to be included according to 

Pr( IIY, X, R )  = Pr(IlX) = . (2.4.6) 

Note that if size had not been observed for all units, size would have been a 
Y variable, not an X variable, and the resulting samphg with probability 
involving size would have been confounded. The important point is that 
either the values of variables used to make decisions about which units 
should be included in the sample-or summaries of these variables from 
which the probability of I can be calculated-must be recorded for the 
sampling mechanism to be unconfounded. 

The sampling mechanisms given by (2.3.1), (2.3.3), (2.4.5), and (2.4.6) are 
for scalar Y,. Commonly in practice, however, I is such that I ,  = 

( Z,l,. . . , ZIP) is either all ones or all zeroes, so that if a unit is included in 
the sample, all variables are included and if the unit is excluded, all 
variables are excluded. In this case with unconfounded sampling mecha- 
nisms, the distinction between Y, with one and many components is 
irrelevant to the definition of the sampling mechanism, and so (2.3.1), 
(2.3.3), (2.4.5), and (2.4.6) are examples of unconfounded probability sam- 
pling mechanisms for p-variate Y, (with the interpretation that Z, in the 
expression equals Z,l = = ZIP) .  With confounded sampling mecha- 
nisms and I, = (1,. .. ,1) or (0,. . . ,O), the distinction between scalar and 
p-variate is still relevant because the probability of selection could 
depend, for example, on Y,, but not on X 2 .  
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Examples of Confounded and Nonprobability Sampling Mechanisms 

In nonscientific surveys, the probability of being included in the sample 
might reasonably be considered to be correlated with q, for example, the 
more active sportsman may be more likely to be given a questionnaire 
asking the proportion of each day devoted to sporting activities (Y). For 
such a situation, Bernoulli sampling with probability of inclusion increasing 
with r, might be plausible, for example, 

Pr(IlX,Y, R )  = (2.4.7) 

Ths sampling mechanism is confounded with Y, but is a probability 
sampling mechanism if no 

For an example of a sampling mechanism confounded with R, consider 
a voluntary mail survey of an entire population, where the returned 
questionnaires are considered to constitute the sample survey; since respon- 
dents are included in the survey and nonrespondents are excluded, 

is zero. 

(2.4.8) 

For an example of an unconfounded nonprobability sampling mecha- 
nism, suppose a survey is taken by telephone in a population that includes 
some homes without telephones. If Xi is the number of telephones in the 
home and a census is attempted, then we have 

1 
0 otherwise. 

if I, = 1 when Xi > 0, and I; = 0 when X, = 0, 
Pr( I J X ,  Y, R )  = 

(2.4.9) 

Response Mechanisms 

In order to draw inferences when there is the possibility of nonresponse, 
standard frameworks, either explicitly or implicitly, require a specification 
Pr(RIX, Y). Because both R and I are N X p 0-1 indicator random 
variables, examples of specifications for Pr(I(X, Y )  are examples of specifi- 
cations for Pr(RIX, Y )  with the notational replacement of R for I. Most of 
our examples of sampling mechanisms were unconfounded with R and thus 
satisified 

Pr(IlX, Y, R)  = Pr(IIX, Y).  
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Consequently, with R j  in place of I,, the right-hand sides of (2.3.1), (2.3.3), 
(2.4.5), (2.4.6), (2.4.7), and (2.4.9) all provide examples of response mecha- 
nisms; for example, in (2.4.9), could be income in $100,000 increments, 
reflecting an increasing nonresponse rate with increasing income that might 
be plausible for describing nonresponse in an income survey. 

Furthermore, definitions analogous to those for unconfounded and prob- 
ability sampling mechanisms can be made for response mechanisms. If 

Pr(RIX, Y )  = Pr(RIX), (2.4.10) 

the response mechanism is said to be unconfounded. If 

Pr(R,,lX, Y )  > o for all i, j ,  (2.4.11) 

then the response mechanism is a probability response mechanism. With 
the notational replacement of R for I ,  (2.3.1), (2.3.3), (2.4.5), and (2.4.6) all 
provide examples of unconfounded probability response mechanisms if 
X,  > 0. An unconfounded probability response mechanism is just like 
another level of unconfounded probability sampling of the values included 
in the sample, where the resultant sampling indicators are I,,R,,. Usually, 
nonresponse cannot be realistically assumed to be unconfounded, and then 
assumptions about specific forms for the response mechanism can be 
crucial to appropriate adjustments for nonresponse. 

2.5. PROBABILITY SPECIFICATIONS FOR (X, Y )  

Thus far, we have discussed probability specifications for the sampling and 
response mechanisms. Together, these provide a specification for the joint 
conditional distribution of I and R given X and Y 

A natural question that arises is whether to complete the specification of 
distributions for the variables by adding a specification for the hstribution 
of (X, Y ) .  With randomization theory, the answer is no; with Bayesian 
theory, the answer is yes, and so we proceed to discuss Pr( X, Y )  and 
present illustrative Bayesian calculations using particular specifications. The 
full problem of Bayesian inference in a survey will be introduced in Section 
2.6. 
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de Finetti’s Theorem 

STATISTICAL BACKGROUND 

Because (X, Y)  is an N X ( q  + p) matrix of random variables, it might 
seem difficult to formulate a sensible distribution for it. This effort is greatly 
simplified by appealing to de Finetti’s theorem and its extensions (Feller, 
1966, p. 225; Hewitt and Savage, 1956; Diaconis, 1977). 

Suppose that we have specified a distribution for (X, Y), which 
by assumption of random assignment of unit indices, must be exchange- 
able in the unit (row) indices: Pr(X, Y) = Pr(row-perm(X, Y)) where 
row-perm(X, Y )  is any permutation of the rows of (X, Y). Then 
de Finetti’s theorem implies that Pr( X, Y )  can be written in a form where, 
given a vector parameter @ with marginal (prior) density Pr(@), the (X,, q),  
i = l , . .  ., N, are independently and identically distributed (i.i.d.) with 
common distribution f x y (  X,, x.10): 

(2.5.1) 

Equation (2.5.1) in fact might not hold exactly for some Pr(X, Y )  with 
continuous (X, Y )  and finite N (e.g., see Problem 25), but this makes little 
difference to practical model-building efforts. The result is of general 
importance because it means that standard tools of mathematical statistics 
employing i.i.d. models can be used to draw inferences with essentially no 
loss of generality. 

Some Intuition 

This conclusion on exchangeability and i.i.d. models is really intuitively 
somewhat obvious. Suppose we were faced with N observations that we 
knew arose from an exchangeable distribution, and we were asked to 
estimate the dependence between the observations or to decide if they arose 
from an i.i.d. model. Even when al l  the observations are nearly the same, 
how are we to distinguish between (a) an i.i.d. model with very small 
variance and (b) an exchangeable model with large variance but high 
correlation? Since we really can never rule out the i.i.d. model except under 
special cases with rigid assumptions, we may as well assume the simple i.i.d. 
structure and simplify our modeling efforts. 

Example 2.1. A Simple N o d  Model for yl: 

As a specific example of the use of i.i.d. modeling, suppose that r; is scalar 
and there is no X. Also, suppose that for i = 1,. . . , N, the distribution of 
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given 8 = ( p ,  a2)  is i.i.d. N ( p ,  a2), and that the prior distribution of 
( p ,  a’) has density proportional to a-’. Then the distribution of r = 

C r Y , / N  given Y, , .  . . , Y, is a r on n - 1 degrees of freedom with location 
j and scale s(n-’ - N-’)’’’, where J = X;Y,/n and s2  = C;(y, - j j ) 2 /  
( n  - 1). 

= (X;Y, + C:+lY,)/N and C;q 
is known, the critical calculation is to find the conditional distribution of 
C:+ ,Y, given Y,, . . . , Y,. Since gven ( p ,  a2, Y,, . . . , Y,), the Y,+, , .  . . , YN are 
i.i.d. N(p,u2) ,  the distribution of X;+,Y, given (p,a2, Y, ,..., Y,) is 
N((  N - n ) p ,  ( N  - n)02) .  By Lemma 2.1 below, the distribution of p given 
(a’, Y,, . . . , Y,)  is N ( j ,  02/n). Hence, given (a2, Y,, . . . , Y,), C:+,Y, is 
normal with mean E [ ( N  - n)pla2, Y,, . . . , Y,] = ( N  - n)j and variance 

+ ( N  - n ) a 2  = N ( N  - n)(a2/n). Consequently, given (a’, Y,, . . . , Y,) 
the distribution of = (njj + C:+,y) /N is normal with mean [nj + 
( N  - n ) j ] / N  = j and variance N - 2 [ N ( N  - n)o’/n] = (1 - n / N ) a 2 / n .  
Since by Lemma 2.1 the distribution of a2 gtven Y,, . . . , Y, is 
( n  - 1)s 2x;! ,, where x;! , is the the inverted x’ distribution on n - 1 
degrees of freedom, it follows that r is r on n - 1 degrees of freedom with 
location j and scale [ s2 (n- ’  - N-1)]1/2. 

The proof is straightforward. Because 

V [ (  N - n)pJa’, Y, ,..., Y,] + E [ ( N  - n)a’p2, Y, ,..., Y,] = ( N  - n ) 2 ( a 2 / n )  

Lemma 2.1. 

Suppose that given ( p ,  a’), Y,, i = 1,. . . , N are i.i.d. N ( p ,  a2)  and that the 
marginal (prior) distribution of ( p ,  a2) has density proportional to u-*; 
that is, suppose 

Distributions Relevant to Example 2.1 

N 

Pr( y , , .  . . , YNIp, a’) = n ( 2 a c ~ ~ ) - ~ / ~ e x p [  -(Y, - p)’/(2u2)] (2.5.2) 
r = l  

and 

Pr(p, a’) a a-’. (2.5.3) 

Then (i) the distribution of p given (a2, Y,, . . . , Y,) is N ( j ,  a’/n), where 
.ij = C;Y,/n; that is, 

Pr(pL(a2, Y, ,  . . . , Y,)  = ( 2 ~ a ~ / n ) - ~ ’ ~ e x p [  - ( p  - J)2/(202/n)] ; (2.5.4) 

(ii) the distribution of u2 given (Y , , .  . . , Y,) is ( n  - l)s2x;!, where s2  = 
C;( Y, - j ) 2 / (  n - 1) and x;!, is the inverted chi-squared distribution with 
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n - 1 degrees of freedom; that is, 

STATISTICAL BACKGROUND 

u2 > 0 (2.5.5) 

where 

The proof is straightforward. From (2.5.2), 

Pr( Y,, . . . , Y,Jp, u2) = fi ( 2 ~ u ~ ) - ’ / ~ e x p [  - (y. - p)’/(2u2)]. (2.5.6) 
1-1 

Since Pr(p, u21Yl,. . . , Y,) a Pr(Yl,. . ., Y,lp, u2)Pr(p, a’), (2.5.6) and 
(2.5.3) imply that 

Pr( p,  u21Y,,. . . , Y,) 

(2.5.7) 

x ( 0 ) -0 + n’2) exp[ -(n - l)s2/(2a2)].  (2.5.8) 

Expression (2.5.8) proves parts (i) and (ii) because the first factor is 
proportional to (2.5.4) and the second factor is proportional to (2.5.5). 

The reader unfamiliar with these calculations is referred to Box and Tiao 
(1973, Chapter 2, Section 4) or more specifically, Ericson (1969, p. 205). 

Example 2.2. A Generalization of Example 2.1 

Again suppose that y. is scalar and that there is no X, but drop the 
assumption of normality. That is, suppose that given 8, the Y,, . . . , Y, are 
i.i.d. where 8 has prior distribution p(t9). Let B(x.l8) = p and V(Y,l8) = 

u2, both finite functions of 8. Then the conditional expectation of P given 



PROBABILITY SPECIFICATIONS FOR (x, Y )  

Y , ,  . . . , Y,, is 

( n / W J  + (1 - n / W P  

where fi = E ( p J Y l ,  ..., Y,,), and the conditional variance of given 
Y, ,  . . . , Y,, is 

(1 - n/N) [o^2 /N + (1 - n/N)V(pIY, ,  

where a^* = E(a21Yl, .  . . , Y,,). 
The proof of lhis claim is straightforward. First, 
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By definition 

E CY Y,,  ..., Y,, =nj, ( : I  1 
and by conditioning on 8 we can write 

E L y l Y ,  ,..., Y, = E  E c Y , Y ,  ,..., Y,,,e Y, ,..., Y,, 
K 1  1 1 [ K1 1 11 1 

where the outer expectation is over 0 and the inner expectation equals 
( N  - n)p since given 8, Yn+,  ,..., Y, are i.i.d. with mean p and are 
independent of Y,, . . . , Y,. 

Thus 

E (  Fly, ,..., Y, )  = [ n j  + (N - n ) E ( p I Y , , . .  ., Y , ) ] / N .  

Next 

V ( W ,  ,..., Y,,) = v c r;. Y, )...) Y, / N 2 .  
(,,:1 I 1 

By conditioning on 8 we have 
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But given 8, Y,, l,. . . , YN are i.i.d. with mean p and variance (I and are 
independent of Y,, . . . , Y,. Thus 

v c r;. Y, )...) Y, = E [ ( N -  n)u21Y1 ,..., Yn] 
K l  I 1 

and so 

V(FlY,, ..., Y,) = [ ( N -  n)E(a21Yl ,..., y,) 

+ ( N  - n)2v(p lY1, . . . ,  Y , ) ] /NZ.  

Example 23. An Application of Example 2.2 The Bayesian Bootstrap 

Consider the following specification discussed in Ericson (1969) and Rubin 
(1981a). Let d = (dl,.  . . , d, )  be the vector of all possible distinct values of 
Y;, and let 8 = (el,.  .., 8,) be the associated vector of probabilities, 
Cdi = 1, where we suppose that Y,, . . . , Y, given 8 are i.i.d.: 

Pr( y; = d,le) = 8,. 

Suppose further the prior distribution on 0 is improper: 

K 

k - 1  
Pr(8) = n 8 ; ’  if E d , =  1,andOotherwise. 

We will call this the “Bayesian bootstrap” specification, following Rubin 
(1981a). 

Let nk = the number of &, i = 1 ,..., n, equal to d,, xfnk = n. The 
conditional distribution of 8 given Y,, . . ., Y,, Pr(81Yl,. . . , Y,), is then the 
( K  - 1)-variate Dirichlet distribution proportional to 

Under this specification, values d, that are not observed have zero prob- 
ability given ( Yl,  . . . , Y,). 

Let us apply the result in Example 2.2 in order to calculate the condi- 
tional mean and variance of ff given (Y,, . . . , Y,) under this model, which 
some would label “ nonparametric.” 
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The mean of r, given 8 is 
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and the variance of given 8 is 

K 

u 2  = c diek - p2. 
k - 1  

We need to find fi and s2,  the conditional means of p and u 2  given 
(Y,, . . . , Y,,), as well as the conditional variance of p given ( Y l , .  . . , Y,). 
From standard results on the Dirichlet distribution ( W a s ,  1963, p- 238), 
g i v y  ( Y ~ ,  :. . , Y,,), the mean of e is 6 = (n l , .  . . , nK)/n, the yaeance of 8 k  

Thus fi = xdk8k = ZdknJn = j ,  so that the conditional mean of Y given 
(Y l , .  . . , Y,,) is j just as with the normal specification of Example 2.1. Also 

is 8 k ( l  - 8k) / (n  + I), and the covariance of 8 k  and 8 k j  is - 8 k 8 k e / ( p  + 1). 

n 

= c y2 /n  - j 2  - V(p lY l , .  . . , Y,,) 
1 

= $2(1 - .-1 ) - V(plY1,. . ., y,) .  

Thus, the conditional variance of r given (Y,,  . . . , Y,) is 

(1 - n / N ) [ ( n  - l )s2/(nN) + V(pIY,,  ..., Y J N -  n - 1)/N]. 

But 
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Hence, from Example 2.2 and some algebraic manipulation, the conditional 
variance of given (Y,, . . . , Y,,) is s2( n - l  - W1)( n - 1)/( n + l), which 
is very nearly the same answer as with the normal Y specification of 
Example 2.1. 

Notice#that whenever E(plY, , .  . . , Yn) = J ,  V(pIY,,. . . , Y,,) A s2/n, and 
E(u21Y,, . . . , Y,,) A s 2  as hold in Example 2.3 for modestly large n, the 
result in Example 2.2 implies that the conhtional mean and variance of y 
given (Y,, . . . , Y,,) will be nearly the same as under the normal specification 
of Example 2.1. Pratt (1965), for example, argues that these approximations 
hold rather generally. 

Example 2.4. 

Suppose K and Xi are both scalar and (X,, x) are i.i.d. given the 
parameter 8. Also suppose that f x y ( X l ,  yl8) is factored into 
f y l x ( ~ I X 1 ,  8 , , , ) fx(Xild,)  where 8,,, and 8, are a priori independent 
functions of 8; r; given X, and By,, is N(BX,,(UX;)~) where the exponent 
g is known, and the prior distnbution of (&logu) has density 
proportional to a constant [i.e., Pr(P, a') a u- 1. Then the conditional 
distribution of r given X and Yl , .  . . , Y,, is t on n - 1 degrees of freedom 
with location 

yl: Approximately Proportional to Xi 

and scale 

where 

and 

(2.5.9) 

(2.5 -10) 

(2.5.11) 

(2.5.12) 
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To prove these results, we first find the distribution of N F  given 
(Yl , .  . . , Y,,), X and 8: 

n + l  n+l ) 

Next we find the posterior distribution of p given u. Since 

it follows that 

(yx,-g~x, e )  - N (  p ~ p ,  u 2 ) ,  

so that yX, -g  has a simple regression (through the origin) on X ) - g .  In this 
case with Pr(plu) a const, the conditional distribution of B given u and 
(Y,, . . . , Y,,) is normal, and standard least-squares computations provide the 
mean and variance (e.g., Box and Tiao, 1973, p. 115): 

( P I X ,  Yl,.. . )  Y,,, u )  - N (2.5.14) 

where 6 is given by (2.5.11). Combining (2.5.12) with (2.5.13), it follows 
that given u and (Y,, . . . , Y,,), N Y  is normally distributed: 

When the prior distribution on log u is proportional to a constant, u2/a2 
given (Yl,. . - ,  Y,,) has an inverted x 2  distribution on n - 1 degrees of 
freedom, where a^2 is given by (2.5.12), the usual residual mean-squares 
estimate from the regression of q X ; g  on X : - g .  Averaging (2.5.15) over the 
distribution of u 2  given (Yl ,  -. . , Y,) completes the proof (see also Box and 
Tiao, 1973, p. 117, and Ericson, 1969, Section 5, in particular). 
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2.6. BAYESIAN INFERENCE FOR A POPULATION QUANTITY 

Let the objective of a survey be the estimation of a function of Y, and 
possibly also of X, in the population, say Q = Q(X, Y). For example, Q 
could be the vector of mean incomes of families in each municipality, where 
income is a column of Y and municipality is encoded in a column of X. 
The quantity Q can be, without loss of generality, an exchangeable (possi- 
bly vector) function of the unit indices because the indexing of units, being 
random, implies that any population characteristic of interest must take the 
same functional form for all permutations of the indices. With scalar x, a 
common quantity of interest is the population mean ? = C Y q / N .  

Notation 

It helps to have a convenient notation to refer to the various components of 
Y and R that repeatedly appear in expressions. Let inc = ((i, j ) l I j j  = 1) 
so that K,,, indicates the components of Y included in the sample and R ;,,, 
indicates the components of R included in the sample; analogously define 
exc = {(i, j ) l I j j  = 0). In a slight abuse of standard notation, we let Y = 
(ync ,  Ye,,) and R = (R inc ,  Re,,). Both Ye,, and Re,,  are unobserved, 
since they are excluded from the sample; Rjnc  is always fully observed, but 
q,,, is only fully observed if there is no nonresponse. 

Let obs = {(i, j ) l I j j  = 1 and R i j  = l} so that YobS indicates the compo- 
nents of Y that are observed, that is, the components of q,,, with 
associated R . . = 1; analogously define mis = ((z,  j ) l I j j  = 1 and R . . = 0) 
so that YmjS indicates the components of Y that are missing, that is, the 
components of T,,, with associated R i j  = 0, q,,, = (Y0bs, Ymjs). Finally, let 
nob = {(i, j ) l I j ,  = 0 or R j j  = 0) so that Ynob = (Ye,,, Ymjs) indicates the 
not observed components of Y; Y = (Yoas, Ynob). 

and R j  are scalars, so that the j subscript is irrelevant, this 
notation refers in the obvious manner to the set of i subscripts; for 
example, mis = {ill, = 1 and R j  = 0). 

!J '! 

When 

The Posterior Distribution for Q( X, Y) 

A Bayesian inference for Q(X, Y) follows from its posterior distribution, 
that is, its conditional distribution given the observed values 
(X, Yobs, R I) calculated under specified models. Using the nota- 
tion we have established, we write this posterior distribution as 
Pr(QlX, Yobs, Rjnc ,  I). For example, if the posterior distribution for scalar 
Q is normal with mean 0 = Q<x, Yobr, R;,,~, I )  and variance u = 
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U( F, Yobs, R,,,, I ) ,  then an interval that includes Q with 95% probability 
is Q & 1.96U'/2. 

Specific examples of the conditional distribution of r given X and 
Yobs = (Yl,. . . , Y,) were given in Section 2.5. When obs = (1, .  . . , n} and 
the extra conditioning on R,,, and I in Pr(QlX, Yobs, R,,,, I )  can be 
ignored, these examples thus provide illustrations of Bayesian calculations 
for the posterior distribution of Q = r. We see in this section that this 
extra conditioning on R,,, and I can be ignored when both the sampling 
and response mechanisms are unconfounded. 

Relating the Posterior Distribution of Q 
to the Posterior Distribution of Ynob 

Since Q( X, Y )  is a function of observed values in (X, Yobs) and unobserved 
values in Ynob, the posterior distribution of Q can be calculated from the 
observed values (X, Yobs) and the posterior hstribution of Ynob: 

(2.6.1) 

where 

g(Q) = { YfloAQ(X~ Y )  = Q'}. 
General expressions for the posterior distribution of Ynob are simpler than 
those for Q since they do not involve the integration called for in equation 
(2.6.1). Consequently, we will proceed by considering the posterior distribu- 
tion of Ynob rather than that of Q, keeping in mind that the postenor 
distribution of Q can then be obtained from (2.6.1), which in particular 
cases is often easy to evaluate. 

The posterior distribution of Ynob can be written directly in terms of the 
specifications for (X, Y) and the sampling and response mechanisms as 
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where the probabilities are evaluated at the observed values of X, Yobs, R,,, 
and I; thus, in (2.6.2) and throughout this section, the value of 
(X, Yobs, Rinc, I) is fixed, as are the values of the sets inc, obs, nob, and 
mis. Throughout the text, when one of these sets of indices appears 
explicitly as the subscript of a variable being conditioned upon, that set of 
indices is implicitly being fixed. 

That is, the sampling mechanism is ignorable if the posterior distribution of 
Ynoh (and thus of Q) does not explicitly involve the particular specification 
for the sampling mechanism; in other words, for a fixed observed value of 
(X, Yobs, Rjnc ,  I ) ,  and fixed specifications for Pr(X, Y) and Pr(RIX, Y), the 
posterior distribution of Ynob will be the same for all ignorable sampling 
mechanisms. Since the right-hand side of (2.6.3) is the conditional distribu- 
tion of Ynob given (X, Yobs, R), (2.6.3) is the same as 

Pr(Y,,,IX, Yobs, R,,,, I )  = Pr(Y,,,IX, Yobs, R,,,). (2.6.4) 

It is important to keep in mind that the sets nob, obs, exc, and inc, which 
are functions of I and appear in the right-hand sides of (2.6.3) and (2.6.4), 
are fixed at their observed values even though I is not explicitly condi- 
tioned upon in these expressions. 

Result 2.1. An Equivalent Definition for Ignorable Sampling Mechanisms 

The sampling mechanism is ignorable at the observed values 
(X, Yobs, R,,,, I) if and only if 

Pr( IIX, Y, R,,,) = Pr( I l X ,  Yobs, R,,,) for all possible Ynob. (2.6.5) 
The equivalence of (2.6.5) and (2.6.4) follows immediately from Bayes's 

theorem applied to the joint distribution of I and Ynob given ( X ,  Yobs, R ,,,): 

Pr(IIX, '9 R t n c )  - - WYnobIX, Yobsr 'in,, 1 )  

Pr(IIX7 L s ,  R,nc) Pr(YnobIX, Yobsr Ran,) * 
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If the sampling mechanism is unconfounded, (2.4.1) holds for all values 
of (X, Y, R, I ) ,  and thus in particular (2.6.5) holds. Thus an unconfounded 
probability sampling mechanism is always ignorable. Confounded sampling 
mechanisms may also be ignorable, however. For example, a sequential 
sampling mechanism, where the decision about how many units to sample 
is based on an analysis of observed data from initial units in the sample, is 
confounded but is ignorable since Pr(IIX, Y, R) depends only on 
(X, Yobs, Rtnc). 

Ignorable Response Mechanisms 

The responre mechanism is said to be ignorable at the observed values 
(X, Yobs, R,,,, 1)  if 

(2.6.6) 

That is, the response mechanism is ignorable if the posterior distribution of 
Ynob does not explicitly involve the particular specification for the response 
mechanism; in other words, for a fixed observed value of (X, Yobs, R,,,, I), 
and fixed specifications for Pr(X, Y )  and Pr(IJX, Y, R), the posterior 
distribution of Ynob will be the same for all ignorable response mechanisms. 

Result 2.2. Ignorability of the Response Mechanism 
When the Sampling Mechanism Is Ignorable 

Suppose the sampling mechanism is ignorable at (X, Yobs, R,,,, I). Then 
the response mechanism is ignorable at (X, YobS, R,,,, I )  if and only if 

The proof of thls result is straightforward. Since the sampling mecha- 
nism is ignorable, by (2.6.5) the right-hand side of (2.6.6) equals 
Pr( X, Y)/j Pr( X, Y) dYnob, which is Pr( YnoblX, Yo,$). Thus, with ignorable 
sampling mechanisms, the definition of an ignorable response mechanism is 
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or, by (2.6.4) 
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which is equivalent to (2.6.7) by Bayes's theorem: 

Result 23. The Practical Importance of Ignorable Mechanisms 

When both the sampling and response mechanisms are ignorable, the 
posterior distribution of Ynob (and thus of Y,,, and Q) can be obtained 
from the observed values and the specification for Pr( X, Y): 

= Pr( X, Y)//Pr( X, Y )  dYnob. (2.6.9) 

The proof is immediate from (2.6.8). 
Drawing inferences from (2.6.9) ignores the processes that create missing 

data, that is, the sampling and response mechanisms. By Result 2.1, an 
unconfounded sampling mechanism is ignorable, and confounded but well- 
designed sampling mechanisms are also ignorable. Consequently, it is 
generally appropriate to regard the sampling mechanism as ignorable in 
scientific surveys. If, in addition, the response mechanism is unconfounded, 
it too is ignorable; that is, since 

an unconfounded response mechanism satisfies (2.6.7), and thus Result 2.2 
implies that the response mechanism is ignorable. Furthermore, confounded 
response mechanisms can be ignorable. For example, when nonresponse on 
the first component of bivariate depends on the second component, 
which is always observed, nonresponse is ignorable by (2.6.7). But generally 
it will not be appropriate to assume automatically an ignorable response 
mechanism, and thus not appropriate to draw inferences using (2.6.9); 
rather, generally we must use (2.6.2), or (2.6.3) if the sampling mechanism is 
ignorable. 
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Both the sampling and the response mechanisms can be considered to be 
processes that create missing data. Within the literature on parametric 
inference with missing data, the standard structure posits one model for the 
data given a parameter 8, say f(X, Yld), and another model for the 
missing-data indicators given (X, Y) and a missingness parameter Cp, say 
g( I, MIX, Y, Cp) where in terms of our notation, the missingness indicator 
M = { M I J }  = { I,,R,,} is fully observed like I, with (I, M) and (I ,  R,,,) 
one-one functions of each other. When the function g(I, MIX, Y, Cp) 
evaluated at the observed values of I, M, X and the observed components 
of Y does not depend on missing components of Y, Ynob, then the missing 
data are said to be missing at random (Rubin, 1976a). When in addition, 8 
and Cp are distinct-that is, u priori independent-then Theorem 5.2 in 
Rubin (1976a) shows that Bayesian inference can ignore the process that 
creates missing data and estimate 8 from f( X, Y(8), the prior distribution 
on 8,  and the observed values (X, Yobs). 

Within the context of Bayesian inference for Y, the combination of the 
missing data being missing at random and 8 and + being distinct is 
practically equivalent to ignorable sampling and response mechanisms. To 
see this, we first show that if 8 and + are a priori independent and the 
missing data are missing at random, then the sampling and response 
mechanisms are ignorable. In general 

Pr(YnoblX, yobs, R,,,, I) = Pr(Y,,,,IX, Yobs, M ,  I ) ,  

which, since 0 and Cp are u priori independent, can be written as 

Pr(Yno,IX3 T b s 7  R l " , ~  I) 

llf(x, Yl@g(I, MIX, y, Cp)Pr(Wr(+) 
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which is the definition of ignorable sampling and response mechanisms. 
Next, note that if the sampling and response mechanisms are ignorable and 
a particular Pr( X, Y) is specified for drawing inferences for Y, we can 
choose f( X, Y 10) and Pr( d )  such that 

and then choose g(Z, MIX, Y, +) such that the missing data are missing at 
random with + distinct from 8.  

2.7. INTERVAL ESTIMATION 

An interval estimate of Q is a region of k-dimensional space, where k is the 
dimension of Q, that (a) is a function only of observed values, 
( X, Yobs, R inc ,  I )  and (b) includes Q with a specified coverage rate between 
0 and 1, where the definition of coverage depends on the mode of inference. 
In many cases, the interval is centered at a point estimate of Q, and the 
coverage is set high enough so that in senses to be described, it is highly 
likely that the interval includes Q. For example, the standard nominal 95% 
interval estimate of scalar in a simple random sample with no possibility 
of nonresponse is 

j & 1.96s(n-' - N-l) '12  (2.7 .l) 

where n = C?Zj = the sample size, j = C?ZjY;/n = the sample mean, and 
s 2  = C?Zi( Y; - j)"( n - 1) = the sample variance. 

More generally, interval estimates of Q are often created from (a) a point 
estimate of Q, Q = Q ( X ,  Yobs, Rinc, I), (b) a statistic measuring the vari- 
ance of Q - 0, T = T ( X ,  Yobs, Rinc, I), and (c) an assumption of normal- 
ity: 

where for Q with k components, Q has k components and T is a k k 
matrix. The nominal coverage of an interval estimate of Q centered at Q is 
then the integral of the N(0, T )  distribution over the region defined by the 
interval. With interval (2.7.1), k is 1, Q is y, Q is j ,  T is s2(n-'  - N - ' ) ,  
and the nominal coverage is the integral from - 1.96T'12 to + 1.96T1I2 of 
the N(0,  T )  distribution-essentially 95%. 
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General Interval Estimates 

In full generahty, let C = C(X, Yobs, R,,,, I)  be an interval estimate of Q 
with coverage 1 - a, 0 I a 5 1, and let S(Q E C) be the indicator for 
whether C includes Q: 

1 i f Q E C ,  
0 otherwise. S(Q E C )  = { 

Then the coverage 1 - a satisfies 

E[S(Q E C ) I A ]  = 1 - (2.7.2) 

where the values being conditioned upon, A, depend on the mode of 
inference; for Bayesian inference, A equals the observed values 
(X, Yobs, R,,,, I), whereas for randomization-based inference, A equals the 
fixed population values (X, Y, R )  or possibly just (X, Y ). Thus the coverage 
of an interval estimate of Q is the conditional probability that the interval 
includes Q. 

Bayesian Posterior Coverage 

The Bayesian posterior coverage of C for Q is defined to be the posterior 
probability that Q E C: 

or 

where Prob{ BIA}  is the conditional probability of event B given event A. 
When the sampling mechanism is ignorable, Pr(QlX, Yobs, R,,,, I) in (2.7.4) 
can be replaced by Pr(QlX, Yobs, R,,,), with the understanding that the sets 
obs and inc are being implicitly fixed even though I is not being explicitly 
conditioned upon. The posterior coverage probability of C can also be 
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written directly in terms of the posterior distribution of Ynob using (2.6.1): 

Since Q = Q(X, Y) depends on unobserved Ynob, and C = 

C(X, Yobs, R j n c ,  I) involves only observed values, the random variable in 
the expectation in (2.7.3) used to define the posterior probability coverage is 
Q, the quantity to be estimated. Posterior probability coverage depends on 
the observed values, the particular interval C, the quantity to be estimated 
Q, and the joint specification for the random variables (X, Y, R, I). 

A Bayesian lOo(1 - a)% posterior interval estimate of Q has the direct 
frequency interpretation that in loO(1 - a)% of the situations having (i) the 
same essential survey conditions (as summarized by the model specifica- 
tions) and (ii) the same observed values, Q will be included in the interval. 

Example 2.5. Interval Estimation in the Context of Example 2.1 

Consider Example 2.1 with Yobs = (Y,, . . . , Yn), and suppose ignorable 
sampling and response mechanisms that yield n > 1, so that the posterior 
distribution of is t on n - 1 degrees of freedom with location j j  and 
scale s(n-' - N-')'12. Then the interval 

(2.7.5) 

where ~ , - ~ ( a / 2 )  is the upper 100a/2 percentage point of the standard t 
distribution on n - 1 degrees of freedom, has constant probability coverage 
1 - a for all possible observations. The t distribution for samples with n 
modestly large, say greater than 10, can be approximated fairly well by a 
normal distribution so that the probability coverage of interval (2.7.1) is 
close to 95% in such cases. 

Fixed-Response Randomization-Based Coverage 

Posterior probability coverage is not the measure of coverage that most 
survey practitioners have been trained to use. Commonly, survey practi- 
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tioners have been trained using randomization-based inference, as described 
in Cockan (1977), Hansen, Hurwitz, and Madow (1953), Kish (1965), and 
other more recent textbooks on the practice of sample surveys. In this 
approach, coverage is defined in terms of performance in repeated drawings 
from the same population using the same unconfounded probability sam- 
pling mechanism. Generally, the fixed-response randomization-based cover- 
age of interval C = C(X, Yobs, R,,, ,  1) for Q is defined to be 

Prob{Q E ClX, Y, R }  = E [ S ( Q  E C ) ( X ,  Y ,  R] 

= /S(Q E C)Pr(llX, Y, R )  dZ, (2.7.6) 

where Pr( Z l X )  rather than Pr(llX, Y, R) can be used in (2.7.6) when the 
sampling mechanism is unconfounded; Prob{Q E ClX,  Y, R}  in (2.7.6) is 
called the fixed-response randomization-based coverage of C for Q because 
(a) R, response, is being treated as fixed, just as is (X, Y), and (b) the 
coverage is over the possible randomizations defined by the sampling 
mechanism. Notice from (2.7.6) that in contrast to posterior probability 
coverage, with randomization-based coverage the random variable in the 
expectation is the interval C-which depends on I, rather than the quantity 
Q-which is being treated as fixed since it involves only (X, Y). Fixed- 
response randomization-based coverage depends on Q, C, the specification 
for the sampling mechanism, and the specific values of ( X ,  Y, R). 

Fixed-response randomization-based coverage directly addresses the fol- 
lowing question: suppose the population is such that ( X ,  Y, R )  takes on 
specific hypothesized values, and we intend to estimate Q using interval C 
from samples drawn using sampling mechanism Pr(ZlX, Y, R)-then what 
is the probability that C will include Q? If for the chosen Pr(llX, Y, R), 
Prob( Q E Cl X, Y, R } is large, say at least 95%, for a range of hypothesized 
values of (X, Y,  R )  considered reasonable at the design stage, then the 
investigator who decided to estimate Q using C from the survey would be 
at least 95% confident that the value of C to be observed would include Q. 
In such a case, the observed value of C is called a 95% confidence interval 
for Q. 

With no possibility of nonresponse ( Rij = l), interval (2.7.1) is generally 
considered a 95% confidence interval for scalar F when the population Y, 
values are not long-tailed and simple random sampling is being used. That 
is, it is commonly asserted that in 95% of the (i) possible simple 
random samples from a fixed population, the observed intervals J k  
1.96s(n-l - N - l ) l / *  will include the fixed but unknown F. The justifica- 
tion for interval estimates of this form is an appeal to the central limit 
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theorem effect with large samples from large populations (Madow, 1948; 
Hijek, 1960). 

Random'-Response Randomization-Based Coverage 

When nonresponse is possible, it is convenient to extend randomization 
inference to include a specification for the response mechanism, Pr(RIX, Y), 
and then define the coverage of C for Q as 

Prob{ Q E CIX, Y }  = E[S(Q E C ) l X ,  Y] 

= //S(Q E C)Pr(ZlX, Y, R)Pr(RIX, Y )  dIdR 

= /Prob{Q E CIX, Y, R}Pr(RIX, Y )  dR (2.7.7) 

where Pr( Z I X, Y, R ) can be replaced by Pr( I I X) if the sampling mechanism 
is unconfounded, and Pr(RJX, Y) can be replaced by Pr(RJX) if the 
response mechanism is unconfounded; Prob{Q E ClX, Y }  in (2.7.7) is 
called the random-response randomization-based coverage of C for Q. 
Again, C is the random variable in the expectation of S(Q E C); Q = 
Q( X, Y )  is fixed since X and Y are fixed. 

Random-response randomization-based coverage directly addresses the 
following question: suppose the population is such that (X, Y) takes on 
specific hypothesized values and nonresponse is created according to the 
response mechanism Pr(RIX, Y); further suppose that we intend to esti- 
mate Q using interval C from samples drawn using the sampling mecha- 
nism Pr(ZlX, Y, R)-what is the probability that C wi l l  include Q? 
If for the chosen Pr(ZlX, Y, R) and the hypothesized Pr(RIX, Y), 
Prob{Q E ClX,  Y ]  is at least 95% for a range of values of (X, Y) consid- 
ered reasonable at the design stage, then assuming the propriety of the 
specification for the response mechanism, the investigator who decides to 
estimate Q using C from the survey would be at least 95% confident that 
the value of C to be observed would include Q. In such a case, the observed 
value of C is called a 95% random-response confidence interval for Q. 

Nominal versus Actual Coverage of Intervals 

In applied inference, interval estimates nearly always should be regarded as 
approximate in the sense that their associated coverages are nominal and 
not exactly correct. For instance, we have seen that interval (2.7.1) can be 
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regarded as a nominal 95% Bayesian probability interval for P under the 
conditions of Example 2.5 by approximating the t posterior distribution of 
Q by a normal distribution. In fact, interval (2.7.1) is often regarded as a 
nominal 95% Bayesian probability interval for when no particular 
specification for Pr(Y) is made; the justification for such an assertion is 
the result in Example 2.2, concerning posterior moments, combined with 
the discussion following Example 2.3 and the normal approximation to the 
posterior distribution motivated in Section 2.10. In the absence of nonre- 
sponse, we have seen that the same interval (2.7.1) is commonly regarded as 
a nominal 95% randomization-based interval for Y in simple random 
samples, even though the exact randomization-based coverage of the inter- 
val will depend on the exact values in Y. In other cases, interval estimates 
for Q may be derived ignoring the response mechanism even when it is 
known that this assumption is not entirely appropriate; the extra effort 
required to build an appropriate nonignorable response mechanism and 
analyze data under it might not be considered to be worth the effort. 

2.8. BAYESIAN PROCEDURES FOR CONSTRUCTITVG 
INTERVAL ESTIMATES, INCLUDING SIGNIFICANCE 
LEVELS AND POINT ESTIMATES 

There are two rather standard Bayesian procedures for constructing interval 
estimates of a population quantity Q. The first fixes the coverage rate 1 - a 
in advance and determines C to include the most likely values of Q 
totalling 1 - a posterior probability, where “most likely” is usually defined 
as highest posterior density. The second procedure fixes a null value of Q in 
advance, say Q,, determines C by the collection of values of Q more likely 
than Q,, and calculates the coverage 1 - a as the posterior probability of 
this C; the resultant a is commonly called the significance level of the null 
value Q,. 

Highest Posterior Density Regions 

Very commonly interval estimates of Q are designed to include the most 
likely values of Q, values within the interval being considered plausible and 
values outside the interval being considered implausible. The standard 95 S 
interval for r, expression (2.7.1), is an example of such an interval. The 
standard Bayesian procedure for creating an interval of this type is to fix 
1 - a in advance, say at 95%, and determine C as the collection of values 
of Q such that (i) the posterior probability that Q E C is 1 - a, and 
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(ii) every point in C has higher posterior density than every point out- 
side C: 

where d(Q) is the posterior density at Q, d(Q) = Pr(QlX, Yobs, R,,,, I). 
When the posterior distribution of the k-dimensional row vector Q is 

normal with mean Q and variance T, highest posterior density regions are 
easily constructed as follows: for fixed coverage 1 - a, C is the set of all Q 
such that 

(Q - Q)T-’(Q - 0)‘ < x i ( a )  (2.8.3) 

where x i ( a )  is the l0Oa upper percentage point of the chi-squared distri- 
bution on k degrees of freedom. This follows from basic distribution 
theory because if (Q - Q) - N(0, T) where Q is k-dimensional, then 
(Q - Q)T-l(Q - Q)‘ is distributed as x 2  on k degrees of freedom. 

More generally, suppose (Q - 0) is multivariate t with scale T112 and Y 
degrees of freedom. Then, for fixed coverage 1 - a, C is the set of all Q 
such that 

(Q - Q)T-’(Q - 0)‘ < kF,,,(a) (2.8.4) 

where Fk, ,( a) is the 100a upper percentage point of the F distribution with 
k and Y degrees of freedom. 

More discussion of such highest posterior density regions is given in Box 
and Tiao (1973, pp. 121-126). 

Significance Levels-p-Values 

In many statistical analyses there is one value of the quantity Q( X, Y) that 
is of particular interest. For example, let Q be the vector of male-female 
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differences in average incomes across 10 occupational strata in the popu- 
lation. Suppose it is of interest to summarize evidence concerning the null 
value Q, = (0,. . . ,0) representing no difference in average incomes within 
strata. From the Bayesian perspective, one way to summarize such evidence 
is to calculate a highest posterior density region for Q with a fixed in 
advance and C determined by the most likely values of Q, and see whether 
or not Q, is inside this region. A closely related method creates an interval 
estimate of Q where neither the region C nor the coverage a is fixed in 
advance, but both are determined by Q ,  and the posterior distribution of 
Q. Specifically, partition the possible values of Q into (i) those values of Q 
that have higher posterior density than Q, and (ii) those values of Q that 
have posterior density no higher than Q,, and then calculate the posterior 
probability that Q is in the first group. Using the simplified notation in 
(2.8.2), for fixed Q,, C and then a are determined by 

C = { Qld(Q) > ~ ( Q o ) }  and Prob{ CIX, YobsI Rjnc, I }  = 1 - a 

or leaving the definition of C implicit, 

Prob{ d(Q) > d(Qo)lx,  Yobsr R j n c r  I }  = 1 - 0.  (2.8.5)  

The higher this posterior probability, 1 - a, the less believable is Q, or 
values near it; a can be called the Bayesian significance level or p-value of 
the null value Q,. Figure 2.2 depicts this quantity, 

p-value{ Qolx, Yobsr R,,,,  1 )  = Prob{ d ( Q )  5 d(Qo)lx,  Yobs, Rinc, I}. 

(2.8.6) 

With normal posterior distributions, the significance level of Q, is given 
by 

p-vdue{ QOlx, Yobs, Rinc, I }  = PrOb(X: > (Qo - Q)T-'(Qo - a) ' )  
(2.8.7) 

where x i  is a x2 random variable on k degrees of freedom. With t 
posterior distributions, the significance level of Q, is given by 

P-valUe{ Qolx, Yobsr Rinc, I }  

= Prob(F,,, > (Q, - h)T-'(Q, - $ ) ' / k )  (2.8.8) 

where Fk," is an F random variable on k and Y degrees of freedom. 
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I 

Figure 2.2. Contours of the posterior distribution of Q with the null value Q, indicated. The 
significance level of Qo is the posterior probability that Q is in the shaded area and beyond. 

Point Estimates 

A common applied objective is to produce one value for the unknown Q 
that “best” summarizes its unknown value. With symmetric unimodal 
posterior distributions, such as the normal or 1, the obvious point estimate 
is the center of symmetry, which is the center of all 1 - a highest posterior 
density intervals as well as the limit of those intervals as a + 1, that is, the 
posterior mode. With asymmetric posterior distributions, there is no such 
obvious choice, the posterior mean and median being common alternatives 
to the mode. To decide which point estimate is “best” requires a definition 
of “best,” which usually entails consideration of a loss function (e.g., the 
posterior mean minimizes squared-error loss). 

2.9. EVALUATING THE PERFORMANCE OF PROCEDURES 

Suppose that C is an interval estimate of Q with nominal Bayes posterior 
probability coverage 1 - ab, with nominal fixed-response randomization- 
based coverage 1 - a,, and with nominal random-response randomization- 
based coverage 1 - ar. How should these nominal levels be evaluated? 
With one sample from one population, the answers are: compare 1 - ab 
with Prob{ Q E ClX,  Yobs, Rino I} under the correct specifications for 
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Pr( X, Y), Pr( RIX, Y) and Pr( ZlX, Y, R); compare 1 - a/ with Prob{ Q E 
ClX, Y, R} under the correct specification for Pr(llX, Y, R) and the true 
values of X, Y,  R in the population; and compare 1 - a, with Prob{ Q E 
CI X, Y } under the correct specifications for Pr( R I X, Y )  and Pr( Z I X, Y, R ) 
and the true values of X, Y in the population. 

A Protocol for Evaluating Procedures 

These comparisons, however, are not ideally suited for producing general 
summary advice concerning the propriety of the procedure used to con- 
struct the interval estimate since each comparison conditions on features 
specific to the particular sample or population. For a general evaluation of 
procedures for constructing intervals, a commonly accepted protocol is to 
(i) generate a sequence of populations and samples representative of those 
to which the procedure used to construct interval C might be applied to 
estimate Q, (ii) calculate the coverages Prob{Q E ClX, Yobs, R,,,, I } ,  
Prob{ Q E ClX, Y, R), and Prob{ Q E ClX, Y } over the sequence, and (iii) 
see how close each coverage typically is to 1 - ab, 1 - a,, and 1 - ar, 
respectively. The sequence of values of (X, Y) in the populations will be 
generated according to the specification for Pr( X, Y); then for each (X, Y) 
generated, nonresponse R will be generated according the response 
mechanism Pr(RIX, Y); and finally, for each (X, Y, R), samples will 
be drawn according to the sampling mechanism Pr(ZlX, Y, R). Then 
Prob{ Q E ClX,  Yobs, R,,,, Z} will be calculated for each sample using the 
specifications used to generate the data; Prob{Q E ClX, Y, R} will be 
calculated for each population using the values of (X, Y, R) drawn for that 
population and the specification for Pr( ZI X, Y, R); and Prob{ Q E ClX, Y } 
will be calculated for each population using the values of (X, Y) drawn for 
that population and the specifications for Pr(ZJX, Y, R)  and Pr(RIX, Y). 

Ideally, the Bayesian would find that Prob{ Q E ClX, Yobs, R,,,, Z} = 
1 - ab for all samples; minimally, the Bayesian would hope that the 
average value of Prob(Q E ClX, Yobs, R,,,, Z} would be close to the nomi- 
nal coverage of C ,  1 - ab. Similarly, ideally the fixed-response randomiza- 
tion-based coverage of C ,  Prob{ Q E ClX, Y, R} would be identical to 
1 - a/ for all populations of (X, Y, R), but minimally, the average value of 
Prob{ Q E ClX, Y, R} should be close to 1 - a/. Finally, ideally, the 
random-response randomization-based coverage of C, Prob{ Q E ClX, Y } 
should be close to 1 - a,. If the nominal level of C equals the average 
coverage of C, the interval estimate is called gZobaZb calibrated, where the 
definition of coverage of C and thus calibration depends on the mode of 
inference. For example, the Bayesian’s interval estimate is globally calibrated 
if 1 - ab = E[Prob{ Q E ClX, Yobs, R,,,, Z}]. The following result implies 
that if a Bayesian, a fixed-response randomization-based advocate and a 
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random-response randomization-based advocate all estimate Q using inter- 
val C with nominal coverages 1 - a b ,  1 - a,, and 1 - a,, respectively, and 
all are globally calibrated over the same sequence of events, then the 
nominal coverages are the same: 1 - = 1 - a, = 1 - a, = 1 - a. 

Result 2.4. The Average Coverages Are All Equal 
to the Probability that C Includes Q 

E[Prob{ Q E CJX, Yobs, Rinc,  I } ]  = E[Prob{ Q E CIX, Y ,  R } ]  

= E[Prob{ Q E CIX, Y ) ]  

= Prob{ Q E C} (2.9.1) 

The fact that the average coverages, no matter how coverage is defined, are 
equal is easy to prove. Simply recall that each coverage can be written as 
E[S(Q E C)JA] where A = (X, Yobs, Rinc, I), ( X ,  Y ,  R ) ,  and ( X ,  Y )  for 
Prob{ Q E ClX, Yobs,Rinc,I} ,  Prob{ Q E ClX, Y , R }  and Prob{ Q E ClX, Y } ,  
respectively. Then realize that the average value of E[6(Q E C)IA]  over 
repeated drawings from Pr(IIX, Y, R)Pr(RIX, Y)Pr(X, Y )  is simply 
E{E[S(Q E C)] lA}  = E[S(Q E C)] = Prob{Q E C}. 

Further Comments on Calibration 

As a consequence of Result 2.4, we can say that an interval estimate of Q, C 
with nominal coverage 1 - a is globally calibrated if 

1 - a = Prob{Q E C}, (2.9.2) 

and not worry about which definition of coverage is being used. Similarly, 
we can say that the interval estimate is conservatively (globally) calibrated 
if Prob{ Q E C} > 1 - a.  

Such global calibration, averaging over the full sequence of possible 
populations and samples generated by Pr( I1 X Y,  R)Pr( R I X, Y)Pr( X, Y ), is 
actually a rather weak requirement. Ideally, an interval estimate would be 
calibrated for all identifiable sequences, that is, for all populations and 
samples that can be identified on the basis of observed values 
(X, Yobs, Rinc,  I ) .  To see why, suppose C with nominal level 95% is 
globally calibrated, but in a particular situation that can be identified with 
Yobs, is uncalibrated with coverage far less than 95%. When such a YobS 
occurs, it would be practically misleading to assert 95% coverage for C. For 
example, consider the nominal 95% interval (2.7.1) and suppose that is 0 
or 1; when j = 0, then interval (2.7.1) is simply the point 0, and it would 
usually be practically misleading to assert that the observed value of 
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interval (2.7.1), (0,0), has 95% coverage for F even if interval (2.7.1) is 
nearly calibrated globally under Pr(IlX, Y, R)Pr(R(X, Y)Pr(X, Y). 

