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“Both sides in the math wars claim Dr. Ma as their own. This book’s broad appeal offers some 
hope for common ground in math education…. We will continue fights over whether children 
should be taught arithmetic rules or theory. What Dr. Ma shows is that we need both.”
—New York Times

“Liping Ma’s work has given me hope about what can be done to improve mathematics 
education.”
—Richard Askey, Professor of Mathematics, University of Wisconsin-Madison

“A stealth hit for math junkies on both sides of the ‘math wars’, and a must read for anyone 
interested in solving the problems of public schools.”
—Christian Science Monitor

“This book supports the need for, and indeed the educational benefits of, changing profes-
sional teaching conditions for U.S. teachers.… It provides some food for thought for every-
one involved in improving mathematics education. And it supports the necessity that even 
at the elementary school level, students can, and should, learn challenging mathematics.”
—National Council of Teachers of Mathematics News Bulletin

Studies of teachers in the United States often document insufficient subject matter knowl-
edge in mathematics. Yet, these studies give few examples of the knowledge teachers need 
to support teaching, particularly the kind of teaching demanded by recent reforms in math-
ematics education. Knowing and Teaching Elementary Mathematics describes the nature 
and development of the knowledge that elementary teachers need to become accomplished 
mathematics teachers, and suggests why such knowledge seems more common in China 
than in the United States, despite the fact that Chinese teachers have less formal education 
than their U.S. counterparts.

The anniversary edition of this bestselling volume includes the original studies that 
compare U.S. and Chinese elementary school teachers’ mathematical understanding and 
offers a powerful framework for grasping the mathematical content necessary to under-
stand and develop the thinking of school children. Highlighting notable changes in the field 
and the author’s work, this new edition includes an updated preface, introduction, and key 
journal articles that frame and contextualize this seminal work.

Liping Ma earned a Ph.D. from Stanford University, following a masters degree in educa-
tion from East China Normal University. After a term as a senior scientist at the Carnegie 
Foundation for the Advancement of Teaching, she is now an independent scholar.
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Author’s Preface to the Anniversary Edition

I must admit that I did not expect this book to be a success. About twelve years ago, when I 
decided to devote my effort to turning my doctoral dissertation into a book, my motivation 
was very simple. I did not feel good thinking that my dissertation, which had taken so much 
of my passion and work, would sleep forever on the shelf in the Stanford School of Educa-
tion Library. My dissertation should not merely be a “test” for me in earning a degree; it 
should serve others, in particular, classroom teachers. Indeed, this simple feeling pushed 
me to undertake the creation of this book. Now, ten years after its publication in 1999, over 
70,000 copies have been sold.

A few years ago, I paid a visit to a beautiful east coast city. On Saturday, in the middle 
of my morning walk, I was stopped by a blocked street. The excited people standing on the 
sidewalk told me that they were waiting for the annual cross-city footrace to pass by. A few 
minutes later, the procession began. Runners—male, female, young, old, smiling, serious, 
alone, accompanied by friends and family—covered the wide street in front of me. They 
kept on coming. It took about twenty minutes for all the runners to pass the place where 
I stood. “There are so many people!,” I exclaimed. “This year we have about 40,000 run-
ners,” someone replied. The number struck me—it was the number of copies of my book 
that had been sold. Only when I physically saw 40,000 people, was I aware of its signifi-
cance. I was moved—if the book benefited that many people, it was worthwhile work.

In the fall of 2003, I received a package mailed from Korea—two copies of my book in 
Korean were included. Last year, mathematics education scholars in China and Chile began 
to translate the book into Chinese and Spanish. I am told that before the end of 2009, the 
Chinese translation of the book will have been published.

It is not a surprise that the book has drawn attention from different countries—after all, 
it is based on a cross-national comparative study. Moreover, as my doctoral adviser Lee 
Shulman pointed out, I myself, as a scholar in education, have been nurtured by Chinese 
and American learning environments. Indeed, a cross-national perspective may help us to 
see what might be otherwise unnoticed. Now, I invite you to look at two pictures of math-
ematics education in the U.S. and China. Both illustrate aspects of education in the two 
countries, but the scenes they illustrate are one hundred years apart. 

The first picture is sketched in this book, which was published in 1999. A group of 
American teachers were interviewed and asked questions about four topics of elementary 
school mathematics. The same questions were asked of a group of Chinese teachers. The 
comparison of their responses constitutes the main content of this book.

Compared with their U.S. counterparts, the Chinese interviewees were significantly more 
proficient in the procedural aspect of all four topics, particularly in the more advanced top-
ics of division by fractions and area and perimeter. All the Chinese teachers attained the 
correct answer when computing , while only about half of the U.S. teachers did. Not 
a single Chinese teacher showed any hesitation in using formulas to find the perimeter and 
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area of a rectangle and a square, while almost all of the U.S. teachers in the study did not 
show this confidence and capacity.

The responses of the Chinese teachers also presented a significant depth with regard 
to conceptual understanding. The examples in the book show that when explaining the 
rationale underlying the arithmetic algorithms they used, the Chinese teachers were signifi-
cantly more cogent, articulate, and detailed than their U.S. counterparts. Their understand-
ing of the rationale underlying the algorithms indeed gave these teachers a clear and correct 
direction in which to lead their students’ learning of mathematics.

The reactions that I have heard in the two countries to the book echo these differences. 
My friends in Chinese mathematics education were puzzled. Why did I discuss the Chinese 
teachers’ knowledge in such detail? It is so common and so obvious. Everybody in math 
education knows it. U.S. teachers were also puzzled. That kind of knowledge makes a lot of 
sense. Why were we never taught it?

At this point we might conclude: It seems that the mathematical knowledge of Chinese 
teachers is much more advanced than that of U.S. teachers. This “gap” in teachers’ subject 
matter knowledge may remind us of the corresponding gap in students’ knowledge of math-
ematics. But now let’s turn back the clock and look at another picture. What did mathemat-
ics education in the two countries look like a hundred years ago?

Today it might be hard to believe this, but a hundred years ago most Chinese people 
had not even seen the Hindu-Arabic numeral system, let alone learned how to calculate 
with it. During the late 1880s, a U.S. missionary, Calvin Wilson Mateer, wrote the first 
Chinese textbook on Western arithmetic and used it to teach his Chinese students. The title 
of his book, “pen-calculation arithmetic,” suggests how it differed from traditional Chinese 
arithmetic—”abacus-calculation arithmetic.” At that time, writing numbers horizontally 
was unknown to the Chinese.1 The numeral system used in China did not have place value 
and was written vertically.2 In his textbook, Mateer carefully and thoughtfully introduced to 
Chinese people the Hindu-Arabic numeral system and algorithms in this system for addi-
tion, subtraction, multiplication, and division. With great care, he composed all kinds of 
“practical problems” that seamlessly fit everyday Chinese social and economic life, so that 
learners could easily benefit from the content of the book. That was the dawn of modern 
Chinese mathematics education. 

During the late 1800s, when the first few young Chinese students began learning arith-
metic from Mr. Mateer, mathematics education was flourishing in their teacher’s homeland 
on the other side of the globe. The U.S. states had begun to pass compulsory school atten-
dance laws, allowing their children to attend elementary school. In Massachusetts, seventy 
years before Mateer’s arithmetic textbook was published in China, Warren Colburn had 
published his famous textbook First Lessons in Arithmetic. By 1890, 3,500,000 copies of 

1 Daniel W.Fisher, 1911, Calvin Wilson Mateer, Forty-Five Years A Missionary in Shantung, China: 
A Biography, Westminster Press, p. 162.

2 There are three essentially different methods of arranging numeral characters to form a numeral 
system: additive, multiplicative, and positional notation. Roman numeration belongs to the cat-
egory of additive notation. Chinese numeration belongs to the category of multiplicative notation, 
and it used to be written only vertically. Hindu-Arabic numeration belongs to the category of 
positional notation.

Author’s Preface to the Anniversary Edition



xi

First Lessons had been sold in the United States.3 Its success launched a “storm” on the 
other side of the Atlantic. First Lessons was translated into several European languages 
and distributed in Europe.4 During the mid-nineteenth century, 50,000 copies per year were 
sold in England.5

Efforts like Colburn’s focused on teaching arithmetic to young children. By the time 
Mateer’s arithmetic textbook started to be widely distributed in China, another important 
accomplishment had occurred in mathematics education. The rise of public education had 
attracted the attention of mathematical scholars in the United States and Europe. Because 
of their academic training, they tended to follow the model of Euclid’s Elements which 
showed how the mathematical knowledge of Euclid’s time could be derived from a reason-
ing system based on a few basic principles. Although their approaches differed, the work of 
these nineteenth-century scholars had a common direction: to establish a reasoning system 
for arithmetic, and to weave that system into arithmetic textbooks for students in the middle 
and upper grades of elementary school. 

Before the development of this reasoning system, arithmetic was a purely “practical” 
and procedurally focused subject. It was mainly about how to “do” the four basic opera-
tions in order to solve problems in everyday life, and, perhaps, in everyday business. Fol-
lowing all the “steps” introduced in a textbook, one could learn how to make the necessary 
calculations. Understanding why these procedures worked was not necessary. With a rea-
soning system, however, arithmetic became not only “practical” but “theoretical”: it was 
not only about “how,” but also “why.”

In arithmetic with a reasoning system, every step in an algorithm can be traced back 
to a few basic principles that show why it works—just as the theorems in the Elements 
are proved from a few basic principles. In fact, what so impressed a U.S. audience about 
the interviews with the Chinese teachers—their conceptual understanding of elementary 
mathematics—simply illustrates the teachers’ understanding of the reasoning system for 
arithmetic that had been developed by U.S. and European scholars.

The establishment of the reasoning system for arithmetic, I would like to argue, was an 
essential step in transforming the traditional arithmetic that had mainly served as a tool for 
everyday life into a foundation for learning mathematics. Today, this transformed arith-
metic still serves as the core content of elementary school mathematics in many countries 
around the world.

So, in brief, what did mathematics education in U.S. and China look like one hundred 
years ago? In the U.S., more than half of the states had passed their compulsory school 
attendance laws by 1899. Serious work had been devoted to children’s mathematics educa-
tion for almost an entire century. Most significantly, the foundation for children’s learning 
of mathematics—arithmetic unified by a reasoning system—was in a complete, although 
early, form. In China, 1899 was seven years after Mateer’s Pen-calculation Arithmetic had 
been printed for the first time and five years before the Western school system was officially 
adopted. Arithmetic with a reasoning system was still unknown.

3 Florian Cajori, 1890, The Teaching and History of Mathematics in the United States, Bureau of 
Education, Circular of Education, No. 3, p. 106.

4 Scientific American Supplement, No. 455, September 20, 1884.
5 Walter S.Monroe, 1912, “Warren Colburn on the teaching of arithmetic together with an analysis of 

his arithmetic texts: I. The life of Warren Colburn,” The Ekmentary School Teacher, 12(9), p. 424.

Author’s Preface to the Anniversary Edition 
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These two pictures of mathematics education a hundred years apart are thought-provok-
ing, aren’t they? Why does the content of Chinese mathematics education, learned from the 
United States, now look so unfamiliar, so new to mathematics teachers and educators in 
this country? And, why is it that the “follower” of U.S. mathematics education, who was so 
far behind one hundred years ago, now seems to be so far ahead?

There seems to be no research that provides an explanation for this irony. When I inves-
tigated old U.S. mathematics textbooks, however, I found that early in the twentieth cen-
tury, the reasoning system for arithmetic was neglected and later abandoned. Unfortunately, 
there is no account that explains this removal of the reasoning system. I myself, how-ever, 
have an idea. My guess is that it was caused by an obstacle—the gap between the original 
presentation of the reasoning system and the features of children’s cognitive development. 

The reasoning system of arithmetic, established by mathematical scholars, was origi-
nally presented in a typical mathematical way. Mathematicians, of course, might approve 
and appreciate the rigor and parsimony of this presentation. But, from the perspective of lay 
people, it was dull, tiresome, and meaningless. Given that lay adults felt this way, it might 
be even harder for schoolchildren to find the reasoning system accessible. My conjecture 
is that the difficulty of overcoming this obstacle was a major reason for U.S. mathematics 
education to change direction.

There were other ways, however, to deal with the obstacle. Instead of changing direc-
tion, mathematics education in some countries, China among them, continued to include 
the reasoning system for arithmetic. Eventually, they found ways to overcome the difficulty, 
and were able to teach arithmetic with the reasoning system to school students. In Chi-
nese elementary mathematics, for example, the reasoning system was not abandoned, but 
absorbed into the curriculum. Teachers developed more explicit knowledge of this system. 
Some of that knowledge is reflected in the interviews of Chinese teachers in this book. In 
fact, I attribute the book’s enduring attraction to the interviews that reflect this powerful and 
beautiful reasoning system.

With this little book, I would like to call attention to the arithmetic that is unified by a 
reasoning system. I would like to urge the U.S. mathematics education community to have 
a serious investigation of arithmetic—to make a clear distinction between “practical arith-
metic” and arithmetic with a reasoning system, and to regain an understanding of the latter. 
Arithmetic with a reasoning system has served and still serves as the core of elementary 
mathematics content in many countries whose students outperform those of the United 
States. The transformed arithmetic, to which U.S. scholars contributed, was abandoned in 
their country, apparently without careful reflection. From what I observe, this arithmetic is 
almost unknown here, even among the mathematics educators who teach future mathemat-
ics teachers. I am not suggesting that this arithmetic should be immediately restored in this 
country. What I am suggesting is that unless we have a thorough understanding of it, we 
cannot make an informed decision about whether to keep it or abandon it.

I hope that what I have said provides another perspective for thinking about mathematics 
education. I thank the publisher of this book for giving me the opportunity to say it.

Liping Ma  
Palo Alto, California  

June 1, 2009

Author’s Preface to the Anniversary Edition



Series Editor’s Introduction to the  
Anniversary Edition

Liping Ma is a special person, and Knowing and Teaching Elementary Mathematics is a 
special book. How special? Well, just how many people do you know whose work has had 
such impact that it became the subject of a study by the National Academy of Sciences? 
(See the article by Fang and Paine reproduced at the end of this volume.) Fang and Paine 
provide some detail on Liping’s background, so I won’t repeat the details of her history. 
Suffice it to say that it was a great pleasure having Liping join my research group with the 
intention of converting her dissertation into a book, connecting her with Cathy Kessel, and 
working with the two of them to produce the final manuscript. Liping is passionate about 
her work, which she knows can make a difference. She brings to it the same sense of wis-
dom and determination that enabled her to survive her daunting responsibilities during the 
Cultural Revolution in China, her emigration to the United States, and her progress to the 
Ph.D. and beyond. But why has the book been so well received?

In my opinion, Knowing and Teaching Elementary Mathematics has the delightful prop-
erty that everyone who cares about mathematics teaching and learning will find something 
in the book that resonates deeply with their understandings—and, will learn from the book. 
I have roots in both the mathematical and educational communities (I began my career as 
a research mathematician, but turned my attention to research in mathematics education 
many years ago), so let me say why this book appeals to both the mathematician and the 
educator in me.

Speaking as a mathematician, I’ll simply say that it rings true mathematically. When I 
first read Liping’s work, my reaction was, “she knows what she’s talking about. She focuses 
on important mathematical ideas, and she gets them right. These are the kinds of under-
standings I want students to develop about mathematics.” The math Liping talks about is 
mathematics in which skills and understandings are deeply intertwined. In Liping’s world, 
and in mine, the mathematical operations we perform make sense. Whether it’s the subtrac-
tion algorithm, which is grounded in an understanding of base-10 arithmetic, or division 
by fractions, which can be understood in many different ways, the point is that math isn’t 
arbitrary. It isn’t made up of random rules, such as “ours is not to reason why; just invert 
and multiply.” Mathematics fits together in beautiful ways, and that comes through in Lip-
ing’s writing. I resonate strongly to that, and so, I suspect, do many of the mathematicians 
(e.g., Roger Howe and Dick Askey) who speak highly of the book. Reading it allows you to 
feel mathematical coherence. This is new to some, and resonates with others.

Speaking as a mathematics educator, I have exactly the same feelings of resonance. The 
mathematician in me knows lots about fractions. I can describe them as equivalence classes 
of ordered pairs, I can talk about the rational numbers being dense in the real numbers, and 
more. In fact, that’s the way mathematicians think: there’s lots of mathematics related to 
fractions, as we go up the ladder of abstraction. But Liping’s discussions pull us in another 
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direction, which is equally valuable in general and much more valuable in elementary 
school. She asks, what are the different ways you can think about fractions, so that you can 
help kids develop deeper understandings of them? See how many stories you can come up 
with to represent the division . It’s a challenge! Indeed, many mathematicians will 
soon run out of stories, because we’re not used to thinking about fractions in this way; we 
think about them in abstract terms. Yet, these different stories represent different ways of 
thinking about division. They help to develop a broad and robust understanding of what 
fractions are, and why the operations on them work the way they do. This breadth of knowl-
edge provides the “support structure” for truly making sense of fractions. Reading the book 
allows you to see the rich tapestry of elementary mathematics as it should be understood. 
This is new to some, and resonates with others.

In sum, this book offers riches for teachers and mathematicians both; it points the way to 
the kinds of deep understandings we want teachers to be able to help children develop. Ten 
years after its appearance, it is every bit as powerful and useful as when it first appeared.

Alan H.Schoenfeld  
Berkeley, California  

July, 2009

Series Editor’s Introduction to the Anniversary Edition
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In addition to the original text, this anniversary edition includes:

• A new author’s preface
• A new series editor’s introduction
• An examination of the impact of Knowing and Teaching Elementary Mathematics, by 
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Foreword
Lee S.Shulman  

The Carnegie Foundation for the Advancement of Teaching

This is a remarkable book. It is also remarkably easy to misunderstand its most important 
lessons. Liping Ma has conducted a study that compares mathematical understanding among 
U.S. and Chinese elementary school teachers as it relates to classroom teaching practices. 
What could be simpler? What could one possibly misconstrue? Let me count the ways.

• This book appears to be a comparative study of American and Chinese teachers of math-
ematics, but its most important contributions are not comparative, but theoretical.

• This book appears to be about understanding the content of mathematics, rather than its 
pedagogy, but its conception of content is profoundly pedagogical.

• This book appears to be about the practice of mathematics teaching, but it demands a 
hearing among those who set policy for teaching and teacher education.

• This book appears to be most relevant to the preservice preparation of teachers, but its 
most powerful findings may well relate to our understanding of teachers’ work and their 
career-long professional development.

• This book focuses on the work of elementary school teachers, but its most important 
audience may well be college and university faculty members who teach mathematics to 
future teachers as well as future parents.

I shall try to clarify these somewhat cryptic observations in this foreword, but first a brief 
biographical note about Liping Ma.

Liping became an elementary school teacher courtesy of China’s Cultural Revolution. 
An eighth-grade middle-school student in Shanghai, she was sent to “the countryside”—in 
her case a poor rural village in the mountainous area of South China—to be re-educated 
by the peasants working in the fields. After a few months, the village head asked Liping to 
become a teacher at the village school. As she has described it to me, she was a Shanghai 
teenager with but eight years of formal education struggling to teach all the subjects to two 
classes of kids in one classroom. Over the next seven years, she taught all five grades and 
became principal of the school. A few years later, she would be hired as the Elementary 
School Superintendent for the entire county.

When she returned to Shanghai filled with curiosity about her new calling, she found a 
mentor in Professor Liu, who directed her reading of many of the classics of education—
among them Confucius and Plato, Locke and Rousseau, Piaget, Vygotsky, and Bruner. 
Professor Liu eventually became president of East China Normal University where Liping 
earned a master’s degree. She longed to study even more, and to pursue her further educa-
tion in the United States. On the last day of 1988, she arrived in the United States to study 
at Michigan State University.
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At Michigan State University, she worked with, among others, Sharon Feiman-Nemser 
and Suzanne Wilson in teacher education, with Deborah Ball and Magdalene Lampert in 
mathematics education, and with Lynn Paine in comparative education. She participated 
in the development and analysis of a national survey of elementary teachers’ mathemati-
cal understandings, and marveled at the general misunderstandings that persisted among 
the U.S. teachers. They struck her as quite unlike the teachers she had come to know in 
China.

After a few years, her family chose to live in California, and Liping was admitted to 
the doctoral program at Stanford University to complete her coursework and dissertation. 
I served as her advisor and the Spencer Foundation awarded her a dissertation-year fellow-
ship to complete the study that forms the basis for this book. This support, along with con-
tinued help from Michigan State, made possible her travel to China to collect the data from 
Chinese teachers. After completing her Ph.D., Liping was awarded a two-year postdoctoral 
fellowship to work with Alan Schoenfeld at Berkeley, where she continued her research and 
where her dissertation was transformed into this superb book.

What are the most important lessons to be learned from this book? Let us return to the 
list of misconceptions I presented earlier and discuss them more elaborately.

This book appears to be a comparative study of American and Chinese teachers of 
mathematics, but its most important contributions are not comparative, but theoretical The 
investigation compares Chinese and American teachers and the Chinese, once again, know 
more. What could be simpler? But the key ideas of this book are not comparisons between 
American teachers and their Chinese counterparts. The heart of the book is Dr. Ma’s analy-
sis of the kind of understanding that distinguishes the two groups. Chinese teachers are 
far more likely to have developed “profound understanding of fundamental mathematics.” 
To say that they “know more” or “understand more” is to make a deeply theoretical claim. 
They actually may have studied far less mathematics, but what they know they know more 
profoundly, more flexibly, more adaptively.

This book appears to be about understanding the content of mathematics, rather than 
its pedagogy, but its conception of content is profoundly pedagogical. Liping Ma set out 
to account for the differences in content knowledge and understanding between U.S. and 
Chinese elementary teachers, but her conception of understanding is critical. She has 
developed a conception of mathematical understanding that emphasizes those aspects of 
knowledge most likely to contribute to a teacher’s ability to explain important mathematical 
ideas to students. Thus, her stipulation of four properties of understanding—basic ideas, 
connectedness, multiple representations, and longitudinal coherence—offers a powerful 
framework for grasping the mathematical content necessary to understand and instruct the 
thinking of schoolchildren.

This book appears to be about the practice of mathematics teaching, but it demands a 
hearing among those who set policy for teaching and teacher education. Policy-makers 
have become frantic in their insistence that future teachers demonstrate that they possess 
the knowledge of subject matter necessary to teach children. We are about to see tests of 
content knowledge for teachers proliferate among state licensing authorities. These cannot 
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be tests that assess the wrong kind of knowledge. Liping Ma’s work should guide policy-
makers to commission the development of assessments that tap profound understanding of 
fundamental mathematics among future elementary teachers, not superficial knowledge of 
procedures and rules.

This book appears to be most relevant to the preservice preparation of teachers, but its 
most powerful findings may well relate to our understanding of teachers’ work and their 
career-long professional development. Liping was not satisfied to document the differ-
ences in understanding between Chinese and American teachers. She also inquired into 
the sources for those differences. A critical finding (echoed in the work on TIMSS by 
Stigler and Hiebert) is that Chinese teachers continue to learn mathematics and to refine 
their content understandings throughout their teaching careers. Teachers’ work in China 
includes time and support for serious deliberations and seminars on the content of their 
lessons. These are absolutely essential features of teacher work. American teachers are 
offered no opportunities within the school day for these collaborative deliberations, and 
therefore can teach for many years without deepening their understandings of the content 
they teach. Chinese teachers, in contrast, work in settings that create learning opportunities 
on a continuing basis.

This book focuses on the work of elementary school teachers, but its most important audi-
ence may well be college and university faculty members who teach mathematics to future 
teachers as well as future parents. Given our understanding of mathematical understanding 
for teaching, where can future teachers initially learn such mathematics? In China, they 
learn such mathematics from their own elementary and middle-school teachers, enhance 
that understanding in the content courses at their normal colleges (teacher-education col-
leges), and further sustain and develop their knowledge in practice. The only place to break 
the vicious cycle that limits the mathematical knowledge of U.S. teachers is in the develop-
ment of far more effective mathematics courses in U.S. undergraduate programs. But cur-
rent undergraduate mathematics programs seem to have no place for teaching fundamental 
mathematics for profound understanding. If anything, such knowledge is misconstrued as 
remedial instead of recognizing that it is rigorous and deserving of university-level instruc-
tion. Mathematics departments must take responsibility for serving this national priority 
for both future teachers and future citizens.

Although only now being published, copies of earlier drafts of this manuscript have 
been circulating in the mathematics community for some time. In a recent letter, Liping’s 
postdoctoral mentor, Professor Alan Schoenfeld of the University of California at Berkeley, 
described the response to prepublication copies of this book vividly.

Liping’s manuscript has already gotten an amazing amount of notice. It’s an under-
ground hit, perhaps the only manuscript I know that has the attention and favor of 
both sides of the “math wars.” Many world class mathematicians are rhapsodic about 
it; at the annual mathematics meetings, people like [he lists several leading profes-
sional mathematicians] were walking advertisements for the book. That’s because it 
says content knowledge makes a difference. But at the same time, those who have 



Foreword xix

reform perspectives—those who value a deep and connected view of mathemati-
cal thinking, and who understand that teacher competence includes having a rich 
knowledge base that contains a wide range of pedagogical content knowledge—find 
that the book offers riches regarding content, teacher preparation, and teacher profes-
sionalism.

This is indeed a valuable, enlightening book. It attests to the talent of its author, and to the 
Chinese and American learning environments that have nurtured that talent. It attests to 
the value of welcoming scholars from other nations to study in the United States. I urge 
all those who are seriously concerned about the quality of mathematics education in the 
United States to read this book, and to take its lessons seriously.
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Introduction

Chinese students typically outperform U.S. students on international comparisons of math-
ematics competency. Paradoxically, Chinese teachers seem far less mathematically edu-
cated than U.S. teachers. Most Chinese teachers have had 11 to 12 years of schooling—they 
complete ninth grade and attend normal school for two or three years. In contrast, most 
U.S. teachers have received between 16 and 18 years of formal schooling—a bachelor’s 
degree in college and often one or two years of further study.

In this book I suggest an explanation for the paradox, at least at the elementary school 
level. My data suggest that Chinese teachers begin their teaching careers with a better 
understanding of elementary mathematics than that of most U.S. elementary teachers. 
Their understanding of the mathematics they teach and—equally important—of the ways 
that elementary mathematics can be presented to students continues to grow throughout 
their professional lives. Indeed, about 10% of those Chinese teachers, despite their lack 
of formal education, display a depth of understanding which is extraordinarily rare in the 
United States.

I document the differences between Chinese and U.S. teachers’ knowledge of mathemat-
ics for teaching and I suggest how Chinese teachers’ understanding of mathematics and 
of its teaching contributes to their students’ success. I also document some of the factors 
that support the growth of Chinese teachers’ mathematical knowledge and I suggest why 
at present it seems difficult, if not impossible, for elementary teachers in the United States 
to develop a deep understanding of the mathematics they teach. I shall begin with some 
examples that motivated the study.

In 1989, I was a graduate student at Michigan State University. I worked as a graduate 
assistant in the Teacher Education and Learning to Teach Study (TELT) at the National Cen-
ter for Research on Teacher Education (NCRTE) coding transcripts of teachers’ responses 
to questions like the following:

Imagine that you are teaching division with fractions. To make this meaningful for 
kids, something that many teachers try to do is relate mathematics to other things. 
Sometimes they try to come up with real-world situations or story-problems to show 
the application of some particular piece of content. What would you say would be a 
good story or model for ?

I was particularly struck by the answers to this question. Very few teachers gave a correct 
response. Most, more than 100 preservice, new, and experienced teachers, made up a story 
that represented , or . Many other teachers were not able to make up a story.

The interviews reminded me of how I learned division by fractions as an elementary 
student in Shanghai. My teacher helped us understand the relationship between division 
by fractions and division by positive integers—division remains the inverse of multiplica-
tion, but meanings of division by fractions extend meanings of whole-number division: 
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the measurement model (finding how many halves there are in ) and the partitive model 
(finding a number such that half of it is ).1 Later, I became an elementary school teacher. 
The understanding of division by fractions shown by my elementary school teacher was 
typical of my colleagues. How was it then that so many teachers in the United States failed 
to show this understanding?

Several weeks after I coded the interviews, I visited an elementary school with a reputa-
tion for high-quality teaching that served a prosperous White suburb. With a teacher-educa-
tor and an experienced teacher, I observed a mathematics class when a student teacher was 
teaching fourth graders about measurement. During the class, which went smoothly, I was 
struck by another incident. After teaching measurements and their conversions, the teacher 
asked a student to measure one side of the classroom with a yardstick. The student reported 
that it was 7 yards and 5 inches. He then worked on his calculator and added, “7 yards and 
5 inches equals 89 inches.” The teacher, without any hesitation, jotted down “(89 inches)” 
beside the “7 yards and 5 inches” that she had just written on the chalkboard. The apparent 
mismatch of the two lengths, “7 yards and 5 inches” and “89 inches,” seemed conspicuous 
on the chalkboard. It was obvious, but not surprising, that the student had misused conver-
sion between feet and inches in calculating the number of inches in a yard. What surprised 
me, however, was that the apparent mismatch remained on the chalkboard until the end of 
the class without any discussion. What surprised me even more was that the mistake was 
never revealed or corrected, nor even mentioned after the class in a discussion of the stu-
dent teacher’s teaching. Neither the cooperating teacher nor the teacher-educator who was 
supervising the student teacher even noticed the mistake. As an elementary teacher and as a 
researcher who worked with teachers for many years, I had developed certain expectations 
about elementary teachers’ knowledge of mathematics. However, the expectations I had 
developed in China did not seem to hold in the United States.

The more I saw of elementary mathematics teaching and research in the United States, 
the more intrigued I became. Even expert teachers, experienced teachers who were mathe-
matically confident, and teachers who actively participated in current mathematics teaching 
reform did not seem to have a thorough knowledge of the mathematics taught in elementary 
school. Apparently, the two incidents that had amazed me were only two more examples of 
an already widespread and well-documented phenomenon.2

Later, I read international studies of mathematics achievement.3 These studies found 
that students of some Asian countries, such as Japan and China, consistently outperformed 

1 For more information about the two models, see chapter 3, p. 72.
2 For more information about research on teacher subject matter knowledge, see Ball (1988a), 

Cohen (1991), Leinhardt and Smith (1985), NCRTE (1991), Putnam (1992), and Simon (1993).
3 The International Association for the Evaluation of Educational Achievement (IEA) conducted 

the First International Mathematics Study in 1964. The study measured achievement in various 
mathematical topics in each of 12 different countries at Grades 8 and 12. In the early 1980s, IEA 
carried out another study. The Second International Mathematics Study compared 17 countries in 
the Grade 8 component and 12 in the Grade 12 component. The Third International Mathematics 
and Science Study (TIMSS), in which more than 40 countries participated, has recently started 
to release its reports. (For more information about the three studies, see Chang & Ruzicka,1986; 
Coleman, 1975; Crosswhite, 1986; Crosswhite et al., 1985; Husen, 1967a, 1967b; LaPointe, Mead, 
& Philips, 1989; Lynn, 1988; McKnight et al., 1987; National Center for Education S tatistics, 
1997; Robitaille & Garden, 1989; Schmidt, McKnight, & Raizen, 1997.)
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their counterparts in the United States.4 Researchers have described various factors that 
contribute toward this “learning gap”: differences in cultural contexts, such as parental 
expectations or number-word systems;5 school organization, or amount of time spent learn-
ing mathematics; content and content allocation in mathematics curricula.6 As I read this 
research, I kept thinking about the issue of teachers’ mathematical knowledge. Could it be 
that the “learning gap” was not limited to students? If so, there would be another expla-
nation for U.S. students’ mathematical performance. Unlike factors outside of classroom 
teaching, teachers’ knowledge might directly affect mathematics teaching and learning. 
Moreover, it might be easier to change than cultural factors, such as the number-word 
s ystem7 or ways of raising children.

It seemed strange that Chinese elementary teachers might have a better understanding 
of mathematics than their U.S. counterparts. Chinese teachers do not even complete high 
school; instead, after ninth grade they receive two or three more years of schooling in nor-
mal schools. In contrast, most U.S. teachers have at least a bachelor’s degree. However, I 
suspected that elementary teachers in the two countries possess differently structured bod-
ies of mathematical knowledge, that aside from subject matter knowledge “equal to that 
of his or her lay colleague” (Shulman, 1986), a teacher may have another kind of subject 
matter knowledge. For example, my elementary teacher’s knowledge of the two models of 
division may not be common among high school or college teachers. This kind of knowl-
edge of school mathematics may contribute significantly to what Shulman (1986) called 
pedagogical content knowledge—”the ways of representing and formulating the subject 
that make it comprehensible to others” (p. 9).

I decided to investigate my suspicion. Comparative research allows us to see different 
things—and sometimes to see things differently. My research did not focus on judging the 
knowledge of the teachers in two countries, but on finding examples of teachers’ sufficient 
subject matter knowledge of mathematics. Such examples might stimulate further efforts to 
search for sufficient knowledge among U.S. teachers. Moreover, knowledge from teachers 
rather than from conceptual frameworks might be “closer” to teachers and easier for them 
to understand and accept.

Two years later, I completed the research described in this book. I found that although 
U.S. teachers may have been exposed to more advanced mathematics during their high 

4 TIMSS results follow this pattern. For example, five Asian countries participated in the Grade 4 
mathematics component. Singapore, Korea, Japan, and Hong Kong had the top average scores. These 
were significantly higher than the U.S. score. (Thailand was the fifth Asian country p articipating.)

5 For example, the Chinese word for the number 20 means “two tens,” the Chinese word for the 
number 30 means “three tens,” and so on. The consensus is that the Chinese number-word system 
illustrates the relationship between numbers and their names more straightforwardly than the 
English number-word system.

6 For more information, see Geary, Siegler, and Fan (1993); Husen (1967a, 1967b); Lee, Ichikawa, 
and Stevenson (1987); McKnight et al. (1987); Miura and Okamoto (1989); Stevenson, Azuma, 
and Hakuta (1986); Stevenson and Stigler (1991, 1992); Stigler, Lee, and Stevenson (1986); 
S tigler and Perry (1988a, 1988b); Stigler and Stevenson (1981).

7 However, instruction can successfully address irregularities in number-word systems. See Fuson, 
Smith, and Lo Cicero (1997) for an example of instruction that addresses the irregularities of the 
English and Spanish number-word systems.
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school or college education,8 Chinese teachers display a more comprehensive knowledge 
of the mathematics taught in elementary school.

In my study, I used the TELT interview questions. The main reason for using these 
instruments is their relevance to mathematics teaching. As Ed Begle recounts in Criti-
cal Variables in Mathematics Education, earlier studies often measured elementary and 
secondary teachers’ knowledge by the number and type of mathematics courses taken or 
degrees obtained—and found little correlation between these measures of teacher knowl-
edge and various measures of student learning. Since the late 1980s, researchers have been 
concerned with teachers’ mathematics subject matter knowledge for teaching (Ball, 1988b) 
“the knowledge that a teacher needs to have or uses in the course of teaching a particular 
school-level curriculum in mathematics,” rather than “the knowledge of advanced topics 
that a mathematician might have” (Leinhardt et al., 1991, p. 88). The TELT mathematics 
instruments developed by Deborah Ball for her dissertation research (Ball, 1988b), were 
designed to probe teachers’ knowledge of mathematics in the context of common things 
that teachers do in the course of teaching. The interview tasks were structured by weaving 
a particular mathematical idea into a classroom scenario in which that idea played a crucial 
role. For example, in the question I mentioned earlier for which teachers’ responses had 
been so striking, the mathematics of division by fractions was probed in the context of a 
familiar task of teaching—generating some sort of representation, real-world context, or 
diagram for this specific topic. This strategy has been useful for examining teachers’ knowl-
edge of the kind needed to teach in ways quite different from straight subject matter ques-
tions, like a mathematics test. The recent analysis of Rowan and his colleagues supports 
this strategy. Their 1997 Sociology of Education article describes a model based on data 
from the National Education Longitudinal Study of 1988. In this model a teacher’s correct 
responses to another TELT item, developed according to the same conceptual framework, 
had a strong positive effect on student performance.

Another reason to use the TELT instruments is their broad coverage of elementary math-
ematics. While most of the research on teachers’ mathematics knowledge focused on single 
topics, TELT was dedicated to the whole field of elementary teaching and learning. The 
TELT instruments for mathematics concerned four common elementary topics: subtrac-
tion, multiplication, division by fractions, and the relationship between area and perim-
eter. The wide distribution of these topics in elementary mathematics promised a relatively 
complete picture of teachers’ subject matter knowledge of this field.

Yet another reason to use TELT instruments was that the TELT project had already 
constructed a sound database of teacher interviews. Drawing on this database, NCRTE 
researchers had accomplished substantial and influential research. With the picture of U.S. 
teachers’ mathematics knowledge painted by the TELT study and other research, my com-
parative study would not only be more efficient but more relevant to mathematics education 
research in the United States.

Using the TELT questions and data, I studied teachers from the two countries (see Table 
I.1). The 23 teachers from the United States were considered “better than average.” Eleven 
of them were experienced teachers who were participating in the SummerMath for Teach-
ers Program at Mount Holyoke College. They were considered “more dedicated and more 
confident” mathematically. TELT project members had interviewed them at the b eginning 

8 For information on the preparation of U.S. teachers, see Lindquist (1997).
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of SummerMath. The other 12 were participating in the Graduate Intern Program run 
jointly by a school district and the University of New Mexico. TELT project members had 
interviewed them during the summer after their first year of teaching. They were to receive 
master’s degrees at the end of this summer.

TABLE I.1 The Teachers in the Studya

 Teaching Experience Pseudonym N

 Beginning Begins with Ms. or Mr.  

U.S.b 1 year Name 12 

Chinese Less than 5 years Initialc 40

 Experienced Begins with Tr.  

U.S.d Average 11 years Name Initial 11 

Chinese More than 5 years Initial 24

Chinese with PUFM Average 18 years Chinese surname 8
aThe U.S. teachers’ views of their mathematical knowledge and the number of years taught by each 
experienced U.S. teacher are given in the Appendix.
bAfter completing the New Mexico State Department of Education certification requirements, 
these teachers took graduate courses in the summers before and after their first year of teaching. 
The research data used for this study were collected during the second summer.
cAlthough NCRTE gave each U.S. teacher a given name as a pseudonym, I did not do the same for 
the Chinese teachers. In Chinese there are no words that are considered given names as there are 
in English. Instead, Chinese parents make up a name for each child. A Chinese name is usually 
very informative, reflecting social status, education, and political attitude of the family; the epoch 
and place of birth; parental expectations; status in family tree; etc. So, it seems improper to me to 
make up names in Chinese for 72 people about whom I know very little except their knowledge of 
mathematics. In Chinese, surnames are comparatively neutral. However, the number of commonly 
used surnames is small, so I decided only to use surnames in the pseudonyms of the teachers whom 
I identified as having PUFM.
dThese teachers were enrolled in the Educational Leaders in Mathematics program, an additional 
NSF-funded project in SummerMath. This program is longer and more intense than the regular 
summer program. Its goal is to prepare excellent classroom mathematics teachers to be in-service 
leaders in their own school districts or regions. (For more information, see NCRTE, 1988, pp. 
79–85.) Teachers participate over two summers and three school years. The data used in this study 
were collected at the beginning of this program in July and August of 1987.

attempted to obtain a more representative picture of Chinese teachers’ knowledge. I chose 
five elementary schools that ranged from very high to very low quality9 and interviewed all 
the mathematics teachers in each school, a total of 72 teachers.

9 These schools were chosen from schools with which I was familiar before coming to the United 
States. Three schools were located in Shanghai, a large metropolitan area. Teaching quality at 
these schools varied; one was considered very high quality, one moderate, and one very low. The 
other two schools were in a county of middle socioeconomic and educational status. One was a 
high-quality county-town school. The other one was a low-quality rural school, with sites at three 
villages in a mountain area.

Although  the  U.S.  teachers  interviewed  by TELT were considered above average, I 
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Chapters 1 through 4 paint a picture of the teachers’ mathematics subject matter knowl-
edge revealed by the interviews. Each of these chapters is devoted to a standard topic in 
elementary mathematics: subtraction with regrouping, multidigit multiplication, division 
by fractions, and perimeter and area of a closed figure. Each chapter starts with a TELT 
interview question designed to present the mathematics through a hypothetical classroom 
scenario weaving mathematical knowledge with one of four common teaching tasks: teach-
ing a topic, responding to a student’s mistake, generating a representation of a certain topic, 
and responding to a novel idea raised by a student. For example, the division by fractions 
scenario given earlier asks teachers to represent in a way that would be meaningful 
for their students.

In each of these data chapters I describe the responses of the U.S. teachers, then those of 
the Chinese teachers, and conclude with a discussion of the data. Examples depict specific 
pictures of different understandings of elementary mathematics, including those of pro-
found understanding of fundamental mathematics.

Studies of teacher knowledge abound in examples of insufficient subject matter knowl-
edge in mathematics (Ball, 1988a, 1990; Cohen, 1991; Leinhardt & Smith, 1985; Putnam, 
1992; Simon, 1993), but give few examples of the knowledge teachers need to support their 
teaching, particularly the kind of teaching demanded by recent reforms in mathematics 
education.10

Researchers have created general conceptual frameworks describing what teachers’ sub-
ject matter knowledge of mathematics should be. Deborah Ball is among those who have 
done significant work in this area. She identified teachers’ understanding of mathematics as 
“interweaving ideas of and about the subject (1988b, 1991). By knowledge of mathematics 
she meant substantive knowledge of the subject: comprehension of particular topics, pro-
cedures, and concepts, and the relationships among these topics, procedures, and concepts. 
By knowledge about mathematics she meant syntactic knowledge, say, comprehension of 
the nature and discourse of mathematics. In addition, she proposed three “specific criteria” 
for teachers’ substantive knowledge: correctness, meaning, and connectedness. In spite 
of expanding and developing conceptions of what teachers’ subject matter knowledge of 
mathematics should be, Ball and other researchers have been limited by their data in the 
development of a concrete vision of such knowledge.

Chapter 5 begins to address this issue. In it I survey the various understandings depicted 
in the data chapters, discuss what I mean by fundamental mathematics, and discuss what it 
means to have a profound understanding of fundamental mathematics (PUFM). Profound 
understanding of fundamental mathematics goes beyond being able to compute correctly 
and to give a rationale for computational algorithms. A teacher with profound understand-
ing of fundamental mathematics is not only aware of the conceptual structure and basic 
attitudes of mathematics inherent in elementary mathematics, but is able to teach them 
to students. The first-grade teacher who encourages students to find what five apples, five 

10 Leinhardt and Ball are the two main researchers in this field. For more information on the work 
of Leinhardt and her colleagues, see Leinhardt and Greeno (1986); Leinhardt and Smith (1985); 
Leinhardt (1987); Leinhardt, Putnam, and Baxter (1991); and Stein, Baxter, and Leinhardt (1990). 
For more information on the work of Ball and her colleagues, see Ball (1988a, 1988b, 1988c/1991, 
1988d, 1989, 1990), and Schram, Nemser, and Ball (1989).
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blocks, and five children have in common, and helps them to draw the concept of 5 from 
these different kinds of items, instills a mathematical attitude—using numbers to describe 
the world. The third-grade teacher who leads a discussion of why 7+2+3=9+3=12 cannot 
be written as 7+2+3=9+12 is helping students to approach a basic principle of mathemat-
ics: equality. The teacher who explains to students that because 247×34=247×4+247×30, 
one should move the second row one column to the left when using the standard multiplica-
tion algorithm is illustrating basic principles (regrouping, distributive law, place value) and 
a general attitude (it is not enough to know how, one must also know why). The students 
who enthusiastically report the different methods they used to find a number between 

In planning the students’ lesson and orchestrating the discussion, their teacher has drawn 
on knowledge of how to teach (pedagogical content knowledge), but in understanding the 
students’ responses and determining the goal of the lesson the teacher must also draw on 
subject matter knowledge.

Chapter 6 gives the results of a brief investigation of when and how teachers in China 
attain profound understanding of fundamental mathematics. The factors that support Chi-
nese teachers’ development of their mathematical knowledge are not present in the United 
States. Even worse, conditions in the United States militate against the development of 
elementary teachers’ mathematical knowledge and its organization for teaching. The final 
chapter suggests changes in teacher preparation, teacher support, and mathematics educa-
tion research that might allow teachers in the United States to attain profound understand-
ing of fundamental mathematics.

 and 
 are excitedly experiencing the notion that one problem can be solved in multiple ways. 



Chapter 1  
Subtraction With Regrouping:  

Approaches To Teaching A Topic

Scenario

Let’s spend some time thinking about one particular topic that you may work with 

when you teach, subtraction with regrouping. Look at these questions (  etc.). 
How would you approach these problems if you were teaching second grade? What 
would you say pupils would need to understand or be able to do before they could 
start learning subtraction with regrouping?

When students first learn about subtraction, they learn to subtract each digit of the subtra-
hend from its counterpart in the minuend:

 

To compute this, they simply subtract 2 from 5 and 1 from 7. However, this straightforward 
strategy does not work all the time. When a digit at a lower place value of the subtrahend 
is larger than its counterpart in the minuend (e.g., 22−14, 162−79), students cannot con-
duct the computation directly. To subtract 49 from 62, they need to learn subtraction with 
regrouping: 

 

Subtraction, with or without regrouping, is a very early topic anyway. Is a deep understand-
ing of mathematics necessary in order to teach it? Does such a simple topic even involve 
a deep understanding of mathematics? Would a teacher’s subject matter knowledge make 
any difference in his or her teaching, and eventually contribute to students’ learning? There 
is only one answer for all these questions: Yes. Even with such an elementary mathemati-
cal topic, the teachers displayed a wide range of subject matter knowledge, which suggests 
their students had a corresponding range of learning opportunities.
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THE U.S. TEACHERS’ APPROACH:  
BORROWING VERSUS REGROUPING

Construing the Topic

When discussing their approach to teaching this topic, the U.S. teachers tended to begin 
with what they expected their students to learn. Nineteen of the 23 U.S. teachers (83%) 
focused on the procedure of computing. Ms. Fawn, a young teacher who had just finished 
her first year of teaching, gave a clear explanation of this procedure:

Whereas there is a number like 21−9, they would need to know that you cannot sub-
tract 9 from 1, then in turn you have to borrow a 10 from the tens space, and when 
you borrow that 1, it equals 10, you cross out the 2 that you had, you turn it into a 
10, you now have 11−9, you do that subtraction problem then you have the 1 left and 
you bring it down.

These teachers expected their students to learn how to carry out two particular steps: tak-
ing 1 ten from the tens place, and changing it into 10 ones. They described the “taking” 
step as borrowing. By noting the fact that “1 ten equals 10 ones,” they explained the step of 
“changing.” Here we can see the pedagogic insight of these teachers: Once their students 
can conduct these two key steps correctly, they will very likely be able to conduct the whole 
computation correctly.

The remaining four teachers, Tr. Bernadette, Tr. Bridget, Ms. Faith, and Ms. Fleur, 
however, expected their students to learn more than the computational procedure. They 
also expected their students to learn the mathematical rationale underlying the algorithm. 
Their approach emphasized two points: the regrouping underlying the “taking” step and the 
exchange underlying the “change” step. Tr. Bernadette, an experienced teacher, said:

They have to understand what the number 64 means…I would show that the number 
64, and the number 5 tens and 14 ones, equal the 64. I would try to draw the com-
parison between that because when you are doing the regrouping it is not so much 
knowing the facts, it is the regrouping part that has to be understood. The regrouping 
right from the beginning.

Ms. Faith, another teacher at the end of her first year of teaching, indicated that students 
should understand that what happens in regrouping is the exchange within place values:

They have to understand how exchanges are done…he base 10 blocks when you 
reach a certain number—10, in base 10, in the ones column that is the same as, say, 
10 ones or 1 ten…they have to get used to the idea that exchanges are made within 
place values and that it does not alter the value of the number….Nothing happens to 
the actual value, but exchanges can be made.

What teachers expected students to know, however, was related to their own knowledge. 
The teachers who expected students merely to learn the procedure tended to have a proce-
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dural understanding. To explain why one needs to “borrow” 1 ten from the tens place, these 
teachers said, “You can’t subtract a bigger number from a smaller number.” They inter-
preted the “taking” procedure as a matter of one number getting more value from another 
number, without mentioning that it is a within-number rearrangement:

You can’t subtract a bigger number from a smaller number…You must borrow from 
the next column because the next column has more in it. (Ms. Fay)

But if you do not have enough ones, you go over to your friend here who has plenty. 
(Tr. Brady)

“We can’t subtract a bigger number from a smaller one” is a false mathematical statement. 
Although second graders are not learning how to subtract a bigger number from a smaller 
number, it does not mean that in mathematical operations one cannot subtract a bigger 
number from a smaller number. In fact, young students will learn how to subtract a bigger 
number from a smaller number in the future. Although this advanced skill is not taught in 
second grade, a student’s future learning should not be confused by emphasizing a miscon-
ception.

To treat the two digits of the minuend as two friends, or two neighbors living next door 
to one another, is mathematically misleading in another way. It suggests that the two digits 
of the minuend are two independent numbers rather than two parts of one number.

Another misconception suggested by the “borrowing” explanation is that the value of 
a number does not have to remain constant in computation, but can be changed arbitrari-
ly—if a number is “too small” and needs to be larger for some reason, it can just “borrow” 
a certain value from another number.

In contrast, the teachers who expected students to understand the rationale underly-
ing the procedure showed that they themselves had a conceptual understanding of it. For 
example, Tr. Bernadette excluded any of the above misconceptions:

What do you think, the number, the number 64, can we take a number away, 46? 
Think about that. Does that make sense? If you have a number in the sixties can you 
take away a number in the forties? OK then, if that makes sense now, then 4 minus 6, 
are we able to do that? Here is 4, and I will visually show them 4. Take away 6, 1,2, 3, 
4. Not enough. OK, well what can we do? We can go to the other part of the number 
and take away what we can use, pull it away from the other side, pull it over to our 
side to help, to help the 4 become 14.