Obviously, it would be ideal to be calibrated in all identifiable subse- 
quences of samples and populations; that is, for the interval estimate C 
with nominal coverage 1 - a, ideally we could hope that 

Prob{ Q E CIX, Yobs, R,,,, I} = 1 - a (2.9.3) 

for all possible values of (X, Yobs, R,,,, I). Since the left-hand side of 
(2.9.3) is the Bayesian posterior probability coverage of C, the Bayesian 
who does an exact analysis under the correct model to create C as a 
100(1 - a)% interval for Q will be absolutely calibrated in the sense of 
(2.9.3). Without absolute calibration, there will, in principle, exist identifi- 
able situations in which the nominal coverage will be too high or too low 
under the full specification Pr( X, Y )Pr( R I X ,  Y )Pr( I I X, Y, R). Neverthe- 
less, because of the approximate nature of applied inference, absolute 
calibration is hopeless except possibly in the simplest situations. More 
realistically, we can hope to be calibrated conditional on some many-one 
function of the observed values, h(X, Yobs, R,,,, I), which summarizes 
important characteristics of the data: 

Prob{ Q E C ( h (  X, Yobs, Rinc ,  I)} = 1 - a. (2.9.4) 

The coarsest form of conditional calibration is simply global calibration 
(2.9.1) and the fmest form is absolute calibration (2.9.3). 

2.10. SIMILARITY OF BAYESIAN AND RANDOMIZATION-BASED 
INFERENCES IN MANY PRACTICAL CASES 

The results and discussion of Section 2.9 suggest the idea that in many cases 
Bayesian and randomization-based inferences should be practically similar. 
For example, in a sample with no possibility of nonresponse and without 
covariates, the standard interval for F, j f 1.96s(n-' - can be 
easily justified from the randomization perspective as an approximate 95% 
confidence interval and from the Bayesian perspective as an approximate 
95% probability interval, as was seen in Examples 2.1-2.3 and suggested by 
Problems 7 and 10. The fact that many intervals in finite population 
inference besides j f 1.96s(n-' - N - l ) l I 2  can be interpreted as either 
Bayesian probability intervals or randomization confidence intervals with 
the same nominal percent coverage, has been demonstrated in contexts with 
no possibility of nonresponse by Ericson (1969), Scott (1977), and Binder 
(1982), and illustrated here by Example 2.4 and Problems 11-14. 
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Standard Asymptotic Results Concerning Bayesian Procedures 

Standard asymptotic results in mathematical statistics (see, e.g., Cox and 
Hinkley, 1974, Chapters 9 and 10 and their references) can be used to 
support the idea that interval estimates derived from the Bayesian perspec- 
tive should be approximately calibrated from the random-response random- 
ization perspective. The basic case for these standard results has Z,, . . . , 2, 
given 8 as i.i.d. h(ml8) where 8, is the true value of 8. Given observed 
Z,, . . . , Z,,, let 8 and T be the posterior mean and variance (covariance) of 
8, based on the correct model h(el8) with a prior distribution on 8 that has 
positive density around 8 = 8,. 
Them under very weak regularity conditions, and in senses that can be 

made precise, as n + oc, 

( ( 8  - ~ ) T - ~ / ~ I Z , , . . . ,  z,,) -+ N(O,I) (2.10.1) 

where I in (2.10.1) is the k X k identity matrix for 8 with k components; 
thus the posterior distribution itself tends to be normal, with (8 - e^)T-'l2 
having a standard normal distribution given data Z,, . . . , 2,. 

Furthermore, over repeated samples of size n, (i) the distribution of the 
posterior mean tends to a normal mstribution with mean 8,; 

(818 = eo) + iv(e,, v(8p = e o ) ) ,  (2.10.2) 

and (ii) the distribution of the posterior variance tends to be centered at the 
variance of the posterior mean with lower-order variability than the pos- 
terior mean 

( q e  = 8,) -+ (v( die = e,) ,  << v( 818 = e , ) ) ,  (2.10.3) 

where A --f (B, C) means that the distribution of A tends to be centered 
at B with each component having variability substantially less than each 
positive component of C. 

As a consequence of (2.10.2) and (2.10.3), the sampling distribution of 
(8 - 60)T-'/2 under h ( a l 8  = e0) tends to a standard normal: 

((8- eo)T-1/21e = eo) -+ N(o,I). (2.10.4) 

Therefore, a Bayesian using (2.10.1) to assess the probability content of an 
interval estimate will arrive at the same values as the frequentist using 
(2.10.4) to evaluate the confidence coefficient of the interval estimate, 

Extensions of These Standard Results 

Actually, these conclusions hold under far more general conditions than the 
simple setup with i.i.d. observations from a model whose form is known. 
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Thus the normality of the posterior distribution in (2.10.1), and of the 
sampling distribution of the posterior mean in (2.10.4), hold in a very broad 
variety of other cases with the wrong model used for analysis. Also, the 
limiting equivalence of the posterior variance of 8 and the sampling 
variance of the posterior mean in (2.10.3) holds very widely, and the 
expectation of the posterior mean under the true model is often asymptoti- 
cally equal to the estimand of interest as in (2.10.2) (see, e.g., Huber, 1967, 
and interpret maximum-likelihood estimates as posterior means with nor- 
mal posterior distributions). 

The trick in applying these asymptotic results on i.i.d. sampling from an 
infinite population to our problem with a sampling mechanism, a response 
mechanism, and finite N is to imbed our variables 2 = (X, Y, R,  I) in a 
sequence with N + M, and formulate the sampling distributions of statis- 
tics using the random-response framework; a recent reference indicating the 
type of theory involved is Mitra and Pathak (1984). 

Practical Conclusions of Asymptotic Results 

The practical conclusion of the asymptotic results just presented is that 
both randomization and Bayesian inferences are usually based on the 
normal approximation ( Q  - Q) - N(0,  T) with the same or similar statis- 
tics Q and T. Although the theoretical interpretations are different since the 
Bayesian statement is conditional on (X, Yobs, R,,,, I) whereas the random- 
ization-based statement is conditional on (X, Y), the practical inferences 
will thus often be essentially the same. 

In a practical sense, a randomization inference that does not have an 
interpretation as an approximate Bayesian inference is not to be trusted 
inferentially since it does not then represent a fair assessment of the state of 
knowledge about the unknown Q under any model. Similarly, with stan- 
dard scientific surveys, a Bayesian inference that does not have an interpre- 
tation as an approximate randomization inference is usually not to be 
trusted because one then could not describe an objective experiment with 
the population verifying that Bayesian inferences constructed in an analo- 
gous way are approximately calibrated. 

Relevance to the Multiple-Imputation Approach to Nonresponse 

The importance of these conclusions for the multiple-imputation approach 
to nonresponse is that they allow us usually to interpret an interval estimate 
for Q derived for a standard survey setting without nonresponse as both an 
approximate randomization confidence interval and an approximate Bayes- 
ian probability interval with the same nominal coverage. Most familiar 
complete-data inferences are justified by randomization theory arguments, 
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but making the Bayesian interpretation allows us to use general and 
powerful Bayesian machinery to adjust the complete-data interval in the 
presence of nonresponse. More precisely, since the Bayesian position re- 
quires the specification of models for Pr(X, Y), the inclusion of a specific 
model for the response mechanism, Pr(RIX, Y), creates no conceptual 
problem for the Bayesian as was seen in Section 2.6. In particular, given 
specified models, the Bayesian framework tells us how to create multiple 
imputations for nonresponse and how to average over the imputed values to 
create one final inference for Q. Again appealing to the dual interpretation 
of interval estimates, t h i s  final inference can then be viewed as either a 
Bayesian inference or a random-response randomization inference. This 
plan is theoretically justified in Chapters 3 and 4. Of course, t h i s  general 
perspective is only a guide for practice. Particular procedures created by 
following this pathway must be carefully evaluated in realistic situations 
before they can be unequivocally endorsed for practice. 

PROBLEMS 

1. 

2. 

3. 

4. 
5. 

6. 

Describe the difference between outcome variables Y and covariates 
X, give a specific example of a survey with both, and describe the 
purpose of recording the covariates. 
Create examples of sampling and response mechanisms, both con- 
founded and unconfounded. Provide descriptions of actual cases in 
which the mechanism might apply as well as mathematical statements 
of the mechanisms. 
Give an example in which the assumption of stable response might not 
hold. 
Prove equation (2.3.16). 
Suppose Y = (Yl,. . . , Y,)' is N-variate normal with mean 0, variance 
1, and common correlation 0.1. Is this a unit exchangeable distribution 
and why? Introduce a parameter B such that given B the are i.i.d. 
What is the prior distribution of O? Hint: Let 0 - N(0,  .1). Is this an 
example of de Fmetti's theorem? Is there any difference if Y is N- 
variate normal with mean O, variance 1, and common negative correla- 
tion? Discuss the loss in generality in assuming an i.i.d. model. 
Obtain results parallel to those in Example 2.1 but for the case with 
(p lu2 )  - N ( k o ,  T,'), po, 7,' fixed a priori. Comment on the sensitivity 
of the conditional distribution of given ( Yl, . . . , Y,,) to the values of 
po,  r,'. Extend these results to the case with a proper inverted x 2  prior 
distribution on u2. 
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7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

Argue that the distribution of y given Y,, . . . , Y, in Example 2.2 may 
be approximately normal. Consider the distribution of Z;+,x given 6 
and (Y,, . . . , Y,), then the averaging over the distribution of p given u2 
and (Y,, . . . , Y,), and finally the averaging over the distribution of u 2  
given (Y,, . . . , Y,). 
Consider extending Example 2.2 to 
(a) higher moments of the posterior distribution of F, 
(b) percentiles of the posterior distribution of y, and 
(c) other functions of Y such as Crlog T / N  or median { q } .  
Extend Example 2.3 to include a proper Dirichlet prior distribution 
for the probabilities of each possible value of Y,. 
Summarize Pratt's (1965) arguments for the approximations 

V(p lY l , .  . . , Y,) A s 2 / n ,  and E (  u21Yl,. . . , Y,) = s2. 

Can you find additional rationales for these approximations? 
Show that g = 1/2 in Example 2.4 leads to the classical ratio estima- 
tor (Cochran, 1977, p. 151) and nearly to its associated estimate of 
scale [equation (6.9) in Cochran, 19771. Describe the differences in the 
estimates of scale in the case of a large randomly drawn sample (so 
that x/X -, 1). 
Show that g = 1 in Example 2.4 nearly leads (under appropriate 
conditions such as NF = 1, n / N  + 0, n -, 00, p.p.s. sampling) to the 
p.p.s. (probability proportional to size) estimator (Cochran, 1977, p. 
253) and its associated estimate of scale [equation (9A.16) in Cochran, 
19771. Describe differences and situations where the resulting intervals 
for F are nearly the same. 
Show that g = 0 in Example 2.4 leads essentially to the regression 
through the origin estimator and its associated estimate of scale under 
simple random sampling. 
Restrict Example 2.4 to g = 0 but extend it to consider q-variate X. 
(a) First, let q = 2 where Xi, = 1 for all i. 
(b) Second, let q be general. 
Define a scalar estimand Q that is a function of all components of a 
multivariate r; and state why it might be of interest to estimate the 
quantity. 
Describe the following sets: inc U exc, mis U obs, exc n mis, mis n 
nob, where U is set union and n is set intersection. 
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17. Relate ignorable sampling mechanisms and unconfounded sampling 
mechanisms. Describe a realistic sampling mechanism that is ignor- 
able yet confounded. 

18. Relate ignorable response mechanisms and unconfounded response 
mechanisms. Describe a realistic response mechanism with bivariate 
that is ignorable yet confounded (hint: let R,, = 1). Suppose that 
the sampling mechanism is unconfounded with R; show that if 
(2.6.7) holds, the response mechanism is ignorable and that 

19. Define a symmetric posterior interval for in the case of Example 
2.4. 

20. Consider the interval (0,~). What is the posterior coverage of C in 
Example 2.1? 

21. Should interval estimates for Q always be symmetric? Why or why 
not? Describe realistic situations in which symmetric intervals are 
appropriate and ones in which they are inappropriate. 

22. Describe the essential difference between Bayesian posterior coverage 
and randomization-based coverage, both fixed-response and 
random-response. Discuss practical advantages and disadvantages of 
each definition of coverage. Similarly, describe the essential difference 
between fixed-response and random-response randomization-based 
coverage and practical advantages and disadvantages of each. 

23. Can you think of other modes of randomization-based inference 
besides fixed-response and random-response? 
(a) For one example, might it be desirable to condition on some 

functions of I and R? Summarize Holt and Smith's (1979) argu- 
ments concerning conditional randomization inference. Also, use 
the empirical Bayes literature to suggest a family of estimators 
between the poststratified and simple random sample estimators. 

(b) For a second example, describe the Platek and Grey (1983) 
framework for addressing the effects of nonresponse. How does it 
compare with the framework presented here, and what set of 
questions is it designed to answer? 

(c) For a third example, describe the Oh and Scheuren (1983) quasi- 
randomization theory approach, and compare it to other frame- 
works. 

(d) Relate the various conditional randomization theory approaches 
to theory concerning anciliary statistics, as described, for example, 
in Cox and Hinkley (1974). 

Pr(YnobIX? Yobs, R , n c ,  I) = pr(ynobIx, Yobs, I). 
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(e) Are the primary conclusions of Sections 2.9 and 2.10 altered if one 
of these other forms of randomization inference is used? Explain. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

Assume a simple random sample. Prove that the expectation of j over 
its randomization distribution is r. Conclude that the expectation of 
x 2  in the sample is the average value of x 2  in the population. Prove 
that the expectatioa of s2 is the population variance of x. 
Create a small population and draw many simple random samples 
from it. Produce stem-and-leaf displays of the randomization distribu- 
tions of j ,  s2 ,  and z = ( j  - Y ) / [ s ( n - ’  - N-’)’’’]. 

Repeat Problem 25 with a population that will produce a nonnormal 
distribution for z; that is, create a population for which the standard 
inference for Y is inappropriate from the randomization perspective 
(hint: try skew Y). 

Give examples in which the standard interval for is not appropriate 
from the Bayesian perspective because (a) the posterior hstribution is 
not normal and then because (b) the posterior mean is not well 
approximated by j .  

Suppose the values of Y, are approximately lognormally distributed. 
Describe a procedure for obtaining an approximate 95% interval 
estimate of r. Is the interval symmetric about a point estimate of P? 
(Hint: examine Rubin, 1983b). 

Describe the type of interval estimates discussed in Section 2.8 and the 
different practical questions they address. Is the interval estimate 
constructed in Problem 28 one of the types and why or why not? 

Suppose (cl, c 2 )  is a 95% highest posterior density interval estimate 
for scalar positive Q. Is (log cl, log c2) always a 954% highest posterior 
density interval estimate for log Q and why or why not? 

Describe similarities and differences between the Bayesian significance 
level defined in Section 2.8 and the more traditional significance level 
associated with the test of a null hypothesis, for example, via the 
likelihood ratio or Wald test statistics. Similarly, relate Bayesian point 
estimates to traditional criteria for point estimation such as unbiased- 
ness and minimum variance. 

Prove that expressions (2.8.3) and (2.8.4) generate interval estimates of 
Q with coverage a under the appropriate assumptions on the distribu- 
tion of Q. 

Discuss Neyman’s (1934) original rationale for using randomization- 
based inference. 
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34. Summarize the evaluation of interval estimates presented in Hansen, 
Madow, and Tepping (1983). Does it fit the paradigm for evaluating 
interval estimates described in Section 2.9, and why or why not? 

35. Define calibration as used in Section 2.9. How does the definition 
compare with that presented in Dawid (1982)? Summarize the discus- 
sion in Dawid (1982). 

36. Summarize the theoretical distinction between Bayesian and ran- 
domized-based coverage and why this distinction often may not be 
very important in applied practice. 

37. Relate the ideas on calibration to concepts in statistical decision 
theory. 

38. What property does Moms’s (1983a) empirical Bayes confidence 
intervals possess? 

39. Let X- be a subset of the columns of X and Y -  be a subset of the 
columns of Y such that (i) the quantity to be estimated is a function 
only of X- and Y-:  

Q(X, Y )  = Q ( x - ,  Y - )  

and (ii) the sampling mechanism is such that inclusion/exclusion on 
Y -  is unconfounded given X-: 

Pr(I-lX, Y )  = Pr(I-lX-) 

where I -  refers to the subset of columns of I corresponding to Y - .  
Furthermore, (iii) let the interval C for Q depend only on X-, Yo;s, 
R;,  and I -  (in the obvious notation): 

C( X, Yobs, Rjnc, I )  = C (  X-7 YGs,R,c, I-). 

(a) Show that the probability coverage of C given (X-, Y& R;,, I-), 

E [ a ( Q  E C)lX-, YSs ,  Ri, , ,  1-1, 

Now suppose that C has nominal level 1 - a and is calibrated for all 
subsequences defined by (X-, Yois, Ri,,, I-): 

E[6 (Q E C ) l X - ,  Y;,, R;,, I - ]  = 1 - for all X-, Y&, R;,, I-. 

depends explicitly only on the specification for Pr( X-, Y - ,  R - ) .  

(b) In general is C calibrated for all identifiable subsequences, that is, 
ones defined by (X, Yobs, Rinc, I)? 
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40. 

41. 

42. 

43. 

44. 

(c) When is C calibrated for all identifiable sequences? 
(d) Although C is generally not optimal under the full specification, 

can it still be a useful interval estimate of Q? For example, can it 
be useful to focus on a subset of variables ( X - ,  Y - )  and avoid 
specifyng the distribution for all variables (X, Y)? 

(e) Describe the consequences of violating (i). 
(f) Describe the consequences of violating (ii). 
(g) Summarize the implications of this problem regarding which vari- 

Suppose in addition to conditions (i), (ii), and (iii) of Problem 39, we 
have that (iv) the response mechanism is such that nonresponse on Y -  
is ignorable given X - ,  Yois: 

ables should be the focus of modeling energy. 

Pr( R-IX,  Y )  = Pr( R-IX- ,  Yo&). 

(a) Show that the probability coverage of C given ( X - ,  Yois, R;,, I-) 

Now suppose that C has nominal level 1 - a and is calibrated for all 
subsequences defined by ( X - ,  Yo;,, R,,, I-). 
(b) Provide modified answers to parts (b), (c), (d), (e), ( f )  of Problem 

(c) What is the effect of violating assumption (iv)? 
(d) Summarize the implications of this problem regarding which vari- 

Describe a survey with many variables recorded and some nonre- 
sponse (e.g., the Current Population Survey) and a particular estimand 
Q of your choice. Discuss, in the light of Problems 39 and 40, which 
variables should receive most attention when deriving interval esti- 
mates of Q. Be explicit when describing the sampling mechanism and 
when malung assumptions about the response mechanism. 
Relate the content of Problems 39, 40, and 41 to the discussion in 
Rubin (1983~-expanded in Rubin, 1985) on Hansen, Madow, and 
Tepping (1983), and in particular to the idea of modeling using an 
“adequate” summary of covariates. Also see Sugden and Smith (1984), 
which refers to Rubin (1985). 
Summarize the superpopulation approach described in Little (1982, 
1983a,b) and any differences between it and the approach of this 
chapter. 
Summarize evidence for the practical similarity of Bayesian and 
randomization-based inferences in the absence of nonresponse. 

depends explicitly only on the specification for Pr( X - ,  Y-).  

39 in the context of the additional assumption (iv). 

ables should be the focus of modeling energy. 
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45. Summarize evidence for the practical similarity of Bayesian and 
randomization-based inference in the presence of nonresponse. 

46. State the standard asymptotic results of Section 2.10 more carefully. 
47. Consider the extensions of the standard asymptotic results to the case 

when the model used for analysis is wong; summarize the results in 
Huber (1967). 

48. Consider extensions of standard asymptotic results to finite popula- 
tion sampling; review the literature between Hajek (1960) and Mitra 
and Pathak (1984). 

49. Comment on the plausibility of the major conclusion of Section 2.10 
concerning nonresponse adjustments. 

50. Compare and contrast the descriptions of Bayesian inference in surveys 
presented here and in Ericson (1969), Lindley (1972), and Little (1982 
or 1983a, b). 



C H A P T E R 3  

Underlying Bayesian Theory 

3.1. INTRODUCTION AND SUMMARY OF 
REPEATED-IMPUTATION INFERENCES 

The most straightforward justification for the use of multiple imputation 
arises from the Bayesian perspective, which not only provides a simple and 
general theoretical rationale but also provides prescriptions for how to 
create multiple imputations and analyze the resultant data in specific cases. 
In particular, if the multiple imputations are repetitions drawn to simulate a 
Bayesian posterior distribution of the missing values under a model, then 
appropriately combining analyses of each data set completed by imputation 
yields an approximately vahd Bayesian inference under that model. The 
resul ring inferences are called repeated-imputation inferences. A summary 
of these inferences serves as a useful introduction to the underlying theory, 
whch is presented in the remaining sections of this chapter. Random- 
response randomization-based evaluations of these Bayesianly-derived re- 
peated-imputation inferences appear in Chapter 4. 

Notation 

Let Q be the quantity of interest in the survey, for example, the mean Y in 
the population, I;. Generally, Q is a k-dimensional row vector. Assume that 
with complete data, inferences for Q would be based on the statement that 

(Q - Q )  - N ( 0 ,  U )  (3.1 .l) 

where Q is a statistic estimating Q, U is a statistic providing the variance 
(k X k covariance matrix generally) of (Q - Q), and N(0,  U )  is the 
k-variate normal distribution with mean 0 and variance U. In practice, it is 
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prudent and common to choose Q to be some 1-1 function of the quantity 
of interest that makes the normal approximation (3.1.1) reasonable. 

Suppose that under a specified Bayesian model, m sets of repeated 
imputations have been drawn and used to construct m completed data sets, 
where Q*l,. . . , $*, and . . , U,, are the values of the statistics, 4 and 
U for each of these data sets. The theory of this chapter applies most 
directly when 0 and U are completed-data statistics, which provide the 
mean and variance of Q given (X, x,,, Rine, I) under the same Bayesian 
model as used to create the repeated imputations. Results in Section 3.6, 
however, show that in practice Q and U can often be complete-data 
statistics, which provide the mean and variance of Q given (X, xnc), and 
thus effectively ignore the observed value of Rinc and avoid the explicit 
conditioning on I when analyzing each completed data set [e.g., Q = j and 
U = s2(n-’  - N - ’ )  with n observations of scalar used to estimate 
Q = y] .  In the following summary, we use the more familiar expression 
“complete-data statistics” for Q and U. 

. 

Combining the Repeated Complete-Data Estimates and Variances 

The m repeated complete-data estimates and associated complete-data 
variances for Q under one model for nonresponse can be combined as 
follows. Let 

be the average of the m complete-data estimates, 

m 

(3.1.2) 

(3.1.3) 
I -  1 

be the average of the m complete-data variances, and 

be the variance between (among) the m complete-data estimates, where the 
superscript t indicates transpose when Q is a vector. The quantity 

T, = a, + (1 + m-’)B,  (3.1 -5 )  

is the total variance of (Q - 0,). 
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Scalar Q 

Interval estimates and sigmficance levels for scalar Q are formed using a t 
reference distribution with 

v = ( m  - 1)(1 + r;1)2 (3.1.6) 

degrees of freedom, where rm is the relative increase in variancet due to 
nonresponse : 

r, = (1 + m - ’ ) B m / U , .  (3.1.7) 

Thus, in the standard manner, a lOO(1 - OL)% interval estimate of Q is 

(3.1.8) 

where t , ( a /2 )  is the upper 100a/2 percentage point of the student t 
distribution on v degrees of freedom (e.g., if v = 00 and 1 - OL = -95, 
1,(cy/2) = 1.96). Also, the significance level associated with the null value 
Q, is given by 

(3.1.9) 

where F1,” is an F random variable on one and v degrees of freedom. The 
fraction of information about Q missing due to nonresponse is 

r, + 2 / ( v  + 3) 
yrn = r, + 1 

(3.1 .lo) 

Significance Levels Based on the Combined Estimates and Variances 

When m is large relative to k (e.g., m 2 5k), the significance level of the 
null value Q, of Q can be found by calculating 

(3.1.11) 

and letting the significance level be the probability that an F random 
variable on k and v degrees of freedom is larger than 0,; v is given by 
(3.1.6) with rm generalized to be the average relative increase in variance 

+More precisely, conditional variance given B, = B,,,. 
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due to nonresponse, 

rm = (1 + rn-')Tr(B,,&')/k, (3.1.1 2) 

where Tr(A) is the sum of the diagonal elements in the k X k matrix A. 
When m is modest relative to k, a better test statistic is 

(3 -1.13) 

which is referred to the F distribution on k and (k + l)v/2 degrees of 
freedom. More work is needed to arrive at a single easily calculated and 
valid test statistic that combines the best features of Dm and bm when 
k > 1. With scalar Q, Dm and bm are identical, as are their reference 
distributions and give (3.1.9) for the significance level of Qo. 

Significance Levels Based on Repeated Complete-Data Significance Levels 

A statistic asymptotically equivalent to bm can be computed from the m 
complete-data significance levels associated with Q, and the value of r,. 
Specifically, let de l , .  . . , d*, be the m repeated values of the complete-data 
x 2  statistics associated with the null value Q,; that is, the significance level 
for the Ith completed data set is the probability that a x2 random variable 
on k degrees of freedom is larger than d*,. Then 

- 
d ,  m - 1  

(3.1.14) 

where 

m 

d;, = d,,/m = the average repeated x2 statistic, (3.1.15) 
I =  1 

is referred to the F distribution on k and (k + l)v/2 degrees of freedom. 
The statistic b, can be more useful than Dm or Dm because it depends on 
the scalar x 2  statistics . . , d*, and the scalar r, rather than on k X k 
matrices. 

In some cases, only the estimated fraction of missing information for a 
particular component of Q may be known, perhaps because an interval 
estipate is to be created only for that component; using this in place of r, 
in Dm would imply Y rather than (k + l)v/2 numerator degrees of freedom 
in the reference distribution for this estimated b,, assuming the fraction of 
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information missing on this component is typical of the other components. 
There does exist some information in the . . , &,,, about r,,,, but it is 
not clear how best to use it to obtain p-values. Various suggestions are 
offered in Section 3.5. For example, a method of moments estimator of r,,,, 
which can be used to provide estimates of both b,,, and v, is given by 

,. (1 + m-1)s;  
r,,, = 

2d;, + [4d;s, - 2ks;]',/' ' 

where 

rn 

s; = c (d* ,  - Z J 2 / (  rn - 1). 

(3.1.16) 

(3.1.1 7) 
I -  1 

A 

The resultant values of (3.1.6) and (?.1.14), say i and bm are used to find 
the p-value for Q ,  by referring b,,, to an F distribution on k and 
(1 + k - ' ) i / 2  degrees of freedom. 

Example 3.1. Inference for Regression Coefficients 

Suppose that the object of inference in a large survey of an essentially 
infinite population is a two-component regression coefficient, p = (&, &). 
Also, suppose that in the absence of missing data /3 would be estimated by 
the standard least-squares estimate b with associated variance-covariance 
matrix s2V, where V-' is the sum of cross-products matrix of the predictor 
variables and s 2  is the residual mean square in the least-squares regression. 
Thus, Q = p, Q = b, U = s2V and the x 2  statistic associated with Q, = 

(0,O) is bU- %I. If the sample had not been large, an adjustment for using 
the normal reference distribution rather than a more appropriate f distribu- 
tion would have been desirable. A simple adjustment due to Fisher (1935) 
in another context is to set U equal to s2V( f + 3)/( f + 1) where f is the 
degrees of freedom for the residual mean square. A better adjustment for 
the x2 statistic would be to look up the p-value for Q, using the Fk,, 
reference distribution, and then find the corresponding xi value, that is, 
the value do such that hob{ Fk., > b(s2V)- 'br}  = Prob{Xi > d o } .  

Now suppose that there are missing values, whch have been multiply 
imputed to create five completed data sets under one model. The standard 
least-squares analysis is then performed on each completed data set. The 
result is: five repeated values of b, which we suppose have mean 

em = (10,20) 
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and variance-covariance matrix 

five values of s2V, which we suppose have mean 

13 14 . 
[14 441' 

and five x 2  statistics testing B = (0,O) whose mean and variance we 
suppose are 15 and 10, respectively. 

The relative increase in variance due to nonresponse is, from (3.1.7), 0.92 
and 0.14 for p1 and B2, respectively, implying degrees of freedom in their r 
reference distributions equal to 17 and nearly 300, respectively. Thus from 
(3.1.8) the 95% interval for B1 is given by 10 f t1 , ( . 025)6  or (- 0.6,20.6); 
similarly, the 95% interval for B2 is given by (6.1,33.9). From (3.1.9), the 
p-value for p1 = 0 is 0.06 and for B2 = 0 is 0.005. From (3.1.10), the 
fraction of missing information for B1 is 53% and for B2 is 13%. 

The significance level of the null value Po = (0,O) can be addressed by 
the statistics D,,,, hm, and b,,,. From (3.1.11) we have 

Both h,,, and b,,, depend on r,,,, which from (3.1.12) equals 0.58. Thus from 
(3.1.1 3) 

and from (3.1.14) 

b,,, = (7.5 - 0.387)/1.58 = 4.50. 

The degrees of freedom associated with D,,, is 4(1.58/0.58)2 = 30, and with 
b,,, and b,,, is 3/2 X 30 = 45. From tables of the F2,30 distribution, the 
p-value associated with Dm is about 0.03, and from tables of the F2,+ 
distribution, the p-values associated with B,,, and b,,, are about 0.04 and 
0.02, respectively. 

Now suppose that only the five complete-data x 2  test statistics were 
available for finding the significance level of the null value p = (0,O). Then 
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by (3.1.16) and (3.1.17), a method of moments estimate of rm is 

1/2 -1 ] ?,,, = 12[30 + (4 X 15' - 4 X 10) - 0.20, 

and the associated estimated b,,, is 

L1 

b,,, = (7.5 - 0.133)/1.20 = 6.14, 
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which is referred to an F2.,7sv distribution where i = 4(1.20/0.20)2 A 144. 
The resulting p-value is approximately 0.003. 

Finally, suppose that in addition to the five repeated x' statistics, we 
have formed an interval estimate for one component of p and so have the 
relative increase in variance, r,,,, for this component. When this component 
is pl, r,,, = 0.92 whereas when this component is &, rm = 0.14. Using the p1 
value of r,,, in (3.1.14) for b,,, and in (3.1.6) for Y gives an estimated D,,, 
equal to 4.36 with an associated Fk," reference distribution with k = 2 and 
v = 17, and a corresponding p-value equal to 0.030. In contrast, using the 
p2 value of r,,, gives an estimated a,,, equal to 6.50 and a corresponding 
p-value of 0.002. As is clear from this example, p-values calculated directly 
from repeated significance levels can be quite sensitive to how r,,, is 
estimated. 

3.2. KEY RESULTS FOR ANALYSIS WHEN THE MULTIPLE 
IMPUTATIONS ARE REPEATED DRAWS FROM THE POSTERIOR 
DISTRIBUTION OF THE MISSING VALUES 

Since the value of (X, Yobs, Rjnc ,  I) is observed, the actual posterior distri- 
bution of Q is 

Pr(Qlx, L s ,  R i n c ,  I ) .  

Suppose for the moment that we were told the values of Ymjs; that is, 
suppose that in addition to the observed values of X, Yobs, Rinc, I, we fixed 
the values in Ymis, as when they are imputed, to create a completed data set. 
The resultant conditional distribution of Q given both (X, Yobs, Rjnc,  I) 
and the fixed value of Ymis will be called the completed-data posterior 
distribution of Q: 

Pr(QIX, x ' n c ,  R j n c ,  I ) ,  (3.2.1) 

where, as previously defined, x,,, = ( Yobs, Y,,,,). 
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Result 3.1. Averaging the Completed-Data Posterior Distribution of 
Q over the Posterior Distribution of Y,,, to Obtain the Actual Posterior 
Distribution of Q 

The actual posterior distribution of Q = Q( X, Y) equals the completed-data 
posterior distribution of Q averaged over the posterior distribution of the 
missing data, Ymrs: 

Result 3.1 is immediate because y,,, = (Yobs, YmIs). 
Result 3.1 can be applied to simulate the actual posterior distribution of 

Q using repeated draws from the posterior distribution of the missing 
values. Specifically, consider the posterior probability that Q is in 
some interval or region C, Prob{ Q E ClX, Yo,,,, R,,,, I}, and let Y$, 

Pr(Y,,,IX, Yobs, R,,, ,  I). Let y::, r:: ,..., y,*,m be the corresponding 
completed values of Y,,,, X$ = (Yobs, ~ 2 : ) .  Then 

Y,,,, *2  . . . , YZT be m draws of Y,,, from its posterior distribution, 

Prob{ Q E CIX, Yobs, R,,, ,  I }  

m 

Example 3.2. The Normal Model Continued 

Consider the normal setup of Examples 2.1 and 2.5 where the objective is to 
assess the posterior probability that the population mean = XNY/N is 
positive from a simple random sample of n values of y. Thus Q = Y and 
the region of interest for Q is C = (0,~). Using the notation of Example 
2.1, the distribution of Q given x,, is z on n - 1 degrees of freedom with 
center j and scale s(n-' - N-')'''; thus 

I -  

Prob{~>OlX,Y,,,} = / " t [ n  - 1 , J , s 2 ( n - l  - N - ' ) ]  
0 

in an obvious but inelegant notation. Suppose that due to unconfounded 
nonresponse, only n1 of the n values in r,, are observed. Let j 1  and s: be 
the sample mean and variance of the nr observed values in Yo& Because 
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the sampling and response mechanisms are unconfounded and thus ignor- 
able, it is easy to show from Result 2.3 that 

Prob{ > OIX, K, , ,  R i n c ,  I} = Prob{ L > OIX, Y,,,} 

and 

Prob{ > OIX, Yobs, R,,, ,  I}  = Prob{ r > OIX, Yo, , } .  

Furthermore, Lemma 2.1 implies that the m draws from the posterior 
distribution of Y,,, (i.e., the distribution of Y,,, given Yo,,) can be made as 
follows. For I = 1,. . . , m, pass through the following three steps using 
independent draws for all random variables at each pass: 

1. Draw a xi , -1  random variable, say x ,  and let 

u2* = s : ( m  - ~ ) / x ;  

2. Draw a N(0,l) random variable, say to, and let 

P* = Y1 + a*z,/n,; 

3. Draw n - n1 independent N ( 0 , l )  random variables, say z i ,  i E mzs, 
and impute the missing components of x,,, as 

r,* = P* + (J*z,, i E mis. 

Each of the m draws of Y,,, from its posterior distribution creates 
a completed value of y,,, from which Prob{ > O ( X ,  y,,} can be cal- 
culated as a t integral. The average value of the mt-integrals estimates 
Prob{ y > 01 X ,  Yo,,} ,  and for infinite m the average equals 

Prob{y> OIX, Yo,,} = /“t[n1 - 1, Jl,S:(n;l - N - ’ ) ] ,  
0 

as can be shown by analysis. 

The Posterior Cumulative Distribution Function of Q 

In principal, Prob{Q > QolX, Y,,,, Rim,,  I} can be calculated for each 
completed data set and a sequence of values of Q,, where Q > Q, means 
that each component of Q is larger than the corresponding component of 
Q,. Then for each Q,, Prob{Q > QolX, Yobs, Rinc,  I} is calculated as the 
average value of Prob{ Q > QolX,  y,,, Rinc ,  I)  over the essentially infinite 
number of completed data sets. Although exceedingly tedious in applica- 
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tion, if the sequence of values of Q, is large enough to cover the range of Q, 
this method essentially generates the posterior cumulative distribution 
function of Q. When only the posterior mean and variance-covariance 
matrix of Q are used to characterize the posterior distribution of Q, it is 
much easier to obtain the required summaries from repeated draws of Y,,,. 

Result 3.2. Posterior Mean and Variance of Q 

Suppose that the completed-data posterior distribution of Q = Q(X, Y )  
has mean Q = $( X, K n C ,  Rinc, I) and variance (or variance-covariance 
matrix if k > 1) U = U( X, ync, Rinc,  I). Then the posterior distribution of 
Q has mean given by 

‘(el’, ‘obr, R i n c ,  I )  = E($IX, Yobs, R i n c ,  I ) ,  (3.2.3) 

and variance given by 

‘(QIX, ybr,  R i n c ,  I )  = E(UIX, Yobs, R i n c ,  1) + v(QIx9 Yobs, R , n c ,  1)- 

(3.2.4) 

and 

v(QIx, Yobst Y m j s ,  R i n c ,  I )  = u, 
and it follows that (3.2.3) and (3.2.4) hold. 

for simulating the posterior mean and variance of Q(X, Y). 
Result 3.2 is important because it suggests a simple numerical procedure 
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Simulating the Posterior Mean and Variance of Q 

Suppose that there exist m independent draws from the posterior distribu- 
tion of Y,,,, where for simplicity m is essentially infinite. These can be used 
as imputed values to create rn completed data sets and thereby m values of 
the statistics Q and U. These m repeated values of Q and U, say 
Q*l,. . .,&,,, and U*l,..  ., U,,, simulate aspects of the posterior distribu- 
tion of Q and U. Specifically, since rn is essentially infinite, (i) the average 
Q*, gves the posterior mean of Q. 

(ii) the average U,, gives the posterior mean of U, 

and (iii) the variance among the Q*, gives the posterior variance of 0, 
m 

(3.2.7) 

From (3.2.3) and (3.2.5) 

E(QlX, Yobs, R i n c ,  I )  = Gm, (3.2.8) 

and from (3.2.4), (3.2.6), and (3.2.7) 

'(QIx, K b s ,  R r n c ,  I )  = Tm (3.2.9) 

where 
- 

T, = U, + B,. (3.2.10) 

Missing and Observed Information with Infinite m 

It is conceptually useful to relate the variance-covariance matrices in 
equation (3.2.10) to concepts of missing and observed information. Define 
the information that is observed to be T i 1  and the expected total informa- 
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tion if Ymis were also observed to be E(UIX,  Yobs, R,,,, I) = 0:'. Then 
the missing information is 0:' - T;', and the fraction of information that 
is missing can be written as 

(3.2.11) 

using the symmetric form of the matrix generalization of dividing the 
missing information by the expected total information. Simple matrix 
algebra gives an alternative expression for y,: 

- - 1 - uL/:!T-1u1/2 = 1 - T-1/20 T-1/2 
Ym - m m  m m m  

= T;1/2B m m  T-'/2. (3.2.12) 

The fraction of information missing due to nonresponse is thus given by the 
eigenvalues of B, with respect to T,, where B, is the increase in the 
posterior variance of Q due to nonresponse, and T, is the total posterior 
variance of Q. With scalar Q, ym = rm/(rm + l), where rm is defined by 
(3.1.7) to be Bm/um. 

Inference for Q from Repeated Completed-Data Means and Variances 

Using (3.2.8) and (3.2.9) and the usual approximation of the posterior 
distribution as normal, motivated in Section 2.10, we are led to the 
statement that 

Interval estimates for Q and significance levels for null values of Q follow 
from (3.2.13) in the standard manner. Thus with scalar Q, 

Gm k 1 .96TLl2 (3.2.14) 

is a 95% interval estimate of Q. Similarly, from expression (2.8.7) the 
significance level associated with the null value of Q, Q,, is 

p-value(Q,lX, Yobs, R,,, ,  I) = Prob{ xt > kDm} (3.2.15) 

where xi is a x 2  random variable on k degrees of freedom (k the 
dimension of Q) and Dm is the observed value 

(3.2.16) 
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Example 33. Example 3.2 Continued 

Suppose Q = r, Q = 7, and U = s2 (n- ’  - N - ’ ) ,  in the setup of Example 
3.2, where an essentially infinite number of repeated multiple imputations 
are created using the normal model of Example 3.2. Then with m - m, 

m 

I -  1 

and 

I- 1 I= 1 

The 95% interval for r is given by (3.2.14), and 1 - @( - &,/T:’*) is the 
posterior probability that is positive. This probability can also be found 
by calculating Dm in (3.2.15) with Q, = 0 and k = 1, and finding the 
probability that a x 2  random variable on one degree of freedom is greater 
than the observed value of 0,. 

33. 

AND VARIANCES 

INFERENCE FOR SCALAR ESTIMANDS FROM A MODEST 
NUMBER OF REPEATED COMPLETED-DATA MEANS 

Thus far, we have implicitly assumed that the actual posterior distribution 
of Y,,, could be simulated perfectly in the sense that inferences have been 
based on an infinite number of completed data sets. Of course, in practice a 
modest number of imputations must be made, and therefore if one in- 
ference is desired under an imputation model, we need to modify the theory 
of this chapter to be appropriate with finite rn. The essential idea is that we 
must condition on the rn values of the repeated completed-data summary 
statistics we observe rather than on the infinite number we would ideally 
observe. The required conditioning is especially straightforward in the very 
common situation with scalar Q where completed-data posterior distribu- 
tions are assumed to be normal and each is summarized by its mean and 
variance. The following development derives an approximating t distribu- 
tion for Q given m completed-data means and variances. Estimates and 
significance levels can then be obtained using the t and F reference 
distributions. Extensions to multicomponent Q are outlined in Sections 3.4 
and 3.5. 
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The Plan of Attack 

UNDERLYING BAYESIAN THEORY 

Suppose m draws of Y,,, are taken from its posterior distribution, 
Pr(Y,,IX, Yobs, Rinc,  I), and let S,  = { Q,,, U*,, 1 = 1,. . . , m} be the set 
of associated completed-data statistics 

Q = E(QlX, Y,,,, R j n c ,  I )  and u =  v(QlX, Y i n c ,  R , n c ,  I )  

evaluated on each of the m completed data sets. We wish to approximate 
the conditional distribution of Q given S,. 

If S,  were observed, following (3.2.13) we would approximate the 
posterior - distribution of Q as normal with mean 0, and variance T, = 

U, + B,: 

(QIx, 'obs, R i n c ,  I )  - N(Qm, V ,  + Bm)? 

where the conditioning on (X, Y o b r ,  R,,, ,  I) can be replaced by condition- 
ing on S,  or simply on (&,? om, Bm): 

(3.3.1) 

Our problem is to approximate the conditional distribution of Q given S, 
rather than S,. To go from (3.3.1), which is the same as the conditional 
distribution of Q given (Om, om, B,) and S,, to the conditional distribu- 
tion of Q given S,, we approximate the conditional distribution of 
(Om, a,, B,) given S,  and average (3.3.1) over this conditional distribu- 
tion. 

The Sampling Distribution of S,,, Given (X, YObs, RjnJ 

The first step is to consider the sampling distribution of S,  given 
(X, Yobs, R,,,), where we recall from (3.2.5)-(3.2.7) that 

V ,  = ~(~1x3 yobs, R i n c ,  I ) ,  

and 

Bm = v($lx, Yobs, R i n c ,  I ) .  

By construction, the (&,, U*,) in S,,, are m i.i.d. draws of the post- 
erior mean and variance of Q, that is, of Q and U from their joint 
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sampling distribution, where the distribution of the "data," Y,,,,,, is 
Pr( Y,,,,,lX, Yobs, R,,, ,  I ) .  Asymptotic theory of posterior means and vari- 
ances summarized in Section 2.10 suggests that under rather general condi- 
tions with large samples and populations, the sampling distribution of the 
posterior mean tends toward normality, and the sampling distribution of 
the posterior variance tends to have lower-order variability than that of the 
posterior mean. Thus, with large data sets it may be reasonable to suppose 
that given (X, Yobs, R,,,, I ) ,  S,,, consists of rn i.i.d. draws from 

(d*llX, 'obsr  R i n c ,  I )  - N ( g m ,  Ba) (3.3.2) 

( u * / l x ,  'obs,  R ~ n , ,  I )  - ( << B,) (3.3.3) 

using the notation in Section 2.10. 

The Conditional Distribution of (&, 6,) Given S,,, and B, 

Suppose we accept the approximations given by (3.3.2) and (3.3.3) for the 
conditional distribution of the (Q,,, giienjg,, om, B,). Then an 
approximating conditional distribution for (Q,, U,) given S,,, and B, is 
easy to derive. First, by (3.3.3), for any relatively diffuse prior distribution 
on V,, 

( q J S , , , ,  B,) - (Om, << B,/rn) (3.3.4) 

where 
m 

I-  1 

Next, if the prior distribution of gm given B, is proportional to a 
constant, then because of the normal sampling distribution of the in 
(3.3.2), the conditional distribution of Qm given S,,, and B, is normal: 

(OmIsm, B m )  - N ( O m ,  Bm/rn) 

O m =  C $*//me 

(3.3.5) 

where 
m 

I -  1 

The Conditional Distribution of Q Given S,,, and B, 

Having now approximated the conditional distribution of (g,, om) given 
S,,, and B,, we can apply it to (3.3.1), the conditional distribution of Q 
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given (em, o,, 3,) and implicitly S,,,, to obtain the conditional distribu- 
tion of Q given S,,, and B,. Expression (3.3.4) implies that in (3.3.1) 0, can 
be replaced by 0, to give 

(Qlsm,  ern, Bm) -. N(Grn9 V ,  + (3.3.6) 

Expression (3.3.5) applied to (3.3.6) gives 

(Qls,, B,) - N ( & ,  om + (1 + m-')B, ) .  (3.3.7) 

The Conditional Distribution of B,,, Given S,,, 

Thus far our analysis has been conditional on B, as well as S,. We now 
address the problem of integrating over B,. Assume that the prior distribu- 
tion on log(B,) is proportional to a constant. Under the asymptotic 
sampling distributions given by (3.3.2) and (3.3.3), the conditional distribu- 
tion of B, given S,,, is then proportional to an inverted x 2  random variable 
on m - 1 degrees of freedom, as implied by Lemma 2.1: 

( ( m  - 1 ) B m B i ' I s m )  - xi-', (3.3.8) 

where 

is the standard unbiased estimate of the variance, B,. 

The Conditional Distribution of urn + (1 + m-')B, Given S,,, 

From (3.3.7), the conditional variance of Q given B, and S,,, is 0, + 
(1 + rn-')B,. If given s,,,, Om + (1 + m-')B,  were proportional to an 
inverted x 2  random variable, (3.3.7) would imply that Q given S,  had a t 
distribution. Unfortunately, even though B, is proportional to an inverted 
x 2  random variable, a constant plus an inverted x 2  is not distributed as an 
inverted x 2 ,  and in fact Q given S,,, has a Behrens-Fisher distribution 
rather than a t (see Box and Tiao, 1973, p. 106). Nevertheless this 
distribution can be well approximated by a t. The approximation presented 
here first approximates the conditional distribution of a, + (1 + m-')B,  
given S,  as proportional to an inverted x 2 ,  and then derives the corre- 
sponding t. 
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Specifically, we adopt the following approximation: 

(vT,[u, + (1 + M- ' )Bm]  - l1 sm)  - X Y  2 

where T, is the estimated total variance 

T, = 0, + (1 + rn-')B,,,, 
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(3.3.9) 

(3.3 .lo) 

and Y is the degrees of freedom 

v = (171 - 1)(1 + r;')' (3.3.11) 

where 
- 

r, = (1 + m-')B, /U, .  (3.3.12) 

From (3.3.7) r, is the relative increase in conditional variance due to 
nonresponse, given B, = B,. The basis for (3.3.9) is Approximation 3.1. 

Approximation 3.1 Relevant to the Behrens-Fisher Distribution 
Suppose x- is distributed as a mean-square random variable on f degrees 
of freedom (i.e., fx-' is distributed as x;). Then (1 + a)/( l  + a x )  is 
distributed approximately as a mean-square random variable with degrees 
of freedom equal to f ( 1  + a-l)' .  

The basic idea of this approximation is to fit the first two moments- 
approximately. Since a mean-square random variable has mean one and 
variance two divided by its degrees of freedom, we show that 

l + a  
E (  I+ox) 1, 

and 

(3.3.13) 

(3.3.14) 

Since (1 + a ) / ( l  + ax)  is nonlinear in the mean-square random variable 
x- l ,  we use a first term Taylor series expansion in x - l  about its mean: 

U 
( x - 1  - 1).  

l + a  
- 1 + -  

1 + ax l + a  
-- (3.3.1 5) 
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The expectation of the right-hand side of (3.3.15) is 1, as in (3.3.13), and the 
variance of the right-hand side of (3.3.15) is (1 + a-')*(2/f), which equals 
the right-hand side of (3.3.14). 

Applying Approximation 3.1 to Obtain (3.3.9) 

The quantity om + (1 + m-')B, in (3.3.9) can be written as 

where (B,/B,,,)-' given Sm is distributed as a mean-square random vari- 
able on m - 1 degrees of freedom. Hence, by Approximation 3.1, the 
quantity 

is distributed approximately as a mean-square random variable on v 
degrees of freedom, where v is given by (3.3.11), from which (3.3.9) is 
immediate. 

The Approximating t Reference Distribution for Scalar Q 

The resulting r approximation for the distribution of Q given the m 
completed moments is 

(3.3.16) 

where v is given by (3.3.11) and T, is given by (3.3.10). Consequently, 
interval estimates are based on (3.3.16), and significance tests for null 
values, Q,, are obtained by referring (Gm - Qo)2/Tm to an F distribution 
on one and v degrees of freedom. 

Example 3.4. Example 3.3 Continued 

Suppose Q = r, Q = j ,  and U = s2(n-'  - N - ' )  in the setup of Example 
3.3, where m repeated imputations are created using the normal model of 
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Example 3.2. Then 
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I= 1 

rn 

0, = C s:,(n-' - N - ' ) / m  
1 = 1  

and 

where T, is gwen by (3.3.10) and v is given by (3.3.11). The 1 - a! interval 
estimate for ? is given by 

and the significance level of the null value Q, is 

Fraction of Information Missing Due to Nonresponse 

The average second derivative of the logarithm of the t posterior distribu- 
tion for Q given by (3.3.16) equals -(v + l)(v + 3)-'7',','. Hence, using the 
definition for information proposed in Fisher (1935), the information about 
Q in this posterior distribution is ( v  + 1)(v + 3)-'Ti1. If there had been 
complete response, the posterior distribution of Q would have been normal 
with expected second derivative of the log posterior equal to - 0:' or 
- 0;' in our asymptotic analysis. Thus, the fraction of information 
missing due to nonresponse is 

y, = [Oil  - ( v  + l ) ( v  + 3)- '~l ' ] /O,, ' ,  

or from (3.3. 0) and (3.3. 

r, + 2/(v + 3) 

rm + 1 Ym = (3.3.17) 
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where v is given as a function of rn and rm by (3.3.11). When rn = 00, 

y, = r,/(r, + 1) in agreement with (3.2.12). 

3.4. SIGNIFICANCE LEVELS FOR MULTICOMPONENT 
ESTIMANDS FROM A MODEST NUMBER OF REPEATED 
COMPLETED-DATA MEANS AND VARIANCE-COVARIANCE 
MATRICES 

Section 3.3 dealt with inference from a finite number of imputations but 
restricted attention to the case of a scalar estimand. Extending that analysis 
to k-component Q is straightforward up to a point. That point involves the 
integration over the distribution of B, given S,. Consequently, we first 
indicate simple extensions given B, and then consider additional issues 
created by the need to integrate over B,. The plan of attack is identical to 
that in Section 3.3, and in fact equations (3.3.1)-(3.3.7) hold for vector Q 
without modification assuming the prior distribution on a, is proportional 
to a constant. 

The Conditional Distribution of Q Given S,,, and B, 

Specifically, the distribution of k-component Q given (Sm, B,) is the k- 
variate normal with mean &, and variance-covariance matrix a,,, + (1 + 
rn-')B,: 

If B, were known and m completed-data moments were available, (3.4.1) 
would be a normal reference distribution for interval estimates of Q. 
Furthermore, (3.4.1) implies a x2 reference distribution on k degrees of 
freedom for obtaining the significance level associated with a null value of 
Q, Q,. Specifically, the p-value associated with Qo given (S,,,, B,) is 
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The Bayesian p-Value for a Null Value Qo Given S,,,: General Expression 

From (3.4.1), given S,  and B,, the correct Bayesian p-value for Q, is 
provided by (3.4.2). When B, is not known, the correct Bayesian p-value is 
the average value of (3.4.2) with respect to the conditional distribution of 
B, given S,: 

95 

p-value(QolSm) = /Prob( xi > (Q, - &)[a,  + (1 + m-')Brn]- '  

There are thus two problems in finding the p-value: first, finding the 
distribution of B, given S,, and second, performing the integration called 
for in (3.4.3). The distribution of B, gven S,  follows from the distribution 
of B,,, given B,, which is Wishart, and the prior distribution of B,. 
Evaluating (3.4.3) can be quite complicated; even the case of scalar Q 
exposes several relevant issues. 

The Bayesian p-Value Given S,,, with Scalar Q 

In the case of scalar Q, (3.4.3) can be written as 

x(Qo  - &)2~;1)Pr(rm]Sm) dr, (3.4.4) 

where B, = Section 3.3 showed that with a locally uniform prior 
distribution on log(B,), the distribution of B, given S,  is (m - 1)B, 
times an inverted x 2  random variable on rn - 1 degrees of freedom; hence 
(1 + rn-')r, gven S, is (m - l)r, times an inverted x2 - random - variable 
on m - 1 degrees of freedom, where (1 + rn-')B, = rmUm = rmUm in our 
asymptotic analysis. Hence, 

p-value(Q,lS,; k = 1) 

where x: and x i - l  are independent x 2  random variables. With observed 
values of the statistics (r,, em, a,), (3.4.5) can be evaluated by numerical 
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integration or Monte Car10 simulation-draw many independent x :  and 
x i - '  random variables and find the proportion of times the inequality in 
(3.4.5) is satisfied. Nevertheless, a simple closed-form approximation to 
(3.4.5) is clearly useful in many cases. 

The Bayesian p-Value Given S,,,with Scalar Q-Closed-Form Approximation 

In Section 3.3 the distribution of a,,, + (1 + rn-')B, given S, was ap- 
proximated as YT, times an inverted x2 random variable on Y degrees of 
freedom where Y is given by (3.3.11). Using the same approximation here 
implies that [l + (1 + m-')r,] in (3.4.4) can be approximated as uT,,,U,' 
times an inverted x 2  random variable on Y degrees of freedom. Hence, 
(3.4.4) can be approximated as 

p-value(QolSm; k = 1) A Prob(x?> ( x t / ~ ) ( Q o  - c Z m ) 2 T i ' )  

or 

p-value(Q,lS,; k = 1) A Prob( F1," > ( Q ,  - & ) * T i ' ] ,  (3.4.6) 

where F1," is an F random variable on 1 and Y degrees of freedom; (3.4.6) 
is the same p-value as suggested following (3.3.16) and illustrated in 
Example 3.4. 
This analysis with scalar Q can be generalized to multicomponent Q in 

special cases when B, is proportional to T,. 

p-Values with B, a priori Proportional to T, 

Generally the analysis is much less tidy with k-component Q than with 
scalar Q. An exception occurs when aprzori B, is proportional to T, and 
thus to a,, that is, when the fractions of information missing for the k 
individual components of Q are all the same. Since G, essentially equals c,,, 
in our asymptotic analysis, the only quantity that needs to be estimated 
then is the constant of proportionality r, where B, = r,a,. In that case 
(3.4.3) becomes 

p-value( Qol S,,,; B, a urn) 

xPr(rmISm) dr,. (3.4.7) 

When the prior distribution on log(r,) is proportional to a constant, it is 
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easy to show using standard multivariate normal theory that the distribu- 
tion of (1 + m-')rm given S, is k(m - l)rm times an inverted x2 random 
variable on k(m - 1) degrees of freedom, where 

r, = (1 + m-')Tr(Bmo;')/k; (3.4.8) 

the basic idea is that after an appropriate linear transformation defined by 
each component of Q provides m - 1 independent degrees of 

freedom for estimating rm, just as with scalar Q, and when these are added 
together they provide k ( m  - 1) degrees of freedom for estimating rm. 
Hence, 

With observed values of the statistics (r,, Qm, om), (3.4.9) can be evaluated 
by numerical integration or Monte Car10 simulation: draw many pairs of 
independent xi and random variables and find the proportion of 
times the inequality in braces in (3.4.9) is satisfied. Furthermore, an 
approximation analogous to (3.4.6) used with k = 1 can be derived to 
provide a closed-form expression. 

p-Values with B, u Priori Proportional to T,--Closed-Form Approximation 

Approximation 3.1 can be used to show that the random variable in square 
brackets in (3.4.9) can be approximated as proportional to an inverted x 2  
random variable. Specifically, 

k ( m  - 1) 

can be approximated as a mean-square random variable on kv degrees of 
freedom where v is given by (3.3.11). It follows that (3.4.9) can be 
approximated as 

p-vAue( Qol S,; Bm a 0,) 

Prob( xi > xiv(l  + rm)- ' (kv) - ' (Qo - ~ , , , ) 0 ~ ' ( Q 0  - O m ) ' ]  
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where xi and x i ,  are independent x 2  random variables. Equivalently, 

p-value(Q,lS,,,; B, a urn) A Prob{ Fk,ky > b,} (3.4.10) 

where 

b,,, = (1 + r,,,)-'(Q, - D,)O;'(Q, - Q,,,)'/k. (3.4.11) 

p-Values When B, Is Not u prion' Proportional to 

When B, is not u priori proportional to om, two things happen. First, the 
analysis is no longer neat. Second, any Bayesian inference with large k and 
small m is going to be sensitive to the prior distribution placed on the k 
eigenvalues of B,OZ (equivalently, the k fractions of missing information, 
the eigenvalues of Bm7'''). One approach is to still use the result ap- 
propriate when B, a Om, that is, b,,, in (3.4.10) and (3.4.11). An obvious 
disadvantage of this answer is that as m 4 m, the correct Bayesian p-value 
is not obtained when B, is not proportional to 17, because (3.4.10) does 
not equal (3.4.3) for large m. 

An ad hoc answer that yields the correct answer as m + m is supplied 
by simply replacing B, in (3.4.3) with B,, and then adjusting for the 
finiteness of m by referring the result to an Fk,y reference distribution 
where v is found from (3.3.11) using the average between/within ratio, rm, 
given by (3.4.8). Thus, the approximation is 

p-value(Q,lS,,,) A Prob{ Fk,y > D,,,}, (3.4.12) 

where 

0, = (Q, - &,)[Om + (1 + m-')B,, ,]- '(Qo - D , ) ' / k .  (3.4.13) 

Obvious disadvantages of this answer are that for large k and small m, B,,, 
is a very noisy (e.g., deficient rank) estimate of B,, and the reference 
distribution is not well motivated. 

In practice, it is likely that either (a) rn will be small (e.g., 5 or less) since 
the auxiliary data set created by the imputer giving the multiple imputa- 
tions must be modest in size, or (b) m can be chosen to be very large (e.g., 
greater than 50 times the largest k) since the imputations are being created 
by the data analyst, with the consequence that B, can be treated as 
essentially equal to B,. Hence, although some technical work is needed on 
this problem, perhaps it should focus on finding accurate p-values using the 
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statistics D,, b,, and one scalar summary of evidence about the lack of 
proportionality; this approach requires m 2 3. A simple temporary answer 
is to refer Bm to an F distribution on k and v( k + 1)/2 degrees of freedom 
rather than k and kv degrees of freedom as would be appropriate when it 
is known that B, is proportional to am: 

~-value(QolSm) Prob( F k . ( k + l ) v / Z  > b m ) ;  (3.4.14) 

(k + l)v/2 is chosen simply because it is halfway between the minimum 
and maximum denominator degrees of freedom. Current work by 
Raghunathan (1987) provides suggestions for improvements. Also, a variety 
of other approaches are suggested by Li (1985). 

3.5. SIGNIFICANCE LEVELS FROM REPEATED 
COMPLETED-DATA SIGNIFICANCE LEVELS 

Another perspective, however, is that this problem of obtaining p-values for 
k-component Q from m completed-data moments when m is small is not 
the crucial one in practice. In practice, with multicomponent Q and a null 
value Q,, complete-data analyses usually do not produce an estimate and 
variance-covariance matrix, but rather simply the completed-data test 
statistic and corresponding p-value. Thus, the repeated completed-data 
analyses often will not be summarized by S, = { &,, U.,, I = 1,. . . , m} 
but rather simply by the repeated x2 statistics { d,,, I = 1,. . . , m } where 
asymptotically the d,, are given by 

dw = (Qo - Qw)UG'(Qo - Ow)' .(3.5.1) 

and 

p-value in Ith completed data set = Prob{ xi > d , / } .  (3.5.2) 

Consequently, finding the p-value for Q, given the d,, rather than S,  is 
arguably a more important practical problem. 

A New Test Statistic 

If we accept the propriety of b, as a test statistic based on S,, it is relevant 
to consider the test statistic 

- 
d, m - 1  - - -). 

II k m + l ' "  
0, = 

1 + r,,, (3.5.3) 
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where 

(3.5.4) 
I -  1 

Under the asymptotic sampling distribution with all U,, essentially equal, 
i,,, is identical to bm even though it depends on the k vectors of means Q*/ 
and the k X k matrices of covariances U,, only _through the scalars 
d * l , .  . . , d*,, and rm. Of course, the dependence of D,,, on rm remains an 
issue. 

The Asymptotic Equivalence of D,,, and b,,,--Proof 

In order to avoid cluttering expressions, without loss of generality for ths  
proof, suppose Qo is all zero and all U,, equal the k X k identity matrix. 
Then bm in (3.4.11) is given by 

and d, in bm is given by 

m c o*/Q:l/m5 
I -  1 

or equivalently, 

m 

I - 1  

which, since Tr(AB) = Tr(BA), gives 

or by (3.4.8), 
_ -  

d;, = Q,Q; + ( m  - l ) k r m / ( m  + I). 

(3.5.5) 

(3.5.6) 

Substituting (3.5.6) tor d, in (3.5.3) yields (3.5.5) and thus bm is asymptoti- 
cally equivalent to 0,. 

Integrating over r,,, to Obtain a Significance Level from Repeated 
Completed-Data Significance Levels 

Suppose we accept the propriety of using b,,, and an associated F k , k j v  

reference distribution [e-g., k' = k in (3.4.10) and k' = (k + 1)/2 in 
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(3.4.14)]. Then the asymptotic equivalence of B, and b, implies that 
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(3.5.7) 

Unfortunately, but not surprisingly, the distribution of r, given 
d,,,  . . . , d, ,  does not seem easy to work with. Ideally, a simple approxima- 
tion could be found that would incorporate available prior information 
such as supplied by the data collector about the range of fractions 
of missing information or the data analyst about the fractions of informa- 
tion missing found when doing interval estimation for some typical compo- 
nents of Q. 

An easy but not very satisfying approach is to replace Pr(rmld*l,. . . , d,,) 
with point mass at some estimate of r, and reduce the denominator degrees 
of freedom to reflect the number of individual estimates combined to 
estimate r,; since d,, is a scalar rather than a k-component quantity, this 
suggests reducing the degrees of freedom by the factor k-’. For example, 
assuming B, = rmum, a method of moments estimate of r, suggested in Li 
(1985) is 

(I + rn-l)sj 
11 r, = 

22, + [42: - 2ks:]:/’ 

where 

and 

[ u ]  + = u if u > 0 and 0 otherwise. 

The resultant test statistic is 
- 
d ,  m - 1 -  

L1 
11 k m + l r m  
0, = 

1 + i, 9 

(3.5.8) 

(3.5.9) 

which is referred to an F distribution on k and (1 + k-’)P/2 degrees of 
freedom, where 

P = ( m  - 1)(1 + i;’)’, (3.5 .lo) 

with Fm given by (3.5.8). 
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More work is needed on this problem, both theoretically and in the 
context of real problems. Li (1985) provides many suggestions and alterna- 
tives, but much remains to be done. Work in progress by Raghunathan 
(1987) develops several improvements. 

3.6. RELATING THE COMPLETED-DATA AND COMPLETEDATA 
POSTEFUOR DISTRIBUTIONS WHEN THE SAMPLING 
MECHANISM IS IGNORABLE 

The completed-data posterior distribution for Q, which appears in all the 
results of this chapter as the distribution to be calculated on each data set 
completed by imputation, is 

Pr(Qlx, X,,,, Rinc,  I). (3.6.1) 

When the sampling mechanism is ignorable, as it will be in standard 
scientific surveys, (3.6.1) can be written as 

It is easy to see that expressions (3.6.2) and (3.6.1) are equal when the 
sampling mechanism is ignorable. By Bayes's theorem 

and the ratio on the right-hand side is 1 since Q = Q( X, Y )  implies 
Pr(ZIX,Tnc, R,,,, Q) = Pr(llX, Y,  R,,,), and the ignorability of the sam- 
pling mechanism means that Pr(llX, Y, R,,,) = Pr(I(X, X,,, R,,,) = 

The completed-data posterior distribution given by (3.6.2) is not quite 
the posterior distribution that would naturally be calculated in the absence 
of nonresponse in a scientific survey, and thus is not quite the one data 
analysts would tend to form on each data set completed by imputation. In a 
standard scientific survey, the posterior distribution for Q that data analysts 
will tend to use on each data set completed by imputation ignores the 
distinction between real and imputed values as if there were no possibility 
of nonresponse, thus ignoring the value of R,,,. The conditional distribu- 
tion of Q given (X, x, , )  will be called the complete-data posterior distribu- 
tion for Q: 

W Q l x ,  T n c ) .  (3.6.3) 

Pr( I I X, Yobs R i n  c ). 



COMPLETED-DATA AND COMPLETE-DATA DISTRIBUTIONS 103 

The complete-data posterior distribution (3.6.3) differs from the com- 
pleted-data posterior distribution (3.6.2) in that the former does not ex- 
plicitly condition on R,,,. Specific examples of complete-data posterior 
distributions for Q = 7 were given in Sections 2.5 and here in Chapter 3. 
For instance, with a simple random sample of scalar Y,, the standard 
complete-data posterior distribution for 7 is normal with mean j and 
variance s2 (n- '  - N - ~ ) .  

The question to be addressed in this section is whether the extra 
conditioning on R,,, in the completed-data posterior distribution, called 
for in the results of Sections 3.2-3.5 makes any practical difference in 
standard scientific surveys. If so, users of multiply-imputed data sets would 
be advised to include adjustments for the differing status of real and 
imputed values in their analyses of each completed data set. If not, users 
of multiply-imputed data sets can use complete-data methods of analysis 
for each completed data set, as implied by the summary of Section 3.1. The 
following discussion supports the conclusion that using complete-data 
methods is appropriate. Problems 27-29 and the frequency evaluations in 
Chapter 4 also support this conclusion. 

Result 3.3. The Completed-Data and Complete-Data Posterior Distributions 
Are Equal When Sampling and Response Mechanisms Are Ignorable 

From Bayes's theorem we can write 

completed-data complete-data 

for Q, (3.6.3) 

adjustment 
factor 

posterior distribution = posterior distribution x 
for Q ,  (3.6.2) 

When nonresponse is ignorable, the adjustment factor is 1, and thus the 
completed-data and complete-data posterior distributions are equal. 

More generally, when Pr(R,,,IX, Y,,,, Q) is relatively constant in Q, at 
least for values of Q such that Pr(QlX, Y,,,) is relatively large, the com- 
pleted-data posterior distribution for Q will be nearly the same as the 
complete-data posterior distribution for Q. Furthermore, when the dimen- 
sion of Q is relatively small, the adjustment factor should be relatively 
closer to 1. Specific results can be obtained for the standard case of i.i.d. 
models, and these show that it is generally safe to assume that the 
completed-data and complete-data posterior distributions are essentially 
equal. 
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Using i.i.d. Modeling 

By appealing to de Finetti's theorem (Section 2.4), we can write the joint 
distribution of (X, Y, R) in i.i.d. form as 

N 

1-1 
Pr( X, Y, R )  = nf( Xi, y ,  R,le)Pr( 8) d8 (3.6.5) 

or 

(3.6.6) 

where ex, and 8,1,, are functions of 8; d,, is the parameter of the 
distribution of (Xi, Y,) and 8,1,, is the parameter of the distribution of Ri 
given (X,, Y,). Examples of such specifications for f x y (  - 1  * ) were given in 
Section 2.6. An example of such a specification for fRl,,(.l - ) with scalar Y,. 
is 

Result 3.4. The Equality of Completed-Data and Complete-Data Posterior 
Distributions When Using i.i.d. Models 

Suppose that: 

1. the sampling mechanism is ignorable, and the joint distribution of (X, 

2. conditional on 8,,, the completed-data and complete-data posterior 

Y, R )  is modeled in i.i.d. form (3.6.6), where 

distributions of Q are equal, 

and 

are equal, 
3 .  the completed-data and complete-data posterior distributions of O X ,  
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Then the completed-data and complete-data posterior distributions of Q 
are equal, 

Pr(QIX, T n c ,  R j n c )  = Pr(Qlx, X n c ) *  

The proof of t h s  result is immediate upon integrating the product of 
(3.6.7) and (3.6.8) over O x y .  Its importance lies in the fact that in many 
cases conditions (3.6.7) and (3.6.8) can be easily seen to be true or 
approximately true. 

Example 3.5. A Situation in Which Conditional on OXu, the 
Completed-Data and Cornplete-Data Posterior Distributions of Q Are 
Equal-Condition (3.6.7) 

Suppose that the sampling mechanism is such that all components of are 
either included in or excluded from the sample, so that I,  = (1,. . . , 1) or 
(0,. . . ,O); this is a very common situation. Then the completed-data pos- 
terior distribution of Q given O x y  is determined by (a) the observed values 
( X ,  ync)  and (b) the completed-data posterior distribution of Ye,, given 
Ox,,, which can be expressed as 

where ex = {ill;,  = 0 for all j } .  The right-hand side of (3.6.9) is 
Pr( Y,,,lX, y,,, Ox,,) ,  whence condition (3.6.7) holds in the very common 
case when units are either included in or excluded from the survey. 

Example 3.6. 

A case similar to that of Example 3.5 occurs when the population is very 
large relative to the sample in the sense that Q ( X ,  Y )  is essentially a 
function of ((XI, Y), i E ex}. Then the completed-data posterior distri- 
bution of Q given O x ,  is determined by (3.6.9), whence condition (3.6.7) 
follows. A slight generalization is to have a large population with a large 
group of units with Zf = (1,. . . , l )  but a small group of units with 1, # 

(1,. . . , 1 )  or (0,. . . ,O). In this case, the completed-data posterior distri- 
bution of Q given O x ,  is determined by the observed values of (X, y,,) and 
(3.6.9), and again (3.6.7) follows. The conclusion of this example and the 
previous one is that condition (3.6.7) can be expected to hold quite 
generally in practice. 

Cases in Which Condition (3.6.7) Nearly Holds 
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Example 3.7. Situations in Which the Completed-Data and Complete-Data 
Posterior Distributions of O x ,  Are Equal- Condition (3.6.8) 

Suppose 8,, and 8Rixy  are a priori independent. Then it is easy to see 
from (3.6.6) that (3.6.8) holds. The only reason then why (3.6.8) might not 
hold is a priori ties between 8,, and 8RIxy. 

In standard complete-data problems with large samples, standard 
asymptotic arguments (Section 2.10) imply that the observed data tend to 
overwhelm the prior distribution in the sense that essentially the same 
posterior distribution is obtained for a variety of prior distributions that do 
not place severe restrictions on parameters. Since we are assuming for each 
completed data set that (X, q,,, R,,,) is fully observed, these standard 
asymptotic arguments suggest that in large samples any a priori dependence 
between 8,, and O R l X Y  will commonly make little difference to the post- 
erior distribution of Ox,.  

Example 3.8. A Simple Case Illustrating the Large-Sample Equivalence of 
Completed-Data and Complete-Data Posterior Distributions of 8, , 
Suppose Y, is binary (0-1) and there is no XI. The i.i.d. model for (Y,, R , )  
given 8 can be parametrized as 

8 ,  = Pr( r, = 118) 

e,, = Pr( R ,  = 11q = 1 , 8 )  

Or, = Pr( R ,  = I I ~  = 0,O) 

where 8 ,  is 8,, and (Or,, 8,,) is OR, , ,  in the notation of (3.6.6). If the prior 
distribution for ( O , ,  drl, Ore) has positive prior density everywhere in (0, 1)3, 
in large samples the posterior distribution of 8 ,  is normal with mean equal 
to the maximum-likelihood estimate of B y ,  (i.e., j ) ,  and variance equal to 
the negative inverse of the second derivative of the log likelihood at the 
maximum-likelihood estimate [i.e., j(1 - J)/n], so that Pr(OvlY,,,, R,,,) = 

Pr(8yly,,c). Of course, if a priori there are strong ties between 8 ,  and 
(d, , ,  Bra), such as 8 ,  = (er1 + OrO) /2 ,  this conclusion will not hold. T h s  
example and the previous one suggest that with large samples, commonly 
condition (3.6.8) will be satisfied. 

The General Use of Complete-Data Statistics 

Examples 3.5-3.8 suggest that with large samples both conditions (3.6.7) 
and (3.6.8) will be approximately satisfied, and thus Result 3.4 implies that 
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in scientific surveys, completed-data and complete-data posterior distri- 
butions will generally be practically the same. Consequently, assuming 
normal posterior distributions, the statistics to be calculated on each 
completed data set can be complete-data statistics involving the mean and 
variance of Q given (X, ync)  under the model Pr( X, Y)  used to create the 
imputations. 

In practice, however, the analyst’s model for (X, Y )  will often differ 
from the imputer’s model for (X, Y), especially when the analyst differs 
from the imputer. The crucial question then becomes whether the mean and 
variance of Q given (X, Y,,,,) under the analyst’s model approximately 
equal the mean and variance of Q gwen (X, T,,,) under the imputer’s 
model. If so, then repeated-imputation inferences using the data analyst’s 
complete-data statistics are approximately valid under the imputer’s model 
Pr(X, Y, R ,  I ) .  The broad applicability of the standard complete-data 
statistics Q = j and U = s 2 ( n - ’  - N-’) in simple random samples for 
Q = j (see Examples 2.2 and 2.3) supports the contention that such 
approximate validity is not uncommon. Although further formal work 
withm the Bayesian framework is desirable, our consideration of the effect 
of using different models for imputation and analysis will take place within 
the context of the randomization-based evaluations of Chapter 4. 

PROBLEMS 

1. 

2. 
3. 

Summarize the advice to the analyst of a multiply-imputed data set 
presented in Section 3.1. 
When are multiple imputations repetitions? 
In Example 3.1, calculate the p-value associated with bm where y, is 
replaced with the average fraction of information missing for the two 
components of /3. 

4. Repeat Example 3.1 where 

2o lo and then B, = 
B m =  [ i o  301 

but the other values remain unchanged. Does the value for bm still 
make sense in these cases? That is, is 15 still a plausible value for the 
average complete-data x 2  statistic in both cases? 
In Example 3.2, show directly that for infinite m, the average value of 
Prob( y > O ( X ,  Y,,,,} equals Prob( r > OlX, Yob,}. 
In Example 3.3, suppose p-values for the null value Q, are calculated 
on each completed data set, pl, pz, ... . For infinite m, find the 

5. 

6. 
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average p-value for Q, = 0. Does this equal the correct p-value? 
Provide some insight regarding your answer. Hint: Distinguish be- 
tween the p-value for Q, = 0 and Prob{ Q > OlX, Yobs, R i n c } .  
Suppose (Q - Q) - N(0,  U) where Q is k-dimensional, Q = 
(Q,, Q,, . . . , Qk). Find the significance level associated with the null 
hypothesis Q, = Q,. Hint: What’s the distribution of (Q, - Q2 - Ql 
+ Q,) and the null value associated with the null hypothesis Q,  = Q,? 
Define the EM algorithm (Dempster, Laird, and Rubin, 1977) and 
show that its rate of convergence is governed by the largest fraction of 
missing information. 
Discuss the following claim: with univariate x, no covariates, and a 
scalar estimand, the fraction of missing information essentially equals 
the fraction of missing values. 
Provide rigorous justification for (3.3.2) and (3.3.3) and the consequen- 
tial (3.3.7) and (3.3.8). 
Derive (3.3.15) and the expectation and variance of its right-hand side. 
Suppose a lOO(1 - a)% interval estimate C is constructed using 
(3.3.16). From (3.3.7) and (3.3.8) show that 

7. 

8. 

9. 

10. 

11. 
12. 

13. 

14. 

15. 
16. 

17. 

18. 

1 + r, 
Prob{ Q E CIX, Yobs, Rine ,  I} = Prob 

where z and q are independent N(0,l) and x ; - ~  random variables. 
Tabulate some coverages as a function of a, m, and r,,,. 
Create approximations to the distributions of Q given S,,, other 
than (3.3.16). In particular, consider the approximation to the 
Behrens-Fisher distribution in Box and Tiao (1973) and the normal 
approximation using the Fisher (1935) factor ( v  + 3)/(v + 1). Com- 
ment on the differing justifications for these approximations and relate 
these to measurements of missing information with finite m. 
Comment on the relevance of the approach in Section 3.3 to the 
Bayesian analysis of general simulation experiments. 
Show that, in general, the distribution of B,,, given B, is Wishart. 
Show that when B, = r,Q, and the prior distribution on log(r,) is 
proportional to a constant, then the distribution of r, given S,,, is 
k( m - l)rm times an inverted x 2  random variable. 
Find a better reference distribution for Dm than Fk,”, and provide 
some evaluations. 
Assume some simple structure on (B,, 0,) other than B, a am, and 
derive Bayesian p-values under this assumption. 
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19. Show that letting Q, be zero and all U,, equal the identity matrix 
results in no loss of generality when showing the asymptotic equiv- 
alence of bm and bm. 
Prove that for rn -, 03 and B, = r,U,,  

- 
20. 

3: 

2 1 /2 .  
r, = 

2 d ,  + [ 4 d ,  - 2kSJ 

Hint: Show that 
- 
d ,  = Dm(l + r,) + kr, 

s: = 2kr: + 4rooDoo(1 + roo). 

21. Prove that for rn 00 the moments of the d,, can be calculated in 
terms of 0, and the k eigenvalues of B, with respect to 0,. 
Conclude that, in principle, with m large enough, 0, can be calcu- 
lated as a function of k + 1 moments of the infinite set of repeated 
d,, (Raghunathan, 1987). 
Create - improved methods of finding p-values from d*l , .  . . , d,, when 
B, a U,. 
Extend Problem 22 to the general case. 
Review results in Li (1985) concerning hypothesis testing beyond 
those presented here. 
State precisely the difference between the completed-data posterior 
distribution for Q and the complete-data posterior distribution for Q. 
Also, summarize conditions under which this distinction can be 
ignored. Finally, provide a realistic example in which this distinction 
is important. 
Suppose the imputer has available the values of a variable Z not 
available to the data analyst. Suppose that the object of inference is 
Q = Q( X, Y), which is not a function of Z, and that the imputer’s 
and data analyst’s models are the same. Describe conditions under 
which the distribution of Q being simulated, 

22. 

23. 
24. 

25. 

26. 

equals or nearly equals the imputer’s posterior distribution of Q: 

Pr(Qlx, Knc, Rjnc, Zinc). 
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Hint: First show that 

Pr(YmisIX, 'obs, Rinc, ') = Pr(YmisIX, Yobs, R~nc, z i n c ) .  

Then consider when Pr(QlX, x,,, R,,,) A Pr(QlX, y,,, R,,,, Z,,,) by 
considering when Pr(Y,,,IX, L,, R l n c )  A Pr(YexcIX, Y n c ,  RInc, Zinc) 
and when P r ( ~ y l x l ~ ,  K,,,  R,,,) A Pr(~yIxIX, Y,,, A,,,, Z,,,), for ex- 
ample, 6Jy,x, 

27. Suppose C = C ( X ,  Y,,,, I) is an interval estimate of Q that is free of 
R and that the sampling mechanism is unconfounded with R. Show 
that the Bayesian calibration rate of C, given (X, q,,, I) but averag- 
ing over R,,,, is the same for all response mechanisms. That is, show 
that for fixed Pr(X, Y), Pr(IlX, Y), and (X, Y,,, I), the average pos- 
terior probability that C includes Q, 

a priori independent of &+,, y, and large samples. 

Prob{Q E CIX, L,, I >  

= E[Prob{Q E CIX, L,, R,,,, I }  IX, Y,,, I], 
takes the same value for all specifications Pr(RIX, Y). Hint: Write 

Prob{ Q E CIX, L,, I }  

Pr( X, Y)Yr( RIX, Y)Pr( IIX, Y, R)  dye,, dR 

//Pr( X, Y)Pr( RIX, Y)Pr(IlX, Y, R)  dYex,dR 
= //S(Q E C) 

and note that Q, C, and Pr(IlX, Y, R) = Pr(IJX, Y) are free 
of R. 

28. Consider a simple simulation with no X and scalar r, where the 
following steps are passed through lo6 times to generate lo6 popula- 
tions of Y each of size N = lo3. First, draw lo3 N(0,l) deviates and 
exponentiate them to create a population where the r, are lognormal 
and is the population mean. Second, draw lo5 values of R from 
each of two response mechanisms, the first one unconfounded, 

Pr(R1Y) = (0.6)zR'(0.4)N-PR', 

and the second one confounded with Y, 

thereby creating 2 X lo5 populations of (Y, R) values all with the 
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same value of Y. Thrd, from each of the 2 X lo5 populations, draw 
all (iz) possible simple random samples of n = 100 values of 
(q ,  R , )  from (Y, R), calculate the sample mean J and sample vari- 
ance s’, and then the interval estimate 

C = j f 1 . 9 6 ~ (  .01 - .001)”2 

For our Y population, there are 2 X lo5 x (;:) interval estimates, 

but for each of the (;E) possible values of I, all 2 X lo5 interval 
estimates are the same. There are lo6  such Y populations. 

Suppose for each of the 2 x los  x lo6 x (;=)-simple random 

samples we calculate the posterior probability that Y E  C under the 
lognormal model for Y and the correct model for the response 
mechanism: 

and 

where the superscripts u and c refer to the unconfounded and con- 
founded response mechanisms, respectively. Now for each of the 
lo6 x ( 1:) simple random samples of Y, average the lo5 values of 
p ”  calculated for the lo5  values of Rinc generated under the uncon- 
founded response mechanism, and average the lo5 values of p c  
calculated from the lo5 values of RinC generated under the con- 
founded response mechanism. This creates two average probabilities 
for each of the lo6  x (:=) samples of Y, which can be written, 
supposing lo5  is essentially infinite, as 

and 
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Verify from the expressions for j", j', p", and p', that j" = j c .  
Reach the same conclusion, namely, that 

from the general result in Problem 27, and comment on the implica- 
tions for using complete-data rather than completed-data statistics. 

29. As in Example 3.8, suppose is binary and there is no Xi, but now let 
8, = Pr(x. = l iR ,  = 0, 8), 8, = Pr(x. = l lRi  = 1, O ) ,  and 8, = Pr(R, 
= ll8), where 8 = (8,, 8,, 6,) with 8,, el, and 8, a priori indepen- 
dent. 
(a) Show that generally d x y  and 8RlXy are a priori dependent. 
(b) Show that generally nonresponse is nonignorable. 
(c) Assume R is known in the population with N,  respondents and No 

nonrespondents, and show that given R the population respondent 
mean r, and the nonrespondent mean yo are a posteriori indepen- 
dent. 

(d) Apply the standard inference to Lo and r, and deduce that given 
R the posterior mean of y is nearly 

(Nl/N)Jl + ( N o / N ) J o  

and the posterior variance of ? is nearly 

in an obvious notation. 

the answer in (d) over this to obtain a final inference for y. 

3.8. 

(e) Apply the standard inference to estimate i? = N l / N  and integrate 

(f) Comment on the relationship between this problem and Example 

30. Extend Problem 29 to the case where under the imputer's model the 
have a normal linear regression on Xi with slopes depending on Ri. 
Consider using the following models to form a repeated imputation 
inference for Y based on complete-data statistics: the imputer's model, 
a normal linear regression model, and a quadratic regression model. 
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Randomization-B ased Evaluations 

4.1. INTRODUCTION 

The repeated imputation inferences developed in Chapter 3 are approxima- 
tions derived in the ideahzed situation where the imputer and analyst use a 
common Bayesian model. To ensure that these inferences are approximately 
calibrated in a wide variety of routine applications, it is appropriate and in 
the tradition of survey methodology to evaluate their performance from the 
randomization perspective. We restrict attention to standard scientific 
surveys and standard complete-data statistics. Consequently, our random- 
response randomization-based evaluations treat X and Y as fixed, assume 
specifications for the response mechanism Pr( RIX, Y )  and the uncon- 
founded sampling mechanism Pr( I (  X), and calculate the frequency proper- 
ties of repeated-imputation inferences using complete-data statistics averag- 
ing over I and R for fixed ( X ,  Y ) .  

Major Conclusions 

Our major conclusions regarding these evaluations are as follows. First, if 
(1) the complete-data inference is a valid randomization-based inference in 
the absence of nonresponse and (2) the imputation method is proper, as 
defined in Section 4.2, then in large samples the repeated-imputation 
procedures lead to inferences that are valid from the random- 
response randomization-based perspective, at least when the number of 
imputations is large. Furthermore, under these same two conditions, when 
the number of imputations, rn, is small, the procedures are nearly valid 
from the random-response randomization-based perspective, and their op- 
erating characteristics can be relatively easily calculated. 

113 

Multiole Imuutation for Nonresuonse in Surveys 
-Donald B. Rubin 

Copvrinht 01987 bv John Wilev & Sons, Inc 



114 RANDOMIZATION-BASED EVALUATIONS 

TABLE 4.1. Largesample relative efficiency(in %)ll when using a finite number 
of proper imputations, m, rather than an infinite number, as a function of the 
fraction of missing information, yo: RE = (1 + yo / m ) - ‘1’. 

Yo 

m .1 .2 .3 .4 .6 .7 .8 .9 .5 

1 95 91 88 85 82 79 77 75 73 
2 98 95 93 91 89 88 86 85 83 
3 98 97 95 94 93 91 90 89 88 
5 99 98 97 96 95 94 94 93 92 
M 100 100 100 100 loo 100 100 100 100 

“in units of standard deviations 

Large-Sample Relative Eaciency of Point Estimates 

As an example, the large-sample variance of the repeated-imputation point 
estimator Q, based on a proper imputation method is 

V(QmIx,y) = (1 + YO/~)V(Q,IX,Y), 

where yo is the population fraction of missing information. This result is 
derived in Section 4.3. The quantity yo is equal to the expected fraction of 
observations missing in the simple case of scalar r, with no covariates, and 
commonly is less than the fraction of observations missing when there are 
covariates that predict r,. Thus, the efficiency of the finite-m repeated- 
imputation estimator relative to the fully efficient infinite-m repeated-impu- 
tation estimator is (1 + yo/m)-1/2 in units of standard errors; values are 
given in Table 4.1. In cases with little missing information, proper imputa- 
tion with m = 2 or 3 is nearly fully efficient. 

Large-Sample Coverage of r-Based Interval Estimates 

Similarly, it is relatively straightforward to derive the random-response 
randomization-based coverages of repeated-imputation interval estimates 
assuming valid complete-data inferences and proper imputation methods. 
Section 4.3 derives the large-sample results given in Table 4.2, which 
includes results for single imputation based on the normal reference distri- 
bution to discourage the use of single imputation. Table 4.2 suggests that 
proper multiple imputation with m = 2 or 3 will yield accurate coverages in 
many cases. 
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TABLE 4.2. Large-sample coverage probability (in 5%) of interval estimates based on 
the t reference distribution, (3.1.Q as a function of the number of proper imputa- 
tions, m 2 2; the fraction of missing information, yo; and the nominal level, 1 - u. 
Also included for contrast are results based on single imputation, m = 1, using the 
complete-data normal reference distribution (3.1.1) with Q replaced by G ,  = Q*, 
and U replaced by u, = Ue1. 

Yo 
~ ~~~ 

1 - a  m .1 .2 .3 .4 .5 .6 .7 .8 .9 

50% 

80% 

90% 

95% 

99% 

1 
2 
3 
5 
a, 

1 
2 
3 
5 
00 

1 
2 
3 
5 
0) 

1 
2 
3 
5 
00 

1 
2 
3 
5 
02 

46 
50 
50 
50 
50 

75 
80 
80 
80 
80 

86 
90 
90 
90 
90 

92 
95 
95 
95 
95 

98 
99 
99 
99 
99 

42 
50 
50 
50 
50 

70 
80 
80 
80 
80 

82 
90 
90 
90 
90 

89 
95 
95 
95 
95 

96 
99 
99 
99 
99 

38 
51 
50 
50 
50 

65 
80 
80 
80 
80 

77 
89 
90 
90 
90 

85 
94 
95 
95 
95 

94 
98 
99 
99 
99 

34 
51 
50 
50 
50 

60 
79 
80 
80 
80 

72 
88 
89 
90 
90 

80 
93 
94 
95 
95 

91 
98 
98 
99 
99 

30 
50 
50 
50 
50 

54 
78 
79 
80 
80 

66 
87 
89 
90 
90 

74 
92 
94 
95 
95 

86 
97 
98 
99 
99 

26 
50 
50 
50 
50 

48 
77 
79 
80 
80 

59 
86 
88 
90 
90 

67 
91 
93 
94 
95 

80 
96 
98 
99 
99 

22 
50 
50 
50 
50 

41 
76 
79 
80 
80 

5 1  
85 
88 
89 
90 

59 
89 
93 
94 
95 

72 
95 
97 
98 
99 

18 
50 
50 
50 
50 

33 
76 
79 
80 
80 

42 
84 
88 
89 
90 

49 
88 
92 
94 
95 

61 
93 
97 
98 
99 

12 
50 
50 
50 
50 

23 
76 
79 
80 
80 

29 
83 
88 
89 
90 

35 
87 
92 
94 
95 

45 
92 
96 
98 
99 

Outline of Chapter 

Because the multiple-imputation procedures we are considering are derived 
from the Bayesian perspective but are being evaluated from the random- 
response randomization-based perspective, the arguments that are used in 
this chapter are relatively demanding in that they rely on a clear conceptual 
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understanding of both perspectives. In order to simplify the presentation, 
conditions for the validity of infinite-m multiple-imputation procedures 
from the randomization perspective are considered before any evaluations 
of finite-m multiple-imputation procedures. As a result, proper imputation 
methods, which essentially are multiple-imputation procedures such that 
the statistics (Q,, om, B,) provide valid random-response randomization- 
based inferences for the complete-data statistics (8, U), receive extended 
discussion and illustration. Following this discussion, the asymptotic distri- 
bution of (B,, om, B,) is derived assuming proper imputation methods. 
Then finite-m proper multiple-imputation procedures are evaluated, first for 
scalar Q and then for multicomponent Q. Related work within different 
conceptual structures appears in Li (1985) and Schenker and Welsh (1986), 
the latter being the most mathematically rigorous. 

4.2. GENERAL CONDITIONS FOR THE RANDOMIZATION- 
VALIDITY OF I " H % m  REPEATED-IMPUTATION INFERENCES 

Suppose inferences are drawn from an infinite number of multiple imputa- 
tions under one model using standard complete-data statistics, 0 = 
&( X, y.nc, I) and U = U( X, qnc, I), and the normal reference distribution 
(3.2.13). The resulting repeated-imputation inferences wil l  be valid from the 
random-response randomization-based perspective under the posited re- 
sponse mechanism and specified sampling mechanism if 

and 

(4.2 .l) 

(4.2.2) 

where Q = Q ( X ,  Y) and-To To(X,  Y) are fixed by the true values of 
(X, Y); T,=~,+B,; andQ,,U,, andB, are functions of (X, Yobs, Rino I). 
The random variable in (4.2.1) and (4.2.2) is (R,  I), and the K notation 
was defined in Section 2.10. When (4.2.1) and (4.2.2) hold, we will say that 
the repeated-imputation inference is mndomization-ualid. For instance, the 
95% interval estimate given by (3.2.14) will be a 955% confidence interval, 
and if Q = Qo, then the p-value given by (3.2.15) will be uniformly 
distributed on (0,l). 

It is important to realize that all that is required for the inference to be 
randomization-valid is that (4.2.1) and (4.2.2) hold under the posited 
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response mechanism, specified sampling mechanism, and the true popula- 
tion data (X, Y). The central theme of multiple imputation is to allow the 
display sensitivity to different possible models for nonresponse by deriving 
valid inferences under each posited model for nonresponse. Consequently, 
there is no need to have inferences that are valid under the true response 
mechanism, just under the posited one. 

Conditions (4.2.1) and (4.2.2) wi l l  hold in large samples if (a) repeated 
imputations are drawn under the true model for the response mechanism 
and the true model for the data and (b) the complete-data inference equals 
the completed-data inference derived under the same models. This conclu- 
sion follows from the general arguments in Section 2.10 regarding the 
asymptotic randomization-based validity of Bayesian procedures derived 
under the model that generated the data. Results in Section 2.10 also 
suggest that t h i s  conclusion can still hold when an incorrect Bayesian model 
is used to create both the complete-data inference and the repeated imputa- 
tions; specifically, if Q, is asymptotically unbiased for Q, E(&1X, Y)  = 
Q, then conditions (4.2.1) and (4.2.2) will be satisfied asymptotically under 
mild regularity conditions. 

Complications in Practice 

Although these results are encouraging, there exist complications in prac- 
tice. For example, even assuming explicit Bayesian models will be used to 
create repeated imputations, generally the analyst’s complete-data statistics 
0 and U will not be the conditional mean and variance of Q given 
(X, q,,, R,,,) under the imputer’s model for the data; in fact, this is nearly 
certain when the imputer and the data analyst are different individuals or 
organizations. Also, in practice the multiple imputations may not be 
repetitions under any particular explicit Bayesian model but rather may be 
approximate repetitions under an implicit model, such as a modification of 
the hot-deck. This will often be true in current practice when multiple 
imputations are created by an organization using a simple modification of 
an existing single-imputation procedure. 

More General Conditions for Randomization-Validity 

Thus, it is practically important to consider more general circumstances 
under which conditions (4.2.1) and (4.2.2) are satisfied. Two conditions are 
sufficient for the infhite-m repeated-imputation inference to be randomiza- 
tion-valid. 
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First, the complete-data inference has to be randomization-valid: 

(4.2.3) 

and 

where Q = Q( X, Y) and Uo = Uo( X ,  Y )  are fixed by the true values of X 
and Y, and the underlying random variable in (4.2.3) and (4.2.4) is I with 
distribution Pr( I I X ,  Y) = Pr( Z I X ) .  Because our concern is with problems 
of nonresponse, we always regard the complete-data inference to be ran- 
domization-valid. 

The second condition is that the multiple-imputation procedure is proper, 
basically in the sense that the infinitam statistics (G,, Dm, B,) yield 
randomization-valid inferences for the complete-data statistics 0 and U 
under the posited response mechanism. For notational simplicity in the 
following definition, we assume that nonresponse affects all components of 
6 (i.e., B, is full rank); the results can be seen to hold otherwise by 
decomposing 0 into components affected by nonresponse (corresponding 
submatrix of B, is full rank) and unaffected by nonresponse (correspond- 
ing submatrix of B, is all zero). 

Definition: Proper Multiple-Imputation Methods 

A multiple-imputation procedure is proper for the set of complete-data 
statistics { Q, U } if three conditions are satisfied: 

1. Treating (X, Y, I) as fixed, under the posited response mechanism, 
the m = 00 multiple-imputation procedure provide; ran$omization- 
valid inferences for the complete-data statistic Q = Q ( X ,  Y,,,, I )  
based on the statistics a, and B,: 

(e,lx, y ,  I )  - NQ, B )  

(B,IX, y ,  I )  - ( B ,  = B ) ,  

(4.2.5) 

(4.2.6) 

where B = B( X,  Y,,,, I )  is defined by 

B = V(&,lX,  Y ,  I ) .  (4.2.7) 

2. Treating (X, Y, I )  as fixed, under the posited response mechanism, 
the m = 00 imputation estimate of the complete-data statistic U = 
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U( X, x,,, I), that is, om, is centered at U with variability of a lower 
order than that of G,: 

(ljmlX, Y ,  I )  - (U, << B ) .  (4 -2 -8) 

3. Treating (X, Y)  as fixed, over repeated samples the variability of B is 
of lower order than that of $: 

where B, = B,( X, Y) is defined by 

and U, = U,(X,Y) is defined by (4.2.4). 

The underlying random variable in (4.2.5)-(4.2.8) is R with distribution 
specified by the response mechanism Pr( R I X ,  Y), whereas the underlying 
random variable in (4.2.9) and (4.2.10) is I with distribution Pr(f1X). 

The concept of proper imputation methods deserves extended discussion 
and illustration, but before giving this in Section 4.3, we prove that it, when 
coupled with the randomization-validity of the complete-data inference, 
implies the randomization-validity of the infinite-m repeated-imputation 
inference, so that the importance of proper imputation methods is clear. 

Result 4.1. 
and the Multiple-Imputation Procedure Is hoper, Then the Infinite-m 
Repeated-Imputation Inference Is Randomization-Valid 
under the Posited Response Mechanism 

The claim is that (4.2.3)-(4.2.10) imply (4.2.1) and (4.2.2). To prove this 
result, first note that (4.2.3) and (4.2.5) imply 

If the Complete-Data Inference Is Randomization-Valid 

which by (4.2.9) gives 

Next note that by (4.2.6) and (4.2.8) 
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which by (4.2.4) and (4.2.9) gives 

as required to complete the proof. 

43. EXAMPLES OF PROPER AND IMPROPER IMPUTATION 
METHODS IN A SIMPLE CASE WITH IGNORABLE NONRESPONSE 

Consider the following simple situation. A simple random sample of - size n 
is drawn from a population of N values with finite mean Q = Y and 
variance S2. In the absence of nonresponse, inference for is based on the 
standard complete-data statistics 0 = j ,  the sample mean, and U = s2(n-' 
- W') ,  where s 2  is the sample variance. We assume that N and n are 
large enough to make standard complete-data inferences based on 0 and U 
randomization-valid, so that we accept (4.2.3) and (4.2.4) with U, = S2(n-' 

Due to unconfounded nonresponse, only n, of the n values in Y,,, are 
observed where n1 is also large and for simplicity is treated as fixed. The 
observed sample mean is j ,  and sample variance is s:. Since nl and n are 
large, treating the sample as fixed and averaging over the response mecha- 
nism, which is like a level of simple random sampling from the n values 
comprising xi,,, gives for (4.2.3) and (4.2.4) 

- N-') .  

(YllX, Y ,  I) - N ( j ,  s2(n;1 - n - 1 ) )  (4.3.1) 

and 

(s?IX, Y ,  I) - (s2, << s2).  (4.3.2) 

The examples of multiple-imputation procedures that follow all concern 
this situation. For each example, we decide whether the imputation method 
is proper or improper for the complete-data statistics { j ,  s2(n-'  - N - ' ) }  
by considering expressions (4.2.5), (4.2.6), (4.2.8), and (4.2.9). 

Example 4.1. Simple Random Multiple Imputation 

Consider the multiple-imputation version of the single imputation hot-deck 
of Example 1.6 in which multiple imputations are created by a simple 
random drawing with replacement from the n, observed values. It is easy to 
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see that e, = j1, so that from (4.3.1), 
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(4.3.3) 

where B, defined to be V(Q,lX, Y,  I), is given by 

B = s+;l - n-1). (4.3.4) 

Thus, (4.2.5) is satisfied. 

variances equals 
Also, it is easy to see that the average of the complete-data sample 

sf(l - n;')[l + n , n - l ( n  - 1 ) 7 ,  

which for large n1 and n equals s: (see Problems 11-14 in Chapter 1 for 
details). Thus, for large samples, 

0, = s:(n-l - N - l ) ,  (4.3.5) 

and from (4.3.2) and (4.3.4) it follows that 

( V , l X ,  Y ,  I )  - (u, << B )  (4.3.6) 

where 

u = s y n - 1  - X I ) ,  (4.3.7) 

so that (4.2.8) is satisfied. Also, (4.2.9) is satisfied with large n, since from 
(4.3.4) and (4.3.7) 

V ( B l X ,  Y )  << E(UIX,  Y ) .  

It remains to consider (4.2.7), that is, whether B,, the variance of the 
complete-data estimates j*,, 1 = 1,2, . . . across the multiple imputations, 
essentially - equals B, the actual variance of the complete-data estimate 
Q, = lim, - ,Crjj*,/m over the response mechanism, given by (4.3.4). It 
is easy to show (see Problems 11-14 in Chapter 1 for details) that 

Bm = (1 - n,/n)(l - n,')s:/n, 

so from (4.3.4), for large n1 

E(B,IX, Y,  I )  = Bn,/n. (4.3.8) 



122 RANDOMIZATION-BASED EVALUATIONS 

Thus B, underestimates B by the response rate, and thus (4.2.7) is not 
satisfied. 