For Tr. Bernadette, the problem 64–46 was not, as suggested in the borrowing explanation, 
two separate processes of 4–6 and then 60–40. Rather, it was an entire process of “tak-
ing away a number in the forties from a number in the sixties.” Moreover, Tr. Bernadette 
thought that it was not that “you can’t subtract a bigger number from a smaller number,” 
rather, that the second graders “are not able to do that.” Finally, the solution was that “we 
go to the other part of the number” (italics added), and “pull it over to our side to help.” 
The difference between the phrases “other number” and “the other part of the number” is 
subtle, but the mathematical meanings conveyed are significantly different.

Subtraction with Regrouping: Approaches to Teaching a Topic 
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Instructional Techniques: Manipulatives

Teachers’ knowledge of this topic was correlated not only with their expectations about 
student learning, but also with their teaching approaches. When discussing how they would 
teach the topic, all except one of the teachers referred to manipulatives. The most popular 
material was bundles of sticks (popsicle sticks, straws, or other kinds of sticks). Others 
were beans, money, base 10 blocks, pictures of objects, and games. The teachers said that 
by providing a “hands-on” experience, manipulatives would facilitate better learning than 
just “telling”—the way they had been taught. 

A good vehicle, however, does not guarantee the right destination. The direction that 
students go with manipulatives depends largely on the steering of their teacher. The 23 
teachers had different ideas that they wanted to get across by using manipulatives. A few 
teachers simply wanted students to have a “concrete” idea of subtraction. With the problem 
52–25 for example, Tr. Belinda proposed “to have 52 kids line up and take 25 away and see 
what happens.” Ms. Florence reported that she would use beans as “dinosaur eggs” which 
might be interesting for students:

I would have them start some subtraction problems with maybe a picture of 23 things 
and tell them to cross out 17 and then count how many are left… I might have them 
do some things with dinosaur eggs or something that would sort of have a little more 
meaning to them. Maybe have them do some concrete subtraction with dinosaur 
eggs, maybe using beans as the dinosaur eggs or something.

Problems like 52−25 or 23−17 are problems of subtraction with regrouping. However, what 
students would learn from activities involving manipulatives like taking 25 students away 
from 52 or taking 17 dinosaur eggs away from 23 is not related to regrouping at all. On the 
contrary, the use of manipulatives removes the need to regroup. Tr. Barry, another expe-
rienced teacher in the procedurally directed group, mentioned using manipulatives to get 
across the idea that “you need to borrow something.” He said he would bring in quarters 
and let students change a quarter into two dimes and one nickel:

A good idea might be coins, using money because kids like money… . The idea of 
taking a quarter even, and changing it to two dimes and a nickel so you can borrow a 
dime, getting across that idea that you need to borrow something.

There are two difficulties with this idea. First of all, the mathematical problem in Tr. Bar-
ry’s representation was 25–10, which is not a subtraction with regrouping. Second, Tr. 
Barry confused borrowing in everyday life—borrowing a dime from a person who has a 
quarter—with the “borrowing” process in subtraction with regrouping—to regroup the 
minuend by rearranging within place values. In fact, Tr. Barry’s manipulative would not 
convey any conceptual understanding of the mathematical topic he was supposed to teach.

Most of the U.S. teachers said they would use manipulatives to help students understand 
the fact that 1 ten equals 10 ones. In their view, of the two key steps of the procedure, taking 
and changing, the latter is harder to carry out. Therefore, many teachers wanted to show 
this part visually or let students have a hands-on experience of the fact that 1 ten is actually 
10 ones:

Knowing and Teaching Elementary Mathematics
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I would give students bundles of popsicle sticks that are wrapped in rubber bands, 
with 10 in each bundle. And then I’d write a problem on the board, and I would have 
bundles of sticks, as well, and I would first show them how I would break it apart 
(italics added), to go through the problem, and then see if they could manage doing 
the same thing, and then, maybe, after a lot of practice, maybe giving each pair of 
students a different subtraction problem, and then they could, you know, demonstrate, 
or give us their answer. Or, have them make up a problem using sticks, breaking them 
apart and go through it. (Ms. Fiona)

What Ms. Fiona reported was a typical method used by many teachers. Obviously, it is 
related more to subtraction with regrouping than the methods described by Ms. Florence 
and Tr. Barry. However, it still appears procedurally focused. Following the teacher’s dem-
onstration, students would practice how to break a bundle of 10 sticks apart and see how it 
would work in the subtraction problems. Although Ms. Fiona described the computational 
procedure clearly, she did not describe the underlying mathematical concept at all.

Scholars have noted that in order to promote mathematical understanding, it is neces-
sary that teachers help to make connections between manipulatives and mathematical ideas 
explicit (Ball, 1992; Driscoll, 1981; Hiebert, 1984; Resnick, 1982; Schram, Nemser, & 
Ball, 1989). In fact, not every teacher is able to make such a connection. It seems that only 
the teachers who have a clear understanding of the mathematical ideas included in the topic 
might be able to play this role. Ms. Faith, the beginning teacher with a conceptual under-
standing of the topic, said that by “relying heavily upon manipulatives” she would help 
students to understand “how each one of these bundles is 10, it is 1 ten or 10 ones,” to know 
that “5 tens and 3 ones is the same as 4 tens and 13 ones,” to learn “the idea of equivalent 
exchange,” and to talk about “the relationship with the numbers”:

What I would do, from that point, is show how each one of these bundles is 10, it 
is 1 ten or 10 ones. I would make sure that was clear. And what would happen if we 
undid this little rubber band and put 10 over here, how many ones would we have? 
And to get to the next step, I would show that now you have 1, 2, 3, 4 tens and 13 
ones and then subtract in that fashion …I would say to the child so you are telling 
me that we have not added anything or subtracted anything to the 53, right? Right…
Five tens and 3 ones is the same as 4 tens and 13 ones, and what happens when you 
take 25 from that?

Unlike the other teachers who used manipulatives to illustrate the computational proce-
dure, Ms. Faith used them to represent the mathematical concept underlying the procedure. 
The only reason that Ms. Faith’s use of manipulatives could take her students “further” than 
that of other teachers was that she understood the mathematical topic in a deeper way than 
others. Using a similar method, teachers with different views of the subject matter would 
lead students to different understandings of mathematics.

Subtraction with Regrouping: Approaches to Teaching a Topic 
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THE CHINESE TEACHERS’ APPROACH:  
“DECOMPOSING A HIGHER VALUE UNIT”

Some of the Chinese teachers’ understandings of the topic overlapped these of the U.S. 
teachers. The group of Chinese teachers who held a “borrowing” conception had a focus 
very similar to that of their U.S. counterparts:

I will tell students that when you compute problems like 53–25, you first line up the 
numbers and start the subtraction from the ones column. Since 3 is not big enough 
for you to subtract 5 from it, you should borrow a ten from the tens column and turn 
it into 10 ones. Adding the 10 ones to 3 you get 13. Subtract 5 from 13 you get 8. Put 
8 down in the ones column. Then you move to the tens column. Since 5 on the tens 
column has lent a 10 to the ones column, there are only 4 tens left. You take 20 from 
40 and get 20. Put it down in the tens column. (Ms. Y.)

Ms. Y. was in the middle of her second year of teaching. Her explanation was a variant of 
Ms. Fawn’s. She focused on the specific steps of the algorithm and did not show any inter-
est in its rationale. The proportion of Chinese teachers who held such procedurally directed 
ideas, however, was substantially smaller than that of the U.S. teachers (14% vs. 83%). 
Figure 1.1 shows the teachers’ different understandings of the topic.

Most of the Chinese teachers focused on regrouping. However, in contrast to the U.S. 
teachers, about 35% of the Chinese teachers described more than one way of regrouping. 
These teachers not only addressed the rationale for the standard algorithm, but also discussed 
other ways to solve the problem that were not mentioned by the U.S. teachers. Let’s first take 
a look at the catchphrase of the Chinese teachers: decomposing a unit of higher value.

“Decomposing a unit of higher value [tui yi *]” is a term in Chinese traditional arith-
metic reckoning by the abacus. Each wire on an abacus represents a certain place value. The 
value of each bead on the abacus depends on the position of the wire that carries the bead. 
The farther to the left a wire is located on the abacus, the larger the place value it represents. 
Therefore, the values of beads on left wires are always greater than those on right wires. 

FIG. 1.1. Teachers’ understanding of subtraction with regrouping.

When subtracting with regrouping on the abacus, one needs to “take” a bead on a left wire 
and change it into 10 or powers of 10 beads on a wire to the right. This is called “decompos-
ing a unit of higher value.”

* The Chinese characters for this and other Chinese words appear in Appendix Fig. A.2.
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Eighty-six percent of the Chinese teachers described the “taking” step in the algorithm 
as a process of “decomposing a unit of higher value.” Instead of saying that “you borrow 1 
ten from the tens place,” they said that “you decompose 1 ten.”1

The reason that one cannot compute 21–9 directly lies in the form of the number 21. In 
the decimal system, the numbers are composed according to the rate of 10. Given that a 
number gets 10 units at a certain place value (e.g., ones place or tens place), the 10 units 
should be organized into 1 unit of the next higher place value (e.g., tens place or hundreds 
place). Theoretically, no more than 9 “scattered” (uncomposed) units exist in the decimal 
number system. Now we want to subtract 9 scattered ones units from 21. The latter only has 
1 ones unit. The solution, then, is to decompose a unit of higher value, a 10, and subtract 9 
individual ones units from the recomposed 21.

During the interviews, the teachers tended to discuss the idea of “decomposing a higher 
valued unit” in connection to addition with carrying—“composing a unit of higher value 
[jin yi].” In describing how she would teach this topic, Tr. L., an experienced teacher who 
teaches first through third grades, said:

I would start with a problem of straightforward subtraction, like 43−22=? After they 
solve it, I would change the problem into 43−27=? How does the new problem differ 
from the first one? What will happen when we compute the second problem? They 
will soon find that 7 is bigger than 3 and we do not have enough ones. Then I would 
say, OK, today we don’t have enough ones. But sometimes we have too many ones. 
You must remember that last week when we did addition with carrying we had too 
many ones. What did we do at that time? They will say we composed them into tens. 
So when we have too many ones, we compose them into tens, what can we do when 
we don’t have enough ones? We may decompose a 10 back to ones. If we decompose 
a 10 in 40, what will happen? We will have enough ones. In this way I will introduce 
the concept of “decomposing a unit of higher value into 10 units of a lower value.”

Some teachers indicated that the term “decomposing” suggests its relationship with the 
concept of “composing.”

How come there are not enough ones in 53 to subtract 6? Fifty-three is obviously 
bigger than 6. Where are the ones in 53? Students will say that the other ones in 53 
have been composed into tens. Then I will ask them what can we do to get enough 
ones to subtract 7. I expect that they will come up with the idea of decomposing a 10. 
Otherwise, I will propose it. (Tr. P.)

In China, as in the United States, the term “borrowing” used to be a traditional metaphor 
in subtraction.2 Ms. S., a third-grade teacher in her second year of teaching, explained why 
she thought that the concept of “decomposing a higher value unit” made more sense than 
the metaphor of borrowing:

1 This aspect has also been observed by other scholars. Stigler and Perry (1988a) reported that 
C hinese teachers emphasize “the composition and decomposition of numbers into groups of ten.”

2 Early versions of modern Chinese arithmetic textbooks used the term “subtraction with borrow-
ing” translated from the West. During the past few decades, the textbooks have used instead 
“subtraction with decomposing.”

Subtraction with Regrouping: Approaches to Teaching a Topic 
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Some of my students may have learned from their parents that you “borrow one 
unit from the tens and regard it as 10 ones [jie yi dang shi].” I will explain to them 
that we are not borrowing a 10, but decomposing a 10. “Borrowing” can’t explain 
why you can take a 10 to the ones place. But “decomposing” can. When you say 
decomposing, it implies that the digits in higher places are actually composed of 
those at lower places. They are exchangeable. The term “borrowing” does not mean 
the composing-decomposing process at all. “Borrowing one unit and turning it into 
10” sounds arbitrary. My students may ask me how can we borrow from the tens? If 
we borrow something, we should return it later on. How and what are we going to 
return? Moreover, when borrowing we should get a person who would like to lend to 
us. How about if the tens place does not want to lend to the ones place? You will not 
be able to answer these questions that students may ask.

To construe the “taking” step as decomposing a unit of higher value reflects an even more 
comprehensive understanding than the explanation that draws on “regrouping.” Although 
the rationale of the algorithm is regrouping the minuend, regrouping, however, is a math-
ematical approach that is not confined to subtraction. It is fundamental to a variety of 
mathematical computations. There are various ways of regrouping. For example, when 
conducting addition with carrying, the sum at a certain place may be more than 10 units. 
Then we regroup it by composing the units into one, or more, unit(s) of a higher place 
value. Again, doing multidigit multiplication we regroup the multiplier into groups of the 
same place value (e.g., in computing 57×39, one regroups 39 into 30+9 and conducts the 
computation as 57×30+57×9). In fact, each of the four arithmetical operations applies some 
kind of regrouping. Therefore, explaining the “taking” procedure in terms of “regrouping” 
is correct, because regrouping is less relevant to the topic of subtraction than “decompos-
ing a unit of higher value.” The former fails to indicate the specific form of regrouping 
o ccurring in the subtraction.

Moreover, in using the concept of decomposing a higher value unit, the subtraction 
procedure is explained in a way that shows its connection with the operation of addition. It 
not only provides more conceptual support for the learning of subtraction, but reinforces 
students’ previous learning.

The Rate of Composing a Higher Value Unit. With the concept of “decomposing 1 
ten into 10 ones,” the conceptually directed Chinese teachers had actually explained both 
the “taking” and the “changing” steps in the algorithm. However, many of them further 
discussed the “changing” aspect of the procedure. About half of them, like the U.S. teach-
ers in the “regrouping” group, emphasized that 1 ten is composed of 10 ones and can be 
decomposed into 10 ones. The other half, however, referred to a more basic mathematical 
idea—the rate for composing a higher value unit [jin lu]—as a concept that students need 
to know before learning regrouping, and that should be reinforced throughout teaching.

These teachers asserted that students should have a clear idea about “the rate for com-
posing a higher value unit” so that they can better understand why a higher value unit is 
decomposed into 10, or powers of 10, lower value units. This understanding, according to 
these teachers, will facilitate students’ future learning. Tr. Mao, a fifth-grade teacher who 
had taught elementary mathematics for thirty years, made this comment:
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What is the rate for composing a higher value unit? The answer is simple: 10. Ask 
students how many ones there are in a 10, or ask them what the rate for composing 
a higher value unit is, their answers will be the same: 10. However, the effect of the 
two questions on their learning is not the same. When you remind students that 1 ten 
equals 10 ones, you tell them the fact that is used in the procedure. And, this some-
how confines them to the fact. When you require them to think about the rate for 
composing a higher value unit, you lead them to a theory that explains the fact as well 
as the procedure. Such an understanding is more powerful than a specific fact. It can 
be applied to more situations. Once they realize that the rate of composing a higher 
value unit, 10, is the reason why we decompose a ten into 10 ones, they will apply 
it to other situations. You don’t need to remind them again that 1 hundred equals 10 
tens when in the future they learn subtraction with three-digit numbers. They will be 
able to figure it out on their own.

Ms. N. had taught lower grade classes at an elementary school in a rural area for three 
years. She said:

To discuss the rate for composing a higher value unit here is not only helpful for them 
to deal with subtraction of multidigit numbers, but also other more complicated ver-
sions of problems. To decompose a ten into 10 ones or to decompose a hundred into 
10 tens is to decompose 1 unit into 10 units of the next lower value. But sometimes 
we need to decompose one unit into one 100, one 1,000 or even more units of lower 
value. For example, to compute 302–17, we need to decompose one hundred into 
100 ones. Again, conducting the subtraction 10,005–206, we need to decompose one 
unit into ten-thousand lower-valued units. If our students are limited to the fact that 
1 ten equals 10 ones, they may feel confused when facing these problems. But if at 
the beginning of learning, they are exposed to the rate for composing a higher value 
unit, they may be able to deduce the solutions of these new problems. Or at least they 
have a key to solving the problems.

Teachers like Tr. Mao and Ms. N. shared a keen foresight in students’ learning. Their 
approach to teaching subtraction with two-digit numbers foresaw the related skills needed 
for subtraction with multidigit numbers. Multidigit subtraction includes problems of 
decomposing a hundred into tens, or decomposing a thousand into hundreds. It may also 
include problems of decomposing a unit not into 10, but into a power of ten lower units, 
such as decomposing a thousand into 100 tens, etc. This “foresight,” obviously, is based on 
these teachers’ thorough understanding of this topic.

When learning addition with carrying, students of these teachers are exposed to the idea 
of the rate for composing a higher value unit. When teaching subtraction these teachers lead 
their students to revisit the idea from another perspective—the perspective of decomposing 
a unit. This visit is certainly an enhancement of their earlier learning of the basic idea.

Compared with the concept of exchanging 1 ten and 10 ones, the idea of the rate for com-
posing a higher value unit reaches a more profound layer of mathematical understanding. 
Bruner (1960/1977), in The Process of Education, said, “The more fundamental or basic is 
the idea he has learned, almost by definition, the greater will be its breadth of applicability 
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to new problems” (p. 18). Indeed, the rate for composing a higher value unit is a basic idea 
of the number system. Connecting the “changing” step with the idea of composing a unit in 
the number system reflects these teachers’ insight into the basic ideas underneath the facts, 
and their capacity to embody a fundamental idea of the discipline in a single fact. 

Multiple Ways of Regrouping. The previous discussion has been confined to the standard 
algorithm for solving subtraction problems. The algorithm has a procedure for regrouping 
the minuend in a certain way, for example, 53 is regrouped as 40 and 13. Although none of 
the U.S. teachers went beyond this standard way, some Chinese teachers did. These teachers 
pointed out that the algorithm is not the only correct way to conduct the subtraction. There 
are also other ways that will work. The standard way works best in most cases, but not in all 
cases. Around the principle of “decomposing a higher value unit,” the teachers discussed 
various ways of regrouping:

Actually there are several ways of grouping and regrouping that we can use to think 
about the problem 53–26. First of all, we can regroup 53 in this way:

 

In this way, we can subtract 6 from 13, 20 from 40, and get 27. This makes sense. 
However, we also may want to regroup 53 in another way:

 

We subtract 6 from 10 and get 4, add the 4 to 3 and get 7, subtract 20 from 40, add the 
7 to 20 and get 27. The advantage of this second way of regrouping is that it is easier 
to subtract 6 from 10 than from 13. The addition included in this procedure does not 
involve carrying so it is simple too. There is still another way to regroup. We may 
want to regroup the subtrahend 26 as:

 

We first subtract one 3 from 53 and get 50. Then we subtract the other 3 from 50 and 
get 47. Finally we subtract 20 from 47 and get 27. (Tr. C)

The teachers referred to three main ways of regrouping. One was the standard way: decom-
pose a unit at a higher value place into units at a lower value place, combine them with the 
original units at the lower place, and then subtract.

Another way was to regroup the minuend into three parts, rather than two parts, before 
subtracting. In other words, leave the unit split from the tens place, instead of combining it 
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with the units at the ones place. Then subtract the subtrahend’s digit at the ones place from 
the split unit. Finally, combine the difference with the minuend’s units at the ones place. 
Although the additional part of the number seems to create some complexity, this computa-
tion is even easier than in the standard way. One simply needs to subtract the minuend from 
10, rather than from a number larger than 10.

Subtraction with the third way of regrouping may be even easier. First, split from the 
ones place of the subtrahend the same number that is at the ones place of the minuend. 
Next, subtract the split number from the minuend, which makes the ones place of the minu-
end zero. Then subtract the rest of the subtrahend from the minuend that is now composed 
of whole tens.

The second and third ways are actually used frequently in daily life. These approaches 
are also usually more acceptable to young children because of their limited capacity in 
mathematics. In addition to describing these alternative ways of regrouping, the Chinese 
teachers also compared them—describing the situations when these methods may make 
the computation easier. Some teachers said that the second way of regrouping is used more 
often when the lowest placed digit of the subtrahend is substantially larger than that of the 
minuend. For example, 52–7, or 63–9. These problems are easy to solve if one first sub-
tracts 7 from 50 and adds 2 to the first difference 43, or first subtracts 9 from 60 and adds 
3 to the first difference 51. For in this kind of problem, the subtrahends are usually close 
to 10.

The third way is particularly easy when the value of the digits of the minuend and of the 
subtrahend at the lower place are close to each other. For example, 47–8, or 95–7. It is easy 
to subtract 7 from 47 and then subtract 1 from the first difference 40, or, to subtract 5 from 
95 and then subtract 2 from the first difference 90.

Despite the number of ways to subtract, the standard way is still the best one for most 
problems, in particular, those that are more complicated. Tr. Li, a recognized teacher, 
described what happens in her classroom when she teaches subtraction:

We start with the problems of a two-digit number minus a one-digit number, such 
as 34–6. I put the problem on the board and ask students to solve the problem on 
their own, either with bundles of sticks or other learning aids, or even with nothing, 
just thinking. After a few minutes, they finish. I have them report to the class what 
they did. They might report a variety of ways. One student might say “34–6, 4 is not 
enough to subtract 6. But I can take off 4 first, get 30. Then I still need to take 2 off. 

= 28.” Another student who worked with sticks might say, “When I saw that I did 
not have enough separate sticks, I broke 1 bundle. I got 10 sticks and I put 6 of them 
away. There were 4 left. I put the 4 sticks with the original 4 sticks together and got 
8. I still have another two bundles of 10s, putting the sticks left all together I had 28.” 
Some students, usually fewer than the first two kinds, might report, “The two ways 
they used are fine, but I have another way to solve the problem. We have learned how 
to compute 14–8, 14–9, why don’t we use that knowledge. So, in my mind I com-
puted the problem in a simple way. I regrouped 34 into 20 and 14. Then I subtracted 
6 from 14 and got 8. Of course I did not forget the 20, so I got 28.” I put all the ways 
students reported on the board and label them with numbers, the first way, the second 

Because 6=4+2. I subtract 2 from 30 and get 28. So, my way is 34–6=34–4 2=30–2 –
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way, etc. Then I invite students to compare: Which way do you think is the easiest? 
Which way do you think is most reasonable? Sometimes they don’t agree with each 
other. Sometimes they don’t agree that the standard way I am to teach is the easiest 
way. Especially for those who are not proficient and comfortable with problems of 
subtraction within 20,3 such as 13–7, 15–8, etc., they tend to think that the standard 
way is more difficult.

Students may actually come upon various ways of regrouping if they try to solve the prob-
lems by themselves. This was reported by other teachers as well. To lead a thoughtful 
discussion once students have expressed all their ideas, a teacher needs a thorough compre-
hension of this topic. He or she should know these various solutions of the problem, know 
how and why students came up with them, know the relationship between the non-standard 
ways and the standard way, and know the single conception underlying all the different 
ways. Tr. G., a second-grade teacher in her early thirties, concluded, after describing the 
various ways her students might solve a problem using manipulatives:

I would lead the class to discover that there is one process underlying all various ways 
of subtraction: to un-binding one bundle. This would bring them to understand the 
concept of decomposing a ten, which plays the key role in the computation.

It is important for a teacher to know the standard algorithm as well as alternative versions. 
It is also important for a teacher to know why a certain method is accepted as the standard 
one, while the other ways can still play a significant role in the approach to the knowledge 
underlying the algorithm. With a broad perspective in comparing and contrasting the vari-
ous ways of regrouping in subtraction, the concept underlying the procedure is revealed 
thoroughly. Supported by a comprehensive understanding of the conception, these teachers 
were able to show a flexibility in dealing with the nonstandard methods not included in 
textbooks.

Knowledge Package and Its Key Pieces

Another interesting feature of the Chinese teachers’ interviews was that they tended to 
address connections among mathematical topics. For example, most of the Chinese teach-
ers mentioned the issue of “subtraction within 20” as the conceptual, as well as procedural, 
“foundation” for subtraction with regrouping.

They said that the idea of regrouping in subtraction, to decompose a higher value unit 
into lower value units, is developed through learning three levels of problems:

The first level includes problems with minuends between 10 and 20, like 15–7, 16–8, 
etc. At this level, students learn the concept of decomposing a 10 and the skill derived from 
it. They learn that by decomposing a 10, they will be able to subtract one-digit numbers 
from “teen-numbers” with ones digits smaller than the subtrahend. This step is critical 
because before that, subtraction was straightforward—one subtracted small one-digit num-

3 By the term “subtraction within 20,” Chinese teachers mean subtraction with regrouping with 
minuends between 10 and 20, such as 12–6 or 15–7. By the term “addition within 20,” Chinese 
teachers mean addition with carrying where the sum is between 10 and 20, such as 7+8 or 9+9.
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bers from larger one-digit numbers or from “teen-numbers” with ones digits larger than 
the subtrahend.4 The conception and the skill learned at this level will support regrouping 
procedures at the other levels.

The second level includes problems with minuends between 19 and 100, like 53–25, 
72–48, etc. At the second level, the ten to be decomposed is combined with several tens. 
The new idea is to split it from the other tens.

The third level includes problems with larger minuends, that is, minuends with three or 
more digits. The new idea in the third level is successive decomposition. When the next 
higher place in a minuend is a zero, one has to decompose a unit from further than the next 
higher place. The problems involve decomposing more than once, and sometimes even 
several times. For example, in the problem 203–15, working at the ones place, one needs to 
decompose 1 hundred into 10 tens, and moreover, decompose 1 ten into 10 ones.

According to the Chinese teachers, the basic idea of subtraction with regrouping devel-
ops through the three levels. However, the conceptual “seed” and the basic skill throughout 
all levels of the problems occur as early as the first level—subtraction within 20.

Here is a very interesting difference in understanding between the two countries. In 
the United States, problems like “5+7=12” or “12–7=5” are considered “basic arithmetic 
facts” for students simply to memorize. In China, however, they are considered problems 
of “addition with composing and subtraction with decomposing within 20.”5 The learning 
of “addition with composing and subtraction with decomposing within 20” is the first occa-
sion when students must draw on previous learning, in this case their skill of composing 
and decomposing a 10 is significantly embedded.6

Tr. Sun was in her late thirties. She had taught for eighteen years at elementary schools 
in several cities. She even questioned my interview question, thinking that it was not rel-
evant enough:

The topic you raised was subtraction with regrouping. But the problems you showed 
me here, which all have minuends bigger than 20 and less than 100, are only one kind 
of problem in learning this topic. In fact, this is not the crucial kind of problem for 
learning this topic. It is hard for me to talk about how to teach the topic only drawing 
on the approach to these problems.

4 The Chinese number-word system may contribute to Chinese teachers’ particular attention to 
composing and decomposing a 10. In Chinese, all the “teen-numbers” have the form “ten, a one-
digit number.” For example, eleven is “ten-one,” twelve is “ten-two,” and so on. (Twenty is “two 
tens,” thirty is “three tens,” and so on. Twenty-one is called “two tens-one,” twenty-two is “two 
tens-two” and so on.) Therefore, “decomposing the 10” tends to be an obvious solution for the 
problem of “How one can subtract 5 from ten-two?”

5 In China, addition with carrying is called “addition with composing” and subtraction with 
regrouping is called “subtraction with decomposing.” “Addition with composing and subtraction 
with decomposing within 20” is taught during the second semester of first grade.

6 In Chinese elementary mathematics textbooks, before the section on “addition with composing 
and subtraction with decomposing within 20” there is a section on the composition of a 10. Until 
students reach the section of addition and subtraction within 20, however, the mathematical mean-
ing of composing and decomposing a 10 is not clear to them.
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After discussing the three levels of problems for learning subtraction with regrouping, she 
continued to explain why she thought my question was problematic:

There are new aspects in each of the other levels of learning, but they are actually 
developed forms of the basic idea introduced when one learns subtraction within 20. 
The skill one learns at the first level is applied in all the higher levels of subtraction. 
Once students have a firm grasp of the conception and skill for solving problems of 
subtraction within 20, their further learning of subtraction will have a sound founda-
tion to build on. For example, many of them will be ready to figure out how to solve 
the problems you are showing me here largely on their own, or with a little hint from 
me or from their peers. So, subtraction within 20 is crucial for learning subtraction 
with decomposing. This is the knowledge that weighs most among the three lev-
els. Addition and subtraction within 20 is where we substantially focus our teaching 
efforts. So it seems to me impossible to talk about how to approach teaching subtrac-
tion with regrouping starting from the problems you presented.

The remarks of Tr. E. were very typical of the Chinese teachers:

Given that my students do not have a firm grasp of problems within 20, how could 
they solve problems like 37−18=? and 52−37=? Whenever they follow the algorithm, 
they will face problems like 17−8=? and 12−7=? Are we going to rely on counting 
sticks all the time? All the subtraction procedures in problems with bigger numbers, 
after all, are transformed into subtraction within 10 and within 20. That is why the 
first level is so important.

While the Chinese teachers talked about the importance of learning subtraction within 20, 
they did not assume that it was the only thing that one should learn before learning the 
problems that I showed them. The items they mentioned as necessary for students to learn 
this topic comprised a substantially longer list that those mentioned by the U.S. teach-
ers. On average, Chinese teachers mentioned 4.7 items, while U.S. teachers mentioned 2.1 
items.

Tr. Chen was a teacher in his late fifties. He had taught at a school in a county town for 
more than thirty years. He had described the three levels of learning regrouping in sub-
traction and I asked him if he assumed that mathematical learning is a sequence that goes 
step-by-step. He said:

I would rather say that learning a mathematical topic is never isolated from learn-
ing other topics. One supports the other. The connections among the three levels are 
important, but there are other important ideas included in subtraction as well. For 
example, the meaning of subtraction, etc. The operation of subtraction with decom-
position is the application of several ideas rather than a single one. It is a package, 
rather than a sequence, of knowledge. The knowledge package I see when I teach the 
problems you presented is more expansive than the three levels I just discussed. It may 
also include addition within 20, subtraction of two-digit numbers without decompos-
ing, addition of two-digit numbers with carrying, the idea of the rate for composing 
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a higher valued unit, subtraction with decimals, etc. etc. Some of them support the 
present knowledge and some of them are supported by the present k nowledge.

I asked Tr. Chen further about “knowledge package” and its size and the components. He 
responded:

There is not a firm, rigid, or single right way to “pack” knowledge. It is all up to one’s 
own viewpoint. Different teachers, in different contexts, or the same teacher with 
different students, may “pack” knowledge in different ways. But the point is that you 
should see a knowledge “package” when you are teaching a piece of knowledge. And 
you should know the role of the present knowledge in that package. You have to know 
that the knowledge you are teaching is supported by which ideas or procedures, so 
your teaching is going to rely on, reinforce, and elaborate the learning of these ideas. 
When you are teaching an important idea that will support other procedures, you 
should devote particular efforts to make sure that your students understand the idea 
very well and are able to carry out the procedure proficiently.

Most of the Chinese teachers, like Tr. Chen, talked about a group of pieces of knowledge 
rather than a single piece of knowledge. The following network sketch was drawn based on 
their discussion of subtraction with regrouping. As Tr. Chen said, to “pack” knowledge—to 
see mathematical topics group-by-group rather than piece-by-piece—is a way of thinking. 
The teachers’ opinions of what and how many knowledge pieces should be included in 
the “package” differed somewhat. What they shared were the principles of how to “pack” 
the knowledge and what the “key” pieces were. Figure 1.2 illustrates the main ideas the 
Chinese teachers use when they “pack” the knowledge pieces related to subtraction with 
regrouping. The rectangle represents the topic I raised in the interview. The ellipses repre-
sent the related knowledge pieces. The shaded ellipses represent the key pieces of knowl-
edge. An arrow from one topic to another indicates that the first topic supports the second, 
thus, according to the teachers, should occur prior to the second in teaching.7

At the middle of the figure there is a sequence of four topics: “addition and subtraction 
within 10,” “addition and subtraction within 20,” “subtraction with regrouping of numbers 
between 20 and 100,” and “subtraction with regrouping of large numbers.” According to 
the Chinese teachers, the concept and procedure of subtraction with regrouping develops 
step-by-step through this sequence, from a primary and simple form to a complex and 
advanced form. The topic of “addition and subtraction within 20” is considered the key 
piece of the sequence to which the teachers devote most effort in the whole process of 
teaching subtraction with regrouping. They believe that the concept as well as the compu-
tational skill introduced with the topic “addition and subtraction within 20” constitute the 
basis for later learning of more advanced forms of subtraction with regrouping. Therefore, 
it will provide powerful support to students’ later learning of subtraction, both conceptually 
and procedurally.

7 During interviews the Chinese teachers often commented that the relationship is two-way: first 
learning of a basic topic supports the learning of a more advanced topic, but the learning of a basic 
topic is also reinforced by the latter. Because the focus of this study is teaching, I did not put two-
way arrows in the knowledge package figures.
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FIG. 1.2. A knowledge package for subtraction with regrouping.

ics. Directly connected to one or more links in the sequence, directly or indirectly, encir-
cle the sequence. During their interviews, some teachers discussed a “sub-sequence” of 
“circle”—from “the composition of 10” to “addition without carrying” to “subtraction 
without regrouping.” We that with a change of perspective, for example, if our topic is how 
to subtraction without regrouping, subsequence might become the central sequence in the 
teachers’ knowledge package. One topic in the “circle,” “composing and decomposing a 
higher value unit,” is considered to be another key piece in the package because it is the 
core concept underlying the subtraction algorithm.

The purpose of a teacher in organizing knowledge in such a package is to promote a 
solid learning of a certain topic. It is obvious that all the items in the subraction package 
are related to the learning of this topic, either supporting, or supported by it, Some items, 
for example, subtraction without regrouping, are included mainly to provide a procedural 
support. Other items, for example, composing and decomposing a higher value unit, are 
considered mainly as a conceptual support. Still others, for example, the concept of inverse 
operation, were referred to as conceptual support as well as procedural support.8 Individual 
teacher’s networks varied according to the size and the specific items included. However, 
the relationships between the items and core items were common.

Manipulatives and Other Teaching Approaches

Although mentioned less frequently than among the U.S. teachers, manipulatives were also a 
strategy often reported by the Chinese teachers. What differed was that most Chinese teach-
ers said that they would have a class discussion following the use of manipulatives. In these 

8 A few Chinese teachers mentioned that they would remind students to “think about addition when 
doing subtraction” to facilitate their learning.

Besides  the  central  sequence,  the knowledge  package also contains a few other top-
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discussions students may report, display, explain, and argue for their own solutions. Through 
the discussions, “the explicit construction of links between understood actions on the objects 
and related symbol procedures” claimed by Hiebert (1984, p. 509) would be established.

Leading a discussion after using manipulatives, however, demands more breadth and 
depth in a teacher’s subject matter knowledge. Through the manipulatives, various issues 
may be raised by the students. If a teacher does not know very well the different ways to 
solve a problem, how can he or she lead a discussion about the different ways students 
report to the class?

Sometimes a class discussion must deal with more intriguing problems that cannot be 
solved in one lesson. Ms. S. reported a discussion in her class that started at the beginning 
of the school year and concluded at the end:

Last fall when my students worked on this kind of problems with manipulatives, we 
found a problem. We found that the manipulative procedure was not the same as we 
do it on paper with columns. Say we are doing the problem 35–18. With manipula-
tives we start from the higher value place. We take the 10 in 18 first and then take the 
8 out. With columns we start with the ones place, subtracting the 8 first. The way with 
manipulatives, in fact, is the way we do most subtraction in our everyday life. When 
we think about how much change we will get after paying 2 Yuans9 for something that 
costs 1 Yuan and 63 cents, we first subtract 1 Yuan and then 60 cents and then the 3 
cents. But with the standard method in columns we do it the opposite way. We sub-
tract 3 cents first, then 60 cents, and finally 1 Yuan. From the perspective of students’ 
life experience, the way they learn in school seems to be more complex and makes 
less sense. We tried it on the board to see what would happen if we started from the 
higher place. We found that starting with the tens place we will first get a difference 
of 2 at the tens place:

 

Then when we worked at the ones place, it happened that we had to change the dif-
ference at the tens place that we just got:

 

But if we started from the ones place, this trouble could be avoided. We would get a 
final difference directly. Yet this explanation only solved half of the problem—why 
with columns we need to start at the lower place. Students were still not convinced that 
they had to learn the standard way, since they did not see an obvious advantage in using 

9 Yuan is a unit for Chinese money. One Yuan is 100 cents.
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the standard way. I suggested that we save the puzzle, probably we would come back 
to the issue sometime later on. At the end of the school year, we worked on subtraction 
with decomposing larger numbers. I raised the question again for a discussion. My 
students soon found that with larger numbers, the standard way is much easier with 
most problems. Then they agreed that the standard way is worthwhile to learn….

If Ms. S’s knowledge had been limited to how to conduct the computational procedure, it 
would be hard to imagine that she could lead her students to such a mathematical under-
standing.

DISCUSSION

Making Connections: Consciously Versus Unconsciously

Certainly a teacher’s subject matter knowledge of mathematics differs from that of a non-
teaching person. Special features of a teacher’s subject matter knowledge are derived from 
the task of promoting student learning. To facilitate learning, teachers tend to make explicit 
the connections between and among mathematical topics that remain tacit for non-teachers. 
In discussions of teaching subtraction with regrouping, teachers tended to make two kinds 
of connections. First, they tended to connect the topic with one or a few related procedural 
topics, usually those of lower status such as the procedure of subtraction without grouping 
and the fact that 1 ten equals 10 ones. Obviously, these are the basis for subtraction with 
regrouping. Second, the teachers tended to connect the procedure with an explanation. This 
also reinforces students’ learning—by giving a reason for “taking” and “changing,” the 
teacher provides more information to support the learning of the algorithm.

When they were asked what they thought pupils would need to understand or be able 
to do before learning subtraction with regrouping, all the teachers presented their own 
“knowledge package” including both kinds of connections. One difference, however, was 
that some teachers showed a definite consciousness of the connections, while others did not 
This difference was associated with significant differences in teachers’ subject knowledge. 
The teachers who tended to “pack” knowledge consciously could describe the elements 
they included in the package. In addition, they were clearly aware of the structure of the 
network, and the status of each element in it.

On the other hand, those teachers who packed knowledge unconsciously were vague 
and uncertain of the elements and the structure of the network. The knowledge packages in 
their minds were underdeveloped. Indeed, although connecting a topic that is to be taught 
to related topics may be a spontaneous intention of any teaching person, a fully developed 
and well-organized knowledge package about a topic is a result of deliberate study.

Models of Teachers’ Knowledge of Subtraction:  
Procedural Understanding Versus Conceptual Understanding

Most knowledge packages that the teachers described during interviews contained the same 
kinds of elements—those providing procedural support and those providing explanations. 
Teachers with conceptual understanding and teachers with only procedural understanding, 
however, had differently organized knowledge packages.
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A Model of Procedural Understanding of Subtraction With Regrouping. The knowl-
edge packages of the teachers with only a procedural understanding of subtraction con-
tained few elements. Most of these elements were procedural topics directly related to 
the algorithm of subtraction with regrouping. A brief explanation was usually included, 
but it was not a real mathematical explanation. For example, when a teacher told his or 
her students that the rationale of the algorithm is just like their mother goes to a neighbor 
to borrow some sugar, this arbitrary explanation doesn’t contain any real mathematical 
meaning. Some teachers explained that because the digit at the ones column of the minu-
end is smaller than that of the subtrahend, the former should “borrow” a ten from the tens 
column and turn it into ten ones. This was not a real mathematical explanation either. As 
discussed earlier in this chapter, some explanations were even mathematically problematic. 
The understanding of these teachers appeared conceptual, but in fact was too faulty and 
fragmented to promote students’ conceptual learning.

Figure 1.3 illustrates a knowledge package of a teacher with procedural understanding. 
The top rectangle represents procedural knowledge of the algorithm. The two ellipses rep-
resent related procedural topics. The trapezoid underneath the rectangle represents pseudo-
conceptual understanding.

Eighty-three percent of the U.S. teachers’ and 14% of the Chinese teachers’ knowl-
edge about subtraction with regrouping fell into this pattern. Their understanding of the 
topic contained a few procedural topics and a pseudoconceptual understanding. They made 
very few connections among mathematical topics and no mathematical arguments were 
involved in their explanations.

FIG. 1.3. Procedural understanding of a topic.

with a conceptual understanding of subtraction was differently considered and organized. 
Three kinds of mathematical knowledge are included in a fully developed and well-or-
ganized knowledge package of conceptual understanding: procedural topics, conceptual 
topics, and basic principles of the subject. Procedural topics are included to support the 
procedural learning, as well as the conceptual learning of the topic. For example, profi-
ciency in composing and decomposing a 10 is such a procedural topic. Many Chinese 
teachers referred to it as a significant support for learning the addition and subtraction 
within 20, procedurally as well as conceptually. Conceptual topics are included mainly for 
a thorough understanding of the rationale underlying the algorithm. However, the teach-

A  Model  of  Conceptual  Understanding of Subtraction. The knowledge of the teachers 
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ers believed that conceptual topics also played an important role in promoting procedural 
proficiency. For instance, some teachers thought that a comprehensive understanding of the 
concept of regrouping helped students to choose an easy method of subtraction.

Some teachers’ knowledge packages included basic principles, for example, the concept 
of the rate of composing a higher value unit and the concept of inverse operations. The rate 
of composing a higher value unit is a basic principle of understanding numeral systems. 
This concept is not only related to students’ learning of subtraction with regrouping of large 
numbers when successive decomposition is necessary, but will also be related to students’ 
later learning of the binary system—a completely different numeral system. Moreover, by 
revealing a principle of numeral systems, the concept will deepen one’s understanding of 
the whole subject.

The concept of inverse operations is one of the main principles that underlie the relation-
ships among the operations of mathematics. Though this concept is related to the learning 
of subtraction with its inverse operation, addition, it also supports the learning of other 
inverse operations in mathematics, such as multiplication and division, squaring and taking 
square roots, cubing and taking cube roots, raising to the n and taking nth roots, etc.

These two general principles are examples of what Bruner (1960/1977) called “the 
structure of the subject.” Bruner said, “Grasping the structure of a subject is understanding 
it in a way that permits many other things to be related to it meaningfully. To learn struc-
ture, in short, is to learn how things are related” (p. 7).

Indeed, the teachers who tend to include “simple but powerful” basic ideas of the sub-
ject in their teaching would not only promote a conceptual learning in the present, but also 
prepare their students to relate their present learning to future learning.

A well-developed conceptual understanding of a topic also includes understanding 
of another dimension of structure of the subject—attitudes toward mathematics. Again, 
Bruner said, “Mastery of fundamental ideas of a field involves not only the grasping of 
general principles, but the development of an attitude toward learning and inquiry, toward 
guessing and hunches, toward the possibility of solving problems on one’s own” (p. 20).

The teachers did not give any examples of attitudes toward mathematics in their knowl-
edge packages. A few teachers, however, displayed their knowledge of general attitudes. 
Their discussions of the conventional and alternative ways of regrouping displayed an 
attitude of the subject—that of approaching a mathematical issue from various perspec-
tives. Teachers’ descriptions of encouraging students to present their own ways of doing 
subtraction with regrouping and leading them to a discussion of these ways showed the 
teachers’ own attitudes toward mathematical inquiry. In addition, the teachers’ intention 
of providing mathematical proof after raising an issue, their confidence and capacity in 
discussing the topic in a mathematical way, and their intention to promote such discussion 
among their students are all examples of general attitudes. In fact, though they were not 
explicitly included as particular items in any teacher’s knowledge package, basic attitudes 
of mathematics have a strong influence on conceptual understanding of mathematics. As I 
note in later chapters, most of the specific topics mentioned in this chapter do not appear in 
discussions of multidigit multiplication, division by fractions, and area and perimeter. The 
attitudes the teachers presented in this chapter, however, will accompany us through the 
other data chapters and the remainder of the book.
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Figure 1.2 displayed how a well-developed knowledge package for subtraction with 
regrouping was organized. Figure 1.4 illustrates a model of conceptual understanding of a 
topic. The uppermost gray rectangle represents procedural understanding of the topic. The 
central gray trapezoid represents conceptual understanding of the topic. It is supported by 
a few procedural topics (while ellipses), regular conceptual topics (light gray ellipses), 
basic of mathematics (dark ellipses as principles and dot-lined ellipses as basic attitudes of 
mathematics). The bottom rectangle represents the structure of mathematics.

FIG. 1.4. Conceptual understanding of the topic.

example, the U.S. teachers who held a conceptual understanding elaborated the “regroup-
ing” aspect of the operation. Many Chinese teachers explained that the main idea of the 
algorithm is “decomposing a higher value unit”. Both explanations are based on mathemati-
cal arguments and reflected the teachers’ conceptual understanding of the procedural topic.

The conceptual understanding of subtraction with regrouping, however, does not have 
“only one correct answer.” There are various versions of conceputal explanations. For 
example, Teacher A might discuss the concept of decomposing higher value unit. Teacher 
B might discuss the concept of decomposing relative to the concept of composing. Teacher 
C might introduce the concept of rate of composing a higher value unit. Teacher D might 
present the concept of regrouping using the regrouping suggested by the algorithm. Teacher 
E might present several ways of regrouping to elaborate the concept. All these teachers 
have authentic conceptual understandings. However, the breadth and depth of their under-
standings are not the same. The shading on the trapezoid is intended to display this feature 
of conceptual understanding.

An  authentic  conceptual  understanding  is supported by mathematical arguments. For 
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We know very little about the quality and features of teachers’ conceptual understand-
ing. One thing that may be true is that the mathematical power of a concept depends on its 
relationship with other concepts. The closer a concept is to the structure of the subject, the 
more relationships it may have with other topics. If a teacher introduces a basic principle of 
the subject to explain the rationale of the procedure of subtraction with regrouping, he or 
she endows that explanation with a strong mathematical power.

Seventeen percent of the U.S. teachers and 86% of the Chinese teachers demonstrated 
a conceptual understanding of the topic. Among these teachers, the Chinese teachers pre-
sented a more sophisticated knowledge than their U.S. counterparts.

Relationship Between Subject Matter Knowledge and Teaching Method: Can the 
Use of Manipulatives Compensate for Subject Matter Knowledge Deficiency?

Compared with subject matter knowledge, other aspects of teaching usually receive more 
attention, perhaps because they seem to affect students more directly. In thinking of how to 
teach a topic a major concern will be what approach to use. During their interviews most 
teachers said that they would use manipulatives. However, the way in which manipulatives 
would be used depended on the mathematical understanding of the teacher using them. 
The 23 U.S. teachers did not have the same learning goals. Some wanted students to have 
a “concrete” idea of subtraction, some wanted students to understand that 1 ten equals 10 
ones, and one wanted students to learn the idea of equivalent exchange. Those who wanted 
students to have a concrete idea of subtraction described uses of manipulatives that elimi-
nated the need to regroup. Those who wanted students to understand that 1 ten equals 10 
ones described a procedure with manipulatives that students could use for computation. 
The teacher who wanted students to learn the idea of equivalent exchange described how 
she would use manipulatives to illustrate the concept underlying the procedure. In contrast 
to the U.S. teachers, the Chinese teachers said they would have a class discussion following 
the use of manipulatives in which students would report, display, explain, and argue for 
their solutions.

In activities involving manipulatives, and particularly in the discussions described by 
the Chinese teachers, students may raise questions that would lead to a deeper understand-
ing of mathematics. The realization of the learning potential of such questions may still 
largely rely on the quality of the teacher’s subject matter knowledge.

SUMMARY

Subtraction with regrouping is so elementary that it is hard to imagine that teachers might 
not possess adequate knowledge of this topic. However, the interviews in this chapter 
revealed this was the case for some teachers. Eighty-three percent of the US teachers and 
14% of the Chinese teachers displayed only procedural knowledge of the topic. Their 
understanding was limited to surface aspects of the algorithm—the taking and changing 
steps. This limitation in their knowledge confined their expectations of student learning as 
well as their capacity to promote conceptual learning in the classroom.

This chapter also revealed different layers of conceptual understanding of subtraction 
with regrouping. Some U.S. teachers explained the procedure as regrouping the minuend 
and said that during instruction they would point out the “exchanging” aspect underly-
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ing the “changing” step. Most of the Chinese teachers explained the regrouping used in 
subtraction computations as decomposing a higher value unit. More than one third of the 
Chinese teachers discussed nonstandard methods of regrouping and relationships between 
standard and nonstandard methods.

Teachers with different understandings of subtraction with regrouping had different 
instructional goals. Although many teachers mentioned using manipulatives as a teaching 
approach, the uses they described, which would largely decide the quality of learning in 
class, depended on what they thought students should learn. In contrast with U.S. teachers, 
most Chinese teachers said that after students had used manipulatives they would have a 
class discussion—a teaching strategy that requires more breadth and depth of a teacher’s 
subject matter knowledge.

Subtraction with Regrouping: Approaches to Teaching a Topic 



Chapter 2  
Multidigit Number Multiplication:  
Dealing With Students’ Mistakes

Scenario

Some sixth-grade teachers noticed that several of their students were making the 
same mistake in multiplying large numbers. In trying to calculate

 

the students seemed to be forgetting to “move the numbers” (i.e., the partial p roducts) 
over on each line. They were doing this:

 

instead of this:

 

While these teachers agreed that this was a problem, they did not agree on what to 
do about it. What would you do if you were teaching sixth grade and you noticed that 
several of your students were doing this?

All of the teachers in the study considered the students’ mistake in multidigit multiplica-
tion, lining up the partial products incorrectly, to be a problem of mathematical learning 
rather than a careless oversight. However, in identifying the problem and explaining how 
they would help students to correct the mistake, the teachers presented various ideas.
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THE U.S. TEACHERS’ APPROACH: LINING UP  
VERSUS SEPARATING INTO THREE PROBLEMS

Reasons for the Mistake

In identifying the students’ mistake, sixteen of the U.S. teachers (70%) thought it was a 
problem of carrying out the lining-up procedure, whereas the other seven teachers (30%) 
concluded that the students did not understand the rationale of the algorithm. The second 
group of teachers included Tr. Bridget, Ms. Faith, and Ms. Fleur, who were also conceptu-
ally focused with respect to subtraction with regrouping. The same phrase—“the student 
did not have a good understanding of place value”—was heard frequently during most 
interviews. By the term “place value,” however, the teachers in the two groups meant dif-
ferent things. What the procedurally directed teachers meant by “place value” was only the 
first half of the phrase, “place”—the location of the numbers. For instance, Tr. Bernice, an 
experienced teacher, gave this explanation:

I see no problem with the multiplication by 5. In the next one, if they are multiplying 
the second one, the second in the tens column they would have to move over to the 
tens column to start putting their answer. And then they are multiplying the hundreds 
column so they would move over to the third spot.

When teachers like Tr. Bernice talked about the “tens column” or the “hundreds column,” 
they did not focus on the value of the digits in these columns. They used the terms “tens” 
and “hundreds” as labels for the columns. In their view, these labels help one to verbal-
ize the algorithm so that it can be carried out correctly. As long as students can identify a 
column and remember to put the relevant number in it, “they can’t go wrong” (Tr. Baird). 
Other teachers used the numbers in the multiplier to identify columns. When they men-
tioned a part of the multiplier, 40 or 600, they did not mean its value, but used it to label 
a column. Addressing what was going on in the students’ work, the beginning teacher Ms. 
Fay said:

I think maybe they were just having a little bit of confusion about the place value…. 
First of all we are multiplying by one in the ones. Then we move over, and we are not 
multiplying by 4, we are multiplying by 40. Therefore, you have to move the place 
value over. It is just remembering the process of where you put, where you start the 
column. (italics added)

At first we might think that Ms. Fay had a conceptual focus. She used the term “place 
value,” and said that the 4 in the tens place was not 4 but 40. However, she did not follow 
the conceptual direction one might expect from the first part of her statement. Her attention 
was on how to move over the numbers, not why. Neither “place value” nor “forty” focused 
on the value of the partial product. Nor were they used in order to reveal the concept under-
lying the algorithm. Recognizing 40 and 600 was simply a way of lining up the partial 
products: When you multiply by 40, remember to line up with 40; when you multiply by 
600, remember to line up with 600. It is just a question of memorizing the procedure.

Multidigit Number Multiplication: Dealing with Students’ Mistakes 
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The teachers in the conceptually directed group, however, had a different interpretation 
of the students’ mistake. Using the terms Ms. Fay used, another beginning teacher, Ms. 
Francesca, said:

I would say the children, the students don’t have an idea of, they really don’t under-
stand place value. They don’t understand the concept, because they’re doing 4 times 
3, which is what that looks like, but you have got to take it as 40 times 3 and they 
are not understanding that. That’s why they are not placing things accordingly…The 
problem is that they did not see how each number is established.

Ms. Francesca’s concern, as well as that of the other teachers in the conceptually directed 
group, was not “where to put the answer.” Rather, it was that the students did not under-
stand why the reason the partial products are lined up in the way the algorithm requires. Tr. 
Belle, an experienced teacher, indicated that not understanding the concept underlying the 
procedure was the reason for the students’ mistake:

I don’t think the kids understand what they are multiplying. I think if they really 
understood the concept, they’d remember where to put the number, they’d know 
where to put the numbers. I think very often kids are taught steps, you do this step 
and you do that step and you move in once and you move in twice; they don’t really 
know why they’re doing all that. I think if they really understand what they’re doing, 
they’ll move it in.

What the teachers believed to be the cause of the students’ mistake determined the direction 
of the learning they intended to promote in dealing with the problem. The procedural or 
conceptual perspective of a teacher in defining the problem, however, seemed to be largely 
determined by the teacher’s subject matter knowledge of multidigit multiplication.

All teachers in the conceptually directed group, but only two teachers in the procedur-
ally directed group, showed a sound understanding of the rationale underlying the algo-
rithm. The other fourteen procedurally directed teachers (61%) had limited knowledge of 
the topic. Although they were able to verbalize the “moving over” rule explicitly, none was 
able to explain it.

During their interviews, some teachers admitted they did not know the rationale. Tr. 
Beverly, an experienced teacher who considered mathematics her strength, replied that this 
was an area she had problems with and was not able to not explain “why moving over”: 
“Now see, these are the kinds of things that I have problems [with]. Areas that I have, you 
know, problems on them.”

Other teachers articulated an answer, but failed to provide a real mathematical explana-
tion: “That’s hard…. Because that’s the way you always do it…. It is the fact…. I mean, this 
is the way we were told to do it” (Ms. Fay). “Because that’s the correct way. That’s what I 
learned. That’s correct” (Ms. Fiona). “I can’t remember that rule. I can’t remember why you 
do that. It just like when I was taught, you just do it” (Ms. Felice).

Mathematical knowledge is based on both convention and logic. However, convention 
in this case serves as a shelter for those who don’t have a conceptual understanding of a 
mathematical procedure.

Knowing and Teaching Elementary Mathematics
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Problematic features of the teachers’ subject matter knowledge were also revealed in 
their opinions on the “hidden” zeros included in the computation. The staircase lining up 
that confused the erring students is, in fact, an abbreviation of the following:

 

With the zeros included, the rationale of the algorithm becomes clear: 492 actually stands 
for 4920, and 738 stands for 73800. However, most teachers in the procedurally directed 
group did not see this meaning. The fourteen teachers with a procedural understanding of 
the algorithm had two different opinions about the role of the zeros in computation. Some 
thought the zeros were disturbing, while others saw them as useful placeholders. All con-
sidered the zeros as something alien to the computation. The teachers who held a negative 
position argued that the zeros are “artificial” and “not belonging in there”:

Well, some of the texts and some teachers use zeros and put a zero as a placekeeper 
in multiplication of each digit. But I’ve never liked that because it always seemed 
like there was, that it was artificial, that there was an addition of something in there 
that didn’t really belong in there, to me, I felt personally uncomfortable with it. (Mr. 
Felix)

Other teachers thought that the zeros would confuse students more: “I would be afraid 
that [the zeros] would just confuse them more” (Tr. Bernice). “I do that [put an asterisk as 
placeholder] to pay attention, and also not to get confused with other zeros” (Tr. Belinda).

On the other hand, the teachers who considered the zeros as useful placeholders in 
carrying out the algorithm did not see a mathematical meaning in the zeros either. When 
probed about whether putting a zero after 492 would change the number, they became 
puzzled and confused:

Oh, yeah, that’s true, and, and for that matter, the reason I say a zero is because, um, it 
just, it’s just helping me keep my place, it has no value in a number. Um, but it helps 
me keep my place and where, where I should be. (Ms. Fay)

OK, I would not tell them I was adding zeros, I am putting down zeros as a place-
holder. (Tr. Bernadette)

Not being able to explain the puzzle, Ms. Fay and Tr. Bernadette just wanted to avoid fac-
ing the challenge. Ms. Francine, however, argued that the number would not be changed 
because that “plus zero means plus nothing”: “I would say well, what is 5 plus nothing? Is 
it adding anything? It is not.”

Multidigit Number Multiplication: Dealing with Students’ Mistakes 
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Ms. Francine’s argument suggests that she confused “adding zero” to a number (5+0=5 
or 492+0=492) with the role of a 0 in a numeral (50 or 4920). The teachers in the procedur-
ally directed group used zero as a reminder for moving over. They did not see it as different 
from an arbitrary placeholder. Putting a zero is just like putting a meaningless x:

I’d say that you are not changing them, you’re just putting a space there to remind 
to move over. Or, maybe you could even put an x and not use a zero. Something to 
remind them to move it over. (Ms. Felice)

The conceptual probes exposed the limitations of these teachers’ knowledge. They knew 
how to carry out the algorithm and how to verbalize the rule, but did not understand why 
the rule was created.

The seven teachers in the conceptually directed group, however, provided mathematical 
explanations of the algorithm. They explained that multiplying by 645 was actually multi-
plying by 5 and by 40 and by 600, so that the partial products were in fact 615, 4920, and 
73800. Undergoing the same conceptual probes about the zeros, then, they withstood the 
trial. When asked if adding the zeros would change the number, some of them argued that 
it did, and some argued it did not. But both positions made sense. Ms. Fawn argued that if 
the 492 in the problem is seen as a regular 492, then adding a zero after that is changing the 
number, and, this changing is necessary:

I would say yes, it is changing the number. Because 123×40 doesn’t equal 492, this 
number isn’t the right number, and we are changing the number because we are mul-
tiplying by more than 4, we are multiplying by 40.

Ms. Frances, from another point of view, argued that since the 492 is not a regular 492 but 
one starting from the tens column, adding a zero after it was not changing the number, but 
revealing its real value:

Well, I would say that it was this number. Remember what you multiplied…. You 
would put a zero there, and that would be 4920, because they are multiplying by 
tens.

Still other teachers, like Ms. Faith and Ms. Fleur, indicated that by showing students “what 
was really going on in the procedure,” the problem of whether putting a zero after the 492 
would change the number would not be a problem, or, it would have already been solved:

I’d already showed them that they’re not just putting it (the zero) there, that there is a 
reason because that number is really 4,920, not 492 moved over. (Ms. Fleur)

would show that you are not just adding zeros. (Ms. Faith)
OK, I  think by this process (separating the problem and listing the partial products) I 
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Teaching Strategies

Procedural

The two groups of teachers, who defined the students’ mistake in two ways, had different 
approaches for addressing it. Procedurally directed teachers said they would teach students 
how to line up partial products correctly. They described three strategies.

Describing the Rule. Verbalizing the rule clearly was mentioned by five teachers, among 
them Tr. Bernice and Tr. Beverly:

Well, if the child is aware of place value I might encourage them to put it under the 
number that they are multiplying as far as their place value. For instance, the 5 is in 
the ones column, so you would start on the ones column, the 4 is in the tens column, 
so you might start to move over and put it right underneath the 4 which is in the tens 
column. And then work in the hundreds column, put the 6. (Tr. Bernice)

I would go back to place value and tell them that when they are multiplying by the 
ones, it is lined up with the numbers above. And that when they moved to the next 
number, which is the tens, it lines up with the tens. And then the next number would 
be lined up with the hundreds and so forth. (Tr. Beverly)

Tr. Bernice and Tr. Beverly’s descriptions are two more examples of how a conceptual term 
can be used in a procedural way. The term “place value” was not introduced to students as 
a mathematical concept, but as labels for columns where they should put numbers.

Using Lined Paper. Another strategy to help students to carry out the rule was to use 
lined paper, or a grid:

Well, probably the same way I do when I am teaching now. Is start with lined paper. 
And turn it around and have one number in each line, and get them to see how, this 
is a 40. Just put one number in each line, in each space. And then have them work 
it. And get them to see that when they multiply, well, 3 times 5 and that would come 
under the 5…. And then when they multiply 3 times 4, it would come in the same 
column as the 4. And when you multiply 3 times 6, it is in the same column as the 6. 
(Tr. Bridget)

The strategy suggested by most teachers was to put a placeholder in the blank spaces. Eight 
teachers proposed using zero as the placeholder. Of course, because most teachers did 
not understand the real meaning of the zeros, they did not even think to promote a deeper 
understanding of the particular format of lining up. They would suggest this to students just 
so numbers would be correctly positioned:

What you might want to do to help remember is when you multiply you fill up the 
first line and then right away put a zero under the ones place so that you know you 
can’t use that spot. (Ms. Francine)

Multidigit Number Multiplication: Dealing with Students’ Mistakes 
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Using Placeholders. Two teachers experienced in teaching this topic reported suggesting 
that their students use a placeholder other than zero, such as an asterisk. Tr. Barbara said 
that her way of teaching the topic was to use things that would “hit the student’s eye” as 
placeholders:

One thing that I would do is, well, I should say I have done, is when first teaching 
this on a felt board, I always put either an apple, orange or whatever, in the spaces…I 
mean, it could be some weird thing, even pictures of elephants. I do not care what it 
was. But the children memorized this and they said, oh I remember that [my teacher] 
said do not put anything there because that is where the orange was or that was the 
apple…Just put something different there so that it will hit their eye.

Tr. Barbara’s strategy seemed to be drawn from the experience that putting an apple, an 
orange, an elephant, or anything unusual in the blank space was successful in teaching stu-
dents to carry out the procedure correctly. Unfortunately, this does not appear to promote 
any meaningful mathematical learning. On the contrary, it is consistent with the idea that in 
learning mathematics it is unnecessary to understand the idea underlying a procedure—one 
should just follow the teacher’s “interesting” but arbitrary commands. Aimed at solving the 
problem at the procedural level, this lining-up approach was not concerned with conceptual 
learning at all.

Conceptual

Explaining the Rationale. The teachers in the conceptually directed group, however, 
focused on disclosing the rationale of the lining-up rule. Two teachers reported that they 
would explain the rationale to students. Tr. Belle said:

I’d talk about what the example itself means, what 123 times 645 means …We’d talk 
about 123 and what 123 really is, and what it means: it’s 100, a 20, plus 3. And then 
we’d talk about 645 and what that means. And, then what does it mean to multiply, 
and I’d take a number like 123 times 5, and what does it mean to multiply 123 times 
5; it means 123 five times. And then we’d do the same thing with the next part of the 
number, 40, and then the 600.

Separating the Problem into Three Subproblems. The other five teachers reported the 
strategy they would use: separate the problem into “small problems.” They would separate 
the problem of 123×645=into three small problems in which 123 multiplied 5, 40, and 600, 
respectively. Then they would line up and add the three partial products, 615, 4920, and 
73800. None of the five teachers justified this transformation in any way, for instance, with 
a reference to regrouping or to the distributive law. Three beginning teachers, Ms. Faith, 
Ms. Fleur, and Ms. Frances, reported the way they would demonstrate this. Taking Ms. 
Faith as an example: 

The way I would take them through this is I would start by multiplying 5 times 123 
and writing the answer to the side. And then I would multiply 40 times 123, and 
then I would put the answer to the right. So that it is a part and they can visualize the 
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zero is there…And then I would do 123 times 600. And then I would add all of these 
together and I would, at the same time explain that what we are doing here is exactly 
the same thing. (italics added)

As Ms. Faith indicated, through her demonstration and explanation students would see 
what is really going on through the procedure of multidigit multiplication. In particular, 
they would see that the numbers 492 and 738 in the procedure were actually 4920 and 
73800 with the zeros left out. That would explain where the staircase columns came from, 
why the students are wrong, and also make sense of the lining-up rule. The following is 
another example:

I’d review place value and show them that those partial products you can separate 
them out, just multiply 123 times 5 and then 123 times 40 and then 123 times 600 and 
then add them all up…That is what you are doing in that problem. And then I would 
have the kids put that zero placeholder in. (Ms. Fleur, italics added)

Some teachers in the conceptually directed group, such as Ms. Fleur, referred to procedural 
strategies as well, particularly to using a zero as a placeholder. No doubt teachers should 
pay attention to computational procedures. However, for the conceptually directed group 
procedural strategies were supplementary, while the procedurally directed group used them 
exclusively.

Relationship Between Subject Matter Knowledge and Teaching Strategy

Limited subject matter knowledge restricts a teacher’s capacity to promote conceptual 
learning among students. Even a strong belief of “teaching mathematics for understand-
ing” cannot remedy or supplement a teacher’s disadvantage in subject matter knowledge. A 
few beginning teachers in the procedurally directed group wanted to “teach for understand-
ing.” They intended to involve students in the learning process, and to promote conceptual 
learning that explained the rationale underlying the procedure. However, because of their 
own deficiency in subject matter knowledge, their conception of teaching could not be real-
ized. Mr. Felix, Ms. Fiona, Ms. Francine, and Ms. Felice intended to promote conceptual 
learning. Ironically, with a limited knowledge of the topic, their perspectives in defining the 
students’ mistake and their approach to dealing with the problem were both procedurally 
focused. In describing his ideas about teaching, Mr. Felix said:

I want them to really think about it and really use manipulatives and things where 
they can see what they are doing here, why it makes sense to move it over one col-
umn. Why do we do that? I think that kids are capable of understanding a lot more 
rationale for behavior and actions and so on than we really give them credit for a lot 
of times. I think it is easier for anybody to do something and remember it once they 
understand why they are doing it that way.

Mr. Felix presented a distinct intention to encourage students to “really think about it.” 
However, his own understanding of “why moving over” was that “you should line up with 
the digit you are multiplying.” He did not understand the real value of the partial products 
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and thought that the potential zeros “didn’t really belong in there.” Therefore, even though 
he intended to promote conceptual learning, his teaching strategy was to have students “do 
their problems sideways on the lined paper, using the lines of the paper to make the vertical 
columns,” so as to make it clear “there is a column to skip”—no conceptual learning was 
evidenced at all.

Ms. Fiona insisted that her students needed to be able to answer the question “Why do 
you move those numbers over?” However, like Mr. Felix, she herself did not really under-
stand why one has to move the numbers over. When questioned about this, she was not able 
to provide a convincing explanation. Then, what she wanted students to “understand” was 
“that’s the correct way, that’s what I learned.”

Ms. Francine believed that for students’ learning, understanding should come before 
memorization because “then they are set for life.” However, when she said she would have 
students put zeros in so that they could line up the numbers correctly, she herself couldn’t 
provide a mathematically legitimate explanation for why including the zeros makes sense. 
Consequently, even though Ms. Francine believed that students should understand a proce-
dure before remembering it, her limited subject matter knowledge hindered her ability to 
help students understand the procedure.

Ms. Felice would use peer teaching. She believed that students could learn more math by 
working in heterogeneous groups with their peers. Again, however, her own limited subject 
matter knowledge would hinder her students:

Ms. Felice: OK, I would group them with children that were doing it in the right way…
And I would have peer teaching going on. Then I would have them going 
up to the board with children that knew how, where they could be next to 
people that knew how. And then I would go over it, as they were doing it, 
I would be doing it, so they could follow me and follow their peers (italics 
added). We would discuss it, and if they still didn’t get it, I would sit, and I 
would also   sit down with them on a one-to-one basis and try to explain it 
to them.

Interviewer: Do you have an idea about how you’d like them to specifically explain how 
to do this problem, 123 by 645?

Ms. Felice: I’d have them explain why they were doing it like that, go through it verbally 
of, what, their steps. And then I would verbally go with them together and 
say, “This is how you do it,” and we would both work it out together.

Interviewer: Could you tell me what you’d say?
Ms. Felice: I always, when I was young, I’d always put imaginary zeros there. Or I’d 

even put them in a different color and then, or I would erase them later on. 
But I’d always put something there to make me remember.

Although she mentioned that she would “have them explain why they were doing it like 
that,” during the whole interview she never elaborated why. Instead, she emphasized how to 
carry out the procedure: to have students follow other students, go through their steps ver-
bally, put imaginary zeros in, etc. She said she would discuss it with students, and explain 
to them on a one-to-one basis. Nevertheless, when a simulated conversation between Ms. 
Felice and students was suggested by the interviewer, she was not able to discuss the prob-
lem conceptually.
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A teacher’s subject matter knowledge may not automatically produce promising teaching 
methods or new teaching conceptions. But without solid support from subject matter knowl-
edge, promising methods or new teaching conceptions cannot be successfully r ealized.

THE CHINESE TEACHERS’ APPROACH:  
ELABORATING THE CONCEPT OF PLACE VALUE

The general picture of the Chinese teachers’ approach to the problem has some aspects in 
common with that of the U.S. teachers. The Chinese case also showed correlations between 
the teachers’ subject matter knowledge and their teaching strategies for this situation. The 
teachers who had a conceptual understanding of the topic tended to define the mistake as 
a problem of lacking conceptual understanding and tended to resolve it by addressing the 
students’ understanding. The teachers who could merely verbalize the algorithm tended to 
just tell students to memorize the lining up rule.

Where the Chinese teachers differ from their U.S. counterparts is, again, in the size of 
the “camps” and in the variety of the “conceptually focused camp.” Only six of the 72 Chi-
nese teachers (8%) did not show a conceptual understanding of the algorithm. Nine Chi-
nese teachers, the six who held a procedural understanding and three who understood the 
rationale, were procedurally focused in defining and dealing with the mistake. Sixty-three 
Chinese teachers took a conceptually directed position. A comparison between the “camp 
size” of the U.S. and Chinese teachers is displayed in the following two figures. Figure 2.1 
illustrates the teachers’ subject matter knowledge of the topic. Figure 2.2 illustrates the 
pedagogical direction in defining and dealing with the students’ mistake. 

FIG. 2.1. Teachers’ knowledge of the algorithm.

FIG. 2.2. Teaching strategies.

Multidigit Number Multiplication: Dealing with Students’ Mistakes 



34 

These two figures illustrate the intriguing aspect discussed earlier: slightly fewer teach-
ers described a conceptually directed teaching strategy than had a conceptual understand-
ing of the algorithm.

Interpreting the Mistake

The conceptually directed Chinese teachers fell into three subgroups. One group drew on 
the distributive law.1 Another group extended the conception of place value into place value 
system. The third group explained the problem from both perspectives.

Distributive Law

The first subgroup contained about one third of the conceptually directed Chinese teachers. 
Their explanations paralleled those of the conceptually directed U.S. teachers. The Chinese 
teachers’ arguments, however, were more mathematically “formal” than those of their U.S. 
counterparts. More than half of these teachers referred to the distributive law to justify 
their explanations, while none of the U.S. teachers mentioned this term. Rather than simply 
separating the problem into three smaller problems, the Chinese teachers tended to present 
the process of the transformation:

The problem is that the student did not have a clear idea of why the numbers should 
be lined up in the way seemingly different from that in addition. The lining up is 
actually derived through several steps. First, I will put on the board an equation and 
work it through with students:

 

What allowed us to transform the problem? The distributive law. Then, I will suggest 
that the class rewrite the equation into columns:

 

1 Students in China learn an arithmetic version of the commutative law, the associative law, and the 
distributive law. They are taught that these laws can make mathematical computations easier. For 
example, with the commutative law and the associative law, one can reorganize problems such as 
“12+29+88+11 =” into “(12+88)+(29+11) =” so that the computation becomes easier. With the dis-
tributive law, one can reorganize “35×102 =” as “35×100+35×2 =” to make the computation easier.
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I will ask students to observe the zeros in the equation as well as those in the col-
umns. Do they affect the sum? Why yes, and why no? Can the zeros in the equation 
be eliminated? How about the zeros in the columns? If we erase the zeros in the col-
umns, what will happen? Then I will erase the zeros in the columns and we will get 
staircase-like columns on the board:

 

After such a discussion I believe that the lining-up way in multiplication will make 
sense to the students, and also, become impressive to them. (Tr. A.)

Tr. A.’s logic was very clear. First, she appealed to the distributive law to justify her trans-
formation. She displayed the process of how the problem can be presented as a composition 
of three smaller problems. Second, she rewrote the operation into columns so that the three 
partial products were represented in the form of columns. She asked students to compare 
the two forms of the operation, in particular, to pay attention to the zeros in them. Then 
after a discussion of the role of the zeros, she erased the zeros in the columns because they 
did not make a difference in the computation. Finally, she transformed the original columns 
into the staircase-like columns in the algorithm. Compared with those of the U.S. teachers, 
Tr. A’s explanation was closer to a conventional mathematical argument. The features of a 
mathematical argument—justification, rigorous reasoning, and correct expression—were 
reflected throughout her explanation.

A few other teachers, however, said that explanations like that of Tr. A. were still not 
rigorous enough. Another important mathematical property, multiplication by 10 and the 
powers of 10, should be included:

Besides the distributive law, there is another argument that should be included in the 
explanation. That is the multiplication of a number by 10 or a power of 10. Multi-
plying by 10 and a power of 10 is a special process that differs from regular multi-
plication—to get the product, we simply put the number of zeros in the multiplier 
at the end of the multiplicand. Multiplying a number by 10, we simply put one zero 
after the number, by 100, we simply put two zeros. This aspect also explains why 
123×40=4920. Otherwise, if students treat 123×40 as a regular multiplication prob-
lem, they will get columns like these:
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The problem of why 492 should be “moved over” will still be there. I think that is 
why in the textbook the multiplication by 10 and powers of 10 goes right before the 
multiplication by multidigit numbers in general. Since the procedure of multiplying 
10 and the powers of 10 is so simple, we tend to ignore it. But in terms of the thor-
oughness of mathematics, it should be discussed, at least mentioned, in our explana-
tion. (Tr. Chen)

Tr. Chen’s concern was not gratuitous. Among the seven U.S. teachers who explained the 
rationale of the procedure, two showed ignorance of what Chen discussed. Although they 
separated the problem correctly into subproblems, they did not understand the particu-
lar procedures of ×10 and ×100 included in the subproblems ×40 and ×600. Rather, they 
treated them as regular computations:

Well what if we multiplied it by 10. And I would go through the whole concept. 
Well, 0 times this is 0. Now we are multiplying it by 40. I would show them that 
they needed to put the 0 there, because 0 times that was 0. So now we are going to 
be multiplying by the 4, 4 times this, and show them where the 0, how that holds the 
place value for them. (Ms. Fawn)

I would say how many 123 times 40 is…Go zero times that. Now, 0 times 3 is 0 and 
0 times 2 is 0 and 0 times 1 is 0. (Ms. Frances)

In this sense, even though Ms. Fawn and Ms. Frances had a sound understanding of the 
rationale of the algorithm of multidigit multiplication, they did not show a thorough knowl-
edge of this topic. Their explanations were not explicitly justified. Explanations like those 
of Tr. A. or Tr. Chen not only convey particular pieces of knowledge but the conventions of 
the discipline as well.

Transforming the problem 123×645 into 123×600+123×40+123×5 was one way to explain 
the rationale of the lining up procedure. The key elements in this explanation were first to 
reveal the “invisible” zeros in the procedure, and then to illustrate how they could be omitted.

The Place Value System

Other teachers, however, thought that revealing the zeros and then eliminating them again 
seemed to be an unnecessary detour. The other two thirds of the conceptually directed Chi-
nese teachers described a more direct way to explain the procedure, which did not require 
introducing the zeros. Their argument was based on an elaboration of the concept of place 
value. Instead of saying that the 4 in 645 is 40 and 123×40 is 4920, these teachers argued 
that the 4 in 645 is 4 tens and 123 multiplied by 4 tens is 492 tens. Then they explained why 
the 492 should be lined up with the tens place:

Since the 5 in 645 is at the ones place, it stands for 5 ones. 123×5=615, it is 615 ones. 
So we put the 5 at the ones place. The 4 in 645 is at the tens place, it stands for 4 tens. 
123×4=492, it is 492 tens. So we put the 2 at the tens place. The 6 in 645 is at the 
hundreds place, so it stands for 6 hundreds. 123×6=738, it is 738 hundreds. So we put 
the 8 at the hundreds place. (Ms. S.)
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By renaming 4920 as 492 tens and 73800 as 738 hundreds, the teachers avoided the “detour” 
of introducing zeros. In addition to the distributive law that provides the general rationale 
for the algorithm, the teachers drew on their sound understanding of place value system—
the concept of basic unit and its place value, and the interdependence among place values.

The concept of the basic unit of a number plays a significant role in numeration. We usu-
ally use “one” as the basic unit of a number. When we say 123, we mean 123 ones. In daily 
life it is taken for granted that “one” is the basic unit of a number. However, we can also 
use other basic units for numerating if necessary, or even if we just want to. For example, 
using a ten, a hundred, a tenth, or even a two as basic unit, we can say that the number 123 
is 12.3 tens, 1.23 hundreds, 1230 tenths, or even 61.5 twos. We can also change the value 
of a number by simply changing the place value of its basic unit. With the same three dig-
its, 123 tenths, 123 tens, and 123 hundreds have significantly different values. Based on 
this observation, the teachers claimed that the 40 ones in 645 should actually be treated as 
4 tens—a one-digit number—in the algorithm. Similarly, the 600 ones in 645 should be 
treated as 6 hundreds.

Indeed, in the place value system each place is related to the other. A single place value 
does not have an independent meaning. Each is defined by its relationship to other mem-
bers in the system, so that all place values are interdependent. There would not be a “one,” 
unless it were one tenth of a ten, one percent of a hundred, or ten tenths, etc. The place value 
of a basic unit determines how a number is presented.

Through discussions of the relationship between 4920 ones and 492 tens, students’ pre-
vious understanding of place value would be developed:

We need to deepen students’ understanding of place value. Their concept of place 
value used to be pretty straightforward. The basic unit of a number is always the one 
at the ones place. When they saw a number 492, it always meant 492 ones. When they 
saw a number 738, it always meant 738 ones. But now, the place value of the basic 
unit is no longer a unique one. It changes according to the context. For example, the 
place value of the 4 in the problem is ten. When we multiply 123 by the 4, we regard 
it as 4 tens. Then tens becomes the place value of the basic unit of the product 492. It 
is not 492 ones, like it is in the students’ work, but 492 tens. That is why we put the 2 
at the tens place. The same happens when we multiply 123 by the 6, which we regard 
it as 6 hundreds. The place value of the basic unit of the product is the hundreds, 738 
hundreds. So we should put 8 at the hundreds place. Instead of how many ones, now 
we are thinking about how many tens, how many hundreds, or even how many thou-
sands, etc…. To correct the students’ mistake we should expand their understanding 
of place value, to help them to think of the concept in a flexible way. Yes, it is 492, yet 
it is not 492 ones, but 492 tens. (Tr. Wang)

Tr. Mao regarded multidigit multiplication as a chance to develop students’ concept of 
place value:

We have taught students a basic rule that the digits should always be lined up with 
that of the same place value. Now they may get confused that the rule seems to be 
violated. But the confusion is actually a moment to elaborate their understanding of 
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place value and the lining up rule. Why does it look like lining up in a different way? 
Does it violate the lining up rule we learned before? Through exploring these ques-
tions our students will see that the value of a number does not only depend on the 
digits it contains, but also the places where the digits are put. For example, the value 
of the three-digit numbers in the problem varies if we put them at different places. 
123×4 is 492, no problem. But since the 4 is not 4 ones, but 4 tens, the 492 is also 
not 492 ones, but 492 tens. Or we can say that at this time, the tens place is the ones 
place of tens. The hundreds place becomes the tens place of tens. So it does for the 
number 738, it is 738 hundreds. Therefore, it is not that the lining up idea is changed 
or violated at all. Rather, a complex version is necessary to explain the rule.

These teachers presented clear descriptions of the various aspects of place value. They were 
also aware that the complicated aspects are derived from simple and elementary aspects of 
this concept. More important, they showed a sound understanding of the core idea of the 
concept—”what a digit at a certain place stands for.” This core idea penetrates all stages of 
teaching and learning, and underlies different aspects of this concept. Moreover, the teach-
ers were aware of how the concept of place value is interwoven with various mathematical 
operations and of the role it plays in these operations. With this awareness, the teachers pre-
pare students to learn an idea even when it is not yet obvious in the content they are currently 
teaching. Tr. Li discussed how students’ concept of place value develops step-by-step:

Students cannot get a thorough understanding of place value in one day, but step-by-
step. At first, when they begin to numerate and recognize two-digit, and then multi-
digit numbers, they get a preliminary idea of what is meant by a place in math, the 
names of the places, and limited aspects of the relation between places, like 1 ten 
equals 10 ones, etc. The most significant idea they learn at this stage is that digits 
at different places have different meanings, or stand for different values. We start to 
ask them the question, “What does this digit stand for?” They learn that a 2 at the 
ones place stands for 2 ones, a 2 at the tens place stands for 2 tens, and a 2 at the 
hundreds place stands for 2 hundreds, etc. Then when they learn regular addition and 
subtraction, place value becomes more meaningful for them, for they have to line up 
the digits with the same place value. After that, when learning addition with compos-
ing and subtraction with decomposing,2 students learn the aspect of composing and 
decomposing a unit of higher value. The composition and decomposition of a unit 
are also important aspects of the concept of place value. Now, in multiplication they 
encounter new aspects of the concept. They used to deal with several tens. Now they 
are dealing with several tens of tens, let’s say 20 or 35 tens, or, even several hundreds 
of tens, like in this problem, 492 tens. They used to deal with several hundreds. Now 
they are dealing with several tens of hundreds, or, even several hundreds of hundreds, 
like 738 hundreds. To understand this aspect, they should know how to deal with 
place value in a systematic way.

2 In China, addition with carrying is called “addition with composing” and subtraction with 
regrouping is called “subtraction with decomposing.”
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Place Value and the Distributive Law

Tr. Li was one of the eleven teachers who claimed to expose students to two explanations—
that with zeros as well as that without introducing the zeros. These teachers said that a 
comparison of the two ways will expand students’ mathematical perspectives, as well as 
develop their capacity to make their own mathematical judgments.

Knowledge Package

As in the case of subtraction with regrouping, the Chinese teachers’ response to the topic 
of multidigit multiplication evidenced their concern about the learning of related topics. 
The pieces in their knowledge packages included topics such as place value, the meaning 
of multiplication, the rationale of multiplication, multiplication by two-digit numbers, mul-
tiplication by one-digit numbers, multiplication by 10, multipliers and powers of 10, the 
distributive law, and the commutative law. There also were some key pieces in the package 
that the teachers thought carried more weight. Multiplication by two-digit numbers was the 
one that most stood out. It was considered the cornerstone that supported the learning of 
multiplication by three-digit numbers. The issue of “multiplication by two-digit numbers” 
was raised by the teachers in their first reactions to my question. About 20% of the Chinese 
teachers commented that their students had not made “such a mistake” in learning mul-
tiplication by three-digit numbers, for it should have been solved in the stage of learning 
multiplication by two-digit numbers:

This mistake should have happened when students learn multiplication by two-digit 
numbers. The mathematical concept and the computational skill of multidigit multi-
plication are both introduced in the learning of the operation with two-digit numbers. 
So the problem may happen and should be solved at that stage. (Ms. F.)

Some teachers indicated that the topic I raised, multiplication by three-digit numbers, was 
not a key piece in the knowledge package. It is a “branch,” not the “root” or the “trunk” of 
the tree. From the perspective of the Chinese teachers, multiplication by two-digit numbers 
weighs more than that by three-digit numbers. When analyzing the reason why the stu-
dents had made such a mistake, some teachers said that “the students did not understand 
the concept when learning multiplication by two-digit numbers.” Tr. Wang reported that 
multiplication by two-digit numbers was taken seriously and dealt with intensively in her 
instruction:

To tell you the truth, I don’t teach my students multiplication by three-digit numbers. 
Rather, I let them learn it on their own. My focus, though, is on multiplication by 
two-digit numbers. Multiplying by a two-digit number is the difficult point. Students 
need to learn a new mathematical concept as well as a new computational skill. You 
have to make sure they get both. I always have them discuss thoroughly, over and 
over. How to solve the problem? Why do you need to move over? They can have 
their own idea, they can also open the textbook and read what the book says. The 
main point is that they have to think over why, and to explain it. I usually have group 
discussions and class discussions. For the group discussion, I just pair two students 
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who are sitting at the same desk,3 or four students sitting at two desks one behind the 
other. The students at the front desk turn back to the other two students. The problem 
of group discussion is that some slow students may tend to rely on their classmates 
to explain the issue. So in class discussion I pay particular attention to them. I invite 
them to talk in the class and make sure that they understand the issue. Then, the class 
has to practice computation. Sometimes, even though they understand the rationale, 
they may still forget to move the numbers over because they had got used to lining 
up straightway when doing addition. So they need to practice. Once they have a clear 
idea of the concept and get enough practice, they become skillful in doing multi-
plication by two-digit numbers. I am pretty sure that then they will be able to learn 
multiplication by multidigit numbers on their own. That is why their understanding 
of the concept when working on two-digit multiplication is so important.

From the perspective of subject matter knowledge, Chinese teachers seem to have a clearer 
idea of what is the simplest form of a certain mathematical idea. From the perspective of 
student learning, they pay particular attention to the first time an idea is introduced to stu-
dents in its simplest form. They believe that once students thoroughly understand the idea 
in its simple form, their later learning of its advanced and complex forms will have a solid 
basis on which to build. Later learning will also reinforce the idea learned in the simple 
form. In addition to the topic of multiplication with two-digit numbers, the concept of place 
value system was another key piece frequently mentioned by the teachers. Figure 2.3 illus-
trates the knowledge package of multidigit multiplication described by the teachers.

FIG. 2.3. A knowledge package for multiplication by three-digit numbers.

Teaching Strategies

The trend observed among the U.S. teachers was also evident among the Chinese teachers: 
How a teacher tended to help the students depended heavily on his or her own knowledge of 
the topic. The few Chinese teachers whose knowledge was limited to procedures reported 
that they would simply tell the students to remember to move over the columns. Most 
Chinese teachers, however, presented conceptually based strategies to help the students to 
understand the problem.

3 In China, two students share a student desk and all the desks are lined up row-by-row facing the 
teacher’s desk.
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Explanation and Demonstration

Of the 72 teachers, 22 said they would explain a correct way to solve the problem to the 
students. Twenty teachers reported that they would do a demonstration as well as give an 
explanation. While these two approaches were also frequently seen among the U.s. teach-
ers, the explanations and demonstrations of most Chinese teaches differed from their U.s. 
counterparts. For many U.S. teachers, explanation meant verbalizing the procedure of the 
algorithm and demonstration meant displaying the steps of computation. Most Chinese 
teachers, however, intended to illustrate the rationale of the algorithm by their explana-
tions and demonstrations. The explanations were usually established on solid, conceptual 
grounds. The following is a typical example of an explanation by the Chinese teachers: 

I will tell the students that since the 4 in 645 represents 4 tens, therefore, 123 multi-
plied by the 4 equals 492 tens. 492 tens, where should the 2 be lined up? Of course 
with the tens place. Again, the 6 represents 6 hundreds, so that 123 times the 6 equals 
738 hundreds. Where should the 8 be lined up? The hundreds place. The digits at the 
ones place of these three numbers (615, 492, and 738) actually represent three dif-
ferent values. One represents ones, one represents tens, and the other one represents 
hundreds. Your problem is that you didn’t notice the difference and saw them all as 
representing ones. (Ms. G.)

Through her explanation, Ms. G. conveyed the concept included in the rationale underlying 
the procedure, as well as the vein of a mathematical argument. Most teachers who claimed 
to explain the algorithm by transforming the problem according to the distributive law 
reported they would demonstrate the transformation on the board. During the interviews, 
the teachers tended to display each step in the procedure as they would when teaching so 
that students could see the entire logical flow of the computation.

Students Find the Problem

Another 29 Chinese teachers intended to engage students in finding the problem on their 
own. Ms. Felice, a U.S. teacher, also expressed a similar intention, hoping that through peer 
teaching the erring students would find the problem on their own. However, because Ms. 
Felice’s own knowledge of the topic was limited to the procedure, the problem she intended 
to lead the students to find was also at the procedural level. Many of the Chinese teachers, 
on the other hand, intended to lead students to an understanding of the rationale of the proce-
dure as well as the associated mathematical concepts. During their interviews they reported 
several strategies they would like to use to engage and guide students to find the problem.

Observe, Examine, Analyze, and Discuss. Some Chinese teachers reported that they 
would expect students to find the problem through observation. They said they would put 
the error on the board and invite students to closely examine it, and then engage the class 
in discussing their findings:

We will open our “little mathematical hospital.” The students will be the “doctors” 
and the problem will be the “patient.” The “doctors” are to diagnose if the “patient” 
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is ill or not. Let them make the judgment. If it is “ill,” what kind of illness? What is 
the cause of the illness? As a teacher, my responsibility is to lead them to find out 
why it is wrong…It is a problem of place value, say, digits at different places express 
different meanings. (Tr. Sun)

I will put the problematic one on the blackboard and invite my students to observe 
carefully and see if it is correct or not. Then I will let them articulate where the prob-
lem is, why it is incorrect. Why should the 492 and 738 be lined up differently? What 
do these numbers now stand for, and what should they actually stand for? Then I will 
have a student, maybe the one who had made the mistake, come up to the board to cor-
rect it. After such a review of the rationale, we will summarize the rule. Finally, I give 
a few more problems and ask them to describe the procedure and explain it. (Ms. L.)

In contrast with Ms. Felice, the Chinese teachers did not stop at the stage when students 
saw the apparent problem. A discussion would follow to explore the underlying concept. 
What students learned through the discussion, then, was not merely to correct the flawed 
procedure, but also the underlying misconception.

Asking Questions to Set the Direction. Instead of directly displaying the problem, 
some teachers would set a direction before students observed the problem. Some teachers 
would use certain questions to guide students to uncover the problem. The questions would 
remind students of the concepts included in the explanation of the procedure, such as how 
a number is formed, place value of the digits in the multiplier, etc. These questions would 
usually be asked of the very students who made the mistake:

First of all, I will ask the students to tell me how the number 645 is formed. They will 
come up with 6 hundreds, 4 tens, and 5 ones. Or, they may say that it is 600 and 40 
and 5. Then I will ask them to think about what 123×5 represents? What does 123×4 
represent? What does 123×6 represent? So, were you correct in solving this problem? 
Why is it wrong? Go to correct it. (Tr. A.)

I will ask the students what the 4 in 645 stands for, they will say 4 tens, then I will 
ask them to estimate how many are 123 times 4 tens, can it be 492? Then I will ask 
them to go to do the rest of thinking, and come back to me with their work corrected 
and explain to me the problem they would have found. (Ms. F.)

I have taught more than twenty years of elementary math but never have met such 
a mistake. Given that it happens in my fifth grade students, I may want to say, OK, 
since you have learned the distributive law, who can rewrite the problem 123×645 
according to the law, separating the multiplier according to place values? Once they 
rewrite it, they will soon see where the problem is. (Tr. Mao)

By asking the questions, the teachers gave students a hint of where the problem might be 
and let them find it on their own. Guided by these questions, students’ attention would not 
be drawn to the surface aspects of the problem, but would go directly to its essence.
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Diagnostic Exercises. To design relevant exercises to help students to “diagnose” the 
problem was another strategy the teachers used to set a direction to help students to find 
the problem. These exercises were also intended to raise the conceptual issues underlying 
the procedure:

I think the reason that the students made such a mistake is that they do not understand 
the meaning each digit expresses when it is at each place. I will first have them solve 
some problems like these:

123=( )×100+( )×10+( )×1
645=( )×100+( )×10+( )×l

 

Then, I will ask them to think if they were right or not, and why. (Tr. H.)

First, I will ask them to do two problems:

42×40=( ) tens
42×400=( ) hundreds

 

These problems will lead them to realize the rationale of multiplication. Second, I 
will ask students sharing the same desk to tell each other what 123 times each digit 
in 645 means, and in what places the products should be put. Then I will have them 
discuss if there is an error here, analyze the error drawing on the rationale of compu-
tation, and explain what is the correct way. (Ms. A.)

Given that my students did it in this way, I will first have three students come up 
to the board, each computing one of the three problems: 123× 5=?, 123×40=?, and 
123×600=?, then ask the class to compare the results on the board with the problem-
atic one, ask them, what do they find. In this way, they will soon discover the problem 
and how it was caused. (Tr. C.)

The teachers who would use “diagnostic exercises” indicated a direction to students, as did 
the teachers who would use questions, yet they left the task of approaching the problem to 
the students.

Check the Rule. Some Chinese teachers would have students review the procedure 
before discussing the rationale. These teachers said that they would like to have students 
check the rule to find the problem through comparing the error to the rule:

If my students have such a error, I will ask them to open the textbook and check with 
the procedure on their own. Then encourage them to think about why this is the rule, 
why the rule stipulates that the partial products should be lined up in this way. After 
that I will display the error on the blackboard. What do you think about these stu-
dents’ work? They will immediately find that it is wrong. I will ask them to say why 
it is wrong, how to correct it. (Mr. B.)
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Even though they began from the procedural aspect of the rule, these teachers did not 
ignore this conceptual aspect. Based on their own conceptual understanding of the topic, 
they managed to achieve their intention of helping students “to remember the rule based 
on understanding it.”

The teachers who proposed different strategies to engage students in finding the prob-
lem shared some common characteristics. Most teachers expected students to find the prob-
lem on their own, and explain it at the conceptual level. Some teachers asked questions 
or designed diagnostic problems intended to set a conceptual direction. Other teachers 
attempted to let students find the procedural problem first, and then approach the underly-
ing concept. In either case, the rationale of the procedure was the focus.

Mathematical discourse, which is constituted by investigating, challenging, and defend-
ing propositions, includes a discourse within oneself as well. This convention of mathemat-
ics is reflected in these teachers’ strategies—to engage students in finding the problem and 
explaining it on their own.

Tr. Chen’s Approach

In addition to the above approaches to deal with the students’ mistake, Tr. Chen proposed his 
own way which was also impressive. He suggested using “nonconventional” ways of solv-
ing the problem to help students to understand the procedure. He said that he would inspire 
students to see that there is actually more than one correct way to line up the columns. He 
proposed that there may be five ways other than the conventional way of lining up:

 

Tr. Chen believed that guiding students to find these nonconventional ways would stimulate 
their understanding of the algorithm so that they would use it in a more flexible way.

DISCUSSION

“Conceptual Understanding”: Not a Simple Story

For the topic of multidigit multiplication, the teachers’ responses were distributed in a pat-
tern similar to that of the previous chapter. Again, all the teachers reached the procedural 
level—they all knew how to do the multiplication correctly. However, 61% of the U.S. 
teachers and 8% of the Chinese teachers were not able to provide authentic conceptual 
explanations for the procedure. Ironically, they tended to use the term “place value” proce-
durally—to identify or label the columns for lining up the numbers.

The remaining 39% of the U.S. teachers and 92% of the Chinese teachers provided 
conceptual explanations for the algorithm of multidigit multiplication. Their explanations, 
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however, were of various forms. The seven U.S. teachers said that the problem 123×645 
is actually constituted of the three subproblems 123×600, 123×40, and 123×5, but didn’t 
give explicit justifications for this statement. Therefore, the partial products were actually 
not 615, 492, and 738, but 615, 4920, and 73800. The Chinese teachers, however, tended 
to indicate that the concept underlying the algorithm is the distributive law. They not only 
frequently mentioned the term distributive law, but applied it to display and justify the 
transition:

 

To explain why the zeros at the end of the partial products are omitted in the algorithm, the 
Chinese teachers elaborated the concept of place value system. They said that from the per-
spective of place value system, the three partial products can also be regarded as 615 ones, 
492 tens, and 738 hundreds. Moreover, a few Chinese teachers included multiplication by 
10 and the powers of 10 in their discussion to make the explanation more rigorous.

Although all the explanations mentioned above make sense of the computational proce-
dure of multidigit multiplication, one can easily see conceptual differences among them. 
How are we going to understand these differences among teachers’ conceptual understand-
ing of a mathematical topic? Will these differences in teachers’ understanding make a dif-
ference in students’ learning? In 1998 there is much talk in mathematics education about 
conceptual understanding, in contrast to procedural understanding. Yet little attention has 
been paid to more specific features of an adequate conceptual understanding, for example 
its thoroughness.

Knowledge Package and Its Key Pieces

The interview questions of the topic of the previous chapter, subtraction with regrouping, 
included a probe of related topics. The interviews discussed in this chapter did not include 
a similar probe. Without this probe, the U.S. teachers limited their discussions to the topic 
of multidigit multiplication. Most Chinese teachers, however, tended to mention a few 
related topics spontaneously. As with the topic of subtraction with regrouping, the knowl-
edge package the Chinese teachers mentioned included a linear sequence of mathematical 
topics: multiplication by one-digit numbers, by two-digit numbers, and by multidigit num-
bers. The sequence of multiplication operations was supported by a few other topics, such 
as the concept of place value system, the distributive law, multiplication by 10 and powers 
of 10, etc.

Interestingly, as in the case of subtraction with regrouping, the Chinese teachers thought 
that the interview topic was not the key piece of the package. The multiplication of two-
digit numbers, where the rationale for the topic is introduced for the first time, was consid-
ered as the key piece that deserves most effort from teachers, as well as from students. For 
the topic of subtraction with regrouping, the key piece was subtraction within 20. Chinese 
teachers tend to pay significant attention to the occasion when a concept is first introduced. 
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They intend to establish a solid basis for later learning. According to them, the more solid 
the first and primary learning is, the more support it will be able to contribute to later learn-
ing of the concept in its more complex form. This support, in turn, will enhance the early 
learning of the primary form.

The Chinese teachers’ perspective about the key piece in a knowledge sequence brings 
to mind a teaching approach in the United States. In the spiral curriculum, mathematical 
concepts reoccur throughout the school years. How does each appearance of a concept in 
the curriculum contribute to mathematical learning? How should successive appearances 
of a concept be related in order to produce consistent learning? None of the U.S. teachers 
in this study nor any of those I have met in other schools in the U.S. presented a concern 
regarding how a concept should be taught at each occasion when it appears. Given that 
teachers are not aware that there is a relationship among these occasions, and given that 
they don’t know what the relationship should be, the mathematical teaching of the topic 
will be splintered and inconsistent.

Relationship Between Subject Matter Knowledge and Beliefs:  
Is the Intent of Teaching for Understanding Enough?

The data in this chapter reveal an interesting aspect of the relationship between teachers’ 
subject matter knowledge and the learning they intend to promote through their teaching. 
Among the teachers of both countries, the percentage of those who showed a conceptual 
understanding of the topic was slightly higher than those who took a conceptual direc-
tion in helping the students to correct the mistake. On one hand, none of those teachers 
whose knowledge was procedural described a conceptually directed teaching strategy. On 
the other hand, a few teachers who held a conceptual understanding of the topic would take 
a procedural direction in teaching—they did not expect their students’ learning to reach as 
far as theirs. Not a single teacher was observed who would promote learning beyond his or 
her own mathematical knowledge.

SUMMARY

Most teachers considered the students’ mistake in multidigit multiplication, lining up the 
partial products incorrectly, as an indication of a problem in the students’ mathematical 
understanding rather than as a careless error. However, the teachers had different views 
of the problem: Some considered it a problem of knowing the procedure; others thought it 
a problem of conceptual understanding. The teachers’ perspectives on the problem paral-
leled their subject matter knowledge of the topic. Most of the U.S. teachers’ knowledge of 
the topic was procedural. In contrast, most of the Chinese teachers displayed a conceptual 
understanding.