The conclusion is that the multiple-imputation hot-deck, which ran- 
domly samples nonrespondents from respondents, is improper for 
{ j ,  s2(n-'  - N - I ) }  for any population of Y values because it does not 
have enough between-imputation variability. A simple calculation therefore 
shows that the repeated-imputation estimated variance of 8, underesti- 
mates the actual variance of G,, and thus the analysis methods of Chapter 
3 lead to interval estimates that are systematically too short and p-values 
that are systematically too significant. More precisely, for large m, 

whch from (4.3.4), (4.3.5) and (4.3.8) gives for large samples, 

E(T,JX,  Y )  = S 2 ( n - '  - N - ' )  + S2(1 - .I/.)/., 

or since v(Q,~x, Y )  = s2(n;' - N - ' ) ,  

E(T,IX, Y )  = V(&,lX, Y )  - (1 - n1/n)s2(n;' - n - I ) ,  

which shows that T, underestimates To = V(&JX, Y), and so (4.2.2) fails 
to hold. 

Why Variability Is Underestimated Using the Multiple-Imputation Hot-Deck 

At first it may appear rather surprising that randomly drawing multiple 
imputations from respondents does not lead to valid inferences even with 
large samples and large m. A useful way to understand the deficiency of 
simple random (hot-deck) multiple imputation is to consider the problem 
carefully from the Bayesian point of view developed in Chapter 3. 

From this perspective, the objective of multiple imputation under one 
model is to simulate the posterior distribution of missing Y values and 
thereby the posterior distribution of the statistics used for inference with 
complete data. This simulation is easily done in a two-step process with 
standard i.i.d. models: First, draw the parameters of the model from their 
posterior distribution, and then draw the missing values from their post- 
erior distribution conditionally given the drawn values of the parameters. 

Simple random multiple imputation omits the step of drawing the 
parameters and instead acts as if the respondents' distribution of Y values 
were exactly the same as the population distribution of Y values. Because 
we do not know precisely what the population values are, when we act as if 
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we have this knowledge we underestimate variability. In other words, even 
if the respondents and nonrespondents represent a random partition of the 
population of units, J1 and s: are not the exactly appropriate mean and 
variance for the n - n, nonrespondents in the sample. With ignorable 
nonresponse, the respondents and nonrespondents share the same parame- 
ters, but the sample mean and sample variance for respondents are not 
perfect estimates of these parameters, and our imputations must reflect this 
uncertainty to be proper. 

Example 4.2. Fully Normal Bayesian Repeated Imputation 

Consider the fully normal repeated-imputation method of Example 3.2. It is 
easy to see that e, = j 1  so that (4.3.3) and (4.3.4) still hold, and thus 
(4.2.5) is satisfied. Also, it is easy to see that for large samples, the average 
of the complete-data variances equals s:, so that (4.3.5)-(4.3.7) hold, and 
thus (4.2.8) and (4.2.9) are satisfied. Furthermore, straightforward algebra 
shows that in large samples 

B, = s;(n;’ - n - 1 ) 7  (4.3.10) 

whch is unbiased for B with low-order variability thus satisfying (4.2.7). 
Our conclusion is that fully normal Bayesian repeated imputation is 

proper for ( j l ,  s2 (n- ’  - N - ’ ) }  in large samples with ignorable nonre- 
sponse for any population of Y values. Substituting (4.3.5) and (4.3.10) into 
(4.3.9) shows that 

to confirm the conclusion of Result 4.1 that randomization-valid inferences 
will result. 

Example 4.3. A Nonnormal Bayesian Imputation procedure That Is Proper 
for the Standard Inference-The Bayesian Bootstrap 

Example 4.2 might be seen as suggesting that when the standard inference 
is to be used with complete data and nonresponse is ignorable, then 
multiple imputations should be created as repetitions under a Bayesian 
normal model. Many Bayesian models besides the normal, however, 
approximately yield the standard inference with complete data, and 
thus many such models can be used to create proper imputations for 
{ j ,  s 2 ( n - ’  - N - ’ ) }  with ignorable nonresponse. 

To illustrate this, consider the Bayesian bootstrap (BB) specification of 
Example 2.3. A simple way to generate repeated imputations of Ymis is to 
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repeat the following two steps m independent times. For notational con- 
venience we let robs = (Y,, . . . , y,,,). 

Step 1. Draw n1 - 1 uniform random numbers between 0 and 1, and let 
their ordered values be a l , .  . ., o , , ~ - ~ ;  also let a, = 0 and a,, = 1. 

Step 2.  Draw each of the no missing values in Ymis by drawing from 
Y,, . . . , Y,,, with probabilities (al - a,), ( a z  - a,), . . . , (1 - a,,,-& that is, 
independently no  times, draw a uniform random number u, and impute Y, 
if a, - ,  < u I ai. 

Straightforward algebra shows that for large samples e, = j l ,  U, = 
s;(n-' - W1), and R, = s:(n;' - n-'), and so Bayesian bootstrap 
imputation is asymptotically proper for { J ,  s2(n;' - W ' ) }  with ignorable 
nonresponse. 

- 

Example 4.4. An Approximately Bayesian Yet Proper Imputation 
Method-The Approximate Bayesian Bootstrap 

Non-Bayesian imputation methods can also be proper if they incorporate 
appropriate between-imputation variability. Such methods are readily con- 
structed as modifications to Bayesian methods that generate approximate 
repetitions. Approximate Bayesian bootstrap (ABB) imputation first draws 
n1 values randomly with replacement from Yobs to create YoZs, and then 
draws the no = n - a1 components of Ymis randomly with replacement 
from YoZs. The difference between the ABB and the BB is that the 
underlying parameter of the data, which gives the probabilities of each 
component in Yobs, is being drawn from a scaled multinomial with the ABB 
rather than a Dirichlet distribution. These distributions have the same 
means and correlations and differ in variances only by the factor (1 + n;') 
(see Rubin, 1981a). Consequently, repeated ABB imputation is also proper 
for { j ,  s2(n-' - N-')} with unconfounded nonresponse in large samples. 

Example 4.5. The Mean and Variance Adjusted Hot-Deck 

A minor non-Bayesian modification of the fully normal imputation method 
of Examples 3.2 and 4.2 gives the mean and variance (MV) adjusted 
hot-deck. Here the first two steps of drawing p and u2 from their posterior 
distribution are exactly as in Example 3.2. The third step in Example 3.2 is 
modified so that the zero-mean unit-variance zi are no longer drawn from 
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the normal distribution but rather with replacement from YobS linearly 
transformed to have zero mean and unit variance [i.e., for each component 
in Yobs, subtract J1 and divide by s,(l - r ~ ; ’ ) ’ ’ ~ ] .  The potential advantage 
of this modification over fully normal imputation is that the values gener- 
ated will have the same distributional shape as the observed values in Yobs. 
For example, if the components of Yobs are skew, then the M Y  method will 
tend to impute values in YmjS with the same skewness, whereas the fully 
normal method tends to impute values in YmiS that are symmetric no matter 
what the shape of the distribution in Yobs. The methods have the same first 
two moments, and thus MV is asymptotically proper for { j ,  s2(n-’  - 
N -  ’)} with unconfounded nonresponse. 

A slight modification of the M Y  method is also proper under the same 
conditions: Instead of drawing u2 from its x 2  posterior distribution in the 
first step, simply fix it at the observed variance of the components in Yobs. 
This method was analyzed in detail by Rubin (1979a) and Herzog and 
Rubin (1983). Of course, if the step of drawing p from its posterior 
distribution is replaced by fixing p at the sample mean, all between-imputa- 
tion variability is eliminated, and we have returned to the simple multiple- 
imputation hot-deck, which was shown in Example 4.1 to be improper for 
{ j ,  s*(n-’  - N - ’ ) } .  

4.4. 
METHODS 

FURTHER DISCUSSION OF PROPER IMPUTATION 

In light of Result 4.1, it obviously is desirable to use imputation methods 
that are proper under the posited response mechanism for as wide a variety 
of complete-data statistics as possible. In this section heuristic arguments 
and the examples of Section 4.3 are used to support the following conclu- 
sion, which suggests specific issues to be considered when choosing a 
rnultiple-imputation method in practice. 

Conclusion 4.1. Approximate Repetitions from a Bayesian Model Tend to 
Be Proper 

If imputations are drawn to approximate repetitions from a Bayesian 
posterior distribution of Ymis under the posited response mechanism and an 
appropriate model for the data, then in large samples the imputation 
method is proper. By “an appropriate model for the data” is meant one 
such that (&,, i?,), the posterior mean of (8, U), is approximately unbi- 
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ased for (6, U) under the posited response mechanism: 

E ( E , ( X ,  Y ,  I )  A u. 

(4.4 -1) 

(4.4.2) 

There is little doubt that if this conclusion were formalized in a particu- 
lar way, exceptions to it could be found. Its usefulness is not as a general 
mathematical result, but rather as a guide to practice. Nevertheless, in order 
to understand why it may be expected to hold relatively generally, it is 
important to provide a general heuristic argument for it. 

The Heuristic Argument 

We now show that drawing repetitions from appropriate Bayesian models 
tends to lead to proper imputation methods; that is, drawing repeated 
imputations from Bayesian models satisfying (4.4.1) and (4.4.2) tends to 
imply (4.2.5), (4.2.6), (4.2.8), and (4.2.9). Expression (4.2.8) is satisfied by 
the usual asymptotic argument concerning the lower-order variability of 
variances of estimates. Now recall that by construction B, is the posterior 
variance of Q, V(QlX, Yobs, R j n o  I ) .  Results referenced in Section 2.10 
suggest that if (4.4.1) holds, then (a) the distribution of (B, - Q) given 
(X,Y,  I) will be normal [i.e., (4.2.5) will hold], and (b) B, will be ap- 
proximately unbiased for its variance with low-order variability [i.e., (4.2.6) 
will hold]. It is important to realize that if the imputation method is such 
that (4.4.1) and (4.4.2) are satisfied but the imputations are not drawn 
following the Bayesian paradigm, that is, are not repetitions, the imputation 
procedure can easily be improper because B, may not be approximately 
unbiased for B as required by (4.2.6). This is.illustrated by the hot-deck 
imputation method of Example 4.1. Expression (4.2.9) is basically a conse- 
quence of large samples since, when using reasonable imputation methods, 
B should be of the order of the inverse number of respondents, as in (4.3.4), 
and so should have lower-order variability than Q over repeated samples. 

Messages of Conclusion 4.1 

There are three main practical messages in Conclusion 4.1 concerning 
multiple-imputation procedures: 

1. Draw imputations following the Bayesian paradigm as repetitions 
from a Bayesian posterior distribution of the missing values under the 
chosen models for nonresponse and data, or an approximation to this 
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posterior distribution that incorporates appropriate between-imputa- 
tion variability. 

2. Choose models of nonresponse appropriate for the posited response 
mechanism. 

3. Choose models for the data that are appropriate for the complete-data 
statistics likely to be used-if the model for the data is correct, then 
the model is appropriate for all complete-data statistics. 

The importance of being Bayesian or approximately so was emphasized 
by the examples in Section 4.3, in particular by the contrast between the 
hot-deck of Example 4.1 and the other imputation methods that are proper 
for { j ,  s 2 ( n - '  - N - ' ) }  under ignorable nonresponse. All of these exam- 
ples, however, assumed the complete-data statistics were { j ,  s 2( n - l  - 
N - ' ) }  and assumed ignorable nonresponse, and thus did not really address 
the second and third messages of Conclusion 4.1. 

The Importance of Drawing Repeated Imputations Appropriate for the 
Posited Response Mechanism 

In fact, Examples 4.1-4.5 might seem to suggest that if the imputations are 
repetitions or approximate repetitions from a Bayesian posterior distribu- 
tion, then the imputation method is always proper. But this is not true: the 
imputations must be appropriate for the posited response mechanism. For 
instance, none of the imputation methods in these examples is proper for 
the nonignorable response mechanism of Section 1.6 with 

(nonignorable value) = 1.2 x (ignorable value) ; 

specific examples of such mechanisms appear in Chapter 6. If nonrespon- 
dents are being considered to be systematically different from respondents, 
then imputations must reflect this systematic difference if the imputation 
method is to be proper. 

The Role of the Complete-Data Statistics in Determining Whether a 
Repeated-Imputation Method Is Proper 

The complete-data statistics play a somewhat more subtle role than the 
response mechanism in determining whether a repeated-imputation method 
is proper. Suppose in the context of Examples 4.1-4.5 with unconfounded 
nonresponse, the estimand had been Q, = average exp( q), where the com- 
plete-data inference for Q, had been the standard inference applied to the 
n1 observed values of exp(x), which is valid in large enough samples. In 
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this case, the complete-data statistics would be $, = average 
observed exp(Y;), and We = [variance of observedexp(Y;.)] X (n-' - W') .  

It is easy to see that if the N values of x were drawn from a normal 
distribution, then in large samples the fully normal (FN) and MV methods 
applied to the Y;. would be proper for { &,, U,} or any other set of 
complete-data statistics. In contrast, if the Y; had some other distribution, 
the FN and MV methods applied to the Y, would generally not be proper 

On the other hand, the BB and ABB methods remain proper for 
{&., U,} for any distribution in large samples because of the methods' 
invariance under transformations of the data. But they would not be proper 
for a variety of other complete-data statistics, such as the maximum 
observed value, except under special distributional assumptions. 

This illustration should not be seen as unequivocally supporting one type 
of imputation method over another. In practice, large-sample arguments 
have to be carefully considered. Some limited evidence is provided on this 
point in Section 4.6. 

{ Qe, ue 1. 

4.5. THE ASYMPTOTIC DISTRIBUTION OF (&, urn, B,,,) FOR 
PROPER IMPUTATION METHODS 

As proved in Section 4.2 and illustrated in Sections 4.3 and 4.4, when the 
multiple-imputation method is proper and the complete-data inference is 
randomization-valid, m = 00 normal-based inferences using (B,, c,, B,) 
are randomization-valid. Of course, in practice, an infinite number of 
repeated imputations under each model is impossible to provide, and so the 
issue of the performance of finite-m procedures immediately arises. Thus, 
we need to derive the joint sampling distribution of (em, v,, B,) over the 
sampling mechanism and response mechanism for fixed (X, Y). 

Validity of the Asymptotic Sampli  Distribution of S, 

For general evaluation purposes, we assume (i) proper imputation methods, 
(ii) valid complete-data inferences, and (iii) samples large enough that the 
asymptotic sampling distribution of S, assumed in Chapter 3 is valid. That 
is, in addition to (4.2.3)-(4.2.10), we assume (3.3.2) and (3.3.3) hold, which 
since the Q*, and U,, depend on (Y, R)  only through ( Yobs, R,,,), can be 
written as 

(&*,lX, y, I ,  R) - N@,, B,) (4.5.1) 

(V*,lX, y, I ,  R) - (Om, -z &), (4.5.2) 

where all the &*, and U,, are mutually independent given (X, Y, I, R). 
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When the imputations are repetitions drawn from the posterior distribu- 
tion of Y,,, under specified models for Pr(X, Y) and Pr(RIX, Y), the 
arguments in Section 2.10 and 3.3 concerning the sampling distribution of 
posterior means (&*,) and variances (&[) suggest that (4.5.1) and (4.5.2) 
will hold regardless of the models' correctness. Furthermore, some evidence 
suggests that these distributional forms will hold asymptotically for a wide 
variety of approximately Bayesian imputation models. Consequently, we 
regard (4.5.1) and (4.5.2) as generally satisfied, at least in a large-sample 
sense. 

The Distribution of (a,,,, G,,,, B,,,) Given (X, Y )  for Scalar Q 

The derivation of the conditional distribution of (&, g,, B,) given (X, Y) 
is particularly direct for scalar 8. It basically proceeds in three steps: first, 
average over multiple imputations given (X, Y, I, R), assuming the asymp- 
totic validity of the sampling distribution of S,; second, average over R 
given (X, Y,  I), assuming the imputation method is proper under the 
posited response mechanism; and finally, average over I given (X, Y), 
assuming the complete-data inference is randomization valid under the 
specified unconfounded sampling mechanism. 

From (4.5.1) and (4.5.2), the first step gives 

(Q,lX, y ,  I ,  R )  - N(Q, ,  B , / m ) ,  

( U,\X, Y,  I ,  R) - (v,, e B,/m),  

(4.5.3) 

(4.5.4) 

and 

((m - l)BmB:llx, Y, I ,  R )  - x 2  m-1, (4.5.5) 

where these three random variables are mutually independent given 

Now perform step 2. Expressions (4.2.5), (4.2.6) (4.5.3), and (4.5.5) imply 
( X ,  y, I, R 1. 

that 

(QJX, Y, I) - N(&(1 + m-')B) (4.5.6) 

and 

((m - l)BmB-'IX, Y ,  I )  - x;-1; (4.5.7) 

expressions (4.2.8), (4.2.6), and (4.5.4) imply that 

(V,lX, Y, I )  - (u, << (1 + m-1)B). (4.5.8) 
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The three random variables in (4.5.6), (4.5.7), and (4.5.8) are mutually 
independent given (X, Y, I). 

Finally, perform step 3. Expressions (4.2.3), (4.2.4), (4.2.9), and (4.5.6) 
imply that 

( S m l X ,  Y )  - N(Q, uo + (1 + m - ' ) B 0 ) ;  (4.5.9) 

expressions (4.5.9) and (4.5.7) imply that 

((m - 1)BmB,'IX, Y )  - xi- ' ;  (4.5 .lo) 

expressions (4.2.4), (4.2.9), and (4.5.8) imply that 

(V,lX, Y )  - (uo, << (uo + (1 + m V 0 ) ) ;  (4.5.11) 

the three random variables in (4.5.9), (4.5.10), and (4.5.11) are mutually 
independent given ( X, Y ). 

Random-Response Randomization-Based Justification for the 
t Reference Distribution 

Expressions (4.5.9), (4.5.10), and (4.5.11), which comprise the asymptotic 
sampling distribution of S,,, given (X, Y) for proper imputation methods, 
imply that 

(4.5.12) E(TmIX, Y )  = v( Q m ~ x ,  Y )  

and 

V(T,IX,  Y )  = 2(1 + m-')2B:/(m - I) ,  (4.5.13) 

which together with (4.5.9) imply that 

2 
= ( m  - 1)(1 + [(l + m - ' ) B O / U O ] - l )  . (4.5.14) 

Expressions (4.5.9), (4.5.12), and (4.5.14) provide a random-response ran- 
domization-based justification for using a t reference distribution for (a, - Q) with squared scale T,, and v = (m - 1)(1 + r;')' degrees of 
freedom-note: r,,, = (1 + rn-')B, , , /~m, which estimates (1 + m-')Bo/Uo. 
The reason is that for any multiple of a x 2  random variable, twice the 
squared expectation divided by the variance gives the degrees of freedom. 
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Extension of Results to Multicomponent Q 

It is easy to see that the results already derived for scalar Q provide most of 
the results needed for multicomponent Q: (4.5.9) for 0, and (4.5.11) for Dm 
hold for multicomponent Q, and (4.5.10) for B,,, needs to be modified from 
the x 2  to the k-dimensional Wishart distribution with m - 1 degrees of 
freedom. Thus, in general, 
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(GmlX, Y) - N(Q, U, + (1 + m - ’ ) B o ) ;  (4.5.15) 

(( m - l)BmJX, Y) - Wishart,( m - 1, B,) (4.5.16) 

or equivalently, 

m- 1 

( m  - l)Bm = ZiZ: where 2; - N ( 0 ,  B , ) ;  
i = l  

and 

(V,IX, Y )  - (uo, << (U, + (1 + m - l ) B , ) ) ;  (4.5 -17) 

where the three random variables Qm, B,, and Dm are mutually indepen- 
dent. 

Asymptotic Efficiency of om Relative to Q, 
From (4.5.15) the variance-covariance matrix of em is Uo + (1 + m-’)B,, 
and so the variance-covariance matrix of sm relative to that of 8, is 

T; ‘I2 ( To + B,/m ) T; ‘I2, (4.5.1 8) 

where 

To = U, + B,. (4.5.19) 

Thus the efficiency of em relative to s, in units of standard deviations is, 
from (4.5.18) and simple matrix algebra, 

RE = (I + y O / m ) - l I 2 ,  (4.5.20) 
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is the diagonal matrix giving the population fractions of missing informa- 
tion-the eigenvalues of B, with respect to To, which from (4.5.19) lie 
between 0 and 1. Hence, these fractions of missing information detennine 
the relative efficiency of estimation using a fmite rather than infinite 
number of imputations. The largest fraction corresponds to the lowest 
relative efficiency for a linear combination of the components of Q, and the 
smallest fraction corresponds to the highest relative efficiency for such a 
linear combination. From (4.5.19) the eigenvalues of B, with respect to To 
are one minus the eigenvalues of U, with respect to To. The smallest 
of these appears in the literature on missing data as the large-sample 
rate of convergence of the EM algorithm, an ubiquitous algorithm for 
maximum-likelihood estimation from incomplete data (Dempster, Laird, 
and Rubin, 1977). 

4.6. EVALUATIONS OF FINITE-m INFERENCES 
WITH SCALAR ESTIMANDS 

The preceding results can be easily applied to evaluate finite-m inferences 
with scalar Q. For instance, Gm created using proper imputation methods 
has asymptotic relative efficiency (in units of standard deviations) given by 
(4.5.20) where yo = Bo/To is the population fraction of information about 
Q missing due to nonresponse. Values of RE appear in Table 4.1. 

Small-Sample Efficiencies of Asymptotically Proper Imputation Methods 
from Examples 4.2-4.5 

Consider the simple situation of Section 4.3 and the asymptotically proper 
imputation methods of Examples 4.2-4.5, but drop the restriction that the 
sample size is large. It is easy to see that for these methods 

and 

where so' is the sample variance among the no imputed values at an 
imputation. - Thus, the random-response randomization-based variance of 
Q, given unconfounded nonresponse and fixed n1 is 

V( Q,[X ,  Y ,  n,) = V( j l l X ,  Y ,  nl )  = S2(  n;' - N - ' )  (4.6.1) 
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for the Bayesian bootstrap (BB), 

for the fully normal and mean and 
variance adjusted hot-deck (FN and M V ) ,  

n ,  + 1 

n1 - 1 
c ‘ ( -  

n ,  - 3 

( ?fq2 for the approximate Bayesian bootstrap (ABB) 
\ 

Hence, the small-sample efficiency of em relative to em with fixed n, is 
given by the square root of the ratio of (4.6.1) to (4.6.2), or after some 
algebraic manipulation, 

RE’ = (1 + c y ; / m p * ,  (4.6.3) 

where yo’ is the fixed-n, fraction of missing information, 1 - 
V ( Q l X ,  Y ,  nl>/V(~,IX,  Y, n,) ,  and c = E(s;/S21X,  Y, n , ) .  Straightfor- 
ward algebra gives 

and 

Thus, the small-sample relative efficiencies for these repeated imputation 
procedures are all very close to their asymptotic values given by the general 
result (4.5.20), as long as n,  is not very small. Similar efficiency calculations 
appear in Rubin (1979a) and Herzog and Rubin (1983), and related 
working calculations are given in the appendix to Rubin and Schenker 
(1986) and in Schenker (1985). 
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Large-Sample Coverages of Interval Estimates Using a t Reference 
Distribution and Proper Imputation Methods 

From (3.3.16), the lOO(1 - a)% interval estimate of Q based on the t 
reference distribution is C = em f tP(a/2)T, / ' .  The random-response 
randomization-based coverage of C for Q is thus 

Prob{ Q E C l X ,  Y } = Prob( IQ - eml < ~ , ( u / ~ ) T ~ / ~ J X ,  Y }. 

The asymptotic sampling distribution of S,,, given by (4.5.9)-(4.5.11) im- 
plies that 

v, = u,, 

with q and z independent. Thus 

Uo + (I + m-')- 

U, + (1 + m-')BO 
Prob{ Q E CIX, Y }  = h o b  

with 

Or letting po = Bo/Uo = yo/(l - yo), 

1 + (1 + m-')po- 

1 + (1 + m-')po 
Prob{Q E CIX, Y }  = Prob 

(4.6.4) 

with 
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Consequently, without loss of generality when evaluating t-based inferences 
in large samples with asymptotically proper imputation methods, we can let 
Q = 0, Uo = 1, and B, = po = yo/(l - yo), and evaluate the coverage as a 
function of the number of imputations, m, and the fraction of missing 
information, yo. Thus, general advice on the coverage properties of multi- 
ple-imputation interval estimates is relatively straightforward to formulate. 

Values of (4.6.4) can be found for various values of rn and yo by 
two-dimensional numerical integration or Monte Carlo methods. In Rubin 
and Schenker (1986), numerical integration was used to evaluate (4.6.4) as 
well as the corresponding probabilities for interval estimates based on the 
normal reference distribution [i.e., (4.6.4) with v fixed at 001. Some results 
for the t reference distribution are given in Table 4.2; results for the normal 
reference distribution are uniformly inferior and so are not tabulated here 
except for the case m = 1 when the t reference distribution is not defined. 

To obtain approximate coverages for values of m > 2 not given in Table 
4.2, work reported in Rubin and Schenker (1986) suggests that linear 
interpolation in (m - l)-l gives reasonably accurate answers (remember 
that when m = 00, the coverages equal the nominal levels because proper 
imputation methods are randomization-valid). 

Small-Sample Monte Carlo Coverages of Asymptotically Proper Imputation 
Methods from Examples 4.2-4.5 

We now summarize a Monte Carlo study designed to investigate the 
asymptotic propriety of the asymptotic results given by (4.6.4) and dis- 
played in Table 4.2. Rubin and Schenker (1986) applied the asymptotically 
proper repeated-imputation procedures described in Examples 4.2-4.5 to 
data generated from the normal, Laplace, and lognormal distributions (all 
with N = 00). They then calculated the actual frequency coverages of the 
resulting t-based intervals for using the standard complete-data statistics 
j and s2/n with fixed response rate nl/n = 1 - yo'. Table 4.3 summarizes 
the results for m = 2. Clearly the asymptotic results are approached most 
rapidly with normal data and least rapidly with lognormal data; the 
discrepancies from nominal levels are due in large part to the propriety of 
the standard complete-data inference with small samples when the observa- 
tions are not normal. 

Evaluation of Significance Levels 

Accuracy of significance levels using the multiple-imputation procedures 
described in this section can be found using Tables 4.2 and 4.3 for 
confidence coverages because of the exact correspondence between con- 



T
A

B
L

E
 4

.3
. 

Si
m

ul
at

ed
 c

ov
er

ag
es

 (i
n 
6
)
 of 

as
ym

pt
ot

ic
al

ly
 pr

op
er

 m
ul

tip
le

 (
m

 =
 2

) i
m

pu
ta

tio
n 

pr
oc

ed
ur

es
 w

ith
 n

om
in

al
 le

ve
ls

 9
04
& 

an
d 

%
%

, 
us

in
g 

?-
ba

se
d 

in
fe

re
nc

es
, r

es
po

ns
e 

ra
te

s n
 I 
/ 

n 
, a

nd
 n

or
m

al
 a

nd
 n

on
no

rm
al

 d
at

a 
(L

ap
la

ce
, l

og
no

rm
al

 =
 

ex
p 

N
(0

,l
))

; m
ax

im
um

 
st

an
da

rd
 er

ro
r 

<
 1

%
" 

N
or

m
al

 
L

ap
la

ce
 

L
og

no
rm

al
 (e

xp
. o

f u
n

it
 n

or
m

al
) 

90
%

 
95

%
 

90
%

 
95

%
 

90
%

 
95

%
 

n 
n

,/
n

 
B

B
 

A
B

B
 

F
N

 
M

V 
BB

 
A

B
B

 
F

N
 

M
V

 
BB

 
A

B
B

 
F
N
 

M
V

 
BB

 
A

B
B

 
F

N
 

M
V 

B
B

 
A

B
B

 
F
N
 

M
V 

B
B

 
A

B
B

 
F
N
 

M
V

 

20
 

.4
 

81
 

82
 

86
 

86
 

86
 

87
 

90
 

91
 

81
 

81
 

85
 

85
 

87
 

87
 

.6
 

85
 

85
 

87
 

86
 

90
 

90
 

92
 

91
 

85
 

85
 

88
 

87
 

90
 

91
 

.9
 

88
 

88
 

89
 

89
 

93
 

93
 

94
 

94
 

89
 

88
 

89
 

89
 

94
 

94
 

50
 

.4
 

84
 

84
 

86
 

85
 

89
 

89
 

91
 

90
 

86
 

83
 

84
 

85
 

90
 

89
 

.6
 

86
 

87
 

88
 

87
 

92
 

92
 

93
 

92
 

86
 

87
 

86
 

86
 

91
 

92
 

.9
 

89
 

89
 

90
 

89
 

94
 

94
 

95
 

94
 

88
 

88
 

88
 

88
 

94
 

94
 

10
0 

.4 
85

 
85

 
85

 
86

 
90

 
90

 
90

 
90

 
84

 
83

 
86

 
85

 
89

 
89

 
.6 

87
 

87
 

88
 

88
 

92
 

92
 

93
 

93
 

87
 

87
 

88
 

87
 

92
 

92
 

.9
 

90
 

90
 

90
 

90
 

95
 

95
 

95
 

95
 

89
 

89
 

89
 

89
 

94
 

95
 

lo
00

 .
4 

90
 

90
 

90
 

90
 

95
 

95
 

95
 

95
 

86
 

85
 

84
 

86
 

91
 

90
 

.6 
90

 
90

 
90
 

90
 

95
 

95
 

95
 

95
 

89
 

87
 

87
 

88
 

94
 

93
 

.9 
90
 

90
 

90
 

90
 

95
 

95
 

95
 

95
 

91
 

90
 

90
 

90
 

95
 

95
 

B
B

: 
B

ay
es

ia
n 

B
oo

ts
tr

ap
-E

xa
m

pl
e 4

.3
 

A
BB

: 
A

pp
ro

xi
m

at
e 

B
ay

es
ia

n 
B

oo
ts

tr
ap

-E
xa

m
pl

e 
4.

4 
F

N
: 

Fu
lly

 N
or

m
al

 m
et

ho
d-

E
xa

m
pl

es
 3

.2
 a

nd
 4

.2
 

W
:
 M

ea
n 

an
d 

V
ar

ia
nc

e 
ad

ju
st

ed
 h

ot
-d

ec
k-

E
xa

m
pl

e 
4.

5 
oS

ou
rc

e:
 R

ub
in

 a
nd

 S
ch

en
ke

r 
(1

98
6)

. 

90
 

93
 

94
 

88
 

91
 

94
 

90
 

92
 

94
 

89
 

92
 

95
 
-
 90

 
92

 
95

 

90
 

92
 

94
 

90
 

92
 

94
 

90
 

92
 

95
 
-
 73

 
77

 
80

 

79
 

82
 

85
 

82
 

84
 

86
 

85
 

87
 

90
 
-
 73

 
77

 
80

 

77
 

81
 

85
 

81
 

84
 

86
 

83
 

87
 

90
 
-
 78

 
78

 
79

 
79

 
80

 
80

 

81
 

80
 

82
 

83
 

85
 

85
 

81
 

82
 

85
 

84
 

87
 

86
 

86
 

85
 

87
 

88
 

9
0

9
0

 

78
 

82
 

84
 

84
 

87
 

90
 

87
 

89
 

92
 

90
 

91
 

95
 
-
 79

 
82

 
84

 

83
 

87
 

90
 

87
 

89
 

91
 

88
 

92
 

95
 
-
 83

 
85

 
85

 

86
 

87
 

90
 

87
 

89
 

92
 

90
 

92
 

95
 
-
 83

 
84

 
84

 

85
 

88
 

90
 

87
 

89
 

91
 

89
 

93
 

95
 
-
 



SIGNIFICANCE LEVELS FROM MOMENT-BASED STATISTICS 137 

fidence intervals and tests using the same statistics: lOO(1 - a)% confidence 
intervals correspond to 1OOa% level tests. Thus, for example, from Table 
4.2, when yo = .4, rn = 2 and a = 5%,  the actual level is one minus the 
displayed value, or 7%. For a small-sample example, with the same values 
of y; = 1 - n,/n, m, and a, and using the Bayesian bootstrap with 100 
observations from the Laplace distribution, from Table 4.3 the actual level 
for a 5% test is 100 - 92 = 8%. 

When the imputation method is proper and rn = co, the actual levels of 
tests will equal their nominal levels since the resulting inferences are 
randomization-valid. Of course, in practice, the important role of signifi- 
cance levels is to summarize evidence about multicomponent rather than 
scalar estimands. 

4.7. EVALUATION OF SIGNIFICANCE LEVELS 

WITH MULTICOMF'ONENT ESTIMANDS 
FROM THE MOMENT-BASED STATISTICS D,,, AND D,,, 

Several procedures have been suggested in Chapter 3 for finding the 
significance level associated with the null value Q, when Q has more than 
one component. Both Dm and B,,, are simple functions of (&, om, Bm): 

Dm = ( Q ,  - &)[gm + (1 + m-')Bm]-'(Q0 - &)' (4.7.1) 

Bm = (1 + rm)-'(Qo - & , ) ~ ~ ' ( Q O  - G m ) ' ,  (4.7.2) 

where 

rm = (1 + rn-')Tr(l?,,,a;')/k. (4.7.3) 

The suggested reference distributions for finding p-values are both F 
distributions 

p-value( Qol 0,) = Prob{ Fk, > Dm } (4.7.4) 

where 

(4.7.6) 
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The Level of a Significance Testing Procedure 

From the random-response randomization-based perspective, under the null 
hypothesis that Q = Q,, p-values should have a uniform distribution given 
(X, Y), averaging over (R,  I) and the set of multiple imputations. Specifi- 
cally, consider the statistic D (e.g., D,,, or b,,,), the null value Q = Q,, and 
the lOOa percentage point of the reference distribution, Fk, k,v(a) ,  where k' 
is 1 for Dm and (k + 1)/2 for b,,,. Then the procedure is said to have the 
correct level a if 

Prob{ D ' Fk,k#v(a)lx, Y ;  Q = Qo} (4.7.7) 

equals a. Nominal values of a that tend to be of particular common 
interest include lo%, 5% and 1%. Considerations of power, such as the loss 
of power due to finite m, are closely related to issues of loss of efficiency 
due to finite m,  and are also relevant, but are secondary to the primary 
issue of having procedures with approximately valid nominal levels. Work 
on the evaluation of p-values is at an early stage of development so that the 
results presented here are limited to finding the levels of proper imputation 
procedures in large samples; thus, the joint distribution of (em, v,,,, B,,,) 
given in Section 4.5 by (4.5.15)-(4.5.17) is accepted. 

The Level of D,-Analysis for Proper Imputation Methods 
and Large Samples 

The actual level of the nominal a level procedure that uses the statistic D,,, 
and the reference distribution Fk,v is given by (47.7) with D = D,,, and 
k' = 1. For purposes of general evaluations, we assume proper imputation 
methods [(4.2.5)-(4.2.10)], valid complete-data inferences [(4.2.3) and 
(4.2.4)], and the validity of the asymptotic sampling distribution of the 
(Q*,, U*,) given by (4.5.1) and (4.5.2). Straightforward manipulations then 
show that this probability is identical to 

Prob( Z,[I + (1 + ~ Z - ~ ) W ] - ' Z ;  > kF,,,(a)), (4.7.8) 

where 

v = ( m  - 1)[1 + (1 + m-')-'k/Tr(W)I2, 

Z, - N(O,I + (1 + m - ' ) p , ) ,  

w = C Z:Zi / (m - I), 
m-1  

1-1  

i.i.d. 

Z j  - N ( 0 ,  p , )  independent of Z,, 
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and 
po is the k x k diagonal matrix of the eigenvalues of Bo 

with respect to u,, po = diag( pol,. . , , P O k ) .  
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Expression (4.7.8) is easily evaluated by Monte Car10 methods as a function 
of a, m, k ,  and po by drawing m k-variate normal random variables at 
each replication. More efficient methods for evaluating the level of Dm exist, 
especially when m is large; Li (1985) provides some details. Incidentally, 
power calculations can be performed by having Zo centered at the alterna- 
tive S rather than 0. 

The Level of I),,,-Numerical Results 

Inspection of (4.7.8) suggests that the level of Dm may be relatively 
insensitive to variability in the eigenvalues pol,. . . , P O k ,  which are equiv- 
alent to the population fractions of information missing due to nonresponse, 
Yo19 . . . 7  Yokt Yo - - po(I + p0) - l .  This conclusion is supported by the numeri- 
cal results, and so only results with yo proportional to the identity matrix 
will be presented. Also if m is large enough, it is clear from (4.7.8) that the 
level of Dm will be accurate, so the essential question with Dm is what value 
of m constitutes “large enough.” Table 4.4, based on the work of Li (1985), 
suggests that as a rough rule, the level of Dm is accurate when m > 10yok. 
Since 50% missing information is an extreme situation, this rule suggests 
that Dm will be accurate if m 2 5k, as implied in Section 3.1. 

The Level of Dm-Analysis 

The actual level of the nominal a-level procedure that uses the statistic bm 
and the reference distribution Fk,k ju  is given by (4.7.7) with D = 3,,,. 
Straightforward manipulations show that the probability can be written in 
the notation of (4.7.8) as 

Prob{[k Tr(W)]-’ZoZA > F k , k t u ( a ) } ,  (4.7.9) 

x?,l  - x:  (4.7-10) 

where 
k i.i.d. 

zoz; = C [l + (1 + m - l ) P o I ] x f , l ,  
1=1 

k i.i.d. 

T ~ ( w )  = C ~ o c ~ S n - l , t / ( m  - 11, ~ m - 1 . 1  2 - 2  X m - 1 ,  (4.7.11) 
1-1  

with the 2k x 2  random variables mutually independent. 
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TABLE 4.4. Largesample level (in 5%) of Dm with Irk," reference distribution as a 
function of nominal level, a; number of components being tested, k; number of 
proper imputations, rn; and fraction of missing information, yo. Accuracy of results 
= 5OOO simulations of (4.7.8) with po set to 1. 

u = 1% Q = 5% Q = 10% 

k rn yo = .1 .2 .3 .5 .1 .2 .3 .5 .1 .2 .3 .5 

2 2  1.0 1.2 1.6 2.5 4.9 5.3 5.9 7.5 9.9 10.3 11.0 12.9 
3 1.0 1.0 1.0 1.3 4.9 4.9 5.0 5.5 9.9 9.8 10.0 10.9 
5 1.0 1.0 1.1 1.2 5.0 5.0 5.1 5.6 10.0 10.0 10.2 10.9 

10 1.0 1.0 1.1 1.2 '3.0 5.1 5.3 5.7 10.1 10.2 10.4 11.0 
25 1.0 1.0 1.0 1.0 5.0 5.0 5.0 5.0 10.0 9.9 9.9 10.0 
50 1.0 1.0 1.0 1.0 5.0 5.0 5.0 5.0 10.0 9.9 9.9 10.0 

100 1.0 1.0 1.0 1.0 5.0 5.0 5.0 5.0 10.0 10.0 10.0 10.1 

3 2  1.0 1.1 1.3 1.7 5.1 5.3 5.6 6.3 10.3 10.6 11.1 12.0 
3 1.0 1.0 1.0 1.0 5.1 5.2 5.3 5.7 10.2 10.5 10.9 12.3 
5 1.0 1.0 1.1 1.3 5.0 5.2 5.4 6.2 10.1 10.3 10.8 12.2 

10 1.0 1.0 1.1 1.2 5.0 5.2 5.3 5.9 10.1 10.3 10.6 11.6 
25 1.0 1.0 1.1 1.2 5.0 5.1 5.2 5.6 10.1 10.2 10.4 10.9 
50 1.0 1.0 1.0 1.0 5.0 5.0 5.0 5.1 10.0 10.0 10.0 10.2 

100 1.0 1.0 1.0 1.0 5.0 5.0 5.1 5.1 10.0 10.0 10.1 10.2 

5 2  0.9 0.8 '0.8 0.9 5.1. 4.8 4.5 4.0 10.5 10.4 10.1 9.2 
3 1.0 1.0 1.0 0.9 5.2 5.5 5.7 6.1 10.5 11.3 12.1 14.4 
5 1.1 1.1 1.2 1.4 5.2 5.6 6.1 7.7 10.4 11.1 12.2 15.4 

10 1.0 1.1 1.2 1.5 5.1 5.3 5.6 6.9 10.1 10.4 11.1 13.1 
25 1.0 1.0 1.1 1.3 5.0 5.2 5.3 6.0 10.1 10.3 10.6 11.5 
50 1.0 1.0 1.0 1.1 5.0 5.1 5.1 5.4 10.0 10.1 10.2 10.7 

100 1.0 1.0 1.0 1.1 5.0 5.0 5.1 5.2 10.0 10.1 10.1 10.4 

10 2 0.8 0.5 0.3 0.1 5.1 4.0 2.9 1.5 10.8 10.1 8.5 5.4 
3 1.1 0.9 0.6 0.3 5.6 5.9 5.7 4.9 11.3 12.7 13.8 16.2 
5 1.1 1.2 1.3 1.4 5.4 6.3 7.4 11.0 10.7 12.4 14.8 22.7 

10 1.1 1.2 1.4 2.2 5.2 5.8 6.8 10.3 10.4 11.4 13.1 19.0 
25 1.0 1.1 1.2 1.6 5.0 5.2 5.6 7.1 10.0 10.4 11.0 13.4 
50 1.0 1.0 1.1 1.3 5.0 5.1 5.4 6.1 10.0 10.2 10.6 11.8 

100 1.0 1.0 1.1 1.2 5.0 5.2 5.3 5.8 10.1 10.2 10.5 11.3 

Expression (4.7.9) can be easily evaluated by Monte Car10 methods using 
k independent x: and k independent xhdl random variables at each 
repetition; these can be calculated from the same normal deviates used to 
generate the Z,,, . . . , Zm-l in (4.7.8) when both I>, and bm are being 
evaluated in one simulation. If some of the eigenvalues poi are equal, the 
number of x 2  random variables can be reduced. For example, in the 
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extreme case when all poi = po., 
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and then (4.7.9) can be easily evaluated by 
integration since it equals 

two-dimensional numerical 

> F k , k , , , ( a )  . (4.7.12) i 
Incidentally, power calculations can be performed by having x;,~ in 

(4.7.10) and x i  in (4.7.12) replaced by noncentral x 2  random variables 
with noncentrahty parameters 6; and CS?, respectively, where 6 = 

(4,. - f ,ad. 

The Effect of Unequal Fractions of Missing Information on b,,, 
An important question concerns how (4.7.9) compares with (4.7.12); that is, 
what is the effect on bm of unequal eigenvalues? Recall that 50% missing 
information implies pol  = 1 and no missing information implies 
that pol = 0.0. 

Notice from (4.7.10) that unless some of the por are very large, 
the coefficients of x;,, will be nearly equal, suggesting that even if a 
Satterthwaite (1946) type approximation were used for ZoZ& the degrees 
of freedom for ZoZA would usually still be close to k, the value when all pol 
are equal. In contrast, notice from (4.7.11) that if all but one of the pol are 
very small, the degrees of freedom for Tr( W) will be closer to (m - 1) than 
k(m - 1). Hence, whereas in most cases the numerator degrees of freedom 
of bm is reasonably close to k, an appropriate denominator degrees of 
freedom can vary between v and kv depending on the fractions of missing 
information; (k + l)v/2 is midway between these extremes. 

Some Numerical Results for b,,, with k’ = (k + l ) v / 2  

Table 4.5 gives the actual level of B,,, using the Fk,(k+l)v,l reference 
distribution for nominal levels a = 1,5, and lo%, respectively in parts a, b, c. 



TABLE 4.5. L,arge-sample level (in 96) of b,,, with Fk,(& + reference distribution 
as a function of number of components being tested, k; number of proper imputa- 
tions, m; fraction of missing infomation, yo; and varian~e of fractions of missing 
infomation, 0 (zero), S (small), L (large). Accuracy of results = 5OOO simulations of 
(4.7.9). 

yo = .1 yo = .2 yo = .3 yo = .5 

k m O  S L O  S L O  S L O  S L 

2 2 0.7 0.9 0.1 
3 0.7 1.0 0.7 
5 0.7 1.1 0.7 
10 0.7 1.1 0.7 

3 2 0.9 0.9 0.9 
3 0.9 0.9 1.0 
5 0.9 0.9 1.0 
10 0.9 1.0 1.0 

5 2 0.9 1.0 1.1 
3 1.0 1.0 1.1 
5 1.0 1.0 1.1 
10 1.0 1.1 1.1 

10 2 0.9 1.0 1.2 
3 1.0 1.0 1.1 
5 1.0 1.1 1.1 
10 1.0 1.2 , 1.2 

2 2 4.7 4.3 4.3 
3 4.7 4.1 4.6 
5 4.7 4.8 4.8 
10 4.1 4.9 4.9 

3 2 4.8 4.7 4.7 
3 4.9 4.9 5.0 
5 4.9 5.0 5.1 
10 4.9 5.2 5.2 

5 2 4.8 4.9 5.0 
3 4.9 5.1 5.2 
5 5.0 5.2 5.2 
10 5.0 5.5 5.3 

10 2 4.8 5.1 5.4 
3 4.9 5.2 5.3 
5 5.0 5.4 5.3 
10 5.1 5.9 5.5 

(a) Nominal level (I = 1% 
0.9 1.2 0.9 1.1 1.5 1.2 2.0 2.4 2.2 
0.7 1.1 0.8 0.8 1.2 0.9 1.1 1.9 1.3 
0.7 1.0 0.8 0.7 1.0 0.8 0.8 1.5 0.9 
0.7 1.0 0.7 0.7 1.0 0.7 0.7 1.1 0.8 

1.0 1.0 1.1 1.2 1.3 1.3 1.9 1.5 2.1 
0.9 0.9 1.0 0.9 1.0 1.0 1.1 1.1 1.2 
0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.0 1.0 
0.9 0.9 0.9 0.9 0.9 0.9 0.8 1.0 0.9 

1.0 1.0 1.2 1.1 1.2 1.3 1.5 1.1 1.7 
0.9 1.0 1.0 0.9 1.0 1.0 0.9 0.9 1.1 
0.9 1.0 1.0 0.9 0.9 1.0 0.8 0.9 1.0 
1.0 1.0 1.0 0.9 1.0 1.0 0.9 0.9 1.0 

0.9 1.0 1.1 0.9 1.0 1.2 1.0 1.0 1.2 
0.9 1.0 1.1 0.9 0.9 1.0 0.8 0.9 1.0 
1.0 1.0 1.1 0.9 0.9 1.0 0.8 0.9 1.0 
1.0 1.0 1.1 1.0 1.0 1.1 0.9 0.9 1.1 
@) Nominal level a = 5% 
4.9 4.1 5.0 5.4 5.3 5.5 6.8 6.7 7.0 
4.1 4.7 4.9 4.8 4.9 5.0 5.2 5.3 5.5 
4.1 4.7 4.8 4.7 4.7 4.8 4.1 4.8 4.9 
4.1 4.1 4.8 4.1 4.1 4.8 4.6 4.1 4.8 

4.9 4.9 5.1 5.2 5.3 5.4 6.1 6.2 6.4 
4.8 4.9 5.0 4.8 4.8 5.0 4.9 4.9 5.1 
4.8 4.9 4.9 4.8 4.8 4.9 4.6 4.1 4.8 
4.9 4.9 5.0 4.9 4.9 4.9 4.7 4.8 4.9 

4.8 4.9 5.1 4.9 5.0 5.2 5.2 5.3 5.6 
4.9 4.8 5.0 4.7 4.7 4.9 4.5 4.6 4.8 
4.9 4.9 5.0 4.8 4.8 4.9 4.5 4.6 4.7 
5.0 5.0 5.1 4.9 4.9 5.0 4.7 4.8 4.9 

4.6 4.8 5.2 4.5 4.6 5.0 4.3 5.2 4.8 
4.9 4.8 5.1 4.5 4.6 4.9 4.1 4.2 4.7 
4.9 5.0 5.1 4.7 4.8 5.0 4.4 4.3 4.9 
5.0 5.1 5.2 4.9 4.9 5.1 4.7 4.8 5.2 

142 
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TABLE 4.5. (Continued) 

yo = .1 yo = .2 yo = .3 yo = .5 

k m O S L O S L O S L O S L  

(c) Nominal level Q = 10% 
2 2 9.6 8.9 8.6 9.8 9.4 9.7 10.2 10.0 10.3 11.5 11.4 11.7 

3 9.7 9.6 9.4 9.7 9.7 9.9 9.7 9.8 10.0 9.9 10.1 10.3 
5 9.8 10.0 9.9 9.7 9.8 9.9 9.7 9.7 9.8 9.6 9.7 9.9 

10 9.8 10.2 10.1 9.8 9.8 9.9 9.8 9.8 9.8 9.7 9.7 9.8 

3 2 9.7 9.4 9.3 9.7 9.6 9.9 9.9 9.9 10.2 10.6 10.7 11.0 
3 9.9 10.0 9.9 9.7 9.8 9.9 9.6 9.7 9.8 9.5 9.6 9.8 
5 9.9 10.2 10.2 9.8 9.9 9.9 9.7 9.8 9.8 9.5 9.5 9.7 

10 10.0 10.6 10.4 9.9 9.9 10.0 9.9 9.9 9.9 9.7 9.7 9.8 

5 2 9.7 9.8 9.9 9.5 9.7 10.0 9.5 9.7 10.0 9.6 9.7 10.1 
3 9.9 10.1 10.2 9.7 9.8 9.9 9.5 9.6 9.7 9.0 9.2 9.4 
5 10.0 10.3 10.3 9.8 9.9 10.0 9.7 9.7 9.8 9.3 9.4 9.6 

10 10.0 11.1 10.6 9.9 10.0 10.1 9.9 9.9 10.0 9.6 9.7 9.8 

10 2 9.7 10.1 10.5 9.3 9.6 10.0 9.1 9.3 9.8 8.5 9.0 9.4 
3 9.9 10.3 10.4 9.6 9.7 10.0 9.4 9.5 9.8 8.7 9.2 9.4 
5 10.0 10.8 10.5 9.8 9.9 10.1 9.6 9.7 10.0 9.2 9.5 9.8 

10 10.1 11.8 11.0 9.9 10.3 10.2 9.9 9.9 10.1 9.6 9.8 10.1 

The factors in these tables that are known to the data analyst are m = the 
number of repeated imputations and k = the number of components being 
tested, and the factors that are unknown (although to some extent estimable 
from the data) are yo = the average fraction of missing information and the 
variance of the fractions of missing information, where 0 = zero = no 
variance, S = small variance = 0.05*, and L = large variance = 0.092 (the 
values are symmetrically distributed about the mean, yo; see Raghunathan, 
1987 for the specific values chosen and for details of the numerical methods 
for computing values in the tables). 