The teachers described instructional strategies to address the mistake. The focus of 
these strategies did not completely parallel the teachers’ knowledge: Slightly fewer teach-
ers described conceptually directed strategies than had a conceptual understanding of the 
topic. The Chinese teachers’ explanations of the algorithm and their strategies for dealing 
with the mistake were well supported by their knowledge of the basic ideas of the discipline 
and of topics related to multidigit multiplication.
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Chapter 3  
Generating Representations:  

Division By Fractions

Scenario

People seem to have different approaches to solving problems involving division 
with fractions. How do you solve a problem like this one?

 

Imagine that you are teaching division with fractions. To make this meaningful for 
kids, something that many teachers try to do is relate mathematics to other things. 
Sometimes they try to come up with real-world situations or story-problems to show 
the application of some particular piece of content. What would you say would be a 
good story or model for ?

This time the teachers are required to accomplish two tasks: to compute , and to 
represent meaning for the resulting mathematical sentence. The mathematical topics dis-
cussed in the previous two chapters are relatively elementary, but division by fractions is 
an advanced topic in arithmetic. Division is the most complicated of the four operations. 
Fractions are often considered the most complex numbers in elementary school mathemat-
ics. Division by fractions, the most complicated operation with the most complex numbers, 
can be considered as a topic at the summit of arithmetic.

THE U.S. TEACHERS’ PERFORMANCE ON CALCULATION

The weaknesses of the U.S. teachers’ subject matter knowledge were more noticeable in this 
advanced topic than in the two topics discussed earlier. Their discussions of whole number 
subtraction and multiplication had all displayed correct procedural knowledge, but even this 
was lacking in many of their discussions of division by fractions. Of the 23 U.S. teachers, 

21 tried to calculate . Only nine (43%) completed their computations and reached 
the correct answer. For example, Mr. Felix, a beginning teacher, gave this e xplanation:

I would convert the to fourths, which would give me . Then to divide by , I 
would invert and multiply. So, I would multiply by 2 and I would get , and then 
I would divide 14 by 4 to get it back to my mixed number, or then I would reduce 
that into .
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For teachers like Mr. Felix, the computational procedure was clear and explicit: Convert the 
mixed number into an improper fraction, invert the divisor and multiply it by the dividend, 

reduce the product, , and change it to a proper fraction, .
Two out of the 21 teachers (9%) correctly conducted the algorithm, but did not reduce 

their answer or turn it into a proper fraction. Their answer, , was an incomplete one.
Four out of 21 teachers (19%) were either unclear about the procedure, or obviously 

unsure of what they were doing:

The first thing you’d have to do is change them into sync. Well, you’re supposed to 

multiply that and add that. So that’s 4, plus it’s , and then you have to make it the 

same. Divided by . Right? And then you just cross multiply like that. You get ? 
(Ms. Felice, italics added)

To change the dividend and divisor into like fractions and then perform the division is an 
alternative to the standard division by fractions algorithm. For example, by converting a 
problem of dividing pizzas by pizza into dividing pizzas by pizza, one divides 7 
quarters of pizza by 2 quarters of pizza. This “common denominator” approach converts 
division by a fraction into division by a whole number (7 pieces divided by 2 pieces). Ms. 
Felice’s difficulty, however, was that she did not present a sound knowledge of the standard 
algorithm yet thought that you “have to” change the numbers into like fractions. She might 
have seen the common denominator approach before, but seemed to understand neither its 
rationale nor the relationship between the alternative approach and the standard algorithm. 
She might also have confused the standard algorithm for division by fractions with that for 
adding fractions, which requires a common denominator. In any case she was not confident 
during computation. Moreover, she did not reduce the quotient and convert it into a proper 
fraction.

Tr. Blanche, an experienced teacher, was extremely unsure about what she remembered 
of the algorithm:

It seems that you need to, you cannot work with a fraction and a mixed number, so 
the first thing I would do, I turn this into some number of fourths. So you would have 

. Is this, is being the same as multiplying it by 2 as my understanding. 
So that the steps that I would take, now I am starting to wonder if I am doing this 
right. Would be that I have that I have converted this divided by is the same as 
doing times 2, I think. So that gives you 14, let me see if this…wait a second—Now 
let me think through this process…I cannot tell if it makes sense because I cannot 
remember…And for some reason I thought that that was exactly the formula that I 
remembered. But I’m not sure if it is logical.

Tr. Blanche started to wonder if she was doing this right at the beginning of the computa-
tion and ended up with “I’m not sure if it is logical.”

While the memories of teachers like Ms. Felice and Tr. Blanche were confused or unsure, 
those of five others (24%) were even more fragmentary. They recalled vaguely that “you 
should flip it over and multiply” (Ms. Fawn), but were not sure what “it” meant:

 divided by 
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For some reason it is in the back of my mind that you invert one of the fractions. Like, 

you know, either becomes , or becomes . I am not sure. (Ms. Frances)

These five teachers’ incomplete memories of the algorithm impeded their calculations. Tr. 
Bernadette, the experienced teacher who was very articulate about the rationale for sub-
traction with regrouping, tried a completely incorrect strategy:

I would try to find, oh goodness, the lowest common denominator. I think I would 
change them both. Lowest common denominator, I think that is what it is called. I do 
not know how I am going to get the answer. Whoops. Sorry.

Like Ms. Felice, Tr. Bernadette first mentioned finding a common denominator. Her under-
standing was more fragmentary than Ms. Felice’s, however. She did not know what the next 
step would be.

TABLE 3.1 The U.S. Teachers’ Computation of (N= 21)

% N

Correct algorithm, complete answer 43 9

Correct algorithm, incomplete answer 9 2

Incomplete algorithm, unsure, incomplete answer 19 4

Fragmentary memory of the algorithm, no answer 24 5

Wrong strategy, no answer 5 1

The remaining teacher simply admitted that she did not know how to do the calculation 
after taking a look at it. Table 3.1 summarizes the 211 U.S. teachers’ performance in com-
puting .

THE CHINESE TEACHERS’ PERFORMANCE ON CALCULATION

All of the 72 Chinese teachers computed correct and complete answers to the problem. 
Instead of “invert and multiply,” most of the Chinese teachers used the phrase “dividing by 
a number is equivalent to multiplying by its reciprocal”:

Dividing by a number is equivalent to multiplying by its reciprocal. So, to divide 
by we multiply by the reciprocal of , and we get . (Ms. M.)

The reciprocal of a fraction with numerator 1 is the number in its denominator. The 
reciprocal of is 2. We know that dividing by a fraction can be converted to multiply-
ing by its reciprocal. Therefore, dividing by is equivalent to multiplying by 2. 
The result will be . (Tr. O.)

1 As indicated earlier, 21 of the 23 teachers attempted the calculation.

Response
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Some teachers mentioned the connection between division by fractions and division by whole 
numbers. Tr. Q. explained why the rule that “dividing by a number is equivalent to multiply-
ing by its reciprocal” is not taught to students until the concept of fraction is introduced:2

Dividing by a number is equivalent to multiplying by its reciprocal, as long as the 
number is not zero. Even though this concept is introduced when learning how to 
divide by fractions, it applies to dividing by whole numbers as well. Dividing by 
5 is equivalent to multiplying by . But the reciprocal of any whole number is a 
fraction—a fraction with 1 as its numerator and the original number as its denomina-
tor—so we have to wait until fractions to introduce this concept.

“Dividing by a number is equivalent to multiplying by its reciprocal” is used in Chinese 
textbooks to justify the division by fractions algorithm. This is consistent with the Chinese 
elementary mathematics curriculum’s emphasis on relationships between operations and 
their inverses. Most teachers did not refer to the property to remind themselves of the com-
putational procedure. They referred to it to justify their calculations.

Making Sense of the Algorithm

The original interview question only asked teachers to calculate the division problem. Dur-
ing interviews, however, some Chinese teachers tended to elaborate how the algorithm 
would make sense. Then after interviewing two thirds of the Chinese teachers, I started 
to ask teachers if the algorithm made sense to them. Most fourth- and fifth-grade teach-
ers were able to say more than “dividing by a number is equivalent to multiplying by its 
reciprocal.” They elaborated their understanding from various perspectives. Some teachers 
argued that the rationale for the computational procedure can be proved by converting the 
operation with fractions into one with whole numbers:

We can use the knowledge that students have learned to prove the rule that divid-
ing by a fraction is equivalent to multiplying by its reciprocal. They have learned 
the commutative law. They have learned how to take off and add parentheses. They 
have also learned that a fraction is equivalent to the result of a division, for example, 

. Now, using these, to take your example, we can rewrite the equation in 
this way:

 

2 According to the current national mathematics curriculum of China, the concept of fractions is not 
taught until Grade 4. Division by fractions is taught in Grade 6, the last year of elementary education.
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It is not difficult at all. I can even give students some equations with simple numbers 
and ask them to prove the rule on their own. (Tr. Chen)

Other teachers justified the algorithm by drawing on another piece of knowledge that stu-
dents had learned—the rule of “maintaining the value of a quotient”:3

OK, fifth-grade students know the rule of “maintaining the value of a quotient.” That 
is, when we multiply both the dividend and the divisor with the same number, the 
quotient will remain unchanged. For example, dividing 10 by 2 the quotient is 5. 
Given that we multiply both 10 and 2 by a number, let’s say 6, we will get 60 divided 
by 12, and the quotient will remain the same, 5. Now if both the dividend and the 
divisor are multiplied by the reciprocal of the divisor, the divisor will become 1. 
Since dividing by 1 does not change a number, it can be omitted. So the equation will 
become that of multiplying the dividend by the reciprocal of the divisor. Let me show 
you the procedure:

 

With this procedure we can explain to students that this seemingly arbitrary algo-
rithm is reasonable. (Tr. Wang)

There are various ways that one can show the equivalence of and . Tr. Chen 
and Tr. Wang demonstrated how they used the knowledge that students had already learned 
to justify the division by fractions algorithm. Other teachers reported that their explanation 
of why equals would draw on the meaning of the expression :

Why is it equal to multiplying by the reciprocal of the divisor? means that 
of a number is . The answer, as one can imagine, will be , which is exactly the 

same as the answer for is the reciprocal of . This is how I would explain it 
to my students. (Tr. Wu)

Alternative Computational Approaches

The interview question reminded the teachers that “people seem to have different 
approaches to solving problems involving division with fractions.” Yet the U.S. teachers 
only mentioned one approach—“invert and multiply”—the standard algorithm. The Chi-
nese teachers, however, proposed at least three other approaches: dividing by fractions 

3 In China, the rule of “maintaining the value of a quotient” is introduced as a part of whole num-
ber division. The rule is: While the dividend and the divisor are multiplied, or divided, by the 
same number, the quotient remains unchanged. For example, 15÷5=3, so (15×2)÷(5×2)=3 and 
(15÷2)÷(5÷2)=3.
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using decimals, applying the distributive law, and dividing a fraction without multiplying 
by the reciprocal of the divisor.

Alternative I: Dividing by Fractions Using Decimals4

A popular alternative way of dividing by fractions used by the Chinese teachers was to 
compute with decimals. More than one third reported that the equation could also be solved 
by converting the fractions into decimal numbers:

 

Many teachers said that the equation was actually easier to solve with decimals:

I think this problem is easier to solve with decimals. Because it is so obvious that 
is 1.75 and is 0.5, and any number can be divisible by the digit 5. You divide 1.75 
by 0.5 and get 3.5. It is so straightforward. But if you calculate it with fractions, you 
have to convert into a improper fraction, invert  into , multiply, reduce numera-
tors and denominators, and, at last, you need to convert the product from an improper 
fraction into a mixed number. The process is much longer and more complicated than 
that with decimals. (Ms. L.)

Not only may decimals make a fraction problem easier, fractions may also make a decimal 
problem easier. The problem is to know the features of both approaches and be able to 
judge according to the context:

Even though dividing by a decimal is sometimes easier than dividing by a fraction, this 
is not always the case. Sometimes converting fractions into decimals is complex and 
difficult, sometimes the decimal might not terminate. Still sometimes, it is easier to 
solve a division with decimals problem by converting it into fractions. Like, 0.3÷0.8, 
it is easier to solve by fractions: you will easily get . It is important for us and also 
for our students, though, to know alternative ways of approaching a problem, and to 
be able to judge which way is more reasonable for a particular problem. (Tr. B.)

Teachers’ comprehensive knowledge of a topic may contribute to students’ opportunities 
to learn it. The teachers reported that students were also encouraged to solve fraction prob-
lems with decimals:

4 In the Chinese national curriculum, topics related to fractions are taught in this order:
1. Introduction of “primary knowledge about fractions” (the concept of fraction) without o perations.
2. Introduction of decimals as “special fractions with denominators of 10 and powers of 10.”
3. Four basic operations with decimals (which are similar to those of whole numbers).
4. Whole number topics related to fractions, such as divisors, multiples, prime number, prime f actors, 

highest common divisors, lowest common multiples, etc.
5. Topics such as proper fractions, improper fractions, mixed numbers, reduction of a fraction, and 

finding common denominators.
6. Addition, subtraction, multiplication, and division with fractions.
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We also encourage students to solve fraction problems with decimals, or vice versa 
for all four operations. There are several advantages in doing this. Since they have 
already learned operations with decimals, this is a chance for them to review knowl-
edge learned before. In addition, converting between fractions and decimals will 
deepen their understanding of these two representations of numbers and foster their 
number sense. Moreover, it is a practice of solving a problem through alternative 
ways. (Tr. S.)

Alternative II: Applying the Distributive Law

Seven teachers said that the distributive law could be used to calculate . Instead of 
considering as a mixed number and converting it into an improper fraction, they wrote 

it as , divided each part by , then added the two quotients together. Two slightly dif-
ferent procedures were reported: 

A)
 

B)
 

After presenting version A, Tr. Xie commented that this seemingly complicated procedure 
actually made the computation simpler than the standard procedure:

In this case applying the distributive law makes the operation simpler. The computa-
tional procedure I put on paper looks complicated but I wanted to show you the logic 
of the process. But, when you conduct the operation, it is very simple. You just think 

that 1 times 2 is 2 and times 2 is , then you add them together and get . One can 
do it even without a pencil. When working on whole numbers my students learned 
how to solve certain kinds of problems in a simpler way by applying the distributive 
law. This approach applies to operations with fractions as well.

The teachers’ use of the distributive law provided evidence of their comprehension of the 
law and their confidence in using it. It also demonstrated their comprehensive u nderstanding 
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of a mixed number, a concept which was as we shall see, an obstacle for some U.S. teachers 
during computations.

Alternative III: “You Don’t Have to Multiply”

Three teachers pointed out that even though multiplying by the reciprocal of the divisor is 
the conventional way to perform division by fractions, one does not always need to do this. 
Sometimes division by fractions problems can be solved without using multiplication. The 
equation that I required them to solve was one such example:

 

Again, the teachers who proposed this approach argued that for the equation presented in 
the interview, their method was easier than the standard method. Two steps, inverting the 
divisor and reducing the final answer, were eliminated. However, the teachers explained 
that this approach is only applicable to the problems in which both the numerator and 
denominator of the dividend are divisible by those of the divisor. For example, in , 

, since the 
denominator of the dividend, 3, is not divisible by the denominator, 2, this approach will 
not apply. Tr. T. said:

In fact, division is more complicated than multiplication. Just think about the cases 
when one number can’t be divided by another number without a remainder. Even if 
you use decimals, you may encounter repeating decimals. But in multiplication you 
never have the problem of remainders. Probably that is why the way of multiplying 
by the reciprocal of the divisor was accepted as the standard way. But in this case, 
because 4 divided by 2 is easy and so is 7 divided by 1, conducting division directly 
is even simpler.

Tr. Xie was the first teacher I met who described this nonstandard method of solving a divi-
sion by fractions problem without performing multiplication. I told him that I had never 
thought about it that way and asked him to explain how it worked. He said that it could be 
proved easily:

 

7  is divisible by 1, and 4 is divisible by 2.  However, if the problem is 
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Again, he deduced the result by drawing on basic principles such as that of the order of 
operations and the equivalence between a fraction and a division expression.

All the teachers who suggested alternative methods argued that their methods were “easier” 
or “simpler” for this calculation. In fact, they not only knew alternative ways of calculating 
the problem, but also were aware of the meaning of these ways for the calculation—to make 
the procedure of calculation easier or simpler. To solve a complex problem in a simple way is 
one of the aesthetic standards of the mathematical community. The teachers argued that not 
only should students know various ways of calculating a problem but they should also be able 
to evaluate these ways and to determine which would be the most reasonable to use.

THE U.S. TEACHERS’ REPRESENTATIONS  
OF DIVISION BY FRACTIONS

The Mathematical Concepts that the Teachers Represented

Although 43% of the U.S. teachers successfully calculated , almost all failed to 
come up with a representation of division by fractions. Among the 23 teachers, 6 could not 
create a story and 16 made up stories with misconceptions. Only one teacher provided a 
conceptually correct but pedagogically problematic representation. The teachers displayed 
various misconceptions about the meaning of division by fractions.

Confounding Division by with Division by 2

Ten U.S. teachers confounded division by with division by 2. The teachers with this miscon-
ception generated stories about dividing the quan-tity evenly between two people, or into 
two parts. The most common subject of these stories was circular food, such as pie or pizza:

You could be using pie, a whole pie, one, and then you have three fourths of another 
pie and you have two people, how will you make sure that this gets divided evenly, so 
that each person gets an equal share. (Ms. Fiona, italics added)

The phrases the teachers used, “divide evenly between two,” or “divide into half,” corre-
sponded to division by 2, not division by . When we say that we are going to divide ten 
apples evenly between two people, we divide the number of apples by 2, not by . However, 
most teachers did not notice that this difference.

Confounding Division by with Multiplication by 

Six teachers provided stories that confused dividing by with multiplying by . This mis-
conception, although not as common as the previous one, was also substantial. Taking 
another example with pies:

Probably the easiest would be pies, with this small number. It is to use the typical pie 
for fractions. You would have a whole pie and a three quarters of it like someone stole 
a piece there somewhere. But you would happen to divide it into fourths and then 
have to take one half of the total. (Tr. Barry, italics added)
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56 

While the teachers we discussed earlier talked about “dividing between two,” Tr. Barry sug-
gested “take half of the total.” To find a certain portion of a unit we would use multiplica-
tion by fractions. Suppose we want to take of a two-pound sack of flour, we multiply 2 by 

and get pounds of flour. What teachers like Tr. Barry represented was multiplying by a 

fraction: , not . The stories that confused dividing by with multiplying by 
also revealed weaknesses in the teachers’ conceptions of multiplication by fractions.

Confusing the Three Concepts

Tr. Bernadette and Tr. Beatrice, who were not in either of the above two groups, confused 
the three concepts, dividing by , dividing by 2, and multiplying :

Dividing the one and three-fourths into the half. OK. Let us see…You would have all 
of this whole, you would have the three fourths here. And then you want only half of 
the whole. (Tr. Bernadette)

You get one and three-quarters liquid in a pitcher, you want to divide it in half, to 
visually, each one of you is going to have, get half of it to drink. (Tr. Beatrice)

When Tr. Bernadette and Tr. Beatrice phrased the problem as “dividing the one and three-

quarters into the half ” or “divide it in half,” they were confusing division by with d ivision 
by 2. Then, when they proposed that “you want only half of the whole” or “get half of it,” 

they confused division by with multiplication by . For them, there seemed to be no 

d ifference among division by , division by 2, and multiplication by .

No Confusion, But No Story Either

Two other teachers failed to provide a story but noticed that dividing by is different from 
dividing by 2. Tr. Belinda, an experienced sixth grade teacher, was aware of the deficiency 
in her knowledge and the pitfall of the problem:

I am not quite sure I understand it well enough, except in terms of computation. I 
know how to do it, but I do not really know what it means to me.

Mr. Felix also noticed a difference between the two concepts. After trying and failing to 
invent a story, he explained:

Dividing something by one half and so I confused myself with the two, thinking it 
meant dividing by two, but it doesn’t…It means something totally different…Well, 
for me what makes it difficult is not being able to envision it, what it represents in the 
real world. I can’t really think of what dividing by a half means.

Although Tr. Belinda and Mr. Felix were not able to provide a representation of the concep-
tion of division by fractions, they did not confuse it with something else. They were the 
only U.S. teachers who did not confuse division by fractions with another operation.
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Correct Conception and Pedagogically Problematic Representation

Tr. Belle, an experienced teacher, was the only one who provided a conceptually correct 
representation of the meaning of division by fractions. She said:5 

Let’s take something like, two and a quarter Twinkies. And, I want to give each child 
a half a Twinkie. How many kids can get, will get a piece of Twinkie. Of course, I’ve 
got a half a child there at the end, but. OK, that’s the problem with using children 
there, because then you have four and a half kids. You know, four kids, and one child’s 
only going to get half the amount of the others. I guess they could figure that out.

Tr. Belle represented the concept correctly. To divide the number A by the number B is to 
find how many Bs are contained in A. However, as Tr. Belle herself indicated, this represen-
tation results in a fractional number of children. The answer will be students. It is peda-
gogically problematic because in real life a number of persons will never be a fraction.

Dealing with the Discrepancy:  
Correct Computation Versus Incorrect Representation

Even though the stories created by the teachers illustrated misconceptions about division 
by fractions, there were opportunities during the interviews that might have led some of 
them to find the pitfall. Of the 16 teachers who created a conceptually incorrect story, 9 
had computed correct or incomplete answers. Because most teachers discussed the results 
of their stories, these discrepancies between the answers from the conceptually wrong sto-

ries and from computations might call for their reflection. Although four 
teachers did not notice any discrepancy, the remaining five did. Unfortunately, none of the 
five was led to a correct conception by discovering the discrepancy.

The five teachers reacted in three ways to the discrepancy. Three teachers doubted the 
possibility of creating a representation for the equation and decided to give up. Ms. Fleur 
was frustrated that “the problem doesn’t turn out the way you think it would.” Tr. Blanche 
was “totally baffled” when she noticed that the two answers were different. Tr. Barry con-
cluded that “[the story] is not going to work. I do not know what I did.”

Ms. Felice, however, seemed to be more assertive. She created a story for to rep-

resent : “That’s one and three-fourths cups of flour and you’d want half of that, so 
you could make a half a batch of cookies.”

In estimating the result of the story problem, she noticed that it would be “a little over 
three quarters” rather than three and a half. Because she had been unsure during her proce-
dural calculations, she soon decided that , the answer she had attained earlier, was wrong. 
She thought that “a real-world thing” that she came up with held more authority than a 
solution she obtained using the algorithm:

It makes, it [the calculation that she did] was wrong. Because you have a half of a 
one would be one half, and a half of three fourths would be [lengthy pause] if you 

5 Tr. Belle used instead of . However, her understanding of the concept of dividing by a 
f raction is correct.
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estimated it be a fourth and then a little bit more. Let’s see, that the answer is a little 
over three fourths…When I did it in a real-world thing, I would realize that I had 
done it wrong, and then I’d just go over it again. When you do that without a real-
world thing you might be doing them real wrong, and you might do the problem 
wrong that way.

Unfortunately, Ms. Felice’s “real-world thing” represented a misconception. Because of 
her unsureness with computation and her blind inclination to “real-world things,” finding 
the discrepancy did not lead her to reflect on the misconception, but to discard the correct, 
though incomplete, result that she had computed.

The remaining teacher, Ms. Francine, eventually found a way to explain away the dis-
crepancy. The story problem she made up represented :

So some kind of food, graham cracker maybe, because it has the four sections. You 
have one whole, four fourths, and then break off a quarter, we only have one and 
three fourths, and then we want, how are we going to divide this up so that let us say 
we have two people and we want to give half to one, half to the other, see how they 
would do it.

By dividing one and three fourths crackers between two people, she expected that she 

would get the same answer as she did with the equation , “three and one half.” How-
ever, it came out that each person would get three and one half quarters of crackers:

Would we get three and one half, did I do that right? [She is looking at what she 
wrote and mumbling to herself.] Let us see one, two, three, yes, that is right, one, 
two, three. They would each get three quarters and then one half of the other quarter. 
(italics added)

Even though Ms. Francine noticed that it was “two different [answers],” she finally explained 
how the latter, three and one half quarters, made sense with the previous answer, three and 
one half. She seemed to find this a satisfactory explanation of why the dividend was 
smaller than the quotient :

You wonder how could one and three fourths which is smaller than three and a half 
see, so it is, here one and three quarters is referring to what you have completely, 
three and one half is, is according to the fraction of the one and the three fourths, 
so if you just took the equation, it would not make sense, I mean it would not make 
sense.

of ) with quarters (the answer of Since the number is one quarter of the 
number 2, the quotient of a number divided by 2 will be one quarter of the quotient of the 

number divided by . For instance, 2÷2=1, or , . That 

is why , the quotient of the equation , happened to be quarters. Ms. Francine, 
of course, did not confuse them on purpose. She did not even notice the coincidence. Her 

(the answer The way that Ms. Francine explained the discrepancy conflated the number 
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inadequate knowledge of fractions and her ignorance that the result of dividing by a frac-
tion less than 1 will be larger than the dividend led her to an incorrect explanation of the 
discrepancy.

The reason that finding discrepancies did not lead Ms. Francine or Ms. Felice to reflect 
on their representations was that their computational knowledge was limited and flimsy. 
Even though their calculations were correct, they were not solidly supported by concep-
tual understanding. As the teachers said during interviews, they did not understand why 
the computational algorithm worked. Therefore, results obtained from computation were 
unable to withstand a challenge, nor could they serve as a point from which to approach the 
meaning of the operation.

An Inadequate Understanding of Procedure Impedes Creating a Representation

The case of Ms. Fay was another example of how knowledge of a computational skill may 
influence one’s conceptual approach to the meaning of the operation. Ms. Fay seemed likely 
to reach an understanding of the meaning of division by fractions. While computing, she 
described the procedure clearly, and got a correct answer:

I would copy the first fraction as it reads, then I would change the sign from division 
to multiplication. And then I would invert the second fraction. Then because the first 
fraction was a mixed fraction, I would change it from a mixed to a whole fraction. 

So I would take 1 times 4 which is 4 and then add it to 3 which would be times 2…

With fractions you multiply straight across so it would be 7 times 2 is . And then 
I would reduce that.

Moreover, Ms. Fay phrased the problem correctly, using “dividing by one half ” , 
rather than “into half ” (÷ 2). However, when she started to divide pizza by pizza, she 
got “lost” and did not know where she “would go from there”:

Well, it would be one whole pizza and then three fourths of a pizza. Which would 
be kind of like this. And it would be divided by one half of a pizza. And then…I am 
lost after that, actually. If I combine those [the whole pizza and the three fourths of a 
pizza], I do not know what I would do next with a student. I would say that we would 
have to combine these because I know that you have to, that you need to. It is very 
hard, it is almost impossible to divide a mixed fraction by whole fraction to me and I 
cannot explain why, but that is the way I was told. That you have to change the mixed 
numeral to a fraction… So you would have to show the student how to combine these 
two. And that is kind of hard. I do not know where I would go from there.

Ms. Fay had made an appropriate start. The story which she tried to make up, dividing 

pizza by pizza, was likely to be a correct model for dividing by . However, she got 
“lost” in the middle and gave up finishing the story. What impeded Ms. Fay from complet-
ing the story was her inadequate understanding of the computational procedure that she 
wanted to use: change the mixed fraction into a improper fraction, and divide.
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When computing, Ms. Fay dealt with the mixed number according to what she “was 

told.” She executed the first part of the procedure, converting into . However, she could 
not explain why it should be changed. Moreover, she did not understand what was going 
on during the procedure of changing a mixed number into an improper fraction. This defi-
ciency of understanding caused her to become “lost.” If Ms. Fay had understood what 
is meant by changing a mixed number into an improper fraction—to change the whole 
number into an improper fraction with the same denominator as the fraction and combine 

it with the latter—she would have been able to conduct this procedure for the pizzas. 
What she needed to do was only to cut the whole pizza into quarters so that the whole, 1, 

becomes , and pizza becomes pizza. It would take her at least one more step toward 
completing the representation. In addition to Ms. Fay, at least three other teachers reported 
that they had difficulty working with mixed numbers. Their inadequate knowledge of the 
computational procedure impeded their approach to the meaning of the operation.

Can Pedagogical Knowledge Make Up for Ignorance of the Concept?

The teachers’ deficiency in understanding the meaning of division by fractions determined 
their inability to generate an appropriate representation. Even their pedagogical knowl-
edge could not make up for their ignorance of the concept. Circular foods are considered 
appropriate for representing fraction concepts. However, as we have seen, the representa-
tions teachers generated with pizzas or pies displayed misconceptions. Ms. Francine’s use 
of graham crackers with four sections was also pedagogically thoughtful in representing 
quarters. However, it did not remedy her misunderstanding of the meaning of division by 
fractions. To generate a representation, one should first know what to represent. During the 
interviews the teachers reported various pedagogical ideas for generating representations. 
Unfortunately, because of their inadequate subject matter knowledge, none of these ideas 
succeeded in leading them to a correct representation.

Ms. Florence was a teacher who claimed that she liked fractions. She would use “articles 
right in the classroom to represent a conception.” The representation she proposed was:

José has one and three fourths box of crayons and he wants to divide them between 
two people or divide the crayons in half, and then, first we could do it with the cray-
ons and maybe write it on the chalkboard or have them do it in numbers.

Other contexts using measures, such as recipes, mileage, money, and capacity, were also 
used by teachers to represent fraction concepts. Ms. Francesca said she would use money: 
“I would tell them, ‘You have got so much money, you have two people, and you have to 
divide it up evenly.’”

Tr. Blanche, an experienced teacher who was very confident in her mathematical knowl-
edge, thought that she could use anything for the representation: “I would have one and 
three-quarters something, whatever it is, and if I needed to divide it by two I want to divide 
it into two groups …”

While the previously mentioned teachers represented the concept of dividing by 2, 

other teachers represented the concept of multiplying by . Tr. Barbara was an experienced 
teacher who was proud of her mathematical knowledge and said she enjoyed “the challenge 
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of math.” She said she used to have a hard time with fractions when she was a student, but 
ever since one of her teacher taught her fractions by bringing in a recipe, she “got it” and 
“loved working” on it. She would teach her students in the way she was taught—using a 
recipe:

Well if I were to have this type of equation, I would say well using one and three quar-
ters cup of butter. And you want to take a half of it, how would you do it. Or it could 
be used in any, you know, I have flour or, or sugar or something like that.

Ms. Fawn, a beginning teacher, created several representations with different subjects, such 
as money, recipes, pies, apples, etc. However, all of her stories represented a misconcep-

tion—that of multiplying by rather than dividing by . There was no evidence that these 
teachers lacked pedagogical knowledge. The subjects of their stories—circular food, reci-
pes, classroom articles, etc.—were suitable for representing fraction concepts. However, 
because of their misconceptions about the meaning of division by fractions, these teachers 
failed to create correct representations.

THE CHINESE TEACHERS’ APPROACH TO THE  
MEANING OF DIVISION BY FRACTIONS

The deficiency in the subject matter knowledge of the U.S. teachers on the advanced arith-
metical topic of division by fractions did not appear among the Chinese teachers. While 
only one among the 23 U.S. teachers generated a conceptually correct representation for 
the meaning of the equation, 90% of the Chinese teachers did. Sixty-five of the 72 Chinese 
teachers created a total of more than 80 story problems representing the meaning of divi-
sion by a fraction. Twelve teachers proposed more than one story to approach different 
aspects of the meaning of the operation. Only six (8%) teachers said that they were not able 
to create a story problem, and one teacher provided an incorrect story (which represented 

rather than ). Figure 3.1 displays a comparison of teachers’ knowledge about 
this topic.

The Chinese teachers represented the concept using three different models of division: 
measurement (or quotitive), partitive, and product and factors.6 For example, might 
represent:

• feet ÷ (measurement model)

• feet ÷ =  feet (partitive model)

• square feet ÷  feet=  feet (product and factors)

which might correspond to:

6 Greer (1992) gives an extensive discussion of models of multiplication and division. His category 
“rectangular area” is included in “product and factors.”

 feet = 
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• How many -foot lengths are there in something that is 1 and feet long?

• If half a length is 1 and feet, how long is the whole?

• If one side of a square foot rectangle is feet, how long is the other side?

The Models of Division by Fractions

The Measurement Model of Division: “Finding How Many There  

Are in ” or “Finding How Many Times is of ”

Sixteen stories generated by the teachers illustrated two ideas related to the measurement 

model of division: “finding how many there are in ” and “finding how many times 

is of .” Eight stories about five topics corresponded to “finding how many there are in 

.” Here are two examples:

FIG. 3.1. Teachers’ knowledge of division by fractions.

Illustrating it with the measurement model of division, can be articulated as 

how many  there are in . To represent it we can say, for example, given that a 

team of workers construct km of road each day, how many days will it take them to 

construct a road of km long? The problem here is to find how many pieces of km, 

which they can accomplish each day, are contained in km. You divide by and 

the result is days. It will take them days to construct the road. (Tr. R.)

Cut an apple into four pieces evenly. Get three pieces and put them together with 

a whole apple. Given that apple will be a serving, how many servings can we get 

from the apples? (Ms. I.)
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“Finding how many there are in ” parallels the approach of Tr. Belle, the U.S. teacher 
who had a conceptual understanding of the topic. There were eight other stories that repre-

sented “finding how many times is of .” For example:

It was planned to spend months to construct a bridge. But actually it only took 
month. How many times is the time that was planned of the time that actually was 
taken? (Tr. K.)

“Finding how many there are in ” and “finding how many times is of ” are two 
approaches to the measurement model of division by fractions. Tr. Li indicated that though 
the measurement model is consistent for whole numbers and fractions when fractions are 
introduced the model needs to be revised:

In whole number division we have a model of finding how many times one number 
is of another number. For example, how many times the number 10 is of the number 
2? We divide 10 by 2 and get 5. 10 is 5 times 2. This is what we call the measurement 

model. With fractions, we can still say, for example, what times is ? Making a 

story problem, we can say for instance, there are two fields. Field A is hectares, 
and field B is hectare. What times the area of field B is the area of field A? To cal-
culate the problem we divide hectares by hectare and get . Then we know that 
the area of the field A is times that of the field B. The equation you asked me to 
represent fits this model. However, when fractions are used this division model of 
measurement need to be revised. In particular, when the dividend is smaller than the 
divisor and then the quotient becomes a proper fraction. Then the model should be 
revised. The statement of “finding what fraction one number is of another number,” 
or, “finding what fractional times one number is of another number” should be added 
on the original statement. For example, for the expression 2÷10, we may ask, what 
fraction of 10 is 2? Or, what fractional times is 2 of 10? We divide 2 by 10 and get 

. 2 is of 10. Similarly, we can also ask: What is the fractional part that is of ? 

Then you should divide by and get .

The Partitive Model of Division: Finding a Number Such That of It is 

Among more than 80 story problems representing the meaning of , 62 stories rep-

resented the partitive model of division by fractions—“finding a number such that of it 

is ”:

Division is the inverse of multiplication. Multiplying by a fraction means that we 
know a number that represents a whole and want to find a number that represents a 
certain fraction of that. For example, given that we want to know what number repre-

sents of , we multiply by  and get . In other words, the whole is , and of it 

is . In division by a fraction, on the other hand, the number that represents the whole 
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becomes the unknown to be found. We know a fractional part of it and want to find the 

number that represents the whole. For example, of a jump-rope is meters, what is 

the length of the whole rope? We know that a part of a rope is meters, and we also 

know that this part is of the rope. We divide the number of the part, meters, by the 

corresponding fraction of the whole, , we get the number representing the whole, 

meters. Dividing by  , we will find that the whole rope is meters long…But 

I prefer not to use dividing by to illustrate the meaning of division by fractions. 
Because one can easily see the answer without really doing division by fractions. If 

we say of a jump-rope is meters, how long is the whole rope? The division opera-
tion will be more significant because then you can’t see the answer immediately. The 

best way to calculate it is to divide by and get meters. (Ms. G.)

Dividing by a fraction is finding a number when a fractional part of it is known. For 

example, given that we know that of a number is dividing by we can find out 
that this number is . Making a story problem to illustrate this model, let’s say that 

one kind of wood weighs tons per cubic meter, it is just of the weight of per cubic 
meter of one kind of marble. How much does one cubic meter of the marble weigh? 

So we know that cubic meter of the marble weighs tons. To find the weight of 

one cubic meter of it, we divide , the number that represents the fractional part, 

by the fraction which represents, and get , the number of the whole. Per cubic 

meter the marble weighs tons. (Tr. D.)

My story will be: A train goes back and forth between two stations. From Station A to 
Station B is uphill and from Station B back to Station A is downhill. The train takes 

hours going from Station B to Station A. It is only time of that from Station A to 
Station B. How long does the train take going from Station A to Station B? (Tr. S.)

The mom bought a box of candy. She gave of it which weighed kg to the grandma. 
How much did the box of the candy originally weigh? (Ms. M.)

The teachers above explained the fractional version of the partitive model of division. Tr. 
Mao discussed in particular how the partitive model of division by integers is revised when 
fractions are introduced:

With integers students have learned the partitive model of division. It is a model of find-
ing the size of each of the equal groups that have been formed from a given quantity. 
For example, in our class we have 48 students, they have been formed into 4 groups of 
equal size, how many students are there in each group? Here we know the quantity of 
several groups, 48 students. We also know the number of groups, 4. What to be found 
is the size of one group. So, a partitive model is finding the value of a unit when the 
value of several units is known. In division by fractions, however, the condition has 
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been changed. Now what is known is not the value of several units, rather, the value of 

a part of the unit. For example, given that we paid Yuan to buy of a cake, how much 

would a whole cake cost? Since we know that of the whole price is Yuan, to know 

the whole price we divide by and get Yuan. In other words, the fractional version 
of the partitive model is to find a number when a part of it is known. (italics added)

Tr. Mao’s observation was true. Finding a number when several units are known and find-
ing a number when a fractional part of it is known are represented by a common model—
finding the number that represents a unit when a certain amount of the unit is known. What 
differs is the feature of the amount: with a whole number divisor, the condition is that “sev-
eral times the unit is known,” but with a fractional divisor the condition is that “a fraction 
of the unit is known.” Therefore, conceptually, these two approaches are identical.

This change in meaning is particular to the partitive model. In the measurement model 
and the factors and product model, division by fractions keeps the same meaning as whole 
number division. This may explain why so many of the Chinese teachers’ representations 
were partitive. 

Factors and Product: Finding a Factor That Multiplied by Will Make 

Three teachers described a more general model of division—to find a factor when the prod-
uct and another factor are known. The teachers articulated it as “to find a factor that when 

multiplied by makes :”

As the inverse operation of multiplication, division is to find the number represent-
ing a factor when the product and the other factor are known. From this perspective, 

we can get a word problem like “Given that the product of and another factor is 

We know that the area of a rectangle is the product of length and width. Let’s say that 

the area of a rectangular Let’s say that the area of a rectangular board is square 

meters, its width is meters, what is its length? (Mr. A.)

These teachers regarded the relationship between multiplication and division in a more 
abstract way. They ignored the particular meaning of the multiplicand and multiplier in 
multiplication and related models of division. Rather, they perceived the multiplicand and 
multiplier as two factors with the same status. Their perspective, indeed, was legitimized by 
the commutative property of multiplication.

The concept of fractions as well as the operations with fractions taught in China and 
U.S. seem different. U.S. teachers tend to deal with “real” and “concrete” wholes (usu-
ally circular or rectangular shapes) and their fractions. Although Chinese teachers also 
use these shapes when they introduce the concept of a fraction, when they teach opera-
tions with fractions they tend to use “abstract” and “invisible” wholes (e.g., the length of 
a p articular stretch of road, the length of time it takes to complete a task, the number of 
pages in a book).

,

 what is the other factor?” (Tr. M.)
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Meaning of Multiplication by a Fraction:  
The Important Piece in the Knowledge Package

Through discussion of the meaning of division by fractions, the teachers mentioned several 
concepts that they considered as pieces of the knowledge package related to the topic: the 
meaning of whole number multiplication, the concept of division as the inverse of multipli-
cation, models of whole number division, the meaning of multiplication with fractions, the 
concept of a fraction, the concept of a unit, etc. Figure 3.2 gives an outline of the relation-
ships among these items.

The learning of mathematical concepts is not a unidirectional journey. Even though 
the concept of division by fractions is logically built on the previous learning of various 
concepts, it, in turn, plays a role in reinforcing and deepening that previous learning. For 
example, work on the meaning of division by fractions will intensify previous concepts of 
rational number multiplication. Similarly, by developing rational number versions of the 
two division models, one’s original understanding of the two whole number models will 
become more comprehensive: 

FIG. 3.2. A knowledge package for understanding the meaning of division by fractions.

This is what is called “gaining new insights through reviewing old ones.” The cur-
rent learning is supported by, but also deepens, the previous learning. The meaning 
of division by fractions seems complicated because it is build on several concepts. 
On the other hand, however, it provides a good opportunity for students to deepen 
their previous learning of these concepts. I am pretty sure that after approaching the 
meaning and the models of will be more comprehensive than before. Learning is a 
back and forth procedure. (Tr. Sun)

From this perspective, learning is a continual process during which new knowledge is sup-
ported by previous knowledge and the previous knowledge is reinforced and deepended by 
new knowledge.
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During the interviews, “the meaning of multiplication with fractions” was considered 
a key piece of the knowledge package. Most teachers considered multiplication with frac-
tions the “necessary basis” for understanding the meaning of division by fractions:

The meaning of multiplication with fractions is particularly important because it 
is where the concepts of division by fractions are derived…Given that our students 
understand very well that multiplying by a fraction means finding a fractional part of 
unit, they will follow this logic to understand how the models of its inverse operation 
work. On the other hand, given that they do not have a clear idea of what multiplication 
with fractions means, concepts of division by a fraction will be arbitrary for them and 
very difficult to understand. Therefore, in order to let our students grasp the meaning 
of division by fractions, we should first of all devote significant time and effort when 
teaching multiplication with fractions to make sure students understand thoroughly the 
meaning of this operation… Usually, my teaching of the meaning of division by frac-
tions starts with a review of the meaning of multiplication with fractions. (Tr. Xie)

The concepts of division by fractions, such as “finding a number when a fractional 
part is known” or “finding what fraction one number is of another number,” etc. 
sound complicated. But once one has a comprehensive understanding of the mean-
ing of multiplication with fractions, one will find that these concepts are logical and 
easy to understand. Therefore, to help students to understand the meaning of division 
by fractions, many of our efforts are not devoted directly to the topic, but rather, to 
their thorough understanding of the meaning of multiplication with fractions, and the 
relationship between division and multiplication. (Tr. Wu)

The meaning of multiplication with fractions is also important in the knowledge package 
because it “connects several relevant conceptions”:

The concept of multiplication with fractions is like a “knot.” It “ties” several other 
important concepts together. As the operation of multiplication, it is connected with 
concepts of whole number addition and division. Moreover, in the sense that it deals 
with fractional numbers, it is related to the conception of a fraction, and those of addi-
tion and division with fractions. A grasp of the meaning of multiplication with frac-
tions depends on comprehension of several concepts. At the same time, it substantially 
reinforces one’s previous learning and contributes to one’s future learning. (Ms. I.)

Indeed, from the teachers’ perspective, the importance of pieces of knowledge in math-
ematics is not the same. Some of them “weigh” more than others because they are more 
significant to students’ mathematical learning. In addition to “the power of supporting” that 
we have discussed earlier, another aspect that contributes to the importance of a piece of 
knowledge is its “location” in a knowledge network. For example, multiplication with frac-
tions is important also because it is at an “intersection” of several mathematical concepts.

The Representations of the Models of Division by Fractions

The Chinese teachers’ profound understanding of the meaning of division by fractions and 
its connections to other models in mathematics provided them with a solid base on which 
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to build their pedagogical content knowledge of the topic. They used their vivid imagina-
tions and referred to rich topics to represent a single concept of division by fractions. 
On the other hand, some teachers used one subject to generate several story problems to 
represent various aspects of the concept. Teachers also drew on knowledge of elementary 
geometry—the area of a rectangle—to represent division. 

Rich Topics Representing the Partitive Model

Even though the operation of division has two models, it appears that the two models do 
not receive the same attention. For most of the teachers in our research, the partitive model 
was substantially more impressive than the measurement model. Teachers referred to about 
thirty subjects in generating more than sixty story problems to represent the fractional ver-
sion of the partitive model of division. In addition to those discussed earlier, here are a few 
other examples:

A factory that produces machine tools now uses tons of steel to make one machine 
tool, of what they used to use. How much steel did they use to use for producing 
one machine tool? (Ms. H.)

Uncle Wang ploughed mus7 in a day; with this speed, how many mus can he 
plough in a whole day? (Mr. B.)

Yesterday I rode a bicycle from town A to town B. I spent hour for of my journey, 
how much time did I take for the whole journey? (Tr. R.)

A farm has mus of experimental fields growing wheat. It is of the area of the 
experimental field growing cotton. How big is the field of cotton? (Tr. N.)

In a river with swift current a downriver boat takes only the time of an upriver boat 

to go the same long journey. Now we have a downriver boat which took hour going 
from place A to place B, how long it will take an upriver boat to go from place B to 
place A? (Tr. Mao)

Given that we want to know how much vegetable oil there is in a big bottle, but we 

only have a small scale. We draw of the oil from the bottle, weigh it, and find that it is 

kg. Can you tell me how much all the oil in the bottle originally weighed? (Ms. R.)

One day Xiao-Min went to downtown to see a movie. On his way he ran into his aunt. 
Xiao-Min asked her, “Do you know how far is it from our village to downtown?” His 
aunt said, “I am not going to tell you the number but I will give you a clue. You have 

walked lis8 and it is exactly of the whole distance. Figure out your question on 
your own.” (Ms. K.)

7 “Mu” is a Chinese measurement for area. Fifteen mus is one hectare.
8 “Li” is a traditional measurement for distance. One li is kilometer.
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While the U.S. teachers tended to use a concrete whole (such as round food) and its parts 
to represent a whole and a fraction, most Chinese teachers represented these concepts in a 
more abstract way. Only 3 of the 72 teachers used round food as the subject of their repre-

sentation. In many story problems created by the Chinese teachers, , the quotient of the 

division, was treated as a unit, and , the dividend, was regarded as of the unit.
While food and money were the two main subjects of U.S. teachers’ representations, 

those used by the Chinese teachers were more diverse. In addition to topics in students’ 
lives, those related to students’ lives were also included, such as what happens in a farm, in 
a factory, in the family, etc. Teachers’ solid knowledge of the meaning of division by frac-
tions made them comfortable using a broad range of topics in representations.

Several Stories With a Single Subject

Among the teachers who created more than one story to illustrate various aspects of the 
concept of division by fractions, Ms. D. stood out. She generated three stories about the 
same subject:

The equation of = can be represented from different perspectives. For instance, 

we can say, here is kg sugar and we want to wrap it into packs of kg each. How 
many packs can we wrap? Also, we can say that here we have two packs of sugar, one 

of white sugar and the other of brown sugar. The white sugar is kg and the brown 

sugar is kg. How many times is the weight of white sugar of that of brown sugar? 

Still, we can say that here is some sugar on the table that weighs kg; it is of all 
the sugar we now have at home, so how much sugar do we have at home? All three 

stories are about sugar, and all of them represent . But the numerical models 
they illustrate are not the same. I would put the three stories on the board and invite 
my students to compare the different meanings they represent. After the discussion I 
would ask them to try to make up their own story problems to represent the different 
models of division by fractions. (Ms. D.)

In order to involve students in a comparison of the different concepts associated with , 

Ms. D . created several representations with a single subject. The similarity in the subject 
and the similarity in the numbers included in the operation would make the difference in 
the numerical models that the stories represented more obvious to students.

DISCUSSION

Calculation: How Did It Reveal Teachers’ Understanding of Mathematics?

The difference between the mathematical knowledge of the U.S. teachers and that of the 
Chinese teachers became more striking with the topic of division by fractions. The first 
contrast was presented in calculation. The interview question of this chapter asked the 

teachers to calculate The process of calculation revealed features of teachers’ pro-
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cedural knowledge and of their understanding of mathematics, as well as of their attitude 
toward the discipline.

In the two previous chapters all teachers presented a sound procedural knowledge. This 
time, only 43% of the U.S. teachers succeeded in calculation and none of them showed an 
understanding of the rationale of the algorithm. Most of these teachers struggled. Many 
tended to confound the division by fractions algorithm with those for addition and sub-
traction or for multiplication. These teachers’ procedural knowledge was not only weak in 
division with fractions, but also in other operations with fractions. Reporting that they were 
uncomfortable doing calculation with mixed numbers or improper fractions, these teach-
ers’ knowledge about the basic features of fractions was also very limited.

All of the Chinese teachers succeeded in their calculations and many of them showed 
enthusiasm in doing the problem. These teachers were not satisfied by just calculating and 
getting an answer. They enjoyed presenting various ways of doing it—using decimals, 
using whole numbers, applying the three basic laws, etc. They went back and forth across 
subsets of numbers and across different operations, added and took off parentheses, and 
changed the order of operations. They did this with remarkable confidence and amazingly 
flexible skills. In addition, many teachers made comments on various calculation meth-
ods and evaluated them. Their way of “doing mathematics” showed significant conceptual 
understanding.

Another interesting feature of the Chinese teachers’ mathematics is that they tended to 
provide “proofs” for their calculation procedures. Most teachers justified their calculations 
by mentioning the rule that “dividing by a number is equivalent to multiplying by its recip-

rocal.” Others converted the fraction into 1÷2 and proved step by step that dividing by 

is equivalent to multiplying by 2. Still other teachers used the meaning of dividing by 
to explain the calculating procedure. Their performance is mathematician-like in the sense 
that to convince someone of a truth one needs to prove it, not just assert it.

“A Concept Knot”: Why It is Important

In addition to their performance in “doing mathematics,” the Chinese teachers showed a 
knowledge of fractions that was markedly more solid than that of the U.S. teachers in other 
ways. The Chinese teachers were aware of abundant connections between fractions and 
other mathematical topics. They were aware of how a fraction can be written as a division 
expression in which the numerator is the dividend and the denominator is the divisor. They 
were also aware of the relationship between decimals and fractions, and were very skillful 
in converting between the two number forms. Moreover, they were aware of how the mod-
els of division by fractions are connected to the meaning of multiplication with fractions 
and to whole number models of division.