Results in these tables are extremely encouraging. If yo I 0.2, even two 
repeated imputations appear to result in accurate levels, and three repeated 
imputations result in accurate levels even when yo = 0.5. As k gets larger, 
the tests become more conservative when there is no variation in the 
fractions of missing information, which is expected since k’ = k rather 
than k’ = ( k  + 1)/2 gives the proper reference distribution for large m. 
But for the more realistic cases with variation in the fractions of missing 
information (i.e., levels S and L) there is no obvious trend for the tests to 
become less accurate as k increases. 



144 RANDOMIZATION-BASED EVALUATIONS 

Nevertheless, improvements are possible because, if m 2 3, there exists 
information in S, about the variance of the fractions of missing informa- 
tion. Work in progress by Raghunathan suggests an adjustment based on 
the trace of ( B,,,o; ')'. Such an adjustment should also improve the power 
of the tests, as studied by Raghunathan (1987). 

4.8. 
REPEATED SIGNIFICANCE LEVELS 

EVALUATION OF SIGNIFICANCE LEVELS BASED ON 

Even though Table 4.5 suggests that b,,, using the Fk,(k+l)v,2 reference 
distribution can work well in practice, an important limitation remains: 8, 
requires S,,,, the set of complete-data moments. The asymptotically equiv- 
alent a,,, requires first, { &,}, the set of m x' statistics, which are asymp- 
totically equal to Q*,uZ'Q$,, and second, rm = Tr(B,,,o;'). If k is large, 
however, complete-data analyses will commonly summarize evidence using 
only the d,/ or the associated p-values, since the complete-data moments 
can require substantial allocation of storage and computational resources, 
and thus commonly with large k, r,,, will not be available. 

1 

The statistic a,,, 
Currently the only siatistic that is a function solely of { & / }  and has been 
carefully studied is bm derived in Section 3.5 and given by 

J,  m - 1  

1 + ',,, 
A 
A k rn+l'" 
D,,, = 9 

where F,,, is the method of moments estimator given by (3.5.8); the associ- 
ated reference distribution is F on k and (1 + k-')f/2 degrees of freedom 
where f 3 given by (3.5.10). The two functions of the d,, needed to 
calculate b, and its reference distribution are their mean, 2, and variance 
S j .  

The Asymptotic Sampling Distribution of J,,, and s: 

As done previously, for general evaluation purposes we assume proper 
imputation methods [(4.2.5)-(4.2.10)], valid complete-data inferences [(4.2.3) 
and (4.2.4)], and the validity of the asymptotic sampling distribution of the 
(Q*,, U*/) given by (4.5.1) and (4.5.2). The resulting distribution of (J,,,, s:) 
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given (X, Y )  is not easy to handle analytically, and so the evaluations of bm 
that are presented are obtained via simulations. The quantities Q, U,, B, 
are fixed, without loss of generality, at 0, the identity and po = 

diag( pol, .  . . , pOk) ,  respectively. A value of e, is drawn from N(0, I + po);  
then m values of Q,, are drawn from N ( e , ,  po)  to fiFd d;, = CQ,,&,/m 
and si = C(Q,,&& - d-,)’/(m - l), and thereby bm an{ its reference 
distributioq. A new value of 0, creates a new value of bm, an$ so on. 
Levels of b,,, are estimated by the fraction of drawn values of bm larger 
than AFk,(l+k-~)f,2(a), that is, by the simulation analog of (4.7.7) with 
D = bm, k’ = (1 + k-’)/2, and v = i .  

,l 

Some Numerical Results for D,,, 

Table 4.6 gives the actual level of bm using the Fk,(l+k-1)G,2 reference 
distribution for nominal levels = 1,5, and 108, respectively in parts a, b, c, 
for the same factors as in Table 4.5. The results for jm  suggest that much 
work remains to be done except when it is known that yo is small (e.g., 
I lo%), or yo is modest (e.g., I 30%) and m 2 k. Fortunately, work in 
progress by Raghunathan (1987) promises improved procedures for use 
with m 2 3. 

,. 

The Superiority of Multiple-imputation Significance Levels 

Even though the results in Table 4.6 for bm leave room for major improve- 
ments in some situations, they are substantially better than the correspond- 
ing results with single imputation. In particular, with single proper imputa- 
tion, the test statistic is d,l with a xi reference distribution. It is easy to see 
that the level of this procedure, that is, expression (4.4.7) with D = d,’ and 
k‘ = 00, equals 

A 

(4.8.1) 

where Z, is defined following both (4.7.8) and (4.7.9). Since results are 
relatively insensitive to variation in the fractions of missing information, 
(4.8.1) essentially equals Prob((1 + 2p0.)x’k > xi(.)}, or equivalently 

Prob( [l + 2y0(l  - Yo)-’] x’k ’ X ’ k ( 4 )  (4.8.2) 

Even for modest yo and modest k, (4.8.2) is substantially larger than the 
nominal level a; Table 4.7 displays results for the values of a, k, and yo 



TABLE 4.6. Largesample level (in 8) of A,,, with F',(,+k-~)o/2 reference distribu- 
tion as a function of number of components being tested, k; number of proper 
imputations, m; fraction of missing information, yo; and variance of fractions of 
missing information, 0 (zem), S (small), L (large). Accuracy of results = 5ooo 
simulations of (4.7.7). 

yo = .1 yo = .2 yo = .3 yo = .5 

k m O S L O S L O S L O S  L 

(a) Nominal level a = 1% 
2 2 0.9 1.2 1.1 1.5 1.6 1.6 2.1 2.2 2.3 4.7 5.3 4.7 

3 1.0 1.1 1.1 1.2 1.2 1.1 1.5 1.4 1.5 2.9 3.1 2.6 
5 1.0 0.9 1.1 0.9 1.0 0.9 1.3 1.0 1.0 1.7 1.9 1.7 

10 0.9 1.0 1.1 1.0 1.0 0.9 1.0 0.9 0.9 1.4 1.2 0.9 

3 2 1.2 1.3 1.2 1.7 1.8 1.9 2.6 2.8 2.5 6.4 7.0 6.9 
3 0.9 1.2 1.1 1.2 1.3 1.1 1.7 1.7 1.6 3.4 4.1 3.8 
5 0.9 1.0 1.1 1.0 1.0 1.0 1.3 1.3 1.1 2.2 2.3 2.2 

10 0.9 1.0 1.1 1.0 1.0 0.9 1.0 0.9 0.9 1.6 1.4 1.2 

5 2 1.3 1.4 1.2 2.2 2.3 2.4 3.6 3.7 3.4 9.8 10.5 10.3 
3 1.0 1.2 1.1 1.7 1.6 1.6 2.2 2.4 2.2 5.4 5.6 5.6 
5 1.1 1.0 1.0 1.3 1.2 1.2 1.4 1.5 1.3 2.7 3.1 2.9 

10 0.9 1.0 1.0 1.2 1.1 1.0 1.1 1.1 1.1 1.7 1.7 1.7 

10 2 1.5 1.6 1.5 3.1 3.4 3.4 6.1 6.5 6.4 16.7 17.3 16.5 
3 1.3 1.3 1.1 2.0 2.1 2.1 3.7 3.6 3.5 10.0 9.7 8.8 
5 1.2 1.1 0.9 1.5 1.4 1.4 2.3 1.9 2.0 5.7 5.1 4.7 

10 1.0 1.0 0.8 1.2 1.2 1.0 1.5 1.1 1.5 2.6 2.6 1.9 
(b) Nominal level a = 5% 

2 2 4.7 4.8 4.7 5.4 6.0 5.5 7.3 7.4 7.1 11.3 11.9 11.0 
3 4.6 4.9 4.6 4.8 5.4 4.9 5.9 5.8 5.4 8.1 8.4 7.8 
5 4.8 4.9 4.6 4.7 5.1 4.6 5.2 5.0 4.5 6.5 6.6 6.1 

10 4.5 4.9 4.7 4.8 5.1 4.5 5.0 5.0 4.7 6.0 5.8 5.6 

3 2 5.0 5.2 4.9 6.2 6.7 6.7 8.1 8.8 8.2 13.9 14.7 14.0 
3 4.8 5.0 4.9 5.5 5.7 5.3 6.4 6.6 6.4 10.2 10.0 9.5 
5 4.8 5.2 4.8 5.1 5.5 4.9 5.2 5.6 5.0 7.9 7.5 7.1 

10 4.9 5.1 4.7 5.1 5.3 4.6 4.8 5.1 4.6 6.2 5.8 5.9 

5 2 5.5 5.7 5.4 7.2 7.7 8.1 10.5 10.9 10.1 19.0 19.4 18.7 
3 5.1 5.3 5.1 6.2 6.4 6.0 7.5 7.7 7.7 12.6 12.6 12.4 
5 4.9 5.3 4.8 5.4 5.5 5.1 6.3 6.2 6.0 8.8 9.7 8.7 

10 4.9 5.1 4.8 5.2 5.2 5.0 5.0 5.3 5.0 7.1 7.1 6.3 

10 2 6.2 6.3 5.9 9.8 9.9 9.7 14.8 15.6 14.7 25.5 26.1 24.9 
3 5.5 5.4 5.4 7.8 7.9 7.2 10.4 10.6 10.0 18.4 17.8 16.2 
5 5.1 5.2 5.0 6.1 6.3 5.9 7.9 7.7 7.3 13.0 12.6 11.0 

10 4.9 5.0 4.8 5.4 5.6 4.8 5.9 5.9 5.6 9.1 8.6 6.7 
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TABLE 4.6. (Continued) 

yo = .1 yo = .2 yo = .3 yo = .5 

k m O  S L 0 S L 0 S L 0 S L 

2 2 9.6 9.4 9.5 
3 9.7 9.7 9.6 
5 9.7 9.5 9.6 
10 9.6 9.6 9.7 

3 2 9.8 9.5 9.4 
3 9.5 9.6 9.3 
5 9.6 9.7 9.3 
10 9.7 9.5 9.6 

5 2 10.2 10.6 10.0 
3 9.9 10.1 9.6 
5 10.0 10.1 9.5 
10 9.9 9.8 9.3 

10 2 11.0 11.2 10.8 
3 10.6 10.3 9.7 
5 10.4 10.1 9.4 
10 10.3 9.9 9.3 

(c)  Nominal level a = 10% 
10.0 10.8 10.2 12.6 12.8 12.7 17.2 17.6 16.6 
9.9 10.3 9.9 11.0 11.2 10.5 13.4 14.0 13.3 
9.7 10.0 9.5 10.7 10.6 9.7 12.2 12.4 11.7 
9.5 9.9 9.5 10.4 10.1 9.5 11.2 11.4 10.9 

11.2 11.7 11.6 14.1 14.4 13.8 19.8 20.3 20.1 
10.6 10.7 10.5 11.5 12.0 11.1 15.8 15.5 15.6 
10.5 10.4 9.9 10.5 10.7 9.5 13.3 13.3 12.8 
10.1 10.4 9.7 10.5 10.6 9.3 11.9 11.9 11.3 

12.3 13.0 13.4 15.8 17.3 15.9 24.9 26.0 24.9 
11.1 11.5 11.1 13.4 13.5 12.9 18.9 18.9 18.0 
10.7 11.0 10.2 11.3 11.5 11.0 14.8 15.5 14.6 
10.3 10.4 9.6 10.3 10.4 9.8 12.6 12.8 12.3 

15.8 16.0 16.1 21.1 22.5 21.4 31.3 31.9 30.2 
13.1 13.4 12.8 16.7 17.3 16.3 24.3 23.8 22.0 
11.5 11.4 10.7 13.7 13.6 12.6 19.4 18.6 16.2 
10.7 10.5 10.0 11.5 11.1 10.2 15.2 14.9 12.1 

LI 

used in Tables 4.4-4.6. Clearly, even h,,, with m = 2 is quite superior to 
single imputation (e.g., when a = 5%, k = 10 and yo = -3, a 14.8% rejegtion 
rate for b2 versus a 45.3% rate for d*J. The practical adequacy of A,,, is 
supported by work reported in Weld (1987) with modest sample sizes and 
the data of Example 1.3. 

TABLE 4.7. Largesample level (in W) of d,, with x i  reference distribution as a 
function of nominal level, a; number of components being tested, k; and fraction of 
missing information, yo. 

a = 1% Q = 5% a = 10% 

k yo = .I .2 .3 .5 .1 .2 .3 .5 .1 .2 .3 .5 

2 2.3 4.6 8.4 21.5 8.6 13.6 19.9 36.8 15.2 21.5 28.9 46.4 
3 2.6 5.6 10.6 28.6 9.4 15.7 24.0 45.7 16.4 24.4 33.9 55.5 
5 3.0 7.4 15.0 41.2 10.7 19.4 31.0 59.5 18.2 29.1 41.9 68.8 
10 4.0 11.6 25.3 65.5 13.3 27.2 45.3 80.7 21.9 38.5 57.0 86.6 



148 

PROBLEMS 

RANDOMIZATION-BASED EVALUATIONS 

1. Suppose C = C ( X ,  q,,, Z )  is an interval estimate of Q that is free of 
R and that the sampling mechanism is unconfounded with R: 
Pr( Z I X, Y, R )  = Pr( Z I X, Y). Show that the fixed-response random- 
ization-based coverage of C for Q is the same no matter what value R 
is fixed at: 

Prob(Q E CJX, Y, R = R'} = Prob{ Q E ClX,  Y ,  R = R"} 

for all R', R". Furthermore, show that the random-response randomi- 
zation-based coverage of C for Q is the same no matter what specifi- 
cation is made for the response mechanism; that is, show that 

Prob{ Q E ClX,  Y } takes the same value 

2. Comment on the possibility of using nonnormal reference distribu- 
tions for randomization inference. In particular, let the estimand be r 
and consider the following quotation: 

for all specifications Pr( RI X, Y )  . 

When I had the stones on the table around 1935, I had the whole 
population distribution which for weights was very skew, so that the 
randomization distribution of the means of samples of size five was 
still skew. I used Fisher's old method of approximating the [random- 
ization distribution of the] means of five by using the first four 
moments of their distribution. (Personal communication from W. G. 
Cochran, July 13, 1979.) 

3. Let Z,  = log(Y;) where the objective is to draw inferences about r 
from a simple random sample of size n; n is large and n / N  is very 
small. Let j and E be the sample means of Y and Z, respectively, and 
s2  and sf their sample variances. Consider the interval estimate of L 

C( 2 ,  s:)=exp( Z + s:/2) f 1.96exp( t + sf/2)sZ(l + ~ f / 2 ) ~ / ~ / n ' / ~ .  

(a) Show that if the Zi are modeled as i.i.d. N(p, u 2 )  with a diffuse 
prior distribution on 6 = ( p ,  u 2 )  

E(YIY;,,) = E[exp(p + a2/2)~qnc]  --t exp(t + sf/2) 

wly;:"c) = +XP(P + ~*/2)1Yncl 

+ exp(5 + s f / 2 ) ~ ( p  + u2/21qnc), 
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Hint: Try a first-term Taylor series expansion of exp(p + a2/2) 
about (5 + st/2). 

(b) Is C(Z, s,’) an approximate 95% posterior interval for F? 
Problem 3 continued. Assume the population values 2, are i.i.d. 

(a) Show that C(Z, s t )  is an approximate 95% confidence interval 

4. 
N ( P * d ) .  

for F: 
E [exp( z + s;/2) I Y ]  -+ exp( p* + a2/2) = F 

~ [ e x p ( ~  + s,’)(s: + s;/2)/nl~] -+ V[exp(z + s ,2/2)1~]  

Hint: Now expand exp(i + s,2/2) about (p*  + &2). 
(b) State why the standard 95% interval for L 

C’( j ,  s’) = j 1.96s/n1/’ 

is a large-sample 95% confidence interval for r. 
(c) Show that under the lognormal model 

j + exp(p* + a,2/2) = F 
s’ -, exp(2p* + 2u1)[1 - exp( -a:)]. 

(d) Show that the ratio of the limiting widths of intervals C(E, s,‘) and 
~ ’ ( j ,  s’) is 

a:(l + a2/2) 1 + 0:/2 
1 + a:/2 + a,4/3! + . * .  

[ I”” ( 
exp(o:) - 1 

(e) Whch interval is better based on (d)? 
5. Problem 4 continued. Is C(2,  s,’) better than C ’ ( j ,  s’) in general, as 

when the Y;: are not lognormal? Hint: Consider an unrealistic but 
computationally trivial case; for example, suppose that N/2 of the r; 
are 1 and N/2 of the are 22,000, and show that the center of the 
standard interval, j ,  tends toward F =  11,000, but, since as n -, 00, 

n/2 of the 2, will be 0 and n/2 will be 10, the center of the lognormal 
interval tends toward exp(5 + 12.5) = 4 x lo’, thereby excluding the 
correct answer with probability 1 as n 00. 



150 RANDOMIZATION-BASED EVALUATIONS 

6. 

7. 

8. 
9. 

10. 

11. 

12. 

13. 

14. 
15. 

16. 

17. 

18. 

19. 

Summarize the randomization-based evaluations of multiple-imputa- 
tion procedures for scalar estimands given in Section 1 of this chapter. 
Comment on the differences between the statistics & = 
&(x, Ylnc, R,n,,  1)-  where Yin, = (Yobs, ymi,), and & * /  = 

Q*/<X, x n c ,  I ,  R i n c ,  where y n c ,  I = (Yobs, ymts, /) With 'mi,, I the Ith 
set of imputed values for Y,,,. From the randomization perspective, 
from what distribution does Y,,, arise? Hint: think fixed Y. From 
what distribution does Y,,,, I arise? Hint: think posited model. 
Define randomization-valid; which quantities are fixed? 
When are infinite-m repeated-imputation inferences randomization- 
valid? 
In (4.2.1) and (4.2.2), are Q and U complete-data statistics or can they 
be completed-data statistics? 
Discuss the possibility of defining randomization-validity so that it 
holds only under the true model for nonresponse. 
Describe a realistic case when the imputer's and data analyst's models 
are both correct or nearly so. 
Summarize the definitions of proper and repeated multiple-imputation 
methods and present an example of each of the four types: proper and 
repeated, proper but not repeated, improper but repeated, and im- 
proper and not repeated. 
D e h e  proper imputation methods when B, is not full rank. 
Summarize Result 4.1 and combine it with Conclusion 4.1 to provide a 
practical summary. 
Why do (4.3.1) and (4.3.2) follow from (4.2.3) and (4.2.4) under the 
assumptions? 
Prove in the context of Example 4.1 that: 

(b) urn = s:(n-' - N - ' )  

(c) E (  omlX, Y, I )  U and V(a,IX, Y, Z )  << B 

How does Example 4.1 change if n, is treated as binomial (n, 8,) 
where 3 R  is the probability of response? 
In Example 4.1, the length of the repeated-imputation confidence 
interval for Q is too short by what factor? 
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20. 

21. 
22. 

23. 
24. 

25. 

26. 

21. 

28. 

29. 

Repeat Problem 17 for the fully normal imputation method of Exam- 
ple 4.2 making appropriate changes in results. 
Repeat Problem 20 for the Bayesian bootstrap of Example 4.3. 
Repeat Problem 20 for the approximate Bayesian bootstrap of Exam- 
ple 4.4. 
Repeat Problem 20 for MV multiple imputation of Example 4.5. 
Repeat Problem 20 for the adjusted hot-deck multiple-imputation 
method of Rubin (1979a) and Herzog and Rubin (1983). 
Present a more formally satisfying statement of Conclusion 4.1 and a 
proof of the revised statement. 
Show that all the repeated-imputation methods of Examples 4.2-4.5 
are asymptotically improper for { 7, s2(n-’  - N - ’ ) }  under the non- 
ignorable response mechanism used in the example of Section 1.6. 
Relate Problems 3-5 to the discussion of the role of the complete-data 
statistics in determining whether the imputation method is proper. 
Suppose the imputer’s model for Pr(Y, X) is, in i.i.d. form, 

l f I f ( L  r = l  x,)le)Pr(@) d 8 ,  

and that the data analyst’s model for Pr(Y, X) is identical except for 
the prior distribution on 8, which fixes some components of 8 at null 
values. 
(a) Show how this structure can accommodate a predictor used by the 

imputer but not the data analyst (e.g., an interaction term in a 
regression model used by the imputer but not the data analyst). 

(b) In what senses are the imputations “safe” for the data analyst? 
For example, are significance levels conservative and are interval 
estimates conservatively calibrated assuming the data analyst’s 
model is correct? 

(c) Summarize any conclusions concerning the use of more versus less 
restrictive models for imputation, where restrictive refers to prior 
constraints that the data can address. 

(d) Relate these conclusions to the idea that imputation models that 
generate data with more rather than less variability are safer. 

Comment on the possibility of obtaining inferences from a multiply- 
imputed data set by means other than the repeated-imputation in- 
ferences derived in Chapter 3. For instance, Rubin (1977b) suggests 
the possibility of performing a weighted analysis: for m imputations, 
m pseudounits are created for each unit with missing data, where the 
m weights for the pseudounits add up to the total weight for that unit. 
What role does linearity of Q on Y play? 
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Can an “errors-in-variables” model be usefully employed to analyze a 
multiply-imputed data set by viewing the multiple imputations as 
flawed measurements of an underlying true (latent) value? 
Suppose a simple random sample of size n of = (yl, y2) is taken 
from a bivariate normal population with N / n  + oa; K1 is fully 
observed in the sample and y.2 is partially missing due’to ignorable 
nonresponse (i.e., missingness on q2 might depend on the value of 
yl). The estimand Q is the regression coefficient of Tl on q2. Do the 
multiple imputations of predictor variables q2 create an “errors- 
in-variables” bias in the regression coefficients? Justify your answer, 
both by general theory and by specific calculations. 
Explicitly derive (4.5.9)-(4.5.11) from (4.2.3)-(4.2.9), (4.5.1), and 
(4.5.2); also derive the multivariate extension (4.5.16). 
Justify the t reference distribution for inferences about scalar. Q from 
the randomization perspective. 
Derive (4.5.20) from (4.5.18). 
Review the relationship between yo and the EM algorithm. 
For the BB, FN, M V ,  and ABB methods, show that 

V(Q,,,lY, R, I )  = B,/m = (n;’ - n-’ )E(s i lY ,  R ,  I ) / m .  

Also, derive their values of E(szlY, R ,  I). 
Consider the following statement: 

If the reference distribution of D, were normal, the relative efficiency 
expression (4.5.20) would be entirely appropriate. The reference distri- 
bution for S,,, is not normal, however, but t on v degrees of freedom, 
and thus, an adjustment should be made to the relative efficiency to 
reflect the increased inferential uncertainty associated with t distribu- 
tions on finite degrees of freedom relative to normal distributions. The 
average second derivative of a t log posterior on v degrees of freedom 
at the mode is ( Y + 3)/( v + 1) times that of the limiting normal, and 
so a simple adjustment is to multiply the relative efficiency by 
[(v + l)/(v + 3)]’12. 

(a) Discuss the issue of the need for such an adjustment from the 
randomization perspective. For example, if two estimates have the 
same variance but one has more degrees of freedom associated 
with its estimated variance, are the two estimates equally precise? 

(b) Derive the adjustment. 
(c) Would the adjusted or unadjusted efficiencies be more relevant to 

the creator of a multiply-imputed data set when deciding how 
large rn should be and why? 
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30. 

31. 

32. 

33. 

34. 
35. 
36. 

37. 



PROBLEMS 153 

38. 

39. 

40. 

41. 

42. 

43. 
44. 

45. 

46. 

47. 

48. 

49. 

50. 

51. 

Report the work in Rubin and Schenker (1986) concerning linear 
interpolation in (rn - for coverages. 
Compare (4.6.4) with the Bayesian appraisal of the accuracy of the 
interval estimate using the t reference distribution. Hint: see Problem 
12 in Chapter 3. 
Assume is univariate and let 

(a) Discuss the use of p, = X;"p*Jm to estimate Prob{ Q > OlX, 
Yobsr R i n c } ;  consider m = I, m = co and intermediate values and 
the actual level of the implied sigmficance tests. 

(b) Is j m  a reasonable estimate of jm? Comment on the effect of the 
prior distribution that restricts support to (0,l). Does a wiser prior 
lead to more realistic implied significance levels? 

(c) Is there a better way to estimate jm? Hint: use s,, am, B,. 
(d) Assume all V,, = om; is there a better way to estimate j, than j, 

that is based only on the p*,? Hint: consider the @ - ' ( p * / ) ,  their 
sample mean and variance, and part (c). 

Show that Prob{ Dm > FkJa)IX ,  r; Q = Q,} asymptotically equals 
(4.7.8). 
Describe efficient methods for evaluating the level and power of the 
test based on 0,. 
Fit a response surface model to Table 4.4 and summarize conclusions. 
Show that Prob( fim > Fk,ktv(CX)IX, Y;  Q = Q,} asymptotically equals 

Fit response surface models to Tables 4.5 and 4.6 and summarize 
conclusions. 
Formulate and evaluate a procedure that for small m is nearly b, 
with the Fk,(k+l)v,Z reference distribution but for large m tends to 0,. 
Compare the large-rn powers of bm and Qm. 

Compare the large-rn powers of b, and f i m ,  and evaluate how much 
is lost asymptotically by having to estimate r,. 
Formulate and evaluate a procedure better than 6, that uses only 

Derive (4.8.1), and justify using (4.8.2) to approximate (4.8.1) when 
the k fractions of missing information are not equal. 
Summarize the conclusions of this chapter for the applied user of a 
multiply-imputed data set (e.g., a social scientist). 

(4.7.9). 

{ d * /  1. 



C H A P T E R 5  

Procedures with 
Ignorable Nonresponse 

5.1. INTRODUCTION 

The theory presented in Chapter 3 and 4 implies that if multiple imputa- 
tions are drawn as repetitions from the posterior predictive distribution of 
the missing values under an appropriate model, or a reasonable approxima- 
tion to it, then approximately valid inferences will result by properly 
combining the complete-data inferences. Although this theory is general, all 
the specific illustrations of it, and in particular, the illustrations of methods 
for creating multiple imputations in Chapter 4, were for the very simple 
case with a simple random sample of one outcome variable with no 
covariates and ignorable nonresponse, where the objective is to estimate the 
population mean using the standard inference. This case is unrealistically 
simple relative to most real survey situations. First, there are often many 
outcome variables (i.e., variables only observed for units included in the 
survey) and many covariates (i.e., variables fully observed for all units in 
the population), rather than one outcome variable and no covariates. 
Second, there are commonly many quantities to be estimated, such as tables 
of counts, correlations, and regression coefficients, rather than just means, 
and their estimates can be complicated functions of both X and Y. Third, 
the sampling mechanism, although commonly an unconfounded probability 
sampling mechanism, is usually not simple random sampling but depends 
explicitly on covariates used to define, for example, strata and clusters of 
sampling units. Fourth, nonresponse often creates complicated patterns of 
missing data in outcome variables. Fifth, nonresponse is rarely known to be 
ignorable. 
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Multiple imputation was not designed for application in the simple case 
used for illustration in Chapter 4 where the theoretically correct answer is 
immediate, but rather for more complex cases where theoretically satisfac- 
tory answers are difficult to derive explicitly. In this chapter, we consider 
more general cases, but still restrict attention to ignorable sampling and 
response mechanisms; nonignorable nonresponse is considered in Chapter 
6. It is natural to focus first on ignorable models because doing so leads to 
trying to adjust for all observed sources of bias between respondents and 
nonrespondents. 

No Direct Evidence to Contradict Ignorable Nonresponse 

An important feature of the assumption of ignorable nonresponse is that 
generally there will be no direct evidence in the data to contradict it. 
Consider a group of respondents and nonrespondents with identical values 
of the observed variables X, and for simplicity, suppose that Y is uni- 
variate. The assumption of ignorable nonresponse means that the unob- 
served distribution of Y for the nonrespondents is only randomly different 
from the observed distribution of Y for the respondents. Since no Y values 
are observed for nonrespondents, without external information there will be 
no way to judge whether the nonrespondents’ missing values are systemati- 
cally different from the respondents’ observed values. As an example of 
such external information, suppose that we expected the population distri- 
bution of values at the common observed value of X to be approximately 
symmetric; if the respondents’ values are observed to be quite skew, then 
the observed values of Y coupled with this external knowledge constitute 
evidence of nonignorable nonresponse. But without some such external 
knowledge, the assumption of ignorable nonresponse is perfectly plausible 
since the population distribution of values of Y at this value of X might be 
skew just like the observed values of Y for respondents. 

Adjust for All Observed Differences and Assume Unobserved Residual 
Differences Are Random 

Imputation methods that assume ignorable nonresponse thus play an 
obvious central role: adjust for all observed differences between respon- 
dents and nonrespondents and assume that unobserved differences are 
random. If systematic unobserved differences are plausible, then these can 
be investigated as deviations from the ignorable imputed values. The 
artificial example in Section 1.6 did this by asserting that each nonignorable 
missing value was 20% higher than the associated ignorable missing value. 
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Of course, explicit nonignorable models, such as ones that capitalize on 
normality assumptions, can be built, as discussed and illustrated in Chap- 
ter 6. 

Univariate 5 and Many Respondents at Each Distinct Value of Xi  That 
Occurs Among Nonrespondents 

Possibly the simplest case with ignorable nonresponse, beyond the rather 
artificial one of a simple random sample of univariate r, used to illustrate 
ideas in Chapter 4, arises when is univariate and for each nonrespondent 
there are many respondents with the same value of XI. With such a 
situation, it may be reasonable to treat all the units with a common value of 
X, as a separate group and apply one of the multiple-imputation methods 
used in Examples 4.2-4.5 applicable to a simple random sample with 
ignorable nonresponse and univariate Y. 

Formally, if there are K distinct values of X,, we are fitting independent 
models at each of the K values of XI; using the usual i.i.d. formulation, we 
are allocating to each distinct value of X, an independent parameter 
(possibly a vector) governing the distribution of r,. This assumption of 
independence across distinct XI is most appropriate in cases with many 
respondents at each observed value of X, from which to estimate the 
distribution of r; given XI. 

The More Common Situation, Even with Univariate & 
More commonly, there will be some X, values occurring among the 
nonrespondents that wi l l  occur among only few if any respondents; this is 
especially true with multivariate Xi. For example, if Xi has 20 binary 
components, there are over a million possible values of Xi; and it may be 
quite likely that one particular value occurs for a nonrespondent but not for 
any respondent, even if respondents greatly outnumber and only randomly 
differ from nonrespondents. 

There are basically two standard approaches for imputing data in this 
situation. The first approach relies on implicit models that define collections 
of respondents who are “close” to each nonrespondent and thereby returns 
to imputation methods for univariate y; in simple random samples, this 
approach dominates current survey practice. The second approach builds 
explicit statistical models for the conditional distribution of 6 given XI, 
such as a normal linear regression model, and creates imputations based on 
the model. A key issue with implicit modeling methods is defining “close,” 
since with high-dimensional Xi and a modest number of respondents, the 
closest available on X, according to one metric (i.e., definition of closeness) 
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may be very far away with respect to another definition, and in particular 
with respect to the distribution of r; given X,. That is, consider a nonre- 
spondent with X, = x ’ ;  even if a respondent with X, = XI ’  is the closest 
available respondent with respect to a certain metric, Pr( Y;lX, = x ’ )  may be 
very different from Pr(Y,JX, = x ” ) ,  especially so when the distributions of 
X are different for respondents and nonrespondents and the dimensionality 
of X is large. 

The key practical issue with the explicit modeling approach is defining 
the global model for Pr(ylX,) to be accurate locally. In particular, suppose 
Pr( I: I X,) specifies that univariate has a linear regression on univariate 
X,, but in fact, log( q )  has a linear regression on X,; the linear approxima- 
tion can be a decent global approximation, accounting for a large propor- 
tion of the variance of Y due to X, but still can create less accurate 
imputations than an implicit model that matches on X. Nonparametric 
regression techniques can often be viewed as falling between matching 
methods and parametric regression approaches. 

A Popular Implicit Mudel-The Census Bureau’s Hot-Deck 

A quite popular method for handling nonresponse makes all X variables 
categorical and tries to fmd, for each nonrespondent, exactly matching 
respondents with respect to the categorical X, the U.S. Census Bureau’s 
hot-deck for the Current Population Survey uses such a method. If a 
matching respondent is found for a nonrespondent, then the respondent 
donates its values to the nonrespondent. If more than one respondent 
matches the nonrespondent, then, depending on the particular implementa- 
tion, either the first or a randomly chosen respondent is the donor. (Census 
files are often ordered by potentially relevant characteristics, such as 
geographical location.) If no matching respondents are found for a nonre- 
spondent, some categories of X are made coarser, or some components of 
X are dropped altogether (the coarsest a variable can be-one category) 
according to rather complicated rules, and the procedure is tried again. The 
process continues with coarser and coarser X until a matching respondent 
is found. For example, if the first component of X is state in the United 
States, the first pass for a nonrespondent may use a nine-region classifica- 
tion, the second pass a four-region classification, and all subsequent passes 
may drop the state variable altogether (i.e., use one region-the entire 
United States). Different rules can thus be applied to different nonrespon- 
dents depending on how easy it is to find matching respondents. All 
nonrespondents, however, will eventually receive a matching respondent. 
Recent descriptions of hot-deck procedures appear in Ford (1983) and 
Sande (1983). 
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A simple multiple-imputation version would modify the rules to require 
a minimum of m 2 2 rather than 1 matching respondent, where the first m 
or a random m would be chosen as donors if there were more than m 
matching respondents. With univariate r,, the methods in Examples 4.2-4.5 
could b6 directly applied to the collection of potential donors to create 
multiple imputations. 

Metric-Matching Hot-Deck Methods 

Metric-matching hot-deck methods define a measure of distance between 
each nonrespondent and each respondent, such as ( x ’  - x”)S-l(x’ - x”)‘ 
where x ’  and XI’ refer to specific nonrespondent and respondent values of 
X, and S is the covariance matrix of X, in the respondent sample. With 
multiple imputation, the matching respondents for a nonrespondent could 
be the m closest respondents, or those m supplemented with all those 
respondents less than some fixed distance Do away from the nonrespon- 
dent, or possibly a random choice of m from those that are less than Do 
away. Thus, each nonrespondent will have available at least m matching 
nonrespondents to which the methods in Examples 4.2-4.5 can be applied 
when r, is univariate. Statistics Canada uses a version of metric matching 
for some of its single imputations (Sande, 1983). 

Much of the statistical literature on matching methods appears in the 
context of observational studies for causal effects. In this context, for each 
exposed unit (e.g., smoker) a matching nonexposed control unit (non- 
smoker) is sought (see, e.g., Cochran, 1968; Cochran and Rubin, 1973; 
Rubin, 1973, 1979~). In fact, the Census Bureau’s hot-deck is quite similar 
to the “ variable-caliper” matching method described by Althauser and 
Rubin (1971). Some of these methods are full rank so that the distance 
between x’  and x” can only be zero when x’ = XI ’ .  Other methods, such 
as discriminant matching (Rubin, 1976b, 1980~) and propensity score 
matching (Rosenbaum and Rubin, 1983,1985) define distance by creating a 
scalar summary of X, that predicts group membership, that is, treated 
versus control in the context of observational studies and nonrespondent 
versus respondent in the context of nonresponse. 

One important difference between the survey and observational study 
contexts is that at the time of the matching, the outcome variable Y is 
observed for survey respondents but generally not yet observed for any 
units in the observational study. Consequently, the matching in the nonre- 
sponse context can take explicit advantage of estimated relationships be- 
tween Y and X in the respondent group. For example, with univariate K ,  a 
regression of on X, can be computed among respondents to define a 
scalar function of X, that is best correlated with r, in this group; this scalar 
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variable can then be computed for both respondents and nonrespondents 
and used to define acceptable matches. Of course, since a model is being 
used to estimate the relationship between Y, and Xi among respondents, it 
becomes natural to consider using the model for the imputation itself rather 
than just for defining matches. 

Least-Squares Regression 

A common method for imputing missing values is via least-squares regres- 
sion (e.g., Afifi and Elashoff, 1969). Regress univariate Y; on XI using the 
respondent data to obtain a prediction equation of the form = a + bX,, 
and then impute the missing r, for nonrespondents using this equation and 
the observed values of X I .  One obvious problem with such a best-prediction 
method, already indicated in Example 1.5, is that the imputed values will all 
fall on the estimated regression line and so will lead to obvious biases in 
estimands that involve the residual variance of Y; given XI for nonrespon- 
dents. which is estimated to be zero. Simple methods that attend to this 
problem draw residuals el with mean zero to add to before imputation, 
where the e, can be drawn, for example, from (a) N(0, s:), where s: is the 
estimated residual variance of r, given XI among respondents or (b) the 
actual empirical residuals among the respondents. In a multiple-imputation 
context, several imputed values would be created for each missing x, where 
ideally uncertainty due to the estimation of the regression itself would be 
reflected across the imputations. Details of such a method are given in 
Section 5.3. 

Outline of Chapter 

In order to define precisely the steps to be kept in mind when creating 
multiple imputations, we need to consider how to create imputations under 
an explicit Bayesian model. As concluded in Section 4.4, this is theoretically 
and practically the most direct way to create imputations that lead to valid 
inference from both the Bayesian and randomization perspectives. The 
steps for creating imputations under an explicit Bayesian model are given in 
the relatively theoretical Section 5.2, followed by examples of explicit 
imputation models for univariate with covariates in Section 5.3. Methods 
for univariate r, with covariates can be directly applied to a much larger 
class of problems, those with monotone patterns of missing data in multi- 
variate x., and this generalization is discussed in Section 5.4 and illustrated 
using an example with bivariate and covariates in Section 5.5. Section 5.6 
considers extensions to nonmonotone patterns of missing data. 
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5.2. CREATING IMPUTED VALUES UNDER AN EXPLICIT MODEL 

Three formal tasks can be defined that are needed to create imputed values 
that simulate the posterior distribution of Ymis under an explicit Bayesian 
model: the modeling task, the estimation task, and the imputation task. 
These were illustrated in the simple case of Examples 4.2-4.5 without 
formal definition. Here, we provide definitions and derive properties of the 
tasks in the general case with ignorable nonresponse. 

The modeling task chooses a specific model for the data. The estimation 
task formulates the posterior distribution of the parameters of that model 
so that a random draw from it can be made. The imputation task takes one 
random draw from the posterior distribution of Ymis by first drawing a 
parameter from the posterior distribution obtained in the estimation task, 
and then drawing Ymis from its conditional posterior distribution given the 
drawn value of the parameter; the imputation task is repeated m times to 
create m imputations for each missing value under the chosen model. 

The Modeling Task 

The repeated multiple imputations for the missing values, Ymis, represent m 
draws from the posterior distribution of Ymis under the chosen model. Since 
sampling and nonresponse mechanisms are being assumed ignorable, by 
Result 2.3 the posterior distribution of Ymis is its conditional distribution 
given the observed values X and Yobs, Pr(Ymi,(X, Yob,). The posterior 
distribution of Ymis follows from the specification for Pr( X, Y): 
Pr(Y,,IX, Yob,) = Pr(X, Y)/JPr( X, Y) dY,,. The modeling task provides 
a specification for Pr(X, Y). 

Throughout, we assume Pr( X, Y) is modeled in i.i.d. form: 

(5.2.1) 

From (5.2.1) we see that in a formal sense, the modeling task is simply a 
standard Bayesian specification of a model appropriate for a multivariate 
data set; for example, f X v ( - I  .) could be a (p  + q)-variate normal for 
continuous data, or a (p  + q)-dimensional log-linear model for discrete 
data, where p and q are the number of components in y. and Xi ,  
respectively. The issues that arise with incomplete data are basically the 
same as arise with complete data, although in the context of imputation, 
there may be somewhat more emphasis on formulating models that will give 
accurate predictions of missing values. With many missing values, extra 
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care may be needed to formulate useful models, because there may not be 
enough observed values to appeal to standard arguments. For example, if 
the first two components of Y are modeled as bivariate normal, but these 
two components are never simultaneously observed, standard procedures 
for estimating the correlation between the two components are not im- 
mediately appropriate. 

It  is often convenient to write 

(5.2.2) 

where O , , ,  and 8, are functions of 8. For example, f r l x ( - I  . )  with 
continuous Y, could be a general normal linear model for the p-variate 
outcome gven the q-variate predictor, or with discrete I: it could be a 
multivariate logstic regression model. Specific examples appeared in Sec- 
tion 2.5 and Problems 11-14 of Chapter 2, and more examples appear later. 

Factoring the joint distribution of (XI, Y,) as in (5.2.2) can simplify 
model building efforts whenever 8,,,  and 6, are chosen to be a priori 
independent. Specifically, because XI is always fully observed, when dy1, 
and 8 ,  are modeled as a priori independent, they are a posteriori indepen- 
dent, and moreover, the posterior distribution of 8,,, does not involve the 
specification for f,( - 1  - ); this result follows from general results in Rubin 
(1974) concerning estimation in i.i.d. models with missing data, and is 
proved directly in Results 5.1 and 5.2. The practical consequence is that 
when e,,, is a priori independent of 8,, no specification is needed for 
either fx( X,le,) or the prior distribution of 8,. 

Notwithstanding this simplification, there are occasions, however, when 
it can be useful to have the parameters 8,, ,  and 8, a priori dependent. For 
instance, if it is thought that the correlational structure of (X, Y) resembles 
an intraclass correlation matrix (i.e., all off-diagonal elements equal), the 
correlations among X variables, which are always observed, help to esti- 
mate the correlations among the Y variables and between the Y variables 
and the X variables; in such a case, 8,,, and 8, should be modeled as 
a priori dependent. 

The Imputation Task 

The objective here is to draw Ymir from its posterior distribution under the 
model (5.2.1). This posterior distribution can be written as 

Our plan is first to draw a value of B from its posterior distribution, 
Pr(81X,Yo,,), say 8 * ,  and then draw a value of YmiS from its conditional 
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posterior distribution given the drawn value of 8, Pr( Y,,,IX, Yobs, 8 = 8 * ). 
Repeating this process rn times creates m draws from the joint posterior 
distribution of (Y,,,, 8). Ignoring the drawn values of 8 gives m draws from 
the marginal posterior distribution of Y,,,. The reason for drawing values 
of both 6' and Y,,, is that under the i.i.d. model (5.2.1), the task of drawing 
Y,,, given 8 is relatively simple. 

This fact is particularly clear in the simple case of univariate q. Letting 
8FIx be a value of eYlx drawn from its posterior distribution, each missing 
Y, is imputed independently according to f y lx (Y , lX , ,  For example, if 

f y l x ( - l  . ) is the normal linear regression model with OYlx  = (8, u2), then 
the missing Y, are drawn as independent normals with means X,p*  and 
variances u*' where the asterisk superscripts refer to the drawn values of 
the parameters. A new set of imputations is created by drawing a new value 
of dYkx j  when rn values of d Y 1 ,  are drawn, rn imputations are made for 
each mssing value. 

With multivariate Y,, some extra notation is helpful for stating exactly 
what is involved in the imputation task. Let mis(i)  = { jII,, = 1 and 
R,, = 0) = the indices of missing Y values for unit i ,  and let obs(i)  = 

{ j l l , ,  = 1 and R,, = 1) = the indices of observed Y values for unit i ,  
mis(i)  U obs(i)  = inc(i) and inc(i) U exc(i)  = {l,. .., p }  in an obvious 
notation. For notational simplicity, let Y,, mrs( r )  = Y,, ,,, and Y,, o b s ( l )  - - 
y. obs' 

We are now ready to describe the imputation task. Let 8;lx be a value of 
OY1, drawn from its posterior distribution. For each unit with missing data 
(i.e., for each i E m = { i l l , ,  = 1 and R,, = 0 for some j ) ,  find the 
conditional distribution of Y,, ,,, given XI, Y,, obs and 8,, ,  = 8;lx, 

and draw one value of Y,,,;, to impute; the units are imputed indepen- 
dently. When the patterns of missing data vary across the units, the 
distributions that must be found [i.e., the results of the integrations in 
(5.2.3)] will also vary. A new set of imputations is created by drawing a new 
value of 8y,F Result 5.1 justifies this procedure of drawing the Y,,,,, 
independently across units. 

Result 5.1. The Imputation Task with Ignorable Nonresponse 

Given 8, the q, ,,, are a posteriori independent with distribution depending 
on 8 only through OYlx: 
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The proof begins by using Bayes's theorem and the fact that Ynob = 

(Yexc, YmiS), to obtain 

which by (5.2.1) and (5.2.2) yields 

(5.2.5) 

Obviously, the factors involving 8, cancel, and the remaining expression 
involves only dYlx. Thus 

Consider the ith factor in this product: if mis(i)  is null, that is, if i 6E ms, 
then the numerator and denominator are equal. Hence 

which is equivalent to (5.2.4). 

The Estimation Task 

Result 5.1 shows that the only function of 8 that is needed for the 
imputation task is d y I x ,  the parameter of fYIX(Y,IX,, dylx) specified in 
the modeling task. The objective of the estimation task is to compute the 
posterior distribution of dylx so that a random draw of d,,, can be made. 
In special cases, such as with standard normal linear models, it is easy to 
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draw By,,  from its posterior distribution. Generally, however, calculating 
the posterior distribution of d y 1 ,  can be not only analytically intractable 
but also computationally demanding. Consequently, we often must be 
satisfied with approximate posterior distributions from which we can easily 
draw and consider using special Monte Car10 techniques to make adjust- 
ments for having drawn from a less than adequate approximation. Even 
though posterior distributions can still be intractable, substantial simplifica- 
tion can occur when O Y l x  and 8, are u priori independent. 

Result 5.2. The Estimation Task with Ignorable Nonresponse When Ovlx 
and 0, Are LI Prion’ Independent 

Suppose Oy1,  and 8, are apriori independent 

Pr( 6 )  = Pr( dY,,)Pr( e x ) .  (5.2.8) 

Then they are a posteriori independent; moreover, the posterior distribution 
of d y 1 ,  involves only (a) the specifications fylx(.l . ) and Pr(OylX), and (b) 
data from units with some y l j  observed. 

The proof is direct but requires several steps. From (5.2.1), (5.2.2), and 
(5.2.8), 

or 

where the first factor does not involve d y 1 ,  and thus is Pr(B,IX, Yobs), and 
the second factor does not involve 8, and thus is Pr(BYI,IX, Yobs). Hence, 
8,, ,  and 8, are a posteriori independent, 



CREATING IMPUTED VALUES UNDER AN EXPLICIT MODEL 

with 
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(5.2.10) 

which involves only the specifications fylx(  .I . ) and Pr( dYlx). The product 
l7:=, in (5.2.10) can be replaced by nieo6 where ob = { i l I i ,R j j  = 1 for 
some j }  = the set of units with some qj  observed, because for the other 
units the factors are one, whence Pr(ByIxIX, Yobs) involves only units with 
some y, observed: 

(5.2.11) 

Result 5.3. The Estimation Task with Ignorable Nonresponse, OyIx and Ox 
(I Pnon Independent, and Univariate Y;. 

If Oy1, and 8, are Q priori independent and is univariate so that the 
respondents have observed and the nonrespondents are missing q, the 
posterior distribution of dYlx  involves only the respondents. 

Result 5.3 is an immediate consequence of Result 5.2, and yields 
(5.2.1 2) : 

It is stated separately because the case of univariate is basic to many 
practical imputation methods. From Result 5.1, with univariate q. the 
posterior distribution of Ymis given 0 is simply 

Pr(Y,,sIX, Yobs,  8 )  = nfYlx(Ylxi9 8 Y l X )  (5.2.13) 
mis 

A Simplified Notation 

For simplicity, henceforth in this chapter we assume that dYlx and 8, are 
u priori independent, and thus we need only be concerned with the 
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specifications fylx( Y,lXi, O Y l x )  and Pr( 8y ,x ) .  For notational simplicity, we 
drop the subscript YIX and write f(Y,lXi, 8 )  and Pr(8) for these specifica- 
tions: 

(5.2.14) Pr(YIX) = /pr(YIX, 8)Pr(o) de 

where 

(5.2.15) 

5.3. 
q ANDCOVARIATES 

SOME EXPLICIT IMPUTATION MODELS WITH UNIVARIATE 

In order to help fix ideas presented in the rather theoretical Section 5.2, we 
consider univariate and several examples of multiple-imputation proce- 
dures based on explicit models. The case of univariate Y, with covariates is 
actually far more general than it might appear because in many common 
cases, outlined in Section 5.4 and illustrated in Section 5.5, multiple 
imputations for multivariate can be created by repeated application of 
methods designed for univariate Y,. We use the simplified notation in 
(5.2.14) and (5.2.15) appropriate when the parameter for the distribution of 
Y given X is independent of the parameter for the distribution of X. 

Example 5.1. Nonnal Linear Regression Model with Univariate Y;: 

Perhaps the most common method of predicting univariate Y, from a 
collection of predictors Xi is the normal linear regression model. Here, 

is the specification for f(KIXi, d ) ,  8 = (B ,  log a), B a vector of q compo- 
nents and u a scalar. We complete the modeling task by assuming the 
conventional improper prior for 8, Pr(8) a const; to avoid irrelevant 
complexities, we also assume n, > q, where n1 is the number of respon- 
dents. 

We are now ready to describe the estimation task. First, note from 
Result 5.3 that the posterior distribution of 8 involves only the units with Y, 
observed. Standard Bayesian calculations with the normal linear model, 
which are described, for example, in Box and Tiao (1973) and here in 
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Problem 14 in Chapter 2, show that aposteriori, u2 is a^:(n, - q )  divided 
by a xi, - random variable, and B given u is normal with mean and 
variance-covariance matrix u 2V, where, in terms of the usual least-squares 
statistics based on the n, vectors (x, XI), i E obs, 

where 

Since we have described the posterior distribution of 6 in terms of standard 
distributions from which we can easily draw, the estimation task is com- 
plete. 

We are finally ready to describe the imputation task for t h s  model: 

1. Draw a xi, -4 random variable, say g, and let 

u*t = a^:(n, - q) /g .  

2. Draw q independent N(0,l) variates to create a q-component vector 
2 and let 

where [ V ] ’ l 2  is a square root of V such as the triangular square root 
obtained by Cholesky factorization. 

3. Draw the no values of YmiS as 

r;* = xip* + zp*,  

where the no normal deviates zi are drawn independently. 