As in the two previous chapters, the Chinese teachers did not regard the topic of this 
chapter as the key piece of the knowledge package in which it is included. The key piece in 
the package was the meaning of multiplication with fractions. The teachers regarded it as a 
“knot” that ties a cluster of concepts that support the understanding of the meaning of divi-
sion by fractions. In the previous chapters we noted that the Chinese teachers tend to pay 
significant attention to the occasion when a concept is first introduced and tend to regard it 
as a key piece in a knowledge package. In addressing the key piece in the knowledge pack-
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age of this chapter, they still adhered to this principle. However, since the mathematical 
topic discussed in this chapter is more advanced and complex, its stepping stone is not a 
single concept but a connection of several concepts.

One of the reasons why the U.S. teachers’ understanding of the meaning of division of 
fractions was not built might be that their knowledge lacked connections and links. The 
understanding of most of the U.S. teachers was supported by only one idea—the partitive 
model of whole number division. Because other necessary concepts for understanding and 
their connections with the topic were missing, these teachers were not able to generate a 
conceptual representation of the meaning of division by fractions.

Relationship Between Teachers’ Subject Matter  
Knowledge and Their Representations

Generating representations for a mathematical concept is a common teaching task. Most 
of the U.S. teachers tended to represent the meaning of division by fractions with a real-
world example. The topics that the Chinese teachers used, however, were broader and less 
connected with students’ lives. Doubtless connecting school mathematics learning with 
students’ out-of-school lives may help them make more sense of mathematics. However, 
the “real world” cannot produce mathematical content by itself. Without a solid knowledge 
of what to represent, no matter how rich one’s knowledge of students’ lives, no matter how 
much one is motivated to connect mathematics with students’ lives, one still cannot pro-
duce a conceptually correct representation.

SUMMARY

This chapter investigated teachers’ subject matter knowledge of two aspects of the same 

topic—division by fractions. Teachers were asked to calculate and to illustrate the 
meaning of the operation, an aspect of subject matter knowledge not approached in previ-
ous chapters. The U.S. teachers’ knowledge of division by fractions was obviously weaker 
than their knowledge of the two previous topics. Although 43% of the U.S. teachers suc-
ceeded in correctly calculating a complete answer, none showed an understanding of the 
rationale underlying their calculations. Only Tr. Belle, an experienced teacher, succeeded in 
generating a representation that correctly illustrated the meaning of division by fractions.

The Chinese teachers’ performance on the task for this chapter was not noticeably dif-
ferent from that on the previous tasks. All of their calculations were correct and a few 
teachers went a step further to discuss the rationale underlying the algorithm. Most of the 
teachers generated at least one correct and appropriate representation. Their ability to gen-
erate representations that used a rich variety of subjects and different models of division 
by fractions seemed to be based on their solid knowledge of the topic. On the other hand, 
the U.S. teachers, who were unable to represent the operation, did not correctly explain its 
meaning. This suggests that in order to have a pedagogically powerful representation for a 
topic, a teacher should first have a comprehensive understanding of it.

Generating Representations: Division by Fractions 



Chapter 4  
Exploring New Knowledge:  

The Relationship Between Perimeter And Area

Scenario

Imagine that one of your students comes to class very excited. She tells you that 
she has figured out a theory that you never told the class. She explains that she has 
discovered that as the perimeter of a closed figure1 increases, the area also increases. 
She shows you this picture to prove what she is doing:

How would you respond to this student?

Students bring up novel ideas and claims in their mathematics classes. Sometimes teach-
ers know whether a student’s claim is valid, but sometimes they do not. The perimeter and 
area of a figure are two different measures. The perimeter is a measure of the length of the 
boundary of a figure (in the case of a rectangle, the sum of the lengths of the sides of the fig-
ure), while the area is a measure of the size of the figure. Because the calculations of both 
measures are related to the sides of a figure, the student claimed that they were correlated.

The immediate reactions of the U.S. and Chinese teachers to this claim were similar. For 
most of the teachers in this study, the student’s claim was a “new theory” that they were 
hearing for the first time. Similar pro portions of U.S. and Chinese teachers accepted the 
theory immediately. All the teachers knew what the two measures meant and most teachers 
knew how to calculate them. From this beginning, however, the teachers’ paths diverged. 
They explored different strategies, reached different results, and responded to the student 
differently.

1 The term “a closed figure” used in the scenario was intended to invite the teachers to discuss various 
kinds of figures. However, during the interviews teachers talked exclusively about squares and rectan-
gles. A few Chinese teachers said that closed figure is a concept introduced at the secondary school level 
in China so they preferred to focus the discussion on the particular figure mentioned by the student.
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HOW THE U.S. TEACHERS EXPLORED THE NEW IDEA

Teachers’ Reactions to the Claim

Strategy I: Consulting a Book. While two of the U.S. teachers (9%) simply accepted 
the student’s theory without doubt, the remainder did not. Among the 21 teachers 
who suspected the theory was true, five said that they had to consult a book. Four of 
the five explained that they needed a book because they did not remember how to 
calculate perimeter and area:

[Pause of about 5 seconds] I forgot my perimeters and my areas here. [Frank 
looked intently at the problem for about 10 seconds] Well, let’s see now the area…
[pause of about 10 seconds]… I have to look it up and I will get back to students. 
(Mr. Frank)

I think I would be looking up formulas, first. To give me the basic formula, for the 
perimeter and area. And then see if they might even give some examples of the 
perimeter expanding in one way, and see how they formulated their problem, and 
see if hers meshed up with what they had in the book. I could also say maybe we 
could contact someone who has more background in that area, another teacher. 
(Ms. Fay)

With no idea how to calculate the perimeter and the area, these teachers found it difficult 
to investigate a claim about the relationship between the two measures. So they chose to 
consult a textbook or another authority.

Ms. Francesca, a beginning teacher, did know the formulas for calculating the perimeter 
and area of a rectangle. Believing that the student’s claim would not hold in every case, she 
thought that the only way she could explain it to the student was “to take other examples that 
did not hold true.” However, she explained that because she did not understand why the for-
mulas worked, it was hard for her to develop a counterexample on her own. What she would 
do would be to find someone to tell her, or “go home and look it up and check it out”:

Let us see, perimeter is [she mumbles the formula to herself]. How would I explain it 
to her that, that does not hold true? I guess the only other way I would, right now from 
the top of my head, is to take other examples that did not hold true, and illustrate to 
her that…that it does not hold true. And I cannot remember exactly why… I would 
go back and research it and find out why, and then come back to her and show her. 
And probably if like somebody were to come up to me and tell me this right now. 
Because I, to be honest, I remember how to figure out perimeter and area, but I do 
not understand why right now. I would tell them, I do not believe this is true, but let 
me find out for sure and go out on my own and look it up and do problems, and then 
come back and tell her why.

It was obvious that Ms. Francesca knew more about the topic than the other four teachers. 
Yet she also noticed that she lacked specific knowledge related to the claim. She would turn 
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to a textbook or to those with more knowledge, hoping that would help her to find a correct 
answer for the problem.

Strategy II: Calling for More Examples. Thirteen U.S. teachers proposed another strat-
egy to explore the claim—calling for more examples:

I am not sure. I would say probably that it may work in some cases, but may not work 
in other cases. (Ms. Fiona)

What I would need to do is probably have enough examples. (Tr. Blanche)

We should talk about whether it worked in every case, if it proves true in every situ-
ation. (Ms. Florence)

These teachers’ responses to the claim, that it needed more examples, were based on every-
day experience, rather than mathematical insight. Most adults will not be persuaded to 
accept a proposition with only one example. The teachers’ comments on the student’s math-
ematical theory, in fact, paralleled general statements such as “Even though I see two white 
swans, I would not believe that all swans are white.” However, how many white swans do 
we need to see in order to believe that all swans are white? Themselves concerned about 
the number of examples, these teachers ignored the fact that a mathematical statement 
concerning an infinite number of cases cannot be proved by finitely many examples—no 
matter how many. It should be proved by a mathematical argument. The role of examples is 
to illustrate numerical relationships, rather than prove them.

Although the teachers were able to point out that one example is not sufficient to prove 
a theory, they were not able to investigate the claim mathematically. A few of them sug-
gested trying arbitrary numbers, for example, “one through ten,” or “strange numbers such 
as threes and sevens.” These suggestions were based on common sense, rather than math-
ematical insight.

Strategy III: Mathematical Approaches. The remaining three teachers investigated the 
problem mathematically. Ms. Faith was the only one who achieved a correct solution. Her 
approach was to present an example that disagreed with the student’s theory:

I would say, “Now tell me though what happens when you have got 2 inches on the 
one side and 16 inches on the other side.” I would ask her what the perimeter is, then 
I would ask her to figure out the area. Aha!

The student used a square with sides of 4 inches and a rectangle with the width of 4 inches 
and the length of 8 inches to prove her statement. The perimeter of the square was 16 inches 
and that of the rectangle was 24 inches. The area of the former was 16 square inches and 
that of the latter was 32 square inches. The student concluded that “as the perimeter of a 
figure increased, the area increases correspondingly.” Ms. Faith would ask her to try another 
example, a rectangle with a width of 2 inches and a length of 16 inches. The perimeter of 
Ms. Faith’s rectangle was 36 inches, 12 inches longer than that of the student’s rectangle. 
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According to the student’s claim, the area of Ms. Faith’s rectangle should be bigger than 
that of the student’s. However, it was not true. Ms. Faith’s rectangle had the same area as 
that of the student’s, 32 square inches. With a single counterexample, Ms. Faith disproved 
the claim.

Ms. Francine also tested the claim by trying a long, skinny rectangle. However, she was 
not as successful as Ms. Faith:

I would say that by this picture that is right. How about, though, draw another picture, 
but skinny, long…then showing her that maybe it would not always work… Like that 
[she drew some figures on paper]. Four and 8… I am trying…the area is when you 
multiply, 32. So, yes, that is right … Let us say this one, 4 by 4, and let us say this is 
2 by 4…oh, oh, wait a minute. I do not know. I do not know if she is right or not… I 
guess we would have to find out,…look it up in a book!

Ms. Francine came close to finding a counterexample. However, she failed because she 
followed the pattern in the student’s example—changing the perimeter by changing a pair 
of opposite sides and keeping the other pair of sides fixed. She reduced the perimeter by 
reducing the length of one pair of opposite sides from 4 inches to 2 inches, but kept the 
other pair of sides unchanged. Contrary to her expectation, the student’s claim still held: 
the area of her new figure decreased as well. Then she was confused. She decided to give 
up her own approach and look it up in a book—the response of a layperson rather than the 
response of a mathematician.

TABLE 4.1 U.S. Teachers’ Reactions to Student’s Claim (N=23)

Reactions % N

Simply accepted the claim 9 2

No mathematical investigation 78 18

Investigated the claim 13 3

Mr. Felix was the third teacher who approached the problem mathematically. He would 
explore why the student’s claim was true:

I would…confirm that indeed in the case of these rectangles and squares that is true; 
that it does get bigger. I would talk about why that is the case. What the relationship 
between the area and the perimeter is, and how to use something like a squaring off 
grid method, to talk about how adding that extra perimeter adds to the area.

Mr. Felix’s approach explains why Ms. Francine failed to disprove the student’s claim. When 
the increase (or decrease) of the perimeter is caused only by the increase (or decrease) of 
only one pair of opposite sides, the area of the figure will increase (or decrease) as well. 
The area of the increased (or decreased) new figure is the increased (or decreased) length 
times the length of the unchanged side. Using this pattern one can generate infinitely many 
examples that support the student’s claim.
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Mr. Felix, however, did not completely examine the student’s claim. He stopped after 
explaining why the claim worked in this case and did not investigate the cases in which it 
would not work. Of the 23 U.S. teachers, Ms. Faith, a beginning teacher, was the only one 
to successfully examine the student’s proposition and attain a correct solution. Table 4.1 
summarizes the U.S. teachers’ reactions to the student’s claim.

Teachers’ Responses to the Student

Ball (1988b) indicated three possibilities that teachers might use to respond when they are 
confronted with a new idea proposed by a student:

1. Divert the student from pursuing ideas outside the scheduled curriculum.
2. Be responsible for evaluating the truth of the student’s claim.
3. Engage the student in exploring the truth of her claim.

The teachers in the study chose the second and third alternatives. The teachers who took 
the second alternative reported that they would “tell” or “explain” the solution to the stu-
dent. The teachers who took the third alternative reported that they would invite the student 
to investigate or discuss the claim further. In addition, most teachers explained that they 
would first give a positive comment to the student. Therefore, the teachers’ responses to the 
student fell into two main categories: praise with explanation, and praise with engagement 
in further exploration.

Sixteen U.S. teachers (72%) described an intention to engage the student in a further 
proof of the claim. However, without an understanding of the proof themselves, their 
attempts to engage the student in such a discussion could only be superficial. Three teach-
ers reported that they would “look it up with the student”:

OK, what I would do is go, go with her to a math book and look up perimeter, look 
up area, and how, how perimeter and area are related, and go through it together. (Ms. 
Frances)

I think I would say, “I am not real sure but let us look it up together, and see, and see 
if we can find a book that would show us whether you are—your discovery is correct 
or not.” (Ms. Fay)

These teachers were the ones who did not remember how to calculate the two measures 
of a rectangle. What they suggested that the student should do was the same as what they 
themselves wanted to do—to find the knowledge that is stored in a book.

Six teachers said they would ask the student to try, or to show them more examples, to 
prove her own claim:

She’s right. Have her try, encourage her and say, I think you are right and have her 
maybe show the class or show me—try it with different examples and make sure that 
she can support her hypothesis. Put her in a position of that “I really found something 
out”—make her feel good. (Ms. Fleur)
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Oh, most likely, oh yes. Now I just want to make sure it is right. Well, I would praise 
her for doing work at home… I would then use these as examples on the board. 
Maybe ask her to be my teacher’s helper, give other examples. (Tr. Belinda)

I’d be excited. I really do not have a comment on it. I’d probably like to have her do a 
few more to prove it. (Tr. Beatrice)

These teachers merely asked the student to try more examples, but did not think math-
ematically about the problem or discuss specific strategies. Five other teachers offered to 
try more examples with the student, but did not mention specific strategies either:

I am not sure. I would say probably that it may work in some cases, but may not work 
in other cases. I would say, well you know, this is very interesting. Let us try it with 
some other numbers and see if this works as well. (Ms. Fiona)

I think the best, you probably have to go through and start with, again, even a dif-
ferent group of numbers and bring her on all the way through. In other words, well 
maybe it would work with one case but it would not work with the next case. So 
maybe showing the girl working with not just the 4 by 4 and then the 4 by 8, but say 
3 by 3 and try it with other numbers. Well, let us say she continues in this vein…(Tr. 
Bernadette)

Five teachers mentioned specific strategies for approaching the problem. However, except 
for that mentioned by Ms. Faith, the strategies were not based on careful mathematical 
thinking. When they suggested trying “different numbers” or “strange numbers,” they were 
not considering different cases in a systematic way as we shall see the Chinese teachers did. 
Rather, the strategy they proposed was based on the idea that a mathematical claim should 
be proved by a large number of examples. This misconception, which was shared by many 
U.S. teachers, would be likely to mislead a student.

HOW THE CHINESE TEACHERS EXPLORED THE NEW IDEA

Teachers’ Approaches to the Problem

The Chinese teachers’ first reactions to the problem were very similar to those of the U.S. 
teachers. About the same proportion of the Chinese teachers (8%) as of the U.S. teachers 
(9%) accepted the claim immediately, without any doubt. The other Chinese teachers were 
not sure if the claim was valid or not. It took them a while to think about it before they 
began to respond. Of the four interview questions, this took them the longest time to think 
over. And, once they started to discuss the problem, their responses differed considerably 
from those of their U.S. counterparts.

The Chinese and the U.S. teachers’ responses differed in three ways. First, many Chinese 
teachers showed an enthusiastic interest in the topic, the relationship between the perimeter 
and the area of a rectangle, while the U.S. teachers tended to be concerned with whether the 
claim that “as the perimeter increases, the area increases as well” was true or not.
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Second, most Chinese teachers made mathematically legitimate explorations on their 
own, while most of their U.S. counterparts did not. No Chinese teacher said that he or she 
would need to consult a book or someone else,2 and none ended up saying “I am not sure.” 
The Chinese teachers’ explorations, however, did not necessarily lead them to correct solu-
tions. Consequently, most U.S. teachers who held a “not sure” opinion avoided a wrong 
answer, but 22% of the Chinese teachers, because of their problematic strategies, gave 
incorrect solutions. The remaining 70% solved the problem correctly.

Third, the Chinese teachers demonstrated a better knowledge of elementary geometry. 
They were very familiar with perimeter and area formulas. During their interviews, many 
discussed relationships among the various geometric figures that were not even mentioned 
by any of the U.S. teachers. For example, some Chinese teachers said that a square is a 
special rectangle. Some also pointed out that a rectangle is a basic figure—that perimeter 
and area calculations for various other figures rely on using rectangles.3

Figure 4.1 summarizes the reactions of the teachers of the two countries to the 
p roblem.

Justifying an Invalid Claim: Teachers’ Knowledge and Pitfalls. Sixteen Chinese teach-
ers who investigated the problem mathematically argued that the student’s claim was cor-
rect. Twelve teachers justified the claim by discussing why it was the case, the other four 
teachers addressed how it was the case. These teachers tended to build their arguments on 
the correspondence formed by identifying the length, width, and area of the rectangle with 
two numbers and their product:

I think the student is right. As the perimeter of a rectangle increases, its area increases 
as well. We know that the area of a rectangle is the product of its length and width. 
In other words, the length and the width are the two factors that produce the area. 
Unquestionably, as the factors increase, the product will increase as well. (Ms. H.)

Their strategy, although incorrect, was grounded in appropriate, although incorrect math-
ematics. First, the teachers identified the student’s claim as a numerical relationship—the 
relationship between two factors and their product in multiplication. Then they drew on 
an established principle of this relationship—that between the factors and the product—to 
prove the claim. The flaw was, however, that they failed to notice that the claim involved 
two different numerical relationships, not just a multiplicative one. While the relationship 
of length, width, and area of a rectangle is multiplicative, that of its length, width, and 
perimeter is additive. The perimeter of a rectangle can increase while two of the sides of 
the rectangle decrease in length.

2 Stigler, Fernandez, and Yoshida (1996) reported a similar tendency on the part of Japanese ele-
mentary teachers.

3 In the Chinese curriculum the area formulas for other shapes such as squares, triangles, circles, 
and trapezoids are derived from that for rectangles.

Knowing and Teaching Elementary Mathematics



79

FIG. 4.1. A comparison of teachers’ reactions to the student’s claim.

The teachers who said that the claim was true had explanations similar to Mr. Felix’s:

The student’s claim is true. Let’s have a look at how it is true. If we overlap the square 
on the rectangle, we will see another uncovered square. That will be the increased 
area. One pair of opposite sides of the increased area is actually the width of the two 
original figures, the other pair of opposite sides of the increased area is the difference 
between the length of the original rectangle and the side of the original square. Or, 
we can say that it is the increased piece of the length… (Ms. B.)

Like Mr. Felix, they failed to consider all the ways in which the perimeter of a rectangle 
may increase. Therefore, they only explained how the student’s case was true, but did not 
explore the real problem: if it is always true.

Although these sixteen teachers did not attain correct solutions, they showed the inten-
tion to explore the problem mathematically. Instead of making general comments about the 
student’s claim, they investigated the problem and reached their own conclusions. More-
over, these teachers were aware of an important convention in the discipline: any math-
ematical proposition has to be proved, and they tended to follow this convention. They did 
not just opine “the claim is right,” rather, they gave proofs of their opinions. The arguments 
they made, although deficient, were grounded in legitimate mathematics. In addition to a 
solid knowledge of the calculation of the two measures, these teachers displayed sound 
attitudes toward mathematical investigation. Of course, their approaches also revealed an 
obvious weakness—the lack of thoroughness in their thinking.

Disproving the Claim: The First Level of Understanding. Fifty of the 72 Chinese 
teachers gave correct solutions but their different approaches displayed various levels of 
understanding. The first level was to disprove the student’s claim. The 14 Chinese teachers’ 
approach at this level was similar to Ms. Faith’s—looking for counterexamples:

Her claim was not true. I will say nothing but show the student a counterexample. 
For instance, under her square (with sides of 4 cm), I may want to draw a rectangle 
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with the length of 8 cm and the width of 1 cm. She will soon find that my figure is of 
longer perimeter but smaller area than hers. So, without saying, her claim is wrong. 
(Ms. I.)

This claim does not hold true in all cases. It is easy to find cases which can disprove 
the theory. For example, there is a rectangle, its length is 10 cm and its width is 2 cm. 
Its perimeter will be the same as that of the student’s rectangle, 24 cm. But its area 
will be only 20 square cm, smaller than that of the student’s rectangle. (Tr. R.)

To disprove the claim, the teachers created two kinds of counterexamples. One consisted of 
figures with longer perimeter but smaller area or shorter perimeter but bigger area, than one 
of the student’s figures. The other kind consisted of figures with the same area but a differ-
ent perimeter—or the same perimeter but a different area—as the student’s figures.

Identifying the Possibilities: The Second Level of Understanding. Eight teachers 
explored the various possible relationships between perimeter and area. They gave differ-
ent kinds of examples that supported, as well as opposed the claim, to show the various 
possibilities:

I will present several figures to her and ask her to calculate their perimeter and area:

By comparing these figures, she will learn that as the perimeter increases, the area 
does not necessarily increase as well, such as in the case of figures a and b. Also, 
when the perimeter remains the same, the area may not be the same, such as in 
the case of figures c and d. So she will know that there is not a direct relationship 
between perimeter and area. What she has found is one of several solutions of the 
problem. (Ms. E.)

I will first praise her for her independent thinking. But I will also let her know that 
there may be two other situations as well. For example, when the perimeter increases, 
the area can increase, but it may also decrease, or even stay the same. Then I will 
show her an example of each case to compare with her rectangle (with length of 8 cm 
and a width of 4 cm). I will first give an example of her claim, like a rectangle with a 
length of 8 cm and width of 5 cm. The perimeter will increase from 24 cm to 26 cm, 
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the area will increase from 32 square cm to 40 square cm. Now, the second example 
will be a rectangle with length 12 cm and width 2 cm. Its perimeter will increase to 
28 cm, but its area will decrease to 24 square cm, only three quarters of the area of 
her rectangle. Another example might be a figure with length 16 cm and width 2 cm. 
Its perimeter will also increase, up to 36 cm, but the area will stay the same as that 
of her rectangle, 32 square cm. So I will tell her that mathematical thinking has to 
be thorough. This is one feature of our thinking that gets improved in learning math-
ematics. (Mr. A.)

Mr. A. revealed that increasing the perimeter may cause the area to increase, decrease, or 
stay the same. Ms. E. described two cases in which the two measures changed in different 
ways—while the perimeter increases, the area decreases, and while the perimeter stays the 
same, the area decreases. At this level of understanding, teachers discussed various facets 
of the relationship between the perimeter and the area of a figure. In particular, they exam-
ined different kinds of changes in the area of a rectangle that can be caused by changes in 
the perimeter. The teachers did not simply disprove the student’s claim, rather, they pre-
sented a wider perspective in which the student’s claim was included.

Clarifying the Conditions: The Third Level of Understanding. In addition to display-
ing the various possibilities, 26 teachers clarified the conditions under which these pos-
sibilities held. These teachers tended to explore numerical relationships between perimeter 
and area and elaborate specific examples:

It is obvious that in some cases the claim holds but in some other cases it does not 
hold true. Yet when does it hold true and when does it not? In other words, under what 
conditions does it hold up, and under what conditions does it not? We had better have 
a clear idea about it. To clarify the specific conditions that cause the various possibili-
ties, we can first investigate the conditions that will cause an increase in the perim-
eter, and then explore how these conditions affect the change in the area. (Mr. D.)

Tr. R. articulated the strategy that she and several other teachers used to explore the condi-
tions under which the student’s claim held. They first examined the cause in the student’s 
claim—an increase in the perimeter. They investigated the situations that would produce an 
increase in the perimeter of a rectangle and found three patterns. Then they analyzed the 
changes these patterns would produce in the area. Through a careful examination, Tr. R. 
attained a clear picture of how the area might be affected by an increase in the perimeter 
of the different ways:

I would say that the student’s claim holds up under certain conditions. We know that 
changes in the length and width of a figure may cause an increase in perimeter. There 
are three ways to change the length and the width of a rectangle that would cause an 
increase in its perimeter. The first is when either the length or the width increases but 
the other measure remains the same. Under this condition, the area of the figure will 
increase accordingly. For example, given that the length of the student’s rectangle 
increases to 9 cm and its width remains unchanged, the original area, 32 square centi-
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meters, will increase to 36 square centimeters. Or, given that the width of the original 
rectangle increases to 5 cm but its length remains unchanged, its area will increase 
to 40 square centimeters. The second way to increase the perimeter is when both the 
length and the width increase at the same time. Under this condition, the area will also 
increase. For example, given that the length of the rectangle increases to 9 cm and the 
width increases to 5 cm at the same time, the area of the rectangle will increase to 45 
square cm. The third condition that causes an increase in perimeter is when either the 
length or the width of a figure increases but the other measure decreases; however, 
the increased quantity is larger than the decreased quantity. Under this condition, 
the perimeter will also increase, but the change in area may go in three directions. It 
may increase, decrease, or stay the same. For example, given that the width increases 
to 6 cm and the length decreases to 7 cm, the perimeter will increase to 26 cm and 
area will increase to 42 square cm. Given that the length increases to 10 cm and the 
width decreases to 3 cm, the perimeter will also increase to 26 cm, but the area will 
decrease to 30 square cm. Given that the length increases to 16 cm and the width 
decreases to 2 cm, the perimeter will increase to 36 cm, yet the area will remain the 
same, 32 square cm. In brief, under the first two conditions, the student’s claim holds 
true, but under the last condition, it does not necessarily hold. (Tr. R.)

The solution that these teachers attained was: when increase in the perimeter is caused by 
the increase in either or both the length and the width of a rectangle, the area of the fig-
ure will increase accordingly; but when the increase in perimeter is caused by increasing 
length and decreasing width, or vice versa, the area will not necessarily increase as well. 
About two thirds of the 26 teachers elaborated their discussion in the manner of Tr. R. 
They addressed both situations—when the claim holds and when it does not necessarily 
hold. The remaining third of the teachers focused on one of these situations. The teachers 
who reached this level of understanding did not regard the claim as absolutely correct or 
absolutely wrong. Rather, they referred to the concept of “conditional.” They argued that 
the claim was conditionally correct:

So, now we can say that the student’s claim is not absolutely wrong, but it is incom-
plete or conditional. Under certain conditions it is tenable, but under other conditions 
it does not necessarily hold. I am glad that you raised the problem. I have figured out 
something new today which I haven’t thought about before. (Tr. J.)

After the discussion I may want to give her a suggestion to revise her claim by con-
fining it to certain conditions. She may want to say that under the conditions that the 
increase of the perimeter is caused by the increase of either the length or the width but 
the other side remains unchanged, or by the increase of both the length and the width, 
the area of the rectangle increases as well. That will be a safe statement. (Ms. G.)

In clarifying the different conditions under which the student’s claim would hold or not 
hold, the teachers developed different relationships between the perimeter and area of a 
rectangle. The student’s claim was not simply abandoned; rather, it was revised and incor-
porated into one of the relationships.
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Explaining the Conditions: The Fourth Level of Understanding. Six of the teachers 
who reached the third level of understanding went even further, explaining why some con-
ditions supported the student’s claim and why other conditions did not. Their approaches 
varied. After a detailed and well-organized discussion of the conditions under which the 
student’s claim would hold, Tr. Mao said:

At last, we can have an examination of why these conditions are tenable. Imagine 
how the area of a figure changes when its perimeter changes. Under the first two con-
ditions, the original area remains but a new area is added to it. For instance, when the 
length increases but the width remains the same, there will be an extra area expand-
ing horizontally from the original one. On the other hand, when the width increases 
but the length remains the same, there will be an extra area expanding vertically from 
the original one. If both the length and the perimeter increase at the same time, the 
original area will expand in both directions. In any of these cases, the original area 
is still there but some other extra area is added to it. We can draw figures to display 
the cases. In fact, it can also be proved by using the distributive property. For exam-
ple, when the length increases 3 cm, it becomes (a+3) cm.4 The area will be (a+3)
b=ab+3b. Now, compared to the original area, ab, we can see why it is larger. 3b is 
the increased quantity. However, given that one measure increases and the other one 
decreases, the original area of the first figure will be destroyed. There is no reason 
that guarantees the new area will be bigger than the previous one.

Tr. Mao’s argument was based on a geometric representation of the situation. He also applied 
the distributive property to add another proof to his approach. Tr. Xie’s argument about why 
rectangles with the same perimeter can have different areas was also very insightful. He 
first indicated that for the same perimeter one can form many rectangles of different lengths 
and widths, because there are many different pairs of addends that make the same sum. 
Then he argued that when these pairs of addends become factors, as in calculating the area 
of the figure, obviously they will produce very different products. Finally, using the fact 
that the closer the value of the two factors, the larger their product, he claimed that for a 
given perimeter, the square is the rectangle with the largest area:

The area of a rectangle is determined by two things, its perimeter and its shape. The 
problem of the student was that she only saw the first one. Theoretically, with the 
same perimeter, let’s say 20 cm, we can have infinite numbers of rectangles as long 
as the sum of their lengths and widths is 10 cm. For example, we can have 5+5=10, 
3+7=10, 0.5+9.5=10, even 0.01+9.99=10, etc., etc. Each pair of addends can be the 
two sides of a rectangle. As we can imagine, the area of these rectangles will fall 
into a big range. The square with sides of 5 cm will have the biggest area, 25 square 
cm, while the one with a length of 9.99 cm and a width of 0.01 cm will have almost 
no area. Because in all the pairs of numbers with the same sum, the closer the two 
numbers are, the bigger the product they will produce… (Tr. Xie)

4 In Chinese elementary math textbooks, a stands for length of a figure, and b stands for width of a 
figure.
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Tr. Xie and Tr. Mao did not draw on the same basic principles of mathematics for their 
arguments. However, both developed solid arguments. In fact, a basic principle of math-
ematics may be able to support various numerical models. On the other hand, a numerical 
model may also be supported by various basic principles. A profound understanding of a 
mathematical topic, at last, will include certain basic principles of the discipline by which 
the topic is supported. Passing through various levels of understanding of the student’s 
claim, the teachers got closer and closer to a complete mathematical argument. 

A Map of How Teachers’ Exploration Was Supported

The teachers explored the student’s claim and reached an understanding of the mathemati-
cal issues at various conceptual levels: finding a counterexample, identifying the possible 
relationships between area and perimeter, clarifying the conditions under which those rela-
tionships hold, and explaining the relationships. While in the three previous chapters we 
were intersted in teachers’ existing knowledge of school mathematics, now we are inter-
ested in their capacity for exploring a new idea. The task required the teachers to “jump” 
from their current “home site” to a novel “site,” to discover something they had not thought 
about before. 

Figure 4.2 represents how the teachers’ approach to the relationship between perimeter 
and area was supported. The rectangle at the top represents the task: to explore a new 
mathematical idea on one’s own. The rhombuses represent the affective factors. The other 
components of the figure represent aspects of teacher subject matter knowledge. The circle 
represents knowledge, calculation of perimeter and area, closely related to the new idea. 
The squares represent what Brunder (1960/1977) considered basic ideas of a subject—
basic principles (represented by squares with straight corners) and basic attitudes (repre-
sented by squares with round corners).

FIG. 4.2. A map of how teachers’ exploration was supported.
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Teachers’ explorations of the student’s claim were affected by two factors: intention and 
strategy. Undoubtedly strategy plays a significant role in this task. However, the interviews 
revealed that teachers’ intentions also played a critical role. Teachers who did not intend to 
examine the claim did not bother to think of a strategy. Most U.S. teachers did not evidence 
any intention to approach the new idea on their own, so they did not seriously consider a 
strategy.

The teachers’ intention to approach the student’s claim on their own relied on two sub-
factors—their interest in a new mathematical proposition and their self-confidence in their 
ability to understand it. The teachers who enthusiastically made a thorough study of the 
student’s claim were those particularly interested in the mathematical topic raised. They 
were driven by a strong curiosity about the relationship between perimeter and area of 
a rectangle. A strong internal motivation for teaching mathematics could be observed in 
these teachers’ responses. On the other hand, the teachers who were not interested in the 
claim were not motivated to examine it. Interest in exploring a mathematical proposition, 
however, is supported by one’s attitude toward the possibility of solving a problem on one’s 
own, and affected by one’s confidence of solving the problem.

Confidence was the other factor determining whether or not a teacher investigated the 
claim. The teachers who were not confident of their own ability to solve the problem did 
not attempt it. Teachers’ confidence drew on two aspects of their subject matter knowledge: 
their attitudes toward the possibility of solving mathematical problems on their own and 
their knowledge of the particular topics related to the proposition. Those who either did not 
believe that it was possible to solve the problem on their own, or did not know how to cal-
culate the perimeter and area of a figure, would not further explore relationships between 
perimeter and area. Consequently, their intentions of solving the problem, if they existed, 
would be inhibited.

Teachers’ strategies for investigating the problem drew on three aspects of their subject 
matter knowledge: their knowledge of the particular topic related to the new idea, the ways 
of thinking in mathematics and basic principles of the discipline related to the approach. 
All the teachers who successfully accomplished the task showed familiarity with the for-
mulas for calculating perimeter and area, as well as understanding of their underlying ratio-
nales. Their proficiency in calculation, indeed, substantially supported their investigations 
which involved various procedures of calculation.

Teachers’ knowledge of mathematical thinking played a key role in helping teachers to 
“jump” from their previous knowledge to a new discovery. Not all teachers who knew how 
to calculate perimeter and area of a rectangle conducted a mathematical approach on their 
own. However, those who also knew how to think of the claim in a mathematical way did. 
Although some did not reach a correct solution, their knowledge of how to think about the 
proposition in a mathematical way at least led them to a legitimate approach. In contrast, 
the teachers who knew the formulas but did not think of the claim in a mathematical way 
were not able to approach the problem mathematically.

Finally, teachers’ knowledge of basic mathematical principles—for example, the con-
ditionality of a mathematical proposition—contributed substantially to their approach. 
Acquaintance with the application of the distributive property, again, enhanced some 
teachers’ explanations of the addition and multiplication relationships connected with the 
topic.

Exploring New Knowledge: The Relationship Between Perimeter and Area 
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Teachers’ Responses to the Student

The Chinese teachers’ responses to the student fall into the same categories as those of the 
U.S. teachers—praise with explanation and praise with engagement in further exploration. 
However, because most of the Chinese teachers investigated the problem, their responses to 
the student were significantly more substantial and relevant than those of their U.S. coun-
terparts. More appropriate examples were provided to illustrate the various aspects of the 
topic and more appropriate questions were raised to lead the student to further discovery.

In addition, the two groups of teachers were differently distributed in the two categories. 
Only two U.S. teachers (9%) reported that they would give the student an explanation, 
one immediately and one after “looking it up.” Most of the U.S. teachers said they would 
explore the claim with the student who proposed it, but they generally did not have ideas 
about what that exploration would be. Most of the Chinese teachers (62%) after getting a 
clear solution would give the student a detailed explanation of the topic in contrast to those 
who would engage her in discovering the results on her own (30%). Most of the Chinese 
teachers’ explanations during the interviews were clear, well organized, and complete. Gen-
erally, an explanation came after an assertion such as “Tell the student her claim was not 
true” or “Tell the student her claim was not complete.” Most of the teachers who justified 
the student’s claim would also explain to her why they thought she was right.

The Chinese teachers who would engage the student in a further discussion of the claim 
were those who presented a better understanding and were more comfortable in their own 
investigation of the problem. Most said they would raise questions or give other examples 
to lead the student to find the limitations of her claim and reach a further understanding of 
the relationship between the perimeter and area of a rectangle:

As for the student, first of all I will praise her. I will make nice comments about her 
independent thinking, and the consistency between her claim and her example. But 
then I will lead her to find the problem with her claim. I will first ask her to explain 
why in her case as the perimeter increases, the area increases as well, ask her to show 
me the increased part of the area and tell me how it was generated. Then I will say, 
your example showed a situation in which one pair of the opposite sides of the figure 
increased and the other pair of sides remained unchanged. This is one situation that 
causes the perimeter of a rectangle to increase. Have you thought of any other situ-
ations in which the perimeter will increase as well? Do you know what will happen 
in the other situations? Now we know that in at least one situation your claim holds. 
But to prove your claim you should make sure that it works in all situations, and pro-
vide an explanation for why it holds. She might easily find other situations in which 
the perimeter of a rectangle will increase. Very likely, she will find that when the 
other pair of sides increases, or when both pairs of sides increase, the perimeter will 
increase as well. And she will also find that in these cases her claim will hold. Then I 
will lead her to think of more situations. Probably she could find out that under cer-
tain conditions her claim does not hold. If she can’t think of the other conditions on 
her own, I will give her some examples and let her think over what kinds of situations 
these examples illustrate and what will happen under these situations. In brief, I will 
lead her to investigate her claim on her own, and give her help whenever necessary. 
At the end, I expect her to have a clear idea of under which conditions her claim holds 
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and under which conditions it does not hold. I also want to help her to see that the 
problem with her approach was the lack of thoroughness in her thinking. So I will 
close the conversation by emphasizing that it is very good for one to think indepen-
dently, yet it is not enough. One should also learn how to think. As in her case, how 
to think in a thorough way. (Tr. T.)

Tr. T’s response shows several interesting features presented in similar responses from 
many Chinese teachers. First of all, there was a subtle interweaving of praise and criticism. 
Although she started with praise for the student’s independent thinking, after a discussion 
of the various facets of the topic, she ended the conversation by indicating that the student 
should work on improving the aspect of her thinking that was praised by the teacher—to 
think in a thorough way. This pattern was seen in a few other teachers’ responses. For 
example:

I will first give a positive reaction to her initiative, tell her that I am glad about what 
she has found. Then I will suggest that we have more discussions about the claim. 
Based on her rectangle, I will give her a series of examples that present different 
situations that may cause an increase in the perimeter and a different change in the 
area…[examples omitted]. Finally, I will encourage her again for her spirit of daring 
to initiate a study and explore a new idea on her own. But at the same time I will 
indicate to her that one should not only dare to think, but also learn how to be good 
at thinking. (Tr. Sun)

Most of the Chinese teachers reported that they would first of all praise the student’s mental 
effort, such as “close observation,” “inquiry into new knowledge,” “independent thinking,” 
and “the initiative to explore new knowledge on her own,” etc. However, they would soon 
turn to a discussion of the problematic aspects of the student’s claim, which they consid-
ered to be caused by a certain inadequacy in her way of thinking. At the end, the teachers 
would go back to what they had praised, confirming it again, and indicating what should 
be improved later on.

Moreover, the Chinese teachers’ responses tended to interweave other elements: telling, 
explaining, raising questions, and displaying examples. Here is an example of a teacher 
who would first tell the student that her claim was problematic and then guide her further:

I may want to tell her that her finding is not complete. Because it only illustrates one 
kind of relation between perimeter and area. I will suggest that she think of other 
cases. What will happen if the width increases but the length remains the same? What 
will happen if both the length and the width increase? What will happen if the length 
increases and the width decreases, or vice versa? I will ask her to continue thinking 
about these situations and to come back to tell me her new findings. If she can’t find 
the complete solution after a new exploration, I will discuss it with her and show her 
other relevant examples in order to reveal the solution step-by-step. Finally, to urge 
her to further explore the relationship between perimeter and area of a rectangle, I 
will probably give her a problem to think about: Given that with a same perimeter, 
what kind of length and width will cause the largest area? (Tr. S.)

Exploring New Knowledge: The Relationship Between Perimeter and Area 
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Although some teachers would engage the student in exploring the problem on her own, 
they would also be ready at any time to give specific suggestions about how to approach it:

First of all I would ask her to look again at the figures she brought and tell me her 
idea of how the area increased. If she can’t tell me, I may want to suggest that she can 
imagine that the square overlaps with the rectangle, and see where the increased area 
is and think where this area came from. It is caused by the increase in the length. It 
is obvious that the more the length increases, the bigger this increased area will be. 
Also, an increase in length will cause an increase in perimeter. Then I would ask her 
if there any other ways in which the area of a rectangle can increase. Following the 
logic of our discussion, she would probably say that when the width increases, the 
area increases as well. How about if both the length and width increase? Of course 
both the perimeter and area will increase. We don’t even need any examples here. 
Then I would ask her if she knows another way to increase the perimeter of a rect-
angle. This would be a hard step for her because she would have to change the way 
she has been thinking. I might ask her to think about it at home and come back to 
me the next day. Or, if I feel that she would not be likely to discover it on her own, 
I would give her some examples with longer perimeter than the figure she brought 
to me but less, or equal area. For example, a rectangle with a length of 10 cm and a 
width of 2 cm. In this way, I would lead her to a discussion of the conditions under 
which her claim will hold and the conditions under which it will not, and why. After 
clearing that up, we would come to a discussion of what the problem was with her 
original claim and how it was caused. (Tr. C.)

Some teachers seemed to be particularly good at using appropriate examples, while others 
were good at asking appropriate questions. However, these two elements were connected:

I will first comment on her attitude of thinking independently. Then I will ask her, 
“Are you sure that the theory you discovered from the two figures is true for all cases? 
Do you want to try some more examples? For example, do you want to draw different 
rectangles with a perimeter of 24 cm and calculate what their areas are? See what 
happens and come back again.” She might come back with figures such as 1×11, 
2×10, 3×9, 4×8, 5×7, 6×6, etc., each with the area she calculated. [Chen drew some 
rectangles on a sheet of paper.] It is very likely that she would have already found 
that with the same perimeter you get figures of different areas. I would hope that she 
could also find by herself that with rectangles of the same perimeter, the closer the 
lengths of the length and the width, the bigger the area. Or, at least, she would see 
that the square has the biggest area and the skinniest rectangle [on her paper] has the 
smallest area. Then I will ask her if she can see any pattern in the shape and the area 
of figures with the same perimeter. Through the discussion she will find out on her 
own that area and perimeter do not increase at the same time. (Tr. Chen)

While Tr. C. would guide the student to reflect on her previous thinking, Tr. Chen would 
guide the student to further investigation of the topic. Both of these thoughtful responses 
were heavily supported by the teachers’ subject matter knowledge—their knowledge of 
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how to investigate a new idea in mathematics as well as their knowledge of specific math-
ematical topics related to the idea.

DISCUSSION

Attitude Toward the Discipline: Promoter of Teachers’ Mathematical Inquiry

The U.S. teachers did not show glaring weaknesses in their calculation of perimeter and 
area of rectangles. However, there was still a remarkable difference between the U.S. teach-
ers and their Chinese counterparts. Only three U.S. teachers (13%) conducted mathemati-
cal investigations on their own and only one reached a correct answer. On the other hand, 
66 Chinese teachers (92%) conducted mathematical investigations and 44 (62%) reached 
a correct answer.

Two main factors may have precluded the U.S. teachers from a successful mathemati-
cal investigation—their lack of computational proficiency and their layperson-like attitude 
toward mathematics. Although most of the U.S. teachers knew how to calculate the two 
measures, they were far less proficient than their Chinese counterparts. A few reported that 
although they could do the calculations, they did not understand their rationales, and that 
this deficiency hampered further exploration. This was not the case for the Chinese teachers. 
None reported that lack of knowledge about the formulas hindered their investigations.

The second factor, which may be even more significant, was the teachers’ attitudes 
toward mathematics. In responding to the student’s novel claim about the relationship 
between perimeter and area, the U.S. teachers behaved more like laypeople, while the Chi-
nese teachers behaved more like mathematicians. This difference displayed their different 
attitudes toward mathematics. In discussing the structure of a subject, Bruner (1960/1977) 
wrote:

Mastery of the fundamental ideas of a field involves not only the grasping of gen-
eral principles, but also the development of an attitude toward learning and inquiry, 
toward guessing and hunches, toward the possibility of solving problems on one’s 
own. (p. 20)

In this chapter, we saw that all the teachers who explored the claim showed sound attitudes 
toward mathematics. They may or may not have reached a correct answer, but their attitude 
toward the possibility of solving a mathematical problem independently and their ways of 
thinking mathematically promoted their inquiries,,

Being Acculturated to Mathematics:  
Should It be a Feature of Mathematics Teachers?

Although the soundness of the Chinese teachers’ attitudes toward mathematics has been a 
particular focus of this chapter, it was evident in the previous chapters as well. The reader 
may have noticed that in all four chapters quotations from the Chinese teachers have been 
generally longer than those of the U.S. teachers. In fact, the U.S. teachers did not say less 
than their Chinese counterparts during the interviews, but what they said was less math-
ematically relevant and mathematically organized.

Exploring New Knowledge: The Relationship Between Perimeter and Area 
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One reason for the Chinese teachers’ eloquence may be their teaching style. Chinese 
teachers’ teaching is more lecture-like. Whenever they teach a new mathematics concept or 
a skill, they need to prepare a small “lecture”—a complete presentation of the concept or 
the skill. These small lectures that run through their mathematical teaching and compose a 
significant part of it, in fact, train them to talk in an organized way.

Yet there is another deep-seated factor which seems to play an even more important role. 
That is the acculturation of the Chinese mathematics teachers to the discipline. Obviously, 
these teachers are not mathematicians. Most of them have not even been exposed to any 
branch of mathematics other than elementary algebra and elementary geometry. However, 
they tend to think rigorously, tend to use mathematical terms to discuss a topic, and tend 
to justify their opinions with mathematical arguments. All these features contributed to the 
mathematical eloquence of the Chinese teachers.

Relationship Between Teachers’ Subject Matter Knowledge  
and Positive Responses to Students’ Proposals: How Can a  

Mathematical Inquiry be Promoted and Supported?

The moment when a student brings up a novel idea or claim is a special opportunity to pro-
mote mathematical learning and inquiry. To give the student positive comments and praise 
his or her initiative is certainly necessary. However, positive comments alone do not suffice 
to promote significant mathematics learning and inquiry. The student would need a teacher’s 
particular support in further mathematical learning and inquiry. In this chapter, we have seen 
that a teacher may support the student by providing explanations about the claim, by show-
ing the student how to examine the claim, or by leading the student step by step in her own 
inquiry. All these supports for mathematical learning, however, are based on the teacher’s 
own knowledge of mathematical inquiry. Teachers who did not know how to conduct such 
an inquiry, though they would praise the student and ask her to bring more examples, only 
displayed supports that were too vague and too general to promote real mathematical learn-
ing. To empower students with mathematical thinking, teachers should be empowered first.

According to what I have presented in the four data chapters, one might expect that I 
would conclude that teachers tend not to and may be unable to promote mathematical learn-
ing beyond their own understanding. Is it true that students’ mathematical learning cannot 
go beyond their teachers’ mathematical knowledge? I asked this question of Ms. Lin, my 
own elementary teacher. She was not included in my research. However, I encountered 
her when I revisited my elementary school while collecting the data for this study. After 
telling me very proudly that some of her sixth-grade students had just won a mathematics 
contest, she said: “They did it! They solved problems that they never have learned before. 
They solved problems that even I myself don’t know how to do! I am proud of them. But I 
am also proud of myself. Because I am convinced that it is me who fostered their ability to 
explore new problems on their own—the capacity to surpass their teacher!”

If Ms. Lin was right, it seems that students who are capable of exploring problems on 
their own may at times surpass their teacher. However, what kind of teacher can foster in 
students the ability to explore new mathematics problems? Must such teachers have this 
ability first? As yet this question has not been studied. Yet my assumption is that only teach-
ers who are acculturated to mathematics can foster their students’ ability to conduct math-
ematical inquiry. To foster such an ability in their students, the teachers must have it first.

Knowing and Teaching Elementary Mathematics
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SUMMARY

This chapter investigated how the teachers approached a mathematical idea that was new 
to them: the relationship between the perimeter and the area of a rectangle. Two aspects of 
subject matter knowledge contributed substantially to a successful approach: knowledge 
of topics related to the idea and mathematical attitudes. In contrast with previous chapters, 
the presence or absence of mathematical attitudes was a significant factor in completing 
the task for this chapter.

The U.S. teachers did not show major deficiencies in their knowledge of topics related 
to the new idea. More than half of them knew the formulas for calculating the perimeter 
and area of a rectangle. However, the U.S. teachers were particularly weak in their general 
attitude toward mathematics. Most behaved in an unmathematical way in approaching the 
new idea and did not investigate it independently. Only Ms. Faith, a beginning teacher, 
investigated the new idea and reached a correct solution. In contrast, most of the Chinese 
teachers investigated the new idea independently, but about one fifth did not reach a correct 
solution due to problematic strategies.

Exploring New Knowledge: The Relationship Between Perimeter and Area 



Chapter 5 
Teacher’ Subject Matter Knowledge:  

Profound Understanding Of  
Fundamental Mathematics

The previous four chapters depicted U.S. and Chinese teachers’ knowledge of four top-
ics in elementary mathematics. There was a striking contrast in the knowledge of the two 
groups of teachers studied. The 23 “above average” U.S. teachers tended to be procedurally 
focused. Most showed sound algorithmic competence in two beginning topics, whole num-
ber subtraction and multiplication, but had difficulty with two more advanced topics, divi-
sion by fractions, and perimeter and area of a rectangle. Although they came from schools 
whose quality ranged from excellent to mediocre, most of the 72 Chinese teachers demon-
strated algorithmic competence as well as conceptual understanding of all four topics. This 
chapter is devoted to discussion of the teachers’ knowledge across the particular topics.