A new imputed value for Y,, is initiated by drawing a new value of the 
parameter 02. Thus, if m repeated imputations are desired, these three 
steps are repeated m independent times. 
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Example 5.2. Adding a Hot-Deck Component to the Normal Linear 
Regression Imputation Model 

In Example 4.5 a hot-deck component was added to the fully normal 
imputation method of Example 4.2. Similarly a hot-deck component can be 
added to the linear regression imputation method of Example 5.1. Simply 
replace the drawing of the no N(0,l) deviates called for in step (3) of 
Example 5.1 with the drawing of no values with replacement from the 
set of n1 observed residuals standardized to have variance 1: {(Y,. - p^,X,) 
x(1 - q/nl)-1’2/611i E o h } .  Such a modification may help to preserve 
subtle deviations from normality of the residuals. In order to help preserve 
subtle deviations from linearity, it may be wise to exclude some of the n 1  
residuals as being impossible, for example, by using a hot-deck method to 
define acceptable matches on the basis of X. 

An even more extreme departure from the normal linear regression 
imputation technique in Example 5.1 is to replace step (3) with the 
following step used in Rubin (1986) as an illustration: 

(a) Calculate the no predicted values in Ymis as 

q, = X#, i E mis. 

(b) For each Y,* i E mis, find the respondent whose Y, (i E ubs) is 
closest to Y,*, and impute this value for Y,. 

This method creates between-imputation variability since it uses the normal 
linear regression steps (1) and (2) to draw &, and uses a linear model to 
guide the choice of values to impute, yet imputes only values already 
observed in Yobs. 

Extending the Normal Linear Regression Model 

Of course, there is no reason why the X variables used in the regression 
models of Examples 5.1 or 5.2 should be identical to the X variables as 
initially recorded; functions of X variables may be needed to make the 
regression of Y, on Xi more nearly a linear one with constant residual 
variance. For example, if the first component of Xi measures size in terms 
of number of employees, it may be more sensible to assume is linearly 
related to log(size) than to size itself. The exact same methods can be used 
no matter what transformations of X, are employed. 

In some cases, it may be unreasonable to assume normality for the 
regression of Y,. on Xi .  One alternative class of models arises from assuming 
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that some fixed transformation of y, such as log(x) has a normal linear 
regression on X,, or for that matter on functions of X,. Or the functions to 
be regressed on X, can be functions of both X, and x; for example, with 
scalar X,, Y,/X, might be modeled as having a normal linear regression on 
X, with variance proportional to X, (see Problems 11-14 in Chapter 2). 
Any such fixed transformation of I: creates no problem when generating 
multiple imputations of Y,,,. Simply derive the posterior distribution of 
parameters in terms of the transformed Y;, say log( Y,), and generate no 
imputed values for the missing log(Y,); before imputing values in Y,,,,,, 
invert the transformation, for example, take exp(logx), to create no im- 
puted values for Y,,,. When is dichotomous or takes on only a few 
values, a logistic regression model is likely to be more appropriate than a 
linear regression model. 

Example 5.3. A Logistic Regression Imputation Model for Dichotomous yi 

Suppose that Y, is dichotomous (0 - 1) and that 

where the inverse logit function is 

lo@t-'(a) = exp(a)/[l + exp(a)] 

corresponding to the logit function 

logit( a )  = log[ a/(l + a ) ]  , 

and 8 is a column vector with the same number of components as Xi. This 
specification is known as the logistic regression specification, and as with 
linear regression, functions of the X, can be used in place of the X ,  with no 
essential change. 

A new feature when using logistic regression as opposed to linear 
regression, however, is that the posterior distribution of 0 no longer has a 
neat form for reasonable prior distributions. In fact, although the posterior 
distribution of 8 for large enough n, is nearly normal, in many practical 
cases it is very far from normal, especially with modest nl, many compo- 
nents in X ,  and data such that the fraction of ones in Yobs is near zero or 
one. 

Nevertheless, common practice uses the large-sample normal approxima- 
tion assuming Pr(8) a const and thus approximates the posterior mean of 
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8, E(elX, YobJ), by the maximum-likelihood estimate 8, defined by 

and the posterior variance of 8, V(8(X, Yobs), by the negative inverse of the 
second derivative matrix of the log-posterior distribution at 8 = 4: 

Finding 8 requires iteration, although V( 8 )  is a straightforward function of 
8. Using these approximations, the calculation of 8 and then P(8) defines 
the estimation task. 

The imputation task is then 

1. Draw 8 from N ( 8 ,  P(d)), say 8,. 
2. For i E mis, calculate logit-’(Xi8*). 
3. Draw no independent uniform (0,l)  random numbers, ui ,  i E mis, 

and if ui > logit-’(Xi8,) impute x. = 0, otherwise impute y. = 1. 

These steps are repeated for each of the m sets of imputations with new 
draws of random numbers. Section 5.5 illustrates the results of such 
calculations in a particular data set. 

5.4. 
MULTIVARIATE yl. 

MONOTONE PAlTERNS OF MISSINGNESS IN 

There are many practical cases in which creating multiple imputations with 
multivariate Y, is only slightly more difficult than with univariate x .  
Usually these cases involve special patterns of missingness in Y called 
monotone. In order to have a clean definition of monotone missingness, we 
must assume that all unobserved values for a unit included in the survey are 
to be regarded as missing values. Thus, we are essentially assuming that the 
sampling mechanism is such that if the ith unit is selected for inclusion in 
the survey, all components of r;. are intended to be observed, that is, 
I; = (1,. . . ,1) or I, = (0,. . . ,O), and thus any unobserved values for a unit 
included in the sample are due to nonresponse. This assumption is no real 
restriction when creating imputations. Since we are assuming ignorable 
nonresponse, both unobserved values in Y, due to the ignorable sampling 
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Variables 

units 

1 1 1 1 1 1 1 
1 1 1 1 1 1 0 
1 1 1 1 1 0 0 
1 1 1 0 0 0 0 
1 1 0 0 0 0 0 

Figure 5.1. A monotone pattern of missingness, 1 = observed, 0 = missing. 

mechanism, y,exc, and unobserved values in r; due to ignorable nonre- 
sponse, q,,,,,, are due to ignorable processes, and both can be imputed 
from the modeling of the distribution of (X, Y) needed to impute y, mrs;  if 
desired, when analyzing the data, the imputations for x,exc can always be 
ignored. 

Monotone Missingness in Y-Definition 

Figure 5.1 displays a “monotone” or “nested” pattern of missingness in Y. 
The first component of Y is at least as observed as the second, which is at 
least as observed as the third component, and so on. Such a pattern of 
missingness, or a close approximation to it, is not uncommon in practice. 
For example in longitudinal surveys, subjects often drop out as the survey 
progresses, so that all units have all time 1 measurements, a subset of these 
have time 2 measurements, a subset of the units with time 2 measurements 
have time 3 measurements, and so on; Marini, Olsen, and Rubin (1980) 
provide a specific example with a missingness pattern that is close to 
monotone. Also, it is common that some units will answer all questions, 
another group of units will answer all questions except a collection of 
personal ones, such as those concerning income, and a final group will 
answer only background questions such as those about gender and family 
size. Monotone patterns are of particular interest here because they can be 
handled using only the tools developed for univariate YJ such as presented 
in Examples 4.2-4.5 and 5.1-5.3. 

The General Monotone Pattern-Description of General Techniques 

In order to describe procedures for the general monotone pattern, it helps 
to have a notation to refer to a particular column of Y just as we use to 
refer to the zth row of Y. We let Yrjl = (Yl,, . . . , YNj)T. With a general 
monotone pattern, Yrll is at least as observed as Yr2], which is at least as 
observed as Yr3], . . . , which is at least as observed as Yrpl, as in Figure 5.1. 
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The general recommended procedure is as follows. The missing values of 
Yrll are imputed from X ignoring the other components of the missing 
values of Yrzl are imputed from (Yrll, X) ignoring the other components of 
Y, and so on. Each of these imputation models can be independently 
applied using methods developed for univariate Y,. Furthermore, the mod- 
els used can vary in type. For example, the model used to impute Yrll from 
X could be an implicit model such as an MV hot-deck (see Example 4.9, 
the model used to impute Yr2] from X, Yrll could be an explicit linear 
regression model (see Example 5.1), and the model used to impute Yr3] from 
(X, Yrll, YL2]) could be an explicit logistic regression model (see Example 
5.3). 

We first illustrate the method with bivariate I: and implicit and explicit 
models, and then present two general results that justify the procedures we 
have described. 

Example 5.4. Bivariate Y;. and an Implicit Imputation Model 

Figure 5.2 provides an artificial example with nine units and a monotone 
missing data pattern; two imputed values were created for each missing 
value by a hot-deck procedure with ABB draws (see Example 4.4), and 
these are enclosed by parentheses. The procedure used was as follows. First, 
the missing value in YLll was imputed twice using fully observed X and 
ignoring the less observed Y[,]; since X ,  = 2 and X ,  = X7 = x8 = 2, the 
fifth, seventh, and eighth units are possible donors for the ninth unit; two 
independent ABB draws from Y,, = 1, Y71 = 2, and Y81 = 1 happened to 
give 1 and 2 for the two imputed values of Yg1. 

Next, the two missing values in Y[21, Kz for i = 8 and 9 were each 
imputed twice using a method for fully observed X and Yrll. In order to 

x 2  
- - i xi y;:l - - 

1 1 1 1 
2 1 1 0 
3 1 0 0 
4 1 1 1 
5 2 1 2 
6 1 1 2 
7 2 2 1 
8 2 1 ( 2 9  2) 
9 2 (La (291) 

Figure 5.2. Artificial example illustrating hot-deck multiple imputation with a monotone 
pattern of missing data; parentheses enclose rn = 2 imputations. 
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create the first set of imputed q2, treat the first set of imputed y., as real; 
that is, suppose Y91 = 1. Then there are two units that match unit 8 on 
(X, Yfl1)-the fifth and ninth, but only the fifth has Yr2] observed, so that its 
value, Y52 = 2, is imputed for Yg2; similarly, there are two units that match 
the ninth unit’s values X and Yrll-the fifth and the eighth, but only the 
fifth has Yr2] observed so that its value YS2 = 2 is imputed for Y92. In order 
to create the second set of imputed q2, treat the second set of imputed Xl 
as real, that is, suppose Y91 = 2. Then the eighth unit has only unit 5 as a 
matching donor for Yr2] and so once again the imputed value of Y,, is 2. 
The ninth unit now has X9 = 2, Y,, = 2, and so matches unit 7, which 
donates 1 as the imputed value of Y92. 

The imputations could have been performed in a different way. First, 
impute one value for each missing y,, and treating them as real, impute 
one value for each missing K 2 ;  this creates the first set of imputations. 
Second, repeat both steps with new random draws. 

Example 5.5. Bivariate yi with an Explicit Normal Linear 
Regression Model 

A more formal example occurs with r, = (y,, y2) having a bivariate 
normal linear regression on X,, with r,, observed on n1 units and y2 
observed on n 2  I n, units in a monotone pattern. Corresponding to the 
monotone pattern, we specify the joint distribution of (y,, y2) given XI by 
first specifying the conditional distribution of Y,, given (XI, 8) as 

and then the conditional distribution of T-2 given (q, ,  Xi, 8 )  as 

where j?, and fi2 are column vectors of q components, and y ,  u: and u: are 
scalars, with B = (PI, f i2,  y ,  log q, log u2) and Pr(8) a const. 

First, ignore r, and impute the missing values of Y,, using the fully 
observed X and applying results for the normal linear model given in 
Example 5.1, where notationally y is replaced by yi,, is replaced by &, 
u 2  by 011,.  . . , and obs by obs[l]-the set of units with Yrll observed. Thus, 
parameters of the regression of Yrll on X, 8, = (&, log u,), are estimated 
from the units with Yrll observed, and missing Yrll values are imputed by 
first drawing from the posterior distribution of these parameters, and then 
using Xi to predict missing TI. Suppose two sets of missing q, have been 
imputed. 
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Now treat the first set of imputed Y, as real and impute one set of 
missing Y., using the results in Example 5.1 where the regression is that of 
yi2 on (q,, Xi) ,  and its parameters are estimated using the units with q2 
observed. Thus, the notation of Example 5.1 is changed so that is 
replaced by y12, /3 is replaced by ( y ,  P,), u2 by u:, . . . , and obs by obs[2] 
-the set of units with q2 observed. Next, treat the second set of imputed 
q, as real and impute a second set of missing T ,  using the same procedure 
but with new random draws. 

The posterior distribution of 8, = ( y ,  fi2, log 6,) does not involve any 
imputed ql since the monotone pattern implies that all units with T,  
observed have x, observed. Thus, the posterior distribution of 8, treating 
the first set of imputed T,  as real is identical to the posterior distribution of 
e2 treating .he second set of imputed yI, as real. Imputed values of q2 can, 
however, depend on imputed values of TI since units with both T.2 and q, 
missing will use the imputed q, values in calculating the conditional mean 
of the q2 value to be imputed. 

If 8, = (&, log a,) and 8, = ( y ,  /3,, log u2) had been dependent u priori, 
they would be dependent a posteriori, and then the simple procedure just 
described would not have been appropriate. Also, without a monotone 
pattern of missingness, the procedure would not have been clearly defined. 
In general, for the type of procedure we have described to be entirely 
applicable, we need a monotone-distinct structure. 

Monotone-Distinct Structure 

Two conditions must hold for the missingness-modeling structure to be 
monotone-distinct. First, the missing data pattern must be monotone with 
Yrlj at least as observed as Yr2], which is at least as observed as Yr3] , .  .., 
whch is at least as observed as Yip] .  Second, defining p functions of 8 by 
the factorization 

f(TIX1, d )  =f1(T1IX1981)f2(T2IXi3 yil, ' 2 )  

... fP(xpix,, r,, ,..., T . ~ - ~ ,  ep), (5.4.1) 

the a,,. . . , eP must be distinct in the sense that they are u priori indepen- 
dent 

D 

(5.4.2) 

The term distinct was defined in Rubin (1974) to include both (5.4.2) when 
prior distributions are defmed and a factorized parameter space when they 
are not. 
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Some extra notation is useful for stating and proving results precisely. 
First, let obs[j]  = { i ( l i j R j j  = l}, that is, obs[j ]  is the set of units with Yfj, 
observed. Thus, the missingness is monotone if 

so that if i E obs [ j ]  then i E obs[j  - 11 for j = 2,. . . , p. Second, let f j j  be 
the j t h  factor on the right-hand side of (5.4.1): 

so that , 

(5.4.4) 

Generally 
(5.4.3), if i E obs[ j ] ,  then hj is functionally free of any unobserved yl j .  

is a function of K j ,  X,, 8,, and all Y, such that t < j ,  and by 

Result 5.4. The Estimation Task with a Monotone-Distinct Structure 

Suppose the missingness-modeling structure is monotone-distinct. Then the 
estimation task is equivalent to a series of p independent estimation tasks, 
each with univariate T: the j t h  task estimates the conditional distribution 
of Y r j l  given the more observed variables (X, Yfll,. . . , Yf,- 11) using the set 
of units with Yfjl observed, obs[ j ] .  Explicitly, the claim is that 8,, . . . , eP 
are a posteriori independent with 

where (5.4.5) is formally equivalent to (5.2.12), the posterior distribution of 
8,, ,  with univariate y. 

The proof of Result 5.4 is straightforward. First, by Bayes's theorem, and 
the definition of 6 and Pr(t9) in (5.2.14), 

(5.4.6) 

Now 
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where by (5.2.15) and (5.4.4) 

P N  

j-1 i = l  
Pr(YIX,fl) = n nh;. (5.4.8) 

Also 

(5.4.9) 

where nob[j] = {illijRij = 0}, nob[j]  u obs[ j ]  = {1, ..., N} for a l l  j .  
Substituting (5.4.9) and (5.4.8) into (5.4.7) gives 

Rearranging this expression gives 

But by (5.4.3) and the observation following (5.4.4), the first bracketed 
factor in (5.4.10) is functionally free of any unobserved x j .  Hence the 
factor can be brought outside the multiple integral in (5.4.10), and the 
remaining integral is one. Thus 

(5.4.11) 

Up until now we have not appealed to the distinctness of the Bj. Using 
(5.4.2) and (5.4.11) in (5.4.6) yields 

which proves the primary claim of Result 5.4. 
The formal equivalence of (5.4.5) and (5.2.12) follows from noting that 

J ( . l  - )  plays the role of f Y l x ( - l  - )  in (5.2.12), Yrjl plays the role of Y, 
(X, Yrll,. . . , Yrj-ll) plays the role of X when j > 1 (when j = 1, X plays 
the role of X), f l j  plays the role of f l y , , ,  and obs[ j ]  plays the role of obs. 
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Result 5.5. The Imputation Task with a Monotone-Distinct Structure 

Suppose that the missingness-modeling structure is monotone-distinct. Then 
the imputation task is equivalent to a sequence of p independent imputa- 
tion tasks, each with univariate x: the j th  task independently imputes the 
missing values of Yrjl using their conditional distributions given 8 and the 
observed values XI, y.,,. . . , x , p -  ,. Explicitly, the claim is that the posterior 
distribution of Y,,, given 8 is 

where mis[j] = { illij = 1 and R i j  = 0} = the units missing variable YLj j ,  
and (5.4.12) is the product of p conditional distributions, each of which is 
formally equivalent to (5.2.13), the posterior distribution of Ymis given 8,, ,  
with univariate y .  

The proof of Result 5.5 is quite simple. By Bayes's theorem, 

Since we are assuming li = (1,. . . ,1) or (0,. . . , 0 )  and Y,,, = (Ymir, Yobs), 
from (5.4.8) 

Substituting (5.4.11) and (5.4.14) into (5.4.13) gives 

which equals (5.4.12) since inc = obs [ j ]  u rnis[j]. A careful look at (5.4.11), 
(5.4.13), and (5.4.14) reveals that the validity of (5.4.12) does not require the 
independence of the in (5.4.3). 

To establish the formal correspondence between each factor in (5.4.12) 
and (5.2.13), note that for the j t h  factor, h(-l . ) plays the role of f Y l x ( - l  . ) 
in (5.2.13), Y[,] plays the role of Y, (X, Yrll,. . . , Yr,-ll) plays the role of X 
for j > 1 (for j = 1, X plays the role of X), Bj plays the role of and 
rnzs[j] plays the role of mis. The first factor is the conditional distnbution 
of the missing values in Yrl,, l'.l, i E rnis[l], given X and 8,; the j t h  factor 
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for j > 1 is the conditional distribution of the missing values in YrJ,, 
{ Y;,l i E mis[j]3,  given dj and the missing and observed values 111 

x, Y[l] ,  . . ., Y[j-I). 

5.5. 
POPULATION SURVEY 

MISSING SOCIAL SECURITY BENEFITS IN THE CURRENT 

The example we use to illustrate monotone missingness concerns missing 
social security benefits for a number of individuals surveyed during the 
Census Bureau’s March 1973 Current Population Survey (CPS). This survey 
is of particular interest because values for social security benefits are 
available from administrative records for both respondents and nonrespon- 
dents. Although the administrative values are not necessarily the same as 
survey responses, they do provide an objective procedure for studying the 
results of imputation procedures. The outcome is bivariate: ql = 1 indi- 
cates some benefits were received, whereas x1 = 0 indicates that no benefits 
were received; yi2 provides the amount of benefits in dollars, where y.2 = 0 
if yl = 0. Nonresponse is such that some units divulge neither recipiency 
status (XI )  nor amount (Y;..,), others respond about recipiency status but 
not amount, thereby providing ql but not T2, while others fully respond 
by giving an exact amount for benefits and thereby provide both ql and 
x2 .  Thus, the nonresponse pattern on the outcome Y is monotone. The 
model we consider assumes distinctness in the underlying associated para- 
metric structure, and thus we apply the results of Section 5.4, which hold 
with a monotone-distinct structure. 

The CPS-IRS-SSA Exact Match File 

The CPS is a multistage, stratified clustered sample conducted monthly by 
the Census Bureau with over 50,000 households. Although a multipurpose 
survey, the principal goal is to estimate the labor force status of noninstitu- 
tionalized civilians at least 14 years of age. The March CPS interview 
always includes a series of income questions designed to ascertain all 
sources of income during the preceding calendar year. Nonresponse rates 
on these income questions are rather high (i.e., 5-20% depending on the 
particular question). The CPS-SSA-IRS Exact Match File (Aziz, Kilss, and 
Scheuren, 1978) is the March 1973 CPS supplemented with administrative 
records from both the Social Security Administration (SSA) and the Inter- 
nal Revenue Service (IRS). It was created by combining CPS survey data 
with SSA benefit and earnings records and IRS federal tax return records, 
using social security numbers of individuals in the March 1973 CPS to 
match records in the SSA and IRS files. The resultant exact match file 
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combines the probability sampling and nonresponse structure of the CPS 
with the essentially complete data on the income and benefits from the 
administrative records of the IRS and SSA. 

The Reduced Data Base 

The exploratory study of missing social security benefits reported here was 
jointly conducted by T. Herzog, C. Lancaster, F. Scheuren, and D. Rubin, 
and relevant material is reported in more detail in Herzog (1980), Herzog 
and Lancaster (1980), Herzog and Rubin (1983), Lancaster (1979), and 
Oh and Scheuren (1980). In order to have a clean data base from which to 
study missing social security benefits, attention was restricted to the 1058 
males in the March 1973 CPS who were at least 62 years of age as of 
December 1972 and satisfied other selection criteria documented in Herzog 
and Rubin (1983). Of these 1058 individuals, 999 reported CPSOASDI (old 
age-survivor and disability income) benefit amounts, and all remaining 59 
reported neither amount nor recipiency status in the CPS. 

The data analyses used response-nonresponse on the CPS OASDI 
questions and actual values for OASDI from administrative records to 
create a data set with the nonresponse pattern of the CPS, but income data 
from administrative records for all individuals. Hence, the resulting ex- 
ploratory data base had for each of the 1058 individuals: OASDI benefits 
from administrative records (&, x.2), response-nonresponse on the 
CPS OASDI questions ( R, l ,  R i 2 ) ,  as well as demographic variables from 
the CPS (e.g., age, years of school, ethnicity, urban/rural, marital status, 
weeks worked during calendar year), which were considered to be the fully 
observed X variables. Treating the administrative data for nonrespondents 
as missing enabled the accuracy of the imputations for nonrespondents 
based on respondent data to be compared to actual data from nonrespon- 
dents. 

Since the nonresponse rate for SSA benefits in this data base is relatively 
low (59/1058 = 5.6%), we would not expect inferences for mean OASDI 
benefits in the population to be greatly affected by the particular impu- 
tation procedure. Nevertheless, this situation can be used to illustrate 
imputation procedures appropriate with monotone-distinct missingness as 
well as to evaluate the procedures with respect to accuracy of prediction 
and interval estimation. 

The Modeling Task 

Because of the monotone missingness for ( ql, Y2), two independent models 
were specified to create a monotone-distinct missmgness structure. The first 
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model is for q, given predictor variables Xi ,  and the second model is for 
q2 given Xi and XI. 

The model for recipiency status, K,, given Xi is a logistic regression 
model, introduced here in Example 5.3: 

Prob{ K, = llXi, A} = exp( XiA)/[l + exp( XiA)] = logit-’( XiA) 

where A is the regression coefficient parameter specified to have prior 
distribution proportional to a constant. The specific model, described in 
Lancaster (1979), included interactions among the X variables as well as 
indicator variables (e.g., 2 72 years old). 

The model for OASDI amount (q2) given recipiency status (TI) and Xi 
is as follows: if ql = 0, then q2 = 0 with probability 1 for all Xi ,  whereas 
if q, = 1, then 10g(T2) has a normal linear regression on Xi: 

where the prior distribution on (/3, log u) is proportional to a constant. As 
with the logistic regression model, Xi included constructed predictor vari- 
ables (e.g., age squared) in addition to the raw variables. 

The Estimation Task 

By Result 5.4, there are two independent estimation tasks for this example, 
one for each of the independent models. 

The first estimation task is to obtain the posterior distribution relevant to 
the logistic regression of TI on X, using the units with complete data on 
( y1,, Xi) .  There were 999 such units, and the resultant posterior distribution 
of A was approximated by a multivariate normal distribution with mean 
given by the maximum-likelihood estimate (posterior mode) and 
variance-covariance matrix given by minus the inverse of the second 
derivative of the log likelihood (log posterior) at this maximum. This 
procedure is justifiable when sample sizes are large; it is not very satisfac- 
tory when sample sizes are small because the likelihood function for logistic 
regression parameters can be distinctly nonnormal with small samples, as 
discussed in Example 5.3. 

The second estimation task is to obtain the posterior distribution rele- 
vant to the regression of y, on (Y,, X,) using the units with data on 
( X 2 ,  Y;,, X,). There were 999 such units, and the resultant posterior distri- 
bution of (p ,  a*) was the standard one defined by least-squares statistics 
described in Example 5.1. 
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The Imputation Task 

One hundred imputed values of (yI1, y2) were created under this logistic 
regression-linear regression model. The imputation task was thus repeated 
100 times, each time using a new independent draw of parameters from 
their posterior distribution. Each imputation task was implemented follow- 
ing Result 5.5, using a sequence of two independent imputation tasks each 
designed for univariate Y,. 

The first univariate imputation task is for TI. First, draw A from its 
approximating normal posterior distribution defined in the estimation task, 
say A,. For units missing xl, draw independent uniform random numbers 
on (0, l), u,,  i E mis, and calculate XJ,; if u, > exp(X,X,)/[l + 
exp(X,A,)], impute yl = 0, otherwise impute y, = 1. 

The second univariate imputation task is for Y2.  First, draw (8, u 2 )  
from its posterior distribution defined in the estimation task, say (& a:). 
For each unit missing y2, examine TI: If yI, = 0, impute x2 = 0; if 

= 1, draw an independent N(0,l) deviate, say z,, and impute y2 = 

Tables 5.1 and 5.2 summarize the results of the imputation task for all 59 
respondents, first for those 62-71 and then for those over 72 years of age, 
since the administrative rules allowed benefits for those over 72 even if no 
Social Security benefits had been paid. In addition to the “explicit model 
values” obtained under the previously described explicit modeling proce- 
dure, Tables 5.1 and 5.2 also give two values obtained from a multiple- 
imputation version of the Census Bureau’s hot-deck approach, modified to 
impute administrative values rather than CPS survey responses (Herzog and 
Rubin, 1983, provide details). The mean administrative value for the 999 
respondents is 1455. 
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exp(X,P* + z,u*). 

Results Concerning Absolute Accuracies of Prediction 

Table 5.3 summarizes the accuracies of prediction for hot-deck and model- 
based imputation methods across the 59 nonrespondents, accuracy in the 
sense of how well the imputation methods reproduce the actual administra- 
tive values of OASDI benefits. Using either mean absolute deviation or 
root-mean-squared deviation, it is easy to see that estimates based on means 
of multiply-imputed values tend to be more accurate than estimates based 
on one imputed value, and also that the model-based estimates tend to be 
better than the hot-deck estimates. The conclusion is that, in this example, 
the explicit model-baaed posterior mean provided by 100 multiple imputa- 
tions repeatedly drawn from the posterior predictive distribution of the 
missing values is the best estimate with respect to either criterion. 



TABLE 5.1. Multiple imputations of OASDI benefits for nonrespondents 62-71 years of age.' 
~~ 

Hot-Deck Values Explicit Model Values 

Standard 
Nonrespondent Ad&. First Second First Second Percent Meanof Deviation 
Number Value Value Value Value Value Recipiency AU 100 of 130 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

41 

Mean: 

2027 
1047 
2095 
2112 
1947 
2242 
2341 
2631 
2597 

0 

0 
561 

2662 
992 

2204 
0 

1928 
2392 
2217 
2685 

1491 
0 

1056 
2343 

0 
1930 

0 
2169 
2597 
848 

0 
2450 

0 
887 
410 

0 
1016 
1445 
1774 
2505 

1846 

1450 

1845 
1352 
2613 
2703 
2314 
1870 
2161 
1877 

0 
0 

0 
735 

1778 
1546 
1274 

0 
1378 
1718 
201 8 
2085 

1279 
2604 
2058 
2027 
2651 
3103 

0 
2210 
%5 

1718 

241 1 
1438 
1568 
1031 
1641 
2631 

0 
2199 
2090 
1313 

2523 

1627 

2613 
1548 
2239 
2685 

0 
815 

2025 
1451 
2314 

0 

0 
887 
666 
993 

1035 
0 

1010 
2660 
1994 
1920 

1102 
0 

1757 
965 
609 

2161 
0 

2314 
2027 
2315 

2703 
1313 
1597 
1687 
1990 
2597 

0 
2203 
2239 
1438 

221 8 

1466 

0 
0 

1692 
1595 
2142 
2221 

0 
2852 
2531 

0 

884 
1356 
1096 
1450 
1612 
821 

1452 
1319 
2492 
2938 

0 
1535 
1411 
1472 
1782 
1846 

0 
2464 
1851 
1694 

2417 
2074 
1820 
2725 

0 
2110 

0 
2111 
1628 

0 

0 

1401 

2438 
0 

1698 
1753 
1945 
1942 
2711 
2252 
1511 
2697 

917 
1093 
735 

2090 
1537 

0 
2691 

0 
1400 
2680 

1009 
0 

1743 
1468 
1873 
1477 
1007 
2355 
2271 

0 

2592 
1972 
2263 
1572 
1027 
1589 

920 
1521 
2537 
2683 

2883 

1631 

72 
51 
67 
87 
60 
89 
79 
84 
85 
73 

66 
78 
73 
87 
83 
63 
90 
61 
81 
79 

55 
64 
51 
80 
87 
67 
73 
79 
78 
85 

89 
84 
81 
81 
62 
57 
70 
57 
74 
84 

84 

74 

1396 
835 
769 

1688 
1066 
1952 
1711 
1940 
2144 
1737 

702 
1463 
676 

1848 
1562 
416 

1934 
1102 
1869 
2021 

897 
712 
787 

1477 
1437 
893 
824 

1830 
1691 
1917 

2157 
1946 
2125 
1713 
765 
985 
548 

1119 
1634 
1829 

1969 

1417 

961 
867 
604 
816 
930 
860 

1025 
1007 
1066 
1210 

547 
899 
470 
913 
844 
347 
811 
951 

1057 
1185 

875 
578 
815 
861 
686 
708 
559 

1065 
1014 
945 

941 
1034 
1203 
951 
658 
924 
398 

1031 
1091 
936 

1047 

- 

"Sowce: Table 9 in Henog and Rubin (1983). 
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TABLE 5.2. Multiple imputmtions of OASDI benefits for nonrespondents over 72 years of age.“ 

Hot-Deck Values Explicit Model Values 

Standard 
Nonrespondent Admin. First Second First Second Percent Meanof Deviation 
Number Value Value Value Value Value Recipiency All 100 of 100 

1 1489 2085 2257 1401 1181 99 1555 421 
2 2103 609 645 1650 1417 95 1720 596 
3 2027 1968 2142 975 1020 100 1348 338 
4 993 2059 2375 1858 2223 96 1596 517 
5 0 2161 2025 3360 2656 81 2497 1445 
6 2199 2296 2432 0 1270 68 852 637 
7 2487 1968 1839 2276 0 77 1797 1120 
8 2375 2271 2363 1886 0 98 1949 561 
9 1419 609 666 2782 3343 72 1773 1258 

10 1854 0 2085 1693 2001 100 1939 469 

11 2161 1603 1864 1498 2772 98 1873 567 
12 2957 605 799 2256 0 73 1725 1170 
13 1187 2774 2348 1102 1779 100 1591 373 
14 1835 791 797 1860 1586 82 1812 1001 
15 887 1344 1609 2091 1317 95 1546 544 
16 2375 1864 1603 2804 2392 99 1950 528 
17 2384 0 2354 1689 1699 84 1756 920 
18 2239 887 735 1165 1074 95 1261 429 

Mean: 1832 1439 1719 1797 1541 90 1697 

“Source: Table 9 in Herzog and Rubin (1983). 

TABLE 53. Accuracies of imputation methods with respect to mean absolute 
deviation (MAD) and root mean squared deviation (RMS).” 

Hot-Deck Model-Based 

Nonrespondent First Mean of First First Mean of First Mean of all 
Group Value Two Values Value Two Values 100 Values 

62-71years MAD 826 786 908 753 716 
R M S  1133 1001 1175 967 934 

12 + years MAD 1056 937 840 940 654 
RMS 1296 1122 1168 1212 868 

‘Source: Table 10 in H e m g  and Rubin (1983). 
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Inferences for the Average OASDI Benefits for the Nonrespondents in 
the Sample 

In order to judge whether the discrepancies between imputed and actual 
OASDI benefits indicate failures of the imputation models, we compare the 
actual average OASDI benefits for the 59 nonrespondents in the sample 
based on administrative records with the inference for this average implied 
by each imputation method. If the values for the nonrespondents were 
known, their average would be known. Thus, the complete-data inference 
for this sample average has zero variance, and as a result, the single-imputa- 
tion inferences estimate this average by the average of the imputed values 
with zero standard error, as given in Table 5.4. Inferences with m 2 2 
imputations are obtained by treating the multiple imputations under each 
method as repeated imputations under one model and applying the 
repeated-imputation procedure for interval estimation outlined in Section 
3.1 and derived in Section 3.3. Table 5.4 summarizes results. Each repeated- 
imputation estimate is the average of the m complete-data averages 
obtained under that method. The standard error associated with each 
repeated-imputation estimate is the square root of (1 + m-') times the 
sample variance of the m complete-data averages across the multiple 
imputations, and the degrees of freedom for the associated t reference 
distribution is (rn - 1)-recall that the within-variance component is zero 
because the estimand is the average OASDI benefits for the nonrespondents 
in the sample. 

Clearly, the single-imputation methods imply unrealistic posterior distri- 
butions for the nonrespondents. All three multiple-imputation procedures 
considered imply posterior distributions that comfortably cover the true 
average OASDI benefits for the nonrespondents in the sample. Conse- 
quently, there is no real evidence in Table 5.4 to suggest that any of the 

TABLE 5.4. Comparison of estimates (standard errors) for mean OASDI benefits 
implied by imputation methods for nonrespondent groups in the sample. 

Hot-Deck Model-Based 

Nonresponden t First Two First Two 
Group: True mean Value Values Value Values 100Values 

~~ ~ 

62-71 years: 1450 1627 1547 1401 1516 1417 
(0) (139) (0) (198) (201) 

72 + years: 1832 1439 1579 1797 1669 1697 
(0) (242) (0) (222) (196) 
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three multiple-imputation methods is deficient, and thus, in particular, no 
evidence to suggest a nonignorable response mechanism since only ignor- 
able models have been considered. Further checks should be made, how- 
ever, before definitely accepting this conclusion. For example, the analysis 
presented in Table 5.4 could be done for other subgroups defined by X 
variables besides 62-71 and 72+ years old. 

Results on Inferences for Population Quantities 

Now consider inferences for population quantities, such as the mean 
OASDI benefits for aIl nonrespondents in the population 62-71 and 72+ 
years old, and al l  individuals 62 + years old. For simplicity, assume that the 
standard interval would be appropriate if there were observed values from 
nonrespondents, and again apply the repeated-imputation procedure out- 
lined in Section 3.1, where the estimate is the average of the m complete-data 
estimates, and the squared standard error associated with the repeated- 
imputation estimate is the sum of two components: the average within 
imputation variance and (1 + m-') times the between-imputation variance 
(which is zero for single-imputation methods). The degrees of freedom for 
the t reference distribution when m > 1 are (m - 1)(1 + r;')' where rm is 
the relative increase in conditional variance due to nonresponse, given by 
(1 + m-') times the ratio of between to within variance. 

Table 5.5 presents results derived from Herzog and Rubin (1983). 
Relative to the intervals based on 100 model-based imputations, the other 
methods tend to give standard errors that are too small. The effect is 

TABLE 5.5. Comparison of estimates (standard errors) for mean OASDI benefits 
implied by imputation methods for groups in the population. 

Hot-Deck Model-Based 

First Two First Two 
Population Groupu Value Values Value Values 100Values 

All nonrespondents 1627 1547 1401 1516 141 7 
62-71 (134) (194) (146) (242) (257) 

72 + (200) (302) (181) (301) (281) 

All individuals 1548 1547 1545 1547 1544 
62 + (27.1) (27.1) (27.1) (27.4) (27.5) 

All nonrespondents 1439 1579 1797 1669 1697 

"As restricted by selection criteria. 
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relatively serious when using single-imputation methods to draw inferences 
about the mean OASDI benefits for nonrespondents in the population, in 
one case underestimating standard errors by nearly 50%. 

This result is not surprising since so much information is missing for the 
nonrespondent groups. Using equation (3.1.10) and the standard errors 
based on 100 model-based imputations given in Table 5.4 and 5.5 to 
estimate the between and total components gives 62% missing information 
for the estimand “population mean for nonrespondents 62-71,” and 49% 
missing information for the estimand “population mean for nonrespon- 
dents 72+ .” 

Although estimands for nonrespondent groups are diagnostically inter- 
esting, usually the focus is on estimands defined solely by values of outcome 
variables Y and covariates X. In fact, the theoretical development in earlier 
chapters was for an estimand Q = Q ( X ,  Y), which did not involve R. The 
estimand “mean OASDI benefits for all individuals 62+ ’’ is not greatly 
affected by nonresponse because nonrespondents comprise less than 6% of 
the population of individuals 62+ years old. Using the standard errors in 
Table 5.5 for “first value” and “100 values” to estimate the within and total 
components gives 3% as the fraction of information missing due to nonre- 
sponse for the mean of all individuals 62+ . This value is consistent with 
the intuitive “missing information for all individuals = fraction of individ- 
uals who are nonrespondents (6%) X fraction of information missing for 
nonrespondents (50%).” 

5.6. BEYOND MONOTONE MISSINGNESS 

Unfortunately, in many practical situations the pattern of missing data 
created by nonresponse is not monotone, and thus the results in Section 5.4 
for a monotone-distinct missingness-modeling structure cannot be directly 
applied. Nevertheless, special cases exist where simple extensions of the 
techniques for univariate q, which have already been discussed, can be 
directly applied. In particular, these cases are those in which the likelihood 
factors into pieces with distinct parameters such as those described by 
Rubin (1974). More generally, however, methods explicitly designed to 
handle multivariate r, must be employed. 

Two Outcomes Never Jointly Observed-Statistical Matching of Files 

File matching missingness is one of those special nonmonotone patterns for 
which univariate techniques can be applied. Suppose n values of = 
( ql, yi2) were included in the sample but due to ignorable nonresponse, rl 
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is observed for only n 1  units, x, is observed for only n, units, where 
nl + n 2  = n, and T, and x 2  are never jointly observed. The likelihood in 
t h s  case factors into two pieces: Y,, given XI for units with x, observed 
and Y,, given XI for units with x 2  observed. At first glance, this situation 
may look rather strange: Because x, and x 2  are never jointly observed, 
there are no data available to directly estimate the parameters of condi- 
tional association between x, and Y2 given X,. Nevertheless, this structure 
is the one that exists in the statistical matching of files (Okner, 1974; 
Rodgers, 1984; Rubin, 1983e, 1986; Sims, 1972; Woodbury, 1983). One file 
has Tl and XI recorded, another file has q2 and X, recorded, and the 
desire is to have one file with Y,,, x 2 ,  and XI observed for all units. In order 
to do any imputation, some assumption must be made about the condi- 
tional association between Y,, and x 2  given X,. Standard methods im- 
plicitly or explicitly assume conditional independence. 

Within the multiple-imputation framework it is not necessary to assume 
conditional independence or any other specific choice for the parameters of 
conditional association, because each set of imputations can be made for a 
difference choice of parameters of conditional association. If the values of 
these parameters across the imputations are considered to have been drawn 
from one prior distribution of the parameters, then the multiple imputa- 
tions are repeated imputations under one model for nonresponse. If the 
values for these parameters are simply different possibilities, then the 
multiple imputations reveal sensitivity to different models for nonresponse. 
A simple normal example can be used to illustrate the essential ideas. 

Example 5.6. Two Normal Outcomes Never Jointly Observed 

Assume the file matching structure just described where for simplicity there 
are no X variables and (xl, x,) are modeled as i.i.d. normal: 

where 

Pr(p1, P,,logo-,,log~,lP) a const, 

and Pr(p) is to be specified. Results in Rubin (1974) show that from the n, 
observations of T I ,  j = 1,2, we obtain the usual posterior distribution for 
p, and a;: pJ given u/z is N({ , ,  u,'/n,) where ji, = Cobs[,J,/n, ,  and u/z is 
&,srIj(Y,J - ji,), times an inverted x2 random variable on n, - 1 degrees 
of freedom. The posterior distribution of p equals its prior distribution. 
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Suppose we have drawn values of 8 = ( p , ,  p 2 ,  log u,, log u2, p) from its 
posterior distribution; the procedure is obvious and familiar except that p 
is drawn from its prior, which may put all probability at one value (e.g., 0 
or 0.5 or l), or may specify, for example, that log[(l + p)/(l - p)] - 
N(0,  K )  for some fixed K. In any case, having drawn values of 8, say 8,, 
the n - n1 = n 2  missing q, are drawn from their regression on observed 
y2: 

where the zi are i.i.d. standard normal deviates. Similarly, the n - n 2  = n, 
missing q2 are drawn from their regression on observed TI: 

where zi are i.i.d. standard normal deviates. A new draw of 8 generates a 
new imputed value of Ymis. 

In many such cases, it may be of interest to investigate sensitivity to p 
rather than assume one prior distribution for it. If so, then several draws of 
( pl, p2 ,  log c1, log u2) at each of several values of p should be made, for 
example, two draws with p = 0, two draws with p = 0.1 and two draws 
with p = 0.8. 

The extension of the above technique to cases with X variables is 
conceptually immediate: pj  is replaced by XiPj: (log q, log u2, p )  are inter- 
preted as partial (or conditional) parameters gwen Xi, and the missing ql 
are imputed from their regression on observed Xi and Y;:2, while the missing 
q2 are imputed from their regression on observed Xi and Y,,. Similarly, 
extensions to higher dimensional are straightforward (e.g., see Problems 
34-37). Rubin (1986) illustrates the use of an implicit model to create 
multiple imputations in this context. 

Problems Arising with Nonmonotone Patterns 

Nonmonotone missingness complicates the modeling task, the estimation 
task, and the imputation task. The problems can be illustrated with bi- 
variate y. where some units have ql observed, some units have q2 observed, 
and some units have both TI and q2 observed. Suppose the modeling 
task tentatively posits that ql given Xi has a normal linear regression on 
univariate X,, and that q2 given ql and Xi has a normal linear regression 
on Xi, ql, Y,:, and Xiql, as suggested by theory or some preliminary 
regression analysis using the units with both x1 and x 2  observed. 
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First note that the modeling task is more difficult because standard 
diagnostics are not immediately appropriate. Even when nonresponse is 
ignorable, diagnostic information for each regression involves all units in a 
not entirely transparent manner, whereas with monotone missingness, each 
univariate factor provides its own relevant diagnostic information. That is, 
if Yr!] were at least as observed as Yr2], the units with YrZl observed would 
prowde the diagnostic information about the regression of YrZl on (X, Yrll) 
in the standard complete-data manner, and the units with Yrll observed 
would provide the diagnostic information about the regression of Yrll on X, 
also in the standard complete-data manner. 

The estimation task is more difficult even when the parameters of the 
two regressions are a priori independent because it does not reduce to two 
independent complete-data estimation tasks. Even large sample likelihood 
methods using the EM algorithm (Dempster, Laird, and Rubin, 1977) 
require much work to implement in the case described with nonlinear terms 
involving r, because of difficulties in the E step for the units with yI1 
missing; that is, the conditional distribution of yI, given X, and q,  for 
units with r, missing must be found, and this is not easy because of the 
dependence of the x 2  regression on nonlinear terms in TI. 

The imputation task is more difficult even with known values for the 
parameter, also because of the need to find conditional distributions not 
explicitly formulated in the modeling task, such as the distribution of Y,, 
given X, and y12 just discussed in the context of the E step of EM. 

Although these problems are stated in terms of explicit models, analo- 
gous issues arise when using implicit models for imputation with nonmono- 
tone patterns. More work is needed to develop good tools for the case of 
nonmonotone missingness. Currently, there exist five general solutions: 
(1) discard data to create a monotone pattern, (2) assume conditional 
independence among blocks of variables to create independent monotone 
patterns, (3) use an explicit, analytically tractable but possibly not fully 
appropriate model and related approximations, (4) iteratively apply meth- 
ods for monotone patterns with explicit models, and ( 5 )  use the SIR 
(sampling/importance resampling) algorithm under appropriate explicit 
models. 

Discarding Data to Obtain a Monotone Pattern 

Because of the problems inherent when faced with nonmonotone patterns 
and the relative simplicity when patterns are monotone, an obvious proce- 
dure is to discard Y values that destroy monotone missingness; this is 
especially attractive only a few Y;, values need to be discarded. As a 
specific example, Table 5.6, abstracted from Marini, Olsen, and Rubin 
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TABLE 5.6. Example from Marini, Olsen and Rubin (1980) illustrating how to obtain 
a monotone pattern of missing data by discarding data; 1 = observed, 0 = missing. 

Y Variables 

Number Percentage 
Pattern X Block1 Block2 Block3 of Cases of Cases 

A 1 1 1 1 1594 36.6 
B 1 1" 1" 0 648 14.9 
C 1 1 0 I* 722 16.6 
D 1 1" 0 0 469 10.8 
E 1 0 0 1' 499 11.5 
F 1 0 0 0 420 9.6 

4352 100.0 

"Observations falling outside monotone pattern 2 ( X  more observed than block 3; block 3 more 
observed than block 1; block 1 more observed than block 2). 
'Observations falling outside monotone pattern 1 ( X  more observed than block 1; block 1 more 
observed than block 2; block 2 more observed than block 3). 

(1980), displays a pattern of missingness in three blocks of Y variables, 
where the footnotes a and b refer to choices of which values to discard in 
order to create a monotone pattern. Of course, an important practical issue 
is which values to discard with minimum loss of information, and this 
depends not only on the number of data points but also the interdepen- 
dence among the variables. For instance, in Table 5.6, if the last block of Y 
variables were perfectly predictable from X, discarding according to foot- 
note b would result in no loss of information. This is a virtually unstudied 
problem, although posed in Rubin (1974). Similarly, if only one missing Y j  
destroys a monotone pattern, an obvious approach is to fill it in using some 
naive method and proceed using careful models assuming that value were 
known. Strategies for doing this well are again virtually unstudied. 

Assuming Conditional Independence Among Blocks of Variables to Create 
Independent Monotone Patterns 

A second general approach is to take advantage of presumed structure in 
the relationships among the variables to create several independent mono-. 
tone patterns. The idea is readily explained by a simple example. Suppose 
in Table 5.6 that the 499 observations in block 3 pattern E were missing 
instead of observed. Further suppose that for the purposes of imputation, 
we are willing to accept the modeling assumption that block 2 and block 3 
variables are conditionally independent given block 1 variables and X. 
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Then for purposes of imputation, we have returned to the monotone case: 
missing block 1 values are imputed from the modeling of block 1 variables 
given X, missing block 2 values are imputed from the modeling of block 2 
variables given block 1 variables and X, and missing block 3 values are 
imputed from the modeling of block 3 variables given block 1 variables and 
X. In some cases, such assumptions of conditional independence may be 
perfectly reasonable, as when block 1 variables and X are extensive 
background measurements, and block 2 and block 3 consist of variables 
that prior information suggests are basically unrelated, especially given X. 
Of course, analyses of multiply-imputed data sets created under this inde- 
pendence assumption will tend to confirm this independence even if it is 
not an accurate reflection of reality. Consequently, a multiply-imputed data 
set should include indications of any such assumptions used to create the 
imputations. 

Using Computationally Convenient Explicit Models 

A third general approach when faced with nonmonotone missingness is to 
forego finely tuned univariate models and instead use an algorithmically 
convenient explicit model for multivariate q,  create imputations under this 
model, and then try to fix up any resulting inconsistencies by editing 
checks. Perhaps the most obvious convenient model is the usual multi- 
variate normal linear model. For this model, the EM algorithm (Orchard 
and Woodbury, 1972; Beale and Little, 1975; Dempster, Laird, and Rubin, 
1977; Little and Rubin, 1987) can be used to find maximum-likelihood 
estimates, and those estimates combined with the second derivative matrix 
of the log likelihood at the maximum can be used to define an approximate 
normal posterior distribution for the parameters, thereby defining the 
estimation task. With drawn values of the parameters, the simple sweep 
operator (Beaton, 1964; Dempster, 1969; Little and Rubin, 1987) can be 
used to find all required normal distributions from which imputations are 
easily made. 

With dscrete multivariate q, which define a contingency table, again the 
EM algorithm can be used to find maximum-likelihood estimates (Hartley, 
1958; Dempster, Laird, and Rubin, 1977; Little and Rubin, 1987), and 
large sample normal approximations based on this estimate and the second 
derivative of the log likelihood at the maximum can be used to specify the 
estimation task. The imputation task consists of finding conditional prob- 
abilities in various cells of the contingency table given observed margins. 

Recent work by Little and Schluchter (1985) (also see Little and Rubin, 
1987) extends the EM algorithm to cases where multivariate Y;: involves 
both normal and discrete variables. Developing realistic and algorithmically 
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convenient models in the presence of nonmonotone missing data is im- 
portant. Nevertheless, these methods tend to suffer from the fact that (a) 
the models are not highly tuned to specific data sets, as can be relatively 
easily done with models in the case of monotone missingness, and (b) the 
large-sample approximations to the posterior distributions of parameters 
can be inadequate in practice. 

Iteratively Using Methods for Monotone Patterns 

Some recent work suggests the possibility of applying methods for mono- 
tone patterns iteratively in order to handle cases with nonmonotone 
patterns. In a sense, these methods can be viewed as extensions and 
combinations of the ideas of the EM algorithm and multiple imputation: at 
the E step, instead of finding the conditional expectation of the complete- 
data log posterior, multiply impute from the current estimate of the 
posterior distribution; at the M step, instead of finding the value of 8 that 
maximizes the complete-data likelihood, represent the current posterior 
distribution as a mixture of complete-data posterior distributions using the 
multiple imputations. The ideas were independently proposed with different 
emphases and implementations by Tanner and Wong (1987), as a technique 
to simulate the posterior distribution of 8, and Li (1985), as a method for 
drawing imputations. The methods are easily implemented in many particu- 
lar cases but are still not completely general. Nevertheless, the techniques 
and their extensions seem to be very promising and worthy of further 
development. 

The Sampling / Importance Resampling Algorithm 

Within the context of multiply-imputed public-use data bases, both the 
fraction of values missing and the number of imputations per missing value 
must be modest for the size of the auxiliary matrix of imputations to be 
reasonable. An algorithm for creating draws from the posterior distribution 
of Ymis that is designed to operate in this restricted environment of modest 
m and modest fractions of missing information is the sampling/importance 
resampling (SIR) algorithm (Rubin, 1987). This algorithm is noniterative 
and can be applied even when the missingness-modeling structure is such 
that the imputation task is intractable, both attractive features with public- 
use data bases, which are often quite large with complex patterns of missing 
values. 