Considered as a whole, the knowledge of the Chinese teachers seemed clearly coher-
ent while that of the U.S. teachers was clearly fragmented. Although the four topics in this 
study are located at various levels and subareas of elementary mathematics, while inter-
viewing the Chinese teachers I could perceive interconnections among their discussions of 
each topic. From the U.S. teachers’ responses, however, one can hardly see any connection 
among the four topics. Intriguingly, the fragmentation of the U.S. teachers’ mathematical 
knowledge coincides with the fragmentation of mathematics curriculum and teaching in 
the U.S. found by other researchers as major explanations for unsatisfactory mathematics 
learning in the United States (Schmidt, McKnight, & Raizen, 1997; Stevenson & Stigler, 
1992). From my perspective, however, this fragmentation and coherence are effects, not 
causes. Curricula, teaching, and teachers’ knowledge reflect the terrains of elementary 
mathematics in the United States and in China. What caused the coherence of the Chinese 
teachers’ knowledge, in fact, is the mathematical substance of their knowledge.

A CROSS-TOPIC PICTURE OF THE CHINESE TEACHERS’ 
KNOWLEDGE: WHAT IS ITS MATHEMATICAL SUBSTANCE?

Let us take a bird’s eye view of the Chinese teachers’ responses to the interview questions. 
It will reveal that their discussions shared some interesting features that permeated their 
mathematical knowledge and were rarely, if ever, found in the U.S. teachers’ responses.

To Find the Mathematical Rationale of an Algorithm

During their interviews, the Chinese teachers often cited an old saying to introduce further 
discussion of an algorithm: “Know how, and also know why.” In adopting this saying, 
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which encourages people to discover a reason behind an action, the teachers gave it a new 
and specific meaning—to know how to carry out an algorithm and to know why it makes 
sense mathematically. Arithmetic contains various algorithms—in fact it is often thought 
that knowing arithmetic means being skillful in using these algorithms. From the Chinese 
teachers’ perspective, however, to know a set of rules for solving a problem in a finite num-
ber of steps is far from enough—one should also know why the sequence of steps in the 
computation makes sense. For the algorithm of subtraction with regrouping, while most 
U.S. teachers were satisfied with the pseudoexplanation of “borrowing,” the Chinese teach-
ers explained that the rationale of the computation is “decomposing a higher value unit.”1 
For the topic of multidigit multiplication, while most of the U.S. teachers were content 
with the rule of “lining up with the number by which you multiplied,” the Chinese teach-
ers explored the concepts of place value and place value system to explain why the partial 
products aren’t lined up in multiplication as addends are in addition. For the calculation of 
division by fractions for which the U.S. teachers used “invert and multiply,” the Chinese 
teachers referred to “dividing by a number is equivalent to multiplying by its reciprocal” as 
the rationale for this seemingly arbitrary algorithm.

The predilection to ask “Why does it make sense?” is the first stepping stone to concep-
tual understanding of mathematics. Exploring the mathematical reasons underlying algo-
rithms, moreover, led the Chinese teachers to more important ideas of the discipline. For 
example, the rationale for subtraction with regrouping, “decomposing a higher value unit,” 
is connected with the idea of “composing a higher value unit,” which is the rationale for 
addition with carrying. A further investigation of composing and decomposing a higher 
value unit, then, may lead to the idea of the “rate of composing and decomposing a higher 
value unit,” which is a basic idea of number representation. Similarly, the concept of place 
value is connected with deeper ideas, such as place value system and basic unit of a num-
ber. Exploring the “why” underlying the “how” leads step by step to the basic ideas at the 
core of mathematics.

To Justify an Explanation with a Symbolic Derivation

Verbal explanation of a mathematical reason underlying an algorithm, however, seemed 
to be necessary but not sufficient for the Chinese teachers. As displayed in the previous 
chapters, after giving an explanation the Chinese teachers tended to justify it with a sym-
bolic derivation. For example, in the case of multidigit multiplication, some of the U.S. 
teachers explained that the problem 123×645 can be separated into three “small problems”: 
123×600, 123×40, and 124×5. The partial products, then, are 73800, 4920, and 615, instead 
of 738, 492, and 615. Compared with most U.S. teachers’ emphasis on “lining up,” this 
explanation is conceptual. However, the Chinese teachers gave explanations that were even 

1 In teaching, Chinese teachers tend to use mathematical terms in their verbal explanations. Terms 
such as addend, sum, minuend, subtrahend, difference, multiplicand, multiplier, product, partial 
product, dividend, divisor, quotient, inverse operation, and composing and decomposing, are fre-
quently used. For example, Chinese teachers do not express the additive version of the commuta-
tive law as “The order in which you add two numbers doesn’t matter.” Instead, they say “When we 
add two addends, if we exchange their places in the sentence, the sum will remain the same.”

Teachers’ Subject Matter Knowledge 



94 

more rigorous. First, they tended to point out that the distributive law2 is the rationale 
underlying the algorithm. Then, as described in chapter 2, they showed how it could be 
derived from the distributive law in order to illustrate how the distributive law works in this 
situation and why it makes sense:

 

For the topic of division by fractions, the Chinese teachers’ symbolic representations were 
even more sophisticated. They drew on concepts that “students had learned” to prove the 

equivalence of and in various ways. The following is one proof based on the 

relationship between a fraction and a division :

 

A proof drawing on the rule of “maintaining the value of a quotient” is:

 

2 In the Chinese mathematics curriculum, the additive versions of commutative and associative 
laws are first introduced in third grade. The commutative, associative, and distributive laws of 
multiplication are introduced in fourth grade. They are introduced as alternatives to the standard 
method. For example, the textbook says of the commutative law of addition, “When two numbers 
are added, if the locations of the addends are exchanged, the sum remains the same. This is called 
the commutative law of addition. If the letters a and b represent two arbitrary addends, we can 
write the commutative law of addition as: a+b=b+a. The method we learned of checking a sum 
by exchanging the order of addends is drawn from this law” (Beijing, Tianjin, Shanghai, and 
Zhejiang Associate Group for Elementary Mathematics Teaching Material Composing, 1989, pp. 
82–83). The textbook illustrates how the two laws can be used as “a way for fast computation.” 
For example, students learn that a faster way of solving 258+791+642 is to transform it into 
(258+642)+791, a faster way of solving 1646–248–152 is to transform it into 1646–(248+152).
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Moreover, as illustrated in chapter 3, the Chinese teachers used mathematical sentences to 
illustrate various nonstandard ways to solve the problem , as well as to derive these 
solutions. Symbolic representations are widely used in Chinese teachers’ classrooms. As 
Tr. Li reported, her first-grade students used mathematical sentences to describe their own 
way of regrouping: 34−6=34−4−2=30−2=28. Other Chinese teachers in this study also 
referred to similar incidents.

Researchers have found that elementary students in the United States often view the 
equal sign as a “do-something signal” (see e.g., Kieran, 1990, p. 100). This reminds me 
of a discussion I had with a U.S. elementary teacher. I asked her why she accepted student 
work like “3+3×4=12 = 15.” She said, “Well, they did the calculational order correctly and 
got the correct answer, what is wrong?” From the Chinese teachers’ perspective, however, 
the semantics of mathematical operations should be represented rigorously. It is intolerable 
to have two different values on each side of an equal sign. As my elementary teacher once 
said to her class, “The equal sign is the soul of mathematical operations.” In fact, chang-
ing one or both sides of an equal sign for certain purposes while preserving the “equals” 
relationship is the “secret” of mathematical operations.

The Chinese teachers were skilled in adding and removing parentheses and in changing 
the order of operations in a mathematical sentence. Drawing on a few simple properties 
such as the three basic laws, the rule of maintaining the value of a quotient, and the mean-
ing of fractions they developed clever symbolic justifications of the arithmetic algorithms 
they encountered in the interviews.

As Schoenfeld (1985) indicated, “proof ” as a form of explanation is mandatory, an 
accepted standard of the discipline of mathematics. The Chinese teachers tended to jus-
tify mathematical statements both verbally and symbolically. Verbal justification tended 
to come before symbolic justification, but the latter tended to be more rigorous. After the 
Chinese teachers reported their investigations of the student’s claim, as discussed in chap-
ter 4, they all justified their ideas. All of those who presented an invalid idea only gave 
verbal justifications. If they had used symbolic representations, I suspect some might have 
avoided or at least found the pitfalls in their arguments.

Multiple Approaches to a Computational Procedure:  
Flexibility Rooted in Conceptual Understanding

Although proofs and explanations should be rigorous, mathematics is not rigid. Mathema-
ticians use and value different approaches to solving problems (Pólya, 1973), even arithme-
tic problems. Dowker (1992) asked 44 professional mathematicians to estimate mentally 
the results of products and quotients of 10 multiplication and division problems involving 
whole numbers and decimals. The most striking result of her investigation “was the number 
and variety of specific estimation strategies used by the mathematicians.” “The mathemati-
cians tended to use strategies involving the understanding of arithmetical properties and 
relationships” and “rarely the strategy of ‘Proceeding algorithmically.’”

“To solve a problem in multiple ways” is also an attitude of Chinese teachers. For all 
four topics, they discussed alternative as well as standard approaches. For the topic of 
subtraction, they described at least three ways of regrouping, including the regrouping of 
subtrahends. For the topic of multidigit multiplication, they mentioned at least two expla-
nations of the algorithm. One teacher showed six ways of lining up the partial products. For 
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the division with fractions topic the Chinese teachers demonstrated at least four ways to 
prove the standard algorithm and three alternative methods of computation.

For all the arithmetic topics, the Chinese teachers indicated that although a standard 
algorithm may be used in all cases, it may not be the best method for every case. Applying 
an algorithm and its various versions flexibly allows one to get the best solution for a given 
case. For example, the Chinese teachers pointed out that there are several ways to compute 

. Using decimals, the distributive law, or other mathematical ideas, all the alterna-
tives were faster and easier than the standard algorithm. Being able to calculate in multiple 
ways means that one has transcended the formality of an algorithm and reached the essence 
of the numerical operations—the underlying mathematical ideas and principles. The reason 
that one problem can be solved in multiple ways is that mathematics does not consist of iso-
lated rules, but connected ideas. Being able to and tending to solve a problem in more than 
one way, therefore, reveals the ability and the predilection to make connections between 
and among mathematical areas and topics.

Approaching a topic in various ways, making arguments for various solutions, compar-
ing the solutions and finding a best one, in fact, is a constant force in the development of 
mathematics. An advanced operation or advanced branch in mathematics usually offers a 
more sophisticated way to solve problems. Multiplication, for example, is a more sophis-
ticated operation than addition for solving some problems. Some algebraic methods of 
solving problems are more sophisticated than arithmetic ones. When a problem is solved in 
multiple ways, it serves as a tie connecting several pieces of mathematical knowledge. How 
the Chinese teachers view the four basic arithmetical operations shows how they manage to 
unify the whole field of elementary mathematics.

Relationships Among the Four Basic Operations:  
The “Road System” Connecting the Field of Elementary Mathematics

Arithmetic, “the art of calculation,” consists of numerical operations. The U.S. teachers and 
the Chinese teachers, however, seemed to view these operations differently. The U.S. teach-
ers tended to focus on the particular algorithm associated with an operation, for example, 
the algorithm for subtraction with regrouping, the algorithm for multidigit multiplication, 
and the algorithm for division by fractions. The Chinese teachers, on the other hand, were 
more interested in the operations themselves and their relationships. In particular, they were 
interested in faster and easier ways to do a given computation, how the meanings of the four 
operations are connected, and how the meaning and the relationships of the operations are 
represented across subsets of numbers—whole numbers, fractions, and decimals.

When they teach subtraction with decomposing a higher value unit, Chinese teachers 
start from addition with composing a higher value unit. When they discussed the “lining-up 
rule” in multidigit multiplication, they compared it with the lining-up rule in multidigit 
addition. In representing the meaning of division they described how division models are 
derived from the meaning of multiplication. The teachers also noted how the introduction 
of a new set of numbers—fractions—brings new features to arithmetical operations that 
had previously been restricted to whole numbers. In their discussions of the relationship 
between the perimeter and area of a rectangle, the Chinese teachers again connected the 
interview topic with arithmetic operations.
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In the Chinese teachers’ discussions two kinds of relationships that connect the four 
basic operations were apparent. One might be called “derived operation.” For example, 
multiplication is an operation derived from the operation of addition. It solves certain kinds 
of complicated addition problems in a easier way.3 The other relationship is inverse opera-
tion. The term “inverse operation” was never mentioned by the U.S. teachers, but was very 
often used by the Chinese teachers. Subtraction is the inverse of addition, and division 
is the inverse of multiplication. These two kinds of relationships tightly connect the four 
operations. Because all the topics of elementary mathematics are related to the four opera-
tions, understanding of the relationships among the four operations, then, becomes a road 
system that connects all of elementary mathematics.4 With this road system, one can go 
anywhere in the domain.

KNOWLEDGE PACKAGES AND THEIR KEY PIECES: 
UNDERSTANDING LONGITUDINAL COHERENCE IN LEARNING

Another feature of Chinese teachers’ knowledge not found among U.S. teachers is their 
well-developed “knowledge packages.” The four features discussed above concern teach-
ers’ understanding of the field of elementary mathematics. In contrast, the knowledge 
packages reveal the teachers’ understanding of the longitudinal process of opening up and 
cultivating such a field in students’ minds. Arithmetic, as an intellectual field, was created 
and cultivated by human beings. Teaching and learning arithmetic, creating conditions in 
which young humans can rebuild this field in their minds, is the concern of elementary 
mathematics teachers. Psychologists have devoted themselves to study how students learn 
mathematics. Mathematics teachers have their own theory about learning mathematics.

The three knowledge package models derived from the Chinese teachers’ discussion 
of subtraction with regrouping, multidigit multiplication, and division by fractions share 
a similar structure. They all have a sequence in the center, and a “circle” of linked topics 
connected to the topics in the sequence. The sequence in the subtraction package goes 
from the topic of addition and subtraction within 10, to addition and subtraction within 
20, to subtraction with regrouping of numbers between 20 and 100, then to subtraction of 
large numbers with regrouping. The sequence in the multiplication package includes mul-
tiplication by one-digit numbers, multiplication by two-digit numbers, and multiplication 
by three-digit numbers. The sequence in the package of the meaning of division by frac-
tions goes from meaning of addition, to meaning of multiplication with whole numbers, 
to meaning of multiplication with fractions, to meaning of division with fractions. The 
teachers believe that these sequences are the main paths through which knowledge and skill 
about the three topics develop.

3 Although the four interview questions did not provide room for discussion of the relationship 
between addition and multiplication, Chinese teachers actually consider it a very important con-
cept in their everyday teaching.

4 The two kinds of relationships among. the four basic operations, indeed, apply to all advanced 
operations in the discipline of mathematics as well. The “road system” of elementary mathemat-
ics, therefore, epitomizes the “road system” of the whole discipline.
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Such linear sequences, however, do not develop alone, but are supported by other topics. 
In the subtraction package, for example, “addition and subtraction within 10” is related to 
three other topics: the composition of 10, composing and decomposing a higher value unit, 
and addition and subtraction as inverse operations. “Subtraction with regrouping of num-
bers between 20 and 100,” the topic raised in interviews, was also supported by five items: 
composition of numbers within 10, the rate of composing a higher value unit, composing 
and decomposing a higher value unit, addition and subtraction as inverse operations, and 
subtraction without regrouping. At the same time, an item in the circle may be related 
to several pieces in the package. For example, “composing and decomposing a higher 
value unit” and “addition and subtraction as inverse operations” are both related to four 
other pieces. With the support from these topics, the development of the central sequences 
becomes more mathematically significant and conceptually enriched.

The teachers do not consider all of the items to have the same status. Each package 
contains “key” pieces that “weigh” more than other members. Some of the key pieces 
are located in the linear sequence and some are in the “circle.” The teachers gave several 
reasons why they considered a certain piece of knowledge to be a “key” piece. They pay 
particular attention to the first occasion when a concept or skill is introduced. For example, 
the topic of “addition and subtraction within 20” is considered to be such a case for learn-
ing subtraction with regrouping. The topic of “multiplication by two-digit numbers” was 
considered an important step in learning multidigit multiplication. The Chinese teachers 
believe that if students learn a concept thoroughly the first time it is introduced, one “will 
get twice the result with half the effort in later learning.” Otherwise, one “will get half the 
result with twice the effort.”

Another kind of key piece in a knowledge package is a “concept knot.” For example, 
in addressing the meaning of division by fractions, the Chinese teachers referred to the 
meaning of multiplication with fractions. They think it ties together five important con-
cepts related to the meaning of division by fractions: meaning of multiplication, models 
of division by whole numbers, concept of a fraction, concept of a whole, and the meaning 
of multiplication with whole numbers. A thorough understanding of the meaning of mul-
tiplication with fractions, then, will allow students to easily reach an understanding of the 
meaning of division by fractions. On the other hand, the teachers also believe that exploring 
the meaning of division by fractions is a good opportunity for revisiting, and deepening 
understanding of these five concepts.

In the knowledge packages, procedural topics and conceptual topics were interwoven. 
The teachers who had a conceptual understanding of the topic and intended to promote 
students’ conceptual learning did not ignore procedural knowledge at all. In fact, from their 
perspective, a conceptual understanding is never separate from the corresponding proce-
dures where understanding “lives.”

The Chinese teachers also think that it is very important for a teacher to know the entire 
field of elementary mathematics as well as the whole process of learning it. Tr. Mao said:

As a mathematics teacher one needs to know the location of each piece of knowledge 
in the whole mathematical system, its relation with previous knowledge. For example, 
this year I am teaching fourth graders. When I open the textbook I should know how the 
topics in it are connected to the knowledge taught in the first, second, and third grades. 
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When I teach three-digit multiplication I know that my students have learned the multi-
plication table, one-digit multiplication within 100, and multiplication with a two-digit 
multiplier. Since they have learned how to multiply with a two-digit multiplier, when 
teaching multiplication with a three-digit multiplier I just let them explore on their own. 
I first give them several problems with a two-digit multiplier. Then I present a problem 
with a three-digit multiplier, and have students think about how to solve it. We have 
multiplied by a digit at the ones place and a digit at the tens place, now we are going 
to multiply by a digit at the hundreds place, what can we do, where are we going to put 
the product, and why? Let them think about it. Then the problem will be solved easily. 
I will have them, instead of myself, explain the rationale. On the other hand, I have to 
know what knowledge will be built on what I am teaching today (italics added).

ELEMENTARY MATHEMATICS AS FUNDAMENTAL MATHEMATICS

The Chinese teachers’ discussion presented a sophisticated and coherent picture of elemen-
tary mathematics. It showed that elementary mathematics is not a simple collection of discon-
nected number facts and calculational algorithms. Rather, it is an intellectually demanding, 
challenging, and exciting field—a foundation on which much can be built. Elementary 
mathematics is fundamental mathematics. The term fundamental has three related mean-
ings: foundational, primary, and elementary. Mathematics is an area of science that concerns 
spatial and numerical relationships in which reasoning is based on these relationships. His-
torically, arithmetic and geometry were the two main branches of the discipline of mathemat-
ics. Today, although the number of branches of the discipline has increased and the field 
of the discipline has been expanded, the foundational status of arithmetic and geometry in 
mathematics is still unchanged. None of the new branches, whether pure or applied, operates 
without the basic mathematical rules and computational skills established in arithmetic and 
geometry. Elementary school mathematics, composed of arithmetic and primary geometry, 
is therefore the foundation of the discipline on which advanced branches are constructed.

The term primary refers to another feature of elementary mathematics. Elementary math-
ematics contains the rudiments of many important concepts in more advanced branches of 
the discipline. For instance, algebra is a way of arranging knowns and unknowns in equa-
tions so that the unknowns can be made knowable. As we have seen in the previous chapters, 
the three basic laws with which these equations are solved—commutative, distributive, and 
associative—are naturally rooted in arithmetic. Ideas of set, one-to-one correspondence, and 
order are implicit in counting. Set-theoretic operations, like union and Cartesian product, are 
related to the meaning of whole number addition and multiplication. Basic ideas of calculus 
are implicit in the rationale of the calculation of area of a circle in elementary geometry.5

5 When teaching the formula for the area of a circle, Chinese teachers bring a paper disc to class. 
Half of the disc has one color and half has another color. The disc is first cut into two halves. Then 
the two halves are cut into thin pie-shaped pieces with the edges connected. The two half circles 

are opened and fit together to form a rectangle-like region: . Teachers inspire students 
to imagine subdividing the disc into more slices so that the region more closely approximates a 
rectangle. Then, drawing on the formula for the area of a rectangle, students learn the rationale for 
the formula for the area of a circle. This method of approximating the area of a circle was known 
in the 17th century (see Smith & Mikami, 1914, p. 131).
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The foundational and primary features of mathematics, however, are presented in an 
elementary format. It is elementary because it is at the beginning of students’ learning of 
mathematics. Therefore it appears straightforward and easy. The seemingly simple ideas 
embedded in students’ minds at this stage will last for the duration of their mathematics 
learning. For example, in their later learning students will never erase their conceptions of 
equation learned from “1+1=2,” although they will be changed and enriched.

From a perspective of attaining mathematical competence, teaching elementary math-
ematics does not mean bringing students merely to the end of arithmetic or to the beginning 
of “pre-algebra.” Rather, it means providing them with a groundwork on which to build 
future mathematics learning.

U.S. scholars have claimed that advanced concepts can be presented in an intellectu-
ally honest way to elementary students. Three decades ago, Bruner claimed that ideas of 
advanced mathematics such as topology, projective geometry, probability theory, and set 
theory could be introduced to elementary school students (Bruner, 1960/1977). His pro-
posal was raised again recently by Hirsch (1996). Kaput, Steen, and their colleagues have 
suggested a “strand-oriented organization” of school mathematics (Kaput & Nemirovsky, 
1995; Steen, 1990). They criticized the traditional “layer-cake” organization of school 
mathematics because it “picks very few strands (e.g., arithmetic, geometry, and algebra) 
and arranges them horizontally to form the curriculum” (Steen, p. 4). Instead, they propose 
a longitudinal structure “with greater vertical continuity, to connect the roots of mathemat-
ics to the branches of mathematics in the educational experience of children” (Steen, p. 4) 
illustrated by a tree with roots that represent strands such as “dimension,” “space,” “change 
and variation,” etc. (Kaput & Nemirovsky, p. 21).

The elementary teachers with conceptual understanding in this study, however, may not 
be as radical as Kaput and Steen. As shown in the teachers’ interviews, elementary math-
ematics, constituted of arithmetic and primary geometry, already contains important math-
ematical ideas. For these teachers, a “horizontally arranged curriculum” may also possess 
“vertical continuity.” Arithmetic can also have “multiple representations,” “serious math-
ematics,” and “genuine mathematical conversations.”6 I consider the metaphor that Chi-
nese teachers use to illustrate school mathematics to be more accurate. They believe that 
elementary mathematics is the foundation for their students’ future mathematical learning, 
and will contribute to their students’ future life. Students’ later mathematical learning is 
like a multistoried building. The foundation may be invisible from the upper stories, but 
it is the foundation that supports them and makes all the stories (branches) cohere. The 
appearance and development of new mathematics should not be regarded as a denial of 
fundamental mathematics. In contrast, it should lead us to an ever better understanding of 
elementary mathematics, of its powerful potentiality, as well as of the conceptual seeds for 
the advanced branches.

6 “Multiple representations,” “genuine mathematical conversations,” and “qualitative understand-
ing of mathematical models” are features of mathematical teaching advocated by Kaput and his 
colleagues (Kaput & Nemirovsky, 1995).
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PROFOUND UNDERSTANDING OF FUNDAMENTAL MATHEMATICS

Indeed, it is the mathematical substance of elementary mathematics that allows a coherent 
understanding of it. However, the understanding of elementary mathematics is not always 
coherent. From a procedural perspective, arithmetic algorithms have little or no connection 
with other topics, and are isolated from one another. Taking the four topics studied as an 
example, subtraction with regrouping has nothing to do with multidigit multiplication, nor 
with division by fractions, nor with area and perimeter of a rectangle.

Figure 5.1 illustrates a typical procedural understanding of the four topics. The letters S, 
M, D, and G represent the four topics: subtraction with regrouping, multidigit multiplica-
tion, division with fractions, and the geometry topic (calculation of perimeter and area). 
The rectangles represent procedural knowledge of these topics. The ovals represent other 
procedural knowledge related to these topics. The trapezoids underneath the rectangles rep-
resent pseudoconceptual understanding of each topic. The dotted outlines represent miss-
ing items. Note that the understandings of the different topics are not connected.

In Fig. 5.1 the four topics are essentially independent and few elements are included 
in each knowledge package.7 Pseudoconceptual explanations for algorithms are a feature 
of understanding that is only procedural. Some teachers invented arbitrary explanations. 
Some simply verbalized the algorithm. Yet even inventing or citing a pseudoconceptual 
explanation requires familiarity with the algorithm. Teachers who could barely carry out 
an algorithm tended not to be able to explain it or connect it with other procedures, as 
seen in some responses to the division by fractions and geometry topics. With isolated and 
underdeveloped knowledge packages, the mathematical understanding of a teacher with a 
procedural perspective is fragmentary.

FIG. 5.1. Teachers’ procedural knowledge of the four topics.

From a conceptual perspective, however, the four topics are connected, related by the 
mathematical concepts they share. For example, the concept of place value underlies the 
algorithms for subtraction with regrouping and multidigit multiplication. The concept of 
place value, then, becomes a connection between the two topics. The concept of inverse 
operations contributes to the rationale for subtraction with regrouping as well as to the 
explanation of the meaning of division by fractions. Thus the concept of inverse operations 
connects subtraction with regrouping and division by fractions. Some concepts, such as the 
meaning of multiplication, are shared by three of the four topics. Some, such as the three 

7 Given a topic, a teacher tends to see other topics related to its learning. If it is procedural, a teacher 
may see an explanation for it. If it is conceptual, a teacher may see a related procedure or concept. 
This tendency initiates organization of a well-developed “knowledge package.” So I use the term 
“knowledge package” here for the group of topics that teachers tend to see around the topic they 
are teaching.
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basic laws, are shared by all four topics. Figure 5.2 illustrates how mathematical topics are 
related from a conceptual perspective.

Although not all the concepts shared by the four topics are included, Fig. 5.2 illustrates 
how relations among the four topics make them into a network. Some items are not directly 
related to all four topics. However, their diverse associations overlap and interlace. The 
three basic laws appeared in the Chinese teachers’ discussions of all four topics.

In contrast to the procedural view of the four topics illustrated in Fig. 5.1, Fig. 5.3 illus-
trates a conceptual understanding of the four topics. The four rectangles at the top of Fig. 
5.3 represent the four topics. The ellipses represent the knowledge pieces in the knowledge 
packages. White ellipses represent procedural topics, light gray ones represent conceptual 
topics, dark gray ones represent the basic principles, and ones with dotted outlines repre-
sent general attitudes toward mathematics.

FIG. 5.2. A few shared concepts connect the four topics.

FIG. 5.3. Teachers’ conceptual knowledge of the four topics.

When it is composed of well-developed, interconnected knowledge packages, math-
ematical knowledge forms a network solidly supported by the structure of the subject. 
Figure 5.3 extends the model of a conceptual understanding of a particular topic given in 
Fig. 1.4 and illustrates the breadth, depth, connectedness, and thoroughness of a teacher’s 
conceptual understanding of mathematics. Because the four topics are located at various 
subareas of elementary mathematics, this model also serves as a miniature of a teacher’s 
conceptual understanding of the field of elementary mathematics. 
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The ellipses with dotted outlines, general attitudes toward mathematics, are usually not 
included in teachers’ knowledge packages for particular topics. However, they contrib-
ute significantly to the coherence and consistency of a teacher’s mathematical knowledge. 
Basic attitudes of a subject may be even more penetrating than its basic principles. A basic 
principle may not support all topics, but a basic attitude may be present with regard to every 
topic. Basic attitudes toward mathematics mentioned by teachers during interviews, such 
as “to justify a claim with a mathematical argument,” “to know how as well as to know 
why,” “to keep the consistency of an idea in various contexts,” and “to approach a topic in 
multiple ways” pertain to all topics in elementary mathematics.8 

I call the subject matter knowledge illustrated in Fig. 5.3 profound understanding of 
fundamental mathematics (PUFM). By profound understanding I mean an understanding 
of the terrain of fundamental mathematics that is deep, broad, and thorough. Although the 
term profound is often considered to mean intellectual depth, its three connotations, deep, 
vast, and thorough, are interconnected. 

Duckworth, a former student and colleague of Jean Piaget, believes we should keep 
learning of elementary mathematics and science “deep” and “complex” (1987, 1991). 
Inspired by Piaget’s concern for how far, instead of how fast, learning would go, she pro-
posed the notion of “learning with depth and breadth” (1979). After a comparison between 
building a tower “with one brick on top of another” and “on a broad base or a deep founda-
tion,” Duckworth said:

What is the intellectual equivalent of building in breadth and depth? I think it is a 
matter of making connections: breadth could be thought of as the widely different 
spheres of experience that can be related to one another; depth can be thought of as 
the many different kinds of connections that can be made among different facets of 
our experience. I am not sure whether or not intellectual breadth and depth can be 
separated from each other, except in talking about them. (p. 7)

I agree with Duckworth that intellectual breadth and depth “is a matter of making connec-
tions,” and that the two are interwoven. However, her definition of intellectual breadth and 
depth is too general for use in discussing mathematical learning.9 Moreover, she does not 
explain what their relationship is.

Based on my research, I define understanding a topic with depth as connecting it with 
more conceptually powerful ideas of the subject. The closer an idea is to the structure of 

8 Both dimensions of the structure—basic principles and basic attitudes (Bruner, 1960/1977)—are 
very powerful in making connections. Unfortunately Fig. 5.3. is too simple to well illustrate the one-
to-many relationships between general principles or attitudes and mathematical concepts or topics.

9 For educational researchers, the depth of teachers’ subject matter knowledge seems to be subtle 
and intriguing. On one hand, most would agree that teachers’ understanding should be deep (Ball, 
1989; Grossman, Wilson, & Shulman, 1989; Marks, 1987; Steinberg, Marks, &: Haymore, 1985; 
Wilson, 1988). On the other hand, because the term depth is “vague” and “elusive in its defini-
tion and measurements” (Ball, 1989; Wilson, 1988), progress in understanding it has been slow. 
Ball (1989) proposed three “specific criteria” for teachers’ substantive knowledge: correctness, 
meaning, and connectedness to avoid the term deep, which she considered a vague descriptor of 
teachers’ subject matter knowledge.
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the discipline, the more powerful it will be, consequently, the more topics it will be able 
to support. Understanding a topic with breadth, on the other hand, is to connect it with 
those of similar or less conceptual power. For example, consider the knowledge package 
for subtraction with regrouping. To connect subtraction with regrouping with the topics of 
addition with carrying, subtraction without regrouping, and addition without carrying is a 
matter of breadth. To connect it with concepts such as the rate of composing or decompos-
ing a higher value unit or the concept that addition and subtraction are inverse operations is 
a matter of depth. Depth and breadth, however, depend on thoroughness—the capability to 
“pass through” all parts of the field—to weave them together. Indeed, it is this thoroughness 
which “glues” knowledge of mathematics into a coherent whole. 

Of course, the reason that a profound understanding of elementary mathematics is pos-
sible is that first of all, elementary mathematics is a field of depth, breadth, and thoroughness. 
Teachers with this deep, vast, and thorough understanding do not invent connections between 
and among mathematical ideas, but reveal and represent them in terms of mathematics teach-
ing and learning. Such teaching and learning tends to have the following four properties:

Connectedness. A teacher with PUFM has a general intention to make connections 
among mathematical concepts and procedures, from simple and superficial connections 
between individual pieces of knowledge to complicated and underlying connections among 
different mathematical operations and subdomains. When reflected in teaching, this inten-
tion will prevent students’ learning from being fragmented. Instead of learning isolated 
topics, students will learn a unified body of knowledge.

Multiple Perspectives. Those who have achieved PUFM appreciate different facets of an 
idea and various approaches to a solution, as well as their advantages and disadvantages. 
In addition, they are able to provide mathematical explanations of these various facets and 
approaches. In this way, teachers can lead their students to a flexible understanding of the 
discipline.

Basic Ideas. Teachers with PUFM display mathematical attitudes and are particularly 
aware of the “simple but powerful basic concepts and principles of mathematics” (e.g., the 
idea of an equation). They tend to revisit and reinforce these basic ideas. By focusing on 
these basic ideas, students are not merely encouraged to approach problems, but are guided 
to conduct real mathematical activity.

Longitudinal Coherence.10 Teachers with PUFM are not limited to the knowledge that 
should be taught in a certain grade; rather, they have achieved a fundamental understanding 
of the whole elementary mathematics curriculum. With PUFM, teachers are ready at any 
time to exploit an opportunity to review crucial concepts that students have studied previ-
ously. They also know what students are going to learn later, and take opportunities to lay 
the proper foundation for it.

10 Kaput (1994) used this term to describe curricula, here I use it to describe the corresponding prop-
erty for teacher knowledge. This property is related to an aspect of what Shulman (1986) called 
curricular knowledge.
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These four properties are interrelated. While the first property, connectedness, is a gen-
eral feature of the mathematics teaching of one with PUFM, the other three—multiple 
perspectives, basic ideas, and longitudinal coherence—are the kinds of connections that 
lead to different aspects of meaningful understanding of mathematics—breadth, depth, and 
thoroughness.

Unfortunately, a static model like Fig. 5.3 cannot depict the dynamics of these connec-
tions. When they teach, teachers organize their knowledge packages according to teaching 
context. Connections among topics change with the teaching flow. A central piece in a 
knowledge package for one topic may become a marginal piece in the knowledge package 
for another, and vice versa.

Conducting interviews for my study made me think of how people know the town or 
city they live in. People know the town where they live in different ways. Some people—for 
example, newcomers—only know the place where their home is located. Some people know 
their neighborhoods quite well, but rarely go farther away. Some people may know how to 
get to a few places in the town—for example, the place they work, certain stores where they 
do their shopping, or the cinemas where they go for a movie. Yet they may only know one 
way to get to these places, and never bother to explore alternative routes. However some 
people, for example, taxi drivers, know all the roads in their town very well. They are very 
flexible and confident when going from one place to another and know several alternative 
routes. If you are a new visitor, they can take the route that best shows the town. If you are 
in a rush, at any given time of day they know the route that will get you to your destination 
fastest. They can even find a place without a complete address. In talking with teachers, I 
noticed parallels between a certain way of knowing school mathematics and a certain way 
of knowing roads in a town. The way those teachers with PUFM knew school mathematics 
in some sense seemed to me very like the way a proficient taxi driver knows a town. There 
may also be a map in development of the town in a taxi driver’s mind as well. Yet a teacher’s 
map of school mathematics must be more complicated and flexible.

SUMMARY

This chapter contrasted the Chinese and U.S. teachers’ overall understanding of the four 
topics discussed in the previous chapters. The responses of the two groups of teachers sug-
gest that elementary mathematics is construed very differently in China and in the United 
States. Although the U.S. teachers were concerned with teaching for conceptual understand-
ing, their responses reflected a view common in the United States—that elementary math-
ematics is “basic,” an arbitrary collection of facts and rules in which doing mathematics 
means following set procedures step-by-step to arrive at answers (Ball, 1991). The Chinese 
teachers were concerned with knowing why algorithms make sense as well as knowing how 
to carry them out. Their attitudes were similar to those of practicing mathematicians. They 
tended to justify an explanation with a symbolic derivation, give multiple solutions for a 
problem, and discuss relationships among the four basic operations of arithmetic.

For each of the three interview topics that they taught, the Chinese teachers described 
a “knowledge package,” a network of procedural and conceptual topics supporting or sup-
ported by the learning of the topic in question. Items in a knowledge package differed 
in status; the first occasions when a particular concept was introduced were considered 
“key pieces” and given more emphasis in teaching. For instance, “addition and subtrac-
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tion within 20” is considered a key piece of the knowledge package for subtraction with 
regrouping because it is the first occasion when the concept of composing and decompos-
ing a ten is used.

Elementary mathematics can be viewed as “basic” mathematics—a collection of 
procedures—or as fundamental mathematics. Fundamental mathematics is elementary, 
foundational, and primary. It is elementary because it is at the beginning of mathematics 
learning. It is primary because it contains the rudiments of more advanced mathematical 
concepts. It is foundational because it provides a foundation for students’ further math-
ematics l earning.

Profound understanding of fundamental mathematics (PUFM) is more than a sound con-
ceptual understanding of elementary mathematics—it is the awareness of the conceptual 
structure and basic attitudes of mathematics inherent in elementary mathematics and the 
ability to provide a foundation for that conceptual structure and instill those basic attitudes 
in students. A profound understanding of mathematics has breadth, depth, and thorough-
ness. Breadth of understanding is the capacity to connect a topic with topics of similar or 
less conceptual power. Depth of understanding is the capacity to connect a topic with those 
of greater conceptual power. Thoroughness is the capacity to connect all topics.

The teaching of a teacher with PUFM has connectedness, promotes multiple approaches 
to solving a given problem, revisits and reinforces basic ideas, and has longitudinal coher-
ence. A teacher with PUFM is able to reveal and represent connections among mathemati-
cal concepts and procedures to students. He or she appreciates different facets of an idea 
and various approaches to a solution, as well as their advantages and disadvantages—and is 
able to provide explanations for students of these various facets and approaches. A teacher 
with PUFM is aware of the “simple but powerful” basic ideas of mathematics and tends 
to revisit and reinforce them. He or she has a fundamental understanding of the whole 
elementary mathematics curriculum, thus is ready to exploit an opportunity to review con-
cepts that students have previously studied or to lay the groundwork for a concept to be 
studied later.
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Chapter 6  
Profound Understanding Of Fundamental 

M athematics: When And How Is It Attained?

At the end of my study I conducted a brief two-part exploration of when and how a teacher 
attains PUFM. First, in order to have a general idea about when one might attain PUFM, 
I interviewed two groups of people in China who had not been teachers, using the same 
questions that had been asked of teachers. One group was a class of 26 preservice teachers. 
The other group consisted of 20 ninth-grade students.1 The former were examined for their 
knowledge at the end of their teacher education program, and the latter were investigated for 
the kind of knowledge a student might have upon entering a teacher education program.

The second part of the exploration concerned how PUFM is attained. I interviewed 
three teachers whom I had identified as having PUFM. The interviews explored two main 
questions: What the teachers thought a teacher’s subject matter knowledge of mathematics 
should be and how they acquired their own knowledge of mathematics. The responses to 
the question of what a teacher’s knowledge of mathematics should be were discussed in 
the previous chapter. The second part of this chapter discusses the teachers’ descriptions of 
how their working conditions supported and continue to support the growth of their math-
ematical knowledge and its organization for teaching.

WHEN IS PROFOUND UNDERSTANDING OF FUNDAMENTAL 
MATHEMATICS ATTAINED?: WHAT THE PRETEACHING  

GROUPS KNEW ABOUT THE FOUR TOPICS

Differences Between the two Chinese Preteaching Groups

The two preteaching groups showed no obvious differences in algorithmic competence. All 
their computations for the problems of subtraction, multiplication, and division by frac-
tions were correct, except for one ninth-grade student who made an error while adding the 
three partial products for the multidigit multiplication problem. Their explorations of the 
claim about the relationship between perimeter and area showed that both groups knew the 
formulas for calculating perimeter and area of a rectangle very well. Fifty-eight percent 
of the prospective teachers and 60% of the ninth graders thought that the claim “when 
the perimeter of a figure increases its area increases” would not hold all the time. Most 
p rovided a counterexample to disprove it, and a few elaborated the various possible cases.

1 Chinese lower secondary (Grades 7–9) schools differ substantially in quality. The students I inter-
viewed were from a mediocre school in Shanghai where at most half of the students were able to 
pass college entrance examinations.
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When representing the concept of division by fractions, however, the two preteach-
ing groups revealed some interesting differences. Prospective teachers tended to provide 
correct answers, but from a narrower perspective. The students, on the other hand, had a 
broader perspective, but made more mistakes.

Eighty-five percent of the prospective teachers, but only 40% of the ninth graders, cre-
ated a conceptually correct story problem to represent the meaning of . Of the 22 
prospective teachers who provided at least one correct story problem, 20 (91%) represented 
the partitive model (i.e., finding a whole given that half is ). Only two (9%) represented 
the measurement model (i.e., finding how many halves there are in ). Among the eight 
students who succeeded in creating a representation, however, the models were equally 
distributed: Four represented the partitive model and the other four represented the mea-
surement model.

All of the prospective teachers who did not provide a story said that they were unable to 
do it. No stories displaying misconceptions were found among the prospective teachers. The 
twelve middle school students who failed to provide a conceptually correct representation, 
however, seemed “braver” and less “cautious.” They explored the topic from various direc-
tions. Eight created a story representing the meaning of , a subprocedure in the calcu-
lation. Three made a story representing , and one said he was unable to make a story.

The difference between the two groups in representing the meaning of division by frac-
tions seemed to reflect the influence of the teacher education program on the mathematical 
knowledge of the prospective teachers. Their knowledge of the topic seemed to be “cleaned 
up”—cleared of misconceptions. However, this process may have narrowed their perspec-
tives. Because of their caution about what is correct and incorrect, they tended to not to try 
alternative ways when they got stuck.

Another difference between the two groups was that the prospective teachers showed 
concern for teaching and learning when discussing a mathematical topic. They tended to 
provide an explanation after a calculation, even though most of their explanations were 
very limited and brief. For example, in responding to the question about the students’ 
error in multidigit multiplication, the ninth graders tended to simply state that the students 
were wrong and demonstrate the correct calculation. In contrast, the preservice teachers’ 
responses often included three steps. First, the problem was that the students had not lined 
up the partial products correctly. Second, the prospective teachers said that they would 
explain the rationale underlying the algorithm to the students. Third, they would have the 
students do more exercises. Although only one preservice teacher specifically discussed 
the rationale, and none discussed at length what type of exercises would be provided to the 
students, the prospective teachers were clearly concerned about teaching and learning.

In summary, although the preservice teachers and ninth-grade students had similar algo-
rithmic competence, they displayed two main differences. First, the prospective teachers 
seemed to have “cleaned-up” mathematical concepts, while their mathematical approach 
seemed narrowed. Second, unlike the students, the prospective teachers were concerned 
about teaching and learning.

Differences Between the U.S. Teachers and the two Chinese Preteaching Groups

Now let us take a look at the difference between the U.S. teachers and the two Chinese 
preteaching groups. For the topics of subtraction with regrouping and multidigit multipli-
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cation, the three groups showed similar success in algorithmic competence. However, the 
two Chinese preteaching groups displayed more conceptual understanding. For example, 
in their explanations of the lining-up rule for multidigit multiplication, they all showed an 
understanding of the rationale underlying the algorithm.

The performance of the two Chinese groups on the two more advanced topics was mark-
edly better than that of the U.S. teachers. All members of the Chinese groups succeeded in 
computing and knew the formulas for calculating perimeter and area. However, only 
43% of the U.S. teachers succeeded in the division by fractions calculation, and 17% of 
the U.S. teachers reported that they did not know the area and perimeter formulas. For the 
two more conceptually demanding questions, the difference was even greater. Eighty-five 
percent of the Chinese prospective teachers and 40% of the Chinese ninth graders created 
a conceptually correct story problem to represent the meaning of division by fractions, 
but only 4% of the U.S. teachers did. Fifty-eight percent of the Chinese prospective teach-
ers and 60% of the Chinese students displayed a correct approach to the relation between 
perimeter and area of a rectangle. Again, only 4% of the U.S. teachers did. It appears that 
the more advanced the topic and the more conceptual thinking required, the less compe-
tently U.S. teachers performed. Figure 6.1 summarizes these differences for the case of the 
two advanced topics. 

FIG. 6.1. Differences between the U.S. teachers two Chinese preteaching groups on 
knowledge of the two advanced topics.

Differences Between the Chinese Teachers and the two Preteaching Groups

The differences in mathematical knowledge between the Chinese teachers and the two 
Chinese preteaching groups were of another sort. Their algorithmic competence, indicator 
of mathematical knowledge from a layperson’s perspective, was similar. In terms of the 
features of mathematical knowledge of a teacher, however, the two preteaching groups dif-
fered substantially from the group of teachers.

Interviewing prospective teachers and ninth grade students took significantly less time 
than interviewing teachers, although the interview questions were the same. Many prospec-
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tive teachers tended to give explanations for an algorithm, but their explanations were very 
brief. The students did not think of providing explanations, but spent more time on the 
representation of division by fractions and the relation between perimeter and area. Neither 
of the two preteaching groups provided any elaborate discussion of any of the four top-
ics. Neither of the two groups discussed connections among mathematical topics, multiple 
solutions of a problem,2 or basic ideas of the subject related to the topics.

PUFM as a kind of teachers’ subject matter knowledge, however, does not always have 
clear boundaries. In many cases, it is hard to say that a teacher has or doesn’t have PUFM. 
For example, about one tenth of the Chinese teachers interviewed could be identified as 
having PUFM. They were all teachers with many years of teaching experience. Most of 
them had taught all the grades of elementary mathematics. Many had taught all the grades 
more than once. About one tenth of the Chinese teachers could be categorized as having 
no PUFM at all. Most of the other teachers, however, fell into a gray area between the two 
extremes. Some of them showed a broad, deep, and thorough understanding of the subarea 
of elementary mathematics that they were teaching, but not of the whole field. For example, 
some teachers were particularly familiar with the content of lower grades and others were 
particularly familiar with the content of higher grades. They gave elaborate discussions 
of topics from the areas with which they were familiar, but not of the rest. In fact, during 
interviews those who gave the most detailed discussions of the first two topics were usually 
teaching lower grades, and those who discussed the other two topics most elaborately were 
usually teaching upper grades.

It seems to be that PUFM, which I found in a group of Chinese teachers, was developed 
after they became teachers—that it developed during their teaching careers. The problem 
is, then, how did the Chinese teachers develop their PUFM after becoming teachers? To 
explore this question, I interviewed three teachers whom I considered to have PUFM.

PROFOUND UNDERSTANDING OF FUNDAMENTAL  
MATHEMATICS: HOW IT IS ATTAINED

For convenience in data collection, I interviewed Tr. Mao, Tr. Wang, and Tr. Sun, all of 
whom taught at the same elementary school in Shanghai. They were teaching high, mid-
dle, and low grades of elementary mathematics, respectively. Like most of the teachers I 
interviewed,3 these teachers taught only mathematics at the time of the interview. (Some 
teachers switch between subjects but this is infrequent now.) In general, at a school with 
specialized teachers, a new teacher’s specialization is determined by the school’s need, the 
new teacher’s scores on teacher education exams, and the teacher’s own interests.

Unlike elementary teachers in the United States, Tr. Mao, Tr. Wang, and Tr. Sun taught 
three to four 45-minute classes per day. When not teaching, they corrected student work or 
prepared lessons in the offices they shared with their colleagues.

2 After being asked to provide more than one story if they could, six prospective teachers provided 
more than one representation, but all were of a similar partitive model.

3 The twelve teachers at the rural school taught all subjects.
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Studying Teaching Materials Intensively

When asked how they had attained their mathematical knowledge in “a systematic way,” 
these teachers referred to “studying teaching materials intensively [zuanyan jiaocai] when 
teaching it”:

First of all, you have to teach it personally, and you have to study teaching materi-
als intensively when you teach it. In normal school you take courses such as “The 
Content and Teaching Methods for Elementary Mathematics.” But that is not nearly 
enough. You only get a brief and rudimentary idea of what elementary mathemat-
ics is but it is not relevant to real teaching. Only through teaching a grade person-
ally can you get to really know what is taught in that grade. Moreover, you should 
not stick to teaching one single grade but you should teach “round” by “round.” 
People divide elementary school education into several small rounds. In our school 
we have the first round, which includes first through third grades, and the second 
round, which includes fourth and fifth grades. In each round, several grades are 
connected together and cover a subfield of elementary math. If you have taught 
the first round, you become familiar with the picture of what is taught in the first 
three grades and how they are connected. If you have taught the second round, 
you become familiar with the picture of what is taught in the next two grades. If 
you have taught both of the rounds, you know the whole picture of the curriculum 
of elementary school mathematics. The more times you have taught a round, the 
more familiar you become with the content in that round. But merely teaching is 
not enough. It only makes you know the content, yet not necessarily know it well. 
To know it well you have to study teaching materials intensively through teaching. 
(Tr. Sun)

The three elements referred to by Tr. Sun—teaching, teaching round-by-round, and study-
ing teaching materials intensively when teaching—were also mentioned by the other teach-
ers. Teaching and teaching round-by-round may not be hard for an audience outside of 
China to understand. But we may need more explanation of what these teachers meant by 
“studying teaching materials intensively [zuanyan jiaocai],” a term one hears frequently 
when talking with a Chinese teacher.

Probably anyone who knows Chinese and English would translate the Chinese term 
jiaocai as “teaching materials” because jiao literally means “teaching” and cai means 
“materials.” But I would say that in fact jiaocai is more like what “curriculum” means in 
the United States. Generally, when Chinese teachers refer to zuanyan jiaocai, the term con-
sists of three main components—the Teaching and Learning Framework (jiaoxue dagang), 
textbooks (keben), and teacher’s manuals (beike fudao cailiao).

The Teaching and Learning Framework is published by the National Department of 
Education. It stipulates what students at each grade should learn and the standards for their 
learning. It is a document similar in some ways to the National Council of Teachers of 
Mathematics’ Standards for School Mathematics (NCTM, 1989) or state documents like 
Mathematics Framework for California Public Schools (California Department of Educa-
tion, 1985, 1992). In China, the textbooks are intended to interpret and embody the Teach-
ing and Learning Framework. The National Department of Education once published only 
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one set of textbooks for all its public schools. In the last decade, several different textbook 
series have been produced that interpret the framework in ways that are more relevant for 
different local situations. However, the quality of textbooks is still strictly controlled by 
the central and local governments and the various versions are actually very similar. Each 
set of textbooks comes with a series of teacher’s manuals that provide teachers with back-
grounds of the knowledge in the corresponding textbook and with suggestions of how to 
teach it. Both textbooks and manuals are carefully composed by experienced teachers and 
experts in school curriculum who are recognized throughout the country. Taking Walker’s 
(1990) definition of curriculum as “the content and purpose of an educational program 
together with their organization” (p. 5), we can say that in some sense the three materials 
can be considered as the three components that constitute China’s national curriculum.

Chinese teachers study the three kinds of materials in different ways. During the summer 
or before the beginning of a semester, teachers usually study the Teaching and Learning 
Framework. When studying the framework, particularly the part related to the grade which 
they are to teach or are teaching, teachers decide general goals for the school year and each 
semester. Teachers do not “negotiate” with this document but follow it. They consider one 
of their main tasks to be helping students to reach the learning standards stipulated in the 
framework.

The textbook is the material on which Chinese teachers spend most of their time and 
devote most of their efforts to “study intensively.” They study it constantly throughout 
the school year when they teach it. First of all, they work for an understanding of “what 
it is.” They study how it interprets and illustrates the ideas in the Teaching and Learning 
Framework, why the authors structured the book in a certain way, what the connections 
among the contents are, what the connections are between the content of a certain text-
book and its predecessors or successors, what is new in a textbook compared with an old 
version and why changes have been made, and so on. At a more detailed level, they study 
how each unit of the textbook is organized, how the content was presented by the authors, 
and why. They study what examples are in a unit, why these examples were selected, and 
why the examples were presented in a certain order. They review the exercises in each 
section of a unit, the purpose for each exercise section, and so on. Indeed, they conduct 
a very careful and critical investigation of the textbook. Although teachers usually find 
the authors’ ideas ingenious and inspiring, they also sometimes find parts of the textbook 
that from their perspective are unsatisfactory, or inadequate illustrations of ideas in the 
framework.

Textbooks in China (and some other Asian countries) are quite different from those in 
the United States. Stevenson and Stigler (1992) described them as

Separate volumes, seldom containing more than one hundred pages, cover each 
semester’s work in each subject. The covers are attractive, but the inside pages have 
few illustrations and are devoted primarily to text. Illustrations tend to depict only the 
central point of the lesson, and there is very little information that is not necessary 
for the development of the concepts under consideration. They present the essence 
of the lesson, with the expectation that the teacher will elaborate and supplement the 
information with other materials. (p.139)
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For example, the two textbooks for the two semesters of third grade mathematics each have 
fewer than 120 pages. Together they weigh only 6 ounces. The eleven topics they cover4 are 
very carefully organized, each connected with the other, and “there is very little informa-
tion that is not necessary for the development of the concepts under consideration.” Such 
a compact but rigorous structure helps teachers to study the content thoroughly and grasp 
it solidly.

Besides a careful investigation of “what to teach,” teachers study “how to teach it,” or, 
using their language, “how to deal with teaching material [chuli jiaocai].”5 Indeed, in the 
investigation of “what it is,” concern for “how to teach it” is always implied and included. 
After all, a textbook is composed for the purpose of teaching it. Getting straight to the 
problem of “how to deal with teaching material,” teachers consider the textbook from a 
perspective of how to teach it—how they are going to present the material, explain a topic, 
design appropriate exercises for students, etc.—in brief, as Tr. Mao said, “how to promote 
maximal learning in the shortest time, how to benefit all students in a class, advanced ones 
as well as slow ones, as much as possible.” In the process of studying what is in a textbook 
and how to deal with it interactions between “what to teach” and “how to teach” occur. It 
is easy to see that through such interactions a teacher’s subject matter knowledge would 
develop, stimulated by concern for how to teach.

Among the three teaching materials described earlier, Chinese teachers take the teach-
er’s manuals least seriously. Though many teachers, particularly new teachers, find them 

4 The eleven topics (with subtopics in parentheses) are:
1.  Division with one-digit divisor (dividing with a one-digit divisor, division when the quotient has 

zero in or at the end of the number, problems containing continuing division and multiplication, 
review).

2.  Problems with combined operations and word problems (number sentences, word problems, 
review).

3.  Reading and writing of numbers with multiple digits.
4.  Addition and subtraction with multidigit numbers (addition with multidigit numbers, commuta-

tive law and associative law in addition, subtraction with multidigit numbers, the relationship 
between addition and subtraction, how the commutative law and associative law can make some 
operations with addition and subtraction easier, review).

5. Recognition of kilometer.
6.  Recognition of ton, kilogram, and gram.
7.  Multiplication with two-digit multiplier (multiplying a two-digit multiplier, multiplication when 

the multiplicand and/or multiplier have zeros at the end, review).
8.  Division with two-digit divisors (dividing with a two-digit divisor, relationship between multipli-

cation and division, review).
9.  Problems with combined operations and word problems (number sentences, word problems, 

review).
10.  Year, month, and day.
11.  Perimeter of rectangles and squares (lines and line segments, angles, features of rectangles and 

squares, computing the perimeter of rectangles and squares).
After the eleven topics, the textbook has a “Review of the whole year.”

5 When teachers refer to chuli jiaocai, they mean “deal with the textbook.” Although in a broad 
sense jiaocai includes textbook, teacher’s manual, and Teaching and Learning Framework, in 
practice most time is devoted to the textbook.
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very helpful as an exploration of what to teach and how to teach, it is usually suggested 
that one should not let oneself rely on a teacher’s manual and be confined by it. In practice, 
teacher’s manuals are usually studied as supplements to a textbook.

Teacher’s manuals were not a part of the study described in this book. However, like 
the teachers in my study, I used manuals when I was an elementary teacher. The following 
description of teacher’s manuals is based on that experience.

Teacher’s manuals provide background for the mathematics in the corresponding text-
books and suggestions of how to teach it. The introduction of a typical teacher’s manual 
gives an overview of the textbook: its main topics, the rationale for the textbook’s organi-
zation, the relationship between the topics in the textbook and the topics of the preceding 
and succeeding volumes. The main body of the manual is a section-by-section discussion 
of each topic and subtopic of the textbook. The discussion of each topic focuses on these 
questions:

What is the concept connected with the topic?
What are the difficult points of teaching the concept?
What are the important points of teaching the concept?
What are the errors and confusions that students tend to have when learning this topic?

After discussion of these questions, suggested solutions for pedagogical problems are 
sometimes provided. For example, here is part of the discussion of “The meaning and 
properties of fractions” from the teacher’s manual for the Grade 4 textbook (Shen & Liang, 
1992). It begins:

First of all we should let students understand the meaning of fractions—“when a whole 
‘1’ is divided evenly into shares, the number expressing one or more of these shares is 
called a ‘fraction.’” Here, the difficult points in students’ learning are understanding 
the concept of a whole “1” and understanding the fractional unit of a fraction. The 
important point is to explain the concept of “dividing evenly” clearly, (p. 70) 

The manual says that teachers should make sure to reveal the concept that a whole “1” 
does not always represent a single object such as a circle, a rectangle, or an apple. It may 
also represent a group of objects such as a class of students, a basket of apples, or a pile of 
books. The manual continues: 

At the beginning of teaching the concept of “dividing evenly,” circular shapes are the 
most appropriate teaching aids because it is easiest to see the relationship between a 
whole and its parts from an evenly divided circular shape and its sectors. After that, 
other shapes may be used as teaching aids to strengthen and solidify the concept. For 
example, you may want to ask students to fold a rectangle evenly into four parts and 

color one quarter and three quarters of it to help them to build the concept of and . 
Then ask them to cut the rectangle into quarters and stick the quarters on the black-

board to illustrate that is composed of three . The fractional unit of is . Using 

the same approach, one can reveal that is of four —the fractional unit of is , 
etc. In this way, the difficult point of teaching “fractional unit” will be solved. (p. 71)
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After further discussion of various ways that may be used to help students to grasp the 
concept of fractional unit, the manual concludes (p. 71): 

If students are able to tell the value of a fraction and its fractional unit, it means that 
they have a preliminary understanding of the meaning of a fraction. Teachers can 
then give them a few shapes for further differentiation. For example, ask students 
which of these shaded parts represent the fraction underneath it correctly, which 
incorrectly, and why:

A few experienced teachers said that they did not use a teacher’s manual often because they 
already “knew what is in it.” However, for beginning teachers and even for experienced 
teachers who teach a particular grade for the first time, the manuals provide a framework 
for thinking about what they will be teaching and information that is a first stepping stone 
to a deeper understanding.

The teachers I interviewed all felt that “studying teaching materials intensively” was 
very important for them:

To study teaching materials is extremely important. To study teaching materials is 
to study what we are to teach and how to teach it to our students; in other words, to 
find links between the knowledge and the students. The student teachers from normal 
schools doing their student teaching with me usually can’t understand why we spend 
so much time studying teaching materials and what we can learn from studying. For 
them, it seems to be too simple and too plain to study: there are just several example 
problems, one of which you can solve in a minute and explain to students in two min-
utes. But I told them that even after teaching for more than thirty years, every time I 
study a textbook I see something new. How to inspire students’ minds, how to explain 
in a clear way, how to spend less time and let students benefit more, how to motivate 
students to learn these topics…Your answers for all these questions are supported by 
a deep and broad understanding of what the teaching material is about. And every 
time you study it, you get a better idea of what it is and how to teach it. You never will 
feel you have nothing more to learn from studying teaching materials. (Tr. Mao)

“Studying teaching materials” occupies a significant status in Chinese teachers’ work. 
Sometimes it is used as a synonym for “class planning”:

I always spend more time on preparing a class than on teaching, sometimes, three, 
even four, times the latter. I spend the time in studying the teaching materials: What 
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is it that I am going to teach in this lesson? How should I introduce the topic? What 
concepts or skills have the students learned that I should draw on? Is it a key piece 
on which other pieces of knowledge will build, or is it built on other knowledge? 
If it is a key piece of knowledge, how can I teach it so students can grasp it solidly 
enough to support their later learning? If it is not a key piece, what is the concept or 
the procedure it is built on? How am I going to pull out that knowledge and make 
sure my students are aware of it and the relation between the old knowledge and the 
new topic? What kind of review will my students need? How should I present the 
topic step-by-step? How will students respond after I raise a certain question? Where 
should I explain it at length, and where should I leave it to students to learn it by 
themselves? What are the topics that the students will learn which are built directly 
or indirectly on this topic? How can my lesson set a basis for their learning of the 
next topic, and for related topics that they will learn in their future? What do I expect 
the advanced students to learn from the lesson? What do I expect the slow students 
to learn? How can I reach these goals? etc. In a word, one thing is to study whom 
you are teaching, the other thing is to study the knowledge you are teaching. If you 
can interweave the two things together nicely, you will succeed. We think about these 
two things over and over in studying teaching materials. Believe me, it seems to be 
simple when I talk about it, but when you really do it, it is very complicated, subtle, 
and takes a lot of time. It is easy to be an elementary school teacher, but it is difficult 
to be a good elementary school teacher. (Tr. Wang)

From the previous statements we can see how the interactions between “what it is” and 
“how to teach it” occur in the teachers’ minds before they teach a lesson or a topic. Through 
this process, both their knowledge of what to teach and how to teach grow.

The understanding of the rationale of subtraction with regrouping is a striking example 
of how Chinese teachers improved their knowledge of school mathematics through studying 
what they call “teaching materials.” Although we saw in this study that most of the Chinese 
teachers explained subtraction with regrouping as “decomposing a higher value unit,” in the 
late 1970s, most Chinese teachers used “borrowing.” During her interview on subtraction, 
one teacher reported that the parents of some of her students were still teaching this concept 
to their children. However, the version of the Teaching and Learning Framework and the text-
book series published in the early 1980s eliminated the concept of borrowing and replaced it 
with the concept of “decomposing a higher value unit,” and most teachers now use the latter.

Learning Mathematics From Colleagues

Chinese teachers not only study teaching materials individually, they also do it with their 
colleagues. There are also interactions between and among colleagues on the understand-
ing of school mathematics.

Chinese teachers are organized in jiaoyanzu or “teaching research groups” (for more 
information see Paine & Ma, 1993). These groups, usually meeting once a week for about 
one hour, get together formally to share their ideas and reflections on teaching. During this 
period of time, a main activity is to study teaching materials. In addition, because Chinese 
teachers do not have their own desks in a classroom, they share an office with their col-
leagues, usually with other members of their teaching research groups. Teachers read and 
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correct students’ work, prepare their lessons, have individual talks with students, and spend 
their nonteaching time at their offices. Therefore, they have significant informal interac-
tions with officemates outside of the formal meetings of their teaching research groups.

When asked if she had learned any mathematics from her colleagues, Tr. Wang immedi-
ately referred to her experience when she started teaching:

I have learned so much math from other teachers. When I first came to the school 
teacher Xie6 was my mentor. He was a very good mathematics teacher and now is 
retired. I liked to listen to Xie and other teachers discussing how to solve a problem. 
They usually had various ways to solve a problem. I was so impressed that they could 
use seemingly very simple ideas to solve very complicated problems. It was from 
them that I started to see the beauty and power of mathematics.

In fact, not only do young teachers learn mathematics through collegiality, experienced 
teachers also benefit from it. Tr. Mao said:

Discussions with my colleagues are usually very inspiring. Especially when we share 
about how each of us deals with a certain topic, designs classroom practices, man-
ages the teaching pace, what homework each of us chooses and why, etc. In my teach-
ing research group I am the eldest one and have taught the longest time, yet I learn 
a lot from my young colleagues. They are usually more open minded than I am in 
their ways of solving problems. For example, Jianqiang is a young teacher who has 
taught for only three years. He often solves the problems in his own ingenuous way, 
very inspiring. Aged people have rich experience, but we usually have a fixed way 
of solving a problem. How I taught it before may confine my mind. But the young 
people do not have such fixed ways. They tend to think from various dimensions, so 
we can stimulate each other.

Tr. Sun had taught in two schools. I asked her to compare collegiality in the two schools.

I came to this school three years ago, when I moved back to Shanghai. Before then 
I taught in a school in Jiading County, Zhejiang Province. We had had very close 
relationships in our teaching research group, too. I think a teaching research group 
is always helpful because you need to be stimulated by someone else when trying to 
have a better understanding of something. How other teachers interpret the Teaching 
and Learning Framework, how your colleagues understand a certain topic you are to 
teach, and how they are to teach it, etc. are usually inspiring. Moreover, sharing your 
ideas with others pushes you to make your ideas clearer and more explicit. I always 
feel that my ideas would never have gotten sufficiently developed if I had not shared 
them with my colleagues.

Indeed, as suggested in Tr. Sun’s discussion, to learn something specific from one’s col-
leagues is only one of the benefits from collegiality. Another, sharing ideas with colleagues, 

6 This was not the Tr. Xie who participated in the study.
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increases one’s motivation to study and make ideas clearer and more explicit. In addition, 
group discussion is a context where one easily gets inspired. The interactions between 
“what is it” and “how to teach it” seem to provide the driving force for the growth of the 
Chinese teachers’ knowledge of school mathematics, while collegiality collects momentum 
for the process.

Learning Mathematics from Students

I had not expected that the teachers would tell me that they had learned mathematics from 
their students, but they did. The most impressive example was provided by Tr. Mao:

A good teacher can learn from his or her students to enrich himself. Sometimes the 
way of solving a problem proposed by a student is one I have never thought about, 
even though I have taught elementary school for several decades. I can tell you some-
thing that happened just a few days ago. We were in the “triangle unit” and I asked 
my class to try to get the area of the following figure:

Most students thought that it was impossible to solve this problem, since neither of the 
altitudes of the triangles was known. The way I usually teach this is to refer to the for-
mula for the area of a triangle and the distributive property. I usually say to students, 
“Look, this figure, from top to bottom, consists of two triangles. There is something 
common in these two triangles. What is it?” Students would find that the two triangles 
share a common base. Then, from left to right, the figure also consists of two triangles 
and they also share a common base. “Let’s start from the upper and lower triangles. 
Since we have learned how to use a letter to represent a number, why don’t we try 
to use letters to represent the unknown altitudes. Given that we write the unknown 

triangle? h . OK, then how can we write out the formula for their areas? A student 

Since we have learned the distributive property; we know that the common factor 25 
can be taken out and so can÷2. So we can reorganize the problem this way:

25×h
1
÷2+25×h

2
÷2=25×(h

1
+h

2
)÷2  

1altitude of this upper triangle as h , how can we represent the altitude of the lower 

would say for the area of the upper triangle we would have 25×h  ÷2 and for the lower 1

1

2

2triangle 25×h  ÷2. So the area of the whole figure would be 25×h  ÷2 2+25×h ÷2. 2
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At this step, students would suddenly see the light. We know what h
1
+h

2
 is! It is 

24 cm! So the problem would be solved. But this time before my explanation one 
student raised his hand and said he could solve the problem. He said, “I will draw a 
rectangle around the figure:

The length of the area is 25 cm and the width is 24 cm. Its area is 25×24. Our original 
figure at the middle part of the rectangle is exactly half of the rectangle. So I just 
divide 25×24 by 2 and will know the area of that figure.” As you can see, his way 
was much simpler than my way. I had never even thought of this smart way! But I 
understood his idea immediately. Most students were still puzzled. I needed to lead 
them to understand how and why it would work. I said to the class, “This is a very 
good idea. Please take a look, how many small rectangles are there in this big rect-
angle?” “Four.” “OK” I pointed to one of these small rectangles and asked, “What 
is this line in this rectangle?” “Diagonal line.” “Then how about the area of the two 
small rectangles divided by the diagonal line?” “They have the same area.” Then the 
students soon found that each small rectangle was divided into two pieces. We had 
four pieces inside and four pieces outside; the four inside ones, which formed the 
original figure, were of the same area as that of the four outside ones. Therefore, the 
area of our original figure was exactly half of the big rectangle…

But to catch students’ new ideas such as this one in the classroom you have to have a 
good understanding of mathematics. You have to catch it in a moment with the whole 
class waiting for your guidance.

Tr. Wang also mentioned that she had learned from students and said that she was convinced 
that some advanced students were more knowledgeable than she when she first came to 
teach in the school. Tr. Sun described what she learned from students in the lower grades:

Students are very creative. They have taught me a lot. I used to teach upper level 
students in another school. In this school they wanted me to teach lower grades. The 
little ones have surprised me so many times. For example, the problem of subtraction 
with decomposing about which you interviewed me, I had never thought that it could 
be solved in so many different ways. It was my students who proposed the nonstan-
dard ways. In fact, their proposals deepened my understanding of the algorithm.
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These teachers’ discussions about how they had learned from their students reminded me 
of a conversation I had with another teacher many years ago. She said:

In terms of solving mathematical problems, some of my students are even more 
capable than I am. Some problems in the math competition of the school district are 
too complicated for me to solve. But some students in my class can solve them. I am 
glad that my students can go farther than where I am. But I also know that it is me, 
my teaching, that has empowered them.

I think she was right. Creative students are fostered in a creative teaching and learning 
context. Indeed, it is a teacher who creates such a context, who prepares students to become 
their teacher’s teachers.

Learning Mathematics by Doing It

Doing mathematics was a hot topic for these Chinese teachers. “Solving one problem with 
several ways [yiti duojie]” for them seemed to be an important indicator of ability to do 
mathematics. Teachers told me that it was one way in which they improved themselves. Tr. 
Wang said that it was one of the main ways in which her knowledge of mathematics had 
improved:

My knowledge of mathematics improved substantially after I became a teacher. 
When I first came to this school in 1980,1 had very little knowledge of elementary 
mathematics. For I had my own elementary and secondary schooling during the Cul-
tural Revolution, when schools did not teach students seriously. At first I was the aide 
of teacher Xie for his sixth-grade class. My work was to correct students’ homework 
and to help slow students. At that time I felt that many students in Xie’s class were 
smarter than I. I was surprised when I saw how capable the fast students were at solv-
ing complicated problems. I couldn’t do it at all. Next year I was assigned to teach 
third grade. Then second grade, then third grade, and then third, third, fourth, fifth, 
sixth. In recent years I have been teaching higher grades. One way I have improved 
my mathematical knowledge is through solving mathematical problems, doing math-
ematics. The smart ways that the experienced teachers like Xie, Pan, and Mao, and 
even those advanced students, solved mathematics problems really impressed me. To 
improve myself I first of all did in advance all the problems which I asked my stu-
dents to do. Then I studied how to explain and analyze the problems for kids. To do 
more mathematics problems I have looked for books of mathematical problem col-
lections and I do the problems in these books. I don’t know how many mathematics 
problems I have done after I became a teacher, many, many, uncountable. Currently 
I am studying a collection of problems from mathematics competitions. These prob-
lems are more complicated than those we teach in school, but through studying them 
I feel I have improved. I share the way I solve difficult problems with other teachers, 
usually with Jianqiang. He also likes to do complicated math problems. We enjoy 
discussing various ways of solving them.

“Doing mathematics” is the major activity of mathematicians. Lange (1964) writes:
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Most members of the mathematical community—it is a remarkably worldwide com-
munity, possessing a universality uncommon in other areas of human enterprise—
would prefer to do mathematics, not concern themselves excessively with the question 
of what it is that they are doing. (p. 51)

While mathematicians may “not concern themselves with the question of what it is that 
they are doing,” teachers who teach mathematics cannot ignore the question of what it is 
that they are teaching. However, a mathematics teacher should keep his or her enthusiasm 
for doing mathematics as well. It appears that a mathematics teacher should go back and 
forth between the two: doing mathematics, as well as making clear what it is that he or 
she is doing or teaching. Through this interaction, one develops a teacher’s subject matter 
knowledge.

In the three teachers’ discussions of how they developed their understanding of school 
mathematics, we see a process with a series of interactions: between considerations of what 
one should teach and how to teach it; among colleagues; between teachers and students; 
and between one’s interest in mathematics as a teacher and as a layperson or mathemati-
cian. Although all these interactions contribute to the development and the construction of 
a teacher’s subject matter knowledge of mathematics, the interaction between the consid-
eration of what to teach and how to teach it seems to be the “axle” that runs the “wheel,” 
while the collegiality among teachers serves as the “spokes” that connect all the pieces.

A teacher’s subject matter knowledge of mathematics, which develops under a concern 
of teaching and learning, will be relevant to teaching and is likely to be used in teaching. 
In other words, the Chinese teachers develop and deepen their subject matter knowledge of 
elementary mathematics by preparing for classes, teaching the material, and reflecting on 
the process. Therefore, what they learn will contribute to and be used in teaching. 

SUMMARY

This chapter discussed the results of two brief studies that explored when and how PUFM 
is attained. In order to investigate when a teacher might attain PUFM, I interviewed two 
groups of Chinese nonteachers, ninth-grade students and preservice teachers, asking 
them the same questions that I had asked of teachers. Both groups showed conceptual 
understanding and algorithmic competence. In contrast with the ninth-grade students, the 
prospective teachers’ responses to the four scenarios showed a concern for teaching and 
learning. No responses displayed PUFM: there were no discussions of connections among 
mathematical topics, multiple solutions of a problem, basic principles of mathematics, or 
longitudinal coherence.

All of the members of the Chinese preteaching groups displayed more conceptual 
understanding than did the U.S. teachers; for instance, all showed an understanding of 
the rationale for multidigit multiplication. The Chinese preteaching groups also showed 
more procedural knowledge: all did calculations correctly (with the exception of one minor 
error) and all knew the formulas for the area and perimeter of a rectangle. Eighty-five per-
cent of the preservice teachers, but only 40% of the ninth graders, created a story problem 
that correctly represented the meaning of division by fractions. Fifty-eight percent of the 
preservice teachers and 60% of the ninth graders reached a correct solution in their discus-
sions of the relationship between area and perimeter of a rectangle. In contrast, 43% of 
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the U.S. teachers succeeded in the division by fractions calculation. Only one of the U.S. 
teachers (4%) created a story problem that correctly represented the meaning of division 
by fractions. Only one of the U.S. teachers reached a correct solution in discussing the 
relationship between area and perimeter of a rectangle and 17% reported that they did not 
know the area and perimeter formulas.

The second study explored how Chinese teachers attain PUFM. I interviewed three 
teachers with PUFM, asking them how they had acquired their mathematical knowledge. 
The teachers mentioned several factors: learning from colleagues, learning mathematics 
from students, learning mathematics by doing problems, teaching, teaching round-by-
round, and studying teaching materials intensively.

During the summers and at the beginning of school terms, Chinese teachers study the 
Teaching and Learning Framework, a document similar in some ways to the National 
Council of Teachers of Mathematics Standards for School Mathematics (NCTM, 1989) 
or state documents like Mathematics Framework for California Public Schools (California 
Department of Education, 1985, 1992). The most studied material is the textbook. Teachers 
study and discuss it during the school year as they are teaching. Comparatively little time is 
devoted to studying teachers’ manuals, although new teachers find them helpful.

The two studies suggest that, although their schooling contributes a sound basis for it, 
Chinese teachers develop PUFM during their teaching careers—stimulated by a concern 
for what to teach and how to teach it, inspired and supported by their colleagues and teach-
ing materials.
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Conclusion

As I said at the beginning of this book, the initial motivation for my study was to explore 
some possible causes of the unsatisfactory mathematics achievement of U.S. students in 
contrast to their counterparts in some Asian countries. In concluding, I would like to return 
to my original concern about the mathematics education of children in the United States. 
Having considered teachers’ knowledge of school mathematics in depth, I suggest that to 
improve mathematics education for students, an important action that should be taken is 
improving the quality of their teachers’ knowledge of school mathematics,

Although the intent of my study was not to evaluate U.S. and Chinese teachers’ mathematical 
knowledge, it has revealed some important differences in their knowledge of school mathemat-
ics. It does not seem to be an accident that not one of a group of above average U.S. teachers 
displayed a profound understanding of elementary mathematics. In fact, the knowledge gap 
between the U.S. and Chinese teachers parallels the learning gap between U.S. and Chinese 
students revealed by other scholars (Stevenson et al., 1990; Stevenson & Stigler, 1992). Given 
that the parallel of the two gaps is not mere coincidence, it follows that while we want to work 
on improving students’ mathematics education, we also need to improve their teachers’ knowl-
edge of school mathematics. As indicated in the introduction, the quality of teacher subject 
matter knowledge directly affects student learning—and it can be immediately addressed.

Teachers’ subject matter knowledge develops in a cyclic process as depicted in Fig. 7.1.

FIG. 7.1. Three periods during which teachers’ subject matter knowledge develops.
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Figure 7.1 illustrates three periods during which teachers’ subject matter knowledge of 
school mathematics may be fostered. In China, the cycle spirals upward. When teachers are 
still students, they attain mathematical competence. During teacher education programs, 
their mathematical competence starts to be connected to a primary concern about teaching 
and learning school mathematics. Finally, during their teaching careers, as they empower 
students with mathematical competence, they develop a teacher’s subject matter knowl-
edge, which I call in its highest form PUFM.

Unfortunately, this is not the case in the United States. It seems that low-quality school 
mathematics education and low-quality teacher knowledge of school mathematics rein-
force each other. Teachers who do not acquire mathematical competence during schooling 
are unlikely to have another opportunity to acquire it. The NCRTE (1991) study of teacher 
education programs indicates that most U.S. teacher preparation programs focus on how to 
teach mathematics rather than on the mathematics itself. After teacher preparation, teachers 
are expected to know how and what they will teach and not to require further study (Schifter, 
1996a). This assumption is reflected in the U.S. educational structure: The National Com-
mission on Teaching and America’s Future (1997) found no system in place to ensure that 
teachers get access to the knowledge they need. This lack may be an important impediment 
to reform. In 1996, after two years of intensive study, the commission concluded that “Most 
schools and teachers cannot achieve the goals set forth in new educational standards, not 
because they are unwilling, but because they do not know how, and the systems they work 
in do not support them in doing so” (p. 1).

Reflecting on Chinese mathematics education one may notice that the upward spiral is 
not there by itself but is cultivated and supported by the solid substance of school mathemat-
ics in China. If the subject they taught did not have depth and breadth, how could Chinese 
teachers develop a profound understanding of it? In fact, there may exist another upward 
spiral in China—between substantial elementary mathematics and solid mathematics edu-
cation. This contrasts with the sustained low levels in the United States, where inadequate 
elementary mathematics (“basic skills,” “shopkeeper arithmetic”) reinforces and is rein-
forced by unsatisfactory mathematics education. In the United States, it is widely accepted 
that elementary mathematics is “basic,” superficial, and commonly understood. The data in 
this book explode this myth. Elementary mathematics is not superficial at all, and any one 
who teaches it has to study it hard in order to understand it in a comprehensive way.1

How can these self-perpetuating relationships—between unsatisfactory student learn-
ing and inadequate teacher knowledge, between unsatisfactory mathematics education 
and inadequate elementary mathematics—be broken? How can the goals of reform be 
achieved? I conclude with some recommendations.

ADDRESS TEACHER KNOWLEDGE AND  
STUDENT LEARNING AT THE SAME TIME

First of all, I would like to indicate that although I take the gap in teacher knowledge as a 
factor in the gap in student learning, I do not regard improvement of teachers’ knowledge 

1 Other scholars, such as Ball (1988d) have also revealed the falsity of the assumption that elemen-
tary mathematics is commonly understood.
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as necessarily preceding improvement of students’ learning. Rather, I believe both should 
be addressed simultaneously, and that work on each should support the improvement of the 
other. Because they are interdependent processes, we cannot expect to improve teachers’ 
mathematical knowledge first, and in so doing automatically improve students’ mathemat-
ics education.

As we saw in the previous chapter, a teacher’s subject matter knowledge of school math-
ematics is a product of the interaction between mathematical competence and concern 
about teaching and learning mathematics. The quality of the interaction depends on the 
quality of each component. Given that their own schooling does not yet provide future 
teachers with sound mathematical competence, their base for developing solid teaching 
knowledge is weakened. As my data show, the group of Chinese ninth-grade students were 
more competent in elementary mathematics than the group of U.S. teachers, and in addi-
tion showed more conceptual understanding. This suggests that although Chinese teachers 
develop PUFM during their teaching careers, their schooling contributes a sound basis for 
it. Teacher candidates in the United States will not have this sound basis if student learning 
is not addressed.

The second reason that improving teachers’ subject matter knowledge of mathematics 
cannot be isolated from improving school mathematics teaching is that, as I have revealed, 
the key period during which Chinese teachers develop a teacher’s subject matter knowl-
edge of school mathematics is when they teach it—given that they have the motivation to 
improve their teaching and the opportunity to do so. If this is true, it would be unrealistic 
to expect U.S. teachers’ subject matter knowledge of school mathematics to be improved 
before mathematics education in school is improved. Improving teachers’ subject matter 
knowledge and improving students’ mathematics education are thus interwoven and inter-
dependent processes that must occur simultaneously. What is needed, then, is a teaching 
context in which it is possible for teachers to improve their knowledge of school mathemat-
ics as they work to improve their teaching of mathematics.

ENHANCE THE INTERACTION BETWEEN TEACHERS’  
STUDY OF SCHOOL MATHEMATICS AND HOW TO TEACHIT

I have indicated that the key period during which Chinese teachers develop their deep 
understanding of school mathematics is when they are teaching it. However, this finding 
may not be true of teachers in the United States. The experienced U.S. teachers in this study 
did not perform better than their new colleagues in terms of subject matter knowledge. 
This finding agrees with that of the National Center for Research on Teacher Education 
(NCRTE, 1991). The question then is, Why did teaching mathematics in this country not 
produce PUFM among teachers?

I have observed that mathematics teaching in the United States lacks an interaction 
between study of the mathematics taught and study of how to teach it Several factors hinder 
teachers from careful study of the school mathematics they teach. One is the assumption 
that I have already discussed—that elementary mathematics is “basic,” superficial, and 
commonly understood.

Another assumption—that teachers do not need further study of the subject they teach—
also hinders teachers’ further study of school mathematics. Schifter wrote:
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the notion that even experienced teachers can and should be expected to continue 
learning in their own classrooms contrasts sharply with the tradi-tional assumption 
that becoming a teacher marks a sufficiency of learning. It is no great exaggeration 
to say that, according to the conventions of school culture, teachers, by definition, 
already know—know the content domain they are to teach, the sequence of lessons 
they must go through to teach it, and the techniques for imposing order on a roomful 
of students. (1996a, p. 163)

Even if teachers had the time and inclination for studying school mathematics, what would 
they study? Ball (1996) wrote, “it is not clear whether most curriculum developers write 
with teacher learning as a goal.” H. Burkhardt (personal communication, May 11, 1998) 
said, “Professional developers, though they advocate a constructivist approach for kids, are 
only gradually allowing teachers to learn in a constructive fashion.”

Textbook manuals offer teachers little guidance (Armstrong & Bezuk, 1995; Schmidt, 
1996, p. 194), possibly because teachers are not expected to read them. Burkhardt (personal 
communication, May 11, 1998) said:

The math textbook provides a script (with stage directions) for the teacher to use 
in explaining the topic and guiding the lesson; the students are only expected to 
read and do the exercises at the end of the chapter. Nobody reads “teachers’ guides” 
except on masters courses.

Although the results of the Third International Mathematics and Science Study indicate 
that elementary mathematics lessons in the United States tend to be based on the textbook 
(Schmidt, 1996, p. 104), little research focuses on exactly how teachers use textbooks (Free-
man & Porter, 1989, pp. 67–88; Sosniak & Stodolsky, 1993). This research indicates that 
there may be wide variation in teachers’ topic selection, content emphasis, and sequence of 
instruction. Textbooks are rarely followed from beginning to end (Schmidt, McKnight, & 
Raizen, 1997). Case studies suggest that teachers’ knowledge plays a very important role 
in how textbook contents are selected and interpreted (Putnam, Heaton, Prawat, & Remil-
lard, 1992). Even the teaching of one topic may have wide variation. As we have seen in 
the first three chapters of this book, different teachers may construe the same topic very 
differently.

In China, teaching a course is considered to be like acting in a play. Although an actor 
has to know a play very well and can interpret it in an original way, he or she is not sup-
posed to write (or rewrite) the play. Indeed, a well-written play will not confine an actor’s 
performance or creativity but will rather stimulate and inspire it.

The same can be true for teachers. Teaching can be a socially cooperative activity. We 
need good actors as well as good playwrights. A thoughtfully and carefully composed text-
book carries wisdom about curriculum that teachers can “talk with” and that can inspire 
and enlighten them. In China, textbooks are considered to be not only for students, but also 
for teachers’ learning of the mathematics they are teaching. Teachers study textbooks very 
carefully; they investigate them individually and in groups, they talk about what textbooks 
mean, they do the problems together, and they have conversations about them. Teacher’s 
manuals provide information about content and pedagogy, student thinking and longitudi-
nal coherence.
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Time is an issue here. If teachers have to find out what to teach by themselves in their 
very limited time outside the classroom and decide how to teach it, then where is the time 
for them to study carefully what they are to teach? U.S. teachers have less working time 
outside the classroom than Chinese teachers (McKnight et al., 1987; Stigler & Stevenson, 
1991), but they need to do much more in this limited time. What U.S. teachers are expected 
to accomplish, then, is impossible. It is clear that they do not have enough time and appro-
priate support to think through thoroughly what they are to teach. And without a clear idea 
of what to teach, how can one determine how to teach it thoughtfully?

REFOCUS TEACHER PREPARATION

I contend that teacher education is a strategically critical period during which change can 
be made. As the report of the Conference on the Mathematical Preparation of Elementary 
School Teachers points out:

It makes sense to attack the problems of elementary school mathematics education 
at the college level. All teachers go to college—it’s where they expect to learn how 
to teach. Moreover, the task is almost manageable at the college level…. only about 
a thousand colleges educate teachers. (Cipra, 1992, p. 5)

Although my data do not show that Chinese teachers develop their PUFM during teacher 
preparation, this does not mean that the role of teacher preparation in improving teachers’ 
knowledge of elementary mathematics should be minimized. On the contrary, in the vicious 
circle formed by low-quality mathematics education and low-quality teacher knowledge of 
school mathematics—a third party—teacher preparation may serve as the force to break 
the circle.

Refocusing teacher preparation, however, creates another important task for educational 
research—rebuilding a solid and substantial school mathematics for teachers and students 
to learn. What we should do is to rebuild a substantial school mathematics with a more 
comprehensive understanding of the relationship between fundamental mathematics and 
new advanced branches of the discipline. To rebuild a substantial school mathematics for 
today is a task for mathematics education researchers. Indeed, unless such a school math-
ematics is developed, the mutual reinforcement of low-level content and teaching will not 
be undone.

UNDERSTAND THE ROLE THAT CURRICULAR MATERIALS, 
INCLUDING TEXTBOOKS, MIGHT PLAY IN REFORM

Like textbooks, reform documents such the California Framework (1985) and the National 
Council of Teachers of Mathematics (NCTM) Standards (1989) lend themselves to mul-
tiple interpretations (Putnam et al., 1992) that depend on the reader’s knowledge and beliefs 
about mathematics, teaching, and learning.

The Professional Standards for Teaching Mathematics (NCTM, 1991, p. 32) says that 
“textbooks can be useful resources for teachers, but teachers must also be free to adapt or 
depart from texts if students’ ideas and conjectures are to help shape teachers’ navigation 
of the content.” Ferrucci (1997) pointed out that discontinuing the use of textbooks may 
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be viewed as being consistent with this statement. Others characterize reform teachers 
as “using the textbook as a supplement to the curriculum” for homework, practice, and 
review; in contrast, traditional teachers depend on the text to guide the scope and sequence 
of the curriculum (Kroll & Black, 1993, p. 431).

Because of dissatisfaction with textbooks (Ball, 1993b; Heaton, 1992; Schifter, 1996b) 
or because they were encouraged to do so in preservice programs (Ball & Feiman-Nemser, 
1988), some reform-minded teachers independently organize their own curricula, make 
their own materials, and implement the lessons they have designed (Heaton, 1992; Shima-
hara & Sakai, 1995; Stigler, Fernandez, & Yoshida, 1996, p. 216; for narratives from Sum-
merMath teachers, see Schifter, 1996c, 1996d). Ball and Cohen (1996) wrote:

educators often disparage textbooks, and many reform-oriented teachers repudiate 
them, announcing disdainfully that they do not use texts. This idealization of profes-
sional autonomy leads to the view that good teachers do not follow textbooks, but 
instead make their own curriculum…. This hostility to texts, and the idealized image 
of the individual professional, have inhibited careful consideration of the construc-
tive role that curriculum might play. (p. 6)

Teachers need not have an antagonistic relationship with textbooks. My data illustrate how 
teachers can both use and go beyond the textbook, For example, Chinese teachers’ knowl-
edge packages are consistent with the national curriculum. But the student’s idea that Tr. 
Mao “caught” (chapter 6) and the nonstandard methods of subtraction with regrouping, 
multidigit multiplication, and division by fractions described by the Chinese teachers were 
not in the textbook.

Teacher’s manuals can explain curriculum developers’ intentions and reasons for the 
way topics are selected and sequenced. Manuals can also provide very specific information 
about the nature of students’ responses to particular activities (Magidson, 1994 April; Sti-
gler, Fernandez, & Yoshida, 1996). Information about student responses can support teach-
ers who focus on student thinking. However, such information may be useless if teachers do 
not recognize its significance or do not have time and energy for careful study of manuals 
(Magidson, 1994 April).

UNDERSTAND THE KEY TO REFORM: WHATEVER THE FORM  
OF CLASSROOM INTERACTIONS MIGHT BE, THEY MUST  

FOCUS ON SUBSTANTIVE MATHEMATICS

Like the use of textbooks, the kind of teaching advocated by reform documents is subject 
to different interpretations. For example, Putnam and his colleagues (1992) interviewed 
California teachers and state and district mathematics educators. Some thought the primary 
focus of the 1985 California Framework was what to teach—“important mathematical 
content”; others thought it was how to teach—“a call to use manipulatives and coopera-
tive groups” (p. 214). During 1992 and 1993, the Recognizing and Recording Reform in 
Mathematics Education Project studied schools across the United States. Project mem-
bers Ferrini-Mundy and Johnson (1994) noted that superficial efforts can pass for change. 
“Mathematics classrooms can appear to be quite Standards-oriented, with calculators in 
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evidence, students working in groups, manipulatives available, and interesting problems 
under discussion” (p. 191), but investigators need a deeper understanding of what is hap-
pening in these classrooms.

This dicotomy sharpens when we consider Chinese teachers’ classrooms. On one hand, 
mathematics teaching in Chinese classrooms, even by a teacher with PUFM, seems very 
“traditional”; that is, contrary to that advocated by reform. Mathematics teaching in China 
is clearly textbook based. In Chinese classrooms, students sit in rows facing the teacher, 
who is obviously the leader and maker of the agenda and direction in classroom learning. 
On the other hand, one can see in Chinese classrooms, particularly in those of teachers with 
PUFM, features advocated by reform—teaching for conceptual understanding, students’ 
enthusiasm and opportunities to express their ideas, and their participation and contribu-
tion to their own learning processes. How can these seemingly contradictory features—
some protested against and some advocated by reform—occur at the same time? What 
might this intriguing contrast imply for reform efforts in the United States?

The perspective of Cobb and his colleagues (Cobb, Wood, Yackel, & McNeal, 1992) 
helps to explain this puzzle. Cobb and his associates view the essence of the current reform 
as a change of classroom mathematics tradition and contend that traditional and reform 
instruction differ in “the quality of the taken-to-be-shared or normative meanings and prac-
tices of mathematics” rather than in “rhetorical characterizations.”

In their case study of two classrooms, one with “a tradition of school mathematics” 
where knowledge was “transmitted” from the teacher to “passive students” and one with “a 
tradition of inquiry mathematics” in which “mathematical learning was viewed as an inter-
active, constructive, problem-centered process,” the scholars found that in both the teachers 
and the students actively contributed to the development of their classroom mathematics 
tradition, while in both classrooms the teachers expressed their “institutionalized author-
ity” during the process. Cobb and his associates suggest that “meaningful learning” may 
be mere rhetoric in mathematics education because “the activity of following procedural 
instructions can be meaningful for students” in certain classroom mathematics traditions. 
The transmission metaphor that describes traditional mathematics teaching as the attempt 
to transmit knowledge from the teacher to passive students may be appropriate only “in the 
political context of reform” (p. 34).

In this sense, although the mathematics teaching in Chinese teachers’ classrooms does 
not meet some “rhetorical characterizations” of the reform, it is actually in the classroom 
mathematics tradition advocated by the current reform. In fact, even though the classroom 
of a Chinese teacher with PUFM may look very “traditional” in its form, it transcends the 
form in many aspects. It is textbook based, but not confined to textbooks. The teacher is the 
leader, but students’ ideas and initiatives are highly encouraged and valued.

On the other hand, from a teacher who cannot provide a mathematical explanation of 
algorithms for subtraction with regrouping, multidigit multiplication, or division by frac-
tions; from a teacher who cannot provide a correct representation for the meaning of an 
arithmetical operation such as division by fractions; or from a teacher who is not motivated 
to explore new mathematical claims, what kind of “teaching for understanding” can we 
expect?

To make the point more clearly we can think about a classroom like that of Ball (1993a, 
1993b, 1996), considered by some to be a model of current reform:
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In the classroom centered on student thinking and discussion—the classroom envi-
sioned by mathematics education reformers—the children regularly disperse into 
small groups where they work together on problems, while the teacher visits around 
the classroom listening for significant mathematical issues and considering what 
types of intervention, if any, are appropriate. And when the children reassemble 
to compare their ideas and solutions, her questions facilitate discussion. (Schifter, 
1996b, p. 3)

That is not at all the way the Chinese classrooms are organized. What I want to point out 
is, however, that even though they look very different, the difference is superficial. If you 
look carefully at the kind of mathematics that the Chinese students are doing and the kind 
of thinking they have been encouraged to engage in, and the way in which the teachers’ 
interactions with them foster that kind of mental and mathematical process, the two kinds 
of classrooms are actually much more similar than they appear. On the other hand, although 
the fact that so many U.S. elementary teachers have children in groups facing each other 
and using manipulatives may mean that their classrooms look more like Ball’s classroom 
when you walk in, nevertheless, neither the mathematics nor the mathematical thinking that 
the students are doing nor what the teacher is attempting to help them understand are the 
same. The real mathematical thinking going on in a classroom, in fact, depends heavily on 
the teacher’s understanding of mathematics.

Another point I would like to make is that the change of a classroom mathematics tradi-
tion may not be a “revolution” that simply throws out the old and adopts the new. Rather, 
it may be a process in which some new features develop out of the old tradition. In other 
words, the two traditions may not be absolutely antagonistic to each other. Rather, the new 
tradition embraces the old—just as a new paradigm in scientific research does not com-
pletely exclude an old one but includes it as a special case.

In real classroom teaching, the two traditions may not be distinguished from each other 
clearly, or they may not be so “pure” as has been described. For example, my study indi-
cates that teachers with PUFM never ignore the role of “procedural learning” no matter 
how much they emphasize “conceptual understanding.”

Moreover, this research suggests that teachers’ subject matter knowledge of math-
ematics may contribute to a classroom mathematics tradition and its alteration. A “tak-
en-to-be-shared mathematical understanding” that marks a classroom tradition cannot be 
independent from the mathematical knowledge of people in the classroom, especially that 
of the teacher who is in charge of the teaching process. If a teacher’s own knowledge of the 
mathematics taught in elementary school is limited to procedures, how could we expect his 
or her classroom to have a tradition of inquiry mathematics? The change that we are expect-
ing can occur only if we work on changing teachers’ knowledge of mathematics.

I would like to end with a quotation from Dewey (1902/1975):

But here comes the effort of thought. It is easier to see the conditions in their separ-
ateness, to insist upon one at the expense of the other, to make antagonists of them, 
than to discover a reality to which each belongs. (p. 91)
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FIG. A.1. The U.S. teachers’ view of their own mathematical knowledge.

TABLE A.1 Experienced U.S. Teachers’ Years of Teaching Experience

 Years taught

Elementary school Middle school

Tr. Baird 14  

Tr. Barbara 5  

Tr. Barry 23  

Tr. Belinda 12  

Tr. Belle 19  

Tr. Bernadette 17  

Tr. Bernice 8  

Tr. Beverly 15  

Tr. Blanche 1  

Tr. Brady 19  

Tr. Bridget 2 14

Note. None of the teachers reported preschool or kindergarten experience.
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beike fudao 
cailiao

Teacher’s manuals

chuli jiaocai To deal with teaching material

jiaoyanzu Teaching research groups

jiaoxue 
dagang

Teaching and Learning 
F ramework

jie yi dang shi To borrow 1 unit from the tens 
and regard it

jin lu as 10 ones The rate for

jin yi composing a higher value unit 
Composing a unit of higher 
value

keben Textbooks

tui yi Decomposing a unit of higher 
value

yiti duojie Solving one problem in several 
ways

zhi zhi ran, zhi 
qi suoyi ran

“Know how, and also know 
why.”

zuanyan 
j iaocai

To study teaching materials 
intensively

FIG. A.2.
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Based on a study that began in 2002, this article offers a biographical trajectory of 
Liping Ma’s (1999) book, from its birth to its impact, and examines the factors lead-
ing to its impact on the mathematics and mathematics education communities in 
North America and internationally.

In many ways, Knowing and Teaching Elementary Mathematics: Teachers’ Understanding 
of Fundamental Mathematics in China and the United States (Ma, 1999) represents an 
intriguing case in the study of educational research and international comparative stud-
ies in education and its impact on U.S. educational policy, research, and practice. A small 
study, written by a single author initially as a doctoral dissertation, focused on 72 Chinese 
teachers, it had none of the combination of large funding, massive data, or multi-country 
comparisons of much of the highly publicized international studies of the past 2 decades. 
At the same time, the book has remained a “runaway best seller for years,” according to 
Naomi Silverman, the book’s publisher. Based on Ma’s estimation, in early 2002, when 
this study began, the sales reached more than 31,000 copies. Silverman’s record, shared 
via e-mail in May 2007, indicated that, by mid-2007, the sales reached 64,000 copies. 
This shows, on average, approximately 5,000 more copies have been sold every year since 
2002. In early 2002, Silverman also noted, “In addition to sales to libraries, individual 
researchers, and some adoptions as a text for courses, the book has been purchased in 
large quantities by school districts and by other teacher professional development organiza-
tions” (personal communication, March 2002). Obviously, the book’s impact has reached 
d ifferent c ommunities.

Commissioned by the U.S. Board of International Comparative Studies in Educa-
tion (BICSE), National Academy of Sciences, in 2002, the authors conducted a study on 
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the impact of the book Knowing and Teaching Elementary Mathematics by Liping Ma 
on the U.S. elementary mathematics and mathematics education communities.1 Together 
with a number of other commissioned studies, it served as background for an update of A 
Framework and Principles for International Comparative Studies in Education (National 
Research Council, 1990). This article is adapted from the aforementioned study. In con-
ducting the study, we had a series of conversations with Ma, key people who have sup-
ported and disseminated her work, and others who may represent some of the constituent 
groups affected by her work. We also drew on readings or records discussing her work such 
as published reviews of the book from scholarly and professional organizations; commu-
nication networks such as Web sites, Listservs, and Internet discussion platforms; events 
like conferences, workshops, and courses; and news media publications.2 The nature of 
the task—examining the impact of Ma’s book—requires us to look closely at the book, its 
author, and the path that produced the work. We tell the story of Ma’s book’s impact mainly 
through anecdotes and narratives.

Our interviews uncovered a highly visible pattern that the book’s impact is the result of 
a confluence of person, idea, and time. More than one person interviewed suggested that 
the message of Ma’s book has taken hold because of crucial timing—the book arrived at 
a time when both mathematicians and mathematics educators had begun to work together 
to understand the problems of mathematics education despite the still intense debate about 
the causes of the problems. But several respondents also argued that the book has been able 
to have the influence it does because, arriving as it did at a moment of highly polarized 
debate, it represented a fresh perspective as it focused not so much on U.S. education as on 
education elsewhere. Discussion of what teachers’ rich understandings of mathematics and 
mathematics education could look like made a shift in the discussion in the United States. 
Some suggested that this shift in focus has been able to serve as a bridge across communi-
ties that often fail to communicate directly. At the same time, the ways in which the book 

1 We are indebted to several people who assisted us in the initial development of this study and its 
subsequent revision. Colette Chabbott, study director of the U.S. Board of International and Com-
parative Studies in Education (BISCE), and the board were instrumental in offering us the initial 
impetus for considering the impact of Ma’s book when they commissioned this study. We appre-
ciate the invitation offered to Fang to undertake this work and the feedback we received on its 
initial drafts. We were greatly helped by the generosity of several key scholars we interviewed in 
the development of the report, and these are included in the Appendix. Of these, several provided 
feedback and encouragement as we revised our initial study with the hope of publication. Cathy 
Kessel’s suggestions for revising the report and her careful editing led to the current version. 
Richard Askey also provided key ideas for revision. We also appreciate Patsy Wang-Iverson’s 
detailed suggestions. We thank Lee Shulman for his encouraging comment on this report. Finally, 
Liping Ma has welcomed our questions with an openness that we deeply appreciate. Without her 
help as well as that of all the others listed here and in the Appendix, this analysis could not have 
been completed. Any interpretations, findings, conclusions, or recommendations expressed in the 
article are those of the authors and do not necessarily reflect the views of the sponsoring board or 
the National Research Council.