The SIR algorithm first requires a good approximation to the joint 
posterior distribution of (Ymis, e), say 
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whch is positive for all possible ( Y,;,, 8 )  at the observed (X, Yob,), and, 
second, needs to be able to calculate the importance ratios 

r(yrnisr 8 )  a Pr(YIX, ~)Pr(i3)/Wyrnj,,  ~ I X ,  

for all possible (Ymj,, e )  at the observed (X, Yobs). When the imputation 
task is tractable, 

Some Details of SIR 

SIR has three basic steps: 

1. Draw Mvalues of (Y,,,, 0 )  from the approximation Pr( Ymjs, 01 X, Yohs), 

2. Calculate the importance ratios r(Ym,,, 0 )  for each drawn value of 

3. Draw m values of Y,,, with probability proportional to rl ,  ..., r, 
from the M values drawn in step 1. Methods for such drawing appear 
in the survey literature on pps sampling, for example, Cochran (1977, 
Chapter 9). 

where M is large relative to m. 

(Y,,,, 0)’ say r1, * .  ., r,. 

If the imputation task is tractable, only values of i3 need be drawn in 
step 1 and used to calculate the importance ratios in step 2. In step 3, then 
m values of 8 are drawn and the corresponding m values of Y,,, are drawn 
from the tractable Pr( YmIsIX, Yobs, 0) .  

The rationale for the SIR algorithm is based on the fact that as 
M / m  -+ co, the m values of (Ymj,,i3) drawn in step 3 are drawn with 
probabilities given by 

which equals Pr( Ymjs, elX, Yobs) after straightforward algebraic manipu- 
lation. The choice of an adequate ratio M/m for practice depends on the 
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fraction of missing information, y. Smaller y implies satisfactory inferences 
from smaller M / m  for two reasons: first, h(Ymi,, 8lX,  Yobs) should be a 
more accurate approximation to Pr(Ymjs, e lX ,  Yobs), and second, final in- 
ferences from a multiply-imputed data set will be less sensitive to the 
imputed values. In common practice, M / m  = 20 may be more than ade- 
quate, especially considering that with modest rn, accurately approximating 
the tails of Pr(Y,,IX, Yobs) is of limited importance. Also, in many situa- 
tions it may make sense to choose M / m  adaptively. For example, initially 
set M / m  = 2; in step 2 calculate the variance of log(rl), . . . , log(r,) to 
measure the adequacy of the approximate posterior distribution; and then 
select the actual ratio M / m  as a function of this variance. The development 
of adaptive SIR algorithms seems to warrant further study. 

Example 5.7. An Illustrative Application of SIR 

The following artificial example is taken from Rubin (1987) and illustrates 
the application of SIR to a problem that cannot be directly addressed by 
EM, the Li (1985), or the Tanner and Wong (1987) algorithms. Suppose 
with bivariate Y and no X the proposed model has Y, i.i.d. with 

where 

and 

Pr( 8) a const. (5.6.4) 

In the sample of n units, n1 have only Tl observed, n 2  have only Y,, 
observed, and nl, have both Y;, and Y,, observed, where n12 > n1 + n 2  > 
n 2  > n,. The missingness is not monotone, 

The only specific issue in implementing the SIR algorithm here is 
choosing good initial approximations for Pr( 8 IX, Yob,) and 
Pr( Y,,,lX, Yobs, 8). The numerators of the importance ratios r( Y,,,, 8) are 
easily evaluated since the density Pr(YIX, O)Pr(8) is simply the product 
over the n units of the two normal densities (5.6.1) and (5.6.2). 
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Regarding Pr( 81 X ,  Yobs), it can be easily approximated by independent 
normal densities: 

log ul(X, yobs - N(logs1, [2(n1 + n12 - l)] -')? (5.6-5) 

CLlIX, Yobs - " J , ,  s:/(nl + n12))9 (5.6.6) 

1og71X,yobs- N(log7^,[2(n12- 3)]-'), (5.6.7) 

and 

(a? b,  y ) l X ,  Yobs - N ( ( t ,  b, ?), +,c), (5.6.8) 

where jjl and sf are the mean and variance of the (nl + n12) observations 
of yl, and ( 6 , ) ,  9, +,, C) are the standard least-squares summaries ob- 
tained by regressing y2 on (1, xl, x:) using the nI2 observations of 
(x l ,  q2). Similarly, Pr(Y,,,IX, Yobs) can be easily approximated by n1 + n 2  
independent normal densities: 

and 

where (a ,  b, c,  s:) are the standard least-squares summaries obtained by 
regressing x, on (1, x,, T:) using the n,, observation of (Y;.,,. x,). Thus, 
Pr(Ym,s, elx, Yobs) is the product of the (n, + n 2  + 3) univanate normal 
densities specified by (5.6.5), (5.6.6), (5.6.7), (5.6.9), and (5.6.10), and the 
trivariate normal density specified by (5.6.8); it is therefore easy to draw 
from at step 1, and easy to evaluate as the denominator of the importance 
ratios in step 2. Better approximations are available, especially for small 
n12, but it is not clear whether it is worth the effort to develop them in the 
context of SIR relative to increasing the ratio M / m .  

PROBLEMS 

1. Describe how each of the examples of surveys suffering from nonre- 
sponse described in Chapter 1 are more complicated than the case of 
univariate y, no X;, simple random sampling, and ignorable nonre- 
sponse. 
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2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

PROCEDURES WITH IGNORABLE NONRESPONSE 

Why might it be reasonable to assume ignorable nonresponse when 
creating one set of multiple imputations even when the reasons for 
nonresponse are not fully understood? 
If ’Y,. is univariate and there are many respondents at each distinct 
value of X,, which multiple imputation methods would you recom- 
mend under various conditions (e.g., I: continuous versus dichoto- 
mous)? What are the reasons for your recommendations? Hint: check 
the examples in Chapter 4. 
Describe the changes in the Census Bureau’s hot-deck procedures and 
comment on the LiIlard, Smith, and Welch (1986) criticisms of these 
procedures, also see Rubin (1980d, 1983d). 
Describe Statistics Canada’s imputation methods and how they could 
be modified to create multiple imputations. Hint: check the NAS 
volumes on incomplete data. 
Briefly review the observational study literature on matching methods, 
and suggest which methods might be most relevant to survey practice. 
How could “matching on predicted x” be defined with multivariate 
I:, for example, using canonical variates? 
Describe advantages and disadvantages of imputing by matching on 
the best prediction of missing values. 
Consider other ways of describing the tasks needed to create imputed 
values. What are advantages and disadvantages of the model- 
ing-estimation-imputation description? 
Classify the methods for imputation discussed in Madow, Nisselson, 
and Olkin (1983). 
What is the meaning and source of the expressions “cold-deck imputa- 
tion,” and “hot-deck imputation,” “donor,” and LLd~nee’7? Hint: 
check the NAS volumes. 
What is the logic underlying a sequential rather than a random draw 
hot-deck, and is there evidence of systematic differences in practice 
(e.g., East to West versus West to East)? Hint: check the NAS 
volumes. 
Defme weighting cell estimators and adjustment cells, and describe the 
reasons for their names. Hint: Check Little and Rubin (1987). 
Describe kernel-density estimation imputation methods, such as pro- 
posed by Sedransk and Titterington (1984). 
Review literature on nonresponse published in recent issues of the 
Proceedings of the American Statistical Association Section on Survey 
Research Methods. 
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16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

Compare and contrast two general methods for reducing multivariate 
XI to univariate X I :  by creating regression scores (i.e., predicted q), 
and by creating propensity scores (i.e., predicted probability of being a 
nonresponden t) . 
Describe a standard analysis in which the objective is to predict Y 
from X yet 8,,, and 8, are not a priori independent. Hint: Suppose 
Y, is dichotomous and XI is continuous. Comment on the “back- 
wards” modeling, referring perhaps to Efron (1975) or Rubin (1984). 
Is Result 5.3 true if 8,,, and 8, are not apriori independent? Provide 
an example to illustrate essential ideas. 

Describe the logic behind the modifications offered in Example 5.2 
and defend the standardization employed. Compare analytically or by 
simulation the various methods that have been defined in simple but 
revealing cases. Is Santos (1981) relevant to this case? 
Compare the balanced repeated replication (BRR) method of handling 
nonresponse, in which each half sample is imputed independently, 
with multiple imputation. For example, how many effective degrees of 
freedom does each method yield for standard errors? What is the 
effect of deviations from modeling assumptions? Assuming BRR would 
be used with complete data, how would it be used with multiple 
imputation, and are there then any advantages to multiple imputation 
over single imputation? 
Describe the estimation and imputation tasks when r, is modeled as 
approximately proportional to X ,  as in Example 2.4. Describe the 
extension needed when log(Y;) is modeled as approximately propor- 
tional to XI. 
Describe an approach to modeling symmetric long-tailed given X, 
and the associated estimation and imputation tasks. Hint: suppose 
given XI is a linearly translated t distribution on g (known) degrees of 
freedom, and examine Dempster, Laird, and Rubin (1980). 
Suppose XI indicates K strata, where Y, is normal within each 
stratum, and the number of observations of r; in each stratum is 
modest. Posit an exchangeable normal prior distribution for the stra- 
tum parameters ((p,, u,’), k = 1,. . . , K))  and describe the estimation 
and imputation tasks. Defend your choice of distribution for 7 2  = the 
variance of the pk .  Hint: see Dempster, Rubin, and Tsutakawa (1981), 
Rubin (1981b), and Morris (1983a). 

Relate the model in Problem 23 to the literature on James-Stein (1961) 
estimation, empirical-Bayes estimation (e.g., Efron and Moms, 1975), 
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and Bayesian hyperparameter estimation (e.g., Lindley and Smith, 
1972). 
Comment on the two versions of smoothing illustrated by the regres- 
sion and hyperparameter approaches; can they be described to appear 
nearly identical in a formal sense, and why or why not? 
Suppose Y, is multivariate but only one component can ever be 
missing. Is the pattern monotone? Describe the tasks of a multiple- 
imputation procedure in this case. 
Suppose Y, is multivariate and either fully observed or fully missing 
[i.e., R, = (1,. . . ,1) or (0,. . . ,O)]. Is this a monotone pattern? Assum- 
ing Y, given X, and B is multivariate normal, describe two multiple- 
imputation procedures, the first based on repeated univariate 
procedures, the second based on a multivariate procedure, which 
imputes the entire missing vector at once. Describe advantages and 
disadvantages of the approaches. 
Describe why Result 5.4 needs the independence in (5.4.2) and Result 
5.5 does not. 
Describe the estimation and imputation tasks when bivariate Y, has a 
monotone-independent structure with positive Y,, such that & given 
XI is approximately normal, and dichotomous Y,, given Y,, and X, is a 
logistic regression. Hint: Watch out for negative Y,,; see Rubin 
(1983b). 
Are the summaries involving posterior means and variances in Section 
5.5 appropriate for dichotomous x, and lognormal x J  What sort of 
summaries might be more informative? Also, show how to calculate 
the fractions of missing information given there. 
Criticize the study described in Section 5.5 and design an improved 
version. 
Suppose (Y,, X,) is bivariate normal and the estimands are the regres- 
sion parameters of X, on Y,, (a, 8, log a), where x is more likely to be 
missing for larger XI. Design a simulation study comparing various 
inferential methods such as (i) discard missing Units, (ii) best value 
imputation, (iii) hot-deck imputation, and so on. Vary the correlation 
between and XI, but not the other parameters (why not?). Vary the 
sample size and response rate. Compare multiple and simple imputa- 
tion procedures with respect to accuracy, efficiency, and validity of 
interval estimation. 
In the setup of Problem 32, why aren’t “errors-of-measurement in 
predictor variables” a problem when estimating B using multiple 
imputation? Assume large samples and numbers of imputations to 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 
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34. 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

43. 

44. 

show that in the case of Problem 32, using repeated imputations under 
an explicit normal model yields valid inferences. 

Using the sweep operator, describe how to impute Y,,, in Example 5.6 
extended to include multivariate X,. Hint: see Rubin and Thayer 
(1 978). 

Describe how to apply techniques for univariate to the following 
case with file-matching missingness: (y,, . . . , X k )  is fully ob- 
served for n, units, (y ,  . . , x p )  is fully observed for n 2  units 
where n = n1 + n 2  so that the two sets of Y variables are never 
jointly observed. Be explicit for the multivariate normal model. 

Extend the results of Problem 35 to the case with the missingness in 
(TI, .  .., y k )  monotone for the n1 units and the missingness in 
( x, + . . . , y p )  monotone for the n units. 
Extend the results of Problem 36 to more than two blocks of never 
jointly observed variables. 

Summarize why nonmonotone patterns of missingness create special 
problems. 

Describe advantages and disadvantages of (a) discarding data to 
create a monotone pattern versus (b) using an analytically tractable 
but not fully appropriate model. 

Outline an approach to nonmonotone missingness that produces im- 
puted values only for a small subset of the missing values by using a 
convenient model, and proceeds by capitalizing on the resulting mono- 
tone pattern created by having observed values for this subset. 

Consider procedures for deciding how to lose the minimum amount of 
information when creating a monotone missingness by discarding 
data, for example, under a normal model. 

Describe advantages and disadvantages of the following method for 
imputing data with a nonmonotone pattern. Fit a multivariate normal 
by EM; use the estimated parameters to measure the information lost 
by discarding data; discard data to create monotone missingness with 
minimal loss of information; assume a monotone-independent struc- 
ture and create multiple imputations using a sequence of univariate 
(possibly nonnormal) modeling, estimation, and imputation tasks. 

Give an example showing that not discarding data with the Census 
Bureau’s hot-deck can create inconsistencies with variables not used to 
define the matching. 

Outline in some detail the estimation and imputation tasks with a 
general pattern of missingness using EM with the p-variate normal. 
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45. 

46. 

47. 

48. 

49. 

50. 

51. 
52. 
53. 

54. 

55. 

Comment on similarities between the E step of EM and the imputa- 
tion task. 
Repeat Problem 44 for the p-way contingency table model and the 
combined normal linear/contingency table model. 
Comment on the following discussion: 

There are two kinds of errors when using a simple hot-deck multiple- 
imputation procedure: 

1. Between-imputation variability is underestimated because the 

2. Within-imputation variability is overestimated because matches are 

In practice, these two errors wil l  tend to trade off evenly, yielding 
properly estimated variability. Moreover, the m imputations for each 
missing value are no longer ordered, and so many more completed 
data sets can be created, thereby increasing efficiency of estimation 
and dramatically increasing the degrees of freedom available to esti- 
mate the between-imputation component of variance. 

parameters do not vary across imputations. 

never exact with respect to observed variables. 

Outline a study to address any unresolved issues arising from Prob- 
lem 46. 
Relate the iterative methods proposed in Li (1985) and Tanner and 
Wong (1987). 
Describe cases where the methods in Problem 48 work easily and 
other cases when they do not (e.g., consider the multivariate normal 
and then the discussion following Example 5.4 regarding difficulties 
with the E step). 
Outline a general plan for handling nonmonotone missingness using 
the SIR algorithm. 
Review the literature on pps sampling. 
Show why SIR works when M/m + 00. 

Develop an expression for the actual probabilities of selection using 
SIR when M/m is finite. 
Using the result in Problem 53, formulate advice on the choice of 
M/m . 
Develop specific guidance for the use of an adaptive version of SIR. 
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56. Show that the fraction of missing information in Example 5.7 is 
modest when nonresponse is unconfounded and provide explicit ex- 
pressions for y. 

57. For confounded but ignorable nonresponse in Example 5.7, is the 
fraction of missing information st i l l  modest? What is the maximum 
fraction of missing information under these conditions? 

58. Write down the exact posterior distribution for (YmiS, 6 )  in Example 
5.7 assuming n 2  = 0. 



C H A P T E R 6  

Procedures with Nonignorable 
Nonresponse 

6.1. INTRODUCTION 

When nonresponse is nonignorable, there exists response bias in the sense 
that a respondent and nonrespondent with exactly the same values of 
variables observed for both have systematically different values of variables 
missing for the nonrespondent. Since there are no data to estimate this 
nonresponse bias directly, inferences will necessarily be sensitive to assump- 
tions about similarities between respondents and nonrespondents. These 
assumptions can be addressed by scientific understanding or related data 
from other surveys. 

Displaying Sensitivity to Models for Nonresponse 

Commonly, such external sources of information will not be precise enough 
to establish accurately the ways in which respondents differ from nonre- 
spondents. Consequently, an important component of a satisfactory analy- 
sis when nonignorable nonresponse is being considered is the display of 
sensitivity to different plausible specifications for the response mechanism. 
Within the context of multiple imputation, this display of sensitivity is 
accomplished by creating two or more imputations under each of several 
models for nonresponse, creating separate inferences under each model, and 
comparing the conclusions reached under each of the models. 

202 

Multiole Imuutation for Nonresuonse in Surveys 
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The Need to Use Easily Communicated Models 

Since commonly no one model will be obviously more realistic than some 
others, and users of the survey will have to make judgments regarding the 
relative merits of the various inferences reached under merent nonre- 
sponse models, easily communicated models should be used whenever 
possible. Mathematically complicated models may not only be difficult to 
apply, but they may also be difficult to communicate to users of surveys. 
Even though sophisticated models are potentially more accurate reflections 
of reality, in common practice it may be wise to use simply described 
modifications of more standard ignorable models, such as the “20% in- 
crease over ignorable value” model used to illustrate ideas in Section 1.6. 

Transformations to Create Nonignorable Imputed Values from Ignorable 
Imputed Values 

Transformations more complicated than 

(nonignorable imputed Y;.) = 1.2 x (ignorable imputed Y;) (6.1.1) 

could just as easily have been used in the example of Section 1.6 to 
illustrate a simple method for creating systematic differences between 
respondents and nonrespondents with the same value of X,. For example, 
consider the transformation 

(nonignorable imputed Y;) = exp[ a + b x log(ignorab1e Y; )] , 

which changes the location, scale, and shape of the ignorable imputed 
values depending on ‘the constants a and b. 

The advantages of such fixed transformations of univariate Y; are their 
easy creation and communication. Extension of this technique to the case of 
multivariate Y; is straightforward when the pattern of missing data is 
monotone, since in this case all imputations can be created using a sequence 
of univariate models. Some formal details with explicit models are pre- 
sented in Section 6.3, and the idea can easily be used with implicit models 
as well as explicit ones. 

Other Simple Methods for Creating Nonignorable Imputed Values Using 
Ignorable Imputation Models 

There exists a variety of simple methods other than fixed transformations 
that can be used to distort ignorable imputation methods into producing 
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nonignorable imputations. For example, only a lixed percentage of the 
imputed values might be distorted by a fixed transformation; specifically, 
for a random 50% of the imputed values, apply the transformation (6.1.1). 
Such a distortion might be appropriate when there exists a suspicion that 
there are varying reasons for nonresponse, with only some of the nonre- 
spondents being different from respondents. 

Another possibility is to distort the probability of drawing values to 
impute using a function of the value to be imputed. For example, for each 
value to be imputed, draw 10 values under an ignorable model and then 
choose the value to impute by drawing from the 10 with probability 
proportional to each value. Such a distortion might be appropriate when 
the probability of nonresponse on r;. is thought to be related to the value of 
q, as when probability of nonresponse on income questions is thought to 
be proportional to yi = log(income) even after adjustment for covari- 
ates, X. 

Essential Statistical Issues and Outlime of chapter 

The modeling, estimation, and imputation tasks with nonignorable nonre- 
sponse can all be technically demanding in realistic settings, and it is easy 
to lose sight of the essential statistical issues regarding sensitivity of 
inference to assumptions that are not directly verifiable and the implica- 
tions of the assumptions in such cases. That is, to impute Y;, the missing 
values for the ith unit, we need to estimate the conditional distribution of 
q,mls given the observed values (XI, q,obs, R,,,,,). But if we examine all 
units with the same value of R as the ith unit, and try to estimate the 
conditional distribution of q,,,, given (X,, x , o b , )  from these units, say 
using a regression model, we wil l  fail because by the definitions of R,,,,, 
and q, mrr, none of these units has any observed values of y, m,s- 

With ignorable nonresponse, the conditioning on the value of R,,, is 
irrelevant, and so standard models and methods can be employed, which 
estimate the conditional distribution of Y;, m15 given (X, ,  Y;, obs)  using the 
other units who have the components in x,,,, observed. But with non- 
ignorable nonresponse, special models are needed. These issues are clearly 
exposed in the simple case of univariate x, no X,, and the usual i.i.d. 
modeling structure, and so this case is the topic of Section 6.2. 

Section 6.3 considers the formal tasks that are required to create non- 
ignorable imputed values and identifies two distinct ways of performing the 
modeling task, which can lead to quite Werent estimation and imputation 
tasks in practice. Section 6.4 illustrates the first, the mixture modeling 
approach, in the context of Example 1.4 involving missing school prin- 
cipals, responses. Section 6.5 illustrates the second, the selection modeling 
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approach, in the context of Example 1.2 with nonreported income data in 
the Current Population Survey (CPS). 

When nonignorable nonresponse is considered likely, good survey design 
often tries to pursue some nonrespondents to obtain responses. Data from 
followed-up nonrespondents can be extremely useful for creating realistic 
imputed values for those nonrespondents without follow-up data. Section 
6.6 considers general issues concerning multiple imputation with followed-up 
nonrespondents and shows how multiple imputation can lead to standard 
inferences in this case. Section 6.7 illustrates the mixture modeling ap- 
proach to surveys with followed-up nonrespondents in the context of 
Example 1.4 concerning missing responses to drinking behavior questions. 
Throughout, we assume that the sampling mechanism is ignorable and 
focus on the issues created by a nonignorable response mechanism. 

6.2. 
AND NO Xi 

NONIGNORABLE NONRESPONSE WITH UNIVARIATE yi 

Consider the case with univariate K ,  no Xi ,  an ignorable sampling mecha- 
nism, but a nonignorable response mechanism. By equation (2.6.3), in- 
ferences require a specification for Pr(Y, R), which following de Finetti's 
theorem, can be written as 

N 

i =  1 
PdY, R )  = j r I f Y R ( Y ; ,  R;le)Pr(e) dd .  (6.2 .l) 

The Modeling Task 

In this form, the modeling task must specify the distribution f rR(Y; ,  Ri le )  
and the prior distribution Pr(0). Without loss of generality, we can write 

f Y R  ( 7 R i l e  ) = f Y l R  ( I R  1, ) fR ( R i l e  ). (6.2.2) 

Again without loss of generality, we can write the factors on the right-hand 
side of (6.2.2) as 

and 

(6.2.3) 

(6.2.4) 
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where O,, el, and 6, are functions of 8: 8, the parameter of the data for the 
nonrespondents, 8, the parameter of the data for the respondents, and 8, 
the parameter giving the probability of being a respondent. In general do, 
8,, and 8, are a priori dependent. 

The Imputation Task 

To impute missing values from the Bayesian perspective, we need the 
posterior distribution of the missing values, Ymis: 

From (6.2.1)-(6.2.3). 

so that 

Equation (6.2.5) implies that to impute Ymis, first draw a value of 8, from 
its posterior distribution, say 8$, and then draw the components of Ymi, as 
i.i.d. from fo( I$'$). Thus, the imputation task requires only the posterior 
distribution of 8,. 

The Estimation Task 

writing 

~ ( 0 )  = pr(e,ie,, e,)pr(e,, eR)  

where Pr(e,p,, 8,) is the prior distribution of 8, given (el, dR), it is simple 
to see from (6.2.1)-(6.2.4) that 

where Pr(B,, 8RIYob,, Rim,) is the posterior distribution of (el, 8,): 
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Equation (6.2.6) implies that in order to draw a value of 8, from its 
posterior distribution, first draw a value of (el, 8,) from its posterior 
distribution (6.2.7), say (8:, 8;), and then draw 8, from its conditional 
prior (= posterior) distribution given (el, 8,) = (8:, 8;). This fact for- 
mally demonstrates the sensitivity of inference to untestable assumptions: 
the drawn value of 8, is entirely dependent on its prior distribution given 
(el, eR).  Thus with nonignorable nonresponse, we can learn about the 
distribution for nonrespondents, governed by do, only via untestable prior 
ties to the distribution for respondents, governed by el, or in some unusual 
cases using prior ties to the distribution of response itself, governed by 8,. 

Two Basic Approaches to the Modeling Task 

One basic approach to the modeling task is to follow (6.2.2)-(6.2.4) and 
specify: (a) the distribution of the population data for respondents governed 
by 8, ,  (b) the distribution of the data for nonrespondents governed by do, 
and (c) the distribution of response governed by the probability of re- 
sponse, O R ,  where ( el, 8,) is a priori independent of eR. This approach has 
been called the mixture modeling approach since it defines the population 
distribution of Y as a mixture of respondents and nonrespondents. The 
second basic approach is to specify f y R ( y ,  R,l8) in (6.2.1) by writing 

and specifying: (a) the distribution of the population data governed by B y  
and (b) the distribution of the response mechanism governed by 8RIy, where 
8, and dRIy are a priori independent. This approach has been called the 
selection modeling approach because of the specification for the response 
mechanism that selects units to be respondents. 

Example 6.1. The Simple Normal Mixture Model 

A very simple example of the mixture modeling approach specifies f1(y&) 
as N(pl, u:) and jO(yl8,) as N ( p o ,  a:), where 8, = (pl,logu,), 8, = 
(p,,logu,). With respect to the prior distribution of 8, 8, is a priori 
independent of (el, 8,) with Pr(8,) a const on (0, l), Pr(81) a: const, and 
Pr(B,p,) specifies that apriori, po = k, + p,  and uo = k,u, where k, and 
k, are fixed constants. Thus the parameters for nonrespondents are a fixed 
transformation of the parameters for respondents. Letting J1 and s: be the 
sample mean and variance of the n, respondents' values, one set of imputed 
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values for Ymis is created as follows: 

1. Draw a value of uf from its posterior distribution, say u;* 
= $(n, - l)/x where x is a x 2  random variable on n1 - 1 degrees 
of freedom. 

2. Draw a value of p1 from its posterior distribution given u; = u:*, say 
pl* = j 1  + ul*z where z is a N(0, l )  deviate. 

3. Draw a value of (po, u,') from its posterior distribution given p1 = pl* 
and u: = u:*, say 

Po* = k, + P1* 

and 

4. Draw the no = n - nl values of Ymis as i.i.d. N(po*, a&), or equiv- 
alently, for i E mis, 

i.i.d. 

r;: = k, + pl* + kfi l*zi ,  zi - N ( 0 , l ) .  

A similar but not identical specification alters only fo(y.lBo): a priori 
do = 8, but 

Under this fixed-transformation nonignorable model, which has 

(nonignorable imputed value) = k, + k, (ignorable imputed value), 

after drawing a value of 8, from its posterior distribution, say (pl*, log ul*), 
the no missing values of (T - k , ) /k ,  are drawn as i.i.d. N(pl*, IJ;*), or 
equivalently, for i E mis 

Y; = k, +  PI* + 01*zi>. 

Such fixed transformations of imputed values were introduced in Section 
1.6. 

As these two specifications illustrate, the mixture-modeling approach 
easily generates nonignorable values using (i) standard ignorable models 
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and (ii) prior descriptions of distortions to parameters or imputed values. 
The mixture modeling approach is thus very well suited to the exploration 
of sensitivity to various nonignorable models. 

Example 6.2. The Simple Normal Selection Model 

Suppose it is known that in the population the Y, are nearly normally 
distributed and that nonresponse becomes increasingly likely with larger r,. 
For instance, perhaps r, = log(income) and individuals with larger incomes 
are more likely to be nonrespondents on income questions. One model that 
has been proposed in cases like this is to specify fy( q&) as 

where yo and y1 are parameters to be estimated and g( a )  is some cumula- 
tive distribution function. For instance, if g ( . )  is the normal cumulative 
distribution function, then fRIy( R,IY,, BRlr) can be specified via an mob- 
served variable V,  such that R, = 1 if V ,  > E and = 0 if V, < E, where V,  
given 8 is N(0,l) and has correlation p with r,; here 8 = ( p ,  log u, p, E )  

with all parameters mutually independent. Models like this have been 
studied by among others, Heckman (1976) and Nelson (1977), and are 
called normal selection models because they append to the standard normal 
model a model that selects which values of Y, will be observed. 

The proportion of Y, that are observed (E,,,R,/n), addresses the estima- 
tion of E ;  for example, with 50% response rate, the obvious point estimate 
of E is 0 whereas with 97.5% response rate, the obvious estimate of E is 1.96. 
Since given 8 the n values of are i.i.d. N ( p ,  u2) ,  the skewness in the n1 
observed values of r, addresses the estimation of p. For example, suppose 
the response rate is 50%; if the observed values of look exactly normally 
distributed, an obvious estimate of p is 0, whereas if the observed values of 

look exactly like the left half of a normal distribution, an obvious 
large-sample point estimate of p is -1. Since the observed skewness 
addresses the value of p and thus the extent of nonresponse bias, the results 
of this model are extremely sensitive to the symmetry assumption of the 
normal specification. Finally, if we knew values for E and p, we could 
estimate p and a2; for example, if E = 0 and p = - 1, then the maximum 
observed r, is an obvious estimate of p, whereas if p = 0, jjl and s: are the 
obvious estimates of p and u2. 
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Although it is clear that under the model specifications there exists 
information about the parameters 8, the posterior distribution of 8 does not 
have a neat form for standard prior distributions and so the estimation task 
is not straightforward. There are various iterative algorithms available to 
find maximum-likelihood estimates and to evaluate the second derivatives 
of the log likelihood at the maximum used for standard large-sample 
normal approximations, but there is little study of the accuracy of such 
approximations in realistic cases. 

Furthermore, although the distribution of Y; given 8 is simple, as is the 
distribution of R ,  given Y; and 8, the distribution that is needed for the 
imputation task is that of r, given R, = 0 and 8, which is a stochastically 
truncated normal distribution. A simple, but possibly inefficient, procedure 
is to (i) draw r; from its distribution given 8, say Y;*, (ii) draw R ,  from its 
conditional distribution given Y; = Y;* and 8, say R:, (iii) impute the 
drawn value of if R: = 0 (i.e., missing), and (iv) return to step (i) if 
R:  = 1. 

A selection model that includes X variables and a priori constraints on 
regression coefficients is used to generate multiple imputations of missing 
log(income) in Section 6.4. 

6.3. FORMAL TASKS WITH NONIGNORABLE NONRESPONSE 

The general modeling, estimation, and imputation tasks with nonignorable 
nonresponse are extensions and complications of the corresponding tasks 
with ignorable nonresponse. Consequently, the structure and results pre- 
sented here closely parallel those of Chapter 5.  

The Modeling Task-Notation 

Since the sampling mechanism is ignorable, results in Section 2.6 imply that 
the posterior distribution of unobserved Y values follow from specifications 
for Pr(Y1X) and the response mechanism, Pr( RIX, Y), or equivalently, 
from the joint distribution of ( X ,  Y, R ) ,  Pr(X, Y, R ) .  By the usual appeal to 
de Finetti’s theorem, the rows of ( X ,  Y, R )  can be modeled as i.i.d. given 
some parameter 8: 

(6.3.1) 
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Since X is fully observed, it is convenient to write 
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where 8yRI, and 8, are functions of 8. Commonly, but not necessarily, 
8yR1, and 8 ,  are specified to be a priori independent: 

Furthermore, since by definition R is more observed than Y,  it is also 
convenient to write: 

where 8yIXR and 8R1, are functions of 8 y ~ ~ ,  and thus of 8. In some cases, 
8ylXR is specified to be a priori independent of (8Rlx, 8,): 

(6.3.5) Pr( 0 ) = Pr( 8,Im )Pr( x -  0,) - 

Two General Approaches to the Modeling Task 

As illustrated in Section 6.2 for the case of univariate r; and no X I ,  two 
basic approaches to modeling nonignorable nonresponse can be identified. 
One, the mixture modeling approach, accepts (6.3.4) and (6.3.5), and seems 
better suited to the straightforward investigation of sensitivity of inferences 
using multiple imputation. The other approach, the selection modeling 
approach, follows naturally from considering the additional specification 
needed to modify the ignorable modeling task and has 

f U R l X ( Y ~  R ~ I X ~ ,  'YRIX) = f Y I X ( K I X i ,  eYIX) fR~YX(Ri lx i*  YB 'RIA'Y) (6*3.6) 

where eY1, is a priori independent of (8RIXy, ex),  

Similarities with Ignorable Case 

The general modeling structure in (6.3.1)-(6.3.3) is formally similar to that 
in (5.2.1) and (5.2.2) with ignorable nonresponse, where now (T, R i )  plays 
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the role of q, and flYRlx plays the role of Hence, some results in 
Chapter 5 on the imputation and estimation tasks formally apply with th is  
notational change. Other results in Chapter 5 apply with only minor 
modification. Henceforth, we assume the structure in (6.3.1) and use the 
notation in (6.3.2), (6.3.3), and that previously established in Chapter 5 
(e.g., y.mis = the components of Y missing for the ith unit). 

The Imputation Task 

The objective is to draw Ymis from its posterior distribution, which can be 
written as 

pr(ymislx, Yobr, = / p r ( y m i s I X 7  'obS7 R i n c ,  e)WeIX, Yobs, d8* 

As with ignorable nonresponse, our plan is to draw a value of 8 from its 
posterior distribution, Pr(elX, Yobs7 Rinc),  say 8*, and then draw a value of 
Ymis from its conditional posterior distribution given the drawn value of 
6*, Pr(Y,,IX, Y&,, Rinc, 6 = 8*) .  Repeating this process m times creates 
m draws from the joint posterior distribution of (Ymis, 8). Ignoring the 
drawn values of 8 gives m draws from the posterior distribution of Ymi,. 
The reason for drawing values of both 8 and Ymis is that under the i.i.d. 
model in (6.3.1), the task of drawing Ymis given 8 is relatively simple. 

Result 6.1. The Imputation Task with Nonignorable Nonresponse 

Given 8, the q, 
on 8 only through OYR,G 

are a posteriori independent with distribution depending 

The result follows from application of the same arguments as in Result 5.1 
after substituting (Y, R) for Y and 8 y R I X  for dYIx, and then integrating over 
Re,,. 

Result 6.2. The Imputation Task with Nonignorable Nonresponse When 
Each Unit Is Either Included in or Excluded from the Survey 

Suppose Ii = (1,. . . , 1) or (0,. . . ,0) for all i ;  then given 8, the K+ mis are a 
posteriori independent with distribution depending on 0 only through 8 , , ,  
which is a function of 8yRlx: 

Result 6.2 follows by the same argument as Result 6.1 with the observa- 
tion that when Ii = (1,. . . , 1) or (0,. . . , 0), for i E ms R i  is fully observed 
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so that the distribution of Y,. 

213 

given ( X i ,  5, obs, Ri .  i n e )  and 8 y R l x  follows 
from j Y  I XR(  y.1 xi i Y I XR )- 

The Estimation Task 

Result 6.1 shows that the only function of 8 that is needed for the 
imputation task is 8 y R I x ,  the parameter of f y R I X ( x ,  RJX, ,  8 y R l X )  specified 
in the modeling task. Result 6.2 shows that in the common case when each 
unit is either included or excluded from the survey, the only function of 8 
that is needed is 8 y I x R ,  the parameter of f y l x R ( ~ 1 X i ,  R i ,  8 y I X R ) .  Thus, the 
objective of the estimation task is to compute the posterior distribution of 
8 y R I X ,  or more simply, 8 y l R X  in some cases, so that a random draw of the 
parameter can be made. Generally, this task is quite demanding even with 
apparently simple models. In analogy with the case of ignorable nonre- 
sponse, some simplification can occur by specifying eYRlx  to be a priori 
independent of 8,. Furthermore, additional simplification can occur by 
specifying 8 y l X R  to be a priuri independent of (ex,  eRIX). Notwithstanding 
these simplifications, however, it is not always wise to specify such a priori 
independence, especially with a priori knowledge to the contrary. For 
example, if (Y, X )  is known to have nearly a common correlation between 
all pairs of variables, obviously the observed correlations among the X 
variables help to estimate the correlations involving the Y variables. 

Result 63. The Estimation Task with Noniporable Nonresponse When 
BYRI, Is u Priori Independent of 0, 

Suppose B Y R l x  and 8, are apriori independent as in (6.3.3). Then they are 
D posteriori independent; moreover, the posterior distribution of 8 y R i X  

involves only (a) the specifications f Y R l x ( . l  - ) and P r ( 8 y R I x )  and (b) data 
from units included in the survey. 

Result 6.3 is immediate from Result 5.2 after substituting (Y, R )  for Y 
and ' Y R I X  for e Y I P  

Result 6.4. The Estimation Task with Nonignorable Nonresponse When 
Is u Priori Independent of (8R,x,8,) and Each Unit Is Either Included 

in or Excluded from the Survey 

Suppose I,  = (1,. . . ,1) or (0,. . . ,O), and 8y1, and ( 8 R l , ,  8 ,)  are a priori 
independent as in (6.3.5). Then they are a posteriori independent; more- 
over, the posterior distribution of involves only (a) the specifications 

f y l x R ( * l  * ) and P r ( 8 y I X R )  and (b) data from units with some Y, observed. 
Result 6.4 follows from Result 5.2 or Result 6.3 noting that for units 

included in the survey, R can be treated as part of X since it is a fully 
observed variable. 
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Result 6.5. The Imputation and Estimation Tasks with Nonignorable 
Nonresponse and Univariate Y;. 

Suppose is univariate; then given 8y1, the Y ; , m i s  are a posteriori 
independent; furthermore, if 8y1xR and ( d R I X ,  8,) are a priori independent, 
they are cz posteriori independent, and the posterior distribution of 
involves only (a) the specifications fylxR(.l - ) and Pr(OyIxR) and (b) data 
from respondents. 

This result follows immediately from Results 6.1 and 6.4 since if Y;. is 
univariate each unit is automatically either included in or excluded from the 
survey. It is stated as a separate result because of the practical importance 
of the case with univariate q. ' 

Monotone Missingness 

Suppose the pattern of missingness is monotone as defined in Section 5.5, 
and assume for notational simplicity that 1, = (1,. . . ,1) or 1; = (0,. . . ,O). 
We saw in Chapter 5 that with ignorable nonresponse, by choosing a 
distinct modeling structure that corresponds to the missingness pattern, the 
modeling, estimation, and imputation tasks could be reduced to a sequence 
of independent univariate modeling, estimation, and imputation tasks. 
There are several possible extensions to the case of nonignorable nonre- 
sponse, but the most obvious is within the mixture modeling perspective 
where R is simply treated like a fully observed X variable. Following the 
notation in (54.1)-(5.4.4), the j th  factor in the distinct monotone structure, 
fi,, is now the conditional distribution of Y;.i given (Xi, XI, .  . . , yl, and 
R,, and this distribution's parameter, a,. It is usually convenient to model 
the nonignorability of yl,, that is the dependence of this distribution on R i ,  
only through R,,, because then the estimation and imputation tasks are 
formally identical to a sequence of p independent univariate nonignorable 
estimation and imputation tasks. The notation required to be fully precise is 
more cumbersome than insightful, and reinterpreting the notation estab- 
lished in Chapter 5 conveys the essential ideas. The conclusions are sum- 
marized in Result 6.6 without proof. 

Result 6.6. The Estimation and Imputation Tasks with a Monotone-Distinct 
Structure and a Mixture Model for Nonignorable Nonresponse 

Suppose dYI, and ( d R I X ,  a,) are a priori independent, and suppose that 
the missingness pattern is monotone with Yrll at least as observed as 
Yr21, and so on, as defined by (5.4.3). Furthermore, factorize the densities 
fylxR(Y;IXi, R,, dyIxR) and h(8y1,)  as in (5.4.1) and (5.4.2), respectively, 
where the conditioning on Ri  is implicit in (5.4.1) and 8 = (el, . . . , B p )  is 
interpreted as 8yixR. 
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Then using this notation and the shorthand f,, in (5.4.4), we have that 
the BJ are a posteriori independent with distributlons given by (5 .43 ,  for 
j = 1,. . . , p ;  (5.4.5) is formally identical to the posterior distribution of the 
parameter of the distribution of univariate yIJ given ( X , ,  xl,. . . , x, 1, R , )  
based on the n, units with (X,, yIl,. . . , Y,, R , )  fully observed. If this 
distribution depends on R ,  only through Rl,,  then this posterior distribu- 
tion is formally identical to that obtained in an estimation task for 
univariate r, using mixture modeling of nonignorable nonresponse; more- 
over, the imputation task for is then also formally identical to that with 
univariate r,. 

Selection Modeling and Monotone Missingness 

Corresponding results for selection modeling require far more restrictive 
assumptions. Specifically, the estimation and imputation tasks reduce to a 
sequence of univariate estimation and imputation tasks when using selec- 
tion models with data having a monotone pattern of missingness, if the 
following conditions hold: 

1. 8y,8,1,y, and 8, are a priori mutually independent (this simply 
defines selection modeling). 

2. Given (A',, x, B,,,,), the R,,:. . . , R,,  are mutually independent with 
parameters that are a priori mdependent, and the distribution of R i j  
depends on only through x j :  

where 

6.4. ILLUSTRATING MIXTURE MODELING USING 
EDUCATIONAL TESTING SERVICE DATA 

The data we use to illustrate the mixture modeling approach to nonresponse 
comes from the survey of high school principals introduced here as Exam- 
ple 1.1. The analysis presented here represents the first attempt (1972) to 
use some of the basic ideas presented in this text. In fact, the original effort 
did not perform any imputations, but used analytic methods exclusively. 
Nevertheless, in the published article presenting the example (Rubin, 1977a), 
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the answers are described as if they might have been obtained via multiple 
imputation: “One can think of the method given here as simply summariz- 
ing the results of simulations, where one uses the respondents to generate 
‘reasonable’ hypothetical responses for the nonrespondents.” The aim was 
to display sensitivity of the sample mean to prior assumptions about the 
similarity between respondents and nonrespondents. The posterior distribu- 
tion of the complete-data sample mean, 7, was derived analytically under a 
family of normal linear regression mixture models. The posterior distribu- 
tion of the complete-data standard deviation, s, was not considered, so that 
complete-data inferences were not compared. That is, the posterior distribu- 
tions of j rather than of F were compared under different prior assump- 
tions. Although the results in Rubin (1977a) were derived analytically, we 
will describe them as if they were found by the simulation techniques we 
have presented here, and extend those results to include complete-data 
inferences for F. 

The Data Base 

In 1971, 660 high school principals were asked to fill out a compensatory 
reading questionnaire consisting of 80 dependent variables. The schools in 
the survey were chosen from a very large population, consisting of most 
high schools in the United States, using 35 background variables, X (e.g., 
median income and racial composition in ZIP code area; enrollment, 
number of rooms, and approximate percentage reading below grade level). 
The survey design used X with an unconfounded probability sampling 
mechanism to choose the 660 schools so that the mean of X in the sample 
was close to the mean of X in the population. 

Of the 660 principals included in the survey, 188 refused to answer the 
questionnaire. Consequently, all 80 dependent variables are missing for all 
188 nonrespondent schools. For simplicity, we focus on one important 
dependent variable, “17B”, how often compensatory reading was conducted 
during regular school hours in time released from other work, coded 0, .2, 
-5,  .8, 1.0 indicating the proportion of time released. This variable, Y, 
recorded for the 472 respondent schools, coupled with the 35 covariates, X, 
recorded for all schools, comprise the data base for this example. 

The Modeling Task 

The mixture model we posit for studying nonignorable nonresponse specifies 
fYlxR(Y;.1X,, R i ,  d y I x R )  by a normal linear regression for respondents’ 
given X,, 

(KIXI ,  Rf = 1, e y p )  - N(q + x , r s 1 9  q?), 
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and for nonrespondents’ given Xi, 
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where 8y1, = (a,, B1, log ul, ao, Po, log a,) is a priori independent of both 
OR,,, the parameter governing the probability of being a respondent at each 
value of X, and ex, the parameter of the marginal distribution of X. 

The modeling task is completed by specifying a prior distribution for 
eYIxR.  Since the number of respondents is relatively large, for simplicity the 
standard noninformative prior distribution was used for the respondents’ 
parameters, Pr(a,, B,, log a,) a const. The crucial prior specification for 
investigating sensitivity of inference with nonignorable nonresponse is the 
conditional distribution of the nonrespondents’ parameters ( a,, Po, log a,) 
given the respondents’ parameters. For simplicity we set uo = u1 = a. The 
prior distribution of (ao, B0) given (a,, &, a) is the product of two inde- 
pendent distributions. First, Po is normally distributed about PI, 

(PoI~,,B,,loga) - N(P1,c;sla;) 

where cs is a nonnegative constant specifying the a priori similarity of Do 
and PI. The corresponding prior distribution of a. is specilied indirectly 
and treats the mean X for respondents, XI, as fixed (more formally, the 
prior distribution of eVIRX described here is implicitly conditional on X). 
Specifically, the average Y value at XI for nonrespondents in the popula- 
tion, vo = (a, + i , /30), is normally distributed about the average Y value 
for respondents in the population, q,  = (a, + ?,/.3,), 

where c,, is a nonnegative constant specifying the a priori similarity of qo 
and TI. 

Clarification of Prior Distribution Relating Nonrespmdent 
and Respondent Parameters 

If c8 = c,, = 0, the prior specifications imply an ignorable nonresponse 
mechanism; for positive c8 or c,,, the response mechanism is nonignorable. 
The first constant, cB, determines how similar the slopes of Y on X are 
likely to be for respondents and nonrespondents, whereas cv determines 
how similar the expected value of Y is likely to be for groups of respon- 
dents and nonrespondents with X means equal to the respondent X mean 
in the population. 



218 PROCEDURES WITH NONIGNORABLE NONRESPONSE 

The parameter cs is the prior coefficient of variation (the standard 
deviation divided by the mean) for the nonrespondents’ regression coeffi- 
cients. That is, letting pi’) and bd’) be the j t h  components of B1 and &, 
respectively, the investigator is 95% sure that will fall in the interval 

Note we assume that cs is the same for all X variables and that there is no 
(I priori bias (i.e., the interval for Po is centered at &). Of course, more 
complicated assumptions are possible. We use coefficients of variation 
because they seem well suited to summarize subjective notions of large and 
small in this example (e.g., cs = 1% seems small, whereas cs = 100% seems 
large). 

Even if both (a) the regression coefficients (slopes) of Yon X and (b) the 
distributions of X were identical for respondents and nonrespondents, the 
two groups might have different Y means; c,, reflects this difference as 
the coefficient of variation for the mean Y in a group of nonrespondents 
whose X distribution is the same as the X distribution for the respondents. 
Since we are assuming a linear relation between Y and X, we really only 
need consider a group of nonrespondents whose X mean is xl. Thus, since 

is the expected value of Y for a group of respondents whose average X is 
X,, the investigator is 95% sure that the expected Y for a group of 
nonrespondents whose average X is XI lies in the interval 

ql(l f 1 . 9 6 ~ ~ ) .  

Again, note we assume that there is no apriori bias. 

Comments on Assumptions 

The rationale for this particular parameterization is primarily that it proved 
conceptually useful to the psychologists and educators for whom the survey 
was taken. They were able to use other related data and their experience to 
conjecture about cs and c,,, and they felt that the formulation facilitated 
easy communication. Also, the primary reason for using the normal linear 
model is that it is easy to handle formally; it should be reasonable for these 
data because is a live-category ordered response. For some dependent 
variables having mostly zero or one responses, a log-linear model would 
probably be more appropriate. 

In other problems (or even in this problem with other types of re- 
searchers), other models and parameterizations might be more useful. An 
obvious restriction to relax is the prior covariance of Po being proportional 
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to P1p:. For example, different coefficients of variation could be used for 
different background variables and the prior covariance matrix could be 
diagonal instead of rank one. 

No matter how we parameterize a nonresponse problem, however, two 
points are crucial. Both follow from the fact that if the propensity to be a 
nonrespondent is some probabilistic function solely of the recorded back- 
ground variables X, then the response mechanism is ignorable and the 
conditional distribution of Y given X is the same for nonrespondents and 
respondents (in our model, cB = c,, = 0). Hence, the observed distributions 
of X for respondents and nonrespondents should not influence the re- 
searcher’s choice of c,., and c,,, except perhaps when used in conjunction 
with other information. Furthermore, as more background variables are 
recorded, the investigator should be more confident that if the Y means for 
respondents and nonrespondents differ, the difference should be reflected in 
the observed distribution of the background variables; in our example, both 
c,., and c,, should decrease as more background variables are recorded. This 
second point follows because as more background variables are recorded, it 
becomes more likely (to be precise, not less likely) that the propensity to be 
a nonrespondent is some probabilistic function of the recorded background 
variables. 

The Estimati~n Task 

The estimation task is very easy for the model just specified. First, the 
posterior distribution of (qo ,  Po) given (q,, P1, a’) is the same as its 
prior distribution given (ql, &, a’), specified previously. Second, the 
posterior distribution of (ql,&) given a’ is identical in form to the 
usual sampling distribution of regression coefficients in normal linear 
models; that is, the posterior distribution of B1 given a’ is normal 
with mean equal to the least-squares coefficient of the Y; on XI for 
respondents, bl = V[  Cobs(  X,  - x,) and covariance a~ where v 
= [ zobs( X ,  - x,) ( X ,  - x,)] - ‘-for simplicity we assume X ,  = 

CobsX, /n ,  = Z F X , / N ,  and the posterior distribution of q1 given a2 and 
PI is normal with mean j l  and variance a2/472. Third, the posterior 
distribution of a’ is 436s: times an inverted x2 on 472 - 35 - 1 = 436 
degrees of freedom, where s: is the residual mean square from the respon- 
dents’ regression. 

- 

The Imputation Task 

The imputation task is also eey. First draw from the posterior distribution 
of respondents’ parameters, (q , ,  &, log a); then draw from the conditional 
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posterior distribution of nonrespondents’ parameters, ( qo, Po), given re- 
spondents’ parameters; and finally draw from the posterior distribution of 
the missing values, Ymis, for nonrespondents. Repeat the process m times 
using independent random numbers to create m repeated multiple imputa- 
tions of Y,,,,. 

Specifically, the following steps are followed with cp and c,, fixed by the 
investigator: 

1. Draw a value of u 2  from its posterior distribution, say 

u,” = 436 X s: /x& 

where x:36 is a x 2  random variable on 436 degrees of freedom. 

the drawn value of u2, say 
2. Draw a value of P1 from its conditional posterior distribution given 

PI* = B, + ~ * t W 2 Z 1  

where [V]”’ is a square root of V, such as the triangular square root 
obtained by a Cholesky factorization, and 2, is a vector of 35 i.i.d. 
N(0,l) deviates. 