2 References are not comprehensive and only go up to mid-2003, when the study was completed. 
Also, given the page limit, the reference list includes only references cited in the article. A large 
number of other references, such as book reviews, Web sites, and publications that made mention 
of Ma’s book, are omitted.
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has entered conversations have influenced the trajectory and quality of its impact. But 
clearly part of that was a result of the author’s unique intellectual journey and how her work 
entered these conversations. Therefore, the story of the impact of Ma’s book on elementary 
mathematics and mathematics education communities is also a narrative of how it is able to 
enter the broader discourse of contentious debate about mathematics education and create 
possibilities to bridge the gaps.

It is in this sense that we view our study as running a conversation or currere, in Pinar’s 
terms3 (Pinar, Reynolds, Slattery, & Taubman, 1995), around the nature and range of the 
book’s impact on the curriculum and discourse change in mathematics education in the 
United States. To interpret and understand the lived experiences of this small book and its 
author, we traced encounters with persons and ideas in different communities at different 
times. In doing so, we brought together the voices of those who participated in and con-
tributed to the making and spread of the book and wove them into a narrative. So in many 
ways, this study reflects the “collaborative character” (Pinar, 1995, p. 523) of biographical 
research.

To begin with, we give much prominence to the narrative of Ma’s life and work because 
we agree with Shulman (1999) that Ma’s book is “indeed a valuable, enlightening book. It 
attests to the talent of its author, and to the Chinese and American learning environments 
that have nurtured that talent” (p. xii). We then highlight the journey of the book as it went 
out to the public and the extent of its impact. A summary of the major themes arising 
out of the findings follows. We end the article with some reflective thoughts on how we 
approached the study and the nature of the study. 

INTELLECTUAL ROOTS, PROFESSIONAL PREPARATION, 
COLLEGIAL SUPPORT FOR THE BOOK

Academic and Professional History Bearing Upon the Book

Ma’s own life story contributes significantly to the unique qualities she has brought to this 
work. Just as Shulman (1999) argued in the conclusion of his Foreword, the strength and 
impact of that work reflects the unique intellectual and experiential journey of its author. 
Growing up in Shanghai during the Cultural Revolution, she, like so many of her genera-
tion, was forced to undergo dislocations as a part of that political period. She had hardly 
completed 8 years of formal schooling when she was sent to a mountainous rural village 
in Jiangxi province, located in the south of Shanghai, to be “reeducated by the peasants” 
(jieshou zai jiaoyu). At the request of villagers, she started teaching their children, and she 
continued the work for 7 years. She then served as the school’s principal and later as the 
county’s education research person (jiaoyan yuan) who observed and guided teaching and 
research in the county.

In a personal essay written in memory of her postgraduate mentor, Ma (2004) wrote 
that the teaching work in the village was extremely challenging. Many questions that arose 

3 We thank Professor Allan Luke for his idea of using Pinar’s currere to frame the study and view 
the book’s impact.
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begged for “why” and “how” answers. In pursuit of these answers, she developed a keen 
interest in reading about educational theories. One year, during a home visit in Shanghai, 
a friend suggested that she might want to check out the books at the library of East China 
Normal University. She was also introduced to Professor Fonian Liu, an eminent scholar in 
education in China, who was then staying home4 after being dislocated from his position. 
Under his guidance (they later corresponded through letters), Ma continued her reading to 
seek answers to questions she encountered during her daily teaching. By the oil lamp of 
her village dwelling, she started teaching herself English in order to read classic works on 
education in their original language, as advised by Professor Liu.

After the end of the Cultural Revolution, she had passed the prescribed age to take col-
lege entrance examinations as an undergraduate, but she participated in the centralized 
postgraduate entrance examination and was admitted into the master’s program at East 
China Normal University, a key national university in teacher preparation located in Shang-
hai. During her graduate education program, she read more and deeper into the Western 
classics of educational theories by authors such as Bruner, Comenius, Dewey, James, and 
Rousseau and a few well-known Russian scholars, such as Zahkob. This, as she shared 
during one of our conversations, “laid down theoretical foundations for how I think about 
educational issues” (personal communication, February 16, 2002). She was motivated to 
further her learning in the United States to find out about “one feature of teaching that can-
not be described by language,” what she then referred to as a “sense of teaching” and what 
makes a good teacher, a topic that has remained her basic interest (personal communica-
tion, February 16, 2002).

The beginning of Ma’s transition to her advanced studies at Michigan State University 
(MSU) was filled with financial challenges5 until her advisor, Sharon Feiman-Nemser, con-
cerned about her living situation, helped her find a research assistant position at the National 
Research Center for Teacher Education (NCRTE). There she worked for a large study of 
preservice, induction, and inservice teacher education programs. The study focused on 
how programs can help teachers learn to teach mathematics and writing to diverse learners. 
Ma’s assistantship involved her, and several other graduate assistants, in coding interview 
data from teachers and teacher education students. While coding the data, Ma was shocked 
to discover that in the part of the mathematics instrument given to elementary teachers that 
focused on division by fractions, only one teacher produced the right answer. She wondered 
aloud, “How come those teachers don’t know this?” (personal communication, February 
16, 2002). She approached Mary Kennedy, director of the Center, and shared her hunch that 
Chinese teachers would answer the questionnaire differently. She was offered $1,000 to 
go to China to collect data for the Center. She interviewed 12 teachers that summer, using 

4 During the Cultural Revolution, high-ranking education intellectuals (zhishi fenzi), for instance, 
those working in universities and hospitals, were removed from their positions or sent to other, 
often remote, locations to do manual labor. Their original institutions were largely closed.

5 Arriving at Michigan State University with US$30 in her pocket, Ma faced a financial challenge 
as a graduate student. She found hourly work in the school cafeteria and housekeeping at a stu-
dent co-op. During the early 1990s, funding for education projects was limited and it was hard for 
international students with limited English to find research assistantships in those projects. See 
also Gail Chaddock’s interview, Christian Science Monitor, May 30, 2000.
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NCRTE’s Teacher Education and Learning to Teach instrument developed by Deborah Ball, 
then a graduate student at Michigan State University, and other MSU colleagues.

Just as getting the coding position made it possible for her to begin exploring what 
would become her line of research, other significant influences on her work, especially her 
working with Lee Shulman, came about in rather unpredictable ways. Shulman, in fact, 
described it as the “utter accident” (personal communication, February 20, 2002) of con-
nection of colleagues. Ma’s family did not adapt to Michigan’s cold weather and decided 
to move to the West Coast. With the help of Feiman-Nemser, she was able to transfer to 
Stanford to carry out her dissertation under Shulman, who was, at the time, working on not 
only pedagogical content knowledge but also content knowledge.

Upon her arrival at Stanford, Ma shared with Shulman what she had done in her data 
coding job at MSU and her data collection in Shanghai. Shulman told her at once that she 
should use that work for her dissertation. She remembered him saying, “This could be a 
dissertation and you should write a book” (personal communication, February 16, 2002). 
Until then Ma had not considered continuing with her work and building it into her dis-
sertation. As she explained, “I thought I was interested in more theoretical things. I didn’t 
want to do so-called comparative study. I was more interested in what knowledge teachers 
should have instead of differences between teachers” (personal communication, February 
16, 2002).

For her, comparative study was only one research approach. When she began to put 
serious thought in it, though, she felt that through comparing different things, she could 
see some common features.6 She read The Learning Gap (Stevenson & Stigler, 1992), 
which had just been published, and found that scholars in crosscultural studies attempted to 
account for the differences of student educational achievements between East Asian coun-
tries using factors such as language, culture, and organization of teaching and learning. 
She considered that even though these explanations made sense, the factors highlighted 
in the explanations were very hard to change. She thought it was teachers’ knowledge that 
created the gap, which, in fact, is easier to change. She mentioned that Shulman had made 
an important case for a knowledge base for teaching as the foundation for the new reform 
(Shulman, 1987). In addition, research by Cohen (1996) and Ball (1996) also indicated 
how teachers’ lack of content knowledge makes them unable to carry out reform. She saw a 
need, however, for a concrete picture of what it means to have content knowledge.

Financial and Collegial Supports

Ma’s research has also benefited from colleagues she has worked with, the communities she 
has worked in, and financial support that came at crucial moments. These allowed her both 
the time for serious scholarship and the opportunity to discuss her ideas with others. That 
funding is notable both for its modest amount and its serendipitous timing. For instance, 
Kennedy’s provision of $1,000 for a small pilot study in China might be seen as launching 
Ma’s line of work. After returning from her dissertation data collection trip in Shanghai, Ma 
was able to get a 1-year Spencer Doctoral Dissertation Writing Scholarship with Shulman’s 

6 In her interview, Ma shared that Lynn Paine’s doctoral course on International Comparative Edu-
cation at Michigan State University had helped her to think about the usefulness of doing cross-
culture comparative education research.
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support. This funding enabled her to concentrate on her writing. After her dissertation was 
completed, Shulman provided $500 for her to hire an editor. For international students, 
writing academically in standard English is a significant challenge. Through Shulman, Ma 
met Miriam Gamoran Sherin, who was then a doctoral student working with Alan Schoe-
nfeld at University of California, Berkeley. Sherin met Ma weekly to help her with the 
language in her dissertation. As Ma noted, Sherin “inspired me with her thoughtful com-
ments” (Ma, 1999, xiv). Shulman referred to this as a “very important relationship” (per-
sonal communication, February 20, 2002). He notes that one thing people have recognized 
quickly about Ma is that “the quality of her thinking and the quality of her writing are 
imperfectly correlated…. She has always been able to get good editors to smooth out her 
writing” (personal communication, February 20, 2002). Her subsequent collaboration with 
Cathy Kessel is particularly illustrative of such synergy.

In 1997, two years after Ma completed her dissertation, Shulman supported her when 
she applied for postdoctoral fellowship at McDonnell Foundation. The fellowship gave 
her time, a mentor, Alan Schoenfeld, and a community of support, the Functions Group 
at Berkeley, which, Schoenfeld explained, served as a kind of “friendly refiner’s fire” for 
her ideas, especially for chapters, 5, 6, and 7 of Knowing and Teaching Elementary Math-
ematics (personal communication, February 25, 2002). By moving across and within these 
intellectual communities, from MSU to Stanford and then to Berkeley, Ma “broadened her 
intellectual sense” (personal communication, February 25, 2002). Most important, Schoe-
nfeld connected Ma with Cathy Kessel, a member of the Functions Group (something he 
describes as “one of the best things I did”) (personal communication, February 25, 2002). 
The collegial support that Kessel provided Ma was yet another important factor that con-
tributed to the success of the book. It is important to note some aspects of Kessel’s work in 
their collaboration. The kind of support she offered Ma suggested the nuanced role of an 
editor and a collaborator. In fact, Ma said, “I could not imagine that the book would ever 
come out without Cathy” (personal communication, February 16, 2002).

Kessel and Ma had very different backgrounds and several people we interviewed noted 
that the ways their backgrounds complemented each other added to the strength of Ma’s book. 
Kessel had been trained as a mathematician whereas Ma had been an elementary math teacher. 
But in numerous ways, they shared common attitudes toward mathematics and teaching, 
which enabled them to communicate well and build a strong relationship. To Kessel, theirs is a 
unique case of collegiality. She served as editor of the manuscript, working closely with Ma on 
line editing, interacting with Ma throughout at the ideas stage rather than just focusing on the 
language. Editing proved to be a reciprocal learning process for Kessel, and her enthusiasm 
about Ma’s ideas eventually also contributed to how others learned about the book.

Kessel’s contribution also lay in her efforts to keep the unique voice of Ma, which con-
tributes, some would argue, to the ways in which the book offers fresh takes on the same 
terrain others have been familiar with. Kessel gave an example. Although she was not sure 
about the exact wording, to show how she appreciated Ma’s voice, she decided not to edit 
out sentences like “A good vehicle does not guarantee a destination” (personal communi-
cation, March 20, 2002). She believed that expressions like this allow readers to hear in 
the author’s voice the complex and unusual background Ma brings to the United States as 
a Chinese person who had experienced the Cultural Revolution, read Confucius, and had 
been influenced by the events and cultural tradition of her time.
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The success of Ma’s book also owes credit to other kinds of editorial support offered by 
Schoenfeld and Silverman, then at Lawrence Erlbaum Associates (LEA). Both were will-
ing to let Ma and Kessel take time and did not impose certain deadlines but provided them 
time and space to engage in careful work. As Ma’s advisor and editor, Schoenfeld wrote 
comments, rewrote some paragraphs, and suggested ways of framing things. As editor of 
the LEA series, Schoenfeld provided key help—what he described as “standard things” like 
looking for people to make good comments, asking Shulman to write the Foreword of the 
book that was able to stave off potential criticism, working with Silverman to be strategic 
about time, and arranging to get the manuscripts or galleys to key individuals (personal 
communication, February 25, 2002). On this last point, he was willing to send the manu-
script to people like Roger Howe and Jim Lewis, “solid mathematicians, well respected in 
the field,” which immediately helped to establish “face value legitimacy in the mathematics 
community” (personal communication, February 25, 2002).

THE RANGE OF IMPACTS

In an e-mail exchange (part of which was mentioned at the beginning of this article), Sil-
verman provided a general picture of the sales and distribution of the book and the reasons 
for its success:

The book has been a runaway best seller for several years now. In addition to sales to 
libraries, individual researchers, and some adoptions as a text for courses, the book 
has been purchased in large quantities by school districts and by other teacher profes-
sional development organizations. It would seem that its phenomenal success is due 
to a combination of the timeliness of the topic and its relevance to current concerns 
in the education community; its appeal to both sides of the “math wars”; a strong net-
work of prominent mathematics educators discussing the book and informal “word-
of-mouth” recommendations (personal communication, March 2002).

From the trajectory of the book’s sales distribution, its impact has reached not only the 
mathematics research community but also university courses and teacher professional 
development in school districts. Silverman noted that the publisher did not do anything 
special to advertise the book and the sales were through regular channels. Shulman (1999) 
wrote in his Foreword to Ma’s book that the mathematics community has played an impor-
tant role in disseminating the book and contributing to the enthusiasm with which it has 
been received. In 1998, Kessel wrote a brief article on Third International Mathematics and 
Science Study (TIMSS) for the Newsletter of the Association for Women in Mathematics 
in which she cited Ma’s findings to argue that American teachers had received inadequate 
training. When Richard Askey, professor of mathematics at the University of Wisconsin-
Madison, read the article, he asked Kessel and Ma for the manuscript of the book and later 
for their permission to circulate it among mathematicians. Immediately, the book’s manu-
script generated heated discussions and tremendous interest. At the Annual Joint Math-
ematics Meetings in San Antonio in January 1999, Ma’s book was discussed at several 
sessions of the conference, which was attended by both mathematicians and mathematics 
educators. As a participant at the conference, Kessel noted that it was rare for a single book 
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to be the focus of discussion at a number of sessions of the same conference (personal com-
munication, March 20, 2002).

Ma estimated that from early 1999 to early 2002, when we conducted our initial inter-
view with her, she had given more than 40 talks and workshops on different occasions 
across the country. The first group of talks, arranged by Askey, connected Ma and her ideas 
with mathematics educators in mathematics departments on four university campuses: 
MSU (both Mathematics and Teacher Education departments), University of Illinois, Ohio 
State University, and University of Wisconsin-Madison. She was invited to speak at high-
level mathematics education meetings, such as the Conference Board of the Mathematical 
Sciences National Summit on the Mathematical Education of Teachers (November 2001). 
She has also attended many other conferences, often as a keynote speaker. In addition, she 
has presented at teacher professional development sessions in numerous states as well as 
given talks to parents, mainly in California. Such talks brought Ma into direct contact with 
scholars, practitioners, and local communities and allowed her voice and ideas to be heard 
directly. These outreach activities were built into Ma’s work schedule at the Carnegie Foun-
dation for the Advancement of Teaching to purposefully tap into her strengths. As a senior 
scholar at the foundation for the past 5 years, Ma has built upon her earlier work and is 
completing two new books based on that. The following section presents and discusses the 
impact of Knowing and Teaching Elementary Mathematics and its author on these diverse 
communities and institutions.

Impact of Book and Math Wars

In Shulman’s (1999) Foreword to Knowing and Teaching Elementary Mathematics, he 
writes,

Although only now being published, copies of earlier drafts of this manuscript have 
been circulating in the mathematics community for some time. In a recent letter, Lip-
ing’s postdoctoral mentor, Professor Alan Schoenfeld of the University of California 
at Berkeley, described the response to prepublication copies of this book vividly. 
“Liping’s manuscript has already gotten an amazing amount of notice. It’s an under-
ground hit, perhaps the only manuscript I know that has the attention and favor of 
both sides of the ‘math wars.’ Many world-class mathematicians are rhapsodic about 
it; at the annual mathematics meetings, people like [he lists several leading profes-
sional mathematicians] were walking advertisements for the book. That’s because it 
says content knowledge makes a difference. But at the same time, those who have 
reform perspectives—those who value a deep and connected view of mathemati-
cal thinking, and who understand that teacher competence includes having a rich 
knowledge base that contains a wide range of pedagogical content knowledge—find 
that the book offers riches regarding content, teacher preparation, and teacher profes-
sionalism.” (p. xii)

As Shulman’s and Schoenfeld’s comments suggest, having spawned lively conversations 
among mathematicians and educators, the book has been surprisingly visible. Nearly all of 
the key informants interviewed mentioned or talked in detail about the book and its rela-
tion to the so-called math wars. In the United States, disagreements over the best ways to 
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educate school children, including the teaching and learning of school mathematics, have 
lasted for nearly a century. Disagreements over math curricula are often portrayed as “basic 
skills versus conceptual understanding.” Mathematicians are often described as traditional-
ists or advocates of basic skills, whereas professional educators are counted as progressiv-
ists or reformers who are proponents of conceptual understanding aligning with National 
Council of Teachers of Mathematics (NCTM) standards. Such long-term debates have left 
American children as “the casualties” of the wars (Schoenfeld, 2001, 2004, p. 283). “An 
exclusive focus on basics leaves students without the understandings that enable them to 
use mathematics effectively. A focus on ‘process’ without attention to skills deprives stu-
dents of the tools they need for fluid, competent performance” (p. 281). Yet, the math wars 
surged on: “By late 1990s, the antireform movement had reached a level of organization 
and efficiency that enabled it to quickly mount high profile, large-scale efforts” (p. 278). 
This can be illustrated by the event described by Klein7 (2003):

In October 1999, the U.S. Department of Education recommended to the nation’s 
15,000 school districts a list of math books, including several that had been sharply 
criticized by mathematicians and parents of school children across the country for 
much of the preceding decade. Within a month of that release, 200 university math-
ematicians added their names to an open letter to Secretary Riley calling upon his 
department to withdraw those recommendations. The list of signatories included 
seven Nobel laureates and winners of the Fields Medal, the highest international 
award in mathematics, as well as math department chairs of many of the top universi-
ties in the country, and several state and national education leaders. (p. 1)

Entering this math war discourse during a most contentious decade, Ma’s book was imme-
diately seized upon as a political tool by both sides to defend their own views. Depend-
ing on their location and/or positioning vis à vis the math wars, mathematics curriculum, 
teacher education debates, and so on, “each reads it in their own way,” as Askey explained 
(personal communication, March 25, 2002). Yet, the book has had such a distinctive impact 
that all warring factions can see something in it. Even Klein (2003), an antireform activist, 
believed “that unique distinction [of the book] offered at least some hope that the warring 
factions could at some point find substantive issues upon which to agree” (p. 1).

Roger Howe (1999a), a professor of mathematics at Yale University, wrote a thorough 
and thoughtful review of the book that has made a significant contribution in moving 
the discourse toward change and hope. The review, written immediately after the book’s 
release, appeared in the Notices of the American Mathematical Society and two months 
later, NCTM’s Journal for Research in Mathematics Education reprinted Howe’s (1999b) 
review. Having appeared in major journals for mathematicians and mathematics educators, 
Howe’s review has been widely read and cited. It offered a balanced review of the book’s 
content in detail, particularly the importance of the book in educating U.S. mathematicians 
and the society in general in rethinking the knowledge needed for elementary and second-
ary teachers to teach mathematics well. It has addressed the conditions needed for teachers 
to gain the knowledge and recommended the joint effort of both education and mathemat-

7 Klein was one of the organizers of this petition letter.
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ics departments to develop programs that prepare teachers with a good understanding of 
fundamental mathematics and how to teach it. The review also advocates education policy-
makers to give teachers more time to plan their lessons. Although we interviewed a limited 
number of mathematicians and mathematics educators, Howe’s (1999a, 1999b) review was 
mentioned in all of the interviews and was regarded as a trigger of interest for the book.

In the meantime, however, this kind of attention appears unique, a fact that some criti-
cize. For example, Roitman (2000) has noted that both reviews by Howe (1999a, 1999b) 
and Askey (1999) “give the unfortunate impression that Ma’s is the only work on education 
that mathematicians need to read.”

Engaged in the training of mathematics teachers, curriculum development and research, 
and teacher professional development for many years, Glenda Lappan, like many math-
ematics educators, does not regard Ma’s finding of fragmented and inadequate subject mat-
ter knowledge of both preservice and inservice teachers surprising. But she thinks that Ma’s 
book has done more than any other single piece of research in convincing mathematicians 
about what it takes to understand the big ideas in K-12 mathematics education and “orches-
trate those ideas in an organized way in classrooms so that kids understand” (personal 
communication, February 19, 2002). Because of this, she noted that the book became “an 
overnight sensation” (personal communication, February 19, 2002) among mathematicians 
who were compelled by her careful analysis of the different ways in which Chinese teach-
ers look at the division of fractions. In her view, mathematicians have taken her ways of 
analysis as a form of “intellectual conduct in trying to unpack the knowledge that belongs 
to particular knowledge packages” (personal communication, February 19, 2002). As a 
mathematics educator who engages in preparing secondary mathematics teachers, Lappan 
wished that a book like Ma’s could be written about secondary mathematics education.

Lappan says that Ma’s book presents a “wonderful story” and a “provocative and deep 
analysis of Chinese teachers’ mathematics understanding” (personal communication, Feb-
ruary 19, 2002). She summarized the book’s contribution:

It gives us a wedge to try to have conversations with our mathematician colleagues 
about an accomplished view of school mathematics; it also has become an example 
of a principled way to approach curriculum analysis from both a mathematical and a 
pedagogical point of view. For all of those reasons, I take Liping Ma’s book seriously 
(personal communication, February 19, 2002).

The Book’s Impact or Lack of It on Preparation of Mathematics Teachers

As commissioning editor at Lawrence Erlbaum Associates, Silverman reported that the 
book has also been adopted as a text for university courses. Jinfa Cai, mathematics teacher 
educator at University of Delaware, used the book as one of the major texts for a course 
entitled “Culture and Mathematics Learning,” when he was a visiting professor at Harvard 
University. At Delaware, the book was also used in one of their mathematics education 
seminars. It has also been listed as one of the major recommended readings for the doctoral 
students’ Comprehensive Examination in Curriculum, Teaching and Educational Policy 
degree program in the Teacher Education Department of MSU. A Web search also revealed 
that the book is or was used in a number of math education courses. There have been other 
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mathematics and mathematics education courses whose instructors have adopted the book 
but have not put their syllabi on the Internet.

In terms of the book’s impact on teacher education per se, Lappan believed that the 
examples and substance of the book’s ideas would be important for various kinds of under-
graduate courses and professional development opportunities (personal communication, 
February 19, 2002). Using a convenient sample, informal interviews with a few mathemat-
ics education faculty members in the Teacher Education Department of MSU attributed the 
book’s limited impact on education departments to two factors. First, as shared by Feather-
stone (personal communication, February 12, 2002), although the book was used in coplan-
ning discussions among colleagues, the methods courses did not use the book for fear that 
the students would have difficulty understanding the content; thus exposure to the content 
would make students too uncomfortable with the fact that they do not know much math. 
The second factor, as indicated by Chazan (personal communication, February 5, 2002), 
was that there were cases in which mathematics education researchers did not find some 
concepts of the book—such as “knowledge package,” how to construct that knowledge, 
and how teachers learn this knowledge—very helpful for studying teachers’ knowledge in 
mathematics in the United States. Due to time constraints, we had limited interviews with 
mathematics educators in other teacher education departments. Thus, what is reported here 
about the book’s lack of impact in teacher education should be read cautiously.

Impact of the Book on Teachers’ Professional Development

In contrast to what appears to be a smaller scale of impact on teacher education, the book’s 
ideas spread to school districts and teachers on a broad scale, particularly through talks and 
workshops given by Ma to local school associations and districts, mostly in California and 
Texas. At first, her presentation was only about her book but later she added more concrete 
teaching examples. For instance, she showed one exemplary Chinese teacher’s videotaped 
lesson on the number 8. The audience found it hard to understand why one whole lesson is 
needed to teach a simple number. Later, Askey invited her to teach his university students 
how to make meaning of division by fractions. After that, she developed the talk into a work-
shop. Since then, her presentations have been made up of two parts: a talk about her book and 
a workshop on the division of fractions; each part lasts 1½ hours. Some of Ma’s presentations 
were also arranged by Houghton Mifflin as an effort to promote Knowing Mathematics, a 
textbook written by Ma and Kessel (2003) for children who are below grade level. These talks 
and workshops have brought the book’s ideas closer to academic and school practitioners.

The book reached the teacher practitioner community not only through direct contact 
with Ma but also by way of institutional and individual intermediaries. Consider the fol-
lowing two prominent examples. In February 2001, the Office of the President at Univer-
sity of California invited proposals from institutions of higher education and county offices 
of education to continue or begin work as California Subject Matter Project (CSMP) sites 
(see http://csmp.ucop.edu/csmp/about/faq.php). The mathematics component included 
establishing professional development institutes. The request for proposals found from the 
CSMP Web site stated that the proposed goals of the institutes were “to help teachers 
develop what Ma calls ‘a profound understanding of fundamental mathematics’” (p. 2); fol-
lowing this statement, the features of Profound Understanding of Fundamental Mathemat-
ics (PUFM) are listed. The overall structure of such an institute was an intensive summer 
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or intersession program focusing primarily on mathematics content, followed throughout 
the year by ongoing meetings, discussions, and assessments.

Patsy Wang-Iverson, a senior associate who worked for the Mid-Atlantic Eisenhower 
Consortium for Mathematics and Science Education at Research for Better Schools (RBS), 
had created numerous occasions through professional development workshops to promote 
the ideas in Ma’s book. Wang-Iverson explained (personal communication, February 21, 
2002) that since the publication of the book in 1999, she had talked about the ideas in the 
book to teachers, professional developers, and principals during the professional devel-
opment events and the regional professional development conferences organized by the 
consortium. In April 2001, she invited Ma to the seminar she organized for school districts 
and teachers at her organization. By late April 2001, each school district in her area was 
provided with one copy of the book. She also noted that in the Los Angeles school district, 
over 6,000 copies of the book had been sold by early 2001 (personal communication, Feb-
ruary 21, 2002).

In terms of the book reaching teachers and their professional development activities, 
there are numerous Web sites besides RBS that either mentioned or discussed the book 
among teachers and professional developers. These include, among others,8 Teachers’ Net-
work at http://www.teachersnetwork.org/; Regional Alliance for Mathematics and Science 
Education, a site managed by the Northeast Regional Eisenhower Consortium, at http://
cep.terc.edu/ra/; Northwest Regional Educational Laboratory at http://www.nwrel.org/; 
TE-MAT (Teacher Education Materials Project: A database for K-12 Mathematics and Sci-
ence Development Providers) at http://www.te-mat.org/; and the High School Educator 
online forum.

Impact on Policy

The academic and political attention on the ideas addressed by Ma’s book has also created 
broad policy impact at national and state levels. Here we focus only on a few instances 
related to teacher education and professional development. During the American Associa-
tion of State Colleges and Universities’ (AASCU) summer seminar on reforming prepara-
tion of elementary mathematics teachers held at San Diego in 2000, the 100 participants 
from 25 AASCU member institutions were assigned, to read as homework on their first 
night, several key chapters from Ma’s book. Howe’s review of the book (1999b) was also 
cited to discuss the book’s ideas. In accompaniment to the book, The Learning Gap by Ste-
venson and Stigler (1992) was also mentioned along with TIMSS findings. “The underlying 
message of the conference was that universities must fundamentally re-conceptualize the 
mathematics preparation of elementary teachers, focusing both on content and pedagogy if 
American students are to achieve higher levels of performance” (AASCU, 2001, p. 3).

In 2001, the Conference Board of the Mathematical Sciences published an important 
report, The Mathematical Education of Teachers based on work funded by the U.S. Depart-
ment of Education. It addressed current thinking on curriculum and policy issues affecting 

8 These links were retrieved in early 2002 when we were conducting the BICSE commissioned 
study. Most of the links are no longer active. If a reader is interested in an article whose link no 
longer works, Yanping Fang can be contacted to get a copy.



150 Fang and Paine’s “Bridging polarities”

the mathematical education of teachers in terms of the intellectual substance of school 
mathematics and the special nature of the mathematical knowledge needed for teaching. In 
the Preface, it made particular mention of Ball’s and Ma’s research, which “communicate 
these findings in ways that engaged research mathematicians” (p. ix). It cited an example 
from Ma’s (1999) book to further illustrate the substance of such mathematical knowledge 
needed for teaching. The report made a special effort to reformulate the content in prepar-
ing teachers by moving beyond listing what mathematics topics are needed to teach well. 
It offered general recommendations for all grades and extensive discussions of the specific 
mathematical knowledge required for teaching the different grades in elementary, middle, 
and high schools in view of the substance and coherent systems of such knowledge required 
for preparing mathematics teachers. It emphasized that “for maximum effectiveness, the 
design of this instruction requires collaboration between mathematicians and mathematics 
educators and close connections with classroom practice” (p. ix).

In reviewing research on mathematics teaching in recent decades, Ball, Lubienski, & 
Mewborn (2001) gave special mention to the contribution of Ma’s study to pedagogical 
content knowledge. They paid attention to how the knowledge and topics are interrelated 
in the “knowledge package” that Ma found the Chinese teachers she interviewed possessed 
(p. 449). Ball and colleagues also pointed out that the nature of the mathematics knowledge 
for teaching studied by Ma is “culturally-situated” and structured by the curriculum in 
ways that allow teachers to use the key ideas with awareness of how they are interconnected 
within a topic and across a set of topics. They also noted that Ma’s study posed a challenge 
for mathematics education in the United States—”How can teachers’ mathematical knowl-
edge be developed in ways that would more closely correspond to what Ma found among 
Chinese teachers?” (p. 449). Although acknowledging the break-through of Ma’s book in 
both its concept and research on pedagogical content knowledge, Ball and colleagues, as 
well as others, pushed research to move beyond studying such knowledge from teachers’ 
self-report to understanding such knowledge in its dynamic use by teachers in their daily 
work practices.

In addition to policy and research, funding was also mobilized for universities to improve 
and create new training content and programs for the preparation of mathematics teach-
ers. In 2001, three universities, University of Delaware, University of Maryland, and Penn 
State University, received 10 million dollars to establish new training programs called the 
“Mid-Atlantic Math Learning Center” (J.Cai, personal communication, February 4, 2002). 
According to National Council for Teacher Quality bulletin (2001), University of Mary-
land, Baltimore County, is working with Anne Arundel County school system to develop a 
master’s degree program in elementary math education. According to the report, the deci-
sion to build this program was based on the ideas of Ma’s book and TIMSS results.

Impact on the Public

In addition to online media, newspapers have a powerful impact on public debate. Right 
after the book was published, Richard Colvin, an education columnist from the Los Ange-
les Times, introduced it together with The Teaching Gap by Stigler & Hiebert (1999) on 
August 11, 1999. In around 400 words, Colvin captured the gist: Teachers not only have to 
know the “what” of the subject matter they teach but also the “how” and “why” so they can 
explain the important ideas of mathematics to students. Citing the striking contrast in the 
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results produced by the sampled Chinese and American teachers in the case of division by 
fraction, he drew readers’ attention to the fact that the American teachers had much higher 
educational qualifications but they were trained as generalists at elementary level teaching 
all subjects whereas their Chinese counterparts specialize in at most two subjects and they 
learn such knowledge on the job. This article triggered online discussions in the mathemat-
ics education circle at Math Forum (http://mathforum.org/kb/thread.jspa).

Almost a year later, on May 30, 2000, the Christian Science Monitor published an inter-
view with Ma by Gail Chaddock on her academic and professional history, her views toward 
American elementary teachers’ lack of subject matter understanding, and the urgency to 
improve it. A year later, on June 27, 2001, Richard Rothstein, then New York Times educa-
tional columnist, published his article entitled, “A Sane Position Amid Math’s Battlefield.” 
The article did not give the context of the math wars and neither did it go deep enough to 
make a case for the book being used by both sides of the wars as many who are familiar with 
Ma’s book would have liked. Yet, according to Kessel (personal communication, March 20, 
2002), the day Rothstein’s article came out, the ranking of Ma’s book reached number 87 on 
Amazon.com’s top sellers’ list (best ranking is number 1). This column was also discussed 
at Math Forum’s Web site, http://mathforum.org/kb/message.jspa (messageID=1481772).

International Impact

It is interesting that a book studying Chinese elementary teachers’ knowledge of funda-
mental mathematics has not created much impact in China’s mathematics education. There 
are a few reasons for the book’s lack of impact in China. Lingyuan Gu, a senior researcher 
chairing China National Center for Research on Continuing Education for Elementary and 
Secondary Teachers (Shanghai Office) and professor of East China Normal University, 
said that because the book had not been translated into Chinese, it had hardly had any 
impact on mathematics education and research in China. He noted that it was interesting 
that people in China learned about Ma’s book when they surfed the Internet to learn about 
recent research in the United States. He also added that, because the teachers’ mathematics 
content knowledge addressed in Ma’s book seemed fundamental for teachers in China, he 
doubted that the book would have much impact in China (personal communication, March 
2001). Yet, the intellectual rigor of Ma’s work in its research, as commented earlier by Lap-
pan, has had great appeal to mathematics teacher educators in China. For instance, Profes-
sor Li Shiqi of East China Normal University adopted the book as a major textbook for his 
mathematics education research courses. In recent conversations with a few of his former 
and current doctoral students9 they shared that they benefited a lot from careful reading and 
discussion of how sophisticated Ma’s presentation was of her analysis of interviews with 
teachers.

In countries where English is the official medium for education and research, the 
book’s impact is noticeable. Through an Internet search, we found that Askey brought 

9 For instance, my conversations with Dr. Wang Xiong, who currently works as a research fellow at 
the Center for Research in Pedagogies and Practices (CRPP) at the National Institute of Education 
(NIE), Singapore; Dr. Yang Yudong, who was visiting scholar to CRPP (February-May 2008); and 
Mr. Xingfeng Huang, who is on his dissertation scholarship with professors at Mathematics and 
Mathematics Education Academic Group at NIE.
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the book to Australian colleagues in Melbourne and Sydney. According to the education 
column dated June 7, 2000, in the online version of The Age (http://www.theage.com.
au/education/20000607/A43810–2000Jun7.html), an Australian newspaper, when Jan 
Thomas, a senior lecturer in mathematics education and executive officer of the Australian 
Mathematical Society, returned from her trip to California, she wrote about the “lively 
debate that rages about mathematics teaching and learning” in California, the NCTM’s 
newly revised standards, and the policymakers’ insistence on testing. Her impression was 
that, amid this debate, “there is broad agreement on at least one thing in the mathematical 
community in the U.S.A., that a book by Liping Ma published a year ago had important 
things to say that needed to be heeded if real gains were to be made in children’s mathemat-
ics learning” (Thomas, 2000, p. 1). In her article she briefly introduced key points of the 
book and then asked the question, “Is this relevant to Australia?” After reflecting on her 
own professional and research experience in mathematics education, she argued that it was 
very relevant to her country. Comparing the conditions of teachers and their professional 
development in Australia and the United States, she concluded, “And yes, we could learn 
from other countries—countries as diverse as China and U.S.” (Thomas, 2000, p. 1).

Celia Hoyles, professor at the Institute of Education, University of London, wrote a 
conference article (2001) entitled, Rebuilding the Profession of Mathematics Teaching: 
Where Are We and Where Can We Go? After introducing briefly the report Adding It Up 
(National Research Council, 2001), she quoted Ma’s work to answer the question, “What is 
mathematical proficiency and what does it take to teach it?” She then reflected on the situ-
ation in the United Kingdom and gave specific recommendations for what the UK should 
do to retain and recruit teachers, to define what mathematics knowledge is needed in the 
workplace, and to improve mathematics education in the UK through Joint Mathematical 
Council initiatives.

At the Canadian Mathematical Society’s Winter Meeting 2000 in Vancouver, where 
Roger Howe offered a public lecture on the ideas in Ma’s book, Christian Siebeneicher, a 
professor from Bielefeld University in Germany, presented a paper entitled, “Art of Reck-
oning,” in which he paid particular attention to the kinds of problems used in Ma’s survey.

The conference announcement opened with the following paragraph written by Ed Bar-
beau (2000), University of Toronto, under the heading “Teaching Mathematics—A Matter 
of Acculturation”:

When we travel, it helps to have knowledge of the country we visit. But if we want the 
experience to touch us, simple knowledge is not enough; we need some feeling for 
the culture, which speaks to the coherence of the experience. So it is with the country 
of mathematics. Liping Ma’s book tells me that Chinese teachers, with their Profound 
Understanding of Fundamental Mathematics, have been able to enter into this culture 
in a way that their American counterparts have not. What are the hallmarks of this 
mathematics culture?

Appearing in the abstract of the announcements for the Teaching & Learning Seminar 2001 
at the National University of Singapore was a professor giving a talk about the British edu-
cationist Paul Ernest and his experience in designing and teaching the course “Mathemati-
cal Ideas” for the University Scholars Program. He cited the mathematician René Thom’s 
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sentiment about the importance of a teacher’s own philosophy of mathematics in his or her 
teaching and ended with the following: “Liping Ma (1999) said, ‘While mathematicians 
may [prefer to do mathematics], teachers of mathematics cannot ignore the question of 
what it is that they are teaching.’”

THE NATURE OF AND REASON FOR THE STUDY’S IMPACT

As described earlier, the book has become highly visible in both mathematics and mathe-
matics education circles. Yet, it also appears that the book’s impact is uneven, affecting some 
communities far more than others. It perhaps has its first and still strongest impact at the uni-
versities rather than on practitioners. What accounts for this impact and its unevenness? We 
consider several explanations that interviewees gave for why the book has been received as 
it has been. We also explore the ways it has been embraced by different constituent groups.

Across our interviews, key themes stand out in accounting for the book’s powerful 
impact. One is simply the notion that good ideas have appeal. Across the board, people 
we interviewed recognized the power of Ma’s ideas. Comments cited earlier by Shulman 
(1999) and Howe (1999a, 1999b) exemplify this view.

A second claim, though, is that this work reached people because even if some of the 
ideas and findings were not entirely new, they were presented in a way that made them 
heard for the first time. Here, the fact that the work is comparative is essential. As Shulman 
explained, this “comes to the heart of why comparative work is so important” (personal 
communication, February 20, 2002). He views Ma’s book as a dramatic instance of the 
proposition that international work allows the outsider to see something insiders take for 
granted and, in the process, make it interesting, problematic, and worthy of investigating for 
insiders. To illustrate his point, he compared “the fact that elementary teachers didn’t know 
mathematics very well” to “someone saying, ‘Did you notice that children under the age of 
three are incontinent?’” (personal communication, February 20, 2002). In other words, out-
siders notice some familiar phenomenon and this allows the familiar to be made strange.

This view is echoed by others’ assessment. Askey argued that even though “the sad 
state of knowledge of far too many American teachers” is known, it should have been more 
widely known and acted on. For him, Ma’s book allowed that to happen, in part because of 
the very dramatic examples, for example, in the chapter on division by fractions (personal 
communication, February 25, 2002).

As mentioned earlier, Lappan highly commended Ma’s book and its contribution to 
the field of mathematics education. Her personal assessment of the book, however, is not 
entirely positive. She was concerned with how the study “takes a small sample and general-
izes it.” Although she thinks that Ma did not necessarily mean it, many readers tend to take 
it “as a representation of all Chinese and American teachers” (personal communication, 
February 19, 2002). She pointed out that the book would still become a big contribution to 
mathematics education even if it had just studied and showed clearly what Chinese teach-
ers’ Profound Understanding of Fundamental Mathematics (PUFM) looks like. Lappan’s 
critique is not uncommon. In fact, to prevent such reading from happening, Shulman, in his 
Foreword to Ma’s book, has warned readers to read the book not primarily as a compara-
tive work but rather as a conceptual one: “This book appears to be a comparative study of 
American and Chinese teachers of mathematics, but its most important contributions are 
not comparative, but theoretical” (Shulman, 1999, p.x).
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A third thread we heard throughout interviews was the way the book’s impact reflects 
its ability to go beyond or extend other work. The ability to demonstrate what PUFM looks 
like is, for some, “the most important aspect” (personal communication with Schoenfeld, 
February 25, 2002). It is also crucial to making this book, critical though it is of U.S. teach-
ing, what Shulman calls both an “illuminating and encouraging” study (personal commu-
nication, February 20, 2002). That teachers can achieve PUFM is, according to Ma’s work, 
not impossible. Ma does not so much focus on the question of why some Chinese teachers 
she interviewed have this knowledge when U.S. teachers do not but more on what this kind 
of understanding is, what it entails and requires. The orientation of the argument allows it 
to be “out of the line of adversarial volleys” of the math wars and instead, the knowledge 
question, in Shulman’s view, “suddenly becomes important to anyone who wants to think 
about mathematics” (personal communication, February 20, 2002).

The idea that the book, through the voice and structure of the argument, is uniquely 
positioned in ways that allow it to be heard and taken seriously is thus a fourth reason for its 
impact. Schoenfeld (personal communication, February 25, 2002) claimed that it has “per-
haps the only message that would be appropriated by both sides.” The international focus 
was important in the “unique paradox” the book set up: Chinese teachers begin teaching 
with less formal mathematics training than U.S. teachers, yet they are the ones in the study 
who possess deep content knowledge. This point is also echoed in a number of reviews 
of Ma’s book, particularly in Howe’s (1999a, 1999b.) As Schoenfeld explained, “this gets 
people’s interest” (personal communication, February 25, 2002).

Lappan, Cai, and others also emphasized that the book’s huge reception was the result 
of timing. Lappan (personal communication, February 19, 2002) reviewed the history of 
NCTM standards: in 1983 when the NCTM Taskforce was established to lay out standards 
for K-12 education about what students ought to know and be able to do in mathematics, 
the then president of NCTM, John Dossey, was a rare mathematics educator who cared 
about research on teaching and teacher knowledge. The 1989 standards were misused dur-
ing implementation and such trappings as group work and using manipulatives, rather than 
the content of mathematics, were taken as the essence. This led to a tremendous backlash 
against efforts to reform the curriculum and professional development of teachers. But a 
decade later, mathematicians became involved in the process of discussing and writing 
Principles and Standards of School Mathematics, which was released in 2000. The idea 
that mathematics is central was clarified. It was in that milieu that Ma’s book was published. 
Therefore, Lappan believed that if the book had come out at a time when communication 
between the mathematicians and mathematics educators had not been so widespread, it 
would have been unlikely for it to have made such an impact.

A SMALL NARRATIVE ABOUT A LARGER DISCOURSE CHANGE

We conclude the article with some of our reflective thoughts gathered as we conducted the 
initial report for the Board of International and Comparative Studies in Education (BICSE) 
and revised it for a wider audience. We present the study on the impacts of Ma’s book as a 
narrative of the book’s birth, spread, and influences. The process of producing this narrative 

10 Again, we extend our appreciation to Professor Allan Luke for his suggestion that we view our 
work as a small narrative (a mini-récil, in Lyotard’s terms) about a larger discourse change.
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is like running a conversation, or in Pinar’s term (Pinar, 1995), currere10—with each voice, 
we uncover an anecdotal experience and evaluation of the book’s impact. By weaving these 
voices into meaningful themes, we allow them to be heard more distinctively. Yet, we are 
also aware that in order to participate in the metanarrative of scholarly publication, we must 
adopt a sequential and largely chronological order of presentation and have made careful 
selection of which quotes or events to use to illustrate a point, given the limited space. In 
doing so, we bear in mind that there are myriad ways and possibilities of telling a story of 
this book depending upon whose story is told, from what angle, and for what purposes.

To make a story line, we sought connections to link the trajectory of the book in its 
development, dissemination to the public, and its impacts on different communities. In 
doing so, our selection and presentation might have made our narrative read like a grand 
epic of the little book. On the one hand, given the nature of our task, we have to position 
ourselves as researchers while being friends and colleagues of Ma, and our familiarity 
seemed to make it harder to distance ourselves initially. On the other hand, the book’s abil-
ity to address the big issues held dearly by different camps for a long time and the author’s 
unique voice and unique intellectual journey, which shaped the book’s ideas, also seem to 
cast the story in the luminous light of an epic.

Set in the local context (the math wars or “literacy wars” surged in the history of edu-
cation in the United States or among a number of the English-speaking countries), our 
narrative is thus also a small narrative, a petit récit, in Lyotard’s (1979/1984) term, around 
curriculum and discourse change and how a little book bears upon a larger discourse 
change. Yet, it is the book’s transnational data that help illuminate important issues in new 
light and allow the complicated situations of mathematics education to be viewed in both a 
critical and hopeful manner. Hence, it is also a petit récit or currere about the importance 
of going beyond the local to understand one’s own world and stories.
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APPENDIX

A List of People Interviewed in Early 2002

Names Appointment

Alan Schoenfeld Professor, University of California at Berkeley

Cathy Kessel Mathematics Education Consultant

Daniel Chazan Associate Professor, Mathematics Education, College of Education, 
Michigan State University (Currently Associate Professor, Department 
of Curriculum and Instruction, College of Education, University of 
Maryland)

Glenda Lappan Former President of National Council of Teachers of Mathematics, 
Professor, Department of Mathematics, Michigan State University

Helen Featherstone Associate Professor, Teacher Education Department, College of 
E ducation, Michigan State University

Jinfa Cai Associate Professor, Department of Mathematics Sciences, University 
of Delaware

Joan Ferrini-Mundy Professor, Associate Dean for Science and Mathematics Education, 
Michigan State University

Lee Shulman President, Professor, Carnegie Foundation for the Advancement of 
Teaching

Lingyuan Gu Vice Director, Professor, Shanghai Academy of Educational Sciences, 
Professor, East China Normal University

Liping Ma Senior Scholar, Carnegie Foundation for the Advancement of Teaching

Patsy Wang-Iverson Senior Scientist, Research for Better Schools, Mid-Atlantic 
E isenhower Consortium for Mathematics and Science Education 
(C urrently Vice President for Special Projects at the Gabriella and Paul 
Rosenbaum Foundation)

Richard Askey Professor, Department of Mathematics, University of  
Wisconsin-Madison

Sharon Feiman-Nemser Professor, Teacher Education Department, Michigan State U niversity 
(Currently Mandel Professor of Jewish Education at Brandeis 
U niversity)
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Liping Ma  
The Carnegie Foundation for the Advancement of Teaching

I want to begin by expressing my appreciation of the efforts Yanping Fang and Lynn Paine 
have made in writing this report and thanking the U.S. Board of International Comparative 
Studies in Education, which commissioned it. Without this report, I might never have seen 
such a comprehensive picture regarding the impact of my work.

There is an old Chinese saying: “Focus on planting, don’t even think about the harvest.” 
This has had a significant impact on my attitude toward my work. There was another impact 
as I started to turn my dissertation into a book. Alan Schoenfeld, who was at that time my 
postdoctoral advisor, said to me, “The only thing you need to have in mind is to do a good 
job.” I followed his advice.

Although the book is about teachers’ knowledge, its ultimate goal is to improve stu-
dents’ learning. Deep in my memory is the image of eyes—the bright eyes of my students 
in the rural area of South China where, as a teenager, I became a teacher. Whether they 
belong to Chinese or U.S. children, young students’ eyes revealing a desire for learning 
have set the direction of my work—to satisfy students’ desire to learn; in particular, to learn 
mathematics.

Although in my book I had discussed some defects of teachers’ knowledge, in essence, 
it is a celebration of teachers’ knowledge. The book was well received not because it por-
trayed defective knowledge but rather because it painted a picture of teachers’ profound 
knowledge. Seeing this picture would have been difficult or impossible without the contri-
butions of teachers who had different kinds of mathematical knowledge. Many elementary 
school teachers, those U.S. teachers whose interview transcripts stimulated me to inquire 
into Chinese teachers’ knowledge, and those Chinese teachers whom I interviewed all had a 
considerable impact on my work. It is teachers’ understanding of the mathematics that they 
teach that constitutes the main content of the book.

Although the acknowledgments and references in the book mention people and works 
that had an impact during its creation, there were even more contributions after its publi-
cation. Those who reviewed, commented on, or criticized the book, as well as those who 
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have used it for teaching or professional development, have directly shaped the impact of 
the book.

I believe that any piece of intellectual work has an impact, sooner or later, obvious or 
obscure. I also believe that any piece of intellectual work is the result of other impacts. The 
broader and deeper the impacts that it receives, the broader and deeper are the impacts that 
it may produce. By writing their report, Fang and Paine have put their impact on my work. 
For this, I thank them again.

Liping Ma’s “Knowing and Teaching Elementary Mathematics” 
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