3. Draw a value of ql from its conditional posterior distribution given 
the drawn values of u 2  and P1, say 

91* = Jl + (d/472)z* 

where z1 is an independent N(0,l) deviate. 

the drawn values of a*, P1, and vl, say 
4. Draw a value of Po from its conditional posterior distribution given 

Po* = P1* + C,Pl*ZO 

where 2, is an independent N(0,l) deviate. 

the drawn values of u2, &, tl, and Po, say 
5. Draw a value of to from its conditional posterior distribution given 

90* = 91* + C,9l*ZO 

where zo is an independent N(0,l) deviate. 
6. Finally, draw a value of Ymis from its posterior distribution given the 

drawn value of OYIxR;  that is, for each of the 188 nonrespondents let 

YI,* = qo* + (xi - Zl)Po+ + a*zi 

where the zi are new i.i.d. N(0,l) deviates. 
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Analysis of Multiply-Imputed Data 

Variable 17B, time released from other class work, was considered particu- 
larly important because if time for compensatory reading was released from 
other class work, rather than given after school hours or during free study 
periods, some educators felt that it might indicate a serious need for more 
resources in the school. The mean of 17B for respondents was -39 and its 
standard deviation was .40. 

Table 6.1 provides summary statistics and repeated-imputation 95% 
intervals for r under each of eight imputation models, one with ignorable 
nonresponse (cs = c,, = 0), and seven with nonignorable nonresponse 
(ca > 0 or c,, > 0). For each set of repeated imputations under one model, 
the estimate based on the completed data set was the complete-data 
regression-adjusted estimate of r, and its associated variance was the 
standard complete-data variance (see Cochran, 1977, Chapter 7, and Prob- 
lem 14 of Chapter 2). Because we are assuming the sample and population 
means of X are essentially the same, the complete-data estimate equals the 
mean of the 660 values, j ,  with associated complete-data variance 
s2/660, where s2 is the residual mean square in the regression of Yon X 
using the 660 units in the sample. The resultant infinite m repeated-irnputa- 
tion interval is & ( J )  f 1.96 [E*(s2/n)  -t V*(J)J'/' where E*( ) and V*( ) 
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TABLE 6.1. Summary of repeated-imputation intervals for variable 17B in 
educational example.' 

Percentage 
Information 

Missing 
Model Expectations over Repeated Imputations 95% h t e n d  D~~ to 
cs c, E*(j j )  x lo2 V&) x lo4 E*(s2/n) X lo4 for 7 XIOz Nonresponse 

0.0 0.0 31 1.21 2.18 (27,351 36 

0.0 0.2 31 6.24 6.25 (24,381 50 
0.0 0.1 31 2.47 3.22 (26,361 43 

0.0 0.4 31 21.69 18.16 (18,441 54 

0.4 0.0 31 1.39 2.32 (27,351 37 
0.4 0.1 31 2.66 3.41 (26,361 44 
0.4 0.2 31 6.43 6.80 (24,381 49 
0.4 0.4 31 21.87 19.40 (18,441 53 

"In fact, because the raw data for this study were no longer available, the values in this table combine 
values from analytic results published in Rubin (1977a) and approximations based on some summary 
statistics available from earlier draft reports. 



222 PROCEDURES WITH NONIGNORABLE NONRESPONSE 

refer to the mean and variance over an infinite number of imputations. The 
center of all the intervals is .31, which differs from the mean Y for 
respondents, j l ,  because the distribution of the background variables 
differs for respondents and nonrespondents, but is the same for all values of 
( cB, c,,) because the model for the response mechanism has (Po, qo) u priori 
centered at (&, ql). Although it might be of interest to study models with 
a priori bias, Table 6.1 simply indicates the increased uncertainty that 
results when nonignorable models are considered. The fractions of informa- 
tion missing due to nonresponse are greater than the nonresponse rate 
(28%) because respondents and nonrespondents have different distributions 
of x. 

First note that the value of cB is not critical, whereas the value of c,, is. 
That is, the 95% interval widths are insensitive to the value of cs but quite 
sensitive to the value of c,,. Recall that c,, is the prior coefficient of 
variation for the mean Y for a group of nonrespondents With the same 
distribution of X as the respondents. Because many relevant background 
variables are being controlled, it might be reasonable to assume that groups 
of nonrespondents and respondents with the same X means would have 
similar Y means. Thus it might be reasonable to suppose c9 to be modest. 
But the insensitivity to values of cB indicates that Y is not that well 
predicted by X. Moreover, even for modest c,,, the interval for can easily 
be twice as large as when assuming ignorable nonresponse, and conse- 
quently, before sharp inferences are drawn assuming ignorable nonre- 
sponse, nonresponse bias due to different Y means at the same value of X 
should be carefully considered. The type of nonresponse bias resulting from 
different regression coefficients of Yon X for respondents and nonrespon- 
dents does not seem to be important. Finally, as expected intuitively, the 
percentage of information missing due to nonresponse becomes larger as 
the nonignorability becomes more extreme. 

6.5. ILLUSTRATING SELECTION MODELING USING CPS DATA 

The data set we use to illustrate the selection modeling approach comes 
from the CPS-IRS-SSA exact match file, introduced in Section 5.5. Two 
important differences between this application by Greenlees, Reece, and 
Zieschang (1982% b) (hereafter GRZ) and the one in Section 5.5, are that 
“total wages” (the IRS wage and salary variable) rather than “OASDI 
benefits” is the outcome variable, and the model being used is nonignorable 
rather than ignorable. The nonignorable model is a selection/stochastic- 
censoring model of the type illustrated in Example 6.2 applied to log(wages). 
The manner in which administrative data and nonresponse status are used, 
however, is the same as in Section 5.5: Nonresponse on the CPS total wage 
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and salary question indicates which units are to be considered nonrespon- 
dents, but the wage and salary data come from IRS administrative records, 
rather than from the CPS wage and salary questions. 

The Data Base 

The data base thus consists of background variables, X, from the CPS; 
response inhcator, R, from the CPS; and total wages, Y, from IRS records. 
As with the CPS example in Section 5.5, the data base is restricted, in this 
case to exclude households (units) whose head was unmarried, under 14, 
had farm or self-employment income, and so on; GRZ provide details. The 
result is a data set with 4954 CPS respondents, 410 nonrespondents due to 
refusal to answer the CPS wage and salary question, and 151 nonrespon- 

TABLE 6.2. Background variables X for GRZ example on imputation 
of missing incomes. 

A Priori Zero Coefficients in Prediction Equations 

Variable When Predicting Y, /3 When Predicting R , 8 

Constant 
Education 
White 
North 
south 
West 
Central city 0 
Suburb 0 
Education squared 0 
Experience 0 
Experience squared 0 
Professional 0 
Sales 0 
Craft 0 
Laborer 0 
Construction 0 
Manufacturing 0 
Transportation 0 
Trade 0 
service 0 
Personal 0 
Age 0 
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dents who did not answer the question for other reasons (e.g., lack of 
knowledge). GRZ perform analyses under both the narrow and broad 
definitions of nonresponse; thus the complete sample size is either 5364 or 
5515 with either 410 or 561 nonrespondents, corresponding to nonresponse 
rates of either 8 or 10% depending on the definition of nonresponse. 

The Modeling Task 

The normal selection model used to model the data specifies that the 
outcome variable, r, = log(wage), has a normal linear regression on XI 

where Xi includes variables indicating region of the country, education, 
experience, industry, and so on as given in the first column of Table 6.2; 
implicitly, GRZ assume the usual prior distribution on (8, log u) a const, 
except that two components of are a priori zero, as indicated in the 
second column in Table 6.2. The probability of response is assumed to 
follow a logistic regression in predictors Xi and q, 

Pr(Ri = llxi, r,, e) = [I + exp(-X,G - ~ y ) ] - ’ ,  

where a priori 14 components in the coefficient vector 6 are zero as 
indicated in the third column of Table 6.2, and implicitly the prior 
distribution on (6, y )  is proportional to a constant. The rationale for which 
coefficients in /3 and 8 should be zero is rather mysterious to me, but this is 
common with selection models as applied to real data. A priori, By,, = 
(/3,logu) and dRJXY = (6, y )  are both independent of 8,. Because this 
specification depends on K ,  it is nonignorable. 

If a probit (normal probability) specification had been chosen for 
Pr(R, = lIX,, q, 8) instead of logit, the model would have been identical to 
the one proposed by Nelson (1977). Lillard, Smith, and Welch (1986) 
applied the probit specification to CPS data, but did not use the exact 
match file; they also allowed the possibility that another transformation 
besides log was more appropriate. 

Discussion of this approach appears in Little (1983c), Moms (1983b), 
and Rubin (1983d), where these selection models are criticized because their 
results can be terribly sensitive to the normality and a priori zero coefficient 
assumptions. GRZ are aware of this model sensitivity, and in fact are 
particularly interested in seeing how well the selection model works on the 
exact match file with its data from nonrespondents available to check the 
accuracy of the imputations. 
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The Estimation Task 
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GRZ approximate the posterior distribution of 6 using the large-sample 
normal approximation, with mean equal to the maximum-likelihood esti- 
mate and variance-covariance matrix given by the inverse of the informa- 
tion matrix evaluated at the maximum. Since (Y;., R i )  are observed for 
respondents and only R, is observed for nonrespondents, the likelihood 
function can be written as 

o-'@((Y. - Xi#l)/o)/[l + exp(-Xi6 - Yy)] dY, (6.5.1) 
mis 

where G(-) is the standard normal density. Clearly, the estimation task is 
far more difficult for this selection model then the mixture model of Section 
6.4. Furthermore, the quality of the results is to some extent dependent on 
the accuracy of the large-sample approximations. 

GRZ maximized this likelihood using the generalized Gauss-Newton 
algorithm described in Berndt, Hall, Hall, and Hausman (1974). In fact, the 
likelihood function being maximized was slightly more complicated than 
the one given in equation (6.5.1): Since income is "topcoded" at $50,000, if 
the observed Y;. = 50,000 that respondent's factor in the likelihood is 

W 

a-'@((Y;. - XiB)/o)/[l + exp(-Xj6 - K y ) ]  dY;.. 

GRZ also fit an ignorable model forcing y = 0. Clearly, when y = 0, the 
posterior distribution of (B,  a) is the standard one based on respondents' 
data alone. Tables in GRZ give estimated parameters and associated 
standard errors under both models and both definitions of nonresponse. 

The Imputation Task 

Ten values of missing total wages were imputed for each nonrespondent 
using this model with y free to be estimated and also with y fixed at zero, 
using both definitions of nonresponse. The imputation task was as follows: 

1. Draw 6,,, = (8, u, y ,  6) from its approximating 30-variate normal 
posterior distribution; let OfR,, = (b*, u,, y*, 6,) be the drawn value. 
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2. For i E mis, draw (Y,, R,) from its joint posterior distribution given 

a. Let y, = XI& + u,z, where the 2, represent i.i.d. N(0,l) de- 
viates. 
b. Draw a uniform random number on (O,l), u, and let R,, = 0 if 
u < exp(-X,6, - Y,y,)/[l + exp(-X,S, - Y,y,)]. Otherwise, let 
R,, = 1. 
c. If R,, = 0 (ie., if R,, = the observed R,), impute 

otherwise return to step 2a. 

h?,, = GqX:  

mi.{ f,log(50,000)} ; 

This procedure generates one draw from the approximating posterior 
distribution of the missing data, Y,,,, and repeating it m times generates m 
repetitions from the posterior distribution of Y,,,. As with the estimation 
task, this imputation task is less direct than the imputation task for the 
mixture modeling example of Section 6.4. 

Accuracy of Results for Single Imputation Methods 

Table 6.3 gives the root-mean-squared errors (RMSE) of prediction when 
imputing the posterior mean log(wage) for each unit with 8 6 x 4  at its 
maximum-likelihood estimate. The errors are deviations of the imputed 
values from the true administrative values. Results are reported by columns 
for the nonignorable selection model and the ignorable version with y 
u priori fixed at zero. For the row labeled “all nonrespondents,” the 
nonignorable model was estimated from 5615 units, and the RMSE is for 
the 561 nonrespondents. For the row labeled “refusals,” the nonignorable 
model was estimated from 5364 units, and the RMSE is for the 410 refusals. 
The ignorable model was estimated from the 4954 respondents, and the 

TABLE 63. Root-mean-squared error of imputations of log-wage: 
Impute posterior me& given e fixed at U, 6. 

Ignorable Model Noniporable Model 

All nonrespondents 0.486 

Refusals 
N = 561 

N = 410 0.454 

0.483 

0.449 

“Found by numerical integration for each unit. 
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RMSE value in the first row is for the 561 nonrespondents and in the 
second row for the 410 refusals. 

For both definitions of nonresponse, the nonignorable model resulted in 
a smaller mean-squared error for imputed values than the ignorable model. 
This lends some support to the potential utility of using selection models 
with data like these. Of course, it is possible that using an ignor- 
able model with more X variables, which are available, more extensive 
modeling of the X variables (more interactions, nonnomal residuals, or a 
different transformation of Y), would have resulted in even smaller RMSEs. 
In fact, David, Little, Samuhal, and Triest (1986) carefully study a more 
recent CPS exact match file and conclude that when using the full set of 
available X variables, there is no evidence of nonignorable nonresponse on 
income questions. 

Estimates and Standard Errors for Average log(wage) for Nonrespondents in 
the Sample 

GRZ considered multiple-imputation methods in addition to the single- 
imputation methods summarized in Table 6.3, which simply impute the 
posterior mean of Y,,, at 8 = 8. First, an ignorable multiple-imputation 
procedure was considered: 

1. Draw 10 imputations from the posterior distribution of log(wage), 
where u priori y = 0, to create repeated multiple imputations for each 
nonrespondent. 

Furthermore, two methods of nonignorable multiple imputation were 
considered: 

2. Fix 6 at its maximum-likelihood estimate 8, and draw 10 imputations 
from the conditional posterior distribution of log(wage) given 8 = 8, 
to create multiple imputations for each nonrespondent. 

3. Draw 10 imputations from the posterior distribution of log(wage) to 
create repeated multiple imputations for each nonrespondent. 

Table 6.4 displays repeated-imputation estimates and standard errors for 
the average log(wage) across nonrespondents in the sample for these five 
methods using both definitions of nonresponse. The two conditions without 
displayed values were not studied by GRZ. The single-imputation methods 
clearly overstate the accuracy of the imputed values since they lead to zero 
standard errors for the unknown sample average; this effect was also seen in 
the CPS example of Section 5.5. 
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The two repeated multiple-imputation procedures, which incorporate 
draws of B from its posterior distribution, have the largest standard errors. 
When using the nonignorable model, the resulting inferences comfortably 
cover the true sample averages for both definitions of nonresponse. When 
using the properly implemented ignorable model, the estimate is nearly 
three (9.571 - 9.513/.021) standard errors from the true sample average. 
The clear conclusion is that for these data, the ignorable model with normal 
residuals and two a priori zero regression coefficients can be improved by 
appending a nonignorable logistic response mechanism. 

The method that fixes B at its maximum-likelihood estimate before 
drawing 10 multiple imputations has a standard error, in the one case 
reported, nearly half as large as it should be, and as a consequence its 
estimate is more than two standard errors from the true sample average; the 
method should be rejected as a fully acceptable imputation procedure. 

It is interesting to note that with the ignorable models, (a) fixing 8 at 8 
and imputing the mean, and (b) simulating the mean by 10 random draws, 
lead to similar estimates for the average Y for nonrespondents. An analo- 
gous conclusion holds for the estimates with the nonignorable methods. 
These results suggest that the posterior means of B may be close to their 
maximum-likelihood estimates, and that 10 multiple imputations yield a 
fairly accurate estimate of the posterior mean of the average Y for nonre- 
spondents. 

Inferences for Population Mean log(wage) 

GRZ do not calculate inferences for the population mean log(wage), but it 
is instructive to consider what additional information would be needed to 
do so. For example, assuming the standard interval would be used, we need 
in addition to the posterior mean and variance for the imputed average for 
respondents provided in Table 6.4: (1) the average log(wage) for the 
respondents in the sample so that we can calculate the posterior mean for 
the average log(wage) in the full sample and (2) the average variance of 
average log(wages) within the sample across the imputations. 

6.6. EXTENSIONS TO SURVEYS WITH FOLLOW-UPS 

A common practical device when faced with survey nonresponse that is 
feared to be nonignorable is to take a sample of the nonrespondents using 
an unconfounded probability sampling mechanism, and follow them up, in 
the sense that extra efforts are made to obtain responses from them. If the 
follow-up effort is entirely successful, all followed-up nonrespondents will 
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respond and produce their values of x. More commonly, there will be less 
than 100% response from the followed-up nonrespondents, the so-called 
hard-core nonrespondents still refusing to provide values of x.. In some 
surveys there will be waves of follow-up samples, each wave sampling some 
hard-core nonrespondents from the previous wave. Figure 6.1 depicts the 
process with two waves of follow-up sampling. 

Population of units 

Initial Initial 

Wave-1 
followed-up 

nonrespondents 

Wave 1 
non-followed-up 
nonrespondents 

follow-up0 nonrespondents 

Wave /\ 2 Wave 2 

followed-up non-followed-up 
nonrespondents nonrespondents 

Wave 2 
S U C C ~ S f u l  
follow-up0 

wave 2 
hard-core 

nonrespondents 

Figure 6.1. Schematic data structure with follow-up surveys of nonrespondents: boldface 
produces Y data. 
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The description just used of surveys with follow-ups is somewhat sim- 
plified in that with multivariate r; some followed-up nonrespondents may 
be respondents on some components of r, in the follow-up survey and 
hard-core nonrespondents on other components of r,. Nevertheless, to 
avoid cumbersome jargon and notation that conveys few new insights, we 
continue to use simplified descriptions, which are fully adequate only when 
r, is univariate. 

Ignorable Nonresponse 

If nonresponse is considered to be ignorable, then the methods of Chapter 5 
can be immediately applied treating all values of Y observed in the original 
survey and in the follow-up survey as Yobs, and multiply imputing the 
missing values, Y,,,, which are composed of the missing values from the 
non-followed-up nonrespondents and from the followed-up hard-core non- 
respondents. The reason for expending effort and expense to collect follow- 
up data on nonrespondents, however, is usually that it is suspected that 
there are systematic differences between respondents and nonrespondents. 
Consequently, in cases with follow-up samples, it is rarely appropriate to 
assume ignorable nonresponsc. 

Nonignorable Nonrespnse with 100% Follow-up Response 

If nonresponse is nonignorable and the follow-up effort is entirely success- 
ful, the obviously appropriate group from which to draw imputed values is 
the group of followed-up nonrespondents, at least if this group is mod- 
erately large. That is, for the purpose of creating the multiple imputations 
for the non-followed-up nonrespondents, we can treat all initial nonrespon- 
dents as the entire sample, the followed-up nonrespondents as respondents, 
and the non-followed-up nonrespondents as nonrespondents, where the 
nonresponse is ignorable because the follow-up sampling mechanism is 
ignorable. With 100% follow-up response we can apply the methods of 
Chapter 5 to create multiple imputations for the non-followed-up nonre- 
spondents using data from the followed-up nonrespondents. 

The formal motivation for this type of imputation is easily described 
using the notation already developed in Section 6.2 for the case of uni- 
variate and no Xi .  As there, let 8, be the parameter for the respondents’ 
Y,, and let 8, be the parameter for the nonrespondents’ Y,; the parameter of 
the distribution of the R, is 8,. When 8, is a priori independent of (O, ,  dR), 
it is easy to see that the posterior distribution of 8, is proportional to 

(6.6 .l) 
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where the product is over the no, followed-up nonrespondents. Repeated 
multiple imputations for the noo missing values for the non-followed-up 
nonrespondents thus can be drawn in two steps: 

1. Draw 0, from its posterior distribution, say 0;. 
2. Draw each of the noo missing values of r, as i.i.d. from f 0 ( Q 9 ,  = 0;). 

These two steps involve Y data only from followed-up nonrespondents 
because 0, is a priori independent of (el, d R ) .  When 0, is not a priori 
independent of (el, dR) ,  the posterior distribution of 0, involves Y data 
from initial respondents too; such models would be especially appropriate 
when no, is small. 

Example 6.3. 100% Follow-Up Response in a Simple Random Sample of 

Suppose a random sample of n values of univariate r, is chosen, where 
there are n, respondents and no nonrespondents. Furthermore, suppose a 
random sample of no, of the no nonrespondents is followed-up with 
complete success, where n, = no - no, is the number of non-followed-up 
nonrespondents. Multiple imputations for the n, missing values are then 
created from the no, followed-up nonrespondents using an ignorable 
repeated-imputation scheme that is proper for { j ,  s2(n-' - N - ' ) }  as 
defined in Section 4.2. For instance, using the approximate Bayesian 
bootstrap introduced in Example 4.4, draw no, values with replacement 
from the no, followed-up nonrespondents' values, and then randomly draw 
the n, missing values from the no, values so chosen. Inferences for the 
population mean will be drawn using the standard complete-data statistics 
j and s2(n-'  - N-' ) ,  so that with large rn the estimate for J is E,(J) with 
standard error [E,[s2(n-'  - N-' ) ]  + V*(J)]'/' where E* and V, refer to 
the mean and variance over the repeated imputations. Straightforward 
algebra shows that the expectation of 7 over repeated multipie imputations 
is 

(6.6.2) 

where jo1 is the average r; for the no, followed-up nonrespondents; (6.6.2) 
is the standard randomization-based estimate of 7 with 100% follow-up 
response in a simple random sample ie.g., examine formula (13.14) from 
Cochran, 1977, p. 3711. Furthermore, when sample sizes are large, 



EXTENSIONS TO SURVEYS WITH FOLLOW-UPS 

and 
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E*[s2(n-' - A'-')] = [(nl - 1)s: + (no - 1)S;l 

+ (nlno/n)( jjl - j701)2] (n-' - A'-') (6.6.4) 

where is the sample variance of the nol followed-up nonrespondents' 
values of Y,. Examination of (6.6.3) shows that V , ( j )  estimates: (the 
population variance of Y; among the nonrespondents) times (the fraction 
of the population units that are nonrespondents) times (the ratio of 
sample sizes for nonrespondents to followed-up nonrespondents minus 
one). Examination of (6.6.4) shows that E*[s2(n-' - A'-*)] estimates 
(the population variance of the Y;) times the usual standard error factor, 
( n -  - N - I ) .  Thus, the repeated-imputation standard error 
for r, [E*[s2(n-'  - N-')] + V*(jj)]1/2, is essentially the same as that 
suggested by the double sampling approach [e.g., examine formula (13.15) 
from Cc-chran, 1977, p. 3711. 

Ignorable Hard-core Nonrespnse Among Follow-Ups 

Suppose now that a random sample of nonrespondents is taken and 
followed up, but that this effort is less than 100% successful so that there 
are hard-core nonrespondents among the follow-ups. In some cases, it 
might be reasonable to assume because of the construction of the follow-up 
survey that this second stage of nonresponse is ignorable even though initial 
nonresponse is not ignorable. For example, perhaps no nonrespondents in 
the follow-up were refusals, and the reasons for follow-up nonresponse 
(e.g., not at home) are considered to be unrelated to the values of the 
outcome variable. 

In such a case the observed values from the followed-up nonrespondents 
can be treated as if they were the result of 100% follow-up response, and so 
an ignorable method of Chapter 5 can be used, as was illustrated in 
Example 6.3. That is, we can simply act as if the hard-core nonrespondents 
were never sampled. Of course this would not be appropriate if hard-core 
nonresponse is thought to be nonignorable. 

Nonignorable Hard-core Nomespnse Among Follow-Ups 

One way to create multiple imputations with hard-core nonresponse is to 
treat the follow-up survey of the nonrespondents as the entire survey. That 
is, treat the group of initial nonrespondents as the population, treat the 
group of followed-up nonrespondents as the sample, treat the successfully 
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followed-up nonrespondents as the respondents, and treat the hard-core 
nonrespondents as the nonrespondents. Then apply tbe methods ap- 
propriate for nonignorable nonresponse discussed in the earlier sections of 
this chapter to the sample of followed-up nonrespondents to multiply 
impute missing values for the hard-core nonrespondents. Now handle the 
missing values from the non-followed-up nonrespondents as with 100% 
follow-up response. More explicitly, we take one draw of missing values for 
the hard-core nonrespondents using a nonignorable model, and then treat- 
ing the drawn values as data just like the real data from successful 
followed-up nonrespondents, take one draw of the missing values for the 
non-followed-up nonrespondents using an ignorable model just as with a 
fully successful follow-up wave. These two steps create one draw of all 
missing values. 

Waves of Follow-Ups 

Waves of follow-ups are treated by analogy with the previous discussion. 
Start at the last follow-up wave and impute once for the hard-core nonre- 
spondents, using, in general, a nonignorable model; then treating these 
imputed values as real, impute for the non-followed-up nonrespondents in 
this last wave using an ignorable model. Then move up one level of waves 
and impute for that wave’s missing values. Continue until all values are 
imputed; repeat the procedure to create multiple imputations. 

Each step can be carried out just as if it involved only one wave of 
follow-up sampling. The theoretical justification for this fact is closely 
connected with the results on monotone-distinct structure presented in 
Section 6.3 for the case without waves of nonresponse. The simplicity of the 
procedure requires the a priori independence of parameters for the different 
waves of nonresponse. In cases where the numbers of successfully followed 
up nonrespondents at some waves are small, it would be wise to try to 
borrow strength across the waves, and then the resulting procedure would 
be more complicated. 

6.7. FOLLOW-UP RESPONSE IN A SURVEY OF DRINKING 
BEHAVIOR AMONG MEN OF RETIREMENT AGE 

We illustrate the use of multiple imputation when there exist followed-up 
nonrespondents using data from a mailed survey of alcohol consumption 
among men of retirement age. This example is from Glynn, Laird, and 
Rubin (1986) and involves men participating in an ongoing study, the 
Normative Aging Study, who were between 50 and 69 years old in 1982 
with known retirement status. 
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A total of 1384 men in the Normative Aging Study with known retirement 
status were sent the mailed questionnaire; 1272 provided information on 
drinking behavior [Y = log(1 + number of drinks per day)], whereas 112 
were initial nonrespondents. Of these 112 initial nonrespondents, 38 eventu- 
ally provided values of Y. Table 6.5 provides some basic statistics for this 
data set. We will consider the follow-up survey to be entirely successful in 
the sense that we will draw multiple imputations for the 74(= 112 - 38) 
missing Y values using the followed-up nonrespondents data and an 
ignorable procedure. 

The Modeling Task 

The model for the initial nonrespondents is a normal linear regression 
model for Y on X = (constant, retirement status, birth year, retirement 
status X birth year), where the standard noninformative prior was used for 
the regression coefficients, B, and the conditional variance u2. Thus, this 
model is formally identical to the ignorable model of Example 5.1, where 
the 112 initial nonrespondents are treated as the sample and the 38 
followed-up nonrespondents are treated as the respondents. 

The Estimation Task 

The estimation task can be summarized using the usual least-squares 
statistics for the regression of Yon X for the 38 followed-up nonrespon- 
dents. For purposes of comparison, Table 6.6 also provides the least-squares 
summaries for the corresponding regression of Yon X for the 1272 initial 
respondents. The posterior distribution for the nonrespondents’ variance, 
a’, is 34(.565)’/& and given u 2  the posterior distribution for the nonre- 
spondents’ regression coefficient, p, is normal with mean given by the 
least-squares estimate and variance-covariance matrix given by a ’( X ‘ X ) -  ’. 
This completes the estimation task. 

The Imputation Task 

The imputation task is very straightforward and is repeated five times to 
create five imputations: 

1. Draw (PI a2)  from its posterior distribution formulated in the estima- 
tion task; say /3*, a:. 
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indepen- 2. Draw the 74 non-followed-up nonrespondents' values of 
dently as 

= X,P, -+ u*z,, i E mis 

where the z, are i.i.d. standard normal deviates. 

Table 6.7 provides the five values of (8, a') that were drawn and Table 6.8 
provides the five values of Y,,,. 

TABLE 6.6. Summary of least-squares estimates of the regression of log(1 + drinks / 
day) on retirement status (0 = working, 1 = retired), birth year, and retirement status 
X birth year interaction." 

Estimates Based on 
1272 Respondents to 

Estimates Based on 38 Nonrespondents 
from Whom logfl + drinks/day) was 

the 1982 Questionnaire Later Obtained 

Variable Coefficient Standard Error Coefficient Standard Error 

Retirement 0.334 0.166 

Birth year 0.0144 0.00434 
Retirement x -0.0141 0.00747 

Constant 0.00161 0.0159 

status 

birth year 

R2 = 0.0091 
Standard Deviation 

= 0.568 

- 0.589 0.900 

- 0.0292 0.0252 
0.0372 0.0385 

- 0.0280 0.0948 

R2 = 0.122 
Standard Deviation 

= 0.565 

"Source: Glynn, Laird and Rubin (1986), Table 7. 

TABLE 6.7. Five values of regression parameters for nonrespondents drawn from 
their posterior distribution." 

Imputation Number 

1 2 3 4 5 

Retirement status - 0.055 0.38 -0.10 -1.95 -1.03 
Birth year 0.0036 -0.0034 0.0067 -0.088 -0.017 
Retirement x - 0.026 0.016 0.029 0.087 0.063 

birth year 
Constant -0.010 -0.13 -0.037 -0.104 -0.021 
Standard deviation 0.51 0.55 0.59 0.58 0.60 

"Source: Glynn, Laird, and Rubin (1986). Table 18. 



TABLE 6.8. Five imputed values of log( 1 + drinks / day) for each of the 74 
non-followed-up nonrespo&ntsP 

Imputation Number Imputation Number 

1 2 3 4 5  1 2 3 4 5  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

0.0 0.0 1.6 0.8 0.6 
0.0 0.9 1.0 0.0 0.7 
0.0 0.9 1.1 0.0 0.9 
1.4 0.3 1.3 0.0 0.4 
1.0 0.5 0.6 0.6 1.7 
0.3 0.9 0.7 1.7 0.0 
1.5 1.0 0.6 1.8 2.0 
0.8 1.2 0.6 0.6 0.7 
0.0 0.0 0.6 1.5 0.9 
0.0 0.4 0.0 0.5 1.4 
0.3 0.3 0.0 0.5 1.5 
1.0 0.5 0.8 1.7 0.1 
0.0 0.5 1.5 0.0 1.3 
1.4 0.1 0.0 0.0 0.6 
0.6 1.6 0.0 2.1 0.9 
0.6 0.2 0.0 0.0 0.3 
1.4 1.5 0.3 0.5 1.7 
1.1 0.5 1.7 1.1 0.5 
1.1 0.0 0.7 1.3 0.4 
0.3 0.0 1.1 0.0 0.7 
1.7 0.0 0.5 0.4 0.4 
0.3 0.0 0.0 0.0 1.1 
0.3 0.7 0.0 0.0 0.2 
0.0 0.0 0.3 0.6 0.8 
0.4 0.0 0.7 2.4 0.9 
1.0 0.5 1.0 0.0 0.4 
0.5 0.4 0.8 0.0 0.5 
1.0 0.3 0.5 0.2 0.1 
0.8 0.9 0.7 0.1 2.1 
0.2 0.0 0.0 2.0 1.4 
0.4 0.8 0.0 0.3 0.2 
0.8 0.1 0.1 0.0 1.3 
1.0 0.5 0.0 0.7 0.3 
1.1 1.2 0.0 1.6 1.0 
0.8 0.6 0.5 0.5 0.9 
0.3 0.0 1.1 0.9 1.1 
0.8 0.0 1.8 0.0 0.6 

38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 

1.7 0.7 0.9 0.0 0.1 
1.3 0.0 0.7 0.1 0.0 
0.6 0.1 1.0 0.7 0.9 
0.4 1.2 0.0 0.0 0.0 
0.2 0.0 0.6 0.1 1.0 
0.3 0.8 0.6 0.0 1.1 
1.0 0.0 1.0 0.0 0.4 
0.7 0.0 0.7 0.4 0.4 
0.4 0.0 1.5 0.2 0.6 
1.6 0.4 0.1 0.5 0.6 
0.7 1.0 1.2 1.0 0.6 
0.9 0.3 1.0 0.0 1.8 
0.2 0.0 0.1 0.0 0.6 
0.8 1.3 0.7 0.2 0.2 
0.0 0.5 0.9 0.4 0.3 
0.0 0.9 1.1 1.5 0.5 
0.0 0.0 0.8 0.7 0.9 
0.5 0.0 0.7 0.1 0.9 
0.0 0.2 0.1 0.0 1.5 
0.0 0.0 0.2 0.0 0.0 
0.9 0.8 0.3 1.2 0.7 
1.0 0.5 1.5 0.6 1.2 
0.4 1.4 0.2 0.0 0.0 
0.6 0.4 0.4 0.4 0.2 
1.0 0.3 0.7 0.8 0.3 
0.0 0.3 0.1 0.4 0.4 
1.2 0.2 0.0 0.0 0.0 
0.0 0.7 1.1 0.4 0.0 
0.6 0.0 0.0 0.0 0.0 
1.1 1.2 1.0 0.4 0.0 
0.4 0.4 1.0 0.9 0.5 
1.6 0.2 1.3 1.6 0.6 
0.5 2.0 1.0 0.5 1.3 
0.8 0.9 0.1 0.0 0.0 
0.8 1.2 0.6 0.5 0.7 
0.6 0.6 0.4 0.0 1.0 
0.0 1.1 0.0 1.6 1.1 

"Source: Glynn, Laird, and Rubin (1986). Table 19. 
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TABLE 6.9. Sets of least-squares estimates from the five data sets completed by 
imputation." 

Imputation Number 

1 2 3 4 5 

Retirement status 0.243 0.237 0.244 0.126 0.217 
Birth year 0.0106 0.00953 0.01180 0.00594 0.01025 
Retirement x - 0.00907 - 0.00854 - 0.00917 - 0.00420 - 0.00790 

Constant - 0.00620 - 0.0133 - 0.00658 -0.01112 - 0.00321 
birth year 

Standard deviation 0.565 0.567 0.565 0.574 0.567 

"Source: Glynn, Laird, and Rubin (1986), Table 20. 

Inference for the ERect of Retirement Status on Drinking Behavior 

In the absence of nonresponse, inferences about the effect of retirement 
status on drinking behavior adjusting for age (birth year) would have been 
drawn by the investigators involved by regressing Y, on X, using ordinary 
least squares. With multiple imputation, the same analysis is now carried 
out on each of the five data sets completed by imputation; the five result- 
ing estimates of ( B ,  a ' )  are given in Table 6.9. The usual repeated-data 
estimates and standard errors are formed from the five complete-data 
estimates and standard errors; the results are summarized in Table 6.10. 

The results suggest a possible relationship of retirement status and 
drinking behavior after adjusting for age. It is interesting to note that the 
fractions of missing information, as displayed in Table 6.10, can be larger 

TABLE 6.10. Repeated-imputation estimates, standard errors, and percentages of 
missing information for the regression of log(1 + drinks/day) on retirement 
status, birth year, and retirement status X birth year interaction." 

Standard Percent of 
Estimate Error Missing Information 

Retirement status 0.213 0.168 9.1 
Birth year 0.00962 0.00480 22.5 
Retirement x - 0.00778 0.00747 7.7 

Constant - 0.00809 0.0159 6.7 
Standard deviation 0.568 

"Source: Glynn, Laird, and Rubin (1986), Table 21 

birth year 
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than the fraction of r;. values that are missing (74/1384 = 5%). This occurs 
because the nonrespondents' and respondents' regressions of r; on Xi and 
marginal distributions of Xi are different (see Table 6.6 for the regressions 
of r; on Xi, and Table 6.5 for the marginal distributions of Xi) .  

PROBLEMS 

1. 

2. 

3. 

4. 

5. 

6. 

Suppose that (Y., Xi) have a multivariate normal distribution with 
common correlation among all pairs of variables. Describe the model- 
ing, estimation, and imputation tasks with nonignorable nonresponse. 
Describe a log-linear formulation analogous to the one in Problem 1 
when (T, Xi) are categorical. 
Suppose that there are K patterns of missing values across the units 
included in the survey, and let f l ( k ) ,  k = 1,. . . , K be the parameter 
governing the distribution of Y;. given Xi for each pattern, where the 
Kth pattern has no missing data. Consider models that posit 

K- 3 

Discuss the possible use of such models in practice (hint: when K = 2, 
consider the model in Section 6.4 and extensions). 
Discuss possible pathways for building nonignorable models that 
incorporate realistic prior information other than the models discussed 
in this chapter (e.g., see Rubin, 1978a). In particular, consider the role 
of exchangeability assumptions across variables and across patterns of 
nonresponse. 
In the context of the selection model of Example 6.2, investigate the 
normality of the posterior distribution of 0. Also comment on the use 
of standard results (e.g., at p = 0, p and a are a posteriori indepen- 
dent; what happens when p # O?). 
In the context of the simple case of Section 6.2, suppose the no values 
to impute are drawn with replacement with probability proportional 
to the value to be imputed from nI values drawn using the approxi- 
mate Bayesian bootstrap. Under what explicit nonignorable model is 
this implicit procedure approximately appropriate? Evaluate the per- 
formance of the repeated-imputation inference for based on the 
standard complete-data statistics. 
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7. 

8. 
9. 

10. 

11. 

12. 
13. 
14. 
15. 

16. 
17. 

Carry out a frequentist evaluation of the mixture model and selection 
model approaches of Example 6.1 and 6.2 in specific cases. 
Prove Result 6.1. 
Prove Result 6.2. 
Describe a realistic example in which it would be unwise to assume 
BY1, is a priori independent of ( B x , B R , x ) ,  and specify a more 
reasonable prior distribution in this example. 
Describe the estimation and imputation tasks for the model proposed 
in Problem 10. 
Prove Result 6.3. 
Prove Result 6.4. 
Prove Result 6.5. 
Develop precise notation for the case of monotone missingness with 
nonignorable nonresponse. 
Prove Result 6.6. 
Suppose Pr(X, Y, R) is a selection model. Further suppose that given 
(XI, q, BRIxy), the probability of nonresponse on components of r, 
included in the sample does not depend on components of Y; excluded 
from the sample: 

Comment on this assumption. Interpret it in the context of a 
specific example, and consider how it relates to Examples 3.6 and 
3.7. 
Write the posterior distribution of Ye,, as 

and integrate over Re,, and B = (Ox,, eRIXY) to obtain 

(c) Conclude that under the assumptions of the problem the com- 
plete-data and completed-data posterior distributions of any Q are 
equal. 
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Prove the claim following Result 6.6 concerning selection modeling 
and monotone missingness. Also, are the conditions stated there 
necessary for the estimation and imputation tasks to reduce to a 
sequence of univariate estimation and imputation tasks when using the 
selection modeling approach? 
Accepting the model used in Section 6.4, justify the estimation and 
imputation tasks described there. Propose an alternative model (e.g., 
one based on a logistic regression model), and comment on the relative 
simplicity of the estimation and imputation tacks. 
Criticize the model used in Section 6.5. How valid is step 1 in the 
imputation task, and should the results be trusted (hint: see Problem 
5)? Propose an alternative model and discuss relative strengths and 
weaknesses. 
Describe how to use all data in the Example of Section 6.5, CPS and 
administrative, to create multiple imputations for CPS missing values. 
Discuss whether such a procedure could be used in practice. 
Develop precise notation extending the notation already established to 
handle waves of follow-up sampling and hard-core nonresponse with 
multivariate Y;. 
Prove that the posterior distribution of 8, is proportional to (6.6.1) in 
the simple case of that equation. 
For the case of Example 6.3, describe the steps of a multiple-imputa- 
tion scheme assuming nonresponse is ignorable. 
Prove the large-sample results of Example 6.3 (hint: let j*, = 
( n l / n ) j l +  (no/n"o1/n)70ol2+ (b3/n0)79,I7 am-l s:* = Knl - 11s: 
+(no - l)s,2, + nlno(y1 - Yo) I A n  - 11, so/ = - * * 1 
Derive small-sample expressions for E*( j ) ,  E*( s 2 ) ,  and V,( j )  in the 
context of Example 6.3 for 
(a) the Bayesian bootstrap, 
(b) the approximate Bayesian bootstrap, 
(c) fully normal imputation, 
(d) the mean and variance adjusted hot-deck. 
Propose a method of multiple imputation for the case of Example 6.3 
when nol is small, and derive its frequentist properties. 
Outline methods for multiple imputation in the case of Example 6.3 
extended to include hard-core nonresponse. 
Provide a flow chart for a general multiple-imputation scheme when 
there are waves of follow-up sampling and parameters for the waves 
are a priori independent. Prove that the procedure can be applied 
independently across waves. 
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18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 
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30. 

31. 

32. 

33. 

34. 

35. 

Comment on the relative ease of deriving inferences analytically with 
waves of followed-up nonrespondents (e.g., extending results in Coch- 
ran, 1977) versus relying on the general theory of multiple imputation 
to simulate results. 
Review the statistical literature on methods for nonignorable nonre- 
sponse (hint: check Little, 1982, 1983b; Moms, 1983b and the bibli- 
ographies in the NAS volumes on incomplete data). 
Discuss general ways of borrowing strength across waves of nonre- 
spondents when creating multiple imputations. 
Undercouerage. Suppose we have a sample of n values of y, but N is 
not known. Describe how to create multiple imputations for the 
unobserved N - n values of Y( when the Y( i = 1 ,..., N are i.i.d. 
N ( 0 , l )  and observed only if r, > c, c known. Extend these results to 
r, i.i.d. N ( p ,  a’) where p, u 2  are to be estimated and is observed 
only if > c1 or c c2 .  
Undercoueruge continued. Extend the results of Problem 32 to cases 
where c1 and c2 must be estimated. Consider further extensions to 
cases where I: is always observed if c1 < r; < c2 and possibly ob- 
served otherwise. Compare results with methods suggested in Wachter 
and Trussel (1982) for estimating p, a*. 

Undercouerage continued. Comment on the sensitivity of results to the 
norrnahty assumption and the general applicability of such methods 
for handling undercoverage in practice. Suggest better methods for 
handling undercoverage. 
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Inclusion in survey, I, 29 
Income nonresponse, 5-6, 9, 178-186, 

Increase in posterior variance due to 

Indexing of units, 27 
Indicator variables, I, R, 29-30 
Inestimable parameters, 186-188 
Inference for nonrespondents, 184-185 
Information: 

222-229 

nonresponse, 86 

expected total, 85-86 
fraction missing due to nonresponse, 77, 

86,93-99, 132, 201 

missing, 15, 18, 132, 186,222, 239-240 
and observed, 85-86 

variable fractions missing, 98-99, 141 
Internal Revenue Service (IRS), 178 
Interval estimates, 21, 25, 54-68, 70, 77 

Bayesian, 49 
large-sample coverages, 134-135 
small-sample coverages, 135-136 

Item nonresponse, 5 
Iterative algorithm, 192, 225. See also EM 

algorithm 

Kernel density estimation, 196 

Large sample, see Asymptotic results, 
standard; Asymptotic sampling 
distributions of procedures; 
Efficiency, asymptotic 

Least-squares: 
computations, 47 
regression, 79-81, 159 

Limiting normal distributions, 66-67 
Linear interpolation, 153 
Linear regression, 69, 79-81, 112, 159, 

166-169, 173-174, 181. See also 
Normal linear regression 

Logistic regression, 10, 169-170, 180, 197, 

Logit function, 169 
Log-linear model, 240 
Lognormal model, 111, 136, 148-149 
Longitudinal surveys, 171 

Marginal distribution, 40 
Matching methods, 157-158 
Matching variables, 9 
Mathematical statistical approaches, 11 
Maximum-likelihood estimates, 67 
Mean and variance adjusted hot-deck 

224-229,242 

imputation method ( M V ) ,  124-125, 
136, 151-152, 172,242 

Mean-square random variable, 91 
Method of moments, 101, 109 
Metric-matching, 158-159 
Missing at random, 53-54 
Missing-data indicators, 53 
Missing information, see Information 
Missing values, Y,, 48 
Missingness: 

file matching patterns, 186-188,198 
general patterns, 186-195 
monotone patterns, 170-186,214-215 
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Mixture modeling, 207-209,214-222, 234- 

Modeling task: 
240 

complications with general pattern of 

example: 
missingness, 189-195 

with CPS data, 179-180, 224 
with ETS data, 216-219 
with follow-up response, 235 
with mixture model, 216-219 
with Normative Aging Study data, 235 
with selection model, 224 

with monotone-distinct structure and 
ignorable nonresponse, 171-178 

with nonignorable nonresponse, 205- 
206,210-212 

theory, 160-161, 163-165 

Models for data, 39-47 

Monotone-distinct structure, 174-186,214 
Monotone missingness, 170-186,214-215 
Multinomial distribution, 124 
M V ,  see Mean and variance adjusted hot- 

explicit with univariate Y,, 166-171 

deck imputation method 

National Academy of Sciences Panel on 
Incomplete Data, 4 

Nested missingness, see Monotone 
missingness 

Nominal coverage, 58-59 
Nonignorable hard-core nonresponse 

among follow-ups, 233-234 
Nonignorable imputed values from 

ignorable imputed values, 203-204 
Nonignorable nonresponse, 22, 202-243 

Noniterative algorithm, 192. See &o SIR 

Nonnormal reference distributions, 148 
Nonscientific surveys, 38 
Nonsurvey contexts, 3-4 
Normal asymptotic distributions, 66-67 
Normal bivariate data, 187-188 
Normal linear model with hot-deck 

component, 168 
Normal linear regression, 46-47,69, 166- 

with univariate Yi, 205-210 

algorithm 

169,173-174, 180, 188-189, 194- 
195,216-222,224-229,235-239 

82-83, 87, 92-93, 135-136 
Normal model, 40-42,46-47,56,68-69, 

Normal reference distribution, 54, 75 
Normality of posterior distributions, 66-67 
Normative Aging Study example, 7, 10-11, 

Notation, iv 
Not observed values, Ymb, 48 

234-240 

OASDI (old age-survivor and disability 
income) benefit amounts, 179 

Observational studies for causal effects, 158 
Observed values, Y&, 48 
Occupation codes. 6-7, 10 
Outcome variables, Y,  29 

Painvise-present correlation matrix, 24 
Parameter, 27 
Partial correlation, 187-188 
Patterns of missing values, see Missingness 
Point estimates, 62 
Population fractions of information missing 

Population quantities, 28 
Posterior cumulative distribution function, 

Posterior distribution, 48-50, 62 
Posterior mean and variance, 84 
Poststratified estimator, 70 
Power calculations, 141 
P.P.s. (probability proportional to size) 

estimator and sampling, 36,69, 193 
Predictive mean hot-deck imputation, 168 
Prior distribution, 40 
Probability distributions, 31-35 
Propensity score methods, 158, 197 
Proper multiple-imputation methods, 118- 

Public-use data bases, 5-7, 9-10 
p-values, see Significance levels 

due to nonresponse, 139 

83 

128 

Quadratic regression, 112 

Random nonresponse, 13 
Randomization-based coverage, definition: 

fixed-response, 56-58 
random-response., 58 

Randomization-based inference, 4, 22-23, 

Randomization-based random-response 
54-68,70-74 

evaluations, 113-153 
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Randomization-based validity: 
of complete-data inference, 118 
of repeated-imputation inference, 116- 

117, 119-120 
Randomization theory, 39 
Rate of convergence, 108, 132 
Ratio estimator, 19, 69 
Regression model, see Linear regression; 

Logistic regression; Normal linear 
regression 

sample, 114 

nonresponse, 77-78 

Relative efficiency of point estimates, large 

Relative increase in variance due to 

Repeated-imputation, 75, 77 
between variance, 76 
chi-squared statistics, 99-102 
estimator, 76 
inferences, 75-81 
interval estimation, 77 
sigm6cance levels: 

based on combined estimates and 

based on repeated complete-data 
variances, 77-78 

significance levels, 78-79 
total variance, 76 
within variance, 76 

Response behavior, 24 
Response in survey, R, 30 
Response mechanism, 38-39 

confounded, 39 
ignorable, 51-54 
probability, 39 
unwnfounded, 39, 52 

SamplinglImportance Resampling 

Sampling mechanism, 35-36 
algorithm (SIR), 192-195 

confounded and nonprobability, 38 
ignorable, 50-54 
probability, 36 
unconfounded, 36,52 
unconfounded probability, 37 

Scalar estimands, derivation of repeated- 
imputation inferences, 87-94 

Scientific sampling techniques, 36 
Selection modeling, 207,209-210, 215, 

Sensitivity of inference to models for 
222-229, 241-242 

nonresponse, 7-11, 1617,202, 221- 
222 

Sequential sample surveys, 31,36 
Significance levels, 60-61, 77-79 

based on average p-values, 107-108 
based on moments, 137-144 
based on repeated likelihood ratio or x2 

based on significance levels, 144-147 
derivation of repeated-imputation 

randomization-based evaluations, 137- 

Simple random imputation, 14-15, 120-123 
Simple random sample, 13, 19, 24-25 
Simulating missing values: 

ABB method, 124 
BB method, 123-124 
FN method, 83, 123 
follow-up response, 235-237 
hot-deck, 14-15 
logistic regression, 170 
mixture model, 208,219-220 
h4V method, 124-125 
normal linear model, 167 
normal model, 83, 124 

selection model, 225-226 
SIR algorithm, 193 

tests, 99-102 

inferences, 94-102 

147 

with hot-deck component, 168 

Simulating posterior mean and variance, 85 
Simulation, % 
SIR algorithm, 200 
Skewness, 155 
Social Security benefits, 178 
Stable response, 30-31 
Stages of sampling, 31 
Statistical matching of files, 186-188 
Statistics Canada, 158,1% 
Stochastic imputation, 25 
Storage requirements, 18 
Stratified random sampling, 36 
Superpopulation approach, 73 
Survey nonresponse, definition, 1-2 
Sweep operator, 191, 199 
Symmetry of distributions, 17 

Transformations, 127-128, 168-169, 203 
r reference distribution, 56, 77, 92, 130 
Two-stage sampling, 31 

Unclassified households, 9 
Undercoverage, 243 
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Unit nonresponse, 5 
Univariate y., 156-157, 165-171 

Valid inferences, desirability of, 16 
Variable-caliper matching, 158 
Veterans Administration, 7 

SUBJECT INDEX 

Wald test statistics, 71 
Waves of follow-ups, 230,234 
Weighted analysis, 151 
Weighting cell estimators, 1% 
Weighting data to handle nonresponse, 8 
Within-imputation variance, 21 




